
Almost a hundred years later, after two
collapses, the Quebec Bridge is still the longest
cantilever bridge in the world. The cantilever
technology has been replaced by the better,
faster, cheaper suspension technology.
SystemVerilog can similarly replace HDLs for
better, faster, cheaper verification.
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ABOUT THE COVER

The cover of the first edition of Writing Testbenches featured a pho-

tograph of the collapse of the Quebec bridge (the cantilever steel

bridge on the left1) in 1907. The ultimate cause of the collapse was

a major change in the design specification that was not verified. To

save on construction cost, the engineer in charge of the project

increased the span of the bridge from 1600 to 1800 feet, turning the

project into the longest bridge in the world, without recalculating

weights and stresses.

In those days, engineers felt they could span any distances, as ever

longer bridges were being successfully built. But each technology

eventually reaches its limits. Almost 100 years after its completion

in 1918 (after a complete re-design and a second collapse!), the

Quebec bridge is still the longest cantilever bridge in the world.

Even with all of the advances in civil engineering and composite

material, cantilever bridging technology had reached its limits.

You cannot realistically hope to keep applying the same solution to

ever increasing problems. Even an evolving technology has its

limit. Eventually, you will have to face and survive a revolution that

will provide a solution that is faster and cheaper.

1. Photo: © Rock Santerre, Centre de Recherche en Géomatique, Univer-
sité Laval, Québec City, Québec, Canada
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Replacing the Quebec bridge with another cantilever structure is

estimated to cost over $600 million today. When it was decided to

span the St-Lawrence river once more in 1970, the high cost of a

cantilever structure caused a different technology to be used: a sus-

pension bridge. The Pierre Laporte Bridge, visible on the right, has

a span of 2,200 feet and was built at a cost of $45 million. It pro-

vides more lanes of traffic over a longer span at a lower cost and

weight. It is better, faster and cheaper. The suspension bridge tech-

nology has replaced cantilever structures in all but the shortest

spans.

Directed testcases, as described in the first edition, were the cantile-

ver bridges of verification. Coverage-driven constrained-random

transaction-level self-checking testbenches are the suspension

bridges. This methodology revolution, introduced by hardware ver-

ification languages such as e and OpenVera and as described in the

second edition of Writing Testbenches, make verifying a design bet-

ter, faster and cheaper. Hardwave verification languages have dem-

onstrated their productivity in verifying today’s multi-million gate

designs.

SystemVerilog brings the HVL technology to the masses, as a true

industry standard, with consistent syntax and simulation semantics

and built in the simulators you already own. It is no longer neces-

sary to acquire additional tools nor integrate different languages.

Like the Pierre Laporte Bridge, which today carries almost all the

traffic across the river, you should use these productive methods for

writing the majority of your testbenches.

I’m hoping, with this new book, to facilitate your transition from

ad-hoc, directed testcase verification to a state-of-the-art verifica-

tion methodology using a language you probably have at your fin-

gertip.
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PREFACE

If you survey hardware design groups, you will learn that between

60% and 80% of their effort is dedicated to verification. This may

seem unusually large, but I include in "verification" all debugging

and correctness checking activities, not just writing and running

testbenches. Every time a hardware designer pulls up a waveform

viewer, he or she performs a verification task. With today’s ASIC

and FPGA sizes and geometries, getting a design to fit and run at

speed is no longer the main challenge. It is to get the right design,

working as intended, at the right time.

Unlike synthesizable coding, there is no particular coding style nor

language required for verification. The freedom of using any lan-

guage that can be interfaced to a simulator and of using any features

of that language has produced a wide array of techniques and

approaches to verification. The continued absence of constraints

and historical shortage of available expertise in verification, cou-

pled with an apparent under-appreciation of and under-investment

in the verification function, has resulted in several different ad hoc

approaches. The consequences of an informal, ill-equipped and

understaffed verification process can range from a non-functional

design requiring several re-spins, through a design with only a sub-

set of the intended functionality, to a delayed product shipment.
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WHY THIS BOOK IS IMPORTANT

In 2000, the first edition of Writing Testbenches was the first book

specifically devoted to functional verification techniques for hard-

ware models. Since then, several other verification-only books have

appeared. Major conferences include verification tracks. Universi-

ties, in collaboration with industry, are offering verification courses

in their engineering curriculum. Pure verification EDA companies

are offering tools to improve productivity and the overall design

quality. Some of these pure verification EDA companies have gone

public or have been acquired, demonstrating that there is significant

value in verification tools and IP. All of these contribute to create a

formal body of knowledge in design verification. Such a body of

knowledge is an essential foundation to creating a science of verifi-

cation and fueling progress in methodology and productivity.

In 2003, the second edition presented the latest verification tech-

niques that were successfully being used to produce fully functional

first-silicon ASICs, systems-on-a-chip (SoC), boards and entire

systems. It built on the content of the first edition—transaction-

level self-checking testbenches—to introduce a revolution in func-

tional verification: coverage-driven constrained-random verifica-

tion using proprietary hardware verification languages.

This book is not really a new edition of the previous Writing Test-
benches books. Nor is it a completely new book. I like to think of it

as the 2½ edition. This book presents the same concepts as the

second edition. It simply uses SystemVerilog as the sole implemen-

tation vehicle. The languages used in the second edition are still

available. Therefore it is still a useful book on its own.

WHAT THIS BOOK IS ABOUT

I will first introduce the necessary concepts and tools of verifica-

tion, then I’ll describe a process for planning and carrying out an

effective functional verification of a design. I will also introduce

the concept of coverage models that can be used in a coverage-

driven verification process.

It will be necessary to cover some SystemVerilog language seman-

tics that are often overlooked in textbooks focused on describing

the synthesizable subset or unfamiliar to traditional Verilog users.
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These unfamiliar semantics become important in understanding

what makes a well-implemented and robust testbench and in pro-

viding the necessary control and monitor features.

I will also present techniques for applying stimulus and monitoring

the response of a design, by abstracting the physical-level transac-

tions into high-level procedures using bus-functional models. The

architecture of testbenches built around these bus-functional mod-

els is important to create a layer of abstraction relevant to the func-

tion being verified and to minimize development and maintenance

effort. I also show some strategies for making testbenches self-

checking.

Creating random testbenches involves more than calling the $ran-
dom system task. I will show how random stimulus generators,

built on top of bus-functional models, can be architected and

designed to be able to produce the desired stimulus patterns. Ran-

dom generators must be easily externally constrained to increase

the likelihood that a set of interesting patterns will be generated.

Transaction-level modeling is another important concept presented

in this book. It is used to parallelize the implementation and verifi-

cation of a design and to perform more efficient simulations. A

transaction-level model must adequately emulate the functionality

of a design while offering orders of magnitudes in simulation per-

formance over the RTL model. Striking the correct level of accu-

racy is key to achieving that performance improvement.

This book has one large omission: assertions and formal verifica-

tion. It is not that they are not important. SystemVerilog includes

constructs and semantics for writing assertions and coverage prop-

erties using temporal expressions. Formal verification is already an

effective methodology for verifying certain classes of designs. It is

simply a matter of drawing a line somewhere. There are already

books on assertions1 or formal verification. This book focuses on

the bread-and-butter of verification for the foreseeable future:

dynamic functional verification using testbenches

1. Cohen, Venkataramanan and Kumari, "SystemVerilog Assertion Hand-
book", VhdlCohen Publishing, 2005
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WHAT PRIOR KNOWLEDGE YOU SHOULD HAVE

This book focuses on the functional verification of hardware

designs using SystemVerilog. I expect the reader to have at least a

basic knowledge of VHDL, Verilog, OpenVera or e. Ideally, you

should have experience in writing models and be familiar with run-

ning a simulation using any of the available VHDL or Verilog sim-

ulators. There will be no detailed description of language syntax or

grammar. It may be a good idea to have a copy of a language-

focused textbook or the SystemVerilog Language Reference Manual
as a reference along with this book. I do not describe a synthesiz-

able subset, nor limit the implementation of the verification tech-

niques to using that subset. Verification is a complex task: The

power of the SystemVerilog language will be used to its fullest.

I also expect that you have a basic understanding of digital hard-

ware design. This book uses several hypothetical designs from var-

ious application domains (video, datacom, computing, etc.). How

these designs are actually specified, architected and then imple-

mented is beyond the scope of this book. The content focuses on the

specification, architecture, then implementation of the verification
of these same designs.

Once you are satisfied with the content of this book and wish to put

it in practice, I recommend you pick up a copy of the Verification
Methodology Manual for SystemVerilog1 (VMM). It is a book I co-

authored and wrote as a series of very specific guidelines on how to

implement testbenches using SystemVerilog. It uses all of the pow-

erful concepts introduced here. It also includes a set of base classes

that implements generic functionality that every testbench needs.

Why re-invent the wheel? I will refer to the first edition of the

VMM at relevant points in this book where further techniques,

guidelines or support can be found.

READING PATHS

You should really read this book from cover to cover. However, if

you are pressed for time, here are a few suggested paths. 

1. Janick Bergeron, Eduard Cerny, Alan Hunter and Andrew Nightingale, 
"Verification Methodology Manual for SystemVerilog", Springer 2005, 
ISBN 0-387-25538-9
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If you are using this book as a university or college textbook, you

should focus on Chapter 4 through 6 and Appendix A. If you are a

junior engineer who has only recently joined a hardware design

group, you may skip Chapters 3 and 7. But do not forget to read

them once you have gained some experience.

Chapters 3 and 6, as well as Appendix A, will be of interest to a

senior engineer in charge of defining the verification strategy for a

project. If you are an experienced designer, you may wish to skip

ahead to Chapter 3. 

If you have a software background, Chapter 4 and Appendix A may

seem somewhat obvious. If you have a hardware design and RTL

coding mindset, Chapters 4 and 7 are probably your best friends. 

If your responsibilities are limited to managing a hardware verifica-

tion project, you probably want to concentrate on Chapter 3, Chap-

ter 6 and Chapter 7.

WHY SYSTEMVERILOG?

SystemVerilog is the first truly industry-standard language to cover

design, assertions, transaction-level modeling and coverage-driven

constrained random verification.

VHDL and Verilog

VHDL and Verilog have shown to be inadequate for verification.

Their lack of—or poor—support for high-level data types, object

oriented programming, assertions, functional coverage and declara-

tive constraints has prompted the creation of specialized languages

for each or all of these areas. Using separate languages creates inte-

gration challenges: they may use a different syntax for the same

concepts, have different semantics, introduce race conditions and

render the simulation less efficient. SystemVerilog unifies all of

these areas under a consistent syntax, coherent semantics, with

minimal race conditions and with global optimization opportuni-

ties.

In my experience, Verilog is a much abused language. It has the

reputation for being easier to learn than VHDL, and to the extent

that the initial learning curve is not as steep, it is true. SystemVer-
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ilog, being a superset of Verilog, benefits from the same smooth ini-

tial learning curve. However—like VHDL—Verilog and

SystemVerilog provide similar concepts: sequential statements, par-

allel constructs, structural constructs and the illusion of parallelism.

These concepts must be learned. Because of its lax requirements,

Verilog lulls the user into a false sense of security. The user believes

that he or she knows the language because there are no syntax

errors or because the simulation results appear to be correct. Over

time, and as a design grows, race conditions and fragile code struc-

tures become apparent, forcing the user to learn these important

concepts. Languages have the same area under the learning curve.

VHDL’s is steeper but Verilog’s goes on for much longer. Some

sections in this book take the reader farther down the Verilog learn-

ing curve.

SystemVerilog continues in Verilog’s footstep. Does that mean that

VHDL is dead? Technically, all VHDL capabilities are directly

available in SystemVerilog. And with the many capabilities avail-

able in SystemVerilog not available in VHDL, there are no longer

any technical reasons to use VHDL1. However, that decision is

never a purely technical one. There will be VHDL legacy code for

years to come. And companies with large VHDL legacies will con-

tinue to use it, if only in a co-simulation capacity. There is also an

effort by the VHDL IEEE Working Group to add these missing

capabilities to VHDL, known as VHDL-200x. Whether or not you

wish—or can afford—to wait for a me too language is again a busi-

ness decision.

Hardware Verification Languages

Hardware verification languages (HVLs) are languages that were

specifically designed to implement testbenches efficiently and pro-

ductively. Commercial solutions include OpenVera from Synopsys

and e from Cadence. Open-source solutions include the SystemC

Verification Library (SCV) from Cadence and Jeda from Juniper

Networks. There are also a plethora of home-grown solutions based

on Perl, SystemC, C++ or TCL. SystemVerilog includes all of the

1. Before anyone paints me as a Verilog bigot, I wish to inform my readers 
that I learned VHDL first and have always had a slight preference 
toward VHDL over Verilog.
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features of a hardware verification language. When using System-

Verilog, it is no longer necessary to use a separate language for ver-

ification.

Making use of the verification features of SystemVerilog involves

more than simply learning a new syntax. Although one can con-

tinue to use a Verilog-like directed methodology with SystemVer-

ilog, using it appropriately requires a shift in the way verification is

approached and testbenches are implemented. The directed verifi-

cation strategy used with Verilog is the schematic capture of verifi-

cation. Using SystemVerilog with a constraint-driven random

verification strategy is the synthesis of verification. When used

properly, it is an incredible productivity boost (see Figure 2-16 on

page 56).

Does SystemVerilog mean that OpenVera, e and the other propri-

etary verification and assertion languages are going to die? The

answer is a definite no. SystemVerilog was created by merging

donated features and technologies from proprietary languages. It

did not invent nor create anything new other than integrating these

features and technologies under a consistent syntax and semantics.

The objectives of SystemVerilog are to lower the adoption and

ownership cost of verification tools and to create a broader market-

place through industry-wide support.

SystemVerilog accomplishes these objectives by being an industry

standard. But the problem with industry standards is that they

remain static while the semiconductor technologies continue to

advance. SystemVerilog will more than meet the needs of 90 per-

cent of the users for years to come. But leading edge users, who

have adopted HVLs years ago and are already pushing their limits,

will not be satisfied by SystemVerilog for very long. Proprietary

tools and languages will continue to evolve with those leading edge

projects. Hopefully, their trail-blazing efforts will be folded back

into a future version of SystemVerilog, where their art can become

science.

CODE EXAMPLES

A common complaint I received about the first edition was the lack

of complete examples. You’ll notice that in this book, like the first

two, code samples are still provided only as excerpts. I fundamen-
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tally believe that this is a better way to focus the reader’s attention

on the important point I’m trying to convey. I do not want to bury

you under pages and pages of complete but dry (and ultimately

mostly irrelevant) source code.

FOR MORE INFORMATION

If you want more information on topics mentioned in this book, you

will find links to relevant resources in the book-companion Web

site at the following URL:

http://janick.bergeron.com/wtb

In the resources area, you will find links to publicly available utili-

ties, documents and tools that make the verification task easier. You

will also find an errata section listing and correcting the errors that

inadvertently made their way in this edition.1
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“Everyone knows
 debugging is twice as hard

 as writing a program
 in the first place”

- Brian Kernighan

“Elements of Programming Style”

1974
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CHAPTER 1 WHAT IS VERIFICATION?

Verification is not a testbench, nor is it a series of testbenches. Veri-

fication is a process used to demonstrate that the intent of a design

is preserved in its implementation. We all perform verification pro-

cesses throughout our daily lives: balancing a checkbook, tasting a

simmering dish, associating landmarks with symbols on a map.

These are all verification processes.

In this chapter, I introduce the basic concepts of verification, from

its importance and cost, to making sure you are verifying that you

are implementing what you want. I present the differences between

various verification approaches as well as the difference between

testing and verification. I also show how verification is key to

design reuse, and I detail the challenges of verification reuse.

WHAT IS A TESTBENCH?

The term “testbench” usually refers to simulation code used to cre-

ate a predetermined input sequence to a design, then optionally to

observe the response. Testbenches are implemented using System-

Verilog, but they may also include external data files or C routines.

Figure 1-1 shows how a testbench interacts with a design under
verification (DUV). The testbench provides inputs to the design and

watches any outputs. Notice how this is a completely closed sys-

tem: no inputs or outputs go in or out. The testbench is effectively a

model of the universe as far as the design is concerned. The verifi-
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cation challenge is to determine what input patterns to supply to the

design and what is the expected output of a properly working

design when submitted to those input patterns.

THE IMPORTANCE OF VERIFICATION

70% of design 

effort goes to 

verification.

Today, in the era of multi-million gate ASICs and FPGAs, reusable

intellectual property (IP), and system-on-a-chip (SoC) designs, ver-

ification consumes about 70% of the design effort. Design teams,

properly staffed to address the verification challenge, include engi-

neers dedicated to verification. The number of verification engi-

neers can be up to twice the number of RTL designers.

Verification is 

on the critical 

path.

Given the amount of effort demanded by verification, the shortage

of qualified hardware design and verification engineers, and the

quantity of code that must be produced, it is no surprise that, in all

projects, verification rests squarely in the critical path. The fact that

verification is often considered after the design has been completed,

when the schedule has already been ruined, compounds the prob-

lem. It is also the reason verification is the target of the most recent

tools and methodologies. These tools and methodologies attempt to

reduce the overall verification time by enabling parallelism of

effort, higher abstraction levels and automation.

Verification time 

can be reduced 

through parallel-

ism.

If efforts can be parallelized, additional resources can be applied

effectively to reduce the total verification time. For example, dig-

ging a hole in the ground can be parallelized by providing more

workers armed with shovels. To parallelize the verification effort, it

is necessary to be able to write—and debug—testbenches in paral-

lel with each other as well as in parallel with the implementation of

the design.

Figure 1-1.
Generic
structure of a 
testbench and 
design under 
verification

Design
under

Verification

Testbench
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Verification time 

can be reduced 

through abstrac-

tion.

Providing higher abstraction levels enables you to work more effi-

ciently without worrying about low-level details. Using a backhoe

to dig the same hole mentioned above is an example of using a

higher abstraction level.

Using abstrac-

tion reduces 

control over 

low-level

details.

Higher abstraction levels are usually accompanied by a reduction in

control and therefore must be chosen wisely. These higher abstrac-

tion levels often require additional training to understand the

abstraction mechanism and how the desired effect can be produced.

If a verification process uses higher abstraction levels by working

at the transaction- or bus-cycle levels (or even higher ones), it will

be easier to create large amount of stimulus. But it may be difficult

to produce a specific sequence of low-level zeroes and ones. Simi-

larly, using a backhoe to dig a hole suffers from the same loss-of-

control problem: The worker is no longer directly interacting with

the dirt; instead the worker is manipulating levers and pedals. Dig-

ging happens much faster, but with lower precision and only by a

trained operator.

Lower levels of 

abstraction must 

remain visible.

It may be necessary to navigate between levels of abstraction. Veri-

fication can be accomplished using a bottom-up approach where

the interface blocks and physical level details are verified first. The

protocol levels can then be verified without having to worry about

the physical signals. Verification can also be accomplished using a

top-down approach where the protocol-level functionality is veri-

fied first using a transaction-level model without any physical-level

interfaces. The details of the physical transport mechanisms can

then be added later.

The transition between levels of abstraction may also occur dynam-

ically during the execution of a testbench. The testbench may gen-

erally work at a high-level of abstraction, verifying the correctness

of protocol-level operations. The testbench can then switch to a

lower level of abstraction to inject a physical-level parity error to

verify that protocol-level operations remain unaffected. Similarly,

the backhoe operator can let a worker jump into the hole and use a

shovel to uncover a gas pipeline.

Verification time 

can be reduced 

through automa-

tion.

Automation lets you do something else while a machine completes

a task autonomously, faster and with predictable results. Automa-

tion requires standard processes with well-defined inputs and out-

puts. Not all processes can be automated. For example, holes must

be dug in a variety of shapes, sizes, depths, locations and in varying
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soil conditions, which render general-purpose automation impossi-

ble.

Verification faces similar challenges. Because of the variety of

functions, interfaces, protocols and transformations that must be

verified, it is not possible to provide a general purpose automation

solution for verification, given today’s technology. It is possible to

automate some portion of the verification process, especially when

applied to a narrow application domain. Tools automating various

portions of the verification process are being introduced. For exam-

ple, there are tools that will automatically generate bus-functional

models from a higher-level abstract specification. Similarly, tren-

chers have automated digging holes used to lay down conduits or

cables at shallow depths.

Randomization 

can be used as 

an automation 

tool.

For specific domains, automation can be emulated using random-

ization. By constraining a random generator to produce valid inputs

within the bounds of a particular domain, it is possible to automati-

cally produce almost all of the interesting conditions. For example,

the tedious process of vacuuming the bottom of a pool can be auto-

mated using a broom head that, constrained by the vertical walls,

randomly moves along the bottom. After a few hours, only the cor-

ners and a few small spots remain to be cleaned manually. This type

of automation process takes more computation time to achieve the

same result, but it is completely autonomous, freeing valuable

resources to work on other critical tasks. Furthermore, this process

can be parallelized1 easily by concurrently running several random

generators. They can also operate overnight, increasing the total

number of productive hours.

RECONVERGENCE MODEL 

The reconvergence model is a conceptual representation of the veri-

fication process. It is used to illustrate what exactly is being veri-

fied.

1. Optimizing these concurrent processes to reduce the amount of overlap 
is another question!



The Human Factor

Writing Testbenches using SystemVerilog 5

Do you know 

what you are 

actually verify-

ing?

One of the most important questions you must be able to answer is:

"What are you verifying?" The purpose of verification is to ensure

that the result of some transformation is as intended or as expected.

For example, the purpose of balancing a checkbook is to ensure that

all transactions have been recorded accurately and confirm that the

balance in the register reflects the amount of available funds.

Verification is 

the reconcilia-

tion, through 

different means, 

of a specifica-

tion and an out-

put.

Figure 1-2 shows that verification of a transformation can be

accomplished only through a second reconvergent path with a com-

mon source. The transformation can be any process that takes an

input and produces an output. RTL coding from a specification,

insertion of a scan chain, synthesizing RTL code into a gate-level

netlist and layout of a gate-level netlist are some of the transforma-

tions performed in a hardware design project. The verification pro-

cess reconciles the result with the starting point. If there is no

starting point common to the transformation and the verification, no
verification takes place.

The reconvergence model can be described using the checkbook

example as illustrated in Figure 1-3. The common origin is the pre-

vious month’s balance in the checking account. The transformation

is the writing, recording and debiting of several checks during a

one-month period. The verification reconciles the final balance in

the checkbook register using this month’s bank statement.    

 THE HUMAN FACTOR

If the transformation process is not completely automated from end

to end, it is necessary for an individual (or group of individuals) to

Figure 1-2.
Reconvergent 
paths in 
verification

Transformation

Verification

Figure 1-3.
Balancing a 
checkbook is a 
verification
process

Recording Checks

Reconciliation

Balance from
last month’s

statement

Balance from
latest

statement
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interpret a specification of the desired outcome and then perform

the transformation. RTL coding is an example of this situation. A

design team interprets a written specification document and pro-

duces what they believe to be functionally correct synthesizeable

HDL code. Usually, each engineer is left to verify that the code

written is indeed functionally correct.

Verifying your 

own design veri-

fies against your 

interpretation, 

not against the 

specification.

Figure 1-4 shows the reconvergence model of the situation

described above. RTL coding requires interpretation of a written

specification. If the same person performs the verification, then the

common origin is that interpretation, not the specification.

In this situation, the verification effort verifies whether the design

accurately represents the implementer’s interpretation of that speci-

fication. If that interpretation is wrong in any way, then this verifi-

cation activity will never highlight it.

Any human intervention in a process is a source of uncertainty and

unrepeatability. The probability of human-introduced errors in a

process can be reduced through several complementary mecha-

nisms: automation, poka-yoke or redundancy.

Automation

Eliminate

human interven-

tion.

Automation is the obvious way to eliminate human-introduced

errors in a process. Automation takes human intervention com-

pletely out of the process. However, automation is not always pos-

sible, especially in processes that are not well-defined and continue

to require human ingenuity and creativity, such as hardware design.

Poka-Yoke

Make human 

intervention

foolproof.

Another possibility is to mistake-proof the human intervention by

reducing it to simple, and foolproof steps. Human intervention is

needed only to decide on the particular sequence or steps required

Figure 1-4.
Reconvergent 
paths in 
ambiguous
situation

RTL coding

Verification

Interpre-
tation
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cation
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to obtain the desired results. This mechanism is also known as

poka-yoke in Total Quality Management circles. It is usually the

last step toward complete automation of a process. However, just

like automation, it requires a well-defined process with standard

transformation steps. The verification process remains an art that,

to this day, does not lend itself to fool-proof steps.

Redundancy

Have two indi-

viduals check 

each other’s 

work.

The final alternative to removing human errors is redundancy. It is

the simplest, but also the most costly mechanism. Redundancy

requires every transformation path to be duplicated. Every transfor-

mation accomplished by a human is either independently verified

by another individual, or two complete and separate transforma-

tions are performed with each outcome compared to verify that

both produced the same or equivalent output. This mechanism is

used in high-reliability environments, such as airborne and space

systems. It is also used in industries where later redesign and

replacement of a defective product would be more costly than the

redundancy itself, such as ASIC design.

A different per-

son should ver-

ify.

Figure 1-5 shows the reconvergence model where redundancy is

used to guard against misinterpretation of an ambiguous specifica-

tion document. When used in the context of hardware design,

where the transformation process is writing RTL code from a writ-

ten specification document, this mechanism implies that a different

individual must verify that implementation.

WHAT IS BEING VERIFIED?

Choosing the common origin and reconvergence points determines

what is being verified. These origin and reconvergence points are

often determined by the tool used to perform the verification. It is

important to understand where these points lie to know which trans-

formation is being verified. Formal verification, property checking,

Figure 1-5.
Redundancy in 
an ambiguous 
situation 
enables 
verification
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Verification
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functional verification, and rule checkers verify different things

because they have different origin and reconvergence points.

Formal verifica-

tion does not 

eliminate the 

need to write 

testbenches.

Formal verification is often misunderstood initially. Engineers

unfamiliar with the formal verification process often imagine that it

is a tool that mathematically determines whether their design is cor-

rect, without having to write testbenches. Once they understand

what the end points of the formal verification reconvergent paths

are, you know what exactly is being verified.

The application of formal verification falls under two broad catego-

ries: equivalence checking and property checking.

Equivalence Checking

Equivalence 

checking com-

pares two mod-

els.

Figure 1-6 shows the reconvergence model for equivalence check-

ing. This formal verification process mathematically proves that the

origin and output are logically equivalent and that the transforma-

tion preserved its functionality.

It can compare 

two netlists.

In its most common use, equivalence checking compares two

netlists to ensure that some netlist post-processing, such as scan-

chain insertion, clock-tree synthesis or manual modification1, did

not change the functionality of the circuit.

It can detect 

bugs in the syn-

thesis software.

Another popular use of equivalence checking is to verify that the

netlist correctly implements the original RTL code. If one trusted

the synthesis tool completely, this verification would not be neces-

sary. However, synthesis tools are large software systems that

depend on the correctness of algorithms and library information.

History has shown that such systems are prone to error. Equiva-

lence checking is used to keep the synthesis tool honest. In some

rare instances, this form of equivalence checking is used to verify

Figure 1-6.
Equivalence
checking paths

Synthesis

Equivalence

Checking

RTL or
Netlist

RTL or
Netlist

1. Text editors remain the greatest design tools!
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that manually written RTL code faithfully represents a legacy gate-

level design.

Equivalence checking can also verify that two RTL descriptions are

logically identical. Proving their equivalence avoids running

lengthy regression simulations when only minor non-functional

changes are made to the source code to obtain better synthesis

results. Modern equivalence checkers can even deal with sequential

differences between RTL models, such as rearchitected FSMs or

data pipelines.

Equivalence 

checking found 

a bug in an arith-

metic operator.

Equivalence checking is a true alternative path to the logic synthe-

sis transformation being verified. It is only interested in comparing

Boolean and sequential logic functions, not mapping these func-

tions to a specific technology while meeting stringent design con-

straints. Engineers using equivalence checking found a design at

Digital Equipment Corporation (now part of HP) to be synthesized

incorrectly. The design used a synthetic operator that was function-

ally incorrect when handling more than 48 bits. To the synthesis

tool’s defense, the documentation of the operator clearly stated that

correctness was not guaranteed above 48 bits. Since the synthesis

tool had no knowledge of documentation, it could not know it was

generating invalid logic. Equivalence checking quickly identified a

problem that could have been very difficult to detect using gate-

level simulation.

Property Checking

Property check-

ing proves asser-

tions about the 

behavior of the 

design.

Property checking is a more recent application of formal verifica-

tion technology. In it, assertions or characteristics of a design are

formally proven or disproved. For example, all state machines in a

design could be checked for unreachable or isolated states. A more

powerful property checker may be able to determine if deadlock

conditions can occur.

Another type of assertion that can be formally verified relates to

interfaces. Using the SystemVerilog property specification lan-

guage, assertions about the interfaces of a design are stated and the

tool attempts to prove or disprove them. For example, an assertion
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might state that, given that signal ALE will be asserted, then either

the DTACK or ABORT signal will be asserted eventually.

Assertions must 

not be trivial.

The reconvergence model for property checking is shown in

Figure 1-7 . The greatest obstacle for property checking technology

is identifying, through interpretation of the design specification,

which assertions to prove. Of those assertions, only a subset can be

proven feasibly. Furthermore, for a proof to be useful, assertions

must not be trivial restatements of the behavior already captured by

the RTL code. They should be based on external requirements that

the design must meet.

Assertions are 

good at check-

ing temporal 

relationships of 

synchronous 

signals.

Current technology has difficulties proving high-level assertions

about a design to ensure that complex functionality is correctly

implemented. It would be nice to be able to concisely assert that,

given specific register settings, a sequence of packets will end up at

a set of outputs in some relative order. Unfortunately, there are two

obstacles in front of this goal. First, property checking technology

is limited in its capacity to deal with complex designs. Second, the

assertion languages with formal semantics can efficiently describe

cycle-based temporal relationships between low-level signals and

simple transformations. Their inherent RTL or cycle-based nature

makes it difficult to state high-level transformation properties.

Functional Verification

Functional veri-

fication verifies 

design intent.

The main purpose of functional verification is to ensure that a

design implements intended functionality. As shown by the recon-

vergence model in Figure 1-8, functional verification reconciles a

design with its specification. Without functional verification, one

must trust that the transformation of a specification document into

Figure 1-7.
Property 
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RTL code was performed correctly, without misinterpretation of the

specification’s intent.

You can prove 

the presence of 

bugs, but you 

cannot prove 

their absence.

It is important to note that, unless a specification is written in a for-

mal language with precise semantics,1 it is impossible to prove that

a design meets the intent of its specification. Specification docu-

ments are written using natural languages by individuals with vary-

ing degrees of ability in communicating their intentions. Any

document is open to interpretation. One can easily prove that the

design does not implement the intended function by identifying a

single discrepancy. The converse, sadly, is not true: No one can

prove that there are no discrepancies. Functional verification, as a

process, can show that a design meets the intent of its specification.

But it cannot prove it. Similarly, no one can prove that flying rein-

deers or UFOs do not exist. However, producing a single flying

reindeer or UFO would be sufficient to prove the opposite!

FUNCTIONAL VERIFICATION APPROACHES

Functional verification can be accomplished using three comple-

mentary approaches: black-box, white-box and grey-box.

Black-Box Verification

Black-box veri-

fication cannot 

look at or know 

about the inside 

of a design.

With a black-box approach, functional verification is performed

without any knowledge of the actual implementation of a design.

All verification is accomplished through the available interfaces,

without direct access to the internal state of the design, without

knowledge of its structure and implementation. This method suffers

from an obvious lack of visibility and controllability. It is often dif-

Figure 1-8.
Functional 
verification
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RTL Coding

Functional

Verification

Specifi-
cation

RTL

1. Even if such a language existed, one would eventually have to show 
that this description is indeed an accurate description of the design 
intent, based on some higher-level ambiguous specification. 
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ficult to set up an interesting state combination or to isolate some

functionality. It is equally difficult to observe the response from the

input and locate the source of the problem. This difficulty arises

from the frequent long delays between the occurrence of a problem

and the appearance of its symptom on the design’s outputs.

Testcase is inde-

pendent of 

implementation.

The advantage of black-box verification is that it does not depend

on any specific implementation. Whether the design is imple-

mented in a single ASIC, RTL code, transaction-level model, gates,

multiple FPGAs, a circuit board or entirely in software, is irrele-

vant. A black-box functional verification approach forms a true

conformance verification that can be used to show that a particular

design implements the intent of a specification, regardless of its

implementation. A set of black-box testbenches can be developed

on a transaction-level model of the design and run, unmodified, on

the RTL model of the design to demonstrate that they are equiva-

lent. Black-box testbenches can be used as a set of golden test-
benches.

My mother is a veteran of the black-box approach: To prevent us

from guessing the contents of our Christmas gifts, she never puts

any names on the wrapped boxes1. At Christmas, she has to cor-

rectly identify the content of each box, without opening it, so it can

be given to the intended recipient. She has been known to fail on a

few occasions, to the pleasure of the rest of the party!

In black-box 

verification, it is 

difficult to con-

trol and observe 

specific features.

The pure black-box approach is impractical in today’s large

designs. A multi-million gates ASIC possesses too many internal

signals and states to effectively verify all of its functionality from

its periphery. Critical functions, deep into the design, will be diffi-

cult to control and observe. Furthermore, a design fault may not

readily present symptoms of a flaw at the outputs of the ASIC. For

example, the black-box ASIC-level testbench in Figure 1-9 is used

to verify a critical round-robin arbiter. If the arbiter is not com-

pletely fair in its implementation, what symptoms would be visible

at the outputs? This type of fault could only be found through per-

formance analysis using several long simulations to identify dis-

crepancies between the actual throughput of a channel compared

with its theoretical throughput. And a two percent discrepancy in a

1. To my wife’s chagrin who likes shaking any box bearing her name.
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channel throughput in three overnight simulations can be explained

so easily as a simple statistical error...   

White-Box Verification 

White box veri-

fication has inti-

mate knowledge 

and control of 

the internals of a 

design.

As the name suggests, a white-box approach has full visibility and

controllability of the internal structure and implementation of the

design being verified. This method has the advantage of being able

to set up an interesting combination of states and inputs quickly, or

to isolate a particular function. It can then easily observe the results

as the verification progresses and immediately report any discrep-

ancies from the expected behavior.

White-box veri-

fication is tied to 

a specific imple-

mentation.

However, this approach is tightly integrated with a particular imple-

mentation. Changes in the design may require changes in the test-

bench. Furthermore, those testbenches cannot be used in gate-level

simulations, on alternative implementations or future redesigns. It

also requires detailed knowledge of the design implementation to

know which significant conditions to create and which results to

observe.

White-box tech-

niques can aug-

ment black-box 

approaches.

White-box verification is a useful complement to black-box verifi-

cation. This approach can ensure that low-level implementation-

specific features behave properly, such as counters rolling over

after reaching their end count value or datapaths being appropri-

ately steered and sequenced. The white-box approach can be used

only to verify the correctness of the functionality, while still relying

on the black- or grey-box stimulus. Assertions are ideal for imple-

menting white-box checks in RTL code. For example, Figure 1-10

shows the black-box ASIC-level environment shown in Figure 1-9

augmented with assertions to verify the functional correctness of

the round-robin arbiter. Should fairness not be implemented cor-

rectly, the white-box checks would immediately report a failure.

The reported error would also make it easier to identify and confirm

Figure 1-9.
Black-box
verification of 
a low-level 
feature

ASIC-Level
Stimulus

ASIC-Level
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the cause of the problem, compared to a two percent throughput

discrepancy.  

Checkered-box 

is used in sys-

tem-level verifi-

cation.

A checkered-box verification approach is often used on SoC design

and system-level verification. A system is defined as a design com-

posed of independently designed and verified components. The

objective of system-level verification is to verify the system-level

features, not re-verify the individual components. Because of the

large number of possible states and the difficulty in setting up inter-

esting conditions, system-level verification is often accomplished

by treating it as a collection of black-boxes. The independently-

designed components are treated as black-boxes, but the system

itself is treated as a white-box, with full controllability and observ-

ability.

Grey-Box Verification  

Grey-box verification is a compromise between the aloofness of a

black-box verification and the dependence on the implementation

of white-box verification. The former may not fully exercise all

parts of a design, while the latter is not portable.

Testcase may 

not be relevant 

on another 

implementation.

As in black-box verification, a grey-box approach controls and

observes a design entirely through its top-level interfaces. How-

ever, the particular verification being accomplished is intended to

exercise significant features specific to the implementation. The

same verification of a different implementation would be success-

ful, but the verification may not be particularly more interesting

than any other black-box verification. A typical grey-box test case

is one written to increase coverage metrics. The input stimulus is

designed to execute specific lines of code or create a specific set of

conditions in the design. Should the structure (but not the function)

Figure 1-10.
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of the design change, this test case, while still correct, may no

longer contribute toward better coverage.

Add functions to 

the design to 

increase control-

lability and 

observability

A typical grey-box strategy is to include some non-functional mod-

ifications to provide additional visibility and controllability. Exam-

ples include additional software-accessible registers to control or

observe internal states, speed up a real-time counter, force the rais-

ing of exceptions or modify the size of the processed data to mini-

mize verification time. These registers and features would not be

used during normal operations, but they are often valuable during

the integration phase of the first prototype systems.

Verification 

must influence 

the design.

For non-functional features required by the verification process to

exist in a design, verification must be considered as an integral part

of a design. When architecting a design, the verifiability of that

architecture must be assessed at the same time. If some architec-

tural features promise to be difficult to verify or exercise, additional

observability or controllability features must be added. This process

is called design-for-verification.

White-box can-

not be used in 

parallel with 

design.

The black-box and grey-box approaches are the only ones that can

be used if the functional verification is to be implemented in paral-

lel with the implementation using a transaction-level model of the

design (see “Transaction-Level Models” on page 333). Because

there is no detailed implementation to know about beforehand,

these two verification strategies are the only possible avenue.

TESTING VERSUS VERIFICATION 

Testing verifies 

manufacturing.

Testing is often confused with verification. The purpose of the

former is to verify that the design was manufactured correctly. The

purpose of the latter is to ensure that a design meets its functional

intent.

Figure 1-11.
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Figure 1-11 shows the reconvergence models for both verification

and testing. During testing, the finished silicon is reconciled with

the netlist that was submitted for manufacturing.

Testing verifies 

that internal 

nodes can be 

toggled.

Testing is accomplished through test vectors. The objective of these

test vectors is not to exercise functions. It is to exercise physical

locations in the design to ensure that they can go from 0 to 1 and

from 1 to 0 and that the change can be observed. The ratio of physi-

cal locations tested to the total number of such locations is called

test coverage. The test vectors are usually automatically generated

to maximize coverage while minimizing vectors through a process

called automatic test pattern generation (ATPG).

Thoroughness of 

testing depends 

on controllabil-

ity and observ-

ability of 

internal nodes.

Testing and test coverage depends on the ability to set internal

physical locations to either 1 or 0, and then observe that they were

indeed appropriately set. Some designs have very few inputs and

outputs, but these designs have a large number of possible states,

requiring long sequences to observe and control all internal physi-

cal locations properly. A perfect example is an electronic wrist-

watch: It has three or four inputs (the buttons around the dial) and a

handful of outputs (the digits and symbols on the display). How-

ever, if it includes chronometer and calendar functions, it has bil-

lions of possible state combinations (hundreds of years divided into

milliseconds). At speed, it would take hundreds of years to take

such a design through all of its possible states.

Scan-Based Testing 

Linking all reg-

isters into a long 

shift register 

increases

controllability 

and observabil-

ity.

Fortunately, scan-based testability techniques help reduce this prob-

lem to something manageable. With scan-based tests, all registers

inside a design are hooked-up in a long serial chain. In normal

mode, the registers operate as if the scan chain was not there (see

Figure 1-12(a)). In scan mode, the registers operate as a long shift

register (see Figure 1-12(b)). 

To test a scannable design, the unit under test is put into scan mode,

then an input pattern is shifted through all of its internal registers.

The design is then put into normal mode and a single clock cycle is

applied, loading the result of the normal operation based on the

scanned state into the registers. The design is then put into scan

mode again. The result is shifted out of the registers (at the same
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time the next input pattern is shifted in), and the result is compared

against the expected value.

Scan-based test-

ing puts restric-

tions on design.

This increase in controllability and observability, and thus test cov-

erage, comes at a cost. Certain restrictions, called design-for-test-
ability, are put onto the design to enable the insertion of a scan

chain and the automatic generation of test patterns. These restric-

tions include, but are not limited to: fully synchronous design, no

derived or gated clocks and use of a single clock edge. The topic of

design-for-testability is far greater and complex than this simple

introduction implies. For more details, books and papers specializ-

ing on the subject should be consulted.

The benefits of 

scan-based test-

ing far out-

weighs the 

drawbacks of 

these restric-

tions.

Hardware designers introduced to scan-based testing initially rebel

against the restrictions imposed on them. They see only the imme-

diate area penalty and their favorite design technique rendered ille-

gal. However, the increased area and additional design effort are

quickly outweighed when a design can be fitted with one or more

scan chains, when test patterns are generated and high test coverage

is achieved automatically, at the push of a button. The time saved

and the greater confidence in putting a working product on the mar-

ket far outweighs the added cost for scan-based design.

Design for Verification

Design practices need to be modified to accommodate testability

requirements. Isn’t it acceptable to modify those same design prac-

tices to accommodate verification requirements?

Verification 

must be consid-

ered during 

specification.

With functional verification requiring more effort than design, it is

reasonable to require additional design effort to simplify verifica-

tion. Just as scan chains are put in a design to improve testability

without adding to the functionality, it should be standard practice to

add non-functional structures and features to facilitate verification.

This approach requires that verification be considered at the outset

Figure 1-12.
Scan-based
testing

(b) Scan-mode(a) Normal mode
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of a project, during its specification phase. Not only should the

architect of the design answer the question, “What is this supposed

to do?” but also, “How is this thing going to be verified?”

Typical design-for-verification techniques include well-defined

interfaces, clear separation of functions in relatively independent

units, providing additional software-accessible registers to control

and observe internal locations and providing programmable multi-

plexers to isolate or bypass functional units. 

DESIGN AND VERIFICATION REUSE 

Today, design reuse is a fact of life. It is the best way to overcome

the difference between the number of transistors that can be manu-

factured on a single chip and the number of transistors engineers

can take advantage of in a reasonable amount of time. This differ-

ence is called the productivity gap. Design reuse was originally

thought to be a simple concept that would be easy to put in practice.

The reality proved—and continues to prove—to be more problem-

atic.

Reuse Is About Trust

You won’t use 

what you do not 

trust.

The major obstacle to design reuse is cultural. Engineers have little

incentive and willingness to incorporate an unknown design into

their own. They do not trust that the other design is as good or as

reliable as one designed by themselves. The key to design reuse is

gaining that trust.

Proper func-

tional verifica-

tion

demonstrates 

trustworthiness 

of a design.

Trust, like quality, is not something that can be added to a design

after the fact. It must be built-in, through the best possible design

practices. Trustworthiness can be demonstrated through a proper

verification process. By showing the user that a design has been

thoroughly and meticulously verified according to the design speci-

fication, trust can be built and communicated much faster. Func-

tional verification is the only way to demonstrate that the design

meets, or even exceeds, the quality of a similar design that an engi-

neer could do himself or herself.



Design and Verification Reuse

Writing Testbenches using SystemVerilog 19

Verification for Reuse

Reusable 

designs must be 

verified to a 

greater degree of 

confidence.

If you create a design, you have a certain degree of confidence in

your own abilities as a designer and implicitly trust its correctness.

Functional verification is used only to confirm that opinion and to

augment that opinion in areas known to be weak. If you try to reuse

a design, you can rely only on the functional verification to build

that same level of confidence and trust. Thus, reusable designs must

be verified to a greater degree of confidence than custom designs.

All claims, pos-

sible configura-

tions and uses 

must be verified.

Because reusable designs tend to be configurable and programma-

ble to meet a variety of possible environments and applications, it is

necessary to verify a reusable design under all possible configura-

tions and for all possible uses. All claims made about the reusable

design must be verified and demonstrated to users.

Verification Reuse

Testbench com-

ponents can be 

reused also.

If portions of a design can be reused, portions of testbenches can be

reused as well. For example, Figure 1-13 shows that the bus-func-

tional model used to verify a design block (a) can be reused to ver-

ify the system that uses it (b).

Verification 

reuse has its 

challenges.

There are degrees of verification reuse, some easier to achieve, oth-

ers facing difficulties similar to design reuse. Reusing BFMs across

different testbenches and test cases for the same design is a simple

process of properly architecting a verification environment. Reus-

ing testbench components or test cases in a subsequent revision of

the same design presents some difficulties in introducing the verifi-

cation of the new features. Reusing a testbench component between

two different projects or between two different levels of abstraction

has many challenges that must be addressed when designing the

component itself.

Figure 1-13.
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Salvaging is not 

reuse.

Salvaging is reusing a piece of an existing testbench that was not

expressly designed to be reused. The suitability of the salvaged

component will vary greatly depending on the similarities between

the needs of the design to be verified and those of the original

design. For example, a BFM that was designed to verify an inter-

face block (as in Figure 1-13 (a)) may not be suitable for verifying a

system using that interface block.

Block- and sys-

tem-level test-

benches put 

different 

requirements on 

a BFM.

Block-level verification must exercise the state machines and

decoders used in implementing the interface protocol. This verifica-

tion requires a transaction-level BFM with detailed controls of the

protocol signals to vary timing or inject protocol errors. However,

the system-level verification must exercise the high-level function-

ality that resides behind the interface block. This verification

requires the ability to encapsulate high-level data onto the interface

transactions. The desired level of controllability resides at a much

higher level than the signal-level required to verify the interface

block. 

THE COST OF VERIFICATION 

Verification is a necessary evil. It always takes too long and costs

too much. Verification does not directly generate a profit or make

money: After all, it is the design being verified that will be sold and

ultimately make money, not the verification. Yet verification is

indispensable. To be marketable and create revenues, a design must

be functionally correct and provide the benefits that the customer

requires.

As the number 

of errors left to 

be found 

decreases, the 

time—and

cost—to identify 

them increases.

Verification is a process that is never truly complete. The objective

of verification is to ensure that a design is error-free, yet one cannot

prove that a design is error-free. Verification can show only the

presence of errors, not their absence. Given enough time, an error

will be found. The question thus becomes: Is the error likely to be

severe enough to warrant the effort spent identifying it? As more

and more time is spent on verification, fewer and fewer errors are

found with a constant incremental effort expenditure. As verifica-

tion progresses, it has diminishing returns. It costs more and more

to find each remaining error.

Functional verification is similar to statistical hypothesis testing.

The hypothesis under test is: "Is my design functionally correct?"
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The answer can be either yes or no. But either answer could be

wrong. These wrong answers are Type II and Type I mistakes,

respectively.

False positives 

must be 

avoided.

Figure 1-14 shows where each type of mistake occurs. Type I mis-

takes, or false negatives, are the easy ones to identify. The verifica-

tion is finding an error where none exist. Once the misinterpretation

is identified, the implementation of the verification is modified to

change the answer from “no” to "yes," and the mistake no longer

exists. Type II mistakes are the most serious ones: The verification

failed to identify an error. In a Type II mistake, or false positive sit-

uation, a bad design is shipped unknowingly, with all the potential

consequences that entails.

Shipping a bad design may result in simple product recall or in the

total failure of a space probe after it has landed on another planet.

Similarly, drug companies faces Type II mistakes on a regular basis

with potentially devastating consequences: In spite of positive clin-

ical test results, is a dangerous drug being released on the market? 

With the future of the company potentially at stake, the 64-thousand

dollar question in verification is: "How much is enough?" The func-

tional verification process presented in this book, along with some

of the tools described in the next chapter attempt to answer that

question.

The 64-million dollar question is: "When will I be done?” Knowing

where you are in the verification process, although impossible to

establish with certainty, is much easier to estimate than how long it

will take to complete the job. The verification planning process

described in Chapter 3 creates a tool that enables a verification

Figure 1-14.
Type I & II 
mistakes

Type I

Type IIBad
Design

Good
Design

Fail Pass

(False Positive)

(False Negative)
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manager to better estimate the effort and time required to complete

the task at hand, to the degree of certainty required.

SUMMARY

Verification is a process, not a set of testbenches.

Verification can be only accomplished through an independent path

between a specification and an implementation. It is important to

understand where that independence starts and to know what is

being verified.

Verification can be performed at various levels of the design hierar-

chy, with varying degrees of visibility within those hierarchies. I

prefer a black-box approach because it yields portable testbenches.

Augment with grey and white-box testbenches to meet your goals.

Consider verification at the beginning of the design. If a function

would be difficult to verify, modify the design to give the necessary

observability and controllability over the function.

Make your verification components reusable across different test-

benches, across block and system-level testbenches and across dif-

ferent projects.
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CHAPTER 2 VERIFICATION 

TECHNOLOGIES

As mentioned in the previous chapter, one of the mechanisms that

can be used to improve the efficiency and reliability of a process is

automation. This chapter covers technologies used in a state-of-the-

art functional verification environment. Some of these technolo-

gies, such as simulators, are essential for the functional verification

activity to take place. Others, such as linting or code coverage tech-

nologies, automate some of the most tedious tasks of verification

and help increase the confidence in the outcome of the functional

verification. This chapter does not contain an exhaustive list of ver-

ification technologies, as new application-specific and general pur-

pose verification automation technologies are regularly brought to

market.

It is not neces-

sary to use all 

the technologies 

mentioned.

As a verification engineer, your job is to use the necessary technol-

ogies to ensure that the verification process does not miss a signifi-

cant functional bug. As a project manager responsible for the

delivery of a working product on schedule and within the allocated

budget, your responsibility is to arm your engineers with the proper

tools to do their job efficiently and with the necessary degree of

confidence. Your job is also to decide when the cost of finding the

next functional bug has increased above the value the additional

functional correctness brings. This last responsibility is the heaviest

of them all. Some of these technologies provide information to help

you decide when you’ve reached that point.
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A tool may 

include more 

than one tech-

nology.

This chapter presents various verification technologies separately

from each other. Each technology is used in multiple EDA tools. A

specific EDA tool may include more than one technology. For

example, “super linting” tools leverage linting and formal technolo-

gies. Hybrid- or semi-formal tools use a combination of simulation

and formal technologies.

Synopsys tools 

are mentioned.

Being a Synopsys employee at the time of writing this book, the

commercial tools I mention are provided by Synopsys, Inc. Other

EDA companies supply competitive products. All trademarks and

service marks, registered or not, are the property of their respective

owners.

LINTING

Linting technol-

ogy finds com-

mon 

programmer 

mistakes.

The term “lint” comes from the name of a UNIX utility that parses

a C program and reports questionable uses and potential problems.

When the C programming language was created by Dennis Ritchie,

it did not include many of the safeguards that have evolved in later

versions of the language, like ANSI-C or C++, or other strongly-

typed languages such as Pascal or ADA. lint evolved as a tool to

identify common mistakes programmers made, letting them find

the mistakes quickly and efficiently, instead of waiting to find them

through a dreaded segmentation fault during execution of the pro-

gram.

lint identifies real problems, such as mismatched types between

arguments and function calls or mismatched number of arguments,

as shown in Sample 2-1. The source code is syntactically correct

and compiles without a single error or warning using gcc version

2.96.

However, Sample 2-1 suffers from several pathologically severe

problems:

1. The my_func function is called with only one argument instead 

of two.

2. The my_func function is called with an integer value as a first 

argument instead of a pointer to an integer.

Problems are 

found faster than 

at runtime.

As shown in Sample 2-2, the lint program identifies these prob-

lems, letting the programmer fix them before executing the pro-
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gram and observing a catastrophic failure. Diagnosing the problems

at runtime would require a debugger and would take several min-

utes. Compared to the few seconds it took using lint, it is easy to see

that the latter method is more efficient.

Linting does not 

require stimulus.

Linting has a tremendous advantage over other verification technol-

ogies: It does not require stimulus, nor does it require a description

of the expected output. It performs checks that are entirely static,

with the expectations built into the linting tool itself.

The Limitations of Linting Technology

Linting can only 

identify a certain 

class of prob-

lems.

Other potential problems were also identified by lint. All were fixed

in Sample 2-3, but lint continues to report a problem with the invo-

cation of the my_func function: The return value is always ignored.

Linting cannot identify all problems in source code. It can only find

problems that can be statically deduced by looking at the code

structure, not problems in the algorithm or data flow. 

Sample 2-1.
Syntactically
correct K&R 
C source code

int my_func(addr_ptr, ratio)
   int   *addr_ptr;
   float ratio;
{
   return (*addr_ptr)++;
}

main()
{
   int my_addr;
   my_func(my_addr);
}

Sample 2-2.
Lint output for 
Sample 2-1

src.c(3): warning: argument ratio unused in 
function my_func
src.c(11): warning: addr may be used before set
src.c(12): warning: main() returns random value 
to invocation environment
my_func: variable # of args.    src.c(4)  ::  
src.c(11)
my_func, arg. 1 used inconsistently     
src.c(4)  ::  src.c(11)
my_func returns value which is always ignored
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For example, in Sample 2-3, linting does not recognize that the

uninitialized my_addr variable will be incremented in the my_func
function, producing random results. Linting is similar to spell

checking; it identifies misspelled words, but cannot determine if the

wrong word is used. For example, this book could have several

instances of the word “with” being used instead of “width”. It is a

type of error the spell checker (or a linting tool) could not find.

Many false neg-

atives are 

reported.

Another limitation of linting technology is that it is often too para-

noid in reporting problems it identifies. To avoid letting an error go

unreported, linting errs on the side of caution and reports potential

problems where none exist. This results into a lot of false errors.

Designers can become frustrated while looking for non-existent

problems and may abandon using linting altogether.

Carefully filter 

error messages!

You should filter the output of linting tools to eliminate warnings or

errors known to be false. Filtering error messages helps reduce the

frustration of looking for non-existent problems. More importantly,

it reduces the output clutter, reducing the probability that the report

of a real problem goes unnoticed among dozens of false reports.

Similarly, errors known to be true positive should be highlighted.

Extreme caution must be exercised when writing such a filter: You

must make sure that a true problem is not filtered out and never

reported.

Naming conven-

tions can help 

output filtering.

A properly defined naming convention is a useful technique to help

determine if a warning is significant. For example, the report in

Sample 2-4 about a latch being inferred on a signal whose name

Sample 2-3.
Functionally
correct K&R 
C source code

int my_func(addr_ptr)
   int *addr_ptr;
{
   return (*addr_ptr)++;
}

main()
{
   int my_addr;
   my_func(&my_addr);
   return 0;
}
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ends with “_lat” could be considered as expected and a false warn-

ing. All other instances would be flagged as true errors.

Do not turn off 

checks.

Filtering the output of a linting tool is preferable to turning off

checks from within the source code itself or via a command line

option. A check may remain turned off for an unexpected duration,

potentially hiding real problems. Checks that were thought to be

irrelevant may become critical as new source files are added.

Lint code as it is 

being written.

Because it is better to fix problems when they are created, you

should run lint on the source code while it is being written. If you

wait until a large amount of code is written before linting it, the

large number of reports—many of them false—will be daunting

and create the impression of a setback. The best time to identify a

report as true or false is when you are still intimately familiar with

the code.

Enforce coding 

guidelines.

Linting, through the use of user-defined rules, can also be used to

enforce coding guidelines and naming conventions1. Therefore, it

should be an integral part of the authoring process to make sure

your code meets the standards of readability and maintainability

demanded by your audience.

Linting SystemVerilog Source Code

Linting System-

Verilog source 

code catches 

common errors.

Linting SystemVerilog source code ensures that all data is properly

handled without accidentally dropping or adding to it. The code in

Sample 2-5 shows a SystemVerilog model that looks perfect, com-

piles without errors, but eventually produces incorrect results.

Problems may 

not be obvious.

The problem lies with the use of the byte type. It is a signed 8-bit

value. It will thus never be equal to or greater than 255 as specified

in the conditional expressions. The counter will never saturate and

Sample 2-4.
Output from a 
hypothetical 
SystemVer-
ilog linting 
tool

Warning: file decoder.sv, line 23: Latch 
inferred on reg "address_lat".
Warning: file decoder.sv, line 36: Latch 
inferred on reg "next_state".

1. See Appendix A for a set of coding guidelines.
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roll over instead. A simple change to “bit [7:0]” fixes the problem.

But identifying the root cause may be difficult using simulation and

waveforms. It is even possible that the problem will never be exer-

cised because no testbench causes the counter to (normally) satu-

rate or the correct effect of the saturation is never checked in the

self-checking structure. Linting should report this discrepancy

immediately and the bug would be fixed in a few minutes, without a

single simulation cycle.

Linting may 

detect some race 

conditions.

Sample 2-6 shows another example. It is a race condition between

two concurrent execution branches that will yield an unpredictable

result (this race condition is explained in details in the section titled

“Write/Write Race Conditions” on page 180). This type of error

could be easily detected through linting. 

Linting may be 

built in simula-

tors.

SystemVerilog simulators may provide linting functionality. Some

errors, such as race conditions, may be easier to identify during a

simulation than through static analysis of the source code. The race

condition in Sample 2-6 is quickly identified when using the +race
command line option of VCS.

Sample 2-5.
Potentially
problematic 
SystemVer-
ilog code

module saturated_counter(output done,
                         input  rst,
                         input  clk);

byte counter;
always_ff @(posedge clk)
begin
   if (rst) counter <= 0;
   else if (counter < 255) counter++;
end

assign done = (counter == 255);

endmodule

Sample 2-6.
Race condition 
in SystemVer-
ilog code

begin
   integer i;
   ...
   fork
      i = 1;
      i = 0;
   join
   ...
end
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Linting tools 

may leverage 

formal technol-

ogy.

Linting tools may use formal technologies to perform more com-

plex static checks. Conversely, property checking tools may also

provide some lint-like functionality. Some errors, such as unreach-

able lines of code or FSM transitions, require formal-like analysis

of the conditions required to reach executable statements or states

and whether or not these conditions can be produced.

Code Reviews

Reviews are per-

formed by peers.

Although not technically linting, the objective of code reviews is

essentially the same: Identify functional and coding style errors

before functional verification and simulation. Linting can only

identify questionable language uses. It cannot check if the intended

behavior has been coded. In code reviews, the source code pro-

duced by a designer is reviewed by one or more peers. The goal is

not to publicly ridicule the author, but to identify problems with the

original code that could not be found by an automated tool.

Reviews can identify discrepancies between the design intent and

the implementation. They also provide an opportunity for suggest-

ing coding improvements, such as better comments, better structure

or the use of assertions.

Identify qualita-

tive problems 

and functional 

errors.

A code review is an excellent venue for evaluating the maintain-

ability of a source file, and the relevance of its comments and asser-

tions. Other qualitative coding style issues can also be identified. If

the code is well understood, it is often possible to identify func-

tional errors or omissions.

Code reviews are not new ideas either. They have been used for

many years in the software design industry. They have been shown

to be the most effective quality-enhancing activity. Detailed infor-

mation on how to conduct effective code reviews can be found in

the resources section at:

http://janick.bergeron.com/wtb

SIMULATION 

Simulate your 

design before 

implementing it.

Simulation is the most common and familiar verification technol-

ogy. It is called “simulation” because it is limited to approximating

reality. A simulation is never the final goal of a project. The goal of

all hardware design projects is to create real physical designs that
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can be sold and generate profits. Simulation attempts to create an

artificial universe that mimics the future real design. This type of

verification technology lets the designers interact with the design

before it is manufactured, and correct flaws and problems earlier.

Simulation is 

only an approxi-

mation of real-

ity.

You must never forget that a simulation is an approximation of real-

ity. Many physical characteristics are simplified—or even

ignored—to ease the simulation task. For example, a four-state dig-

ital simulation assumes that the only possible values for a signal are

0, 1, unknown, and high-impedance. However, in the physical—

and analog—world, the value of a signal is a continuous function of

the voltage and current across a thin aluminium or copper wire

track: an infinite number of possible values. In a discrete simula-

tion, events that happen deterministically 5 nanoseconds apart may

be asynchronous in the real world and may occur randomly.

Simulation is at 

the mercy of the 

descriptions 

being simulated.

Within that simplified universe, the only thing a simulator does is

execute a description of the design. The description is limited to a

well-defined language with precise semantics. If that description

does not accurately reflect the reality it is trying to model, there is

no way for you to know that you are simulating something that is

different from the design that will be ultimately manufactured.

Functional correctness and accuracy of models is a big problem as

errors cannot be proven not to exist.

Stimulus and Response

Simulation 

requires stimu-

lus.

Simulation is not a static technology. A static verification technol-

ogy performs its task on a design without any additional informa-

tion or action required by the user. For example, linting and

property checking are static technologies. Simulation, on the other

hand, requires that you provide a facsimile of the environment in

which the design will find itself. This facsimile is called a test-

bench. Writing this testbench is the main objective of this book.

The testbench needs to provide a representation of the inputs

observed by the design, so the simulation can emulate the design’s

responses based on its description.

The simulation 

outputs are vali-

dated exter-

nally, against 

design intents.

The other thing that you must not forget is that a simulation has no

knowledge of your intentions. It cannot determine if a design being

simulated is correct. Correctness is a value judgment on the out-

come of a simulation that must be made by you, the engineer. Once

the design is subjected to an approximation of the inputs from its
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environment, your primary responsibility is to examine the outputs

produced by the simulation of the design’s description and deter-

mine if that response is appropriate.

Event-Driven Simulation

Simulators are 

never fast 

enough.

Simulators are continuously faced with one intractable problem:

They are never fast enough. They are attempting to emulate a phys-

ical world where electricity travels at the speed of light and millions

of transistors switch over one billion times in a second. Simulators

are implemented using general purpose computers that can execute,

under ideal conditions, in the order of a billion sequential instruc-

tions per second. The speed advantage is unfairly and forever

tipped in favor of the physical world.

Outputs change 

only when an 

input changes.

One way to optimize the performance of a simulator is to avoid

simulating something that does not need to be simulated. Figure 2-1

shows a 2-input XOR gate. In the physical world, even if the inputs

do not change (Figure 2-1(a)), voltage is constantly applied to the

output, current is continuously flowing through the transistors (in

some technologies), and the atomic particles in the semiconductor

are constantly moving. The interpretation of the electrical state of

the output as a binary value (either a logic 1 or a logic 0) does not

change. Only if one of the inputs change (as in Figure 2-1(b)), can

the output change.

Change in val-

ues, called 

events, drive the 

simulation pro-

cess.

Sample 2-7 shows a SystemVerilog description (or model) of an

XOR gate. The simulator could choose to execute this model con-

tinuously, producing the same output value if the input values did

not change. An opportunity to improve upon that simulator’s per-

formance becomes obvious: do not execute the model while the

inputs are constants. Phrased another way: Only execute a model

when an input changes. The simulation is therefore driven by

Figure 2-1.
Behavior of an 
XOR gate

(a) (b) (c)
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0..0
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changes in inputs. If you define an input change as an event, you

now have an event-driven simulator.

Sometimes, 

input changes do 

not cause the 

output to 

change.

But what if both inputs change, as in Figure 2-1(c)? In the logical

world, the output does not change. What should an event-driven

simulator do? For two reasons, the simulator should execute the

description of the XOR gate. First, in the real world, the output of

the XOR gate does change. The output might oscillate between 0

and 1 or remain in the “neither-0-nor-1” region for a few hun-

dredths of picoseconds (see Figure 2-2). It just depends on how

accurate you want your model to be. You could decide to model the

XOR gate to include the small amount of time spent in the

unknown (or x) state to more accurately reflect what happens when

both inputs change at the same time.

Descriptions 

between inputs 

and outputs are 

arbitrary.

The second reason is that the event-driven simulator does not know

apriori that it is about to execute a model of an XOR gate. All the

simulator knows is that it is about to execute a description of a 2-

input, 1-output function. Figure 2-3 shows the view of the XOR

gate from the simulator’s perspective: a simple 2-input, 1-output

black box. The black box could just as easily contain a 2-input

AND gate (in which case the output might very well change if both

inputs change), or a 1024-bit linear feedback shift register (LFSR).

Sample 2-7.
SystemVer-
ilog model for 
an XOR gate

assign Z = A ^ B;

Figure 2-2.
Behavior of an 
XOR gate 
when both 
inputs change

A

B
Z

A

B

Figure 2-3.
Event-driven
simulator view 
of an XOR 
gate
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The mechanism of event-driven simulation introduces some limita-

tions and interesting side effects that are discussed further in

Chapter 4.

Acceleration 

options are often 

available in 

event-driven

simulators

Simulation vendors are forever locked in a constant battle of beat-

ing the competition with an easier-to-use, faster simulator. It is pos-

sible to increase the performance of an event-driven simulator by

simplifying some underlying assumptions in the design or in the

simulation algorithm. For example, reducing delay values to identi-

cal unit delays or using two states (0 and 1) instead of four states (0,

1, x and z) are techniques used to speed-up simulation. You should

refer to the documentation of your simulator to see what accelera-

tion options are provided. It is also important to understand what

the consequences are, in terms of reduced accuracy, of using these

acceleration options.

Cycle-Based Simulation

Figure 2-4 shows the event-driven view of a synchronous circuit

composed of a chain of three 2-input gates between two edge-trig-

gered flip-flops. Assuming that Q1 holds a zero, Q2 holds a one and

all other inputs remain constant, a rising edge on the clock input

would cause an event-driven simulator to simulate the circuit as fol-

lows:

1. The event (rising edge) on the clock input causes the execution 

of the description of the flip-flop models, changing the output 

value of Q1 to one and of Q2 to zero, after some small delay.

Figure 2-4.
Event-driven
simulator view 
of a 
synchronous
circuit
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2. The event on Q1 causes the description of the AND gate to exe-

cute, changing the output S1 to one, after some small delay.

3. The event on S1 causes the description of the OR gate to exe-

cute, changing the output S2 to one, after some small delay.

4. The event on S2 causes the description of the XOR gate to exe-

cute, changing the output S3 to one after some small delay.

5. The next rising edge on the clock causes the description of the 

flip-flops to execute, Q1 remains unchanged, and Q2 changes 

back to one, after some small delay.

Many intermedi-

ate events in 

synchronous cir-

cuits are not 

functionally rel-

evant.

To simulate the effect of a single clock cycle on this simple circuit

required the generation of six events and the execution of seven

models (some models were executed twice). If all we are interested

in are the final states of Q1 and Q2, not of the intermediate combi-

natorial signals, then the simulation of this circuit could be opti-

mized by acting only on the significant events for Q1 and Q2: the

active edge of the clock. Phrased another way: Simulation is based

on clock cycles. This is how cycle-based simulators operate.

The synchronous circuit in Figure 2-4 can be simulated in a cycle-

based simulator using the following sequence:

Cycle-based 

simulators col-

lapse combina-

torial logic into 

equations.

1. When the circuit description is compiled, all combinatorial 

functions are collapsed into a single expression that can be used 

to determine all flip-flop input values based on the current state 

of the fan-in flip-flops.

For example, the combinatorial function between Q1 and Q2 

would be compiled from the following initial description:

S1 = Q1 & ’1’
S2 = S1 | ’0’
S3 = S2 ^ ’0’

into this final single expression:

S3 = Q1

The cycle-based simulation view of the compiled circuit is 

shown in Figure 2-5.

2. During simulation, whenever the clock input rises, the value of 

all flip-flops are updated using the input value returned by the 

pre-compiled combinatorial input functions.
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The simulation of the same circuit, using a cycle-based simulator,

required the generation of two events and the execution of a single

model. The number of logic computations performed is the same in

both cases. They would have been performed whether the “A” input

changed or not. As long as the time required to perform logic com-

putation is smaller than the time required to schedule intermediate

events,1 and there are many registers changing state at every clock

cycle, cycle-based simulation will offer greater performance.

Cycle-based 

simulations have 

no timing infor-

mation.

This great improvement in simulation performance comes at a cost:

All timing and delay information is lost. Cycle-based simulators

assume that the entire simulation model of the design meets the

setup and hold requirements of all the flip-flops. When using a

cycle-based simulator, timing is usually verified using a static tim-

ing analyzer.

Cycle-based 

simulators can 

only handle syn-

chronous cir-

cuits.

Cycle-based simulators further assume that the active clock edge is

the only significant event in changing the state of the design. All

other inputs are assumed to be perfectly synchronous with the

active clock edge. Therefore, cycle-based simulators can only sim-

ulate perfectly synchronous designs. Anything containing asyn-

chronous inputs, latches or multiple-clock domains cannot be

simulated accurately. Fortunately, the same restrictions apply to

static timing analysis. Thus, circuits that are suitable for cycle-

based simulation to verify the functionality are suitable for static

timing verification to verify the timing.

Co-Simulators

No real-world design and testbench is perfectly suited for a single

simulator, simulation algorithm or modeling language. Different

Figure 2-5.
Cycle-based
simulator view 
of a 
synchronous
circuit

A->Q1

B->Q2

1

Clock

A

B

1. And it is. By a long shot.
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components in a design may be specified using different languages.

A design could contain small sections that cannot be simulated

using a cycle-based algorithm. Some portion of the design may

contain some legacy blocks coded in VHDL or be implemented

using analog circuitry.

Multiple simula-

tors can handle 

separate por-

tions of a simu-

lation.

To handle the portions of a design that do not meet the requirements

for cycle-based simulation, most cycle-based simulators are inte-

grated with an event-driven simulator. As shown in Figure 2-6, the

synchronous portion of the design is simulated using the cycle-

based algorithm, while the remainder of the design is simulated

using a conventional event-driven simulator. Both simulators

(event-driven and cycle-based) are running together, cooperating to

simulate the entire design.

Other popular co-simulation environments provide VHDL, System-

Verilog, SystemC, assertions and analog co-simulation. For exam-

ple, Figure 2-7 shows the testbench (written in SystemVerilog) and

a mixed-signal design co-simulated using a SystemVerilog digital

simulator and an analog simulator.

Figure 2-6.
Event-driven
and cycle-
based co-
simulation

Event-Driven
Simulator

Cycle-Based
Simulator

Async Path

Figure 2-7.
Digital and 
analog co-
simulation

SystemVerilog
Simulator

Analog
Simulator

DUV

Testbench
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All simulators 

operate in 

locked-step.

During co-simulation, all simulators involved progress along the

time axis in lock-step. All are at simulation time T1 at the same

time and reach the next time T2 at the same time. This implies that

the speed of a co-simulation environment is limited by the slowest

simulator. Some experimental co-simulation environments imple-

ment time warp synchronization where some simulators are

allowed to move ahead of the others.

Performance is 

decreased by the 

communication 

and synchroni-

zation overhead.

The biggest hurdle of co-simulation comes from the communica-

tion overhead between the simulators. Whenever a signal generated

within a simulator is required as an input by another, the current

value of that signal, as well as the timing information of any change

in that value, must be communicated. This communication usually

involves a translation of the event from one simulator into an

(almost) equivalent event in another simulator. Ambiguities can

arise during that translation when each simulation has different

semantics. The difference in semantics is usually present: the

semantic difference often being the requirement for co-simulation

in the first place.

Translating val-

ues and events 

from one simu-

lator to another 

can create ambi-

guities.

Examples of translation ambiguities abound. How do you map Sys-

temVerilog’s 128 possible states (composed of orthogonal logic

values and strengths) into VHDL’s nine logic values (where logic

values and strengths are combined)? How do you translate a volt-

age and current value in an analog simulator into a logic value and

strength in a digital simulator? How do you translate an x or z value

into a 2-state C++ value?

Co-simulation 

should not be 

confused with 

single-kernel 

simulation.

Co-simulation is when two (or more) simulators are cooperating to

simulate a design, each simulating a portion of the design, as shown

in Figure 2-8. It should not be confused with simulators able to read

and compile models described in different languages. For example,

Synopsys’ VCS can simulate a design described using a mix of

SystemVerilog, VHDL, OpenVera and SystemC. As shown in

Figure 2-9, all languages are compiled into a single internal repre-

sentation or machine code and the simulation is performed using a

single simulation engine.  
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VERIFICATION INTELLECTUAL PROPERTY

You can buy IP 

for standard 

functions.

If you want to verify your design, it is necessary to have models for

all the parts included in a simulation. The model of the RTL design

is a natural by-product of the design exercise and the actual objec-

tive of the simulation. Models for embedded or external RAMs are

also required, as well as models for standard interfaces and off-the-

shelf parts. If you were able to procure the RAM, design IP, specifi-

cation or standard part from a third party, you should be able to

obtain a model for it as well. You may have to obtain the model

from a different vendor than the one who supplies the design com-

ponent.

It is cheaper to 

buy models than 

write them your-

self.

At first glance, buying a simulation model from a third-party pro-

vider may seem expensive. Many have decided to write their own

models to save on licensing costs. However, you have to decide if

this endeavor is truly economically fruitful: Are you in the model-

ing business or in the chip design business? If you have a shortage

of qualified engineers, why spend critical resources on writing a

model that does not embody any competitive advantage for your

company? If it was not worth designing on your own in the first

place, why is writing your own model suddenly justified?

Figure 2-8.
Co-simulator
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Your model is 

not as reliable as 

the one you buy.

Secondly, the model you write has never been used before. Its qual-

ity is much lower than a model that has been used by several other

companies before you. The value of a functionally correct and reli-

able model is far greater than an uncertain one. Writing and verify-

ing a model to the same degree of confidence as the third-party

model is always more expensive than licensing it. And be assured:

No matter how simple the model is (such as a quad 2-input NAND

gate, 74LS00), you’ll get it wrong the first time. If not functionally,

then at least with respect to timing or connectivity.

There are several providers of verification IP. Many are written

using a proprietary language or C code; others are provided as non-

synthesizeable SystemVerilog source code. For intellectual prop-

erty protection and licensing technicalities, most are provided as

compiled binary or encrypted models. Verification IP includes, but

is not limited to functional models of external and embedded mem-

ories, bus-functional models for standard interfaces, protocol gener-

ators and analyzers, assertion sets for standard protocols and black-

box models for off-the-shelf components and processors.

WAVEFORM VIEWERS

Waveform view-

ers display the 

changes in sig-

nal values over 

time.

Waveform viewing is the most common verification technology

used in conjunction with simulators. It lets you visualize the transi-

tions of multiple signals over time, and their relationship with other

transitions. With a waveform viewer, you can zoom in and out over

particular time sequences, measure time differences between two

transitions, or display a collection of bits as bit strings, hexadecimal

or as symbolic values. Figure 2-10 shows a typical display of a

waveform viewer showing the inputs and outputs of a 4-bit syn-

chronous counter.

Figure 2-10.
Hypothetical 
waveform
view of a 4-bit 
synchronous
counter
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Waveform view-

ing is used to 

debug simula-

tions.

Waveform viewing is indispensable during the authoring phase of a

design or a testbench. With a viewer, you can casually inspect that

the behavior of the code is as expected. They are needed to diag-

nose, in an efficient fashion, why and when problems occur in the

design or testbench. They can be used interactively during the sim-

ulation, but more importantly offline, after the simulation has com-

pleted. As shown in Figure 2-11, a waveform viewer can play back

the events that occurred during the simulation that were recorded in

some trace file.

Recording

waveform trace 

data decreases 

simulation per-

formance.

Viewing waveforms as a post-processing step lets you quickly

browse through a simulation that can take hours to run. However,

keep in mind that recording trace information significantly reduces

the performance of the simulator. The quantity and scope of the sig-

nals whose transitions are traced, as well as the duration of the

trace, should be limited as much as possible. Of course, you have to

trade-off the cost of tracing a greater quantity or scope of signals

versus the cost of running the simulation over again to get a trace of

additional signals that turn out to be required to completely diag-

nose the problem. If it is likely or known that bugs will be reported,

such as the beginning of the project or during a debugging iteration,

trace all the signals required to diagnose the problem. If no errors

are expected, such as during regression runs, no signal should be

traced.

Do not use 

waveform view-

ing to determine 

if a design 

passes or fails.

In a functional verification environment, using a waveform viewer

to determine the correctness of a design involves interpreting the

dozens (if not hundreds) of wavy lines on a computer screen against

some expectation. It can be an acceptable verification method used

two or three times, for less than a dozen signals. As the number of

signals and transitions increases, so does the number of relation-

ships that must be checked for correctness. Multiply that by the

duration of the simulation. Multiply again by the number of simula-

tion runs. Very soon, the probability that a functional error is

missed reaches one hundred percent.

Figure 2-11.
Waveform 
viewing as 
post-
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Some viewers 

can compare 

sets of wave-

forms.

Some waveform viewers can compare two sets of waveforms. One

set is presumed to be a golden reference, while the other is verified

for any discrepancy. The comparator visually flags or highlights

any differences found. This approach has two significant problems.

How do you 

define a set of 

waveforms as 

“golden”?

First, how is the golden reference waveform set declared “golden”?

If visual inspection is required, the probability of missing a signifi-

cant functional error remains equal to one hundred percent in most

cases. The only time golden waveforms are truly available is in a

redesign exercise, where cycle-accurate backward compatibility

must be maintained. However, there are very few of these designs.

Most redesign exercises take advantage of the process to introduce

needed modifications or enhancements, thus tarnishing the status of

the golden waveforms.

And are the dif-

ferences really 

significant?

Second, waveforms are at the wrong level of abstraction to compare

simulation results against design intent. Differences from the

golden waveforms may not be significant. The value of all output

signals is not significant all the time. Sometimes, what is significant

is the relative relationships between the transitions, not their abso-

lute position. The new waveforms may be simply shifted by a few

clock cycles compared to the reference waveforms, but remain

functionally correct. Yet, the comparator identifies this situation as

a mismatch.

Use assertions 

instead.

You should avoid using waveform viewing to check a response. It

should be reserved for debugging. Instead of looking for specific

signal relationships in a waveform viewer, specify these same rela-

tionships using assertions. The assertions will be continuously and

reliably checked, for the entire duration of the simulation, for all

simulations. They will provide a specification of the intended func-

tionality of the design. Should your design be picked up by another

designer, your original intent will be communicated along with

your original code.

CODE COVERAGE

Did you forget 

to verify some 

function in your 

code?

Code coverage is a technology that can identify what code has been

(and more importantly not been) executed in the design under veri-

fication. It is a technology that has been in use in software engineer-

ing for quite some time. The problem with a design containing an

unknown bug is that it looks just like a perfectly good design. It is
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impossible to know, with one hundred percent certainty, that the

design being verified is indeed functionally correct. All of your

testbenches simulate successfully, but are there sections of the RTL

code that you did not exercise and therefore not triggered a func-

tional error? That is the question that code coverage can help

answer.

Code must first 

be instrumented.

Figure 2-12 shows how code coverage works. The source code is

first dd
points at strategic locations of the source code to record whether a

particular construct has been exercised. The instrumentation mech-

anism varies from tool to tool. Some may use file I/O features avail-

able in the language (i.e., use $write statements in SystemVerilog).

Others may use special features built into the simulator.

No need to

instrument the

testbenches.

Only the code for the design under verification needs to be covered

and thus instrumented. The objective of code coverage is to deter-

mine if you have forgotten to exercise some code in the design. The

code for the testbenches need not be traced to confirm that it has

executed. If a significant section of a testbench was not executed, it

should be reflected in some portion of the design not being exer-

cised. Furthermore, a significant portion of testbench code is exe-

cuted only if errors are detected. Code coverage metrics on

testbench code are therefore of little interest.

Trace informa-

tion is collected 

at runtime.

The instrumented code is then simulated normally using all avail-

able, uninstrumented, testbenches. The cumulative traces from all

simulations are collected into a database. From that database,

reports can be generated to measure various coverage metrics of the

verification suite on the design.

Figure 2-12.
Code coverage
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The most popular metrics are statement, path and expression cover-

age.

Statement Coverage

Statement and 

block coverage 

are the same 

thing.

Statement coverage can also be called block coverage, where a

block is a sequence of statements that are executed if a single state-

ment is executed. The code in Sample 2-8 shows an example of a

statement block. The block named acked is executed entirely when-

ever the expression in the if statement evaluates to true. So counting

the execution of that block is equivalent to counting the execution

of the four individual statements within that block.

But block 

boundaries may 

not be that obvi-

ous.

Statement blocks may not be necessarily clearly delimited. In Sam-

ple 2-9, two statement blocks are found: one before (and including)

the wait statement, and one after. The wait statement may have

never completed and the execution was waiting forever. The subse-

quent sequential statements may not have executed. Thus, they

form a separate statement block.

Did you execute 

all the state-

ments?

Statement, line or block coverage measures how much of the total

lines of code were executed by the verification suite. A graphical

user interface usually lets the user browse the source code and

quickly identify the statements that were not executed. Figure 2-13

shows, in a graphical fashion, a statement coverage report for a

small portion of code from a model of a modem. The actual form of

Sample 2-8.
Block vs. 
statement exe-
cution

if (dtack == 1’b1) begin: acked
   as     <= 1’b0;
   data   <= 16’hZZZZ;
   bus_rq <= 1’b0;
   state  <= IDLE;
end: acked

Sample 2-9.
Blocks sepa-
rated by a wait
statement

address <= 16’hFFED;
ale     <= 1’b1;
rw      <= 1’b1;
wait (dtack == 1’b1);
read_data = data;
ale     <= 1’b0;
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the report from any code coverage tool or source code browser will

likely be different.

Why did you not 

execute all state-

ments?

The example in Figure 2-13 shows that two out of the eight execut-

able statements—or 25 percent—were not executed. To bring the

statement coverage metric up to 100 percent, a desirable goal1, it is

necessary to understand what conditions are required to cause the

execution of the uncovered statements. In this case, the parity must

be set to either ODD or EVEN. Once the conditions have been

determined, you must understand why they never occurred in the

first place. Is it a condition that can never occur? Is it a condition

that should have been verified by the existing verification suite? Or

is it a condition that was forgotten?

Add testcases to 

execute all state-

ments.

If the conditions that would cause the uncovered statements to be

executed should have been verified, it is an indication that one or

more testbenches are either not functionally correct or incomplete.

If the condition was entirely forgotten, it is necessary to add to an

existing testbench, create an entirely new one or make additional

runs with different seeds.

Path Coverage

There is more 

than one way to 

execute a 

sequence of 

statements.

Path coverage measures all possible ways you can execute a

sequence of statements. The code in Sample 2-10 has four possible

paths: the first if statement can be either true or false. So can the

second. To verify all paths through this simple code section, it is

Figure 2-13.
Example of 
statement
coverage

if (parity == ODD || parity == EVEN) begin
   tx <= compute_parity(data, parity);
   #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
   tx <= 1’b0;
   #(tx_time);
end

1. But not necessarily achievable. For example, the default clause in a 
fully specified case statement should never be executed.
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necessary to execute it with all possible state combinations for both

if statements: false-false, false-true, true-false, and true-true.

Why were some 

sequences not 

executed?

The current verification suite, although it offers 100 percent state-

ment coverage, only offers 75 percent path coverage through this

small code section. Again, it is necessary to determine the condi-

tions that cause the uncovered path to be executed. In this case, a

testcase must set the parity to neither ODD nor EVEN and the num-

ber of stop bits to two. Again, the important question one must ask

is whether this is a condition that will ever happen, or if it is a con-

dition that was overlooked.

Limit the length 

of statement 

sequences.

The number of paths in a sequence of statements grows exponen-

tially with the number of control-flow statements. Code coverage

tools give up measuring path coverage if their number is too large

in a given code sequence. To avoid this situation, keep all sequen-

tial code constructs (always and initial blocks, tasks and functions)

to under 100 lines.

Reaching 100 percent path coverage is very difficult.

Expression Coverage

There may be 

more than one 

cause for a con-

trol-flow 

change.

If you look closely at the code in Sample 2-11, you notice that there

are two mutually independent conditions that can cause the first if
statement to branch the execution into its then clause: parity being

set to either ODD or EVEN. Expression coverage, as shown in

Sample 2-11, measures the various ways decisions through the code

Sample 2-10.
Example of 
statement and 
path coverage

if (parity == ODD || parity == EVEN) begin
   tx <= compute_parity(data, parity);
   #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
   tx <= 1’b0;
   #(tx_time);
end
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are made. Even if the statement coverage is at 100 percent, the

expression coverage is only at 50 percent.

Once more, it is necessary to understand why a controlling term of

an expression has not been exercised. In this case, no testbench sets

the parity to EVEN. Is it a condition that will never occur? Or was it

another oversight?

Reaching 100 percent expression coverage is extremely difficult.

FSM Coverage

Statement cov-

erage detects 

unvisited states.

Because each state in an FSM is usually explicitly coded using a

choice in a case statement, any unvisited state will be clearly identi-

fiable through uncovered statements. The state corresponding to an

uncovered case statement choice was not visited during verifica-

tion.

FSM coverage 

identifies state 

transitions.

Figure 2-14 shows a bubble diagram for an FSM. Although it has

only five states, it has significantly more possible transitions: 14

possible transitions exist between adjoining states. State coverage

of 100 percent can be easily reached through the sequence Reset, A,

B, D, then C. However, this would yield only 36 percent transition

coverage. To completely verify the implementation of this FSM, it

is necessary to ensure the design operates according to expectation

for all transitions. 

Sample 2-11.
Example of 
statement and 
expression
coverage

if (parity == ODD || parity == EVEN) begin
   tx <= compute_parity(data, parity);
   #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
   tx <= 1’b0;
   #(tx_time);
end
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FSM coverage 

cannot identify 

unintended or 

missing transi-

tions.

The transitions identified by FSM coverage tools are automatically

extracted from the implementation of the FSM. There is no way for

the coverage tool to determine whether a transition was part of the

intent, or if an intended transition is missing. It is important to

review the extracted state transitions to ensure that only and all

intended transitions are present.

What about 

unspecified 

states?

The FSM illustrated in Figure 2-14 only shows five specified states.

Once synthesized into hardware, a 3-bit state register will be neces-

sary (maybe more if a different state encoding scheme, such as one-

hot, is used). This leaves three possible state values that were not

specified. What if some cosmic rays zap the design into one of

these unspecified states? Will the correctness of the design be

affected? Logic optimization may yield decode logic that creates an

island of transitions within those three unspecified states, never let-

ting the design recover into specified behavior unless reset is

applied. The issues of design safety and reliability and techniques

for ensuring them are beyond the scope of this book. But it is the

role of a verification engineer to ask those questions.

Formal verifica-

tion may be bet-

ter suited for 

FSM verifica-

tion.

The behavior of a FSM is a combination of its state transition

description and the behavior of its input signals. If those input sig-

nals are themselves generated by another FSM or follow a specific

protocol, it is possible that certain transitions cannot be taken or

states cannot be reached. A property checker tool may be able to

formally determine which states are reachable and which transi-

tions are possible—including invalid states and transitions. It may

also be able to formally verify that a specific state encoding, such as

one-hot, is never violated.

Figure 2-14.
Example FSM 
bubble 
diagram
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What Does 100 Percent Code Coverage Mean?

Completeness

does not imply 

correctness.

The short answer is: The entire design implementation was exe-

cuted. Code coverage indicates how thoroughly your entire verifi-

cation suite exercises the source code. But it does not provide an

indication, in any way, about the correctness or completeness of the

verification suite. Figure 2-15 shows the reconvergence model for

automatically extracted code coverage metrics. It clearly shows that

it does not help verify design intent, only that the RTL code, correct

or not, was fully exercised.

Results from code coverage should be interpreted with a grain of

salt. They should be used to help identify corner cases that were not

exercised by the verification suite or implementation-dependent

features that were introduced during the implementation. You

should also determine if the uncovered cases are relevant and

deserve additional attention, or a consequence of the mindlessness

of the coverage tool.

Code coverage 

lets you know if 

you are not 

done.

Code coverage indicates if the verification task is not complete

through low coverage numbers. A high coverage number is by no

means an indication that the job is over. For example, the code in an

empty module will always be 100 percent covered. If the function-

ality that ought to be implemented in that module is not verified, all

testbenches will pass without errors. Code coverage is an additional

indicator for the completeness of the verification job. It can help

increase your confidence that the verification job is complete, but it

should not be your only indicator.

Code coverage 

tools can be 

used as profil-

ers.

When developing models for simulation only, where performance

is an important criteria, code coverage can be used for profiling.

The aim of profiling is the opposite of code coverage. The aim of

profiling is to identify the lines of codes that are executed most

often. These lines of code become the primary candidates for per-

formance optimization efforts.

Figure 2-15.
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FUNCTIONAL COVERAGE

Did you forget 

to verify some 

condition?

Functional coverage is another technology to help ensure that a bad

design is not hiding behind passing testbenches. Although this tech-

nology has been in use at some companies for quite some time, it is

a recent addition to the arsenal of general-purpose verification

tools. Functional coverage records relevant metrics (e.g., packet

length, instruction opcode, buffer occupancy level) to ensure that

the verification process has exercised the design through all of the

interesting values. Whereas code coverage measures how much of

the implementation has been exercised, functional coverage mea-

sures how much of the original design specification has been exer-

cised.

It complements 

code coverage.

High functional coverage does not necessarily correlate with high

code coverage. Whereas code coverage is concerned with recording

the mechanics of code execution, functional coverage is concerned

with the intent or purpose of the implemented function. For exam-

ple, the decoding of a CPU instruction may involve separate case
statements for each field in the opcode. Each case statement may be

100 percent code-covered due to combinations of field values from

previously decoded opcodes. However, the particular combination

involved in decoding a specific CPU instruction may not have been

exercised.

It will detect 

errors of omis-

sion.

Sample 2-12 shows a case statement decoding a CPU instruction.

Notice how the decoding of the RTS instruction is missing. If you

rely solely on code coverage, you will be lulled in a false sense of

completeness by having 100 percent coverage of this code. For

code coverage to report a gap, the unexercised code must apriori

exist. Functional coverage does not rely on actual code. It will

report gaps in the recorded values whether the code to process them

is there or not.

Sample 2-12.
Example of 
coding error 
undetectable
by code cover-
age

enum {ADD, SUB, JMP, RTS, NOP} opcode;
...
case (opcode)
   ADD: ...
   SUB: ...
   JMP: ...
   default: ...
endcase
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It must be manu-

ally defined.

Code coverage was quickly adopted into verification processes

because of its low adoption cost. It requires very little additional

action from the user: usually the specification of an additional com-

mand-line option when compiling your code. Functional coverage,

because it is a measure of values deemed to be interesting and rele-

vant, must be manually specified. Since relevance and interest are

qualities that are extracted from the intent of the design, functional

coverage is not something that can be automatically extracted from

the RTL source code. Your functional coverage metrics will be only

as good as what you implement.

Metrics are col-

lected at runtime 

and graded.

Like code coverage, functional coverage metrics are collected at

runtime, during a simulation run. The values from individual runs

are collected into a database or separate files. The functional cover-

age metrics from these separate runs are then merged for offline

analysis. The marginal coverage of individual runs can then be

graded to identify which runs contributed the most toward the over-

all functional coverage goal. These runs are then given preference

in the regression suite, while pruning runs that did not significantly

contribute to the objective.

Coverage data 

can be used at 

runtime.

SystemVerilog provides a set of predefined methods that let a test-

bench dynamically query a particular functional coverage metric.

The testbench can then use the information to modify its current

behavior. For example, it could increase the probability of generat-

ing values that have not been covered yet. It could decide to abort

the simulation should the functional coverage not have significantly

increased since the last query. 

Although touted as a powerful mechanism, it is no silver bullet.

Implementing the dynamic feedback mechanism is not easy: You

have to correlate your stimulus generation process with the func-

tional coverage metric, and ensure that one will cause the other to

converge toward the goal. Dynamic feedback works best when

there is a direct correlation between the input and the measured

coverage, such as instruction types. It may be more efficient to

achieve your goal with three or four runs of a few simple test-

benches without dynamic feedback than with a single run of a much

more complex testbench.
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Coverage Points

Did I generate 

all interesting 

and relevant val-

ues?

A coverage point is the sampling of an individual scalar value or

expression. The objective of a coverage point is to ensure that all

interesting and relevant values have been observed in the sampled

value or expression. Examples of coverage points include, but are

not limited to, packet length, instruction opcode, interrupt level, bus

transaction termination status, buffer occupancy level, bus request

patterns and so on.

Define what to 

sample.

It is extremely easy to record functional coverage and be inundated

with vast amounts of coverage data. But data is not the same thing

as information. You must restrict coverage to only (but all!) values

that will indicate how thoroughly your design has been verified. For

example, measuring the value of the read and write pointers in a

FIFO is fine if you are concerned about the full utilization of the

buffer space and wrapping around of the pointer values. But if you

are interested in the FIFO occupancy level (Was it ever empty? Was

it ever full? Did it overflow?), you should measure and record the

difference between the pointer values.

Define where to 

sample it.

Next, you must decide where in your testbench or design is the

measured value accurate and relevant. For example, you can sam-

ple the opcode of an instruction at several places: at the output of

the code generator, at the interface of the program memory, in the

decoder register or in the execution pipeline. You have to ensure

that a value, once recorded, is indeed processed or committed as

implied by the coverage metric. 

For example, if you are measuring opcodes that were executed,

they should be sampled in the execution unit. Sampling them in the

decode unit could result in false samples when the decode pipeline

is flushed on branches or exceptions. Similarly, sampling the length

of packets at the output of the generator may yield false samples: If

a packet is corrupted by injecting an error during its transmission to

the design in lower-level functions of the testbench, it may be

dropped.

Define when to 

sample it.

Values are sampled at some point in time during the simulation. It

could be at every clock cycle, whenever the address strobe signal is

asserted, every time a request is made or after randomly generating

a new value. You must carefully choose your sampling time. Over-
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sampling will decrease simulation performance and consume data-

base resources without contributing additional information. 

The sampled data must also be stable so race conditions must be

avoided between the sampled data and the sampling event (see

“Read/Write Race Conditions” on page 177). To reduce the proba-

bility that a transient value is being sampled, functional coverage in

SystemVerilog can be sampled at the end of the simulation cycle,

before time is about to advance (see “The Simulation Cycle” on

page 163) when the strobe option is used. 

Define why it is 

covered.

If functional coverage is supposed to measure interesting and rele-

vant values, it is necessary to define what makes those values so

interesting and relevant. For example, measuring the functional

coverage of a 32-bit address will yield over 4 billion “interesting

and relevant” values. Not all values are created equal—but most

are. Values may be numerically different but functionally equiva-

lent. By identifying those functionally equivalent values into a sin-

gle bin, you can reduce the number of interesting and relevant

values to a more manageable size. For example, based on the

decoder architecture, addresses 0x00000001 through 0x7FFFFFFF

and addresses 0x80000000 through 0x8FFFFFFE are functionally

equivalent, reducing the number of relevant and interesting values

to 4 bins (min, 1 to mid, mid to max-1, max).

It can detect 

invalid values.

Just as you can define bins of equivalent values, it is possible to

define bins of invalid or unexpected values. Functional coverage

can be used as an error detecting mechanism, just like an if state-

ment in your testbench code. However, you should not rely on func-

tional coverage to detect invalid values. Functional coverage is an

optional runtime data collection mechanism that may not be turned

on at all times. If functional coverage is not enabled to improve

simulation performance and if a value is defined as invalid in the

functional coverage only, then an invalid value may go undetected.

It can report 

holes.

The ultimate purpose of functional coverage is to identify what

remains to be done. During analysis, the functional coverage

reporting tool can compare the number of bins that contain at least

one sample against the total number of bins. Any bin that does not

contain at least one sample is a hole in your functional coverage. By

enumerating the empty bins, you can focus on the holes in your test

cases and complete your verification sooner rather than continue to

exercise functionality that has already been verified. 
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For this enumeration to be possible, the total number of bins for a

coverage point must be relatively small. For example, it is practi-

cally impossible to fill the coverage for a 32-bit value without

broad bins. The number of holes will be likely in the millions, mak-

ing enumeration impossible. You should strive to limit the number

of possible bins as much as possible.

Cross Coverage

Did I generate 

all interesting 

combinations of 

values?

Whereas coverage points are concerned with individual scalar val-

ues, cross coverage measures the presence or occurrence of combi-

nations of values. It helps answer questions like, “Did I inject a

corrupted packet on all ports?” “Did we execute all combinations of

opcodes and operand modes?” and “Did this state machine visit

each state while that buffer was full, not empty and empty?” Cross

coverage can involve more than two coverage points. However, the

number of possible bins grows factorially with the number of

crossed points.

Similar to cover-

age points.

Mechanically, cross coverage is identical to coverage points. Spe-

cific values are sampled at specific locations at specific points in

time with specific value bins. The only difference is that two or

more values are sampled instead of one. To ensure that crossed val-

ues are consistent, they must all be sampled at the same time. In

SystemVerilog, only coverage points specified within the same cov-
ergroup can be crossed.

Transition Coverage

Did I generate 

all interesting 

sequences of 

values?

Whereas cross coverage is concerned with combinations of scalar

values at the same point in time, transition coverage measures the

presence or occurrence of sequences of values. Transition coverage

helps answer questions like, “Did I perform all combinations of

back-to-back read and write cycles?” “Did we execute all combina-

tions of arithmetic opcodes followed by test opcodes?” and “Did

this state machine traverse all significant paths?” Transition cover-

age can involve more than two consecutive values of the same cov-

erage point. However, the number of possible bins grows factorially

with the number of transition states.

Similar to cover-

age points.

Mechanically, transition coverage is identical to coverage points.

Specific values are sampled at specific locations at specific points
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in time with specific bins. The only difference is that a sample is

said to have occurred in a bin after two or more consecutive cover-

age point samples instead of one. The other difference is that transi-

tions can overlap, hence two transition samples may be composed

of the same coverage point sample.

Similar to FSM 

path coverage.

Conceptually, transition coverage is identical to FSM path coverage

(see “FSM Coverage” on page 46). Both record the consecutive

values at a particular location of the design (for example, a state

register), and both compare against the possible set of paths. But

unlike FSM coverage tools, which are limited to state registers in

RTL code, transition coverage can be applied to any coverage

points in testbenches and the design under verification.

Transition cov-

erage reflects 

intent.

Because transition coverage is manually specified from the intent

of the design or the implementation, it provides a true independent

path to verifying the correctness of the design and the completeness

of the verification. It can detect invalid transitions as well as specify

transitions that may be missing from the implementation of the

design.

What Does 100 Percent Functional Coverage Mean?

It indicates com-

pleteness of the 

test suite, not 

correctness.

Functional coverage indicates which interesting and relevant condi-

tions were verified. It provides an indication of the thoroughness of

the implementation of the verification plan. Unless some bins are

defined as invalid, it cannot provide an indication, in any way,

about the correctness of those conditions or of the design’s

response to those conditions. Functional coverage metrics are only

as good as the functional coverage model you have defined. An

overall functional coverage metric of 100 percent means that

you’ve covered all of the coverage points you included in the simu-

lation. It makes no statement about the completeness of your func-

tional coverage model.

Results from functional coverage should also be interpreted with a

grain of salt. Since they are generated by additional testbench con-

structs, they have to be debugged and verified for correctness

before being trusted. They will help identify additional interesting

conditions that were not included in the verification plan.
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Functional cov-

erage lets you 

know if you are 

done.

When used properly, functional coverage becomes a formal specifi-

cation of the verification plan. Once you reach 100 percent func-

tional coverage, it indicates that you have created and exercised all

of the relevant and interesting conditions you originally identified.

It confirms that you have implemented everything in the verifica-

tion plan. However, it does not provide any indication of the com-

pleteness of the verification plan itself or the correctness of the

design under such conditions.

If a metric is not 

interesting,

don’t measure it.

It is extremely easy to define functional coverage metrics and gen-

erate many reports. If coverage is not measured according to a spe-

cific purpose, you will soon drown under megabytes of functional

coverage reports. And few of them will ever be close to 100 per-

cent. It will also become impossible to determine which report is

significant or what is the significance of the holes in others. The

verification plan (see the next chapter) should serve as the func-

tional specification for the coverage models, as well as for the rest

of the verification environment. If a report is not interesting or

meaningful to look at, if you are not eager to look at a report after a

simulation run, then you should question its existence.

VERIFICATION LANGUAGE TECHNOLOGIES

Verilog is a sim-

ulation lan-

guage, not a 

verification lan-

guage.

Verilog was designed with a focus on describing low-level hard-

ware structures. Verilog-2001 only introduced support for basic

high-level data structures. Verilog thus continued to lack features

important in efficiently implementing a modern verification pro-

cess. These shortcomings were the forces being the creation of

hardware verification languages, such as Synopsys’ OpenVera.

Having demonstrated their usefulness, the value-add functionality

of HVLs has been incorporated in SystemVerilog.

Verification lan-

guages can raise 

the level of 

abstraction.

As mentioned in Chapter 1, one way to increase productivity is to

raise the level of abstraction used to perform a task. High-level lan-

guages, such as C or Pascal, raised the level of abstraction from

assembly-level, enabling software engineers to become more pro-

ductive. Similarly, the SystemVerilog verification constructs are

able to raise the level of abstraction compared to plain Verilog. Sys-

temVerilog can provide an increase in level of abstraction while

maintaining the important concepts necessary to interact with hard-

ware: time, concurrency and instantiation. The SystemVerilog fea-
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tures that help raise the level of abstraction include: class, object-

oriented class extensions and temporal properties.

SystemVerilog 

can automate 

verification.

If higher levels of abstraction and object-orientedness were suffi-

cient, then C++ would have long been identified as the best solu-

tion1: It is free and widely known. SystemVerilog provides

additional benefits, as shown in Figure 2-16. It can automate a por-

tion of the verification process by randomly generating stimulus,

collecting functional coverage to identify holes then easily add or

modify constraints to create more stimulus targeted to fill those

holes. To support this productivity cycle, SystemVerilog offers con-

strainable random generation, functional coverage measurement

and an object-oriented code extension mechanism.   

SystemVerilog 

can implement a 

coverage-driven 

constrained ran-

dom approach.

SystemVerilog can be used as if it was a simple souped-up version

of Verilog. SystemVerilog will make implementing directed test-

benches easier than plain Verilog—especially the self-checking

part. But if you want to take advantage of the productivity cycle

shown in Figure 2-16, the verification process must be

approached—and implemented—in a different fashion. 

This change is just like taking advantage of the productivity offered

by logic synthesis tools: It requires an approach different from

schematic capture. To successfully implement a coverage-driven

constrained random verification approach, you need to modify the

way you plan your verification, design its strategy and implement

the testcases. This new approach is described in “Coverage-Driven

Random-Based Approach” on page 101.

1. C++ still lacks a native concept of time, concurrency and instantiation.

Figure 2-16.
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ASSERTIONS

Assertions 

detect condi-

tions that should 

always be true.

An assertion boils down to an if statement and an error message

should the expression in the if statement become false. Assertions

have been used in software design for many years: the assert()
function has been part of the ANSI C standard from the beginning.

In software for example, assertions are used to detect conditions

such as NULL pointers or empty lists. VHDL has had an assert
statement from day one too, but it was never a popular construct.

Hardware asser-

tions require a 

form of tempo-

ral language.

An immediate assertion, like an if statement, simply checks that, at

the time it is executed, the condition evaluates to TRUE. This sim-

ple zero-time test is not sufficient for supporting assertions in hard-

ware designs. In hardware, functional correctness usually involves

behavior over a period of time. Some hardware assertions such as,

“This state register is one-hot encoded.” or “This FIFO never over-

flows.” can be expressed as immediate, zero-time expressions. But

checking simple hardware assertions such as, “This signal must be

asserted for a single clock period.” or “A request must always be

followed by a grant or abort within 10 clock cycles.” require that

the assertion condition be evaluated over time. Thus, assertions

require the use of a temporal language to be able to describe rela-

tionships over time.

There are two 

classes of asser-

tions.

Assertions fall in two broad classes: those specified by the designer

and those specified by the verification engineer. 

• Implementation assertions are specified by the designers. 

• Specification assertions are specified by the verification engi-

neers.

Implementation 

assertions ver-

ify assumptions.

Implementation assertions are used to formally encode the

designer’s assumptions about the interface or implementation of the

design or conditions that are indications of misuse or design faults.

For example, the designer of a FIFO would add assertions to detect

if it ever overflows or underflows or that, because of a design limi-

tation, the write and read pulses are ever asserted at the same time.

Because implementation assertions are specified by the designer,

they will not detect discrepancies between the functional intent and

the design. But implementation assertions will detect discrepancies

between the design assumptions and the implementation.
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Specification 

assertions ver-

ify intent.

Specification assertions formally encode expectations of the design

based on the functional intent. These assertions are used as a func-

tional error detection mechanism and supplement the error detec-

tions performed in the self-checking section of testbenches.

Specification assertions are typically white-box strategies because

the relationships between the primary inputs and outputs of a mod-

ern design are too complex to be described efficiently in System-

Verilog’s temporal languages. For example, rather than relying on

the scoreboard to detect that an arbiter is not fair, it is much simpler

to perform this check using a white-box assertion.

Simulated Assertions

The OVL started 

the storm.

Assertions took the hardware design community by storm when

Foster and Bening’s book1 introduced the concept using a library of

predefined Verilog modules that implemented a set of common

design assertions. The library, available in source form as the Open
Verification Library,2 was a clever way of using Verilog to specify

temporal expressions. Foster, then at Hewlett-Packard, had a hidden

agenda: Get designers to specify design assertions he could then try

to prove using formal methods. Using Verilog modules was a con-

venient solution to ease the adoption of these assertions by the

designers. The reality of what happened next proved to be even

more fruitful.

They detect 

errors close in 

space and time 

to the fault.

If a design assumption is violated during simulation, the design will

not operate correctly. The cause of the violation is not important: It

could be a misunderstanding by the designer of the block or the

designer of the upstream block or an incorrect testbench. The rele-

vant fact is that the design is failing to operate according to the

original intent. The symptoms of that low-level failure are usually

not visible (if at all) until the affected data item makes its way to the

outputs of the design and is flagged by the self-checking structure. 

An assertion formally encoding the design assumption immediately

fires and reports a problem at the time it occurs, in the area of the

design where it occurs. Debugging and fixing the assertion failure

1. Harry Foster and Lionel Bening, “Principles of Verifiable RTL Design,”
second edition, Kluwer Academic Publisher, ISBN 0-7923-7368-5.

2. See http://www.eda.org/ovl.
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(whatever the cause) will be a lot more efficient than tracing back

the cause of a corrupted packet. In one of Foster’s projects, 85% of

the design errors where caught and quickly fixed using simulated

assertions.

Your model can 

tell you if things 

are not as 

assumed.

SystemVerilog provides a powerful assertion language. But it also

provides constructs designed to ensure consistent results between

synthesis and simulation. Sample 2-14 shows an example of a syn-

thesizeable unique case statement, which can be used to replace the

full case directive shown in Sample 2-13. In both cases, the synthe-

sis tool is instructed that the case statement describes all possible

non-overlapping conditions. But it is possible for an unexpected

condition to occur during simulation. If that were the case, the sim-

ulation results would differ from the results produced by the hard-

ware implementation. If a pragma is used, as in Sample 2-13, the

unexpected condition would only be detected if it eventually pro-

duces an incorrect response. If the unique case statement is used,

any unexpected condition will be immediately reported near the

time and place of its occurence. 

Formal Assertion Proving

Is it possible for 

an assertion to 

fire?

Simulation can show only the presence of bugs, never prove their

absence. The fact that an assertion has never reported a violation

throughout a series of simulations does not mean that it can never

be violated. Tools like code and functional coverage can satisfy us

that a portion of a design was thoroughly verified—but there will

(and should) always be a nagging doubt.

Sample 2-13.
full case direc-
tive

case (mode[1:0]) // synopsys full_case
2’b00: ...
2’b10: ...
2’b01: ...
endcase

Sample 2-14.
unique case
statement

unique case (mode[1:0])
2’b00: ...
2’b10: ...
2’b01: ...
endcase
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Property check-

ing can mathe-

matically prove 

or disprove an 

assertion.

Formal tools called property checkers or assertion provers can

mathematically prove that, given an RTL design and some assump-

tions about the relationships of the input signals, an assertion will

always hold true. If a counter example is found, the formal tool will

provide details on the sequence of events that leads to the assertion

violation. It is then up to you to decide if this sequence of events is

possible, given additional knowledge about the environment of the

design.

Some assertions 

are used as 

assumptions.

Given total freedom over the inputs of a design, it may be possible

to violate assertions about its implementation. The proper operation

of the design may rely on the proper behavior of the inputs, subject

to limitations and rules that must be followed. These input signals

usually come from other designs that do not behave (one hopes!)

erratically and follow the rules. When proving some assertions on a

design, it is thus necessary to supply assertions on the inputs or

state of the design. The latter assertions are not proven. Rather, they

are assumed to be true and used to constrain the solution space for

the proof.

Assumptions

need to be 

proven too.

The correctness of a proof depends on the correctness of the

assumptions1 made on the design inputs. Should any assumption be

wrong, the proof no longer stands. An assumption on a design’s

inputs thus becomes an assertion to be proven on the upstream

design supplying those inputs.

Semi-formal

tools combine 

property check-

ing with simula-

tion.

Semi-formal tools are hybrid tools that combine formal methods

with simulation. Semi-formal tools are used to bridge the gap

between the capacity of current formal analysis engines and the size

and complexity of the design to be verified. Rather than try to prove

all assertions from the reset state, they use intermediate simulation

information—such as the current state of a design—as a starting

point for proving or disproving assertions.

Use formal 

methods to 

prove cases 

uncovered in 

simulation.

Formal verification does not replace simulation or make it obsolete.

Simulation (including simulated assertions) is the lawnmower of

the verification garden: It is still the best technology for covering

broad swaths of functionality and for weeding out the easy-to-find

1. The formal verification community calls these input assertions “con-
straints.” I used the term “assumptions” to differentiate them from ran-
dom-generation constraints, which are randomization concepts.
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and some not-so-easy-to-find bugs. Formal verification puts the fin-

ishing touch on those hard-to-reach corners in critical and impor-

tant design sections and ensures that the job is well done. Using

functional coverage metrics collected from simulation (for exam-

ple, request patterns on an arbiter), conditions that remain to be ver-

ified are identified. If those conditions would be difficult to create

within the simulation environment, it may be easier to prove the

correctness of the design for the remaining uncovered cases.

Formal verifica-

tion should 

replace ad hoc 

unit-level verifi-

cation.

When a designer completes the coding of a design unit—a single or

a few modules implementing some elementary function—he or she

verifies that it works as intended. This verification is casual and

usually the waveform viewer is used to visually inspect the correct-

ness of the response. As mentioned in “Waveform Viewers” on

page 39, assertions should be used to specify the signal relation-

ships that define the implementation as “correct” instead of looking

for them visually. Once these relationships are specified using

assertions, why not try to prove or disprove them using formal tech-

nology instead of simulating the design?   

Assertion speci-

fication is a 

complex topic.

This simple introduction to assertions does not do justice to the

richness and power—and ensuing complexity—of assertions.

Entire books have already been written about the subject and

should be consulted for more information. Chapter 3 and 7 of the

Verification Methodology Manual for SystemVerilog provide a lot

of guidelines for using assertions with simulation and formal tech-

nologies.

REVISION CONTROL

Are we all look-

ing at the same 

thing?

One of the major difficulties in verification is to ensure that what is

being verified is actually what will be implemented. When you

compile a SystemVerilog source file, what is the guarantee that the

design engineer will use that exact same file when synthesizing the

design?

When the same person verifies and then synthesizes the design, this

problem is reduced to that person using proper file management

discipline. However, as I hope to have demonstrated in Chapter 1,

having the same person perform both tasks is not a reliable func-

tional verification process. It is more likely that separate individuals

perform the verification and synthesis tasks.
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Files must be 

centrally man-

aged.

In very small and closely knit groups, it may be possible to have

everyone work from a single directory, or to have the design files

distributed across a small number of individual directories. Every-

one agrees where each other’s files are, then each is left to his or her

own device. This situation is very common and very dangerous:

How can you tell if the designer has changed a source file and

maybe introduced a functional bug since you last verified it?

It must be easy 

to get at all the 

files, from a sin-

gle location.

This methodology is not scalable either. It quickly breaks down

once the team grows to more than two or three individuals. And it

does not work at all when the team is distributed across different

physical or geographical areas. The verification engineer is often

the first person to face the non-scalability challenge of this environ-

ment. Each designer is content working independently in his or her

own directories. Individual designs, when properly partitioned,

rarely need to refer to some other design in another designer’s

working directory. As the verification engineer, your first task is to

integrate all the pieces into a functional entity. That’s where the dif-

ficulties of pulling bits and pieces from heterogeneous working

environments scattered across multiple file servers become

apparent.

The Software Engineering Experience

HDL models are 

software 

projects!

For over 30 years, software engineering has been dealing with the

issues of managing a large number of source files, authored by

many different individuals, verified by others and compiled into a

final product. Make no mistake: Managing a synthesis-based hard-

ware design project is no different than managing a software

project.

Free and com-

mercial tools are 

available.

To help manage files, software engineers use source control man-

agement systems. Some are available, free of charge, either bundled

with the UNIX operating systems (RCS, CVS, SCCS), or distrib-

uted by the GNU project (RCS, CVS) and available in source form

at:

ftp://prep.ai.mit.edu/pub/gnu

Commercial systems, some very sophisticated, are also available.

All source files 

are centrally 

managed.

Figure 2-17 shows how source files are managed using a source

control management system. All accesses and changes to source
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files are mediated by the management system. Individual authors

and users interact solely through the management system, not by

directly accessing files in working directories.

The history of a 

file is main-

tained.

Source code management systems maintain not only the latest ver-

sion of a file, but also keep a complete history of each file as sepa-

rate versions. Thus, it is possible to recover older versions of files,

or to determine what changed from one version to another. It is a

good idea to frequently check in file versions. You do not have to

rely on a backup system if you ever accidentally delete a file.

Sometimes, a series of modifications you have been working on for

the last couple of hours is making things worse, not better. You can

easily roll back the state of a file to a previous version known to

work.

The team owns 

all the files.

When using a source management system, files are no longer

owned by individuals. Designers may be nominally responsible for

various sections of a design, but anyone—with the proper permis-

sions—can make any change to any file. This lets a verification

engineer fix bugs found in RTL code without having to rely on the

designer, busy trying to get timing closure on another portion of the

design. The source management system mediates changes to files

either through exclusive locks, or by merging concurrent modifica-

tions.

Configuration Management

Each user works 

from a view of 

the file system.

Each engineer working on a project managed with a source control

system has a private view of all the source files (or a subset thereof)

used in the project. Figure 2-18 shows how two users may have two

Figure 2-17.
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different views of the source files in the management system.

Views need not be always composed of the latest versions of all the

files. In fact, for a verification engineer, that would be a hindrance.

Files checked in on a regular basis by their authors may include

syntax errors, be simple placeholders for future work, or be totally

broken. It would be very frustrating if the model you were trying to

verify kept changing faster than you could identify problems with

it.

Configurations 

are created by 

tagging a set of 

versions.

All source management systems use the concept of symbolic tags

that can be attached to specific versions of files. You may then refer

to particular versions of files, or set of files, using the symbolic

name, without knowing the exact version number they refer to. In

Figure 2-18, the user on the left could be working with the versions

that were tagged as “ready to simulate” by the author. The user on

the right, the system verification engineer, could be working with

the versions that were tagged as “golden” by the block-level verifi-

cation engineer.

Configuration 

management 

translates to tag 

management.

Managing releases becomes a problem of managing tags, which can

be a complex task. Table 2-1 shows a list of tags that could be used

in a project to identify the various versions of a file as it progresses

through the design process. Some tags, such as the “Version_M.N”

tag, never move once applied to a specific version. Others, such as

the “Submit” tag, move to newer versions as the development of the

design progresses. Before moving a tag, it may be a good idea to

leave a trace of the previous position of a tag. One possible mecha-

nism for doing so is to append the date to the tag name. For exam-

ple, the old “Submit” version gets tagged with the new tag

“Submit_060302” on March 2nd, 2006 and the “Submit” tag is

moved to the latest version.

Figure 2-18.
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Working with Releases

Views can become out-of-date as new versions of files are checked

into the source management system database and tags are moved

forward.

Releases are 

specific configu-

rations.

The author of the RTL for a portion of the design would likely

always work with the latest version of the files he or she is actively

working on, checking in and updating them frequently (typically at

relevant points of code development throughout the day and at the

end of each day). Once the source code is syntactically correct and

its functionality satisfies the designer (by proving all embedded

assertions or using a few ad hoc testbenches), the corresponding

version of the files are tagged as ready for verification.

Table 2-1.
Example tags 
for release 
management

Tag Name Description

Submit Ready to submit to functional verification.

Author has verified syntax correctness and

basic level of functionality.

Bronze Passes a basic set of functional testcases.

Release is sufficiently functional for integra-

tion.

Silver Passes all functional testcases.

Gold Passes all functional testcases and meets cod-

ing coverage guidelines (requires additional

corner-case testcases).

To_Synthesis Ready to submit to synthesis. Usually

matches “Silver” or “Gold”.

To_Layout Ready to submit to layout. Usually matches

“Gold”.

Version_M.N Version that was manufactured. Matches cor-

responding “To_Layout” release. Future ver-

sions of the same chip will move tags beyond

this point.

ON_YYMMDD Some meaningful release on the specified

date.
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Users must 

update their 

view to the 

appropriate 

release.

You, as the verification engineer, must be constantly on the look-

out for updates to your view. When working on a particularly diffi-

cult testbench, you may spend several days without updating your

view to the latest version ready to be verified. That way, you main-

tain a consistent view of the design under test and limit changes to

the testbenches, which you make. Once the actual verification and

debugging of the design starts, you probably want to refresh your

view to the latest “ready-to-verify” release of the design before run-

ning a testbench.

Update often. When using a concurrent development model where multiple engi-

neers are working in parallel on the same files, it is important to

check in modifications often, and update your view to merge con-

current modifications even more often. If you wait too long, there is

a greater probability of collisions that will require manual resolu-

tion. The concept of concurrently modifying files then merging the

differences sounds impossibly risky at first. However, experience

has shown that different functions or bug fixes rarely involve modi-

fication to the same lines of source code. As long as the modifica-

tions are separated by two or three lines of unmodified code,

merging will proceed without any problems. Trust me, concurrent

development is the way to go!

You can be noti-

fied of new 

releases.

An interesting feature of some source management systems is the

ability to issue email notification whenever a significant event

occurs. For example, such a system could send e-mail to all verifi-

cation engineers whenever the tag identifying the release that is

ready for verification is moved. Optionally, the e-mail could con-

tain a copy of the descriptions of the changes that were made to the

source files. Upon receiving such an e-mail, you could make an

informed decision about whether to update your view immediately.

ISSUE TRACKING

All your bug are 

belong to us!

The job of any verification engineer is to find bugs. Under normal

conditions, you should expect to find functional irregularities. You

should be really worried if no problems are being found. Their

occurrence is normal and do not reflect the abilities of the hardware

designers. Even the most experienced software designers write

code that includes bugs, even in the simplest and shortest routines.

Now that we’ve established that bugs will be found, how will you

deal with them?
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Bugs must be 

fixed.

Once a problem has been identified, it must be resolved. All design

teams have informal systems to track issues and ensure their resolu-

tions. However, the quality and scalability of these informal sys-

tems leaves a lot to be desired.

What Is an Issue?

Is it worth wor-

rying about?

Before we discuss the various ways issues can be tracked, we must

first consider what is an issue worth tracking. The answer depends

highly on the tracking system used. The cost of tracking the issue

should not be greater than the cost of the issue itself. However, do

you want the tracking system to dictate what kind of issues are

tracked? Or, do you want to decide on what constitutes a trackable

issue, then implement a suitable tracking system? The latter posi-

tion is the one that serves the ultimate goal better: Making sure that

the design is functionally correct.

An issue is anything that can affect the functionality of the design:

1. Bugs found during the execution of a testbench are clearly 

issues worth tracking.

2. Ambiguities or incompleteness in the specification document 

should also be tracked issues. However, typographical errors 

definitely do not fit in this category.

3. Architectural decisions and trade-offs are also issues.

4. Errors found at all stages of the design, in the design itself or in 

the verification environment should be tracked as well.

5. If someone thinks about a new relevant testcase, it should be 

filed as an issue.

When in doubt, 

track it.

It is not possible to come up with an exhaustive list of issues worth

tracking. Whenever an issue comes up, the only criterion that deter-

mines whether it should be tracked, is its effect on the correctness

of the final design. If a bad design can be manufactured when that

issue goes unresolved, it must be tracked. Of course, all issues are

not created equal. Some have a direct impact on the functionality of

the design, others have minor secondary effects. Issues should be

assigned a priority and be addressed in order of that priority.

You may choose 

not to fix an 

issue.

Some issues, often of lower importance, may be consciously left

unresolved. The design or project team may decide that a particular

problem or shortcoming is an acceptable limitation for this particu-
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lar project and can be left to be resolved in the next incarnation of

the product. The principal difficulty is to make sure that the deci-

sion was a conscious and rational one!

The Grapevine System

Issues can be 

verbally 

reported.

The simplest, and most pervasive issue tracking system is the

grapevine. After identifying a problem, you walk over to the hard-

ware designer’s cubicle (assuming you are not the hardware

designer as well!) and discuss the issue. Others may be pulled into

the conversation or accidentally drop in as they overhear something

interesting being debated. Simple issues are usually resolved on the

spot. For bigger issues, everyone may agree that further discussions

are warranted, pending the input of other individuals. The priority

of issues is implicitly communicated by the insistence and fre-

quency of your reminders to the hardware designer.

It works only 

under specific 

conditions.

The grapevine system works well with small, closely knit design

groups, working in close proximity. If temporary contractors or

part-time engineers are on the team, or members are distributed

geographically, this system breaks down as instant verbal commu-

nications are not readily available. Once issues are verbally

resolved, no one has a clear responsibility for making sure that the

solution will be implemented.

You are con-

demned to 

repeat past mis-

takes.

Also, this system does not maintain any history. Once an issue is

resolved, there is no way to review the process that led to the deci-

sion. The same issue may be revisited many times if the implemen-

tation of the solution is significantly delayed. If the proposed

resolution turns out to be inappropriate, the team may end up going

in circles, repeatedly trying previous solutions. Without history, you

are condemned to repeat it. There is no opportunity for the team to

learn from its mistakes. Learning is limited to individuals, and to

the extent that they keep encountering similar problems.

The Post-It System

Issues can be 

tracked on little 

pieces of paper.

When teams become larger, or when communications are no longer

regular and casual, the next issue tracking system that is used is the

3M Post-It™ note system. It is easy to recognize at a glance: Every

team member has a number of telltale yellow pieces of paper stuck

around the periphery of their computer monitor.
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If the paper dis-

appears, so does 

the issue.

This evolutionary system only addresses the lack of ownership of

the grapevine system: Whoever has the yellow piece of paper is

responsible for its resolution. This ownership is tenuous at best.

Many issues are “resolved” when the sticky note accidentally falls

on the floor and is swept away by the janitorial staff.

Issues cannot be 

prioritized.

With the Post-It system, issues are not prioritized. One bug may be

critical to another team member, but the owner of the bug may

choose to resolve other issues first simply because they are simpler

and because resolving them instead reduces the clutter around his

computer screen faster. All notes look alike and none indicate a

sense of urgency more than the others.

History will 

repeat itself.

And again, the Post-It system suffers from the same learning dis-

abilities as the grapevine system. Because of the lack of history,

issues are revisited many times, and problems are recreated

repeatedly.

The Procedural System

Issues can be 

tracked at group 

meetings.

The next step in the normal evolution of issue tracking is the proce-

dural system. In this system, issues are formally reported, usually

through free-form documents such as e-mail messages. The out-

standing issues are reviewed and resolved during team meetings.

Only the big-

gest issues are 

tracked.

Because the entire team is involved and the minutes of meetings are

usually kept, this system provides an opportunity for team-wide

learning. But the procedural system consumes an inordinate amount

of precious meeting time. Because of the time and effort involved

in tracking and resolving these issues, it is usually reserved for the

most important or controversial ones. The smaller, less important—

but much more numerous—issues default back to the grapevine or

Post-It note systems.

Computerized System

Issues can be 

tracked using 

databases.

A revolution in issue tracking comes from using a computer-based

system. In such a system, issues must be seen through to resolution:

Outstanding issues are repeatedly reported loud and clear. Issues

can be formally assigned to individuals or list of individuals. Their

resolution need only involve the required team members. The com-

puter-based system can automatically send daily or weekly status

reports to interested parties. 
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A history of the decision making process is maintained and

archived. By recording various attempted solutions and their effec-

tiveness, solutions are only tried once without going in circles. The

resolution process of similar issues can be quickly looked-up by

anyone, preventing similar mistakes from being committed repeat-

edly.

But it should not 

be easier to track 

them verbally or 

on paper.

Even with its clear advantages, computer-based systems are often

unsuccessful. The main obstacle is their lack of comparative ease-

of-use. Remember: The grapevine and Post-It systems are readily

available at all times. Given the schedule pressure engineers work

under and the amount of work that needs to be done, if you had the

choice to report a relatively simple problem, which process would

you use: 

1. Walk over to the person who has to solve the problem and ver-

bally report it.

2. Describe the problem on a Post-It note, then give it to that same 

person (and if that person is not there, stick it in the middle of 

his or her computer screen).

3. Enter a description of the problem in the issue tracking database 

and never leave your workstation?

It should not 

take longer to 

submit an issue 

than to fix it.

You would probably use the one that requires the least amount of

time and effort. If you want your team to use a computer-based

issue tracking system successfully, then select one that causes the

smallest disruption in their normal work flow. Choose one that is a

simple or transparent extension of their normal behavior and tools

they already use. 

I was involved in a project where the issue tracking system used a

proprietary X-based graphical interface. It took about 15 seconds to

bring up the entire interface on your screen. You were then faced

with a series of required menu selections to identify the precise

division, project, system, sub-system, device and functional aspect

of the problem, followed by several other dialog boxes to describe

the actual issue. Entering the simplest issue took at least three to

four minutes. And the system could not be accessed when working

from home on dial-up lines. You can guess how successful that sys-

tem was...
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Email-based

systems have the 

greatest accep-

tance.

The systems that have the most success invariably use an e-mail-

based interface, usually coupled with a Web-based interface for

administrative tasks and reporting. Everyone on your team uses e-

mail. It is probably already the preferred mechanism for discussing

issues when members are distributed geographically or work in dif-

ferent time zones. Having a system that simply captures these e-

mail messages, categorizes them and keeps track of the status and

resolution of individual issues (usually through a minimum set of

required fields in the e-mail body or header), is an effective way of

implementing a computer-based issue tracking system.

METRICS

Metrics are 

essential man-

agement tech-

nologies.

Managers love metrics and measurements. They have little time to

personally assess the progress and status of a project. They must

rely on numbers that (more or less) reflect the current situation.

Metrics are best 

observed over 

time to see 

trends.

Metrics are most often used in a static fashion: “What are the values

today?” “How close are they to the values that indicate that the

project is complete?” The odometer reports a static value: How far

have you travelled. However, metrics provide the most valuable

information when observed over time. Not only do you know where

you are, but also you can know how fast you are going, and what

direction you are heading. (Is it getting better or worse?)

Historical data 

should be used 

to create a base-

line.

When compared with historical data, metrics can paint a picture of

your learning abilities. Unless you know how well (or how poorly)

you did last time, how can you tell if you are becoming better at

your job? It is important to create a baseline from historical data to

determine your productivity level. In an industry where the manu-

facturing capability doubles every 18 months, you cannot afford to

maintain a constant level of productivity.

Metrics can help 

assess the verifi-

cation effort.

There are several metrics that can help assess the status, progress

and productivity of functional verification. Two have already been

introduced: code and functional coverage.

Code-Related Metrics

Code coverage 

may not be rele-

vant.

Code coverage measures how thoroughly the verification suite

exercises the source code being verified. That metric should climb
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steadily toward 100 percent over time. From project to project, it

should climb faster, and get closer to 100 percent. 

However, code coverage is not a suitable metric for all verification

projects. It is an effective metric for the smallest design unit that is

individually specified (such as an FPGA, a reusable component or

an ASIC). But it is ineffective when verifying designs composed of

sub-designs that have been independently verified. The objective of

that verification is to confirm that the sub-designs are interfaced

and cooperate properly, not to verify their individual features. It is

unlikely (and unnecessary) to execute all the statements.

The number of 

lines of code can 

measure imple-

mentation effi-

ciency.

The total number of lines of code that is necessary to implement a

verification suite can be an effective measure of the effort required

in implementing it. This metric can be used to compare the produc-

tivity offered by new verification technologies or methods. If they

can reduce the number of lines of code that need to be written, then

they should reduce the effort required to implement the verification.

Lines-of-code

ratio can mea-

sure complexity.

The ratio of lines of code between the design being verified and the

verification suite may measure the complexity of the design. His-

torical data on that ratio could help predict the verification effort for

a new design by predicting its estimated complexity.

Code change 

rate should trend 

toward zero.

If you are using a source control system, you can measure the

source code changes over time. At the beginning of a project, code

changes at a very fast rate as new functionality is added and initial

versions are augmented. At the beginning of the verification phase,

many changes in the code are required by bug fixes. As the verifica-

tion progresses, the rate of changes should decrease as there are

fewer and fewer bugs to be found and fixed. Figure 2-19 shows a

plot of the expected code change rate over the life of a project.

From this metric, you are able to determine if the code is becoming

stable, or identify the most unstable sections of a design.

Figure 2-19.
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Quality-Related Metrics

Quality is sub-

jective, but it 

can be mea-

sured indirectly.

Quality-related metrics are probably more directly related with the

functional verification than other productivity metrics. Quality is a

subjective value, yet, it is possible to find metrics that correlate

with the level of quality in a design. This is much like the number

of customer complaints or the number of repeat customers can be

used to judge the quality of retail services.

Functional cov-

erage can mea-

sure testcase 

completeness.

Functional coverage measures the range and combination of input

and output values that were submitted to and observed from the

design, and of selected internal values. By assigning a weight to

each functional coverage metric, it can be reduced to a single func-

tional coverage grade measuring how thoroughly the functionality

of the design was exercised. By weighing the more important func-

tional coverage measures more than the less important ones, it gives

a good indicator of the progress of the functional verification. This

metric should evolve rapidly toward 100 percent at the beginning of

the project then significantly slow down as only hard-to-reach func-

tional coverage points remain.

A simple metric 

is the number of 

known issues.

The easiest metric to collect is the number of known outstanding
issues. The number could be weighed to count issues differently

according to their severity. When using a computer-based issue

tracking system, this metric, as well as trends and rates, can be eas-

ily generated. Are issues accumulating (indicating a growing qual-

ity problem)? Or, are they decreasing and nearing zero?

Code will be 

worn out even-

tually.

If you are dealing with a reusable or long-lived design, it is useful

to measure the number of bugs found during its service life. These

are bugs that were not originally found by the verification suite. If

the number of bugs starts to increase dramatically compared to his-

torical findings, it is an indication that the design has outlived its

useful life. It has been modified and adapted too many times and

needs to be re-designed from scratch. Throughout the normal life
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cycle of a reusable design, the number of outstanding issues exhib-

its a behavior as shown in Figure 2-20.

Interpreting Metrics

Whatever gets 

measured gets 

done.

Because managers rely heavily on metrics to measure performance

(and ultimately assign reward and blame), there is a tendency for

any organization to align its behavior with the metrics. That is why

you must be extremely careful to select metrics that faithfully rep-

resent the situation and are correlated with the effect you are trying

to measure or improve. If you measure the number of bugs found

and fixed, you quickly see an increase in the number of bugs found

and fixed. But do you see an increase in the quality of the code

being verified? Were bugs simply not previously reported? Are

designers more sloppy when writing their code since they’ll be

rewarded only when and if a bug is found and fixed?

Make sure met-

rics are corre-

lated with the 

effect you want 

to measure.

Figure 2-21 shows a list of file names and current version numbers

maintained by two different designers. Which designer is more pro-

ductive? Do the large version numbers from the designer on the left

indicate someone who writes code with many bugs that had to be

fixed? Or, are they from a cautious designer who checkpoints

changes often?

On the other hand, Figure 2-22 shows a plot of the code change rate

for each designer. What is your assessment of the code quality from
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cpuif_e.vhd 1.2
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regfile_e.vhd 1.1

regfile_rtl.vhf 1.7

addr_dec_e.vhd 1.3

addr_dec_rtl.vhd 1.6
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the designer on the left? It seems to me that the designer on the

right is not making proper use of the revision control system. 

Figure 2-22.
Using code 
change rate as 
a metric
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SUMMARY

Despite reporting many false errors, linting and other static code

checking technologies are still the most efficient mechanism for

finding certain classes of problems.

Simulators are only as good as the model they are simulating. Sim-

ulators offer many performance enhancing options and the possibil-

ity to co-simulate with other languages or simulators.

Assertion-based verification is a powerful addition to any verifica-

tion methodology. This approach allows the quick identification of

problems, where and when they occur.

Verification-specific SystemVerilog features offer an increase in

productivity because of their specialization to the verification task

and their support for coverage-driven random-based verification.

Use code and functional coverage metrics to provide a quantitative

assessment of your progress. Do not focus on reaching 100 percent

at all cost. Do not consider the job done when you’ve reached your

initial coverage goals.

Use a source control system and an issue tracking system to man-

age your code and bug reports.
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CHAPTER 3 THE VERIFICATION PLAN

In this chapter, I describe the verification plan as a specification of

the functional verification process and of the testbench infrastruc-

ture that will be necessary to support it. It is used to define what is

first-time success, how a design is verified and which testbenches

are written.

The design project that sits before you will propel your company to

new levels of market share and profitability. A few system archi-

tects have designed and specified a system that should meet perfor-

mance and cost goals. Several design leaders, using the system

specification, have been working on writing detailed functional

specification documents for each of the ASICs and FPGAs that are

required to build this new product. Teams of hot-shot hardware

designers are being assembled to implement each ASIC or FPGA.

Using the detailed specification documents for each device, they

are coming up with a detailed implementation schedule. So far, it

appears that the project will meet its production deadline.

You are in charge of the verification for this design. Not only must

this product be on time, but also it must be functionally correct. The

commercial success and profitability of the product depends on it.

You have been asked by the project manager to produce a detailed

schedule for the verification and define your staffing requirements.

How can you determine either?
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THE ROLE OF THE VERIFICATION PLAN

Traditionally, 

verification is an 

ad-hoc process.

In a traditional verification process, your decision would be simple.

In fact, your own position would not exist. Verification would be

left to each hardware designer to do as they wish. It would be per-

formed as time allows. And everybody’s fingers would be crossed

hoping that system integration will be smooth and that any serious

design flaws can be fixed or worked-around by the software. Many

devices would be implemented in FPGAs, trading additional per-

unit costs for flexibility in fixing problems later found during sys-

tem integration.

Technologies 

exist to help 

determine when 

you are done.

The technologies described in the previous chapter will help during

your verification effort. Code coverage, functional coverage, bug

discovery rate and code change rates are metrics that indicate how

much progress you have made toward your goal. But they are like

stock market indices or batting averages: They provide a snapshot

of the current situation and, if recorded over time, show trends and

progression. However, they cannot be used to predict the future.1

Specifying the Verification

You need a 

method to deter-

mine when you 

will be done.

Today’s question is about producing a schedule. You must deter-

mine, as reliably as possible, when the verification will be com-

pleted to the required degree of confidence. Unless you have a

detailed specification of the work that needs to be accomplished,

you cannot determine how many people you need, nor how long it

is going to take or even if you are doing work that needs to be done.

That’s what the verification plan is about.

Start from the 

design specifica-

tion.

Before you can decide on a plan of attack for the verification, a

specification document for the design to be verified must exist. And

it must exist in written form. “Folklore” specifications that describe

the design as, “The same thing as we did before, but at twice the

clock rate and with these additional features.” are insufficient.

Often, the design specification is implemented using two separate

documents written at different abstraction levels. 

1. However, many financial and sports pundits make a good living predict-
ing an essentially random process. With enough pundits, you can 
always find one that has made the correct “prediction”.
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• The first is the architectural specification, which details the 

functional requirements of the device. 

• The second is the implementation specification, which describes 

the particular implementation of the architecture down to the 

block level. 

The verification plan can start to be written once the architectural

specification document is complete. It can be augmented with

implementation-specific testcases once the implementation docu-

ment is complete.

The specifica-

tion document is 

the golden refer-

ence.

The specification document is the common source for the verifica-

tion and implementation efforts. It is the golden reference and the

rule of law. Later, when discrepancies are found between the

response expected by the testbench and the one produced by the

design under verification, the specification document arbitrates and

decides which one has the correct answer. If necessary, the specifi-

cation document should be elaborated to remove any ambiguity.

The specification document must exist before the implementation.

The implementation must follow the specification. If the specifica-

tion depends on or is a consequence of the implementation, it will

be impossible to verify because the specification will change every

time the implementation changes.

The verification 

plan is the speci-

fication docu-

ment for the 

verification 

effort.

Today’s million-gate ASIC and SoC designs cannot proceed with-

out a detailed specification document being written first. With the

verification effort being 100 percent to 200 percent of the RTL

design effort, why should it proceed without a specification docu-

ment of its own? The verification plan is the specification docu-

ment for the verification effort.

Defining First-Time Success

If, and only if, it 

is in the plan, 

will it be veri-

fied.

The verification plan provides a forum for the entire design team to

define what first-time success is. It is a mechanism that ensures all

essential features are appropriately verified. If you want first-time

success, you must identify which features must be exercised under

which conditions and what the expected response should be. The

verification plan documents which features are a priority and which

ones are optional. In the face of schedule pressure, the decision to

drop features from the first-time success requirements becomes a

conscious one. The alternative is to live with whatever happens to
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work when the decision to ship the design cuts off the verification

effort like a guillotine. Some of the features, essential for market

acceptance, might fall in the basket.

From the verifi-

cation plan, a 

detailed sched-

ule can be cre-

ated.

The verification plan creates a line in the sand that cannot be

crossed without endangering the success of the project in the mar-

ket place. Once the plan is written, you know how many testcases

must be created, how complex they need to be and how they depend

on each other. You can define a detailed verification schedule, and

allocate tasks to resources, parallelizing verification as much as

possible. Once the RTL passes all of the testcases, and you are sat-

isfied with the coverage and bug-rate metrics, the design can be

shipped. Not before.

The team owns 

the verification 

plan.

It is important for everyone involved with the design project to real-

ize that they have a stake in the verification plan. The responsibility

of an RTL designer is not to design RTL. That’s only a means to an

end. His or her responsibility is to produce a working design. The

entire design team must contribute to the verification plan, to make

sure that it is complete and correct.

This process is 

not revolution-

ary.

The process used to write a verification plan is not new. It has been

used for decades by NASA, the FAA and aerospace companies to

ensure that the ultra-reliable systems they were implementing met

their specifications. This process has been used for software as well

as for hardware designs. 

LEVELS OF VERIFICATION

Verification can 

be performed at 

various levels of 

granularity.

The first question, when planning the verification, is to determine

the level of granularity for the verification effort. A design is poten-

tially composed of several levels. Some have a physical partition,

such as printed circuit boards, FPGAs and ASICs. Others have a

logical partition, such as synthesized units and blocks, reusable

cores or sub-systems. As illustrated in Figure 3-1, each level of

granularity is best suited for a particular verification objective. 

Deciding 

between levels 

of granularity 

involves trade-

offs.

Smaller partitions are easier to verify because they offer greater

controllability and observability. It is easier to set up interesting

conditions and state combinations and to observe if the response is

as expected in a block than in a system. With larger partitions, the
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integration of the smaller partitions it contains is implicitly verified

at the cost of lower controllability and observability.

Verifying at a 

given level of 

granularity 

requires stable 

interfaces.

Because the verification requires a significant implementation

effort, any partition being verified must have relatively stable inter-

faces and intended functionality. If the interfaces keep changing, or

functionality keeps being moved from one partition to another, the

testbenches will constantly need to be changed with little progress

being made. Once you’ve decided on specific partitions to be veri-

fied, their interface and overall functionality must be specified early

on and remain as stable as possible. Ideally, each verified partition

should have its own specification document or, at a minimum, its

own section in the specification document.

Unit-Level Verification

Implementation 

determines the 

content of this 

partition.

Design units are modules. They are created to facilitate the imple-

mentation or the synthesis process. They vary from the relatively

small (e.g., FIFOs and state machines) to the complex (e.g., PCI

slave interface and DSP datapaths). Their interfaces and functional-

ity tend to vary a lot over time, as implementation details highlight

Figure 3-1.
Application of 
different levels 
of verification
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shortcomings in the initial design. They usually do not have an

independent specification document to verify against either.

Use ad-hoc veri-

fication for 

design units.

Because these design units do not have a specification document to

very against, they are better left to an ad-hoc verification process.

The designer himself verifies the basic operation of the unit by

proving assertions embedded in the unit or by using casual test-

benches. The objective of this verification is to ensure that there are

no syntax errors in the RTL code, and that basic functionality is

operational. It is not to create a regressionable test suite and obtain

high code coverage.

They are too 

numerous to 

thoroughly ver-

ify indepen-

dently.

The high number of design units in any project makes a verification

process implemented at that level too time consuming. Each would

require a custom verification environment, as described in Chapters

5 and 6. The precious verification resources would spend an inordi-

nate amount of time creating stimulus generators and response

monitors for a myriad of ever-changing interfaces. Writing a lot of

simple testbenches is just as much work, if not more, as writing a

few complex ones. And verification at the subsystem or system-

level would still be required to verify the integration of these design

units.

Unit-level veri-

fication may be 

required in some 

cases.

Not all units are created equal. For the highly sensitive and complex

functional units, it may be more efficient to perform unit-level veri-

fication to have sufficient levels of controllability and observability

and reach the desired level of confidence. A design unit is then con-

sidered a block.

Block and Core Verification

Design blocks 

are verified 

independently.

A design block is composed of one or more design units. A design

block is the smallest partition to be independently verified. It is that

independent verification that differentiates a unit from a block. The

verification plan identifies the design blocks. Identifying the appro-

priate blocks is critical in balancing the total number of verification

environments and testbenches that will need to be written and the

required controllability and observability to verify the complete

design. Blocks need not all be of the same size nor at the same level

of design hierarchy. Some blocks may be large, others may be

small, but they tend to require a similar amount of verification

effort.
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Reusable design 

cores are inde-

pendent of any 

particular use.

Reusable cores are blocks designed to an independent specification.

They are intended to be used as-is and unchanged in many different

designs. Their reusability can be limited to a single product, the

entire product family, or they could be applicable to any product

requiring their functionality. They must be designed—and thus ver-

ified—independent of any one usage. It is a good idea to use asser-

tions (see “Assertions” on page 57) to specify restrictions and

requirements on the inputs of reusable components. They help

ensure that the reused components are always used as intended.

Architect the 

design to facili-

tate block-level 

verification.

Your design should be architected to make block-level verification

as relevant and complete as possible. Partition the design so the fea-

tures to be verified are completely contained within a block and can

be verified on a stand-alone basis. Once verified, these features can

be assumed to work during the verification of the higher levels. If

the features to be verified at the block level require interaction with

other blocks, they have to be re-verified at a higher-level where the

features are fully contained, to ensure that the integration correctly

implements them.

Minimize the 

number of 

unique inter-

faces.

Reusable components and blocks should be designed using stan-

dardized interfaces. These interfaces can be designed to standard

on-chip buses, or industry-standard external physical interfaces.

The verification components used to stimulate and monitor these

interfaces can be themselves reused across the various verification

environments used to verify different reusable components, differ-

ent blocks or the systems where they are used. The verification

effort can be leveraged across multiple components, thus minimiz-

ing the overall investment in verification. Chapter 6 will detail how

to architect a testbench to promote the creation and use of reusable

verification components.

Blocks need a 

regression test 

suite.

Blocks are expected to be functionally correct. When they are mod-

ified, either to fix problems that were found, or to enhance their

functionality, you must make sure that they remain functionally

correct. This is accomplished by implementing a regression suite
that verifies the correctness of the block after any modification.

Checking the equivalence of the new version with the previous ver-

sion using formal verification would not really work unless the

modifications were not functional. Adding functionality or fixing

problems, by definition, makes the new version of the design not

equivalent to the previous one.



The Verification Plan

84 Writing Testbenches using SystemVerilog

They need thor-

ough code and 

functional cov-

erage.

Design blocks must be verified as thoroughly as possible. Their

functionality must be assumed as correct when performing system-

level verification. A system-level verification environment is the

wrong environment to verify the functionality of a design block.

ASIC and FPGA Verification

The physical 

partition is an 

ideal verifica-

tion level.

ASICs and FPGAs are physical partitions. They form a natural par-

tition for verification because their interfaces and functionality do

not change very much after the initial specification of the system

and the completion of their specification documents.

They may have 

to be treated as 

systems.

The ever increasing densities offered by semiconductor technology

enables ever increasing integration of complex functionality into a

single device. To manage this complexity from a design and verifi-

cation standpoint, devices are often designed as a collection of

independently designed and verified blocks, usually reusable but

not necessarily so. In that case, the ASIC is called a System-on-a-

Chip (SoC) and its verification resembles a system-level verifica-

tion process, as described in the next section. The bulk of the func-

tional verification is performed using block-level verification.

FPGAs now 

require an 

ASIC-like veri-

fication process.

Traditionally, FPGAs were able to survive an ad-hoc, or even a

completely missing, verification process. Their ease of programma-

bility, often without additional component costs, allowed their func-

tionality to be modified up to the last minute. But today’s million-

gate FPGAs, even with only 50 percent effective usage, can imple-

ment functions that are too complex to verify and debug during

integration. Their functionality must be verified from the RTL

code, before synthesis and implementation.

System-Level Verification

A system need 

not follow phys-

ical boundaries.

Everybody’s definition of a system is different. In this book, a sys-

tem is a logical partition composed of independently verified

blocks or sub-systems. A system could thus be composed of a few

reusable components and cover a subset of an SoC ASIC. A system

could also be composed of several ASICs physically located on

separate printed circuit boards, as illustrated in Figure 3-2.

The verification 

focuses on inter-

action.

Individual blocks are specified and designed by separate individu-

als or teams with assumptions about how they will interact with

other blocks. These assumptions made by different people are a
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prime source of bugs. System-level verification thus focuses on the

interactions among the individual blocks instead of the functional-

ity implemented in each one. The latter is better verified at the

block-level. The system verification engineer has to rely on the

individual blocks being functionally correct. 

The testcase 

defines the sys-

tem.

Since systems are logical partitions, they can be composed of any

number of blocks, regardless of their physical location. Which sys-

tem to use and verify depends on the testcases that are determined

to be interesting and significant. To minimize the simulation over-

head, it is preferable to use the smallest possible system necessary

to execute the specified testcase. However, the number of possible

systems being very large, a set of “standard” systems should be

defined. The same system is used for many testcases even if, in

some cases, some of the included blocks are not required.

Board-Level Verification

Board-level 

models are gen-

erated from the 

board design 

tool.

The primary objective of board-level verification is to confirm that

the “system” captured by the board design tool is correct. Unlike a

logical system model, the model for the board design must be auto-

matically generated by the board capture tool. When verifying the

board design, or any other physical partition, you must make sure

that what is being verified is what will be manufactured. There

must be a direct link between the captured design and what is simu-

lated. Automatic generation of the board-level model from the cap-

ture tool provides that link. A logical system model has no such

restriction: It can be manually generated for the system of interest.

Many compo-

nents on a board 

do not fit in a 

digital simula-

tion environ-

ment.

The main difficulty with board-level models is obtaining suitable

models for all the components. Also, generating a model out of a

board design tool involves introducing approximations. For exam-

ple, how do you represent capacitors in a digital simulation envi-

ronment? Analog devices, connectors, opto-couplers and other

Figure 3-2.
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components used in board-level designs do not translate easily in a

digital simulation environment either.

VERIFICATION STRATEGIES             

Decide on a 

black- or white-

box approach 

for various lev-

els of granular-

ity.

Given the functionality that needs to be verified, you must decide

on a strategy for carrying out the verification. You must decide on

the level of granularity where verification will be accomplished.

You must also decide on the invasiveness of the verification

approach that will be used for each level of granularity. Testcases

can be either white-box or black-box, depending on the visibility

and knowledge you have of the internal implementation of each

unit under verification (see “Black-Box Verification” on page 11

and “White-Box Verification” on page 13).

Decide on the 

level of abstrac-

tion where the 

testcases will be 

specified.

You also need to decide the level of abstraction where the bulk of

the verification will be performed. With higher levels of abstrac-

tion, you have less detailed control over the timing and coordina-

tion of the stimulus and response, but it is easier to generate large

amount of stimulus and observe the response over a long period of

time. If detailed controls are required to perform certain testcases, it

may be necessary to work at a lower level of abstraction.

A processor 

interface could 

be verified at the 

cycle or device 

driver level.

For example, verifying a processor interface can be accomplished

at the individual read and write cycle levels. But that requires each

testcase to have an intimate knowledge of the memory-mapped reg-

isters and how to program them. That same interface could be

driven at the device driver level. The testcase would have access to

a set of high-level procedural calls to perform complete operations.

Each operation is composed of many individual read and write

cycles to specific memory-mapped registers, but the testcase is

removed from these implementation details.

Verifying the Response

Plan how you 

will check the 

response.

Deciding how to apply the stimulus is relatively easy. You are under

complete control of its timing and content. It is verifying the

response that is difficult. You must plan how you will determine the

expected response, then how to verify that the design provided the

response you expected. The section titled, “Self-Checking Test-

benches” on page 292 suggests several techniques for implement-

ing output verification.
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Some responses 

are difficult to 

verify in the 

simulation.

Throughout this book, implementing self-checking testbenches is

recommended (see “Simple Output” on page 216). But, it can

sometimes be difficult for a testbench to verify a response that can

be recognized immediately as right or wrong by a human. For

example, verifying a graphic engine involves checking the output

picture for expected content. A self-checking simulation would be

very good at verifying individual pixels in the picture. But a human

would be more efficient in recognizing a filled red circle. The veri-

fication strategy must find a way to automate these types of

testcases.

Detect errors as 

early as possi-

ble.

It may be more efficient to have the simulation produce a set of out-

puts that can be later compared against a set of reference outputs.

The result of a simulation can be further processed outside of the

simulator to determine success or failure. However, it is more effi-

cient to detect problems as early as possible. When the response is

checked within the simulation, the error is identified while the

model is near the state that produced the error. It is then easier to

diagnose and fix the cause of the error.         

FROM SPECIFICATION TO FEATURES

Identify fea-

tures.

The first step in writing a verification plan is to identify the features

that will be verified. From the specification document, you enumer-

ate all the features that are described and thus must be verified.

Other team members, especially the system architects and RTL

designers, contribute additional features to be verified. These addi-

tional features may not have been obvious in the specification to

someone unfamiliar with the purpose or characteristics of the

design. Other features may become significant once a particular

implementation is chosen. In The Art of Verification1, Haque, Mich-

elson and Khan propose using a methodical approach for extracting

significant and relevant features to verify by first looking at the

interfaces, then the functions, then finally the corner cases implied

by the chosen architecture.

1. Faisal Haque, Jon Michelson and Khizar Khan, “The Art of Verification 
with VERA,” http://www.verificationcentral.com
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Enumerate inter-

face-based fea-

tures.

For every interface on the design to be verified, enumerate every

feature it suggests that must be verified. The interface-based fea-

tures can be obtained by asking questions such as:

• What transactions must be applied?

• What range of values?

• What sequences of transactions?

• What are the relevant transaction densities? 

• What protocol violations should the design be able to sustain?

• What are the relevant interactions between this interface and 

other interfaces or internal design structures? 

• Do transactions on an interface need to be synchronized with 

those of another interface? 

A subset of the interface-based feature list for a Universal Asyn-

chronous Receiver Transmitter (UART) is shown in Sample 3-1. 

Identify func-

tion-based fea-

tures.

Following the major data paths through the design1, enumerate

every transformation and decision that must be verified. The func-

tion-based features can be obtained by asking questions such as: 

• What are all the relevant configurations? 

Sample 3-1.
Some of the 
interface-
based features 
of a UART 
design

1. The Clear-To-Send (CTS) pin must be asserted when the 

UART can accept a new word to be transmitted via the CPU 

interface.

2. The Data Terminal Ready (DTR) pin must be asserted when 

there is a received word ready to be read by the CPU inter-

face.

3. Read and write cycles to addresses other than 0 through 4 are 

ignored.

4. Back-to-back read/read, read/write, write/write and write/

read cycles within the address space are supported.

5. All bits in the configuration registers are readable, writable 

and non-volatile.

1. As specified in the architecture specification document, not in the 
implementation.
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• What are the possible transformations that can be performed on 

the data? 

• What are the possible sequences of transformation? 

• What are the sensitive data values for triggering transforma-

tions?

• What are the sensitive values that affect each transformation?

• Where should the transformed data end up? 

• How is the data ordering affected? 

• What error detection mechanisms exist and how are they trig-

gered?

• How do error mechanisms report errors? 

• What happens to erroneous data? 

A subset of the function-based feature list for a UART is shown in

Sample 3-2.

List architec-

ture-based fea-

tures.

Finally, based on detailed knowledge of the architecture of the

design, identify the conditions that will stress the design and push it

toward its limit. The architecture-based features can be obtained by

asking questions such as: 

• Can I overflow or underflow a buffer? If so, what should hap-

pen?

• Where are the resource bottlenecks? 

• Can multiple requests for these resources occur at the same 

time?

• Can a transformation path affect, prevent or block another? 

Sample 3-2.
Some of the 
function-based 
features of a 
UART design

1. Data bits are sent and received serially with the least signifi-

cant bit first.

2. Data bytes are sent in the same order in which they were 

written.

3. Data bytes are read in the same order in which they were 

received.

4. Parity is generated according to configured mode.

5. Parity is checked according to configured mode.
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A subset of the architecture-based feature list for a UART is shown

in Sample 3-3.

Label each fea-

ture.

Features should be labeled and have a short description. The feature

should be described in terms of what conditions need to be verified

and the expected result, not how it is to be implemented. Each fea-

ture should be cross-referenced to the section or paragraph in the

specification document that describes it in detail. Ideally, the speci-

fication document should also contain a cross-reference to the fea-

ture list in the verification plan. Specify features for the proper level

of verification. The feature label should be used in error messages

when it is found to be violated. Including feature labels in error

messages will help in identifying what was assumed to have gone

wrong and in assessing if the behavior is indeed incorrect.

Assign features 

to a suitable ver-

ification level.

When enumerating features, be careful to include them in the verifi-

cation plan for the proper verification level. Some features are bet-

ter verified at the block level, while others must be verified at the

(sub)system level. Very often, there will be a large number of fea-

tures concerned with verifying a critical function or unit in your

design. If the design partition implementing that function or con-

taining that unit is not being verified independently, now is the time

to reconsider your verification approach. It may be an indication

that the unit needs to be verified independently to achieve the nec-

essary level of confidence.

Block-Level Features

They are fully 

contained within 

the block being 

verified.

A block can be a unit, a reusable component, or an entire ASIC.

Block-level features are fully contained within the block being ver-

ified. They do not involve system-level interaction with other

blocks. Their correctness can be determined without depending on

a subsequent verification of the integration of the block into a high-

level system.

Sample 3-3.
Some of the 
architecture-
based features 
of a UART 
design

1. Receiving one more byte while the receive buffer is full will 

cause that byte to be dropped.

2. The Clear-to-Send (CTS) signal reflects the status of the 

transmit buffer (asserted when not full).

3. Data is received and transmitted in full-duplex.
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The bulk of the features will be block-level features. These features

are assumed to be functional when the block is used in a system-

level verification.

System-Level Features

Minimize sys-

tem-level fea-

tures.

A system can be a subset of an ASIC, a few ASICs from different

boards, an entire board design or the complete product. Because of

the large size and long runtime of system-level simulations, it is

necessary to minimize the features verified at this level. Whenever

something is identified as a system-level feature, question whether

it can be verified as a block-level feature instead. For example, in

the design illustrated in Figure 3-3, the MX block can select

between the data from blocks ID0 or ID1 under software control. Is

the switching feature a system-level feature? The answer is no. The

switching feature is entirely contained within the MX block and is

thus a block-level feature.

System-level 

features include 

connectivity, 

flow control and 

inter-operability.

System-level features are usually limited to connectivity, flow-con-

trol and inter-operability. For example, the connectivity from the

input ports to the output port would be a system-level feature. In

verifying the connectivity, it is necessary to switch the input from

the ID0 stream to the ID1 stream. But the switching is not the pri-

mary objective of the verification and would be assumed to work.

Another system testcase would be verifying that full input FIFOs in

the MX block creates back-pressure through the ID0 and ID1 blocks

and stops the flow of data until the congestion clears.

Error Types to Look For

Assume design 

tools do not 

introduce func-

tional errors.

When listing features to be verified, there is an implicit assumption

about the errors that are likely to occur and should be found. Func-

tional verification must focus on finding functional errors in the

design. It is not the responsibility of functional verification to make

Figure 3-3.
Example of a 
system
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sure that the design tools are bug-free. Functional simulation

ensures that the design was implemented as specified without inter-

pretation errors or problems introduced by the designers. For exam-

ple, running all functional testbenches on the gate-level netlist only

verifies that the synthesis tool works properly. Formal verification

and static timing analysis are better technologies to accomplish this

task.

Likely errors are 

different based 

on the capture 

technology used.

The types of errors that can be made are different when using dif-

ferent capture technologies. When schematic capture is used, con-

nectivity errors, such as reversed bit orders in a bus, or mis-

connected individual bits within a bus, are very common. In an

RTL coding and logic synthesis environment, this type of error is

not likely to occur: If a bus is properly connected, either all the bits

work, or none do. Linting can detect some connectivity problems

such as multiple drivers on a wire or an output that goes nowhere

and would be a better technology for identifying these types of

problems.

Look for func-

tional errors.

Common errors in a synthesis-based design flow include wrong

polarities, protocol violations or incorrect computations. The type

of stimulus that proved useful in the days of schematic capture,

such as walking ones and zeroes may not be as useful in an RTL

design verification. A pair of patterns of alternating ones and

zeroes, for example “0xAAAA” followed by “0x5555”, is usually

sufficient. 

Using signatures in the data stream is another efficient technique to

detect functional errors. A signature can be as simple as a sequen-

tial number to help detect missing or repeating data items. A signa-

ture can also encode either the source or the expected destination of

a data item. For example, the data associated with an address in a

write cycle could contain a portion of the address and an identifica-

tion of the bus master issuing the cycle. The section titled, “Data

Tagging” on page 295 details how to use signatures to verify a class

of designs.

Prioritize

Prioritize the 

features.

Not all features are created equal. Once they are enumerated, they

must be prioritized. Some features are must-have for the design to

properly function or to meet the demands of the market. This is the
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stage that defines first-time success. These features must operate

properly for the design to be shipped. The completion of the verifi-

cation of these features gates the successful completion of the

project and the testbenches verifying these features are often on the

critical path. The must-have features need to be thoroughly verified

for all possible configuration and usage options.

Less important 

features receive 

less attention.

The should-have features are secondary for the commercial success

of the design. They may simply offer expansion capabilities or dif-

ferentiation from the competition. The main objective is to verify

their basic functionality for correct operation. If time and resources

allow, more detailed verification of these features may be accom-

plished. The verification of these features may be cancelled if

schedule pressure forces the reallocation of resources to the verifi-

cation of more important features.

Some features 

are verified only 

as time allows.

The nice-to-have features are purely optional. They are verified

only as time allows, usually in a primitive fashion. The reality of

today’s design schedule almost guarantees that they’ll never be ver-

ified!

Make an 

informed deci-

sion when cut-

ting back on the 

verification 

effort.

The prioritization of the features to be verified lets a project man-

ager make informed decisions when schedule pressures make it

necessary to eliminate some planned activities. The verification

effort can be trimmed starting with features that were predeter-

mined to be less important. If a greater impact of the project com-

pletion date is required and must-have features are dropped from

the verification, the decision will be a conscious one as these prior-

ities were clearly identified as critical to the initial marketing objec-

tives. Cutting the verification effort of must-have features requires a

conscious re-evaluation of the marketing objectives for the project.

Design for Verification

Hard-to-verify 

features will be 

identified.

At this stage of the verification planning, hard-to-verify features

will be identified. They can be difficult to verify because the chosen

partition lacks suitable controllability or observability of the fea-

tures. An example would be the verification that an embedded 64-

bit counter properly rolls over and that the processing algorithm

works properly across the roll-over point. The difficulty may be

because of a poor choice in verification granularity. In that case, a

smaller partition containing the hard-to-verify features should be

used. The difficulty may also be due to the choice of implementa-
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tion architecture or an artifact of the design itself. If a smaller parti-

tion cannot be used, or would not ease the verification of these

features, a grey- or white-box approach must be taken.

Modify the 

design to aid 

verification.

The advantage of planning the verification up front is that you can

still influence the implementation of the design. If some features

prove to be too difficult to verify given the current architecture and

feature set of the design, have the design modified to include addi-

tional features to aid in their verification. Hardware design engi-

neers will no doubt complain about adding functionality that is not

really needed by the design. However, if the alternative is to create

a design you cannot verify, what choice do they have? These fea-

tures have always proven to be useful during lab integration of sam-

ple parts.

Provide state 

pre-load func-

tions.

If the design contains long counters or other state conditions which

require hundreds or thousands of cycles to reach from reset, make

sure they can be pre-loaded to an arbitrary value via a memory-

mapped register. Ideally, their current value should be available for

read back through the same register. In the previous example, a

series of 8 bytes in the address space of the design could be allo-

cated to pre-loading and reading back the value of the 64-bit

counter.

Provide datapath 

by-pass paths.

The correct implementation of long data paths can also be difficult

to verify if you do not have detailed control over all the operands.

For example, speech synthesizers are simple digital signal process-

ing designs with a datapath that shapes random noise1. You have

complete control over the coefficients applied to the data samples to

form specific sounds. However, you do not have control over one

critical element: the primary input data value. That’s an internally-

generated random number. To properly verify the operation of this

datapath, you need control over its initial input value.

As shown in Figure 3-4, the design should include a mechanism to

use a programmable constant input value instead of a random num-

ber as input to the datapath. Conversely, you should also be able to

1. It is used to produce consonant sounds, such as the sh sound. It is then 
mixed with a shaped base frequency used to produce vowel sounds, 
such as the a sound, which hopefully creates intelligible speech.
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read back the output of the random number generator to ensure that

it is indeed producing random numbers.

Pop quiz: Why is the read-back point located after the multiplexer

that selects between the normal operation using the random number

generator and the programmable static value, and not at the output

of the random number generator?1

Provide sample 

points.

If observability is the problem but not controllability, adding sam-

ple points readable through memory-mapped registers can help

ease the verification of some features. If the address space allocated

to the design is at a premium, these sample points could be multi-

plexed into a single address location, using a second address to

select which point is currently being sampled.

Provide error 

injection mecha-

nism.

If the design includes error and exception detection mechanisms,

you may want to have provisions to force the detection of an error

or exception. For example, verifying the maskability of interrupts is

very time consuming if the design has to be coerced into every

exception condition. The same task is rendered considerably easier

if a simple register write can manually raise the same interrupts. Of

course, the task of verifying that the exception condition raises the

interrupt remains. The decision to include error injection should be

carefully considered. If it is for hardware verification only, it may

not be properly documented for the software engineers. This feature

may be accidentally turned on when a device driver writes a value

that was thought to be inoffensive.

Figure 3-4.
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synthesizer
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1. You want to verify that, when the datapath is put into normal operation 
mode, the multiplexer is functionally correct and the input value is 
indeed coming from the random number generator.
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DIRECTED TESTBENCHES APPROACH

With directed testbenches, individual features are verified using

individual testbenches. The stimulus is manually crafted to exercise

that feature. The response is verified against the symptoms that

would appear should the feature not be correctly implemented.

Use for small 

number of 

testcases.

Before you embark on the directed testbenches path, you need to

consider its lack of scalability. This approach can be managed and

completed if the total number of testcases is in the low hundreds.

But as the number of testcases grows, so does the number of test-

benches. A project with over a thousand identified testcases would

require over a year to complete using a directed approach. For a

larger number of testcases, some form of testbench automation is

necessary to complete the task within an acceptable time frame.

Currently, the best method of testbench automation is the coverage-

driven random-based approach (see page 101).

Group into Testcases

Group features 

with similar ver-

ification require-

ments.

Features naturally fall into groups. Some features require similar

configuration, granularity or verification strategy to perform their

verification. To maximize productivity, these features should be

grouped together and assigned to the same verification engineer.

For example, all features related to the CPU interface should be

grouped together. As another example, verifying the baud rate,

number of data bits and parity generation of a UART falls within

the same group. Each group of feature verification forms a testcase.

Cross-reference 

into the feature 

list.

Each testcase should be labeled and given a short description of its

objective. Its description should contain a list of the features veri-

fied in this testcase. The feature list should also be annotated with

cross-references to the testcases where a particular feature is being

verified. If a feature does not have a cross-reference to a testcase, it

is not being verified.

Define depen-

dencies.

The description of a testcase should also contain a list of the fea-

tures assumed to be operational and functionally correct. From

these dependencies, you can determine the order in which the

testcases must be written, and identify any parallelism opportunities

in the testbench development effort.
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Specify the 

testcase stimu-

lus.

The sequence and characteristics of the stimulus for the testcase

must also be described. For example, describe the various opera-

tions or bus cycles that must be performed. It is a good idea to fill

all non-relevant or background data with random values or transac-

tions.

Specify the 

acceptance crite-

ria.

More than just the expected response, the testcase specification

must state how the response will be determined as valid. This

includes expected values, timing and protocol. For example, the

output of a packet processor could be determined as correct solely

on the basis of the destination address matching the output port

where it appeared. Or, a more stringent requirement could be speci-

fied, such as packets from different sources showing up in the

proper order and interleaved with a proper distribution.

Specify what 

errors to look 

for.

One of the more explicit ways of describing acceptance criteria is to

state exactly which errors to look for. For example, making sure

that a packet comes out with a correct CRC value. Another example

is to describe events that are mutually exclusive, such as the asser-

tion of the full and empty flags in a FIFO. Being explicit about what

errors to look for lets a verification engineer, who is not intimately

familiar with the design, implement a highly reliable testbench.

Inject errors to 

make sure they 

are detected.

Never trust a testbench that does not produce error messages. Every

testcase should include some error injection mechanism to make

sure that errors are detected and reported by the testbench. The

absence of an error message would be a failure condition for that

testcase. For example, a testcase verifying the parity generation in a

UART should purposefully misconfigure the parity in the UART to

make sure that the testbench detects a wrong parity. Of course, the

testbench must not abort the simulation as soon as the error mes-

sage is issued and must declare success if and only if the error mes-

sage is issued.

Define func-

tional coverage 

points.

The purpose of a directed testcase is implicit in its directness. The

stimulus of a directed testcase is hard-coded. Therefore you know

what it will do. If it executes without error, the targeted function

will have been exercised. But what if the design changes in a way

that the targeted function is no longer exercised without producing

an error? For example, a directed testcase designed to fill a FIFO

would no longer accomplish its goal should the size of the FIFO be

increased. Directed testcases should include functional coverage



The Verification Plan

98 Writing Testbenches using SystemVerilog

points to positively confirm that they continue to accomplish what

they were intended to do.

From Testcases to Testbenches

Testcases natu-

rally fall into 

groups.

Just like features, testcases naturally fall into groups. They require a

similar configuration of the design, use the same abstraction level

for the stimulus and response, generate similar stimulus, determine

the validity of the response using a similar strategy, or verify

closely-related features. For example, the testcase verifying that a

UART properly transmits data can be grouped with the testcase that

verifies its configuration controls. Both need similar stimulus (a

variety of data words to transmit), and both verify the correctness of

the output in a similar fashion (is the data value identical, with no

parity error).

Group testcases 

into testbenches.

Each group of testcases is then divided into testbenches. A popular

division, the one used in this book, is one testcase per testbench.

The minimization of SystemVerilog compilation time, or the time

spent back-annotating a large gate-level netlist with a correspond-

ingly large Standard Delay File (SDF) may dictate that a minimum

number of testbenches be created by grouping several testcases into

a single testbench.

Cross-reference 

testbenches with 

testcases.

Each testbench should be labeled and uniquely identified. This

identifier should be used as the filename where the top-level code

for the testbench is implemented. For each testbench, enumerate the

list of testcases it implements. Then cross-reference each testbench

into the testcase list. The description of a testcase should contain

the name of the testbench where it is implemented. If a testbench is

not identified, a testcase has not yet been implemented.

Allocate each 

group to an 

engineer.

Regardless of the division of testcases into testbenches, allocate

each group of testcases to a verification engineer. Testcases in the

same group have similar implementation requirements. They can

build on the implementation of previous testcases in the group. The

first testbench takes the longest to write. But as engineers responsi-

ble for each testcase group gain experience and debug their verifi-

cation infrastructure, a lot can be reused, often through cut-and-

paste, in subsequent testbenches. The name of the individual to

whom a testbench has been assigned should be recorded in the veri-

fication plan. That person is responsible for implementing the test-

bench according to its specification.
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Verifying Testbenches

How do you ver-

ify that test-

benches 

implement the 

verification 

plan?

The purpose of the verification effort and writing testbenches is to

verify that a design meets its specification. If the verification plan is

the specification for the verification effort, how do you verify that

the testbenches implement their specification? How can you pre-

vent a significant portion of a testcase from being skipped because

of human error? Testbenches often include temporary code struc-

tures to bypass large sections to speed up the debugging of a critical

section. How can you make sure that they are taken out, returning

the testbench to implementing the entire set of testcases it is sup-

posed to contain?

Verify test-

benches through 

peer reviews.

As described in “The Human Factor” on page 5, one way to verify a

transformation performed by a human (in this case, writing a test-

bench from a specification), is to provide redundancy. Once com-

pleted, testbenches should be reviewed by other verification

engineers to ensure that they implement the specification of the

testcases they contain. For more details, refer to section “Code

Reviews” on page 29. The simulation output log should also be

reviewed to ensure that the execution of the testbench follows the

specification as well. To that effect, the testbench should produce

regular notice messages. It should state what stimulus is about to be

generated, and what error or response is being checked. The output

log should ultimately contain, in a bullet form, the specification of

the testcases that have been executed.

Directed test-

benches may 

become obso-

lete.

What if there is a design change and a directed testbenches,

although successful, no longer exercises the feature is was designed

to verify? For example, the size of a memory or FIFO could be

increased. Any testcase involved in verifying the correct operation

of that memory or FIFO would still be successful, but it would no

longer verify the entire memory or FIFO. How can you ensure that

directed testcases remain relevant and useful?

Use functional 

coverage.

Another redundant path is functional coverage measurement. By

specifying, through a functional coverage model, what you expect a

directed testcase to accomplish, you can obtain a positive confirma-

tion that the testcase was indeed executed. After a directed test-

bench is run, the functional coverage metrics should meet 100

percent of the goal. Since the stimulus was manually coded, it is

deterministic and should fill 100 percent of the relevant and inter-

esting coverage points. For example, a directed testcase that is sup-
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posed to verify a FIFO should fill a functional coverage of that

FIFO. Should it fail to fill or empty the FIFO, as defined in the cov-

erage model, the functional coverage metric for the test will not

reach 100 percent.

Measuring Progress

Testcase com-

pletion measures 

progress.

In a directed testbench approach, progress is measured using a sim-

ple table. On one dimension, all of the testcases are listed. On the

other, the current status of each testcase is tracked throughout its

lifetime: assigned, coded, running, passing, reviewed/covered.

Figure 3-5  shows the progress of a directed testbench approach.

Initially, little progress is made because the verification infrastruc-

ture is being developed and the design is being debugged. Once the

first testcase completes successfully, the progress will accelerate as

less and less bugs remain to be found, and more and more verifica-

tion infrastructure code is reused. This acceleration may not trans-

late into an accelerated testcase completion rate as testcases

become increasingly complex to implement.

When are you 

done?

The completion of all testcases does not necessarily indicate that

the verification task is over. Code coverage metrics can indicate

that the original set of testcases is not as thorough as imagined and

additional testcases must be created to increase the code coverage

scores to more acceptable levels. In reality, “done” is usually

defined when you have to ship the design and you are confident

enough that the must-have features are working properly.

Figure 3-5.
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COVERAGE-DRIVEN RANDOM-BASED APPROACH

The SystemVerilog productivity cycle (“Verification Language

Technologies” on page 55) rests on constrained random verifica-

tion. You can use SystemVerilog to implement a directed testcase

approach as described in the previous section. Its high-level pro-

gramming language constructs would facilitate the implementation

of testcases. However, it would only increase the slope of the

testcase completion curve somewhat (Figure 3-5), not alter the

nature of the curve. Changing the curve itself requires changing

how verification is approached.

Random verifi-

cation still pro-

vides valid 

stimulus.

Random verification does not mean that you randomly apply zeroes

and ones to every input signal in the design. This would not repre-

sent an accurate usage of the design and would not accomplish any-

thing. With random verification, the inputs are subjected to valid

individual operations, such as a read cycle or an ethernet packet. It

is the sequence and timing of these operations and the content of

the data transferred that is random. Through the addition of con-

straints, a random testbench can be steered toward exercising spe-

cific features.

Measuring Progress

There are too 

many testcases.

Today’s multi-million gate ASICs contain hundreds of features to

be verified for hundreds of different combinations of data values.

Assuming a bug-free design and a team of highly productive engi-

neers who can code and debug a self-checking testbench in three

days, a team of 10 verification engineers (a rarity by today’s stan-

dards) would require over seven months to implement 500

testcases. The number of testcases cannot be reduced. Throwing

more engineers at the problem quickly produces diminishing

returns. The only way to reduce the verification time is to write

more testcases in less time. In other words, exercise the same func-

tionality with less code.

Testcases exer-

cise more than 

the target fea-

ture.

Although each testbench, when verifying a testcase, considers the

target feature in isolation, applying stimulus to the design exercises

other features at the same time. Since progress, in a directed

approach, is tracked by associating features with testbenches, how

can you track progress against features that are not explicitly coded

and verified in a testbench?
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Measure func-

tional coverage, 

not features.

The solution is to measure progress against functional coverage

points that will identify whether a feature has been exercised. The

objective becomes filling a functional coverage model of your

design rather than writing a series of testcases. You could fill this

coverage model using large directed testbenches. Or you could let a

random testbench create the testcases and exercise the features for

you. Figure 3-6 shows progress using a coverage-driven approach

with a random testbench against the traditional directed approach.

The former trades-off longer initial testbench development time for

more productive feature coverage in the long run. The promised

ultimate productivity gain should not be measured on this qualita-

tive plot: It depends highly on your commitment to this approach,

and your experience in writing random generators that can be con-

strained easily (“Random Stimulus” on page 307). 

You will 

develop more 

confidence.

Directed testcases can only find bugs you were looking for. Ran-

dom simulations will create conditions that you have not thought of

when writing your verification plan. They create unexpected condi-

tions and hit corner cases. They also reduce the bias introduced by

the verification engineer when coding directed testbenches. Instead

of creating input sequences that are easy or familiar to code, they

create more thorough stimulus. Because your design will have been

exercised under a larger number of conditions (compared to a

directed approach during the same time period), the overall quality

of the design will be higher.

This approach 

requires com-

mitment.

Using a constraint-driven approach requires commitment. Under

pressure, it is too easy to fall back to writing directed testcases. A

critical component of this approach is that you need to simulate

your testbench and your design to know how much functional cov-

Figure 3-6.
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erage you have achieved. If the RTL model is not available on time

(and it never is), how can you debug your self-checking random

testbench? How can you show that the verification team is making

progress towards its functional coverage goals? The easy answer is

to start writing testcases as directed pseudo-random testbenches

that implicitly fill functional coverage points. That puts you back

on the staircase curve. A better approach is to stage the RTL deliv-

ery to enable simulations as early as possible and to use a transac-

tion-level model of the design under verification. For more details

on transaction-level models, see “Transaction-Level Models” on

page 333.

From Features to Functional Coverage

Start with func-

tional coverage.

In a coverage-driven approach, functional coverage is used to iden-

tify which testcases were executed instead of explicitly coding

those testcases. Thus, it is important to implement functional cover-

age models and collect functional coverage measurements right

from the start. Functional coverage is not like code coverage. The

latter is often added to the verification process toward the end to

measure how thoroughly the code is being exercised and to identify

implementation code that was not exercised. Functional coverage is

used from the beginning of the project to record which testcases

and conditions were automatically created by the random generator.

If you are not using functional coverage in tandem with your ran-

dom environment, I’m afraid you are only doing directed testcases

with random stimulus filling.

Measure symp-

toms of data 

indicative of 

feature.

Each feature presents a characteristic or symptom in the input data

stream, the design configuration or the internal state of the design

that must be exercised. Functional coverage must identify, then

record, those characteristics and symptoms. Sample 3-4 shows a

description of the functional coverage items used to identify that

the interface-based features identified in Sample 3-1 have been

exercised.

Define your 

goal.

Functional coverage can help you measure your progress only if

your goals are explicitly defined. It will also make analysis of the

functional coverage easier. The progress will be measured against a

constant goal. If the goals are intellectually defined every time you

analyze a functional coverage report, then these goals are subject to

human error. There will also be a tendency to minimize the impor-
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tance of holes toward the end of the project as you subconsciously

justify your progress against the looming deadline. Sample 3-5

describes the functional coverage goals for each of the functional

coverage points identified in Sample 3-4. Different features may

use the same coverage point but imply a broader goal.

Understand the 

complexity of 

the goal.

Don’t make your goal more accurate or precise than it needs to be.

The more coverage point bins that must be filled to meet your goal,

the more work it is going to be. With cross-coverage, the number of

bins that must be filled grows exponentially. For example, it is not

realistic to attempt to cover all possible values for a 32-bit address

for both read and write cycles: That is over 8 billion values. Define

bins for equivalent values or combinations of values to minimize

the number of samples required to meet your goal. Functional cov-

erage tools have a practical limit on the total number of bins that

must be filled to provide a measure of the coverage.

Question,

reduce, inform.

It is very easy to collect a large number of functional coverage met-

rics. But the more functional coverage data you have, the harder it

becomes to analyze the results. Always question the relevance of a

functional coverage point. If you start to ignore some coverage

point reports or are not looking forward to the next report, you

should probably not collect it. There is a fundamental difference

between data and information. Haphazard functional coverage

points only provide data that must be analyzed. Well-chosen func-

Sample 3-4.
Functional 
coverage for 
interfaced-
based features 
of a UART 
design

1. Level of the Clear-to-Send (CTS) pin. 

2. Level of the Data-Ready (DTR) pin.

3. CPU cycle kind crossed with address.

4. CPU cycle kind transition.

5. CPU cycle kind crossed with address crossed with data.

Sample 3-5.
Functional 
coverage goals 
for interfaced-
based features 
of a UART 
design

1. A least one value of 0 and 1 observed. 

2. At least one value of 0 and 1 observed.

3. At least one read and write cycle with address greater 4.

4. All combinations of read and write cycles.

5. At least one read and write cycle for each address equal to 

configuration register and with individual bits equal to 

0 and 1.
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tional coverage points with well-defined goals provide information

that is immediately meaningful. For example, if a FIFO must be

exercised across its operating range, measuring the values of the

read and write pointers would be data. Measuring the difference
between the read and write pointers with goals stated as empty, full

and neither would be much more meaningful. Crossed with some

critical pointer regions (such as roll-over points), this latter func-

tional coverage point will provide much more relevant information.

Functional cov-

erage definition 

is an evolving 

art.

Developing a good functional coverage model of your verification

plan is not easy. This section has described the necessary steps only

in the broadest of terms. Functional coverage modeling is a topic

that can and should be developed into a science with well-defined

processes. The book Functional Verification Coverage Measure-
ment and Analysis by Andrew Piziali is an excellent text on func-

tional coverage modeling. Although it uses the e language as

implementation medium, the coverage modeling process outlined

in the book can just as easily be implemented using SystemVerilog.

From Features to Testbench

Identify how 

correctness will 

be determined.

Note that the functional coverage points described above do not

make any reference to the correctness of the results. Correctness is

the responsibility of the self-checking portion of the testbench.

Given the features that must be verified, you have to determine how

its correctness is going to be confirmed. The process is similar to

identifying the expected response in a directed testcase exercising

that feature. The difference is that you do not know the timing or

ordering of the stimulus that will trigger the feature. Errors can be

detected by a failure of the random testbench to operate properly,

by explicitly comparing output data against expected data in the

self-checking structure, or white-box assertions on the design itself.

The list of error detection mechanisms becomes a detailed specifi-

cation of the self-checking random testbench. Sample 3-6 shows

the error detection mechanism that will confirm the correctness of

the features identified in Sample 3-1.

Identify termi-

nation mecha-

nisms.

It is easy to terminate a directed testcase: Once you are done apply-

ing the stimulus necessary to exercise the target feature, you simply

terminate the simulation. But a random testbench is not about exer-

cising a single feature. How do you know when to stop? You have

to plan for several termination mechanisms that can be triggered or
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turned off through additional constraints on the random testbench

or a simple procedural call at the beginning of a simulation run.

Any one termination mechanism, once triggered will cause the

orderly shutdown of the simulation. 

There are several popular termination mechanisms. A watchdog

timer is useful to prevent deadlocked simulations: It must be reset

at regular intervals, otherwise the simulation is terminated. A time

bomb helps prevent run-away simulations: It will terminate the

simulation after a predetermined amount of time. An idle detector

will stop the simulation when all of the output interfaces have been

idle for some time. A simple data item counter will terminate the

simulation after a specified number of data items was sent to or

received from the design. Functional coverage feedback can termi-

nate the simulation if the metrics are not significantly increasing or

if the coverage goal has been reached.

You can run for 

a long time, or 

you can run 

many times.

You can generate a lot of random data using two strategies: You can

run a random source for a long time, or you can run a random

source many times, for a short time, each time with a different seed.

If the random source is truly random and the seeds are chosen as

not to repeat a previous sequence, then the quality of the resulting

random data should be the same. However, the effects on a simula-

tion of each strategy are quite different.

Plan for many 

short runs.

A long simulation will be cumbersome to reproduce if the error is

detected toward the end. Furthermore, since a single simulation run

will typically use a single configuration of the device, you will have

less opportunities to verify different configurations. Your device

may also find itself in a particular corner of the state space and

Sample 3-6.
Error detection 
for interfaced-
based features 
of a UART 
design

1. Data source will wait for Clear-to-Send (CTS) pin to be 

asserted before writing the next data to send. If it is not func-

tional, no data will be transmitted.

2. Data sink will wait for the Data-Terminal-Ready (DTR) pin 

to be asserted before reading the next received data. If it is 

not asserted, no data will be received.

3. Covered by #4.

4. Verify that read cycles return expected values given the pre-

vious values written, writability of bits and reset value, size 

and presence of registers.

5. Covered by #4.
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remain in that corner. Continuing to apply more stimulus under

those conditions is unlikely to yield increased functional coverage. 

Using the many-short-runs strategy, you can reproduce a problem

more quickly, run many more configurations and quickly traverse

the state space. If your device requires a lot of simulation cycles to

reach certain states after reset, consider state-forcing mechanisms

as described in “Design for Verification” on page 93.

From Features to Generators

Identify stimu-

lus require-

ments.

To be able to fill your coverage goals, it will be necessary for the

random generators to generate the necessary stimulus, with the nec-

essary characteristics and necessary timing. It is very simple to gen-

erate a single packet or instruction with random content. But this

simple random generation approach is likely insufficient if you

need the ability to generate packets of different lengths, lots of con-

secutive packets of the same length, straight-through instruction

sequences, nested loop structures, invalid or corrupted data or syn-

chronized data across multiple random streams. 

A random generator that will be able to exercise the required fea-

tures does not happen by accident. It has to be designed and archi-

tected to produce the required data sequences. Sample 3-7 shows

the random generator requirements necessary to exercise the fea-

tures identified in Sample 3-1.

Constraints

become prefera-

ble to more 

seeds.

What if, after multiple random simulations, some of your functional

coverage points remain unfilled? You could run more simulations

with additional seeds, or you could add constraints to your test-

bench to increase the probability (hopefully to 100 percent) of fill-

ing at least one of the remaining functional coverage points. The

latter, although requiring more work on your part, is likely to be the

more productive avenue, especially if hundreds of previous runs

Sample 3-7.
Generator
requirements
for interfaced-
based features 
of a UART 
design

1. Generate send data stream.

2. Generate receive data stream.

3. Generate read or write cycles.

4. Covered by #3.

5. Covered by #3.
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failed to produce the necessary inputs to fill those coverage points.

The gap in your functional coverage measurements could also be a

symptom of a functional problem in your random generators or ver-

ification environment. It is possible that a lingering constraint is

preventing the generation of input sequences that will cause the

functional coverage points to be filled.

Identify con-

strainable

dimensions.

When architecting your random generator, it is necessary to con-

sider the available constraint mechanisms. Traditionally, different

random streams were produced by physically altering the code of

the random generator. As shown in Figure 3-7, altering the code of

the random generator effectively created a different random genera-

tor for each testbench.  

To minimize the amount of duplicated code and the amount of new

code that must be written to fill additional functional coverage

points (and thus to be more productive), it is better to design a ran-

dom generator that can be constrained easily, from the outside, as

illustrated in Figure 3-8. Writing a random generator that can be

constrained easily from the outside does not happen by accident.

The section titled “Random Stimulus” on page 307 shows how to

write such generators. Sample 3-8 shows the constraint mecha-

nisms that must be available in the generators to exercise the fea-

tures in Sample 3-1.  

Figure 3-7.
Different 
random 
generators
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Figure 3-8.
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Randomly gen-

erate the device 

or testbench 

configutation.

It is easy to conceive of randomly generating data streams through-

out a simulation. But you can just as easily randomly generate data

that is used only once, at the beginning of the simulation. For exam-

ple, configurable or programmable devices are often verified using

only a few configurations hard-coded in the testbench or an exter-

nal file. And most simulations are usually run using one of those

configurations.

Why not randomly generate the device configuration then down-

load it into the device? The device configuration descriptor is then

used by the self-checking structure to predict the response accord-

ing to the current configuration. Similarly, you could randomly gen-

erate the configuration of the testbench. For example, when

verifying an ethernet switch, why not randomly generate the num-

ber of devices on each port, their speed and their station MAC

addresses? Then use functional coverage measurement on the ran-

domly generated configuration to know which configurations and

combinations of configuration parameters were verified.

Constrain con-

figurations if 

necessary.

Your self-checking structure does not yet support all possible

device configurations? Or, you are unable to “compile” all possible

configurations into register writes? Or, you are migrating from a

Verilog testbench that can use only two configurations through

$readmemh tasks? No problem. Simply constrain the configuration

generator to generate only the supported configurations. Once you

are able to support additional configurations, remove the con-

straints accordingly.

Directed Testcases

Identify low-

probability

testcases.

There are some features that will have a low probability of being

exercised through random stimulus. For example, verifying that

interrupt bits are maskable would require that the mask bits be ran-

domly set to one and zero while the associated interrupt bits were

Sample 3-8.
Constraint 
requirements
for interfaced-
based features 
of a UART 
design

1. No constraints.

2. No constraints.

3. Must be able to constrain address.

4. Must be able to constrain type of cycle in sequences of 

cycles.

5. Must be able to constrain address and data.
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set and cleared (i.e., fill the cross-coverage of the interrupt bit value

with the mask bit value, for all interrupt bits). Given that interrupts

usually signal exceptional events in a design, it will likely take a

very long time for random stimulus to completely verify this fea-

ture. These features are probably better verified using directed

testcases.

May be imple-

mented using 

constraints.

Writing a directed testcase does not necessarily imply using a

directed procedural implementation. If the random generators were

designed to be highly constrainable, it is possible to constrain them

so much that they will produce directed stimulus. For example, to

verify the maskability of a particular interrupt, you would constrain

the CPU cycle generator to write a zero then a one in the appropri-

ate position at the interrupt mask register address. You would then

constrain the data generators to cause the interrupt condition. Once

the condition is detected, constrain the CPU cycle generator to

write a zero and then a one in the mask bit again. An assertion

would verify that the external interrupt would be asserted only

when the interrupt condition is not masked. However, if the most

productive approach is to write a directed procedural testcase, the

random environment can be suspended to allow access to the trans-

action layer of the bus-functional model.

The first 

testcases are the 

simplest but also 

the toughest.

When a new version of the design first hits the verification team, it

is subjected to a few simple testcases. The objective of these

testcases is to verify that the basic functionality of the design oper-

ates correctly. Once it passes these initial trivial tests, it will be sub-

jected to high volumes of traffic to thoroughly verify the design. 

These first trivial testcases, although very simple, are the toughest

ones to pass. You may spend weeks running the same simple tests.

Because they are used on immature code, they catch the most bugs.

These early trivial testcases usually involve performing a write

cycle followed by a read cycle, or transmitting a single packet, or

executing a few straight-through instructions.

Trivial testcases 

can be random.

Because of their simplicity, you could be tempted to write the first

trivial testcases as directed testcases. Given well-designed genera-

tors, they are usually much simpler to write as constrained tests. For

example, constraining the test to two cycles, where the first one

must be a write cycle, the second must be a read cycle and both

addresses must be the same. Or, constrain the packet generator to

generating only one packet for the entire simulation. Or, constrain
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the instruction generator to generate only arithmetic opcodes with-

out any branches. Once the initial trivial tests pass successfully, you

remove these constraints and let the now-debugged random envi-

ronment loose on the design.

See Chapter 6 of 

the VMM.

For guidelines on how to implement functional coverage models

using SystemVerilog, see the section titled "Functional Coverage

Implementation" starting on page 266 of the Verification Methodol-
ogy Manual for SystemVerilog.

SUMMARY

Write a verification plan. It is the specification for all testcases and

supporting testbench functions. Implement and verify from a com-

mon specification. Do not verify an implementation.

Define the various levels of granularity used to verify the design:

block, unit, reusable core, FPGA, ASIC, subsystem, system, board.

Trade off greater visibility and controllability for fewer testbenches

and more integration tests.

Define the self-checking strategy that will be used to detect errors.

Identify features from the design specification, and enumerate

which features must be verified.

Consider verification early in the design phase. Architect the design

as needed to make it as easy to verify as possible.

You can use a directed testbench approach if the number of

testcases is small. For each feature, specify a testcase. Implement

each testcase in a separate testbench.

Define a functional coverage model from the enumerated features.

From those same features, identify the degrees of freedom and con-

straint dimensions of the generators required to generate the stimu-

lus that will exercise each feature. Use your coverage model to

decide which feature to target next and how to best exercise it.     
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CHAPTER 4 HIGH-LEVEL MODELING

A skilled verification engineer must break the “RTL mindset” that

most hardware engineers, out of necessity, have grown into. To effi-

ciently accomplish the verification task, you must be well versed in

behavioral (i.e., non-synthesizable and highly algorithmic) and

transaction-level descriptions. To reliably and correctly use the

high-level constructs of SystemVerilog, it is necessary to under-

stand the side effects of the simulation algorithm and the limitations

of the language—and to understand ways to circumvent those side

effects and limitations. This understanding was not required to

write RTL models successfully.

HIGH-LEVEL VERSUS RTL THINKING

This section illustrates the differences between the approaches to

writing an RTL model and to writing a high-level model.

Many guide-

lines help code 

RTL models.

All experienced hardware design engineers are very comfortable

with writing synthesizable models. The models conform to a well-

defined subset of the SystemVerilog language and follow one of a

few coding styles. Numerous RTL coding guidelines have been

published.1 They help designers obtain efficient implementations:

1. See “IEEE P1364.1 Standard for Verilog Register Transfer Level Syn-
thesis” prepared by the Verilog Synthesis Interoperability Working 
Group of the Design Automation Standards Committee.
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low area, high speed or low power. Guidelines, such as the ones

shown in Sample 4-1, can help a novice designer avoid undesirable

hardware components, such as latches, internal buses or tristate

buffers. More importantly, guidelines such as the ones shown in

Sample 4-2, can help maintain identical behavior between the syn-

thesizable model and the gate-level implementation.   

The adherence to the synthesizable subset and proper coding guide-

lines can be verified easily using linting (more details are in the sec-

tion titled "Linting" on page 24). After several months of

experience, the subset becomes very natural to hardware designers.

It matches their mental model of a hardware design: state machines,

operators, multiplexers, decoders, latches and clocks etc.

Do not use RTL-

like code when 

writing test-

benches.

The synthesizable subset is adequate for describing the implemen-

tation of a particular design. The subset is dictated by the synthesis

technology, not by someone with a warped sense of humor playing

a practical joke on the entire industry. It is designed to describe

hardware structures and logical transformations between registers,

matching the capability of logic synthesis technology. However,

this subset quickly becomes insufficient when writing testbenches

that were never intended to be implemented in hardware. System-

Verilog has a rich set of constructs and statements. If you have an

RTL mindset when writing testbenches and limit yourself to using a

coding style designed to describe relatively low-level hardware

structures, you will not take full advantage of SystemVerilog’s

Sample 4-1.
RTL coding 
guidelines to 
avoid undesir-
able hardware 
structures

1. To avoid latches, set all outputs of combinatorial blocks to 

default values at the beginning of the block.

2. To avoid internal buses, do not assign regs from two separate 

always blocks.

3. To avoid tristate buffers, do not assign the value 1'bz.

Sample 4-2.
RTL coding 
guidelines to 
maintain simu-
lation behavior

1. All inputs must be listed in the sensitivity list of a combinato-

rial block.

2. The clock and asynchronous reset must be in the sensitivity 

list of a sequential block.

3. Use a nonblocking assignment when assigning to a reg
intended to be inferred as a flip-flop.
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power. The verification task will be needlessly tedious and compli-

cated.

Contrasting the Approaches

The example below shows a simple handshaking protocol. Your

task is to write the SystemVerilog code that implements the simple

handshaking protocol shown in Figure 4-1. The protocol detects

that an acknowledge signal (ACK) is asserted (high) after a request-

ing signal (REQ) is asserted (high). Once the acknowledge signal is

detected, the requesting signal is deasserted, and the protocol then

waits for the acknowledge signal to be deasserted.

RTL-Thinking Example. A hardware designer, with an RTL

mindset, will immediately implement the state machine shown in

Figure 4-1. The corresponding SystemVerilog code is shown in

Sample 4-3. This relatively simple behavior required 21 lines of

code and two always blocks to describe, and two additional states in

a potentially more complex state machine.

Focus on behav-

ior, not imple-

mentation.

High-Level-Thinking Example. A verification engineer, with a

high-level mindset, will instead focus on the behavior of the proto-

col, not its implementation as a state machine. The corresponding

code is shown in Sample 4-4. The functionality can be described

behaviorally using only four statements. 

High-level mod-

els are faster to 

write.

Modeling this simple protocol using high-level constructs should

require less than 10% of the time required to model it using synthe-

sizable constructs. Not only is there less code to write (20%), but it

is also simpler, requiring less effort to ensure that it is correct.

High-level mod-

els simulate 

faster.

Another benefit of high-level modeling is the increase in simulation

performance. Assuming that there is a long delay between a change

in the request and the corresponding acknowledgement, the simula-

Figure 4-1.
State diagram 
for 
handshaking 
protocol

REQ = 1 REQ = 0
ACK = = 1

ACK = = 0 ACK = = 1

ACK = = 0
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tion of the synthesizable model would still execute the always_ff
block at every rising edge of the clock (because that always block is

sensitive to that transition of the clock signal). The always block

containing the high-level description would wait for the proper con-

dition of the acknowledge signal, resuming execution only when

the protocol is satisfied. If the acknowledge signal replies after a 10

clock-cycle delay, this represents a reduction of process execution

from 20 in the synthesizable version to 2 in the behavioral one, or a

1000 percent increase in simulation performance. 

Sample 4-3.
Synthesizable 
SystemVer-
ilog code for 
simple hand-
shaking proto-
col

enum {...,
      MAKE_REQ,
      RELEASE,
      ...} state, next_state;
...
always_comb
begin
   next_state <= state;
   case (state)
   ...
   MAKE_REQ: begin
      req <= 1’b1;
      if (ack) next_state <= RELEASE;
   end
   RELEASE: begin
      req <= 1’b0;
      if (!ack) next_state <= ...;
   end
   ...
   endcase
end

always_ff @(posedge clk)
begin
   if rst state <= ...;
   else state <= next_state;
end

Sample 4-4.
High-level
SystemVer-
ilog code for 
simple hand-
shaking proto-
col

always
begin
   ...
   req <= ’1’;
   wait (ack);
   req <= ’0’;
   wait (!ack);
   ...
end
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YOU GOTTA HAVE STYLE!

The synthesizable subset puts several constraints on the coding

style you may use. Even with these restrictions, many less experi-

enced hardware designers manage to write RTL code that is diffi-

cult to understand and maintain. There are no such restrictions with

high-level modeling. With this complete and thorough freedom, it

is not surprising that even experienced designers produce testbench

code that is unmaintainable, fragile and not portable.

A Question of Discipline

Write maintain-

able, robust 

code.

There are no laws against writing bad code. If you do, the conse-

quences do not involve personal fines or prison terms. However, the

consequences do involve a real economic cost to your employer.

Your code will need to be modified: either to fix a functional error,

to extend its functionality or to adapt it to a new design. When (not

if) your code needs to be modified, it will take the person in charge

of making that modification more time than would otherwise have

been required had the code been written properly the first time.

Under extreme conditions, your code may even have to be re-writ-

ten entirely.1

My first job after graduating from university was to design and

implement a portion of a logic synthesis tool using the C language.

In those days, I had been writing code in various languages for over

eight years, and I measured my performance as a software engineer

by the cleverness of my implementations of algorithms. I felt really

proud of myself when I was able to craft a complex computation

into a “poetic” one-liner.

Invest time now, 

save support 

time later.

I soon came to realize the error of my ways. During the eight previ-

ous years, I always wrote “disposable” code: The programs were

either short-lived (school assignments or personal projects), or they

had a narrow audience (utilities for university professors or a learn-

ing aid for a particular class). Never had I written a program that

would live for several years and be used by dozens of persons, each

with their own sophisticated needs and attempting to use my pro-

gram in ways I had never intended or even thought of. As I found

1. Do not think, “It won’t be my problem.” You may very well be that per-
son and you may not be able to understand your own code weeks later.
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myself having to fix many problems reported by users, I had diffi-

culties understanding my own code written only weeks before. I

quickly learned that time invested in writing better code up front

would be saved many times over in subsequent support efforts.

Optimize the Right Thing

You should always strive for maintainability. Maintainability is

important even when writing synthesizable code. Before optimizing

some aspect of your code, make sure it really needs improvement.

If your code meets all of its constraints, it does not need to be opti-

mized. Maintainability is the most important aspect of any code you

write because understanding and supporting code is the most

expensive activity.

Saving lines 

actually costs 

money.

There is no economic reason to reduce the number of lines of code.

Unless, of course, it also improves the maintainability. Saving one

line of code, with an average of 50 characters per line, saves only

50 bytes on the storage medium. With 40GB hard drives costing

less than $80 in 20021, this represents a savings of one hundred

thousandth of one cent ($0.00000001). The time saved in typing,

assuming an extremely slow typing speed of one character per sec-

ond and a loaded labor rate for an engineer at $100,000 a year2,

amounts to $0.69. However, if saving that line reduces the under-

standability of the code where it will require an additional five min-

utes to figure out its operation, the additional cost incurred amounts

to $4.17. The total loss from reducing code by one line equals

$3.48. And that is for a single line and a single instance of mainte-

nance.

Optimizing per-

formance costs 

money.

Similar costs are incurred when optimizing code for performance.

These optimizations usually reduce maintainability and must be

done only when absolutely required. If the code meets its con-

straints as is, do not optimize it. That principle applies to synthesiz-

able code as well. The example in Sample 4-5 is a design example

provided in the Vera distribution. It is a synthesizable description of

a 2-bit round-robin arbiter.

1. 93% cheaper in the 3 years since the first edition of this book!

2. That, however, is pretty much the same...
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RTL code can be 

too close to 

schematic cap-

ture.

Several aspects of maintainable code were used in Sample 4-5:

Identifiers are meaningful and the code is properly indented. How-

ever, the continuous assignment statements implementing the com-

binatorial decoding suggest that the author was thinking in terms of

boolean equations, maybe even working from a schematic design,

not in terms of functionality of the design. 

This approach simplifies the understanding of the final implemen-

tation at the cost of functional understanding. From each concurrent

statement, it is easy to figure out the logic gates and flip-flops nec-

essary to implement. But try to figure out what happens to the con-

Sample 4-5.
Synthesizable 
code for 2-bit 
round-robin 
arbiter

/*
##############################################
# PROPRIETARY AND CONFIDENIAL                #
# SYSTEMS SCIENCE INC.                       #
# COPYRIGHT (c) 1995 BY SYSTEMS SCIENCE INC. #
##############################################
*/
module rrarb(request, grant, reset, clk);
input  [1:0] request;
output [1:0] grant;
input        reset;
input        clk;
wire         winner;
reg          last_winner
reg    [1:0] grant;
wire   [1:0] next_grant;

assign next_grant[0] =
   ~reset & (request[0] &
              (~request[1] | last_winner));

assign next_grant[1] =
   ~reset & (request[1] &
              (~request[0] | ~last_winner));

assign winner =
   ~reset & ~next_grant[0] &
   (last_winner | next_grant[1]);

always @ (posedge clk)
begin
   last_winner = winner;
   grant = next_grant;
end
endmodule
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tent of the last_winner register when there are no requests, or add a

third request and grant signal pair. Understanding or modifying the

functionality is much more difficult. Other potential problems are

the race conditions created by using the blocking assignments in the

always block (for more details, see “Read/Write Race Conditions”

on page 177).

Specify func-

tion first, opti-

mize

implementation

second—and

only if needed.

The code shown in Sample 4-6 implements the same function, but it

is described with respect to its functionality, not its gate-level

implementation. The code sample simplifies the understanding of

the function but makes no attempt at describing the final implemen-

tation. It is much easier to figure out what happens to the content of

the last_winner register when there are no requests or to add a new

request and grant signal pair. The synthesized results should be

close to that of the previous model. The synthesized results should

not be a concern until it is demonstrated that the results do not meet

area, timing or power constraints. Your primary concern should be

maintainability, unless shown otherwise. 

Sample 4-6.
Synthesizable 
code for 2-bit 
round-robin 
arbiter

module rrarb(request, grant, reset, clk);
input  [1:0] request;
output [1:0] grant;
input        reset;
input        clk;

reg [1:0] grant;
reg last_winner;
always_ff @ (posedge clk)
begin
   grant <= 2’b00;
   if (reset) last_winner <= 0;
   else if (request != 2’b00) begin: find_winner
      reg winner;
      case (request)
         2’b01: winner = 0;
         2’b10: winner = 1;
         2’b11: winner = last_winner+1;
      endcase
      grant[winner] <= 1’b1;
      last_winner   <= winner;
   end: find_winner
end
endmodule
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Good Comments Improve Maintainability

If reducing the number of lines of code actually increases the over-

all cost of a design, the same argument applies to comments. One

could argue that reducing the number of lines of code can yield a

better program, since there are fewer statements to understand and

debug. However, the primary purpose of comments is explicitly to

improve maintainability of code. No one can argue that reducing

their number can lead to better code.

You can write 

bad comments.

However, just as there is bad code, there are bad comments. Obso-

lete or outdated comments are worse than no comments at all since

they create confusion. Comments that are cryptic or assume some

particular knowledge may not be very useful either. One of the most

common mistakes in commenting code, illustrated in Sample 4-7, is

to describe in written language what the code actually does.

Unless you are trying to learn SystemVerilog, this comment is self-

evident and redundant. It does not add any information. Any reader

familiar with SystemVerilog would have understood the functional-

ity of the statement. Comments should describe the intent and pur-

pose of the code, as illustrated in Sample 4-8. It is information that

is not readily available to someone unfamiliar with the design.

Assume an inex-

perienced audi-

ence.

When commenting code, you should assume that your audience is

composed of junior engineers who are familiar with the language,

but not with the design. Ideally, it should be possible to strip a file

of all of its source code and still understand its functionality based

on the comments alone.

Sample 4-7.
Poor com-
ment in Sys-
temVerilog

// Increment addr
addr++;

Sample 4-8.
Proper com-
ments in Sys-
temVerilog

// In burst mode, the bytes are written in
// consecutive addresses. Need to access the
// next address to verify that the next byte
// was properly saved.
addr++;
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STRUCTURE OF HIGH-LEVEL CODE

This section describes techniques to structure and encapsulate high-

level code for maximum maintainability. Encapsulation can be used

to hide implementation details and package reusable code elements.

RTL models are 

structured

according to 

implementation

needs.

Structuring code is the process of allocating portions of the func-

tionality to different modules or entities. These modules or entities

are then connected together to provide the complete functionality of

the design. There are many guidelines covering the structure of syn-

thesizable code. That structure has a direct impact on the ease of

meeting timing requirements. The structure of a synthesizable

model is dictated by the limitations of the synthesis tools, often

with little regard to the functionality.

Testbenches are 

structured

according to 

functional 

needs.

A testbench implemented using high-level SystemVerilog code

does not face similar restrictions. You are free to structure your

code any way you like. For maintainability reasons, high-level code

is structured according to functionality or need. If a function is par-

ticularly complex, it is easier to break it up into smaller, easier to

understand subfunctions. Or, if a function is required more than

once, it is easier to code and verify it separately. Then you can use it

as many times as necessary with little additional efforts. System-

Verilog code can be structured using task, function, class, module,

program, interface, package or inheritance.

Encapsulation Hides Implementation Details

Encapsulation is an application of the structuring principle. The

idea behind encapsulation is to hide implementation details and

decouple the usage of a function from its implementation. That

way, the implementation can be modified or optimized without

affecting the users, as long as the interface is not modified.

Keep declara-

tions as local as 

possible.

The simplest encapsulation technique is to keep declarations as

local as possible. This technique avoids accidental interactions with

another portion of the code where the declaration is also visible. A

common problem in SystemVerilog is illustrated in Sample 4-9:

Two always blocks contain a for-loop statement using the register i
as an iterator. However, the declaration of i is global to both blocks.
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They will interfere with each other’s execution and produce unex-

pected results.

In SystemVer-

ilog, put local 

declarations in 

begin/end
blocks.

In SystemVerilog, you can declare registers local to a begin/end
block. A proper way of encapsulating the declarations of the itera-

tors so they do not affect the module-level environment is to declare

them locally in each always block, as shown in Sample 4-10. Prop-

erly encapsulated, these local variables cannot be accidentally

accessed by other always or initial blocks and create unexpected

behavior.

Sample 4-9.
Improper 
encapsulation
of local 
objects in Ver-
ilog

int i;

always
begin
   for (i = 0; i < 32; i = i + 1) begin
      ...
   end
end

always
begin
   for (i = 15; i >= 0; i = i - 1) begin
      ...
   end
end

Sample 4-10.
Proper encap-
sulation of 
local objects 
in SystemVer-
ilog

always
begin

int i;
   for (i = 0; i < 32; i = i + 1) begin
      ...
   end
end

always
begin

int i;
   for (i = 15; i >= 0; i = i - 1) begin
      ...
   end
end
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SystemVerilog 

tasks and func-
tions can contain 

local variables.

Other locations where you can declare local registers in SystemVer-

ilog include tasks and functions, after the declaration of their argu-

ments. An example can be found in Sample 4-11.

Minimize the 

scope of local 

variables.

In SystemVerilog, local variable declarations can be located at the

beginning of any begin/end block. And since blocks can be located

anywhere in sequential code to create local scope regions, local

variables can be created while minimizing their scope and potential

undesirable interaction. For example, Sample 4-12 shows how a

local iterator variable can be created in the middle of a long

sequence of statements by creating a local scope region.

Inline the decla-

ration of iterator 

variables.

The scope of variables used solely as for-loop iterators can be fur-

ther reduced by declaring them within the loop statement, often

eliminating the need for a begin/end block. Sample 4-13 shows how

the local iterator variable can be declared and created within the

Sample 4-11.
Local declara-
tions in tasks 
and functions

task send(input [7:0] data);
reg         parity;

   ...
endtask

function [31:0] average(input [31:0] val1,
                        input [31:0] val2);

 reg   [32:0] sum;

   sum = val1 + val2;
   average = sum / 2;
endfunction

Sample 4-12.
Local declara-
tions in Sys-
temVerilog

function bit eth_frame::compare(eth_frame to);
   compare = 0;
   ...
   if (this.data_len !== to.data_len) return;

begin
      int i;
      for (i = 0; i < this.data_len; i++) begin
         if (this.data[i] !== to.data[i])
            return;
      end

end
   ...
   compare = 1;
endfunction: compare
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for-loop statement. Note that the loop iterator variable is an auto-
matic variable. It is allocated every time the loop is entered and

freed once the loop exits.

Encapsulating Useful Subprograms

Some functions and procedures are useful across an entire project

or between many testbenches. One possibility would be to replicate

them wherever they are needed. This obviously increases the

required maintenance effort. It also duplicates information that was

already captured. SystemVerilog has classes, modules, programs,

interfaces and packages to encapsulate any declaration used in

more than one partition.

Example: error 

reporting rou-

tines.

One example of procedures that are used by many testbenches are

the error reporting routines. To have a consistent error reporting

format (which can be parsed easily later to check the result of a

regression), a set of standard routines are used to issue messages

during simulation. When using SystemVerilog, they should be

implemented as void functions, within a message class. The Verifi-
cation Methodology Manual for SystemVerilog defines a very flexi-

ble message reporting class named vmm_log and detailed

guidelines for using it. See the section titled "Message Service"

starting on page 134 of the Verification Methodology Manual for
SystemVerilog for more details.

Functions 

should be pack-

aged in a class
and used via a 

local instance.

It is preferable to use classes to encapsulate shared declarations.

They can be used anywhere. They offer a protection mechanism for

data and procedures that users should not be allowed to use directly.

And they can be user-extended in case a user wants to add to or

modify the packaged declarations. Functions and tasks in a class—

called methods—are accessed through a local instance of the class.

Sample 4-13.
Local declara-
tions in Sys-
temVerilog

function bit eth_frame::compare(eth_frame to);
   compare = 0;
   ...
   if (this.data_len !== to.data_len) return;
   for (int i = 0; i < this.data_len; i++) begin
      if (this.data[i] !== to.data[i])
         return;

end
   ...
   compare = 1;
endfunction: compare
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The SystemVerilog implementation, shown in Sample 4-14 and

used in Sample 4-15, can be compiled on its own since the func-

tions are contained within a compilation unit. The encapsulating

class will be added to the $root name space—and thus should be

carefully named to avoid collisions. Classes unlike modules, must

be explicitly instantiated using the new constructor.          

static variables

can replace glo-

bal variables.

It is also possible to include global variables, such as an error

counter in the class. In the usage example shown in Sample 4-15,

there will be an instance of error and warning counters for each

instance of the class. In this case, it would be preferable to have a

single instance of those counter values. This can be accomplished

by declaring them as static, as shown in Sample 4-16. 

This is basic 

object-oriented 

programming.

Encapsulating procedures and the state variables they operate on in

the same construct is the primary technique in object-oriented pro-

gramming. SystemVerilog’s class is an object-oriented construct. It

supports inheritance and polymorphism. These important object-

oriented concepts will be introduced in “Object-Oriented Program-

ming” on page 147.

Sample 4-14.
Packaging of 
functions and 
tasks in Sys-
temVerilog

class syslog;

int warnings = 0;
int errors = 0;

function void warning(input string msg);
   $write("WARNING at %t: %s", msg);
   warnings++;
endfunction: warning
...
endclass: syslog

Sample 4-15.
Using tasks 
packaged
using a class
in SystemVer-
ilog

module testcase;

syslog log = new;

initial
begin
   ...
   if (...) log.error("Unexpected response");
   ...

log.terminate;
end
endmodule
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Encapsulating Bus-Functional Models

In Chapter 5, I describe how stimulus applied to the design under

verification via complex waveforms and protocols can be imple-

mented using tasks. These tasks, called bus-functional models, are

typically used by many testbenches throughout a project. If they

model a standard interface, such as a PCI bus or a Utopia interface,

they can even be reused between different projects. Properly pack-

aging these tasks facilitates their use and distribution.

Figure 4-2 shows a block diagram of a bus-functional model. On

one side, it drives and samples low-level signals according to a pre-

defined protocol. On the other side, tasks are available to initiate a

transaction with the specified data values. The latter is called a pro-
cedural interface.

Task arguments 

are passed by
value only.

In SystemVerilog, you might be tempted to implement the bus-

functional model using a task where the low-level signals are

passed to the tasks, so it can be reused to drive different sets of sig-

nals. By default, SystemVerilog arguments are passed by value
when the task is called and when it returns. At no other time can a

value flow into or out of a task via its interface. For example, the

task shown in Sample 4-17 would never work. The assignment to

the bus_rq variable cannot affect the outside until the task returns.

The task cannot return until the wait statement sees that the bus_gt

Sample 4-16.
Global vari-
ables in Sys-
temVerilog

class syslog;

static int warnings = 0;
static int errors = 0;

function void warning(input string msg);
   $write("WARNING at %t: %s", msg);
   warnings++;
endfunction: warning
...
endclass: syslog

Figure 4-2.
Block diagram 
of a bus-
functional 
model

Bus
Functional

Model

addr
data
rw
ale
vald

read(...)

write(...)
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signal was asserted. But the value of bus_gt cannot change from the

value it had when the task was called. 

Task arguments 

can be passed by
reference.

SystemVerilog arguments can be passed by reference if the ref
attribute is added to the argument declaration. Passing by reference

is like passing a pointer as the argument. When passed by reference,

any change on the outside is immediately reflected inside the task.

And any change made inside the task is immediately reflected out-

side. For example, the task shown in Sample 4-18 would work. The

assignment to the bus_rq variable will affect the outside. The task

will return when the wait statement sees that the bus_gt signal was

asserted.  

Encapsulate sig-

nals and BFM 

tasks in inter-
face.

However, only variables can be passed by reference through task

arguments. Physical signals are nets and thus cannot be used as task

arguments. Physical signals can be encapsulated in an interface, as

shown in Sample 4-19. The bus-functional model tasks can also be

located in the interface, with the physical signals directly accessi-

ble. This also simplifies calling the tasks as the (potentially numer-

Sample 4-17.
By default, 
task arguments 
in SystemVer-
ilog are passed 
by value

class arbiter;
...
// This task will not work...
task request(output logic bus_rq,
             input  logic bus_gt);
   // The new value does not "flow" out
   bus_rq <= 1’b1;
   // And changes do not "flow" in
   wait bus_gt == 1’b1;
endtask: request
...
endclass: arbiter

Sample 4-18.
By default, 
task arguments 
in SystemVer-
ilog are passed 
by value

class arbiter;

task request(ref output logic bus_rq,
             ref input  logic bus_gt);
   // The new value will "flow" out
   bus_rq <= 1’b1;
   // And changes will "flow" in
   wait bus_gt == 1’b1;
endtask: request

endclass: arbiter
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ous) signals need not be enumerated on the argument list for every

call.

Pass signals to 

classes using a 

virtual interface.

Bus-functional model tasks can be encapsulated in an interface.

However, interfaces do not support the object-oriented program-

ming model in SystemVerilog. Only classes do. It is not possible to

protect local declarations in an interface. Nor is it possible to extend

it to add new bus-functional methods or modify the existing ones to

inject errors. Bus-functional model tasks can still be encapsulated

in a class while physical signals are bundled in an interface. Sample

4-20 shows a class encapsulating bus-functional model tasks for an

ethernet MII interface and an interface encapsulating its physical

signals. Notice how the interface is passed as an argument to the

constructor and saved in a local variable using the virtual attribute.

Each instance of the bus-functional model class operates on a sin-

gle set of physical signals through the virtual interface, maintaining

internal state variables belonging to that one interface. 

Specify the vir-
tual interface
binding when 

instantiating the 

bus-functional 

class.

To create an instance of a bus-functional model encapsulated in a

class, call its constructor. Each instance will be connected to the

interface specified in that instance’s constructor. Thus, different

instances of the same class can be connected to different physical

signals. Sample 4-21 shows an example instantiating two instances

of the MII bus-functional model, each connected to a different

interface.
See Chapter 4 of 

the VMM.

See the section titled "Transactors" starting on page 161 of the Veri-
fication Methodology Manual for SystemVerilog provides detailed

guidelines and further techniques on encapsulating bus-functional

models in classes and interface signals in interfaces.

Sample 4-19.
Encapsulating 
physical sig-
nals and tasks 
in interface.

interface arbiter;
logic bus_rq;
logic bus_gt;

task request;
   bus_rq <= 1’b1;
   wait bus_gt == 1’b1;
endtask: request
endinterface: arbiter
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DATA ABSTRACTION

Synthesizable

models are lim-

ited to bits and 

vectors.

The limitation of logic synthesis technology has forced the synthe-

sizable subset into dealing only with data formats that are clearly

implementable: bits, vectors of bits and integers. SystemVerilog

adds enums and structs to the synthesizable set, but the various ele-

Sample 4-20.
Class with vir-
tual interface

interface eth_mii_if;
   logic tx_clk, txd, tx_en;
   logic rx_clk, rxd, rx_dv;
   logic col, crs;
endinterface: eth_mii_if

class eth_mii_mac;
   local virtual eth_mii_if sigs;

   task new(virtual eth_mii_if sigs);
      this.sigs = sigs;
   endtask: new

   task send(input eth_frame frame);
      @ (posedge this.sigs.tx_clk);
      ...
   endtask: sends

   task receive(output eth_frame frame);
      @ (posedge this.sigs.rx_clk);
      ...
   endtask: receive
endclass: eth_mii_mac

Sample 4-21.
Instantiating 
bus-functional 
model class

module testbench;

eth_mii_if if0();
eth_mii_if if1();

eth_switch dut(if0, if1, ...);

eth_mii_mac bfm[2];

initial
begin
   bfm[0] = new(if0);
   bfm[1] = new(if1);
   ...
end
endmodule: testbench
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ments of the struct must themselves be bits, bit vectors or integers.

High-level models have no such restrictions. You are free to use any

data representation that fits your need.

Work at the 

same level as the 

design under 

verification.

You must be careful not to let an RTL mindset artificially limit your

choice, or to keep you from moving to a higher level of abstraction.

You should approach the verification problem at the same level of

granularity as the “unit of work” for the design. For an ethernet

switch, it is an ethernet MAC frame. For an IP cell router, the unit

of work is an entire IP packet. For a SONET framer, the unit of

work is a SONET frame. For a video compressor, the unit of work

is either a video line or an entire frame, depending on the granular-

ity of the compression. The interesting conditions and testcases are

much easier to set up at that level than at the low-level bit interface.

SystemVerilog provides excellent support for abstracting data into

high-level representations. This section will only outline how cer-

tain data types can be used. You are invited to consult a book on the

language to learn the details of all available data types.

2-state Data Types

Some types are 

4-state.

The SystemVerilog types logic, reg, wire, integer and time are 4-

state types. Each bit in these types can represent 0, 1, X or Z. This

means that each bit of data requires at least two bits of implementa-

tion. Low-level hardware modeling requires 4-state logic to more

accurately represent the possible logic values on a physical signal.

But in high-level modeling, the values X or Z are usually not

required nor useful.

Prefer 2-state 

types.

If a 4-state representation is not absolutely required, use 2-state

types in preference to 4-state types. They will require less memory

to implement than their 4-state counterpart and will simulate faster.

The 2-state types are bit, int, real and shortreal.

Struct, Class

Structs and classes are used to represent information composed of

various smaller pieces of different types. They can be used to model

packets, frames, instructions, commands, floating-point numbers,

etc. Sample 4-22 shows a struct used to model an IEEE single-pre-

cision floating-point number. Sample 4-23 shows the declaration

for a class used to represent an ATM cell. An ATM cell is a fixed-
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length 53-byte packet with 48 bytes of user data. Which one should

be used? 

Structs are bun-

dles of bits, like 

integer.

A struct is an integral type, just like integer or reg. Whenever you

declare a variable of a struct type, the necessary number of bits is

automatically allocated. If you assign a struct variable to another, or

pass a struct as an argument to a function or task, as shown in Sam-

ple 4-24, all of the bits are copied. A struct simply creates addi-

tional structure to the collection of bits it represents. It is possible to

specify a literal value for a struct. Furthermore, if a struct is

declared packed1, as shown in Sample 4-25, the bits of the struct
fields are laid out consecutively in memory, as shown in Figure 4-3.

This allows the struct to be transparently converted to and from bit

vectors or integer values.   

Sample 4-22.
Struct for a 
floating-point
value.

typedef struct {
   bit        sign;
   bit [24:0] mantissa;
   bit [ 5:0] exponent;
} ieee_sp_float

Sample 4-23.
Class for an 
ATM cell

class atm_cell;
   bit [11:0] vpi;
   bit [15:0] vci;
   bit [ 2:0] pt;
   bit        clp;
   bit [ 7:0] hec;
   bit [ 7:0] payload[48];
endclass: atm_cell

1. There are restrictions on the types that can be used within a packed 
struct. See the SystemVerilog LRM for more details.

Sample 4-24.
Struct vari-
ables.

function ieee_sp_float abs(ieee_sp_float v);
   v.sign = 0;
   abs = v;
endfunction: abs

ieee_sp_float v1, v2;
v1 = {1, 24’h800, 6’h0};
v2 = v1;
v1 = abs(v1);
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Classes are 

dynamic and 

must be explic-

itly instantiated.

A class is a dynamic type. Whenever you declare a variable of a

class type, all you get is a reference1 initialized to null. The neces-

sary number of bits to hold the content of the class must be explic-

itly allocated. If you assign a class variable to another, or pass a

class as an argument to a function or task, only the reference is cop-

ied, not the actual class instance. It is not possible to specify a lit-

eral value for a class. A class can be converted to and from bit

vectors by using explicit packing and unpacking functions.  

Structs are not 

object-oriented.

The biggest difference between class and struct is that the class is

the only type in SystemVerilog that supports the object-oriented

Sample 4-25.
Packed struct
for a floating-
point value.

typedef struct packed {
   bit        sign;
   bit [24:0] mantissa;
   bit [ 5:0] exponent;
} ieee_sp_float

Figure 4-3.
Layout of a 
packed struct.

ExponentMantissaSign

0563031

1. A reference is similar to a pointer.

Sample 4-26.
Class vari-
ables.

class atm_cell;
   ...
   function atm_cell copy();
      copy = new;
      copy.vpi = this.vpi;
      ...
   endfunction: copy
endclass: atm_cell
...
initial
begin
   atm_cell c1, c2, c3;
   c1 = new;
   c1.vpi = 12’hABC;
   ...
   c2 = c1;        // c1 & c2 refer to same
                   // instance
   c3 = c2.copy(); // c2 & c3 differ
                   // but have same content
end
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programming model. It can contain tasks and functions to operate

on its content. It can be extended to add or modify an existing class.

It can protect its content against unauthorized access or usage.

Methods can be declared virtual to support polymorphism and

make their operation instance-specific. More on classes and object-

oriented programming will be presented in “Object-Oriented Pro-

gramming” on page 147.

Use classes. Because of their greater flexibility compared to struct, classes are

preferred when writing testbenches and transaction-level models.

structs, because of their closer association with bits, are more suit-

able for describing a synthesizable model of the design. Because

testbenches typically have to create thousands of stimulus datum

and record their corresponding expected response, the dynamic

nature of class instances will help minimize memory consumption.

The ability to move references to large chunks of data, instead of

the data itself, will lead to a more runtime efficient testbench as

well.

Union

Unions are vari-

able structs.

Unions provide different or optional fields on top of the same bits.

Packed unions are useful for having the ability to look at the same

bits through different types or layout. For example, the first few

bytes of an ethernet frame may carry link-layer information. It may

be useful to have the ability to look at these bytes as straight pay-

load bytes or structured LLC information, as shown in Sample 4-

27.

Sample 4-27.
LLC informa-
tion in payload 
using union.

class eth_frame;
   ...
   bit [15:0] typ_len;

union packed {
      bit [7:0] data[1500];
      struct packed {
         bit [7:0] dsap;
         bit [7:0] ssap;
         bit [7:0] control;
         bit [7:0] data[1497];
      } llc;
   } payload;
   bit [31:0] fcs;
endclass: eth_frame;
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Pure unions are 

unsafe.

Unions allow bits to be written using one type and read using

another type, a potential type loophole. For example, an ethernet

frame may or may not contain four additional header bytes carrying

virtual LAN label information. This could be modeled using a pure

union as shown in Sample 4-28. The VLAN label data could be

used whether or not it is present: nothing prevents its access if the

frame does not contain it, as shown in Sample 4-29. Furthermore,

the model of the frame requires an indication to let users know

whether to use the vlan.label or vlan.no_label field.   

Tagged unions
provide value 

safety.

A tagged union provides type safety by allowing access to a union

field only if it is appropriately tagged. The virtual LAN label infor-

mation in an ethernet frame can be modelled using a tagged union
as shown in Sample 4-30. There is no longer a need for an explicit

indication of which flavor of the union to use as it is built in the

tagged union itself. As shown in Sample 4-31, the VLAN label

fields cannot be accessed in an unlabeled frame.     

Avoid unions. Although unions appear simple, elegant and attractive, they create

more problems than they solve when the time comes to randomize

them. If different fields of different types share the same bits, what

are the semantics of constraining the different fields? Should there

be a single solution for the shared bits that satisfy all the con-

straints, from the different type perspectives? Or should only the

Sample 4-28.
Optional fields 
using union.

class eth_frame;
   ...
   bit is_labelled;

union {
      void no_label;
      struct {
         bit [ 2:0] user_pri;
         bit        cfi;
         bit [11:0] id;
      } label;
   } vlan;
   bit [15:0] typ_len;

...
endclass: eth_frame;

Sample 4-29.
Type loophole 
in union.

eth_frame fr = new;
fr.is_labelled = 0;
...
if (fr.vlan.label.id == 12’hABC) ...
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constraints from one perspective be satisfied? In that case, which

one? Tagged unions could solve the latter dilemma by using the tag

to determine which perspective to use. Unfortunately, the System-

Verilog language does allow the value of the tag itself to be con-

strained. It would thus not be possible to randomly select between

different tag alternatives, possibly constrained by other field values.

Unions should 

be implemented 

in-line.

Sample 4-32 shows a class modeling an ethernet MAC frame with

optional virtual LAN labelling. When the is_labelled class property

is non-zero (i.e., true), the cfi, user_pri and vlan_id class properties

are assumed to be valid and “exist”. When the is_labelled class

property is zero (i.e., false), these subsequent properties are not rel-

evant and do not “exist”. When referring to the content of the class,

like in a pure union, it will be necessary to check the is_labelled
class property to determine whether the other class properties

“exist” and process the frame accordingly. Because the optional

class properties are always present and are separate from other class

properties, they can be constrained and solved for like any other

Sample 4-30.
Optional fields 
using tagged
union.

class eth_frame;
   ...

union tagged {
      void no_label;
      struct {
         bit [ 2:0] user_pri;
         bit        cfi;
         bit [11:0] id;
      } label;
   } vlan;
   bit [15:0] typ_len;

...
   function new(bit is_labelled);
      if (is_labelled) begin
         this.vlan = tagged label {0, 0, 0};
      else this.vlan = tagged no_label;
   endfunction: new
   ...
endclass: eth_frame;

Sample 4-31.
Invalid access 
in tagged
union.

eth_frame fr = new(0);
...
if (fr.vlan.label.id == 12’hABC) ... // Error!
if (fr matches tagged tag) begin
   if (fr.vlan.label.id == 12’hABC) ... // OK
end
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class property. However, the optional class properties remain acces-

sible at all times, without a mechanism to prevent their use, so the

same programmer discipline required to use a pure union is

required.

Unions can be 

implemented

using composi-

tion.

Inlining all possible optional class properties requires that memory

be allocated for all of them, even if they are not going to be used. If

the number and size of optional class properties is small, that is not

a problem. If a data model needs to present several different varia-

tions, each independent of each other—for example PCI Express

control frames—it may be more appropriate to use composition to

model optional class properties. Sample 4-33 shows a class model-

ing an ethernet MAC frame with optional virtual LAN labelling

using composition. When the vlan class property is non-null, the

cfi, user_pri and vlan_id class sub-properties are valid and exist.

When the vlan class property is null, these class sub-properties do

not exist. When referring to the content of the class, like in a pure

union, it will be necessary to check the vlan class property to deter-

mine whether the other class sub-properties are present and process

the frame accordingly. Composition, like tagged unions, has a built-

in mechanism to prevent references to absent class properties. If an

absent class property is accessed, the null sub-class reference will

cause a run-time error. However, composition has some additional

requirements related to randomization, constraining and solving.

Because randomization does not allocate memory, it will be neces-

sary to allocate all of the subclasses composing the randomized

class in the pre_randomize() method, then prune the class from

unnecessary composed subclasses based on the result of the ran-

domization in the post_randomize() method. 

Sample 4-32.
In-lined 
optional class 
properties.

class eth_frame;
   bit [47:0] da;
   bit [47:0] sa;
   bit        is_labelled;  // VLAN control
   bit [ 2:0] user_pri;   // VLAN
   bit        cfi;        // VLAN
   bit [11:0] vlan_id;    // VLAN
   bit [15:0] len_typ;
   ...
endclass: eth_frame
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Inheritance 

should not be 

used to replace 

unions.

You may be tempted to replace unions using inheritance1 as shown

in Sample 4-34. First, a base class represents the data model with-

out any optional class property. Then, derived classes are used to

add various optional class properties. Although very object-ori-

ented, this approach creates several limitations. 

• First, you will not be able to randomly generate a mix of datum, 

sometimes with optional class properties, sometimes not. Each 

derivative creates a new data type. Once an instance of a type is 

created, it cannot be modified. Each time it will be randomized, 

it will produce random values for that type and no other. 

• Second, you will not be able to create combinations of optional 

class properties easily. Because multiple inheritance is not sup-

ported, you cannot recombine multiple derived classes into a 

single one containing multiple optional class properties. With 

single inheritance, you would have to create a new type for each 

possible combination of optional class properties. This quickly 

grows to a significant number, which grows exponentially when 

testbench-specific additions must be made to the data model.

See Chapter 4 of 

the VMM.

See guidelines 4-68 to 4-72 of the Verification Methodology Man-
ual for SystemVerilog specifies guidelines for modeling data struc-

tures with optional data fields.

Sample 4-33.
Optional class 
properties
implemented
using compo-
sition.

class eth_vlan_label;
   bit [ 2:0] user_pri;
   bit        cfi;
   bit [11:0] vlan_id;
endclass: eth_vlan_label

class eth_frame;
   bit [47:0]     da;
   bit [47:0]     sa;
   eth_vlan_label vlan;
   bit [15:0]     len_typ;
   ...
endclass: eth_frame

1. Inheritance will be discussed in more detail in “Inheritance” on 
page 153.
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Arrays

There are 

packed and 

unpacked arrays.

SystemVerilog defines two types of array: packed and unpacked.

Packed arrays can only be made of single-bit types and their dimen-

sions are specified to the left of the variable name, as shown in

Sample 4-35. Packed arrays are implemented as consecutive bits

and can be implicitly used as signed or unsigned integer values.

Unpacked arrays can be of any type. They are declared with their

dimensions specified to the right of the variable name, as shown in

Sample 4-36. Unlike packed arrays, the content of an unpack array

cannot be treated like an integral value. Each element of an

unpacked array is an individual value.  

Sample 4-34.
Optional class 
properties
implemented
using single 
inheritance.

class eth_frame;
   bit [47:0] da;
   bit [47:0] sa;
   bit [15:0] len_typ;
   ...
endclass: eth_frame

class eth_vlan_frame extends eth_frame;
   bit [ 2:0] user_pri;
   bit        cfi;
   bit [11:0] vlan_id;
   ...
endclass: eth_vlan_frame

class eth_control_frame extends eth_frame;
   bit [15:0] opcode;
   ...
endclass: eth_control_frame

class eth_control_vlan_frame extends eth_frame;
   bit [ 2:0] user_pri;
   bit        cfi;
   bit [11:0] vlan_id;
   bit [15:0] opcode;
   ...
endclass:eth_control_vlan_frame

Sample 4-35.
Packed array 
declarations.

bit             [ 7:0] a_byte;
logic     [3:0] [ 7:0] q_quadword;
eth_frame       [31:0] scoreboard;   // INVALID
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Only unpacked
arrays will be 

considered.

From a high-level modeling perspective, packed arrays are no dif-

ferent than any other scalar types. Therefore, only unpacked arrays

will be considered in this section.

Single-dimensional arrays are useful data structures for represent-

ing linear information such as ordered data sequences, look-up

tables or memories. Two-dimensional arrays are used for planar

data such as graphics or video frames. Three-dimensional arrays are

not frequently used, but they could find an application in represent-

ing data for video compression applications such as MPEG. Arrays

with greater numbers of dimensions have rare applications, espe-

cially in hardware verification.

Dynamic arrays 

have unspecified 

size.

A dynamic array is an unpacked array with an unspecified dimen-

sion size. The actual size of the array is specified and allocated at

runtime. The size can be modified—shrunk or grown—at any time

during the simulation. 

Arrays are typi-

cally located in 

consecutive

memory ele-

ments.

As shown in Figure 4-4, array elements are typically located in con-

secutive memory locations. They are accessed by computing their

address using an offset from a base address. Random access, array

truncation and element replacement are efficient operations. But

element insertion, element deleting and array lengthening are

expensive operations that require copying a potentially large num-

ber of elements to maintain the integrity of the consecutive memory

locations. For these types of operations, a queue may be more

Sample 4-36.
Unpacked
array declara-
tions.

bit       eight_bits[8];
logic     sixteen_bits[4][4];
eth_frame scoreboard[32];

Sample 4-37.
Dynamic array 
declaration
and sizing.

eth_frame sb[];
...
sb = new[32];               // 32 elements
sb = new[sb.size()*2] (sb); // Double its size
sb.delete();                  // Flush it
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appropriate. See “Queues” on page 141 for more information on

queues.

Multi-dimen-

sional arrays 

must be mapped 

onto a single 

dimensional 

structure.

Even though SystemVerilog offers multi-dimensional arrays, they

must be mapped to the linear hardware memory of the host com-

puter. That hardware memory is only one-dimensional. Figure 4-5

shows a two-dimensional array mapped into a linear memory.

Indexing an element requires knowing the length of each preceding

row. To make these (often highly repeated) calculations efficient in

large multi-dimensional arrays, it is necessary to have fixed-sized

dimensions. That is why dynamic arrays are limited to single

dimension arrays. 

Use arrays of 

classes of arrays 

for multi-dimen-

sional dynamic 

arrays.

Multi-dimensional dynamic arrays can be emulated by using a

dynamic array of classes containing a dynamic array. Since this

multi-dimensional array is composed of independent one-dimen-

sional arrays, the size and number of each dimension can vary.

However, looking up one element will require looking up each indi-

vidual dimension. Sample 4-38 shows a definition, instantiation

and reference of a two-dimensional dynamic array of RGB values.  

Queues

Queues are 

implemented

using links.

Queues are used to represent ordered linear information and, as

such, are very similar to one-dimensional arrays. However, they

guarantee constant-time insertion and removal of individual ele-

ments either at the end or the beginning of the queue. To support the

constant time insertion and deletion, they fundamentally differ from

arrays in their implementation. As shown in Figure 4-6, queue ele-

ments are located in independent memory locations. The linear and

Figure 4-4.
Array
elements in 
memory

0 1 2 3 4 5 6 7 8 9 10 11

Base
Address + index * size_of(element)

12 13 14 15

Figure 4-5.
Mapping a 
4x4 array to a 
linear memory
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ordered relationship is created by a series of pointers, starting from

a head pointer, that points to each subsequent element in the queue.

Queues are frequently doubly-linked in the reverse direction, start-

ing from a tail pointer, to facilitate some queue operations1. To sup-

port constant time access to its elements via an ordinal reference, an

indexing mechanism is super-imposed on the linked elements. 

Sample 4-38.
Two-dimen-
sional
dynamic array.

class rgb;
   bit [7:0] red;
   bit [7:0] green;
   bit [7:0] blue;
endclass: rgb

class line;
   rgb pixels[];
   function new(int unsigned n);
      this.pixels = new [n];
   endfunction: new
endclass: line

class picture;
   line lines[];
   function new(int unsigned x,y);
      this.lines = new [x];
      foreach (this.lines[i]) begin
         this.lines[i] = new(y);
      end
   endfunction: new
endclass: picture

...
picture vga = new(480, 640);
rgb center = vga.lines[240].pixels[320];

1. The actual implementation of queues in a specific simulator may differ.

Figure 4-6.
Doubly-linked 
queue
elements in 
memory head

next

element

next

element

null

element

null prev prev

tail

Indexing Mechanism
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Queues can be 

more efficient 

than arrays.

Because of their different implementation, queues are easier to use

than arrays if their grow and shrink many times during a simulation.

Arrays must allocate consecutive memory for their entire size,

whereas the memory used by queues grows and shrinks by one ele-

ment at a time as the number of elements they contain increases or

decreases. Elements can be appended or prepended at little cost. All

that is required is a re-orientation of the pointer sequence to include

or remove the element. 

Queues have a 

rich set of pre-

defined meth-

ods.

Queues come with a rich set of operators, such as appending or

prepending to a queue, removing the element at the head or tail,

inserting or deleting an element at an arbitrary offset within the

queue, finding out its length or iterating over all of its elements.

Associative Arrays

They are arbi-

trarily indexed.

Associative arrays are used for non-ordinal or non-consecutive

indexing operations. The elements in an associative array are not

considered ordered from index 0 through index N-1. Instead, they

are randomly stored based on an efficient indexing mechanism that

can use any type—even a string or class reference—as indexing

value. The element is stored in the array associated with that arbi-

trary index value. Pre-defined methods exist to check the existence

of an element at a particular index, delete an existing element, or

iterate through all of the elements in the array.

They can be 

used to model 

large memories.

One of the best applications of an associative array is to model a

large memory. In system-level simulations, you may have to pro-

vide a model for a large amount of memory. With the amount of

memory available in today’s systems, and the overhead associated

with modeling them, you may find that you do not have a computer

with enough resources to simulate your system-level model effi-

ciently. For example, if you model a memory with 32-bits of

addressable bytes using an array of logic, the amount of memory

consumed by this array alone exceeds 8GB (four logic values

requiring 2 bits to represent each logic bit times 8 bits per byte

times 4GB).

Only the sec-

tions of the 

memory cur-

rently in use 

need to be mod-

eled.

In any simulation, it is unlikely that all memory locations are

required. Usually, the accesses are limited to a few regions within

the memory address space. An associative array can be used to

model a very large memory in a fashion similar to a cache memory.

Only regions of the memory that are currently in use are stored in
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the array. When a particular location is accessed, the array is

checked for the region of interest, allocating a new region as neces-

sary. Figure 4-7 shows a conceptual view of an address space where

only the portions that are actively used are physically allocated.

This type of partial memory model is called sparse memory model.

An associative 

array can be 

used to model a 

sparse memory.

Sample 4-39 shows a class encapsulating a sparse memory model.

It has a method to locate and return any address of interest. Con-

versely, a method is provided to store a specified value at a speci-

fied memory location. This model could also include usage

assertions, such as reading uninitialized memory locations or over-

writing unread memory values.   

They can 

improve score-

boarding perfor-

mance.

Looking up a large scoreboard for a specific expected response,

given an observed response can be an expensive operation. For

example, it may be necessary to look up packets based on the con-

tent of their destination address. Looking up an ethernet MAC

frame based on a 48-bit destination address would require an array

with over 281 billion elements. Assuming only minimum-size

MAC frames, this array would consume 18 million gigabytes!

Using an associative array, it is much more efficient to allocate only

those locations for which we already have an expected MAC frame.

Figure 4-7.
Sparse 
memory
model

04Gb

= Allocated region

Sample 4-39.
Sparse mem-
ory model 
using an asso-
ciative array.

class sparse_memory;
   local logic [7:0] mem[bit [63:0]];

   function logic [7:0] read(bit [63:0] addr);
      read = 8’hXX;
      if (this.mem.exists(addr)) begin
         read = this.mem[addr];
      end
   endfunction: read

   function void write(bit   [63:0] addr,
                       logic [ 7:0] data);
      this.mem[addr] = data;
   endfunction: read
endclass: spare_memory
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Files

External input 

files complicate 

configuration 

management.

I recommend avoiding external input files for testbenches. Configu-

ration management of the testbench and the design under verifica-

tion is complex enough. Without good practices, it is very difficult

to make sure that you are simulating the right version of the correct

model together with the proper implementation of the right test-

bench. If you must add to the mix making sure you have the right

version of input files, often generated by scripts from some other

format of some other files, configuration management grows expo-

nentially in complexity. For example, many use files to initialize

SystemVerilog memories, as shown in Sample 4-40.

Understanding the implementation of the testcase now requires

looking at two files and understanding their interaction. If the file

always contains the same data for the same testcase, it can be

replaced with an explicit initialization of the memory in the Sys-

temVerilog code, as shown in Sample 4-41. Now, only a single file

needs to be managed and understood. In some cases, using external

files is unavoidable, such as when using input data that was pro-

duced by an external program or recorded from actual data streams.

Files can pro-

gram bus-func-

tional models.

Programmable testbenches are architected around programmable

bus-functional models and checkers, and can be programmed via an

external input file. The “program” can be as simple as a sequence of

data patterns or as complex as a pseudo assembly language with

opcodes and operands interpreted by an engine implemented in

Sample 4-40.
Initializing a 
memory using 
an external file

module testcase;

reg [7:0] pattern [0:55];

initial $readmemh(pattern, "pattern.memh");

endmodule

Sample 4-41.
Explicitly ini-
tializing a 
memory

module testcase;

reg [7:0] pattern [0:55] = {8’h00,
                            8’hFF,
                            ...
                            8’hC0};

endmodule
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SystemVerilog. However, this approach to programmable bus-func-

tional models makes it impossible to drive these bus-functional

models from higher level bus-functional models, such as random

data generators. It will also make it extremely difficult to coordi-

nate or synchronize a particular operation of the bus-functional

model with some external events or other bus-functional model. It

requires the introduction of synthetic synchronization instructions.

Use SystemVer-

ilog as the BFM 

programming 

language.

If a new synchronization mechanism is required, a new instruction

must be added. It is easier to “program” a bus-functional model

using the testbench language (which is a rich high-level language)

with calls to the procedural interface of the bus-functional model.

The program, being part of the testbench code, has visibility over

the necessary states of the design or other bus-functional model to

coordinate and synchronize them effectively. The procedural inter-

face can also be accessed from higher-level bus-functional models.

Do not use input 

files to define 

constraints

An input file can also be a set of limit values for constraints in a

randomly-driven bus-functional model. But this limits testcases to

modifying constraint boundary conditions. Testcases cannot add

entirely new constraints or relax existing ones.

External files 

can eliminate 

recompilation.

Using external input files can save a lot of compilation time if you

use a compiled simulator. If you can modify your testcase by modi-

fying external input files, it is not necessary to recompile the model

of the design under verification nor the testbench. For large designs,

this compilation time can be significant, especially for a gate-level

design with SDF back-annotation. However, your SystemVerilog

simulator, such as VCS, may provide an incremental compile and

link usage model to minimize the recompilation time between sim-

ulations if only the testbench changes.

From High-Level to Physical-Level

It is very unlikely that high-level data types are directly usable by

any device that must be verified. Any complex data structure has to

be mapped to bits, bytes, addresses and registers. They are sent to

or received from the design using a physical-level interface using a

more basic data representation, such as a bit, byte or word, usually

including synchronization, framing or handshaking signals. In

Chapter 5, I show techniques using bus-functional models for

applying high-level data to a design via a low-level physical inter-

face (and vice-versa on the output side).
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Packed data 

types have 

implicit map-

ping.

All packed data types in SystemVerilog have an implicit mapping

to physical bits. They have a well-defined mapping to integer or

packed single-dimension array of bits. These are then more useful

for the design specification than testbench, where the granularity of

data items tends to be coarser and higher level.

Encapsulate 

streaming opera-

tions.

The streaming operators can be used to translate to and from a

series of discrete variables, such as a set of class properties, and a

stream of physical-level values. As described by guidelines 4-77

and 4-78 of the Verification Methodology Manual for SystemVer-
ilog, these operations should be encapsulated in packing and

unpacking methods.

OBJECT-ORIENTED PROGRAMMING

SystemVerilog 

is object-ori-

ented.

Object-oriented programming is a methodology that has been used

with great success in software engineering for many years. It is the

next evolutionary step in language design after structured program-

ming (i.e., the removal of the “go to” statement and introduction of

subprograms and control structures). Object-oriented used to be one

of those buzzwords used to describe almost everything. In this

book, object-oriented is used to identify a methodology that makes

use of (and a language that supports) classes, inheritance and poly-

morphism. SystemVerilog’s class data type meets this definition of

object-oriented.

Classes

Objects are data 

and procedures 

together.

Classes are a collection of variables and subprograms that create

object types. Objects are instances of a class. A class defines an

object’s state as a collection of data members. A class also defines

all possible operations on the object using methods. In SystemVer-

ilog, data members are called class properties while methods are

functions and tasks declared within the class. Sample 4-39 shows an

example of a class declaration.

Everything is 

modeled as an 

object.

Physical data types, such as packets, frames and cells, are modeled

as objects. Their various fields are data members. Methods exist to

calculate and check the value of any CRC or error protection field,

translate the field values to and from a sequence of physically trans-

mitted bytes and segment a large object into a series of smaller

ones. Processor instructions are modeled as objects. Their opcode
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and various operands are data members. Methods exist to produce

the object code value, relocate branch destination values and dis-

play the current value as an assembly code statement. Floating

point values—which are not directly supported by SystemVer-

ilog—are modeled as objects. Data members represent their integer

and fractional parts. Methods perform arithmetic and logical opera-

tions, translate to and from a fixed-point value or display the float-

ing-point number using a user-specified format. 

Bus-functional

models are also 

objects.

Bus-functional models are objects. Their interface signals are data

members. Methods implement the procedural interface. A design

configuration is modeled as an object. The routing table, coefficient

array or interface configuration parameters are modeled using data

members. Methods are used to download the configuration speci-

fied in the data members in the design, or generate a random design

configuration.

Scoreboards are 

objects.

A scoreboard (see “Scoreboarding” on page 300 for more details on

scoreboards) is modeled as an object. The queues of expected out-

put data sequences are data members. Methods exist to transform a

new input data value according to the current design configuration,

compare an output data value against expected ones and check the

scoreboard for any losses at the end of the simulation.

Testbenches can 

be objects.

An entire testbench can be an object in which the bus-functional

models and scoreboards sub-objects are data members. Methods

implement the reset procedure, main testcase sequence and termi-

nation procedures. 

Data members 

consume mem-

ory. Methods do 

not.

By default, each data member is local to each object instance.

Methods, however, are global to the class. For example, if there are

1,000 instances of the eth_frame class (see Sample 4-32), there are

1,000 instances of the da property but only a single instance of the

code implementing the to_bytes function. The memory required to

implement the data members will be replicated for each object

instance. Methods will not consume more memory, whether an

object is instantiated only once or 1,000 times. If memory con-

sumption starts to be a problem, focus on the data members of the

objects with the most instances.

Data members 

can be global.

It is often necessary to have information that will be shared among

all instances of an object. For example, if each object has its own

instance of an error counter, it would be difficult to determine the
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number of error messages that were produced during a simulation.

If that error counter is global, that task becomes much easier.

Another example is automatically assigning unique ID numbers to

each object instance. A global ID number source is the only way to

ensure uniqueness. In SystemVerilog, a data member global to the

class is declared using the static attribute, as shown in Sample 4-42.   

module, inter-
face, struct and 

package are not 

objects.

You may be tempted to conclude that all of SystemVerilog is

object-oriented since modules, interfaces and packages can contain

both variables (data members) and functions and tasks (methods).

These constructs are not object oriented because modules are not

true objects. modules and interfaces are hierarchical constructs, not

data structures. They cannot be assigned. nor passed to tasks or

functions as arguments. They cannot be compared or used in

expressions. packages may also look like objects: They can contain

data (shared variables) and tasks and functions (methods). In addi-

tion to presenting all of the same non-object behaviors that modules
and interface do, packages cannot be instantiated. Even though a

package may be used in many files, a single instance exists for the

entire elaborated simulation model. And if that weren’t enough,

Sample 4-42.
Global data 
members

class sim_status;
static integer n_errors = 0;

endclass: sim_status

class eth_frame;
sim_status status;

   ...
      if (this.compute_fcs() !== this.fcs) begin
         printf(“Bad FCS”);
         this.status.n_errors++;
      end
   ...
endclass: eth_frame

class eth_mii_mac;
sim_status status;

   ...
      if (col === 1’b1 && crs !== 1’b1) begin
         printf(“Collision without carrier\n”);
         this.status.n_errors++;
      end
   ...
endclass: mii



High-Level Modeling

150 Writing Testbenches using SystemVerilog

none of these constructs support inheritance nor polymorphism,

which are other key aspects of object-orientedness.

Objects have 

public and pri-

vate declara-

tions.

The concept behind objects is to encapsulate data and its transfor-

mation operations to present to the user a coherent and stable inter-

face. As the object evolves or is modified, the interface visible to

the user should remain constant. To help enforce this, objects usu-

ally have two separate declaration spaces: public and private decla-

rations. Public declarations are accessible from the outside of the

object (i.e., by the users), whereas private declarations are only

accessible from within the object (i.e., by the implementer). 

If the public interface is never modified (or modified in such a way

as not to impact the user), the entire private implementation can be

modified or re-written without affecting the users. By default, dec-

larations are public. In SystemVerilog, to make a declaration pri-

vate, use the local attribute, as shown in Sample 4-39. Any local
data members or methods will not be externally accessible.

Keep non-ran-

domized data 

members pri-

vate.

Once a data member has been made public, you can count on other

objects to make direct use of it. It is not possible to control its

access, nor ensure that its value remains consistent with other data

members. For example, the length property in Sample 4-43 can be

modified independently of the data property. It is very easy for a

user to corrupt the internal state of the object by directly operating

on the data members. Traditional object-oriented practice com-

mands that all accesses to an object be done through methods.

These methods can ensure that the value of the properties are coher-

ent at all times, as shown in Sample 4-44. However, if you end up

with a pair of set_data() and get_data() methods for each data

member, then internal coherency is probably not required, or you

are providing methods with too low a level of abstraction. You

might as well make the data members public.

Make rand data 

members public.

SystemVerilog places an additional requirement for making a data

member public: It is not possible to externally constrain a private

data member since it is not accessible. All randomized data mem-

bers must be public to allow them to be constrained. More on con-

straints and randomization will be discussed in “Random Stimulus”

on page 307.    
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Reference and 

instance are dif-

ferent things.

When declaring an class variable, all you are declaring is a refer-
ence (or a pointer) to an instance of a specific class. By default,

class variables do not refer to any instance (Figure 4-8(a)). They

must first be initialized by allocating an instance of a class created

using new. When assigning a class variable to another, all you are

doing is making a copy of the reference, not a copy of the instance

(Figure 4-8(b)). If one of these two references modifies the

instance, it is modified for both class variables since they both refer

to the same instance. A common mistake is to put references to

instances in a queue, but keep using the same reference to generate

new values, as shown in Sample 4-45. Since there is a single call to

new, a single instance of the ATM cell object exists. The queue ends

up containing several references to the last value of the cell, instead

of references to 10 different random cells as expected. Similarly,

Sample 4-43.
Unsafe object 
state

class byte_list;
   integer length = 0;
   bit [7:0] data[];
endclass: byte_list

program ignoramus_use;
   byte_list my_list = new;

initial begin
   my_list.length = 100;
   my_list.data = new[1] ({1});
   // List is corrupted: array has 1 element,
   // NOT 100.
end
endprogram

Sample 4-44.
Safe object 
state

class byte_list;
local integer length = 0;
local bit [7:0] data[];

   extern task resize(integer length);
endclass: byte_list

program ignoramus_user;
   byte_list my_list = new;

initial begin
   my_list.length = 100;  // Syntax error!
   my_list.resize(100);
   // List now has 100 element
end
endprogram
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when comparing two class variables, you are comparing their refer-

ence, not their content. If both variables refer to the same instance,

the comparison will be true (Figure 4-8(b)). If both objects refer to

two different objects (even if they have identical content), the com-

parison will be false (Figure 4-8(c)).

Comparison and 

copying can be 

shallow or deep.

Because copying or comparing class variables only deals with the

references, methods must be used to perform comparison or copy

functions. If the instances being compared also contain references

to other objects, how are these handled? If only the references are

used, then the operation is said to be shallow (Figure 4-9(a)). If the

operation is applied recursively down the hierarchy of instances,

the operation is said to be deep (Figure 4-9(b)). In SystemVerilog,

the new constructor can be used to perform a shallow copy opera-

tion, but comparison and deep copy methods must be written manu-

ally for each class.

Figure 4-8.
Class
reference vs. 
class instance

Sample 4-45.
Common mis-
take with 
object refer-
ence

atm_cell cell = new;
atm_cell cells[$];

while (cells.size() < 10) begin
   cell.randomize();
   cells.push(cell);
end

mac_frame fr1;
mac_frame fr2;

fr1 fr2

null null

(a)

fr1 = new;
fr2 = fr1;

fr1 fr2

(b)

ABC

fr2 = new;
fr1 = new fr2;

fr1 fr2

(c)

XYZ XYZ

fr1 = = fr2 fr1 != fr2

Figure 4-9.
Shallow and 
deep
operations

... = new dot;

pixel pixel

(a)

rgb

... = dot.copy()

pixel pixel

(b)

rgb rgb

shallow deep

class rgb;
   byte red;
   byte green;
   byte blue;
endclass: rgb
class pixel;
   int x;
   int y;
   rgb color;
endclass: pixel
pixel dot = new;
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Standard meth-

ods must be pro-

vided.

When defining a new class, you should always provide the methods

usually required for using and manipulating instances of that class.

You should try to provide these methods using a consistent name

and argument to avoid dealing with meaningless differences

between various classes. For example, methods to display the

object in a meaningful human-readable format always prove indis-

pensable. Other methods that should be included are deep-copy,

deep-compare, packing to and from a list of bytes, words or quads,

calculating and checking error-protection fields, checking the inter-

nal consistency of data members and converting to and from other

object types.

See Chapter 4 of 

the VMM.

The section titled "Data and Transactions" starting on page 140 of

the Verification Methodology Manual for SystemVerilog specifies

several guidelines for modeling data using classes and the methods

that are required to provide with each class.

Inheritance

Classes can 

build upon other 

classes.

What if there is a class that does almost everything you need, but it

is missing only that one little feature, what do you do? The tradi-

tional approach would dictate that you make a copy of the useful

code, call it something else, and make the necessary modifications.

But this has just created additional code that must be maintained

and understood. With inheritance, your needs can be built upon

existing classes—even those you do not have source code for—by

only specifying the desired difference in behavior. Any unchanged

behavior is automatically inherited from the original class. Any

changes made to the original class are also automatically inherited

by the new class, reducing maintenance efforts. The original class is

called the parent or base class. The new class inheriting from the

base class is called a derived class.

Derived classes 

can overload 

parent members 

and methods.

The difference in functionality between a derived class and a parent

class can be expressed by adding new data members and methods,

adding to the parent’s methods or replacing data members and

methods with new ones. For example, the verification of your

design requires that you inject ethernet MAC frames with corrupted

FCS values. But the ethernet MAC frame class shown in Sample 4-

32 always has a good FCS value. You can create a new ethernet

MAC frame object that can have a bad FCS value, based on the

value of a control property,1 using inheritance, as shown in Sample
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4-46. Notice how the new version of the compute_fcs() method

adds functionality to the parent methods. In SystemVerilog, you can

refer to overloaded data members and methods in the parent class

using the super prefix. 

Children take 

after their par-

ent.

Because derived classes are extensions of their base class, they

remain valid instances of their base class. As shown in Sample 4-

47, they can be assigned to base class variables without any type

conversion (i.e., automatic downcasting). From that point on, they

will be viewed as if they were an instance of the base class. An

instance of a derived class, referred to as a base class, can be

assigned back to a derived class variable with explicit upcasting.

Upcasting an instance of the base class or of a derived class on a

different inheritance branch (or lineage) causes an error. To prevent

runtime errors when you cannot rely on implicit knowledge of an

object’s lineage, it is always possible to test the lineage of an object

by using the $cast() system task in a scalar context. it will return 0

(i.e. false) if the casting operation is not allowed.  

This compatibility of a derived class with its base class makes all

code and models that already operate on the base class available to

operate on the derived class—without their knowledge. For exam-

ple, as shown in Sample 4-48, the derived MAC frame class with

potential bad FCS values can be downcasted to the base class and

1. Why not make this derived class always a bad frame? Because generat-
ing a stream containing a mix of good and bad frames would require 
instantiating a mix of different classes. This way, only one class needs 
to be instantiated. The class will decide on its own whether the frame is 
good. And this approach is easier to constrain.

Sample 4-46.
Adding func-
tionality 
through inher-
itance

class eth_frame_may_be_bad extends eth_frame;
   bit is_bad;

   function bit [31:0] compute_fcs();
      compute_fcs = super.compute_fcs();
      if (this.is_bad) begin
         bit [4:0] i = random;
         compute_fcs[i] ^= 1;
      end
   endfunction: compute_fcs
endclass: eth_frame_may_be_bad
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sent through the existing MII bus-functional model from Sample 4-

20.   

Declarations can 

be semi-private.

Derived classes cannot access any private declaration in the base

class. It is often necessary to let a derived class have more intimate

knowledge of the internal state and implementation of a base class

than what is visible through the public interface. Declarations can

have the protected attribute. This makes them visible only to the

base class and any derived classes. Protected data members and

methods are “semi-private” declarations shared only between a

base class and its derived classes. When implementing a derived

class, it is assumed that you have a more intimate knowledge of a

base class (how it works, what it depends on) than a casual user.

That is why it is possible to gain greater visibility into a base class

(if allowed by the base class author). As a user of a class, do not

casually create derived classes simply to get at the protected mem-

Sample 4-47.
Downcasting 
and upcasting 
an inheritance 
tree.

class instruction; ...
class arith_instr extends instruction; ...
class branch_instr extends instruction; ...
class cond_branch_instr extends branch_instr; ...

instruction       instr;
arith_instr       arith;
branch_instr      br;
cond_branch_instr br_if;
...
instr = arith;     // OK: downcasting
arith = br;        // ERROR: different lineage
instr = br_if;     // OK: downcasting

$cast(br, instr);  // upcasting

$cast(arith, instr); // ERROR: instance on wrong
                     //        lineage

if ($cast(arith, instr)) begin
   ... // OK: Exec’d if correct lineage
end

Sample 4-48.
Using code 
written for the 
base class with 
a derived class

eth_mii              bfm   = new(...);
eth_frame_may_be_bad tx_fr = new;

bfm.send(tx_fr);
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bers and methods. Usually, these are not safeguarded as well as the

public interface and are more subject to being modified.

Inheritance and 

instance are dif-

ferent things.

When building a new class upon an existing class, should you

inherit from it or simply instantiate it as a data member in the new

class? That depends on the relationship between the two classes. If

the new class is a different way of looking at the older class, but

fundamentally represents the same object, then inheritance should

be used. The corruptible ethernet MAC frame in Sample 4-46 is a

perfect example. The objective of this new class is not to create a

completely separate and new object. It is to add a new capability to

the existing one. Whether good or bad, this new ethernet frame can

still be viewed and treated like the old one—albeit with a small,

hidden difference. 

Another example is the pixel and RGB objects shown in Figure 4-9.

If you already have a color object and want to build a pixel object

that has a color specification, you should instantiate the color object

as a data member of the pixel object, not derive from it. Why?

Because a pixel is not a color. A color is only an attribute of a pixel,

just like its position on the screen.

Polymorphism

Polymorphism

means multiple 

forms.

The term “polymorphism” means to have many forms. The concept

of polymorphism was hinted at when I talked about the automatic

downcasting of a derived class when using existing methods that

deal with the base class, as shown in Sample 4-48. A class has the

ability to take the form of an instance of any of its base classes. You

can create an entire genealogy of classes. Classes on different

branches can be treated as if they were the same class, when viewed

as a common base class. If all classes are derived from a single root

class, they can all be viewed as instances of that root base class.

Polymorphism lets you write “generic” methods that can deal with

any objects based on a “generic” base class.

A class can be 

designed to be 

used only as a 

base.

Polymorphism does not happen by accident. You have to plan your

class genealogy to isolate common and useful functions in base

classes. Sometimes, the common information exists, but does not

make sense as a complete object. It would be a mistake to create an

instance of such a base class because the base class is not designed

to represent an object on its own. Rather, the base class is designed
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to take advantage of polymorphism and create a single set of opera-

tions generic to that base class. 

For example, ATM cells come in two flavors: UNI and NNI. Both

have the same size, both have a large number of common fields.

They only differ by their interpretation of the first 12 bits, as shown

in Figure 4-10. To take advantage of the polymorphism between the

two ATM cell flavors, you can create an any_atm_cell class that

contains all the common fields. Derived classes will be used to add

the fields unique to each flavor. But the class any_atm_cell should

not be allowed to be instantiated on its own: it is not a valid ATM

cell! A user must always use one of the derived classes. It is possi-

ble to have the compiler enforce this usage by declaring the base

class as virtual. As shown in Sample 4-49, attempting to “new” an

instance of a virtual class is an error.  

Which method 

is called?

Dealing with class references and type casting is relatively simple.

The value of a reference stays the same while the casting operation

lets the compiler provide runtime type checking. The bigger ques-

tion is, when a method is overloaded or extended in a derived class,

like the compute_fcs() method in Sample 4-46, which version is

called when an instance of a derived class is referred to as an

instance of its base class?

A parent can act 

like a child.

By default, the original method in the base class is called. If the

methods are declared as virtual, the overloaded method is called.

Sample 4-50 shows how a method in the base class (which is never

overloaded) makes use of a virtual method. The header error check

(HEC) computation requires operating on all header bytes—which

vary depending on the cell’s flavor. When the compute_hec()
method invokes the virtual pack_header() method, what is called is

Figure 4-10.
Differences in 
UNI and NNI 
ATM cells

gfc vpi

7 0

vpi vci

vci

vci

UNI ATM Cell

vpi
7 0

vpi vci

vci

vci

NNI ATM Cell
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the extended method found in the particular extension correspond-

ing to the instance. The list of bits returned by pack_header() will

always contain all of the header bits, regardless of the actual flavor

of the ATM cell instance.

Methods are 

usually virtual.
In SystemVerilog, most methods should be declared virtual to give

the possibility of being adapted to the extensions of each derived

class and maintain the behavior expected by existing code that uses

the original base class.

Randomization 

is a virtual pro-

cess.

The predefined method randomize() and constraint blocks are vir-

tual. This means that, when randomizing a base class variable that

refers to a derived class instance, the derived class is being random-

ized, subject to the constraints and overloaded pre_randomize() and

post_randomize() methods in the derived class.

No multiple 

inheritance.

Classes can be derived from a single base class only. It is not possi-

ble to have a class be derived from more than one base class, nor is

it possible to recombine different derivatives of a common base

Sample 4-49.
Using virtual
classes

virtual any_atm_cell;
   bit [11:0] vci;
   ...
endclass: any_atm_cell

class uni_atm_cell extends any_atm_cell;
   bit [3:0] gfc;
   bit [7:0] vpi;
endclass: uni_atm_cell

class nni_atm_cell extends any_atm_cell;
   bit [11:0] vpi;
endclass: nni_atm_cell
...
any_atm_cell a_cell;
uni_atm_cell uni_cell = new;
nni_atm_cell nni_cell = new;

a_cell = new;       // ERROR: Cannot instantiate
                    // a virtual class
a_cell = uni_cell;
a_cell = nni_cell;
$cast(nni_cell, a_cell);
$cast(uni_cell, a_cell); // Runtime error: a_cell
                         // refers to a nni_cell
                           // instance



The Parallel Simulation Engine

Writing Testbenches using SystemVerilog 159

class into a single class that encompasses both extensions. The lack

of multiple inheritance is often mentioned by OO purists as a sine
qua non condition that favors C++. Multiple inheritance appears to

be an elegant solution to the modeling of unions in classes, instead

of inlining or composition. However, multiple inheritance would

not address the requirements posed by randomization and con-

straints (see “Union” on page 134), two concepts absent in C++ and

other general-purpose object-oriented languages.

THE PARALLEL SIMULATION ENGINE

C and C++ lack 

essential con-

cepts for hard-

ware modeling.

Why hasn’t C been used as a hardware description language instead

of creating Verilog, VHDL, SystemVerilog and many others?

Because the basic C language lacks three fundamental concepts

necessary to model hardware designs: connectivity, time and con-

currency. Basic C++ also lacks the necessary features to support the

verification productivity cycle: randomization, constrainability and

functional coverage measurement.

Sample 4-50.
Using virtual
methods

class any_atm_cell;
   ...
   function bit [7:0] compute_hec();
      logic [7:0] header[4];
      pack_header(header);
      ...
   endfunction: compute_hec
   virtual function void
      pack_header(ref logic [7:0] bits[4]);
endclass: any_atm_cell

class uni_atm_cell extends any_atm_cell;
   ...
   virtual function void
      pack_header(ref logic [7:0] bits[4]);
      bits = >> 8 {gfc, vpi, vci, clp, pt};
   endfunction: pack_header
endclass: uni_atm_cell

class nni_atm_cell extends any_atm_cell;
   ...
   virtual function void
      pack_header(ref logic [7:0] bits[4]);
      bits = >> 8 {vpi, vci, clp, pt};
   endfunction: pack_header
endclass: nni_atm_cell
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Connectivity, Time and Concurrency

Connectivity is the ability to describe a design using simpler blocks

then connecting them together. Schematic capture tools are perfect

examples of connectivity support.

Time is the ability to represent how the internal state of a design

evolves over time and to control its progression and rate. This con-

cept is different from execution time which is a simple measure of

how long a program runs.

Concurrency is the ability to describe actions that occur at the same

time, independently of each other.

C and C++ can 

be extended.

Many extensions and coding styles for C or C++ exist that include

some or all of these concepts. SystemC is a set of C++ classes to

introduce the concept of connectivity, time and concurrency. The

SystemC Verification Library is a set of C++ classes that provides

support for randomization, constraints and temporal expressions.

The connectivity, time and concurrency concepts are very impor-

tant to understand when learning to model using a modeling lan-

guage. Each language implements them in a different fashion, some

easier to understand than the others. 

For example, connectivity in SystemVerilog is implemented by

directly instantiating modules and interfaces within modules, and

connecting the pins of the modules and interfaces to wires or regis-

ters. Time is implemented by using timing control statements such

as @ and wait. Concurrency is implemented through separate

always and initial blocks. Concurrency is described in further detail

in the following sections. 

The Problems with Concurrency

You write better 

testbenches 

when you under-

stand concur-

rency.

When writing testbenches, it becomes necessary to understand how

concurrency is implemented and how concurrency affects the exe-

cution of the various components of the testbench and how they

create potential race conditions.

Many testbenches are written with a severe lack of understanding

of concurrency. In the best case, the execution and overall control

structure of the testbench code is difficult to follow and maintain. In
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the worst case, the testbench fails to execute properly on a different

simulator, on different versions of the same simulator or when

using different command-line options. The understanding of con-

currency is often what separates the experienced designer from the

newcomers.

There are two problems with concurrency. The first one is in

describing concurrent systems. The second is executing them.

Concurrent sys-

tems are diffi-

cult to describe.

Since computers were created, computer scientists have tried to fig-

ure out a way to take advantage of the increased performance

offered by multi-processor machines. They are relatively easy to

build and many parallel architectures have been designed. How-

ever, they proved much more difficult to program. I do not know if

that difficulty originated with the mindset imposed by the early Von

Neumann architecture still used in today’s processors, or by an

innate limitation of our intellect.

Concurrent sys-

tems are 

described using 

a hybrid 

approach.

Human beings are adept at performing relatively complex tasks in

parallel. For example, you can drive in heavy traffic while carrying

a conversation with a passenger. But it seems that we are better at

describing a process or following instructions in a sequential man-

ner. For example, a recipe is always described using a sequence of

steps. The description of concurrent systems has evolved into a

hybrid approach. Individual processes running in parallel with each

other are themselves described using sequential instructions. For

example, a dessert recipe includes instructions for the cake and the

icing as separate instructions that can be performed in parallel, but

the instructions themselves follow a sequential order.

SystemVerilog 

models are con-

current threads 

described 

sequentially.

A similar principle is used in SystemVerilog. The concurrent

threads are the always and initial blocks, the continuous signal

assignment statements and statements in fork/join statements. The

exact behavior of each concurrent construct is described individu-

ally using sequential statements.

Every always and initial block, every continuous assignment and

every forked statement in a SystemVerilog model execute in paral-

lel with each other, but internally each executes sequentially. It is a

common misconception that SystemVerilog’s initial blocks mean

“initialize”. initial blocks are identical to always blocks except that

they execute only once. They are removed from the simulation once

the last statement in the initial block executes. They are executed in
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no particular order compared to other execution threads1. Because

they are regular simulation threads, assignments made in initial
blocks cause events on the assigned variables. However, assign-

ment of initializer values specified in variable declarations, as

shown in Sample 4-51, are not execution threads: they are per-

formed before the start of the simulation (in lieu of the default ‘x
initial value) and thus do not cause any events on the initialized

variables..

Emulating Parallelism on a Sequential Processor

Concurrent 

threads must be 

executed on sin-

gle processor 

machines.

If you look inside the workstation that you use to simulate your

model, you will see that there is a single processor. Even if you

have a multi-processor machine, you can always write a model with

one more concurrent thread than you have processors available.

How do you execute a parallel description on a single processor,

which is itself a sequential machine?

Multi-tasking 

operating sys-

tems are like 

simulators.

If you use a modern computer, you probably have a windowing

graphical interface. During normal day-to-day use, you are very

likely to have several windows open at once, each of them running

a different application. On multi-user machines, there may be sev-

eral others running a similar environment on the same computer.

The applications running in all of these windows appear to work all

in parallel even though there is a single sequential processor to exe-

cute them. How is that possible? You probably answered time-shar-
ing. With time-sharing, each application uses the entire processor

for small portions of time. Each application has its turn according to

priority and activity. If the performance of the processor and operat-

ing system is high enough, the interruptions in the execution of a

program are below our threshold of detection: It appears as if each

program runs smoothly 100% of the time, in parallel with all the

others.

1. Simulators would be free to execute initial blocks first.

Sample 4-51.
Initialized 
variable decla-
ration.

int i = 0;
...
class sim_results;
   static n_errors = 0;
endclass: sim_results
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Simulators are 

time-sharing

engines.

A simulator works using the same principle. Each always and ini-
tial block or thread has the simulation engine for some portion of

time. Each appears to be executing in parallel with the others when,

in fact, they are each executed sequentially, one after another. There

is one important difference in the time-sharing process of a simula-

tor. Unlike a multi-tasking operating system, the simulator assumes

that the various parallel threads cooperate to obtain fair access to

the simulation resources.

Simulators do 

not have time 

slice limits.

In an operating system, every thread has a limit on the amount of

processor time it can have during each execution slice. Once that

limit is exhausted, the thread is kicked out of the processor to be

replaced by another. There is no such limit in a simulator. Any exe-

cution thread keeps executing until it explicitly requests to be

kicked out. Thus, it is possible in a simulation to have an execution

thread grab the simulation engine and never let it go. Ensuring that

the parallel threads properly cooperate in a simulation is a large part

of understanding how concurrency is implemented.

Processes simu-

late until they 

execute a tim-

ing statement.

In SystemVerilog, an execution thread simulates, and keeps simu-

lating, until an active timing control statement—@, #, or wait—is

executed1. When the timing control statement is executed, the exe-

cuting thread is kicked out of the simulation engine and replaced by

another one. This thread remains “out of circulation” until the con-

dition it is waiting for is realized. If an execution thread does not

execute some form of an active timing control statement2, it

remains in the simulation engine, locking all other processes out.

The Simulation Cycle

There are mod-
ule and pro-
gram threads.

There are two kinds of concurrent threads in SystemVerilog: mod-

ule threads and program threads. Module threads are intended to

model the design whereas program threads are intended to model

the testbench. Threads are made of always and initial blocks, con-

current signal assignments and forked threads. Program threads are

composed of initial blocks, concurrent signal assignments and

forked threads defined inside program blocks. Program threads are

1. That is not strictly true but that is what happens in practice.

2. Some timing control statements can be inactive if the condition they are 
supposed to wait for is already true.
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also composed of class methods1 instantiated in a program block

and invoked by a program thread. Program threads further include

pass/fail action block in properties. All other threads are module

threads.

A program 
thread can exe-

cute as a mod-
ule thread.

Note that the definition of a program thread depends on the location

of the code, as shown in Sample 4-52. If a program thread calls a

task implemented in a module and the execution of the thread is

blocked within that module task, the thread will resume as a module

thread. It will return to a program thread once its execution blocks

in a non-module task. Because module code cannot call program

code, it is not possible for a module thread to execute as program

thread. To avoid this confusing switch in execution semantics, pro-

gram threads should not invoke module code—a good testbench

coding practice regardless. 

1. The execution of class methods as module or program threads is not 
clearly defined in the SystemVerilog standard and is being clarified by 
the P1800 Working Group. Verify with your simulator which exact 
interpretation is being used.

Sample 4-52.
Module and 
program
threads.

module tb_top;

bit clk = 0;
always #10 clk = ~clk; // Module thread

task wait_for_clk;
   @ (posedge clk);    // Module thread
endtask

endmodule

program test;

initial begin
   @ (posedge tb_top.clk);    // Program thread
   tb_top.wait_for_clk;
   @ (posedge tb_top.clk);    // Program thread
end
endprogram
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Simulators exe-

cute module 

threads at the 

current time, 

then assign zero-

delay nonblock-

ing values.

Figure 4-11 shows the SystemVerilog simulation cycle. For a given

timestep, the simulation engine first samples any value used by

clocking blocks and properties. The simulation engine then exe-

cutes all of the module threads that can be executed. While execut-

ing, these module threads may perform assignments of future

values using nonblocking assignments. Once all module threads

have executed (i.e., they are all waiting for something), the simula-

tor assigns any nonblocking values scheduled for the current

timestep (i.e. zero-delay assignments). Module threads sensitive to

the new values are then executed. This cycle continues until there

are no more module threads that can be executed at the current

timestep and there are no more zero-delay nonblocking values.

Program threads 

are executed 

after assertions
are evaluated.

When there are no more available module threads that can be exe-

cuted, the simulator evaluates all assertions using the values sam-

pled at the beginning of the timestep. The simulator then executes

all program threads that can be executed. While executing, the pro-

gram threads may make nonblocking assignments. Once all pro-

gram threads have executed (i.e., they are all waiting for

something), the simulator assigns any nonblocking values sched-

uled for the current timestep (i.e. zero-delay assignments) made

from the program threads. Any module threads sensitive to the new

values are then executed, restarting the module thread execution

cycle. This cycle continues until there are no more program threads

that can be executed at the current timestep and there are no more

zero-delay nonblocking values.

Figure 4-11.
SystemVerilog 
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Simulators then 

advance time or 

starve.

If there is nothing left to be done at the current time, there must be

either:

1. A thread waiting for a specific amount of time

2. A nonblocking value to be assigned after a non-zero delay 

If one of the conditions is present, the simulator advances time to

the next time period where there is useful work to be done. The

simulator then assigns a nonblocking value, which causes threads

sensitive to the signals assigned these values to be executed, or exe-

cutes threads that were waiting. If neither of the conditions are true,

then the simulation stops on its own, having reached a quiescent

state and suffering from event starvation.

Simulators do 

not increment 

time step by 

step.

The simulator does not increment time by a basic time unit,

timestep or time increment. Regardless of the simulation resolution,

the simulation advances time as far as necessary, in a single step, to

the next point in time where there is useful work to do. Usually, that

point in time is the delay in the clock generator. Increasing the sim-

ulation time resolution should not significantly decrease the simula-

tion performance of a behavioral or RTL model.

Simulation 

progresses but 

time does not 

advance in zero-

delay cycles.

The state of the simulation progresses along two axes: zero-time

and simulation time. As threads are simulated and new values are

assigned after zero delays, the state of the simulation evolves and

progresses, but time does not advance. Since time does not

advance, but the state of the simulation evolves, these zero-delay

cycles where threads are evaluated and zero-delay nonblocking val-

ues are assigned are called delta-cycles1. The simulation progresses

first along the delta axis then along the real-time axis, as shown in

Figure 4-12. It is possible to write models that simulate entirely

along the delta-time axis. It is also possible to write models that are

unintentionally stuck in delta cycles, preventing time from advanc-

ing. 

Program threads 

eliminate race 

conditions.

Having separate module and program threads allow testbenches to

react to the results of design states and assertions without any race

conditions. Program threads are evaluated once all transient events

in the design have been flushed out. They are executed based on the

1. I borrowed this term from VHDL. SystemVerilog does not explicitly 
defines a term for zero-delay cycles.
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final—for this timestep—values of module variables. It is still pos-

sible to have race conditions between module threads and between

program threads, but not across them.

Synchronous 

design signals 

behave differ-

ently to pro-

gram threads.

RTL coding guidelines requiring the use of nonblocking assign-

ments to all inferred flip-flops—and enforced by the always_ff
block—ensure that no race conditions exist between module

threads. In traditional Verilog, with only one kind of execution

thread, the same technique could be used to prevent races between

the design and the testbench. But in SystemVerilog, with test-

benches executing as program threads, a different behavior is

observed. Because program threads are executed after all nonblock-

ing assignments are made, any testbench always block sensitive to

the clock, will execute after the state of the synchronous variable

has been updated. A program thread will see the new value of the

synchronous variable whereas a module thread would see its previ-

ous value, as illustrated in Sample 4-53. In that example, only the

$write statement in the module always block would display a value

of zero at the first clock edge after reset. The $write statement in the

program initial block would always display a value of one.   

Intra-assign-

ment delay 

could be used.

When sampling synchronous signals at the active clock edge, the

intent is to sample their current value, immediately before it is

updated by that active clock edge. The RTL coding style in Verilog

worked because of the nature of the nonblocking assignment which

creates an infinitesimal delay between the clock and the updating of

synchronous variables. In SystemVerilog, that infinitesimal delay is

not long enough to maintain the current state of a synchronous vari-

able into the program thread execution cycle. One solution would

be to add an intra-assignment delay to all nonblocking assignments

to synchronous variables, as shown in Sample 4-54. But this is not

accepted by all synthesis tools, nor would it be compatible with the

large body of existing RTL code out there.

Figure 4-12.
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Synchronous 

module signals 

must be sampled 

using a clocking
block.

Instead of relying on the proper coding of the assignment state-

ments in the design, using a clocking block resolves the problem by

using the sampled value of a synchronous variable. These values

are sampled when first going into a simulation timestep, before the

variables have had a chance of being updated. Therefore, the sam-

pled value is the true value before the active edge of the clock, the

one the testbench intends to use. Sample 4-55 shows the same code

as Sample 4-53, but with a consistent view of synchronous vari-

Sample 4-53.
Synchronous 
variables in 
module and 
program
threads.

module design(...);
...
bit flag;
always_ff @(posedge clk)
begin
   if (rst) flag <= 0;
   else     flag <= 1;
end

always @(posedge clk)
begin
   if (!rst) $write(“Mod: flag = %b\n”, flag);
end

endmodule: design

program test;

initial begin
   forever @ (posedge design.clk)
   begin
      if (!design.rst) begin
         $write(“Pgm: flag = %b\n”,
                design.flag);
      end
   end
end
endprogram: test

Sample 4-54.
Synchronous 
variables
assigned with 
intra-assign-
ment delay.

module design(...);
...
bit flag;
always_ff @(posedge clk)
begin
   if (rst) flag <= #1 0;
   else     flag <= #1 1;
end
endmodule: design
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ables between the design and the testbench. More details on how

the clocking block is used with interfaces and transactors will be

presented in “Physical Interfaces” on page 238.   

Parallel vs. Sequential

Use sequential 

descriptions as 

much as possi-

ble.

As explained earlier, humans can understand sequential descrip-

tions much easier than concurrent descriptions. Anything that is

described using a single sequence of statements is easier to under-

stand and maintain than the equivalent behavior described using

parallel constructs. The independence of their location and ordering

in the source file adds to the complexity of concurrent descriptions.

A concurrent description that would be relatively easy to under-

stand can be obfuscated by simply separating the pertinent concur-

rent statements with a few other unrelated concurrent constructs.

Therefore, functionality should be described using sequential con-

structs as much as possible.

A frequent misuse of sequential constructs involves the initializa-

tion of variables. For example, Sample 4-56 shows a clock genera-

tor implemented using two concurrent constructs: an initial and an

always block.

Sample 4-55.
Synchronous 
variables in 
module and 
program
threads sam-
pled using a 
clocking 
block.

program test;
...
clocking cb @ (posedge design.clk);
   input rst  = design.rst;
   input flag = design.flag;
endclocking: cb

initial begin
   forever @(cb)
   begin
      if (!cb.rst) $write(“Pgm: flag = %b\n”,
                          cb.flag);
   end
end
endprogram: test

Sample 4-56.
Misuse of con-
currency

reg clk;
initial clk = 1’b0;
always #50 clk = ~clk;
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However, generating a clock is an inherently sequential process: It

starts at one value then toggles between one and zero at a constant

rate. A better description, using a single concurrent construct, is

shown in Sample 4-57. Better yet, to avoid generating a clock event

at time zero, the clk variable should be initialized via an initializer

value, as shown in Sample 4-58.   

Deterministic

sequential

behavior does 

not need concur-

rency.

Another less obvious case of misused concurrency happens when

the behavior of the various processes is deterministically sequential

because of the data flow. For example, Sample 4-59 shows an

always block labeled P2 that can execute only once the always
block labelled P1 triggers the event do. The P1 block then waits for

the completion of block P2 before resuming its execution. The

sequence of execution cannot be other than the first half of P1, P2,

then the second half of P1.

The implementation in Sample 4-60 shows the equivalent function-

ality, implemented using a single block. Not only is the execution

flow easier to follow, but also it does not require the control events

do and done.

Fork/Join Statement

Control flow 

may alternate 

between sequen-

tial and concur-

rent regions.

The overall control flow for a testcase often involves a sequence of

sequential steps followed by concurrent ones. For example, verify-

ing a configuration of a design may require configuring the device

through several consecutive reads and writes via the CPU interface,

then concurrently sending and receiving data. This process is then

Sample 4-57.
Proper use of 
concurrency

reg clk;
initial
begin
   clk = 1’b0;
   forever #50 clk = ~clk;
end

Sample 4-58.
Better use of 
concurrency

reg clk = 1’b0;
always #50 clk = ~clk;
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repeated for another configuration. Figure 4-13 shows a control

flow diagram of such a control structure.

Implement using 

a fork/join state-

ment.

The easiest way to implement this type of control flow structure is

to use a fork/join statement. This statement dynamically creates

concurrent threads within a region of sequential code. SystemVer-

ilog has many flavors of the join statement to define how sequential

execution resumes after the fork/join statement, as illustrated in

Sample 4-59.
Deterministic
sequential exe-
cution.

event do, done;

always
begin: P1
   // First half of P1
   ...
   -> do;
   @(done);
   // Second half of P1
   ...
end: P1

always
begin: P2
   @(do);
   // All of P2
   ...
   -> done;
end: P2

Sample 4-60.
Simplified 
sequential exe-
cution.

always
begin: P1_2
   // First half of P1
   ...
   // All of P2
   ...
   // Second half of P1
   ...
end: P1_2

Figure 4-13.
Series of 
sequential and 
concurrent
control flows

Configuration Config ConfigConfig

Receive

Send

Receive

Send
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Figure 4-14(a). For example, the code in Sample 4-61 waits for the

maximum of Ta, Tb and Tc. 

The join condi-

tion can have 

many flavors.

The join condition may have different flavors. By default, the code

after a fork/join statement resumes only once all of the branches

have completed their respective execution. Sometimes it may be

useful to continue execution as soon as one of the branches com-

pletes its execution, as illustrated in Figure 4-14(b) or simply fork

the subthreads and continue the execution of the main thread with-

out interruption, as illustrated in Figure 4-14(c). Sample 4-62

shows how the join_none statement is used to generate an event at

regular intervals until it is eventually acknowledged. 

join_any does 

not terminate 

other branches.

Sample 4-63 shown another way of implementing the same func-

tionality. Notice the presence of the disable statement after the

Figure 4-14.
Execution
threads in 
fork/join
statements

Sample 4-61.
Example of 
using the fork/
join statement

initial
begin
   ...

fork
      #(Ta);
      #(Tb);
      #(Tc);

join
   ...
end
endmodule

fork
(a)

join fork
(b)
join_any fork

(d)
join; disablefork

(c)
join_none

Sample 4-62.
Variant of the 
fork/join state-
ment.

...
fork: req_until_ack
   forever begin
      ->req;
      #10;
   end
join_none
@(ack);
disable req_until_ack;
...
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join_any. The other branches of the fork/join_any statement keep

executing after execution resumes after the join, as illustrated in

Figure 4-14(b). Your functionality may require that they be allowed

to complete in parallel. But if they must be aborted, as is the case in

Sample 4-63, they must be aborted explicitly using the disable
statement.

Use disable fork
with care.

Instead of using the named disable statement to forcibly terminate

the execution of all branches inside the named fork/join statement,

it can be terminated by using the disable fork statement. However,

the disable fork statement will terminate all subthreads started by

the thread using that statement. This may terminate threads that

were previously started and not targeted for termination. For exam-

ple, the code in Sample 4-64 uses a base class to implement some

generic functionality in concurrent threads. The class extension

accidentally terminates the generic functionality by using the dis-
able fork.

The Difference Between Driving and Assigning

Assignments 

write a value to 

a memory loca-

tion.

Regular programming languages provide variables that can contain

arbitrary values of the appropriate type. They are implemented as

simple memory locations. Assigning to these variables is the simple

process of storing a value into that memory location. SystemVerilog

variables operate in the same way. When an assignment is com-

pleted, whether blocking or nonblocking, the newly assigned value

overwrites any previous value in the memory location. Previous

assignments have no effects on the final result. Regular assign-

ments behave like a multiplexer. A single value from all of the

potential contributors is somehow selected.

Sample 4-63.
fork/join_any
statement

...
fork: req_until_ack
   @(ack);
   forever begin
      ->req;
      #10;
   end
join_any
disable req_until_ack;
...
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The last assign-

ment deter-

mines the value.

For example, in Sample 4-65, the value of the register R goes from

x to 5 to 4 to 3 to 2 to 1, then finally to 0. Since R is a variable

shared by all three concurrent blocks, a single memory location

exists. Whatever value was assigned last by a concurrent block, is

the value stored in the variable..

SystemVerilog 

has the concept 

of a wire.

The variable is sufficient for ordinary sequential programming lan-

guages. When describing hardware, a construct that can describe

the behavior of a wire used to connect multiple devices together

must be provided. Figure 4-15 shows a wire, presumably part of a

data bus, connected to several devices. Each device, using a tristate

driver, can drive a value onto the wire. The final logic value on the

wire depends on all the individual values being driven, not just the

last one, like a variable.
Individual val-

ues from con-

nected devices 

must be driven 

continuously 

onto the wire.

To model connectivity via a wire properly, any value driven by a

device must be driven continuously onto that wire, in parallel with

the other driving values. The final value on that wire depends on all

of the continuously driven individual values. 
For example, on a tristate wire, the individual driven values of z, 1,

weak-0 and z would produce a final result of 1. Figure 4-16 shows

the implementation of the wire driver in SystemVerilog. 

Sample 4-64.
Unintended
consequences
of using dis-
able fork

class xactor;
   virtual task main();
      fork
         // Generic functionality
         ...
      join_none
   endtask: main
endclass: xactor

class my_bfm extends xactor;
   virtual task main();
      super.main();
      forever begin
         fork
            // Extended functionality

           ...
         join_any
         ...
         disable fork; // Also kills generic
                       // functionality
      end
   endtask: main
endclass: my_bfm
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In SystemVerilog, this continuous drive is implemented using a

continuous assignment while the final value is determined by the

type of wire being used (wire, wor, wand or trireg) and the strength

of the individual driven values..

Each concurrent 

construct has its 

own, single 

driver.

Parallel drivers on a wire require concurrent constructs to describe

them. Many inexperienced engineers, when learning to code for

synthesis try to implement the design shown in Figure 4-17 using

the code shown in Sample 4-66. Unfortunately, since a single regis-

ter is used with variable assignments in sequential code, a multi-

Sample 4-65.
Assignments
to a shared 
variable.

module assignments;
int R;

initial R <= #20 3;

initial
begin
   R = 5;
   R = #35 2;
end

initial
begin
   R <= #100 1
   #15 R = 4;
   #220;
   R = 0;
end

endmodule

Figure 4-15.
Multiple
drivers on a 
wire

Figure 4-16.
Implementa-
tion of 
continuous
drive value resolution

register continuous
assignment

wire
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plexer is synthesized instead of the expected parallel drivers. The

proper solution requires three concurrent constructs, one for each

driver, and is shown in Sample 4-67.                  

RACE CONDITIONS       

The simulation 

cycle creates 

race conditions.

If you refer to Figure 4-11 and the section titled “Emulating Paral-

lelism on a Sequential Processor” on page 162, you will see that

parallel threads are executed one after another, during the same

timestep. The order in which the threads are executed is not deter-

Figure 4-17.
Simple design 
with three 
tristate drivers

Sample 4-66.
Implementa-
tion using a 
multiplexer

module simple(A, B, C, SEL, Z);
input        A, B, C;
input  [1:0] SEL;
output       Z;

reg Z;
always @ (A or B or C or SEL)
begin
   case (SEL)
   2’b00: Z = 1’bz;
   2’b01: Z = A;
   2’b10: Z = B;
   2’b11: Z = C;
   endcase
end
endmodule

Sample 4-67.
Implementa-
tion using 
three tristate 
drivers

module simple(A, B, C, SEL, Z);
input        A, B, C;
input  [1:0] SEL;
output       Z;

assign Z = (SEL == 2’b01) ? A : 1’bz;
assign Z = (SEL == 2’b10) ? B : 1’bz;
assign Z = (SEL == 2’b11) ? C : 1’bz;

endmodule

111001

A B C

SEL

Z
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ministic. Race conditions exist when multiple concurrent threads

compete for the same shared resource over the same time period.

RTL coding 

guidelines hide 

race conditions

Race conditions are conveniently eliminated when limiting yourself

to writing synthesizable code. But once you start using all the fea-

tures of the language, you may find yourself with code that is not

portable across different simulators, different versions of the same

simulator or by using different command-line arguments. Any

change in the simulation algorithm that causes concurrent threads

to be executed in a different order will yield different simulation

results.

Shared vari-

ables can create 

race conditions.

All variables in SystemVerilog are shared among concurrent

threads within their scope (except for automatic variables).

Depending on the order in which these concurrent threads read or

write these shared variables, different values may be observed.

Read/Write Race Conditions

A read/write race condition happens when two concurrent threads

attempt to read and write the same shared variable in the same

timestep. If you look at the code in Sample 4-68, you will notice

that the first always block assigns the variable count while the sec-

ond one displays it. But both threads execute at the rising edge of
the clock.

Sample 4-68.
Example of a 
read/write race 
condition

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin
   count = count + 1;
end

always @ (posedge clk)
begin
   $write("Count is equal to %0d\n", count);
end

endmodule
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The execution 

order determines 

the final result.

Let’s assume that the current value of count is 10. If the first block

is executed first, the value of count is updated to 11. When the sec-

ond block is executed, the value 11 is displayed. However, if the

second block executes first, the value of 10 is displayed, the value

of count being incremented only when the first block executes later.

Some read/write 

race conditions 

can be solved by 

using nonblock-

ing assignments.

This type of race condition can be solved easily by using a non-

blocking assignment, such as shown in Sample 4-69. Referring

again to Figure 4-11: When the first block executes, the nonblock-

ing assignment schedules the new value of 11, with a delay of zero,

to the next timestep. When the second block executes, the value of

count is still 10. The new value is assigned to count only when all

blocks executing at this timestep are executed, creating a delta

cycle.

Prefer sequential 

over parallel 

code.

Using a nonblocking or signal assignment resolves the race condi-

tion by introducing an infinitesimal delay between the write and the

read operation. You should avoid creating parallel threads when a

single sequential thread would do the same job, as shown in Sample

4-70.

Continuous 

assignments cre-

ate races.

A more insidious read/write race condition can occur between

always or initial blocks and continuous assignments. Examine the

code in Sample 4-71 closely. What value of out will be displayed?

The answer depends on the simulator and the command line you are

using. 

Sample 4-69.
Avoiding a 
read/write race 
condition 
using a non-
blocking 
assignment

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin
   count <= count + 1;
end

always @ (posedge clk)
begin
   $write(“Count is equal to %0d\n", count);
end

endmodule
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Some simula-

tors do not inter-

rupt blocks to 

execute continu-

ous assignments.

When the initial block assigns a new value to count, a simulator

could choose to schedule the execution of the continuous assign-

ment for the next timestep, since it is sensitive to count. The execu-

tion of the initial block is not interrupted and the value of out
displayed is the one it had after initialization, since the continuous

assignment has not yet been executed.

Some do. Another simulator could choose to execute the continuous assign-

ment as soon as count is assigned in the initial block. The execution

of the initial block is interrupted after the assignment to count while

the continuous assignment is executed. The execution of the initial
block resumes immediately afterwards.

This type of race 

condition can-

not be avoided 

easily.

Unfortunately, this type of error condition is not as easy to avoid or

eliminate as the one between two blocks. When writing high-level

code, you must be careful about the timing between assignments to

registers in the right-hand side of a continuous assignment and

reading the wire driven by it. To make matters worse, the race con-

dition may involve non-zero delays as well as multiple continuous

Sample 4-70.
Avoiding a 
read/write race 
condition 
using sequen-
tial code

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin
   $write(“Count is equal to %0d\n", count);
   count <= count + 1;
end

endmodule

Sample 4-71.
A riddle

module rw_race;

wire [7:0] out;
assign out = count + 1;

integer count;
initial
begin
   count = 0;
   $write("Out = %b\n", out);
end

endmodule



High-Level Modeling

180 Writing Testbenches using SystemVerilog

assignment statements, such as in Sample 4-72. A read/write race

condition occurs if the delay between the time the right-hand side

of a continuous assignment is updated, and the time any wire on the

left-hand side is read, is equal to the propagation delay of all inter-

vening continuous assignments. Figure 4-18 illustrates the timing

of these race conditions. The only way to avoid such race condi-

tions is to avoid using continuous assignments for internal decoding

logic.  

Write/Write Race Conditions

A write/write race condition occurs when two concurrent threads

write to the same register at the same timestep. If you look at the

code in Sample 4-73, you will notice that both branches of the fork/
join statement assign the variable flag under different conditions

and both execute at any change of the clock. This setup creates a

write/write race condition if both conditions are true.

The execution 

order determines 

the final result.

If you refer one more time to Figure 4-11 and the section titled

“Emulating Parallelism on a Sequential Processor” on page 162,

you will see that both threads are executed one after another, during

Sample 4-72.
Another read/
write race con-
dition

module rw_race;

wire [7:0] out, tmp;
integer count;
assign #1 out = tmp - 1;
assign #3 tmp = count + 1;

initial
begin
   count = 0;
   #4;
   // "out" will be 0 or x’s.
   $write("Out = %b\n", out);
end

endmodule

Figure 4-18.
Timing of a 
read/write
race condition

Delay

Continuous Assignment(s)

always or
initial block

Write Read
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the same timestep. Again, the order in which the threads execute is

not deterministic. Let’s assume that both conditions are true. If the

first thread is executed first, the value of flag is updated to zero.

When the second thread is executed, the value of flag is updated to

one. However, if the second thread executes first, the value of flag
is updated to one, then it is updated to zero when the first thread

executes later.

Nonblocking

assignments do 

not solve the 

problem.

You might be tempted to use the same solution to eliminate the race

condition as was used to eliminate the read/write race condition, as

shown in Sample 4-74. Using nonblocking assignments simply

moves the write/write race condition from the variable assignment

to the scheduling of the nonblocking value. If the first thread exe-

cutes first, the nonblocking value zero is scheduled for the next

timestep. When the second thread executes, the nonblocking value

Sample 4-73.
Example of a 
write/write 
race condition

program test;

bit flag;

initial
begin
   fork
      @(clk) if (<cond1>) flag = 0;
      @(clk) if (<cond2>) flag = 1;
   join_none
end
endprogram: test

Sample 4-74.
Another exam-
ple of a write/
write race con-
dition

module ww_race(clk);
input clk;

reg flag;

always @ (posedge clk)
begin
   if (<cond1>) flag <= 0;
end

always @ (posedge clk)
begin
   if (<cond2>) flag <= 1;
end

endmodule
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one is also scheduled for the next timestep, overwriting the previ-

ously scheduled value of zero. If the threads execute in the opposite

sequence, the scheduled value of zero overwrites the previously

scheduled value of one.

There is no way 

out of this one.

There is no mechanism to prevent this type of race condition. The

logic of your model must make sure that both conditions are never

true at the same time. It would be a good practice to put an assertion

in your model to verify that it is indeed always the case.

Pop quiz! Why can’t you have a write/write race condition on a wire?1

Initialization Races

initial blocks are 

no different then 

always blocks.

The most frequent race conditions can be found at the beginning of

the simulation, when all threads are executed for the first time.

Everything is initialized to its respective specified initializer value

or x if none are specified. Then the simulation starts normally. It is a

common misconception that initial blocks are used to initialize

variables. Initial blocks are identical to always blocks, except that

they execute only once, whereas always blocks execute forever, as

if they were stuck in an infinite loop.

Initial blocks are 

not executed 

first.

When the simulation is started, the initial and always blocks are

executed one after another, in any order. The initial blocks are not
executed first—although doing so would not be illegal and some

simulators may do just that. Most simulators, for no other reason

than to be compatible with Verilog-XL and legacy code containing

race conditions, first execute blocks in the same order as they are

specified in the file2. But the subsequent execution order is not so

deterministic.

When simulating the code in Sample 4-75 using an XL-compliant

simulator, the first always block would be executed and suspended

immediately, waiting for the rising edge of the clock. The initial
block is executed next, assigning the new value of one to the vari-

able named clk, which was previously initialized to x. A transition

1. Because wires are driven, not assigned. The value from each parallel 
construct would contribute to the final logic value on the wire, without 
overwriting the other.

2. You should avoid depending on this behavior.
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from x to one being considered a rising edge, the first always block

sees the event and is scheduled to be executed again at the next

timestep. However, since the last always block was not yet exe-

cuted, and thus is not waiting for the rising edge of the clock, it

does not see this edge. When the last block is finally executed, it is

also immediately suspended, waiting for the next rising edge on clk.

An XL-compliant simulator would therefore execute the body of

the first always block, but not the second. However, that is not a

requirement. If a simulator chooses to execute the initial block first,

the body of neither block would execute at time zero.

Guidelines for Avoiding Race Conditions

Race conditions can be avoided if you follow strict coding guide-

lines. These guidelines differ from typical RTL coding guidelines

because of the stricter rules on using blocking vs. nonblocking

assignment or the use of continuous assignment statements. RTL

coding guidelines are designed to fit the model to the inferred hard-

ware structure. Testbenches use the full language, and as such

require guidelines designed to fit the model to the underlying simu-

lation engine.

1. If a variable is declared outside of a concurrent thread structure, 

assign to it using a nonblocking assignment. Reserve the block-

ing assignment for variables local to the thread.

2. Assign to a variable from a single concurrent thread.

3. Use continuous assignments to drive inout pins only. Avoid 

using them to model internal combinatorial functions. Prefer 

Sample 4-75.
Race condition 
at simulation 
startup

module init_race;
reg clk;

always @ (posedge clk)
begin
   $write("Block #1 at %t\n", $time);
end

initial clk = 1’b1;

always @ (posedge clk)
begin
   $write("Block #3 at %t\n", $time);
end

endmodule
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sequential code in a large always block to several continuous 

assignments.

4. Use initializers to assign initial values. Do not assign any value 

at time 0.

5. Use clocking blocks to sample synchronous module variables in 

program threads.

Semaphores

Use semaphores. The problem with guidelines is that there is no way to ensure that

everyone follows them. Competing access to shared resources by

concurrent threads is an old problem with an equally old solution:

the semaphore. When traffic coming from multiple directions (the

concurrent thread) needs to cross an intersection (the shared

resource), a traffic light (the semaphore) is used to make sure that

only one direction of traffic gets to cross the intersection at the

same time. A semaphore can be used to ensure that only one thread

executes their portion of code that can potentially create a race con-

dition.

A semaphore is 

a write/write 

race condition 

put to good use.

A semaphore is a shared variable that is set by a single execution

thread only if the semaphore is currently cleared. That thread is

then responsible for clearing the semaphore after completing its

access to the shared resource. Sample 4-76 shows an implementa-

tion of a semaphore1 in SystemVerilog. The in_use variable indi-

cates whether the semaphore is set. If the lock task is invoked while

the in_use variable is set to 1, the thread waits until the lock task is

eventually cleared. The unlock task clears the semaphore. 

This would not 

work on a true 

parallel system.

The key to the proper operation of the semaphore implementation

shown in Sample 4-76 is the while loop in the lock task. Let’s

assume that three concurrent threads are vying for the semaphore

by calling the lock task at the exact same simulation cycle. Because

concurrent threads are really executed sequentially, one at the time,

one of these threads (lets call it #1) will execute first. The in_use
register being equal to 1’bx, the condition of the while loop will be

false and it will set the semaphore and return from the lock task.

1. Computer scientists have a very narrow definition of a semaphore that 
is probably not met by this implementation. However, it is good enough 
for now.
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Threads #2 and #3 run, one after another, and get to the while loop.

Because in_use is now set to 1’b1, they enter the while loop and

wait for in_use to be not identical to 1’b1. Eventually thread #1 will

release the semaphore by calling the unlock task. This will wake up

threads #2 and #3. One of them (let’s pick #2) will run first, find the

condition of the while loop false, set the semaphore then return

from the lock task. When thread #3 runs, it finds the condition of

the while loop still true (because of thread #2) and waits again.

This semaphore 

may not be fair.

This simple semaphore implementation relies on the ordering of

thread execution to ensure that access is fair. If the simulator imple-

ments a first-in-first-out execution order on the wait statement (i.e.

the thread that has been waiting the longest is run first), then the

semaphore will be fair. If it uses a last-in-first-out execution order

(i.e. the thread with the most recent invocation of the wait statement

executes first), then this semaphore will be completely unfair. This

simple implementation would also not work if a thread does not

suspend its execution between the unlock and lock task calls: Since

in_use had just been cleared by the unlock task, the while loop

would not be entered and the thread would acquire the semaphore

again.

Semaphores are 

built-in System-

Verilog.

SystemVerilog comes with a predefined semaphore object. Unlike

the user-defined semaphore shown in Sample 4-76, the predefined

semaphore is guaranteed to be fair, would work in a potential paral-

lel implementation of SystemVerilog and includes the concept of

keys, where a number of identical shared resources can be managed

using a single semaphore. See Sample 4-83 for an example of using

a predefine semaphore.      

Sample 4-76.
A SystemVer-
ilog sema-
phore

module semaphore;

bit in_use;

task lock;
while (in_use === 1’b1) wait (in_use !== 1’b1);

   in_use = 1’b1;
endtask

task unlock;
in_use = 1’b0;

endtask
endmodule
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PORTABILITY ISSUES   

Two compliant 

simulators can 

produce differ-

ent results.

In my many years of consulting in design verification, I have yet to

see a single testbench that simulates with identical results on differ-

ent simulators. Half the time, these same testbenches can produce

different results by using different command-line options or use a

different version of the same simulator! Yet, all simulators are fully

compliant with the IEEE standard. Most of the time, the differences

are due to race conditions (see “Race Conditions” on page 176).

Sometimes, the differences are due to different interpretations of

the standard: Many implementation details were left unspecified or

existing discrepancies between simulators were also declared

“unspecified”. Simulator vendors are thus free to implement these

unspecified portions of the standard any way they want, yielding

different simulation results.

The primary 

cause is the 

author’s lack of 

experience.

The primary cause of the simulation differences are the authors.

SystemVerilog appears easy to learn because it produces the

expected response rather quickly. Making sure that the results are

reproducible under different conditions is another matter. Learning

the idiosyncrasies of the language are what takes time and differen-

tiates an experienced modeler from a new one. It is possible to write

testbenches that will simulate with identical results on all simula-

tors and with all command-line options. 

Events from Overwritten Scheduled Values

If a scheduled value is overwritten by another scheduled value, can

the original value cause an event? The answer to that question is

left undefined by the SystemVerilog standard. If you look at the

code in Sample 4-77, will anything be displayed at time 10?

Overwriting a 

scheduled value 

may generate an 

event.

Figure 4-19 shows the queue of scheduled future values for register

strobe just before the last statement of the initial block is about to

execute. After executing that last statement, and scheduling the new

value of zero after ten time units in the future, what happens to the

previously scheduled value of one? Is it removed? Is it left there? If

so, which value will be assigned to strobe ten time units from now?

Only zero (and thus not generating an event on strobe) or both in

zero-time (and generating an event)? The answer to this question is
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simulator dependent. In asynchronous descriptions, avoid overwrit-

ing previously scheduled values using nonblocking assignments.

Disabled Scheduled Values

Nonblocking

assignment val-

ues may be 

affected by the 

disable state-

ment.

The SystemVerilog standard does not specify what happens to still-

pending values that were scheduled using a nonblocking assign-

ment within a block that is disabled. Consider the code in Sample 4-

78. When a reset condition is detected, the always block modeling

the CPU interface is disabled to restart it from the beginning. What

should happen to the various values assigned to the CPU interface

signals data and dtack using nonblocking assignments, but that may

not have been assigned to the variables yet? Depending on the sim-

ulator you are using, these values may be removed from the sched-

uled value queue and never make it to the intended variables, or

they may remain unaffected by the disable statement. Avoid dis-

abling a block where nonblocking assignments are performed.

Sample 4-77.
Overwriting
scheduled val-
ues

module events;

reg stobe;

always @ (strobe)
begin
   $write("Stobe is %b\n", strobe);
end

initial
begin
   strobe = 1’b0;
   strobe <= #10 1’b1;
   strobe <= #10 1’b0;
end

endmodule

Figure 4-19.
Event queue 
on strobe

0

current

1

+10

0

+10?
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Output Arguments on Disabled Tasks

Output values 

may not make it 

out of disabled 

tasks.

Another area where the behavior of SystemVerilog is left unspeci-

fied is the value of output arguments in disabled tasks. Look at the

code in Sample 4-79. The read task has an output argument return-

ing the value that was read. Within the task, a disable statement is

used to abort its execution at the end of the read cycle. Because the

entire task was disabled, whether the value of rdat is copied out into

the register actual used to invoke the task is not specified in the

SystemVerilog standard.

Use the return
statement

instead.

In some simulators, the value of actual is updated with the value of

rdat, effectively completing the read cycle. In some others, the

value of actual remains unchanged, leaving the read cycle incom-

plete. This unspecified behavior can be avoided easily by using the

return statement instead of disabling the task itself, as shown in

Sample 4-80. 

Non-Re-Entrant Tasks
This is not an 

unspecified 

behavior.

Unless a task is declared as automatic, they are not re-entrant. Non-

re-entrant tasks are not really an unspecified behavior in System-

Verilog. All simulators have non-re-entrant tasks because every

declaration in a SystemVerilog model, except for classes, is static.

By default, no declaration is dynamically allocated upon invocation

of a subprogram or entry into a block of code.

Sample 4-78.
Nonblocking 
assignments 
potentially
affected by a 
disable state-
ment

module cpuif(...);

always
begin: if_logic
   ...
   data  <= #(Ta) read_val;
   dtack <= #(Tack) 1’b1;
   @ (negedge ale);
   data  <= #(Thold) 32’bz;
   dtack <= #(Thold) 1’b0;
   ...
end

always wait (reset == 1’b1)
begin
   disable if_logic;
   wait (reset != 1’b1);
end
endmodule
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The same mem-

ory space is used 

for all invoca-

tions of a task.

When you declare a task or a function, the memory space for its

arguments and all other locally declared variables is allocated at

compile time. There is a single location for the subprogram and all

of its local variables. The memory is not allocated at runtime each

time the task or function is invoked. Every time a subprogram is

invoked, the same memory space is used. This reuse of memory

space does not cause problems in functions or in tasks that do not

include @, # or wait statements because the local data space is used

in a single invocation. The memory space is no longer in use by the

time a second invocation is made. However, if a task contains tim-

ing control statements, it may still be active when a second invoca-

tion is made.

A second invo-

cation clobbers 

the data space of 

an active prior 

invocation.

Examine the code in Sample 4-81. The task named write contains

timing control statements and is invoked from two different initial
blocks. In Figure 4-20(a), the content of the arguments, local to the

task, is shown after the invocation from the first initial block. While

Sample 4-79.
Unspecified 
behavior of 
disabled tasks

task read(input  [7:0] radd,
          output [7:0] rdat);
   ...
   if (valid) begin
      rdat = data;
      disable read;
   end
   ...
endtask

initial
begin: test_procedure
   reg [7:0] actual;

   read(8’hF0, actual);
   ...
end

Sample 4-80.
Using return
instead of dis-
able.

task read(input  [7:0] radd,
          output [7:0] rdat);
   ...
   if (valid) begin
      rdat = data;
      return;
   end
   ...
endtask
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this first invocation is waiting, the second initial block is executed1

and invokes the write task again, setting its local arguments to the

values shown in Figure 4-20(b). When the first invocation resumes,

it continues its execution, using the arguments provided by the sec-

ond invocation: Its data space was overwritten. The first invocation

goes on to write the value 8’h34 at address 8’h5A. 

Concurrent task 

activations may 

not be so obvi-

ous.

The concurrent invocation of the same task in Sample 4-81 is pretty

obvious. But most of the time, the conditions where a task is acti-

vated more than once are much more obscure. In a large verifica-

tion environment, with numerous tasks invoked under a complex

control structure, it is very easy to concurrently activate a task and

corrupt an entire testcase without you, or the simulator, being aware

of it.

automatic tasks 

are re-entrant.

In SystemVerilog, tasks can be made re-entrant by declaring them

automatic. This causes the arguments and local variables to be

dynamically created upon invocation of the task. Because these

variables are no longer static, they cannot be referred to externally

using a hierarchical name, nor can they be displayed on a waveform

1. This specific execution order is only an example. The initial blocks 
could execute in reverse order with equally catastrophic results.

Sample 4-81.
Non-re-entrant 
task

task write(input [7:0] wadd,
           input [7:0] wdat);
   ad_dt <= wadd;
   ale   <= 1’b1;
   rw    <= 1’b1;
   @ (posedge rdy);
   ad_dt <= wdat;
   ale   <= 1’b0;
   @ (negedge rdy);
endtask

initial write(8’h5A, 8’h00);
initial write(8’hAD, 8’h34);

Figure 4-20.
Task data 
space

8’h5Awadd

8’h00wdat

(a)

8’hADwadd

8’h34wdat

(b)
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viewer. Furthermore, making a task re-entrant only solves the local

data part of the problem. Separate threads still exist with the poten-

tial for race conditions to shared variables. For example, if the task

in Sample 4-81 were made re-entrant by adding the keyword auto-
matic, would the problem be solved? No. Even though each thread

would have their correct respective values of the address and data

to write, both will assign to the same shared variables ad_dt, ale
and rw, creating write/write race conditions (see “Write/Write Race

Conditions” on page 180).

Use a sema-

phore to detect 

concurrent task 

activation.

The best approach to avoid this fatal condition is to use a sema-

phore to detect concurrent activation or protect against the write/

write race condition. When using automatic tasks, a semaphore will

ensure proper operation of the task, as shown in Sample 4-82.

A semaphore 

does not help 

non-re-entrant 

tasks.

Semaphores can only help protect shared resources if they are used

before the shared resource is accessed. The solution shown in Sam-

ple 4-82 would not work for a non-re-entrant task because the data

space of the task was already corrupted. It is too late. One solution

would be to use the semaphore before the non-re-entrant task is

invoked, as shown in Sample 4-83. What if someone forgets to use

the semaphore before calling the task?

You can detect 

concurrent task 

activation.

A modified version of the semaphore can be used to detect concur-

rent activation of a non-re-entrant task. As shown in Sample 4-84,

the state of the semaphore indicates whether the task is currently

activated. If the task is invoked while the key in the semaphore is

checked out, the simulation is terminated. Because the data space of

the task has already been clobbered, it is not possible to recover

from the error. Terminating the simulation is the only option. The

Sample 4-82.
Using a sema-
phore in a re-
entrant task

semaphore sem = new(1);

task automatic write(input [7:0] wadd,
                     input [7:0] wdat);

sem.get(1);
   ...

sem.put(1);
endtask
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problem must be fixed by retiming the access to the task (usually

through a semaphore) to ensure that no concurrent invocation takes

place.

I always put a semaphore around any non-re-entrant task. This let

my model tell me immediately if I misused it. I could immediately

fix the problem, without having to diagnose a testbench failure back

to a concurrent task activation. The time invested in adding the

Sample 4-83.
Using a sema-
phore with a 
non-re-entrant
task

semaphore sem = new(1);

task write(...);
...
endtask

initial
begin

sem.get(1);
   write(8’h5A, 8’h00);

sem.put(1);
end

initial
begin

sem.get(1);
   write(8’hAD, 8’h34);

sem.put(1);
end

Sample 4-84.
Guarding non-
re-entrant task

task write(input [7:0] wadd,
           input [7:0] wdat);

   semaphore sem = new(1);

if (!sem.try_get(1)) $stop;

   ad_dt <= wadd;
   ale   <= 1’b1;
   rw    <= 1’b1;
   @ (posedge rdy);
   ad_dt <= wdat;
   ale   <= 1’b0;
   @ (negedge rdy);

sem.put(1);
end
endtask
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semaphore was well worth it. If the task I wrote was to be used by

others, the message produced by the concurrent activation detection

specifically stated that the error was not in my task code, but in

their use of it and to go look for a concurrent activation. This has

saved me many technical support calls.

Static vs. Automatic Variables

Variables are 

static by default.

Unless declared in a dynamic context—within a class or an auto-
matic task—all variables in SystemVerilog are static by default.

Static variables are not really an unspecified behavior in System-

Verilog but can be a source of unexpected behavior. A single copy

exists for a static variable. It is created and initialized at the begin-

ning of the simulation and is reused by all threads referencing that

variable. A variable in a dynamic scope or explicitly declared as

automatic is created and initialized every time a thread enters the

scope in which the dynamic variable is declared.

Static variables 

are initialized 

only once.

Variables are initialized only when they are created. Because static

variables are created only once, at the beginning of the simulation,

they are thus initialized only once. For someone with a non-Verilog

background, that may produce some unexpected behavior, as illus-

trated in Sample 4-85. The variable count is a static variable. It will

be initialized to zero only once, at the beginning of the simulation.

Even if the design operates correctly, the value of count will even-

tually exceed the limit of 10 because it is never reset back to zero

when the task is invoked. The expected behavior can be obtained by

either declaring the count variable as automatic as shown in Sample

4-86, or explicitly initializing it to zero at the beginning of the task

as shown in Sample 4-87.   

Sample 4-85.
Static vari-
ables in loops.

task bus_request;
   int count = 0;
   req <= 1;
   while (gnt != 1) begin
      @ (posedge clk);
      count++;
   end
   if (count > 10) $write(...);
endtask: bus_request
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Only one 

instance of static 

variables exists.

Static variables are created only once, at the beginning of the simu-

lation. Only one copy exists, no matter how many threads enter the

scope where they are declared. Again, this may produce some

unexpected behavior, as illustrated in Sample 4-88. Variable id is

static. Only one copy exists. Therefore, every thread forked off

inside the for-loop will be sharing the same variable and checking

for the same index within the ack array. The intended functionality

can be obtained by declaring the id variable automatic as shown in

Sample 4-89  

Sample 4-86.
Automatic 
variables in 
loops.

task bus_request;
automatic int count = 0;

   req <= 1;
   while (gnt != 1) begin
      @ (posedge clk);
      count++;
   end
   if (count > 10) $write(...);
endtask: bus_request

Sample 4-87.
Initializing 
static vari-
ables in loops.

task bus_request;
   int count;

count = 0;
   req <= 1;
   while (gnt != 1) begin
      @ (posedge clk);
      count++;
   end
   if (count > 10) $write(...);
endtask: bus_request

Sample 4-88.
Static vari-
ables in fork/
join state-
ments.

int i;
...
for (i = 0; i < 10; i++) begin
   fork
      begin
         int id = i;
         while (ack[id] != 1) @ (posedge clk);
         ...
      end
   join_none
end
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Sample 4-89.
Automatic 
variables in 
fork/join state-
ments.

int i;
...
for (i = 0; i < 10; i++) begin
   fork
      begin
         automatic int id = i;
         while (ack[id] != 1) @ (posedge clk);
         ...
      end
   join_none
end
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SUMMARY

When writing testbenches, think function, not implementation.

Abandon the RTL coding mindset. Do not think in terms of logic,

registers and state machines. Think in terms of data transformation,

program state and execution flow.

Your first objective is to write maintainable code. Write relevant

comments that describe your intent, not the code. Optimize for per-

formance only when necessary.

Minimize the scope of your variables as much as possible. Declare

local variables in the scope where they are needed.

Package reusable subprograms and bus-functional models in

classes to facilitate their reuse. Maintain separate name spaces as

much as possible. Make sure that it is possible to have multiple

instances of a bus-functional model connected to different interface

signals without interference or collisions.

Use data abstraction. Collect related data into classes, arrays and

queues.

Separate public interfaces from private implementation. Plan your

class inheritance and take advantage of polymorphism to create

generic bus-functional models and utility subprograms.

Understand the concurrency model used in simulating SystemVer-

ilog. It will help write more efficient models and avoid race condi-

tions. Use semaphores to protect shared resources.

Understand the unspecified portion of the SystemVerilog standard.

This portion is a source of non-portability between different Sys-

temVerilog simulators, versions and command-line options.
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CHAPTER 5 STIMULUS AND RESPONSE

The purpose of writing testbenches is to apply stimulus to a design

and observe the response. That response must then be compared

against the expected behavior.

Generating stimulus is the process of providing input signals to the

design under verification as shown in Figure 5-1. From the perspec-

tive of the stimulus generator, every input of the design is an output

of the generator.

Monitoring is the process of observing output signals from the

design under verification as shown in Figure 5-2. From the perspec-

tive of the response monitor, every output of the design is an input

of the monitor.

Figure 5-1.
Stimulus 
generation

Design
under

Verification

Stimulus
Generation

Figure 5-2.
Response
monitoring

Response
Monitoring

Design
under

Verification
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This chapter 

shows how to 

apply stimulus 

and observe 

response.

In this chapter, I show how to generate stimulus and observe

responses. I also show how to abstract data flowing to and from the

design from a physical level composed of 1’s, 0’s and elapsed time

to a transaction level composed of data objects and procedures. The

greatest challenge with stimulus is making sure it is an accurate

representation of the environment, not just a simple case. When

monitoring responses, one has to be careful not to miss any data and

detect as many errors as possible.

The next chapter 

shows how to 

structure a test-

bench.

In the next chapter, I show how to best structure the stimulus gener-

ators and response monitors to create a layered self-checking envi-

ronment. Constrainable random generation is then added on top of

the stimulus generators and response monitors. If you prefer a top-

down perspective, I recommend you start with the next chapter then

come back to this one.

REFERENCE SIGNALS

Clock signals 

must be gener-

ated with care.

Because a clock signal has a very simple repetitive pattern, it is one

of the first and most fundamental signals to generate. It is also the

most critical signal to generate accurately. Many other signals use

clock signals to synchronize themselves.

Use a module 

thread.

Generate the clock signals using a module thread. Program threads

are designed to be reactive to the events occurring in the design.

Clock signals are the primary cause of these events. The design

reacts to clock events. The always blocks generating the clock sig-

nals should be inside a module, as shown in Sample 5-1.

Explicitly ini-

tialize the clock 

variable.

The code to generate a 50 percent duty-cycle 100MHz clock signal

is shown in Sample 5-1. Using a statement like clk = ~clk
depends on the proper initialization of the clock signal to a value

different than the default value of 1'bx. Initializing the clock vari-

ables using an explicit initializer value also prevents the generation

of clock events at time zero, potentially creating initialization race

conditions, as described in “Initialization Races” on page 182. 

Sample 5-1.
Generating a 
50% duty-
cycle clock

module tb_top;
bit clk = 0;
always #5 clk = ~clk;
...
endmodule
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Any repetitive 

waveform is 

easy to generate.

Waveforms with deterministic edge-to-edge relationships with an

easily identifiable period also are easy to generate. It is a simple

process of generating each edge in sequence, at the appropriate

time. For example, Figure 5-3 outlines an apparently complex

waveform. However, Sample 5-2 shows that it is simple to gener-

ate.

Time Resolution Issues

Integer division 

may speed-up 

the clock.

When generating waveforms in SystemVerilog, you must select the

appropriate timescale and precision to properly place the edges at

the correct offset in time. When using an expression, such as

cycle/2, to compute delays, you must make sure that integer

operations do not truncate a fractional part. For example, the clock

generated in Sample 5-3 produces a period of 14 nanoseconds

because of truncation caused by the integer division.

The time-scale 

may affect the 

timing of edges.

If the precision of the currently active timescale is not sufficiently

high, delay values are rounded up or down. When this happens to

the delay values of clock signals, it shifts the relative position of the

clock edges. For example, the clock generated in Sample 5-4 pro-

Figure 5-3.
Apparently
complex
waveform

Sample 5-2.
Generating a 
deterministic
waveform

always
begin
   S = 1’b0; #20ns;
   S = 1’b1; #10ns;
   S = 1’b0; #10ns;
   S = 1’b1; #20ns;
   S = 1’b0; #50ns;
   S = 1’b1; #10ns;
   S = 1’b0; #20ns;
   S = 1’b1; #10ns;
   S = 1’b0; #20ns;
   S = 1’b1; #40ns;
   S = 1’b0; #20ns;
   ...
end

S
10 ns
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duces a period of 16 nanoseconds because of rounding the result of

the real division to an integer value. 

Because the timescale in Sample 5-5 offers the necessary precision

for a 7.5 nanoseconds half-period, only this model generates a 50

percent duty-cycle clock signal with a precise 15 nanoseconds

period.  

Sample 5-3.
Truncation 
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;
...
bit clk = 0;
parameter cycle = 15;
always
begin
   #(cycle/2);  // Integer division
   clk =~clk;
end
endmodule

Sample 5-4.
Rounding 
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;
...
bit clk = 0;
parameter cycle = 15;
always
begin
   #(cycle/2.0);   // Real division
   clk = ~clk;
end
endmodule

Sample 5-5.
Proper preci-
sion in stimu-
lus generation

‘timescale 1ns/100ps
module testbench;
...
bit clk = 0;
parameter cycle = 15;
always
begin
   #(cycle/2.0);
   clk = ~clk;
end
endmodule
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Aligning Signals in Delta-Time

Delta delays are 

functionally 

equivalent to 

real delays.

In the specification shown in Figure 5-4, the transition of clk2 is

aligned with a transition on clk. There are many ways of generating

these two signals. Depending on the approach used, these aligned

transitions may occur in the same delta cycle, or in different delta

cycles. Although delta-cycle delays are considered zero-delays by

the simulator, functionally they have the same effect as real delays. 

A derived waveform, such as the one shown in Figure 5-4, appar-

ently is easy to generate. A simple always block, sensitive to the

proper edge of the original signal as shown in Sample 5-6, and

voila! Even the waveform viewer shows that it is right!

Watch for delta 

delays in 

derived wave-

forms.

The problem is not visually apparent. Because of the simulation

cycle (See “The Simulation Cycle” on page 163.), there is a delta

cycle between the rising edge of the base clock signal and the tran-

sition on the derived clock signal, as shown in Figure 5-5. Any data

transferred from the base clock domain to the derived clock domain

goes through this additional delta cycle delay. In a zero-delay simu-

lation, such as a transaction-level or RTL model, this additional

delta-cycle delay can have the same effect as an entire clock cycle

delay. 

Figure 5-4.
Derived
waveform
specification

Sample 5-6.
Improperly 
generating a 
derived wave-
form

always @(posedge clk)
begin
   clk2 <= ~clk2;
end

clk

clk2

Figure 5-5.
Delta delay in 
derived
waveform

clk

clk2
Δ
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Propagation 

delays make it 

work in the real 

world.

Why is it that generating divided clocks in simulation the same way

it is done in the real world does not work? Because, in synchronous

designs, there is always a race condition between the clk-to-D-input

path and the clk-to-clk2 path of adjacent flip-flops. This constant

race condition is solved by making sure that the delay through the

clk-to-D path is always longer than the delay through the clk-to-

clk2 path. In the real world, these signal propagation delays will

never be zero. Device physics and clock skew management pro-

vides a simple solution. In zero-time transaction-level or RTL mod-

els, propagation delays are composed of delta cycles. If the number

of delta cycles in the clk-to-D path is smaller than the number of

delta cycles in the clk-to-clk2 path, an entire clock cycle delay will

be lost.

Align derived 

signals in delta-

time.

The solution is surprisingly similar to that used in the real world. It

is necessary to minimize the delta-cycle skew between the base and

derived signals. This skew can be completely eliminated by align-

ing their respective edges in delta time. The only way to perform

this task is to re-derive the base signal through a divide-by-1 opera-

tion, as shown in Sample 5-7 and illustrated in Figure 5-6. The base

signal is never used by other threads. Instead, they must use the

divide-by-1 signal. 

Differential data 

signals need not 

be aligned.

When generating a differential data signal pair, it is not necessary to

align both polarities in the same delta cycle. Adding an inversion

delay in one of the phase signals only adds to the clock-to-D-input

path delay. This technique goes in the right direction to solve the

race condition. As shown in Sample 5-8, the inversion of the d sig-

nal in the connection to the dn pin may introduce an additional delta

cycle in the d-to-dn path compared to the d-to-dp path. 

Figure 5-6.
Generation of 
aligned 
derived signals

Sample 5-7.
Properly gen-
erating a 
derived wave-
form

always @(clk)
begin
   clk1 <= clk;
   if (clk == 1’b1) clk2 <= ~clk2;
end

clk

Generator
Base clk

div-by-1 clk
To design

div-by-N clk
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Clock Multipliers

Implemented 

using PLLs.

Many designs have a very high-speed front-end interface that is

driven using a multiple of a recovered clock or the lower-frequency

system clock. This clock multiplication is performed using an inter-

nal or external PLL (phase locked loop). PLLs are inherently ana-

log circuits. They are very costly to simulate in a digital simulator.

When an internal PLL is used, the analog component that imple-

ments the PLL is often modeled as an empty module. It is up to the

testbench to create an appropriate multiplied clock signal in a

behavioral fashion.

The reference 

clock could 

become the 

derived clock.

A simple strategy is to reverse the role of the reference and derived

clock. Since clock dividers are so easy to model, you could gener-

ate the high-frequency clock then use it to derive the lower-fre-

quency system-clock. Sample 5-9 shows a model for a multiply-by-

4 clock generator using the divide-by-4 strategy. But this only

works under two conditions: The reference clock is also an input to

the design, and the frequency of the reference clock is known and

fixed.

Synchronize the 

multiplied clock 

to the reference 

clock.

The first condition can be eliminated by synchronizing the multi-

plied clock signal with the reference clock. It will be possible to

generate the multiplied clock signal even if the reference clock is

supplied by the design. Sample 5-10 shows a model of a multiply-

by-4 clock generator, synchronized with an input reference clock.

But the problem of the hard-coded multiplied clock period remains.

This model assumes a reference clock with an 80 nanoseconds

period. What if the reference clock has a different frequency in a

Sample 5-8.
Generating
differential 
data signals

wire [15:0] d;

bfm cpu(..., .d(d), ...);
design dut (..., .dp(d), .dn(~d), ...);

Sample 5-9.
Generating
clock multi-
ples by divi-
sion

bit clk1 = 0;
bit clk4 = 0;
always
begin
   repeat (4) #10 clk4 <= ~clk4;
   clk1 <= ~clk1;
end
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different simulation run? How can we generalize this model into a

generic clock-multiplier PLL model?

Measure the 

period of the ref-

erence clock.

Why not let the model learn the period of the reference signal? You

can measure the time difference between two consecutive edges,

divide this value by 4, and voila! A generic PLL model. Sample 5-

11 shows a PLL model with a continuous measure of the reference

signal. As the frequency of the reference clock signal changes, the

frequency of the multiplied clock will adapt.  

Sample 5-10.
Synchroniz-
ing multiplied 
clock to input 
reference
clock

always @(clk)
begin
   clk4 <=       ~clk4;
   clk4 <= #10ns  clk4;
   clk4 <= #20ns ~clk4;
   clk4 <= #30ns  clk4;
end

Sample 5-11.
Adaptive
clock multi-
plier model

module pll(input  bit ref_clk,
           output bit out_clk);
parameter FACTOR = 4;

initial
begin
   real stamp;

out_clk = 1’b0;
   @(ref_clk);
   stamp = $realtime;

   forever begin
      real period;

      @(ref_clk);
      period = ($realtime - stamp)/FACTOR;
      stamp = $realtime;

      repeat (FACTOR-1) begin
         out_clk = ~out_clk;
         #(period);
      end
      out_clk = ~out_clk;
   end
end
endmodule



Reference Signals

Writing Testbenches using SystemVerilog 205

Watch that time-

scale!

The usual words of caution (see “Time Resolution Issues” on

page 199) apply regarding the precision of the timescale. The com-

puted period of the multiplied signal is a real value that will likely

have a fractional part. The actual delay value between two consecu-

tive edges of the multiplied clock will be the computed value

rounded to the current timescale precision. If the size of this error is

small enough compared to the period of the reference signal, this

should not cause a problem.

Asynchronous Reference Signals

Figure 5-7 shows a specification for two unrelated clock signals.

They are used by two separate clock domains in the design under

verification. clk100 is a 100 MHz signal while clk33 is a 33 MHz

signal. You could be tempted to model these two clock signals as

shown in Sample 5-12, using the higher frequency signal as a refer-

ence to generate the lower-frequency one with a divide-by-3 strat-

egy. This approach will indeed generate the waveforms shown in

Figure 5-7. But that is only one of the possible solutions, and one

that may not highlight some classes of problems.  

Alignment on 

paper is not a 

specification.

The problem comes from the inference that the waveforms are

aligned simply because they are aligned in the figure. There are no

explicit or implicit timing relationships between the two signals as

there is no timing arrow going from an edge in one waveform to an

edge in the other waveform. Drawing tools have a grid system that

facilitates drawing straight lines. But they also have the side effect

Figure 5-7.
Unrelated 
waveform
specification

Sample 5-12.
Improperly 
generating
unrelated
waveform

always @(clk100)
begin
   int count = 0;

   count = count + 1;
   if (count == 3) begin
      clk33 <= ~clk33;
      count = 0;
   end
end

clk100

clk33
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of aligning objects. When writing a specification, you must be care-

ful that these implicit alignments do not create the illusion of a rela-

tionship. When reading a specification, do not assume a

relationship unless it is explicitly stated.

Generate unre-

lated signals in 

separate threads.

Sample 5-13 shows a better way to generate these unrelated clock

signals. Since they are not synchronized in any way, they are gener-

ated using separate concurrent threads. This separation will make it

easier to modify the frequency of one signal without affecting the

frequency of the other. Also, notice how each signal is explicitly

skewed at the beginning of the simulation to avoid having the edges

aligned at the same simulation time. This approach is a good prac-

tice to highlight potential problems in the clock-domain crossing

portion of the design. By varying these initial signal skew values, it

will be possible to verify the correct functionality of the design

across different asynchronous clock relationships.  

Random Generation of Reference Signal Parameters

All signals are 

related in simu-

lation.

In the previous section, I explained why unrelated signals should be

modeled as separate threads and skewed with respect to each other

to avoid creating an implicit relationship that does not exist

between them. The truth is: There is no way to accurately model

unrelated signals. Each waveform is described with respect to the

current simulation time. Because all waveforms are described using

the same built-in reference, they are all implicitly related. Even

though I made my best effort to avoid modeling any relationship

between the two clock signals generated in Sample 5-13, they are
related because of the deterministic nature of the simulator. Unless I

manually modify one of the timing parameters, they will maintain

the same relationship in all simulations.

Asynchronous 

means random.

When we say that two signals are asynchronous to each other, we

are saying that they have a random phase relationship. That phase

relationship will be different every time and cannot be predicted.

When I specified explicit skew delay values in Sample 5-13, I intro-

Sample 5-13.
Generating
unrelated
waveforms

bit clk100 = 0;
initial #2 forever #5 clk100 = ~clk100;

bit clk33 = 0;
initial #5 forever #15 clk33 = ~clk33;
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duced certainty where there wasn’t any. These delay values should

be generated randomly to increase the chances that, over the thou-

sands of simulation runs the design will be subjected to, any prob-

lem related to clock skews will be highlighted.

Avoid using 

$random.

One solution would be to call $random to generate the delay values,

as shown in Sample 5-14. But this strategy can only produce evenly

distributed delay values. It would not be possible to modify the dis-

tribution of delay values toward more interesting corner cases, or

constrain the delay values against each other to create interesting

conditions.

Use skew vari-

ables initialized 

with $random.

Instead, as shown in Sample 5-15, use skew variables initialized

using $random to determine the initial skew of each asynchronous

waveform. Although it appears that little has been gained compared

with Sample 5-14, this approach allows a testbench to modify or

constrain the skew values. Notice the #1 delay inserted before the

actual skew delay. This allows the testbench code, written in a pro-
gram thread, to run and potentially replace the skew values before

they are used. Sample 5-16 shows how a testbench can generate and

replace new skew values with constrained random values that are

deemed more interesting.        

Sample 5-14.
Generating
unrelated
waveforms
using random 
skew

bit clk100 = 0;
initial #({$random} % 10)
   forever #5 clk100 = ~clk100;

bit clk33 = 0;
initial #({$random} % 30)
   forever #15 clk33 = ~clk33;

Sample 5-15.
Generating
unrelated
waveforms
using skew 
variables

bit clk100 = 0;
int clk100_skew = {$random} % 10;
initial #1 #(clk100_skew)
   forever #5 clk100 = ~clk100;

bit clk33 = 0;
int clk33_skew = {$random} % 30;
initial #1 #(clk33_skew)
   forever #15 clk33 = ~clk33;
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Applying Reset

Synchronized 

signals must be 

properly mod-

eled.

The first signal to be generated after the clock signals is the hard-

ware reset signal. The reset signal must be shaped properly to reset

the design correctly. The generation of a synchronous reset signal

should also reflect its synchronization with any clock signal. For

example, consider the specification for a reset signal shown in

Figure 5-8. The code in Sample 5-17 shows how such a waveform

is generated frequently.

Race conditions 

can be created 

easily between 

synchronized 

signals.

There are two problems with the way these two waveforms are gen-

erated in Sample 5-17. The first problem is functional: There is a

race condition between the clk and rst signals. At simulation time

150, and again later at simulation time 350, both variables are

assigned at the same timestep. Because the blocking assignment is

used for both assignments, one of them is assigned first. A block

sensitive to the falling edge of clk may execute before or after rst is
assigned. From the perspective of that block, the specification

Sample 5-16.
Randomly
generating
new skew val-
ues

program test;
initial
begin
   std::randomize(tb_top.clk100_skew,
                  tb_top.clk33_skew) with {
      tb_top.clk100_skew == tb_top.clk33_skew;
   };
   ...
end
endprogram

Figure 5-8.
Reset
waveform
specification

Sample 5-17.
Improperly 
generating a 
synchronous
reset

bit clk = 0;
always #50 clk = ~clk;

bit rst = 0;
initial
begin
   #150 rst = 1’b1;
   #200 rst = 1’b0;
end

clk

rst
100 ns
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shown in Figure 5-8 could appear to be violated. The race condition

can be eliminated by using nonblocking assignments, as shown in

Sample 5-18. Both clk and rst signals are assigned between

timesteps when no blocks are executing. If the design under verifi-

cation uses the falling edge of clk as the active edge, rst is

already—and reliably—assigned.

Lack of main-

tainability can 

introduce func-

tional errors.

The second problem, which is just as serious as the first one, is

maintainability of the description. You could argue that the first

problem is more serious, since it is functional. The entire simula-

tion can produce the wrong result under certain conditions. Main-

tainability has no such functional impact. Or has it? What if you

made a change as simple as changing the phase or frequency of the

clock. How would you know to change the generation of the reset

signal to match the new clock waveform?

Conditions in 

real life are dif-

ferent than those 

in this book.

In the context of Sample 5-18, with Figure 5-8 nearby, you would

probably adjust the generation of the rst signal. But outside of this

book, in the real world, these two blocks could be separated by hun-

dreds of lines, or even be in different files. The specification is usu-

ally a document three centimeters thick, printed on both sides. The

timing diagram shown in Figure 5-8 could be buried in an anony-

mous appendix, while the pressing requirements of changing the

clock frequency or phase was stated urgently in an email message.

And you were busy debugging this other testbench when you

received that pesky email message! Would you know to change the

generation of the reset signal as well? I know I would not.

Model the syn-

chronization 

within the gen-

eration.

Waiting for an apparently arbitrary delay cannot guarantee synchro-

nization with respect to the delay of the clock generation. A much

better way of modeling synchronized waveforms is to include the

synchronization in the generation of the dependent signals, as

shown in Sample 5-19. The proper way to synchronize the rst sig-

Sample 5-18.
Race-free gen-
eration of a 
synchronous
reset

bit clk = 0;
always #50 clk <= ~clk;

bit rst = 0;
initial
begin
   #150 rst <= 1’b1;
   #200 rst <= 1’b0;
end
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nal with the clk signal is for the generator to wait for the significant

synchronizing event, whenever it may occur. The timing or phase

of the clock generator can be modified now, without affecting the

proper generation of the rst waveform. From the perspective of a

design sensitive to the falling edge of clk, rst is reliably assigned

one delta-cycle after the clock edge.

Reset may need 

to be applied 

repeatedly dur-

ing a simulation.

There is a problem with the way the rst waveform is generated in

Sample 5-19. The initial block runs only once and is eliminated

from the simulation once completed. There is no way to have it exe-

cute again during a simulation. What if it were necessary to reset

the device under verification multiple times during the same simu-

lation? An example is the “hardware reset” testcase that verifies

proper reset operation: After setting some internal registers, the

hardware reset must be applied to verify that these registers return

to their reset value. The ability to control reset application is also

very useful. This control lets testbenches perform preparatory oper-

ations before resetting the design and starting the actual stimulus.

Generate reset 

from within a 

module task.

The proper mechanism to encapsulate statements that you may

need to repeat during a simulation is to use a task as shown in Sam-

ple 5-20. To repeat the reset signaling, simply call the task. To

maintain the behavior of using an initial block to reset the device

under verification automatically at the beginning of the simulation

(which may or may not be desirable), simply call the task in an ini-
tial block.

Reset task 

should be in pro-
gram.

It will be possible to invoke the reset task in the module from the

testbench program threads. The testbench will thus be able to reset

the design any time the reset is required. An alternative would be to

put the reset task in a program task, as shown in Sample 5-21.

Sample 5-19.
Proper genera-
tion of a syn-
chronous reset

bit clk = 0;
always #50 clk = ~clk;

bit rst = 0;
initial
begin
   @ (negedge clk);
   rst <= 1’b1;
   @ (negedge clk);
   @ (negedge clk);
   rst <= 1’b0;
end
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Because modules cannot call program tasks, it will be necessary for

each testbench to call the reset program task to reset the DUT.

However, this gives the testbench better control over the reset

parameters and its coordination with other device stimuli, not just

the clock. The section titled “Simulation Control” starting on page

124 of the Verification Methodology Manual for SystemVerilog
defines a simulation sequence methodology that includes a pre-

defined step for applying hardware reset to the design under verifi-

cation. 

Sample 5-20.
Encapsulating 
the generation 
of a synchro-
nous reset

module tb_top;

bit clk = 0;
bit rst = 0;
always #50 clk = ~clk;
...
task hw_reset
   rst = 1’b0;
   @ (negedge clk);
   rst <= 1’b1;
   @ (negedge clk);
   @ (negedge clk);
   rst <= 1’b0;
endtask: hw_reset
initial hw_reset;
...
endmodule

Sample 5-21.
Synchronous 
reset program 
task.

program test;

task hw_reset
   tb_top.rst <= 1’b0;
   @ (negedge tb_top.clk);
   tb_top.rst <= 1’b1;
   @ (negedge tb_top.clk);
   @ (negedge tb_top.clk);
   tb_top.rst <= 1’b0;
endtask: hw_reset

initial
begin
   hw_reset;
   ...
end
endprogram



Stimulus and Response

212 Writing Testbenches using SystemVerilog

Are you paying 

attention?

Pop quiz: What is missing from the hw_reset task in Sample 5-20

and Sample 5-21? The answer can be found in this footnote.1

SIMPLE STIMULUS 

In this section, I explain how to generate deterministic waveforms.

Various techniques are developed to generate stimulus signals in

the best way. I also demonstrate how to encapsulate and package

signal generation operations using simple bus-functional models.

Applying Synchronous Data Values

There is a race 

condition

between the 

clock and data 

signal.

Sample 5-22 shows how you could generate a zero-delay synchro-

nous data waveform. This approach is identical to the way flip-

flops are inferred in an RTL model. As illustrated in Figure 5-9,

there is a delay between the edge on the clock and the transition on

data, but the delay is a single delta cycle. In terms of simulation

time, there is no delay. For RTL models, this infinitesimal clock-to-

Q delay is sufficient to model the behavior of synchronous circuits

properly. However, this delay assumes that all clock edges are

aligned in delta time (see “Aligning Signals in Delta-Time” on

page 201). If you are generating both clock and data signals from

the outside of the model of the design under verification, you have

no way of ensuring that the total number of delta-cycle delays

between the clock and the data is maintained and that the data sig-

nal will arrive before the clock.  

1. The task hw_reset contains delay control statements. The task should 
contain a semaphore to detect concurrent activation. You can read more 
about this issue in “Non-Re-Entrant Tasks” on page 188.

Sample 5-22.
Zero-delay
generation of 
synchronous
data

initial
begin
   @ (negedge tb_top.clk);
   tb_top.data <= ...;
   @ (negedge tb_top.clk);
   tb_top.data <= ...;
   ...
end;
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The clock may 

be delayed more 

than the data.

For many possible reasons, the clock signal may be delayed by

more delta cycles than its corresponding data signal. These delays

could be introduced by using different I/O pad models for the clock

and data pins. They could also be introduced by the clock distribu-

tion network, which does not exist on the data signal. If the clock

signal is delayed more than the data signal, even in zero-time as

shown in Figure 5-10, the effect is the same as removing an entire

clock cycle from the data path.

Delay the data 

from the active 

clock edge.

Interface specifications never specify zero-delay values. A physical

interface always has a real delay between the active edge of a clock

signal and its synchronous data. When generating synchronous

data, always provide a real delay between the active edge and the

transition on the data signal, as shown in Sample 5-23, or synchro-

nize the data signal with the inactive edge of the clock.

Use a clocking
block.

Properly generating synchronous data requires that values gener-

ated for each cycle from different statements follow the exact same

proper approach. Should the timing requirements or synchroniza-

tion of the synchronous signal be modified, all statements driving

that signal must be consistently updated. Using a clocking block

decouples synchronization specification from functional specifica-

Figure 5-9.
Synchronous 
data
waveforms

clk

data
Δ

Figure 5-10.
Delta delays in 
clock path

Sample 5-23.
Non-zero-
delay genera-
tion of syn-
chronous data

initial
begin
   @ (negedge tb_top.clk);
   tb_top.data <= #1 ...;
   @ (negedge tb_top.clk);
   tb_top.data <= #1 ...;
   ...
end

clk

data
Δ

clk + 4Δ
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tion. The clocking block defines the active clock edge and the hold

time of the synchronous signal. The code generating the stimulus

only needs to worry about the consecutive values of the signal, as

shown in Sample 5-24. 

Abstracting Waveform Generation

Input vectors are 

difficult to write 

and maintain.

Using synchronous test values, also known as test vectors, to verify

a design is rather cumbersome. They are hard to interpret and diffi-

cult to specify correctly. For example, using cycle-by-cycle values

to verify a synchronously resetable D flip-flop with a 2-to-1 multi-

plexer on the input, as shown in Figure 5-11, could be stimulated

using the vectors shown in Sample 5-25.

Use tasks to 

encapsulate 

operations.

It would be easier if the operation accomplished by the test vectors

were abstracted. The device under verification can perform only

one of three things: 

• A synchronous reset,

• Load from input d0, or

• Load from input d1

Sample 5-24.
Using a clock-
ing block to 
drive synchro-
nous values.

clocking cb @ (negedge tb_top.clk);
   output #1 data = tb_top.data;
endclocking: cb

initial
begin
   @(cb);
   cb.data <= ...;
   @(cb);
   cb.data <= ...;
   ...
end

Figure 5-11.
2-to-1 input 
sync reset D 
flip-flop

clk

rst

d0
d1

sel
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Instead of providing test vectors to perform these operations repeat-

edly, why not provide subprograms that perform these operations?

All that will be left is to call the subprograms in the appropriate

order with the appropriate data.

Try to apply the 

worst possible 

combination of 

inputs.

The task to perform the synchronous reset is very simple. It needs

to assert the rst input, then wait for the active edge of the clock. But

what about the other inputs? You could decide to leave them

unchanged, but is that the worst possible case? What if the reset

was not functional and the device loaded one of the inputs and that

input was set to 0? It would be impossible to differentiate the wrong

behavior from the correct one. To create the worst possible condi-

tion, both d0 and d1 inputs must be set to 1. The sel input can be set

randomly, since either input selection should be functionally identi-

cal. An implementation of the reset procedure is shown in Sample

5-26.

Sample 5-25.
Test vectors 
for 2-to-1 
input sync 
reset D flip-
flop

clocking cb @ (negedge tb_top.clk);
   output #1 data = {tb_top.rst,
                     tb_top.d0,
                     tb_top.d1,
                     tb_top.sel};
endclocking: cb

initial
begin
   // Input
   @(cb); cb.data <= 4’b1110;
   @(cb); cb.data <= 4’b0100;
   @(cb); cb.data <= 4’b1111;
   @(cb); cb.data <= 4’b0011;
   @(cb); cb.data <= 4’b0010;
   @(cb); cb.data <= 4’b0011;
   @(cb); cb.data <= 4’b1111;
   ...
end

Sample 5-26.
Abstracting
the synchro-
nous reset 
operation

task sync_reset;
begin
   cb.rst <= 1’b1;
   cb.d0  <= 1’b1;
   cb.d1  <= 1’b1;
   cb.sel <= $random;
   @(cb);
endtask: sync_reset
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Pass input val-

ues as argu-

ments to the 

subprogram.

The other operations this design can perform is to load input d0 or

d1. The task to perform the “load d0” operation is shown in Sample

5-27. Unlike resetting the design, loading data can have different

input values: It can load either a one or a zero. The value of the

input to load is passed as an argument to the task. The worst condi-

tion is created when the other input is set to the complement of the

input value. If the device is not functioning properly and is loading

from the wrong input, then the result will be clearly wrong.

Stimulus gener-

ated with 

abstracted oper-

ations is easier 

to write and 

maintain.

Once operation abstractions are available, providing the proper

stimulus to the design under verification is easy to write and under-

stand. Compare the code in Sample 5-28 with the code of Sample 5-

25. If the polarity of the rst input were changed, which verification

approach would be easiest to understand and modify?     

SIMPLE OUTPUT

Generating stimulus is only half of the job. Actually, it is more like

25 percent of the job. The other parts, verifying that the output is as

expected and collecting functional coverage measurements, is

much more time consuming and error prone. There are various

ways the output can be checked against expectations. The outputs

have varying degrees of applicability and repeatability. In this sec-

Sample 5-27.
Abstracting
the load opera-
tion

task load_d0(input bit data);
   cb.rst <= 1’b0;
   cb.sel <= 1’b0;
   cb.d0  <=  data;
   cb.d1  <= ~data;
   @ (cb);
endtask: load_d0

Sample 5-28.
Verifying the 
design using 
operation 
abstractions

initial
begin
   sync_reset;
   load_d0(1);
   sync_reset;
   load_d1(1);
   load_d0(0);
   load_d1(1);
   sync_reset;
   ...
end
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tion, I will review techniques, some good, some not so good, for

verifying simple responses.

Visual Inspection of Response

Results can be 

printed.

The most obvious method for verifying the output of a simulation is

to inspect the results visually. The visual display can be an ASCII

printout of the input and output values at specific points in time, as

shown in Sample 5-29. 

Producing Simulation Results

To print simula-

tion results, you 

must model the 

signal sampling.

The specific points in time that are significant for a particular

design or testbench are always different. Which signals are signifi-

cant is also different and may change as the simulation progresses.

If you know which time points and signals are significant for deter-

mining the correctness of the simulation results, you have to be able

to model that knowledge. Producing the proper simulation results

involves modeling the behavior of the signal sampling.

Many sampling 

techniques can 

be used.

There are many sampling techniques, each as valid as the other. The

correct sampling technique depends on your needs and on what

makes the simulation results significant. Just as you have to decide

which input sequence is relevant for the functionality you are trying

to verify, you must also decide on the output sampling that is rele-

Sample 5-29.
ASCII view of 
simulation 
results

     r  s
     sddeqq
Time t01l b
-----------
0100 1110xx
0105 111001
0200 010001
0205 010010
0300 111110
0305 111101
0400 001101
0405 001110
0500 001010
0505 001010
0600 001110
0605 001110
0700 111110
0705 111101
...
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vant for determining the success or failure of the function under

verification.

You can sample 

at regular inter-

vals.

The simplest sampling technique is to sample the relevant signals at

a regular interval. The interval can be an absolute delay value, as

illustrated in Sample 5-30, or the interval can be a reference signal

such as the clock, as illustrated in Sample 5-31. Note how the

$strobe statement is used instead of $write or $display. This ensures

that the displayed values are the final, stable values for the current

simulation cycle and not some intermediate transient value.. 

You can sample 

based on a sig-

nal changing 

value.

Another popular sampling technique is to sample a set of signals

whenever one of them changes. This technique is used to reduce the

amount of data produced during a simulation when signals do not

change at a constant interval. 

To sample a set of signals, simply make an always block sensitive

to the signals whose changes are significant, as shown in Sample 5-

32. The set of signals displayed and monitored can be different.

SystemVerilog has a built-in task, called $monitor, to perform this

sampling when the set of displayed and monitored signals are iden-

tical. 

An example of using the $monitor task is shown in Sample 5-33.

The behavior of the $monitor statement in Sample 5-33 is different

than the always block in Sample 5-32: the former will display on

any change of the rst, d0, d1, sel, q or qb signals, whereas the latter

will only display on changes of the q or qb signals. Note that simu-

Sample 5-30.
Sampling at a 
delay interval

parameter INTERVAL = 10;
always
begin
   #(INTERVAL);
   $strobe(...);
end

Sample 5-31.
Sampling 
based on a ref-
erence signal

always @(negedge clk)
begin
   $strobe(...)
end
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lations are limited to a single active $monitor task. Any subsequent

call to $monitor replaces the previous monitor. 

Minimizing Sampling

To improve sim-

ulation perfor-

mance, 

minimize sam-

pling.

The use of an output device on a computer slows down the execu-

tion of any program. Therefore, recording simulation output

reduces the performance of the simulation. To maximize the speed

of a simulation, minimize the amount of simulation output pro-

duced during its execution. 

An active $monitor task can be turned on and off by using the

$monitoron and $monitoroff tasks, respectively. If you are using an

explicit sampling always block, you should include sampling mini-

mization techniques in your model, as illustrated in Sample 5-34. A

very efficient way of minimizing sampling is to have the stimulus

turn on the sampling when an interesting section of the testcase is

entered, as shown in Sample 5-35. 

Sample 5-32.
Sampling 
based on sig-
nal changes

always @(q, qb)
begin
   $strobe("...", rst, d0, d1, sel, q, qb);
end

Sample 5-33.
Sampling 
using the 
$monitor task

initial
begin
   $monitor("...", rst, d0, d1, sel, q, qb);
end

Sample 5-34.
Minimizing
sampling

always
begin

wait (<interesting_condition>);
while (<interesting_condition>) begin

      @ (q, qb;)
      $strobe(“...”, rst, d0, d1, sel, q, qb);
   end
end
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Visual Inspection of Waveforms

Results are bet-

ter viewed when 

plotted over 

time.

Waveform displays usually provide a more intuitive visual repre-

sentation of simulation results. Figure 5-12 shows the same infor-

mation as Sample 5-29, but using a waveform view. The waveform

view has the advantage of providing a continuous display of many

values over the entire simulation time, not just at specific time

points as in a text view. Therefore, you need not specify or model a

particular sampling technique. The signals are continuously sam-

pled, usually into an efficient database format. Sampling for wave-

forms must be turned on explicitly. It is a tool-dependent1 process

that is different for each tool.

Sample 5-35.
Controlling 
the sampling 
from the stim-
ulus

initial
begin
   $monitor("...", rst, d0, d1, sel, q, qb);

$monitoroff;
   sync_reset;
   load_d0(1);
   sync_reset;

$monitoron;
   load_d1(1);
   load_d0(0);
   load_d1(1);
   sync_reset;

$monitoroff;
   ...
end

1. SystemVerilog has a standard waveform database called the VCD file. 
Although all waveform viewers can display simulation results from a 
VCD file, all of the more advanced viewers use their own proprietary 
database to store additional signal information.

Figure 5-12.
Waveform 
view of 
simulation 
results

clk

rst

d0

d1

sel

q

qb
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Minimize the 

number and 

duration of sam-

pled signals.

The default behavior is to sample all signals during the entire simu-

lation. The waveform sampling process consumes a significant por-

tion of the simulation resources. Reducing the number of signals

sampled, or reducing the duration of the sampling, increases the

simulation performance. However, it is a trade-off with running a

simulation multiple times to obtain traces of signals that were found

to be necessary for diagnosing the cause of a functional error in a

previous iteration. During a typical verification process, all signals

should be sampled at the beginning, when the number of bugs is

significant and their location is unknown. As the code stabilizes and

simulations move to greater levels of integration, less and less sig-

nals are sampled. During regression runs, no signals are sampled.

The rule of thumb is: If you expect the simulation to fail, sample a

lot of signals; if you expect it to pass, don’t sample any.  

Self-Checking Testbenches

Visual inspec-

tion is not 

acceptable.

The model of the D flip-flop with a 2-to-1 input mux being verified

has a functional error. Can you identify it using either views of the

simulation results in Sample 5-29 or Figure 5-12? How long did it

take to diagnose the problem?1

Code the 

response with 

the stimulus.

This example was for a very simple design, over a very short period

of time, and for a very small number of signals (and you knew there

was a bug). Imagine visually inspecting simulation results spanning

hundreds of thousands of clock cycles, and involving hundreds of

input and output signals. Then imagine repeating this visual inspec-

tion for every testbench and for every simulation of every test-

bench. The probability that you will miss identifying an error is

equal to one hundred percent. You must automate the process of

comparing the simulation results against the expected outputs.

Input and Output Vectors

Specify the 

expected output 

values for each 

clock cycle.

The first step in automating output verification is to include the

expected output with the input stimulus for every clock cycle. The

vector application task in Sample 5-24 can be easily modified to

include the comparison of the output signals with the specified out-

1. The logic value on input d0 is ignored and a 1 is always loaded.
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put vector, as shown in Sample 5-36. The testcase becomes a series

of input/output test vectors, as shown in Sample 5-37. 

Test vectors 

require synchro-

nous interfaces.

The main problem with input and output test vectors (other than the

fact that they are very difficult to specify, maintain and debug), is

that they require perfectly synchronous interfaces. If the design

under verification contains interfaces in different clock domains,

each interface requires its own test vector stream. If any interface

contains asynchronous signals, the signals have to be either exter-

nally synchronized before vectors are applied, or treated as syn-

chronous signals, therefore under-constraining the verification.

Golden Vectors

A set of refer-

ence simulation 

results can be 

used.

The next step toward automation of response verification is the use

of golden vectors. It is a simple extension of the manufacturing test

process where devices are physically subjected to a series of quali-

fying test vectors. A set of reference output results, determined to

be correct, are kept in a file or database. The simulation outputs are

Sample 5-36.
Application of 
input and veri-
fication of out-
put data vec-
tors

task apply_vector(input [...] in_data,
                  input [...] out_data);
   cb.in_data <= in_data;
   @(cb);
   fork
      begin
         @(cb)
         if (cb.out_data !== out_data) ...;
      end
   join_none
endtask: apply_vector

Sample 5-37.
Input/output
test vectors for 
2-to-1 input 
sync reset D 
flip-flop

initial
begin
   // In: rst, d0, d1, sel
   // Out: q, qb
   apply_vector(4’b1110, 2’b00);
   apply_vector(4’b0100, 2’b10);
   apply_vector(4’b1111, 2’b00);
   apply_vector(4’b0011, 2’b10);
   apply_vector(4’b0010, 2’b01);
   apply_vector(4’b0011, 2’b10);
   apply_vector(4’b1111, 2’b00);
   ...
end
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captured in a similar format during a simulation. They are then

compared against the reference results. Golden vectors have an

advantage over input/output vectors because the expected output

values need not be specified in advance.

Text files can be 

compared using 

diff.

If the simulation results are kept in ASCII files, the simplest com-

parison process involves using the UNIX diff utility. The diff output

for the simulation results shown in Sample 5-29 is shown in Sample

5-38. You can appreciate how difficult the subsequent task of diag-

nosing the functional error will be.

Waveforms can 

be compared by 

a specialized 

tool.

Waveform comparators can be used also. They are tools similar to

waveform viewers and are usually built into one. Waveform com-

parators compare two sets of waveforms then highlight the differ-

ences on a graphical display. The display of a waveform

comparator might look something like the results illustrated in

Figure 5-13. Identifying the problem is easier since you have access

to the entire history of the simulation in a single view.

Sample 5-38.
diff output of 
comparing
ASCII view of 
simulation 
results

14c2
>0505 001010
>0600 001110
--------
<0505 001001
<0600 001110
...

Figure 5-13.
Waveform 
differences in 
simulation 
results
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q

qb

q(gold)

qb(gold)
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Golden vectors 

must still be 

inspected visu-

ally.

The main problem with golden simulation results is that they need

to be inspected visually to be determined as “golden”. This self-

checking technique only reduces the number of times a set of simu-

lation responses must be verified visually, not the need for visual

inspection. The result from each testbench must still be manually

confirmed as good.

Golden vectors 

do not adapt to 

changes.

Another problem: Reference simulation results do not adapt to

modifications in the design under verification that may only affect

the timing of the result, without affecting its functional correctness.

For example, an extra register may be added in the datapath of a

design to help meet timing constraints. All that was added was a

pipeline delay. The functionality was not modified. Only the

latency was increased. If that latency is irrelevant to the functional

correctness of the overall system, the reference vectors must be

updated to reflect that change.

Golden vectors 

require a signifi-

cant mainte-

nance effort.

Reference simulation results must be inspected visually for every

testcase, and modified or regenerated whenever a change is made to

the design, each time requiring visual inspection. Using reference

vectors is a high-maintenance, low-efficiency self-checking strat-

egy. Verification vectors should be used only when a design must be

100 percent backward compatible with an existing device, signal

for signal, clock cycle for clock cycle. In those circumstances, the

reference vectors never change and never require visual inspection

as they are golden by definition.

Separate the ref-

erence vectors 

along clock 

domains.

Reference simulation results also work best with synchronous inter-

faces. If you have multiple interfaces in separate clock domains, it

is necessary to generate reference results for each domain in a sepa-

rate file. If a single file is used, the asynchronous relationship

between the clock domains may result in the samples from different

domains being written in a different order. The ordering difference

is not functionally relevant, but would be flagged as an error by the

comparison tool.

Self-Checking Operations

For simple operations on simple devices, it may be possible to ver-

ify the response on an operation-by-operation basis. For example,

the task shown in Sample 5-26 can include the verification that the

flip-flop was reset properly as shown in Sample 5-39. Similarly, the

task used to apply the stimulus to load data from d0 shown in Sam-
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ple 5-27 can be modified to include the verification of the output, as

shown in Sample 5-40. The testcase shown in Sample 5-28 now

becomes entirely self-checking. 

Make sure the 

output is veri-

fied properly.

The problem with output verification is that you can’t identify a

functional discrepancy if you are not looking at it. Using an if state-

ment to verify the output in the middle of a stimulus thread only

looks at the output value for a brief instant. That may be acceptable,

but this technique does not say anything about the stability of that

output. For example, the tasks in Sample 5-39 and Sample 5-40

only check the value of the output at a single point in time.

Sample 5-39.
Verifying the 
sync reset 
operation

task sync_reset;
begin
   cb.rst <= 1’b1;
   cb.d0  <= 1’b1;
   cb.d1  <= 1’b1;
   cb.sel <= $random;
   @(cb);
   fork
      begin
         @(cb);
         if (cb.q  !== 1’b0 ||
             cb.qb !== 1’b1) ...
      end
   join_none
endtask: sync_reset

Sample 5-40.
Verifying the 
load operation

task load_d0(input data);
   cb.rst <= 1’b0;
   cb.sel <= 1’b0;
   cb.d0  <=  data;
   cb.d1  <= ~data;
   @ (cb);
   fork
      begin
         @(cb);
         if (cb.q  !== data ||
             cb.qb !== ~data) ...
      end
   join_none
endtask: load_d0
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Figure 5-14 shows the complete specification for the flip-flop. The

verification sampling point is shown as well.

Make sure you 

verify the out-

put over the 

entire significant 

time period.

To verify the functionality of the design properly and completely, it

is necessary to verify that the output is stable, except for the short

period after the rising edge of the clock. That could be verified eas-

ily using a static timing analysis tool and a set of suitable con-

straints to verify against. If you want to perform the verification as

part of a functional simulation, the stability of the output cannot be

verified from the same task that applies the input. Stability is a

property that must be checked at all times, not just after applying

new stimulus. Therefore, a concurrent stability check thread must

exist, independent of the stimulus thread, to be ready to react to any

unexpected changes, as shown in Sample 5-41. The stimulus task

still checks the correctness of the output value. The stability moni-

tor simply verifies that the output remains stable, whatever its

value.

Low-level 

checks may 

have to be 

located in the 

design.

Notice how the stability check in Sample 5-41 is located in the flip-

flop design module itself, not the testbench program. The prefer-

ence in the simulation cycle for module threads over program

threads would filter out any transient output value made from a

module thread. These transient values may not be visible to the pro-

gram threads if they eventually resolve to the same initial value.

The check could have been implemented in a separate module,

using cross-module (white-box) references to observe the appropri-

ate signals within the design module, but it would have required

one such module for every instance of the design module. Locating

the check inside the design module simplifies overall maintenance

and it can be surrounded by appropriate directives to eliminate it

from synthesis. 

A property
could not have 

been asserted.

Properties are cycle-based sequences of boolean expressions. The

stability check requires an asynchronous, self-timed expression.

Note that the stability check initial block is an assertion. An asser-

Figure 5-14.
Timing 
specification
for the flip-
flop

clk

inputs

q/qb

TholdTsetup

Td

Verify
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tion is simply a check for a property to be true. It does not need to

make use of the property construct. Some assertions are better

implemented using behavioral code.

 COMPLEX STIMULUS

This section introduces more complex stimulus generation scenar-

ios through the use of bus-functional models. I start with reactive

stimulus, where the stimulus or its timing depends on answers from

the device under verification. I also show how to avoid wasting pre-

cious simulation cycles by getting caught in deadlock conditions.

Generating 

inputs may 

require cooper-

ating with the 

design.

Applying stimulus to a clock or reset input or applying cycle-by-

cycle test vectors is straightforward. You are under complete con-

trol of the timing of the input signal. However, if the interface being

driven contains handshaking or flow-control signals, the generation

of the stimulus requires cooperation with the design under verifica-

tion.

Sample 5-41.
Verifying the 
stability of 
flip-flop out-
puts

module muxff(...);
...
‘ifndef SYNTHESIS
initial
begin
   // wait for the first clock edge
   @ (posedge clk);
   forever begin
      // Ignore changes for Td after clock edge
      #(Td);
      // Watch for a change before the next clk
      fork: stability_mon
         @ (q or qb) $write("...");
         @ (posedge clk);
      join_any
      disable stability_mon;
   end
end
‘endif
endmodule
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Feedback Between Stimulus and Design

Without feed-

back, verifica-

tion can be 

under-con-

strained.

Figure 5-15 shows the specification for a simple bus arbiter. If you

were to verify the design of the arbiter using test vectors applied at

every clock cycle, as described in “Input and Output Vectors” on

page 221, you would have to assume a specific delay between the

assertion of the req signal and the assertion of the grt signal. Any

delay value between one and five clock cycles would be function-

ally correct, but the only reliable choice is a delay of five cycles.

Similarly, a delay of three clock cycles would have to be made for

the release portion of the verification. These choices, however,

severely under-constrain the verification. If you want to stress the

arbiter by issuing requests as fast as possible, you would want to

know when the request was granted and released, so it could be

reapplied as quickly as possible.

Stimulus gener-

ation can wait 

for feedback 

before proceed-

ing.

If, instead of using input and output test vectors, you are using

encapsulated operations to verify the design, you can modify the

operation to wait for feedback from the design under verification

before proceeding. You should also include any timing and func-

tional verification in the feedback monitoring to ensure that the

design responds in an appropriate manner. Sample 5-42 shows the

bus_request operation task. The task samples the grt signal at every

clock cycle, and immediately returns once it detects that the bus

was granted. With a similarly implemented bus_release task, a

testcase that stresses the arbiter under maximum load can be written

easily, as shown in Sample 5-43. 

Recovering from Deadlocks

A deadlock may 

prevent the 

testcase from 

running to com-

pletion.

There is a risk inherent to using feedback in generating stimulus:

The stimulus now depends on the proper operation of the design

under verification to complete. If the design does not provide the

feedback as expected, the stimulus generation may be halted, wait-

ing for a condition that will never occur. For example, consider the

bus_request task in Sample 5-42. What happens if the grt signal is

Figure 5-15.
Specification
for a simple 
arbiter

clk

req

grt

1≤Td≤5 cycles
2≤Tr≤3 c.
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never asserted? The task remains stuck in the while loop and never

returns.

A deadlocked 

simulation

appears to be 

running cor-

rectly.

If this were to occur, the simulation would still be running, merrily

going around and around the while loop. The simulation time would

advance at each tick of the clock. The CPU usage of your worksta-

tion would show near 100 percent usage. The only symptom that

something is wrong would be that no messages are produced on the

simulation’s output log and the simulation runs for much longer

than usual. If you are watching the simulation run and expect regu-

lar messages to be produced during its execution, you would

quickly recognize that something is wrong and manually interrupt

it.

Sample 5-42.
Verifying the 
bus request 
operation

program test;

clocking cb @(posedge tb_top.clk);
   output req = tb_top.req;
   input  grt = tb_top.grt;
endclocking: cb

task bus_request;
   automatic int cycle_count = 0;
   cb.req <= 1’b1;
   while (cb.grt != 1’b1) begin
      @(cb);
      cycle_count++;
   end
   assert 1 <= cycle_count && cycle_count <= 5;
end: bus_request
...
endprogram: test

Sample 5-43.
Stressing the 
bus arbiter

program test;
...
initial
begin
   repeat (10) begin
      bus_request;
      bus_release;
   end
end
endprogram: test
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A deadlocked 

simulation

wastes regres-

sion runs.

But what if there is no one watching the simulation, such as during

a regression run? Regressions are large scale simulation runs where

all available testcases are executed. They are used to verify that the

functionality of the design under verification is still correct after

modifications. Because of the large number of testcases involved in

a regression, the process is automated to run unattended, usually

overnight and on many computers. If a design modification creates

a deadlock situation, all testcases scheduled to execute subse-

quently will never run, as the deadlocked testcase never terminates.

The opportunity of detecting other problems in the regression run is

wasted. It will be necessary to wait for another 24-hour period

before knowing if the new version of the design meets its functional

specification.

Eliminate the 

possibility of 

deadlock condi-

tions.

When generating stimulus, you must make sure that there is no pos-

sibility of a deadlock condition. You must assume that the feedback

condition you are waiting for may never occur. If the feedback con-

dition fails to happen, you must then take appropriate action. It

could include terminating the testcase, or jumping to the next por-

tion of the testcase that does not depend on the current operation, or

retrying the operation after some delay. Sample 5-42 was modified

as shown in Sample 5-44 to use an assertion to avoid the deadlock

condition created if the arbiter failed and the grt signal was never

asserted. 

Sample 5-44.
Avoiding 
deadlock in 
the bus request 
operation

program test;

clocking cb @(posedge tb_top.clk);
   output req = tb_top.req;
   input  grt = tb_top.grt;
endclocking: cb

property grt_within_5;
   $rose(tb_top.req)
      |-> ##[1:5] $rose(tb_top.ack);
endproperty
assert grt_within_5 @(posedge tb_top.clk);

task bus_request;
   cb.req <= 1’b1;
   while (cb.grt != 1’b1) @(cb);
end: bus_request
...
endprogram: test
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Operation tasks 

could return sta-

tus.

If a failure of the feedback condition is detected, terminating the

simulation on the spot, as shown in Sample 5-44, is easy to imple-

ment. If you want more flexibility in handling a non-fatal error, you

might want to let the testcase handle the error recovery, instead of

handling it inside the operation task. The task must provide an indi-

cation of the status of the operation’s completion back to the

testcase. Sample 5-45 shows the bus_request task that includes an

OK status flag indicating whether the bus was granted. The testcase

is then free to retry the bus request operation until it succeeds, as

shown in Sample 5-46. Notice how the testcase takes care of avoid-

ing its own deadlock condition if the bus request operation never

succeeds.

Asynchronous Interfaces

Test vectors 

under-constrain 

asynchronous 

interfaces.

Creating synchronous input data and verifying synchronous output

values is simple. The inputs are all applied at the same time. The

outputs are all verified at the same time. And this process is

repeated at regular intervals. In every design, there is some refer-

ence signal that can be used to synchronize generation and sam-

pling operations. But many interfaces, although implemented using

Sample 5-45.
Returning sta-
tus in the bus 
request opera-
tion

program test;

clocking cb @(posedge tb_top.clk);
   output req = tb_top.req;
   input  grt = tb_top.grt;
endclocking: cb

task bus_request(output bit ok);
   automatic int cycle_count = 0;
   ok = 0;
   cb.req <= 1’b1;
   while (cb.grt != 1’b1) begin
      @(cb);
      if (cycle_count++ > 100) begin
         cb.req <= 1’b0;
         return;
      end
   end
   assert 1 <= cycle_count && cycle_count <= 5;
   ok = 1;
end: bus_request
...
endprogram: test
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synchronous finite state machines and edge-triggered flip-flops, are

specified in an asynchronous fashion. The implementer has arbi-

trarily chosen a clock to streamline the physical implementation of

the interface. If that clock is not part of the specification, it should

not be part of the verification. For example, Figure 5-16 shows an

asynchronous specification for a bus arbiter. Given a suitable clock

frequency, the synchronous specification shown in Figure 5-15

would be functionally equivalent.

Verify the syn-

chronous imple-

mentation 

against the asyn-

chronous speci-

fication.

Even though a clock may be present in the implementation, if it is

not part of the specification, you cannot use it to generate stimulus

nor to verify the response. You would be verifying against a partic-

ular implementation, not the specification. If a clock is present, and

the timing constraints make reference to clock edges, then you must
use it to generate stimulus and verify response. For example, a PCI

bus is synchronous. A verification of a PCI interface must use the

PCI system clock to verify any implementation.

High-level code 

does not require 

a clock like RTL 

code.

Testbenches are written using high-level code. Transaction-level

models do not require a clock. A clock is an artifice of the imple-

mentation methodology and is required only for RTL code. The bus

Sample 5-46.
Handling fail-
ures in the 
bus_request
task

program test;
...
initial
begin
   bit ok;
   int attempts = 0;

   forever begin
      bus_request(ok);
      if (ok) break;
      attempts++;
      assert attempts < 5;
   end
   ...
end
endprogram: test

Figure 5-16.
Asynchronous 
specification
for a simple 
arbiter

req

grt

0≤Td≤60 ns
10≤Tr≤30 ns.
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request phase of the asynchronous interface specified in Figure 5-

16 can be verified asynchronously with the bus_request task shown

in Sample 5-47. Notice how the bus request operation does not use

a clock for timing control. Also, notice how it uses the definitely

non-synthesizeable fork/join statement to wait for the rising edge of

grt for a maximum of 60 nanoseconds. 

Consider all 

possible failure 

modes.

There is one problem with the bus request operation in Sample 5-

47. What if the arbiter was functionally incorrect and left the grt
signal always asserted? Both models would never see a rising edge

on the grt signal. They would eventually exhaust their maximum

waiting period then detect grt as asserted, indicating a successful

completion. To detect this possible failure mode, the bus request

operation must verify that the grt signal is not asserted prior to

asserting the req signal, as shown in Sample 5-48.

Were you pay-

ing attention?

Pop quiz: what is missing from all those task implementations?1

Sample 5-47.
Verifying the 
asynchronous
bus request 
operation

task bus_request(output bit ok);
   req = 1’b1;

fork: wait_for_grt
      #60ns;
      @ (posedge grt);
   join_any
   disable wait_for_grt;
   ok = (grt == 1’b1);
endtask: bus_request

Sample 5-48.
Verifying all 
failure modes 
in the asyn-
chronous bus 
request opera-
tion

task bus_request(output bit ok);
   if (grt == 1’b1) begin
      ok = 0;
      return;
   end
   req = 1’b1;
   fork: wait_for_grt
      #60ns;
      @ (posedge grt);
   join_any
   disable wait_for_grt;
   ok = (grt == 1’b1);
endtask: bus_request
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BUS-FUNCTIONAL MODELS

Operations are 

abstracted 

through bus-

functional mod-

els.

Although I have avoided using the term bus-functional model, all of

the tasks abstracting operations on the design shown earlier are bus-

functional models, albeit very simple ones. Operations, also known

as transactions, encapsulated using tasks can be very complex. The

examples shown earlier were very simple and dealt with only a few

signals. Real-life interfaces are more complex. But they can be

encapsulated just as easily. These transactions may even return val-

ues to be verified against expected response or modify the stimulus

sequence. As shown in Figure 4-2, a bus-functional model abstracts

transactions on a physical-level interface into a procedural inter-

face. Bus-functional models can be used to generate stimulus as

well as monitor the response of a design. Very often, a single bus-

functional model performs both operations.

CPU Transactions

CPU interfaces 

are popular bus 

functional mod-

els.

The first image that probably came to your mind when you read the

term “bus-functional model” was an interface to a processor.

Abstracted processor bus transactions are the most popular and

common bus-functional models. Figure 5-17 shows the specifica-

tion for the write cycle for an Intel 386SX processor bus. Sample 5-

49 shows the corresponding bus-functional model procedure.  

1. They all include timing control statements. They should have a sema-
phore to detect concurrent activation. See “Non-Re-Entrant Tasks” on 
page 188.

Figure 5-17.
Specification
for the write 
cycle of a 
386sx 
processor

Wait State

Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1

clk

addr

ads

rw

ready

data

<4

<4

<4
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Bus models can 

adapt to a differ-

ent number of 

wait states.

To generate stimulus for this interface using synchronous test vec-

tors, you would have to assume a specific number of wait cycles to

complete the write operation at the right time. With high-level mod-

els of the transaction, you need not enforce a particular number of

wait cycles and adapt to any valid bus timing. In Sample 5-49, the

wait cycles are introduced by the timing control statement inside

the do loop.

Bus-functional

procedures can 

return values.

All of the abstracted transactions shown so far were unidirectional.

Data always flowed from the testbench through the bus-functional

task where the data was applied to the design and outputs were

checked for correctness. What if determining the correctness of the

output required visibility over multiple operations? What if only the

relevant output values for this testcase were known and the others

were to be ignored?  Bus-functional tasks can just as easily sample

output and return it instead of comparing the output against sup-

plied expected responses. The sampled value can then be processed

by the testbench where the value can be dealt with according to the

needs of the testcase. For example, Sample 5-50 shows the read
operation of the 386SX interface. Notice how the value read is not

compared against an expected value. The value read is instead

returned through an output argument.

You can perform 

read-modify-

write operations.

It now becomes easy to perform read-modify-write operations.

With abstracted transactions and the full power of a high-level lan-

guage, you can perform a read operation that returns whatever

value was read at the specified address, manipulate the read value,

then use the modified value in a subsequent write transaction. Sam-

ple 5-51 shows a portion of a testcase where the read_cycle and

Sample 5-49.
Model for the 
write cycle 
operation

task write_cycle(input bit [23:0] wadd,
                 input bit [31:0] wdat);
   do @ (cb) while (cb.phi != 2);
   cb.addr <= wadd;
   cb.ads  <= 1’b0;
   cb.rw   <= 1’b1;
   cb.data <= wdat;
   repeat (2) @ (cb);
   cb.ads  <= 1’b1;
   do @(cb) while (cb.phi != 2 ||
                   cb.ready != ’0’);
   cb.data <= ’z;
endtask: write_cycle
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write_cycle tasks are used to perform a read-modify-write opera-

tion.

From Bus-Functional Tasks to Bus-Functional Model

Bus-functional

tasks are pack-

aged into bus-

functional mod-

els.

A complete bus-functional model is composed of many bus-func-

tional tasks. Each transaction supported by a particular physical

interface is implemented using a different procedure. Collected

together in a class as described in “Encapsulating Bus-Functional

Models” on page 127, they create a complete bus-functional model

for a specific interface.

Tasks may be re-

entrant, but bus-

functional mod-

els are not.

In “Non-Re-Entrant Tasks” on page 188, I discussed the problem

caused by non-re-entrant tasks. By encapsulating the transaction

procedures in a class, which is dynamic, making the tasks re-entrant

by default, you’d think that the problem would be solved, right?

Wrong. Sample 5-52 shows the bus-functional tasks for the i386SX

packed into a class. Although the read and write tasks are now fully

Sample 5-50.
Model for the 
read cycle 
operation

task read_cycle(input  bit [23:0] radd,
                output bit [31:0] rdat);
   do @(cb) while (phi != 2);
   cb.addr <= radd;
   cb.ads  <= 1’b0;
   cb.rw   <= 1’b0;
   repeat (2) @ (cb);
   cb.ads  <= 1’b1;
   do @(cb) while (cb.phi != 2 ||
                   cb.ready != 1’b0);
   rdat = cb.data;
endtask: read_cycle

Sample 5-51.
Performing a 
read-modify-
write opera-
tion

program test;
...
initial
begin
   const bit [23:0] cfg_reg = 24’h000316;
   bit [31:0] tmp;
   ...
   read_cycle(cfg_reg, tmp);
   tmp(13:9) := "01101";
   write_cycle(cfg_reg, tmp);
   ...
end
endprogram: test



Bus-Functional Models

Writing Testbenches using SystemVerilog 237

re-entrant, what happens if two separate threads concurrently

invoke the same task? The local data space of the task is preserved,

but not the value of the (static) interface signals. The two concur-

rent transactions will interfere with each other trying to execute at

the same time on the same physical interface. The same problem

will occur even if two different bus-functional tasks in the same

bus-functional model are concurrently invoked. 

Put a sema-

phore on the 

bus-functional 

model.

If two or more threads must read from (or write to) the design, the

operations must be coordinated. To pipeline concurrent operations,

it is necessary to put a semaphore around the entire bus-functional

model. Much like a semaphore was used to detect concurrent invo-

cation of a non-re-entrant task, it will be used to detect concurrent

invocation of transactions in a non-re-entrant bus-functional model.

Sample 5-53 shows how a bus-functional model can be protected

against concurrent transactions using a semaphore. It is up to you to

decide, should the semaphore detect a concurrent transaction,

whether to wait for the bus-functional model to become available or

to terminate with an error. 

SystemVerilog 

is not signifi-

cantly better for 

physical-level 

bus-functional 

models.

With almost all of the examples in the previous sections looking

like pure Verilog, I would not be surprised if you double-checked

the title of this book to make sure it says “SystemVerilog”. System-

Verilog is not significantly better than good old Verilog in imple-

menting physical-level bus-functional models. Low-level bus-

functional models simply translate an abstracted representation of a

transaction into 1’s and 0’s applied or sampled at individual clock

cycles. Signal assignments, signal sampling and waiting for the

Sample 5-52.
Packaged
i386SX bus-
functional 
model

class i386sx;
   virtual i386sx_if sigs;
   ...
   virtual task read(input  bit [23:0] radd,
                     output bit [31:0] rdat);
      this.sigs.cb.addr <= radd;
      ...
   endtask: read

   virtual task write(input bit [23:0] wdd,
                      input bit [31:0] wdat);
      this.sigs.cb.addr <= wadd;
      ...
   endtask: write
endclass: i386sx
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next clock edge uses the same statements as in pure Verilog because

it does not need the increased levels of abstraction offered by the

features that make SystemVerilog.

SystemVerilog 

is significantly 

better above the 

physical level.

SystemVerilog becomes clearly superior once we stop dealing with

the physical interface because of its support for high-level data

types, object-orientedness and randomization. SystemVerilog

allows for a simpler transaction-layer interface. The transaction

descriptors will be easier to model and manipulate using object-ori-

ented methods and transaction descriptors will be easier to generate

using constrainable randomization.

Physical Interfaces

Collect all sig-

nals in an inter-
face.

Bus-functional models encapsulated in classes can access physical

signals in one of two ways: through hierarchical—white-box—ref-

erences or through a virtual interface. Using hierarchical references

would make the bus-functional model class specific to a particular

set of interface signals. It would not be possible to reuse the model

in a different testbench or instantiate it more than once in the same

testbench without copying it and modifying the references. The

only mechanism that will make bus-functional models reusable

within or across testbenches is the virtual interface. This implies

Sample 5-53.
Protected
i386SX bus-
functional 
model

class i386sx;
local semaphore sem;

   virtual i386sx_if sigs;
   ...
   virtual task read(input  bit [23:0] radd,
                     output bit [31:0] rdat);
      if (!this.sem.try_get(1)) ...;
      this.sigs.cb.addr <= radd;
      ...
      this.sem.put(1);
   endtask: read

   virtual task write(input bit [23:0] wdd,
                      input bit [31:0] wdat);
      if (!this.sem.try_get(1)) ...;
      this.sigs.cb.addr <= wadd;
      ...
      this.sem.put(1);
   endtask: write
endclass: i386sx
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that all physical-level signals required by the bus-functional model

be encapsulated in an interface as shown in Sample 5-54. 

Define clocking
blocks for each 

clocking 

domain.

Synchronous signals are better sampled and driven through clock-
ing blocks. It simplifies the maintenance of the synchronization and

delay specifications and properly samples synchronous data from

the module domain to the program domain. Each clock domain

requires a separate clocking block, as shown in Sample 5-55. Note

how the asynchronous signals crs and col are not included in any

clocking blocks.

Can use a single 

interface for all 

perspectives on 

a physical inter-

face.

The interface definitions in Sample 5-54 and Sample 5-55 imply a

definite direction to the signals in that interface. Data is transmitted

on the tx... signals and received on the rx... signals. That is correct if

the bus-functional model implements the MAC-layer functionality

in the ethernet protocol. If the bus-functional model were to imple-

ment the PHY-layer functionality, the data flow would need to be

reversed. In reality, you often need both bus-functional models,

Sample 5-54.
Physical inter-
face for MII 
bus-functional 
model

interface mii_mac_if;

wire       tx_clk;
reg  [3:0] txd;
reg        tx_en;
reg        tx_er;
wire       rx_clk;
wire [3:0] rxd;
wire       rx_dv;
wire       rx_er;
wire       crs;
wire       col;
...
endinterface: mii_mac_if

Sample 5-55.
Clocking 
domains in 
physical inter-
face.

interface mii_mac_if;
...
clocking tx @(posedge tx_clk);
   output #1 txd, tx_en, tx_er;
endclocking: tx

clocking rx @(posedge rx_clk);
   input #1 rxd, rx_dv, rx_er;
endclocking: rx

endinterface: mii_mac_if
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because the system you are designing has components on either

side of that physical interface, and both components need to be

independently verified. You’ll also see how bus-functional models

are useful for writing transaction-level models in Chapter 7, which

requires the complementary flavor of bus-functional models.

Because both bus-functional model flavors are usually needed, you

have the choice of implementing two interface declarations—one

for each flavor—or a single interface declaration that supports both

flavors.

Define all sig-

nals as wire or 

logic.

If an interface is declared to be agnostic to the perspective or per-

sonality a bus-functional model can have on its signals, then it must

not imply any directionality in the signals themselves. The interface
becomes a collection of wires that are used to exchange information

between a bus-functional model and a design or between two bus-

functional models. Sample 5-56 shows the same signals as in Sam-

ple 5-54, but this time without any implied directions. 

Synchronous 

signals in clock-
ing blocks are 

defined as inout.

clocking blocks also indicate directionality. To allow the clocking
blocks to be used by any bus-functional model, regardless of its

perspective on the physical interface, the synchronous signals in

each clock domain must be defined as inout, as shown in Sample 5-

57, compared to Sample 5-55.

Don’t wait for 

clock edges.

It is only natural to use a Verilog coding style when coding using

SystemVerilog. But this style can create problems. Consider the

MII MAC-layer bus-functional model in Sample 5-58. This is obvi-

ously a model for a synchronous interface active on the negative

edge of the clock, right? Wrong. Timing synchronization is speci-

Sample 5-56.
Physical inter-
face signals

interface mii_if;

wire       tx_clk;
wire [3:0] txd;
wire       tx_en;
wire       tx_er;
wire       rx_clk;
wire [3:0] rxd;
wire       rx_dv;
wire       rx_er;
wire       crs;
wire       col;
...
endinterface: mii_if
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fied in the clocking blocks of the interface declaration, not by the

sequential statements. Should the synchronization be changed, only

the clocking blocks should need changing. This style may also  use

wrong input values because of the module vs program thread simu-

lation cycles. A better style, shown in Sample 5-59, lets the clock-
ing block synchronization mechanism define the timing of the

transaction.    

Specify virtual 
interface to con-

nect to via the 

constructor.

All class-encapsulated bus-functional model examples so far had a

virtual interface data member that was used to access the physical

interface of the bus-functional model. This data member must be

Sample 5-57.
Bidirectional
clocking 
domains in 
physical inter-
face.

interface mii_if;
...
clocking tx @(posedge tx_clk);
   input #1 output #1 txd, tx_en, tx_er;
endclocking: tx

clocking rx @(posedge rx_clk);
   input #1 output #1 rxd, rx_dv, rx_er;
endclocking: rx

endinterface: mii_if

Sample 5-58.
Verilog cod-
ing style in 
SystemVerilog

class mii_mac_bfm;
   virtual mii_if sigs;
   ...
   virtual task rx(output eth_frame frame);
      ...
      do @ (posedge this.sigs.rx_clk)
         while (this.sigs.rx_dv != 1);
      do @ (posedge this.sigs.rx_clk)
         while (this.sigs.rx_dv == 1 &&
                this.sigs.rxd   == 4’b0101);
      if (this.sigs.rxd != 4’b0111) ...
      while (this.sigs.rx_dv == 1) begin
         @ (posedge this.sigs.rx_clk);
         byte[7:4] = this.sigs.rxd;
         ...
         @ (posedge this.sigs.rx_clk);
         byte[3:0] = this.sigs.rxd;
         ...
      end
      ...
   endtask: rx
endclass: mii_mac_bfm
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set somehow. Module pins are connected when the module is

instantiated. This way, the same module may be used more than

once but connected to different signals. Similarly, a virtual interface

in a bus-functional model is connected when the bus-functional

model is instantiated. Because the bus-functional model is encapsu-

lated in a class, it is instantiated when its constructor is invoked.

Therefore, the virtual interface connection is specified as a con-

structor argument, as shown in Sample 5-60. The virtual interface is

connected when a new instance of the bus-functional model is cre-

ated by calling the constructor and specifying an interface instance

it is bound to via a cross-module reference, as shown in Sample 5-

61.   

Sample 5-59.
Proper coding 
style in Sys-
temVerilog

class mii_mac_bfm
   virtual mii_if sigs;
   ...
   virtual task rx(output eth_frame frame);
      ...
      do @ (this.sigs.rx)
         while (this.sigs.rx_dv != 1);
      do @ (this.sigs.rx)
         while (this.sigs.rx_dv == 1 &&
                this.sigs.rxd   == 4’b0101);
      if (this.sigs.rxd != 4’b0111) ...
      while (this.sigs.rx_dv == 1) begin
         @ (this.sigs.rx);
         byte[7:4] = this.sigs.rxd;
         ...
         @ (this.sigs.rx);
         byte[3:0] = this.sigs.rxd;
         ...
      end
      ...
   endtask: rx
endclass: mii_mac_bfm

Sample 5-60.
Virtual inter-
face as con-
structor argu-
ment.

class mii_mac_bfm;
   virtual mii_if sigs;
   ...
   function new(virtual mii_if sigs);
      this.sigs = sigs;
   endfunction: new
endclass: mii_mac_bfm
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See the VMM. The section titled “Signal Layer” on page 107 of the Verification
Methology Manual for SystemVerilog provides additional guide-

lines and techniques for implementing and encapsulating physical

interfaces.

Configurable Bus-Functional Models

Protocols can 

have config-

urable elements.

A protocol specification may contain configuration options. For

example, the assertion level for a particular control signal may be

configurable to either high or low. Each option has a small impact

on the operation of the interface. Taken individually, you could cre-

ate a different task for each configuration. The problem would be

relegated to the testcase in deciding which flavor of the operation to

invoke. You would also have to maintain several nearly identical

models.

Simple config-

urable elements 

become com-

plex when 

grouped.

Taken together, the number of possible configurations explodes fac-

torially.1 It would be impractical to provide a different task for each

possible configuration. It is much easier to include configurability

in the bus-functional model itself. An RS-232 interface, shown in

Figure 5-18, is the perfect example of a highly configurable, yet

simple interface. Not only is the polarity of the parity bit config-

urable, but also its presence, as well as the number of data bits

transmitted. And to top it all, because the interface is asynchronous,

the duration of each pulse is also configurable. Assuming eight pos-

sible baud rates, five possible parities, seven or eight data bits, and

Sample 5-61.
Binding a vir-
tual interface 
in a class 
instance.

module tb_top;
mii_if if0();
...
endmodule

program test;
mii_mac_bfm mac = new(tb_top.if0);
...
endprogram: test

1. Exponential growth follows a Kn curve. Factorial growth follows a n! 
curve, where n! = 1 x 2 x 3 x 4 x ... x (n-2) x (n-1) x n.
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one or two stop bits, there are 160 possible combinations of these

four configurable parameters.

Write a config-

urable bus-func-

tional model.

Instead of writing 160 flavors of the same transaction, it is much

easier to model the configurability itself, as shown in Sample 5-62.

Configuration parameters tend to remain static during an entire

simulation (unless the corresponding design can be re-configured

on-the-fly, and this on-the-fly reconfiguration is the objective of the

test). They must also be consistent across different bus-functional

tasks within the same bus-functional model. Rather than passing

“constant” information through the interface of each bus-functional

task, it is better located in the bus-functional model encapsulating

structure (see “Encapsulating Bus-Functional Models” on

page 127) alongside the bus-functional tasks where it can be

accessed directly.

Create a config-
uration class.

Configuration parameters should be implemented as properties in a

configuration class. An instance of the configuration class would

be passed to the bus-functional model via its constructor, alongside

the interface binding. Using a separate configuration class will

make it easier to create random configurations and to ensure that

multiple instances of the bus-functional model have an identical

configuration. The current configuration should be kept in a local
class property to prevent it from being modified without the bus-

functional model knowing about it or at the wrong time. If it is pos-

sible for a bus-functional model to be reconfigured during a simula-

tion—such as the RS-232 model—a reconfigure method should be

provided. That method can check that the configuration is valid,

that it is an appropriate time for the bus-functional model to be

reconfigured—e.g. it is idle—and to perform the necessary opera-

tions to notify the bus-functional model tasks of the new configura-

tion. What important safety measure is missing from Sample 5-62?1   

Figure 5-18.
Specification
for the RS-232 
interface

Data bits (7 or 8)Start bit Parity
bit

(optional)

Stop bit(s)
(1 or 2)

Duration
(baud rate)
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See the VMM. Guidelines 4-104 through 4-107 of the Verification Methodology
Manual for SystemVerilog specify similar guidelines for imple-

menting configurable transactors.

1. The entire bus-functional model should be protected using a semaphore 
to prevent concurrent access to the interface signals. See “From Bus-
Functional Tasks to Bus-Functional Model” on page 236.

Sample 5-62.
Model for a 
configurable
bus-functional 
model

class rs232_cfg;
   int unsigned baud_rate;
   enum {NONE, ODD, EVEN, MARK, SPACE} parity;
   bit data8;
   bit stop2;
endclass: rs232_cfg

class rs232;
   virtual rs232_if sigs;

local rs232_cfg  cfg;

   function new(virtual rs232_if sigs,
                rs232_cfg cfg);
      this.sigs = sigs;
      this.cfg  = cfg;
   endfunction: new

   function void reconfigure(rs232_cfg cfg);
      ...
      this.cfg = cfg;
   endfunction: reconfigure

   task send(bit [7:0] data);
      time duration = 1s / this.cfg.baud_rate;
      int i;

      this.sigs.tx <= 1’b0;
      #(duration);
      i = (this.sigs.data8) ? 8 : 7;
      while (i-- > 0) begin
         this.sigs.tx <= data[i];
         #(duration);
      end
      ...
      this.sigs.tx <= 1’b1;

    #(duration * (this.sigs.stop2+1));
   endtask: send
   ...
endclass: rs232
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RESPONSE MONITORS

Response trans-

actions can be 

encapsulated.

Earlier in this chapter, we encapsulated input transactions to

abstract the stimulus generation from individual signals and wave-

forms to generating sequences of operations. A similar abstraction

can be used for verifying the response. The repetitiveness of output

signals within a transaction can be taken care of and verified inside

the bus-functional model. Then the testbench only needs to worry

about the correctness of the data carried by the transaction. Sample

5-63 is an example of a bus-functional procedure for an RS-232

monitor.

Verifying the 

data in the 

response moni-

tor is too restric-

tive.

The response verification operation, as encapsulated in Sample 5-

63, has a very limited application. It can be used only to verify that

the response matches a pre-defined expected value, with no parity

error. Can you imagine other possible uses? What if the response

can be any value within a predetermined set or range? What if the

response is to be ignored until a specific sequence of output values

is seen? What if the response, once verified, needs to be fed back to

the stimulus generation? What if the parity value is expected to be

incorrect? What if responses were to be ignored if the parity bit is

invalid? The usage possibilities are endless. It is not possible, a pri-

ori, to determine all of them nor to provide a single interface that

satisfies all of their needs.

Sample 5-63.
RS-232 serial 
receive bus-
functional 
monitor

class rs232;
   ...
   task receive(input bit [7:0] expect);
      ...
      @ (negedge this.sigs.rx); // Wait 4 start
      #(duration * 0.5);     // Shift sample 50%
      data[7] = 1’b0;
      i = (this.sigs.data8) ? 8 : 7;
      while (i-- > 0) begin
         #(duration);
         data[i] = this.sigs.rx;
      end
      if (data !== expect) ...
      ...
   endtask: receive
   ...
endclass: rs232
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Separate moni-

toring from 

value verifica-

tion.

The most flexible implementation for an response transaction bus-

functional task is simply to return to the caller whatever output

value was just received. It will be up to a “higher authority” to

determine if this value is correct or not. The RS-232 receiver was

modified in Sample 5-64 to return the byte received without verify-

ing its correctness. The correctness of the parity is also returned.

Consider all 

possible failure 

modes.

The bus-functional task shown in Sample 5-64 has some potential

problems and limitations. What if the output signal being monitored

is dead and the start bit is never received? This task will wait for-

ever. It may be a good idea to provide a maximum delay to wait for

the start bit via an additional argument, as shown in Sample 5-65, or

to compute a sensible maximum delay based on the baud rate.

Notice how a default argument value is used in the task definition to

avoid forcing the user to specify a value when it is not relevant, as

shown in Sample 5-65, or to avoid modifying existing code that

was written before the additional argument was added.

Do not arbi-

trarily constrain 

the transaction.

The width of pulses is not verified in the implementation of the RS-

232 receive operation in Sample 5-64. Should it? If you assume that

the task is used in a controlled 100 percent digital environment,

then verifying the pulse width might make sense. This task also

could be used in system-level verification, where the serial signal

was digitized from a noisy analog transmission line as illustrated in

Figure 5-19. In that environment, the shape of the pulse, although

Sample 5-64.
RS-232 serial 
receive bus-
functional task 
without verify-
ing correctness 
of response 
received

class rs232;
   ...
   task receive(output bit [7:0] data,
                output bit       valid);
      ...
      @ (negedge this.sigs.rx); // Wait 4 start
      #(duration * 0.9); // Sample @ 90% of pulse
      data[7] = 1’b0;
      i = (this.sigs.data8) ? 8 : 7;
      while (i-- > 0) begin
         #(duration);
         data[i] = this.sigs.rx;
      end
      ...
      valid = (parity === this.sigs.rx);
      ...
   endtask: receive
   ...
endclass: rs232
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unambiguously carrying valid data, most likely does not meet the

rigid requirements of a clean waveform for a specific baud rate. Just

as in real life, where modems fail to communicate properly if their

baud rates are not compatible, an improper waveform shape is

detected as invalid data being transmitted.

Generation and 

monitoring per-

tains to the abil-

ity to initiate a 

transaction.

We have already seen that input transactions sometimes have to

monitor some output signals from the design under verification.

The same is true for a response monitor. Sometimes, the monitor

has to provide data back as an answer to an “output” transaction.

This reporting blurs the line between stimulus and response. Isn’t a

stimulus bus-functional task that verifies the control or feedback

signals from the design also doing response checking? Isn’t a moni-

tor task that replies with control flow signals back to the design also

doing stimulus generation? The terms generator and monitor
become meaningless if they are attached to the direction of the sig-

Sample 5-65.
Providing an 
optional time-
out for the RS-
232 serial 
receive trans-
action

class rs232;
   ...
   task receive(output bit [7:0] data,
                output bit       valid,
                input  time      timeout = 0);
   begin: receive_task
      ...
      fork: timer
         if (timeout > 0) begin
            #(timeout);
            data = 8’hXX;
            valid = 0;
            disable receive_task
         end
      join_none
      @ (negedge this.sigs.rx); // Wait 4 start
      disable timer
      ...
   end: receive_task
   endtask: receive
   ...
endclass: rs232

Figure 5-19.
Modification
to the serial 
signal in a real 
system

RS232

Tx

RS232

Rx
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nals being generated or monitored. They regain their meaning if

you attach them to the initiation of transactions. If a task initiates
the transaction under full control of the testbench, it is a stimulus
generator. If the task sits there and waits for a transaction to be ini-
tiated by the design, then it is a response monitor.

Monitors must 

always be moni-

toring.

Bus-functional model tasks must be invoked by the testbench.

Invoking a bus-functional task either initiates a stimulus transaction

or initiates the expectation of a response transaction. What if the

design happens to initiate a response transaction but the testbench

had not called the appropriate bus-functional model response task?

At best, the design will detect that the testbench is not ready to

receive data because some control flow signals were left at an

appropriate level at the completion of the previous response trans-

actions. But this would result in back-pressure building up inside

the design and would not verify the design under maximum

throughput. Typically however, output data would “spill” and a gap

would be created in the output data stream. At worst, the design

will fail to operate correctly because the output transaction protocol

will be violated due to missing feedback signals. What if the test-

bench invokes the response task just a few cycles too late, after the

design has already initiated a response transaction? A transaction

protocol violation is likely to be reported. To avoid the false errors

introduced by the misalignment of the response transaction in the

testbench and the design, response monitors should always be

active and monitoring the design output interface.

Autonomous Monitors

Decouple tim-

ing of transac-

tion and timing 

of response 

checking.

Since the testbench is not responsible for the initiation of the

response transaction, why give it the responsibility for the initiation

of the response monitoring procedure? Testbenches are not usually

interested in the timing of the output transaction; testbenches are

interested only in verifying that the output data is correct. There-

fore, we can decouple the monitoring of the physical interface sig-

nals from the retrieval of the output data. As illustrated in Figure 5-

20, an independent thread can continuously monitor the output

transactions. Output data is extracted from each transaction and put

into a FIFO. The testbench retrieves the next output data that was

received from the front of the FIFO.
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Add a concur-

rent thread in the 

bus-functional 

model.

The bus-functional response task is invoked within a concurrent

thread running inside the bus-functional model, as shown in Sample

5-66. An independent thread can be created by simply forking a for-
ever loop. Note how the receive_thread() task is declared as local.
This will prevent a user from calling the internal-only method

directly. Note also how the receive thread is started in the construc-

tor. This will cause the bus-functional monitor to start operating as

soon as it is instantiated, without additional requirements from the

user.  

Output data is 

buffered in a 

queue.

As response data is extracted from the response transactions, it is

added to a FIFO to be retrieved later by the testbench. For simple

interfaces, such as RS-232, the buffered data is a simple byte, con-

catenated with its parity-correctness indicator. For more complex

interfaces, such as SONET/SDH, the buffered data would be an

entire frame. It is not possible to predict how many such data items

will need to be buffered before we get the testbench’s attention.

Therefore, it must be accumulated in a queue (see “Queues” on

Figure 5-20.
Structure of an 
autonomous 
monitor

FIFO

Data
Retrieval

Testbenchi/f
Monitor

Sample 5-66.
Autonomous
RS-232
response mon-
itor

class rs232;
local bit [8:0] fifo[$];

   ...
   function new(...);
      ...
      fork
         this.receive_thread();
      join_none
   endfunction: new

   local task receive_thread();
      forever begin
         automatic bit [8:0] resp;
         this.receive(resp[7:0], resp[8]);
         this.fifo.push_back(resp);
      end
   endtask: receive_thread
   ...
endclass: rs232



Response Monitors

Writing Testbenches using SystemVerilog 251

page 141) that will grow as data is collected from the output and

shrink as data is retrieved by the testbench.

Data collection 

could be 

optional.

What if, for a particular testcase, a testbench does not need to

examine the response from an interface? Data would accumulate in

the FIFO, consuming an ever increasing amount of memory. Hope-

fully, the simulation would terminate before running out of mem-

ory—but that is not likely. The active monitor on that interface is

still requried because the protocol may need to be terminated and

any protocol-level errors must be checked for—even if the transac-

tion-level response is to be ignored. It should be possible to config-

ure the monitor to extract data from output transactions, verify

adherence to the protocol and providing necessary feedback signals

but turn off data accumulation. As shown in Sample 5-67, protocol

correctness will be monitored without data being accumulated.

Can provide 

blocking or non-

blocking model.

The bus-functional monitor should provide a task to retrieve the

next response transaction that was received. This raises a question:

What do we do when there is no response data for the testbench?

One solution is to wait for data to become available. But what if the

testbench needs to turn its attention elsewhere while the response

retrieval task is stuck waiting for data? A better solution is to give

the choice to the testbench whether to wait if there is no response

data. The testbench should be able to ask the bus-functional moni-

tor if their is response data available before attempting to retrieve it,

as shown in Sample 5-68.

Sample 5-67.
Optional data 
collection

class rs232;
   ...
   local task receive_thread();
      forever begin
         automatic bit [8:0] resp;
         this.receive_data(resp[7:0], resp[8]);
         if (!this.cfg.sink) begin
            this.fifo.push_back(resp);
         end
      end
   endtask: receive_thread
   ...
endclass: rs232
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Decoupling 

implies that 

transaction tim-

ing is not rele-

vant.

Decoupling the monitoring of the physical signals from the verifi-

cation of the response requires that the timing of the response not

be relevant to determine functional correctness. As long as the

response comes out, the design works. This decoupling is actually

one of the great benefits of using high-level testbenches: As the

design is modified and pipeline stages are added or removed, the

testbench need not be modified. But what if it is functionally impor-

tant that response comes out after a specific (or range of) number of

clock cycles? If it is important, it must be stated in the design spec-

ification document. If it is in the design specification document, it

must be verified. If it must be verified, the testbench must be able to

verify the timing of the response.

Transaction tim-

ing can be veri-

fied through 

time-stamping.

Verifying timing does not mean that it must be verified where and

when the transaction started (or completed). Timing also can be

verified by comparing timestamps. To satisfy the need of both types

of testbenches, one where transaction timing is relevant, the other

where it is not, timing information should be added to the extracted

data. The testbench is then free to compare or ignore the timing

information. There is one problem though: Where is the timestamp

information stored? The response data structure may not have addi-

tional fields to store that information. It may not be possible to

modify the original data structure to add the necessary field. If the

original data structure is potentially reusable in other projects or

testbenches, you are adding project- or testbench-specific informa-

tion to a shared object. If everyone did the same, it quickly would

grow into an unmaintainable mess that could not be trusted to be

Sample 5-68.
Nonblocking 
data retrieval 
procedure

class rs232;
   ...
   local bit [8:0] fifo[$];

   function bit data_avail();
      return this.fifo.size() > 0;
   endfunction: data_avail

   task receive(output bit [7:0] data,
                output           valid);
      while (!this.data_avail())
         @(this.fifo);
      {valid, data} = this.fifo.pop_front();
   endtask: receive
   ...
endclass: rs232
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functionally correct. Instead, extend the original object to add your

required information, leaving the original data structure intact.

Sample 5-69 shows an extension and timestamping example.

See

vmm_channels.

The section titled “Transaction-Level Interfaces” starting on page

171 of the Verification Methodology Manual for SystemVerilog”

specifies a mechanism—the channel—that can be used readily for

implementing autonomous monitors and handle the decoupling of

monitoring and data retrieval functions.

Slave Generators

Response moni-

tors may need to 

reply with 

“input” data.

How do you verify an interface used by the design to fetch data?

Typical examples include the instruction fetch interface on a pro-

cessor or an external memory interface on a design. The transac-

tions are initiated by the design, not the testbench. Therefore, it falls

under the category of response monitor. But the transactions do not

produce any response data. Instead, they require and consume input

data. It is the responsibility of the testbench to supply the data to

complete the transaction in a timely manner. Of course, in those

cases, the correctness of the data is implied. It will have to be veri-

fied elsewhere when it (or its descendent) shows up at another

interface.

Slave genera-

tors must ask the 

testbench.

Because of the time-sensitive nature of the transaction, it is not pos-

sible to decouple the monitoring of the output interface and the gen-

eration of the reply data. The testbench must be ready to supply

Sample 5-69.
Timestamping 
output data

class stamped_eth_frame extends eth_frame;
   time started;
   time completed;
endclass: stamped_eth_frame

class mii_mac_bfm;
   ...
   local task rx(output stamped_eth_frame fr);
      ...
      fr = new;
      fr.started = $time;
      ...
      fr.completed = $time;
   endtask: rx
   ...
endclass: mii_mac_bfm
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stimulus data at all times in response to a transaction initiated by

the design. The difficulty is how to get the testbench’s attention

when required.

The testbench 

must always call 

a standby task.

By having the testbench constantly call a standby task, its attention

can be obtained by returning from it. The testbench can then exe-

cute testcase-specific code to generate the input data that is  sup-

plied by immediately calling the standby task again. Sample 5-70

shows a bus-functional model monitoring the instruction fetch

interface of a CPU. Rather than pre-generating the code before the

simulation and statically loading it into a memory model, this bus-

functional model lets the testbench dynamically generate instruc-

tions on-the-fly. Notice the fetch task. It is the standby task used by

the testbench to provide the instruction opcode fetched from the

specified address. Sample 5-71 shows how a testbench could use

this standby task to implement a random instruction generator

stream.

Standby tasks 

create reusable 

slave bus-func-

tional models.

Why bother with these standby task calls? Why not simply go in the

bus-functional model, add the code we need directly in there and be

done with it? That would be the simple way out, but one that will

create maintenance challenges later on. This approach makes one

big assumption: that you have access to the source code to begin

Sample 5-70.
Bus-func-
tional model 
with standby 
task

class code_mem;
   ...
   event fetch, ready;
   local task monitor_thread();
      forever begin
         @ (negedge this.sigs.as);

      fetch.address = addr;
         -> this.fetch;
         @ (this.ready);
         this.sigs.data <= fetch.opcode;
         this.sigs.rdy  <= 1’b0;
         ...
      end
   endtask: monitor_thread

   task fetch(output [31:0] address,
              input  [31:0] opcode);
      -> this.ready;
      @ (this.fetch);
   endtask: fetch
endclass: code_mem
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with. If you wrote the bus-functional model yourself, you do. But it

also could be a very large bus-functional model purchased from a

third party who will only supply compiled or encrypted code to pro-

tect their interests. What if different testbenches need different

extensions to the bus-functional model? Are you going to create a

different copy for each? What about reusing that bus-functional

model in the next revision of the project or in a different project

altogether? By specializing a bus-functional model to the specific

needs of your testbench(es), you have made reusing it and incorpo-

rating upgrades and bug fixes more difficult. You saved a little ini-

tially, but lost a lot more in the long run.

See the reactive 

response com-

pletion model in 

VMM.

The section titled “Reactive Response” starting on page 192 of the

Verification Methodology Manual for SystemVerilog shows how the

generic vmm_channel mechanism can be used to implement an

even more flexible interface mechanism to slave generators. That

interface mechanism is called a request/response completion

model.

Multiple Possible Transactions

The next trans-

action on an out-

put interface 

may not be pre-

dictable.

You may be in a situation where more than one type of transaction

can happen on an output interface. Each would be valid and you

cannot predict which specific operation will come next. Then how

do you decide which standby task to call? An example would be a

processor that executes an unknown stream of instructions. You

cannot predict (without detailed knowledge of the processor archi-

tecture and instruction streams) whether a read or a write cycle will

appear next on the data memory interface.

Sample 5-71.
Using the 
standby task

program test;

code_mem pmem = new(...);

initial
forever begin
   bit [31:0] addr, opcode;

pmem.fetch(addr, opcode);
   opcode = generate_opcode(addr);
end
...
endprogram
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Use a transac-

tion descriptor.

How do you write a response monitor when you do not know what

kind of transaction comes next? You must write a bus-functional

task that identifies the next transaction after it has started. It verifies

the preamble to all transactions on the output interface until it

becomes unique to a specific transaction. It then builds a transac-

tion descriptor containing any information collected so far to iden-

tify, to the testbench via the standby task, which transaction is

currently underway. It is then up to the testbench to supply the nec-

essary (and correct) information to complete the verification of the

transaction.

Sample 5-72 shows a transaction descriptor for a read or write

cycle. The response monitor bus-functional model in Sample 5-73

identifies whether the next transaction from the design is a read or a

write cycle and fills in as much of the descriptor as it can. Since the

address already has been sampled by the time the decision of the

type of cycle was made, the address will be valid in both read and

write cycles. If a read cycle is observed, the transaction descriptor

is completely filled in and no further response is expected from the

testbench. If a write cycle is observed, the data class property is left

unfilled. That will be the response expected from the testbench and

driven back to the design. Sample 5-74 shows how this transaction

descriptor is used by the testbench                 

See the reactive 

response com-

pletion model in 

VMM.

The section titled “Reactive Response” starting on page 192 of the

Verification Methodology Manual for SystemVerilog shows how the

generic vmm_channel mechanism can be used to implement a more

flexible interface mechanism to slave generators that handles multi-

ple possible transactions. That interface mechanism is called a

request/response completion model.

Sample 5-72.
Transaction 
descriptor.

class ram_trans;
   enum {READ, WRITE} kind;
   bit [31:0] addr;
   bit [31:0] data;
endclass: ram_trans
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Sample 5-73.
Monitoring 
many possible 
output transac-
tions

class ram_bfm;
   ...
   ram_trans tr;
   local task monitor_thread();
      forever begin
         do
            @ (negedge this.sigs.ale);
         while (this.sigs.cs == 1’b1);
         this.tr = new;
         this.tr.addr = this.sigs.addr;
         this.tr.kind = (this.sigs.rw == 1’b1) ?
            ram_trans::READ : ram_trans::WRITE;
         this.tr.data = this.sigs.data;
         -> do_cycle;
         if (this.tr.kind == ram_trans::WRITE)
         begin
            @ (cycle_done);
            this.sigs.data <= tr.data;
         end
      end
   endtask: monitor_thread()

   task mem_cycle(inout ram_trans tr);
      this.tr = tr;
      @ (do_cycle);
      ->cycle_done;
      tr = this.tr;
   endtask: mem_cycle
endclass: ram_bfm

Sample 5-74.
Handling 
many possible 
output opera-
tions

...
forever begin
   ram_trans tr;

mem_cycle(tr);
   case (tr.kind)
   ram_trans::READ :
      tr.data = read_cycle(tr.addr);
   ram_trans::WRITE:
      write_cycle(tr.addr, tr.data);
   endcase
end
...
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TRANSACTION-LEVEL INTERFACE

Testbenches are 

removed from 

the physical 

level.

As illustrated in Figure 5-21, the purpose of bus-functional models

is to remove the testbench from the repetitive physical-level details.

The bus-functional model lets the testbench concentrate on the data

to be supplied, on the data that was produced and how it is sup-

posed to have been transformed. Once you have a reliable set of

bus-functional models, it makes writing testbenches faster and eas-

ier. In this section, I will describe how to design a transaction-level

interface. The next chapter will describe how to structure a test-

bench by combining bus-functional models with coherent transac-

tion-level interfaces.  

The transaction 

interface must 

be designed.

Throughout this chapter, the procedural interface of the bus-func-

tional models evolved from the particular transaction being dis-

cussed. It was optimized according to the particular point I was

trying to make while presenting advantages and disadvantages of

various alternatives. Each task was written and evolved indepen-

dently of each other. The purpose of this chapter thus far was the

generation and monitoring of physical-level signals, not the design

of a transaction interface. Using this process to write a complete

bus-functional model will likely result in an awkward and clumsy

transaction-level interface dictated by the physical-level details, not

the requirements of the testbenches that must use it. The transaction

interface of a bus-functional model must be designed and planned,

just like the testcases or the design.

Declare. When designing a bus-functional model, write the transaction-level

interface first. This is akin to writing the header file in C. Code the

descriptors, methods, task and function declarations that make up

the entire transaction-level interface of your bus-functional model.

Leave the body or the implementation of each method empty. This

style will let you focus on the transaction-level interface across all

Figure 5-21.
Transaction 
level testbench

Testcases

Design
under
Verif.

Bus
Funct.
Model

Bus
Funct.
Model

Transaction Layer
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of the transactions. You must start thinking about the needs of the

testcases, not the implementation of the bus-functional models.

This is the stage where you address questions like “How does the

testbench know when and how this transaction completed?” and

“How much work can I do without the testbench’s attention?” You

have to strike a balance between abstraction and controllability.

You have to consider the requirements of each testcase, the self-

checking mechanism and functional coverage measurement.

Document. Next, write the user documentation for the bus-functional model.

Yes, documentation. It is the only way to ensure that the documen-

tation will reflect the content of the bus-functional model accu-

rately and that it will exist at all. It also presents an opportunity to

think about the purpose of each element of the transaction interface

and the usage model of the bus-functional model. The documenta-

tion will have to describe the functionality and interaction of each

element, often highlighting inconsistencies or difficulties that were

not considered when coding the interface. Review and iterate over

the declaration and the documentation until your have specified a

bus-functional model that will meet all of your requirements.

Implement. With the declaration and documentation of each task completed, the

implementation of the bus-functional model becomes a simple cod-

ing exercise. During the implementation, you will discover misun-

derstanding in the specification of the physical interface

specification. You will encounter functionality that cannot be

implemented as intended. You will find inconsistencies in the bus-

functional model specification. Update the transaction interface and
the documentation as required.

Procedural Interface vs Dataflow Interface

The task called 

may decide the 

transaction.

So far, all transaction-level interfaces shown in code samples were

procedural interfaces. The nature of transactions was determined by

the task being called. If I wanted to execute a read cycle, I simply

invoked a read task. If I wanted to execute a write cycle, I invoked

a write task. It is a simple model that works well on the stimulus

side, but breaks down quickly on the response or slave side. As

described in “Multiple Possible Transactions” on page 255, a trans-

action descriptor and a single task has to be used to deal with the

unpredictable nature of observed transactions.
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Tasks compli-

cate randomiza-

tion.

A procedural interface also starts to break down when random stim-

ulus is required. As described in “Random Stimulus” on page 307,

randomization and constraints in SystemVerilog are built on top of

the object-oriented framework and classes—and for good reasons

also explained in that section. Using a transaction descriptor makes

the transaction immediately randomizable and constrainable. A

procedural approach requires that the randomization be explicitly

modeled using random control flows and random variables, such as

randcase or $random. Procedural random description cannot lever-

age the constraint language nor the constraint solver built into Sys-

temVerilog.

Tasks compli-

cate transaction-

level connectiv-

ity.

In all previous examples, the testcases were implemented directly

on top of the bus-functional models connected to the physical inter-

faces of the DUV. Testcases “connected” to bus-functional models

by calling the tasks in their procedural interface. But what if those

testcases had to be run on a similar design with a slightly different

physical interface and thus a slightly different bus-functional

model? They would all have to be modified to change the old task

calls to the new ones.

A mailbox can 

be used as trans-

action-level

interface.

If the required transactions are described using a descriptor, all that

is required to have that transaction executed is to pass it to the bus-

functional model for execution. By using a mailbox to exchange

transaction descriptors, testcases and bus-functional models only

need to agree on a particular mailbox to exchange a particular

stream of transactions. Connecting to a different transactor simply

requires that the new transactor understands the same descriptors

and uses the same mailbox. None of the testcases need to be modi-

fied. Using a mailbox carrying transaction descriptors to connect

testcases and transactors is like using a wire carrying electrons to

connect two design components. 

Figure 5-22.
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Mailboxes are a 

transaction-level

interface.

Sample 5-75 shows a bus-functional model with a mailbox-based

transaction-level interface. The mailbox is the encapsulation mech-

anism for the transaction-level interface, much like the virtual
interface was the encapsulation mechanism for the physical-level

interface. In fact, compare the implementation of the two interface

levels in Sample 5-75 and Sample 5-60. Both are specified via the

constructor, both are maintained in a class property.  

Mailboxes 

enable transac-

tion-level bus-

functional mod-

els.

The traditional bus-functional models, like all the bus-functional

models shown so far, are physical-level bus-functional models.

They are tied to a specific physical-level interface and provide a

transaction-level interface to abstract the physical-level transac-

tions. With mailboxes providing a transaction-level connectivity

mechanism, bus-functional models need not be tied to physical

interfaces but can be purely implementation-independent transac-

tion-level bus-functional models. For example, the PCI Express

Sample 5-75.
Mailbox-based
transaction-
level interface

class bus_trans;
   enum {READ, WRITE} kind;
   ...
endclass: bus_trans;
typedef mailbox #(bus_trans) bus_trans_mbox;

class bus_master;
   ...
   bus_trans_mbox inbox;

   function new(...,
                bux_trans_mbox inbox);
      ...
      this.inbox = inbox;
      fork
         this.execute_thread();
      join_none
   endfunction: new

   local task execute_thread();
      forever begin
         bus_trans tr;
         this.inbox.get(tr);
         case (tr.kind)
            ...
         endcase
      end
   endtask: extecute_thread;
endclass: bus_master
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protocol has a well-defined Transaction Level (TL) and Datalink

Level (DL) behavior but no implementations. A TL and DL PCI

Express bus-functional model could be written as a pure transac-

tion-level BFM. These higher-level bus-functional models have a

transaction-level interface on both sides, as illustrated in Figure 5-

23.

Use a mailbox 

for each data 

stream.

A mailbox will transfer transaction descriptors, in order, from a

source to a destination. The source is the thread that calls the put()
method. The destination is the thread that calls the get() method.

There is no way to enforce the flow of transactions through a mail-

box. To avoid confusion, they should remain unidirectional, with

transactions flowing always in the same direction. Bus-functional

models that transmit and receive information should use two mail-

boxes: one for transmitted transactions and the others for received

transactions. Because transactions are transmitted in order, a bus-

functional model that has multiple priorities or different classes of

service should use one mailbox per priority or class of service. This

will avoid blocking a high-priority transaction because the mailbox

is filled with low-priority transactions.

Testbench 

requirements 

favor dataflow 

interfaces.

Notice how all of the arguments in this section had nothing to do

whatsoever with the physical protocol implementing the transac-

tions. All of the previous examples focused on the requirements of

those physical protocols and used a procedural interface to meet

them. But once you consider the needs of the testbench—the user of

the bus-functional model—it becomes apparent that a descriptor-

based interface is more useful.

See

vmm_channels.

The section titled “Tranaction-Level Interfaces” starting on page

171 of the Verification Methodology Manual for SystemVerilog
specifies a very flexible and powerful mailbox-like mechanism

called vmm_channels. It also shows how various completion mod-

els can be implemented using that mechanism.

You may start 

with a proce-

dural interface.

You may decide that your testcase requirements do not make a data-

flow transaction-level interface a worthwhile investment. You’d

Figure 5-23.
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rather stick to a procedural interface. That’s quite alright. But

remember that even procedural interfaces need to use transaction

descriptors—see section titled "Multiple Possible Transactions" on

page 255. If it turns out that a dataflow interface is required, it can

be added in front of a procedural interface. Simply add the code

shown in Sample 5-75 then invoke the appropriate task in the case
statement in the execute_thread() task.

What is a Transaction?

A transaction is 

an atomic opera-

tion.

Earlier in this chapter, a transaction was defined as an operation on

a physical interface. With mailboxes allowing bus-functional mod-

els to be free from physical interfaces, a transaction becomes a

more generic concept. A transaction is the smallest  operation or

data transfer that can be executed to completion by a bus-functional

model. Note that what is “smallest” for a high-level bus-functional

model can be divided into smaller lower-level transactions, which

are in turn the smallest operations that can be executed on a lower-

level bus-functional model. For example, a transaction for a USB

function BFM is an entire USB transfer, which is implemented by

executing USB transactions on a USB device BFM which is in turn

implemented by transmitting and receiving USB packets on a USB

port BFM which is implemented by toggling or monitoring a physi-

cal signal.

Transactions can 

transfer a vari-

able number of 

bytes.

Most of the transactions used so far were simple fixed-size transac-

tions. The amount of data transmitted to or from the design was

identical in each occurrence of the transactions. For example, an

RS-232 interface always transmits a single byte. Most physical

interfaces nowadays deal with variable-length data. For example,

all ethernet interfaces deal with MAC frames between 64 and 1,518

bytes long. In a PCI interface, the maximum number of bytes that

can be transferred in a read or write cycle is not even specified. A

variable-length protocol can be built on top of a fixed-length physi-

cal interface. For example, a PPP transaction over an RS-232 link

will transmit and receive variable-length packets, one byte at a

time. How do you design a transaction interface that can handle

those differences? The easiest solution is to provide enough mem-

ory for the largest amount of data and a “length” specification indi-

cating how many data elements are actually valid. But always

specifying the maximum number of data is inefficient and wastes

memory.
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Use a queue or 

an array.

Use a queue or an array as part of the transaction descriptor or as

the type of the task argument. Sample 5-76 shows the implementa-

tion of an ethernet frame, using an array for the variable data. Sam-

ple 5-77 shows that same variable-length ethernet frame used as an

argument of a task, making it possible to send ethernet frames of

any (even invalid) lengths efficiently. Sample 5-78 shows that same

variable-length ethernet frame used in a mailbox-based transaction-

level interface   

How do we 

know when and 

how a transac-

tion completed?

Monitors report on observed transactions, including any error that

may have occured. Status class properties in the transaction

descriptor reported by the monitor indicate the status of the transac-

tion. A monitor may even choose to filter out bad transactions as

they would not be recognized by the design anyway. But what

about stimulus transactions? It is easy to determine which transac-

tion to execute and, for master bus-functional models, when to exe-

Sample 5-76.
Variable-
length transac-
tion descriptor.

class eth_frame;
   bit [47:0] da;
   bit [47:0] sa;
   bit [15:0] len_typ;
   bit [ 7:0] data[];
   bit [31:0] fcs;
   ...
endclass: eth_frame
typedef mailbox #(eth_frame) eth_frame_mbox;

Sample 5-77.
Using a vari-
able-length
transaction 
descriptor.

class mii_mac_bfm;
   ...
   task send(eth_frame fr);
      ...
   endtask: send
   ...
endclass: mii_mac_bfm

Sample 5-78.
Using a vari-
able-length
transaction 
descriptor with 
mailboxes.

class mii_mac_bfm;
   ...
   function new(...,
                eth_frame_mbox tx,
                eth_frame_mbox rx);
      ...
   endfunction: new
   ...
endclass: mii_mac_bfm
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cute them. But how do we know when their execution has

completed and whether or not they executed succesfully?

Blocking Transactions

The transaction 

completes when 

the task returns.

In a procedural interface, the unspoken assumption was that, when

the task used to execute a transaction returned, the transaction exec-

tion was completed. The task could also include output arguments

to report on the execution status.

Supports in-

order transac-

tions only.

This execution and completion model can only support in-order

transactions. Because of the blocking nature of the procedural inter-

face, it is not possible to submit multiple transactions and let the

bus-functional model choose which one to execute next. If out-of-

order execution is required, then a different mechanism for indicat-

ing the completion and status of a transaction is needed.

put() cannot 

implement

blocking trans-

actions.

In a dataflow interface, transactions are submitted for execution in a

mailbox by calling its put() method. However, for put() to block,

the mailbox must already be full—i.e. there must already be a trans-

action currently being executed. When the mailbox is empty, put()
immediately returns before the bus-functional model even has had a

chance to execute it. Furthermore, a mailbox can be configured as

full with more than one transaction descriptor in it or even to be

unbounded, causing repeated invocations of put() to immediately

return. Therefore, you cannot assume that the transaction has com-

pleted once put() returns.

See the VMM. The section titled “In-Order Atomic Execution Model” starting on

page 177 of the Verification Methodology Manual for SystemVer-
ilog shows how a vmm_channel can be used to implement blocking

transactions

Nonblocking Transactions

Transactions 

may be executed 

without block-

ing the test-

bench.

What if the testbench needs to be able to perform other tasks while

transactions are being executed? With a blocking procedural inter-

face, an additional thread and a completion indication must be cre-

ated to allow the execution of the testcase to continue, as shown in

Sample 5-79.
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Signal the com-

pletion in the 

descriptor.

This same mechanism can be encapsulated in the transaction

descriptors used by the dataflow transaction-level interface. The

completion of the transaction is indicated by triggering the event in

the transaction descriptor, as shown in Sample 5-80. The bus-func-

tional model can also annotate the transaction descriptor with status

information that will be assumed valid and available to the test-

bench once the event has been triggered. The testcase, after submit-

ting the transaction to the mailbox, simply waits for the event to be

triggered, as shown in Sample 5-81.   

Sample 5-79.
Forking a 
blocking inter-
face.

initial
begin
   bus_status status;
   event      done;
   fork
      begin
         bfm.read(..., status);
         -> done;
      end
   join_none
   ...
end

Sample 5-80.
Event-based
transaction 
completion

class bus_trans;
   enum {READ, WRITE} kind;
   ...
   event done;
   enum {UNKNOWN, OK, ERROR} status = UNKNOWN;
endclass: bus_trans;
typedef mailbox #(bus_trans) bus_trans_mbox;

class bus_master;
   ...
   local task execute_thread();
      forever begin
         bus_trans tr;
         this.inbox.get(tr);
         case (tr.kind)
            ...
         endcase
         tr.status = ...;
         -> tr.done;
      end
   endtask: extecute_thread;
endclass: bus_master
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Blocking is a 

special case.

A blocking transaction is a special case of a nonblocking transac-

tion. It can be implemented my immediately waiting for the trans-

action completion indication, as shown in Sample 5-81.

Supports out-of-

order execution.

This transaction completion and status indication mechanism can

support an out-of-order transaction execution model. Multiple

transactions can be submitted, either by calling the procedural inter-

face multiple times1, or by submitting multiple transaction descrip-

tors in the input mailbox.

See the VMM. The section titled “Out-of-Order Atomic Execution Model” starting

on page 182 of the Verification Methodology Manual for System-
Verilog shows how a vmm_channel can be used to implement non-

blocking transactions

Split Transactions

Transactions 

may be com-

posed of sub-

transactions.

Many high-performance bus protocols have split transactions. For

example, a read transaction could be composed of separate address

and data tenures. The bus master can perform the address tenure.

While the target device performs the work and buffers data, the

master can perform other bus transactions to other devices. The

master either polls or is interrupted by the first device when it is

ready to complete the read transaction. The master then performs

the second tenure, transferring data from the device, completing the

read transaction. The same target device may be able to handle sev-

eral split and non-split transactions concurrently. Split transactions

may also include out-of-order completion.

Sample 5-81.
Waiting for 
transaction 
completion

initial
begin
   bus_trans tr = new();
   tr.kind = READ;
   ...
   inbox.put(tr);
   @tr.done;
   if (tr.status != bus_trans::OK) ...
   ...
end

1. Make sure the task is declared as automatic or these concurrent invoca-
tions will clobber each other! See section titled "Non-Re-Entrant Tasks" 
on page 188.
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Provide tenure 

procedures.

Whatever transaction-level interface you decide on, the bus-func-

tional model will have to perform those tenures. They should be

implemented as separate sub-transactions. As long as they exist,

you should make them public to enable a testbench to have detailed

control over the atomic tenures on the physical interface. For exam-

ple, a testbench may need to create a specific sequence of tenures

and transactions to exercise a particular corner case. If the testbench

is too far removed from the physical interface, it may not be possi-

ble to create. The low-level tenure sub-transactions should be used

only by the very few testcases responsible for verifying the physical

interface logic.

Provide an inter-

face to the com-

plete 

transactions.

For any verification project, the bulk of the testcases are concerned

with higher-level functionality, not physical interface logic. They

do not depend on the split nature of the transaction and do not

require detailed control of the physical interface. Having to deal

with the tenures would make writing those testbenches tedious and

cumbersome. You should provide an interface to the split transac-

tion that makes it look like an atomic operation. Internally, it would

execute the tenures as required. But from the testbench’s perspec-

tive, it would appear like an ordinary transaction. The transaction

execution would wait until the split transaction completes and

returns with the completed data and status.

Provide non-

blocking trans-

action interface.

To support a mix of split and non-split transactions, with non-split

transactions executing between the tenures of a split transaction,

you should provide a nonblocking transaction interface. A proce-

dural transaction-level interface may very well wait while the initial

tenure of the split transaction is applied. But it should be nonblock-

ing in that it would not wait for the completion of the split transac-

tion. It would return instead with an indication of the status of the

split transaction—whether it was accepted by the target device—

and a mechanism for alerting the testbench that the transaction has

been completed. Sample 5-82 shows an implementation of such a

procedural interface: the response of the task is a reference to a

transaction completion descriptor that contains completion and sta-

tus indication. Sample 5-83 shows how such a procedure would be

used. It is easy to fork separate threads that will wait for the com-

pletion of the split transaction and verify their correctness. Imple-

menting a nonblocking transaction completion mechanism using a
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mailbox-based interface has already been shown in the previous

section.           

See the VMM. The section titled “Non-Atomic Transaction Execution” starting on

page 185 of the Verification Methodology Manual for SystemVer-
ilog shows how vmm_channels can be used to implement split

transactions.

Sample 5-82.
Nonblocking 
procedural
transaction 
interface

class split_read_resp;
   enum {DECLINED, PENDING, RETRY, ABORT, OK}
      status;
   bit [7:0] data[];
   event completed;
endclass: split_read_resp

class bfm;
   ...
   task split_read(input  bit [23:0] addr,
                   input  int len,
                   output split_read_resp resp);
      resp = new;
      if (this.setup_split_read(addr, len)) begin
         resp.status = DECLINED;
         return;
      end
      resp.status = PENDING;
      this.register_split_read(addr, len,
                               result);
   endtask: split_read
endclass: bfm

Sample 5-83.
Using a non-
blocking pro-
cedural trans-
action-level 
interface

split_read_resp resp;

master0.split_read(‘h000FFF, 32, resp);
if (resp.status == split_read_resp::PENDING)
   fork
      check_split_response(0x000FFF, 32, resp);
   join_none
...
task check_split_response(bit [23:0]      addr,
                          int             len,
                          split_read_resp resp);
   @resp.completed;
   if (data.size() != len) ...
   ...
endtask: check_split_response



Stimulus and Response

270 Writing Testbenches using SystemVerilog

Exceptions

Transactions 

may be retried.

In many protocols, transactions may fail not because they are

invalid but because one of the parties involved in the transaction is

busy or is out-of-sync. The transaction should be retried at a later

time. Only after a certain number of retries is a transaction consid-

ered failed. Should the bus-functional model do the retrying or

should you let the testbench worry about it?

Let the bus-

functional 

model do the 

retry.

The bus-functional model should make its best possible effort to

complete a transaction. That includes retrying transactions that did

not complete initially. Testbenches should not be burdened with the

repetitive retry operations. On the other hand, a testbench may need

to have control over the number of retries, or whether to even allow

a transaction to be retried. The transaction-level interface could

have a parameter specifying the maximum number of attempts.

Once the transaction has been tried for the specified number of

attempts, it is considered failed. A testbench that does not wish a

transaction to be retried would simply specify a single attempt. A

default value for the number of attempts (usually specified in the

protocol) could also be provided so it would not need to be speci-

fied for each invocation—only when a different value is required.

Sample 5-84 shows an example of an MII ethernet procedural inter-

face with control over the number of transmission attempts. 

Can add excep-

tion controls to 

transaction

descriptor.

If a dataflow interface is used, the additional parameters can be

included in the transaction descriptor, as shown in Sample 5-85.

That is fine if there is a one-to-one correspondence between the

transaction descriptor and the bus-functional model that can inject

Sample 5-84.
Retried trans-
action

class eth_mac_bfm;
   ...
   task send(input  mac_frame frame,
             output bit       success,
             input  int       attempts = 10);
      while (attempts-- > 0) begin
         ...
            success = 1;
            return;
         ...
      end
      success = 0;
   endtask: send
endclass: eth_mac_bfm
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or report the exception. But what if the same transaction descriptor

can be used on different bus-functional models and protocol, each

with different exceptions? For example, an ethernet frame can be

transmitted using MII, RMII, SMII, GMII, XGMII or XAUI physi-

cal interfaces, each with their specific exceptions. Should the ether-

net frame descriptor thus contain the necessary exception controls

for all of these physical interfaces?  

Transactions are 

composed of 

physical sym-

bols.

For most interfaces, the transaction data is not transmitted in paral-

lel, in a single cycle. Instead, the transaction data is divided into

symbols transmitted sequentially over multiple cycles. For exam-

ple, a byte transmitted over an RS-232 physical interface is trans-

lated into one-bit symbols. An ethernet frame is transmitted as 4-bit

symbols on a MII interface and as 2-bit symbols on a RMII inter-

face. Some symbols may be added to the transaction data by the

protocol for framing, synchronization, or error protection. For

example, an ethernet frame is prefixed with an 8-byte preamble and

a USB packet is prefixed with an 8-bit synchronization pattern.

Symbol-level

parameters must 

be controllable.

For each symbol, a protocol usually has several possible excep-

tions, as well as symbol-level flow control and status indication.

But a transaction-layer interface deals with information for the

entire transaction, not individual symbols. This is fine when verify-

ing functionality that resides behind the interface. But when verify-

ing the implementation of the interface itself, it is necessary to have

detailed control over all relevant symbol-level parameters. One

possible solution is to provide symbol-level parameters for each

symbol necessary to execute a transaction in the transaction-level

interface or transaction descriptor, as shown in Sample 5-86.  

Interpret the 

exception con-

trols when exe-

cuting the 

transaction.

The bus-functional model simply needs to look at the appropriate

exception controls and execute them when appropriate, as shown in

Sample 5-87. Although you should plan for all exceptions required

by your verification plan, there is no need to implement all of them

Sample 5-85.
Exception
controls in 
transaction 
descriptor.

class eth_frame;
   ...
   event done;
   bit success,

   int attempts = 10;
   ...
endclass: eth_frame
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at once. You should start with a bus-functional model that cannot

inject any exceptions and get the basic functionality of the design

debugged first. Once the design’s reaction to exceptions must be

verified, implement them as needed. 

All exceptions 

must be imple-

mented in the 

model.

This approach is simple and direct. But it requires that either the

exception and its control already exist in the bus-functional model,

or that you are able to modify the bus-functional model to add a

new exception to it. What if you do not have access to the source

code of the bus-functional model and it does not support the excep-

tion you need? What if your job is to create a reusable bus-func-

tional model and you do not want users constantly modifying—and

breaking—your model yet you do not want to always have to add

new exceptions to it?

Sample 5-86.
Symbol-level
exception con-
trols in trans-
action descrip-
tor.

class mii_symbol_except;
   enum {NONE, SKIP, CORRUPT, DISABLE} kind;
endclass: mii_symbol_except

class eth_frame;
   ...
   event done;
   bit success,

   int attempts = 10;
   mii_symbol_except mii_exceptions[int];
   ...
endclass: eth_frame

Sample 5-87.
Executing
symbol-level
exceptions

class mii_mac_bfm;
   task send(eth_frame fr);
      bit [3:0] symbols[];
      ...
      foreach (symbols[i]) begin
         if (fr.mii_exceptions.exists[i]) begin
            ...
         end
         ...
      end
      ...
   endtask: send
endclass: mii_mac_bfm
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A bus-functional 

model can exe-

cute user-

defined code.

What if a bus-functional model could be extended with user-

defined code? This would mean that the user could make it do

things it was not originally coded to do. It would mean it would not

have to be able to do everything from day one. It would mean a

simpler bus-functional model that could meet the unpredictable

needs of different verification environments. Callbacks allow bus-

functional models to execute user-defined code. Callbacks are

invoked by the bus-functional models at appropriate points in the

execution of the transaction. In C, callbacks are implemented using

pointers to functions. But pointers to functions do not exist in Sys-

temVerilog. Experienced C users often point to this apparent lack as

a fatal flaw in SystemVerilog. They are wrong. In an object oriented

programming model, virtual methods are used instead of pointers to

functions. And SystemVerilog supports those just fine.

Use virtual call-
back method.

In SystemVerilog, callbacks are implemented using virtual meth-

ods. The default implementation of a callback should be to return

an innocuous value to eliminate the requirement that all testbenches

overload the callback method to render a bus-functional model

functionally correct. Testbench-specific code can replace the

default implementation by providing an overloaded definition in a

derived class. Information can be passed between the bus-func-

tional model and the callback method through arguments or through

public or protected class properties. Sample 5-88 shows a callback

invoked just before an ethernet frame is to be transmitted by a MII

interface. The callback is extended in a testbench, as shown in Sam-

ple 5-89, to introduce a delay before the transmission of every

frame. The bus-functional model in Sample 5-88 is able to accept

only one callback extension. The cbs class property could be made

into a queue to accept a series of callback extensions, each dealing

with different aspects of a testcase or testbench.       

Callbacks can 

modify default 

behavior.

It is easy to write a bus-functional model that implements and exe-

cutes a protocol as fast as possible and without any errors. But

when it comes time to verify the design interfacing to that protocol,

that is not the most interesting. You need to be able to make the

bus-functional model deviate from its default behavior. Callbacks

can be used to do that. The nice thing about callbacks is that you

need not extend them. So by default, a bus-functional model will

operate as fast as possible and without errors. But for those times

where you need it to do something different, a callback is there to

give you that control. For example, as shown in Sample 5-89, a
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callback can be used to potentially modify the answer of a USB

device to an IN transaction. By default, the answer is an ACK. But

the callback can be extended to answer with a NAK, STALL or not

answer at all. 

Provide symbol-

level callbacks.

Callbacks can be defined to provide controllability down to the

symbol level. Before transmitting or receiving a symbol, a callback

should be called with the necessary arguments to let a testbench

modify the default symbol-level behavior. For example, Sample 5-

91 shows a symbol-level callback method for a slave PCI memory

Sample 5-88.
Bus-func-
tional model 
callback
method

class mii_mac_cbs;
   virtual task pre_frame_tx(mii_mac_bfm bfm,
                             eth_frame    fr,
                             ref bit      drop);
   endtask: pre_frame_tx
   ...
endclass mii_mac_cbs

class mii_mac_bfm;
   mii_mac_cbs cbs = null;
   ...
   task send(eth_frame fr);
      if (this.cbs != null) begin
         bit drop = 0;
         this.cbs.pre_frame_tx(this.fr, drop);
         if (drop) return;
      end
   endtask: send
   ...
endclass: mii_mac_bfm

Sample 5-89.
Overloading
the callback 
method

class my_mii_mac_cbs extends mii_mac_cbs;
   virtual task pre_frame_tx(mii_mac_bfm bfm,
                             eth_frame   fr,
                             ref bit     drop);
      repeat (10) @(bfm.sigs.tx);
   endtask: pre_frame_tx
endclass: my_mii_mac_cbs

initial
begin
   my_mii_mac_cbs cb = new;
   bfm.cbs = cb;
   ...
end
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read interface. It controls symbol-level flow control by introducing

time advances that will delay the assertion of the target-ready sig-

nal. It also controls byte-enable indications, has the possibility of

aborting the transaction or signaling a parity error for this symbol.

Sample 5-90.
Callback to 
modify default 
behavior

class usb_trans;
   typedef enum {ACK, NAK, STALL, NONE} answer;
   ...
endclass: usb_trans
...
class usb_device_cbs;
   virtual function void
      pre_in_ack(usb_device_bfm        bfm,
                 usb_trans             tr,
                 ref usb_trans::answer answ);
   endtask: pre_in_ack
endclass: usb_device_cbs

Sample 5-91.
Symbol-level
callback
method

class pci_slave_cbs;
   virtual task pre_symbol(ref bit [31:0] data,
                           ref bit [ 3:0] be,
                           ref bit        abort,
                           ref bit        perr);
   endtask: pre_symbol
endclass pci_slave_cbs

class pci_slave_bfm;
   ...
   task mem_read_tx();
      ...
      while (...) begin
         ...
         this.sigs.trdy <= 1’b1;
         if (this.cbs != null)
            this.cbs.pre_symbol(data, be,
                                abort, perr);
         if (abort) begin
            this.sigs.abrt = 1’b0;
            return;
         end
         this.sigs.trdy   <= 1’b0;
         this.sigs.data   <= data;
         this.sigs.cmd_be <= be;
         ...
      end
      ...
   endtask: mem_read_tx
endclass: pci_slave_bfm
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Use symbol-

level callbacks 

to inject symbol-

level errors.

From the transaction-level interface, it is simple to inject transac-

tion-level errors such as a bad CRC or a packet that is too short. But

how can you inject errors at the symbol level, such as corrupting a

symbol, violating the handshake protocol or unexpectedly terminat-

ing a transaction? As long as you have control over the symbol-

level parameters in a callback, why not take this opportunity to use

the symbol-level callback to inject symbol-level errors? Simply add

parameters to the symbol-level callback methods for the errors that

can be injected. By default, they are set to not inject any errors. If

they are not modified in the callback, no errors will be injected.

Sample 5-92 shows the transaction-level and symbol-level call-

backs for a MII ethernet interface. From the symbol-level callback,

it is possible to corrupt the symbol, cause the TX_EN signal to be

deasserted, cause the TX_ER signal to be asserted or abort the

frame altogether. When implementing a bus-functional model, it is

necessary to provide every mechanism for breaking the protocol

that the design should be able to sustain.          

Time may not be 

allowed to 

advance during 

a callback.

Is time allowed to advance inside a callback—i.e. can a callback

method be blocking? The answer is: It depends. If the transaction

protocol includes handshaking and flow-control indicators, it is

possible to have time advance while a callback is executed. This

would introduce delays in the execution of the protocol. Other

transaction protocols may suffer a total breakdown if any delay is

introduced, in which case the callback must execute and return in

zero-time.

Sample 5-92.
Transaction 
and symbol-
level call-
backs.

class mii_mac_cbs;
   virtual task pre_frame_tx(mii_mac_bfm bfm,
                             eth_frame   fr,
                             ref bit     drop);
   endtask: pre_frame_tx

   virtual function void
      pre_symbol_tx(mii_mac_bfm bfm,
                    eth_frame   fr,
                    ref bit [3:0] symbol,
                    ref bit       tx_en,
                    ref bit       tx_er,
                    ref bit       abort);
   endfunction: pre_symbol_tx
   ...
endclass mii_mac_cbs
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SystemVerilog has a built-in mechanism for enforcing time restric-

tions on callbacks: Use a task for callback methods that are allowed

to advance time and use a function returning a void type for call-

back methods that must execute in zero-time. For example, as

shown in Sample 5-92, delay can be inserted before the transmis-

sion of an ethernet frame, but once it has started, no delays can be

introduced before a symbol is transmitted.

See the VMM. The section titled “Callback Methods” starting on page 198 of the

Verification Methodology Manual for SystemVerilog provides

detailed guidelines for implementing callbacks in transactors.



Stimulus and Response

278 Writing Testbenches using SystemVerilog

SUMMARY

Model your clock signals in a module. Be careful about time resolu-

tion issues, delta cycle alignment and implicit synchronization of

asynchronous signals.

Encapsulate repetitive physical-level operations into bus-functional

tasks. Collect all of the bus-functional tasks for a physical interface

or protocol into a bus-functional model. Detect concurrent activa-

tion of bus-functional tasks within the same bus-functional model

using a semaphore.

Design an effective transaction-level interface with a suitable trans-

action completion and status notification mechanism.

Provide callbacks in bus-functional models and response monitors

to enable access to symbol-level protocol parameters and inject

symbol-level errors.
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CHAPTER 6 ARCHITECTING 

TESTBENCHES

A testbench need not be a monolithic block. Although Figure 1-1

shows the testbench as a large thing that surrounds the design under

verification, it need not be implemented that way. The design is

also shown in a single block, and it is surely not implemented as a

single unit. Why should the testbench be any different? Figure 6-1

depicts the architecture of a generic testbench. In this chapter, I will

describe how to implement each component.  

The previous 

chapter was 

about low-level 

testbench com-

ponents.

In Chapter 5, we focused on the stimulus and monitoring of the

low-level signals going into and coming out of the device under

verification. I showed how to abstract them into transactions using

bus-functional models. The emphasis was on the stimulus and

response of interfaces and the need for managing separate execu-

tion threads underneath a useful transaction-level interface. If you

Figure 6-1.
Typical 
testbench 
architecture
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prefer a bottom-up approach to writing testbenches, I suggest you

start with the previous chapter.

This chapter 

focuses on the 

structure of the 

testbench.

This chapter concentrates on implementing the many testcases and

filling the functional coverage models that were identified in your

verification plan. I show how best to structure the bus-functional

models into a transaction-level verification harness. This verifica-

tion harness will create the platform on top of which the self-check-

ing structure and stimulus sources will be built. I also describe how

to create random generators that can be constrained easily, with a

minimum of modifications, to create a complete verification envi-

ronment.

A hypothetical 

design will be 

used to illus-

trate the con-

cepts.

Figure 6-2 shows the interfaces around a hypothetical ATM switch

node design. A management interface allows a processor to read

and write internal registers to configure the switch node. The bus-

functional models shown in Sample 6-1 and Sample 6-2 are also

assumed to be available. This design and bus-functional models

will be used throughout this chapter to illustrate important con-

cepts.    .  

VERIFICATION HARNESS

Create a transac-

tion-level verifi-

cation harness.

All of the testbenches have to interface through an instantiation to

the same design under verification. It is safe to assume that they all

require the use of the same bus-functional models to generate stim-

ulus and to monitor response. Instead of a monolithic block, the

testbenches should be designed with a layer of physical-level bus-

functional models. This physical-level layer, common to all test-

benches for the design under verification, is called the verification
harness. The test functions required to implement the testcases

identified in the verification plan are built on top of the verification

Figure 6-2.
4x4 ATM 
switch design

Utopia L1
Utopia L1

Utopia L1

Utopia L1

Utopia L1
Utopia L1

Utopia L1

Utopia L1

Management

4 x 4

ATM Switch

Node

Clock, reset



Verification Harness

Writing Testbenches using SystemVerilog 281

harness, as illustrated in Figure 6-3. The test function and the har-
ness together form a testbench.

Encapsulate the 

verification har-

ness.

The encapsulation of a transaction-level verification harness is rela-

tively simple. The design under verification, the clock generators

and the top-level signals and interfaces are instantiated in a top-

Sample 6-1.
Utopia Level 1 
ATM-layer 
bus-functional 
model

class atm_cell;
   ...
endclass: atm_cell
...
interface utopia_L1_if;
   logic       clk;
   logic [7:0] data;
   logic       soc;
   logic       enb;
   logic       clav;

   clocking cb @ (posedge clk);
      ...
   endclocking: cb
endinterface: utopia_L1_if;
...
class utopia_L1_atm_bfm;
   ...
   extern function
      new(virtual utopia_L1_if tx_sigs,
          virtual utopia_L1_if rx_sigs);
   extern task send(atm_cell cell);
   extern task receive(output atm_cell cell);
endclass: utopia_L1_atm_bfm

Sample 6-2.
Management
interface bus-
functional 
model

interface utopia_mgmt_if;
   logic [15:0] addr;
   logic [15:0] data;
   logic        rd;
   logic        wr;
   logic        rdy;
endinterface: utopia_mgmt_if
...
class utopia_mgmt_master_bfm;
   ...
   extern function
      new(virtual utopia_mgmt_if sigs);
   extern task write(input bit [15:0] wadd,
                     input bit [15:0] wdat);
   extern task read(input  bit [15:0] radd,
                    output bit [15:0] rdat);
endclass: utopia_mgmt_master_bfm
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level module. The bus-functional model instances and their connec-

tivity to the interface instances are encapsulated in a program or a

class eventually instantiated in a program. The various test func-

tions then instantiate the encapsulated verification harness.

Figure 6-4 depicts the structure of the verification harness for the

ATM switch node and the location of the components in the top-

level module or encapsulating program or class.

Interface 

instances and 

DUV in top-

level module.

The design under verification and the wires connecting to its top-

level pins are instantiated in the top-level module. The clock gener-

ators are also coded in that same module. This will ensure that the

design is simulated as a set of module threads. The top-level mod-

ule for the example design is shown in Sample 6-3.  

Figure 6-3.
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Bus-functional 

models in top-

level program or 

class.

The bus-functional models are instantiated in a top-level program
or class that will eventually be instanted in a program. This ensures

that the testbench executes as program threads and can reliably

react to events and assertions in the design. Sample 6-4 shows the

bus-functional models instantiated in a program whereas Sample 6-

5 shows them instantiated in a class. Both look very similar but I

prefer to use a class as it has a few advantages over a program
which will be discussed in the next section.     

Test functions 

use transaction 

interfaces in the 

verification har-

ness.

A complete verification harness provides a transaction-level

abstraction of the design to be verified. It provides a foundation on

which the data generation mechanism, the self-checking structure

and the functional coverage measurements are built. Test functions

are implemented by using the transaction-level interface elements

in the bus-functional models and verification harness itself. These

interface elements are accessed using hierarchical references in a

Sample 6-3.
Top-level 
module for 
ATM switch
node

module top;
utopia_L1_if   tx_0(), tx_1(), tx_2(), tx_3();
utopia_L1_if   rx_0(), rx_1(), rx_2(), rx_3();
utopia_mgmt_if mgmt();
...
reg            reset = 0;
reg            clk   = 0;

switch_node dut(tx_0.clk, ..., clk, reset);

always #5 clk = ~clk;

endmodule: top

Sample 6-4.
Top-level pro-
gram for ATM
switch node

program harness;

utopia_L1_bfm  atm0 = new(top.tx_0, rx_0);
utopia_L1_bfm  atm1 = new(top.tx_1, rx_1);
utopia_L1_bfm  atm2 = new(top.tx_2, rx_2);
utopia_L1_bfm  atm3 = new(top.tx_3, rx_3);
utopia_mgmt_bfm cpu = new(top.mgmt);

task reset;
  top.rst <= 1;
  repeat (3) @(negedge top.clk);
  top.rst <= 0;

endtask

endprogram
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single instance of the verification harness. Sample 6-6 shows a par-

tial test function that configures the device then injects an ATM cell

in one of the ports.

See the VMM. The section titled “Testbench Architecture” starting on page 104 of

the Verification Methodology Manual for SystemVerilog provides

additional techniques and guidelines for architecting a verification

harness and test functions.

DESIGN CONFIGURATION

Most designs 

require configu-

ration.

Unless you are verifying a very simple design, or an implementa-

tion unit of a much larger design, it will be necessary to perform

Sample 6-5.
Top-level 
class for ATM 
switch node

class harness;

   utopia_L1_bfm   atm0 = new(top.tx_0, rx_0);
   utopia_L1_bfm   atm1 = new(top.tx_1, rx_1);
   utopia_L1_bfm   atm2 = new(top.tx_2, rx_2);
   utopia_L1_bfm   atm3 = new(top.tx_3, rx_3);
   utopia_mgmt_bfm cpu  = new(top.mgmt);

   task reset;
      top.rst <= 1;
      repeat (3) @(negedge top.clk);
      top.rst <= 0;
   endtask

endclass: harness

Sample 6-6.
Test function 
using a verifi-
cation harness

program my_test;

harness th = new;

initial
begin
   atm_cell cell;

th.cpu.write(16’h0001, 16’h0010);
   ...

th.atm0.send(cell);
   ...
   $finish;
end

endprogram: my_test
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certain configuration operations before it will be possible to apply

stimulus to and observe response from the design. Configuration

may be as simple as enabling some data path, or it may be as com-

plicated as generating, then downloading, firmware code. It may

involve writing to internal registers, writing to an embedded mem-

ory or setting external pins to particular levels.

Avoid using one 

or two configu-

rations.

Because of the often complex nature of a device configuration, it is

not unusual for verification to proceed with only one or two device

configurations. Device configurations are maintained as a series of

register write operations that “magically” produce a configuration.

The testbenches are then written according to the configuration

usually loaded. Unfortunately, this will likely prevent some bugs

from being uncovered. Some unexpected correlation may exist

between different configuration parameters. If these parameters are

not exercised, the correlation will not be highlighted.

Abstracting Design Configuration

Model the con-

figuration.

Instead of relying on an implicit knowledge of the current design

configuration, why not create a high-level model of the config-

urable elements of the design? That model could then be used by

the self-checking structure (see “Self-Checking Testbenches” on

page 292) to determine the correctness of the response. For exam-

ple, a design could have an input pin that can be used to select

between two different management interfaces. As illustrated in

Sample 6-7, you can use an enumerated type to model the currently

selected interface. That enumerated type can then be passed to the

verification harness to instantiate the proper bus-functional model

based on the interface configuration. The verification harness

would also use the value to determine the polarity used to drive the

interface selection pin.

A harness class
is easier to make 

configurable.

If the configurability of the device requires a configurable verifica-

tion harness, putting the harness in a class will make implementing

and controlling the configuration much easier than in a program. A

program is like a module. The structure of a program is more or less

predefined and can only be controlled during elaboration using if-
and for-generate statements. Once the simulation has started, the

structure of the verification harness program cannot be modified.

The structure of a class, on the other hand, is determined at run-

time by its constructor. When implementing the constructor, you
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have access to the full power of the SystemVerilog language to

determine how to construct the verification harness. And because it

is constructed at runtime, not elaboration time, it is possible to have

the testcase influence the configuration of the design and the verifi-

cation harness before it is constructed. That is why I prefer to

encapsulate my verification harnesses in classes rather than pro-

grams. As a secondary benefit, I have access to the object-oriented

programming features of the harness class to make testcase-specific

extensions to the harness or create a harness base class where I can

locate device-independent functionality.

Sample 6-7.
Modeling
interface con-
figuration 
using e

class utopia_mgmt_intel_bfm
   extends utopia_mgmt_bfm;
   ...
endclass: utopia_mgmt_intel_bfm

class utopia_mgmt_motorola_bfm
   extends utopia_mgmt_bfm;
   ...
endclass: utopia_mgmt_motorola_bfm
...
class device_cfg;
   enum {INTEL, MOTOROLA} mgmt_mode;
   ...
endclass: device_cfg

class harness;
   ...
   utopia_mgmt_bfm cpu;;
   ...
   function new(device_cfg cfg);
      case (cfg.mgmt_mode)
      device_cfg::INTEL: begin
         utopia_mgmt_intel_bfm m = new(...);
         this.cpu = m;
         top.int_mot = 0;
      end
      device_cfg::MOTOROLA: begin
         utopia_mgmt_motorola_bfm m = new(...);
         this.cpu = m;
         top.int_mot = 1;
      end
      endcase
   endfunction
   ...
endclass: harness
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See vmm_env. The section titled “Simulation Control” starting on page 124 of the

Verification Methodology Manual for SystemVerilog defines a base

class vmm_env and usage guidelines for creating a verification har-

ness class.

Do not model 

the implementa-

tion of the con-

figuration.

Even though the configuration of the device is expressed in terms

of ones and zeroes in various bit fields in various registers, it is not

necessary to use the same approach when modeling a device con-

figuration. Instead of maintaining an image of the register values,

model the purpose and function of the configuration. A high-level

description of the device configuration will be much easier to use in

the self-checking structure and won’t necessitate the interpretation

of low-level bit fields. 

For example, the configuration of the switch table in the example

ATM switch node design could be implemented as a series of bits in

a register. If bit x in register y is set, then any cell with a VPI value

equal to y is forwarded to output port x. As shown in Sample 6-8,

the same information can be modeled in a more abstract fashion by

using an array of a queues of integers. Cells with a VPI value of y
are forwarded to all ports whose number is found in the queue at

index y of the array.

Collect all 

device configu-

ration informa-

tion in a single 

class.

As shown in Sample 6-7 and Sample 6-8, it is good practice to col-

lect all device configuration information under a single descriptor.

This technique makes it easier to pass it to the verification harness

and the self-checking structure. Collecting device configuration

information will also make it possible to create constraints and rela-

tionships between various configuration items and include methods

to ensure internal consistency.

Design configu-

ration may 

include test con-

figuration.

The “design” configuration may include configuration parameters

that are outside of the design itself but influence the stucture or

behavior of the testbench in which it sits. If your design can be used

Sample 6-8.
Modeling con-
figuration 
function, not 
implementa-
tion

class to_ports;
   bit [1:0] number[$];
endclass: to_ports
class device_cfg;
   ...
   to_ports table[256];
   ...
endclass: device_cfg;
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in different system configurations, why limit the testbench structure

to just one of the possibilities? For example, a USB hub design

could be surrounded by a configurable number of devices. Some

devices would be low speed, others full speed. Some could have

asynchronous endpoints, others have multiple interfaces with alter-

nate settings. Some devices actually could be another instance of

the USB hub with further devices connected to it. Based on the test

configuration, the necessary instances of the design under verifica-

tion are created and connected to the necessary instances of bus-

functional models.

Configuring the Design

Compile the 

configuration 

description into 

bit fields.

Once the device configuration is captured in an instance of the con-

figuration descriptor, it will be necessary to configure the design to

match. This step will necessitate the translation of the various con-

figuration items into the appropriate bit field values in the appropri-

ate registers. This step may seem like a daunting task—and it

usually is—but it is simply coding the process you would have to

perform intellectually otherwise. This translation will provide for a

better documentation of the device configuration process. This

translation will also ensure that configuring the design to match is

repeatable, should the location of various bits fields be reorganized

or their encoding modified. Sample 6-9 shows how the switch table

in Sample 6-8 could be compiled into the corresponding bit field

values in the corresponding registers. 

Sample 6-9.
Translating a 
high-level
configuration
descriptor

class device_cfg;
   ...
   to_ports table[256];

   task apply(utopia_mgmt_bfm cpu);
      bit [15:0] entry;

      for (this.table[i]) begin
         entry = 0;
         for (this.table[i].number[j]) begin
             entry[table[i].number[j]] = 1;
         end
         cpu.write(16’h0800 + i, entry);
      end
   endtask: apply
endclass: device_cfg
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Grow the con-

figuration capa-

bility.

It is not necessary to implement the translation process of the entire

configuration descriptor from day one. The first simulations will

likely be performed using a simple device configuration, leaving

the bulk of the configuration parameters in their default state.

Therefore, translate only that part of the configuration descriptor

that is relevant for these first simulations. As more and more con-

figuration parameters are being verified or are supported by the

self-checking structure, they should be added to the translation pro-

cess similarly. Eventually, you will end up with the entire configu-

ration descriptor appropriately translated and programmed into the

device.

Assert that 

unsupported 

configurations 

are not used.

While the configuration translation process does not support certain

configuration parameters, you must ensure that they are not acci-

dentally used in a simulation. The translation procedure must check

that all unsupported configuration parameters are at their default

values. Sample 6-10 shows the translation process for the manage-

ment interface configuration signal. Because one of the modes is

not currently available (because the bus-functional model may not

be ready yet), it will report an error if the unsupported configuration

is attempted.

Sample 6-10.
Detecting
unsupported
configurations

class harness;
   ...
   utopia_mgmt_bfm cpu;;
   ...
   function new(device_cfg cfg);
      case (cfg.mgmt_mode)
      device_cfg::INTEL: begin
         $write(“ERROR: Intel-style mgmt not
                available yet...”);
         $finish;
      end
      device_cfg::MOTOROLA: begin
         utopia_mgmt_motorola_bfm m = new(...);
         this.cpu = m;
         top.int_mot = 1;
      end
      endcase
   endfunction
   ...
endclass: harness
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Random Design Configuration

Randomize the 

configuration.

Once you have a descriptor capable of coherently describing any

possible configuration of your design, why bother specifying it

manually? You’d probably always be specifying the same configu-

ration anyway, which is exactly the problem we were trying to

avoid. If you can generate random instructions, packets or data

items, why not generate a random device configuration as well? By

using a different randomly generated device configuration in each

simulation run, you quickly will cover many more combinations. If

an unintended correlation between parameters exists, it is likely to

be exposed. Sample 6-11 shows a randomizable configuration

descriptor. Because the configuration descriptor is already encapsu-

lated in a class, all that was required was the use of the rand
attribute on the class properties modelling the configurable parame-

ters.

Add constraints 

to match limita-

tions.

But what about the limitations of your configuration translation

procedure? If an unsupported configuration is generated, it will

cause an error to be reported. You should maintain a set of con-

traints that match the current limitation in the device configuration

support. As more and more of the configuration parameters are sup-

ported, constraints are removed. Sample 6-12 shows the constraints

that would be added to all simulation runs temporarily to prevent a

configuration, unsupported by the verification harness shown in

Sample 6-10, from being generated. Of course, at the end of your

verification project, that constraint block should be empty because

Sample 6-11.
Randomizable
configuration
descriptor

class to_ports;
rand bit [1:0] number[$];

endclass: to_ports
class device_cfg;

rand enum {INTEL, MOTOROLA} mgmt_mode;
rand to_ports table[256];

   task apply(utopia_mgmt_bfm cpu);
      ...
   endtask: apply
endclass: device_cfg



Design Configuration

Writing Testbenches using SystemVerilog 291

your verification harness should support all functions required by

your testcases.  

Add constraints 

to generate sim-

ple debug con-

figurations.

Likewise, a completely random configuration is not likely to be

useful for the first simulations. In the early stage of a project, a

design will contain many functional bugs. They will be easier to

identify and debug if a simple configuration is used. The first simu-

lations should be executed with constraints on the configuration

descriptor to generate a simple configuration. Once the design sim-

ulates successfully, these constraints are removed to increase imme-

diately the number of configuration combinations that can be

verified.

Use functional 

coverage to 

identify configu-

rations that were 

verified.

If the device configuration is generated randomly, how do you

know which configurations you have verified? Simple: A device

configuration is treated just like a feature of the design. All interest-

ing and relevant configurations should be identified in the verifica-

tion plan. They should be included in the functional coverage

model of the design. Functional coverage measurements will iden-

tify which configurations were indeed verified and the ones that

remain to be verified.

Randomize con-

figuration in 

harness.

To ensure that the design and test configuration is randomized as

often as possible, it should be randomized in the verification har-

ness as shown in Sample 6-13. It also avoids having to repeatedly

code the configuration randomization in every testcase. Each

testcase will have to call a configure() method to have the selected

configuration applied to the device under verification as shown in

Sample 6-14. This gives the opportunity to the testcase of modify-

ing the randomized configuration, or re-randomize it under differ-

ent constraints before applying it. It is also a better approach than

having each testcase invoke the device_cfg::apply() method

directly because device configuration may impact the configuration

of the verification harness itself. By encapsulating the configuration

process in a harness method, the harness is free to perform all nec-

Sample 6-12.
Support limi-
tation con-
straints

class device_cfg;
   ...
   constraint unsupported {
      mgmt_mode != INTEL;
   }
endclass: device_cfg
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essary steps to configure the device and the verification harness in a

consistent and coherent fashion.  

See vmm_env. Guidelines 4-33, 4-34, 4-40 and 4-42 of the Verification Methodol-
ogy Manual for SystemVerilog describe how a configurable verifi-

cation environment should be implemented when using the

vmm_env base class.

SELF-CHECKING TESTBENCHES

Testbenches 

must be self-

checking.

As discussed in “Verifying the Response” on page 86, visually

inspecting simulation results to determine functional correctness is

not an acceptable long-term strategy. Whatever intellectual process

you would go through to identify an error visually in the simulation

result must be coded in your testbench. This technique will let the

testbench detect errors and declare success or failure on its own.

Coding error detection into your testbenches will free you to work

Sample 6-13.
Randomizing
configuration
in harness

class harness;
   device_cfg cfg;
   ...
   function new();
      ...
      if (!cfg.randomize()) ...
   endfunction: new

   task configure();
      this.cfg.apply(this.cpu);
   endtask: configure
   ...
endclass: harness

Sample 6-14.
Testcase with 
random device 
configuration

program test;

harness th = new;

initial
begin
   ...
   th.configure();
   ...
end
endprogram: test
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on other tasks while the design is autonomously subjected to hun-

dreds of simulations.

Define what to 

check.

The problem with verification is that you cannot find an error

where you are not looking. It is therefore necessary, during the ver-

ification planning stage, to identify all of the failure modes that

must be checked for and how they can be detected. Typical correct-

ness criteria include data transformation, data ordering, protocol

correctness, data losses and design state. The requirement of the

self-checking mechanism must be specified and reviewed to ensure

that a potential failure will not go undetected.

Some checks are 

implemented as 

assertions.

Some failure modes will be easier to detect using assertions on the

design itself. Checks that should be formally verified must also be

implemented using assertions. Many are implementation-specific

failure modes, such as buffer overflows, and should be coded

directly in the RTL. Others will be to check for signal-level rela-

tionships on interface signals. These can be coded in the interface
declaration containing the signals in question.

Many are imple-

mented as test-

bench code.

Failure modes dealing with higher level errors, such as data trans-

formation, ordering or computations, are better detected behavior-

ally in the testbench itself. The expressiveness of the property

language does not really lend itself well for high-level or end-to-

end response checking.

It will be the 

most complex 

portion of your 

testbench.

After the completion of a project, you will find that the largest,

most complex component of the testbenches is the self-checking

structure. It will have been the portion that required the most

authoring and maintenance effort. The self-checking structure is

also the most critical portion as it is responsible for declaring the

functional correctness of the design. It will embody a duplication of

the specified functionality of the design under verification.

Why is this sec-

tion so short?

If the self-checking structure is the most complex and largest por-

tion of a verification project, why is it such a small portion of this

book? That’s because the bulk of the functionality in the self-check-

ing structure will be to model the expected functionality of the

design under verification. That is unique to every design and cannot

be described in a generic fashion in a book. Each class of function

requires different approaches and different mechanisms for identi-

fying failures. Each class of design could be the topic of its own

book.
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General imple-

mentation tech-

niques are 

presented.

This section presents various techniques for implementing the self-

checking structure. Which one to use depends on the class of design

under verification. The techniques can also be used in combination.

Some techniques depend on the availability of reference models.

Others rely on the availability of unmodified data payloads. Once

you have specified the requirements of the self-checking structure,

use the necessary techniques to implement them.

See the VMM. The section titled “Self-Checking Structures” starting on page 246

of the Verification Methodology Manual for SystemVerilog describe

similar and additional self-checking techniques and provides guide-

lines for implementing them.

Hard Coded Response

Some tech-

niques require 

hard-coded 

stimulus and 

configuration.

The self-checking strategy used to verify the muxed flip-flop in

“Self-Checking Testbenches” on page 221 relied on hard coded

response checking. The function and configuration of the device

under verification was very simple. The response could be checked

for each individual input value. To hardcode a response in a test-

bench requires a known configuration and a known input stream. It

is therefore only applicable to directed testcases. Sample 6-15

shows the pseudo-code for a directed testcase with a hardcoded

response on the ATM switch node design. The objective of this

testcase is to verify that cells from every input port can be switched

to every output port. 

It must be repli-

cated for each 

testcase.

Each testcase is supposed to verify a different feature of the design.

Each testcase needs a different configuration or a different input

data stream. Each testcase will thus yield a different response. If a

hard-coded response strategy is used, it will be necessary to repli-

cate the response checking in each testbench.

Errors can slip 

through easily.

Because the response being checked is crafted to the testcase, it

tends to ignore other potential problems. It is assumed that the other

functions operate correctly and that any problem would be caught

by the testcase targeting those functions. Should an unexpected cor-

relation or corner case exist, it will likely go undetected if it is acci-

dentally created in a testcase that focuses on different features.
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Data Tagging

Transactions 

must have 

untouched data 

fields.

Many designs use some of the input information for processing,

sometimes transforming it, but leave other portions of the input

untouched and forward it, intact, all the way through the design to

an output. Examples abound in the datacom industry. They include

ethernet hubs, IP routers, ATM switches and SONET framers.

Use the 

untouched fields 

to encode the 

expected tran-

formation.

The portion of the data input that passes untouched through the

design under verification can be put to good use. It is often called

payload and the term packet or frame often is used to describe the

unit of data processed by the design. You must first determine,

through a proper check, that the payload information is indeed not

modified by the design. Subsequently, the payload information can

be used to describe the expected destination, position and transfor-

mation for this packet. For each packet received, the output monitor

uses the information in the payload to determine if the packet was

processed appropriately.

This simplifies 

the testbench 

control struc-

ture.

This self-checking strategy usually lends itself to the simplest self-

checking structures. All of the intelligence is located in independent

output monitors. The control of this type of testbench is simple

because all the processing (stimulus and specification of the

expected response) is performed in a single location: the stimulus

generator. Some minor orchestration between the generators may

Sample 6-15.
Pseudo-code
for hardcoded 
response

Program configuration:
   for x in 0..3:
      vpi x -> output port #x
for out_port in 0..3:

fork
{

      for in_port in 0..3:
         generate atm cell with:
            vpi == out_port;
            vci == in_port;
         send cell on port(in_port);
   }
   {
      for in_port in 0..3:
         wait for cell on port(out_port);
         assert cell.vpi == out_port;
         assert cell.vci == in_port;
   }
   join
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be required in some testcases when it is necessary to synchronize

traffic patterns to create interesting scenarios. Figure 6-5 shows the

structure of a testbench using data tagging to verify the example

switch node design example. 

Include all nec-

essary informa-

tion in the 

payload to deter-

mine functional 

correctness.

The payload must contain all necessary information to determine if

a particular packet came out of the appropriate output, in the proper

sequence and with the appropriate transformation of its control

information. For example, assume the success criteria is that the

packets for a given input stream be received in the proper order by

the proper output port. The payload should contain a unique stream

identifier, a sequence number and an output port identifier, as

shown in Figure 6-6. 

The output monitor needs to verify that the output identifier

matches its own identifier. It also needs to verify that the sequence

number is equal to the previously received sequence number in that

stream plus one, as outlined in Sample 6-16. A CRC value is used

to verify that the payload was indeed not modified by the design. 

Use data tagging 

in collaboration 

with scoreboard-

ing.

Should it be possible for a packet to have a payload too short to

contain all of the tag information, another self-checking strategy—

such as scoreboarding—must be used in concert with data tagging.

When present in the payload, the tag information is used by the out-

put monitor to quickly search the scoreboard to confirm correctness

of the received object. When not available, the scoreboard is

Figure 6-5.
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searched normally, to ensure that the received object is indeed

expected. For more details on scoreboarding, see “Scoreboarding”

on page 300.

Cannot be used 

within system-

level context.

Data tagging assumes that some portion of the stimulus is available

to be used without interference from the design under verification.

This may be true for a stand-alone design block. But every payload

has an ultimate system-level purpose. Once put in a system, the

payload fields may be used to carry higher-level information. For

example, the payload bytes in an ethernet frame may carry IP pack-

ets. If you intend to reuse your block-level self-checking structure

at the system-level, data tagging may not be an appropriate strategy.

Reference Models

You can use a 

reference model.

As illustrated in Figure 6-7, the reference model and the design

under verification are subjected to the same stimulus and their out-

put is monitored and compared for discrepancies constantly.

Reference mod-

els rarely exist.

The problem with this strategy is that reference models rarely exist.

Reference models are available only during a re-design exercise

where backward compatibility is required and when they form an

integral part of the specification. Pure backward compatible re-

designs are rare as the re-design is often used as an opportunity to

increase performance, add to the number of ports or add new fea-

Sample 6-16.
Implementa-
tion using pay-
load informa-
tion to 
determine
functional cor-
rectness

forever begin
   atm_cell cell;

   th.uL1_0.receive(cell);
   // Cell was corrupted?
   if (cell.payload[47] !== cell.payload_crc())
   begin
      ...
      continue;
   end
   // Cell is for this port?
   if (cell.payload[0] !== my_id) ...
   // Packet in correct sequence?
   if (last_seq[cell.payload[1]] + 1 !=
       {cell.payload[2], cell.payload[3]}) ...
   // Reset sequence number
   last_seq[cell.payload[1]] =
      {cell.payload[2], cell.payload[3]};
end



Architecting Testbenches

298 Writing Testbenches using SystemVerilog

tures. That only leaves reference models that exist as part of the

specification.

It is a popular 

strategy for pro-

cessors.

Some classes of designs are not fully specified on paper. Rather,

they are specified using an executable model that was used to

explore architectural and performance trade-offs. Because the

model is the specification, it is golden by definition. It is the typical

approach used for general-purpose, digital signal and graphics pro-

cessors.

The model need 

not run concur-

rently.

Often, the difficulty of integrating the reference model with the

design simulation prevents it from being simulated concurrently

with the design. The output is thus compared in a post-processing

step, as illustrated in Figure 6-8. The input can be generated exter-

nally similarly when the reference model includes a suitable data

generator, as depicted in Figure 6-9. 

Figure 6-7.
Using a 
reference
model to 
predict output Design Under

Verification
Response

Comparator
Stimulus
Generator

Reference
Model

Figure 6-8.
External
output
comparison

Figure 6-9.
External input 
generation

Design Under
Verification

Stimulus
Generator

Reference
Model

File

File

Output
Comparison

Simulator

Reference
Model

Stimulus
Generator

Design Under
Verification

File

File

Output
Comparison

Simulator



Self-Checking Testbenches

Writing Testbenches using SystemVerilog 299

It is a force 

behind C-based 

verification.

The fact that these reference models are usually implemented in C

or C++ is a force behind using C or C++ as a simulation language

for the design and verification. It is thought that by using a common

language the design and verification can proceed smoothly from

system-level and architectural-specification down to detailed

implementation.

SystemVerilog 

can interface 

with C models

SystemVerilog has a well-defined interface mechanism to C/C++

models. It is possible to develop a testbench in SystemVerilog that

uses a reference model written in C or C++. The technicalities of

integrating such models are beyond the scope of this book.

Rerefence mod-

els can be writ-

ten in 

SystemVerilog 

too!

Reference models are often transaction-level models written as part

of the architectural exploration of the design specification. It is

often used to make trade-offs between hardware and software func-

tions and analyze the overall performance of the system. Because

this is the area where SystemC is well suited, there is a belief that

these models must therefore be written in SystemC. That may very

well be the case—but that need not be the case. Chapter 7 intro-

duces transaction-level models using SystemVerilog and the tech-

niques presented can be used to create reference models.

Transfer Function

Model the data 

transformation.

A transfer function is used to reproduce any data transformation

performed by the design to determine which output value to expect,

as illustrated in Figure 6-10. The transfer function is often used in

concert with a scoreboard (see “Scoreboarding” on page 300). The

transfer function uses the design configuration descriptor to per-

form the same transformation. Data transformation is not limited to

computation and modification of fields and values inside each data

item. Data transformation also includes the generation of new data

items (for example IP segments from a TCP packet), the identifica-

tion of ordering and destination for the data item and computation

of the next state of the design when executing an instruction. 

Figure 6-10.
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It’s not the same 

as a reference 

model.

Isn’t a transfer function the same thing as a reference model?

Figure 6-10 sure looks like Figure 6-7!1 The answer is no, for sev-

eral reasons. First, a transfer function does not exist a priori. Sec-

ond, it is not golden by definition. As simulations will be run and

errors reported, there will be as many errors in the transfer function

as in the design itself. Third, a transfer function model does not pre-

dict the response as accurately as a reference model. When a packet

or an instruction is sent from the stimulus generator to the transfer

function, it is transformed then stored into the scoreboard or for-

warded to the response monitor. The response monitor will have to

perform more intelligent checks to deal with the uncertainty in the

transfer function when checking the observed response. With a ref-

erence model, the response checking is a simple observed-against-

expected comparison process.

Scoreboarding

A scoreboard is 

a data structure.

The definition of scoreboard is definitely not standardized across

the industry. For some, it is the entire self-checking structure,

including the transfer function or reference model, the expected

data storage mechanism and the output comparison function. In this

book, the definition of scoreboard is limited to the data structure

used to hold the expected data for ease of comparison against the

monitored output values.

A scoreboard 

holds expected 

data.

A scoreboard is a data structure that holds data expected to be

received by the output monitor. As illustrated in Figure 6-11, the

transfer function adds data to the scoreboard. Any data received by

the output monitor is compared against the data in the scoreboard.

If an identical data item is found, the design produced the expected

response. If an identical data item is not found in the scoreboard, an

error is reported. At the end of the simulation, any data items left in

the scoreboard were lost in the design—which may or may not be

an error.

The data struc-

ture depends on 

the self-check-

ing require-

ments.

Just as there is no single definition of scoreboard, there isn’t a sin-

gle scoreboard kind or structure. Each scoreboard is designed to

meet the needs of the self-checking requirements. Some score-

boards are simply scalar variables holding just one data item at a

1. In fact, one was cut and pasted from the other!
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time. Some scoreboards are arrays of queues of data items. A score-

board may be centralized into a single data structure or it may be

distributed in the comparison functions attached to each output

monitor. The self-checking structure of a testbench may be com-

posed of a single scoreboard or of a series of scoreboards daisy-

chained into one another.

Use a queue if 

ordering is 

important.

If the design is supposed to maintain the original order of the input

data stream, the scoreboard is usually implemented using a queue.

The output produced by a functionally correct design would be

found, in order, in the queue. If multiple data streams are multi-

plexed onto a single data stream with no ordering relationship

between them, use one queue per input stream. Any data item

received from the design must be found at the head of one of the

queues. The scoreboard for the example ATM switch node design

would be composed of four sets of four queues: one set per output

port, one queue per input port. An ATM cell would be added to the

appropriate queue based on the input port where it is injected and

the expected destination ports.

Optimize the 

look-up func-

tion.

When a new data item is received from the design by an output

monitor, it must be compared against a data item in the scoreboard.

For simple designs, it may be necessary only to look at the data

item at the head of a very specific queue. For more complex designs

where data losses are possible or ordering is difficult to predict, out-

put data may come in an apparently random order. It is therefore

important to make the look-up operation as efficient as possible to

identify the output data as valid or not quickly. If you have to search

through all of the data items in the entire scoreboard, simulations

Figure 6-11.
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will take forever to run. Associative arrays can be useful to mini-

mize the cost of look-up operations.

Refer to a data 

structure book.

Designing a scoreboard is about designing a suitable data structure

that will meet the self-checking requirements of the design. It has to

be efficient, both in terms of runtime and storage. A scoreboard that

is expected to hold thousands of very large packets must be given a

lot of careful attention. You have to watch out for memory leaks as

objects are discarded after being compared. It would be pointless

for me to describe in this book what has been the object of several

other books. Lists, hash functions, circular buffers, lookup tables,

queues, indexing strategies and the like have already been

described better than I ever could. I recommend you look up the

computer science section of your local technical bookstore for a

textbook on data structures.

See the VMM. The section titled “Scoreboarding” starting on page 249 of the Veri-
fication Methodology Manual for SystemVerilog specifies guide-

lines for implementing scoreboards.

Integration with the Transaction Layer

The self-check-

ing structure 

must be visible 

globally.

The self-checking structure must be accessible from almost every

component of the testbench. The configuration generator needs to

pass the device configuration descriptor to it. The testcases and

stimulus generators need to forward generated input data to it. The

bus-functional models need to inform the self-checking structure of

any unexpected events that occurred during the data transmission.

Output monitors must indicate that new output data has been

received to verify its correctness.

Encapsulate the 

self-checking 

structure.

Whatever strategy is used to make the self-checking structure visi-

ble to all components of the testbench, it will be easier if it is encap-

sulated as a single object. I prefer to use a class as it will be possible

to pass references to the self-checking structure around if necessary

while making global hierarchical references still possible through a

well-known reference. Provide a nonblocking transaction-level

interface that will be used to notify the self-checking structure of

new data being injected or received. Sample 6-17 shows the defini-
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tion of a possible self-checking structure for the example ATM

switch node.

Put a reference 

to the self-

checking struc-

ture in a global 

variable.

One way to make the self-checking structure visible to all compo-

nents of the testbench is to have a reference to its instance in a glo-

bal variable. Since everything is globally accessible in

SystemVerilog, the question simply becomes on deciding where to

put it and under what name. Personally, I like to instantiate it in the

harness, under the name sb or sc, as shown in Sample 6-18.

For each trans-

action on the 

design, notify 

the scoreboard.

Once the self-checking structure is globally visible, it is simple to

implement monitoring threads in the verification harness or extend

the callbacks in the bus-functional models to invoke the proper

transaction-level procedures in the self-checking structure at the

proper time. Sample 6-19 shows how to complete the integration of

the self-checking structure with the transaction-layer verification

harness.     

See the VMM. Guidelines 5-43 through 5-48 and the section titled “Integration

with the Transactors” starting on page 253 of the Verification Meth-

Sample 6-17.
Definition of 
the self-check-
ing structure 
for the ATM 
switch node

class self_check;
   cfg: device_cfg;

   extern function void sent(atm_cell cell,
                             int      on_port;
   extern function void
      received(atm_cell cell,
               int      on_port);
endclass: self_check

Sample 6-18.
Self-checking
structure
instance.

class harness;
   ...
   self_check sb;
   ...
   function new();
      this.sb = new;
   endfunction: new
   ...
   task configure();
      this.sb.cfg = this.cfg;
      this.cfg.apply(this.cpu);
   endtask: configure
endclass: harness
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odology Manual for SystemVerilog specifies guidelines for encap-

sulating and integrating scoreboards in a verification environment.

DIRECTED STIMULUS

Stimulus is 

hardcoded.

Directed stimulus is specified in the verification plan and hard-

coded for each testcase. Executing a testcase requires simulating

the testbench that includes the directed stimulus for that testcase. It

is used to implement each directed testcase specified using the

approach defined in “Directed Testbenches Approach” on page 96.

Sample 6-20 shows a directed testcase used to debug a CPU inter-

face: It “generates” a write cycle followed by a read cycle at the

same address and verifies that the readback value is correct.

Procedural inter-

faces imply 

directed tests.

A procedural transaction-level interface, like the one used to write

the testcase in Sample 6-20, usually imply directed testcases and

make creating random stimulus more difficult. A dataflow transac-

tion-level interface, on the other hand, makes writing random stim-

ulus much easier (see “Random Stimulus” on page 307) but appears

to make writing directed stimulus impossible. Not true. In fact,

Sample 6-19.
Integrating the 
self-checking
structure in the 
verification
harness

fork
   forever begin
      atm_cell cell;
      this.atm0.receive(cell);
      this.sb.received(cell, 0);
   end
join_none

Sample 6-20.
Directed stim-
ulus

program simple;

harness th = new;

initial
begin
   bit [15:0] actual;

   th.cpu.write(16’h00FF, 16’hABCD);
   th.cpu.read(16’h00FF, actual);
   if (actual !== 16’hABCD) ...
   $finish;
end
endprogram: simple
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dataflow interfaces support directed stimulus just as well as proce-

dural interfaces. The difference is that a directed transaction

descriptor must be created before calling the injection procedure.

Sample 6-21 shows the same testcase as Sample 6-20, this time

using a dataflow interface.  

Can include ran-

dom filling.

Directed stimulus need not be specified 100 percent. The part that is

coded explicitly usually only pertains to the testcase being imple-

mented. The data that is deemed irrelevant for this testcase is usu-

ally filled with random—but valid—values. For example, the

content of an ethernet frame could be filled with random values,

except for the VLAN label that is the objective of the testcase. The

sequence of VLAN label values would be hardcoded in the testcase

while the remaining data fields would be generated randomly. Ran-

dom filling works best when using transaction descriptors and data-

flow transaction-level interfaces. Sample 6-22 shows an example of

directed stimulus for an instruction stream. The content of the oper-

ands is randomized while the actual sequence of opcodes is hard-

coded.

Other streams 

can be generated 

randomly.

Directed testcases often concentrate on a single data stream when

creating a stimulus sequence. The other streams are left idle or can

be generated randomly. In the ATM switch node example, directed

stimulus can be specified for the cell stream on port #0 while ran-

dom traffic is injected in the other ports, as shown in Sample 6-23. 

Sample 6-21.
Directed data-
flow-based
stimulus

program simple;

harness th = new;

initial
begin
   cpu_trans tr = new;

   tr.kind = cpu_trans::WRITE;
   tr.addr = 16’h00FF;
   tr.data = 16’hABCD;
   th.cpu.inbox.put(tr);
   @(tr.done);
   th.cpu.inbox.put(tr);
   @(tr.done);
   if (tr.data !== 16’hABCD) ...
end
endprogram: simple



Architecting Testbenches

306 Writing Testbenches using SystemVerilog

Directed stimu-

lus implements 

testcases.

Even though some random stimulus was used, the nature of

directed stimulus is always tied to a specific testcase. Each directed

testbench can be tied to a specific testcase. It was written specifi-

cally to implement that testcase and no other. If there are one hun-

dred directed testcases to write, there will be one hundred sets of

Sample 6-22.
Random-filled
directed
instruction
sequence stim-
ulus

instr.randomize() with {
   opcode == CMP;
};
...
repeat (3) begin
   instr.randomize() with {
      opcode == NOP;
   };
end
...
instr.randomize() with {
   opcode == BLT;
};
...

Sample 6-23.
Random back-
ground stimu-
lus

program test;

harness th = new();

initial
begin
   th.configure();
   fork
      bg_noise(1);
      bg_noise(2);
      bg_noise(3);
   join_none
   ...
   th.atm[0].inbox.put(cell);
   ...
end

task bg_noise(int on_port);
   atm_cell celll;

   forever begin
      cell = new;
      cell.randomize();
      th.atm[on_port].inbox.put(cell);
   end
endtask: bg_noise
endprogram: test
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directed stimulus. Any random stimulus included in directed

testcases is usually ignored in the response checking.

See the VMM. The section titled “Directed Stimulus” starting on page 219 of the

Verification Methodology Manual for SystemVerilog specifies

guidelines for implementing directed stimulus in a random verifica-

tion environment.

RANDOM STIMULUS

Generators cre-

ate the stimulus.

Random stimulus is created by a random generator that can be con-

strained according to the requirement of the verification plan. Exe-

cuting a testcase requires simulating the random testbench with a

seed that will hit the functional coverage point that corresponds to

the testcase. They are used to create automated verification envi-

ronments specified using the approach defined in “Coverage-

Driven Random-Based Approach” on page 101.

Random genera-

tion is more than 

calling $ran-
dom.

Random stimulus generation in SystemVerilog has evolved far

beyond random generation of individual scalar values using the

$random system task. The generation components of a verification

environment are designed to generate two subsets of all possible

stimuli autonomously. The first is that subset that is legal, i.e., the

possible inputs. The second is that subset of the first that is defined

by the functional coverage models of the verification plan.

Atomic Generation

Generating a 

stream of ran-

dom data is easy.

Sample 6-24 shows a simple random ATM cell generator. It should

be encapsulated in a class, like a bus-functional model. In fact, gen-

erators are output-only bus-functional models. Their output is a

transaction-level interface, the stream of generated random transac-

tions. The same code could be used to generate CPU instructions,

bus cycles, digitized signal samples or any other input data stream

required by the design under verification. 

Define termina-

tion mecha-

nisms.

The simple random generator in Sample 6-24 will always generate

100 cells then terminate. This number is completely arbitrary and is

unlikely to satisfy the needs of all testcases. During initial design

debug stage, generating just a single data item is often required. A

random testbench must run for much longer to increase the likeli-

hood that functional coverage points will be hit. Generators should
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have several termination mechanisms that can be armed at the start

of the simulation (such as the number of objects to generate) or

externally triggered by the testbench. Sample 6-25 shows a genera-

tor that, by default, will generate an infinite number of objects. It

will also not start immediately, leaving time for the testbench to

configure the device before starting to generate stimulus. The gen-

erator also can be suspended at anytime by calling the stop()
method. Sample 6-26 shows how a debug testcase can configure the

generator to generate a single cell on a randomly selected port and

no cells on the others.  

How to connect 

the generator to 

the BFM?

A random generator “bus-functional model” is like a monitor bus-

functional model: it produces an output stream of transaction

descriptors. In this case, they are not observed transactions but ran-

domly generated transactions. This stream of transactions must be

forwarded to the bus-functional model that will apply them to the

design under verification. How are random generators integrated

with the rest of the bus-functional models in the verification har-

ness?

Can use a for-

warding thread.

The simplest solution is to create an execution thread that will sim-

ply forward transactions from the generator to the bus-functional

model. The forwarding thread can also perform any translation

required between the transaction-level interface of the generator

and the transaction-level interface of the bus-functional model. It

Sample 6-24.
Simple ran-
dom generator

class atm_gen;
   ...
   function new();
      ...
      fork
         this.main();
      join_none
   endfunction: new

   task main();
      atm_cell cell;

      repeat (100) begin
         cell = new;
         if (!cell.randomize()) ...
         ...
      end
   endtask: main
endclass: atm_gen
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can also notify the self-checking structure of the transaction about

to be executed. Sample 6-27 shows how a forwarding thread can

move transaction descriptors from an output mailbox in the genera-

Sample 6-25.
Random gen-
erator with ter-
mination
mechanisms

class atm_gen;
   ...
   int stop_after = -1;

   function new();
      ...
   endfunction: new

   function void start();
      fork
         this.main();
      join_none
   endfunction: start

   function void stop();
      this.stop_after = 0;
   endfunction: stop

   virtual task main();
      atm_cell cell;

      while (this.stop_after != 0) begin
         cell = new;
         if (!cell.randomize()) ...
         ...
         if (this.stop_after > 0) begin
            this.stop_after--;
         end
      end
   endtask: main
endclass: atm_gen

Sample 6-26.
Debug testcase 
injecting a sin-
gle cell on ran-
dom port

program test;

harness th = new;
initial
begin
   bit [1:0] the_one = $random;
   foreach (th.gen[i]) begin
      th.gen[i].stop_after = (i == the_one);
   end
   ...
end
endprogram
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tor and translate them to a procedural interface in the bus-functional

model. Notice how the output mailbox is created with a bound of

one. This will ensure that the mailbox will fill up and cause the gen-

eration thread to block. The generation thread will resume once the

mailbox is empty.   

Can use shared 

mailboxes.

If the generate and bus-functional model it needs to connect to both

use mailboxes and the same transaction descriptor, they can be

directly connected to each other by sharing the same mailbox. As

shown in Sample 6-28, the output mailbox of the generator is the

input mailbox of the bus-functional model. With directly connected

bus-functional models, callbacks must be used to tap the flow of

transactions between the two bus-functional models and notify the

scoreboard of the transaction being executed or observed.  

Adding con-

straints is hard.

What if a testcase requires that a stream of cells with the same VPI

value be injected? Or that only write cycles within a narrow address

range be generated? Or samples with negative values? Or no branch

instructions? Adding constraints to the simple generator shown in

Sample 6-25 requires that the entire generation method be replaced,

as shown in Sample 6-29. This results in a lot of duplicated code

Sample 6-27.
Forwarding 
thread to inte-
grate generator 
and BFM.

class harness;
   cpu_trans_mbox  outbox;
   cpu_trans_gen   gen;
   utopia_mgmt_bfm cpu;
   ...
   function new();
      ...
      this.outbox = new(1);
      this.gen = new(this.outbox);
      fork
         forever begin: forwarding_thread
            cpu_trans tr;
            this.outbox.get(tr);
            case (tr.kind)
            cpu_trans::WRITE:
               this.cpu.write(tr.addr, tr.data);
            cpu_trans:READ:
               this.cpu.read(tr.addr, tr.data);
            endcase
         end
      join_none
   endfunction: new
   ...
endclass: harness
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and a methodology similar to using directed stimulus. And the new

generator would have to be substituted in the verification harness

instead of the plain unconstrained generator. As illustrated in

Figure 6-12, a different random generator would be created for each

testcase. The idea behind the productivity cycle depicted in

Figure 2-16 is to write just one generator that can be steered toward

the uncovered functional coverage points by adding constraints

with as little modifications as possible, as illustrated in Figure 6-13.   

Sample 6-28.
Directly con-
nected genera-
tor and BFM.

class harness;
   utopia_mgmt_trans_mbox gen_to_cpu;
   utopia_mgmt_trans_gen  gen;
   utopia_mgmt_bfm        cpu;
   ...
   function new();
      ...
      this.gen_to_cpu = new(1);
      this.gen = new(.outbox(this.gen_to_cpu));
      this.cpu = new(.inbox(this.gen_to_cpu));
   endfunction: new
   ...
endclass: harness

Sample 6-29.
Replacing ran-
dom genera-
tion method

class my_atm_gen extends atm_gen;
   task main();
      atm_cell cell;

      while (this.stop_after != 0) begin
         bit ok;
         cell = new;
         ok = cell.randomize() with {
            vpi == 0;
         };
         if (!ok) ...
         ...
         if (this.stop_after > 0) begin
            this.stop_after--;
         end
      end
   endtask: main
endclass: my_atm_gen
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Adding Constraints

You can add 

constraints to 

the randomized 

type.

The simplest mechanism for adding constraints is to add them to

the class being randomized. For example, the constraint forcing the

generation of a stream of ATM cells with a VPI value equal to 0 can

be added to the ATM cell class as shown in Sample 6-30. The prob-

lem with this approach is that the constraint will apply to every

instance of the object in all future simulations and models. If the

objective was to inject a specific condition for a specific testcase or

simulation, this approach will not work. 

You can turn 

constraints ON 

and OFF.

If a constraint is not supposed to apply at all times, it should be

turned OFF in the constructor. It can then be turned ON only when

required. For example, the constraint added to the ATM cell class in

Sample 6-30 is turned OFF in Sample 6-31. The constraint will

apply to a randomized instance only if it is explicitly turned ON. 

Always random-

ize a public class 

property.

The problem with the simple generator in Sample 6-25 is that it ran-

domizes a local variable to generate data items. The variable is not

visible externally to allow the testcase to turn the relevant con-

Figure 6-12.
Different 
random 
generators

Figure 6-13.
Constraining a 
single random 
generator

Design Under
Verification

Bus Functional
Model

Random
Generator

Random
Generator

Constraints

Design Under
Verification

Bus Functional
Model

Sample 6-30.
Adding con-
straints to the 
generated
class

class atm_cell;
   ...
   constraint vpi_is_0 {
      vpi == 0;
   }
endclass: atm_cell
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straint blocks ON. By randomizing a public class property instead

of a local variable, as shown in Sample 6-32, you can control the

constraints in the randomized instance as shown in Sample 6-33.

For a constraint to apply to a single stream, turn the relevant con-

straint block ON in the randomized class property for the generator

instance of that stream.  

Sample 6-31.
Adding con-
straints turned 
OFF by 
default

class atm_cell;
   ...
   constraint vpi_is_0 {
      vpi == 0;
   }

   function new();
      this.vpi_is_0.constraint_mode(0);
   endfunction: new
endclass: atm_cell

Sample 6-32.
Randomizing
a public class 
property
instead of a 
local variable

class atm_gen;
   ...
   atm_cell randomized_cell;
   ...
   virtual task main();
      while (this.stop_after != 0) begin
         this.randomized_cell = new;
         ok = this.randomized_cell.randomize();
         if (!ok) ...
         this.outbox.put(this.randomized_cell);
         if (this.stop_after > 0) begin
            this.stop_after--;
         end
      end
   endtask: main
endclass: atm_gen

Sample 6-33.
Controlling 
constraints in 
randomized 
instance

program corner_case;

harness th = new;
initial
begin
   ...
   th.gen[0].randomized_cell.
      vpi_is_0.constraint_mode(1);
   ...
end
endprogram: corner_case
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Always random-

ize the same 

instance.

There is still a problem with the generator in Sample 6-32: It keeps

randomizing a different instance. The randomized instance keeps

changing and must be controlled as shown Sample 6-33 before each

and every randomization. That’s too much work. Instead, random-

ize a single instance whose value is then copied into a new instance.

These new instances will create the stream of generated data items,

as shown in Sample 6-34.

Add constraints 

to a derived 

class.

The constraint in Sample 6-31 was added to the original class mod-

eling the ATM cell. If all of the constraints required to generate all

of the input conditions required by all testcases to meet your cover-

age goals are added to that one class, it will soon become unman-

ageable. Furthermore, a generic model, such as an ATM cell, can be

reused across projects. It should not be polluted with project or

testcase-specific additions. Constraints should be added in a

derived class as shown in Sample 6-35. Use a different extension

for each testcase. 

Replace the ran-

domized

instance with an 

instance of the 

derived class.

This technique does not appear to be helpful, as the generator is still

making use of the base class, not the derived class in Sample 6-35.

Therefore the new constraints are not used. One solution would be

to change the generator to use an instance of the derived class, but

Sample 6-34.
Randomizing
a single 
instance

class atm_gen;
   ...
   atm_cell randomized_cell;
   ...
   function new();
      this.randomized_cell = new;
   endfunction: new
   ...
   virtual task main();
      while (this.stop_after != 0) begin
         atm_cell cell;

         ok = this.randomized_cell.randomize();
         if (!ok) ...
         cell = this.randomized_cell.copy();
         this.outbox.put(cell);
         if (this.stop_after > 0) begin
            this.stop_after--;
         end
      end
   endtask: main
endclass: atm_gen
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you’ll end-up modifying the generator for each constraint set.

Remember that a derived class is compatible with its base class and

that the randomize() method is a virtual method. We can simply

sneak an instance of the derived class in lieu of the original ran-

domized instance, and the generator won’t even be aware that it is

now generating a data stream subject to additional constraints!

Sample 6-36 shows how to do so for a specific instance of a gener-

ator.

Extend

pre_randomize() 

or 

post_randomize(

), as needed.

Constraints are powerful, but sometimes cannot express a particular

condition that needs to be generated. You can execute procedural

code before or after the randomization process by extending the

predefined pre_randomize() and post_randomize() methods. You

could use pre_randomize() to initialize some non-randomized fields

or call constraint_mode() or rand_mode(). You could use

post_randomize() to compute or corrupt CRC values, as illustrated

in Sample 6-37. CRC values must be computed—and thus cor-

rupted—in the post_randomize() method because method calls

should not be used in constraint expressions1. When overloading

the pre_randomize() or post_randomize() methods, do not forget to

invoke their original version in the parent class using

super.pre_randomize() or super.post_randomize(). This approach

Sample 6-35.
Adding con-
straints in a 
derived class

class constrained_atm_cell extends atm_cell;
   constraint vpi_is_0 {
      vpi == 8’h00;
   }
endclass: constrained_atm_cell

Sample 6-36.
Adding con-
straints via a 
derived class.

class constrained_atm_cell extends atm_cell;
   ...
endclass: constrained_atm_cell

program corner_case;

harness th = new;
initial
begin

constrained_atm_cell cell = new;
   th.gen[0].randomized_cell = cell;
   ...
end
endprogram: corner_case
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will ensure that any procedural operations required to randomize

the parent class successfully are executed. 

See the VMM. The sections titled “Random Stimulus” starting on page 213 and

“Atomic Generation” starting on page 231 of the Verification Meth-
odology Manual for SystemVerilog specifies guidelines for imple-

menting highly constrainable and reusable stimulus generators and

using the predefined vmm_atomic_gen.

Constraining Sequences

Generating 

atomic elements 

is not interest-

ing.

In the previous section, data items were generated randomly, inde-

pendent of each other. This technique is going to create some inter-

esting conditions but is unlikely to generate all of the conditions

required to meet your functional coverage goals. The design under

verification has data and temporal behavior, each of which must be

verified. The temporal properties of applied stimuli must be as flex-

ible and diverse as the data properties to verify the temporal behav-

ior easily. You must include a mechanism that will make it possible

to express constraints describing a sequence of data items that will

exercise the temporal features of the design.

Provide a unique 

data item identi-

fier.

It is possible to express stream-specific constraints using a unique

stream identifier in a conditional expression. The same mechanism

can be used to specify constraints applicable to data items at a spe-

1. Because methods are usually invoked without arguments and usually 
make use of random variables in the class being randomized, the solver 
would not know which variables to solve before calling the method. 
Thus the method may be called with unsolved-for variable values.

Sample 6-37.
Randomly cor-
rupted HEC 
value

class may_be_bad_atm_cell extends atm_cell;
   rand bit is_bad;
   function void post_randomize();
      super.post_randomize();
      if (is_bad) begin
         bit [7:0] hec = $random;
         while (hec == this.hec) begin
            hec = $random;
         end
      end
   endfunction: post_randomize
endclass: may_be_bad_atm_cell
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cific index within a sequence. The random generator from Sample

6-34 has been modified in Sample 6-38 to increment an object

index after each random generation. Constraints specific to the

position of the object within the sequence can then be specified

using that unique object identifier, as shown in Sample 6-39.  

Randomize an 

array.

Using a unique object identifier allows specifying sequence-spe-

cific constraints. But they can be specified only as independent val-

ues. It is not possible to express constraints that refer to previously

or subsequently generated values. For example, how would you

generate a sequence of ATM cells with random VPI values with no

two consecutive identical values? The solution is to randomize an

array instead of a single object. Array constraints can refer to any

elements in the array. Sample 6-40 shows the previous generator,

modified to generate an array instead of a single object. Sample 6-

41 shows how to add constraints to avoid generating two identical

consecutive VPI values.      

How long is a 

sequence?

You may have noticed that, in Sample 6-40, the sequence is imple-

mented using a dynamic array. Presumably, the length of the array

determines the length of the sequence. Using a dynamic array thus

allows for variable-length sequences. But how long is a sequence?

Sample 6-38.
Generating
constrainable 
sequences

class atm_gen;
   ...
   int cell_idx = 0;
   atm_cell randomized_cell;

   virtual task main();
      while (this.stop_after != 0) begin
         ...
         this.randomized_cell.cell_idx =
            cell_idx++;
         ok = this.randomized_cell.randomize();
         ...
      end
   endtask: main
endclass: atm_gen

Sample 6-39.
Specifying
sequence-spe-
cific con-
straints

class constrained_atm_cell extends atm_cell;
   constraint rotating_vpi {
      vpi == cell_idx % 4;
   }
endclass: constrained_atm_cell
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How is the size of the dynamic array determined? Can the length of

a sequence be random as well?

Randomize for 

the longest pos-

sible sequence.

In SystemVerilog, randomization and memory allocation are two

different things. Memory is allocated first—either statically or via

constructors—then the content of the allocated memory is random-

ized. This means that the size of a dynamic array must be decided

before it is randomized. This implies that the dynamic array must

be as long as the longest possible sequence. To implement random-

length sequences, simply randomize a length class property, con-

strained to be less than or equal to the length of the dynamic array,

as shown in Sample 6-42.

Define a 

sequence for a 

trivial testcase.

During a consulting engagement, I had spent several days helping a

customer write a random-based self-checking environment to verify

a CPU interface on an RTL design. After explaining and imple-

menting the concepts shown in this section, the engineer I was

working with interjected, “But the first testcase I’ll want to run,

Sample 6-40.
Generating
sequences
using an array

class atm_cell_seq;
   rand atm_cell randomized_cells[];
endclass: atm_cell_seq

class atm_gen;
   ...
   atm_cell_seq randomized_seq;

   virtual task main();
      while (this.stop_after != 0) begin
         ...
         ok = this.randomized_seq.randomize();
         ...
      end
   endtask: main
endclass: atm_gen

Sample 6-41.
Specifying
sequence-spe-
cific array 
constraints

class my_atm_cell_seq extends atm_cell_seq;
   constraint not_conseq_vpi {
      foreach (cells[i]) {
         if (i > 0) {
            cells[i].vpi != cells[i-1].vpi;
         }
      }
   }
endclass: my_atm_cell_seq
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when the RTL is delivered tomorrow, is a simple write followed by

a read. I don’t need this fancy generation and constraint mechanism

yet.” I replied that his first testcase was simply a very simple ran-

dom sequence: Constrain the sequence of transactions to a length of

two, the first transaction to be a write cycle and the second transac-

tion to be a read cycle at the same address as the previous one.

Instead of writing a separate testcase, only a few additional lines

creating a simple sequence were sufficient. Once the initial debug

of the design was over, these constraints were removed, subjecting

the RTL code to a lot of different input sequences with no addi-

tional testbench development effort. The sequence constraints can

be found in Sample 6-43. 

Need to define 

multiple

sequences.

The sequences defined using the constraint mechanism shown in

this section would be generated over and over by the generator.

Each simulation would generate the same sequence in each genera-

tor. It is more efficient to have multiple interesting sequences be

Sample 6-42.
Random-
length 
sequences.

class atm_cell_seq;
   rand atm_cell randomized_cells[];
   rand int length;

   constraint random_length {|
      length > 0;
      length <= randomized_cells.size();
   }
endclass: atm_cell_seq

class atm_gen;
   ...
   atm_cell_seq rand_seq;

   virtual task main();
      while (this.stop_after != 0) begin
         ...
         ok = this.rand_seq.randomize();
         for (int i = 0;
               i <= this.rand_seq.length;
               i++) begin
            cell = this.rand_seq.cells[i].copy();
            ...
         end
         ...
      end
   endtask: main
endclass: atm_gen
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generated randomly, one after another in a single simulation. Dif-

ferent instances of the same generator could generate the same

sequence at the same time or generate different sequences.

Define scenar-

ios to increase 

functional cov-

erage.

Left unconstrained, random generators will generate valid but most

likely uninteresting input sequences. By defining scenarios, genera-

tors will be constrained to generate a series of constrained

sequences, focused on interesting cases. One scenario is usually the

“random” sequence i.e., no constraints at all. As holes in functional

coverage are identified, scenarios are added to the verification envi-

ronment to steer the generators toward the uncovered areas of the

solution space.

Scenarios can 

define directed 

testcases.

If you have the necessary control variables, it is possible to specify

a directed testcase as a series of constraints. By specifying a set of

constraints for which there is only one solution, you have created a

scenario that implements a directed testcase. If scenarios can also

be defined procedurally, a directed testcase can also be described as

a procedural scenario. A directed testcase then becomes one possi-

ble scenario amongst all possible scenarios. It could be randomly

generated as part of a longer stream of random scenarios.

Defining Random Scenarios

Randomize a 

kind class prop-

erty.

To be able to generate multiple scenarios one after the other, it is

necessary to randomize the array differently, according to different

scenario constraints. Each randomization of the array defines a sce-

nario. The generator in Sample 6-42 is modified in Sample 6-44 to

include a random kind class property. This randomly-selected prop-

erty selects the scenario that will be generated. Scenarios are

defined in individual constraint blocks, conditionally based on the

value of the kind class property. 

Sample 6-43.
Defining a 
first-test
sequence

class trivial_seq extends cpu_trans_seq;
   constraint trivial {
      length == 2;
      trans[0].kind == WRITE;
      trans[1].kind == READ;
      trans[0].addr == trans[1].addr;
   }
endclass: trivial_seq
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Define a new 

scenario by add-

ing an enumeral 

and a constraint 

block.

The default atomic scenario simply generates a single random cell.

To create new scenarios representing interesting sequences of trans-

actions, add a new enumeral to the enumerated type identifying the

scenario, then specify the scenario constraints in a separate con-

straint block, as shown in Sample 6-45.   

Testcases can 

control distribu-

tion.

Specific testcases may want to control the distribution or selection

of the randomly generated scenarios. Some testcases may want to

restrict the stimulus to a particular scenario. Others may want to

favor some scenarios over others. This testcase specific distribution

can be created by deriving a testcase-specific scenario definition

class with additional distribution constraints on the kind class prop-

erty and substituted in the randomized sequence instance, as shown

in Sample 6-46. 

Sample 6-44.
Generating
scenarios

class atm_cell_seq;
   typedef enum {ATOMIC} scenario_name;
   rand scenario_name kind;
   rand atm_cell randomized_cells[];
   rand int length;

   constraint random_length {
      length > 0;
      length <= randomized_cells.size();
   }

   constraint atomic_scenario {
      if (kind == ATOMIC) length == 1;
   }
   ...
endclass: atm_cell_seq

Sample 6-45.
Defining new 
scenarios

class atm_cell_seq;
   typedef enum {ATOMIC, SAME_VPI} scenario_name;
   ...
   constraint same_vpi {
      if (kind == SAME_VPI) {
         foreach (cells[i]) {
            if (i > 0) {
               cells[i].vpi == cells[i-1].vpi;
            }
         }
      }
   }
   ...
endclass: atm_cell_seq
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Defining Procedural Scenarios

Some scenarios 

are easier to 

define procedur-

ally.

Sometimes scenarios are easier to define procedurally than with

constraints. For example, generating one thousand times the same

transaction is easier and more efficient to accomplish by generating

a single transaction that is then repeated one thousand times using a

repeat statement. Another example involves waiting for some con-

dition in the design. Constraints are solved in zero-time. They can-

not be solved for a few transactions, then wait for a FIFO to fill up,

then solved for the remaining transactions. But a procedural defini-

tion can. It can generate and apply stimulus while a FIFO is not full,

then switch to different stimulus once the FIFO is detected as full.

Use a virtual
method.

By default, a random scenario is applied through a bus-functional

model as fast as possible. If that default behavior is implemented in

a virtual task, that behavior can be modified for some or all scenar-

ios. Sample 6-47 shows the sequence generator using an apply()
virtual task to execute a scenario. This apply() method can be used

to specify procedural scenarios, as shown in Sample 6-48. Note

how procedural scenarios are defined using the randomly selected

kind class property. This allows random scenarios to be randomly

intermixed with other procedural or random scenarios.  

Use the randse-
quence state-

ment.

Scenarios can also be described using the sequence generator. A

sequence generator ruleset is defined using the randsequence state-

ment. A scenario is described as a production rule, often making

use of other production rules. Thus scenarios can be described in

terms of other scenarios. A second type of production rule describes

a weighted choice between equivalent scenarios. For someone with

Sample 6-46.
Modifying 
scenario distri-
bution.

class my_scenarios extends atm_cell_seq;
   kind dist {1 :/ ATOMIC; 10 :/ SAME_VPI};
endclass: my_scenarios

program test;
harness th = new;

initial
begin
   my_scenarios sc = new;
   th.gen[0].rand_seq = sc;
   ...
end
endprogram: test
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an RTL background, the reverse-YACC syntax of the sequence gen-

erator is really bizarre. But once you realize it is a simple front-end

to small subprograms and the randcase statement, it becomes easy

to understand.

A production 

rule is like a task 

definition.

A production rule is similar to defining a small task or function.

When invoked, it will “execute” its definition. For example, the

Sample 6-47.
Executing sce-
narios via a 
virtual
method.

class atm_cell_seq;
   ...
   virtual task apply(atm_cell_mbox outbox);
      for (int i = 0; i < this.length; i++) begin
         outbox.put(this.cells[i].copy());
      end
   endtask: apply
endclass: atm_cell_seq

class atm_gen;
   ...
   atm_cell_seq rand_seq;

   virtual task main();
      while (this.stop_after != 0) begin
         ...
         ok = this.rand_seq.randomize();
         this.rand_seq.apply(this.outbox);
         ...
      end
   endtask: main
endclass: atm_gen

Sample 6-48.
Defining a 
procedural
scenario.

class atm_cell_seq;
   typedef enum {ATOMIC, SAME_VPI,
                 REPEAT_100} scenario_name;
   ...
   virtual task apply(atm_cell_mbox outbox);
      case (kind)
      REPEAT_100: begin
         this.cells[0].randomize();
         repeat(100) begin
            outbox.put(this.cells[0].copy());
         end
      end
      default: super.apply(outbox);
      endcase
   endtask: apply
endclass: atm_cell_seq
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ruleset in Sample 6-49 is functionally equivalent to defining the

tasks in Sample 6-50. A rule can return values and be passed argu-

ments. Refer to section 12.16 of the SystemVerilog Language Ref-

erence Manual for a complete description of the sequence

generator.  

The choice 

weights can be 

expressions.

The weights assigned to the different choices in an alternative rule

can be expressions, just like the weights in the equivalent randcase
statement. By making these weights public properties of the

sequence descriptor, each simulation run can pick and choose

which scenarios will be enabled and the probability a particular sce-

nario will be generated. For example, in Sample 6-51, the simula-

tion run will only use the “debug testcase” scenario in the

descriptor shown in Sample 6-52.  

Do not create 

random-length 

sequences using 

recursive rules.

Rules can be recursive. For example, Sample 6-53 shows a ruleset

that creates a sequence of ATM cells. The number of cells in the

sequence is random, determined by the number of times the

CELL_STREAM rule is selected over the RANDOM_CELL rule.

This style works just fine except for one thing: The length of the

Sample 6-49.
Sequence gen-
erator ruleset

virtual task apply(atm_cell_mbox outbox);
   case (kind)
   SEQGEN:
      randsequence (SCENARIOS) {
         SCENARIOS: RANDOM_CELL := 1
                  | SAME_VPI := 2;

         RANDOM_CELL: {
            this.cells[0].randomize();
            outbox(this.cells[0].copy());
         }

         SAME_VPI:
            RANDOM_CELL
            {
               this.cells[0].vpi.rand_mode(0);
            }
            repeat (this.length-1) RANDOM_CELL
            {
               this.cells[0].vpi.rand_mode(1);
            }
      }
   ...
   endcase
endtask: apply
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sequence is not distributed evenly. The probability that the length of

the sequence is one is 10 percent. The probability that it is two is 9

percent (0.9). The probability that it is three is 8.1 percent (0.1 x 0.9

x 0.9 x 0.1). The probability that it is N is 0.9N/10. Furthermore, the

length of the sequence cannot be constrained other than by playing

with the selection weights. 

Generate the 

length first, then 

generate the 

sequence.

A better approach is to generate the length of the sequence first.

That value can be subjected to constraints and have an even distri-

bution. Once the length of the sequence is decided, you generate the

sequence using a repeat statement. To that effect, the already-exist-

Sample 6-50.
Equivalent
task defini-
tions

virtual task apply(atm_cell_mbox outbox);
   task SCENARIOS();
      randcase
      1: RANDOM_CELL();
      2: SAME_VPI();
      endcase
   endtask: SCENARIOS

   task RANDOM_CELL();
      this.cells[0].randomize();
      outbox.put(this.cells[0].copy());
   endtask: RANDOM_CELL

   task SAME_VPI();
      RANDOM_CELL();
      this.cells[0].vpi.rand_mode(0);
      repeat (this.length-1) RANDOM_CELL();
      this.cells[0].vpi.rand_mode(1);
   endtask: SAME_VPI

   case (kind)
   SEQGEN: SCENARIOS();
   ...
   endcase
endtask: apply

Sample 6-51.
Selecting sce-
narios

program initial_debug;
harness th = new;
initial
begin
   th.gen.null_weight = 0;
   ...
end
endprogram: initial_debug
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ing length class property in the sequence descriptor can be used, as

shown in Sample 6-49. 

Rulesets and 

rules cannot be 

virtual.

An important limitation of the sequence generator is that produc-

tion rules and entire rulesets cannot be virtual. It is not possible to

extend an existing generator using a sequence generator ruleset

without modifying its source code. If you want to be able to add

new production rules or modify existing rules or entire rulesets, I

suggest you use the equivalent task style, as shown in Sample 6-50.

If each task or function is defined as virtual, it will be simple to

extend a ruleset by creating a derived generator class. Virtual tasks

and functions can still make use of the sequence generator and the

randsequence statement to describe their respective scenarios.

See the VMM. The section titled “Scenario Generation” starting on page 232 of the

Verification Methodology Manual for SystemVerilog specifies

Sample 6-52.
Variable 
weight sce-
nario selection

class trans_seq
   trans trs[]
   ...
   integer null_weight = 1;
   integer debug_weight = 1;

   virtual task apply(trans_mbox outbox);
      case (kind)
      SEQGEN:
         randsequence (SCENARIOS) {
            SCENARIOS: NULL    := null_weight
                     | DBG_TST := debug_weight;

            ...
         }
      ...
      endcase
   endtask: apply
endclass: trans_seq

Sample 6-53.
Recursive 
rules

CELL_STREAM: CELL_STREAM RANDOM_CELL  := 90
           | RANDOM_CELL              := 10;

RANDOM_CELL: {
   this.cells[0].randomize();
   outbox.put(this.cells[0].copy());
}
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guidelines for implementing highly flexible scenario generators and

using the predefined vmm_scenario_gen.

SYSTEM-LEVEL VERIFICATION HARNESSES

More than one 

harness is 

needed.

A project is rarely composed of a single design block, requiring

only one verification harness and one set of testbenches. A typical

project involves multiple blocks tied together into a system. Each of

those blocks is verified independently. The block integration into a

system is then verified. Each block and system requires its own ver-

ification harness. When creating or procuring bus-functional mod-

els for a project, you must consider the needs of all harnesses, not

just those for a single block.

Use system-

level transac-

tions.

What is a transaction at the block level is usually not a transaction

at the system level. For example, a block may simply interact with

an ethernet interface to recover ethernet frames. As far as the block

is concerned, a transaction is an ethernet frame. But an entire sys-

tem may extract the IP fragments from the payload of ethernet

frames, reassemble these IP fragments into IP packets then perform

Sample 6-54.
Generating
variable-
length 
sequences

class seq_length;
   integer value;
   constraint valid {
      value > 0;
   }
   constraint reasonable {
      value < 50;
   }
endclass: seq_length

class atm_gen;
seq_length len;

   ...
   task main();
      ...
      randseq (...) {
         ...
         CELL_STREAM: {
            void = this.len.randomize();
         } <repeat (this.len.value) RANDOM_CELL>;
         ...
      }
   endtask: main
endclass: atm_gen
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IP-layer routing functions. The IP packets are then segmented and

encapsulated back into ethernet frames to be retransmitted. In such

a system, a transaction is an entire IP packet, not an ethernet frame.

The bus-functional models in a system-level harness must support

system-level transactions.

Layered Bus-Functional Models

Bus-functional 

models should 

implement pro-

tocol layers.

Traditionally, bus-functional models were tied to a specific physical

interface. As shown in Figure 6-14, a monolithic IP-packet bus-

functional model would have accepted IP packets on its transac-

tion-level interface side and produce physical signals on the other.

This type of bus-functional model would not be able to reuse or

provide any functionality that was required by the block-level har-

nesses. Each harness would require its own bus-functional model

with its corresponding transaction-level abstraction. Similarly, the

transaction-level behavior of monolithic bus-functional models

could not be reused from or provided to other bus-functional mod-

els that implemented the same system-level functionality but on

different physical-level interfaces. Instead, system-level bus-func-

tional models should be layered according to the layers of the pro-

tocol they are implementing, as shown in Figure 6-15. The

transaction-level interface mechanism used to encapsulate monitors

and generators can be used to create bus-functional models inde-

pendently from physical interfaces.  

Layers are 

somewhat arbi-

trary.

Protocol layers may be obvious in datacom systems where the pro-

tocols themselves are layered according to the ISO model. For

example, a USB application would be layered according to packets,

Figure 6-14.
Monolithic IP-
level bus-
functional

Figure 6-15.
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transactions and transfers. But even non-datacom applications have

similar layers. For example, a graphic system could be composed of

pixels, vertices, surfaces and 3D object layers. If you can decom-

pose your system-level functionality into separate functional

blocks, then you can decompose your system-level transactions into

similar functional layers.

Bus-functional

models can be 

shared across 

harnesses.

With bus-functional models following the same layers as the func-

tionality they implement, they can be composed into the appropri-

ate combination to create the necessary abstraction layers in

system-level verification harnesses. Figure 6-16 shows three differ-

ent (partial) verification harnesses, for two blocks and one system,

each sharing several bus-functional models. 

Tests may be 

reused.

If the abstraction layer and functionality are maintained across

block of system-level harnesses, the testcases written on one har-

ness can be reused on the other. For example, the IP fragment

extraction functionality verified in Figure 6-16(b) is independent of

the physical interface used to transfer ethernet frames. All tests

written on that harness should be reusable, unmodified, on the sys-

tem-level harness shown in Figure 6-16(c).

Figure 6-16.
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Block-level tests 

may be used as 

integration tests.

For some blocks and systems, it may be useful to execute block-

level tests within the system context to verify that the integration of

the block has not affected its functionality. Note that this process

does not actually verify any new system-level functionality or

increase the block-level coverage. It is simply ensuring that block-

level functionality is preserved within the context of the system. In

a bus-centric system, it may even be useful to execute block level

tests from multiple blocks concurrently to verify the correctness of

concurrent block-level operations.

Layered BFMs 

help port block-

level tests.

Figure 6-17 shows how a bus-functional model can be introduced

in a block-level stimulus path to undo the function of the design

block hiding the system bus interface that used to be visible at the

block level. If the access block is a bridge, a simple address remap-

ping function needs to be introduced. If the access block is a pro-

cessor, write and read cycles simply need to be turned into store and

load instructions. If the access block is an MPEG4 decoder, you

might have picked the wrong block to go through. 

See the VMM. Chapter 8 of the Verification Methodology Manual for SystemVer-
ilog specifies guidelines and additional abstraction techniques for

verifying system-level designs.

Figure 6-17.
Porting block-
level tests to 
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SUMMARY

Encapsulate bus-functional tasks in a class. Provide a suitable trans-

action-level interface. Layer your bus-functional models according

to the functional layers in the application.

Create a transaction-level test harness encapsulating all of the bus-

functional model instances and clock generators connected to the

design under verification.

Provide a high-level device configuration descriptor. Interpret the

descriptor value to configure the design under verification at the

beginning of the simulation.

Generate the device configuration randomly. Use functional cover-

age measurements to determine which configuration (or combina-

tion of configurations) has been verified. Use constraints to limit

configurations to currently supported or interesting values and

combinations.

Make your testbench self-checking. Build the self-checking struc-

ture on top of the transaction-level test harness.

Self-checking can be implemented using a reference model, by tag-

ging data, by using a transfer function with a scoreboard or any

combination of the above.

Generate directed stimulus by invoking the proper transaction-level

procedures directly.

When writing random generators, provide a constraint mechanism

that can describe all of the interesting and relevant input sequences.

Provide unique identifiers for each generator instance and data

instance to allow stream-specific and order-specific constraints to

be expressed.

Write random generators that generate random sequences. Define

scenarios to increase your functional and code coverage.

Directed and initial debug testcases can be described as tightly con-

strained random scenarios.
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CHAPTER 7 SIMULATION

MANAGEMENT

Simulation must 

be managed.

In “Revision Control” on page 61, I described how tools can help

manage source code. In “Issue Tracking” on page 66, I described

how issues and bugs can be tracked to ensure they are resolved. In

this chapter, I address the simulation management issues. I describe

how to debug your testbenches efficiently using transaction-level

models. Often overlooked but important topics, such as terminating

your simulation, reporting errors and determining success or failure

are covered. We also discuss configuration management: How do

you know you are simulating what you think you are simulating?

TRANSACTION-LEVEL MODELS

This section demonstrates how transaction-level models can benefit

a design project. These benefits can be realized only if the model is

written with the proper perspective. This section also shows how to

model exceptions properly and explains how to demonstrate a

transaction-level model to be equivalent to an RTL model.

Testbenches 

need a model to 

be debugged.

You have decided which testcases and functional coverage mea-

surements are needed to verify a design functionally. Your best ver-

ification engineers are developing the verification harness, self-

checking structure and random-generators. Hardware design engi-

neers are working furiously on the RTL model, but it will not be

available for several weeks. Meanwhile, the verification harness

and self-checking structure continue to be written. When all is said

and done, the amount of code written for the verification will sur-
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pass the amount of RTL code. You are looking at writing thousands

of lines of code without being able to debug them. Furthermore,

when writing a constrainable random environment, you need a

model to exercise your generators to ensure that they offer the con-

straint capabilities required to generate interesting input scenarios.

Transaction-

level models are 

used to debug 

testbenches.

What if someone walked up to you and offered you a model, avail-

able at the same time as early versions of the verification environ-

ment can be simulated, that runs one hundred times faster than the

RTL model and that looks and feels just like the real thing? You

could start debugging your verification environment even before

the RTL is ready. Because this model simulates faster, the debug

cycles would be shorter. By the time the RTL is available to simu-

late, you’d probably have most of the scenarios covering your

entire input functional coverage model defined and debugged. The

design schedule could be shortened and the verification would no

longer be squarely on the critical path. Sounds too good to be true?

I’m offering exactly such a model: It is called a transaction-level
model.

Transaction-

level models can 

be written using 

SystemVerilog.

There is a tendency in the industry to associate transaction-level

models with SystemC. Although SystemC is perfectly suited for

writing transaction-level models, SystemVerilog is just as good.

Unless you need a model written in C/C++ to integrate with soft-

ware or ship to your own customers, there is no real practical reason

to introduce another language in your verification process. System-

Verilog offers all of the necessary constructs for writing transac-

tion-level models. And with today’s direct compilation technology,

there is no technical reason for a model written at the same level of

abstraction, to run significantly faster when written in SystemC

compared to SystemVerilog.

Transaction-Level versus Synthesizable Models

Transaction-

level models are 

not synthesiz-

able.

A model that can be translated automatically into a gate-level

implementation by a synthesis tool, such as Synopsys’ Design

Compiler, is called a Register-Transfer-Level or RTL model. It also

may be called a synthesizable model. A transaction-level model

describes the black-box functionality of a design, without having to

be synthesizable. The Virtual Socket Interface Alliance uses the

term functional model.
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High-level code 

is not just for 

testbenches.

In “High-Level versus RTL Thinking” on page 113, I described the

characteristics of high-level code compared with synthesizable

code. Using high-level descriptions for testbenches is acceptable

easily by most design engineers. After all, the testbench will never

be implemented in hardware so they never give any thought as to

how they would go about it. Their mind hasn’t been influenced by

an implementation architecture or by a synthesizable description of

the testbench’s functionality. They are still open to describing this

functionality using high-level code.

Writing a trans-

action-level

model requires a 

different mind-

set than writing 

an RTL model.

Writing a truly transaction-level model of a design requires a

greater mental leap. You may have already started to think of a

design’s functionality in terms of state machines, datapaths, opera-

tors, memory interfaces and other implementation details. This

mindset can be created simply because the functional specification

document was written with these implementation details in mind.

To write a proper transaction-level model, you have to focus on the

functionality, not the implementation. If the implementation starts

to color your thinking, you’ll simply write what I call an “RTL++”
model.

Example of Transaction-Level Modeling

RTL++ models 

may be synthe-

sizable using 

behavioral syn-

thesis.

For example, consider the specification in Sample 7-1. How would

you write a transaction-level description of this functionality? Most

would write something similar to the description shown in Sample

7-2. Clearly, this description is not synthesizable using logic syn-

thesis tools. However, it happens to be synthesizable using behav-

ioral synthesis tools such as Synopsys’ Behavioral Compiler. The

design is synthesizable behaviorally because the description was

tainted by the specification: There is an implicit state machine and

everything happens at the active edge of the clock. 

Sample 7-1.
Specification
of a debounce 
circuit

The debounce circuit samples the input at every clock cycle. The

debounced version of the input changes state only when eight

consecutive samples of the input have the same polarity.
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A transaction-

level model 

should be 

refined into a 

synthesizable 

model.

The objective of a transaction-level model is to represent the func-

tionality of a design faithfully, in a way that is easy to write and

simulate. The transaction-level model is designed to help verifica-

tion, and indirectly, the implementation. When written properly, a

transaction-level model cannot be refined into a model synthesiz-

able by today’s logic synthesis tools.

For example, what is the functionality of the debounce circuitry

specified in Sample 7-1? It prevents pulses on the primary input,

narrower than 8 clock periods, from making it to the debounced

output. The functionality is similar to a buffer with a significant

inertial delay. This behavior can be modeled using a single System-

Verilog statement, as shown in Sample 7-3. The continuous assign-

ment statement uses the inertial delay model built in

SystemVerilog. If required, please refer to a suitable SystemVerilog

reference book for a detailed description of inertial delays. 

Delays cannot 

be synthesized.

The description in Sample 7-3 is far from being synthesizable. It is

not possible to synthesize a specific inertial delay. The other limita-

tion of that description is the need to know the sampling clock

period. It could be specified using a parameter or a transaction-

level model configuration descriptor, but the transaction-level

model would not adjust to different clock periods as the real imple-

Sample 7-2.
RTL++ 
description of 
debounce cir-
cuit

reg debounced;
always @ (posedge clk)
begin: debounce
   if (bouncing != debounced) begin
      repeat (7) begin
         @ (posedge clk);
         if (bouncing == debounced)
            disable debounce;
      end
      debounced <= bouncing;
   end
end

Sample 7-3.
Transaction-
level descrip-
tion of 
debounce cir-
cuitry

assign #(8*cycle) debounced = bouncing;
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mentation would. If this is an important requirement, the clock

period could be determined at runtime by sampling two consecutive

edges. Sample 7-4 shows how this sampling could be performed.

Notice how the clock cycle is measured only once to improve simu-

lation performance. It is unlikely that the clock period will change

significantly during a simulation. Computing the clock period at

every clock cycle simply would consume simulation resources

without accomplishing additional work.

Characteristics of a Transaction-Level Model

They are parti-

tioned for main-

tenance.

A transaction-level model is partitioned differently from a synthe-

sizable model. The latter is partitioned to help the synthesis pro-

cess. Partitioning is decided along implementation lines, producing

a design with several instances arranged in a wide and shallow

structure.

Transaction-level models are partitioned according to generally

accepted software engineering practices. Transaction-level models

tend to be partitioned according to main functional boundaries to

avoid maintaining one large file, or to allow more than one author

to write it. Duplication of function in a model, such as many inter-

faces of the same type, is also implemented using multiple

instances of a single description. Transaction-level models tend to

Sample 7-4.
Measuring the 
clock period in 
the debounce 
circuitry

module debounce(input  bouncing,
                output debounced,
                input  clk);

time cycle = 8 * 10ns;

initial
begin
   time stamp;

   @ (posedge clk);
stamp := $time;

   @ (posedge clk);
cycle = $time - stamp;

end

assign #(8*cycle) debounced = bouncing;
endmodule
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have very few instances creating a narrow and shallow structure of

large blocks.

They do not use 

a clock.

A clock signal is an implementation artifice for synchronous design

methodologies. These implementation methodologies are function-

ally irrelevant. A transaction-level model does not change state syn-

chronously with a clock. Instead, a transaction-level model uses

many different synchronization mechanisms—one of which could

be a clock edge. While an RTL model continuously recomputes and

updates the value of inferred registers, a transaction-level model

performs computations only when necessary.

Consider the RTL model in Sample 4-3 on page 116: The always_ff
block is executed every time the clock rises. The signal named state
is assigned at every rising edge of the clock signal, regardless of the

value of next_state.

The equivalent transaction-level model in Sample 4-4 on page 116,

on the other hand, does not even use a clock. Instead, it acts on the

only functionally significant event: the change in ack. This behav-

ioral model changes the only functionally significant state, the state

of the req output.

A clock would be used only when data needs to be sampled or pro-

duced synchronously with a clock signal. Examples of synchronous

interfaces include PCI or Utopia Level 1. The clock signals for syn-

chronous interfaces are usually externally generated and are not

used any further by the transaction-level model.

Transaction-

level models do 

not use FSMs.

Synthesizable models are littered with finite state machines. They

are the primary synchronous design methodology for implementing

control algorithms. When writing software using a language like

C++, you would not usually implement it as a series of cooperating

finite state machines. The language does not lend itself very well to

that.

Instead, the control algorithm and the data transformations would

be part of the control flow of the program. The model’s state would

depend on the current values of the variables and the location of the

statement under execution in the program sequence.
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Transaction-level models follow a similar strategy. Consider the

example in Sample 4-3 on page 116. The state of the RTL model is

determined by the value of the state register and the current input

values. The same code is executed over and over. On the other

hand, the state of the behavioral model shown in Sample 4-4 on

page 116 depends only on which wait statement is being executed

currently.

Data can remain 

at a high-level of 

abstraction.

The skills of the hardware engineer reside in mapping a complex

functionality into the very primitive resources available in hard-

ware. Everything must be implemented using a binary value, with a

small number of bits, and reduced to integer arithmetic. A transac-

tion-level model can make use of the high-level data types provided

by the language, such as enumerals, floating-point numbers,

classes, multi-dimensional arrays and queues. The section titled

“Data Abstraction” on page 130 illustrates many examples of using

high-level data abstraction instead of using representations suitable

for implementation.

Data structures 

are designed for 

ease-of-use, not 

implementation.

In a synthesizable model, the format of the data structures are orga-

nized to make implementation possible. For example, imagine that

a routing table in a packet router is composed logically of 256-bit

records with various fields. The router is specified to support 1,024

possible routes and the table is maintained by an external processor

through a 16-bit wide interface.

The physical implementation of the routing table is likely to use a

16-bit RAM with 16K locations. Whenever the routing engine per-

forms a table lookup, it has to read a block of 16 words to build the

entire 256-bit routing record.

If the table maintenance via the CPU interface has a much lower

frequency than packet routing, a transaction-level model would

instead optimize the data structure for the table look-up and routing

operation. The routing table would be implemented using an array

with 1,024 locations, each containing a complete 256-bit routing

entry. It could probably use a associative array to minimize memory

usage as well. The table would look the same from the CPU’s per-

spective, with each 16-bit access being performed at the right offset

within the record identified by the upper 10 bits of addresses. Sam-
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ple 7-5 shows an implementation of the CPU access into the routing

table of the transaction-level model.

Interfaces may 

be implemented 

using bus-func-

tional models.

The testbench is a transaction-level model of the environment. To

make implementation more efficient, Chapters 5 and 6 explained

how bus-functional models are used and located in a testcase-inde-

pendent verification harness. The bus-functional models abstract

data from the physical level to a functional level where they are

simpler to process using high-level code.

The same strategy can be used when writing a transaction-level

model that must present pin-true physical interfaces. Bus-functional

models are used for each interface around the periphery of the

model. Data is transformed at the transaction level and moved from

bus-functional model to bus-functional model according to the

function of the device. And as Figure 7-1 shows, you will likely be

able to reuse the bus-functional models written for the testbench in

your transaction-level model.

Sample 7-5.
Mapping a 
narrow access 
in a wide data 
structure

bit [255:0] table[1024];

always
begin: cpu_access
   bit [255:0] entry;
   ...
   entry = table[addr[13:4]];
   if (read) data = entry[addr[3:0]*16 +: 16];
   else begin
      entry[addr[3:0]*16 +: 16] = data;
      table[addr[13:4]] = entry;
   end
   ...
end

Figure 7-1.
Structure of a 
UART test 
harness and 
behavioral
model
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Modeling Reset

Reset is part of 

the RTL coding 

style.

Modeling exceptions can take of lot of time and introduce a lot of

intricacies in an otherwise simple algorithm description. When

writing a synthesizable description, modeling the effect of reset on

the state elements is defined in the supported coding style. For

example, Sample 7-6 shows how an asynchronous reset is modeled

to reset a finite state machine. Resetting an entire RTL model is

accomplished by including the logic to handle the reset exception in

each always block that infers a register.

Transaction-

level models 

must reset vari-

ables and execu-

tion points.

As described in the previous section, the state of a transaction-level

model is not just composed of the values of the variables. It also

includes the location of the statement currently being executed in

the sequence of statements describing each concurrent execution

thread. To reset a transaction-level model, you need not just reset

the content of the variables. You must also reset the execution to a

specific statement, usually at the top of the always blocks. For

example, resetting the always block shown in Sample 7-7 would

require resetting the variables and signal drivers to their initial val-

ues, as well as restarting the execution of the always block at the

top.

Disable all the 

blocks on reset

Resetting a transaction-level model in SystemVerilog is easy and

elegant. When an exception is detected, all you need to do is disable

all the blocks in the model using the disable statement. The always
blocks restart their execution from the top. Note that, as described

in “Disabled Scheduled Values” on page 187, pending values

assigned using a nonblocking assignment may remain in the event

queue and clobber the reset state of a variable in some SystemVer-

ilog simulator.

Sample 7-6.
Modeling an 
asynchronous
reset in RTL

always_ff @ (posedge clk
             iff rst == 1 or negedge rest)
begin
   if (rst) state <= IDLE;
   else begin
      case (state)
         ...
      endcase
   end
end
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Use a forever
loop in initial
blocks.

Only the initial blocks present a difficulty. Since they only run once

in a simulation, they cannot be disabled since they are no longer

active. If they are still active, disabling them would simply make

them inactive immediately. They cannot be replaced by always
blocks because program can only contain initial blocks. To include

initial blocks in the reset handler, simply turn their body into a for-
ever loop with an infinite wait statement at the bottom. Sample 7-7

shows an original transaction-level model. Sample 7-8 shows the

same model, this time with the proper handling of reset exceptions

using the disable statement. 

Encapsulate the 

disable state-

ments in a task.

It is good practice to encapsulate all disable statements into a single

task to perform a reset of a transaction-level model. Multiple reset

sources and exception detection can call this task to perform the

reset operation. This technique also reduces maintenance to a single

location when always blocks are added or removed. The reset task

can also be called using a hierarchical reference when a higher-

level module in a complex transaction-level model needs to reset all

its lower-level components. This approach is more efficient than

having to create and assert a synthetic reset signal broadcast

through the pins of all interfaces in the model. Sample 7-9 shows

the reset handler of Sample 7-8 modified to use a task to disable all

of the blocks.

Writing Good Transaction-Level Models
Many attempts 

to write transac-

tion-level mod-

els fail.

I have seen and heard of many projects where the use of transac-

tion-level models was attempted, but without producing much ben-

efit over RTL models. Often, the transaction-level model was

Sample 7-7.
Transaction-
level blocks to 
be reset

initial count = 0;
always
begin
   strobe <= 1’b0;
   wait (go);
   while (go) begin
      count++;
      @sync;
   end
   strobe <= 1’b1;
   #10;
   strobe <= 1’b0;
   wait (ack);
   count = 0;
end
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abandoned in favor of the RTL model as soon as the latter became

available. The transaction-level model failed to exhibit any of the

benefits outlined in “The Benefits of Transaction-Level Models” on

page 349.

Sample 7-8.
Transaction-
level model 
with reset 
detection and 
handling

initial
forever begin: init
   count = 0;

wait (0);
end

always
begin: main
   strobe <= 1’b0;
   wait (go);
   while (go) begin
      count = count + 1;
      @ sync;
   end
   strobe <= 1’b1;
   #10;
   strobe <= 1’b0;
   wait (ack);
end

always
begin
   // Detect reset exception
   ...

disable init;
disable main;

end

Sample 7-9.
Encapsulating 
the disable
statements in a 
task

task reset;
   disable init;
   disable main;
endtask

always
begin
   // Detect reset exception
   ...

reset;
end
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Writing a good 

transaction-level

model requires 

specialized 

skills.

Further investigation into those failed attempts usually reveals that

the transaction-level model was written by experienced hardware

designers. Unfortunately, their valuable skills were not appropriate

to writing good transaction-level models. Their level of thinking

was still too close to the implementation and they had difficulty

thinking in terms of higher levels of abstraction. Very often, there

was the implicit intent of refining the transaction-level model into a

synthesizable model. This is a fatal mistake as it is conducive to

low-level thinking that yields not a behavioral model, but an

“RTL++” model.

Focus on the rel-

evant functional 

details.

All the techniques illustrated in this chapter, as well as in Chapter 4,

can be used and still yield a poor transaction-level model. A good

transaction-level model captures the details that are functionally

relevant and does not include implementation artifices. For exam-

ple, the latency of a design—the number of clock cycles necessary

for an input to be transformed into an output—is usually not func-

tionally relevant1. If you insist on writing a model that is clock-

cycle accurate with the actual implementation, you may be spend-

ing a lot of maintenance effort and adding a lot of complexity for a

characteristic that may not be important functionally.

At first glance, 

latency seems a 

significant char-

acteristic.

To many, saying that latency may not be a relevant functional detail

and should not be modeled sounds like a recipe for disaster. But if

you take a step back from your design, ignoring its implementation

details, does it really matter whether a particular output comes

exactly N cycles after the corresponding input was sampled? As

long as the order of these outputs is the same, is the time at which

they come out significant?

Consider the speech synthesizer design illustrated in Figure 3-4 on

page 95. To produce audible speech, coefficients must be modified

at regular intervals to produce the different sequences of sounds

that compose normal speech.

For example, to say “cat”, the coefficients would be modified to

create the sequence of sounds “k”, “a”, “a”, “a”, “t”, “t”. From

these coefficients, a digitized sound waveform should come out at a

8 KHz sample rate. The delay between the time the coefficients are

1. But if it is relevant, then it should be modeled.
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set and the corresponding sound is synthesized is irrelevant, as long

as it is under the limit of perception by the user. A similar argument

can be made for packet routers: It does not really matter how long it

takes for packets to transit through a routing node; what matters is

that they eventually come out in the same order.

In some cases, 

latency is signif-

icant.

The only time where a “detail” like latency is significant is when

the design under verification does not have complete visibility and

control over all elements of a system-level transaction. A system-

level transaction is the smallest amount of data than can be pro-

cessed by the system: an atomic operation. For example, a packet

router’s system-level transaction is an entire packet. In a speech

synthesizer, it is a phoneme. In a hardware tester, it is a complete

vector with input and expected output values. If the design under

verification only processes a portion of the system-level transac-

tion, it is important that the latencies in the reconvergent paths are

identical so the system-level transaction is reassembled properly.

For example, the input formatter in a hardware tester, as illustrated

in Figure 7-2, only processes the input value. For the corresponding

expected output value to be checked at the proper time, it must have

the exact same latency as the Expect Delay design.1 In a packet

router, as illustrated in Figure 7-3, if the packet is dismembered to

be routed by a different switching node, each node must have an

identical latency for the packet to be put back together properly. If

you mix behavioral and RTL models in a system-level verification,

and each has a different latency, the system-level simulation would

become a very effective packet scrambler!

1. Actually, since the latter is easier to design, its latency is made to match 
that of the input formatter, whatever it may be.

Figure 7-2.
Reconvergent 
paths in a 
hardware
tester

Vector
Memory

Input
Formatter

Device
under Test

Output
Compare

Expect
Delay

Pass/Fail
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Do not let the 

testbench dic-

tate what is 

functionally rel-

evant.

The reason most often cited for making a transaction-level model

clock-cycle accurate with the implementation is to be able to pass

the same cycle-oriented testbenches. If the testbenches enforce a

specific latency, they are verifying a specific implementation, not a

specification.1 I hope I have explained successfully how to write

testbenches that are independent of the latency of the design under

verification in Chapters 5 and 6. If your testbenches do not expect a

specific latency, then you need not model it.

Details relevant 

at the system-

level can be 

back-annotated.

An implementation “detail”, such as latency, may not be relevant to

the functionality of the stand-alone design under verification. How-

ever, it may be critical for the proper operation of the system-level

design. If that is the case, such as the example designs shown in

Figure 7-2 and Figure 7-3, the behavioral model still may be mod-

eled as if the latency was not important and perform its transforma-

tion in zero-time. At appropriate points in the input or output paths,

programmable delay pipelines can be introduced so the exact

latency of the implementation can be back-annotated into the trans-

action-level model. The transaction-level model would then model

the functionality of the synthesizable model at a clock-accurate

level. Sample 7-10 shows a configurable delay pipeline to adjust

the latency of a transaction-level model.

Specify the 

functionality, 

not the imple-

mentation.

Another big obstacle to writing good and efficient transaction-level

models is the level of the specification for the design. If it is written

at a very low level, it becomes difficult to abstract significant func-

tionality and discard irrelevant implementation details. I once had

to write a transaction-level model for a customer whose functional

Figure 7-3.
Reconvergent 
paths in a 
packet router

Swx
Node

Swx
Node

Swx
Node

Input
Buffer

Output
Buffer

1. Unless of course a specific latency is required, in which case it should 
be specified in the specification document. And if something is speci-
fied, it should be modeled and verified.
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specification was done using technology-independent schematics

using a general-purpose drawing tool. Each block was specified

independently with no description of the overall functionality. Not

only did it make the job of writing RTL code that met timing

requirements difficult, it made writing a transaction-level model

impossible. After 10 weeks, I had a model that was barely faster

than the RTL model. But after those 10 weeks, I was able to piece

the entire design together in my mind and understand the intended

functionality. I scrapped the first model and rewrote it entirely in

under two weeks. That newer model outperformed the RTL model.

Had the specification been written at an appropriate level in the first

place, a more effective behavioral model could have been written

from the start.

Transaction-Level Models Are Faster

They are faster 

to write.

As shown in “High-Level versus RTL Thinking” on page 113, a

high-level model is much faster to write simply because the func-

tionality is described using significantly fewer statements than an

RTL model. Furthermore, transaction-level models do not need to

meet physical timing or other implementation constraints. They are

written with the sole purpose to describe the functionality of a

design.

They are faster 

to debug.

The fewer statements, the fewer bugs. Bugs are easier to identify

because of the simpler descriptions. The code is written based on a

functional description. The code is not cluttered by directives aimed

at a synthesis tool or twisted to be synthesized into specific hard-

ware structures. Transaction-level models also tend to use fewer

parallel constructs, instead preferring large sequential descriptions

Sample 7-10.
Configurable 
delay pipeline

initial
begin
   const int unsigned delay = 10;
   transaction pipeline[$];

   repeat (delay) pipeline.push_back(new);
   forever begin
      always @ (posedge clk);
      actual_ouput = pipeline.pop_front();
      pipeline.push_back(output);
   end
end
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in a few blocks. Sequential code is much easier to debug than paral-

lel code, since it does not involve synchronization or data exchange

intricacies.

They are faster 

to simulate.

Less code used to describe a function should naturally simulate

faster. But the greatest contributor to the increase in simulation

speed of a transaction-level model over a synthesizable model is

avoiding the use of the synthesizable subset itself. Look at all the

always blocks used to infer registers. Each and every one of them is

sensitive to the clock. If you remember the discussion on event-

driven simulation in “The Parallel Simulation Engine” on page 159,

you know that this sensitivity causes all of these threads to be

scheduled for execution after each event on the clock signal,

whether their internal state needs to change or not.

In a typical ASIC, activity levels are well below 40%. This means

that well over 60% of the always blocks are evaluated for no rea-

son. A transaction-level model only executes when there is useful

work to be done. The load it puts on the simulator is much lower. In

the small example illustrated in “Contrasting the Approaches” on

page 115, the activity in the high-level model is estimated to be 10

times lower than in the equivalent RTL model.

They are faster 

to bring to “mar-

ket”.

Being faster to write and debug, a transaction-level model takes sig-

nificantly less time to develop to a level where it can be used in a

system-level model. With transaction-level models, you are able to

start system-level simulations sooner. Because they also simulate

faster, you are able to run more of them, on less expensive hard-

ware.

The Cost of Transaction-Level Models

Transaction-

level models 

require addi-

tional authoring 

effort.

Someone has to write these transaction-level models. If you use

your existing resources, it means that the coding of the RTL model

will be delayed. If you do not want to affect the schedule of the syn-

thesizable model, you will have to hire additional resources to write

the transaction-level model. But being a completely separate

model, it is a task that is easy to parallelize with the implementation

effort. And writing a transaction-level model is not as costly as

writing an RTL model. A transaction-level model that is sufficient

to start simulating and debugging the testbenches should not take

more than two person-weeks to produce. A complete model with all
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of the functionality of the design under verification should not take

more than five percent of the effort required to write an equivalent

RTL model.

The mainte-

nance requires 

additional

efforts.

When was the last time you were involved in a design project

where the functional specification did not change? Whenever a

functional or architectural change is made, the transaction-level

model needs to be modified. Often, these modifications are dictated

by the RTL model because the technology cannot implement the

original design and still meet timing requirements. Some of these

implementation-driven changes can be planned for and made easy

to modify, such as the latency. More significant changes may

require rewriting a significant portion of the transaction-level

model. Toward the end of a project, when schedule pressure is at its

greatest, it often leads to the decision of abandoning the transac-

tion-level model in favor of focusing on the RTL.1 However, most

of the modifications to an RTL model are made to meet timing

goals and do not affect the functionality of the design and thus

should not require modification of the transaction-level model. 

The Benefits of Transaction-Level Models

Audit the speci-

fication.

Most specification reviews I have attended focus on high-level

functions and on the spelling and grammatical errors in the docu-

ment. The missing functional details were often left to be discov-

ered during RTL coding. Decisions regarding these functional

details were usually then made according to the ease of implemen-

tation. There is nothing like writing a model to make you thor-

oughly read a specification document.

For example, after you’ve coded a particular function that occurs

under some condition, you’ve come to the else part of the if state-

ment. What should be done when the condition does not occur?

Flip, flip, flip through the specification document. Not a word.

You’ve just found a case of incomplete specification! Since you are

writing the transaction-level model faster than the RTL model,

you’ll reach that section of the specification earlier than the RTL

designers. By the time the RTL model incorporates this functional-

1. An error in my opinion. See the next section titled “The Benefits of 
Transaction-Level Models”.
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ity, it will have been specified. A similar process occurs with incon-

sistencies in the specification. When the RTL model is written,

there are fewer problems in the specification, and thus it takes less

time to write.

Develop and 

debug the test-

benches in par-

allel with the 

RTL coding.

Testbenches are implemented using code, just as RTL models are. If

the RTL model requires debugging, so do the testbenches. Since a

transaction-level model is available much earlier than the RTL

code, you are able to debug the testbenches earlier as well. You are

debugging the transaction-level model and the testbenches effec-

tively while the RTL is being written. And because the transaction-

level model simulates faster than the RTL model, the testbench

debug cycles are much shorter.

Once the RTL is available, you will have a whole series of

debugged testbenches. Whenever an error is detected, it likely will

be due to an error in the RTL model. If you decide to abandon the

maintenance of the transaction-level model after the RTL is avail-

able, debugging the testbenches (which will also need to be modi-

fied whenever the RTL is modified significantly) will take much

longer. It is important to maintain the transaction-level model to

keep reaping its benefits for the entire duration of the project.

System verifica-

tion can start 

earlier.

Figure 7-4 shows a design process that uses transaction-level mod-

els for developing the testbenches and the functional verification of

the system. Figure 7-5 shows a comparative timeline for a design

and verification process with and without transaction-level models.

The design process is somewhat shortened by using a transaction-

level model because the testbenches are already debugged. But the

greatest saving comes from system verification. The transaction-

level model is available sooner than the RTL model, so functional

verification can start much earlier. Because a transaction-level

model is much smaller and simulates more efficiently than the

equivalent RTL model, you are able to create models of larger sys-

tems, execute longer testcases and run on ordinary hardware plat-

form configurations. If the transaction-level model is demonstrated

to be equivalent to the RTL model, the latter never needs to be

brought into the system-level verification. For systems incorporat-

ing very large designs, a transaction-level model may be that which

makes system verification even possible.
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It can be used as 

an evaluation 

and integration 

tool by your cus-

tomers.

If your design is to be available as reusable intellectual property or

a chipset, a transaction-level model can be a powerful marketing

tool. Since it only describes functionality, not implementation, and

it is far from being synthesizable, the transaction-level model

should not convey intellectual property information.1 A customer

could start using the transaction-level model while the legal issues

with licensing the RTL model are being resolved. The system-level

models could be used as application notes. The transaction-level

model could be used to start the integration of your design into your

customer’s design. Since reusing intellectual property is about

time-to-market, a behavioral model can be an effective tool to help

your customers improve the odds that they will meet their market

window.

Demonstrating Equivalence

The RTL and TL 

models must be 

equivalent.

The greatest benefit from creating a transaction-level model comes

from system verification. To use it instead of the RTL model in a

simulation or as a marketing tool, you have to demonstrate that both

are an equivalent representation of the design. I use the term dem-

Figure 7-4.
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Figure 7-5.
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behavioral
models on a 
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1. Unless the intellectual property is in the function itself, such as a DSP 
algorithm.
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onstrate because I do not think it will ever be possible to prove
mathematically that they are equivalent.

Equivalence checking can prove that an RTL model is equivalent to

a gate-level model or to another RTL model because they are struc-

turally very similar. A properly written transaction-level model

would use a completely different modeling approach that would be

very difficult to correlate mathematically with the equivalent RTL

model.

Demonstrate 

equivalence by 

using the same 

test suite.

The only way to demonstrate that the transaction-level and the RTL

models are equivalent is to verify both of them using the same veri-

fication environment. If both models pass the same testcases, from

a system-level perspective, it should not matter which one you are

using. For a testcase to be executable on both models, it must not

depend on a specific implementation. Based on the testcase taxon-

omy described in “Functional Verification Approaches” on page 11,

only black- and grey-box testcases can be used to demonstrate

equivalence. Both are executed through the same physical inter-

face. Both do not depend on a particular implementation of the

design under verification. The grey-box testcases may not be very

relevant to the transaction-level model as they are designed to test a

particular implementation-specific feature in the RTL model, but

should nonetheless execute successfully.

PASS OR FAIL?

This section describes how the ultimate failure or success of a self-

checking testbench is determined.

The absence of 

errors is not a 

sufficient condi-

tion.

The goal of a testbench is to determine if the design under verifica-

tion passes or fails a simulation. But how do you determine if the

design passed the simulation? Is it by the absence of error mes-

sages? What if the simulation never ran at all? It could be caused by

a lack of licenses, or a runtime error such as running out of memory

or experiencing a power failure, or a simple syntax error in your

source code. You need positive proof that the simulation ran to

completion successfully.

Produce and 

look for a termi-

nation message.

Do not rely on a time bomb to terminate your simulation. Nor

should you attempt to have the simulation terminate by itself

through event starvation. Each simulation should be terminated



Pass or Fail?

Writing Testbenches using SystemVerilog 353

intentionally. Upon termination, it should produce a message that

the simulation was terminated normally. If that message is not

present, you must assume that the simulation did not run to comple-

tion and failed. To terminate a simulation from within the testbench,

use the $finish statement. Sample 7-11 illustrates the use of an

explicit termination statement. 

An error in the 

testbench could 

prevent error 

detection.

What if there is a functional problem in your testbench? That error

could prevent the testbench from detecting any errors at all. This

would clearly be a false-positive situation. You should always

ensure that your testbench is functionally correct as part of your

testcases. Error detection can be verified by injecting errors deliber-

ately in the design under verification. These errors can be intro-

duced by simply misconfiguring the design for the expected output.

For example, a UART could be configured with the wrong parity

setting to verify that the output monitor detects the bad parity.

Provide consis-

tent error mes-

sage formats.

The final pass or fail judgment could be made by a script parsing

the simulation output log file, counting all error messages from all

sources. To facilitate the implementation of such a script, use a con-

sistent error format. This style is best accomplished by using a mes-

sage log package that produces consistent headers, as shown in

Sample 7-12. 

Keep track of 

success or fail-

ure in the log 

service.

By using a single message log service as shown in Sample 7-13, it

is possible for the simulation to keep track of its own success or

failure by checking that no error messages were issued. By includ-

ing a simulation termination function, the final pass or fail indica-

Sample 7-11.
Terminating a 
simulation

program test;
harness th = new;

initial
begin
   ...
   $write(“Simulation terminated normally...\n”);

$finish;
end
endprogram
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tion can be determined by the simulation, without using a script to

parse the output log.

Assertions have 

predefined error 

reporting sys-

tem tasks.

SystemVerilog has a set of predefined error message system tasks

that are usually used for specifying user-defined messages in asser-

tions. If any error message is issued through one of the predefined

system tasks, the simulator will issue and format the messages, not

a user-defined message log service. The message service will thus

be unable to properly declare a failure. However, if these pre-

Sample 7-12.
Simulation log 
service.

class syslog;
static integer n_errs = 0;

task warning;
   $write("WARNING at %t: ");
endtask

task error;
   n_errs++;
   $write("*ERROR* at %t: ");
endtask

endclass

Sample 7-13.
Determining
pass or fail in 
the simulation 
log package

module log;

integer n_errs;

task warning;
   $write("WARNING at %t: ");
endtask

task error;
   n_errs = n_errs + 1;
   $write("*ERROR* at %t: ");
endtask

task terminate;
begin
   $write("Simulation %0sED\n",
          (n_errs) ? "FAIL" : "PASS");
   $finish;
end
endtask

endmodule
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defined system tasks are used only when assertions fail, the simula-

tor will be able to report a failure.

Using a script to 

parse the simu-

lation output log 

is still a good 

idea.

Using a message log service is not sufficient to determine if a

testcase is successful. Other errors could have been generated

before the simulation started, when the log service is not available.

Other error messages generated by the simulator itself—such as

default assertion failure messages and solver failures—would not

be issued by the log service. You still need to confirm the presence

of the termination message to verify that the testcase was executed

properly in its entirety. Errors could also have been produced by

some verification IP using its own log service. The output log pars-

ing script can also detect the presence of errors or warnings issued

by the simulation management tools, linting tools, syntax errors,

elaboration warnings and other possible error conditions not visible

to the testbench log service.

See vmm_log. The section titled “Message Service” starting on page 134 of the

Verification Methodology Manual for SystemVerilog specifies a

powerful message service and guidelines for using it.

MANAGING SIMULATIONS

Are you simulat-

ing the right 

model?

You’ve defined your verification task through a verification plan.

You have a verification harness with many bus-functional models

and utilities. Several testcases using that verification harness have

been written and you can choose between the RTL and transaction-

level model to simulate them. How do you bring all of these com-

ponents together in a single simulation? How can you reproduce a

simulation? And more importantly, how do you make sure that

what you simulate is what will be built?

Configuration Management

A configuration 

is the set of 

models used in a 

simulation.

Configuration management is different from source management.

Source management, as described in “Revision Control” on

page 61, deals with changes to source files and the set of source

files making up a particular release. Configuration management

deals with the particular set of models you decide to use in a partic-

ular simulation. For a specific design, a single configuration would

be composed of a specific test function, the verification harness

used by that test function and the model of the design to be exer-
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cised by the testbench. In a system-level simulation, the configura-

tion would also include that particular mix of models used to

populate the system model.

It must be easy 

to specify a par-

ticular configu-

ration.

The only information required to define a particular configuration

is the identity of the test function, the verification harness and the

model of the design under verification. The problem is that each

configuration component is composed potentially of several source

files and design units. Many individuals contribute to the creation

of these source files and design units. Their number and names may

change throughout the project. It is not realistic to expect every

engineer who needs to run a simulation to know exactly what

makes up a particular component of the desired simulation. Just as

bus-functional models abstract the data from the physical imple-

mentation level, configuration management abstracts the details of

the structure of a model and the files that describe it.

Use a script to 

create a configu-

ration.

The most efficient way to abstract the configuration details from the

user is to provide a script that expands a test name and an abstrac-

tion level for the design under verification into their respective sim-

ulation components. Different scripts have to be used for different

designs, file system structures and simulators. To simplify the user

interface and minimize the amount of repeated information, scripts

infer pathnames and expect particular set-up files.

For example, Sample 7-14 shows the command line of a hypotheti-

cal script named sim_design used to simulate a configuration com-

posed of the test named “basic_tx” on the transaction-level model.

It is followed by a configuration composed of the testcase named

“overflow_rx” on the RTL model.

There are many 

ways of specify-

ing files.

There are six different ways to include a source file into a System-

Verilog simulation:

1. Specify the filename on the command line.

2. Specify the name of a file containing a list of filenames, using 

the -f option.

Sample 7-14.
Configuration 
script com-
mand line

% sim_design -t basic_tx
% sim_design -r overflow_rx
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3. Specify a directory to search for files likely to contain the defi-

nition of a missing module, using the -y option. The files used in 

the simulation depend on the +libext command-line option.

4. Specify the name of a file that may contain the definition of 

missing modules, using the -v option.

5. Include a source file inside another using the `include directive. 

The actual file included in the simulation depends on the 

+incdir command-line option.

6. Locate files in virtual libraries specified in a library search order 

in a configuration.

Use ‘include or 

the configura-
tion.

Of all the mechanisms for specifying input source files in System-

Verilog, only the ‘include and configuration mechanisms can be

source-controlled and reproduced reliably. They are also the only

mechanisms that are defined formally as part of the language and

not left to the tool implementation.

Use a configura-
tion for each 

model of the 

design.

Each available model of the design should be specified using its

own configuration. For example, if you have a transaction-level

model, two versions of the RTL model (one for FPGAs, the other

for the final ASIC) and two gate-level models (one mapped to

FPGA gates, the other mapped to ASIC gates), there should be five

different configurations available.

Use ‘include for 

the verification 

harness and 

testcases.

The configuration is designed for the static structure of SystemVer-

ilog models: module, interface, program and package instances. It

is not designed for class instances. It is not possible, using a config-
uration to specify which version of a class to instantiate in the veri-

fication harness or testcases. The verification harness should

implicitly support all possible configurations of the design. All the

files required by the verification harness and testcases should be

included using a ‘include directive. A suitable ‘ifndef/‘define/‘endif
structure should protect all bus-functional model and harness com-

ponent files against multiple inclusion, as shown in Sample 7-15.

Include files at 

$root level.

When a file is included by another file using the ‘include directive,

it is included as-is within the scope where the ‘include directive is

specified. Files should be coded to be included in the $root scope,

i.e. outside of any other scope, at the primary file level. This will

ensure that files are compilable stand-alone and do not require

some additional context to be used. It will also ensure that files are

included in a known and consistent context.
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Used files 

should report 

name and ver-

sion.

For additional confidence and a positive confirmation of the files

and version of the files used in a simulation, you should have each

file report its name and revision number. Sample 7-15 shows how

to use a module containing a single initial block and RCS keywords

to perform this task. All modules included in the compilation are

included in the simulation, even if they are not instantiated. If each

file contains a suitably uniquely named module, it can be used to

display the filename and revision information. This mechanism

requires that all source files be designed to be included or compiled

in the $root scope, as recommended in the previous paragraph.. 

Avoiding Recompilation or SDF Re-Annotation

This section 

may not be 

applicable.

With some simulators, compiling the entire design under verifica-

tion and the verification harness for each testcase may take a long

time. To minimize the amount of time spent recompiling code that

does not change from testcase to testcase, it may be necessary to

use a compile-once, run many times strategy. Other simulators may

provide negligible compilation times or incremental compilation

technology that does not present this problem.

Back-annotation is a process used only with gate-level models. Due

to their large size, they are excruciatingly painful to simulate in

terms of performance and resource requirements. The purpose of

gate-level simulation is to verify that the synthesis tool has synthe-

sized the RTL description correctly without modifying the func-

tional behavior. The purpose of gate-level simulation is also to

verify that there are no timing violations. In most circumstances,

these checks are better performed using an equivalence checking

static timing analysis tool (see “Equivalence Checking” on page 8).

Sample 7-15.
File reporting 
its filename 
and revision

‘ifndef ATM_CELL__SV
‘define ATM_CELL__SV

module file_atm_cell_sv;
initial $write("Configuration: $Header$\n");
endmodule

class atm_cell;
   ...
endclass: atm_cell

‘endif
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SDF files are 

used to model 

accurate delays.

In a gate-level model, each gate is modeled using delays estimated

from average output load conditions. However, in a real gate-level

netlist, each gate is subject to different output loads: The gates drive

different numbers of inputs, and the length of the wires connecting

the output of the gate to the driven inputs are different. Each con-

tributes to the load on the output of the gate, producing different

loads for different instances of the same gate.

To be more accurate, gate-level simulations are back-annotated

with delay values calculated from the physical netlist or the layout

geometries. These more accurate delay values are stored in a Stan-
dard Delay File. The SDF file is read by the simulator and each

delay value replaces the average delay estimate for each instance.

Thus, each gate instance can have a different delay value. The delay

between an output pin and each of its driven input pins also can be

different.

SDF annotation 

can take a long 

time.

Gate-level netlists can contain a few million gates and several mil-

lion pin-to-pin nets or connections. Each must be annotated with a

new delay value. This process can be very time consuming and

should be minimized whenever possible. If you have to recompile

your model for each testcase, you have to perform the back-annota-

tion each time as well.

Use compiled 

back-annotation 

whenever possi-

ble.

Compiled simulators usually offer compile-time back-annotation of

a gate-level model. In that mode, the back-annotation of the delay

values is performed once at compile time. Different testcases can be

configured to run on the design in separate simulations without

requiring that the back-annotation process be repeated.

Concatenate 

testcases to min-

imize back-

annotation.

Reducing compilation time can only be accomplished by minimiz-

ing the number of times the simulation is compiled. To compile the

simulation only once for multiple testcases, you need to concate-

nate each testcase into a single simulation. The simulation is then

invoked multiple times, to execute each testcase separately. It may

also be possible to sequence separate testcases into a single simula-

tion. However, concatenating testcases at run-time will create

reproducibility challenges: what if a bug is found in a test when it

runs after a hundred other tests? How can the bug be efficiently

reproduced and debugged by running just that one testcase?.

Encapsulate 

testcases.

For testcases to be compilable into the same simulation, they must

not interfere with each other. Therefore, any testcase-specific decla-



Simulation Management

360 Writing Testbenches using SystemVerilog

rations must be localized to that testcase only. This can be accom-

plished by encapsulating testcases into their own class. Within that

class, they are free to make local declarations without affecting

other testcases. Simply pass a reference to the verification harness

to the test class either at construction time, as shown in Sample 7-

16. The test procedure itself is then encapsulated in a run() method.

If a testcase was originally implemented using multiple initial
blocks, they should be forked from within the run() method. Deriv-

ing all testcase classes from a common base class is a good idea to

facilitate some of the tasks that will be discussed in the following

paragraphs.

Reset the state 

of the verifica-

tion harness.

Testcases must be able to execute, whether they are the first or last

testcase to be run in the sequence. Therefore, the initial state of the

verification harness must be the same at the start of a testcase,

regardless of the execution order of that testcase. After completion,

a testcase should reset the state of the verification harness to the

same state it found it at the start. Resetting a verification harness

involves more than simply resetting the execution threads in the

bus-functional models. It involves removing any callbacks intro-

duced by the testcase. It also involves returning random generators

to their default, unconstrained state by restoring the default ran-

domized instances that were replaced by constrained extensions. If

random stability is required between consecutive testcases, the state

of the random generators must also be restored.

The design need 

not be reset.

Whether the design itself is reset and reconfigured is up to the

testcase. The response checking or purpose of a testcase may

depend on a specific configuration and initial state of the design—

especially directed testcases. But some testcases may be able to

Sample 7-16.
Encapsulated 
testcase

class test1 extends testcase;
   harness th;

   function new(harness th);
      this.th = th;
   endfunction

   virtual task run();
      ... // Testcase procedure
   endtask: run
endclass: test1
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explore additional corner cases if they can and are allowed to exe-

cute from an arbitrary design state.

Instantiate and 

run all known 

testcases.

A simulation must be able to run all known tests included in the

compilation. This can be done by instantiating all known testcases

in an array or queue of tests, as shown in Sample 7-17. The array

can then be traversed to identify and run the required tests. 

Identify

testcases using 

user-defined 

options.

The initial block invokes the run() method of all known testcases.

To control which testcases are run and which ones are not, each

run() method contains an if statement that tests for a user-defined

command-line option. That way, you might run only a subset of

testcases instead of all of them. Sample 7-17 shows how all

testcases are created and run. Sample 7-18 shows how the run()
method of each testcase checks if it is selected based on a user-

defined command-line option. The +all_testcases user-defined

option can be used to run all testcases. Notice how the use of a

testcase base class and the object-oriented programming model

greatly simplifies the implementation of each test selection. Sample

7-19 shows an example of each usage with a VCS-compiled simu-

lation. Notice how it was unnecessary to recompile the model to

execute different testcases. 

Output File Management

Simulations pro-

duce output 

files.

A simulation usually creates at least one output file. For example,

VCS simulations generate a copy of the output messages in a file

Sample 7-17.
Instantiating 
and running 
known 
testcases.

program tests;

harness th = new;
testcase known_tests[$];

initial
begin
   test1 tc = new(th);
   known_tests.push_back(tc);
   ...
   foreach (known_tests[i]) begin
      known_tests[i].run();
   end
   $finish;
end
endprogram: tests
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named vcs.log by default. Another frequently produced output file

is the file containing the signal trace information for a waveform

viewer. These output files are valuable. They are used to determine

if the simulation was successful. They should be saved after each

simulation run and parsed or post-processed to determine success

or failure.

Multiple simula-

tions can clob-

ber each other’s 

files.

When you run only one simulation at a time, you can save them by

renaming them after the completion of the simulation. That way,

you can keep a history of testcases that were run on the design

under verification. However, if you run multiple simulations in par-

allel, usually on different machines, the output files from one simu-

lation can clobber those of another. If you rely on default or

hardcoded filenames, you will not be able to run simulations in par-

allel. You must be able to name files differently for different

testcases.

Specify output 

filenames on the 

command line in 

your simulation 

run script.

A few default output filenames can be changed from the command

line. For example, the -l option can usually be used to change the

name of the output log file. In “Configuration Management” on

page 355, I recommended that you use a script to help manage the

configuration of a simulation. That same script can also manage the

naming of the output files according to the name of the testcase.

Sample 7-18.
Testcase selec-
tion mecha-
nism.

class testcase;
   function bit is_selected(string name);
      is_selected =
         $test$plusargs("all_testcases") ||
         $test$plusargs({"run_", name});
   endfunction: is_selected
endclass: testcase

class test1 extends testcase
   ...
   virtual task run();
      if (!super.is_selected(“test1”)) return;
      ... // Testcase procedure
   endtask: run
end
endmodule

Sample 7-19.
Running dif-
ferent
testcases

% vcs -f all_tests.f -f gate/design.f \
      -f phy/sdf.f
% ./simv +run_testcase3 +run_testcase7
% ./simv +all_testcases
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Sample 7-20 shows how a perl script can use the name of the

testcase specified on the command line to rename the output log

file.

Name created 

files after the 

testcase.

If files are created by the verification harness, they should be

named according to the testcase that caused them to be created.

This can be accomplished by simply using an argument to the veri-

fication harness constructor instead of a hard-coded name and pass

the testcase name to the verification harness as a constructor argu-

ment. String variables can be concatenated using the usual concate-

nation operator to create unique filenames. Sample 7-21 and

Sample 7-22 show an example.   

Sample 7-20.
Simulation run 
script

require "getopts.pl";
&usage if &getopts("hr") || $opt_h || !@ARGV;

sub usage {
   print <<USAGE;
Usage: $0 [-r] {testcase}
  -r   Use the RTL model instead of behavioral
USAGE
   exit (1);
}

$design = ($opt_r) ? "rtl" : "beh";
$prefix  = "vcs -R -f $design/design.f ";

foreach $test (@ARGV) {
   $command = "$prefix -f tests/$test.f";
   $command .= " -l logs/$test.log";
   system($command);
}

Sample 7-21.
Generating
unique file 
names

class harness;
   ...
   local string testname
   int results;

   function new(string testname);
      this.testname = testname;
      results = $fopen({testname, ".out"});
      ...
   endfunction: new
endclass
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Seed Management

Seeds contrib-

ute random sta-

bility.

The main concern with random stimulus is reproducing a simula-

tion that detected a functional error. Random stability allows the

same input sequence to be generated if the same initial seed is used,

even in the presence of some changes in the source code. Any

instance that is not affected by randomization-related source code

changes—such as additional constraints or random objects—will

always produce the same pseudo-random sequence in two different

simulations if the same seed is used, even if other instances are

affected by such changes. Random stability involves more than

using the same seed. A C++ model using the random() function is

not randomly stable as any change in randomization-related code

will affect all subsequent calls to the function in the entire model.

With random stability, the effects are localized in the modified

instance.

Don’t always 

use the default 

seed.

SystemVerilog uses a default seed unless a different seed is speci-

fied. Most people keep using the default seed over and over until

the simulation runs error free, then they consider their job done.

Using the same seed will generate the same input sequence. You

will not be verifying or debugging your environment under differ-

ent conditions. Before declaring your environment or bus-func-

tional model “done”, verify it with different seeds.

Pick random 

seeds.

Your SystemVerilog simulator may be able to pick a random seed

automatically using a specific command-line option. If not, it must

have a command-line option to manually specify a specific seed.

That value can be a random value generated by a suitable function

in your simulation run script or the output of the simple C program

shown in Sample 7-23. Do not generate a random seed based on the

current system time from within SystemVerilog because, by the

time the seed is set, some constructors may already have been

Sample 7-22.
Specifying
unique file 
names

program test1;
harness th = new(“test1”);

initial
begin
   ...
end
endprogram: test1
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invoked, initializing the local random source for those instances

from the default seed. 

Seed used is dis-

played.

Whatever seed is being used in a simulation, its value must be

known so it can be reused. Simulation scripts should display the

value of the seed used at the beginning of a simulation, as shown in

Sample 7-24. This display makes it possible to associate the results

in an output log file with a particular seed. 

Associate out-

put files with 

seeds.

Simulation results are the product of a simulation run with a spe-

cific seed. Performing another simulation run, using the exact same

code, but with a different seed will yield different results. It is there-

fore important to associate results with a specific seed. Once this

association exists, results can be reproduced. They also can be

graded to identify which seeds contribute most toward the final ver-

ification objective.

Include the seed 

in all output file 

names.

If the same output filename is used by two simulations of the same

code but using different seeds, the results from the first simulation

will be lost. You should include the seed value in all output path-

names. This technique can be done by putting all output files in a

seed-specific directory or by including the seed value in the file-

name itself.

REGRESSION

A regression 

ensures back-

ward compati-

bility.

A regression suite ensures that modifications to the design remain

backward compatible with previously verified functionality. Many

times, a change in the design made to fix a problem detected by a

Sample 7-23.
Generating a 
random seed

#include <stdlib.h>
#include <time.h>
main() {
  srandom(time(NULL));
  printf("%d\n", random());
  exit(0);
}

Sample 7-24.
Random seed 
display in sim-
ulation script

...
$seed = ‘random‘;
print “Random seed is $seed\n”;
‘simv +ntb_random_seed=$seed ...‘
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testcase, will break functionality that was verified previously. Once

a testbench is written and debugged to simulate successfully, you

must make sure that it continues to be successful throughout the

duration of the design project.

Running Regressions

Regressions are 

run at regular 

intervals.

As individual self-checking testbenches are completed, they are

added to a master list of testbenches included in the regression sim-

ulation. This regression simulation is run at regular intervals, usu-

ally nightly. For directed testcases, simulations are run one after

another. For random-based testbenches, simulations are run repeat-

edly using different seeds. As the number of testbenches or the size

of the functional coverage space grows, it may not be possible to

complete a full regression simulation overnight.

Divide directed 

testcases into 

two groups.

Directed testcases can then be classified into two groups: One

group is run every night, while the second group is included only in

regressions run over a weekend. Testcases selected for the first

group should be the ones that verify the basic functionality of the

design.

Rank seeds. With random-based testbenches, rank seeds based on their incre-

mental contribution to the overall functional coverage goal. Select

the seeds that provide the greatest contribution and start the regres-

sion simulation with those. If there is still time left in the regression

period, continue with additional, randomly selected seeds.

Testbenches 

may have a fast 

mode to speed 

up regressions.

Another approach is to provide a fast mode to testcases where only

a subset of the functionality is verified during overnight regression

simulations, or simulations are run for shorter periods of time with

the same seed. The full-length simulation would be performed only

during individual simulations or regression simulations over a

weekend. The fast mode could be turned on using a user-defined

command-line option, as shown in Sample 7-25. . 

Use a script to 

run regressions.

A regression script could invoke each testbench in the regression

test suite, for a specific number of seeds, using the simulation con-

figuration script used to invoke individual simulations, as discussed

in “Configuration Management” on page 355. If the number and

duration of testbenches in the regression suite make it impossible to

run a regression simulation in the allotted time, you will want to

consider parallel simulations. If you do, it is necessary that test-
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benches be designed to produce results independently from each

other, as discussed in “Output File Management” on page 361. Par-

allel simulations can be managed using readily available utilities,

such as pmake or LSF.

Regression Management

Check out a 

fresh view with 

local copies.

Not all source files are suitable for regression runs. If you are using

your revision control system properly, you should be checking in

files at times convenient for you, not convenient for the regression

run. The latest version of a file might contain code that was not ver-

ified at all or that might even have syntax errors. You do not want to

waste a regression simulation on files that were not debugged prop-

erly. Before running a regression, you should checkout a complete

view of the source control database, populated with local copies

whose revisions are tagged as being suitable for regression testing.

This tag is applied by verification and design engineers once they

have confidence in the basic functionality of the code and are ready

to submit that particular revision of the testbench or the design to

regression. Sample 7-26 shows an example of tagging a particular

view of a file system, then checkout the particular files associated

with a tag at a later time using CVS.

Sample 7-25.
Implementing 
a fast mode

% simv ... +fastmode

program testcase;
...
initial
begin
   // Repeat only 4 times in fast mode
   repeat (($test$plusarg("+fastmode"))?4:256)
      begin
         ...
      end
   syslog.terminate;
end
endprogram

Sample 7-26.
Tagging and 
retrieving a 
particular revi-
sion of a view

% cvs tag -R regress
...
% cvs update -dA -rregress
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Put a time bomb 

in all simula-

tions.

One of the greatest killers of regression simulations, second only to

the infinite loop, is the simulation that never terminates. A simula-

tion will run forever if a condition you are waiting for never occurs.

The clock generator keeps the simulation alive by generating events

continuously. Time advances until the maximum value is reached,

which, in modern simulators using 64-bit time values, will take a

long time! To prevent a testcase from hanging a regression simula-

tion, include a time bomb in all simulations. This time bomb should

go off after a delay long enough to allow the normal operations of

the testcase to complete without interruption. Sample 7-27 shows a

time bomb, included in the verification harness in Sample 7-28.

The time bomb could be modified to include a virtual interface that,

when observed with an event, would reset the fuse. 

Do not rely on a 

time bomb for 

normal termina-

tion.

The time bomb should be used only to prevent runaway simulations

from running forever. It should not be used to terminate a testcase

under normal conditions. It would be impossible to distinguish

between a successful completion of the testcase and a deadlock

condition. Furthermore, the time bomb would require fine tuning

every time the testbench or design is modified to avoid the testcase

from being interrupted prematurely or wasting simulation cycles by

running for too long.

Automatically 

generate a report 

after each 

regression run.

Once the regression simulations are completed, the success or fail-

ure of each testcase in the regression suite should be checked using

the output log scan script (see “Pass or Fail?” on page 352.) The

results are then summarized into a single regression report outlining

which particular testbench and seed was successful or unsuccessful.

It is a good idea to have the regression script mail the report to all

the engineers in the design team to ensure that the design remains

Sample 7-27.
Time bomb 
class

class timebomb;
   function new(time fuse);
      #(fuse);
      $write("Boom!\n");
      $finish;
   endfunction
endclass: timebomb;

Sample 7-28.
Using the time 
bomb

class harness;
   timebomb bomb = new(12ms);
   ...
endclass: harness
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backward compatible at all times. Reviewing this report also should

be the first item on the agenda in any design team meeting. 
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SUMMARY

Write a transaction-level model to help debug your verification

environment sooner and faster.

Transaction-level models are not the same as RTL models but must

pass the same verification suite.

Transaction-level models enable system-level verification.

Carefully model exceptions in transaction-level models.

Use a common error reporting mechanism.

Use a script to look for the absence of error messages and the pres-

ence of the termination message to declare if a simulation com-

pleted successfully.

Manage your models and the components of the verification envi-

ronment using configuration techniques.

Have simulations report the filename and version number in the

output log file.

Have a mechanism for reporting—and later specifying—a seed

used for a particular simulation run.

Separate output files for each testbench and each seed used to simu-

late each testbench.

Run regression simulations at regular intervals, using a tagged ver-

sion of the design and verification environment.

Include a time bomb in all simulations to prevent a single testbench

from blocking an entire regression run.
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APPENDIX A CODING GUIDELINES

There have been many sets of coding guidelines published for Ver-

ilog, but historically they have focused on the synthesizable subset

and the target hardware structures. Writing testbenches involves

writing a lot of code and also requires coding guidelines. These

guidelines are designed to enhance code maintainability and read-

ability, as well as to prevent common or obscure mistakes.

Guidelines can 

be customized.

The specifics of a guideline may not be important. It is the fact that

it is specified and that everyone does it the same way that is impor-

tant. Many of the guidelines presented here can be customized to

your liking. If you already have coding guidelines, keep using

them. Simply augment them with the guidelines shown here that are

not present in your own.

Define guide-

lines as a group, 

then follow 

them.

Coding guidelines have no functional benefits. Their primary con-

tribution is toward creating a readable and maintainable design.

Having common design guidelines makes code familiar to anyone

familiar with the implied style, regardless of who wrote it. The pri-

mary obstacle to coding guidelines are personal preferences. It is

important that the obstacle be recognized for what it is: personal

taste. There is no intrinsic value to a particular set of guidelines.

The value is in the fact that these guidelines are shared by the entire

group. If even one individual does not follow them, the entire group

is diminished.

Enforce them! Guidelines are just that: guidelines. The functionality of a design or

testbench will not be compromised if they are not followed. What
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will be compromised is their maintainability. The benefit of follow-

ing guidelines is not immediately obvious to the author. It is there-

fore a natural tendency to ignore them where inconvenient. Coding

guidelines should be enforced by using a linting tool or code

reviews.

See the Verifica-
tion Methodol-
ogy Manual for 
SystemVerilog.

The guidelines presented in this appendix are simple coding guide-

lines. For methodology implementation guidelines, refer to the Ver-
ification Methodology Manual for SystemVerilog. That book is

entirely written as a series of guidelines to implement a state of the

art verification methodology using SystemVerilog.

FILE STRUCTURE

Use an identical directory structure for every project.

Using a common directory structure makes it easier to locate design

components and to write scripts that are portable from one engi-

neer's environment to another. Reusable components and bus-func-

tional models that were designed using a similar structure will be

more easily inserted into a new project.

Example project-level structure:

.../bin/ Project-wide scripts/commands
doc/ System-level specification documents
SoCs/ Data for SoCs/ASICs/FPGA designs
boards/ Data for board designs
systems/ Data for system designs
mech/ Data for mechanical designs
shared/ Data for shared components

At the project level, there are directories that contain data for all

design and testbench components for the project. Components

shared, unmodified, among SoC/ASIC/FPGA, board and system

designs and testbenches are located in a separate directory to indi-

cate that they impact more than a single design. At the project level,

shared components are usually verification and interface models.

Some “system” designs may not have a physical correspondence

and may be a collection of other designs (SoCs, ASICs, FPGAs and
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boards) artificially connected together to verify a subset of the sys-

tem-level functionality.

Each design in the project has a similar structure. Example of a

design structure for an SoC:

SoCs/name/ Data for ASIC named "name"
doc/ Specification documents
bin/ Scripts specific to this design
tl/  Transaction-level model
rtl/ Synthesizable model
syn/ Synthesis scripts & logs
phy/ Physical model and SDF data
verif/ Verif env and simulation logs

SoCs/shared/ Data for shared ASIC components

Components shared, unmodified, between SoC designs are located

in a separate directory to indicate that they impact more than a sin-

gle design. At the SoC level, shared components include bus-func-

tional models, processor cores, soft and hard IP and internally

reused blocks.

Use relative pathnames.

Using absolute pathnames requires that future use of a bus-func-

tional model, component or design be installed at the same location.

Absolute pathnames also require that all workstations involved in

the design have the design structure mounted at the same point in

their file systems. The name used may no longer be meaningful,

and the proper mount point may not be available.

If full pathnames are required, use preprocessing or environment

variables.

Put a Makefile with a default 'all' target in every source directory.

Makefiles facilitate the compilation, maintenance, and installation

of a design or model. With a Makefile the user need not know how

to build or compile a design to invoke “make all”. Top-level make-

files should invoke make on lower level directories.
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Example “all” makefile rule:

all: subdirs ...

SUBDIRS = ...
subdirs:

for subdir in $(SUBDIRS); do \
   (cd $$subdir; make); \
done

Use a single module, interface, program or package in a file.

A file should contain a single compilation unit. This will minimize

the amount of recompilation in incremental compilation simulators.

It will also simplify identifying the location of components in the

file system.

Specify files required by the current file using the `include directive.

Whether you include a file using the ‘include directive or by nam-

ing it on the command line, the result is the same. A SystemVerilog

compilation is the simple concatenation of all of its input files. If

each file includes all of the file is depends on to compile success-

fully, you only need to specify one file on the command line: the

top-level file.

Surround source files with ‘ifndef, ‘define and ‘endif directives.

It is very likely that more than one file would depend on the same

file. If each file includes all of the file it depends on, the file would

included more than once, causing compilation errors. By surround-

ing source files with conditional compilation directives, it will be

compiled only once, even if it is included multiple times.

‘ifndef DESIGN__SV
‘define DESIGN__SV

module design(...);
...
endmodule
‘endif
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Filenames

Name files containing SystemVerilog source code using the *.sv suffix. Name

files containing Verilog-2001 source code using the *.v suffix.

SystemVerilog introduced new reserved words that may have been

used as user identifiers in Verilog-2001 source code. Tools must

have a way to differentiate between the two versions of Verilog.

Use filename extensions that indicate the content of the file.

Tools often switch to the proper language-sensitive function based

on the filename extension. Use a postfix on the filename itself if

different (but related) contents in the same language are provided.

Using postfixes with identical root names causes all related files to

show up next to each other when looking up the content of a direc-

tory.

Example of poor file naming:

design.svt Testbench
design.svb Transaction-level model
design.svr RTL model
design.vg Gate-level model

Example of good file naming:

design_tb.sv Testbench
design_tl.sv Transaction-level model
design_rtl.sv RTL model
design_gate.v Gate-level model



Coding Guidelines

376 Writing Testbenches using SystemVerilog

STYLE GUIDELINES

Comments

Put the following information into a header comment for each source file:

copyright notice, brief description, revision number and maintainer name and

contact data.

Example (under RCS or CVS):

//
// (c) Copyright MMCC, Company Name
// All rights reserved.
//
// This file contains proprietary and confidential
// information. The content or any derivative work
// can be used only by or distributed to licensed
// users or owners.
//
// Description:
// This script parses the output of a set of
//    simulation log files and produces a
//    regression report.
//
// Maintainer: John Q. Doe <jdoe@domain.com>
// Revision : $Revision$

Use a trailer comment describing revision history for each source file.

The revision history should be maintained automatically by the

source management software. Because these can become quite

lengthy, put revision history at the bottom of the file. This location

eliminates the need to wade through dozens of lines before seeing

the actual code.

Example (under RCS or CVS):

//
// History:
//
// $Log$
//
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Use comments to describe the intent or functionality of the code, not its

behavior.

Comments should be written with the target audience in mind: A

junior engineer who knows the language, but is not familiar with

the design, and must maintain and modify the design without the

benefit of the original designer’s help.

Example of a useless comment:

// Increment i
i++;

Example of a useful comment:

// Move the read pointer to the next input element
i++;

Preface each major section with a comment describing what it does, why it

exists, how it works and assumptions on the environment.

A major section could be an always or initial block, an interface, a

clocking block, a task, a function, a program, a class or a package.

It should be possible to understand how a piece of code works by

looking at the comments only and by stripping out the source code

itself. Ideally, it should be possible to understand the purpose and

structure of an implementation with the source code stripped from

the file, leaving only the comments.

Describe each argument in individual comments.

Describe the purpose, expected valid range, and effects of each

module, interface, program, function or task arguments and return

value. Whenever possible, show a typical usage.

Example:

//
// Function to determine if a testcase
// has been selected to be executed
//
// Example: if (!is_selected(“test1”)) return;
//
function bit         // TRUE if selected
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   is_selected(
      string name);  // Name of the testcase

Delete bad code; do not comment-out bad code.

Commented-out code begs to be reintroduced. Use a proper revi-

sion control system to maintain a track record of changes.

Layout

Lay out code for maximum readability and maintainability.

Saving a few lines or characters only saves the time it takes to type

it. Any cost incurred by saving lines and characters will be paid

every time the code has to be understood or modified.

Use a minimum of three spaces for each indentation level.

An indentation that is too narrow (such as 2), does not allow for

easily identifying nested scopes. An indentation level that is too

wide (such as 8), quickly causes the source code to reach the right

margin.

Write only one statement per line.

The human eye is trained to look for sequences in a top-down fash-

ion, not down-and-sideways. This layout also gives a better oppor-

tunity for comments.

Limit line length to 72 characters. If you must break a line, break it at a conve-

nient location with the continuation statement and align the line properly within

the context of the first token.

Printing devices are still limited to 80 characters in width. If a

fixed-width font is used, most text windows are configured to dis-

play up to 80 characters on each line. Relying on the automatic line

wrapping of the display device may yield unpredictable results and

unreadable code.

Example of poor code layout:

#10
expect = $realtobits((coefficient * datum)
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+ 0.5);

Example of good code layout:

#10 expect = $realtobits((coefficient * datum)
+ 0.5);

Use a tabular layout for lexical elements in consecutive declarations, with a

single declaration per line.

A tabular layout makes it easier to scan the list of declarations

quickly, identifying their types, classes, initial values, etc. If you

use a single declaration per line, it is easier to locate a particular

declaration. A tabular layout also facilitates adding and removing a

declaration.

Example of poor declaration layout:

int unsigned counta, countb;
float c = 0.0;
bit [31:0] sum;
logic [6:0] z;

Example of good declaration layout:

int unsigned counta;
int unsigned countb;
float        c       = 0.0;
bit   [31:0] sum;
logic [ 6:0] z;

Declare ports and arguments in logical order according to purpose or func-

tionality; do not declare ports and arguments according to direction.

Group port declarations that belong to the same interface. Grouping

port declarations facilitates locating and changing them to a new

interface. Do not order declarations output first, data input second,

and control signals last because it scatters related declarations.
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Use named ports when calling tasks and functions or instantiating modules,

interfaces and programs. Use a tabular layout for lexical elements in consecu-

tive associations, with a single association per line.

Using named ports is more robust than using port order. Named

ports do not require any change when the argument list of a subrou-

tine or subunit is modified or reordered. Furthermore, named ports

provide for self-documenting code as it is unnecessary to refer to

another section of the code to identify what value is being passed to

which argument. A tabular layout makes it easier to scan the list of

arguments being passed to a subprogram quickly. If you use one

named port per line, it is easier to locate a particular association. A

tabular layout also facilitates adding and removing arguments.

Example of poor association layout:

fifo in_buffer(voice_sample_retimed,
               valid_voice_sample, overflow, ,
               voice_sample, 1'b1, clk_8kHz,
               clk_20MHz);

Example of good association layout:

fifo in_buffer(.data_in (voice_sample),
.valid_in (1'b1),
.clk_in (clk_8kHz),
.data_out (voice_sample_retimed),
.valid_out (valid_voice_sample),
.clk_out (clk_20MHz),
.full (overflow),
.empty ());

Structure

Encapsulate repeatedly used operations or statements in subroutines.

By using tasks or functions, maintenance is reduced significantly.

Code only needs to be commented once and bugs only need to be

fixed once. Using subprograms also reduces code volume.
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Example of poor expression usage:

// sign-extend both operands from 8 to 16 bits
operand1 = {{8 {ls_byte[7]}}, ls_byte};
operand2 = {{8 {ms_byte[7]}}, ms_byte};

Example of proper use of subprogram:

// sign-extend an 8-bit value to a 16-bit value
function [15:0] sign_extend;
   input [7:0] value;
   sign_extend = {{8 {value[7]}}, value};
endfunction

// sign-extend both operands from 8 to 16 bits
operand1 = sign_extend(ls_byte);
operand2 = sign_extend(ms_byte);

Use a maximum of 50 consecutive sequential statements in any statement

block.

Too many statements in a block create many different possible

paths. This layout makes it difficult to grasp all of the possible

implications. It may be difficult to use a code coverage tool with a

large statement block. A large block may be broken down using

subprograms.

Use no more than three nesting levels of flow-control statements.

Understanding the possible paths through several levels of flow

control becomes difficult exponentially. Too many levels of deci-

sion making may be an indication of a poor choice in processing

sequence or algorithm. Break up complex decision structures into

separate subprograms.

Example of poor flow-control structure:

if (a == 1 && b == 0) begin
case (val)
4:
5: while (!done) begin

if (val % 2) begin
odd = 1;
if (choice == val) begin

for (j = 0; j < val; j++) begin
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select[j] = 1;
end
done = 1;

end
end
else begin

odd = 0;
end

end
0: for (i = 0; i < 7; i++) begin

select[j] = 0;
end

default:
z = 0;

endcase
end
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Example of good flow-control structure:

function void
process_selection(int val);

odd = 0;
while (!done) begin

if (val % 2) begin
odd = 1;

end
if (odd && choice == val) begin

for (j = 0; j < val; j++) begin
select[j] = 1;

end
done = 1;

end
end

endfunction: process_selection

if (a == 1 && b == 0) begin
case (val)
0: for (i = 0; i < 7; i++) begin

select[j] = 0;
end

4:
5: process_selection(val);
default:

z = 0;
endcase

end

Debugging

Include a mechanism to exclude all debug statements automatically.

Debug information should be excluded by default and should be

enabled automatically via a control file or command-line options.

Do not comment out debug statements and then uncomment them

when debugging. This approach requires significant editing. When

available, use a preprocessor to achieve better runtime perfor-

mance.
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Example of poor debug statement exclusion:

// $write("Address = %h, Data = %d\n", 
//        address, data);

Example of proper debug statement exclusion:

‘ifdef DEBUG
   $write("Address = %h, Data = %d\n", 
           address, data);
‘endif

NAMING GUIDELINES

These guidelines suggest how to select names for various user-

defined objects and declarations. Additional restrictions on naming

can be introduced by more specific requirements.

Capitalization

Use lowercase letters for all user-defined identifiers.

Using lowercase letters reduces fatigue and stress from constantly

holding down the Shift key. Reserve uppercase letters for identifiers

representing special functions.

Do not rely on case mix for uniqueness of user-defined identifiers.

The source code may be processed eventually by a case-insensitive

tool. The identifiers would then lose their uniqueness. Use naming

to differentiate identifiers.
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Example of bad choice for identifier:

typedef struct {
byte red;
byte green;
byte blue;

} RGB;
...
begin

RGB rgb;
...

end

Example of better choice for identifier:

typedef struct {
byte red;
byte green;
byte blue;

} rgb_typ;
...
begin

rgb_typ rgb;
...

end

Use uppercase letters for constant identifiers (runtime or compile-time).

The case differentiates between a symbolic literal value and a vari-

able.

Example:

module block(...);
...
`define DEBUG
parameter WIDTH = 4;
typedef enum {RESET_ST, RUN_ST, ...} state_typ;
...
endmodule
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Separate words using an underscore; do not separate words by mixing upper-

case and lowercase letters

It can be difficult to read variables that use case to separate word

boundaries. Using spacing between words is more natural. In a

case-insensitive language or if the code is processed through a case-

insensitive tool, the case convention cannot be enforced by the

compiler. 

Example of poor word separation:

int readIndexInTable = 0;

Example of proper word separation:

int read_index_in_table = 0;

Identifiers

Do not use reserved words of popular languages or languages used in the

design process as user-defined identifiers.

Not using reserved words as identifiers avoids having to rename an

object to a synthetic, often meaningless, name when translating or

generating a design into another language. Popular languages to

consider are C, C++, VHDL, PERL, OpenVera and e.

Use meaningful names for user-defined identifiers, and use a minimum of five

characters.

Avoid acronyms or meaningless names. Using at least five charac-

ters increases the likelihood of using full words.

Example of poor identifier naming:

if (e = 1) begin
c = c + 1;

end

Example of good identifier naming:

if (enable = 1) begin
count = count + 1;
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end

Name objects according to function or purpose; avoid naming objects accord-

ing to type or implementation.

This naming convention produces more meaningful names and

automatically differentiates between similar objects with different

purposes.

Example of poor identifier naming:

count8 <= count8 + 8'h01;

Example of good identifier naming:

addr_count <= addr_count + 8'h01;

Do not use identifiers that are overloaded or hidden by identical declarations

in a different scope.

If the same identifier is reused in different scopes, it may become

difficult to understand which object is being referred to.

Example of identifier overloading:

reg [7:0] address;

begin: decode
integer address;

address = 0;
...

end

Example of good identifier naming:

reg [7:0] address;

begin: decode
integer decoded_address;
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decoded_address = 0;
...

end

Use this. when referring to data members.

Explicitly using this. documents that you are referring to a data

members instead of a variable currently in scope. Variables in scope

are usually declared nearby whereas data members can be inherited

and their declarations located in different files. Furthermore, it

avoid having to come up with artificially different names for the

same thing in method arguments.

Example of data member reference:

class bfm;
   virtual interf sigs;
   function new(virtual interf sigs);
      this.sigs = sigs;
   endfunction: new
endclass: bfm

Use suffixes to differentiate related identifiers semantically.

The suffix could indicate object kind such as: type, constant, signal,

variable, flip-flop etc., or the suffix could indicate pipeline process-

ing stage or clock domains.

Name all begin blocks.

Declarations inside an unnamed block cannot be accessed using

hierarchical references. Naming a block makes it possible to be

explicitly disabled. If a block is not named, some features in debug-

ging tools may not be available. Labeling also provides for an addi-

tional opportunity to document the code.

Example of a named block:

foreach (data[i]) begin: scan_bits_lp
...

end
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Label closing “end” keywords.

The start and end of a block may be separated by hundreds of lines.

Labeling matching end keywords facilitates recognizing the end of

a particular construct.

Example:

module FIFO(...);
...
endmodule: FIFO

Constants

Use symbolic constants instead of “magic” hard-coded numeric values.

Numeric values have no meaning in and of themselves. Symbolic

constants add meaning and are easier to change globally. This result

is especially true if several constants have an identical value but a

different meaning. Parameters, enumerals and ‘define symbols.

Example of poor constant usage:

int table[256];

for (i = 0; i <= 255; i++) ...

Example of good constant usage:

parameter TABLE_LENGTH = 256;

int table[TABLE_LENGTH];

for (i = 0; i < TABLE_LENGTH; i++) ...

Number multi-bit objects using the range N:0.

Using this numbering range avoids accidental truncation of the top

bits when assigned to a smaller object. This convention also pro-

vides for a consistent way of accessing bits from a given direction.

If the object carries an integer value, the bit number represents the

power-of-2 for which this bit corresponds.
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Example:

parameter width = 16;

reg [ 7:0] byte;
reg [ 31:0] dword;
reg [width-1:0] data;

Do not specify a bit range when referring to a complete vector.

If the range of a vector is modified, all references would need to be

changed to reflect the new size of the vector. Using bit ranges

implicitly means that you are referring to a subset of a vector. If you

want to refer to the entire vector, do not specify a bit range.

Example of poor vector reference:

bit [15:0] count;
...
count[15:0] <= count[15:0] + 1;
carry <= count[15];

Example of proper vector reference:

bit [15:0] count;
...
count <= count + 1;
carry <= count[15];

Preserve names across hierarchical boundaries.

Preserving names across hierarchical boundaries facilitates tracing

signals up and down a complex design hierarchy. This naming con-

vention is not applicable when a unit is instantiated more than once

or when the unit was not designed originally within the context of

the current design.

It will also enable the use of the implicit port connection capability

of SystemVerilog.
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PORTABILITY GUIDELINES

Start every module with a `resetall directive.

Compiler directives remain active across file boundaries. A module

inherits the directives defined in earlier files. This inheritance may

create compilation-order dependencies in your model. Using the

`resetall directive ensures that your module is not affected by previ-

ously defined compiler directives and will be self-contained prop-

erly.

Avoid using `define symbols.

`define symbols are global to the compilation and may interfere

with other symbols defined in another source file. For constant val-

ues, use parameters. If `define symbols must be used, undefine

them by using `undef when they are no longer needed.

Example of poor style using `define symbols:

`define CYCLE 100
`define ns * 1
always
begin

#(`CYCLE/2 `ns);
clk = ~clk;

end

Example of good style avoiding `define symbols:

parameter CYCLE = 100;
`define ns * 1
always
begin

#(CYCLE/2 `ns);
clk = ~clk;

end
`undef ns

Minimize identifiers in shared name spaces.

A shared name space is shared among all of the components imple-

mented using the same language. When components define the
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same identifier in a shared name space, a collision will occur when

they are integrated in the same simulation. Minimize your con-

sumption of shared name spaces.

SystemVerilog has two shared name space: $root (module names,

program names, interface names, primitive names, package names,

global class names, global task and function names, etc...) and

‘define symbols.

Use prefixes to differentiate identifiers in shared space.

When declaring an identifier in a shared name space, prefix it with

a unique prefix that will ensure it will not collide with a similar

identifier declared in another component. The suffix used has to be

unique to the author or the authoring group or organization.

Example of poor shared identifier naming:

‘define DEBUG

Example of good shared identifier naming:

‘define MII_DEBUG

Use a nonblocking assignment for variables used outside the always or initial
block where the variable was assigned.

Using nonblocking assignments prevents race conditions between

blocks that read the current value of the variable and the block that

updates the variable value. This assignment guarantees that simula-

tion results will be the same across simulators or with different

command-line options.

Example of coding creating race conditions:

always @ (s)
begin

if (s) q = q + 1;
end

always @ (s)
begin

$write("Q = %b\n", q);
end
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Example of good portable code:

always @ (s)
begin

if (s) q <= q + 1;
end

always @ (s)
begin

$write("Q = %b\n", q);
end

Assign variables from a single always or initial block.

Assigning variables from a single block prevents race conditions

between blocks that may be setting a variable to different values at

the same time. This assignment convention guarantees that simula-

tion results will be the same across simulators or with different

command-line options.

Example of coding that creates race conditions:

always @ (s)
begin

if (s) q <= 1;
end

always @ (r)
begin

if (r) q <= 0;
end

Example of good portable code:

always @ (s or r)
begin

if (s) q <= 1;
else if (r) q <= 0;

end
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Do not disable tasks with output or inout arguments.

The return value of output or inout arguments of a task that is dis-

abled is not specified in the SystemVerilog standard. Use the return
statement or disable an inner begin/end block instead. This tech-

nique guarantees that simulation results will be the same across

simulators or with different command-line options.

Example of coding with unspecified behavior:

task cpu_read(output [15:0] rdat);
...
if (data_rdy) begin

rdat = data;
disable cpu_read;

end
...

endtask

Example of good portable code:

task cpu_read(output [15:0] rdat);
...
if (data_rdy) begin

rdat = data;
return;

end
...

endtask

Do not disable blocks containing nonblocking assignments with delays.

What happens to pending nonblocking assignments performed in a

disabled block is not specified in the SystemVerilog standard. Not

disabling this type of block guarantees that simulation results will

be the same across simulators or with different command-line

options.

Example of coding with unspecified behavior:

begin: drive
addr <= #10 16'hZZZZ;
...
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end

always @ (rst)
begin

if (rst) disable drive;
end

Do not read a wire after updating a register in the right-hand side of a continu-

ous assignment, after a delay equal to the delay of the continuous assign-

ment.

The Verilog standard does not specify the order of execution when

the right-hand side of a continuous assignment is updated. The con-

tinuous assignment may be evaluated at the same time as the

assignment or in the next delta cycle.

If you read the driven wire after a delay equal to the delay of the

continuous assignment, a race condition will occur. The wire may

or may not have been updated.

Example creating a race condition:

assign qb = ~q;
assign #5 qq = q;
initial
begin
   q = 1’b0;
   $write("Qb = %b\n", qb);
   #5;
   $write("QQ = %b\n", qq);
end

Do not use the bitwise operators in a Boolean context.

Bitwise operators are for operating on bits. Boolean operators are

for operating on Boolean values. They are not always interchange-

able and may yield different results. Use the bitwise operators to

indicate that you are operating on bits, not for making a decision

based on the value of particular bits.

Some code coverage tools cannot interpret a bitwise operator as a

logical operator and will not provide coverage on the various com-
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ponents of the conditions that caused the execution to take a partic-

ular branch.

Example of poor use of bitwise operator:

reg [3:0] BYTE;
reg VALID
if (BYTE & VALID) begin
   ...
end

Example of good use of Boolean operator:

reg [3:0] BYTE;
reg VALID
if (BYTE != 4’b0000 && VALID) begin
   ...
end
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APPENDIX B GLOSSARY

ASIC Application-specific integrated circuit.

ATM Asynchronous Transfer Mode.

ATPG Automatic test pattern generation.

BFM Bus-functional model.

CAD Computed aided design.

CPU Central processing unit.

CRC Cyclic redundancy check.

CTS Clear to send.

DFT Design for test.

DFV Design for verification.

DSP Digital signal processing.

DTR Data terminal ready.

EDA Electronic design automation.
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EPROM Erasable programmable read-only memory.

FAA Federal aviation agency (US government).

FCS Frame check sequence (ethernet).

FIFO First in, first out.

FPGA Field-programmable gate array.

FSM Finite state machine.

GB Gigabytes.

Gb Gigabits.

GMII Gigabit Medium-Independent Interface (ethernet)

ID Identification.

HDL Hardware description language

HEC Header error check (ATM).

HVL Hardware verification language.

IEEE Institute of electrical and electronic engineers.

IP Internet protocol, intellectual property

LAN Local area network.

LFSR Linear feedback shift register.

LLC Link layer control (ethernet).

MAC Media access control (ethernet).

MII Media independent interface (ethernet).

MPEG Moving picture expert group.
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NASA National aeronautic and space agency (US government).

NNI Network-network interface (ATM).

OO Object-oriented.

OOP Object-oriented programming.

OVL Open verification library.

PC Personal computer.

PCI PC component interface.

PLL Phase-locked loop.

RAM Random access memory.

RGB Red, green and blue (video).

ROM Read-only memory.

RMII Reduced Medium-Independent Interface (ethernet)

RTL Register transfer level.

SDF Standard delay file.

SDH Synchronous digitial hierarchy (european SONET).

SMII Serial Medium-Independent Interface (ethernet)

SNAP (ethernet).

SOC System on a chip.

SOP Subject-oriented programming.

SONET Synchronous optical network (north-american SDH).

UART Universal asynchronous receiver transmitter.
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UFO Unidentified flying object.

UNI User-network interface (ATM).

VHDL VHSIC hardware description language.

VHSIC Very high-speed integrated circuit

VLAN Virtual local area network (ethernet).

VMM Verification Methodology Manual for SystemVerilog (published by

Springer).

VPI Virtual path identifier (ATM).

XAUI Ten gigabit Adaptor Universal Interface (ethernet)

XGMII Ten Ggabit Medium-Independent Interface (ethernet)
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Asynchronous stimulus 231
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transactions 258
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Accelerated simulation 33
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Autonomous response monitor 249

B

Base class 153

Behavioral modeling 113–193

PLL 203

Black-box verification 11

Block
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vs. system 84
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Board-level verification 85
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clocking block 239
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configuration class 244
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encapsulated in interface 128

encapsulated using class 129

error injection 276

generator 307

in SystemVerilog 237

in transaction-level models 340

instances 283

monitor vs. generator 248

nonblocking 268

packaging 236

physical interface 238

procedural interface 258

processor 234

programmable 146

reconfiguration 244

re-entrancy 236

reuse 19, 329

transaction-level 261

virtual interface 238, 241

By 254

C

Callback methods 273

blocking vs. nonblocking 276

virtual methods 273

Callback procedures 254

Capitalization
naming guidelines 384

Casting 154

Class 131–134, 147–153

application in modeling 147

base 153

bus-functional models 148

casting 154

comparison 152

copying 152

data member 147

derived 153

methods 147

multiple inheritance 158

packing 133

private members 150

protected members 155

protection 150, 155

and randomization 150

public members 150

random members 150

reference vs. instance 151

static 148

virtual 156

virtual interface 129

vs. interface 149

vs. module 149

vs. object 147

vs. Package 149

vs. struct 131

Clock multipler 203

Clock signals 198–207

asynchronous 205

multiplier 203

parameters, random generation 206

skew 201

threads 198

time resolution 199

Clocking block 168

clock edge 240

Code coverage 41–48

100%, meaning of 48
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code-related metrics 71

expression coverage 45

FSM coverage 46

path coverage 44

statement coverage 43

Code reviews 29

Coding guidelines 371–396

Comments
guidelines 376

quality of 121

Compilation
minimizing 146

Composition 137

randomization 137

Concurrency
definition of 160

describing 161

execution order 162

misuse of 169

problems with 160

threads 161

with fork/join statement 170

Configuration
functional coverage 291

implementation 289

randomly generating 109

Configuration class 287

Configuring the design 288

Connectivity
definition of 160

Constants
naming guidelines 389

Constrainable generator 108

Constraint_mode() 312

Constraints
adding 312, 314

turning off 312

constructor 241

Core-level verification 82

Co-simulators 35

Costs for optimizing 118

Coverage
code 41

expression 45

FSM 46

path 44

statement 43

functional 49

cross 53

point 51

transition 53

Coverage-driven verification 101–111

CPU bus-functional models 234

Cross-coverage 53

Cycle-accurate transaction-level 
models 346

Cycle-based simulation 33

D

Data abstraction 130–147

see also Arrays
see also Class
see also Files
see also Queues
see also Struct
see also Union
transaction descriptor 256

Data generation
abstracting 214

asynchronous 231

synchronous 212

Data tagging 295

Deadlock
avoiding 228

Debug, and random configuration 291

Debug, and random strategy 110

Deep compare 152

Deep copy 152

Delta cycles 166

Derived class 153

Design configuration 284–292

abstraction 285

downloading 288

generation 290

random 290

Design for verification 17, 83

Directed stimulus 304–307

random filling 305

transaction-level interface 304

vs random 305
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Directed testcases, and random 
strategy 109

Directed verification 96–100

random 109

testbenches 98

testcases 96

disable 341

Disable fork 173

Driving values 174

Dynamic arrays 140

Dynamic constraints 312

E

Effort 2

Encapsulating
bus-functional models 127

reset generation 210

subprograms 125

technique 122

test harness 281

Equivalence checking 8

Error messages 353

Error reporting 354

Error types 91

Event-driven simulation 31

Exceptions 270

Execution time
vs. simulation time 160

Expression coverage 45

F

False negative 20

False positive 20

Filenames
guidelines 375

Files 145–146

managing 145

Minimizing recompilation 146

First-pass success 79

Fork/join
Disable fork 173

join_any 173

join_none 172

Fork/join statement 170

Formal tools
hybrid 60

semi-formal 60

Formal verification
see also Equivalence checking
see also Property checking
vs simulation 60

FPGA verification 84

FSM coverage 46

Functional 49

Functional coverage 49–55

100%, meaning of 54

coverage point 51

cross 53

definition 50

from features 103

model 103

point 51

transition 53

Functional verification
black-box 11

grey-box 14

purpose of 10

white-box 13

G

Generating clocks
asynchronous domains 205

multiplier 203

parameters, random generation 206

skew 201

timescale 199

Generating reset signals 208–212

Generating waveforms 199

Generator
as bus functional models 307

randomizing instance 312

transaction-level interface 308

Generator vs. monitor 248

Generators
constraints 108

design 107

random 307

slaves 253

specification 107

Grey-box verification 14

Guidelines
capitalization 384
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code layout 378

code syntax 380

comments 376

constants 389

debugging 383

file naming 375

filenames 375

general coding 376–384

identifiers 386

naming 384–390

H

HDL
see also Verification languages
vs. verification languages xx

High-level modeling 113–193

Hybrid formal tools 60

I

Identifiers
naming guidelines 386

Implementation assertions 57

Inheritance 153–156

multiple 138, 158

randomization 138

vs. instance 156

vs. union 138

Instance vs.referece 151

Intellectual property 38–39

make vs. buy 38

protection 39

transaction-level models 351

Interface
instantiating 281

virtual, binding 129

vs. class 149

Issue tracking 66–71

computerized system 69

grapevine system 68

Post-it system 68

procedural system 69

L

Language, choosing xix–xxi

Linked lists 143

Linting 24–29

code reviews 29

limitations of 25

with SystemVerilog 27

Lists
see Queues

M

Mailbox
shared 310

Maintaining code
commenting 121

optimizing 118

Make vs. buy 38

Managing random seeds 364

Memory
modeling using associative 

array 143

Message format 353

Methods
virtual 157

Metrics 71–75

code-related metrics 71

interpreting 74

quality-related metrics 73

Model checking
see also Property checking

Modeling
code structure 122–129

costs for optimizing 118

data abstraction 130–147

encapsulating
bus-functional models 127

subprograms 125

technique 122

improving maintainability 121

parallelism 159–176

portability 186–193

race conditions 176–185

avoiding 183

initialization 182

read/write 177

write/write 180

RTL-thinking example 115

Modeling, high-level 113–193

Module
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vs. class 149

Module threads 163

Monitor
see also Response monitor

Monitor vs. generator 248

Multi-dimensional arrays 141

N

Naming
capitalization guidelines 384

constants 389

filenames 375

guidelines 384–390

identifiers 386

Nonblocking response monitor 249

O

Object
vs. class 147

Object-oriented
classes 147

comparison 152

copying 152

data protection 150

inheritance 153–156

inheritance vs. instance 156

instance vs. inheritance 156

instance vs. reference 151

multiple inheritance 158

object instance 151

objects 147

polymorphism 156–159

private members 150

protected members 155

public members 150

virtual classes 156

virtual methods 157

Object-oriented programming 147–159

OVL 58

P

Package
vs. class 149

Packed struct 132

Packed union 134

Packing 147

Packing classes 133

Parallelism 159–176

concurrency problems 160

driving vs assigning 173

emulating 162

misuse of concurrency 169

simulation cycle 163

Path coverage 44

PLL 203

Poka-yoke 6

Polymorphism 156–159

Portability
automatic tasks 190

non-re-entrant tasks 188

scheduled nonblocked value 186

see also Race conditions
using disable statement 187

using ouput arguments 188

using semaphores 191

Post_randomize() 315

Pre_randomize() 315

Private class members 150

Procedural scenarios 322

Processor bus-functional models 234

Productivity cycle 56

Productivity gap 18

Profiling 48

Program threads 163

Programming
object-oriented 147–159

Property checking 9, 60

Public class members 150

Q

Queues 141–143

usage 143

R

Race conditions 176–185

avoiding 183

clocking block 168

initialization 182

program threads vs. module 
threads 166

read/write 177
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read/write and synchronized 
waveforms 208

semaphore 184

write/write 180

Random clock parameters 206

Random scenarios
defining 320

directed stimulus 320

procedural scenarios 322

Random sequences 316

randsequence 322

scenarios 319

Random stability 364

Random stimulus 307–327

adding constraints 310, 312

atomic generation 307

atomic vs. sequence 316

scenarios 319

sequences 316

stopping 307

trivial stimulus 318

vs. directed 305

vs. random function 307

Random system configuration 287

Random verification 101–111

configuration 109, 290

constraints 107

coverage model 103

debug testcases 110, 291

directed testcases 109

generators 107

managing seeds 364

progress, measuring 101

system configuration 287

testbenches 105

Randomization
automation 4

Randsequence 322

generating variable-length 
sequences 324

limitations 326

Reconvergence model 4–5

Redundancy 7, 99

Reference model 297

vs. transfer function 300

Reference vs. instance 151

Regression
management 367

running 366

Regression testing
for reusable components 83

Reset
encapsulation 210

modeling 341

Response 197–277

verifying 86

Response monitor 246–256

autonomous 249

buffering 250

callback procedures 254

multiple transactions 255

response interface model 249

slave generator 253

timestamping 252

timing 252

transaction descriptor 256

vs generator 248

vs. bus-functional models 248

Response, verifying 216–221

inspecting response visually 217

inspecting waveforms visually 220

minimizing sampling 219

sampling output 217

Retried transactions 270

Reuse
and verification 18–20

bus-functional models 19

level of verification 80

salvaging 20

slave generators 254

trust 18

verification of components 82

Revision control 61–66

configuration management 63

working with releases 65

S

Scan-based testing 16

Scoreboading
associative arrays 144

Scoreboarding 300, 303
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encapsulation 302

interface 302

optimization 301

ordering 301

structure 301

SDF back-annotation 358

see also Self-checking
Self 292

Self-checking 221–227, 292–303

assertions 226, 293

behavioral checks 293

complexity 293

data tagging 295

datacom 295

failure modes 293

golden vectors 222

hard coded 294

input and output vectors 221

reference model 297

scoreboard structure 300

scoreboarding 300, 303

simple operations 224

test harness, integration with 302

transaction-level 302

transaction-level model 299

transfer function 299

Semaphore 184, 191

in bus-functional models 236

Semi-formal tools 60

Shallow compare 152

Shallow copy 152

Simulation
vs formal verification 60

Simulation cycle 163

advancing time 166

SystemVerilog 165

Simulation management 333–369

configuration management 355–363

output files 361

output files and seeds 365

pass or fail 352–355

regression 365–369

SDF back-annotation 358

seed and output files 365

seeds 364

Simulation time
vs. execution time 160

Simulators 29–37

acceleration 33

assertions 58

co-simulators 35

cycle-based simulation 33

event-driven simulation 31

single-kernel 37

stimulus and response 30

Slave generators 253

Sparse memory model 144

Specification assertions 58

Split transactions 267

Statement coverage 43

Static class members 148

Static variables
vs. automatic 193

Status of transactions 270

Stimulus 197–277

abstracting data generation 214

asynchronous interfaces 231

clocks 198–207

complex 227–233

deadlocks, avoiding 228

feedback from design 228

random 307–327

reference signals 198–212

simple 212–216

aligning waveforms 201

synchronous data 212

waveforms 199

Stimulus, directed 304–307

Stream generator 322

Struct 131–134

packed 132

vs. class 131

Symbol 271

Synchronous signal
sampling using clocking block 168

Synchronous signals
sampling in program threads 167

System
definition of 84

vs. block 84
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System configuration 287

System-level
transactions 327

System-level features 91

System-level testbench 327–330

System-level verification 84

T

Tagged union 135

randomizing 136

Task arguments 127

Test harness 280–284

encapsulation 281

Testbench
definition 1

system-level 327–330

Testbench configuration
configuration

testbench 288

Testbenches
random 105

stopping 106

verifying 99

Testbenches, architecting 279–330

Testbenches, self-checking 221–227, 
292–303

Testing
and verification 15–18

scan-based 16

Threads 161

execution order 162

module 163

program 163

Time
definition of 160

precision 166

resolution 199–200

Timescale 199–200

Timestamping transactions 252

Top-level environment 283

encapsulating in a class 285

Top-level module 281

Top-level program 283

Transaction
error injection 270

Transaction descriptor 256

error injection 270

Transaction-level interface 258–277

connecting transactors 310

constructor 261

creation 258

directed stimulus 304

mailboxes 260

procedural 304

procedural vs. dataflow 259

task-based 260

Transaction-level model 299, 333–352

characteristics 337

cost 348

example 335

good quality 342

reset 341

speed 347

vs. RTL model 334

Transactions
blocking 265

completion 264

completion status 270

definition 263

error injection 276

multiple possible 255

nonblocking 265

out-of-order 267

physical-level error injection 271

retries 270

split 267

status 265

system-level 327

variable length 263

Transfer function 299

vs. reference model 300

Transition coverage 53

Type I error 20

Type II error 20

U

Union 134–138

composition 137

inlining 136

packed 134

tagged 135

using 135
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vs. inheritance 138

Unit
definition 81

vs. block 82

Unit-level verification 81

V

Variables
automatic vs. static 193

Verification
ad-hoc 82

and design reuse 18–19

and testing 15–18

ASIC 84

black-box verification 11

block-level 82

board-level 85

checking result of transformation 4

core-level 82

cost 20

definition of 1

designing for 17

effort 2

FPGA 84

functional verification 10, 11–15

grey-box verification 14

importance of 2–4

improving accuracy of 7, 99

need for specifying 78

plan 77–111

purpose of 4

reusable components 82

strategies for 86–87

system-level verification 84

technologies 23–75

testbenches, verifying 99

types of mistakes 20

unit-level 81

vs. testing 15–18

white-box verification 13

with reconvergence model 4–5

Verification languages xx, 55–56

productivity cycle 56

vs. HDL xx

Verification plan
architecture-based features 89

block-level features 90

coverage-driven 101–111

definition of 79

design for verification 93

directed 96–100

testbenches 98

testcases 96

error types 91

function-based features 88

identifying features 87–92

interface-based features 88

levels of verification 80–86

prioritizing features 92

random
configuration 109

coverage model 103

debug testcases 110

directed testcases 109

generators 107

progress, measuring 101

termination conditions 106

testbenches 105

random-based 101–111

role of 78–80

schedule 80

strategies 86–87

success, definition of 79

system-level features 91

verifying testbenches 99

Verification reuse 19–20

Verification strategies 86–87

directed verification 96

random verification 101

verifying the response 86

Verification technologies 23–75

see also Assertions
see also Code coverage
see also Functional coverage
see also Intellectual property
see also Issue tracking
see also Linting
see also Metrics
see also Revision control
see also Simulators
see also Verification languages
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see also Waveform viewers
Verilog

vs. SystemVerilog xx

vs. VHDL xix

Verilog vs. VHDL xix

VHDL
vs. SystemVerilog xx

vs.Verilog xix

VHDL vs. Verilog xix

Virtual classes 156

Virtual interfaces
binding 129

Virtual methods 157

W

Waveform comparators 41

Waveform viewers 39–41

limitations of 40

White-box verification 13

Z

Zero-delay cycles 166


