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Preface

Every century bears its own name in History, characterizing its principal
achievement. We do not know yet what name our descendants will give to
the 20th century. It may be called the nuclear age, owing to the discovery
and application of nuclear power. Or, it may be called the age of space
flights, because man has overcome the Earth’s gravity to go into space and
has even visited the Moon. But there is another possible name which might
as well be given to the 20th century—the age of electronics! The time that
has elapsed since the invention of the radio is a period of major
achievements in solid state electronics which has filled up every “pore” of
our life. No progress would ever have been possible in nuclear technology,
space flights or other technologies without electronics. Electronics, in turn,
directly depends on high quality semiconductor materials. Nature has
supplied us with very few semiconductor substances, such as germanium,
silicon, selenium, and tellurium, whereas other commonly used materials of
the 111-V and 11-VI groups and more complex compounds (111,-VI3 and 11—
IV-VI) are man-made.

All semiconductor materials, both natural and synthesized, require much
effort for their production in a perfect (defect-free) crystalline state with a
negligible background of foreign impurities. Such impurities contaminate the
crystal in an uncontrollable or poorly controllable way. On the other hand,
all remarkable properties of semiconductors, that paved the way for modern
solid state electronics, are due not only to their purification but also to a
well-controlled doping dosage.

Today we have at our disposal a nearly complete list of impurities
suitable for doping basic semiconductors. This circumstance permits sys-
tematization of properties of various semiconductor—impurity systems in one
book. However, | did not intend to write a reference book, because fairly
complete and good reference books have already been published. A good
illustration is the world-known work Numerical Data and Functional Rela-
tionship in Science and Technology. New Series Ed. K. Hellwey and
O. Madelung. Berlin: Springer—Verlag, 1984. V. 17, pp. 652. No doubt it is
important to know the properties of a semiconductor doped with an impurity
in a definite concentration. For practical applications, it is more important,
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however, to know the techniques, procedures, and external effects which can
help us to control the distributions of impurity atoms over various crystal
positions. This control is the key to a wide controllable application of
impurities, whose potentialities are still far from being exhausted.

It was my primary aim to draw the attention of researchers and engineers
to impurities which have not yet found a wide application in semiconductor
technology: d-, f-, isovalent, and other types of impurities. | had another aim,
too. It seems important to me that the western reader should be introduced to
the research done in this area of physics by scientists in the former Soviet
Union. I hope this gap will be filled after the publication of this book.

The author’s philosophy will inevitably show itself in the material
presentation, and the reader may not agree with some of my judgments.
Besides, because of the extensive character of the problem, some of its
aspects have been left aside, for example, the interaction of impurities with
dislocations and stacking faults, or the state and behavior of adsorbed
impurities. | hope, however, that this book will appear useful even in its
present format. | would be very happy if it could eventually find its place
among the books by such outstanding researchers as F.A. Kroger of the
Philips Laboratory in Endhoven, R.A. Swalin of the University of Minne-
sota, A.G. Milnes of the Carnegie—Mellon University, or V.M. Glazov of the
Moscow Institute for Electronics Technology.

I would like to express my sincere gratitude to the many people who have
stimulated the evolution of my thinking as a scientist and, sometimes, as a
human being. Among them are the much Ilamented professors
R.N. Rubinshtein, D.N. Nasledov, and Yu.V. Shmartzev. My gratitude also
goes to my numerous colleagues who are presently working actively in
physics—professors  B.V. Tzarenkov, F.A. Gimelfarb, V.M. Koshkin,
D.G. Andrianov, M.G. Milvidsky, N.S. Rytova, S.V. Bulyarsky, P.M. Grin-
shtein, B.L. Oksengendler, and K.A. Kikoin.

I want to thank the translator of this book L.N. Smirnova, Ph.D., who has
brilliantly overcome numerous translation difficulties, and M.A. Smirnova
for the camera-ready preparation of the book.

Finally, I am very grateful to the Publisher for their effort in publishing
this book.
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Chapter 1

The Semiconductor—Impurity System

1.1 THE SEMICONDUCTOR CRYSTAL AS A
THERMODYNAMIC SYSTEM

A semiconductor crystal doped with impurities is usually regarded as a solid
solution, in which the semiconductor is the solvent and the ensemble of im-
purity atoms is the solute.

Sites and interstices in a crystal lattice serve as positions for various
structural units—atoms and vacancies. A chemical potential can be ascribed
only to these units.

A perfect crystal consists only of intrinsic (host) atoms and stoichiomet-
ric vacancies occupying intrinsic sites in the crystal lattice. Any deviation
from crystal perfection is known as a defect, and the process that has brought
it into life is termed defect formation. In the generally accepted classification
[1], impurities and vacancies are referred to as point defects. In this book, the
word “vacancy” will be used only for nonstoichiometric vacancies formed
after a host atom has left its site.

Normally, point defects are considered to be distributed between two
phases—the crystal and its ambient. The former is taken to be an entity,
without subdividing it into the variety of positions provided for impurity
atoms. This is because a common impurity can usually occupy only one kind
of position in a crystal lattice in a wide temperature range, irrespective of
other point defects, intrinsic or impurity-type. One exception is amphoteric
impurities, which can simultaneously occupy different positions in a lattice
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in commensurable concentrations. Such a crystal is then to be regarded as a
two-phase system—a site and an interstice, or a cation site and an anion site.
Therefore, a thermodynamic analysis should involve, at least, a three-phase
system.

It might seem strange, at first glance, to consider the subsystems of sites
and interstices as individual phases. But a phase is a homogeneous part of a
system having a common boundary with the other parts (phases) and ex-
changing particles with them. An exchange of particles between sites and
interstices gives rise to vacancies in the site subsystem and to intrinsic and
impurity interstitials in the interstitial subsystem. Each subsystem may be
regarded as an infinite cluster with a possible particle movement inside it [2].
Both subsystems can then be assumed to have a common boundary, which is
fractal rather than plane. In this model, the concept of phase is quite appli-
cable to the site and interstitial subsystems of a crystal, as well as to the
cation and anion sites in compounds of the A"'BY or A"B"" type.

Therefore, a semiconductor crystal is essentially a multiphase thermody-
namic system with an actual exchange of atoms, and this should not be ig-
nored in analyzing doping processes. Thermodynamically, a crystal is not a
strictly isolated system. Its individual parts interact with each other and with
the ambient. To begin with, it is necessary to distinguish between external
and internal interactions. External interactions provide the openness of a
thermodynamic system and can be classified into the following types [3]:

— mechanical interactions occurring under the action of external pressure
or force fields creating elastic strain in a crystal;

— thermal interactions resulting from energy exchange under the action
of a temperature gradient;

— exchange of atoms at the boundaries of phases and surfaces, between
parts of a crystal and other objects, often described by one word—*sink.”

Internal interactions, which change the free energy of a closed thermody-
namic system, will be discussed in Chapter 5.

Any interaction results in defect formation. This process, therefore,
represents an exchange of structural elements between individual crystal
phases and subsystems. These processes disclose the inner structure of the
thermodynamic system. The arrival of a host atom at the surface (Schottky
disordering) or at an interstice (Frenkel disordering) give rise to the same
type of defect—vacancy. However, the crystal free energy changes differ-
ently because of different final positions of the atom. For this reason, various
quasichemical reactions taking place in a crystal can be considered as pro-
cesses showing the system “from within.” These induce changes in the host
lattice and impurities; for example, an atom may change its position in the
lattice, moving from a site to an interstice, or producing a stable quasi-
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molecule (associate) with another point defect, etc. In any case, one can say
that one object has disappeared and another has appeared, because the
change of position, association, and similar transformations—all lead to
considerable changes in the object’s properties.

This kind of system is usually assumed in thermodynamic analyses to be
quasi-closed. But even a quasi-closed system is subject to the action of vari-
ous nonuniform force fields. There are energy and heat flows and numerous
chemical reactions occurring in it; besides, associates and precipitates are
formed and disintegrate. In other words, a crystal lives its own complicated
life due to external and internal interactions. Consequently, one should
choose with caution a physical model to describe this or that process and
must look critically at the assumptions on which one bases the model.

A crystal can be described in terms of thermodynamic statistics,
assuming that the system is in equilibrium if the temperature and pressure
have equalized and all kinetic processes have become steady-state. Under
these conditions, variations setting the system off balance obey the ine-
quality following from the Klausius inequality [4]:

dU + PdV - TdS > 0, (1.1.1)

where U is internal crystal energy, P is external pressure, and S is entropy.
There are no variations in internal energy or volume in an isolated system

dv=0 and du=0. (1.1.2)
It follows from (1.1.1) that

(dS), ¢ <O, (1.1.3)

which is equivalent to the following statement:

In equilibrium, entropy is maximum with respect to all variations, provided
that the volume and internal energy remain constant.

The conditions of constant entropy and volume (dS = 0, dV = 0) give

(du)g, >0, (1.1.4)

i.e., in equilibrium, the internal energy of an isolated system takes its maxi-
mum value.

Under the conditions of constant pressure and variations setting the sys-
tem off equilibrium, it is not the internal energy that must remain minimal
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but the sum of this energy and potential energy characterizing the relation to
external bodies, or enthalpy:

H=U+PV. (1.1.5)
From (1.1.5), we have
dU = dH — d(PV) = dH — PdV — VdP — dPdV. (1.1.6)
Substituting (1.1.6) into the Klausius inequality (1.1.1), we obtain
TdS — dH + VdP + dPdV < 0. (1.1.7)

A procedure similar to this one yields the equilibrium conditions at constant
pressure [3]:

(d8), p <0 (dH)g , >0. (1.1.8)

It is easy to show with (1.1.7) that at constant temperature and pressure,
Gibbs free energy must be minimal:

G=H-TS (1.1.9)

(dG); » >0. (1.1.10)

The system free energy rises. Therefore, Gibbs free energy is a minimum in
equilibrium, and any variation leads to its increase.

This provides us with a method of finding the concentration of point de-
fects—by minimizing crystal free energy. The respective procedures will be
discussed in Section 1.2.

In addition to the thermodynamic description, a doped crystal can be de-
scribed in terms of a kinetic model suggesting the study of the system transi-
tion from one state to another. Kinetic methods provide more information on
the system properties, since one can find kinetic coefficients characterizing
the probabilities of processes occurring in the system.

Of importance in both approaches is the possible establishment of ther-
modynamic equilibrium under the conditions of actual experimental obser-
vations of these processes. The thermodynamic method is inapplicable with-
out equilibrium conditions. Reliable information can be obtained from an
analysis of Kkinetic processes only if the initial and final states of the system
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are known exactly; but this, again, is possible only in equilibrium. This obvi-
ous fact has been emphasized in [3] because the duration of various pro-
cesses in a semiconductor crystal varies greatly with temperature. This
should be taken into account when choosing a model for the description of
such processes.

Since the rates of diffusion processes, which determine the moments of
time the equilibrium is established, increase exponentially with temperature,
equilibrium conditions are mostly applicable at high temperatures, close to
those of crystal growth. However, it is always necessary to define the
temperature range of equilibrium inside and outside the crystal.

Crystal doping with impurities is often carried out under conditions not
differing much from equilibrium conditions, at least, in thin crystal layers
adjacent to the ambient. The ambient will be assumed in our theoretical
analysis to be a gas or liquid phase, as is usually the case. Both are important
because they are widely used in semiconductor doping technologies.

The ambient equilibrium can be maintained if, due to diffusion or via
forced mixing, an impurity arrives at the interface, at least, at the same ve-
locity at which it enters the crystal. Forced mixing is used when a semicon-
ductor is doped during its pulling from a melt. The amount of impurity up-
take AC is small as compared with its total concentration C in the melt at the
growing crystal boundary. Therefore, the melt at the boundary can be consi-
dered to be in equilibrium conditions. Naturally, this is valid for impurities
with the distribution coefficient K << 1.

The ambient can also be suggested to be in equilibrium when a crystal is
doped in the gas (vapor) phase, because diffusion coefficients of impurity
atoms in the intrinsic or any other gas phase are always large, and at the
crystal interface we have AC << C. Deviations from the ambient equilibrium
are especially serious when one uses liquid phase epitaxy.

Denote the growth rate of an epitaxial layer as v and its thickness as L.
Then the value of AC/C is defined as [5]

1/2 1/2
£: 1+& erf _l £ + & exp _ﬁ , (111_‘]_)
C 2D 2\ D nD 4D

where D is the diffusion coefficient of the impurity in the ambient liquid
phase at growth temperature.

Calculations with (1.1.11) show that the necessary rates are v < 10~ cm/s
for the typical values of L = 10°-10%cm and D = 10°-10~* cm?s with
AC/C < 0.01. Since epitaxial growth rates for semiconductor layers are
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usually v = 10°-10"" cmV/s, liquid phase epitaxy during doping can also be
assumed to be in equilibrium.

It is necessary to bear in mind, however, that there are other doping
methods used in practice, which are characterized by a complete absence of
equilibrium at the interface, such as ion implantation, molecular beam epi-
taxy, ion—-molecular epitaxy, plasma sputtering, diffusion, etc. Here, the im-
purity concentration is determined by the process parameters and the energy
of doping atoms or ions.

The condition for the ambient—crystal equilibrium is characterized by the
equality of chemical potentials

1= W, (1.1.12)

where the indices | and s refer to the liquid (ambient) and solid (crystal)
phases, respectively.

If we assume that the impurity forms ideal solutions in both phases, the
chemical potential for the liquid and solid phases will be described as [6]

W=Wo +KTInC (1.1.13)
Us = Uso + KT In Cs + ;. (1.1.19)

The quantities C, and Cs are impurity concentrations in the respective phases:

where N; is the number of atoms of the i-th kind, N is the number of sites
they can occupy, while wp and s, independent of C, and Cs, are chemical
potentials of pure components which consist of one sort of atoms occupying
all appropriate sites, or Gibbs energy gip required for introducing a single
defect into a pure component.

Expression (1.1.14) includes chemical potential p, of electrons, which
reflects the fact that some of the impurity atoms introduced into a crystal
may be ionized.

It follows from (1.1.12) and (1.1.14) that in equilibrium

Mo "Hs0 o He | (1.1.15)

C.=Cex
sTHOP T KT

© 2004 by CRC PressLLC



The quantity u, can be identified with the Fermi level Eg [7]. It will be
counted off from the conduction band bottom E., taking E. = 0. Then, for the
donor and acceptor states of the impurity, we will have, respectively,

Me = Ec — EF = -Ep,
Ue=Er—E/ =Ef+E.-E/, —-Ec=Ej+Er (1.1.16)

One should keep in mind that Er < 0 and E4 > 0. The Fermi level position in
a crystal totally determines the concentration of free electrons and holes, re-
spectively:

n = N; exp (EF/KT), p=Nyexp[-(Eg+Ef)/KkT]. (1.1.17)

The opposite is also correct: a change in the free carrier concentration
will lead to a change of the Fermi level position. From (1.1.15), this must
lead to a change in the impurity solubility. Considering that Cs=N,=n=p
at high temperatures, we will have for donors

Co= CH2NY2 exp [(io — peo) / 2KT] (1.1.18)
and for acceptors
_ U212
Cs= Ci'“Ny “exp[(o— Mso) / 2KT] exp (Eq / 2KT). (12.1.19)

Therefore, the relation between Cg and C, is nonlinear because the chemical
potential of the crystal electronic subsystem is not constant.

The value of chemical potential can be varied, irrespective of the doping
impurity ionization. This can, in particular, be done by a simultaneous dop-
ing with two electrically active impurities or by generating intrinsic charged
point defects, etc. Hence, one can draw an important conclusion concerning
the possibility of controlling the Cs concentration by varying factors capable
of changing the chemical potential of the free carrier subsystem in a crystal.

On the other hand, it is clear from (1.1.15) that a linear experimental re-
lation is to be observed between Cs and C, at p, = const. This is possible in
three situations [5]:

(a) Cs < n;, where n; is an intrinsic concentration of charge carriers, de-
termined by interband electron transitions, rather than by impurity ioni-
zation;
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(b) Cs < Ng, = const, where Ng, is the concentration of other electrically
active donors and acceptors which determine the value of E, i.e., [e;
(c) EF = 1e = const at x = 0, where x is the crystal-ambient interface s—I.

The case (a) is typical of a slightly doped or compensated semiconductor.

The case (b) is rather trivial and, indeed, occurs quite often, especially
when Ng, is determined by shallow hydrogen-like impurities and Cs is a
deep impurity.

The case (c) is often misinterpreted as relating to an equilibrium between
a liquid ambient and a sample surface, rather than to a liquid ambient con-
taining a sample bulk. Nevertheless, it does reflect the equality of chemical
potentials in the contacting phases, creating no energy barrier to electrons at
the interface. Let us discuss this case in more detail.

As an illustration, consider the contact between a crystal and a liquid
phase, assuming it to be purely metallic. There is no doubt that this is valid
for liquid phase epitaxy, since epitaxial films are grown from a metal melt
containing the necessary non-metal components as dissolved admixtures. For
example, A"'BY films (GaAs, GaP, GaSb) are usually grown from a Ga melt
while InP and InSb are from an In melt.

In the Chokhralski or zone melting techniques, the liquid phase is repre-
sented by a semiconductor substance with dopants. A complete metallization
of chemical bonding occurs during the melting of most semiconductor
materials [8], and so the liquid phase can be treated as being metallic.

Therefore, the s—I interface can be considered as the interface between a
semiconductor and a metal, or as a Schottky barrier. This approach was first
suggested in [5] and later developed by the authors of [9-11].

It is quite clear that if impurity atoms diffuse quickly through the s-phase,
i.e., if they swiftly pass through the region of space charge W in the Schottky
barrier, an equilibrium will be established between the liquid phase and the
whole semiconductor bulk. This ordinary bulk equilibrium is established
under the condition

v=Ds/W, (1.1.20)

where v is the growth rate of the solid phase and Dy is the impurity diffusion
coefficient in the solid phase at the growth temperature.

Here again, L is independent of C,, and the function C¢(C,”“) remains
valid. But if the doping impurity diffuses slowly, or the solid phase grows
quickly, so that

1/2
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v>>Dg/ W, (1.1.21)

the impurity appears to be frozen at the interface, and the equilibrium is es-
tablished only between the liquid phase and the crystal surface. The impurity
concentration in a crystal grown under “surface” equilibrium conditions will
exceed that in an ordinary bulk equilibrium.

An energy barrier @y arises at a metal-semiconductor interface under
equilibrium conditions because of equal electron chemical potentials in both
phases [12]. So we have at the interface

e = Er = Eq — e, (1.1.22)

and, since Eg and ¢y are independent of the doping impurity concentration
Cs, we obtain with (1.1.15)

Kio —Hso + Eg ey
C. =C,exp| ——————= |exp| — |, 1.1.23
s I P{ KT :| p[ KT ( )

which is a linear relation between Cs and C,, rather than the square root of
(1.1.18) and (1.1.19). This is the criterion for an experimental differentiation
between bulk and surface equilibrium conditions.

It is easy to show that this conclusion holds for imperfect impurity solu-

tions in both contacting phases, whereas the temperature dependence Cs(T)
proves to be more complicated.

1.2 THERMODYNAMIC DESCRIPTIONS OF
IMPURITY SOLUBILITY

There are three approaches to the calculation of point defect concentrations
and the parameters that determine them. One is to solve a quantum mecha-
nics problem for the lattice containing a point defect. The problem solution
is aimed at finding the energy parameters which characterize the formation
of this defect. This method has not yet provided satisfactory results. Only
approximate solutions have been suggested based on semi-classical and
classical conceptions. However, this approach permits evaluation of some
thermodynamic parameters (dissolution enthalpy and entropy of point
defects) “from the first principles”, so it deserves a special consideration (see
Chapter 4).
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The other two approaches are based on phenomenological parameters
derived from a comparison of theoretical formulas and experimental data.
One of them was suggested by Brouwer [13] and described in detail by
Kroger [14]. It uses the mass action law and considers defect interactions as
quasi-chemical reactions. To understand the principle of this approach, let us
represent the interaction between, say, an atom A and an atom B as a
reaction producing the product AB:

A+B ” AB. (1.2.1)

The equilibrium constant K for this reaction is defined from the mass
action law as

K = [AB]/[A] [B], (1.2.2)

where the symbol [ ] stands for concentration.
The value of K is determined by enthalpy H of the reaction (1.2.1) under
standard conditions:

K =K%exp (H/RT), (1.2.3)
where K is an entropy factor.

On the other hand, when describing the equilibrium of reaction (1.2.1),
we should bear in mind the equality of chemical potentials, following from
the additivity principle:

Ua + Ug = Uag. (1.2.4)

Suppose that p can be found from (1.1.13); then from (1.2.2), we have

0 40 _ 0
[AB] — NLEXp _ Oa8 —9a — 08 , (1_2.5)
[Al[B] RT
which coincides with (1.2.3), if we put
Oae —9a—0a=H’. (1.2.6)

The other approach to a thermodynamic description of impurity solubility
is based on the notion that condition (1.1.12) corresponds to the free energy
minimum of a crystal-ambient system. In the description of the @ function,
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which allows this energy minimum to be found, we use the same denotations
for Gibbs partial energy as in (1.1.13) and (1.1.4) for a single doping defect
(the denotations were first introduced in [15] and employed in our work [3]):

Wio = io = g6 —HE -TShr. (1.2.7)

Here, T is temperature expressed in energy units, the superscript B indicates
the defect position in a crystal lattice (site or interstice), and the subscript o
stands for the defect type (impurity atom, vacancy, antistructural defect,
etc.).

The quantities H? and S, in (1.2.7) represent, respectively, the en-
thalpy of the defect formation and the heat component of entropy, taking into
account the change in the crystal phonon spectrum due to the formation of a
single defect.

Following the work [15], denote the energy of an electron transfer to the
defect (or its escape from it) as €f . Then the energy due to the defect ioni-

zation will be equal to the product of €/ and the concentration of electron-
free acceptors (N, — n.?), or to the product of € and the number of

occupied donors n.?. This is the case for n-type crystals, while for p-type
crystals, the relation will be inverse. The relation inversion in the expres-
sions given below is taken into account by the factor d,,” taken to be equal to
1 for donors and to O for acceptors.

The @ function, which allows finding an arbitrary minimum, is [3]:

D =G +3 A0y + X W0P + A0, , (1.2.8)
a B

where G is Gibbs free energy for a crystal with a defect; Ao, A® and A, are
Lagrange indeterminate factors minimizing the @ function.
The expressions for ¢ are

@u =Ny —XNE=0, (1.2.9)
B

P =NP-F N§ =0, (1.2.10)
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where 8¢ is Cronecker’s symbol. It was shown in [3] that A, = Ue and A, =
1., whereas AP could be excluded from consideration by selecting the energy
reference.

Thus, the final expression for the defect concentration is

NE = NSAB+BE), (1.2.12)

where AP and BP represent the reduced functions

AL =R ool i -y v of - b+ et )atl-at)} - @2y

BP = ;—%exp{% [— e +eb+ (1— ngEg —2¢P )Il— P )} : (1.2.14)

where Eq is the forbidden gap width of a semiconductor and the quantities
r® and R are degeneration factors for the filled and unfilled electronic
states of the defect, respectively.

We should add to (1.2.12) an expression for electron concentration

ng = NFADBS . (1.2.15)

The greatest difficulty of this thermodynamic treatment is associated with
imperfection of the impurity solution and solutions of other point defects in
the solid phase. The liquid (ambient) phase is also imperfect. Even the gas
phase often contains multiatomic groups, with the atoms interacting with one
another, so that the phase is far from being perfect.

For these cases, the expressions for partial chemical potentials are not as
simple as (1.1.14), and the additivity of chemical potentials proves invalid
for the crystal as a whole:

Ms zzuis- (1.2.16)
i

There have been attempts, made in terms of general thermodynamics, to
bypass this difficulty by replacing concentrations or mole fractions x by ac-
tivities a:

© 2004 by CRC PressLLC



a=fx, (1.2.17)

where f is an activity coefficient which is, in turn, a function of composition.
So, instead of (1.1.13), we have for the liquid phase

o =ud +RTIna,, (1.2.18)

where p%, is the chemical potential in a pure component melt. In other

words, the expression for a partial chemical potential also has a simple form,
while the activity coefficient now has a complicated concentration depen-
dence.

Activity is a parameter taking into account the concentration and interac-
tion of any crystal component with other components. Relation (1.2.18)
holds true not only for a one-component but also for a multicomponent melt.
In particular, if the liquid phase represents an aff compound melt, the
chemical potential p g, will be equal to the sum of the chemical potentials

of all constituents:
—0 0 _,0 0
Wapl =Wq +RT Ina, +up +RT Inag =p,, +ug +RT Ina,ag

(1.2.19)
=H?XB| + RT In aaﬁ.

The expression

a
Mo —Mp+0f—gg =kTIn-S+gf-gp  (1220)
B

will be substituted into (1.2.13) to obtain the crystal chemical potential,
taking the energy of a perfect defect-free crystal as the reference for all
energies:

0 INE TS
o _0G° _ [Eg“ * }
Has Z9N,, N,

=g%=0. (1.2.21)

Instead of (1.2.13), we will have
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AP — Rga_aexp{i[_gg +(n, _eg)dg(l_ag)]}. (1222)
ag kT

This expression enters (1.2.12) and (1.2.15), relating the concentrations
of any kinds of defect, including soluble impurities, to their activities. The
latter represent the ratio of the gas pressure above the crystal melt to that
above the pure component at the same temperature [14]:

(1.2.23)

The activity can also be found from experimental liquidus curves, where
the concentrations are defined as

Hefl 1
R\ T)
where H¢ and T; are the melting heat and temperature, and the activity is de-
scribed as [14]

lha=nfx=tfL1_1) (1.2.24)
RIT T

In other words, the activity can be found from an analysis of the phase dia-
gram and thermodynamic quantities—the melting or dissolution heat.

Finally, for some A"'BY semiconductors containing impurity C, the inter-
action parameters Qac, Qpc, and Qap are known. Then, the activity of an
impurity (defect) can be calculated from [17]

RT In YC = QACX£ +QBCX§ +(QAC +QBC _QAB)XAXB . (1225)

Another attempt [14] to allow for the deviation from solution perfection
was to introduce what is known as excessive thermodynamic functions
AG®C, AS®C, and AH®“ equal to the difference between their actual values
and those for an ideal solution:

AG ¥ = AG ™ — AG™, (1.2.26)
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AS &€ = AG™X _ AsidmiX, (1.2.27)
AH € = AH ™ _ AH,,™* (1.2.28)

where AG™, AS™ and AH™ are the mixing energy, entropy, and enthal-
py, respectively.

It is quite obvious that both descriptions of solution deviation from per-
fection must be equivalent to each other; therefore, the excessive functions
and activity coefficients must be interrelated. Both descriptions—the one
with activity coefficients and the other with excessive thermodynamic func-
tions—are more or less suitable only at their small values, i.e., at

f<< 17 AGexc << AG mix’
' ' (1.2.29)
AS®C << AS m|><, AH &€ << AH MiX.

Let us compare these phenomenological methods.

The method of quasi-chemical reactions is not flexible enough. If an ad-
ditional type of defect is introduced into the problem, the number of quasi-
chemical reactions is to be increased. One is faced with this situation when
treating amphoteric impurity solubility in real crystals. In addition to doping
impurity atoms, a semiconductor crystal contains foreign impurities, vacan-
cies, intrinsic interstices, gas admixtures, associate defects of the impurity—
vacancy type, etc. Moreover, many of these defects may be in both neutral
and ionized states.

Concentrations of all defects are interrelated. Therefore, the concentra-
tion of each defect type, including the sought for Cg, can be expressed as a
combination of partial K values characterizing individual quasi-chemical
reactions. But the main difficulty in using this method is the lack of know-
ledge about H;, i.e., the partial enthalpies of quasi-chemical reactions. A ge-
neral disadvantage of this method is that it neglects practically all types of
interaction among defects.

The method of free energy minimization is free from these flaws. On the
other hand, one must know the semiconductor—impurity solid solution
model, which is unnecessary in the quasi-chemical approach. However, most
semiconductor solid solutions are regular, or even perfect. For this reason,
the application of the minimization method to calculations of soluble
impurity concentrations seems preferable, although involving more cumber-
some procedures.
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The first general model, based on Gibbs free energy minimization and
designed for the calculation of defect formation, was suggested by Vinetzky
and Kholodar [18] and developed by Bulyarsky and Oleinikov [15, 16].

Following this method closely, we have derived [3] formulas relating
crystal growth conditions to several physical quantities—concentrations of
various defects, high temperature concentrations of free carriers, the homo-
geneity region width, and impurity distribution coefficients. This approach
allows one to invoke a greater variety of experimental data, thereby con-
structing more sophisticated and realistic models. In Section 5.7, we will il-
lustrate the general solution to this problem for a regular semiconductor—im-
purity solution, taking into account all possible interactions of impurity
atoms with one another and with other point defects.

The two methods of thermodynamic description discussed above require
a knowledge of the thermodynamic behavior of charge carriers. In the first
model, it is described in terms of quasi-chemical ionization reactions of de-
fects (impurities):

[PP20T+n,  [12[T+p (1.2.30)

where [ ] stands for defect concentration.

In the other model, the carrier thermodynamics is defined by the Fermi
level position in the crystal band structure. The electron-hole subsystem of a
crystal is related to its atom—defect subsystem. In other words, the concentra-
tions of charge carriers and those of charged point defects are interrelated.
Since the crystal as a whole is electrically neutral, this relationship is written
as a neutrality condition (equation):

n+3[ ] =p+3l . 1231

where k and q are the number of acceptor and donor defects, respectively.
The concentrations of charged defects are, in turn, related to total concen-
trations

[1=[1°+[T (1.2.32)

via the quasi-chemical reactions of (1.2.30). Here, a plus superscript refers to
a donor defect and a minus one to an acceptor defect.

Thus, the solution of the neutrality equation (1.2.31) is an integral part of
a thermodynamic treatment of solubility of any impurity.

© 2004 by CRC PressLLC



1.3 GENERAL CHARACTERISTICS OF IMPURITY
CENTERS

There are two general concepts used to describe an impurity center in a
crystal—its state and behavior.

In the generally accepted terminology [19], an impurity state is under-
stood as the electronic structure of a center, its charge states, positions and
local symmetry in the host crystal lattice. The word “behavior” covers the
energy spectrum, the capture cross sections for charge carriers and photons,
the degeneracy factor, and some other parameters of the center, which
describe typical features of the system of interest. From here follow
quantitative physicochemical characteristics of impurity centers. Of primary
importance is their solubility, i.e., the equilibrium concentration of impurity
atoms in a particular crystal at a definite temperature and pressure. The
temperature and pressure dependences of solubility are represented as P-T—x
diagrams, where P is pressure above the solution, T is temperature, and x is
composition expressed as mole fraction or impurity concentration. It is
difficult to present a three-dimensional diagram. Moreover, one of the
experimental parameters, either P or T, is maintained constant, reducing the
diagram to the functions X(T)p=const OF X(P)1=const- The X(T) and xs(T) functions
represent liquidus and solidus curves, i.e., solubilities in liquid and solid
semiconductor—impurity solutions.

Naturally, dissolution enthalpy and entropy are also physicochemical
characteristics. The former defines the energy required for the dissolution of
impurity atoms and the latter characterizes the degree of ordering of a semi-
conductor—impurity solution.

A parameter important for semiconductor technology is

K = (EJ (13.1)
X =1,

measured at melting temperature. It is known as an equilibrium distribution
coefficient of an impurity in a particular semiconductor. In real conditions,
this ratio is measured at other temperatures, rather than at T = T,,. Thus the
distribution coefficient K* differs from K and appears dependent on the
growth rate of a doped semiconductor sample, on the mixing rate during the
growth from the melt, and on the presence of other point defects because
they interact in the liquid and solid phases. The parameter K™ is termed an
effective distribution coefficient of an impurity.
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Among other physicochemical parameters are the activity a and the ac-
tivity coefficient f for the solid and liquid phases mentioned above, which
describe the degree of deviation from crystal perfection.

Energy characteristics include ionization energies of impurity atoms in a
crystal, i.e., the energy levels contributed by impurity atoms to the crystal
spectrum. More than one level may be associated with an impurity center,
which means that impurity centers may be electrically neutral or singly and
multiply charged.

Besides, there is the electron affinity of impurity atoms, E;. Qualitatively,
ionization and electron affinity largely define the donor or acceptor nature of
impurities. Calculation of E; and E; requires the choice of reference. This is
usually the allowed band edge E. or E,, but sometimes it is more convenient
to take Eg4/2 = 0 or the Fermi level position E¢ = 0 as a reference point.

The next important energy characteristic is the cross section of non-equi-
librium carrier capture by an impurity center—for electrons 6, and for do-
nors c,. This parameter describes the kinetics of charge carriers, i.e., their
recombination by impurities. The quantitative parameters of impurity re-
combination are the lifetimes 1, and T, of a doped semiconductor.

The energy characteristics of impurity centers manifest themselves in
many properties of semiconductors under the action of external factors. For
example, light irradiation can provide partial coefficients of light absorption
and reflection by “impurity centers” and “free carriers” [21], hydrostatic
compression leads to splitting of impurities initially present in a crystal,
thereby increasing the content of active doping impurity atoms [22], etc.

Kinetic characteristics are used to describe migration of impurity atoms
in the semiconductor bulk and on its surface. A macroscopic parameter is the
diffusion coefficient D. Since it is generally defined as [23]

D = Dg exp (- En / KT), (1.3.2)

the activation energy for diffusion E,, and the entropy factor D, should also
be referred to the kinetic characteristics of impurity centers.

It is important to classify impurity centers, but it would be incorrect to
base this classification on any one characteristic. There are three criteria ge-
nerally accepted for this purpose. Impurity centers are classified by the type
of crystallochemical position, by the nature of chemical bonding of an impu-
rity atom to host atoms, and by the building-in pattern of impurity levels in
the semiconductor energy spectrum. These criteria, denoted I, 11, and Il in
Table 1.1, permit the identification of three types of impurity centers.
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Table 1.1 Classification of impurity centers in semiconductors.

1. site 1. hydrogen-like 1. shallow
(substitution) 2. with partly filled 2. deep
2. interstitial electron shells 3. resonance
3. antistructural 3. amphoteric 4. antiresonance
4. isovalent

5. gas-generating

The nature of impurities in group | is clear from their names. Those in
group 11 will be described in the next chapter. Here, we will discuss briefly
only the impurities of group I11.

Shallow impurities are those introducing their energy levels into the
semiconductor forbidden gap in the immediate vicinity of the allowed band
edges E. and E,.

Deep impurities are, on the contrary, those having their energy levels far
from E; and E,, deep into the forbidden gap. This classification does not
draw a sharp energy line between shallow and deep levels. It is generally
accepted that the ionization energy E; of shallow impurities does not exceed
(0.05-0.07)Ey. Impurities with larger E; refer to deep impurities. The arbitra-
ry character of this subdivision will be shown in Section 2.1.

The above classification differentiates between resonance and antireso-
nance levels, depending on their position in the conduction or valence bands,
respectively. Hjalmarson and co-workers [24] have shown that they
represent intrinsic binding (antibinding) impurity states, as distinguished
from impurities, whose binding (antibinding) states produced by hybridi-
zation of impurity s-electrons with host p-electrons are made up of Bloch
functions of the crystal atoms. Deep impurities are formed in the latter
situation. The formation of impurities listed in Table 1.1 will be discussed in
Section 2.2.
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Chapter 2

Impurity Behavior in Semiconductors

2.1 HYDROGEN-LIKE IMPURITIES

The hydrogen-like behavior of some impurities follows from a simple
mechanism for impurity atoms which form a substitutional solution with a
semiconductor crystal. The valences of a substituting atom and a substituted
atom differ by +1. For germanium and silicon, these are group-1Il and
group-V impurity atoms (Figure 2.1). In this case, four outer valent electrons
of a host atom are replaced by four valent electrons of an impurity atom.
Likewise, hydrogen-like impurities for A"'BY compounds are group-I1 atoms
(acceptors), which replace A'"'-sublattice atoms, and group-VI atoms (do-
nors), which replace BY-sublattice atoms.

It is generally believed that the basic theory of hydrogen-like impurity
states (which normally produce shallow levels in semiconductors) was com-
pleted about 40 years ago. This was mostly done by Cohn and Lattinger [1,
2] who used the effective mass (EM) method. They showed that the concept
of effective mass characterizing the dispersion law of charge carriers in a
forbidden gap is also valid for the description of electron states in a non-
periodic force field created by various crystal defects, including impurity
centers. On two general assumptions—(1) a slow variation in defect potential
perturbing the crystal periodic potential and (2) a lower carrier binding
energy (ionization energy) than the forbidden gap width, E; << Eg, i.e., the
problem of finding the impurity energy spectrum and the respective wave
functions reduces to a one-electron problem described by the equation
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Figure 2.1. Schematic diagram illustrating the formation of donors and acceptors in a
doped covalent crystal: (a) — no impurity; (b) —with a donor; (c) — with an acceptor.

|22y (r)F(r) = EF ), @11

where F(F) is what is known as a peak function related to the sought for
wave function W(F) as W(F)= F(F)U, o(F). Here, U,o(F) is the norma-

lized Bloch function near the conduction band extremum with k = 0.
The condition for a slow variation of impurity potential can be written as

ao =|VV|/V|<<1, 2.1.2)

where ay is the lattice period.
If we represent the potential energy V(f) of a charge carrier localized in

the impurity center field as Coulomb interaction energy, taking into account
the crystal static permittivity V(r) = — e%/Kr, equation (2.1.1) will transform
to the wave equation for a hydrogen atom. Its solutions are

E =—Ry*/n?, (2.1.3)

where Ry" is the ground energy of an impurity in the hydrogen-like approxi-
mation (the effective Rydberger is Ry* = e*m/2K%h? n=1,2, o)
The peak function for the ground state is

F(F)= Wexp(—é), (2.1.4)
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where the orbit radius of an impurity electron is a = h?K / me?, with the value
of a much larger than the lattice constant.

These simple relations for the energy and characteristic size of the wave
function have been derived on the assumption of an isotropic dispersion E(k)
which is valid for many A"BY and A"B"' compounds, with the absolute
conduction band maximum lying at the Brillouin zone center at k = 0.

The data presented in Table 2.1 were borrowed from [2] to demonstrate
that a simple modification of the EM method describes quite satisfactorily
experimental results for shallow donors in some crystals. Especially good is
the agreement for excited impurity states.

For elemental germanium and silicon crystals having a complex conduc-
tion band structure, the ionization energies of the 1s-levels* of group-V do-
nors calculated from (2.1.3) differ considerably from the experimental va-
lues. Nevertheless, the comparison of theoretical and experimental results
shows that a simple EM method provides a correct order of magnitude for
the energy of the ground s-type impurity state and that the ionization energy
values for excited p-states of hydrogen-like centers are quite close to the ex-
perimental values. For direct band semiconductors of the GaAs type, the
ionization energies of group-VI and group-IV donors are close to one
another (see Table 2.1), showing only a 10% difference from the calcu-
lations.

However, the effective mass method failed to account for the dependence
of the ground state energy on the doping impurity chemistry. For example,
the differences in E; values for group-V donors in germanium and silicon are
as large as 30% and 100%, respectively. This method is also entirely unsuit-
able for the description of energy spectra of isoelectron and deep impurity
centers.

The EM method has been considerably improved over the time that has
passed since the publications of Cohn and Lattinger. These improvements
have been due to the following findings. The impurity potential in the vicini-
ty of a defect was refined [3-5], and the spatial variation of dielectric
screening of the impurity field, K(r), essential in the vicinity of an impurity
center, was taken into account [5-8]. Besides, the theory considered the real
band structure having both equivalent and additional extrema in the conduc-
tion band [9-12].

It should be noted that most authors made their calculations taking ac-
count of one factor only, while other important aspects of the problem were
left aside. This, certainly, reduced the applicability of theoretical results, in-
dicating, on the other hand, the complexity of the problem.

! Similarity in the energy spectra of shallow impurities and hydrogen atoms is reflected, in
particular, in the designation of the ground and excited states: 1s, 2s, 2p, etc.
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Table 2.1. lonization energy of shallow impurities in some semiconductors.

Substance K m/mq Eis, MeV Ezp, MeV

Theory Experiment Theory

GaAs 12.53 0.066 5.67 6.08 (Ge)! 1.422

5.81 (Si)

5.89 (Se)

6.1(S)

5.87 (Sn)
InP 12.60 0.080 6.80 7.28 1.70
CdTe 10.00 0.96 12.96 13.78 3.24
CdSe 9.00 0.110 18.33 - -

! Bracketed are doping impurities for GaAs.
% The experimental value for GaAs is Ep, = 1.44.

A detailed analysis of all refinements introduced in the EM method can
be found in [2-13]. So we will present only some results reflecting the
progress of this method in the calculation of energy spectra of shallow local
states, as was done in our work [14]. This problem can be best illustrated
with reference to elemental germanium and silicon, since their shallow donor
and acceptor spectra have been studied most thoroughly.

The effective mass of electrons in both semiconductors is anisotropic, the
absolute minima are aligned with the [111]-axis for germanium and the
[100]-axis for silicon, and the iso-energy surfaces represent ellipsoids of
revolution described by the known values of longitudinal and transverse ef-
fective masses. The number of equivalent ellipsoids N is prescribed by the
cubic crystal symmetry and is equal to 4 and 6 for germanium and silicon,
respectively; as a result, the local states appear to be N-fold degenerate. For
this case, the wave function of an impurity electron is

¥(r)= Sa, Fi(F)u;(F), (2.1.5)

j=

where factors a; are determined by the impurity state symmetry.

It is essential that the deviation of the impurity potential from the Cou-
lomb potential in the immediate vicinity of a center leads to impurity state
splitting, whose nature can be identified from the symmetry considerations
alone. For example, the ground 6-fold degenerate donor state in silicon splits
into a singlet (A,), a triplet T,, and a doublet E state; this splitting is
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Figure 2.2. Schematic splitting of the ground donor state in silicon. Numbers in bra-
ckets indicate the degeneracy multiplicity of energy levels with spin degeneracy not
taken into acccount.

illustrated in Figure 2.2. The ground state of a donor in germanium splits into
two states—a singlet and a triplet.

Baldereschi [10] has demonstrated the necessity to make allowance for so
called intervalley mixing, or intervalley interaction, leading to splitting. He
took into account the wave vector dependence of dielectric permittivity,
which becomes appreciable at its large values. His calculations and available
experimental data for germanium and silicon are given in Table 2.2. The
energy spectra of excited 2s, 2p, 3s, etc., donor states in germanium and sili-
con have been calculated by Faulkner [15], who used the variational method
taking account of effective mass anisotropy. These results are presented in
Figures 2.3 and 2.4. One can see that the effective mass method satisfactorily
describes the spectrum of excited p-states of donors, in contrast with the

Table 2.2. Binding energy of splitted levels of the donor ground 1s-state in germa-
nium and silicon, meV [7].

Donor Ge Si
A T, A T, E
- 9.81" 9.21" 31.27" 20.67" 19.57
P 12.90 9.90 45.50 33.90 32.60
As 14.17 10.0 57.70 32.60 31.20
Sh 10.32 10.0 42.70 32.90 30.60

* Calculations.
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Figure 2.4. The energy spectrum of donors in silicon [15].

ground state. Indeed, the effect of impurity short-range potential is small,
and the wave functions of p-states vanish in the immediate vicinity of an
impurity due to the state symmetry. The agreement between the calculations
and experimental values for excited levels proved to be so good that the
author [15] was even able to refine the dielectric permittivity values for
germanium and silicon at low temperatures.
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Figure 2.5. The spectrum of excited states of acceptor impurities in germanium (a)
and silicon (b) [2].

The agreement between the experimental and theoretical values for the
excited acceptor levels in germanium and silicon was also as good. Without
going into details of the theoretical model used, we illustrate in Figure 2.5
the calculated spectra of group-lll excited acceptor states, borrowed from
[2], together with available experimental data.

As for the ground state energy of impurity centers, the agreement
between calculated and experimental values leaves much to be desired. To
describe the extent of disagreement, one often uses the value of “chemical
shift” A = Ej — E1, where Ej is the binding energy calculated from (2.1.3) with
n = 1. The chemical shift is primarily due to intervalley interaction and, of
course, with the potential (electronic structure) of the impurity center. An
important correction to the EM method is that the polarization of the medium
in the vicinity of an impurity ion cannot be described by a macroscopic
dielectric constant. Indeed, the allowance for spatial dispersion K(r) changes
radically the impurity effective potential at the central site.

Experimental energy levels of hydrogen-like impurities in A" and A"'BY
semiconductors are summarized in Tables 2.3-2.5; their solubility data will
be discussed in Chapter 3.
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Table 2.3. lonization energies E; (meV) of group-111 acceptors and group-V donors in
germanium (E; values are counted from E, for acceptors and from E, for
donors).

Impurity Acceptors Donors

B Al Ga In TI P As Sh Bi

E; (OM) 1057 10.90 11.07 11.74 1310 1276 1404 10.19 12.68
Ei (EM) 104 102 108 112 - 120 127 96 115

OM - optical measurement, EM — electrical measurement.

Table 2.4. lonization energies E; (meV) of group-111 acceptors and group-V donors in
silicon. (E; values are counted from E, for acceptors and from E. for

donors).
Impurity Acceptors Donors
B Al Ga In TI P As Sb Bi
E; (OM) 443 684 723 1554 - 453 53 43 70

E,(EM) 46 57 65 160 200 44 49 39 69

OM - optical measurement, EM — electrical measurement.

The reader may find it surprising that we have given no summary table
for A"BY' semiconductors, but this is due to some specific properties of these
crystals. First, the band structure of these semiconductors consists of several
valence bands, holes in the lower sub-band having a much lower mobility
than in the upper sub-band. So hole transition to the sub-band with a lower
mobility increases appreciably the Hall coefficient, e.g., PbTe shows this
effect at a temperature above 150 K. Due to this effect, it is practically
impossible to identify shallow acceptor levels in p-type crystals even if they
are introduced deliberately. Second, the high values of static dielectric
permittivity and the small effective masses of electrons (~107mo) lead to
very low values of impurity levels in n-type crystals. These levels are so
shallow that they become completely ionized even at helium temperatures
and merge with the allowed band to form a common band.

Nevertheless, there have been some reports on impurity levels in A"B"'
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Table 2.5. lonization energies E; (meV) of group-11 acceptors and group-V1 donors in
A"BY semiconductors. (E; values are counted from E, for acceptors and
from E, for donors).

Acceptors Donors

Semiconductors Zn Cd S Se Te
GaP 70.1 102.5 107 102 92.6

GaAs 24...31 21...30 5.84 5.81 3

GaSb 37 - - - -

InP 4 5 - - -

InAs - 11 - - -

InSh 75 75 250 150 50

The GaSb conduction band has three minima: the major I"-minimum and two minor
X- and L-minima at different points of the Brillouin zone; S, Se, and Te impurity
atoms form very shallow levels within Eqr — 30 meV, the atomic sequence
indicating the decreasing depth. As for the minor minima, the atomic sequence is
reverse, but the ionization energy lies about 300 times deeper.

semiconductors. If they are found to be shallow, their hydrogen-like nature
should be questioned.

2.2 IMPURITIES WITH PARTLY FILLED ELECTRON
SHELLS (d- AND f-IMPURITIES)

It has been shown experimentally [14] that transition metal atoms dissolve at
interstices of germanium and silicon crystal lattices and do not interact
chemically, in the strict sense of this word, with host atoms. In other words,
d-electrons do not mix with electrons of germanium and silicon host atoms.
In A"BY and A"B"! semiconductors, they, on the contrary, produce substitu-
tional solutions and form chemical bonds. This means that d-electrons usu-
ally hydridize with s- and p-electrons of the A-sublattice atoms. For this rea-
son, impurity transition metal atoms, which are in an un-ionized state in a
semiconductor, are capable, owing to their electrical activity, to give off their
d-electrons to the conduction band, say, under the action of light:

A%+ hmg — AT +e, (2.2.1)
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Figure 2.6. Optical transitions in the ionization of donor (D) and acceptor (A) states;
transitions with excited donor (8) and acceptor (o) excitons of amphoteric 3d-
impurity atoms.

These atoms, however, are also capable of capturing host valent electrons
onto the d-orbitals to produce holes in the valence band:

A%+ o, 5> A +py. (2.2.2)

These transitions are indicated by arrows in Figure 2.6. The d-shell con-
figuration changes during the transition, which means that the electron
population of the shell changes. What one sees in Figure 2.6 are known as
Allen diagrams.

The initial configuration of a d-atom is determined by its crystallochemi-
cal state. This depends on the crystal type and the position of the impurity d-
atom in the crystal lattice. The rules for the change in the d-atom electronic
configuration in a semiconductor crystal are described by a model suggested
by Ludwig and Woodbury [18], who originally based it on experimental
data. Later, the model was substantiated theoretically by Roitzin and
Firshtein [19]. So we will use the abbreviation RFLW for it, as was
suggested in [14].

When applied to silicon, this model assumes that in the substitution of a
crystal lattice site, 4s-electrons and some of the missing (up to 4) 3d-
electrons of a d-atom produce bonds with the nearest four silicon atoms. If a
d-atom occupies an interstice, its 4s-electrons are repelled by the electrons of
the nearest silicon atoms (ligands) and fill the d-shell. Therefore, 4-valent
silicon and germanium crystals exhibit the following electronic restructuring
of the d-atom:

3d™™ (site)
3d"4s™
(free atom) (2.2.3)

3d™™ (interstice).
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Many experimental data [14] have supported the applicability of this model
to binary A"'BY and A"B"' semiconductors as well. The general result of the
RFLW model can be represented schematically:

. 3d ™" (site)
3d"4s
(free atom)

/\

(2.2.4)
3d™™ (interstice),

where V is the valence of the substituted host atom.

The RFLW model is based on the concepts of the well-known crystal
field theory [20] assuming the equivalence of spectroscopic units to describe
electron terms and of coordination polyhedra (tetrahedra, octahedra, etc.) of
the crystal structure. A polyhedron is considered as consisting of negatively
charged ligand ions located at its vertices and a positively charged d-metal
ion located at its center.

The main feature of the crystal field theory is the neglect of the electronic
structure of ligands, which means that ligands are identified with electrical
point charges. Their function is reduced to inducing an electric field, termed
a crystal field.

The crystal field symmetry is determined by the symmetry of the polyhe-
dron which makes up the crystal structure. In A", A"BY, and A"B"' semi-
conductors, one should consider only two types of symmetry—tetrahedral
symmetry (T4) and octahedral symmetry (Oy) to account for the second coor-
dination sphere. The transformation mechanism for electron terms of the
central d-ion in a ligand crystal field has been discussed in the book [14].

Table 2.6. Types of interaction described by crystal field theory parameters.

Parameters of

crystal field theory Types of interaction
A =10D, Interaction of a d-ion with crystal field H; it is the measure of
field strength and determines the splitting of d-ion terms in the
crystal.
A Interelectron interaction in a d-ion; A = const for all d"-
configurations.
B, C Interelectron interaction in a d-ion Heg; it determines the
separation of terms due to Coulomb repulsion of electrons.
A Spin-orbital interaction Hs; it is the interaction measure of

orbital and spin moments of a d-ion in the crystal, leading to
additional splitting of its levels.
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Table 2.7. Valent states and splitting of d-ion terms in a tetrahedral crystal field.

Free d-ions d-ions in crystal field

Ni 3d%4s? Ni**  Ni®*  Ni#

Co 3d"4s? Co* Co* Co'

Fe 3d%4s? Fe** Fet Fel
Mn 3d%4s? MR Mn® Mn® Mn* Mn®* Mn?* Mnt Mn®  Mn”
Cr 3d°4s* c e oo e o ot ¢

V 3d3452 V5+ V4+ V3+ V2+ V+ VO

Ti 3d%4s? 7Y 1Y T Tit T

Sc 3d4s? sc¥  se* st sl

Electronic 3d® 3d! 3d? 3d® 3d* 3d® 3d® 3d’ 3d®
configuration

Number of 0 1 2 3 4 5 64 703) 8(2
d"-electrons

Spin S = n/2 0 1/2 1 32 2 52 2 32 1

Term =L 15 D 3 ‘E D b3 b F 3k

The parameters in the crystal field theory are the Pack parameters: A, B,
C and parameters Dy and A. The types of interaction they describe are listed
in Table 2.6, and the term splitting in a tetrahedral field following from
group theory is shown schematically in Table 2.7.

It is easy to see that the schemes for the d-configuration in a tetrahedral
field are identical to those for d **"-configurations in an octahedral field. It
follows from the crystal field theory [20] that the splitting of terms of the d *,
d* d® and d° configurations is described only by parameter A. For ions, the
d? d? d’, and d° splittings are described by parameters D, B, and C. For
this case, the expressions for interlevel energy are presented in [14].

A complete semi-quantitative picture of term splitting for ions with
different d"-configurations in a tetrahedral field (in an octahedral field for
d !> "_configurations) is represented by what is known as Tanabe-Sugano
diagrams which can be found in [20] (Figure 2.7). These diagrams give a
general picture of the behavior of all d-ion levels in a crystal field: the
arrangement of the levels and the relative differences between them.
Tanabe-Sugano diagrams are usually taken as initial data in experimental
data processing.

It is necessary to point out the limits of the diagram applicability, which
are largely associated with two circumstances: (1) the diagram is built only
for one value of B and C; (2) the values of B and C refer only to free d-ions.
However, the values of B and C for d-ions in crystals may differ considerab-
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Figure 2.7. Energy levels for the d "-configuration of 3d ® ions in a tetrahedral field.

ly. Moreover, the diagrams ignore spin-orbital and other fine interactions.
These limitations indicate their qualitative, rather than quantitative, signifi-
cance.

There are also more general limitations of the crystal field theory follow-
ing from its initial postulates.

The major limitation is the concept of ligands as structureless point
charges which do not exchange electrons with the central d-ion. This model
corresponds to the limit case of 100% ionic bonding. For this reason, re-
searchers were skeptical even about a qualitative application of the crystal
field theory to describe d-ions in chemical compounds or in the A" or A"'BY
types of crystals having a large proportion of covalent bonds.

Extensive experimental material, however, has shown that the crystal
field theory can describe fairly well the qualitative character of level splitting
in semiconductors, their sequence and relative energy intervals between
them [14]. But in spite of its successful application to the description of term
splitting for transition metal impurities, the theory gives no answer to two
main questions: how the system of splitted levels is related to the allowed
band edges E. and E, and what type (acceptor or donor) of the ground state
these levels have.

Hjalmarson and co-workers [21] have demonstrated an important feature
of d-impurities, namely, the fact that the deep levels introduced by them in
the forbidden gap are intrinsic levels. They produce binding states built up
primarily by wave functions of uncompleted d-shells and have, therefore, the
d-symmetry, rather than the s- or p-symmetry. The electron wave function
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then appears to consist of the Bloch component Wz and the d-function com-
ponent:

Y =Yg + Yig. (225)

Thus, this wave function consists of the central core Wj4, retaining all
characteristics of an atomic wave function but with an angular component
transformed in accordance with the crystal point symmetry, and the Bloch
trace Wjg of the superposition of the p- and d-components of the Bloch wave
functions of the valence and conduction bands. It was shown in [22] that

Wig =h?/(2m,E,), (2.2.6)

where m is a mean effective mass of carriers in the band a and E, is the deep
level energy counted from the band edge.

The more shallow the level, the larger the contribution of the trace to the
wave function. The impurity potential of a d-atom turns out to have a
resonance character [23] and is described as

Ug ~ A/(E-Ep), (2.2.7)

where Er is the intrinsic energy level of a d-electron renormalized by the
crystalline medium, E is the energy of a scattered electron, and A is a func-
tion defined by the wave functions of d-electrons in (2.2.5).

If common potential scattering is negligible, as compared with resonance
scattering, the deep level energy Eir will be

Eir =Epp+M (Eir)a (2.2.8)

where Ery is the intrinsic level energy of a d-atom in the valence band and
M(Eir) is a function describing the effect of the covalent medium, i.e., the
level renormalization.

It is this renormalization that “pushes” the intrinsic d-level out of the va-
lence band to the forbidden gap. What is important is the fact that the d-p-
hybridization occurs with the E- and T,-states differently, being more signifi-
cant with the latter. This can be interpreted in terms of the chemical bonding
theory: ligands form stronger c-bonds with the T,-states and weaker nt-bonds
with the E-states. In [23, 24], this fact was interpreted from purely symme-
trical considerations: the symmetry of cubic crystals allows the mixing of
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Figure 2.8. Energy levels of 3d-impurities in gallium arsenide (cluster calculations)
[27]: 1-t, (DBH); 2-t, (CFR); 3—e.

T,(p)- and T,(d)-states of different parity. This leads to a dominant contribu-
tion of the p-states of the valence band to the renormalization of the T,(d)-
states, while the E-states hybridize only with states of the higher conduction
bands of the same kind. Such symmetry differences affect differently the
formation of the trace Wjs and the renormalization of the Tp-level M(Eir).
States in the conduction band make practically no contribution to the
renormalization (2.2.8). This approach develops further the well-known
ligand field theory [26] which takes into account the overlapping of the wave
functions of the central (impurity) ion and neighboring ions of a semi-
conductor host.

This modification of the theory has been successfully applied to d-impu-
rities and yielded the major parameter of term splitting A [25]:

A=Eig - Ei, = Ag+ M(Eig ) - M(Ei, ), (2.2.9)

where A is the splitting value in the crystal field theory and the other terms
are the results of covalent renormalizations.

A more rigorous theory [24] takes into account potential and resonance
scattering, so that the existence of two types of T,-symmetry levels becomes
possible: resonance states due to the d-levels of impurity electrons and
“hybrids with dangling bonds” [26] formed primarily in potential scattering
by an impurity d-shell. The former are usually termed crystal field resonance
(CFR) levels and the latter dangling bond hybrid (DBH) levels.

The ligand field theory stimulated the development of cluster methods for
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Figure 2.9. Energy levels of 3d-impurities in silicon [28].
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Figure 2.10. Energy levels of 3d-impurities in ZnSe [32].

the calculation of impurity center levels. Figures 2.8 and 2.9 illustrate such
calculations for GaAs and Si and Figure 2.10 for ZnSe, showing the three
types of levels T,°™%, T,”®" and E. One can clearly see the difference in the
behavior of d-impurities in these semiconductors. In A"'BY and A"B"' com-
pounds, the intrinsic d-level of impurities, except for nickel and copper, is in
the forbidden gap. In silicon, as well as in germanium [29], the T,-level ap-
pears to be in the valence band, while the E-level, split off the valence band
and having the p- rather than d-symmetry, lies in the forbidden gap.

A limitation of this theory is its one-electron character. In reality, how-
ever, interelectron interactions play a great role. If we ignore their contribu-
tion, we will not be able to find the d-level position in the energy spectrum
of a semiconductor. It is shown in [28, 29] that the energy of a multi-electron
ion d" containing rT,-orbitals and (n—r)E-orbitals is described as

Ei(d”)= Eir +Emc(B.C), (2.2.10)
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where E;r defined in (2.2.8) has the form
Eir = rEjr, +(n—T)Ejg, (2.2.11)

where Eyc are corrections for multi-electron interactions.

It is demonstrated in [30, 31] that these corrections represent linear com-
binations of Racah’s parameters A, B, and C (see Table 2.6). Then, if the
initial (un-ionized) state of an impurity atom is d", and it is changed by
ionization to d " (donor transition),

d"+h0—d" e, (2.2.12)

the only way to define deep levels is to use the expression

Eip = Ec— Eir(TFE" ")+ Eir (T E" ")+ AE, + AE (B, C, B, C"),
(2.2.13)

where 1’ is the number of T,-orbitals in the d"*-configuration; AE, is the
change in the valence band states due to the change of the scattering type
when the valence transforms from d" to d™; B’ and C’ are the Racah
parameters for the d "*-configuration.

For the acceptor transition, i.e., for electron capture, or hole emission to
the valence band

d" 4o —d" +p,, (2.2.14)

we have

Eia = Eir(TZE" )~ Eir(T7 E"") - Ey + AE, + AE (B, C, B, C").
(2.2.15)

The first transition will be designated as 0/+ and the second as 0/—, where
zero stands for the initial un-ionized state and plus and minus in the deno-mi-
nator mean the d-ion charge resulting from the ionization. It is these tran-si-
tions which represent deep d-levels in Allen’s diagrams (see Figure 2.6).

The Ewc corrections prove to be irregular functions of the d-shell popula-
tion, i.e., of the Z-serial number of the d-atom. On the other hand, E;r- repre-
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Figure 2.11. Energy levels in some A""BY semiconductors, counted from the vacuum
energy level.

sents a smooth function of Z. On the whole, therefore, (2.2.10) has an irregu-
lar character, and the multi-electron theory gives a piecewise linear function
Ei(d" of n (or of Z), well supported by experiments (Figure 2.11). The fun-
damental question as to whether these levels are related to the semiconductor
band structure was answered by Ledebo and Ridley, who suggested introduc-
ing a common reference—the vacuum level, for both the lowest d-impurity
levels and the semiconductor band structure. The position of the valence
band edge relative to vacuum is to be found from the semiconductor pho-
toionization energy (work function), while the d-level position with respect
to vacuum is easy to find if the level position relative to this edge is known
from experiments or calculations.

With this procedure, this idea has been verified for all impurities, from
vanadium to copper, in basic A"BY compounds [33] (Figure 2.11) and in
A"BY' semiconductors [34] (Figure 2.12).

The calculations of positions for CFR and DBH energy levels of 3-d im-
purities at silicon sites and interstices [35, 36] are illustrated in Figures 2.13
and 2.14, respectively. Although these results were obtained within one-par-
ticle theory, their qualitative agreement with experiments is fairly good.
They show that it is only Zn, Cu, and Ni that produce energy levels in the
forbidden gap, whereas the other d-levels correspond to interstices.

The general characteristics of d-impurity levels in basic semiconductors
are summarized in Table 2.8 and the values of their energy levels E; in
Table 2.9. Impurities with partly filled 4-d (Ru, Rh, Pd) and 5-d shells (Os,
Ir, Re) have not been studied in as much detail as 3-d impurities. Moreover,
they were studied only in silicon [37, 38]. These impurities exhibit
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Figure 2.12. Energy levels of d-impurities in A"B"Y compounds, counted from the
vacuum level [34].
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Figure 2.13. Energy levels of transition metal atoms at silicon sites, calculated in the
one-particle approximation [35].
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Figure 2.14. Energy levels of interstitial transition metal atoms in silicon, calculated
in the one-particle approximation [36].

Table 2.8. Types of 3-d impurity levels in the forbidden gap of basic semiconductors.

Semiconductors Sc Ti \Y Cr Mn Fe Co Ni Cu

GaAs a A

GaP A

InP d

Zn0O d d a
ZnS d d A AX A d A A
ZnSe d d A AX d d A AX
ZnTe a a a a
Cds A a
CdSe d d d d d A a
CdTe d a Ax d a a a
Si A X X

d — CFR-type donor (0/+), x — DBH-type donor (0/+), a — CFR-type acceptor (0/-),
A — amphoteric impurity.

amphoteric properties to be discussed in the next section. Here we will
restrict our description to their states in the silicon crystal lattice.

It was established in the studies of diffusion characteristics, decomposi-
tion of silicon—-impurity solid solutions [37], and electron spin and ENDOR
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Table 2.9. lonization energies of 3d-impurity atoms in basic semiconductors.

E;, eV
Impurities Si GaP GaAs InP
E.-E; E, + E; E, + E; E, + E; E, + E;
Sc 0.27d, 0.35a, 0.57,0.85
0.35d, 0.45d
0.5d
Ti 0.26d 0.1a, 1.05
0.29d
\ 0.3d, 0.4d, 0.45d 0.85,1.15 1.38,0.73 0.95
0.5d
Cr 0.23d,  0.31d, 0.39d 1.85 1.64
0.4d
Mn 0.3d; 0.5d 0.4,1.93" 0.113 0.22
Fe 0.13d, 0.4d 0.86,1.27" 0.49,0.86  0.8,1.15
0.5d
Co 0.22a, 0.35a, 0.41, 0.97", 0.14, 0.64, 0.24,
0.3a, 0.4d,05a  1.3%,1.92" 1.0,1.53  0.71,1.03
0.53a
Ni 0.4a 0.2a 0.51,1.74" 0.2 0.35
Cu 0.49a 0.4a 0.66, 0.82, 0.14, 0.46, 1.18,
0.17 0.24 1.06, 1.02
Zn 0.55a 0.4d 0.64 0.14,0.29 0.31

resonances [38] that all atoms of these groups of elements can occupy only
interstitial positions in crystals.

The authors of [37, 38] believe that isolated 4d- and 5d-atoms cannot
exist at an interstice, because they form weak bonds with the lattice. Such
states may be interstitials on bonds, split bonds or produce complexes with
the neighboring vacancies. The most probable crystallochemical model of Pt
and Pd impurity localization in the silicon lattice [38] is shown in Figure
2.15. In this model, an impurity atom is bonded by two silicon atoms in a
unit cell. A hole is shared by a d-atom and a bond between the other two
silicon atoms. So, the d-atom behaves as a singly charged acceptor, Pt".

The specific features of these impurities are a nonspherical electronic
configuration and a strong localization. These two chemical properties are
characteristic of coordination compounds with asymmetric distortions known
as the Yan-Teller effect. In the work mentioned above, the analysis of this
effect was reduced to symmetry identification of the basic term of local im-
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Figure 2.15. A hypothetical distribution of Pt (Pd or Ni) atoms in the Si (and Ge)
crystal lattices [38].

purity centers having different signs. The group theoretical analysis included
the following algorithm: a classification of one-electron states of molecular
orbitals by irreducible point group representations of the local center; sym-
metry identification of the upper filled molecular orbital; mapping of multi-
electronic states from the spin-orbitals of the upper filled molecular orbital,
and their classification by total spin and the point group symmetry represen-
tations of the local center. The result was the conclusion about the existence
of the Yan-Teller effect in a unit cell consisting of an impurity atom and
four nearest silicon atoms. This effect was found to vary with the charge
state of the impurity atom (Table 2.10).

The Yan-Teller type of displacement has been observed in many
semiconductor—deep impurity systems. In addition to Si<Os>, Si<Pt>, and
Si<lr>, these are InNAs<Mn> [40], InSb<O> [41], GaAs<Cu> [42]. It appears
that displacements of atoms, like the Yan-Teller effect or crystal lattice re-
laxation (Figure 2.16) during ionization and de-ionization are a common
phenomenon inherent, to some extent, in all deep level centers. This is due to
a strong electron localization at the impurity center, as compared with a
shallow impurity. A strongly localized electron interacts only with the
nearest host atoms.

It is interesting that an electron of a 3d-impurity in gallium arsenide is
localized on the second coordination sphere [14], which is clear from the
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Table 2.10. Yan-Teller distortions of the Pt-group impurity atoms in a tetrahedral

field [39].
Charge  Total number Electronic Basic term Distortion
state of electrons configuration

Rutenium, osmium

+ 11 = g Tetragonal

0 12 E* oy No distortion

- 13 EX(T,)? T, Trigonal

Rodium, iridium

+ 12 E* A No distortion

0 13 EX(T,)! T, Trigonal

- 14 EX(T,)? T, Trigonal
Platinum, palladium

+ 13 EX(T,)! 1, Trigonal

0 14 EX(T,)? T, Trigonal

- 15 EYT,)? ‘A No distortion

EPR line broadening AH/B® < AH/B”, where B® and B* are the magnetic
moments of atomic nuclei in the first and second coordination spheres.

Neighboring atoms are not static entities but they oscillate with different
frequencies. These oscillations, or phonons, also interact with a deep center.
Therefore, an impurity center must be treated in combination with a certain
number of host atoms rather than as a single center, or as a multi-atomic
quasi-molecule.

Figure 2.16. Displacements of impurity centers at crystal lattice interstices: 1 — sym-
metrical distortions; 2 — asymmetrical distortions.
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Figure 2.17. The configuration coordinate diagram of a deep center with a strong
electron—phonon interaction.

The model center involved in a strong electron—phonon interaction can be
conveniently represented as a configuration coordinate plot (Figure 2.17).
The ordinate in the plot is the total energy of a quasi-molecule U and the
abscissa is a combined coordinate which describes the average difference
between the deep center and its neighboring host atoms.

For simplicity, the energy of oscillating atoms can be taken to be that of a
harmonic oscillator:

U= EC(Q)+% Mo?Q?, (2.2.16)

where M is the mass of oscillating atoms and m is the oscillation frequency
of the oscillator.

Then, the curves in Figure 2.17 reflect the parabolic character of the se-
cond term in (2.2.16). The upper parabola U, describes a “molecule” with an
ionized impurity center, or an impurity electron in the conduction band. The
first term is constant, since atomic oscillations do not affect the energy of
free electrons in the conduction band. If the impurity atom is not ionized, the
first term in (2.2.16) will also depend on Q. A system tending to have
minimum energy must take a new equilibrium position Q; different from Qq;
the respective parabola Uy will be different, as is shown in Figure 2.17. One
can also see that the optical transition (ionization by light) requires energy
Esp by virtue of the Franck-Condon principle stating that an optical
transition within a system (molecule) occurs without changing the
coordinate. The values of thermal ionization energy Er appear to be lower
(Figure 2.17). Note that the curvature of both parabolas must also be

© 2004 by CRC PressLLC



different, since the bonding of an atom to its nearest neighbors is different
for an ionized and un-ionized center.

It is clear from the configuration coordinate plot that the necessity to
obey the Franck—Condon principle entails a restructuring of the crystallo-
graphic configuration in the vicinity of an impurity center when it is ionized
or excited, as is indicated in Figure 2.16 by symmetric (lattice relaxation)
and asymmetric (Yan—Teller effect) distortions of the unit cell.

The displacement g = Q1 — Qo in Figure 2.17 is described as [43]

q=an/MQ, (2.2.17)

where a is a constant of electron—phonon bonding and Q is the frequency of
the phonon involved in the lattice restructuring.

It is important that Q does not necessarily characterize the crystal.
Rather, it is a local oscillation of an atom together with its nearest neighbors
affected by the electron localization.

One can see from (2.2.17) that in the case of hydrogen-like centers, for
which electron localization extends to several dozens of lattice periods, a
*“quasi-molecule” involves hundreds of neighboring atoms, i.e., M is very
large and q = 0. For deep impurity centers, M is small and g >> 0.

The value of q is found experimentally by comparing the experimental
curve for the optical photoionization cross section o(hv) of a deep center and
the theoretical expression allowing for the electron—phonon interaction [44]:

o(h\/):ﬂ L jexp[—ﬂw}dx, (2.2.18)

y (n®)" C X?
where
X=E/Eq, y=hv/E,
0= [am chthﬁ . (2.2.19)
Eop 2kT

In addition, we have the relation

dic =Eop —E1,  dpc = %ath. (2.2.20)
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The value of ® is found from the comparison of the o(hv) curve and
(2.2.18); then, a and #€2 are found from (2.2.19) and (2.2.20), while q is
calculated with (2.2.17).

Let us consider two consequences of the crystal lattice distortions in the
vicinity of a deep impurity atom.

The appearance of a recombination barrier. It is clear from Figure 2.17
that an electron will overcome the recombination barrier E, when it goes
back from the conduction band to a deep center during recombination. The
consequence of this transition is a larger lifetime < of the electron:

T =1oexp(E, /KT), (2.2.21)

where 1, is the electron lifetime in a crystal containing no deep impurity.

Estimations made with E, = 0.06 eV give the value t/ty = 10* at 77 K,
which means that the existence of a recombination barrier leads to a tremen-
dous (10*fold) gain in lifetime and, hence, to a great increase in the
sensitivity of photocells made from such crystals.

It is worth noting that a similar increase in the electron lifetime arises in
double doping of a semiconductor by a deep Nt and a shallow N impurity
simultaneously [45]. For this, it is necessary that the following relation be
valid

Nt >N >(Ng—Ng), (2.2.22)

where Ny and N, are shallow background impurities.

But now, the impurity background becomes practically unimportant, and
the uncompensated deep impurity fraction at a concentration (Nt — N) will
remain essentially un-ionized due to the high ionization energy. The
compensation degree of the semiconductor will be close to unity. This is
used to obtain semi-insulating samples with a very high electrical resistivity.

If both shallow and deep impurities have a very high solubility in the
semiconductor, the crystal will be heavily doped. Heavy doping and strong
compensation produce large-scale fluctuations of impurity potential and,
hence, corrugated energy bands [46], as shown in Figure 2.18. One can see a
recombination barrier arising here, denoted as @r. In this case, the electron
lifetime will also be defined by expression (2.2.21); but physically, o means
the lifetime in the absence of strong compensation. This effect was observed
in GaAs<Cr,Sn> crystals [45]; the details of the theory can be found in [47].
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Figure 2.18. Generation (1, 2, 3) and recombination (4, 5) transitions in a heavily
doped and strongly compensated (disordered) semiconductor.
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Figure 2.19. Photoconductivity kinetics on illumination in recombination in heavily
doped and strongly compensated GaAs<O>: 1 -hv =0.52¢eV,2-hv=1.1¢eV.

Long-term photocurrent relaxation. This effect (Figure 2.19) is asso-
ciated with the relaxation barrier just described and the longer lifetime of
electrons. For this reason, one should choose with caution the type of deep
impurity to be used for the doping of crystals for IR- photocells, because it
determines the recombination barrier value in a particular semiconductor and
the operation temperature of the device. A lower temperature will increase
the photocell sensitivity but it will also increase its response time.
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To conclude this section, we will discuss basic information on the
behavior of f-impurities in semiconductors [48, 92]. These impurities are
second-phase inclusions in silicon and are produced during crystallization
due to a high affinity of rare-earth atoms to oxygen, carbon, and other
chemical admixtures to be described in Section 2.5. This is the reason why f-
atoms are used for gettering the melt to produce crystals with a low impurity
background. But the doping of a semiconductor by f-impurities becomes
more difficult for the same reason. These difficulties do not permit a reliable
identification of the energy levels registered experimentally in silicon and
other semiconductors containing f-impurities.

Samarium impurity. The effect of samarium on silicon is manifested after
thermal treatment of Si<Sm> at 1000-1100°C as the appearance of the
energy levels E; — 0.28eV and E, + 0.45 eV at a concentration of
1.5x10" cm™. Levels E, + 0.1 eV and E + 0.3 eV were also identified, but
the latter level was found to be unstable, becoming deeper with time.

Gadolinium impurity. It has been found that silicon doping with gado-
linium produces the acceptor levels +0.045, +0.34, +0.1 eV counted from the
valence band. Their concentration varies from 10 to 5x10™ cm™. After
thermal treatment of Si<Gd> in the temperature range 900-1100°C, these
levels are transformed to produce other levels unstable in time.

Golmium impurity. The behavior of this impurity in silicon, as far as
level instability is concerned, is similar to that of gadolinium. The most
stable levels are of the acceptor type found to be E, + 0.066 and E, +
0.35eV.

Difficulties associated with silicon doping with rare-earth elements from
a melt stimulated the application of ion implantation for silicon doping with
f-impurities. This method provided energy levels for neodime (Nd) and ter-
bium (Tb), equal to E. — 0.33 and E; — 0.29 eV, respectively. But these levels
cannot be attributed with certainty to single impurity atoms.

The complicated behavior of f-impurities in silicon is mostly associated
with the lack of our knowledge about their states in a semiconductor lattice,
the solubility thermodynamics, and the migration mechanism. As a result, it
is still difficult to find applications for f-impurities. However, there is a re-
port [49] of the application of Si<Er> for the production of efficient silicon
light diodes operating at the light wavelength of 1.54 um at 300 K. This is an
encouraging result showing that research into the behavior of f-impurities in
various semiconductors may become more active.

Among 1-V semiconductors doped with f-impurities, GaAs and InP
doped with Er and Yb have been studied most intensively. These studies are
focused on recombination processes involving these impurities, especially on
Auger recombination [48].
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2.3 AMPHOTERIC IMPURITIES

2.3.1 General concepts

The concept of amphoteric impurity, as applied to semiconductors, was first
introduced by Dunlap in 1955, when analyzing electrical properties of
germanium doped with gold. It was found that gold could behave as a donor
or as an acceptor in the same semiconductor crystal. This behavior fully
agrees with the definition of amphoteric behavior as the ability to produce
positive and negative ions.

Note that a sequence of two processes—ionization and de-ionization—is
always possible in semiconductors. In the former, an electron is detached and
in the latter it is re-attached. But de-ionization neutralizes an impurity center,
which comes to equilibrium without charge reversal. It is clear then that am-
photeric impurities are impurities with charge Z, prior to ionization (most
often, Zy = 0), which can acquire, depending on the ionization conditions,
charges Z; = Zy + |AZ| and/or Z, = Zy — |AZ|, where |AZ| is the absolute charge
change in the ionization (most often, |AZ| = 1).

According to up-to-date chemical concepts, any element may become
amphoteric, since atoms can give off their electrons but they can also attach
electrons because of a certain affinity to the electron. Indeed, as far back as
1881, Helmholtz suggested that an atom might possess different charges in
different compounds. A typical example is hydrogen charged differently in
LiH and HCI, whose decomposition reactions in electrolysis are LiH — Li*
+H and HCl = CI" + H".

There are many examples of this kind in chemistry. But if we consider
the amphoteric nature of an impurity in a semiconductor crystal in terms of
its behavior in the same crystal, it will appear that such impurities are not nu-
merous but their number is large enough to regard them into a special class
of impurities. Awvailable data permit classification of all amphoteric
impurities by the crystallochemical principle, i.e., by their arrangement in the
crystal lattice (Table 2.11).

Impurity atoms that can behave as donors and as acceptors in one of the
positions—a site or interstice—will be referred to the first two types and
termed amphoteric site centers and amphoteric interstitial centers—A; and A;,
respectively. Impurity atoms located at sites are acceptor-type and those at
interstices are donor-type; they are the third type of site/interstitial or disso-
ciative amphoteric centers denoted as Ag;.
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Table 2.11. Amphoteric impurity centers in semiconductors (D is for a donor and A is
for an acceptor).

Type of ampho- Position in crystal Center symbol  Type of center
teric center

Site Site A Dand A

Interstitial Interstice A Dand A

Dissociative Site, A D

(site/interstice) interstice

Cation—-anion Cation site, A
anion site

Associative Site or interstice Aca D
in interaction with other A
point defects A, Dand A

It is necessary to stress here that, in principle, there may be such disso-
ciative amphoteric centers which manifest a donor behavior at sites and an
acceptor behavior at interstices. Experimentally, this was observed only for
an interstitial impurity in UO, [50].

The fourth type of impurity centers manifest amphoteric properties in the
substitution of different sublattices in semiconductor compounds. These will
be termed cation—anion centers and denoted as Ac..

Finally, amphoteric impurities, as any other impurities, may produce
complex associative defects in interactions with one another or with other
point defects. Moreover, there may be associates of point defects in a crystal,
which show an amphoteric behavior, whereas the individual components
have no amphoteric properties. Complex amphoteric centers produced by
interactions of various point defects will be called associative amphoteric
centers and denoted as A,.

The first three types of centers manifest their amphoteric properties in
elemental semiconductors, such as Ge and Si, and all five types are found in
A"BY and A"BY' semiconductor compounds.

The first two types show their amphoteric nature in one and the same
position in a crystal. Here, an impurity center has a chance to give off an
electron from one of its electron shells and contribute it to the electron en-
semble of a host atom, or, on the contrary, an electron can be captured by
this shell. Obviously, both possibilities can be realized by an atom with the
initial charge state Z, only if its operating electron shell is uncompleted.
These may be atoms of d- and f-elements only, and this idea is supported by
experimental data. In many situations, transition metal impurities do not
show amphoteric properties. Doping f-atoms are often electrically inactive.
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The questions as to whether d- and f-atoms will show an electrical acti-
vity in this or that semiconductor and which of them will turn out to be am-
photeric require a special analysis. The answers cannot be derived from the
trivial consideration of donor and acceptor properties of impurity atoms,
based on the similarity of geometry and electrochemical characteristics of
the impurity atom and the position it occupies in the semiconductor.
According to these concepts, the position and charge of an impurity atom are
determined by the similarity in the radii and negative charge values of the
impurity atom and the host atom. None of these criteria are applicable to
transition metal atoms, because these two parameters are variable in them
[14].

Dissociative amphoteric impurities often occur in elemental semiconduc-
tors. This has been pointed out in many publications on impurity levels in
AY, A"BY, and A"BY' semiconductors. It is clear from general principles
that equal probability for an impurity atom to occupy a site or an interstice
requires approximately equal energies for its incorporation into both
positions. But the calculation of these energies encounters difficulties asso-
ciated with the different interactions of an impurity atom with the neighbor-
ing host atoms. At a site, an impurity atom produces chemical bonds with the
nearest host atoms via a hybridization of electrons from both types of atoms.
At an interstice, electrons of the host atoms only repel those of an impurity
atom, producing no chemical bonds between the host and impurity atoms.

In these cases, the concepts of radii and negative electrical charges are
inapplicable to most impurity atoms as constant atomic characteristics. For
this reason, the calculation of energy necessary for an impurity atom to oc-
cupy a site or an interstice and, hence, the prediction of dissociative ampho-
teric impurity centers may be possible only in terms of a rigorous theory of
impurity solubility at sites and interstices. The current state of this problem
and the available approaches to its solution, including the author’s concep-
tion, will be discussed in Chapter 4.

Cation—anion amphoteric centers can occur only in semiconductor com-
pounds.

An impurity atom can be localized in different sublattices if it has an in-
termediate valence relative to the valences of the other constituents. This
feature is especially characteristic of group-1V atoms in A"'BY semiconduc-
tors. In this case, an A' atom exhibits donor properties when substituting a
cation A" site, while an anion BV site shows acceptor properties. The well-
known valence rule AV = +1 becomes valid, as for hydrogen-like substitu-
tional impurities.
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2.3.2 Carrier thermodynamics in semiconductors with amphoteric
impurities

Two problems arise in the treatment of amphoteric impurity states in
semiconductors. In one problem, the unknown quantity is solubility [A]
which varies, other conditions being equal, with the charge state distribution
of the amphoteric impurity (0, “+”, “~*) in a crystal. In the other problem,
the total concentration of the amphoteric impurity [A] is taken to be known
while the unknown quantity is its charge state distribution.

Therefore, both problems require the knowledge of the statistical charge
state distribution of an amphoteric impurity. This issue has been treated by
several workers with reference to various particular cases [51] and was gene-
rally considered by Shockley and Hast [52].

Figure 2.20 shows model energy levels corresponding to an amphoteric
impurity, and Table 2.12 gives its charge states Z, the donor and acceptor
behavior as a function of concentration N and ionization energy E, as well as
the number of excessive electrons r in an impurity atom, as compared with
the neutral state with r = 0. The indices m and n stand for the last impurity
atom states localized in the forbidden gap. This means that if there are
(m+1) or (n + 1) states, their ionization energies will lie in the allowed
spectrum (Figure 2.20) and become unobservable, at least, in conventional
Hall measurements.

An important feature of the model represented in Figure 2.20 is that all
levels belong to the same impurity center. This means that the sequence of
amphoteric impurity levels cannot be arbitrary. Indeed, a center must first
give off one electron, spending for this energy Eg;, and only after that can it

A-(n+l)

E
A+(m+1)

Figure 2.20. Energy levels of amphoteric impurities in various charge states.
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Table 2.12. Symbols for amphoteric impurity atoms in various charge states (see

Figure 2.20).

Impurity atom lonization ~ Concentration, N Number of  Impurity ion
states energy of excess charge, Z
level, %E; electrons, r
An*' —Edm N_dm —.m .|:m
A" £ Na2 -2 +2
A —Ea Nay -1 +1
A’ - NAO 0 0
A17 +Ea1 Nal +1 -1
Az_ = Na2 +2 -2
An_l +Ean Nan +n —n

Plus means that the energy is counted from the valence band top E, and minus from
the conduction band bottom E..

give off another electron, spending energy Eq, > Eg;. Similarly, the transition
of one electron to the level A™ requires energy E,;, and this electron will
repel the next one, resulting in E,; > E,;. Besides, the electron attachment
requires a higher energy than the electron detachment because of Coulomb
repulsion, i.e., E, > Ey. As a result, the level localization pattern for an
amphoteric center and, generally, for any multivalent center, must be such as
is shown in Figure 2.20. This general rule is, of course, valid for site and
interstitial amphoteric impurities, which exhibit amphoteric properties when
the impurity atom occupies one crystallochemical position. For other ampho-
teric impurities, occupying different positions, the condition E, > Eq may not
be satisfied with the relations

Edm >, Ed2 > Edl Ean >... Eaz > Eal- (231)

The interrelation of several energy levels of the same impurity atom is an
obstacle to finding their electron populations with the simple Fermi function.
This requires the use of an expression derived from a more general Gibbs
distribution, which relates the population on the next r level to that on the
previous (r-1) level, as

Ny _9ra (Me —Ej )
= exp , (2.3.2)
Nr_g 9r kT
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where . is electron chemical potential (Fermi level) and g is the g-factor
representing the spin degeneration degree of the levels. It follows from sim-
ple considerations that g may be equal to 1 or 2. If an impurity center cap-
tures an electron, the latter can occupy one of the two possible spin states
(spin up or spin down); then g, = 2 and g, = 1. If, on the contrary, an elec-
tron is detached from an impurity center, then g, = 1 and g,_; = 2. Such sim-
ple situations are seldom feasible, so one has to find g, and g,; from experi-
ments. Below, we will preserve the subscripts for the g-factors. With (2.3.2)
and the symbols in Table 2.12, we will represent the electron population for
the first acceptor level A™:

90 MW—Eq
Ny =—N exp(—) . (2.3.3)
a7 g, ° kT

The population of the second acceptor level A will be

Ja1 U—Eqa
N,o ==2= N, exp| ——2=|. 234
a2 Uar al p( KT ) ( )

Or, substituting (2.3.3) into (2.3.4), we will have

90 u-Ez u—Eq )
N,» =—— Npex ex| . 2.3.5
a2 Ouo 0 p( KT ) p( KT ( )

Similarly, we find

do n u—= Ean
N, =——N ex . 2.3.6
an Jan Onl;ll p( KT ( )

For the donor states, the preceding level will be the (r = -1) level and the
next one will be the (r = 0) level. Therefore, with (2.3.2) and the symbols of
Table 2.12, we will find

Od1 u-Egg
Ng === Ny exp| ———= |, 2.3.7
=g, d1 IO( T ) (2.3.7)

from which we have
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Jo Egr -1
Ng1=—N exp(—). (2.3.8)
gy 0 kT

Using similar procedures, we can find

9o Eq—K Edo —M)
N4> =—— Ngex ex| 2.3.9
d2 agy P( T ) p( T (2.3.9)
and
Jo m n- Edm)
Ngm =22 N T exp| ——om | (2.3.10)
am Odm 0m—l ( KT

These are general expressions for the electron populations on the donor and
acceptor levels of an amphoteric impurity center. Therefore, the sums Ng; +
Na2 + ... + Nay and Ngg + Ngz + ... + Ny enter the neutrality equation (1.2.31).
But since a crystal may contain other impurity atoms or intrinsic point de-

fects, the more general sums Y[ | and [ ]q+ appear in expression
K q

(1.2.31).
By substituting these sums into (1.2.31) taking account of (2.3.6) and
(2.3.10) and using n and p expressed through p.:

n=Ne"" and p= Nve(Eg_”)/kT, (2.3.11)

we will get the neutrality equation with one unknown quantity p (the g-fac-
tors are taken to be known). By solving this neutrality equation, we find ;
hence, the solubility of an amphoteric impurity can be found from (2.3.6)
and (2.3.10). Or, conversely, if we know the total concentration N, of an
amphoteric impurity, we can find its charge state distribution from the values
of w. The general solution to equation (1.2.31) can be obtained only by
numerical computations. For some particular cases, when the amphoteric
impurity levels are much separated and the Fermi level lies between two
neighboring levels, equation (1.2.31) is simplified, and the problem becomes
similar to that for independent impurity centers [51]. Then, analytical
solutions to the neutrality equation are also possible. Using these procedures,
we will now analyze the states and behavior of some amphoteric impurities.
The statistics of charged states discussed above yield the basic relation
for the charged state concentrations in (2.3.2) and general expressions for the
concentrations N°, N, and N* in (2.3.7), (2.3.3), and (2.3.8), respectively. In
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other words, we have obtained the site and interstitial solubilities of a
charged impurity as a function of the Fermi level position. For this, of
course, the energy levels and degeneracy factors must be known.

2.3.3 Amphoteric impurity distribution in elemental semiconductors

Of interest is the relation between the measured quantities n and A. The
former is found from the Hall coefficient and the latter by a direct method,
say, by atom labeling, radioactive analysis, mass-spectrometry, etc.

This relation can be derived from the neutrality equation

n+Vy +A; =p+AL. (2.3.12)
Consider first a particular case when charged vacancies are absent:
Af—-A =n-p. (2.3.13)
Since all amphoteric centers are ionized at high temperatures, we have
A +A=A. (2.3.14)
By dividing (2.3.14) by (2.3.13), we get

1+ KA(n/ni)2

2.3.15
1- KA(”/ni)2 ( )

A=(n-p)

In this expression, the values of n and p refer to high temperature, but
usually they are measured at room temperature denoted here as To. Then, the
carrier concentrations will be denoted as ny and po.

Let us assume that the distribution of an amphoteric impurity becomes
“frozen” at high temperature T close to the doping temperature. The validity
of this statement increases with decreasing diffusion coefficient of an impu-
rity in a solid crystal at this temperature. With this assumption, the neutrality
equation (2.3.13) remains unchanged at room temperature Ty, i.e.,

No—Po=N-p. (2.3.16)
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For further analysis, we must choose the type of conductivity of the semicon-
ductor containing an amphoteric impurity. For the n-type conductivity, the
conditions are

no>>po, N>p, Ka=A7/A <1, (2.3.17)
and for the p-type conductivity, these are

Po>>Ng,  p>n,  Ka=A /A >1. (2.3.18)
The treatment is simplified and generalized if, instead of Ka = A /A", we
take for p-type semiconductors the inverse quantity A"/ A", denoting it Ka,
as before. Then, we have Ka < 1, irrespective of the type of conductivity.
Which of the true values of K, must be taken into account in a particular
case will be clear from the context.

By solving (2.3.16) separately for n or p with the conditions (2.3.17) and
(2.3.18) and the equality np = n;® = p, we get

n= %[”0 + w/ng +4ni2 ] (n-type), (2.3.19)
1 [
p= E[po +4/p§ +4n? ] (p-type). (2.3.20)

The substitution of these expressions into (2.3.15) gives the final expressions
for n-type crystals

(2.3.21)

and p-type crystals
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Figure 2.21. Electron concentration versus total amphoteric impurity concentration at
room temperature.

A=py L —_ (2.3.22)

2
_& &J'_ 4+ &
4 n; N; J

Note that ny and p, change at room temperature and n; at doping tempera-
ture.

The sought for dependence nq(A) in the form of (2.3.21) was obtained by
the authors of [53]. The dependence presented in Figure 2.21 will be dis-
cussed qualitatively, as in [53]. The key factor here is the ratio ng/n;, or pe/n;
for p-type crystals.

For low carrier concentrations

ng/nj <<1 (or pp/nj <<1), (2.3.23)
the relationship between A and nq (or po) is linear:

A=no(1+Ka)/(1-Ka), (2.3.24)
A=po(1+Ka)/(1-Ka). (2.3.25)

In these expressions, Ka for n- and p-type conductivities represent inverse
ratios of the site and interstitial components of an amphoteric impurity.
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Figure 2.22. Regions of constant chemical potential of electrons (below the ni(T)
curves) in doped semiconductors: 1 — Ge; 2 — Si; 3 — InSb; 4 — InAs; 5 — GaSb; 6 -
AISb; 7 - GaAs; 8 — InP; 9 — GaP.

In order to assess the feasibility of the condition in (2.3.23), Figure 2.22
gives the temperature dependence n;(T) for basic semiconductors. At
Ka << 1, the ratios (2.3.24) and (2.3.25) are close to the equality A=ny (A =
Po). Or, from Figure 2.21 we find that, at low concentrations, an amphoteric
impurity occupies primarily one of the possible crystallochemical positions.
At Ka < 1, the curve is shifted away from A = n, (see Figure 2.21), and the
empirical value of Ka in (2.3.24) or (2.3.25) can be found from the shift
along the Ig ng (or Ig po) axis.

In the range of high concentrations nq (or po), the ng(A) and po(A) curves
go beyond the saturation region. The concentrations n,” or p,_ in this region
are found when the denominator in (2.3.21) and (2.3.22) vanishes:

g (or p@:n{ﬁ—\/ﬁ]. (2.3.26)

The conditions K << 1 and Ka < 1 may become practically feasible at
high concentrations no (or po). The first condition is valid for an extensive
concentration range, for which (ng/n;) >> 1. Then, (2.3.21) is simplified as
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2
1+ Ka(ng/n;
A=, 2 Kalno/m)" (2.3.27)

1- KA(”O/”i)2

A similar expression with po and Ka will describe a p-crystal. The second
condition (at K < 1) contains no ny/n; >> 1 regions in n- or p-type crystals,
and the experimental A(ng) and A(po) curves are to be treated using general
formulas (2.3.22) and (2.3.23).

Return now to the neutrality equation (2.3.12) which ignored the
presence of vacancies. To take them into account, one should merely suggest
that vacancies are univalent acceptors and that their concentration at room
temperature is equal to the equilibrium concentration at a high doping
temperature (T). The latter does not occur in actual reality, but this
suggestion allows us to elucidate qualitatively the effect of vacancies. A
more rigorous theory will be considered below. The neutrality equation for a
n-type crystal at room temperature will then appear as

n+V._ =A-A;, (2.3.28)
while the equation for the A(no) curve will be

1+ KA(n/ni)2

A= (no +V_) 1- KA(n/ni)2

(2.3.29)

Expression (2.3.29) will be valid for a p-type crystal, if ng is replaced by
Po, N by p, and Ku is understood as the A*/As™ ratio. Compensation by
vacancies will not change the curve shape in the range of high concentra-
tions A or the value of nq on the shoulder (2.3.26). However, for the range of
low concentrations ne/n; << 1, we will have, by analogy with (2.3.24), the ex-

pression
(no +V‘)(l+ Ka)
A= , (2.3.30)
1-Kp
in which
v =v0 ﬁexp(—A—Ea) (2.3.31)
n; T
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Figure 2.23. The ny(T) dependence in the low concentration region, ny, in the pre-
sence of foreign acceptor (1) and donor (2) compensation.

is independent of ng .

It is clear from (2.3.30) that there must be a deviation from the linear
function A(no) in the region of comparable concentrations ny and V™. This is
illustrated by curve 1 in Figure 2.23. The asymptote, to which the curve
tends in the range of small ny values, permits finding an “arbitrary” concen-
tration A" defined as

p oy Ka (2.3.32)
1-Kp

while the length n," along the ordinate shows the concentration V™.

It should be noted for the sake of generality that if vacancies have a
donor character, i.e., V* are positively charged, the A(no) function will look
like curve 2 in Figure 2.2. In this case, the ordinate will show the concen-
tration V*, and A" will look exactly as in (2.3.32) with V* instead of V. The
opposite is true of p-type crystals.

The behavior of an amphoteric impurity in a real crystal is also compli-
cated by the fact that, in addition to vacancies, there are background or deli-
berately introduced donors and acceptors in it: Ng and N,. So we generalized
the above simple theory on the following assumptions [54]. The concentra-
tions Ng and N, were considered to be constant throughout the process of
crystal cooling from the doping temperature. VVacancies were assumed to be
so mobile that their concentration followed the temperature change to be-
come “frozen” at a certain temperature T*, which was lower than the doping
temperature T but higher than room temperature Ty, at which ny (or pg) and A
were measured.
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The value of T varies with the cooling rate and approaches T as the rate
increases. Besides, we suggested in [54] a complete ionization of vacancies
and all impurity centers present in the crystal.

With the above assumptions, the neutrality equations corresponding to
the temperatures T, T, and T, are

n+V™—n?/n=A - A+Ng—N,, (2.3.33)
N4V —n2/n* = A - A+ Ng— N, , (2.3.34)
ng+V*™ =A - A+ Ng—Nj. (2.3.35)

In these equations, we have used the condition pn = ni? but ignored the con-
centration po in (2.3.35) because we are considering a n-type crystal. The
concentrations of charged vacancies in the neutrality equations can be
written as [55]

V™ =Vj(Pyy, T)n(T)/mi(T (2.3.36)

where Vi(PsmT) is the equilibrium concentration of vacancies in an intrinsic
semiconductor. It should also be taken into account that the intrinsic concen-
tration n; decreases quickly with decreasing temperature (see Figure 2.22);
therefore, we can take no >> 2n;” at T* and, hence, put

n*=n,. (2.3.37)

With these assumptions, the relation between n and nq has been found to be

2
n:E n01+x +.|né L+ X +4i , (2.3.38)
2 1+x 1+x 1+x
with the denotations
x=V,/n; and x*=V"/n} (2.3.39)

and the sought for function ny(A) as

© 2004 by CRC PressLLC



1+ KA(n/ni)2

A= [Na - Ng +no(1+ x*)]l_ KA(n/ni)Z ,

(2.3.40)

where n is defined by equality (2.3.38).
It is easy to see that with small and large values of ny, the A(ny) functions
will transform, respectively, to

1+ x+Kp

(2.3.41)
1+ x—=Kp

A:[n0(1+ x*)+ N, - Nd]

and

(Ng)g, =— [\1/% —MJ. (2.3.42)

1+ x*

The complete ny(A) function is represented by curve 1 in Figure 2.24. The
curve shift relative to the bisectrix ng = A is

b=log(L+ X )(L+x+Ka)/(L+x-Ka) . (2343)
The asymptotic value of A" will be
A" =(Ng = Ng)(1+x+Ka)/(1+Xx—-Kpa). (2.3.44)

The ordinate length in this case is expressed as
ng =(Nd—Na)/(1+x*). (2.3.45)

If the vacancies are positively charged (V*), the no(A) function will look
as curve 2 in Figure 2.24.

The po(A) function for a p-type crystal will be represented by the same
curves as in Figure 2.24, but one should bear in mind that ny should be re-
placed by po, N, by Ng, and, conversely, Ng by N,. The quantity Ka should be
understood as A,"/As".

The theory considered demonstrates a qualitative similarity of the results
(Figures 2.23 and 2.24), irrespective of the presence of this or that type of
defect in the crystal. The type of defect, however, essentially determines the
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Figure 2.24. The ng(A) dependence in a rigorous theory allowing for the compen-
sation by foreign point defects.

shape of the ny(A) curve, or the quantitative parameters A", b, and (ng)s.
Obviously, for theoretical and experimental no(A) curves to be comparable,
the equilibrium conditions at T* must be met. So measurements must be
made in annealed samples at preset Py, and T followed by hardening; then,
T* = T. The presence of numerous point defects which do not correspond to
this pressure and temperature can make the interpretation of experimental
data impossible.

If a direct experimental measurement of the total concentration A of an
amphoteric impurity turns out to be too complicated, one can find the total
concentration of all ionized centers N;, determined from charge carrier mo-
bility measurements. The function to be found from the theory [55] is

(2.3.46)

N, = no[x* et KA:|+ 2INA@+X)-NgKa]

1+ x-Kpu 1+ x-Kpu

This function is illustrated by curves 1 and 2 in Figure 2.25 for n-type crys-
tals containing V- and V", respectively. The concentration values on the
shoulders of curves 1 and 2 are defined by the same expression (2.3.42) as
for the curves in Figure 2.24. The shift of the b curves (Figure 2.25) relative
to the bisectrix, ng = N;, is

(2.3.47)

b= Iog{x* + (1+ x*)m} .

1+ x—=Kp

The asymptotic value of N;" in this case is described as
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Figure 2.25. The concentration dependence of charge carriers on ionized centers in
semiconductors with an amphoteric impurity and compensating centers.

Na(1+Xx) = NgKa

N{ =2
1+ X=Kp

(2.3.48)

and the length on the ordinate has no longer a clear physical meaning. This is
easy to see if one makes N; in (2.3.46) tend to zero.

For a p-type crystal, expressions (2.3.46) through (2.3.48) are valid, with
appropriate substitutions similar to those just described for ng(A).

2.3.4 Amphoteric impurity distribution in semiconductor compounds

The thermodynamic theory discussed in the previous sections can be ex-
tended to semiconductor compounds. Consider first a binary semiconductor
of the A;B; type, such as the commonly used A"'BY and A"B"' crystals. For
simplicity, we will ignore for the time being the possible interstitial dissolu-
tion of an amphoteric impurity in both sublattices. In other words, the impu-
rity atoms will be assumed to occupy only sites A, and Ag, . It is also ne-
cessary to choose the compound constituent possessing a greater volatility.
For the semiconductors mentioned, such a constituent is B; (As, P, Sb, etc.).
Therefore, the expressions for an A;B; crystal are those of the A distribu-
tion between the sublattices, which describe the functions ng(A) and ng(N;)
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found in Section 2.3.3, but with a different physical sense of the constants
Ka, which can now be presented as:

Type of crystal Ay Ay AB; AB;
Type of n p n p
conductivity

Ka AN OATA Re/AL AL A

In addition to binary semiconductors, modern semiconductor electronics
widely use multicomponent solid solutions on their base.

Let us discuss the distribution of an amphoteric impurity between the
sublattices, with reference to A"'BY solid solutions [56]. In contrast to the
other sections of this book, the component number will be denoted here by a
superscript and its content, expressed as a mole fraction, by a subscript.
Thus, we will have a pure (undoped) solid solution with the anion substitu-
tion

ABL, ,  _,BB3...BI,

containing n components of group-V elements, and an undoped solid
solution with the cation substitution

AL AIAZAL, , B,

containing n components of group-111 elements (superscripts Il and V are
omitted for simplicity).
The further treatment requires the following assumption to be made:

X+y+.+z<1. (2.3.49)

In fact, this means that the sum of all additional components is a small value
in the A® or B* sublattices. In other words, we assume that only single va-
cancies of components A' and B with concentrations V,; and Vi , respec-

tively, may be intrinsic point defects in multicomponent solutions. Compo-
nent B* is considered, as before, to be volatile.

These assumptions allow us to write simple equations, as in Section
2.3.2, for processes reflecting point defect equilibrium inside a solid solution

VS, +VY 20 (2.3.50)
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and, with volatile B, vapor, outside it

mVg +Bf 2 mBL,, (2.3.51)
where m is the number of atoms in a B* molecule in the gas phase.
Equations (2.3.50) and (2.3.51) should be supplemented by the condition

of an equal number of sites in both sublattices. For an anion solution, this
condition is

AL +Va 2 BL +B2 +B3 +.. .+ B +Vy, (2.3.52)

where V., =V, +Vi and Vg =V +Vg, i.e., we consider the vacancies in

both sublattices to be of the acceptor type. Note that the knowledge of the
exact charge sign of intrinsic defects is of no importance to our presentation,
since we are discussing a general approach; the details are to be established
from experimental data.

Equations (2.3.5) and (2.3.51) satisfy the following relations between the
chemical potentials:

u(ve)+u(va)=0, (2.3.53)
mp (Vg ) +u(Bh) = mu(BL, ). (2.3.54)

The low concentrations of point defects in common sublattices suggest
their solution in a crystal to be a perfect dilute solution. Then, we can write

n(ve)=g(vo)+T Inﬁ , (2.3.55)
u(ve)=g(Va)+Tn Vel : (2.3.56)
B, + B2, +...BY +Va
The gas phase, too, is a perfect gas, and its chemical potential is
M(Bh) = u®(T)+TIn Py, (2.3.57)
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The substitution of expressions (2.3.55) through (2.3.57) into (2.3.53)
and (2.3.54) yields

ViV e AR |y
(ALs +Vyi )(BL +Vg: + B2, +...BL,) T
(2.3.58)
Ve Pl = exp| - oV )+u(T)/m-n(Ba) | _ K3(T).
Bt +Vg +BZ, +...+ B, T
(2.3.59)

In the first approximation, the energy of defect formation can be consi-
dered to be dependent only on temperature:

g=9(T). (2.3.60)

The composition of a solid solution defines chemical potential p(B}gl) :

(2.3.61)

u(BL)=no(BL)+T In[l—m].

Therefore, K; will be only a function of temperature, while K; will also
vary with the solid solution composition. The constant K; can be repre-
sented as
X+y+..+2
K} = K;{l—y—],

. (2.3.62)

where K7 coincides with the function for a binary A'B* compound. Taking

this into account and considering the number of vacant sites in each sublat-
tice to be much smaller than that of occupied sites, it is easy to get

X+y+..+2 U
VY :(1—f)2(T)P(By)m , (2.3.63)
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0 — / 2
V .= X+y+..+z 2( ) P(lslnim . ( 364)

1—
2

Here, Ky = N_K; and K; = K7 Ni, where N_ is the concentration of sites in
each sublattice, slightly varying with the solution composition.

The theoretical treatment of point defect formation in a solid solution
with the cation substitution is simplified, because one can suggest that a
change in the A'-sublattice composition will not lead to the dependence of
(BL) on X, vy, ..,z Indeed, in this approximation, the defect solutions in

both sublattices are taken to be perfect, which means that the defects do not
interact with one another. Then, V,; and V g will be described by the same

expressions as a binary A'B' compound. As a result, we have obtained the
following expressions for solid solutions with the anion substitution [54]:

A——(l— x+y;...+z) ks K2 K2

E,. —E,-
P‘Z/m Ny n exp[u} (2.3.65)
A+ 2 T

Ky ( )m N¢ n;

and with the cation substitution:

where

oo go(A—)_ gO(A+)T+ g(vg, )— g(Vé)l) 2367)

g(A") and g(A") are standard chemical potentials relating to acceptor and do-
nor amphoteric atoms; E,. and E,- are the energy differences between

the donor and acceptor levels, on the one hand, and the respective allowed
band edges, on the other; N, and N, are electron state densities in the valence
and conduction bands.

Itis clear from (2.3.65) and (2.3.66) that the distribution of an amphoteric
impurity in a multicomponent solid solution of anion substitution is deter-
mined by both the volatile component gas pressure above the solid solution
and the crystal composition. In the case of cation substitution, it is deter-
mined only by gas pressure. The relation between ny and A has the same
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form as in (2.3.21), but the constant K will differ from that in the expres-
sions for binary A"'BY or A"B"' semiconductors.
For the anion substitution, this constant will be

2 2 E,. —E,-
K; =(1_M) Kéﬁ p—%/mﬁexp —AT A | (2.3.68)
2 K, (B'), N T

and for the cation substitution it is

K o-am Ny (Ear —Ep-
Ki=K;—=P —Lexp| ——~—|. 2.3.69
1=K e, N, P = ( )

One could make the final judgment about the distribution pattern of an
amphoteric impurity in semiconductor compounds if one had reliable data on
the dependence of volatile component vapor on solid solution composition.
We have to state with regret that there are no such data for A"'BY or A"B""'
compounds at present.

Similarly, the limit concentrations of additional components, for which
condition (2.3.49) remains valid, can be found only experimentally.

However, we can make an a priori statement that small admixtures of A"
or B" can change but slightly the free vacancy concentrations and, hence, are
unable to redistribute appreciably the amphoteric impurity positions. Indeed,
the only reason for such a redistribution in a perfect solution would be dis-
placement entropy. While the atomic fractions of additional components re-
main small, the changes in vacancy concentrations will also be small.

This is what follows from classical thermodynamics. But the study of
isovalent doping has shown that there are significant deviations from the
classical concepts at low contents of isovalent impurities (x<0.01). This
problem will be discussed in Section 2.4.

2.3.5 Data on amphoteric impurity states and behavior

Here, we will consider only the most informative data on amphoteric im-
purities of various kinds. More detailed information on various amphoteric
impurities can be found in the books [54, 57].

Amphoteric d-impurities. One can see from Figures 2.11 and 2.12 which
of the d-impurities are expected to show amphoteric properties. These are
impurities, whose levels, 0/+ and 0/—, appear to be in the forbidden gap. For
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Table 2.13. Different denotations for Cr impurity states in GaAs.

Chemical symbols Physical denotations
nfiguration L Amphoteri
(;to a égausiéo Oxidation lon charge lon charge Donor sy?nl:?o?slc

degree acceptor

d’ I cr cr - A°

d? \Y cr'* crt d* A

d* 1l cr* cr a A

d® | cr* cr- a A=

both levels to “be accommodated” in it, the forbidden gap must be wide
enough and the Coulomb repulsion of electrons in a pseudo-ion, representing
a p-d hybrid, must be weak. This, in turn, requires a maximum mixing of p-
electrons of the valence band and d-electrons of the impurity.

It is seen from Table 2.8 that d-impurities exhibit a slight amphoteric
property in A"BY' compounds, while in A"'BY semiconductors this property
is exhibited only by chromium in GaAs and by vanadium in GaP (Figure
2.11), showing type-1 amphoteric behavior. In elemental silicon, the type-I
behavior is exhibited only by cobalt.

Consider the properties of these systems.

Properties of the GaAs<Cr> system. Numerous experimental studies,
summarized in [14, 58, 59], indicate that chromium impurity atoms occupy
gallium sites in GaAs. In the RFLW scheme (2.2.4), the chromium ground
state Cr® has a d® electronic configuration, and the ionized states are,
respectively, d? (donor) and d* (acceptor). One finds in the literature
different denotations for charge states of chromium ions and other
impurities. To avoid confusion, we are giving, as an illustration, all generally
accepted denotations for Cr in GaAs (Table 2.13). The chemical symbols are
used in inorganic chemistry, as well as in optical and EPR spectroscopy. The
physical denotations are commonly used for the description of energy levels,
transfer processes, and recombination in semiconductors.

A detailed experimental evidence for the presence of all configurations in
GaAs<Cr> (Table 2.13) can be found in [14, 57].

Two models of the Cr¥*(d®) impurity center have been suggested on the
basis of numerous experimental data, mostly on EPR spectra observed under
illumination at low temperature [60] and uniaxial crystal compression [61].
In one model, the center is located on the cube axes directed away from the
tetrahedron center toward the nearest neighbors at Yan—Teller sites. In the
other model [59], the Cr¥*(d®) center forms an associate with another center
[59], with the bonding along the [100]-axis.

© 2004 by CRC PressLLC



crtt

cr crt

EPR amplitude

0.6 1.0 1.4 hv,eV

Figure 2.26. EPR intensities from various Cr impurity states in GaAs.

Irrespective of the state model, a Cr®* center with the d*-configuration
does exist in GaAs crystals, showing amphoteric properties. An A™ state with
the d*-configuration, negatively charged relative to the semiconductor, was
also detected by the EPR technique [62, 63]. The authors of this work found
the d *-state of chromium impurity in the crystal field with the T¢-symmetry.
This result was supported independently by phonon ballistic absorption data
[64] and absorption measurements of monochromatic ultrasonic waves [65].

The donor Cr**(d?) state was detected by the EPR technique in p-
GaAs<Cr> samples, whose Fermi level was located in the vicinity of the va-
lence band top [66, 67]. The d%-state in the Tq4 crystal field must split into a
set of levels, but the isotropic EPR line is so wide even at 4.2 K that the su-
perfine structure of the EPR signal is unresolvable. As a consequence, the
splitting parameters of these center levels have not yet been determined.
Moreover, the d %-configuration itself was found from the EPR data by com-
paring Cr concentrations in p-GaAS and the calculated EPR line intensity
(area).

One can hardly doubt the existence of Cr**(d?) ions, since the three con-
figurations d*, d“, and d? are observable in the EPR spectra of samples illu-
minated by light quantum energy equal to or larger than the forbidden gap
width. More sensitive to EPR light in high resistance (semi-insulating) sam-
ples is GaAs<Cr> with the Fermi level lying close to the forbidden band
center. The changes in the EPR signal intensity are shown schematically in
Figure 2.26 [58]. One can see that a signal from the donor d >-state appears at
ho > 0.8 eV with a simultaneous increase of the signal from the acceptor d *-
state and a decrease of that from un-ionized chromium with the d*-
configuration.

These findings suggest that the photoionization process occurs as a se-
quence of reactions (Figure 2.27):
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Figure 2.27. Schematic electron transitions in the energy level system of amphoteric
Cr states in GaAs.

dd+ ey, — d4+ p, at hvy, (2.3.70)

d3+p, >d? at hv,. (2.3.71)

A light quantum first ionizes the Cr®*(d®) atom, which captures an electron
from the valence band under illumination, and transforms to Cr?*(d*), i.e.,
reaction (2.3.70). Then, the free hole produced in the valence band is cap-
tured by another un-ionized Cr**(d®) center, transforming it to the donor
Cr*(d?) state, i.e., reaction (2.3.71). This transition occurs at hv, = 0.45 eV
and the first acceptor capture takes place at hv; = 0.8 eV. At zero illumina-
tion, the captured carriers recombine, and the EPR spectrum shows the return
to the initial concentration of d *-centers.

The d* and d? concentrations decrease exponentially with the same time
constant [58], in agreement with the photogeneration model of amphoteric
d*- and d2-Cr states. However, the recombination mechanism is not quite
clear. Since after reactions (2.3.70) and (2.3.71) the valence band contains no
vacant sites, one can suggest a direct interimpurity recombination via tunnel-
ing, as was proposed by the authors of [68]. This implies the minimum sepa-
ration between the two d>-centers, which may happen only in a correlated,
rather than random, distribution of impurity atoms throughout a crystal. This
question remains to be answered, as well as the question of a random or con-
trolled doping impurity distribution in semiconductors.

The diagram of energy levels proposed in [54] for amphoteric transitions
of the Cr¥*(d?) center generally accounts for the electrical, optical, and pho-
toluminescence properties of the GaAs<Cr> system.

The energy levels of all amphoteric chromium centers in gallium arsenide
can be conveniently represented as a configuration diagram (Figure 2.28);
the respective energy values are given in Table 2.14.
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Figure 2.28. A configuration diagram of energy levels for various amphoteric Cr
states in GaAs (for numerical values, see Table 2.14).

Table 2.14 also includes the doubly charged acceptor state Cr(d®). To
study this state, the Fermi level must be shifted much higher than the middle
of the forbidden gap. This is done using double doping with chromium N¢,
and shallow donor Ng, simultaneously. If impurity chromium remains singly
charged in its acceptor state A", we will have the concentration equality:

n=Ng-Ng, (2.3.72)

Table 2.14. Summary of Cr energy levels in GaAs.

States Energy characteristics Energy values, eV
(Figure 2.28)
cr(d*® E,o 0.8
Emn 0.67-0.68
Eip' 0.76
A ?
E, 0.9
ES™ 0.062
Es ?
ESE, 0.007
cri(d?) E ™ 0.45
E, ?
cr(d?) Es 05
Es' 0.055
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where n is free electron concentration defined by the Hall coefficient.
If impurity chromium is in the A™-state, we have the equality

n=Ng—-2Ng . (2.3.73)

The largest errors in these experiments vary with the accuracy of
independent measurements of concentrations Ny and N¢,. The authors of [69]
used chromium and tin and determined the concentrations with radioactive
labels. In [70], the value Ng = Ne. — Nas> was found from the local modes
of optical absorption by silicon atoms at gallium and arsenic sites; the value
of N¢r was measured by mass-spectrometry. The results of these experiments
do not coincide, which seems to be due to the complexity of impurity
concentration measurement. In any case, the data of [70] better agree with
relation (2.3.73).

Of interest are experiments on the study of properties of the GaAs<Cr>
system under hydrostatic pressure [71, 72]. At first, the samples with N¢, > n
behaved as described above, i.e., they exhibited light absorption. At pressure
~1 GPa, the 0.9 eV absorption peak associated with intra-center transitions
of the d*-center disappeared, increasing the sample conductivity. These data
were interpreted as being due to the d>-level position above the conduction
band bottom. With increasing pressure, the band bottom goes higher, expos-
ing the d®-level, and the absorbed light is nearly totally spent for the transi-
tion of the second electron to Cr?*(d“), or for the formation of Cr*(d®). The
d>-level was found in these experiments to lie at E' = 0.055 eV above the
conduction band bottom at atmospheric pressure and 77 K. lonization light
energy of the level d* — d° at ~1 GPa is E® = 0.5 eV, which is shown in Fig-
ure 2.28 and Table 2.14.

Properties of the A"'BY<V> system. The amphoteric vanadium levels in
A"'BY semiconductors were obtained in a general form from numerous expe-
rimental data (Figure 2.29) by the authors of [73]. They used double doping
with vapors of V and Se, V and Si, V and Zn to obtain GaAs<V> samples
with varying Fermi level positions—practically from E to E,. The level E; -
0.15 eV, depleted by electron escape to the conduction band on heating, was
found only in samples with the Fermi level in the range E; > > 0.15 eV.

The 0.15 eV level was identified as the A~ acceptor state of impurity
vanadium, produced in the reaction

Ao(d2)+e; N A‘(d3)+ Pl (2.3.74)
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Figure 2.29. Energy levels of amphoteric vanadium in basic A"'BY compounds [73].
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Figure 2.30. Optical absorption spectra of GaAs<V> samples at T =5 K [146]: 1 — p-
crystal; 2 — high resistance n-crystal at Ny < Ng; 3 — n-crystal at Ny > Ng (Ng is
background donor concentration).

If a vanadium atom occupies an A" site, the d3-state is in a tetrahedral
crystal field and splits into the ground *T; and two excited “T, and A, states.
The level E; — 0.15 eV seems to belong to the lower of these T, states.

That this level belongs to the V(d®) center is supported by optical ab-
sorption data. Figure 2.30 shows spectra from three groups of samples differ-
ing in the Fermi level position [73].

The first group includes GaAs<V> samples with the Fermi level located
in the lower half of the forbidden gap. These samples either had a high resis-
tance with the Fermi level close to the forbidden band center owing to the
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natural impurity background or close to the valence band top in simultaneous
doping with V and Zn. The absorption spectra of both sample subgroups are
identical (curve 1 in Figure 2.30). The right-hand side of the curve indicates
a fast absorption beginning at hv = 1.35eV and corresponding to E; —
0.15eV. So, this level was identified from reaction (2.3.74). The rest of the
spectrum must then reflect the light absorption by intra-center electron tran-
sitions in un-ionized A°(d?) states of vanadium atoms. The position of these
transitions, as interpreted in [73-75], is shown in Figure 2.30. Here, the
A, — T, transition was identified from the photoluminescence spectrum
[73] which has a phonon-free line at 0.74 eV, reflecting the transition of an
electron from the lowest of the three excited states to the ground state. The
identification of the spectrum represented by curve 1 in Figure 2.30 was sup-
ported by direct EPR studies of the electronic configuration [76-78].

The second group includes n-type samples with the Fermi level lying
above E; — 0.15 eV at Ny < Ny, where Ny is the concentration of doping
shallow donors. The spectrum is represented by curve 2 in Figure 2.30 and
corresponds to the transitions inside a A(d®) center, shown in Figure 2.31.
The changes in the spectrum intensities and the 100 K peak in the DLTS
spectrum of Figure 2.32 correlate well for samples with different concentra-
tions of vanadium centers. This is why the transition V°(d?) — V7(d®) was
attributed to the 100 K peak in the DLTS spectrum.

Mixed light absorption by the d? and d3-states of vanadium centers
(curve 3 in Figure 2.30) occurs in samples of the third group with the Ny\/Ng¢
ratio corresponding to the Fermi level E; — 0.15 eV. The spectral curve in
this case is nothing else but the superposition of spectra 1 and 2.

The appearance of the A*(d*) donor state of vanadium impurity could be
expected to be due to the same mechanism as for the GaAs<Cr> system.

——2T1
ﬁ* 2T1
=)
E
FE
3T1
) 1.35¢eV
3 ; . 5]
T, !
3A2 ] EV

V3+(3d2) V2+(3d3)

Figure 2.31. The main vanadium energy levels in GaAs [73].
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Figure 2.32. DLTS spectra from GaAs<V> samples grown by the following methods
[146]: 1 — Chokhralski method; 2 — Bridgeman (horizontal) method; 3 — electroliquid
epitaxy.

Since reaction (2.3.74) produces a free hole, it can be captured, similarly to
(2.3.71), by another V°(d?) center to produce a d'-state. However, such a
level could not be identified by the authors of [73] during the Fermi level
transition across almost the whole GaAs band. It may be concluded that the
level V3(d?) — V*(d?) is localized either in the forbidden gap near the va-
lence band top or even inside it. The authors of [73] consider the second in-
terpretation more probable, following the general scheme of d "-level predic-
tion shown in Figure 2.11. We think, however, that the other interpretation
should not be entirely discarded, because a shallow level located near E, is
hard to detect experimentally. In any case, for this level to be detected, the
Fermi level must be located between it and the valence band top. This
probably cannot be done by heavy doping with an ordinary acceptor impurity
because of the formation of an impurity band (the tail of the density of
states) merging with E,. Of course, the vanadium donor level may be ex-
pected to be in resonance with the impurity band state and to manifest itself
in electroluminescence spectra of diodes made, say, from GaAs<V,Zn>.

To draw the final conclusion concerning the energy position of the vana-
dium donor state, it would be necessary to perform a series of studies of
samples subjected to hydrostatic compression in order to broaden Eq and to
shift the V*(d?) level away from the edge E,. The general scheme of
amphoteric vanadium levels in GaAs, as was formulated in [73], is given in
Figure 2.31.
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The behavior of a vanadium impurity atom in GaP is much less clear. If
vanadium atoms form, like other T-atoms, a substitutional solution in GaP
and occupy Ga sites, their electronic structure must be V**(3d ). The ground
state A° of this electronic configuration has a zero orbital momentum with
the effective spin S = 1; therefore, the EPR signal of these centers should be
observable. But no EPR spectrum could be detected in n-type crystals with a
shallow donor background at about 10*" cm™ [79]. All vanadium impurity
was found to be ionized as VV** with the 3d *-configuration. Donor electrons
filled the lowermost level, producing a non-zero orbital momentum, so no
EPR spectrum could be observed. But a feature was likely to appear in the
optical absorption spectrum due to the term splitting of \/** ions by the Tg-
crystal field. Such a feature was, indeed, detected in the optical absorption
spectrum of GaP<V> [80] and interpreted as being due to electron transitions
inside the d-shell of a VV?* ion, which are similar to those considered above
for the GaAs<V> system.

The conductivity type of GaP<V> was changed to the hole conductivity
by double doping with vanadium and manganese [79]. The samples
exhibited EPR spectra for manganese and vanadium ions in the 3d%(V*")
state. The latter spectrum consisted of two fine lines. Since the nuclear spin
of the V*' isotope is equal to 7/2 (99.76% occurrence), the EPR spectrum
was expected to contain eight superfine lines. But the experiment did not
reveal these lines [79], which was interpreted as being due to their
broadening associated with the superfine interaction between the d-electrons
of the V" ion and its nucleus.

Recent data have shown that the energy levels of vanadium ions in GaP
exhibit only acceptor properties and lie at 0.58 eV below the conduction
band [81]. They were found in n-type samples and reflected the V**/Vv**
transition.

Generally, p-type GaP<V> samples are to have the V¥*/V* state, but
there have been no reports of such observations. The general diagram of va-
nadium levels relative to the vacuum levels in A"'BY allows prediction of the
V3*IV* donor level in GaP at E, + 0.4 eV, which is clear from Figure 2.29
based on experimental findings [73]. The vanadium donor levels identified in
this work for InP were found to be E, + 0.24 eV, against E, + 0.21 eV in
other reports.

Properties of the A"B"'<Ni> system. Nickel impurities in A"B"' crystals
are located in the A" sublattice, in which the Ni**(d®) state is un-ionized
relative to the semiconductor. The transitions between the ground T, state
and three excited states, observed in optical absorption and photolumi-
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nescence spectra, reliably identify the Ni**(d®) state in various A"BY
crystals.

In addition to intra-center transitions, A"B"' crystals exhibit wide absorp-
tion bands. The long wavelength edge of these bands in ZnS<Ni> and
ZnSe<Ni> were unambiguously identified as being due to the transition of
the un-ionized Ni**(d ®) state to the acceptor Ni*(d °) state, as in the reaction

Ni2+(d8)+ e — Ni+(d9)+ By (2.3.75)

This process has been confirmed for ZnSe<Ni> by several researchers who
used different experimental techniques: photocapacitance measurements
[83], photo-EPR studies [84], and others. Similarly, this has also been estab-
lished for the ZnS<Ni> system [84, 85].

The energy levels of donor (A° — A*) and acceptor (A’ — A") transitions
of nickel in A"B"' crystals are given in Table 2.15. One can see that four
crystals of this group (ZnSe, ZnS, CdSe, and CdS) show amphoteric proper-
ties of the d-state of impurity nickel.

Properties of the Si<Co> system. A combined investigation of the Hall
coefficient and deep level positions by the DLTS technique has recently
revealed [86] the donor Co%Co" level E, + 0.21 + 0.02 eV and the acceptor
Co%/Co™ level E, — 0.41 + 0.02 eV, although Table 2.9 gives different values
for cobalt levels in silicon.

Experiments with diffusion saturation of silicon samples with cobalt
show that the level concentrations of amphoteric cobalt in n- and p-samples
are close; therefore, they belong to the same cobalt state. The authors of [54]
give preference to interstitial cobalt in the Co® state.

Table 2.15. Energy levels (eV) of donor (A° — A") and acceptor (A° — A") tran-
sitions in A"BV'<Ni> crystals”.

Energy level ZnSe ZnS Zn0O ZnTe CdSe Cds CdTe
Donor level 2.74 35 - - 151 2.27 -
E. - E

Acceptor level 19 2.6 - 1.0 1.8 233 092
E, + E;

“ The position of E; in the forbidden gap is indicated as transitions D, A, 8, and a in
Figure 2.6.

1 Intra-center transitions to Ni?*(d ®) were detected only in CdTe.
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Figure 2.33. Cobalt solubilities in silicon: 1 — concentration of electrically active Co;
2, 3, 4 — total Co concentrations. (From the following reports: | — [87] n-type; Il —
[87] p-type; 111 - [88]; IV - [89]; V —[90]; VI — [94]; VII - [91]).

This is consistent with the fact that this state captures an electron to form
Co~ in n-silicon and gives off an electron to form Co" in p-silicon. However,
the solubility curve of electrically active cobalt (curve 1 in Figure 2.33)
based on the data of [87-89] is two orders of magnitude lower than the total
solubility curve for impurity cobalt (curve 2 in Figure 2.33). The latter curve
was detected using radioactive isotope *°Co [90-93]. So the amphoteric co-
balt component should be ascribed to the site state Cos with the d >-configu-
ration in an un-ionized state. When an electron is captured in n-type silicon,
the amphoteric center Co, changes to the d >-state; when a hole is captured in
p-type silicon, it changes to the d *-state. It is the middle filling of the d-shell
of an un-ionized Coy(d®) center which determines its “unstable” state
possessing an equal probability to accept or give off an electron, which is in
full agreement with the above conception of transition metal behavior in
silicon.

Thus, cobalt atoms exhibit amphoteric impurities of the site-type in cili-
con, although their solubility is low.

The attempts to find manifestations of amphoteric properties of
interstitial cobalt have been unsuccessful. The reason may be that Co; is not a
purely interstitial state but, rather, an associate of interstitial cobalt with
other point defects. This is indirectly supported by the fact that the forbidden
gap is “populated” by numerous levels (Table 2.9) attributed by many
authors to impurity pairs containing cobalt atoms.

Poorly explored amphoteric d-impurities in silicon.

Titanium in silicon is shown by the calculations of solubility enthalpies
[54] to occupy both (Ti°[3d *4s]) sites and (Ti"[3d?]) interstices in a crystal
lattice. The number of titanium atoms in one position must be close to that in
the other position, which is due to the small difference in the solubility en
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Table 2.16. Electronic configurations and energy levels of poorly explored interstitial
amphoteric impurities in Si.

Impurity Charge and Amphoteric  Energy levels,  References

electronic states states eV

Ti Ti7/Ti% 3d%3d* A E.—0.08 [96-98]
TiYTi*; 3d%/3d® D* E.-0.28
Ti*/Ti2*; 3d 3/3d 2 D% E,+0.25

Y V'V 3d®3d°® A E.-0.16 [97, 99, 100]
VOV 3d5/3d? D* E.-0.45
VIvZ 3d43d® D E, +0.30

Mn Mn/Mn% d®d’ A E.-0.11 [97, 100]
Mn%Mn*: d7/d® D* E.-0.42
Mn*/Mn%*; d ®/d® D% E,+0.25

thalpies. Experimental data, however, show that only Ti interstitial states
(Table 2.16) are amphoteric.

The presence of the Ti"[3d%] state has been detected by the EPR and
DENR techniques [93], as well as by diffusion studies [95].

Table 2.16 presents data on vanadium and manganese which, according
to some workers, also show amphoteric properties in silicon. Both impurities
are interstitial amphoteric centers.

Among other impurities in silicon, we will mention scandium and hy-
drargium.

Scandium is the least explored d-impurity in silicon. The authors of [101]
studied the electrical properties of the Si<Sc> system and arrived at the
conclusion that it had amphoteric characteristics. Scandium atoms behaved
like donors in p-Si and like acceptors in n-Si. The former is typical of transi-
tion metal atoms at interstices and the latter at silicon sites. However, the
lack of data on its solubility and diffusion, on the charge states and electronic
configurations makes it difficult to draw final conclusions concerning the
amphoteric nature of scandium in host silicon.

Hydrargium forms in silicon two acceptor levels E. — 0.31 and E, —
0.36 eV and two donor levels separated from the valence band top by 0.25
and 0.33 eV [102]. The author of [103] believes that since Hg occupies in the
periodic table an intermediate position between Tl and Au, which are substi-
tutional impurities in silicon, Hg should also occupy lattice sites in silicon
and behave as an amphoteric impurity. This suggestion is to be tested ex-
perimentally.

© 2004 by CRC PressLLC



2.3.6 Amphoteric excitons bound by d-impurities

The amphoteric properties of d"-impurities were shown above to be de-
scribed by reactions (2.2.1) and (2.2.2). A generated carrier may have a dual
fate in the allowed band. One possibility is to be captured by another d"-
center. This was described with reference to impurity Cr in an un-ionized
A°(d?)-state in GaAs when a free hole generated by the reaction A® — A=(d*)
according to (2.3.70) is captured by another d*-center which is to transform
to A*(d?) in accordance with (2.3.71).

The alternative is that an ionized d-center retains a free carrier, so that
instead of (2.2.1) and (2.2.2) we will have

A + g — [(AO + p)e] = A'e, (2.3.76)

A% + hoy — [(AO +e)p]: Ap. (2.3.77)

The activation energies of these reactions are

hwg =hop —€p, (2.3.78)
hwg =hop —€q, (2.3.79)

differing from regular ionization energies of charged centers by the energy of
the carrier binding to such a center. Electron transitions producing excitons o
and o are shown in Figure 2.6 by dashed arrows.

The products of reactions (2.3.76) and (2.3.77) are excitons bound by a
neutral (relative to the semiconductor) d-center. Here, one can really see the
well-known analogy with an exciton captured by an isoelectron trap, say, by
a nitrogen impurity in GaP. In both cases, the first carrier is retained by a
short-range potential and the other, having an opposite sign, by a long-range
Coulomb potential. Excitons bound by d-impurities will be termed, like in
[104], donor and acceptor excitons, in accordance with (2.3.76) and (2.3.77),
i.e., in accordance with the sign of the captured hydrogen-like carrier. In this
terminology, an isoelectron donor captures a donor exciton (2.3.76), while an
isoelectron acceptor captures an acceptor exciton (2.3.77).

It is clear from these reactions that a d-impurity in the A’-state can cap-
ture both donor and acceptor excitons. This is a manifestation of the essential
difference between a d-impurity and a simple isoelectron (isovalent)
impurity of the nitrogen type in GaP. Therefore, impurities may show
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amphoteric properties not only in the formation of charged centers but also
in the capture of excitons.

Theoretically, the amphoteric capture of an exciton by a d-impurity was
predicted in [105], and donor and acceptor excitons were detected experi-
mentally in ZnSe<Ni> by the authors of [106, 107]. A quantum mechanics
theory of impurity excitons bound by d-centers in semiconductors is dis-
cussed in [104]. Such excitons are shown to be excitations intermediate in
their properties between the Frenkel and Mott excitons, but both can be ex-
cited by an electromagnetic field. The two excitation systems are interrelated
due to the exchange and spin-orbital interaction between an electron and a
hole. A simple formula was derived in [107] for the probability ratio of
donor (W;) and acceptor (W,) excitons. With the account of (2.2.4), it can be
written for a site impurity as

+ P E.—c[gn v -mit
\\:Vv_zz(rrnn: J Eic(d “((Vm)lJ E\J/ ' (2.3.80)

pp

where mg and mjp are the effective masses of electrons and heavy holes,

respectively; E; are the d-level energies of the impurity center, counted off
from the band edges E. and E, and representing the level A’ — A~ in the nu-
merator of formula (2.3.80) and the level A° — A" in its denominator.

Therefore, the formation of excitons “follows” the appearance of the do-
nor or acceptor level of a d-impurity in the crystal forbidden gap. This means
that amphoteric excitons may be formed only if amphoteric d-levels already
exist in the forbidden gap, which can be easily established from a
comparison of data in Tables 2.17 and 2.15.

It has been shown that amphoteric excitons in A"'BY crystals occur very
rarely [104] but are normally found in GaAs<Cr> and GaP<Cr> crystals and
in many A"B"' semiconductors (Table 2.17).

Unlike excitons bound by a simple isovalent impurity (nitrogen in

Table 2.17. Basic lines of donor and acceptor excitons in A"BY! crystals”.

Energy level ZnSe ZnS ZnO ZnTe CdSe CdS CdTe
Donor exciton 264  3.39 - - - 2.19 -
Acceptor exciton 1.82 2.44 1.6 - 1.7 - 0.966

“ The positions of % in the forbidden gap are indicated as the transitions D, A, §,
and o in Figure 2.6.
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gallium phosphide), d-excitons can be identified only from the intracenter
transitions. For this reason, the capture of excitons, o and & in Figure 2.6,
must produce satellite lines near the impurity absorption band edge. This fine
structure was first observed by Kazansky and Ryskin [82] and ten years later
by other researchers [107]. The fine structure consists of the basic line and
its phonon reproductions.

An experimental registration of narrow weak lines against the
background of a strong photoionization absorption spectrum is a very
difficult task. So, a step forward was the application of electroabsorption,
which is light absorption when an external electric field is applied to the
sample. The first destroys the hydrogen-like bond in an exciton, reducing its
lifetime t. Variation in the lifetime changes the absorption linewidth.
Besides, because of the Stark effect, the electric field shifts the absorption
line toward lower energies. However, it practically does not affect the intra-
center transitions, since d-electrons are rather strongly localized, i.e., they are
strongly bound to their nucleus, or, at least, they are bound in a small space
limited by the nearest ligands. The reader can find in [104] the theory and
treatment of optical electroabsorption line broadening data, the information
on donor and acceptor excitons, as well as on bound excitons of different
types in various A"B"! crystals with d-impurities.

2.3.7 Dissociative amphoteric impurities

Impurity copper in germanium. The charge state of impurity copper can be
predicted from the general model of d-impurity behavior in semiconductors
(Section 2.2). The electronic structure of a copper atom in a free state is
3d *4s™.

When dissolved at a site or an interstice, a copper atom acquires one of
the electronic configurations presented in Table 2.18. It is clear from this
table that a donor state localized at a site is to have the d®-configuration,
which is very unlikely because the removal of seven out of ten electrons of
the d-shell would require much energy, whereas the filling of the d-shell up
to ten electrons, i.e., to equilibrium, can be done easily. Therefore, copper
must be a triply charged acceptor at germanium sites.

In the RFLW model, an interstitial electron is pushed out of the s-shell to
the d-shell. But the d-shell in copper is filled up, and so its un-ionized state
retains the 3d 1%4s® configuration which can be changed by giving off rather
than by acquiring electrons. Therefore, interstitial copper can have only Cu°
and Cu" states which have been registered experimentally. For example, Cu
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Table 2.18. Electronic configurations and charge states of Cu impurity centers in Ge.

Electronic configuration

Charge state

Site solubility Interstitial solubility
cul 3d’ 3d 1%4st
Cu~ 3d8 -
Cu” 3d° -
Cu® 310 -
Cu* 3d® 3d ™

forms three acceptor levels E;; = E, + 0.04 eV, E; = E, +0.33 eV, and E3 =
E. — 0.26 eV [108], attributed to Cu”, Cu~, and Cu~, respectively. The
presence of interstitial copper in the germanium crystal lattice has been
confirmed by experiments on its diffusion and on decomposition kinetics of
the Ge<Cu> solution.

The amphoteric behavior of copper reveals itself clearly in the decom-
position mechanism in germanium samples containing, in addition to copper,
other shallow doping impurities. This was reliably established in
experiments with the Ge<Cu,Sb> system [109, 110]. Copper precipitation in
the presence of donors was attributed (with the allowance for the charge state
of reacting defects) to the following quasichemical reactions:

K1
Cug 2 Cuf +v?~ (2.3.81)
K2
Ks
Cug 2 Cuj+V™ +e~ (2.3.82)
K,
Ks
D+ +nV2- 2 Z--Y (2.3.83)
Ke
K7
mcuf +z @Y > 7z (2.3.84)
Ks
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Ky

Cu;” — sink (2.3.85)
KlO
V = sink. (2.3.86)

Therefore, the study of decomposition of the complex solid solution Ge—
Cu-Sb indicates the possible existence of copper atoms in two crystal-
lochemical positions: at sites and at interstices. In the former, a copper atom
is a multiply charged acceptor and in the latter it has a positive charge and is,
therefore, a donor. But its ionization energy level appears to be located in the
allowed conduction band spectrum, so it is always in the inactive Cu; state.

Impurity copper in silicon. The above considerations concerning the
electrical behavior of copper in germanium will also be valid for silicon.
This follows from the general RFLW model for these semiconductors. Like
in germanium, copper in silicon is a triply charged acceptor at a site. The
generally accepted values for the ionization energy are E, + 0.24 eV, E, +
0.37 eV, and E, + 0.52 eV, in accordance with the acquired number of
negative charges. The difference is that the first ionized state Cus in silicon
is located deep in the forbidden gap and does not contribute significantly to
the electrical properties of silicon samples.

Impurity gold in silicon. In the late 1950s, Collins and co-workers carried
out an investigation of the electrical properties of Si<Au> [111] and
identified two Au levels in the forbidden gap: a donor level Ep = E, + 0.35
eV and an acceptor level Ex = E. — 0.54 eV. The electron filling of these
levels in silicon samples doped and undoped with shallow impurities is
shown schematically in Figure 2.34.
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Figure 2.34. Schematic filling of gold levels in silicon: (a) — without foreign impuri-
ties, (b) — with a foreign donor impurity; (c) — with a foreign acceptor impurity (Ng,
Na >> NAu)-
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At low temperatures, the Au levels are separated by AE >> kT and can be
regarded as being independent, which considerably simplifies the solution of
the neutrality equation, allowing one to identify the ionization energy of the
levels with the slope of the temperature dependence of Hall concentration.
The details of this treatment can be found in [54]. Here, we will mention
only the basic (recombination) properties of Si<Au>. These can be easily
understood in terms of the filling diagram of energy levels in Figure 2.34.

At Ny >> Npy, the crystal has the n-type conductivity, and the Fermi level
lies high above both Au levels which appear to be completely filled by elec-
trons. The donor level is un-ionized and the acceptor level is negatively
charged Au™. It has a characteristically large value of hole capture cross sec-
tion opa because of the Coulomb attraction of holes from the valence band.
The capture of a hole will immediately lead to the attraction of an excess
electron from the conduction band. Therefore, the Au acceptor level E4 must
act as an effective recombination center.

In a p-type crystal, i.e., at N, >> Na,, the acceptor level will, on the con-
trary, be un-ionized, while the donor level will be totally ionized, effectively
capturing electrons from the conduction band with a large capture cross sec-
tion Gep.

The experimental lifetimes of minority carriers in Si<Au> were indeed
found to be small. The respective values of capture cross sections are pre-
sented in Table 2.19.

Although the data of different authors differ by a factor of 5 or 7, they
demonstrate a considerable excess of the capture cross sections for centers of
opposite signs, as was expected from the amphoteric behavior of gold im-
purity in silicon. Direct evidence for gold as an effective recombination
center was obtained in the work [112] by measuring the relaxation time of a
diode made from Si<Au>.

Table 2.19. Cross sections for hole capture by the acceptor level (,4) in p-Si<Au>
and electron capture (Gep) in n-Si<Au>.

Measurement 6, cm? in n-Si o, cm?in p-Si
temperature, L. References
Charge state of recombination center
K Au° Au A’ Au'

300 5x107  1x1075 107 3.5x107%° [113]
1.7x107  1.1x10™ 2.4x107® 6.3x107° [114]
77 3x107°  1x10™8®  3x10®  ex10M [113]
5x1076  2.3x107 ? 1x107%® [113]
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Figure 2.35. Recombination times .1, T_3, and o in combined recombination via
amphoteric Au levels in silicon. The times of independent recombination (tT_a, T+a, T-
b, T+p) Via Au donor and acceptor levels are given for comparison.

These facts indicate that the recombination at both levels may be consi-
dered to occur independently in the first approximation. Nevertheless, we
would like to mention the work [115] which shows with a more general
model that the recombination in Si<Au> must be described by three life-
times: 1o, T1, and T,. Their dependence on the carrier concentration (holes)
calculated in [115] is shown in Figure 2.35. One can see p ranges, in which
T+ and t_; coincide with t_ or T in separate recombination via gold ampho-
teric levels.

Silver in silicon behaves as other group-I impurities. Silver atoms pro-
duce donor (E, + 0.32 eV) and acceptor (E. — 0.29 eV) levels in the silicon
forbidden gap [95, 249]. These values can be regarded as “established” ones,
but many workers have found other energy values: —-0.22, —0.36, and -0.59
eV for acceptor states and +0.26, +0.33, and +0.40 eV for donor states. It
still remains to be found which of these levels are really associated with sil-
ver atoms and to which states they correspond.

That silver atoms belong to dissociative amphoteric impurities follows
from the dissociative nature of their diffusion [116].

Amphoteric 5d-impurities in silicon were identified by Yunusov and co-
workers [117]. Using these data, Table 2.20 summarizes the basic properties
of impurities considered to be amphoteric. The diffusion parameters D, and
AE,, refer to the temperature range from 1000 to 1250°C and describe the
total concentration of the doping impurity. The dissolution enthalpy AH; also
refers to the total concentration, while the decay activation energy E, charac-
terizes the decay of each individual level.
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Table 2.20. Characteristics of dissociative amphoteric 5d-impurities in silicon.

Impu- Dg, AE, eV AH,, eV E.,  Donor level, Acceptor
rity cm*/s eV eV level, eV
Ir 4x107%  1.3+0.1 2.2+0.1 089 E.-03() E.-0.18(k)
0.61 E.-0.5(s)
1.18
Rh 1.6x102  1.240.2 1.640.2 - E.-03(@) E.-055()
Ru - - 3.35+0.02 - E.-045() E.-0.22(s)
2.3+0.02 -
Os - - - - E,+0.18(k)
E.-0.18 (k)
E.—0.54 (s)

s — site, i — interstice, k — unidentified associate.

A specific feature of these centers is the energy line broadening which
looks more like a band, so that the values in Table 2.20 are a kind of “center
of mass” of the bands. The broadening is 0.02-0.03 eV, and it is unclear
whether it is due to the choice of centers slightly differing in the ionization
energy or to the close vicinity of the 5d-atom excited states.

2.3.8 Cation—-anion amphoteric impurities in semiconductor compounds

It follows from Section 2.3.1 that cation—-anion amphoteric impurities in
A"'BY compounds are to be atoms of group-1V elements in the periodic
table. Indeed, this suggestion has been supported by numerous experimental
investigations (Figures 2.36 and 2.37). Moreover, the theory of amphoteric
impurities described in Section 2.3.4 can predict the impurity distribution be-
tween the crystal sublattices, which varies with the impurity concentration,
temperature, and pressure of the volatile component. This result has gener-
ally been confirmed experimentally. But in some cases, the actual behavior
of group-1V impurities appears more complicated and depends on the
presence of other defects and their interaction with the amphoteric impurity.

The behavior of gallium arsenide doped with silicon is understood much
better than that of other systems. This seems to account for the wide applica-
tion of GaAS<Si>. Epitaxial films made from this material possess both n-
and p-type conductivity, and this can be achieved in the same technological
process. This approach is used for the fabrication of p-n-structures, for
example for light-emitting devices.
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Figure 2.36. Electron concentration versus group-1\V amphoteric impurity content in
GaAs: 1 - Si [118]; 2 — Ge [258]; 3 — Sn [259].

Germanium in gallium arsenide shows a greater amphoteric activity than
silicon. When grown from stoichiometric melts, GaAs<Ge> crystals possess
the n-type conductivity, but the degree of self-compensation Np/Na in them
is lower than in GaAs<Si>. However, the compensation of GaAs samples
doped with germanium is more sensitive to variation in arsenic vapor pres-
sure—there is an additional compensation due to the formation of associates
with germanium atoms [122].

When grown by liquid-phase epitaxy, GaAs<Ge> films have p-conduc-
tivity with a small compensation degree. This means that the amphoteric be-
havior of germanium shifts toward the acceptor side with decreasing tem-
perature, i.e., germanium atoms tend to dissolve in the As-sublattice rather
than in the Ga-sublattice. The inversion temperature (n-to-p transition tem-
perature) becomes higher than the usual epitaxial growth temperature and
lies within the range of the time—temperature regime normal for GaAs<Si>.

Doping with tin always produces n-type gallium arsenide crystals. This
means that the amphoteric behavior of this impurity is strongly shifted to-
ward the Ga-sublattice.

Information on the behavior of impurities in other A"'BY compounds is
more scarce. This concerns physicochemical, electrophysical, and optical
properties of these compounds doped with group-1V elements.

The data on the energy levels of group-IV impurities in A"BY com-

© 2004 by CRC PressLLC



ny, cm

1015 L

1014 1
1013 1016 N, cm

3

Figure 2.37. The ng(N) dependence in undoped GaAs layers grown by gas-phase
epitaxy [121]. Substrate orientation: |1 — (100); Il — (111)B; Il — (311)A. Solid lines —
calculations from formula (2.3.29) with the values:

I -Ka=0.38; [V]=7x10" cm,

I1- Ky =0.23; [V] = 3.7x10% cm™3,;

Il = Ky = 0.74; [D*] = 2x10% cm™=.

pounds are given in Table 2.21. One can notice certain regularities here. For
example, group-1V impurities produce shallow levels only in direct band
A"BY semiconductors; they produce deep levels in indirect band gallium
phosphide.

Shallow levels can be considered as hydrogen-like only with many reser-
vations. Their hydrogen-like behavior is supported by practically identical
ionization values of their donor states in gallium arsenide and by close
values in indium phosphide, as is seen from Table 2.21. Their difference in
gallium phosphide, however, makes one doubt their hydrogen-like nature.
Table 2.21 contains a fairly large number of blank spots in the energy level
measurements.
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Table 2.21. Energy levels (eV) of group-1V impurities in basic A"'BY compounds

[123, 124].
Impu- GaAs GaP InP
rity Donor  Acceptor Donor Acceptor Donor Acceptor
Cc 0.019- - 0.041 0.020 -
0.046
0.046
0.048
Si <0.006  0.026- 0.080- 0.200- 0.005- -
0.030 0.082 0.202 0.007
Ge <0.006  0.035- 0.195- 0.253- <0.010 -
0.038 0.201 0.257
Sn 0.006 0.17- 0.060 - <0.010 -
0.20
Pb - 0.12 - - - -

Let us consider briefly the behavior of cation—anion impurities in particu-
lar A"'BY compounds.

Amphoteric impurities in GaAs. It is first interesting to see how much the
experimental n(Na) curve for GaAs agrees with the theory developed in
Section 2.3.1. The theory gives a general expression (2.3.21) for the
description of the n(N) function. However, when films were grown by gas-
phase epitaxy in the temperature range 970-1080 K [121], the intrinsic
carrier concentration n; = 10* cm™ was much higher than the maximum
electron concentration in the films, ny = (2-3)x10' cm™. Since n = n; + ny,
then n = n;, in which case the condition of (2.3.21) changes to a more simple
expression (2.3.29) used for the data comparison [260] illustrated in Figure
2.37. Note that the quantity N, plotted on the abscissa represents the sum of
A from (2.3.29) and V from (2.3.31). Qualitatively, the curves in Figure 2.37
look very much like theoretical curve 1 in Figure 2.23. The authors obtained
a quantitative agreement at the values of K; and [V] indicated in the caption
to Figure 2.37.

It follows from the amphoteric impurity theory that K; decreases with a
change in arsenic vapor pressure Pas as Pas Y2, This theoretical prediction
was confirmed experimentally in [121].

However, curve 3 in Figure 2.37 shows a deviation from linearity in the
high concentration region not toward the shoulder, as it is required by the
theory, but toward higher electron concentrations. The amphoteric theory
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Figure 2.38. Concentration dependence of ionized centers in GaAs epitaxial layers
with various contents of silicon and oxygen impurity atoms [126]: 1’ — calculation
without compensation; | — undoped layers; Il — Si-doped layers; Il — layers with
fixed oxygen content (numbers at the points, cm™): 1 — 1.2x10%; 2 — 1.5x10%; 3 -
5.8x10'; 4 - 10",

requires, in this case, the assumption concerning generation of additional
donor centers D*. On this assumption, curve 3 can be fitted to the theory,
taking Ka = 0.74 and [D*] = 2x10* cm™. Of course, the origin of additional
D" donors remains unclear.

The study of epitaxial layers deliberately doped with silicon has shown
[125, 126] that the simple version of amphoteric impurity theory (Chapter 1)
is valid only in the range of low impurity concentrations Na < 10" cm™. At
high concentrations, an essential contribution is made by other background
impurities. The main background impurity is oxygen, whose effect is clearly
demonstrated in Figure 2.38. At N; > 8x10" cm™, there is a linear depen-
dence ng(N;) demonstrating a stable compensation degree K = No/Ng = 0.25.
This value agrees well with the above value of 0.23 obtained by gas-phase
epitaxy for the same substrate orientation.

The experimental points obtained for silicon-doped and undoped films
[126] fit well in the same curve, which allows considering K = K; = 0.25 as a
self-compensation parameter of amphoteric silicon. In the low concentration
range N; (< 8x10™ cm™), the compensation degree strongly depends on oxy-
gen content, beginning with the value > 10" cm™. Without going into a de-
bate concerning the nature of compensating centers, we can conclude from
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Figure 2.38 that the amphoteric theory also agrees with the experiment for
silicon-doped GaAs samples grown by liquid-phase epitaxy.

More direct evidence for the cation—-anion amphoteric behavior of silicon
in gallium arsenide was obtained by Spitzer and co-workers [127] by
measuring local modes in optical absorption spectra. The far-infrared region
was found to contain absorption bands associated with the donor state Sig, (v
=384 cm™) and the acceptor state Sias (v = 399 cm™); the band intensities
were found to vary with the compensation degree.

Germanium has a well pronounced amphoteric behavior in GaAs among
group-1V impurities. This is manifested as a higher degree of self-compensa-
tion (curve 2 in Figure 2.36), which essentially affects the electrical proper-
ties of GaAs<Ge> because of the lower electron mobility than the ion
mobility in GaAs<Si>.

Evidence for the amphoteric nature of germanium in gallium arsenide
was obtained from thermal treatment of GaAs<Ge> samples [128]: the p-
type conductivity changed to the n-type conductivity when the samples were
heated in arsenic vapor under elevated pressure. The number of arsenic va-
cancies decreased and the Geg, concentration increased.

Tin, in contrast to germanium, has less pronounced amphoteric proper-
ties. It retains its n-conductivity up to a very high concentration in
GaAs<Sn> samples (curve 3 in Figure 2.36). But some workers have also
identified an acceptor level located deep in the forbidden gap (Table 2.21).
All doubt concerning the amphoteric nature of tin in gallium arsenide and
other A"'BY was removed after y-resonance (the Mossbauer effect) of **°Sn
nuclei was observed during their implantation into A"'BY crystals [128]. This
work also showed that the donor state represented a single substitutional tin
atom in the A-sublattice, while the acceptor state was a defect with a neutral
tin atom associated with the nearest point defect at a B-sublattice site.

Among other properties of GaAs doped with group-1V elements, we
would like to mention some specific features in photoluminescence spectra,
in particular, the presence of long wavelength bands. Such bands are known
to exist in undoped gallium arsenide samples. Most workers have concluded
that they are due to recombination centers involving intrinsic point defects.
Doping of gallium arsenide with group-1V impurities gives rise to long
wavelength bands: at 1.0 eV (n < 10*® cm™) and 1.15-1.3 eV in GaAs<Si>
and GaAs<Sn>; at hv, = 1.4 eV and hv, = 1.17 eV in GaAs<Ge>. It is
known from the general recombination radiation theory that band intensities
depend on the presence of nonradiative centers. An investigation of this
problem? revealed an important difference between the doping with ampho-

2 MN. Kamalov, “The formation of electrically and recombinationally active centers in doped

n-GaAs crystals”. Abstr. dissert. Tashkent, 1zd. FTI AN Uz. SSR, 1981 [in Russian].
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teric group-1V impurities and that with non-amphoteric impurities, for ex-
ample, with group-VI elements. In the latter case, the concentration of non-
radiative centers, N, in the range n = 1x10"-2x10"® cm™ did not depend on
the charge carrier concentration and began to show this dependence only in
the heavy doping range. With silicon or tin, the concentration of nonradiative
centers varies over the impurity concentration range.

This is an essentially fundamental result. It supports the idea [129] of
neutral defect generation by group-I1V impurities, which was suggested from
the study of electrical activity of these impurities in gallium arsenide. The
idea is that electrical properties, in particular, the no(N) curves theoretically
predicted as resulting from the impurity dissolution in both A"'BY
sublattices, have a different interpretation. They are accounted for by the
transition of, say, silicon atoms to the neutral state. This transition depends
on the concentration of volatile impurity (e.g., silicon) and on the crystal
growth conditions which prescribe the ensemble of intrinsic point defects.
These defects determine the transition of a group-1V impurity to the neutral
state because they are either involved in neutral associates or accelerate the
loss of electrical activity by the group-1V impurity.

The main advantage of this model is the self-consistency of the problem:
the concentration of an electrically active group-1V impurity depends on the
defect composition of a crystal, while the defect composition itself varies
with the impurity concentration.

This syneresis deserves special attention. It partly follows from the
studies of GaAs<IV> compounds, but if it is supported by data on other
A"'BY compounds, the amphoteric impurity theory will require further so-
phistication.

Amphoteric impurities in gallium phosphide. The no(N) curve for
amphoteric impurities in GaP has the characteristic shape shown in Figure
2.39. There is no statistically reliable distribution of group-1V impurities in
the GaP sublattices, but the measurements of electrical resistivity [130, 131]
and photoluminescence [132] indicate the building-in of, say, germanium
atoms into both GaP sublattices. The activation energies of Ge donor and
acceptor levels are found to be 0.36 and 0.45 eV, respectively. These values
seem to be overestimated, since they were obtained without consideration of
the electron—phonon interaction of deep levels inherent in germanium.

Amphoteric impurities in indium phosphide. The electrical activity of
group-1V impurities is discussed in detail in [134] with reference to samples
grown by the Chokhralsky method. The total concentration of impurity
atoms was found from the atom absorption analysis with an error £10%. The
greatest difficulty was caused by silicon doping.
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Figure 2.39. The nyo(N) dependence in GaP<IV> crystals: 1 — GaP<Si> [133]; 2 -
GaP<Ge> [131].

The authors of this work could grow single crystals only with a silicon con-
tent in the melt of less than 0.15% (mass.) (1.5x10%° cm™).

The electron concentration in InP<Si> crystals was less than 5x10%. No
ways of obtaining samples with higher silicon concentrations were found.
This radical difference between InP and other A"'BY crystals doped with sili-
con remains could not be explained, so the authors of [134] focused mostly
on the behavior of germanium and tin in InP crystals.

The same samples were used to measure the Hall effect and total
impurity concentration after the removal of contacts. The electron concen-
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Figure 2.40. The ny(N) dependence in InP<IV> crystals [134].
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tration variation with impurity content in the solid phase is presented in
Figure 2.40. One can see that germanium is more amphoteric than tin.
Calculations show that about 90% of tin atoms are localized in the In-
sublattice and only 53-55% in the Ge-sublattice. The analysis of the binding
energy of impurity and host atoms in InP and of their tetrahedral radii
indicates [135] that the behavior of germanium and tin cannot be accounted
for by a chemical interaction. One must also consider the deformation energy
which causes the remarkable amphoteric behavior of germanium, since its
tetrahedral radius lies approximately halfway between the tetrahedral radii of
indium and phosphorus.

Iy, relative units
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Figure 2.41. Photoluminescence spectra of undoped InP samples grown at 77 K by
the following methods [135]: 1 — from the gas phase (n = 3x10* cm™); 2 — from a
solution melt; 3 — from a stoichiometric melt (n = 3x10'® cm™); 4, 5 — photolumi-
nescence spectra of InP<Si> samples cut out of various parts of an ingot (n = Ngq —
No): 17— 1.7x10" cm™; 2" — 5.4x10' cm™®.
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Doping with group-1V impurities (Figure 2.41) changes considerably the
photoluminescence spectra of doped samples, as compared with undoped
crystals. When a strong compensation is present (curve 1), the 1.33 eV line
has the same intensity as the 1.41 eV line. The origin of the former, like the
origin of the other lines except for 1.41 eV, is unclear and may reflect the
ability of silicon to interact with other impurities. This idea is supported by a
considerable change in photoluminescence intensity with the doping
technology used, as was pointed out in [135].

The photoluminescence spectra of indium phosphide doped with Ge and
Sn are shown in Figure 2.41. Clearly, these impurities contribute similarly to
the optical properties as well. Their spectral lines at ~1.37-1.36 eV seem to
belong to a group-1V impurity in one of the amphoteric states, most likely, in
the acceptor state. In other words, these are radiation lines arising during the
transition of an electron from a shallow donor level (or from the conduction
band) to the acceptor state of amphoteric germanium or tin.

The longer wavelength bands at 1.16-1.15 eV are likely to belong to as-
sociates of the An—V,-type of donor—acceptor pairs, but this is to be proved
experimentally.

Amphoteric impurities in gallium antimonide. The compound GaSb has a
high concentration of defects and is normally of the p-type with the
concentration of “natural” acceptors of 10*® cm™,

Of interest is GaSb doping with group-IV elements, whose amphoteric
behavior has a strong influence on the ensemble of intrinsic defects in both
the cation and anion sublattice. In combination with a high compensation
degree under heavy doping conditions, this promises new luminescence
properties of these materials. Photoluminescence studies of slightly doped
GaSh<Si>, GaSh<Ge>, and GaSh<Sn> did not show a significant difference
from the doping (p ~ 10" cm™) with conventional shallow impurities of
group-11 and group-V1 elements.

The authors of [136] studied photoluminescence of heavily doped [p =
(2-5)x10"° cm™] and strongly compensated (K; = 0.6-0.8) epitaxial
GaSb<Sn> p-layers. Epitaxial layers grown from the melt and single crystals
show a discrepancy between the carrier concentration (p) and the number of
tin atoms (Nsp), indicating the amphoteric behavior of the impurity. The
compensation degree K; was found to be 0.6-0.8. It was calculated from the
layer composition data obtained analytically with the neutrality equation on
the assumption of a complete ionization of impurity atoms at 300 K.

In addition to the edge line (hv,,= 0.799 eV), the representative photo-
luminescence spectra had a line corresponding to the first charge state of a
natural acceptor at 0.775 eV and bands at hv,, = 0.736 eV (B), 0.695 eV (C),
and 0.650 eV (D). Of these bands, only B and C could be reliably attributed
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to amphoteric tin, because the investigators [137] used the effect of ampho-
teric impurity redistribution between the sublattices when the doping with an
additional impurity shifted the Fermi level and reduced the number of substi-
tuting positions in one of the sublattices. The acceptor impurity used for this
purpose was Cd. It was found from the photoluminescence spectra and the
compensation degree that the tin concentration in the Ga-sublattice (band C)
increased but its concentration in the Sh-sublattice (band B) decreased. Un-
fortunately, there are no other reliable reports of the cation—-anion amphoteric
behavior of other group-1V impurities in GaSh.

Cation-anion amphoteric impurities in CdSbh. The behavior of tin is
understood better than that of other group-1V impurities. Electrical properties
of CdSh samples with known impurity contents were studied experimentally
in order to identify the states of tin atoms [138]. It was found that only about
16% of the total amount of impurity atoms in the depletion region were
ionized. It was natural to suggest from the diffusion and solubility data that
most tin atoms were localized at interstices and that these atoms were
electrically neutral, while tin atoms substituting Sh had acceptor properties.

An increase of cadmium vapor pressure decelerated tin diffusion, which
was interpreted by the authors of [138] as being due to a higher
concentration of vacancies in the Sb-sublattice and to the “pumping” of
interstitial tin to the positions Vs,. Obviously, tin atoms must be doubly
charged acceptors in these positions and doubly charged donors in the V
positions. However, there is no experimental evidence for the existence of tin
atoms in the Cd-sublattice, and this circumstance does not permit the
conclusion to be made that this and other group-IV impurities in CdSb
possess cation—anion amphoteric properties.

Cation—anion amphoteric impurities in SiC. According to the data of
[139, 140], SiC crystals doped with nitrogen exhibit properties that should be
treated in terms of the amphoteric nature of this impurity.

Every silicon or carbon atom in the silicon structure is tetrahedrally sur-
rounded by four atoms of the other sublattice. The SiC structure has a
polytype character. The first coordination spheres have a completely identi-
cal arrangement of atoms in all SiC polytypes, but in higher spheres, begin-
ning with the second one, there are differences in the arrangement of
neighboring atoms. For example, 4H-SiC has two unequivalent positions of
atoms in the host lattice. The lattices of 6H-SiC and 15R-SiC have, respec-
tively, three and five unequivalent positions, and so on.

Substitutional impurity atoms will also occupy unequivalent positions in
the SiC lattice. EPR data indicate that impurity nitrogen mainly substitutes
sites in the Si-sublattice, but there is also a probability, though not very high,
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that nitrogen atoms can occupy the C-sublattice sites. It follows from simple
considerations that a nitrogen atom capable of substituting atoms in both
sublattices must be a donor. Indeed, donor levels N have been found to be
101, 158, and 163 meV, counted from the conduction band bottom.

It is quite fair to mention an alternative model, in which a donor center,
producing one level at ~100 MeV and another at 150 MeV, is ascribed to
background impurity oxygen. Note that the choice of interpretation of ex-
perimental levels determines the validity of amphoteric nitrogen content
data, since it is the unequivalence of substituted positions which underlies
amphoteric properties [139, 140]. The properties are due to the different
depths of the energy levels. Of course, the impurity does not change its sign,
as is the case with group-1V impurities in both A"'BY sublattices. But since
the level depth is E; = f(Z), where Z is the impurity effective charge, then the
difference in the ionization energies of the levels is an evidence for different
values of Z for impurity nitrogen in different unequivalent positions in the
C-sublattice of SiC.

Impurity nitrogen appears to show a similar amphoteric behavior in the
Si-sublattice. The values of the three donor levels counted off from the
conduction band were found to be 159, 247, and 255 meV [139, 140].

It should be emphasized that further investigations are necessary because
the “attribution” of observable lines to foreign impurities or to amphoteric
behavior implies different applications of SiC<N> crystals. The former
interpretation will require the development of additional deep purification
techniques and the latter will require different ways of charge exchange of
the levels.

2.4 ISOVALENT IMPURITIES

2.4.1 General concepts

The investigation of isovalent impurity states in semiconductors was
initiated in the 1960s [141]. Since that time, interest in the behavior of this
class of impurities has been slowly but steadily increasing. The earlier
studies were reviewed in the publications [142-144], which describe the
basic experimental data and theoretical concepts concerning isovalent
impurity effects on electron energy spectra.

To begin with, isoelectron states can be produced in several ways. One
way is by heavy doping of semiconductor compounds, for examples, A"'BY
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crystals with ordinary shallow donors and acceptors. Acceptors, say Zn
atoms, substitute the A"' element and donors, say Te atoms, substitute the BY
element. If the number of both types of atoms is large, there is a high
probability for them to be located at neighboring lattice sites to form a
donor—acceptor pair. Then, the total valence of the pair will be equal to the
sum of the valences of the substituted A"' and BY atoms.

Another way is to produce a neutral vacancy in a crystal lattice. A single
vacancy can be regarded as a kind of “quasi-atom” possessing the same
absolute valence as the substituted host atom. Of course, the vacancy’s
coordination number will be different from that of a normal lattice atom. For
this reason, vacancies represent a special type of isoelectron state. It should
be mentioned that the role of vacancies in semiconductors has not been
considered at this angle.

Finally, there is a more obvious way of creating an isoelectron
situation— by doping a crystal with isovalent impurities. Then, the impurity
atoms belong to the same group in the periodic table as the host atoms they
substitute. This isovalent doping (substitution) is the simplest way of
creating isoelectron states, because this is an elemental doping which does
not change the coordination number of the substituted crystallographic
position.

Today, isovalent impurities are classified into two groups [142, 145].
One group consists of impurities introducing local states into the forbidden
gap: either single energy levels or excitonic levels bound by an isoelectron
impurity center. The other group includes isovalent impurities, whose energy
states are involved in the formation of allowed energy bands. In this case, we
deal with what is known as continuous solid solutions with a band spectrum
monotonically changing with the concentration of isovalent impurities.

The latter are capable, at the beginning, of producing quasi-local levels in
allowed bands [146]. These are so called resonance levels possessing indi-
vidual properties, like any local levels, but also belonging to a continuous
band spectrum, or, more exactly, being in resonance with it.

The ionization of an isovalent impurity can be described by the same re-
actions as that of any other impurity center [145]:

E| EI
Xo — X' + ¢~ (donor), X% - =X+ e" (acceptor), (2.4.1)

where X°, X*, and X~ are neutral and charged states of a center; e” and e" are

a free electron and a free hole; E, is the center ionization energy necessary
for the reaction (2.4.1) to occur.
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The binding energies of charge carriers, Epq, for a donor and an acceptor
are described by the neutralization reactions

Ebd Ebd
X" — X% +e* (donor), X~ — X%+ ¢ (acceptor).  (2.4.2)

In these reactions, a charged impurity becomes neutral. The combination of
the ionization reaction and the neutralization reaction yields the ionization

reaction of the host semiconductor: 0 £ e* + e, where E, is the forbidden

gap width. Hence, we have Eg = E, + Eyq; isovalent impurities have low va-
lues of Eyg. For example, when a phosphorus atom is substituted by a Bi
atom in GaP, holes are bound by the energy E,q = 0.038 eV [147]. Since
Eq =2.338 eV in GaP, a Bip atom in GaP is a very deep donor with the ioni-
zation energy E, = 2.3 eV. The impurity Np in GaP binds an electron using
the energy Epg = 0.008 eV [148]. Therefore, this impurity is a very deep ac-
ceptor with the ionization energy E, = 2.33 eV. These illustrations show that
the problem of isovalent impurities is part of the more general problem of
deep impurity centers in semiconductors. Therefore, most of the unsolved
problems of deep levels are equally relevant to isovalent impurities.

The isovalent impurity levels are so deep that they can be regarded, in
many situations, as coinciding with the allowed band edges E. and E,. Thus,
isovalent impurities do not practically contribute additional energy levels to
the forbidden gap of the host semiconductor, and this is their specific feature.

Historically, there were two distinct periods in the study of isovalent im-
purities. During the initial period (1963-1977), much research effort was
focused on the manifestation of such impurities in nonequilibrium effects
observed in a limited number of semiconductor materials. More recently, the
focus was on equilibrium characteristics of semiconductors doped with
isovalent impurities.

As early as 1963, Gross and co-workers [141] detected a series of narrow
lines in photoluminescence spectra of GaP<N> crystals (Figure 2.42). The
spectral lines were shown to be associated with the presence of nitrogen in
GaP crystals, and its evolution with increasing nitrogen concentration was
followed.

The basic idea underlying the interpretation of the GaP<N> spectra was
the formation of an exciton bound by an isovalent impurity. This process
was represented as consisting of two stages [148]. A neutral isovalent atom
first captures an electron (or a hole) in the short-range impurity field and
becomes charged. There is already a long-range impurity potential in this
state as screened Coulomb potential which pulls out a hole (or an electron).
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Figure 2.42. Photoluminescence spectra of GaP samples slightly doped with nitrogen
at a concentration less than 5x10'" cm™, T = 4.2 K [141].

As a result, the isovalent impurity again becomes neutral, but this new state
is an excited one. The electron-hole complex around an isovalent impurity
was called an exciton bound by an isoelectron trap [149]. The energy
released in exciton annihilation produces narrow A and B lines in
luminescence spectra (Figure 2.42). The other spectral lines represent
phonon reproductions. In the first approximation [150], the annihilation
energy is the sum of binding energies of both carriers. The binding energy of
a carrier in a Coulomb field is often known; so, the luminescence
measurements can be used to find the binding energy of the first carrier in
the short-range impurity potential field. This is the way the binding energies
of most isovalent impurities were determined [142, 143]. For example, the
energy of exciton binding by Np in GaP is 21 meV [151] and by Bip in GaP
about 107 meV [152].

A similar type of luminescence (recombination radiation) is observed in
other semiconductors with isovalent impurities (Table 2.22).

Isovalent impurity pairs capable of binding excitons can arise as the im-
purity content in the crystal increases. An illustration is GaP heavily doped
with nitrogen. An increased nitrogen concentration leads to a shorter N-N
distance, and the respective energy lines shift toward the long wavelength
region (Figure 2.43).
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Table 2.22. Experimental data on the isovalent impurity effect on electron energy
spectra in semiconductors.

Type of spectral Semiconductor—impurity References
change system
Continuous change of GaAs; Sby [153-155]
Eq(X)

GapIn,As [153-155]

GaAlyAs [153]

Singularities in Eg(x) Ge1,,Siy [156]

CdS<Te> [153]

Levels inside E, ZnTe<O> [148]

Ge<Sn> [157]

GaP<Bi>; GaP<N> [148]

InP<Bi> [157]

GaP<Zn,0> [158]

GaP<Cd,0> [159]

GaP<Li,0>; Si<C> [160]

Resonance levels GaAs; «Shy [161]

Bound excitons CdS<Te> [162]

ZnTe<O>; GaP<N> [148]

GaP,_,As,<N> [163]

AgBr<J>; AgCl<J> [143]

Optical density

A |

O 1 1 1 1 W
2.225 2.30 2.305 2.31 2.315 2.32
hv, eV

Figure 2.43. Photoluminescence spectra of GaP heavily doped with nitrogen at a
concentration 5x10'® cm= at T = 4.2 K [144].
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Luminescence studies have shown that isovalent impurities can bind not
only single excitons but also excitonic molecules [164] consisting of several
electrons and holes, but this phenomenon remains poorly understood.

The above two-stage model of exciton binding by isovalent impurities
was successful in interpreting the luminescence and optical absorption spec-
tra in various semiconductor—isovalent impurity systems. Nevertheless,
many aspects of the impurity involvement in the formation of non-
equilibrium properties are still unclear. For example, it is not clear whether
an isovalent impurity state can exist with one carrier. In any case, there is no
direct evidence for the localization of only one type of carrier at an impurity,
even in the well studied GaP<N> system; such transitions, however, seem to
occur in GaP<Bi> crystals [146].

Further, it is not clear whether an exciton is formed in a two-stage or one-
stage process, i.e., whether the capture of both carriers occurs simultaneously
or with a time delay at different potentials. Ryvkin and co-workers [165]
suggested a one-stage process of exciton formation in their study of thermal
attenuation of the A band (Figure 2.42). But later, these authors reconsidered
this idea in favor of a two-stage model. The reason for the long duration of
afterglow following a temperature increase in GaP<N> crystals is also
obscure [167]. Thermal decay of an exciton in these crystals is known to
begin at 12 K, but excitonic radiative transitions dominate in the spectrum at
room temperature, too.

This phenomenon stimulated the designing of commercial green lumines-
cence emitters on GaP<N> crystals, although many aspects of isovalent im-
purity behavior still remain unclear.

Recombination radiation studies have revealed bound isovalent impurity
states in the forbidden gap in some semiconductors. Of interest is the appear-
ance of an isoelectron situation after double doping in GaP<Zn,0> and
GaP<Cd,0>. The bound states here are produced by impurity atoms at
neighboring lattice sites. A more complicated isoelectron situation arises in
the formation of Li,O in GaP<Li,O> crystals. It was shown in [168] that an
Op atom and one Lig, atom substitute neighboring sites, while the other Li
atom is in an interstitial position. A complex isovalent impurity with an in-
terstitial C atom was found in silicon [169]. Among special states, which an
isovalent impurity can produce, are resonance and antiresonance levels in the
allowed electronic spectrum. Experimental observation of such states promi-
ses their manifestations in optical phenomena. Today, however, there is only
one report [170] of an additional feature at 7w =2.1eV in the photoconduc-

tivity spectrum of GaAs;_Sby at x < 0.02, which is interpreted by the authors
as a resonance level of isovalent Sh at 0.6 eV in the valence band. This value
coincides with the theoretical value obtained by the same authors. Still, the
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identification of this spectral feature as a resonance level in GaAs<Sb> re-
quires additional evidence.

Considering the effect of isovalent impurities on electron energy spectra,
one should not ignore possible singularities in the band structure. The study
of optical absorption spectra in Gey,Siy (x = 9x10™-1.2x107°) revealed a
discontinuity in the Ey(x) function. Detailed investigations of Eg(x) at very
small x in GaAs;_,Shy and in Ga;_In,As [154, 155] detected no singularities
but, on the contrary, supported the validity of equations of the type Eq = Ego
— ax + bx? [153, 171] describing a monotonic variation of Eq4(x) over the
whole range of x values. Investigators of equilibrium effects in
semiconductors should bear in mind that isovalent impurities produce very
deep bound states, if at all. For this reason, their identification from the
temperature dependence of equilibrium density of charge carriers, for
example, from Hall coefficient measurements, does not seem to be possible.
This is an important distinction of isovalent impurities from all other types of
impurities. In spite of the fact that isovalent impurities can scatter free
charge carriers and, thereby, be detected from the mobility changes, from
differential thermal e.m.f. and other transfer phenomena, a lower mobility
was actually observed only in GaP<N> crystals [142]. This effect could not
be detected reliably in other semiconductor—isovalent impurity systems
mostly because of the difficulty of separating it from side effects.

In our view, the isovalent impurity effect on scattering cannot be ex-
pected to be strong, since isovalent atoms have a characteristic short-range
potential, so they must scatter carriers like neutral rather than ionized impu-
rities. On the other hand, the concentration of isovalent impurity atoms in a
crystal is one or two orders of magnitude higher than that of the usual
shallow, ionized impurities. So, it is only quantitative evaluations that can
help us to answer the question of whether isovalent atoms can scatter charge
carriers. The scattering cross section can be approximately taken to be equal
to R?, where R is the extent of the electron wave function. Figure 2.44 shows
that the wave function maxima of an isovalent atom and an ordinary
impurity are shifted. The Ry,*/R? ratio is less than 1/30. This means that the
concentration of isovalent atoms can be increased by a factor of 30, as
compared with that of an ordinary impurity, to make both types of atoms
scatter carriers identically. When recalculated as the isovalent impurity
content, these values show that an additional scattering by isovalent
impurities can be expected to manifest itself at Ny, > 0.1 at. %.

Isovalent impurity atoms do not usually produce energy levels in the for-
bidden gap of a doped semiconductor but they are involved in chemical and
quasichemical reactions in the liquid phase, from which a crystal is grown,
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Figure 2.44. The radial wave function of an electron with m, = 0.35, localized in a
potential well of 2 E width and 10 meV depth (1) and of an electron bound by a
charged donor with the binding energy 100 meV (2): 1 — short-range potential; 2 —
Coulomb potential; vertical line — the potential well boundary [149].

and in the solid phase during the crystal cooling or thermal treatment.
Thereby, isovalent impurities strongly affect the solubility and distribution
coefficients of other impurities, the homogeneity region boundaries of a
semiconductor compound, and the formation of defect associates. As a
result, isovalent impurities change the arrangement of background impurities
and defects in a crystal.

Below, we discuss mechanisms and give illustrations of this “indirect”
influence of isovalent impurities on the properties of semiconductors.

2.4.2 Empirical models of isovalent impurities

Because of the absence of a rigorous theory, various empirical models have
been suggested to describe the electron spectrum of deep impurities, in
particular of isovalent impurities. For example, carrier binding by such an
impurity was considered to be due to the difference in the electronegative
charge Ay of the substituted and isovalent atoms. At X > Xa, an impurity
atom must bind an electron to become a deep acceptor. But at yn < Xa @
hole will be bound, and the isovalent atom must become a donor.

Table 2.23 summarizes electronegative charges of atoms measured by
three workers. The differences in these data are of little importance to this
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Table 2.23. Electronegative charges of atoms, as measured by different authors [172].

Atom Pauling  Phillips John | Atom Pauling  Phillips John
Al 15 1.18 1.48 Ge 1.8 1.35 1.59
Ga 16 1.13 1.46 Sn 1.8 1.15 1.40
In 1.7 0.99 1.32 Pb 1.8 1.09 141
Te 1.8 0.94 1.37 N 3.0 3.00 2.99
C 25 2.50 2.50 P 2.1 1.64 1.87
Si 18 141 164 | As 2.0 1.57 1.71
B 2.0 2.00 2.00 Sh 1.9 1.31 1.52

Bi 1.9 1.24 1.46

review, although John’s data obtained from nonlocal atom pseudopotentials
are more accurate.

According to the data of Table 2.23, yn > %p, SO Np in GaP must be a
deep acceptor. On the contrary, xgi < p and ys» < Xp, SO Bip and Sbp in GaP
must be deep donors. These predictions agree with experiments. However,
Asp in GaP and Pas in GaAs are expected to be a donor and an acceptor, re-
spectively, but experimental studies do not reveal any bound states in these
two cases at all. Similarly, the behavior of N, Bi, and Sb in GaAs is expected
to be the same as in GaP. However, neither nitrogen [144], nor Bi [173] nor
Sb [174] show bound states in GaAs.

The donor states of Bi in InSb reported by some researchers [175, 176],
were later re-identified as manifestations of interstitial bismuth [176]; there-
fore, they have nothing to do with the states to be predicted from electro-
negative charges.

A limitation of the electronegative charge approach is that it completely
ignores the genetic affinity of the bound states of an isovalent impurity to the
conduction band for an acceptor and to the valence band for a donor. This
drawback can be removed by comparing the atomic pseudopotential depths
[177] for s- and p-states, instead of electronegative charges. The data analy-
sis [178] shows that if the impurity atom is heavier (or lighter) than the
lattice atom, the isovalent impurity can bind a hole (or an electron). It
appears, in fact, that the use of atomic pseudopotentials contributes nothing
new, as compared with the electronegative charge rules. The demerit of both
approaches is the complete neglect of electron polarization and local lattice
distortions in the defect vicinity [179]. The character and value of local
lattice distortions are, in turn, determined by the nature of forces binding an
electron to an impurity atom with a short-range potential.
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If we use the Koster—Slater approximation and approximate the impurity
potential by a rectangular potential well, as was done in [149], then the real
space wave function y of a bound electron outside the well can be written as

1
Yivi ~ EeXp(_'YlR) , (2.4.3)

where R is the vector radius of an electron;

)1/2

1
Y1= %(ZmeUIVI : (2.4.4)

where m, is the effective mass of an electron and U,y is the potential well
depth.

If, however, we deal with an ordinary donor retaining an electron due to
Coulomb potential, the wave function Wy is

Yy ~ exp(—v2R), (2.4.5)

where v, has the same form as in (2.4.4), except that Uy, is replaced by the
energy of electron binding to the donor nucleus.

Figure 2.44, borrowed from [149], shows the radial wave function for an
electron localized in a potential well of 2E wide and 10 meV deep.
Although the binding energy for an electron bound by an ordinary donor is
an order of magnitude higher than that for an electron bound by an isovalent
impurity, the localization of the impurity is, on the contrary, higher than that
of the ordinary donor. Due to the strong localization, the excess electron
(negative) charge is concentrated in the central unit cell, whereas the
neighboring atomic skeletons are charged positively. As a result, the
isovalent atom and the nearest host atoms of the same sublattice have to
come closer to one another. The influence of the other sublattice atoms
remains unclear.

The key role of atomic shifts in the vicinity of an isovalent impurity atom
was also emphasized in [180]. Phillips, in contrast, believes [181] that local
lattice distortions reduce the difference AU = U,y — U, until the potential
well disappears completely. But then, isovalent impurities will bind neither
electrons nor holes. The fact that some isovalent impurities do form bound
states makes one suggest the presence of some repulsive forces leading to
AU = 0. One can see, therefore, that the isovalent impurity problem involves
the problem of band structure and that of crystal lattice dynamics.
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There are other empirical approaches to the explanation of energy level
spectra of isovalent impurities.

Allen [182, 183] tried to find AU from the difference in the elastic pro-
perties of an isovalent impurity and a substituting atom. Eventually, this ap-
proach reduces to the consideration of the difference in the sizes of both
atoms, and so it cannot be regarded as satisfactory either.

Zakharov and Shcherbak [180] tried to find AU as the difference in the
forbidden band widths at the band edges E4(x), where x is a mole fraction of
the isovalent impurity. This value was normalized to a unified unit cell vo-
lume of the initial crystal (x = 0) as

JE4(x=1
AU = AE, —Lﬂ, (2.4.6)
dinVv V

where AEy = AEg|=0 — Eglx=1 and AV/V is a relative change in the crystal vo-
lume at the transition fromx =1tox=0.
The condition for an energy level to appear in the forbidden gap is

2
AU =, 247
E (2.4.7)

\

where E, is the valence band width. Seven cases (GaP : Sh; ZnTe : Cd; GaP :
In; AIP : In; PbSe : Te; CdTe : S; CdSe : Te) out of 45, calculated in [180],
should be expected to exhibit local levels inside the forbidden gap. Unfortu-
nately, these systems have not yet been studied experimentally.

The mechanism of production of isovalent bound states is clear qualita-
tively. The difference in the electronegative charges or ion pseudopotentials
of the two atoms, their screening by valent electrons and local lattice distor-
tions give rise to a short-range potential allowing an isovalent atom to cap-
ture a charge carrier. This potential must exceed a certain threshold value
determined by the kinetic energy of a free carrier in the band, in which the
bound state originated. This is the conduction band for deep acceptors and
the valence band for donors.

The threshold energies E for deep acceptors or deep donors depend only
on the semiconductor band structure and can be calculated by the empirical
pseudopotential method [184]. These energies for isovalent impurities which
bind holes (deep donors) are shown in Figure 2.45 as a function of ionic
charge of the chemical bonding [185, 186] in binary semiconductors. One
can see that the conditions for the hole binding by isovalent impurities are
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Figure 2.45. The threshold energy E for isoelectron donors as a function of ionic
binding f; for some semiconductors; the straight line — E = 1.7(1 - f) eV.

facilitated in ionic crystals having a narrower valence band. With a 10% er-
ror, the data in Figure 2.45 fit well the dependence E = 1.7(1 - f;) eV [178].

Since isovalent impurity potential U(r) in diamond or zincblend types of
crystal has the point group symmetry T, the impurity potential matrix proves
to be diagonal in the base of three Vannier functions in the conduction band,
i.e., U o = U 8. For this reason, the condition for bound states of deep
donors does not differ from that of deep acceptors, except for U <0 and
E <0 for deep acceptorsand U >0 and E >0 for deep donors.

Table 2.24. Matrix elements U (eV) for various cases [189].

Doped _ _ _ Bound states
semicon- Ui U (X=0) U (X=0) U (X=1) X theory exp.
ductor unscreened  screened screened

Si<Ge> 0.04 0.32 0.08 0.54 0.41 No No
Si<Sn> 0.14 1.96 0.45 2.34 0.36 No -
Si<Pb> 0.43 2.45 0.72 3.63 0.35 No -
GaP<As>  0.06 1.24 0.30 0.76 0.43 No No
GaP<Sh> 0.20 4.49 1.07 2.80 0.37 Yes No
GaP<Bi> 0.72 5.60 1.71 412 0.35 Yes Yes
ZnS<Se> 0.11 4.81 1.20 1.01 0.51 No No
ZnS<Te> 0.28 9.46 241 2.98 0.48 Yes  Yes
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To calculate U for deep donors, one should take into account

(1) the difference in ionic pseudopotentials of the two atoms [178];

(2) the screening of this difference by the crystal valent electrons [187];
(3) local distortions of the lattice [182];

(4) the effect of spin-orbital interaction [184].

The latter circumstance can be easily taken into account as the difference
between model relativistic pseudopotentials of the two atoms [188], because
the respective contribution to U is independent of the local lattice distor-
tions. The contributions to U s for some deep donors are presented in Table
2.24. For the binding by isovalent impurities, only symmetrical local distor-
tions of the lattice are important [178].

Generally, the distance d between an impurity atom and the nearest
lattice atom differs from the unperturbed bonding length d, defined by the
sum of covalent radii and from the distance dy between neighboring atoms in
a perfect crystal. An elastic strain field is induced near the impurity atom.

The contribution of the elastic strain field to U can be accounted for by
assuming that the shifts of remote atoms are described by elastic continuum
theory [190]. Then, the elastic strain field is fully defined by prescribing the
distance between the impurity atom and its nearest neighbor or by prescrib-
ing an equivalent parameter X = (d — dy)/(d; — dx), which can vary from X =0
in the absence of local distortions to X = 1 for maximum lattice distortions
near the impurity atom.

The value of U at X = 0 is estimated as the locally screened difference
between the ionic pseudopotentials of the impurity and host atoms [182].
One can see from Table 2.24 that the screening of the impurity ionic poten-
tial considerably decreases U , so that the conditions for the binding by an
isovalent impurity are not satisfied, except for Bip in GaP and Ses and Teg in
ZnS (E values are given in Figure 2.45). At X = 0, i.e., in the absence of
local lattice distortions, Ses in ZnS must bind a hole, but this contradicts ex-
perimental data.

The value of U at X = 1 can be roughly estimated from the crystal pseu-
dopotential difference, with the pseudopotential pertaining to the central unit
cell [178]. One can make use of the empirical pseudopotentials from [184] to
obtain the data of Table 2.24. The behavior of U in the intermediate region
is a linear extrapolation of the data for X = 0 and X = 1, as is done in Figu-
re 2.46 with the primes marking the threshold energy for hole binding.

It is clear that local lattice distortions stimulate the capture of holes by
isovalent impurity atoms. The same is true of the capture of electrons. The
calculation of the equilibrium value of X for each particular case requires
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X~ 10=X—~=1/0—Xx— 1

Figure 2.46. The dependence of a host element U for isoelectronic donors on the X
parameter of local lattice distortions: points — X values in equilibrium conditions;
dashed lines — threshold energies E.

minimization of the total energy of a crystal containing an isovalent
impurity. The equilibrium X values were estimated in [178, 182] by mini-
mizing the elastic energy in terms of the known force constants for the
Martin adiabatic potential [191]. These values are marked by dots in Figure
2.46 and presented in Table 2.24. We see that the agreement between
experiment and theory for the hole binding by isovalent impurities is quite
satisfactory. The conclusion about a higher binding energy between a
quasiparticle and an isovalent impurity due to local lattice distortions is valid
only for neutral isovalent impurities in quasi-equilibrium conditions, when
the impurity empty level for an electron is much higher. Under
nonequilibrium conditions, when an impurity captures a quasiparticle, the
binding energy may decrease because of the local distortions, as described
by Phillips [182]. The mechanism suggested by Phillips is based on the
assumption that the lifetime of a quasiparticle bound by an isovalent
impurity is short, as compared with the lattice vibration period. Then, the
hole binding by an impurity may be affected by asymmetrical local
distortions (Yan-Teller effect). The conditions for quasiparticle binding, of
course, imply its long lifetime.

The problem of localized states in crystals containing isovalent impurities
was first formulated generally by Lifshitz [192]. The Hamiltonian H® = T +
V° of a perfect crystal with the kinetic energy operator T and potential energy
V® has a quasicontinuous spectrum of elementary excitations, but the
intrinsic Hamiltonian states H= T + V in a similar crystal cannot be
numbered with a wave vector. An impurity atom introduces a localized

© 2004 by CRC PressLLC



perturbation U = V — V°, which may give rise to discrete energy levels in the
forbidden gap (bound states) or to an essential rearrangement of the levels in
the quasicontinuous spectrum (virtual states).

The most detailed description can be achieved with the operator G(E) =
(E — H)™ [191-193]. However, it is more convenient to introduce another
operator, Q(E) = 1 — G°U, with the Green function for a perfect crystal G’(E)
and impurity potential U. In the presence of perturbation, the spectrum is
identified by solving the equation ReA(E) = Re detQ(E) = 0. Lifshitz [192]
was the first to point out that the impurity potential matrix U(r) can often be
approximated by a finite order matrix, so that the order of the determinant
A(E) appears finite for isovalent impurities.

The choice of the base for Q(E) representation is of no principal impor-
tance. One can use unlocalized base functions (Bloch functions [194] or
plane waves [195]). The order of AE in this case will be defined by the in-
trinsic state extent. More convenient are localized base functions (Vannier
functions [196-199], atomic orbitals [200], and generalized Vannier func-
tions [201]). Here, the order of AE is determined by the impurity potential
extent. For bound impurity states, the wave function covers a larger number
of unit cells than the impurity potential, so the use of localized base
functions is preferable [192].

The wave function of the virtual state [v> with energy E, satisfies the or-
dinary Lippman—Swinger equation

|v>=|k >+GO(EV)U v>,

where the Bloch function |k> corresponds to the state of a perfect crystal
with energy E°(k) = E,, and G°(E) is taken to be limG°(E + i8) at § — 0. The
density of electron states in a doped crystal

p(E):—%ImSpG(E) (2.4.8)

differs from the density of states p°(E) in a perfect crystal by the value

Ap(E):p(E)—pO(E)gilmilnA(E) (2.4.9)
n dE
and satisfies the following condition [179]:
JdEAp(E)=0. (2.4.10)
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Figure 2.47. Bound (b), resonance (r), and antiresonance (a) levels in a semicon-
ductor doped with an isovalent impurity.

The wave function of a bound state satisfies another equation:

lv>=G°(E,)U|v>, (2.4.11)

where G%(E,) is the real function of energy E,. For bound states, ReA(E,) =
ImA(E,) = 0, and from (2.4.9) we have Ap(E) = 8(E — E,). If there are only
Ns bound states, expression (2.4.10) can be re-written as dEAp(E) = N,
where the integral is taken only with respect to the quasicontinuous spectral
energies. Clearly, the appearance of bound states is always accompanied by a
rearrangement of quasicontinuous spectral levels.

The quantity Ap(E) often proves to be large only in certain spectral re-
gions known as resonances and antiresonances. For resonances, dEAp(E) is
equal to a positive integer and for antiresonances it is a negative integer. In
the absence of bound states, the number of resonances is the same as that of
antiresonances. The number of bound states is smaller than that of antireso-
nances exactly by the number of resonances. Antiresonance levels are often
referred to as hole resonances.

Figure 2.47 illustrates a typical situation taking place in a semiconductor
with an isolated band, density of states p°(E), and the Gilgert transformant

dE/pO(E/)

ReO(E) =] TP

(2.4.12)
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If there is a deep donor with average potential U < 0, the straight line 1/U
will not intercept ReG° at any point at small |U | (line 1). In this case, there
will be neither bound nor virtual levels. At higher |U |, a resonance state (p)
and an antiresonance state (a) arise (line 2), and a peak and a valley appear
in the density of states line p(E). By increasing |U | further (line 3), one can
obtain a bound state (c) and an antiresonance state (a). It is seen that there is
a critical value of |U | separating the regions of bound and resonance states.

The foregoing is equally applicable to deep acceptors with U > 0. Line
4 in Figure 2.47 describes the case when an acceptor produces one resonance
level (p) and one antiresonance level (a) in the isolated band. Again, there is
a critical value of |U | separating the regions of bound and resonance states.
In principle, we can imagine a semiconductor with ReG(E) > 0 in the
energy region of interest [198, 199]. Of course, localized states can arise in
this semiconductor only in the presence of deep acceptors.

This illustration is not an exact reproduction of a real situation; it is
known as the Koster-Slater one-band/one-site model [196]. This model re-
sults from the use of Vannier functions as the basis, ignoring all nondiagonal
matrix elements of impurity potential, i.e.,

< ar?(l’ — R,)|U (r)|a,—9](r - Ri*) >:U6n06m°6i06i’0 y (2413)

where 0 indicates the isolated band number and the central impurity cell
number, simultaneously. It is within the framework of the Koster-Slater one-
band/one-site  model that the applicability of the quasiclassical
approximation to isovalent impurities can be substantiated and the conditions
for the existence of bound states formulated.

The subdivision of localized isovalent impurity states into bound, reso-
nance, and antiresonance states is absolutely rigorous. For resonances and
antiresonances, ImA(E,) # 0, and the variation in the density of electron
states is approximately described as

1 r

where T', characterizing the resonance width (I" > 0) or the antiresonance
width (" < 0), is defined as

_ImA(E)

= Rea(E) (2.4.15)
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Here, the prime indicates a derivative with respect to energy.
In a simple case, I" may be independent of U and have the form

r= —npO(EV)/(mZ(G;)(E) . (2.4.16)

The 7 /2| ratio is a lifetime measure of the virtual state. [198]. Large life-
times are characteristic of sharp resonances which normally lie at the wings
p°(E), where Re G°(E) varies rapidly with energy.

The Koster-Slater model is unable to describe adequately all aspects of
the isovalent impurity spectrum. For example, Faulkner [150] failed to ac-
count for the energies of excitons bound by NN; pairs in terms of this ap-
proximation using potential U fitted to the energy of exciton binding by an
isolated nitrogen atom. Nevertheless, Faulkner’s one-band multisite model
[150], accurate within the limits of very long-range potentials, provides a
nearly correct series for impurity potential as a Gaussian well. Still, this
series does not approach the A line of an exciton bound by an isolated
impurity as fast as the observable excitonic lines bound by atomic pairs
(Figure 2.43). Therefore, a very short-range potential of an isovalent
impurity in a semiconductor does not permit an adequate description of all
aspects of this problem. Clearly, effective potential must allow for the crystal
lattice relaxation and electron polarization. These effects are of a longer-
range type than the impurity ionic potential. They will decrease the binding
energy sensitivity to average potential energy and make the interband matrix
elements weaker, which may result in splitting off the excited states from the
allowed band edges. However, there must be a strong short-range impurity
potential, too, because it provides a strong optical absorption in GaP<N>
crystals.

Jaros and co-workers [194, 202] calculated the local self-consistent im-
purity potential Np in GaP in terms of the multiband model and found that
the electron polarization led to an oscillating potential with short-range
attraction components and long-range repulsion components. In this
situation, the binding energy of an electron bound by Np in GaP is close to
zero due to the compensation of short- and long-range potentials. This
compensation was neglected by Faulkner [150] who ignored the valence
band effect and the potential repulsion components.

But Brand and Jaros [202] failed to find a satisfactory explanation for the
excitonic series NN; in GaP, although the predicted electron binding energies
are close in their order of magnitude to experimental values. The discrepancy
is due to the neglect of local lattice distortions and electron—hole correlation.
Cohen and Sturge [203] subtracted from the observable exciton binding
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energy the hole binding energy E;, found by extrapolation over excited exci-
tonic states. For Np in GaP, they obtained E, ~ 40 meV even for remote NN;
pairs. This fact confirms the applicability of the phenomenological bound
exciton model suggested by Hopfield and co-workers [148] but questions
Allen’s model [204].

Some workers [205] have suggested that the potential of a nitrogen
atomic pair in GaP contains two components: a short-range electron attrac-
tion owing to the difference in the ionic pseudopotentials and electron polari-
zation, and a long-range component due to local lattice distortions. In
contrast to Phillips [181] who considered the long-range part as repelling an
electron, they assumed the attraction. Thus the model impurity potential was
approximated by

U(r)=-U, forr<a,,
(2.4.17)
3
U(r):—Uo(aLJ for r>a,.
0

The width ay and the depth Uy were to be found from experimental data on
the energies of electron binding by NN; in GaP.

The electron states bound by NN; at distance R; are described, in a quasi-
classical approximation, by the Hamiltonian [204, 205]

H = —%VZ +U(r)+U(r+R;), (2.4.18)

where the effective mass m does not coincide with that of a carrier in the vi-
cinity of the conduction band maximum. The energies of bound states were
determined by the variational analysis with the test function

o) =[2r )] Ui+ U+ R)) @2429)
where

Ui(r) :(ai3/1t)1/2 exp(—air), A :(1+ oiR; +O(i2Ri2/3)exp(—(xiRi)
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Figure 2.48. The binding energy E of an electron bound by a pair of nitrogen atoms
NN; in GaAs versus interatomic distance R.

and oy is a variational parameter. One can see from the data in Figure 2.48
that an agreement with experiment was achieved at (ma,?Up)™ = 0.88, so
that with ap = 1.185 E, we will have Uy =3.08 at m =m.

This shows that the calculation of electron binding by NN; in GaP must
take into account all components of impurity potential, including the ionic
pseudopotential difference, electron polarization, and local lattice distortions.
Moreover, one should bear in mind that local distortions increase the
electron binding energy, rather than decrease it. It follows from the above
quasiclassical calculation that isolated nitrogen atoms, namely NN.. pairs,
cannot bind electrons at all, but they, of course, are able to bind excitons.
Generally, this calculation does not contradict the suggestions made by
Baldareschi and Hopfield [178, 182] but rejects the applicability of Phillips’
model considerations [181] concerning the role of local distortions.

The problem of binding quasiparticles by atomic pairs of the Zn-O, Cd-
O, and Mg-0 types in GaP crystals was discussed in [206], ignoring local
lattice distortions. The symmetry group for these defects is the point group
Csy containing nondegenerate c-like A; states and doubly degenerate n-like
E states. The latter arise from p-like T, states of an isolated impurity and
have energies close to those of T, states because of their rt-like nature. But A,
states are of the o-type, so that their energy can vary considerably with the
kind of metal atom in the atomic pair.
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Coupling of a metal atom with oxygen can considerably change the ener-
gy of electron hinding by Op in GaP, depending on the electron energy dif-
ference in isolated atoms. The bound states appears to be of the resonance
type for the larger energy difference.

Although it is clear from the foregoing that the theory of isovalent impu-
rities in semiconductors is not yet completed, it is as clear how it can be de-
veloped further. Exciton binding by isovalent impurities seems to be inter-
preted satisfactorily in terms of Hopfield’s model [144], in which an isoelec-
tronic acceptor first captures an electron by short-range forces of the central
cell, and the induced Coulomb field then captures a hole. The exciton
binding energy is given by the sum of binding energies of the electron and
the hole [150]. Since the hole binding can be described by the effective mass
method, the main problem that remains is to describe the electron binding by
short-range forces of the central cell. The difficulty is to calculate the hole
binding energy for an isolated donor.

The short-range forces of the central cell are determined by three factors:
ionic impurity potential, electron polarization, and local lattice distortions.
The Koster-Slater one-band/one-site approximation can take into account
only the first factor. Both the electron polarization and local distortions ex-
tend the range of impurity potential, so the Koster—Slater approximation
proves unsuitable for the calculation of binding energies of electrons and
holes. On the other hand, this approximation with empirical impurity poten-
tial satisfactorily describes optical properties of isovalent impurities.

It is quite obvious that the binding of an electron or a hole by an isovalent
impurity atom requires a self-consistent theory of the type suggested in [207,
208] for a neutral vacancy. Such a theory can yield a self-consistent impurity
potential for any fixed configuration of atoms and vary the energy of the im-
purity ground state in a crystal to determine the equilibrium configuration. It
may turn out that the stage of the impurity potential self-consistency will ap-
pear unnecessary, because Lannoo [209] obtained similar results by means
of a simple screening function.

The principal difficulties are associated with the equilibrium configura-
tion calculation. In principle, evaluation of the band structure contribution to
the ground state energy does not present a problem, but the contribution of
ion—ion repulsion and the change in the exchange—correlation corrections are
not easy to consider. Fortunately, the contribution and corrections determine
the short-range adiabatic potential, so one can use Kiting’s phenomenologi-
cal adiabatic potential, whose parameters are to be selected from experimen-
tal data. This has not been done yet, but the approach seems quite promising
for isovalent impurities in semiconductors.
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Energy variation of the center ground state with its charge state defines
its ionization energy. For an isovalent impurity, ionization energies are high,
about the forbidden gap width, while bound states are fairly extensive. In
these conditions, one should not expect an essential contribution of exchange
and correlation to the ionization energy (in contrast to multicharge centers).
For this reason, we have to recognize the important role of local lattice dis-
tortions in the formation of bound impurity states. While only symmetrical
local distortions seem to be essential for isoelectronic acceptors, asymmetric
local distortions should not be neglected when dealing with isoelectronic
donors. The possible Yan-Teller effect was emphasized by Morgan [210].

Electron polarization and local lattice distortions leading to long-range
components of impurity potential must be treated in terms of a multiband
isovalent impurity theory. It is quite likely that such a theory could be deve-
loped in the spirit of Kleiman’s one-site model [211], which considers long-
range potential by renormalizing the perfect crystal spectrum. Although this
model contains some flaws, it is capable of explaining the presence of ex-
cited states of isovalent impurities quite clearly.

Little attention has so far been given to virtual impurity states which are
to occur with a higher probability than bound states. Experimental observa-
tion of such states is possible only in sharp resonances lying near the forbid-
den gap of a semiconductor. If this ever happens, one should expect to find
specific features in the photoconductivity and optical absorption spectra. The
effect will certainly depend on the details of the resonance state, the symmet-
ry and localization degree of the wave function, as well as on the interaction
with the lattice and the presence of other impurities. Experimental study of
virtual states of isovalent impurities may contribute much to our understan-
ding of the nature of isovalent substitution.

2.4.3 Physicochemical behavior of the host-1VI system

Elemental isovalent impurities belong to the same groups in the periodic
table as the elements comprising the host semiconductor. For this reason, the
physicochemical behavior of such impurities have been studied with refer-
ence only to binary (for Ge and Si) and quasibinary (for A"'BY, A"BY!,
AVBY! etc.) systems characterized mostly by infinite substitutional solid
solutions of the cation and anion types. The fundamental characteristics of
such solid solutions—the crystal lattice period and forbidden gap width—
were assumed to vary monotonically with the composition. This refers to
solutions with macrocontents (from units to dozens at. %) of isovalent
atoms. Thermodynamic studies of solid solutions with a low content (less
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than 1-2 at. %) of one of the components and the physicochemical analysis
of semiconductor—isovalent impurity systems have demonstrated some
principal differences between a diluted and a concentrated solution. These
differences show that it is impossible to extend the physicochemical
concepts of donor and acceptor impurities to the behavior of isovalent
impurities at their “microconcentrations”.

Briefly, the specific aspects of the physicochemical behavior of isovalent
impurities can be stated as follows.

(1) Experiments using the electromotive force of a galvanic cell and dif-
ferential calorimetry have revealed sign reversal deviations from the Raoult
law [212], negative for diluted, and positive for concentrated InSh-Bi solu-
tions.

(2) Measurements of vapor pressure above Bi and InP-Bi liquid solutions
have shown positive deviations from the Raoult law and a tendency for
liquid stratification [213].

(3) Measurements of electrical conductivity, viscosity, and density of
InSh-GaSb and InSh-GaAs liquid solutions have shown that the liquid phase
contains well-ordered regions corresponding to “triple chemical compounds”
of the Ga,InSh; and In,GaSh; types [214].

(4) High precision measurements of the crystal lattice period and X-ray
diffuse scattering intensities have demonstrated that isovalent impurities
could, under certain conditions, occupy sites and interstices simultaneously
in crystal-isovalent impurity solid solutions. Among these are GaAs<Sbh>,
GaAs<In>, InSh<Bi>, and some others [176].

The most important feature of the physicochemical behavior of isovalent
impurities is their dual role in semiconductors. On the one hand, they are
ideal solvents (Ga, In, Bi, InBi, In,Bi, Sn, etc.) possessing a low melting
temperature and a low vapor pressure. On the other hand, they are suitable as
doping impurities in liquid phase epitaxy. The latter decreases the crystalli-
zation temperature and allows the growth of semiconductor films with a low
defect concentration.

2.4.4 Possible mechanisms of the isovalent impurity effect

Isovalent impurities can affect a semiconductor in the liquid and solid
phases.

Through the liquid phase, an impurity admixture increases the number of
constituents, so that the crystal grows from (n + 1) components, as compared
with n components in the absence of impurity. The quantity n also includes
various background impurities. A typical example is epitaxial GaAs crystal
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growth. The basic components are GaAs and Ga with Si as the main back-
ground. The degree of Si incorporation into the growing crystal is described
by the distribution coefficient Kg; = (C4/C))si. When In or Sb is added to the
liquid phase, the distribution coefficient of silicon impurity incorporated into
the crystal changes because of the interaction between In or Sh with silicon.
Of course, the distribution coefficients of the isovalent impurity itself will
also vary with its content in the liquid phase and with temperature.

In other words, isovalent impurity doping changes the heterogeneous
equilibrium of the melt-layer system. Therefore, it can be stated that the in-
teraction between background and doping impurities will be most effective
only if the impurity has the highest thermodynamic interaction parameter
[215]. This qualitative conclusion will be supported by quantitative evalua-
tions in Section 2.4.5.

The effect of isovalent impurities on the point defect ensemble in the
solid phase is associated with their interaction with vacancies. Since isova-
lent impurities are uncharged, their interaction is likely to be purely elastic.
This issue was treated theoretically in detail in [216]. A point defect is re-
garded by the authors of this work as a source of internal stresses. The prin-
cipal theoretical result of their consideration is the analysis of interaction

energy E( ﬁ) of defects in an isotropic crystal:

E(R)~R-, (2.4.20)

where R is the distance between two defects.

It is clear from (2.4.20) that one must first take into account the interac-
tion of isovalent impurities with other defects, for example, with vacancies
located in the first coordination sphere. The probability for defects to en-
counter one another at neighboring sites will be described as [217]

Wy—ivi =12aNy Ny Dy, (24.21)
where a is the crystal lattice period, Dy is the coefficient of the most mobile
defect—vacancy, and Ny and N,y are the concentrations of vacancies and
isovalent impurities, respectively. For a common electrically charged impu-
rity, for instance silicon, the probability of the encounter with a vacancy is

Wy _gi = 12INy Ng; Dy , (2.4.22)

where | is the Bohr orbital radius.
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Figure 2.49. Energy diagram of basic defects in undoped GaAs.
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For the estimation, we will take GaAs with | = 83.3 E and a = 5.5 E.
Taking Ns; = 10" cm™ and Ny = 5x10™ cm™, we will get

WyvilWy.si >> 1 (2.4.23)

for both gallium and antimony vacancies. Therefore, the probability of defect
encounter appears to be higher when vacancies interact with isovalent im-
purities rather with silicon.

The intensity of complexation involving isovalent and other impurities
available in the crystal varies with the nature and concentration of the latter.
The concentration ratio of two complexes Z; and Z, produced by impurities
C, and C, can be written as

Z,/Z, =(C/C;)exp(Qi—Q,) /KT , (2.4.24)

where Q; and Q, are the binding energies in the complexes. The dominant
process will be the formation of complexes with impurity atoms having a
higher binding energy or a higher concentration. The above illustration of V-
isovalent impurity and V-Si complexes is just characteristic of the case when
the concentration of the isovalent impurity is higher than that of silicon.
Another illustration is GaAs with In or Sb as an isovalent impurity at a
concentration of 10'®~10%° cm™. Undoped GaAs is characterized by the pre-
sence of associated defects N; and N, (Figure 2.49), which include silicon
atoms, a Ga vacancy in the N, associate, and an As vacancy in the N, associ-
ate [218, 219]. The doping of GaAs with Sb decreases the concentration of
N,, while the doping with In produces the opposite effect [220, 221]. Similar
data were obtained for the N; center [220, 221]. These results indicate a de-
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crease in the concentration of Ga vacancies for Sb doping and its increase for
In doping. This conclusion was supported by a uniform distribution of the
amphoteric germanium between the GaAs sublattices in the presence of
isovalent impurities [219].

In addition to the binding of vacancies, isovalent impurities are capable
of generating vacancies. This process is associated with the concept of an
isovalent impurity as a source of elastic strain in the crystal lattice. Due to
this strain, the defect formation energy at the impurity site differs by a dozen
angstroms from that in an undoped crystal. As a result, the average con-
centration of defects in a crystal changes. It has been shown theoretically
[224] that the total concentration of vacancies V in the case of isovalent im-
purity doping is expressed as

V =Vo(1+ NQoexpQ’), (2.4.25)

where V is the concentration of vacancies in an undoped crystal, N is the
concentration of impurities, Q is the volume of a defect potential well, cre-
ated by impurity atoms in an elastic field [225], and Q’ is the binding

energy of an impurity-vacancy complex. This result was supported
experimentally, for example, in Si<Sn> [226] and in GaAs<B> [227].

2.4.5 lsovalent doping effects

Transformation of the homogeneity region. The effect of the crystallization
medium composition on the homogeneity region of the compound being
crystallized, i.e., on the equilibrium of intrinsic point defects, can be
conveniently analyzed with reference to A"'BY compounds produced from
melts containing isovalent impurities. A quantitative evaluation of the intrin-
sic defect equilibrium can be made in terms of equilibrium of the quasi-
chemical reactions which describe the production of such defects.

Assuming that the main types of intrinsic point defects are vacancies of
A"'(v,) and BY(Vg) components, as well as interstitial BY(B;) atoms, and that
isovalent impurities produce substitutional solid solutions, we can write
these reactions as follows:

Ky
A2 An+ Vg (2.4.26)
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Ka

B _ Bg+Bi+Va (2.4.27)
Ks

Al AL +Vg (2.4.28)
K3

Bi 2 Bg +Va, (2.4.29)

where A" and B” are impurities isovalent to the elements A and B, respec-
tively; K are equilibrium constants of direct quasi-chemical reactions.

A possible interaction of intrinsic point defects in the solid phase is de-
scribed as

Ks
Bi+Vs . Bs. (2.4.30)

The concentrations of point defects in atomic fractions can be expressed
using equations (2.4.26) through (2.4.30) as

B,]=0.25/K;K,a! (2.4.33)
i 1™ aA
Ax]=Kaal. /2K,ak (2.4.34)
A
[Bs] = Ksal. /8KiK,K.akal . (2.4.35)

These five equations show that concentrations of all defects are in an un-
stable equilibrium varying with a;' and K. The former are calculated from the
known ratios for regular solutions, and the equilibrium constants of the reac-
tions are found with the algorithm suggested in [229].

The knowledge of the values of a;' and K; — K, is necessary for the calcu-
lation of intrinsic defect concentrations in AB<A™> or AB<B™> as a function
of temperature and isovalent impurity concentration. Such calculations have
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Figure 2.50. Calculated temperature dependences of IPD relative concentration va-
riation in GaAs during crystallization from a 3-component (Ga-As-isovalent
impurity) liquid phase: solid lines — [Vg,]; dashed lines — [Vas]; broken lines — [Asj];
isovalent impurities: 1 — In, 2 — Sbh, 3 — Bi; calculation for In and Sb at Cy,** =
4.4x10%° cm3, for Bi at C,,* corresponding to solubility limit; index 11 is for the
two-component Ga-GaAs system.
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Figure 2.51. Polythermal cross sections of homogeneity regions in GaAs<Bi> for
Ce™, cm™: 1-0; 2 - 1x10%; 3 - 3x10%; 4 — 5x10*®,
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Figure 2.52. Polythermal cross sections of homogeneity regions in InAs<Bi> for
Cg™, cm™: 1-0; 2 — 2x10%; 3 - 8x10'%; 4 — 1.4x10"°.
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Figure 2.53. Temperature dependences of IPD concentrations in GaSh obtained from
solutions: 1 — Ga; 2 — Sn; for crystallization from Bi-solutions, the dependence is
close to line 2; 3 — calculations neglecting the activity of components in the liquid
phase.
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been made for GaAs<IVI> [230], InAs<IVI> [231], and GaSb [232]. For
illustration, we present Figures 2.50 through 2.52. It should be noted that an
essential role in GaSb is played by antistructural defects. In this case, the
author of [232] referred the Gagy, type of defects to the intrinsic defects listed
above. The calculations are illustrated in Figure 2.53. All the results show
that the effect of isovalent impurities on the concentration of intrinsic point
defects increases with decreasing temperature and that Bi has the greatest
perturbative effect on defect equilibrium.

Amphoteric impurity redistribution between the A"'B" sublattices. It was
shown in Section 2.3 that cation—anion amphoteric impurities have a definite
thermodynamic distribution between the crystal sublattices under
equilibrium conditions. Since doping with isovalent impurities leads to a
transformation of the homogeneity region, one should also expect a
sublattice redistribution of an amphoteric impurity in the presence of an
isovalent impurity. Indeed, such a redistribution was established
experimentally in [219] and is illustrated in Figure 2.54.

Purification’ of a semiconductor by isovalent doping. The effect of iso-
valent impurities on the distribution coefficients of background impurities in
the liquid phase can decrease their concentration in a growing crystal, i.e., it

P, cm?

1019

1018

1017 1 L1 1111l | L1l 11
0.1 1 10 Ng. at.%

Figure 2.54. Hole concentration in GaAs:1VI1:Ge epitaxial layers versus Ge content in
the solution melt: x — GaAs:Ge; 0 — GaAs;_Sh,:Ge, x = 0.006; m — Ga,_In,As : Ge,
x = 0.006.
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can produce a kind of purifying action to remove the background. It was
mentioned in Section 2.4.4 that the greatest effect should be expected from
isovalent impurities with the maximum thermodynamic parameter in the in-
teraction with a background impurity. Let us consider this problem quantita-
tively now.

The interaction parameter in the liquid phase, ®', can be evaluated for a
system with an infinite solubility in the liquid phase and a practically zero
solubility in the solid phase, such as the isovalent impurity-Si systems, using
the following relation [215]:

| AHE(1-T/1d)+ RTInxg

® , (2.4.36)

1- Xéi

where T and AHg are the melting temperature and enthalpy of a back-
ground impurity and x is the atomic fraction of silicon in the liquid phase.
The estimations of o' for the interaction of silicon with an isovalent im-
purity in GaAs are given in Figure 2.55. It is seen that the Si—-Bi system has
the maximum value of ', so the experimental checkup of isovalent purifica-
tion was undertaken in [173] during the GaAs epitaxial growth from a bis-
muth melt. The experimental data show a considerable decrease in electron
concentration and an increase in electron mobility, while the impurity back-

0% vp x1073, cal/mole

10 |

2_

0 ]
900 1200 T, K

Figure 2.55. The temperature dependence of the interaction parameter in the liquid
phase for Si-IVI systems: 1 — Si<Bi>, 2 — Si<In>, 3 — Si<Sb>, 4 — Si<Ga>.
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Figure 2.56. The relationship between donor and acceptor concentrations in GaAs
and GaAs<Bi> samples.

ground (Figure 2.56) was reduced to 8x10*°-3x10" cm™, as compared with
8x10"-6x10"" cm® in control samples containing no Bi.

Another striking example of the purification effect of isovalent doping
was reported in [174] from a photoluminescence study of GaAs epitaxial
layers doped with In and Sb. The results presented in Figure 2.57 show that
the In doping considerably reduced the radiation band at 1.4 eV, and Figure
2.49 demonstrates that this reduction corresponds to the radiation transition
of electrons from the N; center levels to the conduction band. In other words,
indium impurity has lowered appreciably the concentration of these back-
ground centers.

The effect on the compensation degree of a semiconductor. A direct
consequence of isovalent purification is a changed compensation of shallow
impurities in the semiconductor. It is clear from the curve slopes in Figure
2.56 that the compensation degree of GaAs<Bi>, i.e., the component k =
Na/Ng = 0.8, appears to be higher than k = 0.5 for GaAs samples containing
no bismuth. With the assumption of the compensation being due to ampho-
teric background silicon, this result also indicates a redistribution of the am-
photeric impurity between the Ga and As sublattices in the presence of bis-
muth. We showed in Section 2.3 (see expressions (2.3.65) and (2.3.66)) that
k ~ Pas%; therefore, the experimentally observable increase in the compensa-
tion degree unambiguously indicates a decrease in Pas above the crystal
grown from a bismuth melt, as compared with the conventional growth from
a gallium melt. This was established by direct measurements in [233].
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Figure 2.57. Photoluminescence spectra at T = 2K: (a) — GaAs;_Sh, (x = 0.0034); (b)
— GaAs; () — GayIn,As (x = 0.007).

Variation in the compensation degree due to isovalent doping was ana-
lyzed from photoluminescence spectra [234] and from the electrical behavior
of crystals doped with isovalent impurities [221].

The effect on the dislocation structure. The effect of impurities on the
macroscopic elasticity and dislocation mobility was considered, before the
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application of isovalent doping, as a manifestation of impurity electrical ac-
tivity. But there was an alternative view, according to which elastic interac-
tion of impurity atoms with dislocations dominated at T > 0.7T¢. The use of
isovalent impurities, which are uncharged in a crystal, unambiguously con-
firmed the latter point of view in studies of single crystals doped with In or
Sh [236].

The effect on solid solution decomposition. The elastic deformation of a
crystal lattice produced by doping has also an effect on defect formation due
to decomposition of oversaturated solid solutions. If an impurity “expands” a
crystal lattice, its decomposition is slowed down to liberate components with
a larger specific volume than that of the host crystal. An illustration of this
effect is the slower decomposition of an oversaturated oxygen solid solution
in silicon single crystals doped with isovalent Ge and Sn [237].

2.5 VOLATILE IMPURITIES
2.5.1 Hydrogen

All available data indicate that hydrogen atoms occupy interstitial positions
in the crystal lattice of diamond-like semiconductors. Debatable is only the
type of interstice. For silicon and germanium, the preferable position seems
to be the “antibinding” position along the <111> axis at a distance of ~0.16
nm from the nearest regular atom, with a slight dispersion (~0.01 nm) in the
transverse direction. This conclusion follows from the channeling effect in
silicon samples with implanted deuterium [238]. The study of infrared
absorption spectra in the same samples [239] led to the finding of a
considerable binding energy of about 2.0 eV between deuterium atoms
(hence, of hydrogen) and silicon atoms. This is sufficient evidence for their
strong chemical bonding.

A similar bonding occurs between hydrogen and other impurity atoms in
a crystal. An example is the interaction between hydrogen and copper impu-
rities in germanium [240]. This effect can be identified from the change in
the energy spectrum of the interacting components, similar to that observed
in copper-lithium complexation in germanium, when some copper levels in
the forbidden gap disappear and others are shifted.

Hydrogen in germanium and silicon interacts actively with intrinsic point
defects. Some models of this interaction are discussed in [241]. Any point
defects can produce complex defects, whose energy spectrum is similar to
that of hydrogen-like impurities but differs in the impurity center symmetry
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from common hydrogen-like substitutional impurities. In contrast to single
hydrogen atoms, these complex centers produce numerous shallow donor
and acceptor levels at E. — 12.3 and E, + 11.3 eV.

It has been established reliably by the MSR technique that germanium
and silicon contain atomic muonium [242, 243]. Since muonium and hydro-
gen are actually isotopes, everything established for muonium will be valid
for hydrogen. The most important result is the “swelling” of a muonium
atom in germanium and silicon crystals, as compared with the muonium size
in vacuum (5.32 nm). For example, the muonium sizes in germanium and
silicon are 6.4 and 7.2 nm, respectively [244]. However, the observable
increase in the size cannot be described in terms of the effective mass theory.

Kittel and co-workers [245] have explained theoretically the experimen-
tally detected increase of the Bohr orbital radius of muonium in germanium
and silicon crystals. Their conclusion is that muonium, and, therefore, hydro-
gen, are to be deep donors with the ionization energies 1.52+1.58 and 1.58—
1.70 eV, respectively. These values agree satisfactorily with the above value
of 2.0 eV. Such high ionization energies account for the fact that atomic hy-
drogen does not show electrical properties in germanium and silicon.

Among more complex semiconductors, only SiC was found to have a
similar increase in muonium size [246], which was 14% of its vacuum value.
Besides, SiC crystals were subjected to hydrogen ion implantation followed
by a photoluminescence spectral analysis of one of the polytypes, 6H-SiC
[247]. The author suggested a model of a center consisting of a hydrogen
atom at a vacant silicon site. In this position, a hydrogen atom is surrounded
by four carbon atoms and is shifted toward one of them. No data are avai-
lable on the state and behavior of hydrogen impurity in other semiconductor
compounds.

When discussing hydrogen behavior in semiconductors, one should not
ignore its effect on crystal surface properties. Although this behavior is still
poorly understood, we do know that atomic hydrogen forms fast recombina-
tion centers on a germanium surface [248]. Some effort has been made to
study hydrogen saturation of amorphous semiconductors, mostly silicon
[249], in which hydrogen atoms saturate dangling chemical bonds of the host
atoms, thereby stabilizing the semiconductor properties. This problem, how-
ever, does not involve the behavior of hydrogen in a bulk crystal. For this
reason, we do not discuss it in this book.

2.5.2 Oxygen

Oxygen is abundant in semiconductors, because it possesses a high diffusion
coefficient in melts and solid crystals. It finds its way to a growing crystal
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from the quartz chamber walls, the substrates used and the ambient
atmosphere. For these reasons, oxygen content in a semiconductor depends
to a great extent on the crystal growth technique used. This is especially
typical for silicon. The concentration of oxygen atoms in crystals grown
from a melt may be as high as 10" cm™ and even more, but in samples
produced by zone melting it is less than 10" cm™. It is quite difficult to
measure the oxygen content in silicon. There are various ways of doing this,
but the most reliable method is radioactivational analysis aimed at
determining the isotope *°0 after irradiation by accelerated *He ions [250].
The radioactive isotope 'O has a short half-decay time, which greatly
decreases the feasibility of the method. On the other hand, this method
removes from analysis the adsorbed surface oxygen, yielding absolute
values. An alternative is an optical technique using the characteristic
absorption band in the infrared spectral region at A = 9.1 um (the frequency
1106 cm™) and the proportionality of absorption coefficient K, at the band
peak and the oxygen concentration:

No = AKp,.

At the same time, spectral studies show complex oxygen behavior in silicon.
Oxygen is involved in different types of bonding, which readily transform to
one another. Table 2.25 shows eight bands due to ogygen in silicon.

The three bands at 1106, 1205, and 515 cm™ are due to the nonlinear
configuration of Si-O-Si [251, 252]. The first band was identified as an
antisymmetric external oscillation v, (Figure 2.58) and the other two as
symmetrical valent oscillation v, and deformation oscillation vs. The other
absorption bands due to oxygen presented in Table 2.25 are associated with

Table 2.25. Infrared absorption bands in silicon with impurity oxygen.

Type of Si—Qi— V-0, Ci-O; Sii—Oi— O; Sio Si—gj— Si_Qi_
Si

center Si A-center X-center C Si

Absorp-

tion band 515 830 865 890 935 1000 1106 1205
atv, cm™

“ symmetrical bending oscillations, ™ antisymmetrical stretching oscillations, ™
symmetrical stretching oscillations.
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si oy, Si Si oy, Si Si oy, Si

Figure 2.58. Nonlinear configurations of the Si,O molecule, corresponding to absor-
ption at K, cm™: v; = 1106; v, = 1205; v3 = 515.

thermal treatment of silicon at 1000°C for several days. This considerably
reduced the main band intensity at 1106 cm™.

The main feature of oxygen behavior in silicon is the formation of what
is known as thermal donors produced during thermal treatment. Today, the
general view, based on the data of [253] presented in Figure 2.59, is that
there are two kinds of thermal donors. One, represented by the low tempera-
ture peak in Figure 2.59, is attributed to complexes consisting of four oxygen
atoms [253] and the other, corresponding to the high temperature peak in the
same figure, is due to oxygen precipitates.

A model was suggested in [251] to account for the formation of groups of
the O, type. If the formation of, say, “pairs” and “triplets” is in equilibrium,
the following reactions occur:

0, = 04[O, ]
03 = a,[0,][O]. (25.1)

The formation kinetics of “quartets” is described as [251]

%[04] = K[O]{oclozg[o]3 _ [04][1+ aio])} . (25.2)

The solution to this kinetic equation is
[0.](t) =[04]™[1-exp(-t/7)] (2.5.3)

with
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| | 1
300 500 700 900
Annealing temperature, °C

Figure 2.59. Relationship between thermal donor concentration Ny, 4. and annealing
temperature for Si samples with various oxygen concentrations No, cm™: 1 —1x10',;
2 - 1.85x10%; 3 - 1.6x10%; 4 — 1.2x10%,

max (02[0%) [O]
[04] =71
ocg[O
1
1_ko] [1+ ] (25.4)
T 0Ls

It is easy to see that the formation kinetics of thermal donors are described
satisfactorily by equation (2.5.2) at
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a[0]>>1. (2.5.5)

Hence, the reaction producing quartets from triplets is essentially non-
equilibrium. Quartets are more likely to form from quintets.

Higher temperature donors are formed only following a low temperature
treatment [246]. This work describes a model, in which neutral complexes
containing more than four oxygen atoms are produced at 300-500°C, in ad-
dition to electrically charged O4. During the treatment at 600-800°C, the
decomposition of a supersaturated oxygen solution occurs actively and O,
complexes dissociate into simpler ones. The electrical properties of oxygen
tetrahedra begin to manifest themselves again. This model was supported by
the temperature dependences of concentrations of electrons which go from
the first and second thermal donor levels to the conduction band [246]. It
was found that both have the same energy level at E; — 0.02 eV.

Oxygen in silicon also interacts with vacancies to produce the well-
known A-center [117]. The A-center has an acceptor level in the silicon for-
bidden gap at E.—0.16 eV. This complex is stable and is annealed at
~600 K. Besides, an oxygen atom forms two unstable associates, (O-V)<111>
and (O-V)<i00-, Which are annealed at 100 and 120 K, respectively [254],
with the second associate transforming to a stable A-center.

When an oxygen atom captures a vacancy, it is displaced and becomes
localized nearly at the vacant site (Figure 2.60). When an A-center captures
an electron, it becomes negatively charged and paramagnetic, which permits
its study using the spin and double resonance (ENDOR) method. This prob-
lem has been studied extensively, so we will only mention a recent review
[255].

Oxygen atoms in silicon are “polymerization” centers for vacancies. The
following types of centers have been reported [156, 257]: (V2-0), (V-0,),

<001>

<110>

<1T0>

Figure 2.60. The model A-center (vacancy + oxygen atom) in silicon: the black circle
—an oxygen atom with closed bonds of neighbors around a vacant site.
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(2) (b)

Figure 2.61. The model of an electrically inactive structural group (a) and its elec-
trically active oxygen complex (b) in germanium: black circle — impurity oxygen
atoms, without allowance for the lattice relaxation.

(V3-0), (V3-0,), and (V3-0O3). The stability of such complexes increases
with their “size.” The ability of oxygen atoms to form associates with vacan-
cies, intrinsic and doping impurity atoms stems from the interstitial position
of oxygen atoms on the Si-Si bonds in the silicon lattice.

Oxygen behavior in germanium is similar to that in silicon. For example,
the vibrational modes shown in Figure 2.58 are also valid for germanium
[258, 259], with the only difference that the v; mode corresponds to the
11.7 um band in the infrared absorption spectrum, instead of the 9.1 um
band.

The interstitial oxygen model for germanium is shown in Figure 2.61
[260]. One can see that tetrahedral GeO, is made up of GeO, groups. Such
defect associations are electrically inactive, because valent electrons of oxy-
gen atoms are bound by intrinsic crystal atoms. If GeO, centers capture va-
cancies (Figure 2.61b), they become electrically charged. Further attachment
of the second and third vacancy shifts the donor level of the complex into the
forbidden gap.

The existence of A-centers was also suggested for germanium, but this
question still remains debatable (see, for example, [117]). The formation of
thermal donors in germanium doped with oxygen has been reported [261],
but there are no detailed studies of their formation and transformation. There
has been much interest in oxygen doping of 111-V semiconductors, but it has
been investigated only in GaAs and GaP.

The principal difficulty in the investigation of these crystals doped with
oxygen is that it is impossible to remove the oxygen background during oxy-
gen doping. The main sources of oxygen contamination are surface oxide
films on the initial A"'BY components, the oxygen dissolved in the A" bulk,
quartz, etc. It was found that the use of hydrogen stimulates the reaction
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SiOfs + Hylr 2 SiO|r + H Ol (2.5.6)

producing oxygen contamination of the growing crystal via SiO.
Vacuum also produces oxygen contamination of A"'BY compounds be-
cause of the interaction between A"' and quartz [263]:

3Si0y)s + 2Ga; 2 Ga,Os|r + 3SiO)r- (2.5.7)

The introduction of oxygen or Ga,Os into the reaction region can decrease
the contamination via SiO and increase the oxygen content in material. It
was shown for GaP [264] that the introduction of Ga,Os into the melt
decreased Si content, increasing oxygen concentration.

A high oxygen background is an obstacle to obtaining reliable data on
oxygen solubility in A"BY compounds at various temperatures. For
GaP<0>, for example, no solidus curve has been found, but there are only
data indicating that the total oxygen content in GaP may be as high as
2x10" cm™. For GaAs<O>, the solidus curve was found in [265]. The solu-
bility has a retrograde character with a maximum of 3x10™ cm™ at 1100°C.
Note that the doping was carried out in two ways: by adding Ga,O3 or As,O3
into the melt. The light absorption spectrum for such crystals has a peak in
the doping through As,O3 [266]. The authors of this work even demonstrated
that this peak shifted on dilution of As,O; with the isotope '%0. They
interpreted their data as follows. The doping through Ga,O3 produces ap-
proximately 10" cm™ oxygen atoms at an As site, i.e., this is substitutional
oxygen. The doping through As,O; produces about 10*” cm™ interstitial oxy-
gen, which is a neutral impurity. The total oxygen content was found to be
10" cm™,

In spite of the lack of data on oxygen contents in samples, there are many
reports on the electrical, optical, and photoelectrical properties of GaP<O>
and GaAs<O>.

For example, there was an appreciable EPR signal detected in GaP<O>
[267, 268], which permitted a partial determination of oxygen abundance at
phosphorus sites. The Hall measurements made in these samples revealed a
level E; —0.89 £ 0.02 eV (Figure 2.62). Indirect evidence for this level being
an O, state is the coincidence of concentrations found from Hall measure-
ments and EPR studied. Direct evidence could be obtained from pho-
tostimulated EPR, by illuminating electrons by light at hv = 0.9 eV into the
conduction band, thereby changing the number of charged 0.9 eV centers
and following this change from the EPR line intensity variation. Such an ap-
proach, however, has not yet been used. The application of GaP for the fabri-
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Figure 2.62. Impurity levels and radiative recombination transitions (arrows) in im-
purity gas.

cation of efficient emitters has stimulated the investigation of GaP<O> lumi-
nescence. Luminescence spectra of such samples clearly show the tendency
for oxygen to produce impurity pairs and complexes with other impurity
atoms.

The formation of impurity pairs and complexes with oxygen will be dis-
cussed in detail in Chapter 6. Here, we will only mention the principal differ-
ence between them. The partners in a pair are merely bound by Coulomb
forces, while a complex involves a chemical bonding changing it to a kind of
quasimolecule. In the pair interaction, the energy levels of the partners and
their shift toward the allowed band edges are preserved. When a complex is
formed, new levels arise in the semiconductor forbidden gap, which have
nothing to do with the partner levels (E. — 0.26 eV).

Pair luminescence was observed in GaP<0,Zn> [269], which had a lower
intensity than other group-VI impurities. The maximum intensity of the pair
luminescence (1.3 eV), the zinc level position (0.064 eV), and the forbidden
gap value in GaP (2.12 eV) allowed identification of the level of the second
partner in a pair (0.9 eV) shown in Figure 2.62, which coincides with the O,
level.

Figure 2.62 shows another recombination radiation transition with a
maximum at ~1.8 eV, which was interpreted in [270] as being due to pair
luminescence between a ZnO-type complex and a single Zn level. Similar
radiation was observed in GaP<O,Cd>.

When discussing the behavior of oxygen in GaP, one should not ignore
the formation of what is known as D™-centers. A D™-center is one of the three
possible O, states: D” is an ordinary ionized state with the transition of an
electron to the conduction band; D° is a neutral state, or a deep center having
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Figure 2.63. The configuration coordinate diagram of an oxygen-containing E;-center
in GaAs; Q — configuration coordinate.

an electron with the optical ionization energy of 0.9 eV; D™ is a state with a
second, attached electron. The optical ionization energy of D™ was found
experimentally [271, 272] to be 2 eV below the conduction band (Figure
2.62). Interestingly, a D -state appears only under the action of 0.4 optical
pumping. For this reason, some workers believe that illumination by this
light makes an electron jump onto the level E. — 0.4 eV, after which the
optical ionization energy E. becomes equal to 2.0 eV due to a strong
electron—phonon interaction during the lattice relaxation. An alternative
model is a mere doubling of the binding energy of each of the two 0.9 eV
electrons.

Both models raise many questions. The formation of D™-states of oxygen-
containing centers was also observed in GaAs<O> [273]. It has been estab-
lished in many investigations that oxygen atoms in GaAs produce two levels:
E; =E.-(~0.69) eV and E, = E. — 0.18 eV. Both values correspond to ther-
mal ionization. The study of photoelectric properties and the use of optically
induced light absorption modulation (for details, see Section 5.4 of this book
and [22]) have yielded electronic configurations for both centers, E; and E,
shown in Figures 2.63 and 2.64. In Figure 2.63, curve Uy represents the
energy E; of an oxygen-containing center in a singly charged state D°, curve
U," is the metastable excited state of this center, and curve U™ is the state of
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Figure 2.64. The configuration coordinate diagram of an oxygen-containing E,-center
in GaAs; Q — configuration coordinate.

a D™-center. The quantitative characteristics for the diagrams shown in
Figure 2.63 are given in Table 2.26.

One can see from Table 2.26 a remarkable Frank—Condon shift for the
E;-center, which is likely to be due to the Yan—Teller effect, when an oxygen
atom is displaced from a B site, leaving behind part of the vacancy. This is
the way an associative defect is produced, which can be treated as a kind of
quasimolecule. It seems quite likely that the second electron can be captured
only by such a quasimolecule. In any case, this model accounts for the exis-
tence of D-states when the sample is illuminated by light, i.e., under non-
equilibrium conditions, both in GaAs and GaP.

Table 2.26 also presents configuration diagram parameters for another
oxygen-containing center in GaAs. Both diagrams in Figures 2.63 and 2.64
show a similarity of the two oxygen-containing centers in GaAs. It seems
surprising that the D-state should exist only for the E;-center. This is
probably due to the fact that E; belongs to an O;—Vas molecule and E; to an
O-Si molecule, as is stated in the publications.

Table 2.26. Some configuration parameters of E;- and E,-centers in GaAs [22].

Parameter Er Eop de Eg Egp Eg Er EOp_ Eg~

E,-center, eV 0.69 083 014 0.08 - 02 031 055 -
E,-center, eV 0.18 043 025 0.06 0.36 - - - -
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Available data on the oxygen behavior in other A"'BY compounds are too
ambiguous to be discussed in this book.

2.5.3 Carbon

Most information on carbon states in silicon was obtained by EPR tech-
niques [274, 275]. A positively charged interstitial state C;" producing a
dumbbell pair with a silicon atom along the <100> direction was identified.
When the samples were heated to 65°C, the spectrum of the pair disappeared
for 30 min to be replaced by a more stable C~C; pair spectrum along the
<111> axis. Such pairs were stable up to 520 K.

The three types of pairs were electrically active. The transitions between
them correspond to the following levels: C° — C;*: E, + 0.28 eV; Ci” — C":
E. - 0.12 eV, and CsC; pairs have E, + 0.36 eV levels. The light absorption
spectrum of silicon doped with carbon contains several bands, whose energy
positions and identification are given in Table 2.27.

Among other behavioral features of carbon in silicon is a slower forma-
tion of thermal donors due to the presence of carbon. The mechanism of this
process is unknown, but the production of CO,-type associates was estab-
lished with certainty. This process leads to a lower concentration of oxygen
atoms constituting thermal donors.

The carbon state in A"'BY compounds may be considered to be practi-
cally unknown. There is only a report [276] of the activation energy of car-
bon in GaAs equal to E, + 0.019 eV and in GaP equal to E, + 0.041 eV and
E, +0.048 eV [277, 278].

Since carbon belongs to group-1V elements, one may expect this impurity
to show cation—-anion amphoteric properties in A"'BY semiconductors. How-
ever, there have been no direct experimental observations of this kind,
probably because of the “small” size of the carbon atom, resulting in its in-
stability at A"'BY lattice sites.

Table 2.27. Infrared light absorption bands in silicon doped with carbon.

Typeofcenter  C-Si *C  SiC" C-0{" Si-O—C C; c-0

Absorpltion band 604 607 820 865 890 921 1111
v, cm”

* precipitates observed in Si<C> crystals, ** X-center.
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2.5.4 Nitrogen

It is very difficult to introduce nitrogen into silicon by the conventional
techniques of pulling from the melt or zone melting. This is associated with
the low distribution coefficient in solid silicon and because nitrogen is more
liable to form silicon nitride than to be incorporated by a crystal lattice as an
impurity. For this reason, nitrogen is introduced by ion implantation
followed by sample annealing. It is concluded [279] that a nitrogen atom
occupies an interstitial position in silicon at the level E; — 0.14 eV. The light
absorption spectrum of Si<N> shows a peak at 10.6 um. Nitrogen in A"'BY
semiconductors was discussed in Section 2.4 with reference to GaP, for
which it is an isovalent impurity.

As an impurity, nitrogen has proved to be most important in silicon car-
bide, to which it may be incorporated, substituting sites in both SiC sublat-
tices. Table 2.28 presents the energy levels of impurity nitrogen atoms in SiC
crystal positions.

Table 2.28. Energy levels E; (eV) of impurity nitrogen atoms in various SiC crystal

positions.
C-sublattice Si-sublattice Interstice
E.- 101 E. - 159 E.-94 N°2N*
E.- 158 E, — 247 E.—192 N* 2 N*
E.- 163 E. - 255 E.—307 N?" 2 N*
E.-501 N¥ 2 N*
E.-633 N* 2 N%

The energy values given in Table 2.28 cannot be taken to be absolutely
reliable. There are alternative data on the energy levels of nitrogen in SiC.
The ambiguity is due to the difficulty of identifying optical transitions be-
cause of the presence of oxygen and the difficulties in the identification of
the polytype and preparation of single crystal samples. As an impurity, nitro-
gen plays an important role in semiconductor diamond.
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Chapter 3

Impurity Solubility in Semiconductors
(a Macroscopic Approach)

3.1 RETROGRADE SOLUBILITY OF IMPURITIES

The solubility of most impurities in semiconductors has a retrograde charac-
ter. This means that maximum solubility occurs above eutectic melting tem-
perature and decreases with decreasing temperature. This phenomenon is
also known as negative solubility. In most metallic systems, the maximum
solubility of one metal in another metal occurs at eutectic temperature. The
solubility in such systems had been studied long before this was done in
semiconductors. It is probably for this reason that maximum solubility at
eutectic temperature was considered as a common rule and retrograde
behavior as an exception to this rule.

A possible appearance of a negative solubility region was pointed out by
Van Laar in 1908, but his work did not attract the researchers’ attention at
that time. It was only forty years later, after the solubility curves were
studied in detail, that this problem received due attention. Mejering was one
of the first to derive general expressions for this solidus region [1]. The
principal results of the calculations are given below.

Impurity solubility is calculated in macroscopic thermodynamics from
the equilibrium condition of the liquid and solid phases. With the activity
coefficients, it is written as follows:
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Mot +KT10gY g1 X1 = s +KT 100V gsXgs - (3.1.1)

It should be noted that chemical potentials must, in reality, refer to an idea-
lized state, rather than to a pure substance, when this component is present
under conditions similar to those in the solution [2]. In the solid phase, for
example, the ideal state should have a crystal lattice corresponding to a tetra-
hedral semiconductor. To avoid these complications, one normally uses
chemical potential values for a pure component o having its own structure,
while all deviations are taken into account by introducing activity coeffi-
cients.

The coefficient of impurity distribution between the solid and liquid
phases is defined by the impurity concentration ratio in both phases:

B 0 _ .0
logKB = IogE=M+IogM, (3.1.2)
Xal kT Yal

where Xqs’(Xa1) is the fraction of o substance in the solid (liquid) phase, v is
an activity coefficient, and superscript B indicates the dissolved impurity
position in a crystal.

The first term in (3.1.2) can be expressed with sufficient accuracy
through the melting enthalpy AH,' and entropy AS,' of the dissolved com-
ponent, taken at the melting temperature of the pure component. Their tem-
perature dependence, which is the heat capacity difference in both phases, is
neglected. As a result, one gets the equation first derived by Thurmond and
Struthers [3] for the treatment of solidus lines for various impurities in ger-
manium and silicon:

AHS —AHE  Ast - asB
kT R

log KB = +109Y i - (3.1.3)

This formula is convenient for a comparison with experimental data. This is
a straight line equation in the coordinates logK = f (10%T), and the line slope
is used to find the impurity dissolution enthalpy.

The dissolution enthalpy of a substance is involved in (3.1.3) as a pa-
rameter, and the temperature dependence of the distribution coefficient is
purely exponential. It is easy to see, therefore, that negative solubility arises
when the dissolution enthalpy is higher than the melting enthalpy of a pure
substance. This result will become clearer if equation (3.1.3) is combined
with that for the liquidus line of a perfect solution [2]:
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Figure 3.1. Solidus lines for impurity solubility in material with melting heat AH,, =
33.5 kJxmole and melting entropy AS,, = 12.6 J/(gxatomxdegrees K), calculated for
various dissolution enthalpy values: 1 —92; 2 — 69; 3 —46; 4 — 23; 5 — 15 kJ/mole.

AHS
pl 1 1
log(1— X ) =—| —+—= |, (3.1.4)
k T[3 T

where AH" and T refer to solvent melting. From (3.1.3) and (3.1.4), we
have [4]

TAS! — AHf f_AlB _Tacf
NB = NP 1-exp B P exp ARy —AHg —TASq . (3.1.5)
¢ kT k

The results of calculations obtained with this formula are given in Figure 3.1
[4]. They support the above reasoning concerning the appearance of retro-
grade solubility.

Hall [5] used the above equations in a linear approximation of the tem-
perature dependence of enthalpy

AH = AHy —aT. (3.1.6)

They drew the conclusion that there was a common point in the distribution
coefficient curves when these were extrapolated to a high temperature
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region. This permitted a correction to be made of the available experimental
findings.

However, the linear dependence in (3.1.6) and the existence of intercep-
tion points of the curves was subjected to criticism by some investigators. In
particular, Trumbor and co-workers found in their analysis of tin solubility in
silicon and germanium that the distribution coefficient logarithm near the
semiconductor melting temperature rose abruptly, deviating considerably
from the dependence in (3.1.3), whereas it was indeed valid at a lower tem-
perature [6]. This is not surprising because there are appreciable positive
deviations from the Raoult law near the melting point in the liquid phase [7],
which affects the activity coefficient and, hence, the distribution coefficient.

In a study of aluminum solubility in gallium and germanium, Trumbor
and co-workers [6] found the respective deviations from Hall’s suggestion of
a common point in distribution coefficient curves at high temperatures. But
this time, the abrupt rise of this coefficient could not be interpreted as being
due to the behavior of the activity coefficient, because the liquid Al-Ge sys-
tem has a negative deviation from the Raoult law and the Ga—Ge liquidus is
practically perfect [7]. The slope of the solubility curve was suggested in
[8, 9] to result from the impurity ionization.

It was assumed in the derivation of (3.1.3) that the dissolved impurity
was in a neutral state in both phases. In the solid phase, however, impurities
are partly ionized. The electrical interaction affects the solubility later. This
circumstance was taken into account in [9] to obtain an exact expression
allowing for interactions in the solution and impurity ionization:

KS =11 exp[(AH& ~T8f +Q)(1-xg ) - Hg)/kT], (3.1.7)

where f, is the Fermi-Dirac function and €, is the interaction parameter in a
regular solution.

As the temperature increases, the distribution coefficient K given by this
formula normally decreases, which fits well the retrograde character of the
impurity behavior. The solubility decrease at high temperatures (in the cons-
tant temperature approximation of Gibbs partial potential) is associated with
a lower impurity activity in the melt, calculated from the equilibrium
liquidus curve.

The fact that the Fermi-Dirac function appears in (3.1.7) demonstrates
that impurity solubility is affected by all active defects available in a crystal.
This permits allowance for double doping effects, in particular, simultaneous
introduction of donors and acceptors into a crystal.
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Consider, as an illustration, the solubility of a donor impurity. Suppose
the solubility is not high and the semiconductor remains nondegenerate.
Then, in accordance with the known approximation for the Fermi energy
from (3.1.7), one gets [4]

KB = Z—Zexp(gg /kT)[Rg %exp(gg fiT)+ rg} . (318)

where Rﬁ(rf) are degeneration factors of the unfilled (filled) electronic state

of the impurity. Incorporation of donors increases the free electron concen-
tration. As soon as this concentration reaches a level at which they begin to
determine the free carrier concentration, the distribution coefficient begins to
decrease. Further introduction of impurities into the melt does not raise ap-
preciably the free electron concentration. If acceptors are introduced simulta-
neously, the free electron concentration goes down because of the compen-
sation, thereby increasing the donor solubility. Maximum solubility occurs at
complete compensation. A similar result was obtained earlier by Glazov and
co-workers [10, 11].

It is worth noting that the solubility curve exponent contains the differ-
ence AH," — AH,?. Therefore, the retrograde character of solubility is asso-
ciated in both cases with the fact that the solubility enthalpy is higher than
the melting heat of the component. The high interaction energy during
dissolution decreases the concentration of dissolved impurities, producing a
negative solubility region.

3.2 SOLUBILITY OF HYDROGEN-LIKE IMPURITY
ATOMS IN GERMANIUM AND SILICON

The authors of [12, 13] took into account the ionization of dissolved impu-
rities in the derivation of expressions (3.1.7) and (3.1.8). The ionization
should necessarily be allowed for in the case of hydrogen-like impurities
because of the appearance of shallow energy levels.

If the fraction of neutral atoms, F,, in their total abundance x. is

S
X
Fn= cn

, (3.2.1)
Xc
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one can derive a general expression for the distribution coefficient allowing
for the impurity ionization in the solid phase:

AH  AS] —ASS

i +inyl —InF,, 3.2.2
RT R Yo n ( )

InK, =-

where AH is described by a straight line of (3.1.6), according to Hall.

The necessity to account for the quantity F, is due to the fact that the
equilibrium C° 2 C* + e for donors or C° 2 C™ + p* for acceptors in the
high temperature region can shift appreciably toward the neutral component
at high concentrations of intrinsic carriers. The quantity F, can be easily ob-
tained by considering the equilibrium between neutral and ionized impurities
in a crystal. For a hydrogen-like impurity center, it is

B 1
=
[Er —Ei
1+%exp(FRT' ,

where Er and E; are the positions of the Fermi and local levels of the impu-
rity, counted from the conduction band bottom.

Unfortunately, a straightforward calculation of F, is complicated by the
fact that a solid solution containing over 10% cm™ impurity atoms is degen-
erate in a wide temperature range [14]. Moreover, the available information
on the band structure of germanium and silicon at high temperatures is very
limited. A rough value of F, for germanium can be obtained from
Blakemore’s plots [15] in the approximation of a simple band model and
Boltzmann’s statistics. In this approach, F, varies slightly, within 0.85+0.90,
in the low temperature region (< 800°C), but above 800°C it falls relatively
fast to 0.4 at the melting temperature of germanium.

For a degenerate semiconductor, the value of F, can be found from the
expression

F

(3.2.3)

Fn=1+ % Fu2(n/KT), (3.2.4)

where F1(WKT) is the known Fermi integral of the “half” index, tabulated in
[16], and the Fermi level for this case is calculated from a formula in [15]:
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Si(Ge) vz

kT

exp%: 2Ny XNy —cN, +|(Ny —cN,)? +8N, N, exp

(3.2.5)

with the recommended value of ¢ = 0.27.

The first detailed treatment of solubility of basic hydrogen-like impurities
in germanium and silicon taking account of impurity ionization was carried
out by Lehovec [17]. Later, this problem was considered [8, 9], with refer-
ence to germanium, in terms of a regular solution approximation, using
equations similar to (3.2.2), the only difference being that the dissolution en-
thalpy was replaced by experimental values of K. In one work [9], the
authors found the solidus curves from the theoretical Fermi level position,
and in the other [8], they solved the inverse problem, namely, estimated the
Fermi level position from solubility data for various impurities in germa-
nium. The F, value was found from Blakemore’s plots as a function of tem-
perature and doping impurity concentration.

Comprehensive information on the solubilities of group-1I1 and group-V
elements of the periodic table is presented in the book by Glazov and
Zemskova [10]. Here, we only list the authors’ principal conclusions.

(1) Liquidus curves for the states of group-1ll and group-V solid
solutions can be basically described in terms of the regular solution theory.
Solutions with acceptors show a better fit to the theory than those with
donors. This may be due to the high donor vapor elasticity, so that a
thermodynamic equilibrium in the system is observed only in closed
volumes with the counterpressure of saturating vapors at a particular
temperature. It is, probably, for this reason that the liquidus curves for these
solutions are not quite accurate. In particular, the high temperature liquidus
curve for phosphorus in silicon is hypothetical and was extrapolated from the
low temperature region of the state diagram.

(2) The impurity solubility is fairly high. Most atoms in a solution are
neutral, so electrical measurements cannot provide a total concentration of
dissolved atoms. This circumstance should be taken into account when com-
paring theoretical and experimental values.

Intensive investigations of equilibrium solubility of hydrogen-like impu-
rities were carried out during the 1950-1960s, and their principal results can
be found in the reviews [6, 13]. Since the 1960s, the focus has been on sili-
con. For some impurities (B, C, N, P), experimental data on solubility in
germanium are still quite scanty.
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Table 3.1. Solubility data for group-Ill and -V hydrogen-like impurities in germa-

nium.
Impu- Solubility Dissolution enthalpy AH (eV)
- _— 1
rity Crmaxs  Tmaxs K Exper. Theory
cm™® °C [18] [19]1 [22]
B <10%® 17.4 [20]
12.2 [21]
Al 43x10®° 675 0.073[14] 0.2 -0.02 012 -0.04
0.31[23]
Ga 49x10® 670 0.087[14] 0.12 -0.01 010 0.14
In 4.0x10® 800 7x107*[6] 0.2[6] 064 057 069
In 6.0x10® 835 0.85 [24]
0.872[5]
0.70 [25]
P 2x10® 600  0.01[6] 0.11
8x10"° 800  0.02[6] 0.54[27] 026 -0.13
As 0.32° [5]
0.40 [28]
1.2x10'° 800 3x10°[6] 0.70[27] 0.36 045 0.19
Sb 0.63 [29]
0.40 [28]
2.19[3]

1 K — distribution coefficient at melting temperature.
2 Theoretical AH = 0.87 - 3.17x107* T (V).
% Theoretical AH = 0.32 — 1.13x107* T (V).

Tables 3.1 and 3.2 give experimental and theoretical results on the solu-
bility and dissolution enthalpy of hydrogen-like impurities in germanium and
silicon.

The data in Tables 3.1 and 3.2 sometimes demonstrate a considerable
spread of the values of Cn. and, especially, of AH found by different wor-
kers. For many impurities, no theoretical calculations are available. A step
forward was made by Bulyarsky and co-workers [4, 43, 44], who suggested
finding equilibrium impurity solubility by taking into account various inter-
actions between impurities and other point defects and the activities of dis-
solved atoms. An attempt was made in [43, 44] to calculate Gibbs partial
free energies of some hydrogen-like donors and acceptors in silicon. In this
treatment [4], the distribution coefficient was represented, in addition to
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Table 3.2. Solubility data for group-111 and -V hydrogen-like impurities in silicon.

Impu- Solubility Dissolution enthalpy AH (eV)
. e 1
rity Crmaxs Tnax: K Exper. Theory
cm™ °C [18] [19]1 [22]
B 5x10®° 1200 0.43[31] 0.43[30]
8x10% 1200 0.73 [31]
Al 2x10"® 1150 0.002[6] 0.46[6] 047 069 017
0.43[33]
0.66 [32]
1.00% [5]
Ga 4.0x10"° 1250 0.008 [6] 0.46 [6] 044 050 043
In 1.6x10"® 1300 4x107*[6] 251[34] 122 093 1.28
P 1.3x10* 1200 0.35[6] 0.50 [38] 0.03
2x10° 1200 0.70 [31]
5x10% 1100 0.76° [39]
As 2x10% 1150  0.3[6] 0.24[6] -0.03 -0.06
0.47 [40]
5x10% 1300 0.023[6] 0.31[6] 034 039 064
Sb 5.3x10%° 1300 0.58 [42]
3.49 [41]

L K - distribution coefficient at melting temperature.
2 Theoretical AH = 1.00 — 2.56x107* T (eV).
® Theoretical AH = 0.76 — 2.8x107* T (V).

Formula (3.1.7) derived in the regular solution approximation without
allowance for multiply charged states, as

p E._EB
KB = f{—gexp(—%]le exp% + r(E] : (3.2.6)

where the designations are the same as in Section 3.1.
The concentration of a dissolved, say, donor impurity was described in
[43, 44] as

kT \ 2

aSI

Ng = 3 N exp(—ﬁ)(lexp%+l). (3.2.7)
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Figure 3.2. Experimental (circles) and calculated (triangles) solidus lines for Al in
silicon.

The Fermi level position, Ef, was calculated with (3.2.5), and the activity
coefficients were found using the ratios in the regular solution theory [45]:

2 2
Q(1-%q) Q| (X
—exp—————— =exp———, 3.2.8
R —— Tp=eXp— o (3.2.8)
where the interaction parameter was found from the liquidus curve as
Q —iLﬁsf—AHf—lel— 3.2.9
1= B B g( Xocl) : (3.2.9)

Xal

Besides, the partial potentials contain the difference between the chemical
potentials of mixed components. This difference can be written as

ug—ungH;—AHg—T@;—sH. (3.2.10)

After the substitution of (3.2.8) through (3.2.10) into (3.2.6), one gets
(3.1.7).

The consistency between (3.1.7) and (3.2.6) is justified since it was
shown in Section 1.2 that the approaches based on free energy minimization
and on chemical potentials are identical. However, free energy analysis al-
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Figure 3.3. Theoretical solidus lines for different Au charge states in undoped silicon
(a) and in silicon doped with donors at the concentration N = 102 cm™: 1 - Np,; 2
—Nas"; 3=Ng; 4-Ng".

lows a better understanding of the physical mechanisms of interaction and a
discussion of more complicated situations, such as multiply charged impuri-
ties and their interactions via force fields.

A combined solution of equations (3.2.5) and (3.2.7) with the substitution
of (3.1.8), (3.2.6), and (3.2.8) with respect to exp(—gs/kT) yielded Gibbs par-
tial potential and temperature dependences of impurity dissolution enthalpy
and entropy [43, 44]. As a result, a better agreement was achieved between
experimental and calculated solidus curves. This is illustrated in Figures 3.2
and 3.3. The principal result is illustrated in Figure 3.4 showing clearly the
nonlinear character of the AH(T) curve. This means that Hall’s concept
formulated as (3.1.6) does not work, as was suggested by many workers.

- H, eV
0.75
0.70
T, K
0.65 1 ] 1 1
800 1000 1200

Figure 3.4. The temperature dependence of dissolution enthalpy for Ga in silicon.
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3.3 HYDROGEN-LIKE IMPURITY SOLUBILITY IN
A"'BY COMPOUNDS

Impurity solubility mechanisms in A"'BY compounds have been a subject of
interest to many investigators [46-50]. Without claiming present all this
material, we would like to point out some general mechanisms and factors
that distinguish the impurity solubility in these compounds from that in
elemental semiconductors.

(1) The process of impurity dissolution is much affected by the formation
of complexes, which is stimulated by a high concentration of point defects
and their greater diversity than in elemental semiconductors. For details of
defect association, the reader is referred to Chapters 5 and 6.

(2) The significance of crystal growth conditions rises. The governing
factors in elemental semiconductors are temperature and impurity concentra-
tions in the ambient. An additional factor in A"'BY compounds is elasticity
of the volatile component vapor. By varying this parameter, we can vary the
homogeneity region width and the concentrations of cation and anion
vacancies. This, in turn, changes the conditions for impurity dissolution and
formation of complexes.

(3) Dislocations and their interaction with impurities also play an impor-
tant role [47].

It is clear that an adequate description of impurity solubility in such com-
pounds is not a simple task. Nevertheless, it was possible to draw certain
conclusions. The concentration of complexes decreases abruptly at high tem-
peratures, and so high temperature data can be treated without considering
defects associations. Complexation results in a lower concentration of free
charge carriers than the dissolved impurity concentration. However, direct
concentration measurements of dissolved material do give an absolute value
of dissolved impurity concentration. Therefore, such measurements should
be preferred to electrical measurements.

Variations in the external factors, including vapor pressure of volatile
components in the ambient, has been accounted for by theory. For this rea-
son, the theoretical considerations and the data treatment presented below
may appear useful. As an illustration, let us consider the solubility of tellu-
rium in GaAs, which has been studied in greater detail than other impurities.

The distribution coefficient of tellurium has been discussed by several
workers. The experimental results were reviewed in [48] and summarized in
Table 3.3 of this book, together with data for other A"'BY compounds [52].
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Table 3.3. Distribution coefficients of some impurities in A"'BY compounds [31, 52].

Distribution coefficients

Impurity

AlSb GaP GaAs GaSh InP InAs InSb
S 0.03 0.23 0.17; 0.06 0.8 1.0 0.1
0.5-1.0
Se 0.003 0.29 0.44-055 0.18;0.4 0.6 0.93 0.5;0.35;
0.17
Te 0.01 0.026 0.3; 0.4 - 0.44 3.5; =1;
0.054- 0.54
0.016
Zn 0.02 - 0.3-0.9; 0.3;0.16; - 077  2.3;3.0;
0.1 0.02 4.9
Cd 0.002 - <0.02 - - 0.13 0.26
Si 0.045 - 0.1;0.014 1.0 - 0.4 -
Ge 0.026 - 0.02;0.03 0.02;0.2; 0.05 0.07 0.045
0.08
Sn (2+8)10 -  0.03;<0.02 0.01 0.03 0.09 0.57

The temperature dependence of the distribution coefficient is defined as

As _gAs
K:mexp _91e exp ﬂ +1]. (3.3.1)
aas KT kT

This dependence was used [4] to find the partial free energy of tellurium
solubility in GaAs (Figure 3.5). The Fermi energy was calculated on the as-
sumption that the conductivity was determined by tellurium atoms; not all of
the atoms, however, are in an active state. The calculations yielded the fol-

lowing thermodynamic parameters of tellurium solubility: AH{-*eS = -

0.52eV; SAS =8.7k at T = 1273 K and Ng = 1.7x10"" cm™. The enthalpy

and entropy were found to be practically constant in the temperature range
970-1500 K and independent of the doping impurity concentration.
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Figure 3.5. The temperature dependence of Gibbs partial potential of Te solubility in
GaAs.

3.4 SOLUBILITY OF DEEP IMPURITIES

3.4.1 Solubility in A" semiconductors

It was shown in Section 2.2 that 3d-atoms are primarily dissolved at in-
terstices of elemental semiconductors and always produce deep energy levels
in the band spectrum. Here we discuss some general physicochemical and
technological problems important to the analysis of deep centers, their distri-
bution in the semiconductor bulk, and behavior during thermal treatment.

Since the formation of every deep center in semiconductors (vacancy,
antistructural defect, and, of course, doping impurity) is closely related to the
parameters of the ambient, in which the host crystal is formed, the discussion
of solubility can be effective only if it considers these parameters. When a
thermodynamic equilibrium is established between the semiconductor crystal
and the ambient, the conditions are said to be equilibrium. In this case, every
type of defect acquires an equilibrium concentration for these particular
conditions; the concentration can then be expressed by the respective
thermodynamic quantities. In practice, however, we mostly deal with
conditions which are close, to a greater or lesser extent, to equilibrium
conditions. In that case, we must take into consideration the kinetic factors
defining the degree of this closeness.

Let us discuss some aspects of deep center formation by impurities and
their behavior in the processes of crystal growth and thermal treatment. The
behavior of 3d-atoms during crystallization and thermal treatment is prima-
rily determined, as in the case of hydrogen-like and other impurities, by
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such impurity parameters as the distribution coefficient K,, the maximum
solubility Cymax, and the diffusion coefficient D, at various temperatures.
These characteristics of impurity atoms depend on how close the physico-
chemical properties of the doping element(s) are to those of the host ele-
ment(s). They also depend on their size ratio and on the electron shell struc-
ture of the substituting and the substituted atoms. It is well known that these
parameters define the character and specificity of impurity atom incorpora-
tion into the crystal lattice and, therefore, the spectrum of the energy levels
produced by impurity centers in the semiconductor forbidden gap. Thus, the
physical, physicochemical, and technological aspects of impurity behavior in
semiconductor materials appear to be intimately interrelated.

For crystallization from a melt, the distribution coefficients of impurities
under equilibrium conditions, ( K2), can be found from the state diagrams of

respective semiconductor—impurity systems as the ratio CJ/ Cgl , or they

can be calculated from a thermodynamic model for solutions with equal
chemical potentials of the impurity in the equilibrium liquid and solid
phases, as was demonstrated in Section 3.1. Good results for 3d-impurities
can be obtained from the calculation of K¢ in the regular solution
approximation with formula (3.2.6), which we will borrow from [54] but
modify as

f 2 f
AH, +Q(1—Xy)—Q(1—X
KO = exp| —2 I I(;IT) s(1 Xas) —AEO‘ . (34))

In formula (3.4.1), the parameters of intermolecular interaction in the liquid
and solid phases, €, and €, are taken to be constant (a rigorously regular
approximation) or dependent on temperature as, say, Q = a + bT (a quasi-
regular approximation). The quasichemical solution theory and the assump-
tion of a random particle distribution in the phase of interest can yield an
expression for €, in the binary system consisting of components A and B:

Q= HA_B—O.S(HA_A+HB_B), (342)

where Ha g, Haa, and Hg g are interatomic interaction energies of compo-
nents of different and identical signs.

Regular solutions obey the expressions of (3.2.8). At Q >0, vy, > 1, and
a, > X, the interaction in the solution is characterized by repulsion of atoms
of components with different signs, while at Q < 0, v, < 1, and a, < X, the
attraction of such atoms is dominant. The character of interaction in a liquid
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solution affects the equilibrium between the liquid and gas phases: the vapor
pressure of the o.-component above the solution is higher at Q > 0 but lower

at Q < 0 than above an ideal solution (P = x, PQ) under identical condi-

tions (here, P, is the gas pressure of the pure a-component at a given tem-
perature).

Under real crystallization conditions, the time is too short for the equilib-
rium to be established at the interface because of kinetic limitations. So,
crystallization from a melt is usually described using the effective distribu-
tion coefficient K which is, in a simple case, related to the equilibrium
coefficient as

Koett = KS/[KS +(1- K3 )exp(- fS/D&)] , (3.4.3)

where f is the growth rate, o is the diffusion layer thickness in the melt at the
crystallization front, and D,,' is the diffusion coefficient of the impurity in the
melt.

It is seen from (3.4.3) that the value of K, is affected by the rate ratio of
impurity accumulation in the diffusion layer (at K2 < 1), by the subsequent

equalization of the melt composition defined by f and D,/, and by the melt
mixing conditions which determine d.

Generally, the coefficient K, is affected by a number of additional fac-
tors, such as the doping level, the interaction between the melt and the ambi-
ent, contaminating impurities and their electrical behavior in the semi-
conductor, the crystallographic orientation of the growth surface, and some
others.

Normally, d-atoms producing deep centers in semiconductors differ from
the host atoms in the electron shell structure and size, due to which reason
their building-in into the semiconductor crystal lattice is usually quite diffi-
cult in terms of energy. The “resistance” of the host crystal to this building-
in leads to relatively large positive values of Q; the values of K and C,, max
are usually much lower than for shallow impurities, as is seen from a
comparison of Tables 3.2 and 3.4.

Natural segregation of impurities occurring during oriented crystalliza-
tion results in their nonuniform distribution along the crystal length. If the
flat crystallization front is distorted, the distribution becomes nonuniform in
the transverse direction, too. As a rule, the larger the difference between K,
and unity, the more nonuniform is the impurity distribution in both macro-
and microvolumes of the growing crystal. The longitudinal impurity distribu-
tion in crystals grown by oriented crystallization is described by the equation
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Table 3.4. Solubility data for d-impurities in silicon.

Solubility Dissolution enthalpy AH (eV)
- 1
Impurity Crmax Tmaxs K Experim. Theory
cm™ °C AH; AH,
Sc 2x10'° 2.10
Ti 10 3.56
\Y; 10%° 447
Cr 106 1250 1x107® 2.00 1.82
Mn 10% 1350 2.10 0.56
Fe 5x10'° 1350 8x107° 2.40 1.59
Co 2.5%x10% 1240 1.45 1.13
Ni 7x10Y 1310 1.40 1.52
Y 3.56
zr 10%° 6.02
Mo 10%° 5.78
Ru 3x10% 3.35 5.27
Rh 10" 1.68 4.15
Pd 2.9x10%% 1.52 1.16

1 K — distribution coefficient at melting temperature; theoretical AH values are for the
most probable states—interstices (i) or sites (s).

-1
Ci = Kueﬁc('xo[(l— g)K“Eff] , (3.4.4)

where Cl0 is the initial impurity concentration in the melt and g is the crys-
tallized melt fraction. Equation (3.4.4) shows that the accumulation rate of
impurities with K in the melt during crystallization and, hence, the steep-
ness of the impurity concentration profile along the crystal increase with de-
creasing Kees. For this reason, if the initial melt contains, for example, two
kinds of background impurities, one of which produces shallow and the other
deep levels, the situation in Figure 3.6 may arise. If the initial concentrations
of both impurities in the melt are the same, their concentration ratio along
the crystal length appears to be different due to the difference in K. In the
absence of a special doping, this is responsible for the respective change of
the Fermi level position and for the difference in the electrophysical parame-
ters along the crystal, for example, an abrupt rise of p in the crystal tail.
When deep impurities are introduced into a semiconductor in order to
give it the necessary recombinational and insulating properties, the doping
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Figure 3.6. A possible distribution of shallow (1) and deep (2) impurities along the
single crystal length.

impurity concentration often becomes very high, nearly reaching its
solubility limit. An important role then is played by the solidus profile
characterizing the temperature dependence of the limit solubility of a
particular impurity in a particular semiconductor. The position and
configuration of the solidus curve are determined by the physicochemical
interaction of the system components and are implicitly present in equation
(3.4.1). If we assume, for simplicity, the liquid solutions in the system of

interest to be perfect, i.e., @ =0, it will follow from (3.4.1) with x5 <<1

that the temperature dependence of K('x0 and the related quantity x,° are

defined by the relation between Q, and AH,,. At Q, < AH,, both quantities
increase with decreasing temperature, while at Q; > AH,' they decrease,
giving rise to retrograde solubility. We then observe a certain regularity: the
larger the value of Q, the lower the impurity solubility and the greater the
retrograde character of the solidus curve. Since deep impurities have large Qs
values, their specificity reveals itself especially clearly. At least two impor-
tant conclusions should be drawn from this behavior:

(1) High doping levels require technologies providing crystallization at
temperatures with maximum Cgmax;

(2) It is desirable to use less retrograde impurities in order to reduce the
probability of decomposition of semiconductor—impurity solid solutions dur-
ing crystal cooling.

The first condition is important, for example, for the production of single
crystals with semi-insulating properties when the concentration of doping
impurity must exceed that of shallow background impurities. When low tem-
perature techniques are used (e.g., crystallization from a solution-melt), the
solubility of a deep impurity at technological temperatures may prove com-
parable in value with the concentration of shallow background impurities. A
stable compensation of the latter then becomes a problem, and it is difficult
to achieve stable properties of crystallized material.
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Decomposition of oversaturated impurity solid solutions in a
semiconductor, when the impurity changes from an electrically active state
to a neutral state as the second phase products, is largely responsible for
thermal instability of parameters of semiconductor materials.
Decomposition-related problems are quite serious in view of the large
number of deep impurities having a well-defined retrograde solubility at high
doping levels. In a first approximation, the decomposition probability is
determined by the degree of solid solution oversaturation and the seed
growth kinetics. The problems of decomposition of oversaturated
semiconductor solutions are discussed at length in [55]. Generally, the
probability of solution decomposition during its cooling grows with the
solidus curve steepness at high temperatures, although the decomposition
process is affected by some additional factors, such as defect content in the
crystal, the presence and type of contaminating impurities, etc.

The composition macro-inhomogeneities can largely be avoided by using
special-purpose techniques, for example, by programming the crystal growth
conditions by means of varying the value of K. in accordance with (3.4.3)
or by maintaining an approximately constant composition of the liquid phase
during the whole crystallization process using various dopants. It is much
more difficult to control micro-nonuniformities of impurity distribution in
the crystal bulk. They arise from technological conditions, such as instability
of equipment performance during crystal pulling from a melt, periodic
temperature variations in the melt at the crystallization front because of
imperfect thermoregulation, strong convective flows in the melt, distortions
in the flat crystallization front, etc. Most of these reasons can be removed.
But there are fundamental reasons associated with the crystallization process
itself. It is known that crystal growth in directions with small
crystallographic indices, which are usually used for the production of most
semiconductor single crystals, requires a certain overcooling of the melt in
the crystallization front vicinity. Therefore, crystallization represents, to
some extent, a self-excited oscillation process. When accumulated
overcooling reaches a critical value, it gives rise to a fast layer-by-layer
crystallization of material followed by a slowing of the process, because the
temperature at the crystallization front begins to increase due to the latent
heat release in the phase transition during the crystallization. Then this heat
is dissipated, the overcooling is accumulated, and the cycle is repeated. The
alternation of these cycles also produces periodic temperature variations at
the crystallization front. Variation in the crystallization rate gives rise to a
periodic inhomogeneity, in accordance with (3.4.3).
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Figure 3.7. A hypothetical origin of periodic micro-nonuniformity in a crystal due to
temperature variation at the crystallization front in the presence of shallow donor (1)
and deep acceptor (2) impurities in the melt: f — crystallization rate; © —time; Ef -
Fermi level.

Figure 3.7 illustrates a situation which may arise, for example, in simul-
taneous crystal doping with two impurities, of which one is a deep level im-
purity. The concentration nonuniformity produces an electrical nonunifor-
mity because of internal electric fields induced by spatial charge separation.
It is worth noting that periodic nonuniformities manifest themselves more
clearly in dislocation-free single crystals. Growth (high temperature) disloca-
tions are fairly effective sinks for impurity atoms and can essentially smooth
out such nonuniformities. Fortunately, periodic nonuniformities at high D,’
and low cooling rates of the crystal are diffusionally smeared due to their
small period.

Among general characteristics of deep impurity solubility in silicon is its
correlation, at least for 3d-impurities, with the diffusion characteristics, the
filling degree of the d-shell (outside the crystal), and the energy level (Table
3.5). However, we know little about the solubility of transition 4d- and 5d-
metals in silicon.

The solubilities and energy levels are summarized in Tables 3.6 and 3.7.
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Table 3.5. Diffusion and filling characteristics of deep 3d-impurity levels in silicon.

Impurity Sc Ti \ Cr Mn Fe Co Ni
Electronic 3d'4s? 3d%4s? 3d*4st 3d°4s? 3d®4s?  3d®4s?  3d"4s®  3d®4s?
configuration

AE, eV - 15 - 1.0 15 0.66 0.51 0.47
Type of level D D D D D D D,A A
Do, cm/s - 2.10 - 10 2610 6210 8510 2.3x107°

D - donor, A — acceptor, D = Dy exp(-AE/KT).

Table 3.6. Solubility and energy levels of 4d-impurities in silicon.

Impurity Solubility, cm™ Energy levels, eV
Nmax Na from c-band from v-band
Y 8x10% 0.29D; 0.4D 0.45A
Zr 10%° 2x10'6 0.17D
Mo 10%° 10% 0.33D 0.3D; 0.34A
Ru 3x10% 5x10%° 0.24A; 0.45D
Rh 10% 5x10%° 0.3A; 0.55A
Pd 6x10° 5x10% 0.2A; 0.28D 0.34A
D —a donor, A — an acceptor, D = Doexp(-AE/KT).
Table 3.7. Solubility and energy levels of 5d-impurities in silicon.
Solubility, cm™ Energy levels, eV
Impurity Nmax Na from c-band from v-band
Hf 4x10'6 4x10 0.09D
w - 10% 0.23A; 0.3A;  0.34D; 0.3D
0.37A
Re 10% 2x10% 0.18A; 0.3A; 0.4D
0.53A
Os 6x10® 101 0.18A; 0.53A 0.18D
Ir 10% 7x10% 0.33D; 0.55A
Pt 10" 2x10' 0.25A 0.3A; 0.3D
Au 10% 5x10%° 0.54A 0.35D
Hg - 10" 0,36A; 0.31A  0.33D; 0.25D
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It should be mentioned that most of these impurities are multiply charged
and amphoteric. They will be discussed later in this chapter but we give their
general characteristics here. Besides, one cannot be sure that the energy le-
vels refer to single impurities rather than to their complexes or, in general, to
defects.

We know little about the solubility of impurities with empty shells in
germanium, except for the group-lI atoms—Cu, Au, and Ag. These have
found a wide application in fast response semiconductor devices as effective
recombination centers in doped germanium and silicon. On the other hand,
the application of other impurities with empty d-shells is quite limited. The
same is true of f-atoms in both silicon and germanium. Their doping with f-
atoms by the conventional methods of pulling from the melt, zone melting,
and liquid phase epitaxy, is difficult because of the strong interaction
between rare earth elements and oxygen in the liquid phase.

There has been no thermodynamic analysis aimed at determining AH; for
many deep level impurities.

3.4.2 Solubility in semiconductor compounds

Impurities with partly filled electron d-shells were shown in Section 2.2 to
dissolve at the A-sublattice sites of A"'BY compounds. The solubility data
available for some impurities in semiconductors are summarized in Table
3.8. They should be regarded only as preliminary data, because the investiga-
tors determined them in samples with different point defect backgrounds
(with various degrees of deviation from the stoichiometry), with different
dislocation structures, under different technological conditions leading,
again, to very different sample stoichiometries, etc. The strong concentration
dependence of a doping impurity on the background impurity and on the in-
trinsic defect content (vacancies in the A- and B-sublattices) results in a shift
from the thermodynamic equilibrium in the semiconductor—-impurity system.
Besides, the associations of various point defects become in these conditions
more important than in elemental semiconductors.

These factors make a rigorous and detailed analysis of solubility of deep
impurities in binary and more complex semiconductor compounds quite a
difficult task. The reader can find some fragments of such an analysis in the
subsequent sections, in particular in Chapter 6.
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Table 3.8. Solubility, dissolution enthalpy, and distribution coefficients of deep
impurities in A"'BY semiconductors.

A""BY semiconductors

Impurity || as GaAs InP GaP InSb

Nmax Nmax K Nmax Nmax K K
Cu 0.04 0.7 2x107° - 6x107* - 6.6x107*
Ag 0.03 0.05 0.1 - - - 4.9x10°°
Au 0.02 0.2 - - 3x107 1.9x10°°
Cr - 0.016  6x107* - 0.001 - -
Mn - 0.01 0.05 0.3 - 0.015 -
Co - 0.001  8x10°° - - - -
Ni - 0.001 0.02 - - - 6x107°
Ti - 0.033 - - - - -
Fe - 0.1 0.03 - - 107 0.04

3.5 SOLUBILITY OF AMPHOTERIC IMPURITIES

3.5.1 A thermodynamic analysis

In the previous section, we mentioned some amphoteric d-impurities, but a
complete thermodynamic analysis of a semiconductor doped with an am-
photeric impurity requires that its total concentration

[A]=Ng+ N +N*

be related to the parameters of the ambient phase, from which a crystal is
being grown, and to the other point defects present in the crystal. To begin
with, consider an impurity-free elemental semiconductor consisting of S
atoms and then a semiconductor doped with an amphoteric impurity A. The
ambient phase is supposed to be the gas phase containing associated S,-type
molecular pairs. Partial gas pressure will be denoted as Psn,. Suppose also
that the crystal of interest is a perfect point defect solution. Since the type of
solution is taken to be known, let us make a thermodynamic analysis by
finding the chemical potentials of intrinsic and impurity point defects (see
Section 1.2).
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Since an amphoteric impurity can occupy sites and interstices both sepa-
rately and simultaneously, we will introduce into our consideration a hypo-
thetical defect—an “interstitial vacancy” denoted as V,. Therefore, we should
introduce the concept of an occupied interstice. In a doped crystal, these may
be A, and S\-type defects; in an impurity-free crystal this is only the S, defect.
In other words, an elemental crystal is considered as a binary Sl consisting of
two sublattices—S and I.

It is more convenient to begin the analysis with a doped semiconductor.
In this case, its composition will be described by the following quantities: Ss,
l,, Vs, and V. Vacancies may be charged; therefore,

Vo=Vd+vs and VvV, =V0+Vt. (35.1)

Here, as usual, the true site vacancies are assumed to have an acceptor
character, and hypothetical interstitial vacancies are ascribed a donor charac-
ter. This is an arbitrary expedient, the more so that the assumption of intrin-
sic point defects having a charge is of no principal importance, because their
true nature must be established experimentally in every particular case.
Moreover, if the concentration of charged defects is taken in the first ap-
proximation to be much lower than that of un-ionized defects, it will be clear
from (3.5.1) that the whole analysis of intrinsic defects can be made, in the
first approximation, without indicating their charge. If necessary, the charge
of intrinsic defects can be easily introduced with expressions (2.3.6) and
(2.3.10).

Therefore, the thermodynamic analysis must yield the equilibrium values
of the mole fractions

xs=Vs/Ss,  x1=Vi/I, v=1/Ss. (35.2)

Of the three mole fractions, it is only the quantity xs which has a physical

meaning for an impurity-free elemental crystal. Indeed, all interstices in such
a crystal are free, or

V| = || and X = 1. (353)

For such a semiconductor as germanium and silicon, we have
lh=Ss =N, (3.5.4)
where N is the concentration of crystal atoms, which leads to y = 1. Never-

theless, it will become clear from further analysis that all the three mole
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fractions in a semiconductor compound (or in case of dissociative amphoter-
ic impurities) have a real physical sense. So they remain in (3.5.2) for a
further analysis.

The sought for concentration Vs is defined by the equilibrium conditions
between the point defects and the external gas phase, as well as the other
point defects V, in the crystal bulk:

MVs +Sm_MSs , (3.5.5)
Vs +V| 0. (35.6)

These two quasichemical reactions correspond to equations relating partial
chemical potentials

mu(VSO)+u(Sm) = mu(Ss), (35.7)

u(vlo)w(vso) -0. (3.5.8)

In these expressions and below, the brackets denote the components with
chemical potentials. Using the general expression for the chemical potential
of any point defect as a perfect solution component, we can write

],l(V|O) - g(V|O)+T In% , (3.5.9)
v
u(vso) - g(VSO)+T In%, (3.5.10)

where the square brackets stand for the defect concentration. The gas phase
is considered as an ideal gas, so that the chemical potential has the form

W(Sm) = ¥s(T)+TIn Py, (3.5.11)

where Wg(T) is a standard potential of the gas phase and T is temperature
expressed in energy units.
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Expression (3.5.7) also includes the chemical potential u(Ss). It is easy to
see that the equality u(Ss) = 9(Ss) is valid, which means that p(Ss)
represents, physically, the crystal formation energy per atom and is a
characteristic of a perfect crystal. It is important for us that this quantity is a
function of temperature only.

Substituting the chemical potentials of (2.3.20) and (2.3.21) into (2.3.19),

we find
[V|0 ][V ] g(V|O)+ g(VSO) ,
(M ]+ D(vs]+[Ss] )_exp I T Kis(T).  (85.12)

From (3.5.7), (3.5.9), and (3.5.11), we get

5] PUM _ exp| — g[ve)+¥s/m—g(Ss) —Kjs. (35.13)

[Vs]+[Ss] " T

There are three unknown quantities in the last two equations: Vs, V,, and
l,. In order to find them, we should add the condition of site equality in the
hypothetical Sl crystal:

[h]+M]=[Ss]+[Vs]- (3.5.14)

The solution to the set of equations (3.5.12) through (3.5.14) yields ge-
neral mole fractions (3.5.14). In other words, we can completely define the
composition of an impurity-free crystal containing intrinsic atoms and intrin-
sic defects as constituents. If we remember that the number of site vacancies
in an elemental crystal is always smaller than that of occupied sites, Vs <<
Ss, and that all interstices are vacant, or, the other way round, that the
number of interstitial vacancies is always larger than that of occupied
interstices, V| << I, then equation (3.5.14) will transform to

[Vi]=[Ss]= N, (3.5.15)

coinciding with (3.5.4). Consequently, equations (3.5.12) and (3.5.13) will
be simplified and together with (3.5.4) will appear as
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0 0
[VSO]: N| exp —M =N Kis(T),  (35.16)

9(V50)+‘Ps/m— 9(Ss)
T

[VSO]PS%m =N exp| - =NLKys(T).  (35.17)

The first of these expressions reflects the equilibrium of intrinsic defects in-
side the crystal and the second describes the equilibrium between the solid
and the ambient gas phases. The concentration of the only type of defect Vs
in this crystal, which can be found from (3.5.17), is

[VSO] = Ky (T)PSY™. (3.5.18)
One should note this equality

Kas(T)/Kas(T) = P ™, (3.5.19)

which is useful because it is sufficient to find one equilibrium constant, K; or
K, experimentally, while the other one can be calculated from (3.5.19),
using the known function Psm(T).

Consider now the same crystal doped with an amphoteric impurity,
whose vapor pressure at the doping temperature is denoted as Pak. In other
words, by analogy with Sy, the impurity vapor will be considered as
consisting of Ay molecules. In this case, the crystal composition is defined by
the following mole fractions, instead of (3.5.2):

x=—Ys X, =1
- ’ | — ’
SS+AS ||+A| (3520)
As A -
Xas = , Xal = :
SS+AS ||+A|

Here, we will assume that the amphoteric impurity has a dissociative na-
ture, namely, A atoms can occupy both sites and interstices in the SI crystal.
The equilibrium between the crystal and the gas (vapor) phase will be
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characterized by two independent quasichemical reactions (the vapor is an
ideal gas)

mVe + S mSs, (3.5.21)
KVS + A, kA2 (3.5.22)

instead of one reaction (3.5.5).
The equilibrium between point defects in the crystal bulk will be ex-
pressed, with account taken of the doping impurity, by two reactions

0 ,,,07
VS +V| 60’ (3523)
0 0™ A0 0
Ag +V, eA| +Vg'. (3.5.24)

The equilibrium quasichemical reactions correspond to the relations be-
tween the chemical potentials

mu(VS )+ 1(Sm) = mu(Ss) (3.5.25)
ku(vso)+u(Ak) - ku(Aso), (3.5.26)
)0 os2n
N Y RS

The expressions for p of the solid state components are taken in the same
form as in (3.5.9) and (3.5.10) and for the gas phase as (3.5.11). Then, the
solution to the set of equations (3.5.25) through (3.5.28) will provide all un-
known concentrations Vs, V\°, As®, and A, together with the total concen-
tration of the amphoteric impurity A° = A + A. The results of this evalua-
tion are given Table 3.9, taking into account the inequalities

Vi+A<<N_ and Vs+As<<N,. (3.5.29)
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Table 3.9. Intrinsic and impurity point defect concentrations in elemental semicon-
ductors doped with an amphoteric impurity.

Point defect Concentration vs. temperature and gas pressure
0 -1
Vs N KasPom
0
V| NL= I;ZS PS;%-/mzNL
1S
Vs N KasKay Ps ™ (n In? )
9 Kas p-tmpuk _ NLKis puk
As N —2 Por MPai’ = —E—2 Py
2A 2A
A? N Kos owk _ NL pumpuk
! —— =P = Ps Pak
KisKaa Kaa
0 0 -2/ -1
A T A KosPsm " = KisPsm
_ 0 _ 2 2
AS /AI K3AK25PSn%/m(n/ni) = KA(n/ni)

The values of temperature functions K in Table 3.9 have the form

0 0
Kis = exp —M : (3.5.30)

9(V50)+‘1’s/m— 9(Ss)
T

Kas = exp| - : (3.5.31)

9(V30)+‘PA/|< - Q(Ag)

Koa =exp| — T

(3.5.32)

If an amphoteric impurity dissolves mostly at lattice sites, we have Ag/A,
>> 1, but if it is mostly dissolved at interstices, then As/A; << 1.

So far, we have discussed un-ionized impurities and intrinsic point
defects. But now, let us take their ionization into account. Site vacancies and
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amphoteric site atoms will be considered to be acceptors and interstitial
amphoteric impurities as donors. The content of interstitial intrinsic atoms
will be neglected, as before. The conditions listed above are usually fulfilled
in real germanium and silicon crystals.

For simplicity, the amphoteric impurity will be assumed to be singly
charged. Then, As™ and A," will be described by formulas (2.3.3) and (2.3.7)
which can be used to write the ratio A7A," as

— 0 2 B
A _ ﬁo dga an2 exp[ Eda —Eaa ] ’ (35.33)
A A Gaa N a

where Ega and Ega are the energy levels of the amphoteric impurity counted
from “their” bands: Eqa from the conduction band and E,» from the valence
band; g are respective factors of the level degeneracy.

We can also write the concentration of ionized vacancies as

Vg = %—VN—;”VSO exp(— ELV) (35.34)
Jav n; KT

where E,y is the vacancy energy level counted from the valence band top.

By substituting into (3.5.34) the expression for Vs from Table 3.9, we
obtain Vs~ in the form shown in the same table. The determining temperature
dependent function Kj is

Jov Eav
Kay = N, exp| ——]. 3.5.35
3V Jav \% p( KT ) ( )

Let us now turn to equation (3.5.33) and substitute into it the As”/A,° ratio
taken from Table 2.13:

- 2 _
As _ 9da &n—zexp( Ega — Eaa )Kzs ps2/m (3.5.36)
A|+ Jan NC n; KT

or

As_ n 2 n 2
S KapKoeP2M 2| o KA 2], 3.5.37
A 3A Kos Pom (niJ A(ni) ( )
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where

gan N¢ KT
Ka = KaaKosPs2/M. (3.5.39)

For the high temperature region with all centers ionized, we have

AS = Ag, A=A (3.5.40)

In this case, the ratio is

As/ A = Ka(n/m)? . (3.5.41)

If we assume that the impurity atoms do not have enough time to be re-
distributed over the crystallochemical positions during the crystal cooling
from the doping temperature, the ratio of (3.5.41) will show the amphoteric
impurity distribution at sites and interstices in an elemental semiconductor.
This ratio, together with the expression for As” from Table 3.9 makes it pos-
sible to evaluate the total concentration of an amphoteric impurity A = Ag +
A, , which dissolves in an elemental semiconductor:

2
A=N_ % pyUmpi/k l1+ f+ K,&l(%) (1+ (p)] . (35.42)
2A

where the functions f and ¢ have the form

JoA n Ean

f =390A —exp(——), (3.5.43)
Jaa  n? KT

0= go—Aﬁexp(- Eﬂ) . (3.5.44)
gga N KT

The solubility of the site component of an amphoteric impurity in an ele-
mental semiconductor is
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Ag = NLEA(H f)Ps M PRk (3.5.45)
2A

and the solubility of the interstitial component of an amphoteric impurity is

2
Kos  o-1mpuk n
A =N —P Pax (1+ —1 . 3.5.46
| A k (1+0) n ( )

3.5.2 Solubility of dissociative amphoteric impurities

The thermodynamic analysis of the solubility of dissociative amphoteric
(multiply charged) impurities will be carried out with reference to their typi-
cal representatives—gold and silver in silicon.

The maximum solubilities of these and other dissociative amphoteric im-
purities in silicon are presented in Table 3.10.

The solidus lines for solid solutions of silicon doped with these
impurities were found using the radioactive isotope technique. A comparison
with Hall effect measurements shows that all doping atoms are electrically
active, so the formulas for nondegenerate semiconductors are applicable in
this case.

Since these impurities can have any of the three charged states—neutral,
donor, and acceptor state—the formula for a multiply charged impurity is [4]

_ Si
Np = —2P N Sigxp| - 2P [1+ raN—exp(—E—) Iy N—exp(—iﬂ
Ippasi kT P kT kT

(3.5.47)
where ry(rg) is the degeneracy factor of the acceptor (donor) state of a multi-
ply charged impurity and E,(Eq) is the ionization energy of the acceptor

Table 3.10. Maximum total solubilities and distribution coefficients of amphoteric
impurities in silicon.

Impurity Ninax €M™~ T°C Distribution coefficient
Ag 2x10% 1350 -

Au 1x10Y° 1250 3x107°

Cu 1x10™8 1200 4x107

Ni 7x10% 1310 -
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(donor) state of the same impurity. The concentrations of free electrons and
holes are related by the known expression np = ni The analysis of this
formula shows that most impurity atoms will be neutral if a pure
semiconductor is doped with gold or silver. An additional doping with
donors transforms impurity gold to the acceptor state [4].

The conclusion about the redistribution of an amphoteric impurity over
crystallochemical positions due to the introduction of other point defects into
the semiconductor fully agrees with the analysis made in Section 3.5.1. This
conclusion is valid for all associative amphoteric impurities.

Consider now available solubility data for some dissociative impurities in
various semiconductors.

Copper impurity in germanium. The state of copper atoms in germanium
was discussed in Section 2.3.7 (see Table 2.18). It should be added here that
many investigations [58] have shown that copper atoms are dissolved at Cus
sites and Cu; interstices in comparable quantities. This means that the
Ge<Cu> solid solution is a substitution solution and an incorporation solu-
tion simultaneously, with copper concentrations varying with temperature in
both cases. Figure 3.8 presents data on C, measured by electrophysical me-
thods and on total copper concentration C found by the isotope technique.
From this, we have

Ccu, cm”
1017 -
. +1
f@xﬂ\ 3 0, <l
1016 L o 1]
A,e,m [V
1015 L
1014 -
13 ] ] 1 I I
0.8 09 1.0 1.1 103TK!

Figure 3.8. Copper solubility in germanium according to the data: | -[59], Il - [60],
I -[61], IV -[62]; 1-[60] for C;, 2—[63] for C,, 3 —[64, 65] for C.
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C; =%(C—Ce), cs=ce+%(c-ce). (3.5.48)

In our view, the data of the work [61] are more reliable. The values of AH;
and AH; for copper dissolution at sites and interstices are 1.47 and 2.0 eV,
respectively.

Copper impurity in silicon. Copper solubility was discussed in detail in
[61], and the results of this work are still valid. The solubility was studied in
undoped and doped silicon of both types of conductivity separately. For this,
the radioactive copper isotope **Cu was diffused into crystal samples grown
by pulling from the melt and by zone melting.

Curve 1 in Figure 3.9 illustrates the results obtained. The copper solubil-
ity in p-samples doped with boron strongly depended on the boron concen-
tration. The experimental points fit well the calculated dependences

N* = N:Fexpl HiZH | 3.5.49
i p( KT ( )

N~ =N exp(%), (3.5.50)

when the data of curve 1 in Figure 3.9 are substituted as N; and the concen-

Cey cm™
1018 |
1017 L
1016 |
1015 L
1014 |
1013 F
1012 L
1011k

1010 ] 1
0.5 1.0 1.5 103/T, K

Figure 3.9. Copper solubility in undoped silicon: 1, 3 — interstitial solubility; 2 — site
solubility [61].

© 2004 by CRC PressLLC



CCU,CI’H-3
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Figure 3.10. Copper solubility in n-silicon: | — doped with As; 1l — doped with P.
Temperatures of diffusion doping with Cu, °C: 1 -500; 2, 3 -600; 4,5 - 700.

tration narrowing of the forbidden gap is taken into account. In formulas
(3.5.49) and (3.5.50), u is the Fermi level position in an intrinsic semicon-
ductor.The agreement between the experimental data and equation (3.5.49)
indicates unambiguously that curve 1 in Figure 3.9 reflects interstitial
solubility, with Cu; as a single positively charged center.

The results on copper solubility in n-silicon doped with phosphorus or
antimony [61] are illustrated in Figure 3.10. As the shallow donor concentra-
tion increases, the concentration of Cu;* having the same sign decreases,
which is indeed observed on the left of the curve maximum. The rapid
growth of solubility on the right of the maximum is evidence for the
dominance of oppositely charged copper centers Cu™ in this region. These
can be only the site centers Cus . Since Cgy, rises approximately in propor-

tion to N¢®, this is more evidence that the copper site in silicon is a triple ac-
ceptor [66]. Since the minima in Figure 3.10 are observed at very high con-
centrations of shallow donors (> 10'® cm™), we have Cc,, <<Cgcy, at the
same dissolution temperatures. Taking equations (3.5.49) and (3.5.50) to be
valid and relating the first one to interstitial and the second one to site copper
atoms, we can describe the total concentration of dissolved copper as

C=cl(ni/n)+ci(n/n;)°, (35.51)
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where superscripts i and s denote interstitial and site solubilities and the sub-
script indicates intrinsic undoped silicon; the cubic power of the second term
reflects triply charged site copper.

Using expression (3.5.51), the authors of [61] found the dependence
Ci*(T) shown by curve 2 in Figure 3.9.

There is eutectic temperature T, in the diagrams of the Si-Me state;
therefore, the copper solubility in the temperature ranges T < Ty and T > T,
should be considered separately. For the Si-Cu system, the eutectic tempera-
ture is Te, = 1075 K. Solubility curves 1 and 2 in Figure 3.9 are valid up to
this temperature. At higher temperatures, the formation of copper silicide
CusSi is possible.

The total copper solubility in silicon from radioactive analysis [61, 67] is
shown by curve 3 in Figure 3.9. The dissolution enthalpy in the region up to
the eutectic temperature is 1.49 eV.

Gold impurity in silicon. In addition to the information on gold in silicon
given in Section 2.3.7 [68], it is necessary to mention that the low distri-
bution coefficients (Table 3.11) do not permit the production of samples
heavily doped with gold by pulling from the melt or by zone melting. To do
this, large quantities of gold should be introduced into the liquid phase, re-
sulting in strongly nonuniform samples liable to polycrystallization. Besides,
impurities concomitant with gold and having higher distribution coefficients
will create a heavy foreign impurity background in the samples. For these
reasons, conventional growth techniques can produce large quality samples
with a low background and a fairly uniform bulk distribution of gold only up
to the concentrations N, < 1.5x10™ cm™. Samples with a higher gold con-
tent can be produced only by diffusion.

Curve 1 in Figure 3.11 represents data obtained by several authors using
diffusion saturation. The high temperature portion of the curve was
measured especially carefully in the range of 1000-1380°C [68]. Since the
initial samples contained a large number of dislocations, the sink density for
Au; was high and the interstitial gold atoms reached the sink fast. So the data
of [68] seem to refer to the site Aus solubility. This suggestion was made
earlier by the authors of [69] who used dislocation-free samples in diffusion
experiments and obtained different Cay(X) profiles. They treated them as an
interstitial impurity distribution and found curve 2 in Figure 3.11 reflecting,
in their view, the interstitial gold solubility in silicon. But at the time those
experiments [69] were performed, almost nothing was known about so called
swirl defects that may occur in dislocation-free samples. For this reason, the
absence of sinks for interstitial gold suggested in [68] seems doubtful. Be-
sides, it is not quite clear how large is the capacity of swirl defects as Au;
sinks.
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Figure 3.11. Gold solubility at silicon sites (1, 3) and interstices (2), according to the
data: |—[68]; Il -[70]; Il =[71]; IV =[72].

Figure 3.11 also shows the results obtained in [70], which are somewhat
lower than those of [68] and are not believed to be quite correct.

Therefore, curve 1 in Figure 3.11 representing site gold solubility in pure
silicon can be considered as sufficiently reliable. Curve 2 showing
interstitial solubility should, strictly speaking, be checked again in samples
with a better controlled density of inner sinks in their up-to-date sense.

Silver impurity in silicon. The solubility of silver reported in [78] is
retrograde solubility with a maximum at 1350°C. The solubility below this
temperature is satisfactorily described by the exponent law with AH =
2.6eV.

Amphoteric 4d- and 5d-impurities in silicon. Investigations of the dif-
fusion properties and decomposition of 4d-impurity atoms of Ru, Rh, and Pd
[79, 80] have shown that all of them are amphoteric in silicon. Their basic
characteristics are presented in Table 2.20 which also contains data on 5d-
amphoteric impurities in silicon, namely, W, Re, Os, Ir, Pt, Au, and Ag [81-
83]. Note that none of the 4d- and 5d-impurities have been studied thor-
oughly. The reliability of the energy level data for some of them is doubtful.
Much remains unknown about their nature. Are they single impurity atoms
in certain crystal positions or the product of interactions with crystal lattice
defects and other impurity atoms?
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3.5.3 Solubility of cation-anion impurities in semiconductor compounds

The experimental information on the solubilities of group-1V impurities in
A"BY compounds is too scanty to describe its qualitative characteristic—the
dissolution enthalpy. Yet, we know that the solubility is fairly high and has a
retrograde character. The other parameters of these impurities in A"'BY
compounds are given in Table 3.11.

The solubility mechanism for some impurities (Ge, Si, and GaAs) differs
from that of common doping impurities, for example, Zn, Te, and Se. The
difference is due to the fact that the liquid phase equilibrium is established
with the crystal surface rather than with its bulk. This follows from the linear
dependence of C4(C,) described by equation (1.1.23) but not by the square
root of (1.1.18). Therefore, one can draw the conclusion about a slow diffu-
sion sinking of group-1V impurities into the crystal bulk (see Section 1.1).

Table 3.11 shows the distribution coefficients, maximum solubilities, and
respective temperatures. These data have a considerable dispersion, espe-
cially in the distribution coefficients. In addition to occasional reasons, these
discrepancies are due to deviations from the stoichiometry, as was predicted
theoretically. This can be easily followed by comparing the values of K for

Table 3.11. Some physicochemical parameters of basic A"'BY compounds doped
with group-1V elements.

Impu- Distribution coeff. K Solubility Cy,, cm™ Tm K

W Gaas  Gap P GaAs GaP InP GaAs GaP InP

c 08" 10 - - - - - - -
0.2*

Si 0.1-0.14* 0.1-0.2" 055" 1.5x20% 7x10%° 3x10% 1353 1323 1335
0.062 0.3-0.5  30™

Ge 0.1- 01-0.12° 0.2-0.4" 4x10®° 2x10%° 7x10% 1173 1323 1173
0.03" 01-0.1% 6x10"
8.3x107

Sn 5x107°-  8x107% 2.5x107% 8x10" 2x10" (2-5)x 1273 1323 1335
8107 3102 10%
4107 gu1074

Pb <0.02™* - - - - - - - -
<1x107*

* — growth from a stoichiometric melt; ** — growth from a nonstoichiometric solution
melt; C,, — maximum solubility, cm™3; T, — temperature in K, corresponding to Cp.
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samples grown from stoichiometric and nonstoichiometric solutions. There-
fore, there is a strong influence of the volatile component vapor pressure.

The considerable spread of K values even for the same growth technique
may be due to several reasons. A significant role is played by the closeness
to the equilibrium conditions, the identification method used, the account or
neglect of some group-1V impurities which interact with other point defects,
and, finally, the doping level because it also affects the degree of the
compound stoichiometry.

Cation—anion impurities in CdSb. Among the few reports available on
the solubility of group-1V impurities in CdSb, one should note the work [84]
on tin segregation, solubility and diffusion on ingots grown by the Chohkral-
sky method, and oriented crystallization.

An analysis has shown that the temperature variation of solubility in
CdSb has a retrograde character. The maximum solubility at a minimum
cadmium gas pressure is achieved at (360 + 20)°C and is ~1.6x10"° cm™.
The maximum solubility increases with the gas pressure.
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Chapter 4

Microscopic Analysis of Impurity
Solubility in Semiconductors

4.1 DISSOLUTION ENTHALPY CALCULATION BY
WEISSER’S METHOD

In contrast to the macroscopic approach described in the previous chapter, a
microscopic analysis is aimed at treating the energy requirements for
impurity dissolution in terms of the structure and type of chemical bonding.
The relation to the macroscopic theory is through the values of dissolution
enthalpy AH calculated from the first principles.

A detailed microscopic analysis of impurity solubility in semiconductors
was first performed by Weisser [1]. It was based on the consideration of
atomic interactions in the solution.

4.1.1 Site solubility

According to Weisser’s model, the dissolution of impurity atoms at crystal
lattice sites can be represented as a sum of several consecutive stages il-
lustrated in Figure 4.1. The total dissolution enthalpy will be defined by the
sum of the energy requirements in each stage. Let us discuss them in some
detail.
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Figure 4.1. Model incorporation of an impurity atom into a semiconductor crystal
lattice via substitution.

(1) For the incorporation of impurity atoms into crystal lattice sites, a
certain number of sites must become free, i.e., vacancies must be formed in
the host lattice. This process requires energy for the breakage of chemical
bonds in the crystal and for the removal of liberated host atoms.

(2) Simultaneously, the impurity atoms that were initially in the solid
phase in their crystal are sublimated from the lattice. They are transported to
the host semiconductor, are adsorbed there, transported by diffusion to va-
cancies, and condense at them.

(3) The impurity atoms form new chemical bonds with neighboring host
atoms at the crystal vacancies. Note that this dissolution pattern does not
essentially change even if there is vacancy migration, in addition to impurity
diffusion, in the host semiconductor.

The energy balance of the whole dissolution process in Weisser’s model
can be expressed as

AH = 4E 5o — AHS), + AHE, — AH g, (4.1.1)

where A refers to host atoms and B to impurity atoms, Exo is chemical bind-
ing energy of the host crystal, AHgy, is sublimation heat, and AHag is the
energy released in the condensation of an impurity atom at a host vacancy.
Expression (4.1.1) describes dissolution in an elemental semiconductor,
like silicon, consisting of four valent atoms, so it contains the term 4Eq. The
first two terms represent the vacancy formation energy in a host semiconduc-
tor. The quantity Hag consists of two components: Eag Which is the energy
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of chemical bonding between impurity and host atoms, and Eg, which is the
elastic deformation energy of the lattice, arising from the difference in the
sizes of impurity and host atoms. The energy of chemical bonding was
described in [1] by the equation

-1
1 1 1
Eag =4€aB = 2l mA e || (4.1.2)
AHsub AHgyp

where eag is the energy of a single chemical bond AB. Energy Ege Was
calculated in terms of elasticity theory, accounting for the difference Ar in
the sizes of the substituting and substituted atoms and for the displacement
of the four nearest host atoms by the value Ar; smaller than Ar because of the
AB bond compression. On these two assumptions, Eges is

Eger =47 9Ko(Ar - An)? +87Gry(An)°, (4.1.3)

where the first term is the energy of chemical bond compression and the sec-
ond is the tensile energy of the neighboring atoms, g is a dimensionless pa-
rameter close to unity, G is the displacement module, ry is the initial radius
of a substituted host atom, and K. is the crystal elastic constant defined as

KC = mao(cll +2C12) , (414)

where m = 1, ag is the host lattice period, C;; and Cy; are elastic constants of
the crystal.

After the substitution of numerical values for the constants into (4.1.3)
and (4.1.4), we get

for Si:  Eger = 9.2x10% Ar? J/gxatom,
(4.1.5)
for Ge: Eger = 7.1x10%Ar? J/gxatom,

where Ar is expressed in centimeters.
Weisser identified the quantity AS only with the variation of the oscilla-
tion component which was defined by Debye temperatures ©, and Og:

®ATA

ASgm = ASgse = 3K IN—2-4- (4.1.6)

ogTg
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The calculations of AH from (4.1.1) showed a quantitative difference
with experimental values of K, sometimes as large as an order of magnitude
or more. This, no doubt, was mostly due to the significant simplifications
accepted by Weisser. First of all, this is the calculation of vacancy formation
energy as the difference between the breakage energy of the four bonds, Ea,
and the sublimation energy of a host atom. Today there are some publica-
tions, e.g. [2—-4], using semi-empirical approaches and calculations from first
principles, which provide more rigorous values of vacancy formation
enthalpy AHy in elemental and compound semiconductors. Therefore, it
would be more reasonable to replace the first two terms in (4.1.1) by a AH
value borrowed from one of the above publications.

Further, the Eag Vvalues calculated from (4.1.2) cannot be considered cor-
rect either, because this formula does not take into account the interactions
between an impurity atom and the basic host atoms. These interactions have
a complicated character and cannot be described by sublimation energies of
impurity and host atoms, required for their removal from the respective lat-
tices. For this reason, a numerical calculation of binding energies from sub-
limation heats of the respective substances can hardly be regarded as being
correct.

The concept of constant covalent radius used by Weisser for finding de-
formation energy from (4.1.3) cannot be taken for granted either. First, there
are many kinds of atomic radii and, second, the atomic size is a variable
quantity varying with the particular structure and type of chemical bond. We
will consider this problem below.

Another drawback of Weisser’s calculations [1] was that the dissolved
impurity ionization was ignored. But it must be taken into consideration
since an ion located at a lattice site causes a displacement of the electron
density of neighboring atoms, inducing polarization. It is pointed out in [5]
that the allowance for the ionization decreases the total crystal energy by an
appreciable value which may exceed AH values found from (4.1.1).

On the other hand, the calculated and experimental values for impurity
indium in germanium and silicon, as well as for tin in germanium, more or
less coincide. But this is likely to be due to the compensation of one kind of
error by another.

4.1.2 Interstitial solubility
Weisser analyzed the energy balance for interstitial dissolution in a way

similar to that for site solubility [6, 7]. This process is illustrated schemati-
cally in Figure 4.2.
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Figure 4.2. Weisser’s model of impurity dissolution at crystal interstices [6, 7].

An impurity atom is sublimated from its own lattice by energy AHgy.
Then it is transported to the semiconductor surface and incorporated into an
interstice, thus producing a doped crystal. The atom may become ionized on
the semiconductor surface, thereby changing the Fermi level position.

An interstitial atom or ion is affected by repulsive or attractive forces.
The expression for AH; for an ionized interstitial impurity is

AHs = AHgyy + 1 = Ag + Urgp — Ui, (4.1.7)

where | is the ionization potential of an impurity atom and Ag is the work
function for an electron sublimated from substance B.

For a neutral impurity requiring no energy for ionization, AH will be ex-
pressed, instead of (4.1.7), as

AHs = AHgp + Urep = Uim — Ag. (4.1.8)

Since the values of AHgy, I, and Ag were tabulated in [8], one has only to
find the polarization and repulsion energies to determine AH. To calculate
the polarization energy U, Weisser used the Mott-Littleton method for
alkali-halide crystals [9]. This method is as follows.

A positive ion incorporated into a crystal lattice induces polarization of
electron shells of the neighboring atoms, and the induced dipoles interact
with the impurity atom and with one another. The total energy of the system
decreases by Ujn.

For semiconductors, Weisser suggested the following assumptions:
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(1) The dipole moment p induced in the host atoms varies linearly with
an electric field of strength E.

(2) Polarizability of crystal atoms, ag, is chosen such that it does not de-
pend on the polarization of other atoms, especially, of the nearest neighbors.
Polarizability is an isotropic quantity.

(3) The dipole moment is directed along the vector radius away from
charge q.

(4) The electric field at the atom center is equal to the vector sum of the
field induced by the charge and the fields from all other dipoles induced in
the crystal atoms.

Since the dipole moment of an atom, L;, depends on the dipole moments
of other atoms, the problem of finding a dipole moment includes N simulta-
neous equations for N lattice atoms. The dipole moments of atoms located in
the same sphere are assumed to be identical.

In an n-sphere approximation, the general set of equations for dipole
moments is

n 1
_ZHi(Eij -9 —]=iz (4.1.9)
i=1 B [

where Ej; are matrix elements varying with the structure geometry, ry, is the
radius of the respective coordination sphere, and §;; is the Kronecker delta.

The quantities Ej; are the functions of atomic coordinates to be described
by the expressions

1
Eij=X——=Sjj (4.1.10)

Gj Rj(rk)s

Sij = [—xj (rk2 - 3&2)+ yj(3&n)+z; (3§p)]§
j

+[xj(3§n)—yj(rk2 —3ﬂ2)+ 21(3119)];;—(; . (41.11)

+[x1(3§p)+ Yi(3np)-2; (r"z _3p2)];_01

The summation is made over all j-atoms of the lattice, located in the j-sphe-
re; x;, yj, and z; are the coordinates of an atom in the j-sphere; Xo, Yo, and z,
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Figure 4.3. Polarization energy of the silicon lattice in different approximations
(sphere numbers): 1 — tetrahedral interstice; 2 — hexagonal interstice.

are the coordinates of an atom in the i-sphere; &, n, p, and ry are the
components of interatomic distances of the lattice with the coordinates xo, Yo,
Zo, and X;, yj, and z;; and R; is the j-sphere radius. We also have

€ =X —Xo,
=Y = Yo,
p=1Zj— 2,
e =1j—ro, (4.1.12)

and rj, ro are the radii of the respective spheres.
Potential ¢ at the point of charge g location is calculated from

n .
Hi 4 1
=yy b (1——). (4.1.13)
® i RS R+l e

The second term in (4.1.13) takes into account the contribution of all other
atoms located outside the j-sphere.
As a result, the polarization energy Uiy, is described by the equation

1
Uim ==299. (4.1.14)
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The calculation accuracy is determined by the optimal choice of the num-
ber of atoms surrounding an interstitial impurity ion. Weisser [7] used an 8-
sphere approximation. The calculated values of Ui, (Figure 4.3) were con-
stant, beginning with the third order. This result did not change even when
the number of spheres was increased to 14 [10].

To find the repulsion energy U, Weisser used the Born-Mayer two-
parametric potential of the form

Urep = Aexp[(r +15-1)/p], (4.1.15)

where rj, rs, and r are the radii of an impurity ion, a host atom, and the dis-
tance between impurity atoms, respectively; A and p are parameters calcu-
lated from crystal compressibility data. The calculation procedure details are
described in [11].

We doubt the correctness of this determination, because the structure of
silicon and germanium radically differs from the NaCl crystal structure. In
particular, the concept of Madelung’s constant used in the case of covalent
silicon and germanium crystals makes no sense.

It is clear from equation (4.1.15) that the repulsion energy is a function of
the host atomic and impurity ion radii, whose choice is ambiguous, as was
pointed out above. All systems of radii stem from the assumption that they
are constant and additive. The systems of atom-orbital radii are no
exception, although they are based on quantum mechanical calculations.
Still, they are essentially related to the quasichemical concept of radii being
constant and additive.

In reality, the sizes of atoms and ions vary with the kind of host com-
pound, i.e., they change from one nonequivalent bond to another, depending
on the structure geometry. Therefore, there is no size of an ion in general,
but there is the size of a particular ion. The radius value is always
determined for an ionic pair.

Because of the ambiguity of radius and other parameters describing Uin
and Uy, Weisser’s theory failed to yield results fitting the experimental data
well. There is a more or less good agreement with experiments only for Li in
silicon and germanium.

Millea [12], Hasiguti [13], and Oxenhandler [10] made attempts to im-
prove Weisser’s model by choosing different values of atomic radii, the
measure of potential drop p and the A constant used in the Born—-Mayer po-
tential in (4.1.15). In particular, Millea considered the interaction between
interstitial ions and the atomic skeleton of the host semiconductor, ignoring
valent electrons of Si and Ge atoms but using Si and Ge ionic radii according
to Pauling [14]. The values of p were taken to be different for different im-
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purities, but the calculations were made as in [11] from compressibility data
for the respective alkali-halide compounds. They were chosen according to
the arrangement of elements in the periodic table—the serial number of an
alkali metal increased (Ni; < Nk < N¢s) with increasing serial number of the
impurity in the group (Ni; < Ngy < Nay). Since Nge > Ng;j, the serial number of
halogen was larger than for Si (N¢; > Ng). Naturally, this approach cannot be
justified either, although the agreement with experimental data is somewhat
better than in Weisser’s method.

Hasiguti [13] determined A and p from the compressibility values of ger-
manium and silicon, using the Madelung constant for ionic sphalerite crys-
tals, explaining his choice by their structural similarity to the diamond
lattice. Obviously, the use of the Madelung constant for the analysis of
solubility in germanium and silicon remains questionable.

In contrast to Weisser, Oxenhandler [10] introduced factor F into equa-
tion (3.1.17) to account for the degree of the outer shell filling of an impurity
atom. He used an original method for the calculation of U, representing it
as a two-component quantity [15]:

Urep =U ey +Urep . (4.1.16)

where Urce"pr is the repulsion energy due to the inner electron shells of an
impurity atom, defined by the Born—-Mayer potential, and ufgg is the repul-

sion energy arising from the interaction between the outer s-electron of an
impurity atom and the chemical bond electrons of a host atom. The latter
component was calculated in [17] using Mulliken’s method [18] to be dis-
cussed below.

The procedure suggested by Oxenhandler makes it possible to extend
Weisser’s approach to more complex impurities, in particular, to transition
metals. This could not be done before because of the restructuring of their
electron shells in the dissolution at lattice sites and interstices. However, the
use of the Born—Mayer potential together with the ambiguity of its para-
meters considerably decreased the applicability of the results. In addition to
the criticism above, a general disadvantage of the approaches discussed in
this section is the neglect of non-zero internal crystal potential U, in the
interstitial space. Of importance is also the lattice relaxation in the vicinity of
an interstitial impurity atom.
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4.2 DISSOLUTION ENTHALPY IN THE PSEUDO-
ALLOY MODEL

An alternative approach to the calculation of AH; was used in [19]. The
mixing enthalpy was found from the sum of two terms varying with the mole
fraction of the doped compound:

AH,(x) = AHO(x) + AH(x) (4.2.1)

where AHJ(x) was calculated from the difference between the total
formation heat of initial binary compounds, say, MeP and GaP as applied to
Me-doped GaP, and the formation heats of the pseudobinary alloy Ga;_
«Me,P, with account taken of the mole fraction x:

AHO(x) = (1= x)AHZp + XAH {ep — AHgaHMexP . (422)

The value of AH' in the right-hand side of (4.2.1) was found from a spec-
troscopic binding model to be

AH' = Ra3Df;,
where R is a dimensional factor, a is a mean interatomic distance, D is the
chemical bonding energy, and f is a factor describing the host crystal ionicity

equal to

C2

f=o-—— (4.2.3)

I (c2+EH)2’

where c is the electronegativity of the compound atoms and Ey is their ho-
mopolar binding energy.

The change in entropy, ASn,, necessary for finding K was calculated in
[19], using the well-known formula

Ascm =—R(X1|n X1+ X9 InXZ), (424)
where x are the mole fractions of the components being mixed.
These expressions were further used to calculate AH.,, and AS., [19], as

well as to find the distribution coefficients of the impurities Fe, Mn, and Cr
in GaP. The calculated values of K, were found to be 1.1x107*, 1.6x107?, and

© 2004 by CRC PressLLC



1.05x1072, respectively. They agree well with the experimental values of K
for these impurities: 2x107*, 2x107, and 1.6x107°,

In spite of this coincidence, this approach has a serious disadvantage be-
cause of the ambiguous ionicity value. It was found in [19] in terms of elec-
tronegativity. However, there are many electronegativity systems, and the
concept itself has no physical sense. So it is hardly justifiable to use this con-
cept in numerical calculations of chemical bonding energies. Moreover, there
is a large number of publications on the calculation of ionicity in terms of
dielectric theory (see e.g., [20]). Today it is impossible to give a definite
value of ionicity for A"BY and A"B"' compounds because of the consider-
able difference in the values calculated by different workers. On the other
hand, the calculations of AH', AH, and K are very sensitive to the chosen
ionicity value.

4.3 WEISSER’S MODIFIED SOLUBILITY THEORY

Weisser’s solubility theory was considerably modified for the treatment of
impurity atoms with partly filled electron shells [21] and extended to
common impurity atoms. In the latter case, the solubility theory must take
into account the specific behavior of d- and f-electrons when impurity atoms
are distributed in a host crystal. Since the electron shell configuration is
transformed differently at lattice sites and interstices, these two situations
should be treated individually.

4.3.1 Interstitial d-atom solubility

The dissolution model implies the following assumptions: (a) transition
metal atoms in the gas phase are free and have a d"s" electronic configura-
tion; (b) impurity atoms do not interact with one another in the gas phase or
in the incorporation positions in the crystal lattice, interacting only with host
atoms at interstices. Impurity dissolution is presented schematically in Figure
4.4. Here, work is done on an impurity atom to separate it from a free
crystal, to transport to the semiconductor surface, and to incorporate into an
interstice. In contrast to the scheme in Figure 4.2., there is a change in the
electronic configuration from d"s™ to d ™™,

It follows from general thermodynamics that enthalpy is a function of the
system state, i.e., it is independent of the course of the process but is deter-
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Figure 4.4. Model dissolution of d-impurity atoms at silicon interstices.

mined only by the initial and final states of the system of interest. We have
assumed the atom state in the gas phase to be the initial state and its state at
an interstice as the final state. For convenience, we have accepted a scheme
[21], in which a free impurity atom is produced by sublimation from its own
lattice. The energy required for this process is equal to atomization energy
AHg which is the energy characteristic of the initial state of an im-purity
atom. In the final (interstitial) state, an impurity atom is affected by repulsive
forces because of the electron shell overlap of the impurity and crystal
atoms, by the internal crystal field U, and by the repulsive forces due to the
lattice polarization by an impurity ion, if the impurity center is ionized.

The energy requirements also include the energy necessary for electronic
restructuring, or promotion energy AP, and so called extra-stabilization
energy Ade. The extra-stabilization energy, like the repulsion energy, is a
function of the electronic configuration of the d-impurity at H- and T-in-
terstices and is defined by the d-level splitting by the crystal field. Since the
values of 8, " are fractions of the splitting value Dq [22] and the latter va-
ries between 0.1 and 0.3 eV for different interstitial d-impurities, the differ-
ence Adey for such small values will lie within the calculation error. So the
difference between extra-stabilization energies can be neglected in the first
approximation. Dissolution enthalpy AH, represents an algebraic sum of
energy requirements for the transition from the initial to the final state of the
impurity atom. If an interstitial impurity atom is neutral, the polarization
energy Ui, is zero, and AHSi has the form:
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AHSi(MeO):AHat +Upp—Ug +AP, (4.3.1)

where the superscript i indicates impurity dissolution at interstices and the
subscript s its dissolution in the solid phase.

For an ionized impurity state, one must make allowance for the host lat-
tice polarization energy and the ionization energy of an impurity atom. The
latter is evaluated using ionization potential I, taken in [21] to be the s-elec-
tron orbital ionization potential of a free atom. This approach suggests that
the electronic configuration of an impurity center becomes d™™* due to si-
multaneous restructuring and ionization.

Dissolution enthalpy is

AHSi(Me+):AHat+Urep—Ucr “Ujy +AP+1.  (432)

The values of AH, are tabulated values.
The promotion energy AP can be evaluated as the transition energy of an
electron between term-averaged levels for the final and initial configurations:

AP = E(d”*m)— E(d”sm), (4.3.3)
for ionized impurities, it is
AP = E(d ”*m‘l)— E(d ”sm) . (4.3.4)

The energies of the centers of mass for terms with various valent configura-
tions of atoms were calculated and tabulated in [24].

For common non-transition metal impurities and for impurity atoms with
a completely filled d-shell, there is no electronic configuration restructuring;
hence, AP = 0.

Polarization energy Ui, in expression (4.3.2) was calculated from
(4.1.14). Table 4.1 presents the matrix elements of (4.1.10) for T- and H-in-
terstices and for crystal lattice sites. The numerical values of the matrix ele-
ments are dimensionless. They are universal and apply to any semiconductor
crystallizing in the diamond- and sphalerite-type of lattice. To go to dimen-
sional values, it is necessary to divide the tabulated values of E; by a’,
where aq is the crystal lattice period of a particular semiconductor.
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Table 4.1. Matrix elements E;; for polarization energy calculations for the diamond-
and sphalerite-types of lattice.

Values of j
Ei ! 1 2 3 4
1 -14.14 -52.06 -16.17 16.08
2 -34.71 -18.97 0.96 -10.30
= 3 -5.39 0.48 -15.58 -20.54
4 21.14 -7.73 -16.48 -6.15
1 —44.60 24.34 12.82 -7.96
2 -18.27 -25.57 -10.00 -4.71
E;" 3 12.86 -12.58 -6.10 -27.95
4 -2.84 -1.47 -7.35 -27.09
1 -14.14 -18.45 -16.17 -2.84
2 -6.15 -21.61 -33.35 -6.47
Ei® 3 -5.39 -33.35 -15.58 -10.79
4 -1.89 -12.94 -21.59 -2.37

The values of Uiy, for silicon were found in [25] to be U;,," = 4.54 eV and
Uin" = 5.32 eV; for site solubility U;,° = 4.40 eV.

A limitation of the above ionization energy evaluation is the neglect of
the host lattice distortion effect on Uiy, which seems impossible to calculate
rigorously because we do not know the absolute displacements of atoms
from their equilibrium positions, necessary in the calculation with (4.1.9)
and (4.1.10) involving the distances between impurity centers and host
lattice atoms, r,, and R;. Lattice distortions were taken into consideration in
[21] in the calculation of repulsion energy U, Note that we used
Mulliken’s method [18] in that work instead of the “radius” approach with
the Born—Mayer potential (4.1.15). As a result, repulsion energy was
expressed as

Urep = BV% I_kISI%I ) (4.3.5)

where 1y is the average ionization potential of the k-th electron of a host
atom, Sy is the electron overlap integral, B is a calibration parameter (f < 1)
selected from the best agreement between theoretical and experimental
values of AH of a well-studied model impurity, and v is a factor accounting
for local lattice distortions near an interstitial impurity atom.
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Figure 4.5. The state of 3d-impurities at a silicon tetrahedral interstice.

With the hexagonal interstice Dgq, the crystal field effect on the d-orbitals
of an impurity atom is different at the two interstices. The d-impurity states
at T-interstices were described in terms of the model suggested by Ludwig
and Woodbury [26], based on the crystal field theory of Roitzin and
Firshtein [27] and verified in many experiments. In this model, the internal
tetrahedral crystal field partly compensates the 5-fold degeneracy of the d-
shell. Doubly degenerate e-states at a T-interstice appear to have a higher
energy than triply degenerate t-states (Figure 4.5). The outer s-electrons go
to the d-shell under the crystal field action, resulting in the d™™ electronic
configuration of the atom.

The electronic state of a d-impurity at an H-interstice was treated in
detail in [21]. The character of the d-level splitting is shown in Figures 4.6,
4.7, and 4.8. The filling of the t- and e-states (T-interstice) and of the ayg, e,
and e,”-states (H-interstice) is, as usual, described from the Pauli principle
and Hund rule. According to the crystal field theory [25], 3d-impurities with
d*~d’ configurations (T-interstices) and d’-d’ configurations (H-interstices)
will have high spin states (Figure 4.6), while 4d- and 5d-impurities will have
low spin states (Figure 4.8).

In our calculation of overlap integrals Sy [21], the wave functions of
bond electrons in silicon were chosen as a linear combination of atomic
orbitals (LCAOQ), each of which was a sp-hybrid built on Slater’s wave
functions. The wave functions of outer impurity electrons were chosen as
Slater’s d-functions, in accordance with the state of a d-atom at a silicon
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Figure 4.6. The state of 3d-impurities at a silicon hexagonal interstice.
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Figure 4.7. The state of 4d- and 5d-impurities at a silicon tetrahedral interstice.

interstice. The overlap integrals of the d-orbitals of an interstitial atom with
sp-hybrid atomic orbitals were reduced to diatomic ones, with respective
coefficients obtained from the transformation matrices of d-functions for an
impurity atom and of s- and p-functions for silicon atoms. The summation in
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Figure 4.8. The state of 4d- and 5d-impurities at a silicon hexagonal interstice.

(4.3.5) was performed over all outer electrons of an impurity atom and the
bond electrons of silicon atoms within two coordination spheres. The
contribution of the third sphere to U, Was estimated to be less than 1%.

Since the calculation of Uy, was made for two spheres around an impu-
rity atom, which are subject to the greatest distortions, it appeared important
to find coefficient v in (4.3.5) allowing for local lattice distortions. These
may be of two kinds—symmetrical and asymmetrical (Figure 2.11). But we
considered only symmetrical distortions [21] which are due to an electron—
phonon interaction.

The absolute displacements are described as

1 [2aE
Y

0= , (4.3.6)

where AE is the energy difference in the formation of an occupied and an
empty interstice, M is the mass of a cluster consisting of an impurity atom
and its neighbors interacting with it, and Q is the cluster oscillation fre-
quency.

The coefficient v was expressed in [21] as

© 2004 by CRC PressLLC



ve9x _ [AExMm (4.3.7)
Om  VAEyM,

where the subscript x refers to the impurity under consideration and the sub-
script M to the model impurity. The model impurities were taken to be
Ni’(3d'®) and Cu*(3d™), whose charges at silicon interstices were reliably
established experimentally.

The B values found from the best agreement between the experimental
and calculated values of AE were 0.5 for Ni® and 0.154 for Cu*. Lattice dis-
tortions for these model impurities were taken into account from the very
beginning. For the other impurities, the distortions were allowed for by ac-
cepting these B values and introducing the coefficient of (4.3.7) into (4.3.5),
but with respect to the model impurity this time.

Expressions (4.3.1) and (4.3.2) for AH;' also include internal crystal field
potential U, which is difficult to calculate because it depends on the electron
density distribution at interstices, whose exact value is unknown. For this
reason, there were several assumptions made on the calculation of Ug,. It was
suggested in [28], for example, that Si** and Ge** ions were immersed in a
homogeneous valent electron gas. The calculation for silicon in terms of the
pseudopotential method yielded U,," = 17.5 eV and U," = 21.4 eV. In an
alternative model [29], valent electrons were considered as being localized

Table 4.2. Calculated dissolution enthalpies AH," (€V) of d-impurities at silicon T-

interstices.

Impurity AH,T(Me?) AH" Impurity  AH,'(Me®) AH,T
Sc 6.02 2.10 Ru 5.33 5.27
Ti 8.36 4.21 Rh 4.15 4.17
\Y4 8.03 4.47 Pd 1.16 291
Cr 3.12 1.82 Ag 0.42 0.93
Mn 181 0.56 La 9.44 1.79
Fe 2.02 1.59 Hf 18.62 8.4

Co 1.13 1.73 Ta 18.11 10.5
Ni 1.52 3.18 wW 14.93 9.91
Cu 1.08 1.08 Re 12.87 9.38
Y 9.68 1.13 Os - 8.9

Zr 11.59 6.02 Ir 7.97 7.6

Nb 10.69 6.37 Pt 3.81 6.12
Mo 7.67 5.78 Au 1.32 3.50
Tc 6.43 4.54
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Table 4.3. The most probable charge states of d-impurities at silicon T-interstices.

d2 d3 d4 d5 d6 d7 d8 dg le leSI

* * *

co®  Ni°
‘cut e

sct Tit V' crt “"Mn*  TFet  TFe
Y* Zrt  Nb* Mo* T¢& Rut R

Rh*  Rh®  Pd®  Ag°
Lat Hff  Ta* W' Re*  Os* Irt Ir° Pt AW

* States confirmed experimentally.

halfway between the lattice atoms. This potential was assumed to be a long-
range one. The summation was performed for 16- or 18-atom spheres around
an interstice to give U,' = 5.97 eV and U," = 5.67 eV. Both models de--
scribe the extreme cases. The true values of U, must lie within these limits.
We calculated AH', using the values of U,," and U, found in [29].

As a result, the interstitial solubility enthalpies were calculated for a large
number of transition metal impurities in silicon. T-interstitial impurities have
the lowest AH; values, i.e., tetrahedral interstices are their ground states. The
most probable charge states of the impurities, calculated from the lowest
values of AH,"(Me®) and AH,', are clear from Tables 4.2 and 4.3.

4.3.2 Site solubility of d-atoms

Similarly to the interstitial solubility discussed above, the dissolution
enthalpy of transition metals at lattice sites represents an algebraic sum of
energy requirements for the dissolution process. For the site component,
these are (Figure 4.1): the energy required for the production of elemental
transition metal gas, AH,, at the initial stage of the process; the energy for
vacancy formation, AH,; and the energy Do released at the final stage
during the chemical bonding of an impurity atom to the nearest host atoms.
Therefore, we have

AHS = AHy + AHY — Dy . (4.3.8)

Here, the superscript s denotes the site position of an impurity atom. In [21],
we accepted for silicon AH;" = 2.88 eV, as was found in [3].
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Let us consider, in some detail, the procedure for the calculation of
chemical bonding energy Dy in expression (4.3.8). For silicon, Dy can be
calculated by Mulliken’s quantum chemical method [18], in which

1 1
Dozzxij +52Kmn—EZYk|—AP+ Ei, (439)

where XX;; is exchange energy over all binding electron pairs, XKp, and XYy
are energies of non-binding electron pairs, AP is promotion energy, and E; is
ion interaction energy. Energy ZX;; is expressed as

-1

2 Xij = X A S ljj S 11 (4.3.10)
ij

where Sj; is the overlap integral of an i-electron of silicon and a j-electron of
the impurity atom, involved in chemical bonding; I_ij is their average ioniza-
tion potential; A; is an empirical parameter equal to 0.65 for s-s bonds, 1 for

s-p and c-bonds, and 1.5 for m-bonds.
The electron—electron repulsion energy XYy, is

> Y =B% 1S » (4.3.11)

coinciding with (4.3.5) for the repulsion energy Uy, of interstitial impurities.
So, we will further denote XYy as Uy, .

The exchange energy XK, for non-binding electron pairs can be neg-
lected because it is so low [30].

The ion interaction energy E; was calculated by Mulliken as the square
difference of electron electronegativities on Pauling’s scale [14]. To avoid
ambiguity in the calculation of electronegativities, E; should be identified
with the energy of crystal lattice polarization by an impurity ion in the

substitution position (Ej= U3, ). The procedure of Uy, calculation was
described in the preceding section, and the numerical value of U}, was
found in [21] to be 4.40 eV for singly ionized impurities in silicon.

This approach to finding E; = Uj;, is justified, because an ionized impu-
rity induces dipole moments in the lattice atoms, causing attraction between

the impurity ion and the host atoms, leading, in turn, to an ionic interaction
between them.
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To calculate the promotion energy AP, one must know the electronic
configurations of impurity atoms at the crystal sites. The Ludwig—Woodbury
model considered above describes well the electronic configurations of in-
terstitial d-atoms but seems doubtful when applied to their site positions.
There are several reasons for this doubt.

(1) This model predicts the Me** state, because a d-atom is to give off
four electrons for the binding to silicon atoms. But this would require the
energy of 30-60 eV [31], which is very unlikely.

(2) Donor states in silicon are to have the transition d™™* — d™™® + e
and acceptor states must have the transition d™™* + e~ — d ™™, To illus-
trate, the electronic configuration of Cu, Ag, and Au atoms at silicon sites
must be d”’, which must change as d " — d® + ™ in the donor-type ionization
and as d” + e~ — d*® in the acceptor ionization, but this would require ~100
eV, which is a very unrealistic value.

(3) The promotion of several electrons, capable of producing tetrahedral
bonds, to the excited state on the p-shell would require high energies. In par-
ticular, the promotion energy for a neutral iron atom Fe®(3d °4s?) with a con-
secutive promotion of d-electrons to the p-shell, producing the
Fe’(3d ®4s'4p") states, would require ~3 eV, while for the excitation of the
Fe(3d °4s'4p?) state, the necessary energy would be ~10 eV. Clearly, the
promotion of still another 3d-electron to the 4p-shell to produce
Fe’(3d “4s'4p") would require much more energy than 10 eV (see the valent
state energies of d-elements in [24]). The same is true of other d-impurities.

Therefore, the sp-hybrid chemical bonding of d-impurities to silicon
atoms is very unlikely because of the great energy requirements for the elec-
tron shell restructuring of the d-atom. More feasible is the formation of tetra-
hedral bonds between an impurity atom and silicon atoms by involving d-
electrons into the chemical bonding. With the concept of atomic orbital hy-
bridization, one can suggest the production of d>s-hybrids geometrically
equivalent to a tetrahedron, similar to the sp*-hybrid. Electronic configura-
tions producing d3s-hybrids are illustrated in Figure 4.9. It should be noted
that d-atoms with the Me®(d’s?) and Me°(d®s?) configurations in the free
state may have the d’sp bond which represents a distorted tetrahedron. In
this case, the lattice distortions around the impurity atom must be appre-
ciable, and the d-atom displacement from the lattice site is likely to occur
(the Yan-Teller effect).

The d-shell electrons which are not involved in tetrahedral bonding are
located on the loosened t- and e-levels, with the e-states lying lower than the
t-states. It is these electrons that should be taken into account in the repulsion
energy calculation from (4.3.11).
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Figure 4.9. Electronic configurations of transition metals in the free state (a) and at
silicon lattice sites (b).
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The calculation of exchange energy XX; from (4.3.10) requires know-
ledge of overlap integrals corresponding to the impurity atomic orbital
bonding to the sp®-silicon atomic orbitals. For simplicity, the calculation can
be restricted to the atomic orbitals of an impurity and a host atom oriented
only toward each other. The details of the calculation can be found in [1].

Expression (4.3.9) for energy Dy contains the quantity XY, = Ufep. Its
calculation from (4.3.11) similarly to (4.3.5) requires factor v to allow for the
crystal lattice relaxation around an impurity atom. The difference with a site
atom is the choice of another model impurity, which may conveniently be a
host (silicon) atom. In this case, v = 1 and the lattice is undistorted. Neglect-

ing y/AE, / AEg; in (4.3.7), we can define v° as /Mg; / My .
The average ionization potential I_ij from (4.3.10) is

_ I_(Sispg)+ I_(Medgs)

I = . , (4.3.12)
where I_(Sispg) =9.5eV [30],

|‘(|\/|edss)=%|s +§ lg (4.3.13)
for the d s-hybridization of a d-atom, and

|(Medzsp)=%|d +%|S+§|d (4.3.14)

for the d *s-hybridization of an impurity atom. In these expressions, I, I4, and
I, are orbital potentials for the respective electronic configurations of the d-
atom [32].

The average ionization potential Iy, in (4.3.11) is calculated as

=— % (4.3.15)

where g is the ionization potential of the d-electron in the respective valent
state of the d-atom [32]. The promotion energy in (4.3.9) for neutral site im
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Table 4.4. Calculated dissolution enthalpies AHS® (eV) of site d-impurities in silicon.

Impurity  AHS(Me®)  AHS(Me) | Impurity  AHS(Me®)  AHS(Me")

Sc 6.55 Y 6.57

Ti 3.56 7.28 Zr 6.69 8.09
\Y 541 7.64 Nb 7.68 9.35
Cr 4.04 no bond Mo 8.75 no bond
Mn no bond no bond Tc 8.83 9.18
Fe 6.31 3.75 Ru 10.03 8.40
Co 5.08 6.86 Rh no bond 8.23
Ni 5.06 Pd no bond

purities are chosen from the energy difference of the valent states for the cor-
responding electronic configurations [11]. There are no reports of energy
data for the valent states of 5d-impurities, whose electronic configurations
are Me(d’s?) and Me(d®s"), and so the dissolution enthalpies of interstitial
5d-impurities in silicon have not been calculated.

In contrast to interstitial solubility, the calculation of site dissolution en-
thalpy does not require internal crystal potential, since the interaction with
the nearest neighbors in this case is defined by Do, while U, is a long-range
potential which cannot affect D,.

The calculated dissolution enthalpies for transition metal impurities in
substitutional positions in silicon are given in Table 4.4.

No bonding occurs between silicon atoms and d-atoms at D, < 0, because
the energy requirements for the repulsion and promotion are larger than for
the interatomic attraction and exchange. This means that forces pushing an
atom out of the site dominate over those confining it to the site. The absence
of chemical bonding is designated in Table 4.4 as “no bond”, so no AH data
for such impurities are given. It is still unclear how to calculate interstitial
dissolution enthalpy of neutral scandium and yttrium in the silicon lattice,
because their configurations in the free state are Sc°(3d '4s?) and Y°(4d '5s%):
the outer shells of these Y and Sc atoms are deficient in one electron and
incapable of producing tetrahedral bonds. So the AH values have been calcu-
lated only for their ionized states Sc™(3d *4s") and Y~(3d *5s"). The concepts
of d %sp- and d>s-hybridization appear to be inapplicable to nickel and palla-
dium atoms in substitutional ionized states in silicon because of a large num-
ber of paired d-electrons (Figure 4.9). The dsp>-hybridization of valent elec-
trons is applicable but it corresponds to the square geometry, and strong
asymmetric lattice distortions around an impurity atom must be taken into
account. This, however, is impossible at the present stage of evolution of the
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microscopic solubility theory. Because of the lack of data on the energies of
the valent states Cu®(3d "4s'4p®), Ag’(4d '5s'5p°), and Au’(5d '6s'6p°), AHS®
values cannot be analyzed theoretically for the site solubility of these impuri-
ties in silicon.

4.4 SOLUBILITY OF INTERSTITIAL f-ATOMS IN
SILICON

The above treatment was extended to the solubility of interstitial f-impurities
in silicon [33]. Like for d-impurities, it is based on the consideration of
interaction potentials of an impurity and a host atom. So the model of f-atom
incorporation into a silicon crystal will be identical to the one depicted in
Figure 4.4, except that the restructuring and ionization will refer to the f-
electron shell.

Therefore, AH values for neutral and ionized interstitial impurities will
be defined by the above equations (4.3.1) and (4.3.2). The total energy ba-
lance for d-impurities involves the promotion energy AP which is the energy
of transition of the outer s-electrons of an impurity atom to the d-shell. It is
reasonable to suggest that a similar approach will also be valid for f-impuri-
ties: Me(f"s™ — Me(f™™). There are no data on the energy values of the
centers of mass of terms for various valent configurations of f-elements. For
this reason, the promotion energy was ignored in the first approximation
[33]. The polarization energy and crystal potential are completely identical to
those calculated for d-impurities and were found to be 4.54 and 5.97 eV,
respectively. The repulsion energy can also be calculated by Mulliken’s
method using (4.3.5).

The model accepted for f-states is basically as follows.

(1) The internal tetrahedral crystal field removes the 7-fold degeneracy of
the f-shell.

(2) The level splitting of f-elements at a tetrahedral interstice corresponds
to that for an octahedral symmetry. This is due to a stronger effect of the sec-
ond sphere around an interstitial atom. There is a singlet state Ay and two
triplet states T,y and Ty (Figure 4.10).

(3) The outer s-electrons of incorporated impurity atoms are promoted by
the crystal field to the f-shell, i.e., there is the shell restructuring Me(f "s™) —
Me(f ™).

The filling of the states by f-electrons occurs according to the Pauli prin-
ciple and Hund rule. The states and the level filling by electrons are shown
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Figure 4.10. Splitting of f-levels in a tetrahedral medium.
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Figure 4.11. Electron filling of splitted f-levels at T-interstices.
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Table 4.5. Dissolution enthalpy of interstitial 4f-impurities in silicon.

Neutral state lonized state

Sa‘g{;f,:@’” AHw @V eV AH(MEY)  Upp eV AH,
Ce%(4f 4 4.84 8.30 7.17

Ce*(4f %) 4.84 6.98 6.78
Pro(4f %) 3.86 10.00 7.89

Pr(4f %) 3.86 9.82 8.59
Nd°(4f &) 3.40 9.81 7.24

Nd*(4f %) 3.40 9.60 7.98
Pm°(4f ") 2.73 7.74 4,50

Pm*(4f %) 2.73 8.79 6.56
SmO(4f &) 2.14 7.14 331

Sm*(4f ") 2.14 6.68 4.14
Eu’(4f %) 1.83 5.75 1.61

Eu*(4f %) 1.83 5.44 242
Cd°(4f 1) 4.15 4.38 2.56

Cd*(4f %) 4.15 3.04 2.84
ThO(4f 1Y) 4.03 3.10 1.16

Tb*(4f 19) 4.03 3.09 2.46
Dy°(4f 12) 3.10 2.25 0.62

Dy*(4f 1 3.10 2.29 0.81
Ho"(4f %) 3.04 1.71 1.71

Ho*(4f 1) 3.04 1.74 0.29
Er%(4f 1) 2.88 1.20 1.89

Er'(4f 13 2.88 1.30 0.23
Tm%(4f 13d %) 2.56 479 1.38

Tm*(4f “*5d 1) 2.56

YbO(4f ¥5d 2) 1.57 9.20 4.80

Yb*(4f “5d %) 1.57 1.44 1.26
Lu®(4f 15d3) 4.43 11.05 5.51

Lu*(4f 5d?) 4.43 2.56 1.91

in Figure 4.11a. It should be emphasized that the interstitial f-shell of the im-
purities Tm(4f **5d %s?), Yb(4f *5d %6s?), and Lu(4f *5d '6s?) appear to be
completely filled, whereas the other electrons have to occupy the d-shell
under the action of the crystal field. In other words, these impurities undergo
the following restructuring:

Tm(4f *35d %6s?) — Tm(4f **5d %)

Yb(4f *5d %6s%) — Yb(4f 15d ?)
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Lu(4f *5d '6s%) — Lu(4f 5d ).

The splitting of levels and their filling by electrons for these impurities are
similar to those for d-impurities at the silicon T-interstice (Figure 4.11b).

The electron states of f-atoms at hexagonal interstices were not discussed
in [33], because they are more important for the calculation of migration
energies than solubility. The overlap integrals for the first two nearest
neighbors were calculated by taking the states of f-impurities at the T-
interstice into account.

With the present state of the art, it appears impossible to allow for the
crystal lattice distortions for f-elements, because the approach discussed
above for d-impurities implies the use of a model impurity. We, however,
failed to choose such an impurity because of the lack of reliable experimen-
tal data. Consequently, the coefficient v in (4.3.5) was taken to be unity. The
coefficient B was chosen from the best agreement between the experimental
and theoretical values of dissolution enthalpy. Since there are no experimen-
tal enthalpy data for f-impurities, the coefficient B was intuitively taken to be
0.05. This provides the dissolution enthalpy values of about several electron
volts. The coefficient 3 is quite likely to be refined by further experiments.

The coefficient § for Tm, Yb, and Lu impurities with valent d-electrons
was taken to be 0.5 for a neutral state and 0.154 for an ionized state, as in the
case of d-impurities. The calculations of the dissolution enthalpy of neutral
and ionized 4f-impurities at silicon interstices are given in Table 4.5. The
dominant state is that with the lowest enthalpy. It can be concluded, there-
fore, that interstitial 4f-elements in silicon must be mostly neutral, except for
Nd, Ho, Er, Yb, and Lu which must be ionized.

4.5 ON SOLUBILITY THEORY FOR
SEMICONDUCTOR COMPOUNDS

The above modification of Weisser’s theory can be extended to more
complex semiconductors, in particular, to A"'BY compounds crystallizing in
the sphalerite-type lattice. These compounds have some specific features to
be taken into consideration. First, it is the existence of two sublattices and,
hence, of two types of T-interstices. One interstice (T,) is first surrounded by
the nearest A"' atoms and then by BY atoms. The other interstice (Tg) is first
surrounded by the nearest BY atoms and then by A" atoms. A hexagonal in-
terstice is made up of both A" and BY atoms. This diversity considerably
increases the amount of calculations.
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A substitutional position requires the treatment of two possible vari-
ants—A"' and BY. Of importance is the calculation of internal crystal
potentials at Ta, Tg, and H-interstices of A"'BY compounds. The knowledge
of these potentials is necessary because they enter expressions like (4.3.2).
So far, there have been no calculations of U,, for binary semiconductors.

The calculation of overlap integrals must consider the fact that the bond-
ing between A and B atoms in binary semiconductors is not purely covalent,
as in silicon. It can be regarded as a mixed bonding, namely, as covalence
involving some ionicity. One way of describing this chemical bonding is by
representing the interaction between the nearest A" and BY neighbors as a
combination of the sp*-hybrid wave functions of these atoms.

The calculation of site solubility requires the knowledge of formation
energies of vacancies V and V. The available calculations are contradictory
and agree poorly with one another. For this reason, a further development of
models permitting a correct calculation of vacancy formation energies is a
necessary prerequisite for extending the modified impurity solubility theory
to semiconductor compounds. Their specific features are an obstacle to a
rigorous treatment of dissolution enthalpies in binary semiconductors.

Nevertheless, a qualitative assessment of AH® with reference to group-1V
amphoteric impurities in gallium arsenide was made in [34], using the sim-
plified expression (4.3.11). The tabulated values of AH,; were borrowed from
[31], and the vacancy formation energies for gallium and arsenic were taken
to be 1.8 and 2.6 eV, respectively. The other terms in (4.3.8) were found
from (4.3.9) and (4.3.10). It is noteworthy that all four valent electrons in a
group-1V impurity are involved in the production of tetrahedral bonds, which
means that all elements are located on the binding electron orbitals. So, the
second and third sums in (4.3.9) were neglected [31] because they reflect the
interaction of electrons located, according to molecular orbital theory, on
loosened orbitals which are free from electrons in this case. The chemical
bond between gallium and arsenic atoms was considered as being sp*-
hybridized due to the partial transition of one electron of the As(4s?4p®) atom
to the Ga(4s?4p') atom, which, therefore, acquire the electronic con-
figurations As*(4s'4p®) and Ga(4s'4p®). The overlap integrals Si; in (3.2.1)
of the S(sp®, sp°) type were reduced to diatomic ones based on Slater’s wave
functions. The summation in (4.3.10) was performed over all outer electrons
of the impurity atom and its nearest neighbors.

The promotion energy AP was taken to be the energy of the s-electron
transition to the p-orbital, and the differences between the tabulated orbital
ionization potentials for the s°p? and s'p states were equated.
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Table 4.6. Calculated dissolution enthalpies (eV) of A" impurities in GaAs.

Substitution Incorporation
Impurity Ga-sublattice As-sublattice Ga-interstice As-interstice
C 9.09 9.04 12.20 12.13
Si 5.77 6.22 11.40 12.72
Ge 5.97 6.43 12.07 12.73
Sn 4.88 5.07 10.61 12.40

The quantity E; in (4.3.9) is ionic interaction energy having the physical
meaning of lattice polarization energy. Its calculation by the Mott-—Littleton—
Weisser method was described in Section 4.1 [see expression (4.1.14)]. The
calculations of AH® are presented in Table 4.6.

The dissolution enthalpy of interstitial group-1V impurities in both GaAs
sublattices was calculated from the simplified expression

AHg = AHy +%2Yij +AP—E;. (45.1)
ij

No chemical bond is formed between an impurity atom and its lattice
neighbors. The electrons of the impurity atom are located on loosening
orbitals; so, only the repulsion energy was calculated with (4.3.5). The value
of ZKp,n was neglected because it is small.

The promotion and polarization energies were found as described above,
with the s'p® state taken as the excited state of the impurity atom. The calcu-
lated values of AHSi are also given in Table 4.6.

4.6 COMPARISON WITH EXPERIMENTAL DATA

In spite of the qualitative character of the data presented in Tables 4.2 and
4.4, one can conclude that most d-atoms dissolve at silicon interstices rather
than atits sites. Only titanium atoms can occupy sites. The AH;® values for
other d-atoms have proved to be too large. Indeed, it is known from
experimental data [15] that practically all impurities dissolve at interstices in
the silicon lattice.

© 2004 by CRC PressLLC



Sc Ti V Cr Mn Fe Co Ni Cu

Figure 4.12. Dissolution enthalpy of 3d-impurities versus the serial number of the
d-element: 1 — theory (for high probability charge states); 2 — experiment.

A comparison with absolute experimental values of AH,’ is hard to make
for several reasons. The main reason is the absence of experimental temper-
ature dependences of solubility or of the distribution coefficient, from which
experimental AH® values are found.

But the calculations of AH® provided the data of Table 4.3, with the indi-
cation of the most probable charge states of interstitial d-atoms in silicon.
The charge states confirmed by experiments are also indicated there. One
can see a good agreement between the experimental and theoretical values
for the charge states and electronic configurations of d-impurities. A review
of many publications on this issue can be found in [16]. Since 4d- and 5d-
impurities are still poorly understood, the theoretical results of Tables 4.2
and 4.3 concerning these impurities can be regarded only as hypothetical.

Indeed, one cannot expect a good agreement with experiment because the
modified solubility theory is only qualitative. Still, if we plot AH;' as a func-
tion of the shell filling degree of an impurity atom, as is done in Figure 4.12,
the behavior of the experimental and theoretical curves will be identical, and
this is a good indication of the model validity. Figure 4.12 shows another
specific feature: the solubility curves have bendings at n = 4 and 6. Such
bendings are typical of many transition metal characteristics—melting and
evaporation temperatures, thermal expansion coefficients, compressibility,
etc. [35], and this fact also supports the general validity of the dissolution
model used. Of much importance for the further development of this model
is the change from energy characteristics to concentration dependences. To
do this, we need to describe reliably the entropy contribution to solubility,
which was totally ignored by the modified Weisser theory.
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Figure 4.13. Dissolution enthalpy of f-impurities in silicon: solid line — ionized
impurity; dashed line — neutral impurity.

To check the theoretical conclusions of solubilities of f-impurities in sili-
con is a more difficult task than for d-impurities because of the complete
absence of experimental AH data for f-impurities. We would like only to
note that the enthalpy dependence on the serial number of the element
(Figure 4.13) has characteristic bendings in the middle of the period, namely,
at Gd(4f °) and Eu(4f °), and an abrupt rise of dissolution enthalpy at the end
of the period at Lu(4f *5d ?). These dependences are consistent with changes
in the physicochemical properties of 4f-elements, such as melting and
evaporation temperatures, ionization potentials, and others. The dependences
shown in Figure 4.13 also have a bending at Eu and Gd.

The modified Weisser theory makes the treatment of semiconductor
compounds all the more qualitative. Indeed, it follows from the minimum
AH values in Table 4.6 that group-1V impurities in GaAs are to occupy
mostly the lattice sites. Besides, the close enthalpy values for the A" and BY
lattice sites is a theoretical indication of the amphoteric nature of group-1V
atoms in GaAs. These two facts are well known from numerous
experimental studies. However, one should pay attention to the excessively
large values of AH. If they were correct, these impurities would have a low
solubility. On the contrary, the solubility values were shown experimentally
to be quite high. This contradiction is due to the neglect of the crystal
potential and lattice relaxation effect which are impossible to allow for at
present. Were this possible, the absolute values of AH® would be lower and
close for both sublattices. The conclusion about the amphoteric nature of A"
impurities in GaAs would then be valid.
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4.7 QUANTUM CHEMICAL CALCULATION OF
DISSOLUTION ENTHALPY

4.7.1 Formulation of the quantum chemical problem

The modified Weisser theory represents a simplified phenomenological
approach using the pair potential approximation, which is close, to some ex-
tent, to the short-range interaction of an impurity atom with the host
neighbors. As a consequence, this theory provides reasonable results for d-
and f-impurities possessing a short-range potential extending to a limited
number of coordination spheres (Figure 4.2). It is, however, inapplicable to
the solubility treatment of hydrogen-like impurities, whose potential extends
much farther from the impurity center.

The delocalized perturbation potential affects such a large crystal region
that it cannot be calculated by conventional quantum chemical methods. This
problem is complicated by the fact that the energies to be found (AH) are to
have very low values (<1 eV) comparable with the error limit for most
guantum mechanical methods. So we need to find an approach which could
satisfy, at least, two conditions: it must consider the fact that an impurity is
actually built into an infinite crystal, and the method accuracy must be high
enough to allow calculation of small absolute AH values. Moreover, the
quantum chemical method must account for the lattice polarization energy
released in the displacement of the host electron density by the impurity
center, and do this much better than the Weisser theory does.

Following Volkov [36], let us consider the lattice polarization within two
coordination spheres of atoms with a high electronegativity, shown schemat-
ically in Figure 4.14. For systems with a rigid covalent bonding, this process
can naturally be reduced to a displacement of the “center of mass” of elec-
tron bond bridges toward the polarizing center, resulting in a consistent re-
distribution of electron density in the crystal. The total energy of this process
can be represented as a sum of terms responsible for the individual bonds.

Therefore, the calculation of polarization for the whole crystal will re-
quire an analysis of the tetrahedral crystal structure which can be considered
in two ways. The most commonly used concept is that a crystal is simulated
by an array of atoms arranged in a special way. For tetrahedral structures
(point group symmetry Tg4), one atom can be conveniently selected as the
central one, the others located on spherical surfaces surrounding the center.
The arrangement of atoms on such a surface, termed as a coordination
sphere, obeys the symmetry rules and can be found by means of projection
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Figure 4.14. Schematic diagram of tetrahedral crystal lattice polarization by the C
atom with a higher electrical neutrality within two coordination spheres: 1, 2 —
coordination sphere numbers; arrows indicate the direction of electron density
displacement of a covalent bond.

operators in the group theory [37], if the coordinates of at least one atom on
the sphere are known. The sphere radius R; is defined by the sphere number i
and can be found for the tetrahedral structures of interest as follows:

foroddi: R = do,/% , (4.7.1)
. 4i
for even i R = do\/;, (4.7.2)

where d, is the shortest interatomic distance corresponding to the first coor-
dination sphere radius. Generally, this approach describes fairly well the
crystal lattice geometry but leaves aside the problem of the nature and orien-
tation of chemical bonds.

A better concept of the lattice structure for covalent crystals is that based
on the graph theory which can be called topological. In this theory, the focus
is on the rigid orientation of the interatomic bond. The crystal is simulated
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Figure 4.15. A fragment of the tetrahedral structure of a diamond-like semiconductor,
including the central atom and atoms of the nearest five coordination spheres (CS): 1
— central atom; 2 — 1st CS atoms; 3 — 2nd CS atoms; 4 — 3rd CS atoms; 5 — 4th CS
atoms; 6 —5th CS atoms.

by a topological NxN matrix D, symmetrical relative to the principal diago-
nal (here N is the number of atoms in the system under study). The matrix
elements dj; are the topological distances between the atoms, which may be
chosen to be different if the choice reflects the additive pattern of localized
bonds. Obviously, a crystal is then represented as a system of chemical
bonds connecting the atoms, rather than as a system of individual atoms
(Figure 4.15). If the minimum bond length d, is taken to be unity, d;; can be
represented as an integral number corresponding to the minimum number of
bonds between the atoms i and j [38, 39]. This approach can sometimes be
used for a qualitative evaluation of the system stability by minimizing the
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Table 4.7. Numbers of topological spheres I = (ij)".

¢cs 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
i 0 1 2 2 3 3 4 5 5 6a 1lla 6b 6b 7a 7b
j 1 2 3 5 4 6a 7a 6b 8 7b 9 7a 11 10 12a

“i and j are coordination sphere numbers designating the bond beginning and end; 0
is the central atom; CS — coordination sphere.

half-sum of topological matrix elements or Wiener’s number [38-40]. Be-
sides, dj; can be taken to be unity for directly bonded atoms i and j and zero
for the other cases.

For further analysis, it is convenient to unite the atoms of one coordi-
nation sphere and transform the matrix in such a way that its dimension
would correspond to the total number of coordination spheres No. Then the
topological matrix element d;; will be expressed as the total number of bonds
N; between the i- and j-spheres. A fragment of the matrix for the diamond-
type crystal is shown in Figure 4.7. It follows from this picture that the atoms
of the same coordination sphere may appear to be different in terms of the
topological environment. For example, of the 24 atoms belonging to the 6th
coordination sphere, 12 are bonded to the 3rd, 7th, and 9th spheres while the
other 12 atoms to the 4th, 7th, and 11th spheres. Therefore, it is reasonable to
group the atoms of such spheres by the character of binding in the crystal
lattice. In the illustration above, the 6th sphere is subdivided into the 6a and
6b spheres. A similar situation is true for the spheres numbered 7, 12, 13, 14,
15, etc.

Since all atoms of a crystal lattice are grouped on the respective coordi-
nation spheres, all localized electron pairs of the (ij)-type for atoms of the i-
and j-spheres, directly bonded to one another, represent a symmetric array
which can be considered as an independent topological (bond) sphere. For
example, the topological sphere (23) includes 12 bonds of atoms of the 2nd
and 3rd coordination spheres, indicated by a dashed line in Figure 4.15. The
double subscript (ij), in which i is the beginning and j the end of the bond,
can be replaced by the same index I, chosen with the increasing i-numbers
(Table 4.7) of coordination spheres and the j-numbers for spheres with the
same i.

In this approach, a crystal can be regarded as lying at the base of topo-
logical bonds, whose interception points are the lattice atoms. This structural
representation of a crystal lattice allows the construction of an inverse topo-
logical matrix N. The matrix element njj is represented by the total number
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Figure 4.16. Schematic dissolution process of an impurity (C) in a semiconductor (A):
(a) — neutral isovalent impurity; (b) — ionized acceptor impurity; (c) — ionized donor
impurity.

of atoms bound simultaneously to the topological spheres (ij) and (kl).
Therefore, the crystal structure can be regarded as the matrix D at the base of
coordination spheres (Figure 4.15) and as the matrix N at the base of topolo-
gical (bond) spheres. Each of its elements is the number of coordination
sphere atoms at the interception of respective bonds (Table 4.7).

Both representations were used in [36] to calculate electron density dis-
tributions among lattice atoms in diamond-type tetrahedral semiconductors.
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4.7.2 The dissolution model for a substitutional impurity

Quantum chemical theory, like Weisser’s theory, treats dissolution enthalpy
as the sum of energy contributions to the incorporation of impurity atoms
into the crystal solvent to produce a solid solution.

In [36], the initial state was assumed to be a perfect defect-free crystal,
and the final state was the impurity solid solution in the crystalline host. It
was considered that the solution was infinitely dilute and the impurity was
uniformly distributed throughout the crystal. The concentration of impurity
atoms was taken to be so small that their interaction with one another could
be neglected. In fact, it was an infinitely dilute crystal.

Microscopically, the real process of impurity incorporation into the crys-
tal lattice can be conveniently represented as a sum of several consecutive
intermediate states (Figure 4.16) similar to those suggested by Weisser. They
can be treated as the system transitions from one virtual state to another, with
the total dissolution enthalpy defined by the sum of energy contributions at
the individual stages. To calculate these energy contributions (per atom), it is
reasonable to single out the following processes leading to the formation of a
substitutional impurity center in the host crystal:

— the formation of a vacant site in the host lattice;

— atomization of impurity substance;

— the binding of the impurity to the vacant site;

— ionization of the impurity center (for hydrogen-like impurities).

4.7.3 Quantum chemical calculations of impurity solubility

The details of quantum chemical calculations of impurity solubility in
semiconductors at all stages of the process can be found in [1]. Their de-
scription would take too much space in this book, so we present only the fi-
nal results summarized in Table 4.8.

The numerical discrepancy between the calculated and experimental va-
lues of dissolution enthalpy AH are due to the experimental error (nonequi-
librium conditions) and simplifications accepted by the theory. Among the
latter are insufficient allowance for lattice relaxation, especially for boron
impurity in silicon, and the neglect of the temperature dependence of en-
thalpy and interimpurity interactions. Nevertheless, there is a satisfactory
coincidence in the order of theoretical and experimental AH values in all
cases, except for boron in silicon. The calculations suggest slightly higher
enthalpy values in silicon than in germanium.
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Table 4.8. Calculations of dissolution enthalpy (eV) of IlI-V substitutional impu-
rities in silicon and germanium [43].

Silicon Germanium
Impurity Calculation Experiment Calculation Experiment

B 2.03 0.43-0.73 1.90 -

Al 0.59 0.43-0.66 0.12 0.12
Ga 0.67 0.46 0.50 0.12
In 0.88 - 0.33 0.20-0.85
C 2.37 2.30 2.62 -

Sn 0.56 0.20 0.33 0.03

N 1.64 - 1.61 -

P 0.73 0.50-0.70 0.40 -

As 0.51 0.47 0.11 -

Sh 0.55 0.24-0.58 0.11 -

Besides, it follows from the quantum chemical calculations that AH va-
lues decrease with increasing serial number of the impurity element within
the same group of elements. This tendency has been observed experimen-
tally for group-1V and group-V elements in silicon.

4.7.4 Perspectives of the quantum chemical method

The improvement of the quantum chemical method for the calculation of
impurity dissolution enthalpy in semiconductors primarily depends on refin-
ing the atomic parameter system of the CNDO method [41]. This problem
will require a detailed account of electron interaction integrals, internuclear
repulsion potentials, and bonding parameters of impurity and host atoms.
The authors of [42] took account of the fact that the repulsion energy of
atomic skeletons at small internuclear distances R must tend to 1/R rather
than to the one-center integral of electron interaction. They suggested using
additional parameters in the calculation of skeleton interaction energy, which
will no doubt complicate the calculation of dissolution enthalpy but will not
change quantitatively the general calculation scheme. On the other hand, this
may give the theory a more profound physical sense. The idea of re-evalua-
tion of the repulsion energy of atomic skeletons has become quite common
in the MINDO and MNDO methods [43, 44, 45]. This approach to the inter-
atomic repulsion calculation may contribute to the solution of the problem of
a dimensionality factor for defects considerably distorting the crystal lattice.
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Table 4.9. Bonding parameters Bag for A"'BY compounds, found from atomization
heat [36].

Compounds AIP AlAs AISb GaP GaAs GaSb InP InAs InSb
—Bag, eV 3.07 266 262 316 279 279 305 267 2.66

The problem of the method parametrization becomes more acute when
the quantum chemical method is extended to the calculation of impurity dis-
solution enthalpies in A"'BY compounds. In the first approximation, the
bonding parameters Bag for A" and BY atoms can be found from experimen-
tal data on atomization heat AHag of A"'BY compounds. Enthalpy variation
in a decomposition reaction producing simple substances in an elemental
gaseous state was considered in [43]:

A"BYgas = Allgss + BV, (4.7.3)
The value of AHA™ can be found from tabulated thermodynamic data as
AHpg = AHp + AHg — AHg", (4.7.4)

where AHag' is the enthalpy of A"'BY formation from simple substances in
their standard state.

A rather cumbersome procedure of finding the parameters g from ato-
mization heat AHag is described in [36]. We give the final results of this
work in Table 4.9.

The estimations of dissolution enthalpy for Al, Ga, P, and As in GaAs
and GaP, using the bonding parameters from Table 4.9 [36], have shown that
this method provides reasonable results (AHs® < 0.2 eV) and its further im-
provement is very desirable.
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Chapter 5

Impurity Interactions in
Semiconductors

5.1 TYPES OF IMPURITY INTERACTIONS

It follows from the general propositions of phase equilibrium thermodyna-
mics that the concentration of a dissolved impurity is defined from the equa-
lity of chemical potentials. One way of macroscopic thermodynamic analysis
of solubility C; is to find particular values of W, and ps (see Section 1.2). It is
simple to do this if both phases are ideal solutions. This assumption was used
to obtain the ratios in (1.1.18) and (1.1.19). The principal feature of an ideal
solution is the absence of chemical interactions of impurity atoms with one
another and with other point defects. In this case, every subsystem consisting
of one type of point defects has a partial chemical potential

;=g +kTInG;. (5.1.1)

Here, C; is the concentration of i-defects, T is temperature expressed in
energy units, and gi° is Gibbs free energy necessary for the incorporation of a
single defect into a pure crystal. The total chemical potential of the solid
phase represents just an additive value (1.2.16).

The description of impurity solubility in a crystal requires knowledge of
defect types “populating” the crystal and the assurance that the defect so-
lutions in the crystal are ideal. Of course, we do not mean just any defects,
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but only those whose concentrations are more or less close to the sought for
concentration of the doping impurity. Such defects are normally unknown a
priori in a theoretical treatment. Besides, if a defect has a very large value of
g, its contribution to s may be appreciable even at a low concentration.
Both facts make it necessary to take into account as many defects as possible
in a thermodynamic analysis of solubility Cs. Consequently, equilibrium is
established in a heterogeneous crystal when the chemical potentials of its
components in the different phases are identical. These conditions are simple
if there are no interactions between the system atoms.

However, a complete absence of interactions is too strong a restriction
for the systems under study. It was shown above that impurity ionization
shifts the equilibrium processes and may affect the solubility of elements. To
take these processes into account, it is necessary to supplement the chemical
potential of an atom with that of an electron. This is a consequence of the
general change in free energy, both total and partial, due to the interaction of
crystal defects.

In Section 1.1, we subdivided all impurity interactions into two groups—
external and internal interactions. The former, reflecting the effects of the
ambient phases, were discussed in the previous chapters. In this chapter, the
focus will be on internal interactions which change the free energy of a
crystal representing a closed thermodynamic system. These interactions can
be classified as follows.

— Statistical interactions are associated with the distribution of structural
elements over the crystal lattice positions. They largely affect the configura-
tion entropy of the system.

— Charge interactions are electromagnetic and responsible for the fulfill-
ment of the charge conservation law. They, however, do not produce excess
potential energy of the crystal.

— Potential interactions are a combination of various interactions chang-
ing free energy owing to the rise of crystal potential energy. These are all
kinds of interactions, in which crystal structural elements do not form quasi-
molecules (associates) in crystal positions.

— Associative (complexation) interactions give rise to associates or com-
plexes, i.e., new structural elements of the lattice possessing quasimolecular
properties and occupying crystal positions as an entity.

The diversity of impurity interactions makes us consider this problem in
detail, as was done in [1].
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5.2 STATISTICAL INTERACTION

This kind of interaction is associated with the arrangement of host structural
elements and foreign objects (impurities) in crystal lattice positions. The
composition of structural elements and the symmetry of objects determine
the number of arrangement patterns and, thereby, the configuration entropy
described by the well-known Boltzmann formula

Seonf = KINW (5.2.1)

where W is the thermodynamic probability of the system, or the number of
arrangement patterns of structural elements and objects which implement its
macroscopic thermodynamic state.

An ideal crystal can be produced in just one way—by arranging all
atoms in their respective site positions in the lattice, with W = 1 and S¢o¢ = 0.
But such a system is unstable. The tendency for a closed system to increase
its entropy leads to disordering processes producing defects.

The origin of a statistical interaction is essentially due to the fact that two
objects or structural elements cannot occupy the same position in a crystal.
Therefore, they must be arranged in a certain way. The number of arrange-
ment patterns makes its own contribution to the system entropy.

Strictly, Gibbs total energy of a crystal can be described as

G=Np(P,T) (5.2.2)

only for a one-component system. But it was established in Section 1.1 that a
crystal is a multiphase and multi-component system.

If all kinds of interaction, except for the statistical one, are neglected, the
Gibbs partial free energy of individual elements and objects can be used to
calculate the total Gibbs energy per unit crystal volume:

G= 20iN; - TSconf » (5.2.3)
i

where g; are respective partial free energies and N; are concentrations of ele-
ments and objects.

Formula (5.2.3) contains partial free energies instead of chemical poten-
tials for the following reasons. These quantities are identical for atoms. For
vacancies, the use of chemical potential is incorrect, because a medium con-
sisting of vacancies only is vacuum. There is no vacancy outside the crystal.
On the other hand, the contribution of a vacancy to free energy is unques-
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tionable. Almost the same is true of complexes (quasimolecules) consisting
of several structural elements: of atoms only or of atoms and vacancies. A
complex exists only within a crystal, and its free energy is the sum of atomic
chemical potentials, the interaction energies of the structural elements of a
complex, and the energy of interaction between a complex and the host lat-
tice. In this case, one cannot speak about the chemical potential of a com-
plex, because there is no one-component substance consisting only of com-
plexes, whose free energy could be expressed by formula (5.2.2).

Partial free energy describes interactions occurring within objects and
chemical potentials describe interactions of atoms. The latter also includes
the heat components of entropy of atoms and complexes and can be ex-
pressed as

gi= hi - TSiT, (524)

where h; is partial enthalpy, including internal and interaction energies, and
Sit is oscillation and thermal entropy.

The derivative of total free energy with respect to N; will contain, in ad-
dition to partial free energy, the derivative of configuration entropy

(a_GJ :gi_T(aSC_Oan ) (5.2.5)
INi )7, p INi )7 p

If the derivative is differentiated with respect to one kind of atoms, the
chemical potential of the atom can be said to have gained from statistical
interaction, and this gain is expressed via the configuration entropy deriva-
tive:

0
e T(—J | 526)
INi )7 p

This formula is more general than the one above
w; =pd + kT Inx; , (5.2.7)

where X; is the fraction of positions occupied by the i-element. The second
term in the right-hand side of (5.2.7) is the consequence of the mixing en-
tropy derivative which is the simplest form of configuration entropy, more
exactly, the configuration mixing entropy of two components. Expression
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(5.2.6), on the contrary, includes the mixing entropy of many components,
with the account of their symmetry and possible arrangement patterns in the
crystal lattice.

Various structural elements (atoms and vacancies) having no symmetry
and objects (complexes and precipitates) with a more complex structure and
their own symmetry will all contribute to the configuration entropy value.
The object symmetry may be responsible for its various orientations relative
to the crystal axes, thus increasing the configuration entropy. Finally, an ap-
preciable contribution to this entropy component is made by electrons and
holes. These can occupy free states in the conduction and valence bands, as
well as the energy states of defects with different degrees of degeneracy. All
structural elements and objects are involved in statistical interactions.

Consider now various arrangement patterns of defects in a crystal lattice
and calculate the configuration entropy for different cases [2, 3].

5.2.1 Configuration entropy of a lattice with NP sites and N\ vacancies

The number of ways in which N\* vacancies can be arranged at N sites is
equal to the number of positions [3]:

B
A= (5.2.8)

(N-NE)

Since vacancies are identical, the thermodynamic states, in which only
two vacancies have interchanged positions, are also identical. Therefore, the
number of independent arrangement patterns is smaller as many-fold as the
number of possible rearrangements of Ny-vacancies. In other words, the
number of vacancies is reduced by a factor of Ny! and is equal to the num-
ber of combinations

NP1

- m (5.2.9)

5.2.2 A lattice with several defect types

Every structural element occupies its crystal position independently. The
same is true of host atoms, whose number is
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NE: NP_sNB. (5.2.10)

o
With the reasoning above, we have
By
W= Nt . (5.2.11)
[NB -3 NE)!H Ny
o o

5.2.3 A lattice with structural elements in several positions

Structural elements may occupy positions in several sublattices of a binary
or multi-component semiconductor, or in different sublattices and types of
interstice. Then the general thermodynamic probability is the product of
probabilities of defect arrangement in individual subsystems. This is because
every arrangement occurs independently. The thermodynamic probability is

B
W=T] N .
P (NB—Z NE)!H NB
o o

(5.2.12)

5.2.4 The arrangement of complexes

When arranging complexes, one should take into account that every complex
may have different orientations in a crystal lattice. Let us select an atom in a
complex as the base atom. This atom can be made to occupy sites or
interstices as an ordinary structural element. But the complex position may
vary with the base atom position. Every turn of the complex relative to the
base atom produces a new arrangement which is to be allowed for in the cal-
culation of thermodynamic probability. This concerns all complexes present
in a lattice.

Suppose a complex has gy arrangements in the lattice relative to the fixed
base atom. Or, every position of the base atom is gy-fold degenerate. Then,
for one complex, the thermodynamic probability of the system increases gy
times while for all complexes (g)"* times:
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NP gk

Wz(NB—Nk)!Nk!'

(5.2.13)

The degeneracy factor of a complex, gi, can be calculated from the fol-
lowing considerations. The set of symmetry elements of an ideal lattice
forms a point group. The appearance of a complex with its own symmetry
reduces the group rank of the ideal lattice. The set of symmetry elements of
this new lattice containing the complex is a subgroup of the old lattice.
Indeed, a real crystal lattice can only be combined by the same operations as
an ideal lattice, but the number of operations will be smaller because of the
lower symmetry. All symmetry operations of a particular subgroup make up
a complex in the same position, and the thermodynamic states thus produced
are identical. The orientation of the complex is changed by operations which
are left outside the real lattice subgroup. These operations make up their own
subgroup, which is also a subgroup of the ideal lattice. Using the Lagrange
theorem, one can conclude that the degeneracy multiplicity of a complex is
equal to the subgroup index in a real lattice.

5.2.5 The arrangement of electrons and holes

Electrons and holes can occupy free states in the conduction and valence
bands and electronic states of defects. If there is no electron degeneracy (n
<< Ny), free electrons have a set of identical levels, whose number per unit
volume is equal to the effective density of states in the band [3]. Since these
states do not differ in energy, they are N.-fold degenerate. The thermody-
namic probability for n electrons to occupy states within the band is

W = (Nncl) . (5.2.14)

The factor (N.)" gives the number of states related by the N-fold degeneracy.
The quantity n! in the denominator rules out identical thermodynamic states
due to electron rearrangement. Similarly, we have for holes:

(5.2.15)
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To calculate the thermodynamic probability of arrangement of n,” elec-
trons in N,? defects, one must take into account the spin degeneracy. For the
simple case of nondegenerate levels, the following two situations may arise.

(1) An electron occupies an energy level already occupied by another
electron. It gets its spin adjusted and occupies the rest of the space. The de-
generacy multiplicity is equal to unity.

(2) An electron occupies an empty level and its spin can take any of the
two possible orientations. The degeneracy multiplicity is equal to 2.

If the energy level is energy degenerate, the degeneracy multiplicity must
be calculated individually.

With the allowance for spin degeneracy, the thermodynamic probability
is

Bypent gNG -G
~NBirleRr)

- m , (5.2.16)

where r,? is the degeneracy multiplicity of an electron-filled state and R, is
that of a free state.

Note that the calculation of the probability of an ionized defect state re-
quires that the probabilities of (5.2.11) and (5.2.16) should be multiplied
together, because electrons become arranged independent of the arrangement
of atoms. The co-factors N,*! are reduced by the multiplication. Moreover, it
is necessary to account for the arrangement of free electrons in the allowed
bands. Thus, we obtain the following thermodynamic probability for ionized
atoms:

(N)" (Ny)P NB!(rg)nE(Rg)Ng_ng
nt p! (NB_NQ)!(Ng_nE)!nE!.

W = (5.2.17)

We have discussed above all typical situations involving the calculation
of thermodynamic probabilities of systems. The configuration entropy is cal-
culated using the Boltzmann formula (5.2.1). Let us now find the derivative
[see (5.2.5)] characterizing the statistical interaction of a system with the
thermodynamic probability (5.2.17):

9ISconf =kIn Ng - ng )
anp RQ(NB— Ng)

(5.2.18)
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One can see that the contribution to the interaction decreases with decreasing
defect concentrations. Note that if the number of defects in the denominator
is neglected, the derivative will include positions occupied by defects un-
filled by electrons. In contrast with this situation, expression (5.2.7) includes
the fraction of positions occupied by a particular kind of atoms, irrespective
of whether they are ionized or not. This expression contains no degeneracy
multiplicity. This is what we meant when we mentioned that formula (5.2.6)
was more rigorous than (5.2.7) and better accounted for the statistical inter-
action.

5.3 CHARGE INTERACTION

Charge interaction is a manifestation of electromagnetic interaction. In the
absence of external electromagnetic fields, a semiconductor crystal tends to
preserve its neutrality. Therefore, all charged particles must obey the elec-
trical neutrality law:

The net positive electric charge of all kinds of particles, both free and
bound, must be equal to the net charge of negative particles:

3Q =0. (5.3.1)

In this law, if energy states capable of capturing a hole appear in a semi-
conductor, additional free electrons or energy states that can capture them
must be produced. In accordance with this, we have from (5.3.1)

N+ Ng =p+3Ngj- (5.3.2)
i i

As was mentioned above, charge interactions play an important role in
double doping. Doping with additional donors raises acceptor solubility, and
vice versa. In this connection, it is necessary to differentiate between donor
and acceptor states when writing down Gibbs free energy of a crystal.
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5.4 POTENTIAL INTERACTION

The introduction of a defect into a crystal inevitably induces nonuniform
force fields of different nature. Defect ionization induces electrostatic fields.
When a defect enters a crystal lattice, the latter experiences extension or
compression, and the natural fluctuations in defect distribution lead to mac-
roscopic nonuniform mechanical stresses. There is also a gravitational inter-
action, but it can be ignored in defect formation problems, in contrast to the
first two interactions.

The existence of a force field changes the crystal energy, because there
appears potential energy of interacting particles, in addition to the crystal
internal energy. This is why this kind of interaction was called a potential
interaction [1].

The total crystal energy will then be equal to the sum of free Gibbs ener-
gy and potential energy of the force field:

E=G+E,. (5.4.1)

Let us find the exact differential of the total energy in a physically small
volume, within which the force field value does not change:

JE oE JE
dE:(—) dT+(—) dP+2(—) dN; . (5.4.2)
aT Jp. N P )7 N PN Jpp

The potential energy of the force field can be assumed to be independent of
temperature and pressure; then we have

dE:—SdT+VdP+2(a—G+aE—PJ dN; . (5.4.3)
i (ON;  oN; )5

The first bracketed term is the chemical potential of a particle at zero force
field. The second term is the potential of the particle interaction with the
force field:

_[9%Ep
o; _[E)Ni )T’ > (5.4.4)
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The total crystal energy is an extensive parameter, and so it can be
described by a relation similar to (5.2.2.):

E=3Nji(P,T,F), (5.4.5)

where F is the force field strength or another extensive parameter charac-
terizing it.
We get from (5.4.5)

dE = X (Nidui(P, T, F)+ui(P, T, F)dN; ). (5:4.6)

From the comparison of (5.4.3) and (5.4.6), we find

¥ Nidy; (P, T, F) = —SdT ~VdP, (5.4.7)
Wi(P,T,F)=w;(P,T,0)+¢;. (5.4.8)

Thus, the chemical potential of a particle in a force field increases by the
potential of interaction between this particle and the field.

Lannoo and Bourgoin consider potential interaction [4] as a long-range
interaction because its action extends for some distance. The distance, how-
ever, is not large: from 0.8 to 80 nm for an elastic field and from 10 to 50 nm
for an electrostatic field. So the term “potential interaction” seems
preferable.

The charge conservation law can be considered to be strictly valid for
most defect formation problems. Therefore, the crystal electrostatic field is
zero and does not contribute to chemical potentials. Nevertheless, it is easy
to give illustrations to support the validity of (5.4.8) for electrostatic fields.
First, it is the well-known Frenkel effect stating that impurity activation
energy decreases in a strong electric field. This effect primarily refers to
centers possessing a Coulomb potential in interaction with an electron.
Figure 5.1 shows that, because of the summation of the Coulomb field
attracting an electron to an atom and the external electric field, the activation
energy reduces by the value

3 1/2
e
AEg = (— F) , (5.4.9)
Teg
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Figure 5.1. Decreasing potential barrier of an attracting center in an electric field.

where F is electric field strength and &, = €g, is dielectric permittivity of the
semiconductor.
Defect formation in strong electric fields is poorly understood, and there
is no information about the electric field effect on defect formation enthalpy.
Electrostatic fields are also due to the ionization of a defect possessing a
point charge, whose value is determined by the ion charge state. The ion in-
teraction energy is

AE =2y7,6? [Amer (5.4.10)

where z; and z, are the charge states of interacting ions and r is the distance
between them.

Formula (5.4.10) is approximate because it accounts only for electrostatic
interactions, neglecting other effects. However, it can be used profitably for
a qualitative treatment of interactions. If defects have opposite signs, they are
attracted to each other and the energy given by formula (5.4.10) is negative.
For this reason, Coulomb interaction is one of the causes of the formation of
complexes, because mutual attraction stimulates coupling [4-6]. Since an
electrostatic interaction is not the only factor leading to complexation, this
problem will be discussed individually.

Two situations can prevent coupling in an electrostatic interaction:

(1) when defects of the same sign are repelled from each other and the
interaction energy (5.4.10) is positive;

(2) when defects of opposite signs have a low mobility and cannot ap-
proach one another to form a stable pair.
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The latter often occurs at low temperatures. On the one hand, diffusion
coefficients decrease with decreasing temperature, but, on the other, the
electrostatic interaction radius can be defined as a characteristic distance, at
which the interaction energy module (5.4.10) is equal to the most probable
particle energy (kT). This radius increases with decreasing temperature, so
the situation of interest becomes more probable.

Let us find the Gibbs free energy of a crystal with N sites statistically
occupied by charged impurities at concentrations N, and Nyﬁ. With formula
(5.4.8) and the condition for the absence of stable pairs, we have

G =N + (16 + 0oy NE +(1f + @y N —kTIOW . (5.4.11)

Since no stable pairs are formed, impurities arrange themselves at sites
individually. Besides, impurities are completely ionized, so the arrangement
of electrons and holes can be ignored:

NPy (5.4.12)
(NP - NE-NE)NENE -
The electrostatic interaction potential is described by (5.4.10):
242,8° _ Q
Poy =Py = =—, (5.4.13)

4me sfay  Tay

where r,, is the mean distance between defects, Q > 0 is repulsion, and Q <0
is attraction.

In view of a statistical distribution of defects at lattice sites, the mean
distance between them can be evaluated from the formula:

-1/3
- (NB + NYB) . (5.4.14)
The crystal free energy is expressed as

G =uPNE +uENE + QNB(NE + NE " 5415
+pBNE +QNB(NE + N —ieT Inw.
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Hence, we have

G 5
aN_B:ug +§Q31/Ng +NP - |<T[|n(NB -NB - N$)— In NQ]. (5.4.16)
o

One can see that the chemical potential of a non-interacting atom has a
gain associated with an electrostatic interaction. This gain affects the impu-
rity concentration. From (5.4.16), we have

B
B_NB Ho _ 9Q 5\ B B
Ng =N exp( T Ng + Ny (5.4.17)

Formula (5.4.17) was derived from a simple algorithm and is approxi-
mate. In particular, it does not allow for Debye—Huckel corrections for elec-
trostatic screening [1, 4]. Note, however, that the screening effect requires
charge carriers with a high mobility. Such carriers do exist in electrolytes,
but in solid solutions the impurity mobilities are not high enough to produce
screening. For this reason, screening in semiconductors is due to the motion
of free charge carriers.

Still, one can conclude from formula (5.4.17) that the concentrations of
doping impurities affect one another because of interactions. At Q > 0, im-
purities are repelled from each other and their solubility is lower. The same
is true of a single impurity in heavy doping: the mean distance becomes
smaller at higher concentrations (r, = N, *°) and the solubility must
decrease. But at Q < 0, impurities are attracted to one another, and their
intermixing increases.

Let us consider the contribution of elastic interaction. When a defect en-
ters a crystal lattice, the latter experiences an extension or compression.
Charge—exchange processes cause an additional lattice relaxation and polari-
zation due to electron—phonon interactions. Deformation produces excess
energy which can decrease because of pairing or precipitation. Therefore,
deformation stimulates the formation of some types of complexes. Elastic
strains can disappear owing to dislocation formation.

Of primary interest is how elastic strains influence defect formation. To
answer this question, we must find a way of evaluating the potential of
elastic forces. We will reproduce the evaluations made above for an
electrostatic interaction.

Elastic interaction problems are discussed in detail in the book of Leib-
fried and Brener [7]. The authors derived the energy of interaction between a
defect and an external elastic deformation field and the interaction energy for
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two defects creating deformation fields between themselves. The expansion
of this interaction energy in terms of the power r™* shows that the principal
expansion term varies with distance as r>. The same result follows from [8].
So, the interaction potential will be

0 _ o _ PO(X
==
TS ameyyr®

sP{Pb}—s(FE, pb, Fi)]. (5.4.18)

The designations in formula (5.4.18) are the same as in [7].
Using the interaction potential expressed as (5.4.18), we have for free
energy in (5.4.11)

G=pfNE +ubNE +ufNE +c[N3(N3 +NE)+NP(NG + NE)]— KT Inw

b
(5.4.19)
Hence,
96 _ 8 B, NP B_NB_ NP B
ﬂ—uu+20(Nu+NY)—kT[ln(N —Na—NY)—InNa]. (5.4.20)

The second term in (5.4.20) accounts for elastic interactions of defects
with one another. Such interactions affect the intermixing of defects. From
(5.4.20), we obtain

B
a v 20
NG =N EXP{‘#‘E(NE +Np )}- (5.4.21)

One can see that the defect concentration depends on both the interaction
potential and the concentration of defects inducing elastic strains.

Thus, external force fields and internal fields created by defect formation
processes change crystal energy. Chemical potentials have gains associated
with force interactions. As a result, the defect concentration varies with the
interaction potential value. One should bear in mind that potentials created
by point defects are of the short-range type. For this reason, these effects
manifest themselves in heavy doping. Besides, external fields can produce
effects similar to the Frenkel effect for Coulomb attracting centers. The de-
fect formation enthalpy decreases and their concentration rises when defect
formation occurs in an external force field.
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5.5 DEFECT INTERACTION IN A REGULAR
APPROXIMATION

Solutions in the liquid and solid phases are classified by the degree of
components involvement in the interaction. An ideal solution is a solution
satisfying the three independent conditions:

(1) the partial internal energy of a component is independent of the solu-
tion concentration, and the total internal energy of the solution is the sum of
internal energies of the mixing components;

(2) the partial molar volume of a component does not change on mixing;

(3) the partial molar entropy increases by the mixing entropy value

AS=—k|nXi,

where ¥; is the fraction of positions occupied by the i-th component.

The first condition is not always fulfilled because there are different
types of interaction (see above).

A regular solution is a solution satisfying the second and third conditions
for an ideal solution but it does not satisfy the first condition. There is a cer-
tain non-zero mixing enthalpy.

Most solid solutions do not behave as regular solutions but it may be
convenient to consider them as such, assuming “regularity” to be a deviation
from perfection [6].

The mixing enthalpy of a regular solution is usually found by a quasi-
chemical approximation. Suppose two sorts of atoms, A and B, are miscible.
The atoms if each kind individually create ideal solutions. For this reason,
only new, additional interactions between the neighboring A and B atoms can
contribute to the mixing enthalpy. Sometimes, chemical bonds are said to be
formed, but this is not necessary. Of importance is the fact that their interac-
tion enthalpy is equal to Hag. The mixing enthalpy value is equal to the
product of the excess energy produced by this bond and the number of
bonds.

Let us denote the coordination number of the crystal lattice as z and find
the number of positions in the crystal and the fractions of positions occupied
by both sorts of atoms:

N:NA+NB, XA:NA/N, XB:NB/N. (551)
The probability for atoms to occupy their proper positions is equal to the

fraction of positions intended for them. Therefore, the probability for an
atom A to occupy a particular position is x and for an atom B it is Xg.
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In accordance with the probability multiplication rule, the probability for
both atoms to occupy their proper positions simultaneously is xaxg. The
probability will not change if the positions of these atoms are interchanged.
Therefore, the probability for neighboring positions to be occupied by differ-
ent atoms is 2xaxg [16].

The number of A-B bonds is equal to the total number of bonds in a
crystal (zN/2) multiplied by the formation probability of a bond:

NAB = 2XAXB%ZNO = ZNXAXB. (552)

Then the number of A-A and B-B bonds is

Naa = ANa=Nag) > Nas). Ngg = ANg ~Nes) > Nas). (55.3)
Total crystal enthalpy can be written as
H=HaaNaa + HggNpgg + HagNag
= ZNTAHAA +ZNTBHBB + szAxB[HAB —%(HAA - HBB)]' (65.4)

The first and second terms in (5.5.4) describe the enthalpy of miscible
components (similar components exist in an ideal solution). The third term is
the mixing enthalpy

Hmix = XAXBQ , (555)

where the interaction energy is
1
Q:ZN[HAB_E(HAA+HBB):|' (556)

It is easy to see that a regular solution transforms to an ideal one under
the condition

1
HAB :E(HAA+HBB)' (557)
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Mixing enthalpy may be positive or negative, depending on the type of
interaction. A negative enthalpy value means that atoms are attracted to one
another; the physical reason for this attraction is not particularly important.
A negative mixing enthalpy value indicates repulsion. Attraction may give
rise to a short-range order in the solution, so that the module of mixing
enthalpy will increase to become more negative.

With Gibbs free energy of the solution, we find, after differentiation, the
well-known result:

g =ud +KTInxg +(1+x5)°Q, (5.5.8)

where
2 Q
1-xg) —=Inyg, 5.5.9
(1-xg)" = =Inve (5.5.9)

with v as an activity coefficient. The activity of the component B is
aB =YBXB - (5510)

Similarly, we can find it for the second component.

These formulas are normally used to describe the behavior of com-
ponents in a medium, with which a particular crystal is in equilibrium. In
case of a liquid phase, a certain short-range order is implied.

Let us consider the contribution of a regular interaction to defect forma-
tion processes. Note again that there were only two sorts of atoms in the
situation discussed above. One was the solvent and the other the solute. It
was between these two kinds of atoms that the interaction took place. From
the point of view of defect formation, this means the interaction of a defect
with the host lattice, where it was produced. Besides, it was assumed in the
derivation of the regular solution formulas that the elements were close to
one another and that the interaction was due to short-range forces until
chemical bonds were formed. In fact, this is the process of defect formation.
Therefore, regular interaction energy must contribute to defect formation
enthalpy.

One should keep in mind another circumstance. The fraction of positions
occupied by defects is much less than unity, so the value of xg in the third
term of (5.5.8) is neglected. One can see then that, in the first approximation,
defect enthalpy has a constant gain due to the regular interaction.
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To summarize, a regular interaction of defects in a solid crystal can be
neglected. The parameters of this interaction are independent of defect con-
centrations because these are low. These parameters are summed with ther-
modynamic parameters of defect formation.

5.6 INTERACTION LEADING TO COMPLEXATION

Complexes, or associates [5], can be formed in crystals under certain
conditions, usually at low temperatures. A complex is a stable structure rep-
resenting a quasimolecule in the host crystal and possessing specific physi-
cal properties. A complex has its own symmetry different from that of a
perfect crystal and, therefore, can occupy several equivalent positions in a
lattice with respect to the fixed base atom. It was pointed out in Section 5.2
that the degeneracy multiplicity of the spatial orientation of a complex, r., is
equal to the subgroup index of the real crystal.

Physically, the nature of forces producing complexes may be different. In
particular, an important role in this process is played by an electrostatic in-
teraction. Without going into detail, we would like only to note that every
complex has its own formation energy E..

Let us see how the process of complexation influences chemical poten-
tials and solubility of the structural constituents of a complex.

We will illustrate this with a simple complex made up of an impurity and
a vacancy. lonization processes will be neglected for simplicity. The crystal
free energy in this case can be defined as

G =pfNE +uBNE +gUNG + gfNe —kTInw (5.6.1)
where

NB 1N

B IR TR (TR

(5.6.2)

Taking into account the reasoning concerning the applicability of the
chemical potential concept (Section 1.1), we used partial Gibbs free energies
for vacancies and complexes in (5.6.1). Expression (5.6.2) took into consid-
eration that it was necessary to arrange free structural elements; so the de-
nominator contains (N,? — N.) for free impurities and (Ny* — N,) for vacan-
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cies free from complexation. The free energy could be written differently,
using the bonding equation, with the minimization performed with Lagrange
indeterminate factors. This will be done in Chapter 6.

By differentiating with respect to N, and equating the derivative to zero,
we obtain the familiar result for the concentration of similar complexes [4]

B_ B _
N, - (N(x Nc’\)I(BNV Nc)exp(_%). (5.63)

The chemical potential of the impurity involved in complexation is

9G | _ B _ B _in(NB —
(ﬂ)N_ua kT[InN In(NE NC)]. (5.6.4)

It follows from (5.6.4) that complexation processes change the defect chemi-
cal potential, and this is primarily due to a statistical interaction.

5.7 DEFECT IONIZATION IN SOLIDS

The ionization of defects, like other defect formation processes, can be
analyzed in terms of the active mass law.

In accordance with the routine procedure of problem solution with the
active mass law, we will write the impurity ionization reaction [see (1.2.30)]
of, say, the donor type

B_ B +e. (5.7.1)
The respective equilibrium constant is

B* + e —
KBE=[[B]]=exp”B ‘k*TB He (5.7.2)

where . is chemical potential of an electron, whose value is determined by
the Fermi energy, and ug* is chemical potential of an ionized atom.
The physical meaning of the Fermi energy implies that
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n= N¢exp(—pe/KT) (5.7.3)

and that the Fermi level difference between an ionized and an un-ionized
state can be taken to be the ionization energy of the defect. Then, with
(5.7.3) and (5.7.2), we have

K, = [E[SB}n _ Ncexp(_i_ﬁr!)_ (5.7.4)

Expression (5.7.4) often used in calculations is not rigorous enough. To
demonstrate its inaccuracy, let us turn to quantum transition theory in the
solid state, since its details have been described in many fundamental books.
Without citing the details here, we will mention only the initial approxima-
tions.

The quantum transition of an electron from the ground to an excited state
necessarily requires the analysis of the electron—lattice system as a whole.
The transition changes the potential energy, or the lattice polarization. The
Hamiltonian of the system contains the following terms:

H = Hq(F)+ I:|eL(F, §)+ HL(ﬁ) : (5.7.5)

where I—A|e is the Hamiltonian of electrons (fast subsystem) in the field of
atoms (slow subsystem), I:IL is the Hamiltonian of free oscillations of
crystal atoms, I:|6L is an operator of electron—phonon interaction, ¥ is the

combination of electron coordinates, and R is the combination of nuclear
coordinates.

An adiabatic approximation implies that the wave function varies slowly
with the nuclear coordinates. The Hamiltonian terms in (5.7.5) including the
derivatives with respect to the nuclear coordinates (a non-adiabaticity opera-
tor) are ignored. With the assumption of the fast and slow subsystems, the
wave function can be represented as the product of the wave functions for

electrons ®,(F, R) and those for nuclei ¢, (R)
Y= cpe(r, ﬁ)@L(ﬁ) . (5.7.6)

The Schrodinger equation is divided into two equations:
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s A {r, R V(7 AP B WAL R), 677
Tm i

_;_225 Mg, (R)+W(R)w, (R) = £, (R). (5.7.8)

The first of the two equations describes the state of the electron subsystem in
a field of motionless nuclei. The other one describes the motion of nuclei in

an averaged electron field. The eigenvalues of electron energy W(R) are,
simultaneously, the potential energy of nuclei, known as adiabatic
potentials.

A low vibration approximation and the transition to normal coordinates

provide adiabatic potentials W(R) as an expansion with respect to normal
vibration modes.

Further calculations are unable to cover the whole vibration spectrum, so
a one-coordinate approximation is used. This approximation means that the
interaction with one, normally, totally symmetric vibration mode is dominant
in a particular system [9]. It sets fairly rigid requirements on the nature of
vibrations in the system, requiring, in particular, the dominant role of local
vibrations. The conditions under which local and pseudo-local vibrations can
arise in the vicinity of a defect are discussed in [9, 10].

Of principal importance is the frequency of intramolecular vibrations in a
crystal. If this frequency is in the range of allowed frequencies of the host
crystal, the intramolecular vibration energy is generated into the crystal, and
the vibration is damped fast. This kind of vibration is unable to make an ap-
preciable contribution to electron—phonon interactions in defect charge—ex-
change processes. On the contrary, if the frequency of “molecular” vibration
is in the range of forbidden lattice frequencies, no wave is generated, and the
vibrations are damped slowly. Vibrations involve only atoms located close to
a defect. Such vibrations are referred to as local; they can make a consider-
able contribution to interactions.

However, the local vibration frequency must be beyond the resonance
frequencies of the crystal; therefore, the energy of such vibrations must be
higher than that of optical phonons in the host lattice. This condition cannot
always be fulfilled for intramolecular vibration, but there are situations when
local modes lying in the allowed frequency range are only slightly related to
the host lattice or to a vibration symmetry not inherent in the crystal. Such
vibrations are known as pseudo-local and may contribute much to the
interactions.
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The solution to the Schrodinger equation in the one-coordinate approxi-
mation shows that the transition of an electron to an excited state not only
raises the potential energy but changes the coordinate of its minimum. This
supports the fact that the transition to an excited state due to an electron—
phonon interaction is accompanied by displacement of nuclei relative to their
initial positions in the system ground state. Two solutions for potential ener-
gy in the one-coordinate model are described by simple formulas similar to
(2.2.16):

1 2
Eq = E1+Ehu)gQ ,
(5.7.9)
1
E.=E, +Ehwe(Q—Q0)2 ,

where Eg is the potential energy of the ground state and E. is that of the ex-
cited state; 7 w is the energy of the phonon involved in the interaction, the
subscripts g and e indicating that the effective frequencies differ in the
ground and excited states; Q is a running value of the configuration coordi-
nate; Qo is the coordinate of the potential energy minimum for the excited
state.

Formulas (5.7.9) are given in a harmonic approximation. They represent
intercepting parabolas known as a configuration coordinate diagram. It
should be emphasized that the allowance for anharmonism causes deviations
from the parabolic pattern. Besides, the curves do not intercept in the case of
resonance interaction (Figure 5.2), in contrast to the case discussed earlier
(Figure 2.17).

The electron transition due to an optical excitation involves the Frank—
Condon principle. The particle transition from the ground to an excited state
occurs too fast for the equilibrium position of nuclei to change at that mo-
ment. For this reason, the optical transition with phonon absorption is shown
in the diagram by a vertical arrow at point 0; in the case of radiation, the ar-
row is at point Qo. Transition energies with radiation and absorption are, re-
spectively,

hv@® = E, + sho,, hv™ = E, - sha, | (5.7.10)

where s is a factor indicating the number of phonons emitted in the thermoli-
zation process and Eq = E; — E; is the difference between minimum energies
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Figure 5.2. The coordination coordinate diagram of the defect ground and excited
states in a crystal.

of the excited and ground states, often termed as the energy of purely elec-
tron transition. The simple situation described by formula (5.7.10) implies
that the phonon energy does not change during the system transition to an
excited state.

The quantity s# o characterizes the energy released after the optical
transition when the system tends to take an equilibrium position. The energy
difference between optical absorption and radiation characterizes the lattice
polarization energy. It is named the Frank—Condon shift, Stokes losses, or
heat release:

hv®® —hv" = AE = 2570, (5.7.11)
where AE is released heat.
The energy minimum position for the excited state is related to the value

of factor s. To find this relation, let us express the optical transition energy
through the factor s and Qq:

hya0s — Eo +%FKDQ§ =Eg + Shw . (5.7.12)

Hence, we have
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Qo =v2s, S=%Q02. (5.7.13)

Classically, a nonradiative transition from the ground to an excited state
must go through the interception point C of the potential curves. Absorbing
one phonon after another, the system, which was initially at zero point, goes
as far as the hump point C to join the potential curve for the excited state. In
the configuration coordinates model, this is the process of thermal emission.
Thermal activation energy is expressed as the energy of a purely electron
transition and the heat release is described by a formula which can be
derived from (5.7.9) by equating E4 and E.. At first, we should find the
configuration coordinate, at which the transition occurs:

E,=E,=Eq = %thf —E, +%hco(QX ~Jasf (5.7.14)
From (5.7.14), we have
Ep + siw
Q =—22""", 5.7.15

= s~ o ( )

Then we find the energy of a classical thermal transition:
£, = Lroo2 = (B0 + sha)’ (5.7.16)

T2 4sho o

The reverse transition from point B to the ground equilibrium state O
must go through point C. This transition actually reflects electron capture by
a center. Obviously, the capture must have activation energy Eg (Figure 5.2):

(B - sho)?
Eg e (5.7.17)
From the classical point of view, the transition from point A to point B is
forbidden, because it represents tunneling of nuclei with a large mass and,
hence, has a low probability. In practice, such transitions take place at low
temperatures. A shift of the transition point leads to the temperature depen-
dence of capture coefficients, observed experimentally. One should bear in
mind that the transition energies were derived for a simple situation, when an
electron interacted with one type of phonon. This is very unlikely and re-
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quires the use of special models of the center. In addition, formulas (5.7.15)
and (5.7.16) are valid at temperatures which are hard to obtain experimen-
tally, so it is unreasonable to use them for the calculation of electron—phonon
interaction parameters.

Indeed, experiments involving activation energy measurement are carried
out at relatively low temperatures, less than 400 K. Experiments using vari-
ous capacitance spectroscopic techniques are normally made at temperatures
below room temperature. The temperature range for activation energy mea-
surements of shallow impurities is near the boiling point for nitrogen or be-
low it. In this case, the crystal lattice does not follow the classical restructur-
ing pattern during the impurity ionization but goes from A to B by tunneling
with an activation energy E,.

The temperature range of defect formation processes occurring at observ-
able rates begins approximately at 600 K. This temperature is sufficient for a
system to go to an excited state classically, so that formulas (5.7.15) and
(5.7.16) should be valid.

To sum up, experimental activation energies measured at low tempera-
tures cannot always be used in equilibrium constants describing high tem-
perature defect formation, because the contribution of electron—phonon inter-
actions is essential. A configuration diagram shows the energy difference
between purely electron, thermal, and optical transitions with absorption and
radiation. It is also used to get a qualitative description of the Stokes shift
and activation dependences of capture coefficients. Note that equilibrium
constants of photochemical reactions differ from those for reactions occur-
ring in the dark. They depend on the spectral composition of the light flow
inducing ionization.

The configuration coordinate model accounts for the spectral line broad-
ening. Indeed, absorption may occur not only at the zero point but at any
value of Q, since the system can absorb or emit several phonons. The
absorbed light energy changes, and transitions at non-zero points have a
lower intensity since absorption of several phonons is very unlikely. As a
result, the spectral line is broadened to form a bell-shaped band containing
information about the parameters of electron—phonon interaction [11]. The
analysis of the band shape can yield experimental parameters of this
interaction to be used in further investigations.

It is worth making another comment. Thermal emission liberates charge
carriers. An electron bound by a level is liberated to go to the conduction
band and the hole goes to the valence band. For this reason, many semicon-
ductor researchers relate either the ground or an excited state to band poten-
tials. Strictly, this is not quite the case. The configuration coordinate model
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was suggested to describe intra-center transitions. The potential curves de-
scribed above are the lattice energies in the vicinity of a defect creating a
deep level, when an electron is in the ground and an excited state. The model
does not allow for the transition from the bound state to the free state. Non-
radiative capture in this case accounts for the multiphonon transition mecha-
nism, or the energy transfer from a defect to the lattice. For this to happen,
the electron must be captured, or, more exactly, become localized near the
defect creating a deep level. So the configuration coordinate diagram does
not show band potentials. Rather, one should speak of electron states, when
an electron or a hole is liberated from a trap. The energy of such electron
states coincides with the conduction band bottom or with the valence band
top.

Defect ionization excites the crystal lattice and it becomes polarized. The
effective frequency of a phonon involved in electron-vibrational transitions
can change during the defect ionization and lattice transition to an excited
state [12]. Sometimes, this can be observed experimentally [13].

It follows from the foregoing that a rigorous theory is necessary for the
calculation of quantities contained in the equilibrium constant (5.7.2) for the
defect ionization reaction (5.7.1). At present, no theory of this kind exists for
defect formation processes: the adiabatic approximation is inapplicable and
no other approaches have been suggested.
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Chapter 6

Associations of Impurity Atoms

6.1 ION PAIRS

An important type of impurity interactions is ion pairing. The understanding
of this phenomenon stems from the theory of electrolytes developed by De-
bye and Huckel, who considered the electrostatic interaction of oppositely
charged ions in a solution.

The Debye—Huckel theory suggests that a dense atmosphere of oppo-
sitely charged ions is formed, with time, around every ion in an electrolytic
solution. So, the interaction of ions is actually an interaction of ionic atmos-
pheres. The charge of an ionic atmosphere grows with total ion concentra-
tion in the solution and decreases with distance from the atmosphere center.
In an external electric field, cations and anions move in opposite directions,
together with their atmospheres slightly lagging behind, thereby retarding the
movement of ions. lons are also retarded because of the attrac-tion between
oppositely charged ionic atmospheres. These retarding effects decrease ion
mobility. So the internal energy of an electrolytic solution appears to be the
sum of two components: one is U, characterizing the inter-nal energy of the
uncharged particle subsystem and the other is U, charac-terizing the subsys-
tem of electrical charges. All thermodynamic functions are thought to consist
of two parts corresponding to the uncharged and char-ged components of the
solution. The behavior of uncharged particles is des-cribed fairly rigorously
by well-known thermodynamic relations. But in order to describe the
behavior of charged particles, one has to find the Helmholtz free energy due
to the action of charges, or to inter-ion interactions.

© 2004 by CRC PressLLC



Debye and Huckel introduced two assumptions to solve this problem:
they replaced the concept of ion point charges by that of a continuous charge
distribution of variable density and assumed the field between interacting
ions to be a Coulomb field. Both assumptions permitted the use of Poisson’s
equation for charge distribution. With the allowance for the radial symmetry
of the solution, they derived an equation describing the variation of electro-
static potential of any k-th ion, @y, along the r-axis:

1d zd(pk) 4me azj ok
L df 2o )_Ames ool , 6.1.1
2 dr( ar )" ey ZANISP T g L1

where & is the dielectric constant of the medium (solution). The exponent of
this equation contains the quantity qZjpy representing the energy of the j-th
ion with charge Z in the field of the k-th ion.

An exact integration of equation (6.1.1) is impossible, so the Debye-
Huckel theory considers several approximations for some particular cases, of
which the following two are of the greatest interest.

6.1.1 Pointions

For point ions, the desired potential of the k-th ion is

z
0 = —qe—kl , (6.1.2)

Comparing this result with the point charge potential known from elec-
trostatics, @x = eZ/esr, one can easily see that the quantity 1/y having the
dimensionality of length plays the same role as the distance r in the Coulomb
law. Physically, 1/y is the radius of an ionic atmosphere. Of course, one
should remember that this concept is arbitrary, since the same ions cannot
compose an ionic atmosphere because of thermal motion. This, in turn, leads
to the fact that ions comprising an ionic atmosphere cannot preserve a fixed
position in space.

6.1.2 lons with a fixed radius
For ions with a fixed radius, the desired potential of the k-th ion, gy, is

described as
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0z X
=2k A 6.1.3
Pk g5 1+byy ( )

where by is the final ion radius. This expression differs from (6.1.2) by the
factor 1/(1 + yby).

The Debye—Huckel theory was further developed by Byerrum [2] who
rejected any attempts to integrate equation (6.1.1) but employed a variational
approach to the calculation of ion concentration in the central k-th ion field.
It was Byerrum who showed that there was a critical interionic distance rq
characterizing the boundary between completely dissociated (r > ry) and as-
sociated (r < rg) ions, the latter producing pair associations. Hence, the con-
clusion was drawn about the production of ion pairs in concentrated solu-
tions.

The Debye—Huckel-Byerrum theory is, of course, valid only for liquid
solutions, in which any spatial positions of ions are admissible and equally
probable. In solid crystal solvents, ions occupy fixed positions and are
incapable of moving at normal temperatures. Therefore, the concepts of ionic
atmosphere and ion pairing are inapplicable directly to impurity ions. How-
ever, the basic features of ion pairing do manifest themselves in doped semi-
conductors because of a larger Bohr orbit of doping impurities. The latter
fact is due to a small effective mass of electrons in semiconductors, to a
nearly complete ionization of shallow hydrogen-like impurities, and to a low
dielectric permittivity of semiconductor crystals.

An approach similar to that suggested by Byerrum can be applied to
semiconductors. For this, let us calculate the probability G(r)dr of location
of one-type impurity atom (A) at distance r from an ion of the other type (B).
As in the Debye—Huckel theory, a crystal is regarded as a continuous
medium, in which possible values of r are not discrete.

Let us bring the reference point of the coordinates into coincidence with
the position of an A ion in the lattice. Delineate a sphere of radius r for
consideration, such that there are no B ions within its volume. The
probability of this event, Wy, will be

W, =1- }G(r)dr, (6.1.4)

o
where ry is the shortest distance between ions.

The formation of an ion pair will be considered to occur when a B ion is
at distance r + dr, i.e., when it is located in a sphere layer between spheres of
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Figure 6.1. The distribution of ionic pairs as a function of interionic distance.

radii r and (r + dr). This layer volume is approximately equal to 4xr?dr. The
probability of this event, W,, will be

W, = 4nr?drF(r), (6.1.5)
where F(r) is the probability of an elementary pairing event

F(r)=N exp[—%), (6.1.6)

N are the concentrations of A and B ions, (assuming them, for simplicity, to
be the same), and AH; is ion interaction energy at distance r.

The probability of a concurrent event is defined as W;xW,. Hence, by
equating this product to the probability G(r)dr, we find

G(r)= [1_ }G(r)dr}erF(r). (6.1.7)

fo

The solution to this integral equation has the form

fo

G(r)= 4nr2F(r)exp{—4n} rZF(r)dr] . (6.1.8)

This distribution function is shown in Figure 6.1. Its extremal points are
described as
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AH,

r. =1 6.1.9
c 0 2kT ( )
M = % . (6.1.10)

Therefore, the curve in Figure 6.1 has two maxima. The first peak at r,
corresponding to the minimum distance between ions, can be treated as the
“short-order range” maximum and the peak at r,, as the “long-range order”
maximum. It is clear from (6.1.10) that ry, coincides with the mean interionic
distance for a random ion distribution. The subdivision of ions into two
groups makes it possible to consider all ions separated by distance rc>r >ry
as being bound as ion pairs and all ions separated by distance r > r, as being
free.

It follows from (6.1.9) that r. decreases with increasing temperature, and
Figure 6.1 shows that ion pairs in this case will disappear. They will disap-
pear completely at r. = ro. One can easily derive from this, using (6.1.9), the
criterion for ion pairing:

AH, >> 2KT . (6.1.11)

In other words, ion pairs can exist until the ion interaction energy remains
greater than the energy of ion thermal motion. It should be emphasized that
this criterion is totally valid only for a continuous medium, but a crystal
doped with impurities is, strictly, not continuous.

lon pairs can be regarded as new defects, and their concentration can be
calculated in terms of the active mass law. For this, ion pairing will be repre-
sented as a chemical reaction:

A+B_(AB), +AH, . (6.1.12)
The concentration of ion pairs is defined by the ratio

[(AB), [/[A]l[B]=Kag), =Z, f, exp(-AH, /kT),  (6.1.13)

where Z is the number of ways of ion pairing; in other words, Z reflects the
configuration component of entropy variation:

Z = exp(ASgonf /) - (6.1.14)
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For an AB ion pair, Z is equal to the number of equivalent positions at the
shortest distance from A, which can be occupied by B ions, or, vice versa, to
the number of positions occupied by A ions at the shortest distance from B.
The quantity f reflects the other component of entropy variation—the vibra-
tional component AS:

f =w. (6.1.15)

In equation (6.1.13), [A] and [B] are concentrations of free, unpaired
ions. If there are pairs with a different interionic distance, or with variable r,
the concentration of unpaired ions of one kind, for example, A ions, will be

r=n

[Al=N, - T[(AB), ], (6.1.16)

r=1

where n is the number of ion pairs with variable r, meeting the criterion of
(6.1.11).
Equation (6.1.13) can be re-written as

[(a8),]
na- Elae) s - £ia) )

= K(AB)r . (6.1.17)
r=1 r=1 }
This equation refers to the equilibrium of ion pairs of one kind (one fixed r
value at K) with all other ions. The description of a crystal may need n equa-
tions of the (6.1.17) type. For simplicity, we will assume Na = Ng = N, as
before. Then, we will have

2[(AB),] .
r:l—z =Ky = ;lzr fr exp(

{N— A )J}

Since the calculation of Ky is performed here with respect to discrete
values of r, the crystal, therefore, is not considered in this approach as a con-
tinuous medium. Such an analysis was carried out in [3]. When the crystal is
considered as a continuous medium, the sum in (6.1.18) is replaced by the
integral

AH,
. 6.1.18
KT ) ( )

-
L=
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rC
Ky =47 r? exp(-ﬂ)dr . (6.1.19)
: kT

The two approaches give close results for one kind of ion pairs. Indeed,
in many cases, the concentration of ion pairs with the shortest interionic dis-
tance is much higher than that of all other ion pairs. So, these latter can be
ignored, and the interaction will be defined by one AH value.

A still simpler picture can be obtained if one has a clear understanding of
the nature of interaction forces. In principle, variation in ion pairing enthalpy
AH may be due to various causes: a Coulomb interaction with or without a
charge polarization effect, the formation of chemical (e.g., covalent) bonds,
elastic interaction, or vibrational effects.

It is generally accepted that a Coulomb interaction is the most important
factor, whereas the contribution of other forces is so small that it is usually
neglected. In our view, of greater importance, sometimes, is the affinity of
one kind of ions to some others, or the formation of stable chemical bonds.
Evidence for this was given in [4]. The authors studied the solubility iso-
therms for A" and BY impurities in germanium and silicon at an equiatomic
ratio of the doping impurities. They observed a stable chemical interaction
between these impurities, producing chemical complexes.

If we assume that a Coulomb interaction makes the largest contribution
to ion pairing, then we have

2
AH = @ (6.1.20)
€

Ignoring, however, the comments above, we can show in the first ap-
proximation with (6.1.20) that the integral defining Ky in (6.1.19) is

2 3
Ky = 47{@) Qo). (6.1.21)

where Q(0)) is the Byerrum function of argument o = ZaZgq/erokT tabulated
in [2].

© 2004 by CRC PressLLC



6.1.3 lon pairing manifestation in semiconductor properties

The above simplified approach to the description of ion pairing was suf-
ficient while ion pairs were detected experimentally in the variation of soli-
dus lines, in impurity diffusion, and in electron scattering phenomena. A
fairly detailed description of pairing effects can be found in the books [5, 6].
However, the formation of ion pairs proved to be a much more complicated
process, as soon as its effect was revealed in charge carrier recombination in
semiconductors.

To understand this phenomenon, let us turn to possible electron transi-
tions in the band diagram of a semiconductor containing simple ions and ion
pairs. Figure 6.2 shows schematically unpaired ion levels Eq and E; (r = ),
when interimpurity recombination is impossible. But if two ions produce a
pair, the energy levels of each ion in the pair change, approaching the al-
lowed band edges. The level of the positively charged donor goes up because
the negative charge of the acceptor partner is now located at a shorter dis-
tance r, so that it is difficult for the donor to attach an electron. Similarly, it
is difficult for the acceptor to attach a hole, and so its level in the forbidden
band goes down.

Quantitatively, the level will change by the value

2

AE=9 (6.1.22)
er

and since ion pairs may have a set of r values, a set of paired ion levels will
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Figure 6.2. Paired ion energy levels as a function of interionic distance: 1,2,3, ... k —
pair numbers with decreasing interionic distance r in a pair.
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Luminescence intensity

The energy of luminescence quanta

Figure 6.3. Photoluminescence spectrum of Zn-S ion pairs in GaP: the pair number
decreases with decreasing interionic distance in a pair.

arise in the crystal. Some levels corresponding to small r can be pushed out
of the forbidden band into allowed bands.

Since the ions in a pair are close to each other, the Coulomb interaction
occurring between them may produce an electron-hole recombination. This
is what is known as interimpurity recombination [7]. Any recombination
process is preceded by generation of excess carriers, for which some energy
is required. In the reverse process (recombination) this energy is released.
Sometimes, it is released as light quanta. This radiative recombination may
also occur in a system of paired ion levels, so the crystal will emit the whole
spectrum of thin lines with the energies

hv = (Eq - E,) (6.1.23)

r

Experimentally, a luminescence spectrum of this kind was first observed
in ZnS doped with Cu (acceptor) and Ga (donor) [8], as well as in GaP
doped with S and Zn. Figure 6.3 illustrates a spectrum observed in that work.
One can identify three spectral regions. In the low energy range, there is a
wide band with a maximum at Eg, where some lines are unresolvable. Then
there is a region of well-resolved lines and, finally, a region where this series
of lines stops abruptly at ~2.31 eV.

lon pairs with variable r can be conveniently described by an integral
number m (coordination number), such that m = 1 corresponds to the most
“packed” pair, m = 2 to a pair with the next degree of packing, and so on.
The coordination numbers are shown in Figure 6.3 near the respective lines.
One can see that experiments reveal ion pairs with a fairly large coordination
number.
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Since the time of that publication [8], the luminescence effect of ion
pairing has been observed in many A"BY and A"BY' crystals. But one
should bear in mind that interimpurity recombination can often occur in a
nonradiative way. Besides, other recombination channels in a crystal may
dominate interimpurity recombination, which makes experimental observa-
tion of spectra like the one in Figure 6.3 possible only under very strict con-
ditions. This does not mean that, otherwise, ion pairs are absent. This does
not mean either that the formation of all m ion pairs must always be taken
into account. The physical properties of, and processes in, semiconductors
have different sensitivities to the presence of ion pairs, so every particular si-
tuation should be analyzed to see whether a simple theory is suitable for the
treatment of experimental data.

The above consideration of ion pairing implied a fairly high mobility of,
at least, one ion in a pair. This is a very important condition because, other-
wise, the ion distribution in a crystal will always be only random, without
any correlation in their arrangement.

The kinetic feasibility of ion pairing is easy to evaluate by equating r to
the diffusion pathway from the known relation

r=1=+Dt, (6.1.24)

in which D is a diffusion coefficient and t is diffusion time.

A trivial conclusion follows from (6.1.24): mobile atoms are more liable
to produce ion pairs. For this reason, ion pairing may be essential to the
process of solid solution decomposition. Indeed, an excess impurity atom
liberated from a lattice site occupies an interstitial position (and it may take
an opposite sign). Many impurity ions in interstitial positions possess rather
high diffusion coefficients [6]. For this reason, an interstitial ion has a high
probability to encounter an oppositely charged ion substituting a lattice site.
They interact to produce a stable ion pair. The interaction of impurity atoms
with vacancies is a particular case of ion pairing between a vacancy and a
donor of opposite signs.

6.2 POLYTROPIC IMPURITIES

In addition to ion pairs, a crystal, especially when doped heavily, may
contain associated defects including impurity atoms. Such associations were
first observed independently by two groups of researchers [10, 11] during the
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Figure 6.4. A comparison of concentrations of carriers ng and impurities N in semi-
conductors: 1 — Ge<Sbh>; 2 — Ge<As>; 3 — Si<As>; 4 — GaAs<Te>; 5 — GaAs<Se>;
6 — GaAs<S>.

investigations of impurity ionization in germanium and silicon. Later, simi-
lar experiments were carried out with binary A"'BY compounds [12-14]. The
experimentally observed effect (Figure 6.4) is that, beginning with some
threshold impurity concentrations, there is a regular discrepancy between the
chemical concentration of the doping impurity, N, and the concentration of
charge carriers (electrons), n, found from Hall coefficient measurements.

These results convincingly indicate that not all of the donor impurity
present at a high concentration in the crystal enters a substitution solid
solution but exists in several states simultaneously. Since the problem of
exact identification of the state of impurity atoms in heavily doped crystals
has long been debated, such atoms even acquired a special name—polytropic
(multistate) impurities. Some suggestions have been made [15] concerning
the factors producing polytropic impurities, among which the main but
poorly identifiable factors are the common second-phase inclusions and the
formation of impurity associates in the still one-phase solution.

Let us consider the thermodynamics of associate formation, as was done
in [16]. Suppose m donor atoms (D) unite with a lattice defect C, or without
it, to form a complex Z% possessing charge g. This process can be
represented as the reaction
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mD* +(m—q)e” +C° 2 2. (6.2.1)

If equilibrium is established at a certain temperature T, at which electrons
obey Boltzmann’s statistics, the equilibrium concentrations of the reactants
satisfy the active mass law

[29]- K(T)[D+]mn”‘—q . (6.2.2)

Here, we are making use of the fact that the concentration of intrinsic defects
[C°] depends only on temperature, so it has been included in the equilibrium
constant K(T).

Donors are assumed to be completely ionized at all temperatures. The
neutrality equation for temperature T is

n(T)= [D+]+ q[Zq]+ p. (6.2.3)

At room temperature, the concentration of holes in this equation can be ne-
glected:

no =[D+]+q[zq]. (6.2.4)

Substituting (6.2.3) into (6.2.4) and using the relation p x n = n;?, we find
that the equilibrium electron concentration n(T) at high temperature T is re-
lated to the concentration ny, measured at room temperature Ty, by the ex-

pression
n =%[n0 2 +4ni2], (6.25)

where n; is the intrinsic electron concentration at temperature T.
If the condition

ng >>4n?, (6.2.6)
is fulfilled, expression (6.2.5) will have a simple form:

n=ng. (6.2.7)
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Total chemical concentration of donor impurity, N, is a sum of concen-
trations of free donors and impurity atoms involved in defect associates, of-
ten termed as complexes:

N :[D+]+m[zq]. (6.2.8)

By eliminating [D], [Z7], and n from equations (5.3.2)—(5.3.5), we get a
general relation between ny and N:

ng~9(mng —agN)™
(m_ q)m—l

N —ng = K(T) (6.2.9)

We will now consider some particular cases which seem to be most prob-
able.
A neutral complex. By putting g = 0 in (6.2.9), we find

N = ng +mK(T)ng™. (6.2.10)

It follows from (6.2.10) that N : N = ng in the low concentration range, while
at high concentrations N, we have

N = mK(T)ng™
or (6.2.11)
logn ——ilo mK+iI0 N
gng = om g om gN.

Thus, the function ng(N) in the logarithmic scale will have a straight
asymptote 1/2m, as is shown by curve 1 in Figure 6.5.

A charged complex. We will consider the simplest charged complex, in
which a donor atom unites with a lattice defect. Putting m = 1 in (6.2.9), we
find

1+ K(T)ng @

=ng—2L0
004 qK(T)né_q

(6.2.12)

Positively charged complexes (q = +1) can be excluded from consideration
at once, because, at best, they do not decrease the electron concentration n.
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Figure 6.5. The ny(N) curves for impurity complexation: 1 — formation of neutral
complexes; 2 — formation of singly charged complexes.

Generally, their formation at g > +1 would lead to an excess of the concen-
tration n over the doping impurity concentration N, but this has never been
observed experimentally.

If a complex has a negative charge, then we have

1+ K(T)ntld

q=-q and N =ng .
1-JalK(T)np"™

(6.2.13)

At low concentrations N, the curve looks as n = N. At large N, n, reaches
saturation (curve 2 in Figure 6.5) to give a shoulder:

i
(no)g, =1 “;VW. (6.2.14)

In particular, for g = -1, we have
1

(no)g, = KT (6.2.15)

Therefore, the experimental n(N) curves can be accounted for by
impurity complexation.

However, the curves will have the same shape when impurity atoms are
located in the second-phase inclusions. Therefore, the inequality n < N can-
not be considered to indicate unambiguously the formation of complexes.

In reality, the presence of polytropic impurities implies the existence of
impurity states which remain, chemically, in the one-phase solution but are
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the product of impurity associations. Such impurity complexes manifest
themselves in many physical phenomena. For example, their presence in a
crystal is to affect the relaxation time of charge carriers, T, in their scattering,
as well as the mobility of electrons and holes, which is directly related to t:
u=et/m.

Suppose M atoms have united into Z% associates. Since the probability of
electron scattering is proportional to the number of scattering centers and
their square charge, the contribution of M singly ionized free atoms to the
mobility will be inversely proportional to M. But M atoms associated into
complexes change the mobility in inverse proportion to Mg®/m, where m is
the number of impurity atoms in a complex. The ratio of these quantities,
g?/m, defines the mobility change due to complexation.

There may be three situations concerning the mobility:

—at g?/m > 1, the mobility drops;
—at g°/m = 1, the mobility does not change;
—at g?/m < 1, the mobility rises.

It follows that the formation of neutral complexes (q = 0) must increase
the electron mobility, while the formation of a complex containing one im-
purity atom (m = 1) must leave it, at best (i.e., at g = =1), unchanged; but the
mobility generally decreases. If a singly charged complex contains more
than one impurity atom (m > 1), the electron mobility will increase.

The effects of impurity complexes manifest themselves in many other
physical properties of semiconductors, in particular in their heat conductivity
[27], mechanical properties [18], diffusion [19], additional optical absorp-
tion, for example in GaAs [20]. Being centers of nonradiative recombination,
such complexes reduce the quantum yield of photo- and electroluminescence
[21].

We will not dwell on the effects of complexes on the physical properties
of crystals, because this would take too much space. We will only discuss
the available approaches to the explanation of the nature of impurity
complexes in heavily doped semiconductors. There are two approaches to
this problem. The chemical approach considers the interaction
thermodynamics of two impurity atoms. Like in the case of ion pairing, a
crystal is regarded as a solution which involves interactions producing AA or
BB ion pairs, in addition to AB pairs. Several workers have emphasized the
possibility of formation of more complex polymeric groups consisting of
more than two atoms [22-24]. The thermodynamic ratios discussed above
with reference to ion pairs are, in principle, applicable to complexes. In this
case, the enthalpy variation AH cannot, of course, be due to a Coulomb
attraction. Formally, this approach permits the functional relation n = f(N) to
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be found and the theoretical curve to be fitted to the experimental one by
choosing the appropriate value of m for the number of atoms in a complex,
An [15, 25].

The formation of impurity complexes in A"'BY semiconductors was dis-
cussed in [26, 27] in terms of regular solution theory. The authors calculated
the Gibbs free energy variation for a large number of reactions in A"'BY-im-
purity systems and showed that the decrease in electrical activity in the Te,
Se, S series (Figure 6.4) correlated with the growing chemical strength in the
A,Tes, A;Ses, A,S; series. Compounds of Zn and Cd acceptors with BY ele-
ments appeared to have a lower strength than A"'BY compounds themselves,
and this fact correlates with the absence of polytropic p-semiconductors.

The chemical approach was able to provide only correlations or, at best,
qualitative descriptions of experimental facts. Its principal limitation was
that the nature of forces keeping ions of like sign together remained unclear.
To explain why donors of like sign could keep together, an electrolytic
model was proposed assuming the presence of an oppositely charged ion at
the coordination sphere center. It is only a vacancy that may be the central
ion in an n-crystal, because one can hardly imagine the presence of an accep-
tor impurity in quantities commensurate with the donor concentration.

Therefore, if a vacancy in Ge and Si is considered to have a four-fold
charge, the crystallographic model of a donor complex coherent with the
host lattice will be VD,. This makes it clear why such complexes are absent
when Ge and Si are doped with acceptors: vacancies and acceptors then have
the same sign.

The suggested model of a complex as a hollow tetrahedron accounts for
the fact that a further increase in the donor concentration leads to the forma-
tion of second-phase seeds. A comparison between the tetrahedral VAs,
group and the arsenic structure shows that interatomic distances change but
little, and the mutual orientation of atomic layers is preserved. The rear-
rangement reduces to a by-pair approach of layers, made up of “polymer-
ized” tetrahedra, to each other.

This model also offers only a qualitative explanation; besides, it raises
some doubts. First, a vacancy is to be bonded to four donor ions, which
seems, intuitively, very unlikely. Second, the state diagrams indicate that the
equilibrium phase in Ge and Si doped with arsenic should be GeAs or SiAs,
respectively, rather than metallic As. Finally, a four charged vacancy appears
quite unlikely. Of course, if a vacancy is doubly charged, this will give rise
to the VD,-type complexes, and the reasoning concerning their polymeriza-
tion will remain valid. In any case, the phenomenon of polytropy is currently
attributed to the formation of associates, in which donor atoms (probably,
ions) interact with charged vacancies.
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The necessary number of vacancies for complexation to occur seems to
be always present in a crystal. These may be vacancies which were in equi-
librium at high temperatures, and all processes of their binding to donors
occur on crystal cooling from the high growth temperatures (or in a special
thermal treatment). Semiconductor compounds of the A"'BY group may con-
tain vacancies produced due to deviations from the real crystal
stoichiometry. Finally, these may be vacancies formed by sublimation of
excess atoms from the lattice sites.

An interesting mechanism of vacancy interaction with impurity ions may
take place when the number of vacancies in a crystal is very small. This
mechanism may be termed a “vacancy pump.” At any given moment of time,
the number of vacancies and, hence, of complexes, is quite small, but these
complexes migrate to some sinks, say, to dislocations. When an impurity
atom reaches a sink, it becomes fixed to it, whereas the vacancy disappears.
The disappearance of a vacancy in one place gives rise to a vacancy in ano-
ther place. Migrating through the crystal, a vacancy has a chance to encoun-
ter an impurity atom, to interact with it, and to “tow” it to a sink; then the
process is repeated.

This interaction model was suggested in [29] to describe decomposition
of metallic solid solutions, but it is quite applicable to semiconductors be-
cause a vacancy—impurity complex diffuses much faster than a single impu-
rity atom or a vacancy [30].

6.3 COMPLEXATION THERMODYNAMICS IN A
SEMICONDUCTOR COMPOUND

Let us consider a semiconductor compound in equilibrium with the ambient.
The probability for point defects to associate and produce secondary com-
plex defects increases with decreasing temperature. This is due to electro-
static and elastic interactions, on the one hand, and to the fairly high mobility
of vacancies and interstitial atoms at normal temperatures, on the other. Mi-
grating through a crystal, a vacancy may come to occupy a site next to an
impurity atom. They may interact to produce a donor-acceptor complex [31-
34]. The diversity of such defects increases with the number of semiconduc-
tor constituents.

It is believed that a complex is produced by an electrostatic interaction
between oppositely charged defects. But the association of defects decreases
the lattice stress and is energetically profitable. Evidently, a gallium vacancy
forms more stable complexes with impurities located in the anion sublattice,
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because it comes closer to such an impurity. As for 1V-group elements
producing donor states by substituting cation atoms, a vacancy cannot come
up as close to an impurity, so the complex produced is less stable.

High concentrations of doping impurities may stimulate the formation of
compounds which can affect the solubility of these impurities. Such
processes can occur at heterojunctions and during the formation of natural
oxides on the semiconductor surface.

Thermodynamically, the complexation of intrinsic nonstoichiometric
defects and molecules statistically distributed in the crystal bulk and not
leading to the second phase sublimation can be described by the same
theory. However, the details of defect formation theory are not sufficiently
elaborated, especially for semiconductor compounds. In this case, it is hard
to employ a method based on the active mass law in view of the large
number of reactions to be taken into account. The difficulties associated with
the choice of reactions and unknown equilibrium constants rise, and so it is
preferable to minimize the Gibbs potential of a defect crystal.

This problem was generally solved for simple non-interacting defects
[35, 36]. In [36] the problem solution was generalized for a crystal
containing simple defects and complexes consisting of several intrinsic
defects and impurity atoms. The results obtained allow the treatment of
various situations, and this will be demonstrated by several illustrations.

Complexation occurs during crystal cooling from the growth
temperature. The established concentrations of host atoms do not change
because the exchange of atoms between the crystal and the ambient is
limited. The concentration of point defects varies due to their association
and interaction with the sinks (dislocations, grain boundaries, etc.).

Consider an idealized system consisting of a crystal AB containing op-
positely charged impurity atoms and vacancies. Let us calculate the equilib-
rium concentration of donor-acceptor complexes, minimizing the Gibbs po-
tential of the system. A real crystal containing simple point defects and
complexes can be regarded as an ensemble of particles statistically
distributed over definite positions. A particle is understood as a lattice site or
interstice, or their combination. Then this particle is a simple defect
occupying one position, and the complex occupies several positions simulta-
taneously.

The system of crystal particles is in equilibrium with the ambient, so that
the total number of particles remains the same. Concentrations of complexes
of various types will be denoted as N.. Every complex includes several sim-
ple particles. The number of simple particles of one kind in a complex will
be denoted as m.
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Particle concentrations are not independent but are related by the conser-
vation laws for the number of positions in every sublattice

(pB:NB—Z(NBJrZ Ncmgc):o, (6.3.1)
C

o

the number of atoms of each kind
0q = NG—Z(N3+Z Ncmgc):o, (6.3.2)
B c

the total number of defects of a particular type

(PEL = Nc[?ctot - Ng -2 Ncmgc =0, (6.3.3)
C
the total number of particles in the system

oN=N-3 (NE +3 Ncmﬁc), (6.3.4)
o,B c

and the electroneutrality condition

Pe =N~ p+(z nf, - 2N8d3+2nc—2chc](1—SB)- (6.3.5)
C

o,B o,B c

These laws permit allowance for all aspects of a statistical interaction in
the system. Note also that there are two new conservation laws here, as com-
pared with free defects, which are to be taken into account when treating
complexation processes. The two laws are expressed by (6.3.3), which
allows for the involvement of structural elements of a real crystal to various
complexes, and (6.3.4), which allows for the fact that a complex can occupy
positions in different sublattices and types of crystal interstices.

The number of states with the same number of particles of each kind
having the same free energy but differing in the spatial arrangement of parti-
cles determines the thermodynamic probability. States differing in the rear-
rangement of one kind of particle are taken to be identical; therefore, such
rearrangements must be excluded from thermodynamic probability calcula-
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tions. In addition, a complex can occupy a lattice position in several equiva-
lent ways by varying its orientation relative to the crystal lattice directions.
The number of such orientations is known as degeneracy multiplicity.

Let us discuss a possible method of degeneracy multiplicity calculation.
The set of symmetry elements of an ideal lattice forms a point group. The
presence of a defect in the crystal lattice reduces the symmetry. However,
the set of symmetry elements of this lattice forms a subgroup of the point
group.

As in the case of free defects, the lattice sites will be occupied by atoms.
The crystal energy states will be occupied by electrons and holes. To calcu-
late the thermodynamic probability for the rearrangement of complexes, let
us do the following. We will take one of the atoms as the base one and place
it at different lattice sites. The other atoms of this complex will arrange
themselves automatically. The various orientations of the complex in the
lattice and, hence, the concurrent growth of thermodynamic probability, is
taken into account by the degeneracy multiplicity coefficient derived above.

The expression for the thermodynamic probability will have the factor YCNC .

The account of the degeneracy multiplicity of energy states associated
with complexes gives rise to factors R, and r;, and the account of electron
distribution over complexes gives rise to factors Nc![(N. — n¢)!n!]™. There-
fore, we can write the thermodynamic probability for a semiconductor com-
pound containing simple defects and associates as

B B_nk
Bn‘* BNa—n‘x
oy (NP () (RE)
n!p! a,snal(Ng_ng)!Ng! 6.3.6)
xH(YC)NC(rc)nC(Rc)NC_nC
c ne!(Ne —ne)!

The Gibbs potential of the system under consideration consists of the
thermal and configuration components

AG = AGT —-©InW,, (6.3.7)

where @ = kT, AGr is the thermal component of Gibbs potential, including
defect formation enthalpy and thermal entropy due to the change in the pho-
non spectral density of an ideal crystal during defect formation.

Indeed, a real crystal lattice can only be matched by the same operations
as the ideal lattice, but the number of operations will be smaller because
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some symmetry elements will be eliminated by the symmetry reduction. All
symmetry operations of a particular subgroup leave the complex in situ. The
thermodynamic states obtained by these transformations are identical. The
orientation of a complex can be changed using the point group symmetry
operations not included in the real lattice subgroup. It can be concluded from
Lagrange’s theorem that the degeneracy multiplicity of defects will be equal
to the real lattice subgroup index.

As an illustration, consider a donor—acceptor complex consisting of a va-
cancy and an impurity atom occupying adjacent sites. Most semiconductors
form high symmetry ideal lattices of the O, or T4 isomorphous groups with
the order 24. It is easy to see that a real lattice with this complex possesses
the point group Csy with the order 6.

The degeneracy multiplicity factor (Y.) is equal to the subgroup index
which is the quotient of division of the ideal crystal group order by the real
crystal subgroup order. In the illustration just given, this factor is 4. For a
simple defect, this result can be obtained without resorting to group theory.
The appearance of degeneracy multiplicity due to the spatial orientation of
the complex as a whole is also a specificity of defect association.

To conclude the discussion of statistical interaction during complexation,
let us consider the procedure of finding the thermodynamic probability. The
thermal component can be conveniently expressed by introducing what is
known as Gibbs partial potentials

Qo = HE _S(ETT )
gc =Hc —Se1T,

where H is enthalpy and S¢r is thermal entropy of complexation. These pa-
rameters take into account interactions and changes in the lattice vibrations
during complexation.

Crystal energy increases owing to defect formation and charge carrier
excitation. The former is allowed for by summing up all products of Gibbs
partial potentials and the concentration of respective defects, while the latter
is taken into account by including the products of electron and hole concen-
trations and respective transition energies. The electron transition from the
valence to the conduction band increases free energy by the forbidden gap
energy. The number of such transitions is equal to that of free holes, except
for the electrons leaving the valence band to occupy acceptor states. The
transition of electrons from donor states to the conduction band and from the
valence band to acceptor states also increases the system free energy. Con-
sidering the foregoing, the thermal component of Gibbs potential is
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AGT = YNl +2Nc9c

ap
+{Eg[p— ) ng(l_dg)_znc(l_dc):l'F )y (Ngdg +n§). (6.3.8)
op c o,f
+3 Eq(Nedq +nc)}(1—sg)
C

To find equilibrium concentrations of defects, one should minimize the
functional

@ =AGy - @InW+Z?»B B+zx (pa+2 Bob +
. (6.3.9)

+hePe + AN O

where Ao, AP, AP, A, and A are Lagrange indeterminate factors. The mean-
ing of A, AP, and A, was defined in Section 1.2, but only the first and the
third factors retain their meaning.

The appearance of factors A,” and AN is related to the conservation laws
to be taken into account in complexation. If there is a possibility to neglect
these processes, A,” can be made to tend to zero. This becomes possible, for
example, at high temperatures when the probability of defect association is
low.

Let us now substitute expressions (6.3.4) through (6.3.7) into (6.3.9) and
write explicitly the functional to be minimized

® =SNGl +N.g; +E[p-xnb-df)-xn,0-d,)
exeb g -nb bl +nb-al ook e secNe ..
+Ye.n.(-d,)-0nlogN,+plogN, +NlogN—-N-plog p
—p—nlogn+n+2[n§ Iogr£+(N£—ng)logR8—ng logn? +np
—(Nﬁ—nﬁ)log(Nﬁ—nﬁﬁNE—nﬁ—NgIogN§+N§]

+¥ [N, logY, +n, logr, +(N. —n.)log R, —n, logn, +n,
~(N¢ —ng)log(N —ne )+ [N —n, [}

+27J3[NB Z(NB+2Nm )]+zx[ > NS+ NemE )]
+27‘%(Ngtot‘NE—chmac)

© 2004 by CRC PressLLC



AAMN-ENF-SNE-SN,)

(6.3.10)

To find equilibrium defect concentrations, it is necessary to take partial

derivatives of the functional (6.3.10). Some of them make the physical
meaning of the Lagrange factors in this equation clear. As a result, we find

he=Er, Ay =lg- (6.3.11)

The use of the conservation laws for structural elements in complexation
and for the total number of particles changes the factor A". It follows from

9 5 that 7J5=p5—@|ogN§—xN. (6.3.12)
E)Ng

The physical meaning of AN is found by calculating the derivative with
respect to the total number of particles. It follows from

0

-0 that AN =0©logN . 6.3.13
N g ( )

By substituting (6.3.12) into (6.3.13), we find
W= _ub +@|og(N§/N). (6.3.14)

Equilibrium defect concentrations are found from the respective deriva-
tives being equal to zero. Begin with point defects:

B_GDB = 98 +ggd8 —G)[Iog Rg - Iog(Ng - ng)]_
aNp , (6.3.15)

B, -8 —ndB AN

90 _
ang

—@[Iog rol? —log Rg + Iog(Ng - ng)— log ng]+7»e

_Eg(l_dg)_egdg -
. (6.3.16)
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Using these expressions and (6.3.10) through (6.3.14), we find

B _ 4B Ep—eb)dB
Ngza_“NBexp(—gagx“] RE exp —( (X) iy

aB B
, (6.3.17)
- (Eq —¢h —Ee)2-df)
o
0
BB E,—eb —E )(1—dﬁ)
B_ B3 B ga—la] (9 o~ "F o
ng =1y —=N exp( exp , (6.3.18)
ag P 0 0

where g, = gg' + pp,o - 1. . The account of complexation processes has

given another exponential factor indicating the fraction of free point defects.
This factor is

p
p\_ _No
exp(km)— Noser (6.3.19)

where N, is the number of free point defects and Nyt is the total number
of defects, including those bound in complexes.

One should note that the total number of all sorts of particles, N, was re-
duced and is absent from (6.3.18). This is because we are discussing point
defects which occupy positions only in one sublattice or one type of inter-
stice.

Let us find derivatives related to the concentration of complexes:

0D ,
—— = g{ +Eqdg —Oflog Y — log R — log(N¢ —n¢ )|

N ) (6.3.20)
S D WUDILUAED 3 W 1 AR WU oA
B o B o B

As was mentioned above, m,c’ is the number of one type of structural
element in a complex. Consequently, if some constituents of a sublattice or
of one type of interstice are not involved in complexation, then m,.* are
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equal to zero. For this reason, the indices in (6.3.20) acquire values meaning-
ful only for a particular complex:

ZXBZmEC +2ka2mgc +AN =
B o B

o

(6.3.21)

P
z|Z,

—0OlogN

A

ap
=X |Ug—Hp+log +log
ap

From (6.3.20) and (6.3.21), we have

o,B\ Ngtot

B
B mrxc
N, =Y,NP n(%} exp(—%)f,:‘l , (6.3.22)

where

1-d
(C]

_ d
fel =R, exp[(E,: —ac)ac:l+ e exp[(Eg -Ep- sc) C]. (6.3.23)

The concentration of electrons bound by complexes is

mP,
e NE |
ne =Y NPT B X

B\ Notot

E,—Er—¢.)1-d
o oup Eo—Erce)

(6.3.24)

Formula (6.3.23) describes the concentration of complexes of any rea-
sonable complexity and the donor and acceptor configurations. The concen-
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tration is proportional to the concentration of constituents of a complex to a
power equal to the number of these constituents. Formulas (6.3.17) and
(6.3.23) permit the analysis of crystal properties, using fairly complicated
defect formation models.

6.4 IMPURITY-VACANCY COMPLEXES IN A''BY
COMPOUNDS

Cation vacancies in A"'BY compounds have a fairly high mobility and are
multiply charged acceptors [32, 37]. Consequently, the probability of inter-
action between these vacancies and donor impurities is quite high. Chokral-
sky-grown n-GaAs samples possessing a high concentration of vacancies at
the growth temperature have a luminescence spectrum with a maximum at
1.17-1.20 eV at 77 K. In crystals doped with Te, this band is attributed to the
complex of a Ga vacancy and a Te donor atom substituting As at the
adjacent lattice site [32]. Similar centers were identified in GaP [38, 39]. The
authors of [40] noticed that the symmetry of the complex contradicted the
model of two defects at neighboring sites in the anion and cation sublattices.
The symmetry was found to be lower and multiwedge, rather than three-
wedge. A detailed study of polarized luminescence in uniaxial deformation
led to the conclusion that the symmetry reduction was due to additional
distortion by the Yan-Teller interaction, rather than to the attachment of a
third constituent [41, 42]. The same authors observed an alignment of
complexes along a certain crystal direction under the deformation action and
studied the tree-particle complexes VasVgaSnas and VasVeaT€as. In spite of
the Yan-Teller interaction reducing the symmetry, the first type complexes
are thermodynamically simple two-particle complexes.

Let us discuss the complexation of charged vacancies and impurities of
opposite signs. These structural elements are attracted to each other by Cou-
lomb forces to produce a neutral donor—acceptor complex. Suppose that a
particular vacancy interacts with a particular impurity. The numbers of free
vacancies, complexes, and impurities are related as

Ny + N¢ = Niot, Nim + N¢ = Nim tot, (6-4-1)
where Ny is the total number of vacancies after the crystal growth and Nip ot

is the total number of impurities. From formula (6.3.23), we have for a do-
nor-type complex:
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N, = 4N Mexp(— &)[% exp(— E—C) + 1} . (64.2)
Nvtot Nimtot o n o

where N is the total number of positions and factor 4 is a degeneracy factor.

Suppose that the concentration of impurity atoms is larger than that of
vacancies. The condition Nip ot >> Ny or automatically yields Nig tot = Nim-
From the conservation law for the number of vacancies, we have

Ne=— (6.4.3)

where
N’=4N exp(— &)[% exp(— S—CJ + 1} .
(C] n ®

The interaction of partners in a donor—acceptor complex is mainly of the
Coulomb type. If an n-semiconductor has a shallow donor and a deep accep-
tor, the former will be charged positively and the latter negatively; as a
result, they will be attracted to each other. However, the interaction enthalpy
is not high [43]. Besides, it is negative because the interaction results in
attraction. For this case, the following inequalities are satisfied: N’ >> Ny o
and N; = Ny . In other words, all vacancies produced during crystallization
are bound into complexes.

Therefore, when the concentration of shallow donors in an n-semicon-
ductor is higher than that of vacancies, there should be no free vacancies.
Indeed, electron paramagnetic resonance studies show that an EPR signal
which could be attributed to vacancies is only observed in a p-semiconductor
[32], which agrees with the above hypothesis.

Another fact is noteworthy. The main contribution to the formation of a
neutral complex is made by acceptor vacancies. Their concentration can be
written as

A Eq—ed
NG =2 NA exp| — OV | 2 gyp 0BV g (6.4.4)
aA Q) NC ®

In the first approximation for material doped with one impurity type, the
following equality is valid at high temperature:
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n=Njp. (6.4.5)

Then, substituting (6.4.4) and (6.4.5) into (6.4.2), we have
5 N; 9o | 2N £
Ng = 4N? ——IM____exp| -2V —Cexp(——°)+1 x
aaNvotNiot © )| Nim o
A
: €q—€
X 2N'mexp 9 Vi1
N C)

At different proportions of the terms between the brackets of the last co-fac-
tor, the concentration of complexes is proportional either to that of free im-
purities or to their square concentration. The quantity £,” can be evaluated
from the point of transition between the linear and quadratic dependences.
This concentration behavior of complexes agrees with the data of [44].

Of the great diversity of impurity—vacancy complexes in A"BY com-
pounds, it is worth mentioning one of the Cr impurity states in GaAs. In
addition to the states discussed in Section 2.2, an associate containing a deep
donor of the type Crg, Das’ Was observed, with Crg,™ having the d*-configu-
ration [53]. This associate has the cubic (not trigonal) symmetry. The con-
figuration diagram of this associate defect, borrowed from [53], is shown in
Figure 6.6a. The authors of this model attributed the role of Das" to the anion
vacancy V. Both components of this associate create deep t,-symmetry levels
in the GaAs forbidden gap (Figure 6.6b). The Cr level, free from electrons

(6.4.6)
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E
e, ¢
t e 2
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o <
= —

CrGa VAS Ev

(b)

Figure 6.6. The configuration diagram (a) and energy levels of [CrD] associated com-
ponents (b) in a tetrahedral (Ty) and trigonal (Csy) field: arrows (a) — light-induced
optical transitions [199].
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in the ground state, is lower than the filled V° level (Figure 6.6b). When the
components approach each other, an electron transition is possible from the
vacancy to the Cr impurity, according to the reaction

VO + Crf(d®) — [CrV]. (6.4.7)

Because of the strong localization of the wave function near every partner in
the associate, the electron “senses” a double-well asymmetric potential and
is transported by the tunneling effect at T — 0.

The theory of this mechanism [45] explains successfully the observable
details of optically induced light absorption modulation spectra which
allowed the authors of [45] to identify the associate Crg, Das' state. Such
tunneling states appear to be typical of associate defects, whose components
occupy neighboring crystal positions and represent deep level centers.

6.5 IMPURITY-VACANCY COMPLEXES IN SILICON

Silicon crystals heated up to 1000-1250°C actively generate vacancies and
host interstitial atoms. Obviously, impurities will interact with both to
produce associate defects. Complexes with host interstices are likely to
accumulate at sinks, because most intrinsic interstices return to their
positions due to recombination with vacancies or to the substitution of other
impurities at lattice sites. They may also migrate to other crystal areas to
produce various complexes like oxides, silicides, etc. Therefore, there are
vacancies left, which can form complexes with impurity atoms. Impurities
can produce an electron bond, although only dangling, with the silicon
lattice.

A dynamic equilibrium concentration of such complexes will be estab-
lished at a given temperature. On fast cooling from a high temperature, some
of the complexes will decay but others will be frozen as impurity—vacancy
associates. In silicon, they often reveal themselves as deep level impurity
centers in the forbidden gap.

Evidence for the existence of impurity—vacancy complexes in silicon was
obtained in experiments on irradiation of doped crystals with y-quanta and
fast electrons. This technique appeared very convenient for the investigation
of this problem, since the energy position of impurity levels could be reliably
determined in samples prior to their irradiation. In the control (undoped)
samples, it was possible to detect the positions of the remnant, stable
vacancies. Monitoring of transformations of both and of their concentration
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variations induced by irradiation allows a reasonable conclusion to be made
concerning their states, including the processes of impurity—vacancy
interactions.

The principal result of many investigations of this kind was that the inter-
actions of primary radiational defects, mostly vacancies, with impurity atoms
give rise to deep level complexes. A typical example is the formation of E-
centers representing V-P complexes in silicon doped with phosphorus [46].
This complex is an acceptor with the energy level at E. — 0.43 eV, which
anneals at ~400 K. Similarly, a V-Sn complex is observed in silicon with the
level E + 0.35 eV.

The authors of [47] identified the Au-V interaction in silicon, and the
energy levels of V-Fe complexes were found in [48] to be E. — 0.36 eV and
E, + 0.22 eV. The doping impurities Ni, Co, and Mn also interact with radia-
tional defects in silicon [49, 50]. In the latter case, the structure of complexes
proves to be much more complex due to the interstitial state of these impuri-
ties in the silicon lattice. For this reason, the impurity atoms have a high
mobility and a good chance to encounter not only vacancies but other point
defects, primarily impurity oxygen and carbon. This complicates identifica-
tion of various types of complexes and makes their structure quite sophisti-
cated. This effect manifests itself clearly in silicon samples doped with an-
other interstitial fast diffusing impurity—Ilithium—producing complexes of
the Li-O-V and Li-V, types with the levels E; — 0.27 eV and E, + 0.48 eV
[51, 52].

Thus, the general tendency for the formation of impurity—vacancy com-
plexes is related to a high concentration of vacancies and/or heavy doping
with active impurities. For this reason, complexation is stimulated not only
by radiational but also by thermal doping of nonequilibrium vacancies [53].

6.6 IMPURITY SYNERESIS

Impurity and impurity—vacancy interactions can also reveal themselves in
the redistribution of impurity atoms over crystallochemical positions. This
effect is very clearly observed in the distribution of amphoteric impurities. It
was shown in Section 2.3 that some impurities, for example Cu atoms, can
occupy both sites and interstices in elemental semiconductors, such as Ge
and Si. The former have acceptor properties and the latter donor properties.
In semiconductor compounds, such as A"'BY, amphoteric properties are ex-
hibited by group-1V atoms which are donors in the A" positions and accep-
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tors at the B sublattice sites. Since an amphoteric impurity has an opposite
sign in various crystallochemical positions, its redistribution can be easily
followed by determining charge carrier concentrations equal to the difference
between the concentrations of atoms in these positions: np = Np — Na Or po =
Na — Np. The values of n and p are found from Hall coefficient measure-
ments.

At first sight, the distribution of an amphoteric impurity over possible
positions in a crystal (or, the function ny(A), where A is the total amphoteric
impurity concentration) can be found using a macroscopic approach and
standard thermodynamic methods. This attempt was made in [54] in the
study of interactions between vacancies and isovalent impurities. The
general nature of this approach permits its application for the study of
amphoteric and, more generally, of any impurities. Similarly, vacancies can
be replaced by any other point defects—intrinsic or impurity defects,
including a self-identical amphoteric A atom. Following [55], the authors of
[54] took into account the interaction of defects in both sublattices, Da; and
Dgy, with atoms Aa; and Ag; and with host atoms A; and B, by preserving
the first non-zero cross terms of the second order of smallness in the
expansion of crystal thermodynamic potential @ in terms of small (as
compared to Na; and Ng;) concentrations of all other components of the
A;B; compound. Below, the concentrations Nas, Ng;, and so on will just be
replaced by A; and B, etc. These cross terms have the form [55]:

9a,,Da, (AAlDAl/NL)l (6.6.1)

where 9a,, and Dy, are the Gibbs energies of a single associate defect con-

sisting of an amphoteric atom A in the A; position and of defect D in the
same sublattice A; Ny is the concentration of atoms in each sublattice of the
AB; crystal.

With the cross terms, the thermodynamic potential will be

0 0 0 0 0 0
@ =gaA1+09mB1 +9a, Aart+9a,, Ae1 + 9p,, Da1 + 9p,, D1

An,Da ApD Az D
+0a,,Da, T+ 9A,, Dy % +0a,,Da Blil, AL (6.6.2)
+g A Dg —TIn A1 +Ap +Da _T B; +Ag1+Dgy
AmbDa N, AA D! B,!Ag,! Dg,!

To find partial chemical potentials of the partners, expression (6.6.2) is
differentiated, neglecting the empty sites:

© 2004 by CRC PressLLC



0P

HDAI - WA;L - ggAl + gAAlDAl XAAl + gABlDAl XAB1 +Tln XDA1 (663)
0D
HUp,, = Wm = goDBl + 0,05 XA, T YA, 00 XA, T T INXpg, (6.6.4)
oD
um:a?:ggl +TInXg = g3 +T IN(L— Xag; ). (6.6.5)
1

It is seen from these equations that defect formation energies are not constant
but vary with the crystal-solid solution composition:

0 0
Op,, =9pa1t9a,,0,, XA T 94,0, XA (6.6.6)

_ A0
gDBl - gDBl + gABlDBl XABl + gAAlDleAAl ' (667)

For the chemical potential of the B; component, we accept the relation
well known from thermodynamics:

(Mgr ) =¥(T)+TIn Py, (6.6.8)

which makes allowance for the volatility of the B; partner representing (B1)m
molecular structures, when under pressure P in the gas phase. The function
W(T) represents the standard potential of the gas phase at temperature T ex-
pressed in energy units. In other words, equation (6.6.8) expresses the as-
sumption of the gas phase as being an ideal gas.

The relations between the atomic fractions of the partners are described
by the equations

Xa1+ Xa,, +X%p,, =1 (6.6.9)
Xg1 +Xa,, +Xp,, =1, (6.6.10)

which reflect the site balance in each sublattice of the A;B; compound. In
addition, there are two equations reflecting the relation between chemical
potentials: one for the defect formation—annihilation process
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uDAl "I‘LLDB1 = O (6.6.11)

and the other for evaporation—condensation of the volatile B; component

1
Her =Hog, + (), - (6.6.12)

By substituting expressions (6.6.3) through (6.6.5) and (6.6.8) into ex-
pressions (6.6.9) through (6.6.12), we obtain the mole fraction ratios of de-
fects containing an amphoteric impurity:

XDAé _ 1 exp[— 9A,Da A T 9AgD, XAy :| , (6.6.13)
XDA1 1— XABl T
X X + X
ODBI - (1_ Xag, )eXp|:— YA D6 AA-lr 9ag XAy :| (6.6.14)
Dgy

In these equations, xoDAl and xoDBl are equilibrium atomic fractions of de-

fects in a pure, impurity-free crystal. Therefore, if D are understood as va-
cancies, these equations describe the change in the homogeneity region of
the A;B; compound doped with an A; impurity (isovalent doping)
interacting directly with intrinsic point defects—vacancies. For a compound
semiconductor, only equation (6.6.13) is necessary.

Let us analyze equations (6.6.13) and (6.6.14). The simplest case is the
interaction between the nearest neighbors—an impurity atom and a defect
located in different sublattices of a A;B; compound. Then, g,, p, =0 and

Ua,,p, =0. Hence, an amphoteric impurity can change the vacancy con-

centration only in the adjacent sublattice and cannot do this in its own
sublattice. For an appreciable change in xp, ~or Xp_ ., the quantitative

evaluation requires that the following condition be fulfilled:

%~ 1. (6.6.15)

By putting x ~ 0.01, which is an extreme value for many impurities in

semiconductors, and equating T to the crystallization temperature of the
semiconductor (T = 1400-1500 K), the condition of (6.6.15) will be satisfied
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at g > 12 eV. This energy is too large if the binding between an impurity
atom and a defect (vacancy) in the other sublattice is regarded as resulting
from an elastic or Coulomb interaction of the nearest neighbors. The energy
of such interactions does not exceed 1-5 eV. Therefore, an additional gene-
ration of vacancies by the doping impurity is unlikely in an elastic or purely
Coulomb interaction. This may become possible, say, for InSb grown from a
melt at T = 470°C and for A"'BY crystals grown by liquid-phase epitaxy at T
= 700-800 K.

The next case is the interaction in the same sublattice. Then ga,,p,, #0

and ga,, D, 20, but these values may have the same or different signs. If

the impurity repels the defect, g > 0. It is quite obvious that the g values in
the exponents of equations (6.6.13) and (6.6.14) may, in practice, have dif-
ferrent signs. Then the absolute exponent may become small, resulting in a
considerable change in the vacancy concentration in amphoteric doping. A
simple illustration of this situation is the case when an amphoteric impurity
occupies lattice sites of a semiconductor compound and is an acceptor [Aa],
while interstices are occupied by a donor [Ag;']; vacancies are then
acceptors [Da;]- Here, interstices are treated as the B; “sublattice” with
gAuD, >0 and ga,,p, <0. Thus, the solubility, i.e., concentration, of

impurities in semiconductors is determined by the vacancy content in the
crystal, but sometimes the concentration of compensating defects (vacancies)
themselves depends on the amphoteric impurity concentration. This is the
effect of impurity syneresis.

In the study of group-1V impurity behavior in GaAs, the authors of [56]
suggested a possible transition of impurity atoms, for example silicon, from
the charged to the neutral state, rather than from one sublattice to the other.
This transition depends on the silicon concentration and the crystal growth
conditions determining the ensemble of intrinsic point defects. The latter
determine the transition of a group-1V impurity to the neutral state either by
being involved in neutral associates or by accelerating the loss of electrical
activity of the impurity. The principal feature of this model is its self-consis-
tency: the concentration of the electrically active fraction of a group-1V im-
purity depends on the defect content of the host crystal, while this content
itself varies with the impurity content.

This kind of syneresis has been confirmed by many studies of doping
impurity behavior in various semiconductor compounds, irrespective of the
model used.

In practice, a semiconductor is often doped with two impurities simulta-
neously. Suppose one impurity is amphoteric and the other is just a common
impurity M. The question is whether the distribution of the amphoteric im-
purity over sublattices of a semiconductor compound will vary with the con-
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centration of impurity M due to their interaction. Generally, the above ap-
proach allowing for the interaction in thermodynamic potential & is totally
applicable to this problem. What is to be done is to replace Da; and Dg; de-
fects by Ma; and Mg; concentrations and to solve equations (6.6.13) and
(6.6.14) with respect to the mole fractions xa,, or Xa,, . The resulting gene-

ral solution is too cumbersome. A simpler approach, without losing the gene-
rality, was suggested in [57] and refined in [58]; we will follow it below.

It will be assumed that non-amphoteric impurity M is introduced into a
crystal without an external action. The crystal already contains amphoteric
impurity A in two possible positions A; and A,. The role of M impurity will
be played by an intrinsic point defect D. In the problem discussed above, the
D concentration was a dynamic variable, but now M (or D) is a constant
value varying only with the intensity of the external action (diffusion, ion
implantation, etc.) for introducing M into the crystal.

The energies required for the incorporation of amphoteric atoms to both
positions will be denoted as E; and E; and the interaction potentials of all
amphoteric atoms as Vi3, V2, Vip, and V. Obviously, we will have Vi, =
V,1. The potentials of M impurity interaction with amphoteric atoms will be
Vim and Vowm.

The results of a theoretical treatment in terms of concentrations [58] are:

-1
Al = No{exp%{El +V11i+V12i+V1M ﬂ:|-i—.'].} (6616)

No No No
1 A A M -
Ay = Ngiexp—| E» +Voq —= +Voy —2 +Vong — [+1% | (6.6.17
2 o{ ka{ 2 +Voq No 22 Ng oM No} } ( )

where Ny is total amphoteric impurity concentration. The quantities A; and
A; can be found from the following equation [57]:

A-Q 1 M A o)
|nm = E[El -E, +N_O(V1M —Vom )+E(V11 _VZZ)_?(VM - 2V12):|!
(6.6.18)
where
a-fatho (6.6.19)
No

© 2004 by CRC PressLLC



Figure 6.7. A plot of the solution to equation (6.6.21): 1 — for the left-hand side of the
equation; 2, 3 — for the right-hand side of the equation at E; > E,, Vi > Vo (2) and
E; <Ej, Vim < Vom (3).

_AA

6.6.20
No (6.6.20)

Q

For simplification, only potentials Vi and Vyy in (6.6.18) are taken to be
non-zero. Then, the solution is Q; < 0, or Q, > 0. Let us assume that ampho-
teric atoms do not interact. Then, (6.6.18) will transform to

A-Q_ 1
A+Q KT

M
El - E2 +N—(V1M _VZM ) s (6621)
0

i.e., M impurity is capable of redistributing A impurity atoms over positions
1and 2 in (6.6.20).

It is easy to see that this conclusion will hold even without simplifying
equation (6.6.18). Its right-hand side will not be parallel to the Q-axis in the
coordinates of Figure 6.7 but approach it at a certain angle. It is seen that,
owing to the interaction with A; and A,, M impurity can redistribute the am-
photeric impurity in such a way that even the crystal conductivity type will
change, provided that the A; and A, states have different signs. Suppose the
A impurity is a charged acceptor at a site and a charged donor at an
interstice. The transition from one type of conductivity to the other will
occur abruptly at a certain critical M concentration, at which
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m[A_Q}zo. (6.6.22)
A+Q

Hence, we find from (6.6.21)

E.-E

M = Ny .
Vom —Vim

(6.6.23)

In a more general case, with all amphoteric atoms at any position inter-
acting with one another, equation (6.6.18) equalized to zero at point Q = 0
will yield

El — E2 + (A/Z)(Vll —V22)
0 Vo =V '

M =N (6.6.24)

Here again, an impurity syneresis manifests itself: M impurity redistri-
butes A impurity, with the value of M depending on the A concentration. Due
to the impurity syneresis, the curves ng(A), where ny is electron concentration
in an n-type crystal, can have fanciful shapes very different from curves for
zero interaction of M impurity with amphoteric atoms at constant M (or D)
concentration. In practice, one can find numerous examples of complicated
no(A) curves. This is good evidence for the existence of impurity interactions
and for the manifestation of impurity syneresis. On the other hand, the lack
of knowledge of E; and E,, as well as of interaction potentials Vi3, Vi, and
V5,,, make the processing of experimental no(A) curves nearly impossible.

6.7 COMBINED COMPLEXATION

Both types of interaction—impurity—vacancy and ion—impurity pairing—
often occur together. A typical example is the precipitation of excess impu-
rity from an oversaturated semiconductor solution, discussed in [59, 60] with
reference to germanium doped with two impurities simultaneously—copper
and antimony.

Figure 6.8 shows the kinetic curves for solid solution decomposition in
Sh-free samples (curve 5) and Sh-doped samples (curves 1-4) at different
annealing temperatures. The differences in these curves were interpreted in
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Figure 6.8. Variation in the Hall concentration N, — Ny with annealing time t in
Ge<Cu> samples (curve 5) and in Ge<Cu,Sh> samples (curves 1-4) at temperatures,
°C: 1-500; 2 - 485; 3 -450; 4 —425; 5 — 485.

[59, 60], with the allowance for doubly charged vacancy, in terms of the fol-
lowing family of reactions between various defects:

Ky
_— + =
Cug _Cuy +V—, (6.7.1)
Ka
Ks
Cus Cui +V~ +e ™, (6.7.2)
Ky
Ks
D* +nv=cz (3D, (6.7.3)
Ks
Ky
5
mcuf +z~ Yz, (6.7.4)
Ks
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Ko

Cuj — sinks, (6.7.5)
KlO
V= — sinks. (6.7.6)

The charge states of interacting point defects are designated with account
taken of the Fermi level position at the forbidden band center at annealing
temperatures. That vacancies are doubly charged was demonstrated in [61].

The key reaction linking all other reactions is (6.7.4); its product is a
complex with a zero charge structure (D" — V= — Cu;")°. This process is pre-
ceded by the formation of another complex (D* — V7)™ having an acceptor
character. The appearance of these new acceptors corresponds to a “lower”
decomposition rate represented as a kink in the kinetic curves in Figure 6.8.

The formation of charged associates was supported by charge carrier
mobility measurements. As soon as a slower decomposition region appeared
in the kinetic curves, the mobility dropped, indicating the production of new
charged centers. Different behavior was observed in Sb-free samples. As
copper atoms sublimated from the lattice sites, the number of scattering
centers decreased, leading to a higher mobility. Moreover, the mobility rise
fitted well the theoretical curve calculated on the assumption that the
scattering centers were copper ions.

Finally, the formation of new acceptors (Z associates) in the slower ki-
netic curve region was detected by direct measurements of the low tempera-
ture dependence of the Hall coefficient. The energy level position of Z-
centers was found from the curve slope to be E, + 0.08 £ 0.02 eV.

Similar complexes were observed in the Ge-Sh—Ni systems [62]. It was
shown in experiments with nonstoichiometric GaAs crystals [63, 64] that
gallium vacancies make a considerable contribution to complexation.
Therefore, complicated interactions of impurity atoms, ions, and vacancies
are common phenomena in doped semiconductors.

To conclude, we present an analytical expression taking into account
both interaction types—donor—acceptor ion pairing and complexation:
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+ KND(NR)Z{“[“(Zni/Ng)ZT’z}
A

where Np is the extreme acceptor concentration in the presence of a donor,
NA” is the acceptor concentration in the host semiconductor, Np° is the donor
concentration, and K is a complexation constant. The first two terms in
(6.7.7) allow for ion pairing (donor—acceptor interaction) and the third one
describes complexation.

The value of K appears to be always indeterminate in experimental data
processing. It must be found from a particular case at n/NA° >> 1; then,
(6.7.7) transforms to

1
Na=NQ+Np/[1+ . (6.7.8)

For example, Ge<Cu> samples have Ncy, = 2.3x10"® cm™ at T = 850°C,
while Ge<Sb,Cu> samples have Ncy, = 4.6x10'° cm™ at Ng, = 5x10™ cm™

and the same temperature. The value of K calculated for these conditions
from (6.7.8) is 3.7x107 cm™®.

, (6.7.7)

6.8 INDIRECT ION-ION INTERACTION

Many experimental studies have demonstrated an increased solubility of one
impurity in the presence of another impurity, which could not be interpreted
as being due to ion pairing or complexation. The former was unlikely
because of the low impurity concentration, since the mean distance between
impurity atoms

0.7

PNim

r =

(6.8.1)
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was 20.0 um at Nin = Ngp + Ney = 10 em™, and the Coulomb interaction
energy at such distances was 0.06 eV, which was much less than 2kT varying
from 0.15 to 0.19 eV. Elastic interaction at these distances is also negligible.

Experiments showed [60] that vacancy concentration variation in
Ge<Cu,Sh> samples did not affect the order of magnitude of copper solubil-
ity. For this reason, the complexation via the reaction

Cui +V+Sb 2 (Cug Sh) (6.8.2)

was discarded.

A similar situation was observed in Ge<Sh,Ni> samples [65]. Complexa-
tion due to a direct interaction of antimony and copper atoms could not con-
tribute much to the experimentally established fact of increased Cus
solubility in germanium in the presence of Sh impurity.

This effect can be accounted for by an indirect interaction of impurity
atoms occurring via the electron subsystem of the crystal. In this case, the
Fermi level is at the forbidden gap center, and the process of copper dissolu-
tion can be represented as:

in undoped germanium

[Cuo]:Cu§ +Cuj +2p+e; +AHg, (6.8.3)
in donor-doped germanium
[Cuo]:CuSZ +Cu + D" +2p+e +e, +AH;, (6.8.4)

where [Cu®] is copper concentration in the ambient phase; p, ey, and e, are
concentrations of holes and electrons determined, respectively, by the con-
centrations C,-, C;" and D*; AH, and AH; are copper dissolution enthalpies in
undoped and doped germanium, respectively. It follows from these reactions
that electrons, excited to the donor level, charge Cu® atoms without
activation up to Cu” in the presence of a donor compensating impurity (in
contrast to undoped germanium). This is supported by the fact that the effect
of high copper solubility in the concentration range of interest is only
determined by the donor concentration and is independent of the kind of
donor impurity (Sb, P, As) [60, 61].

There is no doubt that direct complexation makes an increasingly greater
contribution with increasing donor content. This process is accompanied by
the generation of new energy centers in the semiconductor forbidden gap.
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6.9 APPLIED ASPECTS OF COMPLEXATION

6.9.1 Deep center content versus growth temperature and free electron
concentration

Complexation has a profound effect on defect formation in semiconductor
compounds. Most point defects are isolated at high growth temperatures.
Hardening freezes the defect concentration without affecting complexation.
The most mobile defects seek for sinks and find them in associates being
formed. These processes were discussed in the previous section. Note that
their investigation allows determination of some thermodynamic characteris-
tics of defects. This is considered with reference to GaP in [58].

Epitaxial n-type GaP layers were grown by liquid phase epitaxy. Two
sets of samples differing in the growth conditions were studied. The
temperature range of cooling was the same in both cases: minus 1020-
950°C. The first group of samples consisted of epitaxial structures grown in
graphite piston cassettes in an open system with a continuous hydrogen flow.
However, the concentration of free electrons in epitaxial layers varied from
5x10" to 5x10"" cm™ because of the addition of sulphur to the melt. The
second group of samples was grown in a quasi-closed volume. No additional
impurities were added. The growth temperature range was varied in order to
find the temperature dependence of deep center content. The content of
centers was measured by the thermally stimulated capacity method.
Normally, three deep levels with the activation energies 0.35, 0.53, and 0.65
eV were observed in the temperature range of 150-280 K.

Since the levels of interest lie in the upper half of the band and their acti-
vation energies are smaller than the forbidden gap halfwidth, the thermal
emission rate of electrons, e,’, exceeds that of holes, e,". The levels are
completely ionized. For these conditions, the concentration of centers can be
described as

2(Ng = N4 )AC
M=

where Ny — N, is shallow donor concentration obtained from the CVC data
and AC is the capacity variation due to ionization of a deep center.

The measurements are presented in Figures 6.9 and 6.10. The concentra-
tion of centers rises linearly with that of uncompensated donors and with the
growth temperature of n-GaP epitaxial layers. It follows from formula
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Figure 6.9. Deep center concentration versus uncompensated donor concentration in
n-GaP for various levels of deep centers: 1 —0.35eV;2-0.53eV; 3-0.63 eV.
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Figure 6.10. The deep center concentration (1) and the parameter exp(—gy°%6) (2)
versus GaP annealing temperature.

(6.4.4) that an increase in deep level concentration with increasing free

electron content is characteristic of acceptor centers; their energy levels,
however, lie in the upper half of the forbidden gap.
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The epitaxial layers discussed were grown from high purity materials by
different growth techniques at different laboratories. So it is very unlikely
that the formation of the centers was associated with impurities. More prob-
able is the suggestion that the centers were associated with intrinsic defects.
A gallium vacancy creates three levels in the lower half of the band. Anti-
structural defects can create levels in the upper half. So far, only Pg, defect
has been identified in GaP [64, 66]. The energy levels of this defect were
identified by the DLTS technique in [67]. Mechanical stress applied at a
current of 5 Axcm™ gives rise to a dislocation network and to a deep donor
level in the forbidden gap located 0.8 eV lower than the conduction band.
The concentration of such deep centers is proportional to the applied stress
and time. Removal of external stress by passing current through a diode pro-
duces two levels—at 0.71 and 1.18 eV below the conduction band bottom.
The activation energies of these centers correspond to the theoretical values
of the first and second ionization levels of the antistructural defect Pg,. Opti-
cal data consistent with these results are presented in [68]. However, the Pg,
defect is a donor, so there should be no dependence on free electron concen-
tration (because the center creates deep levels and must be neutral at growth
temperatures) or its concentration should decrease with increasing n.

A semi-empirical calculation method was suggested [69], in which a
cation antisite defect, Gap, creates levels at 0.84, 1.14, and 1.44 eV, counted
from the valence band. No one has ever observed this center. The calcula-
tions made in this work [69] are so different from its experimental data that
one can hardly identify these defects as being antistructural, even with the
theoretical error.

An alternative suggestion is that these centers have a complex structure.
We mentioned earlier that a reasonable model is that of a complex consisting
of a cation vacancy and a shallow donor, in particular, the Vg.S-type of
complexes. Such complexes may be more stable than those with silicon be-
cause of the defect localization at neighboring sites.

It was shown in Section 6.4 that the concentration of complexes is pro-
portional to vacancy concentration which, in turn, is proportional to free
electron concentration. Vacancy concentrations rise with growth tempe-
rature.

6.9.2 Homogeneity region width in A"'BY compounds

The formation of point defects, both intrinsic and due to impurities and
complexes, results in the chemical composition of the crystal being different
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from its chemical formula. The crystal composition is then said to deviate
from the stoichiometric pattern.

The deviation from crystal stoichiometry can be described by the mole
fraction of the excess component. Let us assume that the excess A
component in a binary compound corresponds to a positive stoichiometric
deviation and the excess B component to a negative deviation. The sum-
mation will be made with respect to this characteristic. The stoichiometric
deviation of a binary compound is

A=ZNG/NB-SNE/NA+ 3 (NP /Nj-NP), (6.9.1)
o o j

where j is a running index for various types of interstices.

The first term in (6.9.1) unites all structural elements substituting B lat-
tice atoms, thereby promoting the excess A component. The second term
does exactly the opposite. The third term allows for the mole fractions of
atoms at different interstitial vacancies. In summation, the subscript o runs
through all types of substitutional defects, except for the values of A and B
corresponding to antistructural defects. Antistructural disordering does not
affect the homogeneity region width. Indeed, the transition of, say, a gallium
atom from its site to an anion site does not change the total number of gal-
lium atoms in the system. Therefore, there is no direct influence. However,
the antistructural defect that will appear will compensate n-type material,
leading to a change in the homogeneity region width.

The same is true of complexation processes. Without changing the total
number of defects, these processes change the Fermi level position, thereby
changing the stoichiometric deviations. We will illustrate this with the
following [58]. The stoichiometric deviation through point defect concen-
trations will be expressed as

Q.

o|

B i
A=y (-)% Z—gexp(—%)fgg +3(-1)%a, exp( g Jf(;jl . (692)

(Eg —E; _sg)(l_dg)
0

+1Bexp
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(E,: —s&)d({

f(;jl = R(i exp)

Index B in formula (6.9.2) runs through two values—A and B, while index j
runs through values related to interstices.

Therefore, the calculated deviation values are affected by the factors:

(1) the compound growth conditions (via temperature and activity coef-
ficients of various ligands);

(2) partial free energies of defect formation and ionization energies;

(3) doping levels and compensation degrees.

Gallium arsenide has been studied much better than other A"'BY com-
pounds. In spite of this, it is useful to evaluate the variation limits of the ho-
mogeneity region width in additional donor doping of GaAs. Such calcula-
tions were performed in [58], using the available parameters of defect for-
mation and ionization [71, 72]. The results of the calculation are shown in
Figure 6.11.

Doping changes the homogeneity region width so much that this should
not be ignored in designing various technological processes. Similar calcula-
tions for GaP [58] provided results illustrated in Figures 6.12 and 6.13. The
reader can find in this work other illustrations of applied aspects of impurity
interaction.

Figure 6.11. The homogeneity region width & in GaAs with account taken of doping
and complexation (calculation) at various impurity concentrations, cm™: 1 —-0; 2 -
1x10"; 3 - 5x10"; 4 — 1x10™%.
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Figure 6.12. The temperature dependence of the vacancy concentration for Ga (1) and
P (2) in GaP: 1, 2 — Ga-enriched; 1’, 2° — P-enriched.
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Figure 6.13. The homogeneity region width for GaP: solid curve — calculation;
circles — experiment [73, 74].
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Chapter 7

Impurity Kinetics in Semiconductors

7.1 IMPURITY MIGRATION ENERGY

The impurity migration model to be discussed in this chapter is based on a
modified Weisser theory concerning the transition of an impurity atom from
the equilibrium interstitial position to a new equilibrium position through a
saddle point. The theory of equilibrium positions, or the type of interstice
(tetrahedral or hexagonal), discussed in Section 4.3, can be easily extended
to impurity migration.

The migration energy AE can be represented as

AEq = AUrgp — AUjp — AU — ASey, (7.1.1)
where
AU, =Ug, -Ug, (7.1.2)
AU;r =Uj —Ugh, (7.13)
AU, =Uf -Ul (7.1.4)
A8, =88 — 81 . (7.1.5)
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The first three expressions representing, respectively, the energy
differences of repulsion, polarization, and crystal field at H- and T-
interstices were defined in Section 4.3; Ad. is the difference in
extrastabilization energies of these interstices. The small values of Ade, will
be neglected, as was done for the solubility calculations in Section 4.3. If the
migrating impurity is ionized, expression (7.1.1) should be replaced by

AEq = AUygp — AUjpy = AU, — A, + Al (7.1.6)

where
Alg=1{ -1 (7.1.7)

represents the ionization potential difference of the impurity atom at both
interstices.

For a particular semiconductor, AU;,, and AU, are constant values inde-
pendent of the kind of impurity, so AE, for different impurities will be de-
fined by AU, and Als. The numerical values of U, and U, used in Section
4.3 are AUj, = 0.78 eV and AU, = 0.3 eV. The calculations of AU, with
crystal lattice relaxation for transition metal impurities in silicon allowed the
determination of AE, values (Table 7.1). The comparison with experimental
data suggests that Fe, Co, and Ni impurities in silicon diffuse over interstices
in the neutral state, Cu diffuses in the Cu® state, and Ag and Au diffuse in a
more complicated way, because their experimental values for AE,, are far
from the calculated values for diffusion as Me and Me*. Below, we will
show that they may migrate via dissociative diffusion.

Table 7.1. Migration energies (eV) of amphoteric transition metal impurities in

silicon [1].

Impurity AEq, (Me?) AE, (Me*) AEq, (exp.)
Fe 0.61 0.38 0.69 [75]
Co 0.57 0.31 0.51 [76]
Ni 0.48 0.39 0.47 [72]
Cu 0.34 0.42 0.43 [77]
Pd 0.47 0.29 -

Ag 0.44 0.24 1.6 [78]
Pt 0.34 143 -
Au 0.53 0.53 0.38 [79]
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A theoretical analysis of migration energies AE,, is possible, at present, only
for elemental semiconductors of the silicon-type. The difficulties associated
with A"BY and A"B'" semiconductor compounds are similar to those
discussed in Section 4.3.

7.2 MICROSCOPIC THEORY OF IMPURITY
KINETICS

Impurities exhibit various migration effects at high temperatures. One is
dissociative diffusion which represents a combined migration of impurity
atoms over lattice interstices and vacancies with an exchange of positions,
i.e., the capture of an impurity atom by a vacancy to produce a free
interstice. A more general migration process is decomposition of an
oversaturated solid solution, involving diffusion as a stage in a more
complicated process [2]. There are several models to describe decomposition
of a semiconductor—impurity solid solution. These have been discussed in
detail in the book [2]. Irrespective of which model applies better to which
case, a common feature is that the interaction of impurity atoms with other
point defects is involved in any migration process.

A consistent account of these interactions in kinetic theory requires the
introduction of a variable diffusion coefficient, but this requires the know-
ledge of its functional dependence on the concentrations of all “participants”
of the kinetic process. One should bear in mind that these concentrations are
interdependent and continuously vary in time, and that impurity atoms, espe-
cially amphoteric atoms, change their charge when changing their position in
the crystal. Finally, if one takes into account the ability of impurity atoms to
form associate defects, the problem of direct introduction of a variable diffu-
sion coefficient into theory will appear meaningless.

More fruitful is the approach based on the equivalence of diffusional and
quasichemical descriptions of concentration variation of impurity atoms and
defects. In this approach, the processes involving impurity atoms are treated
as chemical reactions, namely, the reactions of impurity transition from a site
(s) to an interstice (i) to produce a vacancy, and vice versa:

AL +Zp" 2 AT 4V DY
Ks  |Kq (7.2.1)

sinks sinks
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where the superscript in brackets denotes the charge value of every reagent.
This reaction also involves positive holes. Here, a p-semiconductor is dis-
cussed as an illustration; an n-semiconductor was analyzed in [3]. The
guantities K; and K; are the rate constants of direct and reverse reactions. For
an amphoteric impurity changing its charge in the transition from a site to an
interstice, this change is allowed for by the inequality Z; # Z; for both the
value and sign. If an amphoteric impurity has several charge states simulta-
neously but is in the same position in the crystal, this can be allowed for by

introducing into (7.2.1) the sum AZs + AZ2 4 or AiZil + Aiz'Z + ... We will

omit this cumbersome series. The possible changes in the charge state are
determined by the change in the Fermi level which can always be taken into
account by using its relation to the carrier concentration.

There are two other kinetic processes taken into account by (7.2.1): the
migration of interstitial impurity atoms and vacancies to sinks. These can
also be treated as quasichemical reactions with their own rate constants Kj
and K,. This assumption is permissible if the conditions formulated in [4] are
fulfilled: the sink identity for all defects, a uniform distribution of sinks
throughout the crystal, their constant number and unlimited capacity, as well
as the absence of elastic stress fields.

Another important quasichemical reaction is the interaction between a

site impurity and a vacancy to produce an associate defect X Zx

Ks
AL 4V 2 X5 4774 pt .
Ke (7.2.2)
Kz
sinks

The number of electrons involved in each of the above reactions is de-
fined by the charge conservation condition:

Z=2-72y-1;, Z'=Zy -2y -Zs. (7.2.3)

The time variation of volume average concentrations are written as Ki-
netic equations

% = —KyCsp? + Ko CiCy — KeCsCy + KsCx P’
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= KiCsp” ~ KoCiCy - |<3(ci —C )

dC ’
d_tv = K1Csp? = K,CiCy — KeCiCy + KsCx p? — K4(Cv - C\0/)

dc :
= ~KeCx p? + KsCCy — Ky (cx - c§’(), (7.2.4)

where
K, = 4mry (D; + Dy), Ks =vpD;,
Ks =7vpDy, Ks = 4mpoDy, (7.2.5)
K7 = ypDx.

Here, D;, Dy, and Dy are diffusion coefficients of respective defects; p is the
sink density per unit area; v is a factor determined by sink geometry, ap-
proximately equal to unity; r and p are effective capture radii for an intersti-
tial atom—vacancy pair and a substitutional atom—vacancy pair, respectively.

The rate constants for direct and reverse reactions are not independent.
Their relationship can be easily found from equilibrium conditions with
dC./dt = 0 and dCx/dt = 0 and, respectively, C, = C, C; = C, and Cx = Cx".
With these conditions, we obtain from (7.2.6)

clcd _ cdcd
Ky = Ky =Y P’ Ks = Kg—Y52 B’ . (7.2.6)
Cs CX

The set of equations (7.2.4) must be supplemented by the crystal neutral-
ity condition which permits finding the concentration of the fifth compo-
nent—free holes, p:

p=ZCs+Z;Ci + ZyCy + ZxCx +n?/p . (7.2.7)

Here, the last term represents the concentration of negatively charged elec-
trons.

All Z values in (7.2.7) are taken with their own signs corresponding to
the character of ionization of the reactants. The set of equations (7.2.4) and
(7.2.7) contains concentration products, so they are nonlinear. To solve this
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set of equations, one should accept additional assumptions leading to its
linearization.

There are two assumptions to be made. One is the approximation of equi-
librium defect concentration (EDC) [5], which implies that the concentration
of the most mobile defects is equal, at any moment of time, to the thermody-
namically equilibrium concentration at a given temperature. The EDC ap-
proximation is fairly rough, because point defects are in quasi-equilibrium
with one another at every moment of time, and the presence of a nonequi-
librium fraction of one defect type (say, impurity atoms at lattice sites)
entails an excess content of other defects.

The other approximation [6,7] is based on the assumption that excess
concentrations of all defects are much lower than their equilibrium concen-
trations. This approximation was termed in [7] nonequilibrium defect con-
centration (NDC) [7]. We believe that the latter approach is preferable be-
cause it better fits experimental conditions.

The set of equations (7.2.4) was most completely solved in the work [7],
where the NDC approximation was mathematically represented as the condi-
tion

5C _C-Co
co~ o

. (7.2.8)

It follows from (7.2.7) that in the absence of equilibrium, the neutrality
equation is

2
(1+ ”—F')JSp = Z,8C, +Z;3C; + Zy3Cy + Zx8Cx.  (7:2.9)

Normally, the concentration of one component, say, site impurity, is
larger than the other concentrations. Then, since we have p >> p;, expression
(7.2.9) should be replaced by

8p = Z,5C,. (7.2.10)

To simplify the theoretical treatment, we will assume one type of defect
to be dominant. The further presentation is an illustrative application of the
above reasoning to the general process of solid solution decomposition, as-
suming at the beginning that an impurity atom leaves the substitution
solution to be incorporated and then diffuses to sinks. This means that the
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rates of reactions (7.2.2) are too low, and Ks and Kg can be taken to be zero.
The kinetic equations in this case are

dcC
_dts = _chspZ + K2CiCV
dcC;
dtI — chspZ - K,CiCy — Kg(ci _Cio) ) (7.2.11)
dC
d_tv = KiCsp” — KpCiCy - K4(CV - C\0/)

In the linear approximation allowing for the neutrality condition (7.2.7),
we have

0
iéscsz—r<2CCV[1+zz Cs )acs
c?

dt S Po +Ng
0 0 co
+K,Cy|1-22 5C; + K,CP| 1- 22 5C
v v Po+ 0 v Po + Mo v
0~0 0
—sc Ky S5V 14 77, - e
CS Po +

cl cY
K2CV 1- ZZ + K3 6C K2C 1- ZZV SCV
Po +Ng Po +Ng

0 0
iésc\, =K, CCCV (1 77 Cs Jscs

Po + o

0 c? 0 o
—K,CY|1- 7z, —1— |5C; —| K,CP| 1- 22y —X— |+ K, [5Cy

Po + o Po +Ng
(7.2.12)

The characteristic equation of this set
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1 c’c?
oK,V 1+ K,Co(1- K,Co(1-
T 2 Cso ( 2 V( 2% (
0 0 0
+7Z, S | -77, | -72y, Cv_ |
Po +No Po +No Po +No
cocd 1
Ky A=V (14 Z_K,Cl(1- —K,C(1-
2 Cso ( T 2 V( 2% (
0 0 0
+7Z4 S| -77; G| -2y, Cv_|
Po +No Po +No Po +No
0~0
KZ%(H —K,CY(1- 1 K,Co(1-
o T
0 0 0
vzz— S | 77, S | 77,V
Po +No Po +No Po +No

=0 (7.213)

has three roots. The smallest of them determines the time constant of the de-

composition process.

To avoid cumbersome formulas, let us make some simplifying assump-
tions. We will put Z; = -1, which is valid for the acceptor state of a site im-
purity but will not consider its state with Z; = —2. Of course, the latter as-
sumption simplifies the situation but oversimplifies the theoretical results.
Besides, the site state will be assumed to be dominant and this means that the
sample conductivity type remains unchanged during the kinetic process.

To solve the set of equations (7.2.12), let us introduce the variable x, de-

fined as

N ()
[w(Di + Dy)]’

and the designations

o = 4nr0Ci0 C,O _ B
| 1 0 ]
P ct
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=220V XM g (7.2.16)

The characteristic equation (7.2.13) takes the form:

X—(1+Z)oiBy Oy o
D.
(1+Z)0LiBV X_av_[)i+—ll:)\/ — 0 =0,
(1+ Z)OCBV — Oy X—=0; — DV
! ' Dj+Dy

(7.2.17)

where Z should be substituted with its own sign: minus for an acceptor and
plus for a donor.
Equation (7.2.17) is nothing else but the cubic equation

X3 = [1+ o + oy +(1+ Z)oBy [x? +[%+
i +DPv
oiD; + oD
+1+Z)aiBy +W}x— (7.2.18)
~(1+Z)oiBy LVZ =0
(Di +Dy)

Since x << 1, we neglect the cubic term and, considering Cy to be a small
value, put

oy <<1 and By <<1. (7.2.19)
Then, (7.2.18) transforms to the quadratic equation ax’* + bx + ¢ = 0 with

such a structure of coefficients that the inequality b%(4ac) >> 1 is always
valid for o; > 1. Hence, the smallest root will be

: (7.2.20)

namely,
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D:Dy
(D +Dy)°
D;Dy

;D + oy Dy -
(14 7)ouB, 4 LiDi HovDy
(Di+Dv)2 ( oy Di + Dy

By
x=(1+2)

(7.2.21)

The sink density p can be considered to be high during solid solution
decomposition at any impurity concentration. Even if the sink density in the
sample is small, its surface acting as a sink provides large p values. Then, it
follows from (7.2.15) and (7.2.16):

o <<1, oy <<1 (7.2.22)
Bi <<1, By <<1 (7.2.23)

Note that an amphoteric impurity dominant at lattice sites will be de-
scribed by the relations B; = 1 and By = 1, instead of (7.2.23). They will also
be valid for deep inhomogeneous impurities. With the reverse substitution of
(7.2.14) and using (7.2.22) and (7.2.23), we obtain the final dimensional so-
lutions for two possible relations between coefficients D; and Dy,

1 (X'BVDV
—=1+Z)yp— t Dj D 7.2.24
J=(r )Yp(Dv/Di)mi at D;>>Dy (7.2.24)
1 O('BvD‘
Z=(1+Z)yp—1ENV= gt Dy>>D, 7.2.25
T ( " )Yp(Di/Dv)+(XV 8 v ( )

These expressions are valid for shallow hydrogen-like impurities. For deep
impurities, the solutions have a different form:

1 (X‘BvDV

—=(1+2 ! tD; >>D 7.2.26

T L+ )YP(DV/Di)ocV +(1+ Z)Byo + 0 ao v ( )
C('BvD'

—=(1+Z L ! t Dy >> D, 7.2.27

T (L+ )Yp(Di/DV)oci+(1+Z)Bvai+ocv & By - )

The solutions obtained as various values of 1/t determine the experimen-
tal time constants of solution decomposition:
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Table 7.2. Effective activation energies Qe for interstitial decomposition of ampho-
teric impuritiesat o; >> 1, oy << 1, ;= 1, By = 1.

Kinetic conditions Activation energies
Dy/D; >>1

(Z + 1)By > Di/Dy > Bu/B; -EM

(Z + 1)By < Di/Dy, > By/B; -Ey + E,-EM

(Z+ 1)By > Di/Dy < Bv/B;i -EM

(Z+ 1)By < Di/Dy < Bv/B;i -Ei + Es- B
Dy/D; <<1

(Z+1)By >Dv/D; < BBy -Ev

(Z + 1)By < D\ID; < BBy —Ey + Eg— EM

(Z+1)By >Dy/D; > BilBv -EM

(Z+ 1By <Dv/D; > BilBy -E; + E;-EM

Table 7.3. Effective activation energies Q¢ for interstitial decomposition of ampho-
teric impurities at o; << 1, oy << 1, Bi= 1, By = 1.

Kinetic conditions Activation energies

1>Dy/Dy < oy —E; + E,— E™

1> Di/Dy > oy —E—Ey + Es—E,M

1< Dy/Dy < o -Ey + E;- EM

1> Di/Dy > o; —E—Ey+E—EM
T="1oexp(Q/KT), (7.2.28)

where Q is the effective activation energy representing a combination of the
activation energies of diffusion in D;(T) and Dy(T) and the energy defining
the temperature dependences of solubility C°(T), C\%(T), and C(T) present
in the quantities o, o, Bi, and By. From a comparison of experimental
values of Q and Qg (Tables 7.2 and 7.3), one can understand the
decomposition mechanism in the crystals under study.

For compiling Tables 7.2 and 7.3, we used the identity on/o; = By/Bi
which follows from (7.2.15) and (7.2.16), because the values of yp present in
o were very difficult to determine experimentally. The above solutions for
1/t were obtained in the NDC approximation. The solutions in the EDC ap-
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proximation will be similar but having no factor (Z + 1). They are simpler
and easier to use in experimental data processing. Let us see what physical
picture corresponds to each approximation.

The determinant in (7.2.17) is symmetrical relative to interstitial atoms
and vacancies. So, for simplicity, consider only the case with Dy, >> D;. Let
us expand (7.2.17) into the third column elements, taking account of the
inequality x << 1:

(x-‘(z +1)oiBy oy J o X—(Z +1)oiBy oty
'z +1)atiX—av—(Di/Dv Nz +DouBy —ary

X—(Z +DouBy oy B
- (ai +l*(z +1)0‘ti X—=0ly — (Di /DVJ =0
(7.2.29)

The diagonal element of the third column of (7.2.17) contains two terms.
The first one, oy, characterizes the elimination rate of free vacancies from the
crystal volume due to recombination with interstitial impurity atoms, accord-
ing to reaction (7.2.1). The second term, D/(D; + Dy) = 1, describes the
migration of free vacancies to sinks. If vacancy diffusion to sinks dominates,
i.e., o << 1, the expansion of (7.2.29) will contain only the third term:

X—(Z +1)aiBy Oy

=0, 7.2.30
(Z+l)OCiBV X—(XV—(Di/Dv) ( )

which corresponds to the EDC approximation.

Indeed, after a fast elimination of nonequilibrium vacancies from a
crystal, their concentration comes to equilibrium in a very short time equal to
the diffusion time. If a vacancy recombines with an interstitial atom sooner
than it diffuses to a sink, i.e., o >> 1, the expansion of (7.2.29) will contain
all the terms. For the set of equations (7.2.13), this will correspond to the
condition (d/dt)dCy = 0, or to the NDC approximation.

Thus, the physical sense of the NDC approximation is that the concentra-
tion of the most mobile defect is “adjusted” fast to the concentrations of the
other reactants and comes to a quasi-equilibrium state with slower reactants.

A similar analysis of the set of kinetic equations (7.2.4) can be carried
out for a more complicated decomposition process occurring via reactional

diffusion and a mixed mechanism. Reactional diffusion implies the for-
mation of associate defects (substitutional impurity—vacancy complex) and
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their migration to the sinks. The mixed mechanism represents a simul-
taneous migration of associate defects and interstitial atoms to the sinks. For
reactional diffusion, the set of equations (7.2.4) takes the form:

9Cs __kecCy +KsCxn?
dt
dCV A
T = _KGCSCV + K5CXn - K48CV , (7231)
dcC

d_tx = K6CSCV = K5anzl - K76CX,

where Cy is the concentration of associate defects and 2’ = Z; - Z\, — Zx.

Let us ignore, for the time being, a possible multiple charge of the site
amphoteric impurity by taking Z = 1. Then we can write, in the linear ap-
proximation (7.2.8) with the neutrality equation:

%SCS = (Z +1) KGCVSC K6C SCV + KG

%SCV = —(Zl + 1) K6C38CS - (KGCSO + K4 )SCV + KG C\C/CS SCX ,
X

cc°

X

%scx = (2" +1)KgCIBCK + KgCCy, —( +Ky )SCX
(7.2.32)
The characteristic cubic equation of this set for dimensionless time constants

1 1
X==

T YpDy

(7.2.33)

has the form
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3 2 cd D D
X2 = x| (2" + Doy + 0 + oy —+1+ =2+ X (27 +1)| 1+ =2 oy +
c Dy D

X \%
Dy . C? Dy ’
Hi+og) F oy =5 [= (2" + oy = =0

Dy Cx Dv

(7.2.34)

where we included, in addition to (7.2.15),

47'Cr0C0

Og=—>—>-, (7.2.35)

P

As in the case of interstitial decomposition mechanism, the cubic term will
be neglected. Assuming Dx/Dy << 1 and o << 1, we obtain an equation of
the type ax? + bx + ¢ = 0:

0
21+ cv o 2x C\O/ +(Z'+1) Dxc\g. (7.2.36)
CX Dv Cx DvCs

After the reverse substitution, the smallest root of this equation, x = c¢/b, is

0 0
(2747 ®DxCV/C] (7.2.37)
( )(DX/DV)JF(C\O//CQ)

In contrast to the interstitial decomposition mechanism, there are only
two limit kinetic conditions here:

Dx _ Cv . , 0 /~0

— : =(Z’+1)ypD 7.2.
Dv Cx (Z’+2)wp X(CX/ CS), (7.2.38)
Dx __Cy. 1 , 0 /~0

L X —=(Z2"+1)ypDy(Cy /CS ). 7.2.39
oy (' +1)wDy(ch/c?) (7.2.39)

Inequality (7.2.38) takes into account the identical relation
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Table 7.4. Effective activation energies Qg for reactional and mixed decomposition.

Decomposition Kinetic condition Activation energy
mechanism

Migration of defect Dy/Dy << CUCY° —ExM - Ey + Eg=EM
associates

Mixed: Dx/Dy >> C%Cy° —-EM-Ey + E
Simultaneous migration Di/Dy <<1 -EM

of associates and Di/Dy >>1 —EM — E + Eyx = —-Ex™

interstitial atoms

D =Dx(C%/C!) at  Ck<<C?. (7.2.40)

The values of Qg for this decomposition mechanism (migration) are
given in Table 7.4.

For the mixed mechanism occurring via migration of associates and in-
terstitial atoms, the linearization of the set of equations (7.2.4) gives four
linear equations, making it difficult to derive an analytical solution for 1/1.
To reduce the number of equations, we will assume, as in [2], that vacancies
are the most mobile defects and that Cy = C,° at every moment of time. In
other words, vacancies will be treated in the EDC approximation and other
defects in the NDC approximation.

The linearized set of equations has the form:

8 d; K,CY8C; - (Z +1) Kl( ) 8C, + KsdCy — KgCISCs,
sdd(i = —K,CY8C; +(2 +1)|<1( ) 8C — K39C; , (7.2.41)
dc

d—tx = KgCU8Cs — K38Cy — K78Cy .

It should now be found what kind of diffusion limits the process. Assume
at first Dy >> Dj, i.e., the limiting factor is interstitial diffusion. Then, in the
first approximation, we have ddCyx/dt = 0, and dCx is found from the last
equation of (7.2.41) as
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0
O0Cy = LVBCS (7.2.42)
Kg + K5

By substituting (7.2.42) into the first two equations of (7.2.41) and
equating the characteristic equation to zero with respect to 1/t, we find

2
(1) —1[(2 T, (COF +KeCY +K,C + K3]+
T T

(7.2.43)
+ K3[(Z +1)cof + KGCS] +KsCOK,CO =0.

This equation was derived for K; >> K, i.e., under the condition that associ-
ates reach sinks before they dissociate.

Let us take K; >> K,C\; otherwise, interstitial atoms would annihilate
rather than reach sinks. If interstitial diffusion is the limiting factor, then

Z
(z +1)K1(c£) +KeCY + KyCY >> K. (7.2.44)

Using the above assumptions and simple transformations, we obtain the
minimum time constant of decomposition:

Similarly, the other limiting case will be described as

WDCS

(7.2.46)
Cx

1
—=K7 =9pDx =
T

The respective expressions for Qe can be found in Table 7.4.
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7.3 DISSOCIATIVE DIFFUSION OF IMPURITIES

Dissociative diffusion represents impurity migration involving a change of
the crystallographic position. It is described by quasichemical reactions
(7.2.1). Its difference from decomposition is that the diffusant enters a
sample from the outside because diffusion is a technological process. In de-
composition, it comes from the inside, i.e., from the lattice sites. For this rea-
son, the theoretical treatment of dissociative diffusion is basically similar to
that of decomposition carried out in Section 7.2. However, the dissociative
diffusion analysis requires the consideration of surface concentration Cgy,
which decreases with depth in time and along the coordinate. The measure of
its decrease in time is the time constant 1/t determined by the migration
mechanism in the sample bulk. Its coordinate dependence is determined by
the sample shape and the boundary conditions of the diffusion problem.

The treatment of diffusion involves two problems. The first problem
deals with the macroscopic diffusion coefficient D, while the second reveals
its microscopic nature, because D is a combination of partial diffusion coef-
ficients of the components D, D;, Dy, and Dx and of their concentrations Cs,
Ci, Cv, and Cy. It does not seem worthwhile discussing the first problem,
since it is of interest mostly to particular situations which will be described
in Section 7.5. The general analysis of the second problem (Section 7.2) is
too cumbersome to be compared with experiments. Also, a simplified treat-
ment is often sufficient for a qualitative and semi-quantitative interpretation
of experimental data. This simplified theory will be presented in this section.

The principal simplification is the use of the EDC approximation, but it
will be necessary to find which defect is in equilibrium. Below, the criteria
for its identification will be formulated. Further, the charge states of defects
will be neglected in the first approximation. The charge value can be intro-
duced into the derived formulas any moment by multiplying the result by (Z
+ 1), as was done in Section 7.2. Finally, this treatment will be restricted to
two defects—impurity atoms, occupying sites and interstices, and vacancies.
In other words, the interaction of defects producing associates, or reactional
diffusion, will be ignored.

With these assumptions, the set of kinetic equations (7.2.4) becomes

simplified:
dc
d—ts = —K]_CS + KZCiCV f (731)
dc;
= KiCs — KoGiCy - Ks(C; -cio), (7.3.2)
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dc
oL = KaCs - Ko Cy - Ki(cy-Cf).  (7:33)

The relation between K; and K; is defined, as before, by expression (7.2.6)
but with Z = 0.

The nature of sinks was not discussed in Section 7.2, so we will specify it
now.

Sinks for interstitial impurity atoms and vacancies may be dislocations,
the sample surface, and defects of the impurity associate type. If the latter are
neglected (this can be done for the usual samples containing dislocations),
the rate constants K; and K, according to [8] will be:

27'CnD Di,V

—_— 7.3.4
In(rp /1g) (7.3.4)

K314 = (TC/l)Z Di,V +

The first term in this expression reflects recombination on the surface of a
sample of thickness I. The second term corresponds to recombination of im-
purities or vacancies on dislocations with density np, with the effective cap-
ture radius ;. The value of rp is equal to the half mean distance between

dislocations, which is, in turn, defined by their density:
1

rD = . (7.3.5)
TEI’ID

The linearization of equations (7.3.1) through (7.3.3) can be carried out
in the EDC approximation with C; = C{° or Cy = C\°. Which of these condi-
tions should be chosen for experimental data processing? The answer to this
question was found in [8] by analyzing the distribution “tails” of concentra-
tion C,, Cj, and Cy established at the end of the diffusion process when
relation (7.2.8) becomes valid. Substituting it into (7.3.1) through (7.3.3) for
every concentration and neglecting the terms of the second order smallness
8CidCy, we obtain a set of differential equations similar to (7.2.12) but much
simpler because of the above assumptions:

% = —K;3C + Ky (CiOSCV + c\%ci) ,
dz% = K;8C, — K, (cioscv +¢9s¢; ) — Ks3C; (7.3.6)
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dscy
dt

= K;8C, — K, (cioacv + c\%ci)— K45Cy .

The sets of equations (7.2.12) and (7.3.6) will drop out when Z = 0 and
(7.2.6) are substituted into (7.2.12).

The left-hand sides of equations (7.3.6) will vanish in the range of large
time intervals when the concentrations are close to equilibrium values. Then,
the solutions for C,, C;, and Cy have the exponential form exp(ot), where o,
is the minimum root of the characteristic equation

X +ax’+bx+c=0, (7.3.7)
in which
a =Ky + Ky + Kz + KC\’ + KCP,
b = KiKyt+ KiKs + KoK,CyP + KoKsCP + KKy, (7.3.8)
¢ = KiKzK,.

Similarly to the solution to equation (7.2.13), the minimum root of equa-
tion (7.3.7) is x = c/b. It is this root that determines the value of o

K K3Ky

o=
KKy + KiKg + KoK,CY + Ky KaCP + KgK,

(7.3.9)

and essentially coincides with (7.2.21) in terms of diffusion coefficients.

To linearize equations (7.3.1) through (7.3.3), let us put, at first, C; = C;°.
Then the equation of the set (7.3.2) turns to zero and the other two equations
transform to

dc,

=K+ K,CCy
dé (7.3.10)
d_tv =K,Cs - K2Ciocv —-K,4 (Cv —C\O/)-

The respective characteristic equation defining o in this particular case is

x% + x(Kl + K2Ci0 + K4)+ KiKyg . (7.3.11)
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The minimum root o is defined as

= Kl—Kg . (7.3.12)
Ki + Ko Ci + Ky
Similarly, the author of [8] derived the expression
KiKs (7.3.13)

- K]_'I'K2C9/+K37

which is valid for Cy = C\°, i.e., another linearization condition for equations
(7.3.1) through (7.3.3). It is easy to see, from the comparison of (7.3.12) and
(7.3.13) with the general result in (7.3.9), that the criteria for this or that
linearization condition are the relations:

KiKs + KoKsCP + KaKy > KoKy + KoK, C® at Ci=C, (7.3.14)
KiKs + KoKaCyl + KKy > KiKs + KoKsC?  at Cy=C\o (7.3.15)

If the reaction constants, the sink concentrations, and the sources of va-
cancies and interstitial atoms are known, one can find from (7.3.14) and
(7.3.15) which point defects—vacancies or interstitial atoms—are closer to
equilibrium and, thereby, to know which equation—(7.3.2) or (7.3.3)—
should be used together with (7.3.1) for the interpretation of experimental
diffusion data on dissociative and cation-anion amphoteric impurities.

If (7.3.14) is applicable, dissociative diffusion will be described by the
set of equations (7.3.10), whose solution at K,C° > KK, with the initial
conditionst=0and C;=Cy =01is[9]

0 0
C,=Cd-C, 1+% exp| — Cv —L Kt L Svka exp( K,C Ot)
cIK,C! c? K,CP

(7.3.16)

At large t, the ratio C\’K4/(C’K,C® < 1) and expression (7.3.16) trans-

form to
0 cy
Cy=CJ|1-exp —C—\g Kyt || (7.3.17)
S
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If the other criterion, i.e., (7.3.15), is applicable, only the first two equa-
tions remain from the sets of (7.2.1) through (7.3.3); their solution derived
under similar conditions is

. _ 0
c=c2-¢cf 1+§‘¢ exp —% Kat |+ C'O Ks exp(—ch{),t)
CsKCy Cs CvKy

(7.3.18)

and for large t, we have

0
Co= cg{l- exp[—c—io thﬂ : (7.3.19)
CS

The foregoing referred to fixed sources and sinks of vacancies and in-
terstitial impurity atoms. But in real crystals, there are also unfixed sources
and sinks, which change their capacity with the degree of generation or ab-
sorption of vacancies or atoms. An example of an unfixed source is a Frank
dislocation loop. Such loops act as vacancy sources, and as the vacancies are
generated, they become larger, changing their ability to generate vacancies.

The mathematical description of diffusion, taking unfixed sources or
sinks into account, is similar to that of diffusion with a movable boundary. It
is, however, difficult to apply this theory to the mixed case of simultaneous
action of fixed and unfixed sinks (or sources), although it is this situation
that is so typical of dissociative diffusion of impurities in semiconductors.

An alternative approach to the analysis of vacancy diffusion [9] implies
the presence of independent and non-interacting fixed (Cyf) and unfixed
(Cw) sinks and sources. The reader can find this cumbersome analysis in the
original work [9]. Here, we will give only the final expression for Cy(t) in
dissociative diffusion when fixed and unfixed vacancy sinks (sources) act
simultaneously:

Cs = cglf (t) +¥[f (t)]zl. (7.3.20)

The following designations are used here: B = m,/b/n¢ , where b is the Bur-

gers vector of a dislocation loop and ng is the concentration of fixed sinks
and sources; f(t) is the function [9]
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0
2[1— exp(_ /Bzcso +1Kys E‘étﬂ

S

—.
1+4p2cd+1- (1— Vp2cd +1)exp(—,/ﬁzc§ + 1Kyt z‘gtJ
S

(7.3.21)

f(t)=

in which Ky is the rate constant of vacancy migration to fixed sinks.
In the particular case of unfixed sources (sinks), or at B = oo, equation
(7.3.20) transforms to

C, = Clth%g, (7.3.22)

where ¢ is the function of time defined in [9]. So, instead of (7.3.20), we will
have

2 0
C, = c;’thz{’l‘—z aDy/nyC2 %t] (7.3.23)

S

To conclude this section, Table 7.5 gives expressions for Cg(t) and re-
spective conditions, which should be used for the analysis of experimental
data on dissociative diffusion.

If the criterion of (7.3.14) or (7.3.15) is not fulfilled, the equations in
Table 7.5 derived in the EDC approximation become invalid. Then, experi-
mental data are to be analyzed in terms of the more general theory developed
in Section 7.2.

Table 7.5. Dissociative diffusion equations and conditions for data analysis.

Type of sink  Equilibrium  Applicable Condition Formula
(source) concentration  formula Cs(®) Cs(t — o)
ci=c? (7.3.14) Ci=0=0  (7.3.16) (7.3.17)
Fixed CV|t=0 =0
Cv=C\° (7.315)  K,C®>KK, (7.318) (7.3.19)
Cslt:O =0
Cil=0=0
Unfixed ci=c? (7.3.14) - (7.3.23) -
Mixed ci=¢ (7.3.14) - (7.3.20) -
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7.4 KINETIC EFFECTS IN SUBSURFACE LAYERS

The impurity diffusion is characterized by high rates, because it is stimulated
by an interstitial present as a single diffusant or a component of dissociative
diffusion. This circumstance leads to important features of impurity profiles
in heated semiconductor samples. The principal mechanism determining the
impurity profiles at a semiconductor surface involves the interaction between
impurity atoms and vacancies, which are always present in excessive quanti-
ties near the surface. Initially, this mechanism was attributed to the injection
of vacancies from the surface into the crystal bulk. But it has recently been
established [10] that an essential contribution is made by the process, in
which vacancies unite to produce pores with their subsequent decoration by
the diffusing impurity. The production of excess nonequilibrium vacancies is
of no importance. For example, the nonequilibrium processing of a GaAs
sample in [10] was performed by arsenic evaporation and in [11] by
chemical etching of silicon. So, the theoretical analysis of near-surface
impurity kinetics was carried out in [12] in a general form, irrespective of the
vacancy injection technique used.

Suppose there are excess nonequilibrium vacancies, Nyo in a subsurface
crystal layer of thickness & (Figure 7.1). What processes occur in it when the
crystal is heated stage-by-stage? In the first stage, the oversaturated vacancy
solution is decomposed and vacancies diffuse. They produce the “second
vacancy phase”—pores. After most vacancies have been utilized for the pro-
duction of pores and the nonequilibrium vacancy concentration becomes
low, their diffusion to the surface and into the bulk will be accompanied by
coalescence of pores (the second stage). At the end of this stage, all excess
vacancies will come up to the crystal surface.

Ny
Nyy =
I
|
|
I
N, |
|
0 o) X

Figure 7.1. The vacancy profile at the initial moment of time prior to thermal
treatment of the sample; N, — equilibrium vacancy concentration in the
semiconductor.
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The system evolution in the first stage is described by equations [12]

Ny 9Ny
—+=D —4nNDrNy, 7.4.1
ot arz T \Y% ( )
2
art = 2Ny D, (7.4.2)
ot N

where Ny is the concentration of nonequilibrium vacancies, D is their diffu-
sion coefficient, r is the pore radius, N._ is the vacancy concentration in a
pore or reciprocal volume 1/Q per vacancy, and N is the concentration of
pores.

The first right-hand term in (7.4.1) describes nonequilibrium vacancy
diffusion from the surface into the sample bulk and the second term
describes the vacancy fraction extracted for pore formation. The initial and
boundary conditions of the problem, according to Figure 7.1, are

NVO at x<9o
Nvl,ig=0,  Nv|o= 0. (7.43)

: Mo =
0 at x>9 |t=0

The first condition implies a fast absorption of vacancies on the surface,
i.e., the characteristic time for excess vacancy absorption at x = 0 is much
smaller than the other characteristic times in this problem.

Consider the solution to the problem for the first stage, as was done in
[12]. For this, substitute (7.4.2) into (7.4.1), integrate with respect to time
and introduce new variables according to the equalities:

x=pg, t=vt, T°=Aq, (7.4.4)
where
ub = Ny ——JL—f, (7.4.5)
2Nvo (8/3nN)
v=p°D, (7.4.6)
=pu*(8/3nN)? . (7.4.7)
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As a result, expressions (7.4.1) and (7.4.2) take the dimensionless form:

a9 % 3
A_A_ £(8), 7.4.8
P g™+ (&) (7.4.8)

dJq
Ny = Nyg—, 7.4.9
v=Nvo=- (7.4.9)
f(g)= Loa t=A a=d (7.4.10)

0 at &>A u

with the boundary and initial conditions:
oo =0, Iqléz0 =0, |q|§=w =0. (7.4.11)

The function f (&) is found by substituting the initial conditions into equation
(7.4.8). The first stage duration t varies with the elimination time of most
vacancies, which can be found from (7.4.8) by excluding the diffusion term
02q/0&? (in the order of magnitude, =1). The necessary condition for pore
formation at the surface is the restriction 1, < 1, which means that the pore
formation time should not be larger than the time of vacancy migration to the
surface. At the end of the first stage, dg/dt = 0, and the established pore
profile can be found from (7.4.8) by equating this expression to zero with the
boundary conditions of (7.4.11). The qualitative view of the solution ob-
tained is shown in Figure 7.2. The parameter determining the profile shape is
A having the sense of the characteristic time ratio of the vacancy migration
to the surface and the formation of a pore.

Every curve in Figure 7.2 can be subdivided into three regions of &
coordinate variation. The respective solutions for the regions are [12]:

9 d
0<E<Emax: | g , (7.4.12)
°J2(§q5’2—q+%)
Emx <E<A: Eo T da =&, (7.4.13)

2
0 \/Z(qu/z q +QA)
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9max -/~ _=
Imax/2 =LA
0 &max <t;1/2 <:

Figure 7.2. The square pore radius sz as a function of distance to the semiconductor
surface (in dimensionless units) at various values of the A parameter; &;, — the
coordinate defined by the equation q(&1/2) = Omax/2-

A<E<oo: q:ﬂ‘l’ (7.4.14)
(&+&o)
where
G d 400\
Cmax = | 2 o d . &o= [q—A) -A, (7.4.15)
0 Z(Sq -q+ qA)
ga and q are defined by the equations
2
gq%’a?x ~Gmax +0a =0, (7.4.16)
qmax d
I —— g = A—E . (7.4.17)
o JZ(qS’Z -q +qA)
5
In the limit cases, we have
A2 6.2
A<<1: qmax qu 27, EJ]_/Z :22A+ﬁ, (7418)
A>>1: Omax =1, E12 =~ A+25, (7.4.19)
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It is seen from Figure 7.2. that the profile has a stepwise shape at A >> 1;
at A << 1, the profile halfwidth increases and the profile becomes slightly
smeared.

It should be noted that the pore profile at & > A coincides with that de-
fined as a particular case in [13]:

-2
r- (HL) (7.4.20)

with the characteristic value of xg

2 -1/5
Ny DNZQ

Vv

Xg = , (7.4.21)

where v is the surface motion rate during crystal evaporation or etching.
The duration of the second stage when the pores become larger, or the
“lifetime” of pores, can be evaluated from the coalescence characteristic time

[14]:
3
fy=— T (7.4.22)
DoQ(Ny )eq
where o is the surface tension at the crystal-vacuum interface.
The dimensional characteristic times of the first stage are
2
f=vi =2, (7.4.23)
D
52
tg=vig=—. 7.4.24
s =V =" (7.4.24)

The quantitative evaluation of the times [12] shows that the relations
t| S tS << t“ (7425)

are valid in a wide temperature range for Ge, Si, and GaAs. Therefore, we
can draw the conclusion that a quasi-stationary pore profile is formed in the
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subsurface layer of these crystals. Its formation requires the fulfillment of the
condition A > 1:

2 2
S 12817 NyoN~ >1. (7.4.26)
9 N

The typical characteristic time values for GaAs at 1000 K lie within the
following ranges: t; = 0.2-20 s, t, = 1-10 s, t;, = 4x10°-4x10" s. If an impu-
rity is diffused into a crystal with the subsurface vacancy profile, it will
decorate the profile if it can cover a distance ~d for a time ta shorter than t;,.
Therefore, the condition for the formation of a subsurface impurity profile is

2

tA = 8— < t“ , (7427)
Da

where Da is the impurity diffusion coefficient. The analytical expression to
describe the impurity profile derived in [13] is a power function

-5
N~ (1+ i) , (7.4.28)
Xo

in which x, is defined by (7.4.21).

The above analysis and evaluation of the characteristic times of the
stages in the interaction between impurities and vacancies, which are quite
abundant in the subsurface layer of any semiconductor sample, have shown
that the impurity profile cannot be described by the conventional diffusion
equation. Therefore, it cannot be used to find impurity diffusion coefficients.
Moreover, expression (7.4.28) is very close to the exponent in the range of
not very large x [13], which can be easily taken for exp(Dat/I?) used in
diffusion theory.

It is necessary to emphasize that the probability of impurity decoration of
a pore profile decreases with increasing temperature. This is because the
pore coalescence time t;, is too short for the impurity profile to be established
and vacancies do not come up to the crystal surface. Most amphoteric impu-
rities have high diffusion coefficients, and this circumstance facilitates the
fulfillment of inequality (7.4.27) practically at any reasonable temperature.

Normally, shallow hydrogen-like impurities have low diffusion coeffi-
cients, so they rarely decorate pores. Impurities with partly filled d-shells
(Ni, Fe, Cu, and others) and amphoteric impurities containing an interstitial
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component and diffusing via the dissociative mechanism possess high
diffusion coefficients. This facilitates the fulfillment of (7.4.27) at various
temperatures. Vacancy porosity in solids is a well-known fact frequently
observed in metals in normal diffusion and radiational swelling [16]. The
mechanism of these processes is related to the Kirkendale—Frenkel effect, in
which porosity arises at the interface of two solids because of the different
diffusion coefficients of their constituent atoms.

Vacancy porosity in semiconductors is less familiar. It was first observed
in the study of selenium diffusion in GaAs [17]. Interestingly, the semicon-
ductor crystal contacted, in this experiment, selenium vapor, i.e., the gas-
phase, but not a solid. The authors also interpreted their results as being due
to the Kirkendale—Frenkel effect.

It follows from the above theory that the necessary condition for the for-
mation of pores is oversaturation of the sample subsurface layer by vacan-
cies. These conditions were created in [14] when a GaAs crystal was
presaturated uniformly by copper and subjected to thermal treatment during
continuous pumping of arsenic vapor. Evaporation of arsenic atoms provid-
ed the initial stepwise vacancy profile corresponding to Figure 7.1. Copper
atoms decorated the pore profile, which was registered experimentally. The
profile of copper atoms obtained by secondary ion mass-spectrometry is
shown in Figure 7.3, together with the initial fairly uniform distribution of
copper atoms in the sample prior to thermal treatment. Besides, the copper
concentration after diffusion saturation was 2x10% m™, which is close to
copper solubility in GaAs at the saturation temperature of 1073 K.

The samples thus prepared were annealed in a quartz ampoule continu-
ously pumped out at 950 K. The annealing time of 6 hours was longer than
the characteristic time of copper migration to the sample surface due to de-
composition of the Cu—As solid solution.

Figure 7.3 also shows the calculated profiles. Curve 1 was plotted in ac-
cordance with the equation suggested in [10]:

NV = NVO eXp(— i/ Lv) , (7429)

where X is the coordinate equal to X = x — vt at the boundary motion rate v;
Ly is the characteristic length of the vacancy profile.

Curve 2 in Figure 7.3 was plotted using formula (7.4.28). One can see
that only the beginning of the experimental copper profile fits equation
(7.4.29). There is an interesting feature looking like a subsurface maximum.
To explain this maximum, consider the problem of a stationary pore and va-
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Figure 7.3. Theoretical and experimental Cu profiles in GaAs after vacuum treatment
at 950 K [14, 16]: 1 — from formula (6.5.29); 2 — from formula (6.5.28); 3 - initial
Cu distribution.

cancy profile, taking into account the interaction between vacancies and im-
purity atoms (for example, copper) diffusing via the dissociative mechanism.
We have the set of equations

Ny 9°Ny N aR®
=D ————K{N;Ny +Ky)N

- 2 -
%Z Dla '\le _KlNiNV+K2NS
ot X . (7.430)
N, 92N,
T: DSaX—Z—KlNiNV'i'KzNS
R Q
— =—1DyANy + D;AN
ot R{ Vv \Y S S}

where
ANy =Ny _ = Nv| _g
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AN = NS|r=| - Ns|r=R.

Assuming D; >> L?/t, where L is the sample size and t is diffusion time, we
obtain N; = Njp, with Nj as a constant. Going over to the moving coordinate
system and assuming a stationary distribution of impurity atoms, vacancies,
and pores, i.e., (ON/at) x—o= 0 and (9R*/dt) z—o = 0, we obtain the following
set of equations

?°Ny 9Ny N, oR®
+—+—V ——-K;NigNy + K,N; =0
Vg2 w O ox 1NjoNv + Ky
2y
D o aaN NiONV - K2N5 =0 ¢. (7431)
ax
DyaNy +DANs LR _
R QX
The boundary conditions are
NV|>?:0 =Nypo, NV|§_>°° = Ny << Ny
(7.4.32)
K
Nslz_ = No. Nolo .. =K_; NigNy. -

The distribution of components, described by the set of equations
(7.4.31), possesses three characteristic lengths D/v, (Dt)Y?, and Lpore, Where
D is any of the diffusion coefficients D;, Dy, or Ds. All characteristic lengths
are related to crystal surface motion, the interactions between vacancies and
impurities and those between diffusing components and pores, respectively.

Of special interest is the case of low sublimation rates of arsenic atoms
from the sample, or D/v >> (Dr)”2 Lpore. From here, we have the restrictions
v << (D7), D/Lyore. Under the conditions

VDT << Lpore or DT >> Lyoe (7.4.33)

the set of equations is simplified for small and large distances from the crys-
tal surface.

Consider the case with (Dr)
(7.4.31) transform to

1/2 .
<< Lpore- At small X << Lpgre, equations
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2
L

- KlNiONV + Kst

=2
ox (7.4.34)

92N,

Ds—5=+ KiNjoNy — Kz Ny
oX
The solution of this set of equations yields
Ng = (Nso - N:)exp(— %/Ly)+ NS

, (7.4.35)

Ny = (Nvo - NG Jexp(= %/Ly) + N7

where

NG = Ko(DyNyg + DsNgp)
Dy Kz + DsKqNjg

N K1Njo(Dy Ny + DsNgp)
DyKy + DgKiNjg

It is easy to get the solution to the set of equations (7.4.31) for large x >>
(Dt)™ as well. It coincides with (7.4.27):

No = Nvo=NV o

~ 5 \
(L+%/%) (7.4.36)
Ky
Ne=—=NigN
S K2 i0'"vNVv
where
900 1/5
XO = fv_v . (7437)
8n“N“NyQD
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Thus, formulas (7.4.35) and (7.4.36) are the basis for the analysis of experi-
mental pore profiles produced by the interaction of impurity atoms with va-
cancies and pores.

Let us return to the analysis of the profile in Figure 7.3 to find L; from
(7.4.35). For this, we take for copper atoms D = 10™* m%s, for vacancies Dy
= 10™2-10" m%s [10], and the characteristic time T < 1 necessary for equi-

librium to be established in the reaction Cu; + Vas < Cas. Then, Ly = 1um,
in agreement with the experimental distance from the sample surface to the
copper distribution maximum. Therefore, this maximum is due to the copper
surface concentration being lower than its quasi-equilibrium concentration in
the initial region of the pore profile.

7.5 DIFFUSION PROFILES OF INTERACTING
IMPURITIES

7.5.1 General principles

In most situations of practical importance, diffusion occurs in multicompo-
nent systems. However, the research into the behavior of impurity profiles in
multicomponent diffusion has been quite limited [19-28]. Our consideration
of diffusion profiles will mostly follow M. I. Sinder’s model [18].

The interpretation of diffusion in a multicomponent system is difficult for
two reasons. One is that the experiment providing reliable information is
very complicated technically. The other reason why diffusion is difficult to

(2) b
C, m3 C,m3 ®)
102()
1025_
1025
1024
1024
103 L , X um L p em
0 2 10 2 100 1 2 4 10 20

Figure 7.4. The distributions of Sb (a) and In (b) in different Ge samples [23].
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Figure 7.5. The distributions in silicon: (a) — of iron in the presence of P (1) and in
the absence of P (2); (b) — of phosphorus in the presence of Fe (1) and in the absence
of Fe (2) [15].

interpret is that the interaction of impurity atoms must be taken into account,
and this circumstance makes theoretical models quite sophisticated. But we
can derive simple analytical expressions permitting a comparison with
experiments only in certain approximations [19]. We will resort to numer-
ical methods of equation solution with a preliminary qualitative analysis of
experimental data, because it will provide the basis for accepting or
discarding certain factors from the mathematical consideration.

A theoretical interpretation of diffusion profiles is also difficult because
of the necessity to draw a distinction between the effects of interacting and
non-interacting impurities. Moreover, even if only one impurity diffuses, the
diffusion process itself may involve many components. We demonstrated
this above when discussing dissociative diffusion (Section 7.3) and the
strong effect of interaction with vacancies at the sample surface (Section 7.4)
and in its bulk (Section 6.5). Figures 7.4—7.7 illustrate impurity profiles for
simultaneous and stepwise impurity diffusion in semiconductors.

A simple mathematical model of sequential diffusion, widely used in
practice, is possible only if the diffusion coefficient of the pre-doping impu-
rity is much higher than that of the subsequent impurity. This condition
permits the consideration of this problem as that of impurity diffusion into a
uniformly doped sample [23, 25, 26]. Otherwise, it would be necessary to

© 2004 by CRC PressLLC



3
C,m (b)

1026 -

1 025

0 20 40 60 80 0 50 100 X, pm

Figure 7.6. Concentration profiles for Cu and Zn in GaAs in sequential diffusion:
(a) — of Cu into a Zn-doped sample (1); (b) — of Zn into a Cu-doped sample (1);
curves 2 — control distributions of Cu (&) and Zn (b) [3].

consider diffusion into a nonuniformly doped sample, which would involve
sophisticated computations.

Figures 7.4-7.7 show complicated profiles which cannot be described by
a simple diffusion equation

aC __d°C

whose solution is represented by the well-known expressions

X
C=Cperffc—= at +Dt<<L, 7.5.2
T (7.5.2)
2
C= coll—iexp(—“—[;tjsm“—x} at +Dt ~L. (7.5.3)
T 4L 2L

Many experimental profiles have extrema under certain conditions.
Complicated profiles can be analyzed within two approaches. One is

based on the thermodynamics of irreversible processes. It employs the

interaction models of diffusing components—the complexation model and
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Figure 7.7. Concentration profiles (a) of Fe in silicon after B diffusion at T = 1273 K:
1-t=3t; 2-t=>5t; 3-control, no B diffusion in sample annealing at t = 5t; (b) of
Cu (2) and Zn (4) in simultaneous diffusion into GaAs; 1, 3 — control distributions of
Cu and Zn in their separate diffusion.

the model of interaction via internal fields: an electric field [19] and an
elastic field [27, 28].

Note that the impurity profiles for multicomponent diffusion in semicon-
ductors have a common pattern for various solids. For example, the profiles
of simultaneous diffusion of silicon, chromium, and carbon into iron have
the same pattern. We should remember, however, that the study of impurity
profiles in metals and alloys is complicated by a high density of dislocations,
second-phase products, small-angle boundaries, and structural defects. Of
course, their interactions in semiconductors are easier to avoid.

7.5.2 Impurity interactions in terms of thermodynamics of irreversible
processes
Let us analyze diffusion kinetics in terms of the linear thermodynamics of

irreversible processes [29, 30]. The equation for component flows j; ex-
pressed through chemical potential gradients is

: S Ok
=y Ly ik 7.5.4
Ji kél ik o ( )
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where L are Onzager’s coefficients and p; is the chemical potential of the
k-th component.

Going from the chemical potentials to the concentrations of components,
Cy, We can write

n BCk
D; 755
where
al-llk
ik = 2 L
I m ack
are partial diffusion coefficients.
From the continuity theorem for a one-dimensional case, we have
aC; N 9 ack)
i D. 7.5.6
at kzlax( k9x (7.5.6)

Therefore, diffusion in an n-component system is described by n? diffus-
ion coefficients, each of which is generally a variable depending on the con-
centration of components and other state parameters. Solutions to the set of
equations (7.5.6) were derived in [30, 36] for various boundary conditions at
constant diffusion coefficients Dj, in simultaneous and sequential diffusion
of two components into a semi-infinite body.

Before discussing the details of these solutions, we should specify the
concepts of sequential and simultaneous diffusion. Usually, these concepts
are associated with various initial conditions and with the presence or ab-
sence of components in the sample bulk. To make the classification of solu-
tions to diffusion equations convenient, we will define them in terms of vari-
ous boundary conditions. If constant concentrations of components are as-
signed at the boundary, such a process will be termed simultaneous diffu-
sion. If the boundary condition assigns the absence of one component in the
sample bulk at the initial moment of time, such a process will be referred to
as sequential diffusion.

Equation (7.5.6) for two components is written as

2 2
%=Dna 21+D123 >
82 =L (7.5.7)
aC, 2%c 9
92 _p,, D
pn 21 EY%a + Daa 2
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The initial and boundary conditions for sequential diffusion are
Ca(x, 0) = C,°, Cleo, 1) =Cs%  Cy0,8)=C,,

C2(°°, t) = 0, Cz(X, O) = 0,

For simultaneous diffusion, they are
Ci(x,0)=C,(0,t)=0 at x>0,
Ci(eo, 1) = Cyle0, 1) =0, C4(0,1) =C;',  Cy(0,1) = C,l,

where C,°, C,°, C,, and C,! are constants.
The solutions to the set of equations (7.5.7) for sequential diffusion
(Figure 7.8) are [28]:

verfc—*~ — uerfc—X

_ 0, A0 2uyt vyt
Cl = C1 + C2 D12 V(UZ B Dullt)— U(V2 —VDltl)

0 0
C X C X
C, = Z___erfc + Z___erfc
1_uvV Dy 2u4t 1_v U Dy 2t
v u'-Dy Uv?-Dy

(7.5.8)

and for simultaneous diffusion (Figure 7.9), they are [28]:

1[ 1/, 2 1 ] X |
=—— — Doy |+ C5Dy5 ferffc——=+
G 5 01( 22) A%, it

11~1(,2 1 X
+—= Cl(v —D22)+C2]erfc—

D[
2wt (7.5.9)

1n1 1{,,2 X
D5 — C5(v- =D ]erfc +
[Cl 2 2( 22) 2U\/?

1[ 1 1,2 ] X
+—|CiDy; — C5(u“ = Dy, |lerfc
D 1921 2( 22) ZU\/{

1
C,=—=
277D
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Figure 7.8. Distributions of concentrations C; and C, in sequential diffusion: (a) — at
D12 > 0; (b) —at Dy, <0 [3].
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Figure 7.9. Distributions of the active component in simultaneous diffusion [3] of (a)
impurities of different signs and (b) impurities of the same sign (A = x/2t"2 is the
Boltzmann variable): (@) —ng = 1; po = 0.1 (1), 0.5 (2), 2 (3), 5 (4); (b) = ng=10; po =
0.2 (1), 3(2),5(3), 10 (4).
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where

1 1
”2=§(D11+D22—D): V2=§(D11+D22+D):

2
D= \/(Dll_ Dy2)” +4Dy3Dy; -

It is seen from Figure 7.8 that in sequential diffusion, the distribution of
component 1 pre-doped into the sample contains an extremum: a maximum
at Dy; > 0 and a minimum at Dy, < 0. In simultaneous diffusion of two com-
ponents, their concentrations decrease monotonically into the sample bulk
due to the initial and boundary conditions assigned at a fairly large distance
from the surface. At the surface, however, the distribution of the components
may show a maximum (Figure 7.9). The condition for the appearance of the
maximum can be easily derived from (7.5.9).

Therefore, the distribution of components can be described in terms of
phenomenological diffusion coefficients. An advantage of this approach is
its universal character permitting the description of experimental impurity
profiles without going into the interaction details. It follows from this that a
non-monotonic character of impurity distributions is one of the characteris-
tics of the interaction between the components. On the other hand, the as-
sumption of coefficients Dj being independent of concentration is a fairly
rough approximation.

The phenomenological character of coefficients Dy, does not permit their
numerical evaluation or the understanding of interimpurity interaction. This
is a common property of all phenomenological models. For this reason,
model approaches are more often used to analyze impurity profiles.

7.5.3 Impurity interactions in terms of a model approach

The electrostatic interaction model for impurity atoms analyzes internal field
effects on impurity diffusion. It is based on a combined solution of diffusion
equations and Poisson’s solution for electrostatic potential [18, 23, 32]. We
will discuss briefly some qualitative features arising in electrical interactions
[19].

In sequential diffusion, the distribution of a pre-diffused impurity shows
an extremum: a maximum in donor-donor and acceptor-acceptor
interactions and a minimum in donor-acceptor interactions. In simultaneous
diffusion of two impurities (Figure 7.9), the impurity concentrations in

© 2004 by CRC PressLLC



donor—acceptor interactions decrease monotonically with distance from the
sample surface.

When the impurities have the same sign, the distribution pattern of the
rapidly diffusing impurity may have a maximum if the slowly diffusing im-
purity has a high surface concentration (Figure 7.9a). The distribution of the
latter remains monotonic.

Of interest is another feature. If the diffusion coefficients of impurities
differ considerably, the rapidly diffusing impurity has little effect on the con-
centration distribution of the other impurity, irrespective of the initial and
boundary conditions. The distribution pattern of the former impurity has two
regions: a region of an abrupt change of concentration with depth, associated
with the electric field effect of the slowly diffusing impurity, and a region of
free diffusion.

The comparison of solutions derived from the set of equations (7.5.7) and
from the field-affected interaction model shows their agreement. An advan-
tage of the “field” model is the relation between the characteristic features of
impurity profiles and physically clear reasons, as well as diffusion coeffi-
cients.

It might seem from the analogy with an electric field that impurity elastic
field should have a strong effect on diffusion. This, however, is not the case.
Let us discuss this problem in some detail, as was done in [33-35].

The study of elastic interactions of point defect pairs has a rather long
history [35]. It has recently been established that the solution to the problem
of strong interaction greatly depends on the boundary conditions. For
example, the authors of [36] consider two elastically interacting point defects
in the form of two spheres made from foreign material, built into a cavity of
a somewhat different radius. The interaction energy E;.; of the spheres is

Eint = AR, (7.5.10)

where R is the interdefect distance, A = (G/G; — 1), G and G; are the modules
of the matrix shift and inclusion.

Hence, the energy of elastic interaction for dilatation centers (G = G,) is
zero. This seems to be the reason why most authors take into account only
the stress field arising from a nonuniform distribution of defects, although
elastic interaction of defect pairs also exists in an unstressed crystal, i.e., at o
= 0 [35, 37, 38]. Any real solid is finite. When a dilatation center is intro-
duced into it, the body surface is compressed or dilated, unless it is fixed
rigidly. The induced surface forces deform the lattice, creating what is
known as an imaginary deformation field. The relative change in the body
volume is described as
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s:div0+divz<ugg’>=z , (7.5.11)

o o Vv

where U is intrinsic energy of a defect; Q = ¥; — ¥ is the volume difference
between the sphere (8;) and the cavity (), into which the sphere was in-
serted; C is the defect concentration; v is Poisson’s coefficient; summation is
made over all defect kinds o.

The first term in (7.5.11) is the body lattice deformation and the second
term represents deformation concentrated on defects (dilatation centers). The
total energy of pair interaction of centers o. and [, or the elastic contribution
to the free energy of a homogeneous defect solid solution for bodies with
unfixed boundaries was found to be [35]

Eimz—%NSZZK o< o 0321 2v. (75.12)
-V

o B

where K is the hydrostatic compression module and N is the number of sites
in a defect-free crystal.

Normal diffusion conditions are close to this case of free crystal boun-
dary. The respective expression for a diffusional defect flow was found in

[35]:
- = 2Dy, 1-2v Qg ;3
=-D,VCy, +=—2K——Q,C, ik O‘CQVG ,
Jo = 7Pa Voo T3 R 2 k) kT kk
(7.5.13)
where oy is a stress tensor.
If diffusion into a thick plate is uniform, we have
Y -
X v 31-v '
(7.5.14)

Oxy = Oy, = Oxe = 0 = 0,

where E is Young’s module.

The lattice is compressed (o < 0) if the covalent radius of an impurity
atom is larger than that of the host atom (2 > 0). By substituting (7.5.14)
into (7.5.13) with K = E/3(1 — 2v), it is easy to obtain a zero effect of elastic
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fields on one-dimensional diffusion of dilatation centers in an isotropic me-
dium, which is consistent with the conclusion of [38]. It is interesting that
the authors of [39, 40] thought it necessary to add a drift term to the
expression for impurity atom flow to describe the diffusion.

Finally, most semiconductors are known to be anisotropic. This means
that the elastic interaction value and the stress concentration vary with the
direction i of the sample cleavage. According to [40], we have

j=-DgVC, (7.5.15)
L 2 Q%c| E(M) _
De(A) = D{l—gﬁ[l_—v(ﬁ)—Y(n)]}, (7.5.16)

where D is a diffusion coefficient of atoms uninvolved in the lattice defor-
mation, Y( 1) is a complex function of elastic constants C;; and C;,, of com-
ponents ny, ny, n,, and an anisotropic factor

E,: C12 +2C44 +C11 £

0. (75.17)
Caas

The pair interaction of dilatation centers does not completely compensate
the stress field, and the diffusion coefficients must differ in different
crystallographic directions, namely, [35]:

D111 > D110 > Digo- (7.5.18)

These relations were observed experimentally in silicon in diffusion of phos-
phorus with a high surface concentration [41].

Diffusion conditions, in which the boundary of a solid can be considered
to be fixed rigidly, are very rare in semiconductor practice. But if this situa-
tion does take place, one should use, instead of (7.5.16), the solution derived
by Krivoglazov [42], showing that concentration elastic stresses affect diffu-
sion even at { = 0 and the relations of (7.5.18) are also fulfilled. Those inter-
ested in the mathematical results concerning this situation can turn to the
original work [42].

The next interaction model which describes impurity diffusion in semi-
conductors is the complexation model. Complexation mechanisms are di-
verse [43] but any model implies that the range of forces producing com-
plexes must be small. It is only under this condition that a complex can be
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regarded as a point defect. Otherwise, say, in electrostatic interaction, the
complexation model will allow only for short-range forces, with the long-
range component replaced by an average field induced by the nearest
neighbors. This is characteristic of the internal electric field model.
Therefore, the two models—the complexation model and the electric field
model—supplement each other and describe, respectively, the short- and
long-range interactions between diffusing components. It is easy to notice,
however, that the interaction in the field model may be both attraction and
repulsion, whereas the complexation model describes only attraction. Short-
range repulsion is usually taken into account by a factor in the diffusion
coefficient.

7.5.4 Diffusion theory for immobile complexes

The equations for the diffusion of two components A and B with the
instantaneous formation of the complex Q 2 A+ B are

N A R(Na-Q) _ 92Q|
=D D
ot A ox2 TR ox2
INg *(Ng-Q) 9*Q
=D D , 7.5.19
ot B2 T ox> ( )
(Na-QUNs-Q) _,
Q

where Na, Ng, and Q are the total concentrations of the components; Da, Dg,
and Dq are their diffusion coefficients; K is a complexation constant.

Here, we will discuss the solution to the set of equations (7.5.19) for
small Dq, as compared to D and Dg, or for practically immobile complexes.
The authors of [44, 45] considered the problem of sequential diffusion of
component A into a sample uniformly doped with component B with the ini-
tial boundary conditions:

Na(x,0)=0 Ng(x.0) = Ng(=)

Na(0,t)=Q(0.t)=Ha(0) aix[NB(x,'[)—Q(x,t)] =0 (7.5.20)

x=0
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Figure 7.10. Distributions of (a) A atoms and (b) B atoms in a strong complexation
after sequential diffusion [45].

The solution to equations (7.5.19) with the boundary conditions of
(7.5.20) was obtained in the extreme cases of strong complexation (K = 0)
and weak complexation (K >> Na, Ng).

(1) A strong complexation is shown in Figure 7.10 at K = 0:

[ erf(A/d,)
Ngi+HAO0) 1-———2L <A
Na={ o A { erf(Ao/dp) 0 (7.5.21)
[0 A>2
[Hg A <A,
Ngp = , 7.5.22
B = N (] 1 erfc(A/dg) b > g ( )
» erfc(hg/dg)
where A = x/2t? is Boltzmann’s variable, da? = Da, dg? = Dg, and
)dp exp( /d )
BL™ \/E?\,OerfC(ko/dB) .

The characteristic value of A is defined by the equation

Ng(e)dg exp(— l%/dé) ~ Ha(0)da exp(— K%/di)
Merfe(ho/dg)  Agerfe(ho/dp)

(7.5.23)

(2) A weak complexation is shown in Figure 7.11 at K >> Na, Ng:
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Figure 7.11. Distributions of (a) A atoms and (b) B atoms in a weak complexation
after sequential diffusion [45].

Na = H(O){1+NBTMerfC[M/1+'\IBK(w)/dA]}, (7.5.24)

Ng = NB(m)[1+ Tm(erfc(k/dA)—g—gerfc(x/dB)H. (7.5.25)

It is seen from Figures 7.10 and 7.11 that the surface concentration of
component A in both complexation types increases by the concentration
value of the complexes. Simultaneously, there is an increase in the sub-
surface concentration of component B due to its inflow into the complexa-
tion region. The distribution of component B has a minimum, which is very
distinct in a strong complexation but is hardly visible in a weak complex-
ation.

The set of equations (7.5.19) was solved in [46] for simultaneous diffu-
sion without restrictions on the complexation constant, i.e., without drawing
a distinction between the types of complexation. It was suggested only that
the diffusion coefficient of the component uniformly distributed in the
sample was much larger than that with zero concentration.

The boundary and initial conditions for this problem are

|NA—Q|X:0:HA(O), |NA|t=0:O x>0

. (7.5.26)
|NB—Q|X:0:HB(O), |NB|t:0:H(oo) x>0
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The solution to this problem can be facilitated by using Boltzmann’s variable
which transforms the set of equations (7.5.19) to

dAHA +2A(Ha +Q) =0 (75.27)

dgHE +2A(Hg +Q) =0
where

HAENA—Q, HBENB—Q.

By putting into (7.5.27), alternately, da =0 at A — o and dg — « at x =
0, we find the external and internal expansions for Ha and Hg:

ng =0, ng = C;LerfCKB + HB(‘”) (7.5.28)

. . H
HE=0,  HE=[Ha0)-Colertona 1+ 8 e, (7529

where C; and C, are constants derived from the “sowing” conditions of the
internal and external expansions:

Na = HMOHW}MI‘CM/H H?((O)/iA (7.5.30)
Ng = Hg()+[Hg(0)- HB(oo)]erfc%+—HA(Ol)<HB(O)erfc7»1/1+ HBK(O)/dA.

Expressions (7.5.30) somewhat differ from those derived in the original
work [46]. They are more simple and contain no constants with an ambigu-
ous physical sense. The Ng distribution minimum appears under the
condition Hg(0) < Hg(e=), which means that the boundary concentration of
the free component B must be smaller than in the sample bulk. The minimum
arises from two opposite B flows—one consisting of B atoms bound in
complexes and migrating into the sample bulk; the other consisting of free B
atoms migrating outward.

The solutions to the set of equations (7.5.9) under the condition Dq <<
Da, Dg show that complexation has a greater effect on the profile of the
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higher mobility component. As in the field model, the distribution of the
rapidly diffusing component has two regions. In one region, the concentra-
tion distribution is determined by the bound component and in the other by
the free-diffusing component.

In sequential diffusion, the distribution pattern of the initially uniform
component contains only a minimum, but if the field mechanism is involved,
it contains both a minimum and a maximum. In simultaneous “field”
diffusion into an undoped sample, the distribution pattern of the higher
mobility component may have a maximum, which is absent if the process
involves low mobility complexes (Dg << Da, Dg) or nearly immobile
complexes.

The kinetic models of impurity interaction discussed in this chapter have
a strong restriction on the mobility of complexes. These models have another
limitation—the neglect of complexation kinetics, which means that “the time
for equilibrium to be established between complexes and free impurities is
much shorter than the characteristic times of diffusion” [45]. In other words
the reaction producing complexes Q is instantaneous, as was pointed out at
the beginning of this section.
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Chapter 8

Impurity Migration in the Formation of
Mobile Complexes

8.1 DIATOMIC COMPLEXES: FORMATION AND
DECOMPOSITION

Complexes are often formed by particles possessing electrical activity. This
is likely to be associated with long-range potential interaction. Thermal
treatment inevitable in semiconductor technology or device heating during
its application accelerates particle association.

Consider a set of kinetic equations for the formation of two-particle
complexes. Suppose that the association occurs in an elemental semiconduc-

tor and involves two constituents according to the reaction A + B _ K. This
process is described by the set of equations:

dN
dtc =—e;N, +C,NANg

dN

d—tA=eCNC—CCNANB (8.1.1)
dN

d—tB=—ech +C:NaNg,
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where e is the thermal decay rate of a complex; C. is the capture coefficient
of complexation; N, is the concentration of complexes; Na and Ng are con-
centrations of A and B particles, respectively.

Equations (8.1.1) are written in accordance with the theory presented
above. The superscripts have been omitted, because the process occurs in an
elemental semiconductor and the particles are substitutional atoms.
However, this set of equations can describe a semiconductor of any
complexity. Moreover, the role of a particle can be played by another
complex; in that case (8.1.1) describes its enlargement and transformation to
a more complex associate. This set of equations will be solved under the
following boundary conditions:

Na(t=0) = Na°, Ng(t = 0) = Ng°, N(t=0)=0. (8.1.2)

This suggests that there are no complexes at the initial moment of time and
that the concentration of partners in a complex is minimal.

The variables in (8.1.1) are not independent. At every moment of time,

they are related by the conservation law for the number of particles of sort A
and sort B:

Na? = Na(t) + N(t), Ng° = Ng(t) + N(b). (8.1.3)
With these equations, the complexation kinetics will be

dN,
dt

=aN2 +bN; +d, (8.1.4)

where
a=C, b=-e—-C(NAL+Ng%,  d=CN N
Equation (8.1.4) can be solved using the following substitutions.
(1) N¢(t) = Y(t) + N, where N¢® is the equilibrium solution to be found from
the equation
aN + bN, +d =0, (8.1.5)

and the equation for Y(t) will be

dY _ 2 e
o +(b+2NC)Y. (8.1.6)
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(2) Equation (8.1.6) reduces to a linear equation after the substitution of
expression Y(t) = 1/Z(t):

% (b+ang)z-a. (817)

With the solution to linear equation (8.1.7) and the initial conditions (8.1.2),
the time dependence of the concentration of complexes can be found from
the expression

-1
Ne(t)= N& +{%[exp(—kt)—1]—%exp(—kt)} : (8.1.8)
C
where A = —e; — Cc(Na” + Ng® = 2N¢9).
The equilibrium solution is found from the quadratic equation (8.1.5):

NE ==[ Lo NG +NS-VD
2{ c,

(8.1.9)
2
D=(e—°+ NG + Ng) —aNgNg.
CC
One equation root is discarded in view of the condition N < NA°, Ng’.

The function N¢° = f(T) for low temperatures (T — 0) is equal to the con-
stant (Min{N", Ng’}); as the temperature rises, it decreases as exp(— g./kT),
(9:<0).

Figure 8.1 presents the results of complexation kinetics modeling. The
curves have a characteristic shape, while the time constant is not strictly
constant. An important feature is the temperature dependence of the steady
state value. At low temperatures, the process is shifted toward the larger
number of complexes. Their maximum concentration is equal to the concen-
tration of those partners in an associate which are less abundant in the semi-
conductor. Some complexes decompose at higher temperatures and the am-
plitude of the kinetic process goes down.

The temperature dependence of the steady state concentration is shown in

Figure 8.2, together with isochronous annealing data for p-silicon [1]. One
should note that the curves converge in the high temperature region and

© 2004 by CRC PressLLC



N, cm 3
1014 + NV S I\
W
B B B L ] | 5 1|
1083 F 1
1012 L
t,s
500 1000 1500

Figure 8.1. Complexation kinetics at different temperatures, °C: 1 — 500; 2 — 550;
3-600; 4 - 650; 5 - 700.

significantly differ at low temperatures. If the experimental data coincide
with the bell-shaped curve, the steady state concentration of complexes is a
kink. This is because complexation at low temperatures is confined to diffu-
sion processes and the time is too short for the concentration to reach the
steady state level during isochronous annealing. More exactly, the restriction
is due to the capture of one partner by another, and the capture coefficient

N,, cm™
1
1014 -
1013 F
2
1012 -
7,°C
300 500 700 900

Figure 8.2. The temperature dependence of (1) the steady state concentration of
complexes and (2) their concentration after isochronous annealing.

© 2004 by CRC PressLLC



determining this process contains the diffusion coefficient [2, 3]. The differ-
ence between the steady state and experimental curves allows determination
of the capture coefficient. The parameter fitting of the steady state process in
the high temperature region vyields the defect concentration and
complexation energy.

Complexation kinetic coefficients can be found from the concentration
kinetics of complexes at various temperatures. This can be done using equa-
tion (8.1.8). Complexation parameters can also be derived from the decrease
in the number of A and B particles. But this is not always possible because of
experimental difficulties. A very common experiment involves an isochro-
nous semiconductor annealing. This experiment can be described by equa-
tions (8.1.8) and (8.1.9). For this, the annealing time in (8.1.8) must be taken
to be fixed (t = tp) and the concentration of complexes must be considered as
a function of temperature. Modeling shows that the experimental plot in the
concentration—-temperature coordinates represents a bell-shaped curve. The
calculations show that complexation is very effective in a certain temperatu-
re range. As the annealing time becomes longer, the concentration maximum
shifts toward lower temperatures.

Formulas (8.1.8) and (8.1.9) are difficult to use for an experimental data
description, but they can be simplified on the following assumption. Suppose
the initial concentration of one type of particles is much higher than that of
the other (for definiteness, NA° >> Ng°, N¢%); then (8.1.8) and (8.1.9) will
transform to

=]
0nO
Ng‘:#: i0+—0+% (8.1.10)
Na+Ng+9/Cc (Ng Na CcNaNg
Ne(t)= NE[1-exp(dt)], A(T)=-e,—CcNR. (8.1.11)

This approximation corresponds to a fairly common situation when, say,
the impurity concentration exceeds the vacancy concentration. At non-zero
initial concentration of complexes, the following solution can be obtained
easily:

Ng(t) = N +(NO - Ng’)exp(xt) , (8.1.12)

where N¢(t = 0) = No. The annealing curve will be described by formula
(8.1.12) if the time in it is taken to be fixed (t = t; is annealing time) and N,
is considered as a function of temperature.
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The derived formulas can describe the formation of electrically active
complexes in a large number of situations.

The temperature effect on the concentration of electrically active centers
was studied in [1] using thermally stimulated currents. The temperature de-
pendence of the concentration of centers with E, + 0.46 eV in silicon during
isochronous annealing was shown to be a bell-shaped curve with their maxi-
mum concentration of 7x10™ cm™. The authors suggested that this kind of
center was a complex produced by point defects; but there were no sugges-
tions concerning the nature of this center. Some of the center parameters
were found in [4] with formula (8.1.12). The calculation procedure for find-
ing complexation parameters was as follows.

(1) The tail of the bell-shaped curve lying in the high temperature region
is described by formula (8.1.10). This is because the concentration rapidly
reaches its equilibrium value in this region. After the parameter fitting, the
equilibrium defect concentration can be written as

N¢ = 1 .
6.2x107"° +7.97 x 107 exp(~L79/KT)

(8.1.13)

The concentration of one partner in the center is 1.6x10" cm™, according to
(8.1.10). The energy of the center formation is approximately equal to
1.8eV.

(2) The expression for equilibrium concentration (8.1.10) and formula
(8.1.12) were used to derive the dependence

e
A(T) =L Ne=Ne
to No—N¢

The initial concentration of the centers in question was found to be
1.78x10" cm™,

(3) The activation energy of complexation can be found from the slope of
the curve in the low temperature region if one plots the logarithmic function
A(T) versus 1/T. The high temperature slope can yield the activation energy
of decomposition of the complex.

For this case, the activation energy of complexation was found to be 2.5
+ 0.1 eV, which coincides with that of oxygen diffusion (the latter was found
to be 2.52 eV [5]). This suggests that an electrically active complex is
produced by attachment of an oxygen atom to some particles. The
concentration of such particles is ~1.6x10™ cm™. These may be background
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Fe, Cu, Mn, and C atoms. No activation energy of decomposition has been
traced in this temperature range; therefore, its probability is quite low. In
accordance with (8.1.12) and (8.1.13), the concentration of such centers is
described as

Ne(T) = NE(T)+(No - N§(T))exp[-8.3><1o11 exp(—%)to} (8.1.14)

Thus, isochronous annealing curves can be used to find the energy char-
acteristics of the complex. These characteristics, in turn, can help to identify
the center composition. Its nature may be clarified, with account taken of the
energy level position, by quantum chemical methods or by detailed investi-
gations of its complexation Kkinetics.

8.2 DIFFUSION MODEL FOR MOBILE COMPLEXES"

In contrast to the kinetics of immobile complexes described by equation
(7.5.24), the set of equations for the diffusion of components in the reaction

A+ B 2 Q has the general form:

OH 9%H

a_tA: Da asz —KiHaHg +K2Q,

oHp 9*Hg

T= DB axz _KlHAHB+K2Q’ (821)
0 _, 99

" = DQaX_2+ KlHAHB_ KzQ,

where Ha is the concentration of free component A, Hg is the concentration
of free component B, Q is the concentration of complexes, K; is the rate
constant of complexation, and K, is the rate constant of decomposition of a
complex.

! Here, we follow M. I. Sinder’s dissertation A Theoretical Treatment of Sub-surface Profiles
in Semiconductors (Moscow, 1982) done under the author’s supervision, and the publications
[6-8].
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The set of equations (8.2.1) has no analytical solution. For this reason, it
is usually solved by computational techniques to obtain the dependences
HA(XI t), HB(X1 t), Q(Xv t)

Let us analyze qualitatively the processes occurring during A, B, and Q
diffusion into a sample uniformly doped with A, B, and Q impurities. We
will first evaluate the order of magnitude of the terms of equations (8.2.1):

Ha Ha 5 9°Ha Ha

a ot A2

KiHAHg — K2Q~i and so on,
T

where 7 is the characteristic time of the reaction A + B 2 Q, or the charac-

teristic time for chemical equilibrium to be established in a uniform closed
system.
By substituting these evaluations into (8.2.1), we get

1.0a,1
t X T
1.0 .1 (8.2.2)
| T
D
1 2o 1
t x2 1

It follows from (8.2.2) at short times t << t that the terms ~1/t describing
the interaction of diffusing particles can be neglected; (8.2.1) transforms to

Ha _p 9°Ha

ot A2

oHp 9°Hp

TZDB v (8.2.3)
9Q 9%Q

9% —py 3.

ot Q ox2
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This means that the three components diffuse independently into the sample
bulk at small time values.

There may be three situations at large times, t >> 1.

At the sample surface with x << (Dt)¥? (D is an arbitrary coefficient of
diffusion Da, Dg, or Dg), it follows from (8.2.2) that ~1/t terms describing
the time variation of concentration can be neglected; (8.2.1) transforms to

I*Hp

DA axz —KlHAHB+K2Q=O,
9%*Hg

DB axz —KlHAHB+K2Q=O, (824)
2

0
DQaX—(Zg‘F KlHAHB—K2Q=O.

This set of equations describes steady state profiles of particles at the sample
surface.

In the sample bulk with x >> (Dt)™<, the terms describing the interaction
of particles become much larger than the other terms, and it immediately
follows from (8.2.1) and (8.2.2) that

12

KiHaHg = K:Q. (8.2.5)

The two missing equations can be obtained by taking into account the
other terms in equations (8.2.1). To have only commensurable terms in the
equations, we add the first two equations of (8.2.1) to the third term to get
the expressions

a|_|_A+a_Q= DA

2 2
*Ha , [ 9Q
a - a

a2l

(8.2.6)

which, together with (8.2.5), form a full set of equations. It coincides with
the set of equations (8.2.1) suggested in [9] and describes a consistent
migration of particles into the sample bulk. For the finite sample length L,
we get the following conditions for the transformation of equations (8.2.1) to
(8.2.5) and (8.2.6):

JDt <<x<<L, 1<<t<<L¥D. (8.2.7)
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Note that if the sample is sufficiently long, the diffusion term for the region x
>> (Dt)?, (D1)¥? in the sample bulk can be neglected, and the set of equa-
tions (8.2.1) transforms to the conventional chemical kinetics equations:

M _ —KiHAHB + K2Q,
ot
ag'—tB =-KiHaHB + K2Q, (8.2.8)
0
8_? =KiHaHg - K2Q.

Let us consider in more detail the sets of equations (8.2.4), (8.2.5), and
(8.2.6) describing stationary and nonstationary distributions of particles in a
sample at large times t >> 1.

The boundary conditions at x = 0 for equations (8.2.4) coincide with
those for (8.2.1):

HA|x=0 =Hao, HB|X:0 =Hpgo, Q|x=0 =Qp. (8.2.9)

The solution to the set of equations (8.2.4) with the boundary conditions of
(8.29) and a limited concentration at x — o is

D,
Ha =Hao + D—Q[Qo -Q(x)].
A

D
HB = HBO +D—Q[Q0—Q(X)], (8210)
B
1
Q =D—QY(X).

The dependences Ha(x), Hg(x), and Q(x) have a monotonic character. For
KiHaoHgo = K2Qo, the solutions to (8.2.10) transform to identical constants.
Therefore, the necessary condition for a steady state subsurface profile is
KiHaoHBo # K2Qo, Which means that the concentration of particles at the
sample boundary must be the equilibrium concentration for the crystal bulk.
Physically, there must be a subsurface layer of finite thickness, for which
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these conditions are fulfilled. Therefore, a steady state profile is produced by
“screening” of nonequilibrium concentrations on the crystal surface. This
situation is similar to that for a Debye screening layer under a charged sur-
face [10]. If there is an electric double layer, the electrical neutrality in the
bulk is established due to electrical interactions of diffusing particles. In the
case under consideration, equilibrium is established due to a chemical
interaction of diffusing particles.

We can show that (8.2.10) at X — oo, Ha(X) = Ha(0), Hg(X) — Hg(X), and
Q(x) — Q(x) satisfies the relations

DAHA(O) + DQQ(O) = DAHAO + DQQO
DgHg(0) + DoQ(0) = DgHgo + DoQo (8.2.11)
KiHa(0)Hg(0) = K»Q(0),

i.e., a chemical equilibrium is established in the sample bulk, or, more
exactly, the particle concentrations satisfy the active mass law (8.2.5).

To solve the set of equations (8.2.4) and (8.2.6), it is necessary to define
the initial and boundary conditions. The boundary concentrations at x <<
(D)% (x— 0) are equal to Ha(0), Hg(0), and Q(0), respectively. This is be-
cause there is a variation region (D1)*? << x << (Dt)*2, in which both sets of
equations—(8.2.4) and (8.2.6)—are valid. They are smoothly sewn together
in the indicated range of x, permitting the use of concentrations Ha(0),
Hg(0), and Q(0) as the boundary conditions for these sets of equations.

If the initial concentrations Ha’, Hg’, and Q° are equilibrium concentra-
tions (KiHa"Hg? = K,QY), they act as the initial conditions for equations
(8.2.4) and (8.2.6). If the initial concentrations are nonequilibrium ones
(KiHAHE" # K,Q%, equilibrium bulk concentrations Ha(ee), Hg(eo), and
Q(eo) are established at large times t >> 1, whose values can be obtained by
solving the set of equations (8.2.8):

Ha () =%{Hg ~HR -K +\/(H2\ ~H3+ K)2 +4K(H3 +Q°)}

Hg () = %{HE\ ~H3-K +\/(HR ~HY+ K)2 +4K(H] +QO)} (8.2.12)
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Q(=) =%{H2 +HY +K+2Q° —\/(HR ~HY+ K)2 +4K(HS +Q0)},

where K = K1/K2.

The concentration distribution in the sample bulk remains uniform, and
the values of Ha(e0), Hg(e0), and Q(e) will act as the initial conditions for the
set of equations (8.2.4) and (8.2.6).

Thus, the qualitative analysis of diffusion of particles A, B, and Q into a
plane sample uniformly doped with the same particles A, B, and Q involved

in the reaction A+ B 2 Q provides the following picture of the process.

At short times, t << 1, there is an independent diffusion of A, B, and Q
into the sample. Then, at t ~ 7, there is an interaction of particles because of

the reaction A + B 2 Q, resulting, first, in a change of the particle motion

away from the sample surface and, second, in a chemical equilibrium in the
crystal bulk (x >> (Dt)*?, (D1)¥?). At times 1 << t << L%D, a steady state
distribution is established at the sample surface. A chemical equilibrium is
established in the bulk at x >> (Dt)"?, (D1)*2. A diffusion-like wave propa-
gates through the region of (Dt)? << x << L, representing a consistent
movement of the particles from the surface into the bulk. Thus, a wave
propagates through the bulk, “absorbing” the equilibrium distribution in the
bulk Ha(=°), Hg(e), and Q(=) and prescribing a new equilibrium distribution
Ha(0), Hg(0), and Q(0), which has been established at the steady state profile
boundary. At t >> L%D, a uniform equilibrium concentration distribution is
established in the sample: Ha(0), Hg(0), and Q(0). At the surface, there are
steady state distributions extending as far as the length (Dt)"2.

When particles A, B, and Q diffuse into a plane sample, the absence of
one of them, say, Hg, is prescribed at its boundary:

oH
a_xB - =0, Hal,_o=Hao, Q_o=-
Then at times t >> t, an equilibrium will be established on the sample sur-
face, and the concentration Hg will have the value Hg|x=0 = KQo/Hao. Since
the surface concentrations will satisfy relation (8.2.5), no subsurface steady
state profile will be formed but the rest of the process will remain the same
as in the previous case.

If the absence of two kinds of particles, for example Hg and Q, is pre-
scribed at the sample boundary

© 2004 by CRC PressLLC



Hg 9Q
=B =o, Z =0, Hal_ =Hao.
X |y_o X |y o Alx=0 = T'A0

then the equilibrium will be established on the surface at times t >> T,
exactly as above, and there will be no steady state surface profiles. However,
in contrast to the case above with the completely defined boundary
conditions for (824) and (826) atx=0 (HAIXIO = HAQ, HB|><:0 = KQ()/HA(),
Qlx=0 = Qo), we have now only one boundary condition Halx=o = Hao. The
missing boundary condition is

aHg , [, 9Q

Dg
X Qx|

=0
x=0

reflecting the conservation of the total amount of B impurity during
diffusion. Indeed, equations (8.2.6) are valid for any moments of time. By
integrating the second equation with respect to x, we will get

Hg|”

aoo
§£ de+dex—DB ~

hence,

T(HB +Q)dx=0.
0

The above boundary condition unambiguously defines the solution to the
sets of equations (8.2.4) and (8.3.6).

Similarly, one can analyze diffusion processes occurring in a plane
sample, when its one half is uniformly doped with, say, A particles, at the
initial moment of time and the other half with B particles. As in the above
case, we can show that the concentration distribution is described by (8.2.4)
and (8.2.6) at large times, t >> 1. Note that no steady state profiles are
formed in this case. Steady state profiles at the boundary separating the
crystal regions doped with different impurities A and B can arise only if the
reaction rate constants K; and K; in the region doped with A are not equal to
those in the region doped with B.

Of special interest for the analysis of experimental diffusion profiles in
semiconductors is the nonstationary impurity diffusion from the sample sur-
face into the bulk, described by equations (8.2.4) and (8.2.6). Since we con-
sider problems only with initial uniform distribution, we can make
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Boltzmann’s substitution A = x/2t¥2 simplifying significantly the sets of
equations (8.2.4) and (8.2.6):

dAHA +d3Q” +2A(Ha +Q) =0

d3Hg +d3Q” +2A(Hg +Q) =0 (8.2.13)
HaHg =KQ,

where da” = Dp, dg” = Dg, do” = Dq, and the primes designate differentiation
with respect to A.

The set of equations (8.2.13) can also be written in terms of total concen-
trations Nao=Ha + Qand Ng=Hg + Q:

dA(NA —Q) +ddQ”+2ANA =0
dg(Ng-Q) +d4Q”+2ANp =0 (8.2.14)

(Na-Q)(Ng-Q)=KQ.

The solution to the set of equations (8.2.13) will be considered for the
three most common situations: sequential diffusion, simultaneous diffusion,
and interdiffusion. The boundary conditions are as follows.

(1) For sequential diffusion:

Haly_o = Ha(0) Haly_.. = Ha(>)
(8.2.15)
déH{g+d5Q’x=0=0 Hgl,_.. = Hg().
(2) For simultaneous diffusion:
Hal,_o = Ha(0) Hal,_.. = Ha(e)
(8.2.16)
Hgl, _, = He(0) Hgl, _.. = Ha() -
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(3) For interdiffusion

HA|7L=_°° = Ha(—) HA|k=+m =0
(8.2.17)
HB|h:_m =0 HB|X:+w = HB(+°°) .

Sequential diffusion corresponds to the absence of two particle flows at
the sample boundary

Hg| _, 9Q

X |y_o X |y—o 0
in the solution of equations (8.2.1). Simultaneous diffusion corresponds to
the prescription of, at least, two concentrations at the sample boundary. In-
terdiffusion is for diffusional homogenization of the sample, whose one half
is doped with A particles and the other half with B particles It would be easy
to re-write the boundary conditions (8.2.15) through (8.2.17) in terms of total
concentrations Na and Ng.

The set of equations (8.2.13) with the boundary conditions (8.2.15)—
(8.2.17) generally has no analytical solutions. So we will consider some
limiting cases, following mainly the work [11].

The strong complexation approximation (K = 0). Physically, the strong
complexation approximation means that the reaction A + B 2 Q is sharply

shifted toward the formation of a complex. Formally, it follows from equa-
tion (8.2.5) at K = 0 that the concentration of, at least, one free component is
zero, i.e., Ha= 0 or Hg = 0. This generally leads to two regions on the A-axis,
separated by a special point . An independent diffusion of the Q complex
and a free component (Ha or Hg) occurs within each region. From the con-
tinuous concentration condition, Ha and Hg at A, are equal to zero, i.e., par-
ticles Ha and Hg migrate toward point A, which physically means the
chemical reaction front in the formation of the Q complex.

The weak complexation approximation (K >> Hja, Hg). The weak
complexation approximation corresponds to the shift of the reaction A + B

< Q toward the formation of free components. From (8.2.13) in the zero

approximation (K = o), we have Q° = 0, and the components A and B will
diffuse independently. In the next approximation, we have

040
QW = HAKHB <<Ha, Hg
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permitting a trivial perturbation theory to be built.

The linear approximation (ANa << Na, ANg << Ng). Here, the change in
the concentrations of all particles during their diffusion is much smaller than
the concentration values. These conditions permit linearization of the set of
equations (8.2.14)

DAA(ANA)” + DAB(ANB)” + ZX(ANA)/ =0
(8.2.18)

” ” ’

Dpg(ANg) +Dga(ANp) +2A(ANg) =0.

This set of equations coincides with the one considered in [12], but the coef-
ficients Daa, Dgg, Dag, and Dga Were introduced formally in [12]. In our
case, they have a clear physical meaning and are expressed via the diffusion

coefficients Da, Dg, and Dq, the rate constant of the reaction A+ B 2 Q,
and the initial concentrations Ha(ee), Hg(e0), and Q(ee):

Da[K + Ha(e)]+ DgHg(=)
Dan == K+ Hi(oo)+ HE?(oo)B
Dag - Dg[K + Hp(s)]+ DoHA (<) 6219)

K+ HA(OO)—i- HB(OO)

Ha() _
K+ HA(OO) + HB(OO)

Dag = (DQ - DA)

The approximation of close diffusion coefficients. In the case of Da = Dg
+ Dq, the set of equations (8.2.14) has a simple analytical solution. It is of
much interest because one can follow the variation in the distributions Hp,
Hg, and Q as a function of the reaction rate constant K.

8.3 SOLUTION OF DIFFUSION EQUATIONS FOR
VARIOUS BOUNDARY CONDITIONS

Here we will present the solutions to equations (8.2.14) with the boundary
conditions (8.2.15)—(8.2.17). The boundary conditions are typical for the
situation when a semiconductor is doped with one sort of impurity.
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8.3.1 Sequential diffusion

Consider the problem of diffusion of component A into a semi-infinite
sample uniformly doped with component B in the absence of B sublimation
from the sample. The boundary conditions for this problem are

NAlX:O = NA(O) NA|x:m =0
(8.3.1)
dg(Ng-Q) +d3Q’

0 0 NB|x:m = NB(OO).

These conditions correspond to the following boundary conditions of equa-
tions (8.2.1):

Halo=0. Q. Halo=HB. x>0
(8.3.2)
0Q oHg
Hal,_o=Heo, 22 . Hel
x=0 ox x=0 ox x=0
or
Halo=0. Q. Hel_o=HE. x>0
(8.3.3)
0Q oHp
= ’ — y _0-
le:o QO ox x=0 ox x=0

Conditions (8.3.3) are more general than (8.3.2) because if we prescribe
the Q content at the boundary, the content of the free component Hy at the
boundary may be zero, which is ruled out for conditions (8.3.2).

(1) The strong complexation approximation (K = 0). Suppose Ng(eo) >
(do/dg)NA(0), corresponding to the absence of a free particles at the boun-
dary. Then, the solution to (8.2.14) has the form (Figure 8.3):

Na=Q= NA(O)erfc(K/dQ)

ZQ NQerfc(%/dg) (8.3.4)

Ne = No()- 52

Ng=Hp+Q.
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Na @ Hp (b)
N4(0) o
Hp(0)
0 A 0 A
(©) ()
N5 dy>dy Np dy <d,
Np(p) DN — — — — = Ni() %Tk___
0 o A 0 . n
(e)
.fA Q
— 7 %

Figure 8.3. Distributions of components and directions of flows in sequential dif-
fusion in the strong complexation approximation at Ng(e) > dg Na (0)/dg.

One can see from Figure 8.3 ¢ and d that the Ng curve has an extremum
with the coordinate Ap:

It is a minimum at dg > dq (Figure 8.3c) and a maximum at dg < dq (Figure
8.3d). The extremum appears in the distribution of Ng and of complexes Q if
the particle flows are those shown in Figure 8.3e. Complexes Q migrate in-
ward where their concentration is zero. The formation of complexes at the
boundary, where they bind some free particles Hg, leads to an outward flow
of the component Hg.

Suppose now Ng(ee) < (do/dg)Na(0), corresponding to the presence of the
free component Hp at the sample boundary. The solution to (8.2.14), repre-
sented in Figure 8.4, is
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(d)
A
(e)
I A
(®
A
(2
Ja 0 | 0
H, i Hp
Ao

Figure 8.4. Distributions of components and directions of flows in sequential dif-
fusion in the strong complexation approximation at Ng(eo) < dg Na (0)/dg.

A
erfc d

Na(0)—-N 1-
Ha=Na-Q= (NA(0)~Ne) erfcg—z

0 A>Ao

© 2004 by CRC PressLLC



Hg=Ng-Q= erfc - (8.3.5)

Constants Ao and Ng; are found from the balance equation for N and Ng:

oo

f[Ne(3) - Nofe)Jon.=0

(8.3.6)

o ’

2[Na(A)dA =-dZ(Na -Q) —doQ’
0

A=0"

The equalities of (8.3.6) are derived by integrating the first two equations in
(8.2.14) with respect to A from 0 to . They are the integral form of the par-
ticle conservation law in this problem. By substituting the solutions to (8.3.5)
into (8.3.6), we eventually get the equations describing Ao and Ngy:

NB1T(Ro/dq)= Nb(=<)T(ko/ds)
NAlT(Xo/dQ)Z(NA(O)— NBl)S(Xo/dA) (8.3.7)

~ exp(—xz) Sy = exp(—xz)

)= Jrxerfe(x) 0 Jmxerfe(x)”

The same equations can be derived from the condition at the reaction front:

42 H; —d3Q
ATA Anro 909

+d3Q’

+ 2X0Q|x:k0 =0
(8.3.8)

7\‘:?\‘0 7\.=}\,0—O
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d3Ha

20 _d20’ _
+dgQ A=Ao+0 430 x=x0—0+27“°Q|l=M 0.

7\:7\«0
which are obtained by integrating equations (8.2.13) in the vicinity of the
reaction front. Note that Na(0) — Ny = Ha(0).
It is clear from Figure 8.4 e, and f that an extremum appears in the distri-

bution Ng with the coordinate A, which is defined by the equality

242
N

2 _42 2"
dg—-d5 d§

M =23+

The presence of the free component Hx at the boundary changes qualita-
tively the distribution pattern. Two regions with A < A, and A > A, appear.
The free component Hg is absent from the first regions. The free component
Ha migrates inward to the complexation front Ao. The free component Hy is
absent from the A > A, region. There is a Hg flow outward to the complexa-
tion front, while a flow of Q complexes moves inward from this front.

The existence of counterpropagating flows Hg and Q gives rise to an ex-
tremum in the A > A, region. The absence of Q flow from the A < A, region is
associated with the boundary condition

d3(Ng-Q) +d3Q’

><=0:O

and with the absence of free Hg in this region.

In the limit dg — 0, the solutions to (8.3.5) transform to the solutions to
(7.5.21) and (7.5.22).

(2) The weak complexation approximation (K >> Na, Ng). In the zero
approximation (K = <), we have Q = 0; so it follows from (8.2.14) that the
migration of N and Np is described by the common diffusion equations.
Therefore, we have

NR::NAmkﬁch, Ng = Np(c).
da

In the first approximation with respect to NA/K, Ng%K, we get Q¥ =

(NA® Ng%)/K. Considering Q™ as a perturbation, we derive, to an accuracy of
Na/K or Ng/K, the following expressions for Na and Ng (Figure 8.5):
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Ny (d)

€3]
L 7=
Hy

Figure 8.5. Distributions of components and sequential diffusion flows in the weak
complexation approximation.

Na = Na(0O)erfc

Npg(e
\/d£+ Bé )(dé—d,i)
(8.3.9)

Na(0) d(%_dé da
Ng = Ng(ee)d1+ ——=———| erfcA/dp ———erfcA/d .
B B(){+ K d2—dZ /da is /dB

It is seen from Figure 8.5f that the Ng distribution has an extremum, like
in a strong complexation, associated with the counterpropagating Q and Hg
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flows: a minimum at dg > dg and a maximum at dg < do. The extremum co-
ordinated is defined by the equality

242 2
A3 =—2Ad52 |nd—§.
dB_dA dA

Note that there is no abrupt reaction front in a weak complexation.
The applicability of expressions (8.3.9) imposes additional restrictions on
the complexation constant:

K
Ng(e)

d2
>> 1——Q
dg

(8.3.10)

which is equivalent to the condition that a complex is not to migrate too fast,
as compared with Ha and Hg. The above restrictions follow from the re-
quirement of the smallness of perturbation Q® in equation (8.2.14). At dg —
0, the solutions to (8.3.9) transform to (7.5.24) and (7.5.25).

(3) The linear approximation (ANa << Na; AN << Ng). With (8.2.19),
we have the following expressions for the coefficients of equations (8.2.18):

K
Daa =D D
A A K NB(=) 2 K+ Np(=)

Dpg = Dp = déB' Dag =0 (8.3.11)

Dga = (DQ - DB)%.

Using formulas (7.5.7), we get

Na = Na(0)erfcA/daa
(8.3.12)
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NA(O)DBA

Ng = Ng(eo
N - aa

[erfck/dBB - dﬁerfck/dAA} .
daa

The Ng distribution has an extremum: a minimum at dg < dg and a maxi-
mum at dg > dg. The extremum coordinates are defined by the equation

;»2 — d/?\Adlg”B d%A
dia-dgg  dgg

The condition for the applicability of this approximation is

dAA(dAA+dBB) (oo)’

Na(O
A( )<< |DBA|

(8.3.13)

indicating the smallness of the boundary concentration Na(0).

(4) The approximation of close diffusion coefficients. Putting da = dg =
do = d in the set of equations (8.2.14), we find that the total profiles for the
concentrations N and N are described by conventional diffusion equations.
Their solution yields

NQ = Na(0)erfcr/d
(8.3.14)
NG = Na().

The concentration of complexes is found from the third equation of (8.2.14):

Q<o>=§{J(Ng°>_N<B°))2+2K(Nge)+Ng°>)_(K+Nge>+N<B°>)}_

(8.3.15)

The plots for the solutions are presented in Figure 8.6 showing the distri-
bution profiles of free components at various complexation constants K.
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Figure 8.6. Distributions of components in sequential diffusion in the approximation
of close diffusion coefficients.

8.3.2 Simultaneous diffusion

Let us consider the problem of diffusion of two components A and B mi-
grating from fixed sources into a semi-infinite sample uniformly doped with
component B. The boundary conditions are expressed by (8.2.16) at Ha(e) =
0. As was pointed out above, the boundary conditions for the set of equations
(8.2.14) correspond to those for equations (8.2.1), when the boundary con-
centrations of, at least, two other components Ha, Hg, or Q are prescribed.

(1) The strong complexation approximation (K = 0). Suppose Na(0) <
Ng(0), corresponding to the absence of the free component Hx at the sample
boundary. The solution (Figure 8.7) is

Na = Q= Na(0)erfcA/dg = Q(0)erfcA/dg
Hg =[Ng(0) - Ng(e) = Na(0)JerfcA/dg + N(<)  (8.3.16)

Ng=Hg+Q.
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(b)
Hp(0)=Np(0)=N,(0)>Np (=)

N4(0) Ny=0 Np(0) N
Np()

Np(0) "Hp(0)=Np(0)~N,(0)<Np(=)

B

0 A 0 A

© (d)
Ng Nk do>dg b 0)<N y()

NpO K HBO>Np(=) Np(0)-Np()>N, (0)(1~dlg/dly)
Np(«)

dQ<dB
0 x 0 Ay X
dp>dy (©)
N T Hy0)<Ng=)
Np(0)=Np(=)<N,(0)(1-dg/dp)
|
1 dQ<dB
0 7\'7’1 7\’
® (2
Hp(0)>Np(=) Hp(0)<Np(~)
Ja JA 0
JB Hp JB Hp

Figure 8.7. Distributions of components and simultaneous diffusion flows in the
strong complexation approximation at Na(0) < Ng(0).

At [Ng(0) — Ng(e) — Na(0)] = 0, the concentration of the free component
at the sample boundary is higher than in the bulk, and the flow Hg migrates
inward, together with the flow of complexes Q. For this reason, the N distri-
bution falls monotonically with distance from the boundary. At [Ng(0) —
Ng(ee) — Na(0)] < 0, the Hp flow migrates, in contrast, outward in the direc-
tion opposite to the Q flow, giving rise to an extremum in the Hg
distribution. The extremum coordinate is
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® 0 Np(0)> N, ©

Np(0)> Np; Np(0) <Npy
J4 [¢] ! Q Ja 0 T 0
JB H, : Hp ; JB H, Hp g
1 1
Ao Ao

Figure 8.8. Distributions and flows of free components Ha, Hg, and Q in simulta-
neous diffusion at N (0) > Ng (0).

o _ 984 .{d_o(le}

Tdg-dg |ds NA(0)

Suppose Na(0) > Ng(0), i.e., there is the free component Ha on the
sample surface. The solution to (8.2.14), illustrated in Figure 8.8, is

Ha = Ha - Q= [NA(0)- NB(O)][l—%} <o

0, A> Ao
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0, A<Ao

He=Hg-Q= erfc(A/dg) (8.3.17)
NB(W){l—W], }\,> 7\«0
0)+[Np1 - NB(O)]eerg?jE; A<ho
Q=
erfc(k/dB)
erfc(k/dA) ' A>ho

The parameters Ao and Ng; are found, as in Section 8.3.1, from the bal-
ance of total concentrations Na and Ng or from equations (8.3.8)

[NA(0) - NB(0)]S(ro/da ) = Ne(c<)T(%o/dB)
(8:3.18)
[Ne1(0) - N(0)]S(20/do) + NerT(1/dg) = Na(=)T(20/ds),

where S(x) and T(x) are found from (8.3.7).

Figure 8.8 shows that the flows of free components Ha and Hg are di-
rected toward the reaction front Ao, as described in Section 8.3.1. In contrast
to sequential diffusion, the Q flow can migrate, at A < Ao, either outward,
with Ng; > Ng(0), or inward, with Ng; < Npgo.

It is easy to obtain from (8.3.17) the distributions of total concentrations
Na and Ng (Figures 8.9 and 8.10). The analysis of the analytical expressions
shows that the distribution Ng at A > A, depends on the sign of the expression

(Ngs — N g1)(dg — do), where

= T(Ko/dB)

At (Ng1 — N g1)(dg — dg) > 0, an extremum appears in the Ng distribution at A
> Ao With the coordinate Ang (Figure 8.9b,c) defined as

242
m 0 dé—d(% NpB1
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N dg<dy Ne dp=<dg
NgO) ~ _ _ Ngy > Ngy N Np1 <Npi
NBEO%"—\—-—- NB(oo) se T T—
NB‘X’____:___ B() ”= :_

| N3(0) L
0 io A 0 }‘0 }“mB A
(©) (d)
Np Np dp>dp
dg> dy
Now > ¥ Np1 <Npi
N (O) - B1 B1
PN T Nk == == = ==
Ny F === N"---- ==
o ?\r/ Ny Tz =f"
! 1 I
0 o Amp A 0 » A

Figure 8.9. Possible distribution patterns for Ng in simultaneous diffusion in the
strong complexation approximation at N (0) > Ng (0).

With (Ng; — N g1)(ds — dg) < 0, the function Ng(A) is monotonic at A > Aq
(Figure 8.9a,d).

The N distribution pattern at A < A, depends on the relations between the
diffusion coefficients da? and do? and between the quantities z, zo, and zy, :

. NBl—NB(O) , =dQerf7»o/dQ
~ Na(0)—Ng(0)’ = daerfro/da
_ doerf Ao/dg exp(x3/d3)

"~ dnerfro/da exp(i/d3)’

When z falls within the range of zo and z),, , the Na distribution at A < A
has an extremum with the coordinate
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Figure 8.10. Possible distribution patterns for N, in simultaneous diffusion in the
strong complexation approximation at Na (0) > Ng (0).

2 242

o =78+ i = A L
di d n, dz-d5 2

which is a maximum at da > dg and a minimum at da < dg.

The analysis of total concentration distributions of components in simul-
taneous diffusion shows that these distributions (Figures 8.9 and 8.10) reveal
themselves even at relatively simple distributions of free components Hp and
Hg and of complexes Q (Figure 8.8) and that they may be very diverse.

(2) The weak complexation approximation (K > Na, Ng). As in Section
8.3.1, we have in the zero approximation:

N(AO) = Na(O)erfcr/da
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NG = [Ng(0)- Ng(eo)forfcr/dg + Ng(e)  (8.3.19)
Q0 =o.

To calculate the further approximations, additional restrictions should be
imposed on the relations between the diffusion coefficients daZ and dg?. Sup-
pose da << dg, then we have

QW = werfcwm

0)

NS :

(8.3.20)
\/d,%\ +(dg - d,?\)LE:((O)

+ N,(Al) = Na(0)erfc

N+ |(3)=[NB(O)—N (e0)Jerfca/dg +

NA(O)Ns(0) 4 - 93

+ Np(o) + (erfc?»/dB erfc?»/dA)

K d3
At da >> dg, we have
N O -N o oo
Q) = 1 B(K) o)} erfc)/dg +werfcx/m
NX)) + N,(Al) = NA(O)erfc A +
+(dg -d3 NB(°°)
(8.3.21)
N d3
+ { BK ( ﬁ} erfcA/dg — erfCK/dA)
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A
\/d,% +(dg - d3) NA(0)

(erfcA/da —erfcA/dg)

N+ NG = N (o) +[NB(0) - N (eo)ferfc

NA(O)NB(oo) d(% —dé
K di

+

At da = dg =d, we obtain

NA(O)[Ng(0) - Np()]

Na(0)Ng(e)
QW = "

erfct + erfc2t

d2
4|96 _;|Ne(=)
d? K

NA(9){N8(0) - Ng(=) }(1_

N+ NG = NA(O)erfc

Q.|Q_

K

—ite t2erfct+—te -2 _ (1+£)erfct]
T

N

N( )+N|(3)_NB [NB B(oo)]erfc

erfc2t - (8.3.22)

2z te—t?erfct + ite—tz - (1 + g)erfct]
T

V= N

where t = A/d.
The above solutions are valid under the condition
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(3) The linear approximation (ANa << Na, ANg << Ng). According to
(8.2.19), the diffusion coefficients Daa, Dag, Dga, and Dgg are

DAK+DQNB(°°) 2
Daa = =d
AT T K Ng() AA

Dgg =D = dl%B

Dag =0

Dga = (DQDB)% (8.3.23)

and the solutions for N5 and Ng have the form:
Na = NA(O)erfck/dAA

(8.3.24)

Ng = NB(OO) [NA(O)DBAerfck/dAA]+

+—
2 2
dBB_dAA

+{(d,§\A —d%B)[N B(O)— NB(OO)]— NA(O)DBA}erfc?L/dBB

But at (dAAz - dBBZ)[NB(O) - NB(OO)] - NA(O)DBA <0, the Ng distribution
pattern shows an extremum with the coordinate

22 = dAadds indAa 1_(d£A_déB)[NB(O)_NB(°°)]
dia—dgg  des Na(0)Dsa '

A minimum is observed under the condition

NA(0)Dea {1_ dan [1_ (dRa —d8s)[N8(0)- NB(°°)]H> 0.

déB_d,gA dep NA(O)DBA
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Figure 8.11. Distributions of components in simultaneous diffusion in the approxi-
mation of close diffusion coefficients at Na (0) > Ng (0).

otherwise, there is a maximum.
The applicability conditions for the linear approximation in this case are

ANg = |Ng(0) - Np(eo)| << Np(c)
(8.3.25)
dRa - ds

NA(0) << Ng(e) Don

(4) The approximation of equal diffusion coefficients. Like in Section
8.3.1, we have

NX)) = Na(0O)erfcA/d
(8.3.26)
N(BO) _ [NB(O) -N B(oo)]erfc% + Np(eo).
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To calculate Q©, one should use formula (8.3.15). The plots illustrating the
solutions are given in Figure 8.11.

8.3.3 Interdiffusion

Consider the problem of outward interdiffusion from a semi-infinite sample
uniformly doped with A and B impurities, respectively. The boundary
conditions are obtained from (8.2.17) withQ=0att=0:

Nal .. =Na(==),  Nal,_, =0

—oo

(8.3.27)
NB|;\:_°Q =0, NB|x:+m = NB(OO).

(1) The strong complexation approximation (K = 0). The solution to
(8.2.14) was obtained in [7] and is illustrated in Figure 8.12. For the sake of
definiteness, we will only consider the case with Na(—e)da > Np(+ o)dg.
One can see from Figure 8.12 that the free components Hp and Hg migrate
toward the reaction front, while complexes Q migrate away from the front
into the sample bulk.

Similarly to simultaneous diffusion, the distribution patterns of total con-
centrations Na and Np (Figures 8.13 and 8.14) exhibit a considerable varia-
tion. The Np distribution is defined by the relations between the diffusion

coefficients dg? and dQ2 and between the quantities Q; and 6 18, Where

~ doerfcA/dg 1 1
=N o) —— 1 < 7\.2 - = .
Qe (=) dgerfc)/dg &P 40| 42 3

Under the condition (Q; — 6 18)(dg — dg) > 0, the Ng distribution at A >
Ao shows an extremum with the coordinate Ayg:

d3d3
7»2mB=7»20+—ZB Q2 In&
B_dQ Qi

Under the condition (Q; — Q 18)(ds — dg) < 0, the distribution Ng(A) at A
> Ao is monotonic.
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O _0
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Figure 8.12. Distributions of free components Ha, Hg, and Q in interdiffusion in the
strong complexation approximation at da Na (—e<) > dg Ng (+<9).

The Na distribution is defined by the relation between the diffusion coef-
ficients da? and dg?, as well as by the relation between Q; and Q ;, where

~ dQ(1+erch/dQ) 1 1
QlA = NA(—W)WGXP >\,0 %—g . (8328)

If we have (Q; —(5 1a)(dg — da) > 0, the N4 distribution at & < A, has two
extrema with the coordinates +Ama and —Ama. But at (Q; —Q 1a)(dg —da) <0,
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Ny = = = = = = = L

Figure 8.13. Possible distribution patterns of Ng in interdiffusion in the strong
complexation approximation at Na (—eo)da > Ng (+0)dg.
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Figure 8.14. Possible distribution patterns of N in interdiffusion in the strong
complexation approximation at Na (—eo)da > Ng (+o0)dg.
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there is only one extremum with the coordinate —Ama, Where Ama is

dzd3
g =)+ A0 jp A
dA — dQ Q]_A
(2) The weak complexation approximation (K >> Na, Ng). At K — oo,
,(A\) = E NA(—OO)(]. erfC?»/dA)
(8.3.29)
N|(30) = % Ng(+eo)(1+erfcA/dg) .

For the first order calculations in the perturbation theory, let us discuss
the situations with da << dg and d = dg individually. At da << dg, we have

oW = W(l— erfch/da )(1+erfcA/dg)

[N (oo o) [ dd —d3
Na( Z)SB(+ )[ Q J(1+erfck/d ) A<<dp

2

B

W@ _ [ Na(=)Ng +°°[ a4
da

7\’2
ex + A>>d
4K dAJ_ p B
A
2
B

—5-(erfer/da — 1)}

(8.3.30)
( 2
Nal=al)fy SN 2 _of 21,
2K d3 BJ_
N (Bl) = +(1+ erfCQ\./dB)} A << _dA
N (=) Ng(+oo d3
% 1- d(é (1-erfch/da ) A>>—dg
(8.3.31)
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Figure 8.15. Distributions of components in interdiffusion in the approximation of
equal diffusion coefficients.
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At ds =dg =d, we have

QW = NA(—"Z)KN B(+e) (1_ orfc? x/d)

NG M(L 35 J(l ert?1d)-

4K
2 2
\/Z_i;exp[ A jerfk/d \/_:;exp[ }”]
9w

(3) The approximation of equal diffusion coefficients. As in Section 8.3.1,
we have

2\) =3 N (—eo)(1—erfch/d)
(8.3.32)
N l(BO) = % Ng(+eo)(1-erfcr/d).

To calculate Q°, one should use formula (8.3.10). The plots illustrating the
solutions are shown in Figure 8.15.

8.3.4 The allowance for the finite front thickness

In the above strong complexation approximation (K = 0) for diffusion
involving the reaction A + B 2 Q, the chemical reaction front had a zero

thickness in the limit K — 0. At small but finite K, the front thickness has a
finite value. Consider an immobile complex Q. The initial equations have the
same form as in (8.2.13).

For the sake of definiteness, let us discuss sequential diffusion with the
initial and boundary conditions of (8.2.15). Considering the finite front
thickness, let us subdivide the A-axis into three regions:

(1) the near-surface region with A < Ag;
(11) the complexation front region with A = Ag;
(111) the external region with A > A,.
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Taking into account K << Ha(0) and Hg(e0), we obtain from (8.2.13) and
(8.2.15) the following solutions for the subsurface region:

|

Hj = Ha(0)— MerfA/dp HQ:@, Q' =const (8.3.33)
A

HA'=0,  HY' = Hg(eo) - Nerfci/d =

m_o, W Hg (e s, Q"=o, (8.3.34)

where M and N are constants which will be defined later from the sewing
conditions for the solutions in the various regions.

To calculate the component distributions at the reaction front, we will
introduce, like in [13], the following denotations:

HA = KY2H, (n) +O(KY2)

HY = KY2Fg(n)+ O(kY?) (8.3.35)

QII _ Kl/ZﬁA(n) B(n)"'O(KUZ)r

where 1 = (A — Ao)/KY2.
From (8.3.18), we obtain the equations for H a(n) and H g(n):

’

dgﬁ,& + ZKO(FAHB) =0
(8.3.36)

’

dgHg +2ho(HaAHR) =0,

where the differentiation was made with respect to mn. By integrating
(8.3.36), we obtain

dZFA + 2\ oHAHg = o
ATATEROTIATB T (8.3.37)
d3Hg +2hgHAHE =B
The sewing conditions for regions | and 11 yield
HB(T])%O, ﬁAﬁB%Q, at n— —oe
(8.3.38)
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Ha(m)—>0, HpaHg—>0 at n— +e.
Hence, we obtain with (8.3.37)
a=0, Q =B/2)g . (8.3.39)

After the subtraction of the second equation in (8.3.37) from the first one,
followed by integration, we obtain

~dZHa +dgHg =Bn+K-12, (8.3.40)

where yK'? is an integration constant. Using (8.3.38), we can obtain from

(8.3.40)
n— -, ﬁA—>—£2n PK-v2
dZ2 ' d3
(8.3.41)
o B oY 2
n— +eo, Hg > ——n+—K
°T s

Using (8.3.41) and the solution expansions in regions | and Il near Ay,
we perform the standard joining of the internal and external variables to ob-
tain

2
B—ﬁdAMeXp( /dA)——d Nexp( ko/d )
(8.3.42)
v = di[Hg(e) — Nerfc(Ao/dg )] = dA[~Ha(0) + Merfcro/dA .

Taking into account that A is being evaluated in the zero approximation,

we have
HA(O)S(Xo/dA)ZHB(OO)T(ko/dB), ’YZO
___Ha(9) __ Hg() _
~erfe(rg/da)’ N= erfo(Ag/dg) P=2koNg:.
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Figure 8.16. The distribution of components Ha, Hg, and Q at the reaction front for
an immobile complex: dashed line — with the account of finite front thickness.

For convenience, let us transform the set of equations (8.3.37) as
X +2XY=0, Y +2XY =1, (8.3.43)

where

q o d
X=Hp/oa, Y=Hg/og, mn=ogt, mA:d_B [2Ng,
A

da dadp
0g=A oNg, o =A%
B g V7B " Aor2Ngs

and carry out the differentiation in (8.3.43) with respect to t.
Let us find the solution to the set of equations (8.3.43) satisfying the
boundary conditions
t—>—o, X—-t Y-—=0,

t—>+o, X—0, Y-t

The desired solutions are

X =M Y—M+t. (8.3.44)

Jrn(l+erft)’ - Jr(1+erft)

Therefore, the solution for the reaction region has the form (Figure 8.16):
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HY =3—A,/2KN Y () (8.3.45)
B

where t = [(7\. - ko)ko/dAdB] (ZNB]_/K)UZ.
The reaction front thickness is

4
M <dads [ K K Ao (8.3.46)
F 2 2
25 VNgs Ng  (dadg)

The concentration of mobile complexes in region Il is approximately
constant, so the set of equations (8.3.36) is replaced by

{df\ﬁ; ~daHE =0 (8.3.47)

ﬁA ﬁB = Q(ko)

By solving this set of equations in the same way as (8.3.36), we obtain

The reaction region thickness is found from the condition n = 2n,; hence,
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K dadg

Ahp =2 . (8.3.48)
Q(ro) AoT(ko/dg)
The condition for the existence of the reaction front is
Ahp <<1. (8.3.49)
0

The critical value K separating the regions of diffusion parameters, at
which the reaction front can be formed, is described as

Ker = Q(XO)LZTZ[EJ. (8.3.50)
4(dadg) do

To conclude, the above treatment can be easily extended to arbitrary
boundary conditions (in simultaneous diffusion or interdiffusion). The prin-
cipal result of these calculations for experimental profile analysis is focused
in expressions (8.3.46) and (8.3.50) for immobile (dg = 0) and mobile (dq #
0) complexes, respectively. The condition necessary for the reaction front to
be formed is K << K.

The approach to the analysis of complex impurity profiles, developed in

this chapter with reference to the reaction A+ B 2 Q, can be extended to an

arbitrary number of diffusing components and quasichemical interactions
involving them. An essential aspect is that this approach allows for the
migration at times much longer than the characteristic times of establishing
an equilibrium in quasichemical reactions. This permits diffusion interaction
to be taken into account via the active mass law.

Similarly to the approach discussed above, we suggest the following
treatment strategy for impurity profiles, making allowance for quasichemical
interactions of diffusing components. The initial information must include
possible types of reactions among particles. As in Section 8.2, one derives a
set of equations to describe a consistent diffusion of particles at times much
longer than the characteristic reaction times. Then, definite initial and boun-
dary conditions are prescribed for the solution of the set of equations. As-
suming that the reactions are sharply shifted to the right or to the left and
using an exhaustive search, one obtains all possible distribution patterns for
the prescribed initial and boundary conditions. Note that if there are several
diffusing components and quasichemical reactions, the transition from total
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Figure 8.17. Qualitative impurity profiles of Hx and Hg (a) and of Q (b) for sequen-
tial diffusion, with account taken of the concentration dependence of the diffusion
coefficients.

concentrations of particles to free particles and back is guaranteed by the
theorem proved in [14].

The diffusion theory discussed in this chapter deals with constant diffu-
sion coefficients independent of particle concentrations. The theory was ex-
tended to this case, too, in [15]. For the mathematical details, the reader is
referred to this original work. Here, we will present only its qualitative re-
sults for the distributions Ha, Hg, and Q, illustrated in Figure 8.17. Qualita-
tively, they look like those for constant diffusion coefficients (see Figure
8.15), but there are some differences. Because of the finite values of
d(HA™)/dA and d(Hg™)/dA at the reaction front, the distributions Ha and Hg
intercept the A-axis at the right angle [Ha ~ (A = A)*™, Hg ~ (A — A" at A
— 7\4:]

Here and below, the constants m, n, and g denote the concentration de-
pendence of diffusion of the components A, B, and Q, respectively. The con-
centration dependence of the diffusion coefficient and the absence of Q at A
— oo give rise to the front Aq in the distribution of Q behind the reaction
front. One can see, therefore, that if the diffusion coefficient of one of the
components depends on its concentration, there may appear a front in its dis-
tribution. The necessary condition for the front appearance is the absence of
the respective component at A — . A specific feature of such a front is its
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existence in the distribution of only one component, in which case d(Q%)/dA
— 0 and d(Q* 1)/dA — const at A — A,

By plotting experimental impurity profiles for the front region in the co-
ordinates In |[H — Hg|, In A — Ag|, and [Hr = H(Ag)] along the slope attained by
the straight line, one can calculate the values of m, n, and q for the front of a
chemical reaction and that related to the concentration dependence of the
diffusion coefficient. The treatment of impurity profiles for sequential diffu-
sion to be presented in the next section can be easily extended to more com-
plex diffusion mechanisms.

8.3.5 The physics of impurity diffusion with interactions

The solutions obtained in Section 8.3.4 demonstrate that the strong compen-
sation approximation is the most informative and physically explainable ap-
proach. One can see from the solutions obtained in this approximation that
the complicated profiles of total components Na and Ng arise from the super-
position of profiles of the free components Ha and Hg and of complexes Q.

The solutions of Section 8.3 show that the allowance for the mobility of
complexes reveals a new important feature in the concentration profiles,
namely, the possible appearance of a total concentration distribution maxi-
mum (Figures 8.3-8.5, 8.7-8.10, 8.13, and 8.14). The interpretation of ex-
trema and bendings in the concentration profiles has been refined.

The figures just mentioned show that the reaction front is generally char-
acterized by a bending in the total concentration distribution. The appearance
of a maximum or a minimum indicates the presence of counterpropagating
flows containing one kind of impurity (see, for example, Figure 8.3f). The
directions of flows under various boundary conditions are illustrated in
Figure 8.18. A common feature of all types of diffusion is the presence of Ha
and Hg flows toward the A, boundary and the formation of complexes there.
Therefore, A can be interpreted (in the strong complexation approximation)
as the complexation front. Note that the minimum in the distribution of
complete component Ng in the case of an immobile complex coincides with
the reaction front A (7.5.22), but this coincidence does not exist for a mobile
complex.

The formation of the chemical reaction front is due to the possible sub-
division of a sample into two regions, in which only one of the two free com-
ponents, Ha or Hg, can migrate. For this reason, the reaction front arises only
under boundary conditions permitting the existence of these two com-
ponents in two different regions. If the boundary conditions do not meet this
requirement, no reaction front is formed (see, for example, Figure 8.3).
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Figure 8.18. Schematic flows in various types of diffusion in the strong complexation
approximation.

The comparison of solutions obtained in the strong and weak complexa-
tion approximations shows that in a weak complexation, the Q¥ flow and
the related HAY) and Hg™ flows are small, as compared with the HA® and
Hg© flows, so the features distinct in the strong complexation approximation
are quite weak here. The Q®, HA®, and Hg™ flows indicate the tendency in
the variation of concentration profiles and directions of flows, which are
well-defined in a strong complexation.

There are only two flows, HA® and Hg, in the zero approximation of a
weak complexation. So, in the next approximation, which is practically a
linear combination of these flows, only one extremum is possible. This is
also characteristic of the linear approximation.

The solutions obtained in the approximation of close diffusion coeffi-
cients (Figures 8.6; 8.11; 8.15) reveal qualitative changes in the concentra-
tion profiles on transition from large complexation constants (weak com-
plexation) to small ones (strong complexation) with arbitrary diffusion coef-
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ficients Da, Dg, and Dq. Numerical estimations of the conditions for the ap-
pearance of a reaction front can be easily made using formulas (8.3.46) and
(8.3.50).

8.4 DIFFUSION THEORY VERSUS EXPERIMENT

When the approach described above is applied to experimental data
treatment, it is first necessary to make sure that the experimental profiles are
nonstationary. In other words, the impurity profiles obtained at different
times and plotted in the coordinates of concentration—-Boltzmann variable
x/(2tY%) must coincide with one another. To facilitate the interpretation of
impurity distribution patterns, diffusing components should be measured
individually and direct methods for concentration recalculation should be
employed.

For a comparison with measured profiles, it is natural to use distributions
of total concentrations Na and Ng. To analyze the sources of specific fea-
tures, it will be more convenient to turn to the free components Hp and Hg,
as well as to complexes Q. Note that the well-known effect of solubility in-
crease in complexation [16] is screened due to the prescribed boundary
conditions for total components. The transition to the free components at the
boundary makes this effect explicit.

8.4.1 Chemical diffusion of phosphorus into silicon

The distribution of phosphorus during its diffusion into silicon was studied
experimentally in [17-20]. The following basic features of the impurity
profile were revealed.

(1) The profile has an unsteady state diffusion-like pattern clearly seen in
Figure 8.19 borrowed from [20].

(2) Phosphorus profiles are described by the standard function (7.5.2) at
low surface concentrations. When these concentrations are above 10 m™,
there are considerable deviations from (7.5.2), and the deviation becomes
greater with increasing phosphorus concentration, as is clear from Figure
8.20. At concentrations exceeding 3.5x10% m™, dislocations and dislocation
networks are formed at the surface.

(3) There are two specific features of electrically active phosphorus at
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Figure 8.19. The distribution of phosphorus after diffusion at 1173 K for the times,
min: 1 -10; 2-30; 3-60; 4-120; 5-240; (a) in the conventional coordinates;
(b) in the ¢ = x/t"? coordinates.

diffusion temperatures T < 1373 K and surface concentrations 10®° m= =

5x10%° m™: a shoulder in the subsurface region and a tail extending into the
sample bulk (Figure 8.20).

(4) These specific features are smoothed out at diffusion temperatures T
> 1373 K; however, the surface profile is not described by expression
(7.5.2).

C, m_3

1025

1023

21 I I I !
10 0 1.0 2.0

Figure 8.20. Phosphorus profiles in silicon at various surface concentrations after
diffusion at 1373 K for 60 min; points — electrical measurements [18]; dashed line —
function (7.5.2).
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A qualitative model was suggested in [17] to explain the above features
of phosphorus profiles. It was assumed that phosphorus migrates in silicon
by two mechanisms—uvia interstitial migration and via mobile E-centers.
Using this model and the approach discussed in Section 8.3.5, we will
analyze possible distribution patterns of components during phosphorus
migration.

The quasichemical interaction reactions involving three phosphorus
states—at a site, at an interstice, and at an E-center—are

Pi+V Z P (8.4.1)

P;+V  E, (8.4.2)

where P, P, V, and E are standard designations for atomic phosphorus at
sites and interstices, for a vacancy, and for a vacancy-P atom complex, re-
spectively.

The equations for consistent diffusion of components at times larger than
the characteristic reaction times are derived exactly as in Section 8.2:

d&V” +d2E” —d?R% 20V +E-R) =0

dZE” +d?P+2A(R+E+R) =0 (8.4.3)
PV =KP; PV=KE,

where dy? is the diffusion coefficient of vacancies, di? is the diffusion coeffi-
cient of interstitial P atoms, dg? is the diffusion coefficient of an E-center, K,
is an equilibrium constant of reaction (8.4.1), and K, is an equilibrium cons-
tant of reaction (8.4.2).

The initial and boundary conditions will be

V|xzm :V(w); Pi|}\,:oo = Ps|;L:°o = El)\,zoo =0 (8.4.4)
PI|}L:o =R(0); Ps|;L=o = Py(0). (8.4.5)

Following the procedure described in Section 8.3.5, let us calculate these
initial and boundary conditions for the distribution of components when the
reactions (8.4.1) and (8.4.2) shift to the right or to the left, using the set of
equations (8.4.3).
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Figure 8.21. Possible distribution patterns of components after chemical diffusion of
phosphorus into silicon.

(1) Reactions (8.4.1) and (8.4.2) are shifted to the right, toward Ps and E
decomposition:

P+VeP, P+VoE
or
Ki>>P,V K <<Pg, V.

The set of equations (8.4.3) transforms to
P.=0, E=0,
ddv”+20V’ =0, (8.4.6)
d2P" 20R'=0.
The solutions to this set of equations are illustrated qualitatively in Figure

8.21a. Vacancies and interstitial atoms migrate independently, without inter-
acting with one another.
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(2) Reaction (8.4.1) is shifted to the left and reaction (8.4.2) to the right,
toward the formation of an E-center:

Pi +V « P, P;+V —>E,
or,
Ki>>P;,V, Ki << P, V.

The set of equations (8.4.3) transforms to
Ps=0, PVv=0,
déV” +d2E” —d?R 20V +E-R) =0, (8.4.7)
d2E” +d?P"+2M(E+R) =0.
This set of equations does not permit an unambiguous identification of con-
centration profiles at the initial and boundary conditions of (8.4.3) and

(8.4.4). The missing information can be derived from the analysis of the total
reaction

Pi+2V Z E, (8.4.8)
for which the active mass law is P;V2 = K,K,,;E. One can see that the restric-
tions imposed on K, and K, are insufficient to identify the direction of shift
of reaction (8.4.8). Some additional conditions are necessary.

If reaction (8.4.8) is shifted sharply to the left:
Pi+2V«E, o  KK;>>PV,V
equations (8.4.7) transform to (8.4.6), and their solution corresponds to
Figure 8.21a.
If reaction (8.4.8) is shifted sharply to the right:
Pi+2V—E, o KK, <<PV,V

the set of equations (8.4.7) transforms to

P,=0, PV=0, PV?=0,
déV” +d2E” ~d?R% 20V +E-R) =0, (8.4.9)

d2E”+d?R+2M(E+R) =0.
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The solution to (8.4.9) is illustrated in Figure 8.21b showing the forma-
tion of the reaction front. One can see that interstitial P atoms migrate to the
reaction front from the surface and vacancies migrate to it from the crystal
bulk. The mobile E-centers produced at the front migrate inward.

(3) Reaction (8.4.1) is shifted sharply to the right and reaction (8.4.8) to
the left:

Ps+V «E, or K<< Py, V
Pi+V —> P, or Ky >> P, V.
The set of equations (8.4.3) transforms to

E=0, PV=0
d&V” —dZR 20V —R) =0 (8.4.10)

’

d?R2MP+R) =0.

The solutions are illustrated qualitatively in Figure 8.21c. Vacancies and
interstitial P atoms migrate toward the reaction front where reaction (8.4.1)
representing the capture of P atoms by vacancies occurs.

(4) Reactions (8.4.1) and (8.4.2) are shifted sharply to the right:

Pi+V — P, P;+V —>E,
or
Ki<<PyV, Ki << P, V.

Equations (8.4.3) transform to

PV =0, PV =0,
déV” +d2E” —d?R" 20V +E-R) =0, (8.4.11)

dZE”+d?R™% 2R +V +R) =0.

As in case (2), the information for an unambiguous identification of the
distribution pattern is obtained from the analysis of the total reaction

E+P;, 2 2P, (8.4.12)

The active mass law for this is
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ER = Kip2,
K

Suppose reaction (8.4.12) is shifted sharply to the left:

Then, the set of equations (8.4.12) transforms to (8.4.11), and the
distribution pattern changes to the one shown in Figure 8.21b.
If reaction (8.4.12) is shifted sharply to the right:

E+ Pi—) 2P5, or K| << K||,
equations (8.4.11) take the form

PV =0, PV=0, EP=0
d&V” +d2E” —d?R“2MV +E-R) =0 (8.4.13)

d2E” +d2R"2A(R+V + R) =0.

The solutions are illustrated qualitatively in Figure 8.21d.

A specific feature of the distributions thus obtained is that two reactions
occur at the front. This is because of the assumption of immobile site phos-
phorus, ds = 0. If we assume ds # 0, this will lead to two reaction fronts
(Figure 8.22). The front closest to the sample surface is for the formation of
site phosphorus via the reaction E + P; — 2P, and the other front is for the
formation of E-centers via the reaction Ps + V — E. In the case of d; — 0,
both fronts merge to yield the distribution patterns shown in Figure 8.21d.

The comparison of experimental (Figures 8.19 and 8.20) and theoretical
(Figure 8.21) distributions shows that the characteristic features of the phos-
phorus profile in silicon are reproduced only in case (4), under the condition
E + P; — 2P, (Figure 8.23). The formulas for component distributions in this
case are

erfcA/d;
ROf1l-——— A<A
1 )( erfcko/di] 0

0 }\.>7\,0
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Figure 8.22. The distribution of components in P diffusion into silicon on the
assumption of ds # 0 under the following conditions: P; +V — Pg; Ps+V — E; P; +
E — 2P..

A
P
Py(0)+P40)
Py(0)
A
Jp

Figure 8.23. Distributions of electrically active phosphorus (a), its total concentration
(b), and component flows (c) after chemical diffusion of phosphorus into silicon.
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b _ R(0) A<Ag
N ) A> Ao

0 A<
E= E erfcA/dg

—= A>A
erfc}\,o/dE %o

0 7\,<7\.0

V= . 8.4.14
V() 1- erfcA/dy A A ( )
erfC?xo/dV

The constants Ao and E are found from the set of equations derived from
the balance conditions of the type of (8.3.8) at the reaction front:

E = P(0)S(Ao/di)+ET(Ao/dg)—V(e2)T(Ao/dy)
(8.4.15)
Py(0) = 2R (0)S(Ro/d;) =V (o) T(Ao/dy/) -

Using the interpretation of the characteristic points of the P level, indicated
in Figure 8.18, we can obtain from Figure 8.20

R,(0)=5x10%® m=3, Ao =4x10"°m/sY?,

E=4x10®m=3, dZ = Dg =5x107Y m? /5.

In order to make numerical estimations, let us transform (8.4.15) by remov-
ing the term P;(0)S(Ao/d;). Multiplying the first equation in (8.4.9) by 2 and
subtracting the result from the second equation, we find

V(e0)T(Ag/dy) = Py(0)+ 2E[T(Ro/dg) - 1]. (8.4.16)

Taking into account A¢/de ~ 1 and E << Ps(0) from (8.4.16), we get the rela-
tion between the vacancy concentration in the sample bulk V(o) and the dif-
fusion coefficient of vacancies Dy = dy? V(eo) T(Ao/dy) = P(0).

By varying the diffusion coefficient Dy in the range 10°~107** m?/s, we
obtain the concentration values of vacancies, V(e<):
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Dy, m%/s 107° 107 107 0™
V(eo) 1x10% 3x10% 3x10% 3x10%

These relatively large concentrations V(e) indicate that the diffusion of
phosphorus in silicon seems to involve vacancies bound into complexes,
rather than free vacancies. Moreover, when vacancies are substituted by any
other point defect containing no P atom in reactions (8.4.1) and (8.4.2), all
the properties of impurity phosphorus described above remain unchanged.

8.4.2 Radiation-stimulated P diffusion into uniformly O,-doped silicon

Phosphorus distribution in radiation-stimulated diffusion into silicon was
studied in [21] at various oxygen contents in the initial samples. Diffusion
was stimulated by bombardment with argon ions which were absorbed by a
thin (~0.01 um) surface layer. It was suggested in the analysis of post-radia-
tion profiles that the diffusion involved vacancy—oxygen and vacancy—phos-
phorus complexes.

Let us analyze the impurity profiles obtained in [21] and shown in Figure
8.24 on the assumption that they are unstationary and diffusion-like profiles.

The interaction reactions between impurities and vacancies are

P+VZ2 P, PH+VZE  Q+VZ2Q, (8.4.17)

where Q is an oxygen—vacancy complex.

C, m>
1024 | ol
02
103 - "
1022 L
X, pm

0 04 08 12

Figure 8.24. Phosporus distribution due to stimulated diffusion at 873 K as a function
of oxygen content in silicon [21], Nx102? m™: 1-0.12; 2-2.3; 3-6.8.
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The equations for consistent diffusion are

d5Q" +2MQ+Q;) =0

dZE” +d?P2A(E+R,) =0
PV =K/P, PV=K;E, QV=K;Q. (8.4.18)

where Qs is the diffusion coefficient of oxygen atoms and sz is the diffusion
coefficient of a complex.
The boundary conditions are written as

Pili—o = R(0)., Pl =R(0),  Qsfy_o=Qs(0)
(8.4.19)
pl|x:m = P5|x:m =0, Q|x:m = Q(°°) .

The solution to the set of equations (8.4.18) under the boundary and initial
conditions given in (8.4.19) and the comparison with experimental distribu-
tions presented in Figure 8.24 has shown [8] that an agreement between ex-
perimental and theoretical profiles is possible only if the three reactions
(8.4.17) are shifted sharply to the right. The distribution of components for
this case is illustrated in Figure 8.25 and described by the formulas

P,(O)(l erfcA/d; J A<

P = _erfcko/di
0 7\,>7L0
0 7\.<7\.0
= erfcA/d
Q Q(=) 1_# A> g
erfcxo/dQ
0 7\,<}\.0
E =4~ erfc)/dg
E——E= A>A
erfcxo/dE Mo
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Figure 8.25. Theoretical distribution of components in stimulated diffusion of phos-
phorus into silicon.

Qs ={Qs(o) }”<7”0 (8.4.20)

Qs(‘x’) A>hg .
The constants Ao, E , and Qs(e<) are defined by the equations

Q( )=Qs(°°) Q=) T(Ao/dg)
Q(e=)T(Ao/dg )~ ET(Ro/dg )~ R(0)S(Ao/di) (8.4.21)
(

() R(0)S(A/di) —Q(e)T (ko/dQ)-

© 2004 by CRC PressLLC



Table 8.1. Model parameter values.

Profile number ~ Q(es) + Qq(co), Py(c), E,m= Ao mis??
(Figure 8.24) m= m™ m/s2
1 0.12x10% 8.3x10% 1x10%
2 2.3x10% 4.8x10% 4x10% 5x107°  5x107°
3 6.8x10% 2.6x10% 7%x10%

The distributions described by (8.4.20) show that an interstitial P flow
migrates from the sample surface to the reaction front A, and a flow of Q
complexes moves from the sample bulk outward. There are two reactions
occurring at the front: P; + E — 2P and Ps + Q — Q + E. The E-centers pro-
duced at the front migrate inward. VVacancies are intermediate reaction prod-
ucts here. Comparing Figures 8.23 and 8.25, one can see that Q complexes
act as vacancies in the latter case.

Let us make some numerical estimations using the theoretical results.
The experimental profiles yield the following values for the model
parameters (Table 8.1).

Note that the De value for radiation-stimulated diffusion at 873 K is ap-
proximately equal to that for chemical diffusion at 1273 K (Section 8.4.1).

Using (8.4.21), let us estimate the diffusion coefficient of a Q complex.
By multiplying the second equation of (8.4.15) by 2 and summing it up with
the third equation, we obtain

Py(0)+2E[1+ T(Ao/dg)| = Q(==)T(Ro/dg).  (8:4.22)

Hence, with the assumption that Q(e) < Q(es) + Q, and using the values of
Table 8.1, we find Dg ~ 6x107" m°/s.

From the second equation in (8.4.21) and (8.4.22), the relation between
Pi(0) and d; is

P(0)S(Xo/d;) = Py(0) + E[1+ (%o /dg)]. (8.4.23)
When P;(0) varies within 10°-10%° m=, d;? varies within 107°-107¢ m?s. It

also follows from equation (8.4.21) that the increase in Q(e=) due to a higher

oxygen content corresponds to a higher value of E at constant A, and P;(0);
this is what is, in fact, observed in experimental profiles.
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8.4.3 Fe redistribution in B and P diffusion-doped silicon

Section 6.8 considered an indirect redistribution of impurity atoms over
crystallochemical positions, mediated by the crystal electronic subsystem.
But there is also a direct redistribution via a chemical interaction of migrat-
ing atoms. This effect was studied in [22] with reference to phosphorus and
boron diffusion into silicon pre-doped with iron. The diffusion temperature
for both phosphorus and boron was 1273 K and the diffusion times were 18
hours and 3-5 hours, respectively.

The impurity distribution patterns are shown in Figure 7.5. The charac-
teristic features of the Fe profiles are the minima and maxima arising after
the diffusion of boron and phosphorus. The non-monotonic character of Fe
distribution was interpreted in [22] as being due to the formation of
complexes involving P, B, and Fe. However, because of the theory
limitations at that time, the maxima in Fe distribution remained unclear.
Assuming the Fe distribution feature to be associated with quasichemical
reactions among the diffusing components, the authors of [8] suggested the
following interactions of Fe and P impurities in silicon:

Pi+V P

P,+V ZE

Fe; +V  Feg

Fej +P; 2 [FeiPs]

Fe; + E 2 [FeiE]. (8.4.24)

Bearing in mind that the diffusion mechanisms of B and P in silicon are
similar, we believe that this model is also valid for the B—Fe-Si system.

Further, assuming the complexes [FeiPs], [FeiE], and Fes to have a low
mobility and taking into account the high migration rate of interstitial Fe, we
have concluded that Fe decorates P;, E, and V involved in P diffusion. In-
deed, a comparison of the Fe distribution (Figure 7.5a) and the distributions
of components in P diffusion (Figure 8.21f) allows the following conclusion
to be made. The maximum in the distribution of Fe is due to its decoration of
E-centers. The descending region in front of the maximum indicates the
decoration of P site atoms. The specific features of the Fe profile in B diffu-
sion can be interpreted in a similar way.

It should be noted that the lower rate of P diffusion into a Fe-doped
sample (Figure 7.5b) can be naturally accounted for, as in [22], by the bind-
ing of some P atoms to Fe atoms to produce complexes.
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