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Preface 
 
 
 
Every century bears its own name in History, characterizing its principal 
achievement. We do not know yet what name our descendants will give to 
the 20th century. It may be called the nuclear age, owing to the discovery 
and application of nuclear power. Or, it may be called the age of space 
flights, because man has overcome the Earth’s gravity to go into space and 
has even visited the Moon. But there is another possible name which might 
as well be given to the 20th century—the age of electronics! The time that 
has elapsed since the invention of the radio is a period of major 
achievements in solid state electronics which has filled up every “pore” of 
our life. No progress would ever have been possible in nuclear technology, 
space flights or other technologies without electronics. Electronics, in turn, 
directly depends on high quality semiconductor materials. Nature has 
supplied us with very few semiconductor substances, such as germanium, 
silicon, selenium, and tellurium, whereas other commonly used materials of 
the III–V and II–VI groups and more complex compounds (III2–VI3 and III2–
IV–VI) are man-made. 
 All semiconductor materials, both natural and synthesized, require much 
effort for their production in a perfect (defect-free) crystalline state with a 
negligible background of foreign impurities. Such impurities contaminate the 
crystal in an uncontrollable or poorly controllable way. On the other hand, 
all remarkable properties of semiconductors, that paved the way for modern 
solid state electronics, are due not only to their purification but also to a 
well-controlled doping dosage. 
 Today we have at our disposal a nearly complete list of impurities 
suitable for doping basic semiconductors. This circumstance permits sys-
tematization of properties of various semiconductor–impurity systems in one 
book. However, I did not intend to write a reference book, because fairly 
complete and good reference books have already been published. A good 
illustration is the world-known work Numerical Data and Functional Rela-
tionship in Science and Technology. New Series Ed. K. Hellwey and 
O. Madelung. Berlin: Springer–Verlag, 1984. V. 17, pp. 652. No doubt it is 
important to know the properties of a semiconductor doped with an impurity 
in a definite concentration. For practical applications, it is more important, 
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however, to know the techniques, procedures, and external effects which can 
help us to control the distributions of impurity atoms over various crystal 
positions. This control is the key to a wide controllable application of 
impurities, whose potentialities are still far from being exhausted. 
 It was my primary aim to draw the attention of researchers and engineers 
to impurities which have not yet found a wide application in semiconductor 
technology: d-, f-, isovalent, and other types of impurities. I had another aim, 
too. It seems important to me that the western reader should be introduced to 
the research done in this area of physics by scientists in the former Soviet 
Union. I hope this gap will be filled after the publication of this book. 
 The author’s philosophy will inevitably show itself in the material 
presentation, and the reader may not agree with some of my judgments. 
Besides, because of the extensive character of the problem, some of its 
aspects have been left aside, for example, the interaction of impurities with 
dislocations and stacking faults, or the state and behavior of adsorbed 
impurities. I hope, however, that this book will appear useful even in its 
present format. I would be very happy if it could eventually find its place 
among the books by such outstanding researchers as F.A. Kroger of the 
Philips Laboratory in Endhoven, R.A. Swalin of the University of Minne-
sota, A.G. Milnes of the Carnegie–Mellon University, or V.M. Glazov of the 
Moscow Institute for Electronics Technology. 
 I would like to express my sincere gratitude to the many people who have 
stimulated the evolution of my thinking as a scientist and, sometimes, as a 
human being. Among them are the much lamented professors 
R.N. Rubinshtein, D.N. Nasledov, and Yu.V. Shmartzev. My gratitude also 
goes to my numerous colleagues who are presently working actively in 
physics—professors B.V. Tzarenkov, F.A. Gimelfarb, V.M. Koshkin, 
D.G. Andrianov, M.G. Milvidsky, N.S. Rytova, S.V. Bulyarsky, P.M. Grin-
shtein, B.L. Oksengendler, and K.A. Kikoin.   
 I want to thank the translator of this book L.N. Smirnova, Ph.D., who has 
brilliantly overcome numerous translation difficulties, and M.A. Smirnova 
for the camera-ready preparation of the book.  
 Finally, I am very grateful to the Publisher for their effort in publishing 
this book. 
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Chapter 1 
 

The Semiconductor–Impurity System 
 
 
 
1.1  THE SEMICONDUCTOR CRYSTAL AS A 

THERMODYNAMIC SYSTEM 
 
A semiconductor crystal doped with impurities is usually regarded as a solid 
solution, in which the semiconductor is the solvent and the ensemble of im-
purity atoms is the solute. 
 Sites and interstices in a crystal lattice serve as positions for various 
structural units—atoms and vacancies. A chemical potential can be ascribed 
only to these units. 
 A perfect crystal consists only of intrinsic (host) atoms and stoichiomet-
ric vacancies occupying intrinsic sites in the crystal lattice. Any deviation 
from crystal perfection is known as a defect, and the process that has brought 
it into life is termed defect formation. In the generally accepted classification 
[1], impurities and vacancies are referred to as point defects. In this book, the 
word “vacancy” will be used only for nonstoichiometric vacancies formed 
after a host atom has left its site. 
 Normally, point defects are considered to be distributed between two 
phases—the crystal and its ambient. The former is taken to be an entity, 
without subdividing it into the variety of positions provided for impurity 
atoms. This is because a common impurity can usually occupy only one kind 
of position in a crystal lattice in a wide temperature range, irrespective of 
other point defects, intrinsic or impurity-type. One exception is amphoteric 
impurities, which can simultaneously occupy different positions in a lattice 

© 2004 by CRC Press LLC



in commensurable concentrations. Such a crystal is then to be regarded as a 
two-phase system—a site and an interstice, or a cation site and an anion site. 
Therefore, a thermodynamic analysis should involve, at least, a three-phase 
system. 
 It might seem strange, at first glance, to consider the subsystems of sites 
and interstices as individual phases. But a phase is a homogeneous part of a 
system having a common boundary with the other parts (phases) and ex-
changing particles with them. An exchange of particles between sites and 
interstices gives rise to vacancies in the site subsystem and to intrinsic and 
impurity interstitials in the interstitial subsystem. Each subsystem may be 
regarded as an infinite cluster with a possible particle movement inside it [2]. 
Both subsystems can then be assumed to have a common boundary, which is 
fractal rather than plane. In this model, the concept of phase is quite appli-
cable to the site and interstitial subsystems of a crystal, as well as to the 
cation and anion sites in compounds of the AIIIBV or AIIBVI type. 
 Therefore, a semiconductor crystal is essentially a multiphase thermody-
namic system with an actual exchange of atoms, and this should not be ig-
nored in analyzing doping processes. Thermodynamically, a crystal is not a 
strictly isolated system. Its individual parts interact with each other and with 
the ambient. To begin with, it is necessary to distinguish between external 
and internal interactions. External interactions provide the openness of a 
thermodynamic system and can be classified into the following types [3]:  
 – mechanical interactions occurring under the action of external pressure 
or force fields creating elastic strain in a crystal; 
 – thermal interactions resulting from energy exchange under the action 
of a temperature gradient; 
 – exchange of atoms at the boundaries of phases and surfaces, between 
parts of a crystal and other objects, often described by one word—“sink.”   
 Internal interactions, which change the free energy of a closed thermody-
namic system, will be discussed in Chapter 5. 
 Any interaction results in defect formation. This process, therefore, 
represents an exchange of structural elements between individual crystal 
phases and subsystems. These processes disclose the inner structure of the 
thermodynamic system. The arrival of a host atom at the surface (Schottky 
disordering) or at an interstice (Frenkel disordering) give rise to the same 
type of defect—vacancy. However, the crystal free energy changes differ-
ently because of different final positions of the atom. For this reason, various 
quasichemical reactions taking place in a crystal can be considered as pro-
cesses showing the system “from within.” These induce changes in the host 
lattice and impurities; for example, an atom may change its position in the 
lattice, moving from a site to an interstice, or producing a stable quasi-
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molecule (associate) with another point defect, etc. In any case, one can say 
that one object has disappeared and another has appeared, because the 
change of position, association, and similar transformations—all lead to 
considerable changes in the object’s properties. 
 This kind of system is usually assumed in thermodynamic analyses to be 
quasi-closed. But even a quasi-closed system is subject to the action of vari-
ous nonuniform force fields. There are energy and heat flows and numerous 
chemical reactions occurring in it; besides, associates and precipitates are 
formed and disintegrate. In other words, a crystal lives its own complicated 
life due to external and internal interactions. Consequently, one should 
choose with caution a physical model to describe this or that process and 
must look critically at the assumptions on which one bases the model. 
 A crystal can be described in terms of thermodynamic statistics, 
assuming that the system is in equilibrium if the temperature and pressure 
have equalized and all kinetic processes have become steady-state. Under 
these conditions, variations setting the system off balance obey the ine-
quality following from the Klausius inequality [4]: 
 
        dU + PdV – TdS > 0,                                  (1.1.1) 
 
where U is internal crystal energy, P is external pressure, and S is entropy. 
 There are no variations in internal energy or volume in an isolated system 
 
         dV = 0    and    dU = 0.                         (1.1.2) 
 
It follows from (1.1.1) that 
 
          ( )dS U S,  < 0,                                   (1.1.3) 

 
which is equivalent to the following statement: 
In equilibrium, entropy is maximum with respect to all variations, provided 
that the volume and internal energy remain constant. 
The conditions of constant entropy and volume (dS = 0, dV = 0) give 
 
          ( )dU S V,  > 0,                                  (1.1.4) 

 
i.e., in equilibrium, the internal energy of an isolated system takes its maxi-
mum value.  
 Under the conditions of constant pressure and variations setting the sys-
tem off equilibrium, it is not the internal energy that must remain minimal 
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but the sum of this energy and potential energy characterizing the relation to 
external bodies, or enthalpy: 
 
          H = U + PV.                                    (1.1.5) 
 
From (1.1.5), we have 
 
     dU = dH – d(PV) = dH – PdV – VdP – dPdV.            (1.1.6) 
 
Substituting (1.1.6) into the Klausius inequality (1.1.1), we obtain 
 
       TdS – dH + VdP + dPdV < 0.                          (1.1.7) 
 
A procedure similar to this one yields the equilibrium conditions at constant 
pressure [3]: 
 
       ( )dS H P,  < 0  ( )dH S P,  > 0.                      (1.1.8) 

 
It is easy to show with (1.1.7) that at constant temperature and pressure, 
Gibbs free energy must be minimal: 
 
         G = H – TS                                           (1.1.9) 
 
         ( )dG T P,  > 0.                                      (1.1.10) 

 
The system free energy rises. Therefore, Gibbs free energy is a minimum in 
equilibrium, and any variation leads to its increase. 
 This provides us with a method of finding the concentration of point de-
fects—by minimizing crystal free energy. The respective procedures will be 
discussed in Section 1.2. 
 In addition to the thermodynamic description, a doped crystal can be de-
scribed in terms of a kinetic model suggesting the study of the system transi-
tion from one state to another. Kinetic methods provide more information on 
the system properties, since one can find kinetic coefficients characterizing 
the probabilities of processes occurring in the system. 
 Of importance in both approaches is the possible establishment of ther-
modynamic equilibrium under the conditions of actual experimental obser-
vations of these processes. The thermodynamic method is inapplicable with-
out equilibrium conditions. Reliable information can be obtained from an 
analysis of kinetic processes only if the initial and final states of the system 
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are known exactly; but this, again, is possible only in equilibrium. This obvi-
ous fact has been emphasized in [3] because the duration of various pro-
cesses in a semiconductor crystal varies greatly with temperature. This 
should be taken into account when choosing a model for the description of 
such processes. 
 Since the rates of diffusion processes, which determine the moments of 
time the equilibrium is established, increase exponentially with temperature, 
equilibrium conditions are mostly applicable at high temperatures, close to 
those of crystal growth. However, it is always necessary to define the 
temperature range of equilibrium inside and outside the crystal. 
 Crystal doping with impurities is often carried out under conditions not 
differing much from equilibrium conditions, at least, in thin crystal layers 
adjacent to the ambient. The ambient will be assumed in our theoretical 
analysis to be a gas or liquid phase, as is usually the case. Both are important 
because they are widely used in semiconductor doping technologies. 
 The ambient equilibrium can be maintained if, due to diffusion or via 
forced mixing, an impurity arrives at the interface, at least, at the same ve-
locity at which it enters the crystal. Forced mixing is used when a semicon-
ductor is doped during its pulling from a melt. The amount of impurity up-
take ∆C is small as compared with its total concentration C in the melt at the 
growing crystal boundary. Therefore, the melt at the boundary can be consi-
dered to be in equilibrium conditions. Naturally, this is valid for impurities 
with the distribution coefficient K << 1. 
 The ambient can also be suggested to be in equilibrium when a crystal is 
doped in the gas (vapor) phase, because diffusion coefficients of impurity 
atoms in the intrinsic or any other gas phase are always large, and at the 
crystal interface we have ∆C << C. Deviations from the ambient equilibrium 
are especially serious when one uses liquid phase epitaxy. 
 Denote the growth rate of an epitaxial layer as v and its thickness as L. 
Then the value of ∆C/C is defined as [5] 
 


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,       (1.1.11) 

 
where D is the diffusion coefficient of the impurity in the ambient liquid 
phase at growth temperature. 
 Calculations with (1.1.11) show that the necessary rates are v < 10–5 cm/s 
for the typical values of L = 10–3–10–2 cm and D = 10–6–10–4 cm2/s with 
∆C/C < 0.01. Since epitaxial growth rates for semiconductor layers are 
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usually v = 10–5–10–7 cm/s, liquid phase epitaxy during doping can also be 
assumed to be in equilibrium. 
 It is necessary to bear in mind, however, that there are other doping 
methods used in practice, which are characterized by a complete absence of 
equilibrium at the interface, such as ion implantation, molecular beam epi-
taxy, ion–molecular epitaxy, plasma sputtering, diffusion, etc. Here, the im-
purity concentration is determined by the process parameters and the energy 
of doping atoms or ions.  
 The condition for the ambient–crystal equilibrium is characterized by the 
equality of chemical potentials 
 
          µl = µs,                                          (1.1.12) 
 
where the indices l and s refer to the liquid (ambient) and solid (crystal) 
phases, respectively. 
 If we assume that the impurity forms ideal solutions in both phases, the 
chemical potential for the liquid and solid phases will be described as [6] 
 
         µl = µl0 + kT ln Cl                               (1.1.13) 
 
         µs = µs0 + kT ln Cs + µl.                      (1.1.14)  
 
The quantities Cl and Cs are impurity concentrations in the respective phases: 
 

N
NC i

is = , 

 
where Ni is the number of atoms of the i-th kind, N is the number of sites 
they can occupy, while µl0 and µs0, independent of Cl and Cs, are chemical 
potentials of pure components which consist of one sort of atoms occupying 
all appropriate sites, or Gibbs energy gi0 required for introducing a single 
defect into a pure component.  
 Expression (1.1.14) includes chemical potential µe of electrons, which 
reflects the fact that some of the impurity atoms introduced into a crystal 
may be ionized.  
 It follows from (1.1.12) and (1.1.14) that in equilibrium 
 

      C C
kT kTs l

l s e=
−

exp exp
µ µ µ0 0 .                           (1.1.15) 
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The quantity µe can be identified with the Fermi level EF [7]. It will be 
counted off from the conduction band bottom Ec, taking Ec = 0. Then, for the 
donor and acceptor states of the impurity, we will have, respectively, 
 
        µe = Ec – EF = –EF, 
 
     µe = EF – Ev = EF + Ec – Ev – Ec = Eg + EF.              (1.1.16) 
 
One should keep in mind that EF < 0 and Eg > 0. The Fermi level position in 
a crystal totally determines the concentration of free electrons and holes, re-
spectively: 
 
   n = Nc exp (EF/kT),  p = Nv exp [ – (Eg + EF) / kT ].      (1.1.17) 
 
 The opposite is also correct: a change in the free carrier concentration 
will lead to a change of the Fermi level position. From (1.1.15), this must 
lead to a change in the impurity solubility. Considering that Cs = Nn = n = p 
at high temperatures, we will have for donors 
 
      Cs = C Nl c

1/2 1/2 exp [(µl0 – µs0) / 2kT ]                 (1.1.18) 
 
and for acceptors 
 
   Cs = C Nl v

1/2 1/2 exp [(µl0 – µs0) / 2kT ] exp (Eg / 2kT ).          (1.1.19) 
 
Therefore, the relation between Cs and Cl is nonlinear because the chemical 
potential of the crystal electronic subsystem is not constant. 
 The value of chemical potential can be varied, irrespective of the doping 
impurity ionization. This can, in particular, be done by a simultaneous dop-
ing with two electrically active impurities or by generating intrinsic charged 
point defects, etc. Hence, one can draw an important conclusion concerning 
the possibility of controlling the Cs concentration by varying factors capable 
of changing the chemical potential of the free carrier subsystem in a crystal. 
 On the other hand, it is clear from (1.1.15) that a linear experimental re-
lation is to be observed between Cs and Cl at µe = const. This is possible in 
three situations [5]: 
 (a) Cs < ni, where ni is an intrinsic concentration of charge carriers, de-
termined by interband electron transitions, rather than by impurity ioni-
zation; 
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 (b) Cs < Nd,a = const, where Nd,a is the concentration of other electrically 
active donors and acceptors which determine the value of EF, i.e., µe; 
 (c) EF = µe = const at x = 0, where x is the crystal–ambient interface s–l.  
 The case (a) is typical of a slightly doped or compensated semiconductor. 
 The case (b) is rather trivial and, indeed, occurs quite often, especially 
when Nd,a is determined by shallow hydrogen-like impurities and Cs is a 
deep impurity. 
 The case (c) is often misinterpreted as relating to an equilibrium between 
a liquid ambient and a sample surface, rather than to a liquid ambient con-
taining a sample bulk. Nevertheless, it does reflect the equality of chemical 
potentials in the contacting phases, creating no energy barrier to electrons at 
the interface. Let us discuss this case in more detail. 
 As an illustration, consider the contact between a crystal and a liquid 
phase, assuming it to be purely metallic. There is no doubt that this is valid 
for liquid phase epitaxy, since epitaxial films are grown from a metal melt 
containing the necessary non-metal components as dissolved admixtures. For 
example, AIIIBV films (GaAs, GaP, GaSb) are usually grown from a Ga melt 
while InP and InSb are from an In melt. 
 In the Chokhralski or zone melting techniques, the liquid phase is repre-
sented by a semiconductor substance with dopants. A complete metallization 
of chemical bonding occurs during the melting of most semiconductor 
materials [8], and so the liquid phase can be treated as being metallic. 
 Therefore, the s–l interface can be considered as the interface between a 
semiconductor and a metal, or as a Schottky barrier. This approach was first 
suggested in [5] and later developed by the authors of [9–11]. 
 It is quite clear that if impurity atoms diffuse quickly through the s-phase, 
i.e., if they swiftly pass through the region of space charge W in the Schottky 
barrier, an equilibrium will be established between the liquid phase and the 
whole semiconductor bulk. This ordinary bulk equilibrium is established 
under the condition 
 
         v = Ds / W,                                          (1.1.20) 
 
where v is the growth rate of the solid phase and Ds is the impurity diffusion 
coefficient in the solid phase at the growth temperature. 
 Here again, µe is independent of Cs, and the function Cs(Cl

1/2) remains 
valid. But if the doping impurity diffuses slowly, or the solid phase grows 
quickly, so that 
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          v >> Ds / W,                                  (1.1.21) 
 
the impurity appears to be frozen at the interface, and the equilibrium is es-
tablished only between the liquid phase and the crystal surface. The impurity 
concentration in a crystal grown under “surface” equilibrium conditions will 
exceed that in an ordinary bulk equilibrium. 
 An energy barrier ϕk arises at a metal–semiconductor interface under 
equilibrium conditions because of equal electron chemical potentials in both 
phases [12]. So we have at the interface 
 
         µe = EF = Eg – eϕk,                             (1.1.22) 
  
and, since Eg and ϕk are independent of the doping impurity concentration 
Cs, we obtain with (1.1.15) 
 

     
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CC kg0s0l
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which is a linear relation between Cs and Cl, rather than the square root of 
(1.1.18) and (1.1.19). This is the criterion for an experimental differentiation 
between bulk and surface equilibrium conditions.  
 It is easy to show that this conclusion holds for imperfect impurity solu-
tions in both contacting phases, whereas the temperature dependence Cs (T) 
proves to be more complicated. 
 
 
 
1.2  THERMODYNAMIC DESCRIPTIONS OF  

IMPURITY SOLUBILITY 
 
There are three approaches to the calculation of point defect concentrations 
and the parameters that determine them. One is to solve a quantum mecha-
nics problem for the lattice containing a point defect. The problem solution 
is aimed at finding the energy parameters which characterize the formation 
of this defect. This method has not yet provided satisfactory results. Only 
approximate solutions have been suggested based on semi-classical and 
classical conceptions. However, this approach permits evaluation of some 
thermodynamic parameters (dissolution enthalpy and entropy of point 
defects) “from the first principles”, so it deserves a special consideration (see 
Chapter 4). 
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 The other two approaches are based on phenomenological parameters 
derived from a comparison of theoretical formulas and experimental data. 
One of them was suggested by Brouwer [13] and described in detail by 
Kroger [14]. It uses the mass action law and considers defect interactions as 
quasi-chemical reactions. To understand the principle of this approach, let us 
represent the interaction between, say, an atom A and an atom B as a 
reaction producing the product AB: 
 
         A + B ←

→  AB.                                       (1.2.1) 
 
 The equilibrium constant K for this reaction is defined from the mass 
action law as 
 
         K = [AB] / [A] [B],                              (1.2.2) 
 
where the symbol [  ] stands for concentration. 
 The value of K is determined by enthalpy H of the reaction (1.2.1) under 
standard conditions: 
 
         K = K0 exp (H 0 / RT ),                           (1.2.3) 
 
where K 0 is an entropy factor. 
 On the other hand, when describing the equilibrium of reaction (1.2.1), 
we should bear in mind the equality of chemical potentials, following from 
the additivity principle: 
 
          µA + µB = µAB.                                (1.2.4) 
 
 Suppose that µ can be found from (1.1.13); then from (1.2.2), we have 
 

      




 −−−=
RT

gggNL

0
B

0
A

0
ABexp

[A][B]
]AB[ ,                 (1.2.5) 

 
which coincides with (1.2.3), if we put 
 
        g g g HAB A B

0 0 0 0− − = .                                 (1.2.6) 
 
 The other approach to a thermodynamic description of impurity solubility 
is based on the notion that condition (1.1.12) corresponds to the free energy 
minimum of a crystal–ambient system. In the description of the Φ function, 
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which allows this energy minimum to be found, we use the same denotations 
for Gibbs partial energy as in (1.1.13) and (1.1.4) for a single doping defect 
(the denotations were first introduced in [15] and employed in our work [3]): 
 
       .00

β
α

β
α

β
α −−=≡µ Tii TSHgg                           (1.2.7) 

 
Here, T is temperature expressed in energy units, the superscript β indicates 
the defect position in a crystal lattice (site or interstice), and the subscript α 
stands for the defect type (impurity atom, vacancy, antistructural defect, 
etc.). 
 The quantities Hα

β  and S Tα
β  in (1.2.7) represent, respectively, the en-

thalpy of the defect formation and the heat component of entropy, taking into 
account the change in the crystal phonon spectrum due to the formation of a 
single defect. 
 Following the work [15], denote the energy of an electron transfer to the 
defect (or its escape from it) as εα

β . Then the energy due to the defect ioni-
zation will be equal to the product of εα

β  and the concentration of electron-
free acceptors (Nα

β – nα
β), or to the product of εα

β  and the number of 
occupied donors nα

β. This is the case for n-type crystals, while for p-type 
crystals, the relation will be inverse. The relation inversion in the expres-
sions given below is taken into account by the factor dα

β taken to be equal to 
1 for donors and to 0 for acceptors. 
 The Φ function, which allows finding an arbitrary minimum, is [3]: 
 
      ∑ ∑ ϕλ+ϕλ+ϕλ+=Φ

α β

ββ
αα eeG ,                      (1.2.8) 

 
where G is Gibbs free energy for a crystal with a defect; λα, λβ and λe are 
Lagrange indeterminate factors minimizing the Φ function. 
 The expressions for ϕ are 
 
        ϕα α α

β

β
= − =∑N N 0 ,                               (1.2.9) 
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where δα
β  is Cronecker’s symbol. It was shown in [3] that λe = µe and λα = 

µα, whereas λβ could be excluded from consideration by selecting the energy 
reference. 
 Thus, the final expression for the defect concentration is 
 
         ( )β

α
β
α

β
β

β
α += B1ANN ,                         (1.2.12) 

 
where β

αA  and β
αB  represent the reduced functions 
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where Eg is the forbidden gap width of a semiconductor and the quantities 
rαβ  and Rα

β  are degeneration factors for the filled and unfilled electronic 
states of the defect, respectively. 
 We should add to (1.2.12) an expression for electron concentration 
 
         β

α
β
α

β
β

β
α = BANn .                                  (1.2.15) 

 
 The greatest difficulty of this thermodynamic treatment is associated with 
imperfection of the impurity solution and solutions of other point defects in 
the solid phase. The liquid (ambient) phase is also imperfect. Even the gas 
phase often contains multiatomic groups, with the atoms interacting with one 
another, so that the phase is far from being perfect. 
 For these cases, the expressions for partial chemical potentials are not as 
simple as (1.1.14), and the additivity of chemical potentials proves invalid 
for the crystal as a whole: 
 
          µ µs s= ∑ i

i
.                                  (1.2.16) 

 
 There have been attempts, made in terms of general thermodynamics, to 
bypass this difficulty by replacing concentrations or mole fractions x by ac-
tivities a: 
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           a = fx,                                      (1.2.17) 
 
where f is an activity coefficient which is, in turn, a function of composition. 
So, instead of (1.1.13), we have for the liquid phase 
 
         µ µα αl l l= +0 RT aln ,                         (1.2.18) 

 
where µ αl

0  is the chemical potential in a pure component melt. In other 

words, the expression for a partial chemical potential also has a simple form, 
while the activity coefficient now has a complicated concentration depen-
dence. 
 Activity is a parameter taking into account the concentration and interac-
tion of any crystal component with other components. Relation (1.2.18) 
holds true not only for a one-component but also for a multicomponent melt. 
In particular, if the liquid phase represents an αβ compound melt, the 
chemical potential µ αβl  will be equal to the sum of the chemical potentials 

of all constituents: 
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 The expression 
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will be substituted into (1.2.13) to obtain the crystal chemical potential, 
taking the energy of a perfect defect-free crystal as the reference for all 
energies: 
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Instead of (1.2.13), we will have 
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  This expression enters (1.2.12) and (1.2.15), relating the concentrations 
of any kinds of defect, including soluble impurities, to their activities. The 
latter represent the ratio of the gas pressure above the crystal melt to that 
above the pure component at the same temperature [14]: 
 

          0
α

α
α =

P
Pa .                                     (1.2.23) 

 
 The activity can also be found from experimental liquidus curves, where 
the concentrations are defined as 
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where Hf and Tf are the melting heat and temperature, and the activity is de-
scribed as [14] 
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In other words, the activity can be found from an analysis of the phase dia-
gram and  thermodynamic quantities—the melting or dissolution heat. 
 Finally, for some AIIIBV semiconductors containing impurity C, the inter-
action parameters ΩAC, ΩBC, and ΩAB are known. Then, the activity of an 
impurity (defect) can be calculated from [17] 
 
   ( )RT x x x xCln γ = + + + −Ω Ω Ω Ω ΩAC A BC B AC BC AB A B

2 2 .    (1.2.25) 
 
 Another attempt [14] to allow for the deviation from solution perfection 
was to introduce what is known as excessive thermodynamic functions 
∆G exc, ∆S exc, and ∆H exc equal to the difference between their actual values 
and those for an ideal solution: 
 
        ∆G exc = ∆G mix – ∆Gid

mix,                         (1.2.26) 
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        ∆S exc = ∆S mix – ∆Sid
mix,                            (1.2.27) 

 
        ∆H exc = ∆H mix – ∆Hid

mix,                         (1.2.28) 
 
where ∆G mix, ∆S mix, and ∆H mix are the mixing energy, entropy, and enthal-
py, respectively. 
 It is quite obvious that both descriptions of solution deviation from per-
fection must be equivalent to each other; therefore, the excessive functions 
and activity coefficients must be interrelated. Both descriptions—the one 
with activity coefficients and the other with excessive thermodynamic func-
tions—are more or less suitable only at their small values, i.e., at 
 
       f << 1,  ∆G exc << ∆G mix, 

(1.2.29) 
      ∆S exc << ∆S mix,  ∆H exc << ∆H mix. 
 

Let us compare these phenomenological methods. 
The method of quasi-chemical reactions is not flexible enough. If an ad-

ditional type of defect is introduced into the problem, the number of quasi-
chemical reactions is to be increased. One is faced with this situation when 
treating amphoteric impurity solubility in real crystals. In addition to doping 
impurity atoms, a semiconductor crystal contains foreign impurities, vacan-
cies, intrinsic interstices, gas admixtures, associate defects of the impurity–
vacancy type, etc. Moreover, many of these defects may be in both neutral 
and ionized states. 
 Concentrations of all defects are interrelated. Therefore, the concentra-
tion of each defect type, including the sought for Cs, can be expressed as a 
combination of partial K values characterizing individual quasi-chemical 
reactions. But the main difficulty in using this method is the lack of know-
ledge about Hi, i.e., the partial enthalpies of quasi-chemical reactions. A ge-
neral disadvantage of this method is that it neglects practically all types of 
interaction among defects. 
 The method of free energy minimization is free from these flaws. On the 
other hand, one must know the semiconductor–impurity solid solution 
model, which is unnecessary in the quasi-chemical approach. However, most 
semiconductor solid solutions are regular, or even perfect. For this reason, 
the application of the minimization method to calculations of soluble 
impurity concentrations seems preferable, although involving more cumber-
some procedures. 
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 The first general model, based on Gibbs free energy minimization and 
designed for the calculation of defect formation, was suggested by Vinetzky 
and Kholodar [18] and developed by Bulyarsky and Oleinikov [15, 16]. 
 Following this method closely, we have derived [3] formulas relating 
crystal growth conditions to several physical quantities—concentrations of 
various defects, high temperature concentrations of free carriers, the homo-
geneity region width, and impurity distribution coefficients. This approach 
allows one to invoke a greater variety of experimental data, thereby con-
structing more sophisticated and realistic models. In Section 5.7, we will il-
lustrate the general solution to this problem for a regular semiconductor–im-
purity solution, taking into account all possible interactions of impurity 
atoms with one another and with other point defects.  
 The two methods of thermodynamic description discussed above require 
a knowledge of the thermodynamic behavior of charge carriers. In the first 
model, it is described in terms of quasi-chemical ionization reactions of de-
fects (impurities): 
 
      [  ]0 ←

→  [  ]+ + n,  [  ]0 ←
→  [  ]– + p,                 (1.2.30) 

 
where [  ] stands for defect concentration. 
 In the other model, the carrier thermodynamics is defined by the Fermi 
level position in the crystal band structure. The electron–hole subsystem of a 
crystal is related to its atom–defect subsystem. In other words, the concentra-
tions of charge carriers and those of charged point defects are interrelated. 
Since the crystal as a whole is electrically neutral, this relationship is written 
as a neutrality condition (equation): 
 
        [ ] [ ]n p

k qqk
+ = + ∑∑

− + ,                          (1.2.31) 

 
where k and q are the number of acceptor and donor defects, respectively. 
 The concentrations of charged defects are, in turn, related to total concen-
trations  
 
         [  ] = [  ]0 + [  ]+                                  (1.2.32) 
 
via the quasi-chemical reactions of (1.2.30). Here, a plus superscript refers to 
a donor defect and a minus one to an acceptor defect. 
 Thus, the solution of the neutrality equation (1.2.31) is an integral part of 
a thermodynamic treatment of solubility of any impurity. 
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1.3  GENERAL CHARACTERISTICS OF IMPURITY 
CENTERS 

 
There are two general concepts used to describe an impurity center in a 
crystal—its state and behavior. 
 In the generally accepted terminology [19], an impurity state is under-
stood as the electronic structure of a center, its charge states, positions and 
local symmetry in the host crystal lattice. The word “behavior” covers the 
energy spectrum, the capture cross sections for charge carriers and photons, 
the degeneracy factor, and some other parameters of the center, which 
describe typical features of the system of interest. From here follow 
quantitative physicochemical characteristics of impurity centers. Of primary 
importance is their solubility, i.e., the equilibrium concentration of impurity 
atoms in a particular crystal at a definite temperature and pressure. The 
temperature and pressure dependences of solubility are represented as P–T–x 
diagrams, where P is pressure above the solution, T is temperature, and x is 
composition expressed as mole fraction or impurity concentration. It is 
difficult to present a three-dimensional diagram. Moreover, one of the 
experimental parameters, either P or T, is maintained constant, reducing the 
diagram to the functions x(T)P=const or x(P)T=const. The xl(T) and xs(T) functions 
represent liquidus and solidus curves, i.e., solubilities in liquid and solid 
semiconductor–impurity solutions. 
 Naturally, dissolution enthalpy and entropy are also physicochemical 
characteristics. The former defines the energy required for the dissolution of 
impurity atoms and the latter characterizes the degree of ordering of a semi-
conductor–impurity solution. 
 A parameter important for semiconductor technology is 
 

         K x
x T T
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
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=

s

l
m

                                    (1.3.1) 

 
measured at melting temperature. It is known as an equilibrium distribution 
coefficient of an impurity in a particular semiconductor. In real conditions, 
this ratio is measured at other temperatures, rather than at T = Tm. Thus the 
distribution coefficient K∗ differs from K and appears dependent on the 
growth rate of a doped semiconductor sample, on the mixing rate during the 
growth from the melt, and on the presence of other point defects because 
they interact in the liquid and solid phases. The parameter K* is termed an 
effective distribution coefficient of an impurity. 
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 Among other physicochemical parameters are the activity a and the ac-
tivity coefficient f for the solid and liquid phases mentioned above, which 
describe the degree of deviation from crystal perfection. 
 Energy characteristics include ionization energies of impurity atoms in a 
crystal, i.e., the energy levels contributed by impurity atoms to the crystal 
spectrum. More than one level may be associated with an impurity center, 
which means that impurity centers may be electrically neutral or singly and 
multiply charged. 
 Besides, there is the electron affinity of impurity atoms, Ej. Qualitatively, 
ionization and electron affinity largely define the donor or acceptor nature of 
impurities. Calculation of Ei and Ej requires the choice of reference. This is 
usually the allowed band edge Ec or Ev, but sometimes it is more convenient 
to take Eg/2 = 0 or the Fermi level position EF = 0 as a reference point. 
 The next important energy characteristic is the cross section of non-equi-
librium carrier capture by an impurity center—for electrons σn and for do-
nors σp. This parameter describes the kinetics of charge carriers, i.e., their 
recombination by impurities. The quantitative parameters of impurity re-
combination are the lifetimes τn and τp of a doped semiconductor. 
 The energy characteristics of impurity centers manifest themselves in 
many properties of semiconductors under the action of external factors. For 
example, light irradiation can provide partial coefficients of light absorption 
and reflection by “impurity centers” and “free carriers” [21], hydrostatic 
compression leads to splitting of impurities initially present in a crystal, 
thereby increasing the content of active doping impurity atoms [22], etc. 
 Kinetic characteristics are used to describe migration of impurity atoms 
in the semiconductor bulk and on its surface. A macroscopic parameter is the 
diffusion coefficient D. Since it is generally defined as [23] 
 
        D = D0 exp (– Em / kT),                               (1.3.2) 
 
the activation energy for diffusion Em and the entropy factor D0 should also 
be referred to the kinetic characteristics of impurity centers. 
 It is important to classify impurity centers, but it would be incorrect to 
base this classification on any one characteristic. There are three criteria ge-
nerally accepted for this purpose. Impurity centers are classified by the type 
of crystallochemical position, by the nature of chemical bonding of an impu-
rity atom to host atoms, and by the building-in pattern of impurity levels in 
the semiconductor energy spectrum. These criteria, denoted I, II, and III in 
Table 1.1, permit the identification of three types of impurity centers. 
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Table 1.1  Classification of impurity centers in semiconductors. 
 

I II III 

1. site 1. hydrogen-like 1. shallow 
    (substitution) 2. with partly filled 2. deep 
2. interstitial     electron shells 3. resonance 
3. antistructural 3. amphoteric 4. antiresonance 
 4. isovalent  
 5. gas-generating  

 
 The nature of impurities in group I is clear from their names. Those in 
group II will be described in the next chapter. Here, we will discuss briefly 
only the impurities of group III. 
 Shallow impurities are those introducing their energy levels into the 
semiconductor forbidden gap in the immediate vicinity of the allowed band 
edges Ec and Ev. 
 Deep impurities are, on the contrary, those having their energy levels far 
from Ec and Ev, deep into the forbidden gap. This classification does not 
draw a sharp energy line between shallow and deep levels. It is generally 
accepted that the ionization energy Ei of shallow impurities does not exceed 
(0.05–0.07)Eg. Impurities with larger Ei refer to deep impurities. The arbitra-
ry character of this subdivision will be shown in Section 2.1. 
 The above classification differentiates between resonance and antireso-
nance levels, depending on their position in the conduction or valence bands, 
respectively. Hjalmarson and co-workers [24] have shown that they 
represent intrinsic binding (antibinding) impurity states, as distinguished 
from impurities, whose binding (antibinding) states produced by hybridi-
zation of impurity s-electrons with host p-electrons are made up of Bloch 
functions of the crystal atoms. Deep impurities are formed in the latter 
situation. The formation of impurities listed in Table 1.1 will be discussed in 
Section 2.2. 
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Chapter 2 
 

Impurity Behavior in Semiconductors 
 
 
 
2.1  HYDROGEN-LIKE IMPURITIES 
 
The hydrogen-like behavior of some impurities follows from a simple 
mechanism for impurity atoms which form a substitutional solution with a 
semiconductor crystal. The valences of a substituting atom and a substituted 
atom differ by ±1. For germanium and silicon, these are group-III and 
group-V impurity atoms (Figure 2.1). In this case, four outer valent electrons 
of a host atom are replaced by four valent electrons of an impurity atom. 
Likewise, hydrogen-like impurities for AIIIBV compounds are group-II atoms 
(acceptors), which replace AIII-sublattice atoms, and group-VI atoms (do-
nors), which replace BV-sublattice atoms. 
 It is generally believed that the basic theory of hydrogen-like impurity 
states (which normally produce shallow levels in semiconductors) was com-
pleted about 40 years ago. This was mostly done by Cohn and Lattinger [1, 
2] who used the effective mass (EM) method. They showed that the concept 
of effective mass characterizing the dispersion law of charge carriers in a 
forbidden gap is also valid for the description of electron states in a non-
periodic force field created by various crystal defects, including impurity 
centers. On two general assumptions—(1) a slow variation in defect potential 
perturbing the crystal periodic potential and (2) a lower carrier binding 
energy (ionization energy) than the forbidden gap width, Ei << Eg, i.e., the 
problem of finding the impurity energy spectrum and the respective wave 
functions reduces to a one-electron problem described by the equation 
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Figure 2.1. Schematic diagram illustrating the formation of donors and acceptors in a 
doped covalent crystal: (a) – no impurity;  (b) – with a donor;  (c) – with an acceptor. 
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where ( )F r  is what is known as a peak function related to the sought for 

wave function ( )Ψ r  as ( ) ( ) ( )Ψ r F r U rn= ,0 . Here, ( )U rn,0  is the norma-

lized Bloch function near the conduction band extremum with k = 0. 
 The condition for a slow variation of impurity potential can be written as 
 
          a V V0 1= ∇ << ,                               (2.1.2) 
 
where a0 is the lattice period. 
 If we represent the potential energy ( )V r  of a charge carrier localized in 
the impurity center field as Coulomb interaction energy, taking into account 
the crystal static permittivity V(r) = – e2/Kr, equation (2.1.1) will transform 
to the wave equation for a hydrogen atom. Its solutions are 
 
         E Ry n= − * 2 ,                                     (2.1.3) 
 
where Ry* is the ground energy of an impurity in the hydrogen-like approxi-
mation (the effective Rydberger is Ry e m K* /= 4 2 22 , n = 1, 2, ...). 
 The peak function for the ground state is 
 

       ( )
( )

F r
a

r
a
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1
3 1 2π / exp ,                             (2.1.4) 
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where the orbit radius of an impurity electron is a = h2K / me2, with the value 
of a much larger than the lattice constant. 
 These simple relations for the energy and characteristic size of the wave 
function have been derived on the assumption of an isotropic dispersion E(k) 
which is valid for many AIIIBV and AIIBVI compounds, with the absolute 
conduction band maximum lying at the Brillouin zone center at k = 0. 
 The data presented in Table 2.1 were borrowed from [2] to demonstrate 
that a simple modification of the EM method describes quite satisfactorily 
experimental results for shallow donors in some crystals. Especially good is 
the agreement for excited impurity states. 
 For elemental germanium and silicon crystals having a complex conduc-
tion band structure, the ionization energies of the 1s-levels1 of group-V do-
nors calculated from (2.1.3) differ considerably from the experimental va-
lues. Nevertheless, the comparison of theoretical and experimental results 
shows that a simple EM method provides a correct order of magnitude for 
the energy of the ground s-type impurity state and that the ionization energy 
values for excited p-states of hydrogen-like centers are quite close to the ex-
perimental values. For direct band semiconductors of the GaAs type, the 
ionization energies of group-VI and group-IV donors are close to one 
another (see Table 2.1), showing only a 10% difference from the calcu-
lations. 
 However, the effective mass method failed to account for the dependence 
of the ground state energy on the doping impurity chemistry. For example, 
the differences in Ei values for group-V donors in germanium and silicon are 
as large as 30% and 100%, respectively. This method is also entirely unsuit-
able for the description of energy spectra of isoelectron and deep impurity 
centers. 
 The EM method has been considerably improved over the time that has 
passed since the publications of Cohn and Lattinger. These improvements 
have been due to the following findings. The impurity potential in the vicini-
ty of a defect was refined [3–5], and the spatial variation of dielectric 
screening of the impurity field, K(r), essential in the vicinity of an impurity 
center, was taken into account [5–8]. Besides, the theory considered the real 
band structure having both equivalent and additional extrema in the conduc-
tion band [9–12]. 
 It should be noted that most authors made their calculations taking ac-
count of one factor only, while other important aspects of the problem were 
left aside. This, certainly, reduced the applicability of theoretical results, in-
dicating, on the other hand, the complexity of the problem. 
                                                           
1 Similarity in the energy spectra of shallow impurities and hydrogen atoms is reflected, in 
particular, in the designation of the ground and excited states: 1s, 2s, 2p, etc.  
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Table 2.1. Ionization energy of shallow impurities in some semiconductors. 
 

Substance K m/m0 E1s, MeV E2p, MeV 

   Theory Experiment Theory 

GaAs 12.53 0.066 5.67 6.08 (Ge)1 1.422  
    5.81 (Si)  
    5.89 (Se)  
    6.1 (S)  
    5.87 (Sn)  
InP 12.60 0.080 6.80 7.28 1.70 
CdTe 10.00 0.96 12.96 13.78 3.24 
CdSe 9.00 0.110 18.33 – – 

 
1 Bracketed are doping impurities for GaAs. 
2 The experimental value for GaAs is E2p = 1.44. 
 
 A detailed analysis of all refinements introduced in the EM method can 
be found in [2–13]. So we will present only some results reflecting the 
progress of this method in the calculation of energy spectra of shallow local 
states, as was done in our work [14]. This problem can be best illustrated 
with reference to elemental germanium and silicon, since their shallow donor 
and acceptor spectra have been studied most thoroughly. 
 The effective mass of electrons in both semiconductors is anisotropic, the 
absolute minima are aligned with the [111]-axis for germanium and the 
[100]-axis for silicon, and the iso-energy surfaces represent ellipsoids of 
revolution described by the known values of longitudinal and transverse ef-
fective masses. The number of equivalent ellipsoids N is prescribed by the 
cubic crystal symmetry and is equal to 4 and 6 for germanium and silicon, 
respectively; as a result, the local states appear to be N-fold degenerate. For 
this case, the wave function of an impurity electron is 
 

        ( ) ( ) ( )Ψ r a F r U rj j j
j

N
= ∑

=1
,                           (2.1.5) 

 
where factors aj are determined by the impurity state symmetry. 
 It is essential that the deviation of the impurity potential from the Cou-
lomb potential in the immediate vicinity of a center leads to impurity state 
splitting, whose nature can be identified from the symmetry considerations 
alone. For example, the ground 6-fold degenerate donor state in silicon splits 
into a singlet (A1), a triplet T2, and a doublet E state; this splitting is  
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Figure 2.2. Schematic splitting of the ground donor state in silicon. Numbers in bra-
ckets indicate the degeneracy multiplicity of energy levels with spin degeneracy not 
taken into acccount. 
 
illustrated in Figure 2.2. The ground state of a donor in germanium splits into 
two states—a singlet and a triplet. 
 Baldereschi [10] has demonstrated the necessity to make allowance for so 
called intervalley mixing, or intervalley interaction, leading to splitting. He 
took into account the wave vector dependence of dielectric permittivity, 
which becomes appreciable at its large values. His calculations and available 
experimental data for germanium and silicon are given in Table 2.2. The 
energy spectra of excited 2s, 2p, 3s, etc., donor states in germanium and sili-
con have been calculated by Faulkner [15], who used the variational method 
taking account of effective mass anisotropy. These results are presented in 
Figures 2.3 and 2.4. One can see that the effective mass method satisfactorily 
describes the spectrum of excited p-states of donors, in contrast with the 
 
Table 2.2. Binding energy of splitted levels of the donor ground 1s-state in germa-

nium and silicon, meV [7]. 
 

Donor Ge Si 

 A1 T2 A1 T2 E 

– 9.81* 9.21* 31.27* 20.67* 19.57* 
P 12.90 9.90 45.50 33.90 32.60 

As 14.17 10.0 57.70 32.60 31.20 
Sb 10.32 10.0 42.70 32.90 30.60 

 
* Calculations. 
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Figure 2.3. The energy spectrum of donors in germanium [15]. 
 
 

 
 

Figure 2.4. The energy spectrum of donors in silicon [15]. 
 
ground state. Indeed, the effect of impurity short-range potential is small, 
and the wave functions of p-states vanish in the immediate vicinity of an 
impurity due to the state symmetry. The agreement between the calculations 
and experimental values for excited levels proved to be so good that the 
author [15] was even able to refine the dielectric permittivity values for 
germanium and silicon at low temperatures. 
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Figure 2.5. The spectrum of excited states of acceptor impurities in germanium (a) 
and silicon (b) [2]. 
 
 The agreement between the experimental and theoretical values for the 
excited acceptor levels in germanium and silicon was also as good. Without 
going into details of the theoretical model used, we illustrate in Figure 2.5 
the calculated spectra of group-III excited acceptor states, borrowed from 
[2], together with available experimental data. 
 As for the ground state energy of impurity centers, the agreement 
between calculated and experimental values leaves much to be desired. To 
describe the extent of disagreement, one often uses the value of “chemical 
shift” ∆ = Ej – E1, where Ej is the binding energy calculated from (2.1.3) with 
n = 1. The chemical shift is primarily due to intervalley interaction and, of 
course, with the potential (electronic structure) of the impurity center. An 
important correction to the EM method is that the polarization of the medium 
in the vicinity of an impurity ion cannot be described by a macroscopic 
dielectric constant. Indeed, the allowance for spatial dispersion K(r) changes 
radically the impurity effective potential at the central site. 
 Experimental energy levels of hydrogen-like impurities in AIV and AIIIBV 
semiconductors are summarized in Tables 2.3–2.5; their solubility data will 
be discussed in Chapter 3. 
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Table 2.3. Ionization energies Ei (meV) of group-III acceptors and group-V donors in 
germanium (Ei values are counted from Ev for acceptors and from Ec for 
donors). 

 

Impurity Acceptors Donors 

 B Al Ga In Tl P As Sb Bi 

Ei  (OM) 10.57 10.90 11.07 11.74 13.10 12.76 14.04 10.19 12.68 
Ei  (EM) 10.4 10.2 10.8 11.2 – 12.0 12.7 9.6 11.5 

 
OM – optical measurement, EM – electrical measurement. 
 
 
Table 2.4. Ionization energies Ei (meV) of group-III acceptors and group-V donors in 

silicon. (Ei values are counted from Ev for acceptors and from Ec for 
donors). 

 

Impurity Acceptors Donors 

 B Al Ga In Tl P As Sb Bi 

Ei  (OM) 44.3 68.4 72.3 155.4 – 45.3 53 43 70 
Ei  (EM) 46 57 65 160 200 44 49 39 69 

 
OM – optical measurement, EM – electrical measurement. 
 
 The reader may find it surprising that we have given no summary table 
for AIIBVI semiconductors, but this is due to some specific properties of these 
crystals. First, the band structure of these semiconductors consists of several 
valence bands, holes in the lower sub-band having a much lower mobility 
than in the upper sub-band. So hole transition to the sub-band with a lower 
mobility increases appreciably the Hall coefficient, e.g., PbTe shows this 
effect at a temperature above 150 K. Due to this effect, it is practically 
impossible to identify shallow acceptor levels in p-type crystals even if they 
are introduced deliberately. Second, the high values of static dielectric 
permittivity and the small effective masses of electrons (∼10–2m0) lead to 
very low values of impurity levels in n-type crystals. These levels are so 
shallow that they become completely ionized even at helium temperatures 
and merge with the allowed band to form a common band. 
 Nevertheless, there have been some reports on impurity levels in AIIBVI  
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Table 2.5. Ionization energies Ei (meV) of group-II acceptors and group-VI donors in 
AIIIBV semiconductors. (Ei values are counted from Ev for acceptors and 
from Ec for donors). 

 

 Acceptors Donors 

Semiconductors Zn Cd S Se Te 

GaP 70.1 102.5 107 102 92.6 
GaAs 24...31 21...30 5.84 5.81 3 
GaSb 37 – – – – 
InP 4 5 – – – 

InAs – 11 – – – 
InSb 7.5 7.5 250 150 50 

 
The GaSb conduction band has three minima: the major Γ-minimum and two minor 
X- and L-minima at different points of the Brillouin zone; S, Se, and Te impurity 
atoms form very shallow levels within Eg(Γ) – 30 meV, the atomic sequence 
indicating the decreasing depth. As for the minor minima, the atomic sequence is 
reverse, but the ionization energy lies about 300 times deeper. 
 
semiconductors. If they are found to be shallow, their hydrogen-like nature 
should be questioned. 
 
 
 
2.2  IMPURITIES WITH PARTLY FILLED ELECTRON 

SHELLS (d- AND f-IMPURITIES) 
 
It has been shown experimentally [14] that transition metal atoms dissolve at 
interstices of germanium and silicon crystal lattices and do not interact 
chemically, in the strict sense of this word, with host atoms. In other words, 
d-electrons do not mix with electrons of germanium and silicon host atoms. 
In AIIIBV and AIIBVI semiconductors, they, on the contrary, produce substitu-
tional solutions and form chemical bonds. This means that d-electrons usu-
ally hydridize with s- and p-electrons of the A-sublattice atoms. For this rea-
son, impurity transition metal atoms, which are in an un-ionized state in a 
semiconductor, are capable, owing to their electrical activity, to give off their 
d-electrons to the conduction band, say, under the action of light: 
 
        A Ad c

0 + → ++ω e ,                              (2.2.1) 
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Figure 2.6. Optical transitions in the ionization of donor (D) and acceptor (A) states; 
transitions with excited donor (δ) and acceptor (α) excitons of amphoteric 3d-
impurity atoms. 
 
These atoms, however, are also capable of capturing host valent electrons 
onto the d-orbitals to produce holes in the valence band: 
 
        A Aa v

0 + → +−ω p .                              (2.2.2) 
 
 These transitions are indicated by arrows in Figure 2.6. The d-shell con-
figuration changes during the transition, which means that the electron 
population of the shell changes. What one sees in Figure 2.6 are known as 
Allen diagrams. 
 The initial configuration of a d-atom is determined by its crystallochemi-
cal state. This depends on the crystal type and the position of the impurity d-
atom in the crystal lattice. The rules for the change in the d-atom electronic 
configuration in a semiconductor crystal are described by a model suggested 
by Ludwig and Woodbury [18], who originally based it on experimental 
data. Later, the model was substantiated theoretically by Roitzin and 
Firshtein [19]. So we will use the abbreviation RFLW for it, as was 
suggested in [14].  
 When applied to silicon, this model assumes that in the substitution of a 
crystal lattice site, 4s-electrons and some of the missing (up to 4) 3d-
electrons of a d-atom produce bonds with the nearest four silicon atoms. If a 
d-atom occupies an interstice, its 4s-electrons are repelled by the electrons of 
the nearest silicon atoms (ligands) and fill the d-shell. Therefore, 4-valent 
silicon and germanium crystals exhibit the following electronic restructuring 
of the d-atom: 
 
                                             3dn–(4–m) (site) 
                  3dn4sm  
             (free atom)                                                                                  (2.2.3) 
                                             3dn+m (interstice). 
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Many experimental data [14] have supported the applicability of this model 
to binary AIIIBV and AIIBVI semiconductors as well. The general result of the 
RFLW model can be represented schematically: 
 
                                              3d n–(V–m) (site)      
                  3d n4sm                                                                               
              (free atom)                                                                  (2.2.4) 
                                              3d n+m (interstice), 
 
where V is the valence of the substituted host atom. 
 The RFLW model is based on the concepts of the well-known crystal 
field theory [20] assuming the equivalence of spectroscopic units to describe 
electron terms and of coordination polyhedra (tetrahedra, octahedra, etc.) of 
the crystal structure. A polyhedron is considered as consisting of negatively 
charged ligand ions located at its vertices and a positively charged d-metal 
ion located at its center. 
 The main feature of the crystal field theory is the neglect of the electronic 
structure of ligands, which means that ligands are identified with electrical 
point charges. Their function is reduced to inducing an electric field, termed 
a crystal field. 
 The crystal field symmetry is determined by the symmetry of the polyhe-
dron which makes up the crystal structure. In AIV, AIIIBV, and AIIBVI semi-
conductors, one should consider only two types of symmetry—tetrahedral 
symmetry (Td) and octahedral symmetry (Oh) to account for the second coor- 
dination sphere. The transformation mechanism for electron terms of the 
central d-ion in a ligand crystal field has been discussed in the book [14]. 
 
Table 2.6. Types of interaction described by crystal field theory parameters. 
 

Parameters of 
crystal field theory 

 
Types of interaction 

∆ = 10Dq Interaction of a d-ion with crystal field Hcr; it is the measure of 
field strength and determines the splitting of d-ion terms in the 
crystal. 

A Interelectron interaction in a d-ion; A = const for all d n-
configurations. 

B, C Interelectron interaction in a d-ion Hee; it determines the 
separation of terms due to Coulomb repulsion of electrons. 

λ Spin-orbital interaction HLS; it is the interaction measure of 
orbital and spin moments of a d-ion in the crystal, leading to 
additional splitting of its levels. 
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Table 2.7. Valent states and splitting of d-ion terms in a tetrahedral crystal field. 
 

Free d-ions d-ions in crystal field 

Ni 3d84s2     Ni4+ Ni3+ Ni2+   
Co 3d74s2     Co3+ Co2+ Co+   
Fe 3d64s2       Fe2+ Fe+ Fe0 
Mn 3d64s2 Mn7+ Mn6+ Mn5+ Mn4+ Mn3+ Mn2+ Mn+ Mn0 Mn– 
Cr 3d54s+ Cr6+ Cr5+ Cr4+ Cr3+ Cr2+ Cr+ Cr0   
V  3d34s2 V5+ V4+ V3+ V2+ V+ V0    
Ti  3d24s2 Ti4+ Ti3+ Ti2+ Ti+ Ti0     
Sc 3d14s2 Sc3+ Sc2+ Sc+ Sc0      
Electronic 3d 0 3d 1 3d 2 3d 3 3d 4 3d 5 3d 6 3d 7 3d 8 
configuration          
Number of 0 1 2 3 4 5 6(4) 7(3) 8(2) 
dn-electrons          
Spin S = n/2 0 1/2 1 3/2 2 5/2 2 3/2 1 
Term 2s+1L 1S 2D 3F 4F 5D 6S 5D 4F 3F 

 
 The parameters in the crystal field theory are the Pack parameters: A, B, 
C and parameters Dq and λ. The types of interaction they describe are listed 
in Table 2.6, and the term splitting in a tetrahedral field following from 
group theory is shown schematically in Table 2.7. 
 It is easy to see that the schemes for the d-configuration in a tetrahedral 
field are identical to those for d 10–n-configurations in an octahedral field. It 
follows from the crystal field theory [20] that the splitting of terms of the d 1, 
d 4, d 6, and d 9 configurations is described only by parameter ∆. For ions, the 
d 2, d 3, d 7, and d 9 splittings are described by parameters Dq, B, and C. For 
this case, the expressions for interlevel energy are presented in [14]. 
 A complete semi-quantitative picture of term splitting for ions with 
different d n-configurations in a tetrahedral field (in an octahedral field for 
d 10–n-configurations) is represented by what is known as Tanabe–Sugano 
diagrams which can be found in [20] (Figure 2.7). These diagrams give a 
general picture of the behavior of all d-ion levels in a crystal field: the 
arrangement of the levels and the relative differences between them. 
Tanabe–Sugano diagrams are usually taken as initial data in experimental 
data processing. 
 It is necessary to point out the limits of the diagram applicability, which 
are largely associated with two circumstances: (1) the diagram is built only 
for one value of B and C; (2) the values of B and C refer only to free d-ions. 
However, the values of B and C for d-ions in crystals may differ considerab- 
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Figure 2.7. Energy levels for the d n-configuration of 3d 8 ions in a tetrahedral field. 
 
ly. Moreover, the diagrams ignore spin-orbital and other fine interactions. 
These limitations indicate their qualitative, rather than quantitative, signifi-
cance. 
 There are also more general limitations of the crystal field theory follow-
ing from its initial postulates. 
 The major limitation is the concept of ligands as structureless point 
charges which do not exchange electrons with the central d-ion. This model 
corresponds to the limit case of 100% ionic bonding. For this reason, re-
searchers were skeptical even about a qualitative application of the crystal 
field theory to describe d-ions in chemical compounds or in the AIV or AIIIBV 
types of crystals having a large proportion of covalent bonds. 
 Extensive experimental material, however, has shown that the crystal 
field theory can describe fairly well the qualitative character of level splitting 
in semiconductors, their sequence and relative energy intervals between 
them [14]. But in spite of its successful application to the description of term 
splitting for transition metal impurities, the theory gives no answer to two 
main questions: how the system of splitted levels is related to the allowed 
band edges Ec and Ev and what type (acceptor or donor) of the ground state 
these levels have. 
 Hjalmarson and co-workers [21] have demonstrated an important feature 
of d-impurities, namely, the fact that the deep levels introduced by them in 
the forbidden gap are intrinsic levels. They produce binding states built up 
primarily by wave functions of uncompleted d-shells and have, therefore, the 
d-symmetry, rather than the s- or p-symmetry. The electron wave function 

© 2004 by CRC Press LLC© 2004 by CRC Press LLC© 2004 by CRC Press LLC



then appears to consist of the Bloch component ΨiB and the d-function com-
ponent: 
 
         Ψi = ΨiB + Ψid.                                     (2.2.5) 
 
 Thus, this wave function consists of the central core Ψid, retaining all 
characteristics of an atomic wave function but with an angular component 
transformed in accordance with the crystal point symmetry, and the Bloch 
trace ΨiB of the superposition of the p- and d-components of the Bloch wave 
functions of the valence and conduction bands. It was shown in [22] that  
 
        ( )aa

2
Bi 2 Em=Ψ ,                                    (2.2.6) 

 
where m is a mean effective mass of carriers in the band a and Ea is the deep 
level energy counted from the band edge. 
 The more shallow the level, the larger the contribution of the trace to the 
wave function. The impurity potential of a d-atom turns out to have a 
resonance character [23] and is described as 
 
        U d  ∼ ( )A E E− Γ ,                                   (2.2.7) 
 
where EΓ is the intrinsic energy level of a d-electron renormalized by the 
crystalline medium, E is the energy of a scattered electron, and A is a func-
tion defined by the wave functions of d-electrons in (2.2.5). 
 If common potential scattering is negligible, as compared with resonance 
scattering, the deep level energy EiΓ will be 
 
        ( )ΓΓΓ += i0i EMEE ,                                  (2.2.8) 

 
where EΓ0 is the intrinsic level energy of a d-atom in the valence band and 
M(EiΓ) is a function describing the effect of the covalent medium, i.e., the 
level renormalization. 
 It is this renormalization that “pushes” the intrinsic d-level out of the va-
lence band to the forbidden gap. What is important is the fact that the d-p-
hybridization occurs with the E- and T2-states differently, being more signifi-
cant with the latter. This can be interpreted in terms of the chemical bonding 
theory: ligands form stronger σ-bonds with the T2-states and weaker π-bonds 
with the E-states. In [23, 24], this fact was interpreted from purely symme- 
trical considerations: the symmetry of cubic crystals allows the mixing of 
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Figure 2.8. Energy levels of 3d-impurities in gallium arsenide (cluster calculations) 
[27]: 1 – t2 (DBH);  2 – t2 (CFR);  3 – e. 
 
T2(p)- and T2(d)-states of different parity. This leads to a dominant contribu-
tion of the p-states of the valence band to the renormalization of the T2(d)-
states, while the E-states hybridize only with states of the higher conduction 
bands of the same kind. Such symmetry differences affect differently the 
formation of the trace ΨiB and the renormalization of the T2-level M(EiΓ). 
States in the conduction band make practically no contribution to the 
renormalization (2.2.8). This approach develops further the well-known 
ligand field theory [26] which takes into account the overlapping of the wave 
functions of the central (impurity) ion and neighboring ions of a semi-
conductor host. 
 This modification of the theory has been successfully applied to d-impu-
rities and yielded the major parameter of term splitting ∆ [25]: 
 
     ( ) ( )∆ ∆= − = + −E E M E M EE T E iTi i i2 20 ,              (2.2.9) 

 
where ∆ is the splitting value in the crystal field theory and the other terms 
are the results of covalent renormalizations. 
 A more rigorous theory [24] takes into account potential and resonance 
scattering, so that the existence of two types of T2-symmetry levels becomes 
possible: resonance states due to the d-levels of impurity electrons and 
“hybrids with dangling bonds” [26] formed primarily in potential scattering 
by an impurity d-shell. The former are usually termed crystal field resonance 
(CFR) levels and the latter dangling bond hybrid (DBH) levels. 
 The ligand field theory stimulated the development of cluster methods for  
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Figure 2.9. Energy levels of 3d-impurities in silicon [28]. 
 
 

 
 

Figure 2.10. Energy levels of 3d-impurities in ZnSe [32]. 
 
the calculation of impurity center levels. Figures 2.8 and 2.9 illustrate such 
calculations for GaAs and Si and Figure 2.10 for ZnSe, showing the three 
types of levels T2

CFR, T2
DBH, and E. One can clearly see the difference in the 

behavior of d-impurities in these semiconductors. In AIIIBV and AIIBVI com-
pounds, the intrinsic d-level of impurities, except for nickel and copper, is in 
the forbidden gap. In silicon, as well as in germanium [29], the T2-level ap-
pears to be in the valence band, while the E-level, split off the valence band 
and having the p- rather than d-symmetry, lies in the forbidden gap. 
 A limitation of this theory is its one-electron character. In reality, how-
ever, interelectron interactions play a great role. If we ignore their contribu-
tion, we will not be able to find the d-level position in the energy spectrum 
of a semiconductor. It is shown in [28, 29] that the energy of a multi-electron 
ion dn containing rT2-orbitals and (n–r)E-orbitals is described as 
 
       ( ) ( )E d E E B Cn

MCi i= +Γ , ,                        (2.2.10) 
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where EiΓ defined in (2.2.8) has the form 
 
        ( )E rE n r ET Ei i iΓ = + −

2
,                       (2.2.11) 

 
where EMC are corrections for multi-electron interactions. 
 It is demonstrated in [30, 31] that these corrections represent linear com-
binations of Racah’s parameters A, B, and C (see Table 2.6). Then, if the 
initial (un-ionized) state of an impurity atom is d n, and it is changed by 
ionization to d n–1 (donor transition), 
 
         d d en n+ → +−ω 1

c ,                       (2.2.12) 
 
the only way to define deep levels is to use the expression 
 

( ) ( ) ( )E E E T E E T E E E B C B Cr n r r n r
MCiD c i i v= − + + + ′ ′− − −

Γ Γ ∆ ∆2 2
1' ' , , , , 

(2.2.13) 
 
where r′ is the number of T2-orbitals in the d n–1-configuration; ∆Ev is the 
change in the valence band states due to the change of the scattering type 
when the valence transforms from d n to d n–1; B′ and C′ are the Racah 
parameters for the d n–1-configuration. 
 For the acceptor transition, i.e., for electron capture, or hole emission to 
the valence band 
 
         d d pn n− + → +1 ω v ,                      (2.2.14) 
 
we have 
 

( ) ( ) ( )E E T E E T E E E E B C B CA
n r r n r

MCi i i v v= ′ − − + + ′ ′− − −
Γ Γ ∆ ∆2 2

1' ' , , , . 

(2.2.15) 
 
The first transition will be designated as 0/+ and the second as 0/–, where 
zero stands for the initial un-ionized state and plus and minus in the deno-mi-
nator mean the d-ion charge resulting from the ionization. It is these tran-si-
tions which represent deep d-levels in Allen’s diagrams (see Figure 2.6). 
 The EMC corrections prove to be irregular functions of the d-shell popula-
tion, i.e., of the Z-serial number of the d-atom. On the other hand, EiΓ repre- 
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Figure 2.11. Energy levels in some AIIIBV semiconductors, counted from the vacuum 
energy level. 
 
sents a smooth function of Z. On the whole, therefore, (2.2.10) has an irregu-
lar character, and the multi-electron theory gives a piecewise linear function 
Ei(dn) of n (or of Z), well supported by experiments (Figure 2.11). The fun-
damental question as to whether these levels are related to the semiconductor 
band structure was answered by Ledebo and Ridley, who suggested introduc-
ing a common reference—the vacuum level, for both the lowest d-impurity 
levels and the semiconductor band structure. The position of the valence 
band edge relative to vacuum is to be found from the semiconductor pho-
toionization energy (work function), while the d-level position with respect 
to vacuum is easy to find if the level position relative to this edge is known 
from experiments or calculations. 
 With this procedure, this idea has been verified for all impurities, from 
vanadium to copper, in basic AIIIBV compounds [33] (Figure 2.11) and in 
AIIBVI semiconductors [34] (Figure 2.12). 
 The calculations of positions for CFR and DBH energy levels of 3-d im-
purities at silicon sites and interstices [35, 36] are illustrated in Figures 2.13 
and 2.14, respectively. Although these results were obtained within  one-par-
ticle theory, their qualitative agreement with experiments is fairly good. 
They show that it is only Zn, Cu, and Ni that produce energy levels in the 
forbidden gap, whereas the other d-levels correspond to interstices. 
 The general characteristics of d-impurity levels in basic semiconductors 
are summarized in Table 2.8 and the values of their energy levels Ei in 
Table 2.9. Impurities with partly filled 4-d (Ru, Rh, Pd) and 5-d shells (Os, 
Ir, Re) have not been studied in as much detail as 3-d impurities. Moreover, 
they were studied only in silicon [37, 38]. These impurities exhibit 
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Figure 2.12. Energy levels of d-impurities in AIIBIV compounds, counted from the 
vacuum level [34]. 
 
 

 
 

Figure 2.13. Energy levels of transition metal atoms at silicon sites, calculated in the 
one-particle approximation [35]. 
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Figure 2.14. Energy levels of interstitial transition metal atoms in silicon, calculated 
in the one-particle approximation [36]. 
 
 
Table 2.8. Types of 3-d impurity levels in the forbidden gap of basic semiconductors. 
 

Semiconductors Sc Ti V Cr Mn Fe Co Ni Cu 

GaAs   a A      
GaP   A       
InP   d       
ZnO      d  d a 
ZnS d  d A Ax A d A A 
ZnSe  d d A Ax d d A Ax 
ZnTe    a   a a a 
CdS        A a 
CdSe  d d d d d  A a 
CdTe   d a Ax d a a a 
Si       A x x 

 
d – CFR-type donor (0/+), x – DBH-type donor (0/+), a – CFR-type acceptor (0/–), 
A – amphoteric impurity. 
 
amphoteric properties to be discussed in the next section. Here we will 
restrict our description to their states in the silicon crystal lattice. 
 It was established in the studies of diffusion characteristics, decomposi-
tion of silicon–impurity solid solutions [37], and electron spin and ENDOR 
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Table 2.9. Ionization energies of 3d-impurity atoms in basic semiconductors. 
 

 Ei, eV 

Impurities Si GaP GaAs InP 

 
Ec – Ei Ev + Ei Ev + Ei Ev + Ei Ev + Ei 

Sc 0.27d, 
0.35d, 
0.5d 

0.35a, 
0.45d 

 
0.57, 0.85 

 

Ti 0.26d 0.1a, 
0.29d 

 1.05  

V 0.3d, 0.4d, 
0.5d 

0.45d 0.85, 1.15 1.38, 0.73 0.95 

Cr 0.23d, 
0.4d 

0.31d, 0.39d  1.85 1.64 

Mn 0.3d; 0.5d  0.4, 1.93* 0.113 0.22 
Fe 0.13d, 

0.5d 
0.4d 0.86, 1.27* 0.49, 0.86 0.8, 1.15 

Co 0.22a, 
0.3a, 
0.53a 

0.35a, 
0.4d, 0.5a 

0.41, 0.97*, 
1.3*, 1.92* 

0.14, 0.64, 
1.0, 1.53 

0.24, 
0.71, 1.03 

Ni 0.4a 0.2a 0.51, 1.74* 0.2 0.35 
Cu 0.49a 0.4a 0.66, 0.82, 

0.17 
0.14, 0.46, 

0.24 
1.18, 

1.06, 1.02 
Zn 0.55a 0.4d 0.64 0.14, 0.29 0.31 

 
resonances [38] that all atoms of these groups of elements can occupy only 
interstitial positions in crystals. 
 The authors of [37, 38] believe that isolated 4d- and 5d-atoms cannot 
exist at an interstice, because they form weak bonds with the lattice. Such 
states may be interstitials on bonds, split bonds or produce complexes with 
the neighboring vacancies. The most probable crystallochemical model of Pt 
and Pd impurity localization in the silicon lattice [38] is shown in Figure 
2.15. In this model, an impurity atom is bonded by two silicon atoms in a 
unit cell. A hole is shared by a d-atom and a bond between the other two 
silicon atoms. So, the d-atom behaves as a singly charged acceptor, Pt–. 
 The specific features of these impurities are a nonspherical electronic 
configuration and a strong localization. These two chemical properties are 
characteristic of coordination compounds with asymmetric distortions known 
as the Yan–Teller effect. In the work mentioned above, the analysis of this 
effect was reduced to symmetry identification of the basic term of local im- 
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Figure 2.15. A hypothetical distribution of Pt (Pd or Ni) atoms in the Si (and Ge) 
crystal lattices [38]. 
 
purity centers having different signs. The group theoretical analysis included 
the following algorithm: a classification of one-electron states of molecular 
orbitals by irreducible point group representations of the local center;  sym-
metry identification of the upper filled molecular orbital; mapping of multi-
electronic states from the spin-orbitals of the upper filled molecular orbital, 
and their classification by total spin and the point group symmetry represen-
tations of the local center. The result was the conclusion about the existence 
of the Yan–Teller effect in a unit cell consisting of an impurity atom and 
four nearest silicon atoms. This effect was found to vary with the charge 
state of the impurity atom (Table 2.10). 
 The Yan–Teller type of displacement has been observed in many 
semiconductor–deep impurity systems. In addition to Si<Os>, Si<Pt>, and 
Si<Ir>, these are InAs<Mn> [40], InSb<O> [41], GaAs<Cu> [42]. It appears 
that displacements of atoms, like the Yan–Teller effect or crystal lattice re-
laxation (Figure 2.16) during ionization and de-ionization are a common 
phenomenon inherent, to some extent, in all deep level centers. This is due to 
a strong electron localization at the impurity center, as compared with a 
shallow impurity. A strongly localized electron interacts only with the 
nearest host atoms. 
 It is interesting that an electron of a 3d-impurity in gallium arsenide is 
localized on the second coordination sphere [14], which is clear from the 
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Table 2.10. Yan–Teller distortions of the Pt-group impurity atoms in a tetrahedral 
field [39]. 

 

Charge 
state 

Total number 
of electrons 

Electronic 
configuration 

Basic term Distortion 

Rutenium, osmium 

+ 11 E3 2E Tetragonal 
0 12 E4 2A1 No distortion 
– 13 E4(T2

*)2 2T2 Trigonal 

Rodium, iridium 

+ 12 E4 1A1 No distortion 
0 13 E4(T2

*)1 2T2 Trigonal 
– 14 E4(T2

*)2 3T2 Trigonal 

Platinum, palladium 

+ 13 E4(T2
*)1 1T2 Trigonal 

0 14 E4(T2
*)2 3T1 Trigonal 

– 15 E4(T2
*)2 4A2 No distortion 

 
EPR line broadening ∆H/βB < ∆H/βA, where βB and βA are the magnetic 
moments of atomic nuclei in the first and second coordination spheres. 
 Neighboring atoms are not static entities but they oscillate with different 
frequencies. These oscillations, or phonons, also interact with a deep center. 
Therefore, an impurity center must be treated in combination with a certain 
number of host atoms rather than as a single center, or as a multi-atomic 
quasi-molecule. 
 
 

 
 
Figure 2.16. Displacements of impurity centers at crystal lattice interstices: 1 – sym-
metrical distortions; 2 – asymmetrical distortions. 
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Figure 2.17. The configuration coordinate diagram of a deep center with a strong 
electron–phonon interaction. 
 
 The model center involved in a strong electron–phonon interaction can be 
conveniently represented as a configuration coordinate plot (Figure 2.17). 
The ordinate in the plot is the total energy of a quasi-molecule U and the 
abscissa is a combined coordinate which describes the average difference 
between the deep center and its neighboring host atoms. 
 For simplicity, the energy of oscillating atoms can be taken to be that of a 
harmonic oscillator: 
 

        ( )U E Q M Q= +c
1
2

2 2ω ,                         (2.2.16) 

 
where M is the mass of oscillating atoms and ω is the oscillation frequency 
of the oscillator. 
 Then, the curves in Figure 2.17 reflect the parabolic character of the se-
cond term in (2.2.16). The upper parabola Uc describes a “molecule” with an 
ionized impurity center, or an impurity electron in the conduction band. The 
first term is constant, since atomic oscillations do not affect the energy of 
free electrons in the conduction band. If the impurity atom is not ionized, the 
first term in (2.2.16) will also depend on Q. A system tending to have 
minimum energy must take a new equilibrium position Q1 different from Q0; 
the respective parabola U1t will be different, as is shown in Figure 2.17. One 
can also see that the optical transition (ionization by light) requires energy 
Eop by virtue of the Franck–Condon principle stating that an optical 
transition within a system (molecule) occurs without changing the 
coordinate. The values of thermal ionization energy ET appear to be lower 
(Figure 2.17). Note that the curvature of both parabolas must also be 
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different, since the bonding of an atom to its nearest neighbors is different 
for an ionized and un-ionized center. 
 It is clear from the configuration coordinate plot that the necessity to 
obey the Franck–Condon principle entails a restructuring of the crystallo-
graphic configuration in the vicinity of an impurity center when it is ionized 
or excited, as is indicated in Figure 2.16 by symmetric (lattice relaxation) 
and asymmetric (Yan–Teller effect) distortions of the unit cell. 
 The displacement q = Q1 – Q0 in Figure 2.17 is described as [43] 
 
         q a M= Ω ,                                   (2.2.17) 
 
where a is a constant of electron–phonon bonding and Ω is the frequency of 
the phonon involved in the lattice restructuring. 
 It is important that Ω does not necessarily characterize the crystal. 
Rather, it is a local oscillation of an atom together with its nearest neighbors 
affected by the electron localization. 
 One can see from (2.2.17) that in the case of hydrogen-like centers, for 
which electron localization extends to several dozens of lattice periods, a 
“quasi-molecule” involves hundreds of neighboring atoms, i.e., M is very 
large and q ≅ 0. For deep impurity centers, M is small and q >> 0. 
 The value of q is found experimentally by comparing the experimental 
curve for the optical photoionization cross section σ(hν) of a deep center and 
the theoretical expression allowing for the electron–phonon interaction [44]: 
 

    ( )
( )

( ) ( )σ ν σ
πΘ

h
y

x y x
x

x= −
− −











∫0
1 2

2 1 2

2

1 1
/

/

exp
Θ

d ,       (2.2.18) 

 
where 
 
       x E E= op ,  y h E= ν op , 

        Θ Ω Ω=








a
E kTop

cth
2

2
.                             (2.2.19) 

 
In addition, we have the relation 
 

      d E EFC op T= − ,  d aFC = 1
2

2 Ω .                 (2.2.20) 
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The value of Θ is found from the comparison of the σ(hν) curve and 
(2.2.18); then, a and Ω  are found from (2.2.19) and (2.2.20), while q is 
calculated with (2.2.17). 
 Let us consider two consequences of the crystal lattice distortions in the 
vicinity of a deep impurity atom. 
 The appearance of a recombination barrier. It is clear from Figure 2.17 
that an electron will overcome the recombination barrier Ep when it goes 
back from the conduction band to a deep center during recombination. The 
consequence of this transition is a larger lifetime τ of the electron: 
 
        ( )τ τ= 0 exp E kTp ,                                  (2.2.21) 
 
where τ0 is the electron lifetime in a crystal containing no deep impurity. 
 Estimations made with Ep = 0.06 eV give the value τ/τ0 = 104 at 77 K, 
which means that the existence of a recombination barrier leads to a tremen-
dous (104-fold) gain in lifetime and, hence, to a great increase in the 
sensitivity of photocells made from such crystals. 
 It is worth noting that a similar increase in the electron lifetime arises in 
double doping of a semiconductor by a deep NT and a shallow N impurity 
simultaneously [45]. For this, it is necessary that the following relation be 
valid 
 
        ( )N N N NT > > −d a ,                            (2.2.22) 
 
where Nd and Na are shallow background impurities. 
 But now, the impurity background becomes practically unimportant, and 
the uncompensated deep impurity fraction at a concentration (NT – N) will 
remain essentially un-ionized due to the high ionization energy. The 
compensation degree of the semiconductor will be close to unity. This is 
used to obtain semi-insulating samples with a very high electrical resistivity.  
 If both shallow and deep impurities have a very high solubility in the 
semiconductor, the crystal will be heavily doped. Heavy doping and strong 
compensation produce large-scale fluctuations of impurity potential and, 
hence, corrugated energy bands [46], as shown in Figure 2.18. One can see a 
recombination barrier arising here, denoted as ϕrec. In this case, the electron 
lifetime will also be defined by expression (2.2.21); but physically, τ0 means 
the lifetime in the absence of strong compensation. This effect was observed 
in GaAs<Cr,Sn> crystals [45]; the details of the theory can be found in [47]. 
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Figure 2.18. Generation (1, 2, 3) and recombination (4, 5) transitions in a heavily 
doped and strongly compensated (disordered) semiconductor. 
 
 

 
 
Figure 2.19. Photoconductivity kinetics on illumination in recombination in heavily 
doped and strongly compensated GaAs<O>: 1 – hν = 0.52 eV, 2 – hν = 1.1 eV. 
 
 Long-term photocurrent relaxation. This effect (Figure 2.19) is asso-
ciated with the relaxation barrier just described and the longer lifetime of 
electrons. For this reason, one should choose with caution the type of deep 
impurity to be used for the doping of crystals for IR- photocells, because it 
determines the recombination barrier value in a particular semiconductor and 
the operation temperature of the device. A lower temperature will increase 
the photocell sensitivity but it will also increase its response time. 
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 To conclude this section, we will discuss basic information on the 
behavior of f-impurities in semiconductors [48, 92]. These impurities are 
second-phase inclusions in silicon and are produced during crystallization 
due to a high affinity of rare-earth atoms to oxygen, carbon, and other 
chemical admixtures to be described in Section 2.5. This is the reason why f-
atoms are used for gettering the melt to produce crystals with a low impurity 
background. But the doping of a semiconductor by f-impurities becomes 
more difficult for the same reason. These difficulties do not permit a reliable 
identification of the energy levels registered experimentally in silicon and 
other semiconductors containing f-impurities. 
 Samarium impurity. The effect of samarium on silicon is manifested after 
thermal treatment of Si<Sm> at 1000–1100°C as the appearance of the 
energy levels Ec – 0.28 eV and Ev + 0.45 eV at a concentration of 
1.5×1014 cm–3. Levels Ev + 0.1 eV and E + 0.3 eV were also identified, but 
the latter level was found to be unstable, becoming deeper with time. 
 Gadolinium impurity. It has been found that silicon doping with gado-
linium produces the acceptor levels +0.045, +0.34, +0.1 eV counted from the 
valence band. Their concentration varies from 1013 to 5×1014 cm–3. After 
thermal treatment of Si<Gd> in the temperature range 900–1100°C, these 
levels are transformed to produce other levels unstable in time. 
 Golmium impurity. The behavior of this impurity  in silicon, as far as 
level instability is concerned, is similar to that of gadolinium. The most 
stable levels are of the acceptor type found to be Ev + 0.066 and Ev + 
0.35 eV. 
 Difficulties associated with silicon doping with rare-earth elements from 
a melt stimulated the application of ion implantation for silicon doping with 
f-impurities. This method provided energy levels for neodime (Nd) and ter-
bium (Tb), equal to Ec – 0.33 and Ec – 0.29 eV, respectively. But these levels 
cannot be attributed with certainty to single impurity atoms. 
 The complicated behavior of f-impurities in silicon is mostly associated 
with the lack of our knowledge about their states in a semiconductor lattice, 
the solubility thermodynamics, and the migration mechanism. As a result, it 
is still difficult to find applications for f-impurities. However, there is a re-
port [49] of the application of Si<Er> for the production of efficient silicon 
light diodes operating at the light wavelength of 1.54 µm at 300 K. This is an 
encouraging result showing that research into the behavior of f-impurities in 
various semiconductors may become more active. 
 Among III-V semiconductors doped with f-impurities, GaAs and InP 
doped with Er and Yb have been studied most intensively. These studies are 
focused on recombination processes involving these impurities, especially on 
Auger recombination [48]. 
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2.3  AMPHOTERIC IMPURITIES 
 
 
2.3.1  General concepts 
 
The concept of amphoteric impurity, as applied to semiconductors, was first 
introduced by Dunlap in 1955, when analyzing electrical properties of 
germanium doped with gold. It was found that gold could behave as a donor 
or as an acceptor in the same semiconductor crystal. This behavior fully 
agrees with the definition of amphoteric behavior as the ability to produce 
positive and negative ions. 
 Note that a sequence of two processes—ionization and de-ionization—is 
always possible in semiconductors. In the former, an electron is detached and 
in the latter it is re-attached. But de-ionization neutralizes an impurity center, 
which comes to equilibrium without charge reversal. It is clear then that am-
photeric impurities are impurities with charge Z0 prior to  ionization (most 
often, Z0 = 0), which can acquire, depending on the ionization conditions, 
charges Z1 = Z0 + |∆Z| and/or Z2 = Z0 – |∆Z|, where |∆Z| is the absolute charge 
change in the ionization (most often, |∆Z| = 1). 
 According to up-to-date chemical concepts, any element may become 
amphoteric, since atoms can give off their electrons but they can also attach 
electrons because of a certain affinity to the electron. Indeed, as far back as 
1881, Helmholtz suggested that an atom might possess different charges in 
different compounds. A typical example is hydrogen charged differently in 
LiH and HCl, whose decomposition reactions in electrolysis are LiH → Li+ 
+ H– and HCl → Cl– + H+. 
 There are many examples of this kind in chemistry. But if we consider 
the amphoteric nature of an impurity in a semiconductor crystal in terms of 
its behavior in the same crystal, it will appear that such impurities are not nu-
merous but their number is large enough to regard them into a special class 
of impurities. Available data permit classification of all amphoteric 
impurities by the crystallochemical principle, i.e., by their arrangement in the 
crystal lattice (Table 2.11). 
 Impurity atoms that can behave as donors and as acceptors in one of the 
positions—a site or interstice—will be referred to the first two types and 
termed amphoteric site centers and amphoteric interstitial centers—As and Ai, 
respectively. Impurity atoms located at sites are acceptor-type and those at 
interstices are donor-type; they are the third type of site/interstitial or disso-
ciative amphoteric centers denoted as Asi.  
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Table 2.11. Amphoteric impurity centers in semiconductors (D is for a donor and A is 
for an acceptor). 

 

Type of ampho- 
teric center 

Position in crystal Center symbol Type of center 

Site Site As  D and A 
Interstitial Interstice Ai  D and A 
Dissociative 
(site/interstice) 

Site, 
interstice 

Asi  D 

Cation–anion Cation site, 
anion site  

 A 

Associative Site or interstice 
in interaction with other 
point defects 

Aca 
 

Aa  

D 
A 

D and A 

 
 It is necessary to stress here that, in principle, there may be such disso-
ciative amphoteric centers which manifest a donor behavior at sites and an 
acceptor behavior at interstices. Experimentally, this was observed only for 
an interstitial impurity in UO2 [50]. 
 The fourth type of impurity centers manifest amphoteric properties in the 
substitution of different sublattices in semiconductor compounds. These will 
be termed cation–anion centers and denoted as Aca. 
 Finally, amphoteric impurities, as any other impurities, may produce 
complex associative defects in interactions with one another or with other 
point defects. Moreover, there may be associates of point defects in a crystal, 
which show an amphoteric behavior, whereas the individual components 
have no amphoteric properties. Complex amphoteric centers produced by 
interactions of various point defects will be called associative amphoteric 
centers and denoted as Aa. 
 The first three types of centers manifest their amphoteric properties in 
elemental semiconductors, such as Ge and Si, and all five types are found in 
AIIIBV and AIIBVI semiconductor compounds. 
 The first two types show their amphoteric nature in one and the same 
position in a crystal. Here, an impurity center has a chance to give off an 
electron from one of its electron shells and contribute it to the electron en-
semble of a host atom, or, on the contrary, an electron can be captured by 
this shell. Obviously, both possibilities can be realized by an atom with the 
initial charge state Z0 only if its operating electron shell is uncompleted. 
These may be atoms of d- and f-elements only, and this idea is supported by 
experimental data. In many situations, transition metal impurities do not 
show amphoteric properties. Doping f-atoms are often electrically inactive.  
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 The questions as to whether d- and f-atoms will show an electrical acti-
vity in this or that semiconductor and which of them will turn out to be am-
photeric require a special analysis. The answers cannot be derived from the 
trivial consideration of donor and acceptor properties of impurity atoms, 
based on the similarity of geometry and electrochemical characteristics of 
the impurity atom and the position it occupies in the semiconductor. 
According to these concepts, the position and charge of an impurity atom are 
determined by the similarity in the radii and negative charge values of the 
impurity atom and the host atom. None of these criteria are applicable to 
transition metal atoms, because these two parameters are variable in them 
[14]. 
 Dissociative amphoteric impurities often occur in elemental semiconduc-
tors. This has been pointed out in many publications on impurity levels in 
AIV, AIIIBV, and AIIBVI semiconductors. It is clear from general principles 
that equal probability for an impurity atom to occupy a site or an interstice 
requires approximately equal energies for its incorporation into both 
positions. But the calculation of these energies encounters difficulties asso-
ciated with the different interactions of an impurity atom with the neighbor-
ing host atoms. At a site, an impurity atom produces chemical bonds with the 
nearest host atoms via a hybridization of electrons from both types of atoms. 
At an interstice, electrons of the host atoms only repel those of an impurity 
atom, producing no chemical bonds between the host and impurity atoms. 
 In these cases, the concepts of radii and negative electrical charges are 
inapplicable to most impurity atoms as constant atomic characteristics. For 
this reason, the calculation of  energy necessary for an impurity atom to oc-
cupy a site or an interstice and, hence, the prediction of dissociative ampho-
teric impurity centers may be possible only in terms of a rigorous theory of 
impurity solubility at sites and interstices. The current state of this problem 
and the available approaches to its solution, including the author’s concep-
tion, will be discussed in Chapter 4. 
 Cation–anion amphoteric centers can occur only in semiconductor com-
pounds. 
 An impurity atom can be localized in different sublattices if it has an in-
termediate valence relative to the valences of the other constituents. This 
feature is especially characteristic of group-IV atoms in AIIIBV semiconduc-
tors. In this case, an  AIV atom exhibits donor properties when substituting a 
cation AIII site, while an anion BV site shows acceptor properties. The well-
known valence rule ∆V = ±1 becomes valid, as for hydrogen-like substitu-
tional impurities.  
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2.3.2  Carrier thermodynamics in semiconductors with amphoteric 
impurities 

 
Two problems arise in the treatment of amphoteric impurity states in 
semiconductors. In one problem, the unknown quantity is solubility [A] 
which varies, other conditions being equal, with the charge state distribution 
of the amphoteric impurity (0, “+”, “–“) in a crystal. In the other problem, 
the total concentration of the amphoteric impurity [A] is taken to be known 
while the unknown quantity is its charge state distribution. 
 Therefore, both problems require the knowledge of the statistical charge 
state distribution of an amphoteric impurity. This issue has been treated by 
several workers with reference to various particular cases [51] and was gene-
rally considered by Shockley and Hast [52]. 
 Figure 2.20 shows model energy levels corresponding to an amphoteric 
impurity, and Table 2.12 gives its charge states Z, the donor and acceptor 
behavior as a function of concentration N and ionization energy E, as well as 
the number of excessive electrons r in an impurity atom, as compared with 
the neutral state with r = 0. The indices m and n stand for the last impurity 
atom states localized in the forbidden gap. This means that if there are 
(m + 1) or (n + 1) states, their ionization energies will lie in the allowed 
spectrum (Figure 2.20) and become unobservable, at least, in conventional 
Hall measurements. 
 An important feature of the model represented in Figure 2.20 is that all 
levels belong to the same impurity center. This means that the sequence of 
amphoteric impurity levels cannot be arbitrary. Indeed, a center must first 
give off one electron, spending for this energy Ed1, and only after that can it 
 
 

 
 

Figure 2.20. Energy levels of amphoteric impurities in various charge states. 
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Table 2.12. Symbols for amphoteric impurity atoms in various charge states (see 
Figure 2.20). 

 

Impurity atom 
states 

Ionization 
energy of 
level, 2Ei 

Concentration, N Number of 
excess 

electrons, r 

Impurity ion 
charge, Z 

An+ –Edm Ndm –m +m 
     

A2+ –Ed2 Nd2 –2 +2 
A1+ –Ed1 Nd1 –1 +1 
A0 – NA

0 0 0 
A1– +Ea1 Na1 +1  –1 
A2– +Ea2 Na2 +2  –2 

     
An–1 +Ean Nan +n  –n 

 
Plus means that the energy is counted from the valence band top Ev and minus from 
the conduction band bottom Ec. 
 
give off another electron, spending energy Ed2 > Ed1. Similarly, the transition 
of one electron to the level A–1 requires energy Ea1, and this electron will 
repel the next one, resulting in Ea2 > Ea1. Besides, the electron attachment 
requires a higher energy than the electron detachment because of Coulomb 
repulsion, i.e., Ea > Ed. As a result, the level localization pattern for an 
amphoteric center and, generally, for any multivalent center, must be such as 
is shown in Figure 2.20. This general rule is, of course, valid for site and 
interstitial amphoteric impurities, which exhibit amphoteric properties when 
the impurity atom occupies one crystallochemical position. For other ampho-
teric impurities, occupying different positions, the condition Ea > Ed may not 
be satisfied with the relations 
 
     E E Emd d d> >2 1   E E Ena a a> >2 1 .            (2.3.1) 

 
 The interrelation of several energy levels of the same impurity atom is an 
obstacle to finding their electron populations with the simple Fermi function. 
This requires the use of an expression derived from a more general Gibbs 
distribution, which relates the population on the next r level to that on the 
previous (r–1) level, as 
 

        N
N

g
g

E
kT

r

r

r

r−

−= −



1

1 exp µe i ,                    (2.3.2) 
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where µe is electron chemical potential (Fermi level) and g is the g-factor 
representing the spin degeneration degree of the levels. It follows from sim-
ple considerations that g may be equal to 1 or 2. If an impurity center cap-
tures an electron, the latter can occupy one of the two possible spin states 
(spin up or spin down); then gr = 2 and gr–1 = 1. If, on the contrary, an elec-
tron is detached from an impurity center, then gr = 1 and gr–1 = 2. Such sim-
ple situations are seldom feasible, so one has to find gr and gr–1 from experi-
ments. Below, we will preserve the subscripts for the g-factors. With (2.3.2) 
and the symbols in Table 2.12, we will represent the electron population for 
the first acceptor level A–1: 
 

       N g
g

N E
kTa

a

a
1

0

1
0

1= −





exp µ .                        (2.3.3) 

 
The population of the second acceptor level A–2 will be 
 

       N g
g

N E
kTa

a

a
a

a
2

1

2
1

2= −





exp µ .                      (2.3.4) 

 
Or, substituting (2.3.3) into (2.3.4), we will have 
 

     N g
g

N E
kT

E
kTa

a

a a
2

0

2
0

1 2= −





−





exp expµ µ .           (2.3.5) 

 
Similarly, we find 
 

       N g
g

N
E

kTn
n

n

n

n
a

a

a=
−







∏

=

0
0

1
exp

µ
.                  (2.3.6) 

 
 For the donor states, the preceding level will be the (r = –1) level and the 
next one will be the (r = 0) level. Therefore, with (2.3.2) and the symbols of 
Table 2.12, we will find 
 

       N g
g

N E
kT0

0
= −





d1
d1

d1exp µ ,                        (2.3.7) 

 
from which we have 
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       N g
g

N E
kTd1

d1

d1= −





0
0 exp µ .                        (2.3.8) 

 
Using similar procedures, we can find 
 

     N g
g

N E
kT

E
kTd

d

d1 d
2

0

2
0

2= −





−





exp expµ µ             (2.3.9) 

 
and 

       N g
g

N
E

kTm
m

m

m

m
d

d

d=
−







∏

−

0
0

1
exp

µ
.             (2.3.10) 

 
These are general expressions for the electron populations on the donor and 
acceptor levels of an amphoteric impurity center. Therefore, the sums Na1 + 
Na2 + ... + Nan and Nd1 + Nd2 + ... + Ndm enter the neutrality equation (1.2.31). 
But since a crystal may contain other impurity atoms or intrinsic point de-
fects, the more general sums [ ]kk

−
∑  and [ ]qq

+
∑  appear in expression 

(1.2.31). 
 By substituting these sums into (1.2.31) taking account of (2.3.6) and 
(2.3.10) and using n and p expressed through µ: 
 

      n N kT= ceµ    and ( )p N E kT= −
ve g µ ,           (2.3.11) 

 
we will get the neutrality equation with one unknown quantity µ (the g-fac-
tors are taken to be known). By solving this neutrality equation, we find µ; 
hence, the solubility of an amphoteric impurity can be found from (2.3.6) 
and (2.3.10). Or, conversely, if we know the total concentration Na of an 
amphoteric impurity, we can find its charge state distribution from the values 
of µ. The general solution to equation (1.2.31) can be obtained only by 
numerical computations. For some particular cases, when the amphoteric 
impurity levels are much separated and the Fermi level lies between two 
neighboring levels, equation (1.2.31) is simplified, and the problem becomes 
similar to that for independent impurity centers [51]. Then, analytical 
solutions to the neutrality equation are also possible. Using these procedures, 
we will now analyze the states and behavior of some amphoteric impurities. 
 The statistics of charged states discussed above yield the basic relation 
for the charged state concentrations in (2.3.2) and general expressions for the 
concentrations N0, N–, and N+ in (2.3.7), (2.3.3), and (2.3.8), respectively. In 
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other words, we have obtained the site and interstitial solubilities of a 
charged impurity as a function of the Fermi level position. For this, of 
course, the energy levels and degeneracy factors must be known. 
 
 
2.3.3  Amphoteric impurity distribution in elemental semiconductors 
 
Of interest is the relation between the measured quantities n and A. The 
former is found from the Hall coefficient and the latter by a direct method, 
say, by atom labeling, radioactive analysis, mass-spectrometry, etc. 
 This relation can be derived from the neutrality equation 
 
        n V A p A+ + = +− − +

s s I .                           (2.3.12) 
 
 Consider first a particular case when charged vacancies are absent: 
 
         A A n pI s

+ −− = − .                              (2.3.13) 
 
Since all amphoteric centers are ionized at high temperatures, we have 
 
         A A AI s

+ −+ = .                                   (2.3.14) 
 
By dividing (2.3.14) by (2.3.13), we get 
 

       ( ) ( )
( )

A n p
K n n

K n n
= −

+

−

1

1

2

2
A i

A i
.                          (2.3.15) 

 
In this expression, the values of n and p refer to high temperature, but 
usually they are measured at room temperature denoted here as T0. Then, the 
carrier concentrations will be denoted as n0 and p0. 
 Let us assume that the distribution of an amphoteric impurity becomes 
“frozen” at high temperature T close to the doping temperature. The validity 
of this statement increases with decreasing diffusion coefficient of an impu-
rity in a solid crystal at this temperature. With this assumption, the neutrality 
equation (2.3.13) remains unchanged at room temperature T0, i.e.,  
 
         n p n p0 0− = − .                                 (2.3.16) 
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For further analysis, we must choose the type of conductivity of the semicon-
ductor containing an amphoteric impurity. For the n-type conductivity, the 
conditions are 
 
     n p0 0>> ,  n p> , K A AA s I= <− + 1 ,            (2.3.17) 
 
and for the p-type conductivity, these are 
 
     p n0 0>> ,  p n> , K A AA s I= >− + 1 .            (2.3.18) 
 
The treatment is simplified and generalized if, instead of KA = As

–/AI
+, we 

take for p-type semiconductors the inverse quantity AI
+/ As

–, denoting it KA, 
as before. Then, we have KA < 1, irrespective of the type of conductivity. 
Which of the true values of KA must be taken into account in a particular 
case will be clear from the context. 
 By solving (2.3.16) separately for n or p with the conditions (2.3.17) and 
(2.3.18) and the equality np = ni

2 = pi
2, we get 

 

       n n n n= + +





1
2

40 0
2 2

i  (n-type),                 (2.3.19) 

 

       p p p n= + +





1
2

40 0
2 2

i  (p-type).            (2.3.20) 

 
The substitution of these expressions into (2.3.15) gives the final expressions 
for n-type crystals 
 

      A n

K n
n

n
n

K n
n

n
n

=

+ + +
























− + +
























0

0 0
2

2

0 0
2

2

1
4

4

1
4

4

A

i i

A

i i

,                (2.3.21) 

 
and p-type crystals 
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Figure 2.21. Electron concentration versus total amphoteric impurity concentration at 
room temperature. 
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K p
n
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n

K p
n
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=

+ + +
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



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








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
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
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







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
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
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

0
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2
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2

1
4

4

1
4

4

A

i i

A

i i

.              (2.3.22) 

 
Note that n0 and p0 change at room temperature and ni at doping tempera-
ture. 
 The sought for dependence n0(A) in the form of (2.3.21) was obtained by 
the authors of [53]. The dependence presented in Figure 2.21 will be dis-
cussed qualitatively, as in [53]. The key factor here is the ratio n0/ni, or p0/ni 
for p-type crystals. 
 For low carrier concentrations 
 
       n n0 1i <<  (or p n0 1i << ),                     (2.3.23) 
 
the relationship between A and n0 (or p0) is linear: 
 
        ( ) ( )A n K K= + −0 1 1A A ,                      (2.3.24) 
 
        ( ) ( )A p K K= + −0 1 1A A .                      (2.3.25) 
 
In these expressions, KA for n- and p-type conductivities represent inverse 
ratios of the site and interstitial components of an amphoteric impurity. 
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Figure 2.22. Regions of constant chemical potential of electrons (below the ni(T) 
curves) in doped semiconductors: 1 – Ge; 2 – Si; 3 – InSb; 4 – InAs; 5 – GaSb; 6 – 
AlSb; 7 – GaAs; 8 – InP; 9 – GaP. 
 
 In order to assess the feasibility of the condition in (2.3.23), Figure 2.22 
gives the temperature dependence ni(T) for basic semiconductors. At 
KA << 1, the ratios (2.3.24) and (2.3.25) are close to the equality A = n0 (A = 
p0). Or, from Figure 2.21 we find that, at low concentrations, an amphoteric 
impurity occupies primarily one of the possible crystallochemical positions. 
At KA ≤ 1, the curve is shifted away from A = n0 (see Figure 2.21), and the 
empirical value of KA in (2.3.24) or (2.3.25) can be found from the shift 
along the lg n0 (or lg p0) axis. 
 In the range of high concentrations n0 (or p0), the n0(A) and p0(A) curves 
go beyond the saturation region. The concentrations n0

* or p0
* in this region 

are found when the denominator in (2.3.21) and (2.3.22) vanishes: 
 

       ( )n p n
K

K0 0
1∗ ∗ = −









or i

A
A .                  (2.3.26) 

 
 The conditions KA << 1 and KA ≤ 1 may become practically feasible at 
high concentrations n0 (or p0). The first condition is valid for an extensive 
concentration range, for which (n0/ni) >> 1. Then, (2.3.21) is simplified as 
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        ( )
( )

A n
K n n

K n n
=

+

−
0

0
2

0
2

1

1
A i

A i
.                          (2.3.27) 

 
A similar expression with p0 and KA will describe a p-crystal. The second 
condition (at KA < 1) contains no n0/ni >> 1 regions in n- or p-type crystals, 
and the experimental A(n0) and A(p0) curves are to be treated using general 
formulas (2.3.22) and (2.3.23). 
 Return now to the neutrality equation (2.3.12) which ignored the 
presence of vacancies. To take them into account, one should merely suggest 
that vacancies are univalent acceptors and that their concentration at room 
temperature is equal to the equilibrium concentration at a high doping 
temperature (T). The latter does not occur in actual reality, but this 
suggestion allows us to elucidate qualitatively the effect of vacancies. A 
more rigorous theory will be considered below. The neutrality equation for a 
n-type crystal at room temperature will then appear as 
 
         n V A A0 + = −− + −

I s ,                          (2.3.28) 
 
while the equation for the A(n0) curve will be 
 

        ( ) ( )
( )

A n V
K n n

K n n
= +

+

−
−

0

2

2
1

1
A i

A i
.                (2.3.29) 

 
 Expression (2.3.29) will be valid for a p-type crystal, if n0 is replaced by 
p0, n by p, and KA is understood as the AI

+/As
– ratio. Compensation by 

vacancies will not change the curve shape in the range of high concentra-
tions A or the value of n0 on the shoulder (2.3.26). However, for the range of 
low concentrations n0/ni << 1, we will have, by analogy with (2.3.24), the ex-
pression 
 

        
( )( )

A
n V K

K
=

+ +

−

−
0 1

1
A

A
,                          (2.3.30) 

 
in which 
 

        V V N
n

E
T

− = −





0 v

i

aexp ∆                       (2.3.31) 
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Figure 2.23. The n0(T) dependence in the low concentration region, n0, in the pre-
sence of foreign acceptor (1) and donor (2) compensation. 
 
is independent of n0 . 
 It is clear from (2.3.30) that there must be a deviation from the linear 
function A(n0) in the region of comparable concentrations n0 and V–. This is 
illustrated by curve 1 in Figure 2.23. The asymptote, to which the curve 
tends in the range of small n0 values, permits finding an “arbitrary” concen-
tration A∗ defined as 
 

         A V K
K

∗ −= +
−

1
1

A

A
,                               (2.3.32) 

 
while the length n0

* along the ordinate shows the concentration V–. 
 It should be noted for the sake of generality that if vacancies have a 
donor character, i.e., V+ are positively charged, the A(n0) function will look 
like curve 2 in Figure 2.2. In this case, the ordinate will show the concen-
tration V+, and A∗ will look exactly as in (2.3.32) with V+ instead of V–. The 
opposite is true of p-type crystals. 
 The behavior of an amphoteric impurity in a real crystal is also compli-
cated by the fact that, in addition to vacancies, there are background or deli-
berately introduced donors and acceptors in it: Nd and Na. So we generalized 
the above simple theory on the following assumptions [54]. The concentra-
tions Nd and Na were considered to be constant throughout the process of 
crystal cooling from the doping temperature. Vacancies were assumed to be 
so mobile that their concentration followed the temperature change to be-
come “frozen” at a certain temperature T∗, which was lower than the doping 
temperature T but higher than room temperature T0, at which n0 (or p0) and A 
were measured. 
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 The value of T∗ varies with the cooling rate and approaches T as the rate 
increases. Besides, we suggested in [54] a complete ionization of vacancies 
and all impurity centers present in the crystal. 
 With the above assumptions, the neutrality equations corresponding to 
the temperatures T, T∗, and T0 are 
 
      n V n n A A N Ni+ − = − + −− 2

I s d a ,                (2.3.33) 
 
     n V n n A A N N∗ ∗− ∗ ∗+ − = − + −i I s d a

2 ,               (2.3.34) 
 
       n V A A N N0 + = − + −∗−

I s d a .                    (2.3.35) 
 
In these equations, we have used the condition pn = ni

2 but ignored the con-
centration p0 in (2.3.35) because we are considering a n-type crystal. The 
concentrations of charged vacancies in the neutrality equations can be 
written as [55] 
 
       ( ) ( ) ( )V V P T n T n T− = i sm i, ,                         (2.3.36) 
 
where Vi(PsmT) is the equilibrium concentration of vacancies in an intrinsic 
semiconductor. It should also be taken into account that the intrinsic concen-
tration ni decreases quickly with decreasing temperature (see Figure 2.22); 
therefore, we can take n0 >> 2ni

* at T∗ and, hence, put 
 
          n n∗ = 0 .                                         (2.3.37) 
 
With these assumptions, the relation between n and n0 has been found to be 
 

     n n x
x

n x
x

n
x

= +
+

+ +
+









 +

+

















∗ ∗1
2

1
1

1
1

4
10 0

2
2 2

i ,             (2.3.38) 

 
with the denotations  
 
       x V n= i i      and     x V n∗ ∗ ∗= i i                   (2.3.39) 
 
and the sought for function n0(A) as 
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     ( )[ ] ( )
( )

A N N n x
K n n

K n n
= − + +

+

−
∗

a d
A i

A i
0

2

21
1

1
,            (2.3.40) 

 
where n is defined by equality (2.3.38). 
 It is easy to see that with small and large values of n0, the A(n0) functions 
will transform, respectively, to 
 

      ( )[ ]A n x N N x K
x K

= + + − + +
+ −

∗
0 1 1

1a d
A

A
             (2.3.41) 

and 

       ( )n n
x

x
K

K0
1

1
sh

i

A
A=

+
+ −









∗ .                  (2.3.42) 

 
The complete n0(A) function is represented by curve 1 in Figure 2.24. The 
curve shift relative to the bisectrix n0 = A is  
 
      ( )( ) ( )b x x K x K= + + + + −∗log 1 1 1A A .         (2.3.43) 

 
The asymptotic value of A∗ will be 
 
     ( ) ( ) ( )A N N x K x K∗ = − + + + −a d A A1 1 .            (2.3.44) 
 
The ordinate length in this case is expressed as 
 
        ( ) ( )n N N x0 1∗ ∗= − +d a .                       (2.3.45) 

 
 If the vacancies are positively charged (V+), the n0(A) function will look 
as curve 2 in Figure 2.24. 
 The p0(A) function for a p-type crystal will be represented by the same 
curves as in Figure 2.24, but one should bear in mind that n0 should be re-
placed by p0, Na by Nd, and, conversely, Nd by Na. The quantity KA should be 
understood as AI

+/As
–.  

 The theory considered demonstrates a qualitative similarity of the results 
(Figures 2.23 and 2.24), irrespective of the presence of this or that type of 
defect in the crystal. The type of defect, however, essentially determines the 
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Figure 2.24. The n0(A) dependence in a rigorous theory allowing for the compen-
sation by foreign point defects. 
 
shape of the n0(A) curve, or the  quantitative parameters A∗, b, and (n0)sh. 
Obviously, for theoretical and experimental n0(A) curves to be comparable, 
the equilibrium conditions at T∗ must be met. So measurements must be 
made in annealed samples at preset Psm and T followed by hardening; then, 
T∗ = T. The presence of numerous point defects which do not correspond to 
this pressure and temperature can make the interpretation of experimental 
data impossible. 
 If a direct experimental measurement of the total concentration A of an 
amphoteric impurity turns out to be too complicated, one can find the total 
concentration of all ionized centers Ni, determined from charge carrier mo-
bility measurements. The function to be found from the theory [55] is 
 

 ( ) ( )[ ]
A

AdA

A

A
0i 1

12
1
11

Kx
KNxN

Kx
KxxxnN

−+
−++








−+
++++= ∗∗ .      (2.3.46) 

 
This function is illustrated by curves 1 and 2 in Figure 2.25 for n-type crys-
tals containing V– and V+, respectively. The concentration values on the 
shoulders of curves 1 and 2 are defined by the same expression (2.3.42) as 
for the curves in Figure 2.24. The shift of the b curves (Figure 2.25) relative 
to the bisectrix, n0 = Ni, is 
 

       ( )b x x x K
x K

= + + + +
+ −











∗ ∗log 1 1
1

A

A
.                (2.3.47) 

 
 The asymptotic value of Ni

* in this case is described as 

© 2004 by CRC Press LLC© 2004 by CRC Press LLC© 2004 by CRC Press LLC



 
 
Figure 2.25. The concentration dependence of charge carriers on ionized centers in 
semiconductors with an amphoteric impurity and compensating centers. 
 
 

       ( )N
N x N K

x Ki
a d A

A

∗ =
+ −
+ −

2
1
1

,                         (2.3.48) 

 
and the length on the ordinate has no longer a clear physical meaning. This is 
easy to see if one makes Ni in (2.3.46) tend to zero. 
 For a p-type crystal, expressions (2.3.46) through (2.3.48) are valid, with 
appropriate substitutions similar to those just described for n0(A). 
 
 
2.3.4  Amphoteric impurity distribution in semiconductor compounds 
 
The thermodynamic theory discussed in the previous sections can be ex-
tended to semiconductor compounds. Consider first a binary semiconductor 
of the A1B1 type, such as the commonly used AIIIBV and AIIBVI crystals. For 
simplicity, we will ignore for the time being the possible interstitial dissolu-
tion of an amphoteric impurity in both sublattices. In other words, the impu-
rity atoms will be assumed to occupy only sites AA1  and AB1 . It is also ne-
cessary to choose the compound constituent possessing a greater volatility. 
For the semiconductors mentioned, such a constituent is B1 (As, P, Sb, etc.). 
 Therefore, the expressions for an A1B1 crystal are those of the A distribu-
tion between the sublattices, which describe the functions n0(A) and n0(Ni) 
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found in Section 2.3.3, but with a different physical sense of the constants 
KA, which can now be presented as: 
 

Type of crystal A1 A1 A1B1 A1B1 
Type of 
conductivity 

n p n p 

KA A As I
− +  A AI s

+ −  A AB A1 1
− +  A AA

+
B1 1
−  

 
 In addition to binary semiconductors, modern semiconductor electronics 
widely use multicomponent solid solutions on their base. 
 Let us discuss the distribution of an amphoteric impurity between the 
sublattices, with reference to AIIIBV solid solutions [56]. In contrast to the 
other sections of this book, the component number will be denoted here by a 
superscript and its content, expressed as a mole fraction, by a subscript. 
Thus, we will have a pure (undoped) solid solution with the anion substitu-
tion 
 

A B B B B1
1
1 2 3

− − − −x y z x y z
n , 

 
containing n components of group-V elements, and an undoped solid 
solution with the cation substitution  
 

A A A A Bz
n

y x x y z
3 2

1
1 1

− − − − , 
 
containing n components of group-III elements (superscripts III and V are 
omitted for simplicity). 
 The further treatment requires the following assumption to be made: 
 
         x y z+ + + < 1 .                               (2.3.49) 
 
In fact, this means that the sum of all additional components is a small value 
in the A1 or B1 sublattices. In other words, we assume that only single va-
cancies of components A1 and B1 with concentrations VA1  and VB1 , respec-
tively, may be intrinsic point defects in multicomponent solutions. Compo-
nent B1 is considered, as before, to be volatile. 
 These assumptions allow us to write simple equations, as in Section 
2.3.2, for processes reflecting point defect equilibrium inside a solid solution 
 
          V VA B

0
11

0 + ←
→ 0                                 (2.3.50) 
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and, with volatile B1 vapor, outside it 
 
         mV mB B1

0 1+ ←
→ mBB1

1 ,                           (2.3.51) 
 
where m is the number of atoms in a B1 molecule in the gas phase. 
 Equations (2.3.50) and (2.3.51) should be supplemented by the condition 
of an equal number of sites in both sublattices. For an anion solution, this 
condition is 
 
     AA A1 1

1 +V ←
→ B B B BB B B B B1 1 1 1 1

1 2 3+ + + + +n V ,         (2.3.52) 
 
where V V VA A A1 1 1

0= + −  and V V VB B B1 1 1
0= + − , i.e., we consider the vacancies in 

both sublattices to be of the acceptor type. Note that the knowledge of the 
exact charge sign of intrinsic defects is of no importance to our presentation, 
since we are discussing a general approach; the details are to be established 
from experimental data. 
 Equations (2.3.5) and (2.3.51) satisfy the following relations between the 
chemical potentials: 
 
        ( ) ( )µ µV VA B1 1

0 0 0+ = ,                                (2.3.53) 

 
       ( ) ( ) ( )m V mmµ µ µB BB B1 1

0 1 1+ = .                        (2.3.54) 

 
 The low concentrations of point defects in common sublattices suggest 
their solution in a crystal to be a perfect dilute solution. Then, we can write 
 

      ( ) ( )µ V g V T
V

VA A
A

A AA1 1
1

1 1

0 0
0

1
= +

+
ln ,                      (2.3.55) 

 

    ( ) ( )µ V g V T
V

VnB B
B

B B B BB B B1 1
1

1 1 1 1

0 0
0

1 2
= +

+ + +
ln .            (2.3.56) 

 
 The gas phase, too, is a perfect gas, and its chemical potential is 
 
        ( ) ( ) ( )µ µB Bm mT T P1 0

1= + ln .                     (2.3.57) 
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 The substitution of expressions (2.3.55) through (2.3.57) into (2.3.53) 
and (2.3.54) yields 
 

( )( )
( ) ( ) ( )V V

V V
g V g V

T
K T

n
A B

A A B B B B

A B

A B B B
1 1

1 1 1 1 1 1

1 1
0 0

1 1 2

0 0

1
+ + + +

= −
+











≡ ′exp , 

(2.3.58) 
 

( ) ( ) ( ) ( )V P
V

g V T m
T

K T
m

n
B B

B B B B

B B

B B B
B1 1

1 1 1 1

1 1
0 1

1 2

0 0 1

2

/

exp
+ + + +

= −
+ −











≡ ′
µ µ

. 

(2.3.59) 
 
 In the first approximation, the energy of defect formation can be consi-
dered to be dependent only on temperature: 
 
          ( )g g T≡ .                                     (2.3.60) 
 
The composition of a solid solution defines chemical potential ( )µ BB1

1 : 

 

     ( ) ( )µ µB BB B1 1
1 0 1 1

2
= + − + + +





T x y zln .             (2.3.61) 

 
Therefore, ′K1  will be only a function of temperature, while ′K2  will also 
vary with the solid solution composition. The constant ′K2  can be repre-
sented as 
 

       ′ = ′′ − + + +





K K x y z
2 2 1

2
,                          (2.3.62) 

 
where ′′K2  coincides with the function for a binary A1B1 compound. Taking 
this into account and considering the number of vacant sites in each sublat-
tice to be much smaller than that of occupied sites, it is easy to get 
 

      ( ) ( )V x y z T P
m

m
B B1 1
0

2
11

2
= − + + +





− / ,                    (2.3.63) 
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      ( )
( ) ( )V x y z

K T
K T

P
m

m
A B1 1
0 1

2

11

1
2

=
− + + +

/ .                  (2.3.64) 

 
Here, K1 = NL ′K1  and K2 = ′K2 NL, where NL is the concentration of sites in 
each sublattice, slightly varying with the solution composition. 
 The theoretical treatment of point defect formation in a solid solution 
with the cation substitution is simplified, because one can suggest that a 
change in the A1-sublattice composition will not lead to the dependence of 
( )BB1

1  on x, y, ..., z. Indeed, in this approximation, the defect solutions in 
both sublattices are taken to be perfect, which means that the defects do not 
interact with one another. Then, VA1  and V B1  will be described by the same 
expressions as a binary A1B1 compound. As a result, we have obtained the 
following expressions for solid solutions with the anion substitution [54]: 
 

( )
A
A

x y z K K
K

P N
N

n
n

E E
Tm

m
−

+
−= − + + +





′
−









+ −
1

2

2

3
2
2

1

2
2

21B
v

c i

A A/ exp   (2.3.65) 

 
and with the cation substitution: 
 

     ( )
A
A

K K
K

P N
N

n
n

E E
Tm

m
−

+
−= ′ ′ −









+ −

3
2

1

2
2

21B
v

c i

A A/ exp ,      (2.3.66) 

 
where 

    
( ) ( ) ( ) ( )

′ = −
− + −















− +
−

K
g A g A g V g V

T3

0 0 0 0
1

exp A B       (2.3.67) 

 
g(A–) and g(A+) are standard chemical potentials relating to acceptor and do-
nor amphoteric atoms; EA +  and EA −  are the energy differences between 
the donor and acceptor levels, on the one hand, and the respective allowed 
band edges, on the other; Nv and Nc are electron state densities in the valence 
and conduction bands. 
 It is clear from (2.3.65) and (2.3.66) that the distribution of an amphoteric 
impurity in a multicomponent solid solution of anion substitution is deter-
mined by both the volatile component gas pressure above the solid solution 
and the crystal composition. In the case of cation substitution, it is deter-
mined only by gas pressure. The relation between n0 and A has the same 
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form as in (2.3.21), but the constant KA will differ from that in the expres-
sions for binary AIIIBV or AIIBVI semiconductors. 
 For the anion  substitution, this constant will be 
 

 ( )K x y z K K
K

P N
N

E E
TB

m

m
i

v

c

A A= − + + +





′
−






− + −

1
2

2

3
2
2

1

2
1
/ exp ,  (2.3.68) 

 
and for the cation substitution it is 
 

     ( )K K K
K

P N
N

E E
Tm

m
i B

v

c

A A= ′ ′ −





− + −

3
2

1

2
1
/ exp .             (2.3.69) 

 
 One could make the final judgment about the distribution pattern of an 
amphoteric impurity in semiconductor compounds if one had reliable data on 
the dependence of volatile component vapor on solid solution composition. 
We have to state with regret that there are no such data for AIIIBV or AIIBVI 
compounds at present. 
 Similarly, the limit concentrations of additional components, for which 
condition (2.3.49) remains valid, can be found only experimentally. 
 However, we can make an a priori statement that small admixtures of An 
or Bn can change but slightly the free vacancy concentrations and, hence, are 
unable to redistribute appreciably the amphoteric impurity positions. Indeed, 
the only reason for such a redistribution in a perfect solution would be dis-
placement entropy. While the atomic fractions of additional components re-
main small, the changes in vacancy concentrations will also be small. 
 This is what follows from classical thermodynamics. But the study of 
isovalent doping has shown that there are significant deviations from the 
classical concepts at low contents of isovalent impurities (x ≤ 0.01). This 
problem will be discussed in Section 2.4. 
 
 
2.3.5  Data on amphoteric impurity states and behavior  
 
Here, we will consider only the most informative data on amphoteric im-
purities of various kinds. More detailed information on various amphoteric 
impurities can be found in the books [54, 57]. 
 Amphoteric d-impurities. One can see from Figures 2.11 and 2.12 which 
of the d-impurities are expected to show amphoteric properties. These are 
impurities, whose levels, 0/+ and 0/–, appear to be in the forbidden gap. For  
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Table 2.13. Different denotations for Cr impurity states in GaAs. 
 

 Chemical symbols Physical denotations  

Configuration 
at a Ga site Oxidation 

degree 
Ion charge Ion charge Donor 

acceptor 

Amphoteric 
symbols 

d 3 III Cr3+ Cr0 – A0 
d 2 IV Cr4+ Cr+ d+ A+ 
d 4  II Cr2+ Cr– a– A– 
d 5 I Cr+ Cr2– a= A= 

 
both levels to “be accommodated” in it, the forbidden gap must be wide 
enough and the Coulomb repulsion of electrons in a pseudo-ion, representing 
a p-d hybrid, must be weak. This, in turn, requires a maximum mixing of p-
electrons of the valence band and d-electrons of the impurity. 
 It is seen from Table 2.8 that d-impurities exhibit a slight amphoteric 
property in AIIBVI compounds, while in AIIIBV semiconductors this property 
is exhibited only by chromium in GaAs and by vanadium in GaP (Figure 
2.11), showing type-I amphoteric behavior. In elemental silicon, the type-I 
behavior is exhibited only by cobalt. 
 Consider the properties of these systems. 
 Properties of the GaAs<Cr> system. Numerous experimental studies, 
summarized in [14, 58, 59], indicate that chromium impurity atoms occupy 
gallium sites in GaAs. In the RFLW scheme (2.2.4), the chromium ground 
state Cr0 has a d 3 electronic configuration, and the ionized states are, 
respectively, d 2 (donor) and d 4 (acceptor). One finds in the literature 
different denotations for charge states of chromium ions and other 
impurities. To avoid confusion, we are giving, as an illustration, all generally 
accepted denotations for Cr in GaAs (Table 2.13). The chemical symbols are 
used in inorganic chemistry, as well as in optical and EPR spectroscopy. The 
physical denotations are commonly used for the description of energy levels, 
transfer processes, and recombination in semiconductors. 
 A detailed experimental evidence for the presence of all configurations in 
GaAs<Cr> (Table 2.13) can be found in [14, 57]. 
 Two models of the Cr3+(d 3) impurity center have been suggested on the 
basis of numerous experimental data, mostly on EPR spectra observed under 
illumination at low temperature [60] and uniaxial crystal compression [61]. 
In one model, the center is located on the cube axes directed away from the 
tetrahedron center toward the nearest neighbors at Yan–Teller sites. In the 
other model [59], the Cr3+(d3) center forms an associate with another center 
[59], with the bonding along the [100]-axis. 
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Figure 2.26. EPR intensities from various Cr impurity states in GaAs. 
 
 Irrespective of the state model, a Cr3+ center with the d 3-configuration 
does exist in GaAs crystals, showing amphoteric properties. An A– state with 
the d 4-configuration, negatively charged relative to the semiconductor, was 
also detected by the EPR technique [62, 63]. The authors of this work found 
the d 4-state of chromium impurity in the crystal field with the Td-symmetry. 
This result was supported independently by phonon ballistic absorption data 
[64] and absorption measurements of monochromatic ultrasonic waves [65]. 
 The donor Cr4+(d 2) state was detected by the EPR technique in p-
GaAs<Cr> samples, whose Fermi level was located in the vicinity of the va-
lence band top [66, 67]. The d 2-state in the Td crystal field must split into a 
set of levels, but the isotropic EPR line is so wide even at 4.2 K that the su-
perfine structure of the EPR signal is unresolvable. As a consequence, the 
splitting parameters of these center levels have not yet been determined. 
Moreover, the d 2-configuration itself was found from the EPR data by com-
paring Cr concentrations in p-GaAS and the calculated EPR line intensity 
(area).  
 One can hardly doubt the existence of Cr4+(d 2) ions, since the three con-
figurations d 3, d 4, and d 2 are observable in the EPR spectra of samples illu-
minated by light quantum energy equal to or larger than the forbidden gap 
width. More sensitive to EPR light in high resistance (semi-insulating) sam-
ples is GaAs<Cr> with the Fermi level lying close to the forbidden band 
center. The changes in the EPR signal intensity are shown schematically in 
Figure 2.26 [58]. One can see that a signal from the donor d 2-state appears at 

ω ≥ 0.8 eV with a simultaneous increase of the signal from the acceptor d 4-
state and a decrease of that from un-ionized chromium with the d 3-
configuration.  
 These findings suggest that the photoionization process occurs as a se-
quence of reactions (Figure 2.27): 
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Figure 2.27. Schematic electron transitions in the energy level system of amphoteric 
Cr states in GaAs. 
 
 
       d e d p3 4+ → +v v  at hν1 ,                        (2.3.70) 
 
        d p d3 2+ →v  at hν2 .                       (2.3.71) 
 
A light quantum first ionizes the Cr3+(d 3) atom, which captures an electron 
from the valence band under illumination, and transforms to Cr2+(d 4), i.e., 
reaction (2.3.70). Then, the free hole produced in the valence band is cap-
tured by another un-ionized Cr3+(d 3) center, transforming it to the donor 
Cr4+(d 2) state, i.e., reaction (2.3.71). This transition occurs at hν2 ≅ 0.45 eV 
and the first acceptor capture takes place at hν1 ≅ 0.8 eV. At zero illumina-
tion, the captured carriers recombine, and the EPR spectrum shows the return 
to the initial concentration of d 3-centers. 
 The d 4 and d 2 concentrations decrease exponentially with the same time 
constant [58], in agreement with the photogeneration model of amphoteric 
d 4- and d 2-Cr states. However, the recombination mechanism is not quite 
clear. Since after reactions (2.3.70) and (2.3.71) the valence band contains no 
vacant sites, one can suggest a direct interimpurity recombination via tunnel-
ing, as was proposed by the authors of [68]. This implies the minimum sepa-
ration between the two d 3-centers, which may happen only in a correlated, 
rather than random, distribution of impurity atoms throughout a crystal. This 
question remains to be answered, as well as the question of a random or con-
trolled doping impurity distribution in semiconductors. 
 The diagram of energy levels proposed in [54] for amphoteric transitions 
of the Cr3+(d 3) center generally accounts for the electrical, optical, and pho-
toluminescence properties of the GaAs<Cr> system. 
 The energy levels of all amphoteric chromium centers in gallium arsenide 
can be conveniently represented as a configuration diagram (Figure 2.28); 
the respective energy values are given in Table 2.14. 
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Figure 2.28. A configuration diagram of energy levels for various amphoteric Cr 
states in GaAs (for numerical values, see Table 2.14). 
 
 Table 2.14 also includes the doubly charged acceptor state Cr2–(d 5). To 
study this state, the Fermi level must be shifted much higher than the middle 
of the forbidden gap. This is done using double doping with chromium NCr 
and shallow donor Nd, simultaneously. If impurity chromium remains singly 
charged in its acceptor state A–, we will have the concentration equality: 
 
         n N N= −d Cr ,                                  (2.3.72) 
 
Table 2.14. Summary of Cr energy levels in GaAs. 
 

States Energy characteristics 
(Figure 2.28) 

Energy values, eV 

Cr–(d 4) En
opt 0.8 

 E1n 0.67–0.68 
 E1p

T 0.76 
 ∆ ? 
 E2

opt 0.9 
 E T

Y T−
5 2  0.062 

 E3 ? 
 E E

Y T−
5  0.007 

Cr+(d 2) E4
opt 0.45 

 E4
T ? 

Cr2–(d 5) E5
opt 0.5 

 E5
T 0.055 
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where n is free electron concentration defined by the Hall coefficient. 
 If impurity chromium is in the A–-state, we have the equality 
 
         n N N= −d Cr2 .                                 (2.3.73)  
 
The largest errors in these experiments vary with the accuracy of 
independent measurements of concentrations Nd and NCr. The authors of [69] 
used chromium and tin and determined the concentrations with radioactive 
labels. In [70], the value Nd = NGa

Si – NAs
Si was found from the local modes 

of optical absorption by silicon atoms at gallium and arsenic sites; the value 
of NCr was measured by mass-spectrometry. The results of these experiments 
do not coincide, which seems to be due to the complexity of impurity 
concentration measurement. In any case, the data of [70] better agree with 
relation (2.3.73). 
 Of interest are experiments on the study of properties of the GaAs<Cr> 
system under hydrostatic pressure [71, 72]. At first, the samples with NCr ≥ n 
behaved as described above, i.e., they exhibited light absorption. At pressure 
∼1 GPa, the 0.9 eV absorption peak associated with intra-center transitions 
of the d 4-center disappeared, increasing the sample conductivity. These data 
were interpreted as being due to the d 5-level position above the conduction 
band bottom. With increasing pressure, the band bottom goes higher, expos-
ing the d 5-level, and the absorbed light is nearly totally spent for the transi-
tion of the second electron to Cr2+(d 4), or for the formation of Cr+(d 5). The 
d 5-level was found in these experiments to lie at ET = 0.055 eV above the 
conduction band bottom at atmospheric pressure and 77 K. Ionization light 
energy of the level d 4 → d 5 at ∼1 GPa is E0 ≅ 0.5 eV, which is shown in Fig-
ure 2.28 and Table 2.14. 
 Properties of the AIIIBV<V> system. The amphoteric vanadium levels in 
AIIIBV semiconductors were obtained in a general form from numerous expe-
rimental data (Figure 2.29) by the authors of [73]. They used double doping 
with vapors of V and Se, V and Si, V and Zn to obtain GaAs<V> samples 
with varying Fermi level positions—practically from Ec to Ev. The level Ec – 
0.15 eV, depleted by electron escape to the conduction band on heating, was 
found only in samples with the Fermi level in the range Ec > µ > 0.15 eV.  
 The 0.15 eV level was identified as the A– acceptor state of impurity 
vanadium, produced in the reaction 
 
       ( ) ( )A d e A d p0 2 3+ → +− − +

v v .                      (2.3.74) 
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Figure 2.29. Energy levels of amphoteric vanadium in basic AIIIBV compounds [73]. 

 
 

 
 
Figure 2.30. Optical absorption spectra of GaAs<V> samples at T = 5 K [146]: 1 – p-
crystal; 2 – high resistance n-crystal at NV < Nd; 3 – n-crystal at NV > Nd  (Nd is 
background donor concentration). 
 
 If a vanadium atom occupies an AIII site, the d 3-state is in a tetrahedral 
crystal field and splits into the ground 4T1 and two excited 4T2 and 4A2 states. 
The level Ec – 0.15 eV seems to belong to the lower of these 4T1 states. 
 That this level belongs to the V–(d 3) center is supported by optical ab-
sorption data. Figure 2.30 shows spectra from three groups of samples differ-
ing in the Fermi level position [73]. 
 The first group includes GaAs<V> samples with the Fermi level located 
in the lower half of the forbidden gap. These samples either had a high resis-
tance with the Fermi level close to the forbidden band center owing to the 
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natural impurity background or close to the valence band top in simultaneous 
doping with V and Zn. The absorption spectra of both sample subgroups are 
identical (curve 1 in Figure 2.30). The right-hand side of the curve indicates 
a fast absorption beginning at hν = 1.35 eV and corresponding to Eg – 
0.15 eV. So, this level was identified from reaction (2.3.74). The rest of the 
spectrum must then reflect the light absorption by intra-center electron tran-
sitions in un-ionized A0(d 2) states of vanadium atoms. The position of these 
transitions, as interpreted in [73–75], is shown in Figure 2.30. Here, the 
3A2 → 3T2 transition was identified from the photoluminescence spectrum 
[73] which has a phonon-free line at 0.74 eV, reflecting the transition of an 
electron from the lowest of the three excited states to the ground state. The 
identification of the spectrum represented by curve 1 in Figure 2.30 was sup-
ported by direct EPR studies of the electronic configuration [76–78]. 
 The second group includes n-type samples with the Fermi level lying 
above Ec – 0.15 eV at NV < Nd, where Nd is the concentration of doping 
shallow donors. The spectrum is represented by curve 2 in Figure 2.30 and 
corresponds to the transitions inside a A–(d 3) center, shown in Figure 2.31. 
The changes in the spectrum intensities and the 100 K peak in the DLTS 
spectrum of Figure 2.32 correlate well for samples with different concentra-
tions of vanadium centers. This is why the transition V0(d 2) → V–(d 3) was 
attributed to the 100 K peak in the DLTS spectrum. 
 Mixed light absorption by the d 2- and d 3-states of vanadium centers 
(curve 3 in Figure 2.30) occurs in samples of the third group with the NV/Nd 
ratio corresponding to the Fermi level Ec – 0.15 eV. The spectral curve in 
this case is nothing else but the superposition of spectra 1 and 2. 
 The appearance of the A+(d 1) donor state of vanadium impurity could be 
expected to be due to the same mechanism as for the GaAs<Cr> system.  
 
 

 
 

Figure 2.31. The main vanadium energy levels in GaAs [73]. 
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Figure 2.32. DLTS spectra from GaAs<V> samples grown by the following methods 
[146]: 1 – Chokhralski method; 2 – Bridgeman (horizontal) method; 3 – electroliquid 
epitaxy. 
 
Since reaction (2.3.74) produces a free hole, it can be captured, similarly to 
(2.3.71), by another V0(d 2) center to produce a d 1-state. However, such a 
level could not be identified by the authors of [73] during the Fermi level 
transition across almost the whole GaAs band. It may be concluded that the 
level V3(d 2) → V4+(d 1) is localized either in the forbidden gap near the va-
lence band top or even inside it. The authors of [73] consider the second in-
terpretation more probable, following the general scheme of d n-level predic-
tion shown in Figure 2.11. We think, however, that the other interpretation 
should not be entirely discarded, because a shallow level located near Ev is 
hard to detect experimentally. In any case, for this level to be detected, the 
Fermi level must be located between it and the valence band top. This 
probably cannot be done by heavy doping with an ordinary acceptor impurity 
because of the formation of an impurity band (the tail of the density of 
states) merging with Ev. Of course, the vanadium donor level may be ex-
pected to be in resonance with the impurity band state and to manifest itself 
in electroluminescence spectra of diodes made, say, from GaAs<V,Zn>. 
 To draw the final conclusion concerning the energy position of the vana-
dium donor state, it would be necessary to perform a series of studies of 
samples subjected to hydrostatic compression in order to broaden Eg and to 
shift the V+(d 1) level away from the edge Ev. The general scheme of 
amphoteric vanadium levels in GaAs, as was formulated in [73], is given in 
Figure 2.31. 
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 The behavior of a vanadium impurity atom in GaP is much less clear. If 
vanadium atoms form, like other T-atoms, a substitutional solution in GaP 
and occupy Ga sites, their electronic structure must be V3+(3d 2). The ground 
state A0 of this electronic configuration has a zero orbital momentum with 
the effective spin S = 1; therefore, the EPR signal of these centers should be 
observable. But no EPR spectrum could be detected in n-type crystals with a 
shallow donor background at about 1017 cm–3 [79]. All vanadium impurity 
was found to be ionized as V2+ with the 3d 3-configuration. Donor electrons 
filled the lowermost level, producing a non-zero orbital momentum, so no 
EPR spectrum could be observed. But a feature was likely to appear in the 
optical absorption spectrum due to the term splitting of V2+ ions by the Td-
crystal field. Such a feature was, indeed, detected in the optical absorption 
spectrum of GaP<V> [80] and interpreted as being due to electron transitions 
inside the d-shell of a V2+ ion, which are similar to those considered above 
for the GaAs<V> system. 
 The conductivity type of GaP<V> was changed to the hole conductivity 
by double doping with vanadium and manganese [79]. The samples 
exhibited EPR spectra for manganese and vanadium ions in the 3d 2(V3+) 
state. The latter spectrum consisted of two fine lines. Since the nuclear spin 
of the V51 isotope is equal to 7/2 (99.76% occurrence), the EPR spectrum 
was expected to contain eight superfine lines. But the experiment did not 
reveal these lines [79], which was interpreted as being due to their 
broadening associated with the superfine interaction between the d-electrons 
of the V3+ ion and its nucleus. 
 Recent data have shown that the energy levels of vanadium ions in GaP 
exhibit only acceptor properties and lie at 0.58 eV below the conduction 
band [81]. They were found in n-type samples and reflected the V3+/V4+ 
transition. 
 Generally, p-type GaP<V> samples are to have the V3+/V4+ state, but 
there have been no reports of such observations. The general diagram of va-
nadium levels relative to the vacuum levels in AIIIBV allows prediction of the 
V3+/V4+ donor level in GaP at Ev + 0.4 eV, which is clear from Figure 2.29 
based on experimental findings [73]. The vanadium donor levels identified in 
this work for InP were found to be Ev + 0.24 eV, against Ev + 0.21 eV in 
other reports. 
 Properties of the AIIBVI<Ni> system. Nickel impurities in AIIBVI crystals 
are located in the AII sublattice, in which the Ni2+(d 8) state is un-ionized 
relative to the semiconductor. The transitions between the ground T1 state 
and three excited states, observed in optical absorption and photolumi-
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nescence spectra, reliably identify the Ni2+(d 8) state in various AIIBV 
crystals1. 
 In addition to intra-center transitions, AIIBVI crystals exhibit wide absorp-
tion bands. The long wavelength edge of these bands in ZnS<Ni> and 
ZnSe<Ni> were unambiguously identified as being due to the transition of 
the un-ionized Ni2+(d 8) state to the acceptor Ni+(d 9) state, as in the reaction 
 
       ( ) ( )Ni Ni v

2 8 9+ − ++ → +d e d p .                  (2.3.75) 

 
This process has been confirmed for ZnSe<Ni> by several researchers who 
used different experimental techniques: photocapacitance measurements 
[83], photo-EPR studies [84], and others. Similarly, this has also been estab-
lished for the ZnS<Ni> system [84, 85]. 
 The energy levels of donor (A0 → A+) and acceptor (A0 → A–) transitions 
of nickel in AIIBVI crystals are given in Table 2.15. One can see that four 
crystals of this group (ZnSe, ZnS, CdSe, and CdS) show amphoteric proper-
ties of the d-state of impurity nickel. 
 Properties of the Si<Co> system. A combined investigation of the Hall 
coefficient and deep level positions by the DLTS technique has recently 
revealed [86] the donor Co0/Co+ level Ev + 0.21 ± 0.02 eV and the acceptor 
Co0/Co– level Ec – 0.41 ± 0.02 eV, although Table 2.9 gives different values 
for cobalt levels in silicon. 
 Experiments with diffusion saturation of silicon samples with cobalt 
show that the level concentrations of amphoteric cobalt in n- and p-samples 
are close; therefore, they belong to the same cobalt state. The authors of [54] 
give preference to interstitial cobalt in the Co0 state. 
 
Table 2.15. Energy levels (eV) of donor (A0 → A+) and acceptor (A0 → A–) tran-

sitions in AIIBVI<Ni> crystals*. 
 

Energy level ZnSe ZnS ZnO ZnTe CdSe CdS CdTe 

Donor level 
Ec – Ei 

2.74 3.5 – – 1.51 2.27 – 

Acceptor level 
Ev + Ei 

1.9 2.6 – 1.0 1.8 2.33 0.92 

 
* The position of Ei  in the forbidden gap is indicated as transitions D, A, δ, and a in 
Figure 2.6. 

                                                           
1  Intra-center transitions to Ni2+(d 8) were detected only in CdTe. 
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Figure 2.33. Cobalt solubilities in silicon: 1 – concentration of electrically active Co; 
2, 3, 4 – total Co concentrations. (From the following reports: I – [87] n-type; II – 
[87] p-type; III – [88]; IV – [89]; V – [90]; VI – [94]; VII – [91]). 
 
 This is consistent with the fact that this state captures an electron to form 
Co– in n-silicon and gives off an electron to form Co+ in p-silicon. However, 
the solubility curve of electrically active cobalt (curve 1 in Figure 2.33) 
based on the data of [87–89] is two orders of magnitude lower than the total 
solubility curve for impurity cobalt (curve 2 in Figure 2.33). The latter curve 
was detected using radioactive isotope 59Co [90–93]. So the amphoteric co-
balt component should be ascribed to the site state Cos with the d 5-configu-
ration in an un-ionized state. When an electron is captured in n-type silicon, 
the amphoteric center Cos changes to the d 6-state; when a hole is captured in 
p-type silicon, it changes to the d 4-state. It is the middle filling of the d-shell 
of an un-ionized Cos(d 5) center which determines its “unstable” state 
possessing an equal probability to accept or give off an electron, which is in 
full agreement with the above conception of transition metal behavior in 
silicon. 
 Thus, cobalt atoms exhibit amphoteric impurities of the site-type in cili-
con, although their solubility is low. 
 The attempts to find manifestations of amphoteric properties of 
interstitial cobalt have been unsuccessful. The reason may be that Coi is not a 
purely interstitial state but, rather, an associate of interstitial cobalt with 
other point defects. This is indirectly supported by the fact that the forbidden 
gap is “populated” by numerous levels (Table 2.9) attributed by many 
authors to impurity pairs containing cobalt atoms. 
 Poorly explored amphoteric d-impurities in silicon.  
 Titanium in silicon is shown by the calculations of solubility enthalpies 
[54] to occupy both (Ti0[3d 34s]) sites and (Ti+[3d 3]) interstices in a crystal 
lattice. The number of titanium atoms in one position must be close to that in 
the other position, which is due to the small difference in the solubility en 
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Table 2.16. Electronic configurations and energy levels of poorly explored interstitial 
amphoteric impurities in Si. 

 

Impurity Charge and 
electronic states 

Amphoteric 
states 

Energy levels, 
eV 

References 

Ti Ti–/Ti0;  3d 5/3d 4 A– Ec – 0.08 [96–98] 
 Ti0/Ti+;  3d 4/3d 3 D+ Ec – 0.28  
   Ti+/Ti2+; 3d 3/3d 2  D2+ Ev + 0.25  
V V–/V0;  3d 6/3d 5 A– Ec – 0.16 [97, 99, 100] 
 V0/V+;  3d 5/3d 4 D+  Ec – 0.45  
 V+/V2+;  3d 4/3d 3 D Ev + 0.30  
Mn Mn–/Mn0; d 8/d 7 A– Ec – 0.11 [97, 100] 
 Mn0/Mn+; d 7/d 6 D+ Ec – 0.42  
   Mn+/Mn2+; d 6/d 5  D2+ Ev + 0.25  

 
thalpies. Experimental data, however, show that only Ti interstitial states 
(Table 2.16) are amphoteric. 
 The presence of the Ti+[3d 3] state has been detected by the EPR and 
DENR techniques [93], as well as by diffusion studies [95]. 
 Table 2.16 presents data on vanadium and manganese which, according 
to some workers, also show amphoteric properties in silicon. Both impurities 
are interstitial amphoteric centers. 
 Among other impurities in silicon, we will mention scandium and hy-
drargium. 
 Scandium is the least explored d-impurity in silicon. The authors of [101] 
studied the electrical properties of the Si<Sc> system and arrived at the 
conclusion that it had amphoteric characteristics. Scandium atoms behaved 
like donors in p-Si and like acceptors in n-Si. The former is typical of transi-
tion metal atoms at interstices and the latter at silicon sites. However, the 
lack of data on its solubility and diffusion, on the charge states and electronic 
configurations makes it difficult to draw final conclusions concerning the 
amphoteric nature of scandium in host silicon. 
 Hydrargium forms in silicon two acceptor levels Ec – 0.31 and Ec – 
0.36 eV and two donor levels separated from the valence band top by 0.25 
and 0.33 eV [102]. The author of [103] believes that since Hg occupies in the 
periodic table an intermediate position between Tl and Au, which are substi-
tutional impurities in silicon, Hg should also occupy lattice sites in silicon 
and behave as an amphoteric impurity. This suggestion is to be tested ex-
perimentally.  
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2.3.6  Amphoteric excitons bound by d-impurities 
 
The amphoteric properties of d n-impurities were shown above to be de-
scribed by reactions (2.2.1) and (2.2.2). A generated carrier may have a dual 
fate in the allowed band. One possibility is to be captured by another d n-
center. This was described with reference to impurity Cr in an un-ionized 
A0(d 3)-state in GaAs when a free hole generated by the reaction A0 → A–(d 4) 
according to (2.3.70) is captured by another d 3-center which is to transform 
to A+(d 2) in accordance with (2.3.71). 
 The alternative is that an ionized d-center retains a free carrier, so that 
instead of (2.2.1) and (2.2.2) we will have 
 

      ( )[ ]A A p e A e0 0+ → + = +ωδ ,                       (2.3.76) 

 

      ( )[ ]A A e p A p0 0+ → + = −ωα .                      (2.3.77) 

 
 The activation energies of these reactions are 
 
         ω ω εδ = −D p ,                              (2.3.78) 

 
         ω ω εα = −A e ,                              (2.3.79) 
 
differing from regular ionization energies of charged centers by the energy of 
the carrier binding to such a center. Electron transitions producing excitons α 
and δ are shown in Figure 2.6 by dashed arrows. 
 The products of reactions (2.3.76) and (2.3.77) are excitons bound by a 
neutral (relative to the semiconductor) d-center. Here, one can really see the 
well-known analogy with an exciton captured by an isoelectron trap, say, by 
a nitrogen impurity in GaP. In both cases, the first carrier is retained by a 
short-range potential and the other, having an opposite sign, by a long-range 
Coulomb potential. Excitons bound by d-impurities will be termed, like in 
[104], donor and acceptor excitons, in accordance with (2.3.76) and (2.3.77), 
i.e., in accordance with the sign of the captured hydrogen-like carrier. In this 
terminology, an isoelectron donor captures a donor exciton (2.3.76), while an 
isoelectron acceptor captures an acceptor exciton (2.3.77). 
 It is clear from these reactions that a d-impurity in the A0-state can cap-
ture both donor and acceptor excitons. This is a manifestation of the essential 
difference between a d-impurity and a simple isoelectron (isovalent) 
impurity of the nitrogen type in GaP. Therefore, impurities may show 
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amphoteric properties not only in the formation of charged centers but also 
in the capture of excitons. 
 Theoretically, the amphoteric capture of an exciton by a d-impurity was 
predicted in [105], and donor and acceptor excitons were detected experi-
mentally in ZnSe<Ni> by the authors of [106, 107]. A quantum mechanics 
theory of impurity excitons bound by d-centers in semiconductors is dis-
cussed in [104]. Such excitons are shown to be excitations intermediate in 
their properties between the Frenkel and Mott excitons, but both can be ex-
cited by an electromagnetic field. The two excitation systems are interrelated 
due to the exchange and spin-orbital interaction between an electron and a 
hole. A simple formula was derived in [107] for the probability ratio of 
donor (Wδ) and acceptor (Wα) excitons. With the account of (2.2.4), it can be 
written for a site impurity as 
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where me∗  and mpp∗  are the effective masses of electrons and heavy holes, 
respectively; Ei are the d-level energies of the impurity center, counted off 
from the band edges Ec and Ev and representing the level A0 → A– in the nu-
merator of formula (2.3.80) and the level A0 → A+ in its denominator. 
 Therefore, the formation of excitons “follows” the appearance of the do-
nor or acceptor level of a d-impurity in the crystal forbidden gap. This means 
that amphoteric excitons may be formed only if amphoteric d-levels already 
exist in the forbidden gap, which can be easily established from a 
comparison of data in Tables 2.17 and 2.15. 
 It has been shown that amphoteric excitons in AIIIBV crystals occur very 
rarely [104] but are normally found in GaAs<Cr> and GaP<Cr> crystals and 
in many AIIBVI semiconductors (Table 2.17). 
 Unlike excitons bound by a simple isovalent impurity (nitrogen in  
 
Table 2.17. Basic lines of donor and acceptor excitons in AIIBVI crystals*. 
 

Energy level ZnSe ZnS ZnO ZnTe CdSe CdS CdTe 
Donor exciton 2.64 3.39 – – – 2.19 – 
Acceptor exciton 1.82 2.44 1.6 – 1.7 – 0.966 

 
* The positions of ω  in the forbidden gap are indicated as the transitions D, A, δ, 
and α in Figure 2.6. 
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gallium phosphide), d-excitons can be identified only from the intracenter 
transitions. For this reason, the capture of excitons, α and δ in Figure 2.6, 
must produce satellite lines near the impurity absorption band edge. This fine 
structure was first observed by Kazansky and Ryskin [82] and ten years later 
by other researchers [107]. The fine structure consists of the basic line and 
its phonon reproductions. 
 An experimental registration of narrow weak lines against the 
background of a strong photoionization absorption spectrum is a very 
difficult task. So, a step forward was the application of electroabsorption, 
which is light absorption when an external electric field is applied to the 
sample. The first destroys the hydrogen-like bond in an exciton, reducing its 
lifetime τ. Variation in the lifetime changes the absorption linewidth. 
Besides, because of the Stark effect, the electric field shifts the absorption 
line toward lower energies. However, it practically does not affect the intra-
center transitions, since d-electrons are rather strongly localized, i.e., they are 
strongly bound to their nucleus, or, at least, they are bound in a small space 
limited by the nearest ligands. The reader can find in [104] the theory and 
treatment of optical electroabsorption line broadening data, the information 
on donor and acceptor excitons, as well as on bound excitons of different 
types in various AIIBVI crystals with d-impurities. 
 
 
2.3.7  Dissociative amphoteric impurities 
 
Impurity copper in germanium. The charge state of impurity copper can be 
predicted from the general model of d-impurity behavior in semiconductors 
(Section 2.2). The electronic structure of a copper atom in a free state is 
3d 104s1. 
 When dissolved at a site or an interstice, a copper atom acquires one of 
the electronic configurations presented in Table 2.18. It is clear from this 
table that a donor state localized at a site is to have the d 6-configuration, 
which is very unlikely because the removal of seven out of ten electrons of 
the d-shell would require much energy, whereas the filling of the d-shell up 
to ten electrons, i.e., to equilibrium, can be done easily. Therefore, copper 
must be a triply charged acceptor at germanium sites. 
 In the RFLW model, an interstitial electron is pushed out of the s-shell to 
the d-shell. But the d-shell in copper is filled up, and so its un-ionized state 
retains the 3d 104s1 configuration which can be changed by giving off rather 
than by acquiring electrons. Therefore, interstitial copper can have only Cu0 
and Cu+ states which have been registered experimentally. For example, Cus  
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Table 2.18. Electronic configurations and charge states of Cu impurity centers in Ge. 
 

 Electronic configuration 

Charge state 
 Site solubility Interstitial solubility 

Cu0 3d 7 3d 104s1 
Cu– 3d 8 – 
Cu= 3d 9 – 
Cu≡ 3d 10 – 
Cu+ 3d 6 3d 10 

 
forms three acceptor levels Ea1 = Ev + 0.04 eV, Ea2 = Ev + 0.33 eV, and Ea3 = 
Ec – 0.26 eV [108], attributed to Cu–, Cu=, and Cu≡, respectively. The 
presence of interstitial copper in the germanium crystal lattice has been 
confirmed by experiments on its diffusion and on decomposition kinetics of 
the Ge<Cu> solution. 
 The amphoteric behavior of copper reveals itself clearly in the decom-
position mechanism in germanium samples containing, in addition to copper, 
other shallow doping impurities. This was reliably established in 
experiments with the Ge<Cu,Sb> system [109, 110]. Copper precipitation in 
the presence of donors was attributed (with the allowance for the charge state 
of reacting defects) to the following quasichemical  reactions: 
 
             K1 
         Cus

−
←
→ Cui

+ −+V 2                             (2.3.81) 
                 K2 
 
                 K3 
         Cus

−
←
→ Cui + +− −V e                        (2.3.82) 

             K4 
 
             K5 
         D nV+ −+ 2

←
→ ( )Z n− −2 1                         (2.3.83) 

             K6 
 
                K7 
         ( )m Z nCui

+ − −+ 2 1
←
→ ′Z                      (2.3.84) 

                K8 
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              K9 
          Cui

+ → sink                                 (2.3.85) 
              K10 
 
           V → sink.                               (2.3.86) 
 
 Therefore, the study of decomposition of the complex solid solution Ge–
Cu–Sb indicates the possible existence of copper atoms in two crystal-
lochemical positions: at sites and at interstices. In the former, a copper atom 
is a multiply charged acceptor and in the latter it has a positive charge and is, 
therefore, a donor. But its ionization energy level appears to be located in the 
allowed conduction band spectrum, so it is always in the inactive Cui state. 
 Impurity copper in silicon. The above considerations concerning the 
electrical behavior of copper in germanium will also be valid for silicon. 
This follows from the general RFLW model for these semiconductors. Like 
in germanium, copper in silicon is a triply charged acceptor at a site. The 
generally accepted values for the ionization energy are Ev + 0.24 eV, Ev + 
0.37 eV, and Ev + 0.52 eV, in accordance with the acquired number of 
negative charges. The difference is that the first ionized state Cus

– in silicon 
is located deep in the forbidden gap and does not contribute significantly to 
the electrical properties of silicon samples. 
 Impurity gold in silicon. In the late 1950s, Collins and co-workers carried 
out an investigation of the electrical properties of Si<Au> [111] and 
identified two Au levels in the forbidden gap: a donor level ED = Ev + 0.35 
eV and an acceptor level EA = Ec – 0.54 eV. The electron filling of these 
levels in silicon samples doped and undoped with shallow impurities is 
shown schematically in Figure 2.34. 
 

 
 
Figure 2.34. Schematic filling of gold levels in silicon: (a) – without foreign impuri-
ties, (b) – with a foreign donor impurity; (c) – with a foreign acceptor impurity (Nd, 
Na >> NAu). 
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 At low temperatures, the Au levels are separated by ∆E >> kT and can be 
regarded as being independent, which considerably simplifies the solution of 
the neutrality equation, allowing one to identify the ionization energy of the 
levels with the slope of the temperature dependence of Hall concentration. 
The details of this treatment can be found in [54]. Here, we will mention 
only the basic (recombination) properties of Si<Au>. These can be easily 
understood in terms of the filling diagram of energy levels in Figure 2.34. 
 At Nd >> NAu, the crystal has the n-type conductivity, and the Fermi level 
lies high above both Au levels which appear to be completely filled by elec-
trons. The donor level is un-ionized and the acceptor level is negatively 
charged Au–. It has a  characteristically large value of hole capture cross sec-
tion σpA because of the Coulomb attraction of holes from the valence band. 
The capture of a hole will immediately lead to the attraction of an excess 
electron from the conduction band. Therefore, the Au acceptor level EA must 
act as an effective recombination center. 
 In a p-type crystal, i.e., at Na >> NAu, the acceptor level will, on the con-
trary, be un-ionized, while the donor level will be totally ionized, effectively 
capturing electrons from the conduction band with a large capture cross sec-
tion σeD. 
 The experimental lifetimes of minority carriers in Si<Au> were indeed 
found to be small. The respective values of capture cross sections are pre-
sented in Table 2.19. 
 Although the data of different authors differ by a factor of 5 or 7, they 
demonstrate a considerable excess of the capture cross sections for centers of 
opposite signs, as was expected from the amphoteric behavior of gold im-
purity in silicon. Direct evidence for gold as an effective recombination 
center was obtained in the work [112] by measuring the relaxation time of a 
diode made from Si<Au>. 
 
Table 2.19. Cross sections for hole capture by the acceptor level (σpA) in p-Si<Au> 

and electron capture (σeD) in n-Si<Au>. 
 

Measurement σ, cm2 in n-Si σ, cm2 in p-Si 
 

temperature, 
Charge state of recombination center 

References 

K Au0 Au– Au0 Au+  

300 5×10–16 1×10–15 10–16 3.5×10–15 [113] 
 1.7×10–16 1.1×10–14 2.4×10–15 6.3×10–15 [114] 

77 3×10–15 1×10–13 3×10–15 6×10–14 [113] 
 5×10–16 2.3×10–13 ? 1×10–13 [113] 
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Figure 2.35. Recombination times τ+1, τ–1, and τ0 in combined recombination via 
amphoteric Au levels in silicon. The times of independent recombination (τ–A, τ+A, τ–

D, τ+D) via Au donor and acceptor levels are given for comparison. 
 
 These facts indicate that the recombination at both levels may be consi-
dered to occur independently in the first approximation. Nevertheless, we 
would like to mention the work [115] which shows with a more general 
model that the recombination in Si<Au> must be described by three life-
times: τ0, τ1, and τ2. Their dependence on the carrier concentration (holes) 
calculated in [115] is shown in Figure 2.35. One can see p ranges, in which 
τ+1 and τ–1 coincide with τ– or τ+ in separate recombination via gold ampho-
teric levels. 
 Silver in silicon behaves as other group-I impurities. Silver atoms pro-
duce donor (Ev + 0.32 eV) and acceptor (Ec – 0.29 eV) levels in the silicon 
forbidden gap [95, 249]. These values can be regarded as “established” ones, 
but many workers have found other energy values: –0.22, –0.36, and –0.59 
eV for acceptor states and +0.26, +0.33, and +0.40 eV for donor states. It 
still remains to be found which of these levels are really associated with sil-
ver atoms and to which states they correspond. 
 That silver atoms belong to dissociative amphoteric impurities follows 
from the dissociative nature of their diffusion [116]. 
 Amphoteric 5d-impurities in silicon were identified by Yunusov and co-
workers [117]. Using these data, Table 2.20 summarizes the basic properties 
of impurities considered to be amphoteric. The diffusion parameters D0 and 
∆Em refer to the temperature range from 1000 to 1250°C and describe the 
total concentration of the doping impurity. The dissolution enthalpy ∆Hs also 
refers to the total concentration, while the decay activation energy Ea charac-
terizes the decay of each individual level. 
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Table 2.20. Characteristics of dissociative amphoteric 5d-impurities in silicon. 
 

Impu-
rity 

D0, 
cm2/s 

∆Em, eV ∆Hs, eV Ea, 
eV 

Donor level, 
eV 

Acceptor 
level, eV 

Ir 4×10–2 1.3±0.1 2.2±0.1 0.89 Ec – 0.3 (i) Ec – 0.18 (k) 
    0.61  Ec – 0.5 (s) 
    1.18   
Rh 1.6×10–2 1.2±0.2 1.6±0.2 – Ec – 0.3 (i) Ec – 0.55 (s) 
Ru – – 3.35±0.02 – Ec – 0.45 (i) Ec – 0.22 (s) 
   2.3±0.02 –   
Os – – – – Ev + 0.18(k)  
      Ec – 0.18 (k) 
      Ec – 0.54 (s) 

 
s – site, i – interstice, k – unidentified associate. 
 
 A specific feature of these centers is the energy line broadening which 
looks more like a band, so that the values in Table 2.20 are a kind of “center 
of mass” of the bands. The broadening is 0.02–0.03 eV, and it is unclear 
whether it is due to the choice of centers slightly differing in the ionization 
energy or to the close vicinity of the 5d-atom excited states. 
 
 
2.3.8  Cation–anion amphoteric impurities in semiconductor compounds 
 
It follows from Section 2.3.1 that cation–anion amphoteric impurities in 
AIIIBV compounds are to be atoms of group-IV elements in the periodic 
table. Indeed, this suggestion has been supported by numerous experimental 
investigations (Figures 2.36 and 2.37). Moreover, the theory of amphoteric 
impurities described in Section 2.3.4 can predict the impurity distribution be-
tween the crystal sublattices, which varies with the impurity concentration, 
temperature, and pressure of the volatile component. This result has gener-
ally been confirmed experimentally. But in some cases, the actual behavior 
of group-IV impurities appears more complicated and depends on the 
presence of other defects and their interaction with the amphoteric impurity. 
 The behavior of gallium arsenide doped with silicon is understood much 
better than that of other systems. This seems to account for the wide applica-
tion of GaAS<Si>. Epitaxial films made from this material possess both n- 
and p-type conductivity, and this can be achieved in the same technological 
process. This approach is used for the fabrication of p-n-structures, for 
example for light-emitting devices. 
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Figure 2.36. Electron concentration versus group-IV amphoteric impurity content in 
GaAs: 1 – Si [118]; 2 – Ge [258]; 3 – Sn [259]. 
 
 Germanium in gallium arsenide shows a greater amphoteric activity than 
silicon. When grown from stoichiometric melts, GaAs<Ge> crystals possess 
the n-type conductivity, but the degree of self-compensation ND/NA in them 
is lower than in GaAs<Si>. However, the compensation of GaAs samples 
doped with germanium is more sensitive to variation in arsenic vapor pres-
sure—there is an additional compensation due to the formation of associates 
with germanium atoms [122].  
 When grown by liquid-phase epitaxy, GaAs<Ge> films have p-conduc-
tivity with a small compensation degree. This means that the amphoteric be- 
havior of germanium shifts toward the acceptor side with decreasing tem-
perature, i.e., germanium atoms tend to dissolve in the As-sublattice rather 
than in the Ga-sublattice. The inversion temperature (n-to-p transition tem-
perature) becomes higher than the usual epitaxial growth temperature and 
lies within the range of the time–temperature regime normal for GaAs<Si>. 
 Doping with tin always produces n-type gallium arsenide crystals. This 
means that the amphoteric behavior of this impurity is strongly shifted to-
ward the Ga-sublattice. 
 Information on the behavior of impurities in other AIIIBV compounds is 
more scarce. This concerns physicochemical, electrophysical, and optical 
properties of these compounds doped with group-IV elements. 
 The data on the energy levels of group-IV impurities in AIIIBV com- 
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Figure 2.37. The n0(N) dependence in undoped GaAs layers grown by gas-phase 
epitaxy [121]. Substrate orientation: I – (100); II – (111)B; III – (311)A. Solid lines – 
calculations from formula (2.3.29) with the values: 
      I – KA = 0.38;  [V–] = 7×1014 cm–3; 
     II – KA = 0.23; [V–] = 3.7×1015 cm–3; 
     III – KA = 0.74; [D+] = 2×1016 cm–3. 
 
pounds are given in Table 2.21. One can notice certain regularities here. For 
example, group-IV impurities produce shallow levels only in direct band 
AIIIBV semiconductors; they produce deep levels in indirect band gallium 
phosphide. 
 Shallow levels can be considered as hydrogen-like only with many reser-
vations. Their hydrogen-like behavior is supported by practically identical 
ionization values of their donor states in gallium arsenide and by close 
values in indium phosphide, as is seen from Table 2.21. Their difference in 
gallium phosphide, however, makes one doubt their hydrogen-like nature. 
Table 2.21 contains a fairly large number of blank spots in the energy level 
measurements. 
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Table 2.21. Energy levels (eV) of group-IV impurities in basic AIIIBV compounds 
[123, 124]. 

 

Impu- GaAs GaP InP 

rity 
Donor Acceptor Donor Acceptor Donor Acceptor 

C  0.019–
0.046 

– 0.041 0.020 – 

    0.046   
    0.048   
Si ≤0.006 0.026– 0.080– 0.200– 0.005– – 
  0.030 0.082 0.202 0.007  
Ge ≤0.006 0.035– 0.195– 0.253– ≤0.010 – 
  0.038 0.201 0.257   
Sn 0.006 0.17– 

0.20 
0.060 – ≤0.010 – 

Pb – 0.12 – – – – 

 
 Let us consider briefly the behavior of cation–anion impurities in particu-
lar AIIIBV compounds. 
 Amphoteric impurities in GaAs. It is first interesting to see how much the 
experimental n(NA) curve for GaAs agrees with the theory developed in 
Section 2.3.1. The theory gives a general expression (2.3.21) for the 
description of the n(N) function. However, when films were grown by gas-
phase epitaxy in the temperature range 970–1080 K [121], the intrinsic 
carrier concentration ni ≅ 1017 cm–3 was much higher than the maximum 
electron concentration in the films, n0 ≅ (2–3)×1016 cm–3. Since n = ni + n0, 
then n ≅ ni, in which case the condition of (2.3.21) changes to a more simple 
expression (2.3.29) used for the data comparison [260] illustrated in Figure 
2.37. Note that the quantity NI plotted on the abscissa represents the sum of 
A from (2.3.29) and V from (2.3.31). Qualitatively, the curves in Figure 2.37 
look very much like theoretical curve 1 in Figure 2.23. The authors obtained 
a quantitative agreement at the values of Ki and [V–] indicated in the caption 
to Figure 2.37. 
 It follows from the amphoteric impurity theory that Ki decreases with a 
change in arsenic vapor pressure PAs as PAs

–1/2. This theoretical prediction 
was confirmed experimentally in [121]. 
 However, curve 3 in Figure 2.37 shows a deviation from linearity in the 
high concentration region not toward the shoulder, as it is required by the 
theory, but toward higher electron concentrations. The amphoteric theory  
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Figure 2.38. Concentration dependence of ionized centers in GaAs epitaxial layers 
with various contents of silicon and oxygen impurity atoms [126]: 1’ – calculation 
without compensation; I – undoped layers; II – Si-doped layers; III – layers with 
fixed oxygen content (numbers at the points, cm–3): 1 – 1.2×1016; 2 – 1.5×1016; 3 – 
5.8×1017; 4 – 1018.  
 
requires, in this case, the assumption concerning generation of additional 
donor centers D+. On this assumption, curve 3 can be fitted to the theory, 
taking KA = 0.74 and [D+] = 2×1016 cm–3. Of course, the origin of additional 
D+ donors remains unclear. 
 The study of epitaxial layers deliberately doped with silicon has shown 
[125, 126] that the simple version of amphoteric impurity theory (Chapter 1) 
is valid only in the range of low impurity concentrations NA < 1017 cm–3. At 
high concentrations, an essential contribution is made by other background 
impurities. The main background impurity is oxygen, whose effect is clearly 
demonstrated in Figure 2.38. At Ni > 8×1015 cm–3, there is a linear depen-
dence n0(Ni) demonstrating a stable compensation degree K = Na/Nd = 0.25. 
This value agrees well with the above value of 0.23 obtained by gas-phase 
epitaxy for the same substrate orientation. 
 The experimental points obtained for silicon-doped and undoped films 
[126] fit well in the same curve, which allows considering K = Ki = 0.25 as a 
self-compensation parameter of amphoteric silicon. In the low concentration 
range Ni (< 8×1015 cm–3), the compensation degree strongly depends on oxy-
gen content, beginning with the value ≥ 1018 cm–3. Without going into a de-
bate concerning the nature of compensating centers, we can conclude from 
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Figure 2.38 that the amphoteric theory also agrees with the experiment for 
silicon-doped GaAs samples grown by liquid-phase epitaxy. 
 More direct evidence for the cation–anion amphoteric behavior of silicon 
in gallium arsenide was obtained by Spitzer and co-workers [127] by 
measuring local modes in optical absorption spectra. The far-infrared region 
was found to contain absorption bands associated with the donor state SiGa (ν 
= 384 cm–1) and the acceptor state SiAs (ν = 399 cm–1); the band intensities 
were found to vary with the compensation degree. 
 Germanium has a well pronounced amphoteric behavior in GaAs among 
group-IV impurities. This is manifested as a higher degree of self-compensa-
tion (curve 2 in Figure 2.36), which essentially affects the electrical proper-
ties of GaAs<Ge> because of the lower electron mobility than the ion 
mobility in GaAs<Si>.  
 Evidence for the amphoteric nature of germanium in gallium arsenide 
was obtained from thermal treatment of GaAs<Ge> samples [128]: the p-
type conductivity changed to the n-type conductivity when the samples were 
heated in arsenic vapor under elevated pressure. The number of arsenic va-
cancies decreased and the GeGa concentration increased. 
 Tin, in contrast to germanium, has less pronounced amphoteric proper-
ties. It retains its n-conductivity up to a very high concentration in 
GaAs<Sn> samples (curve 3 in Figure 2.36). But some workers have also 
identified an acceptor level located deep in the forbidden gap (Table 2.21). 
All doubt concerning the amphoteric nature of tin in gallium arsenide and 
other AIIIBV was removed after γ-resonance (the Mossbauer effect) of 119Sn 
nuclei was observed during their implantation into AIIIBV crystals [128]. This 
work also showed that the donor state represented a single substitutional tin 
atom in the A-sublattice, while the acceptor state was a defect with a neutral 
tin atom associated with the nearest point defect at a B-sublattice site. 
 Among other properties of GaAs doped with group-IV elements, we 
would like to mention some specific features in photoluminescence spectra, 
in particular, the presence of long wavelength bands. Such bands are known 
to exist in undoped gallium arsenide samples. Most workers have concluded 
that they are due to recombination centers involving intrinsic point defects. 
Doping of gallium arsenide with group-IV impurities gives rise to long 
wavelength bands: at 1.0 eV (n < 1018 cm–3) and 1.15–1.3 eV in GaAs<Si> 
and GaAs<Sn>; at hνm = 1.4 eV and hνm = 1.17 eV in GaAs<Ge>. It is 
known from the general recombination radiation theory that band intensities 
depend on the presence of nonradiative centers. An investigation of this 
problem2 revealed an important difference between the doping with ampho-
                                                           
2  M.N. Kamalov, “The formation of electrically and recombinationally active centers in doped 
n-GaAs crystals”. Abstr. dissert. Tashkent, Izd. FTI AN Uz. SSR, 1981 [in Russian]. 
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teric group-IV impurities and that with non-amphoteric impurities, for ex-
ample, with group-VI elements. In the latter case, the concentration of non-
radiative centers, Ns, in the range n = 1×1017–2×1018 cm–3 did not depend on 
the charge carrier concentration and began to show this dependence only in 
the heavy doping range. With silicon or tin, the concentration of nonradiative 
centers varies over the impurity concentration range. 
 This is an essentially fundamental result. It supports the idea [129] of 
neutral defect generation by group-IV impurities, which was suggested from 
the study of electrical activity of these impurities in gallium arsenide. The 
idea is that electrical properties, in particular, the n0(N) curves theoretically 
predicted as resulting from the impurity dissolution in both AIIIBV 
sublattices, have a different interpretation. They are accounted for by the 
transition of, say, silicon atoms to the neutral state. This transition depends 
on the concentration of volatile impurity (e.g., silicon) and on the crystal 
growth conditions which prescribe the ensemble of intrinsic point defects. 
These defects determine the transition of a group-IV impurity to the neutral 
state because they are either involved in neutral associates or accelerate the 
loss of electrical activity by the group-IV impurity. 
 The main advantage of this model is the self-consistency of the problem: 
the concentration of an electrically active group-IV impurity depends on the 
defect composition of a crystal, while the defect composition itself varies 
with the impurity concentration. 
 This syneresis deserves special attention. It partly follows from the 
studies of GaAs<IV> compounds, but if it is supported by data on other 
AIIIBV compounds, the amphoteric impurity theory will require further so-
phistication.  
 Amphoteric impurities in gallium phosphide. The n0(N) curve for 
amphoteric impurities in GaP has the characteristic shape shown in Figure 
2.39. There is no statistically reliable distribution of group-IV impurities in 
the GaP sublattices, but the measurements of electrical resistivity [130, 131] 
and photoluminescence [132] indicate the building-in of, say, germanium 
atoms into both GaP sublattices. The activation energies of Ge donor and 
acceptor levels are found to be 0.36 and 0.45 eV, respectively. These values 
seem to be overestimated, since they were obtained without consideration of 
the electron–phonon interaction of deep levels inherent in germanium. 
 Amphoteric impurities in indium phosphide. The electrical activity of 
group-IV impurities is discussed in detail in [134] with reference to samples 
grown by the Chokhralsky method. The total concentration of impurity 
atoms was found from the atom absorption analysis with an error ±10%. The 
greatest difficulty was caused by silicon doping. 
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Figure 2.39. The n0(N) dependence in GaP<IV> crystals: 1 – GaP<Si> [133]; 2 – 
GaP<Ge> [131]. 
 
The authors of this work could grow single crystals only with a silicon con-
tent in the melt of less than 0.15% (mass.) (1.5×1020 cm–3).  
 The electron concentration in InP<Si> crystals was less than 5×1016. No 
ways of obtaining samples with higher silicon concentrations were found. 
This radical difference between InP and other AIIIBV crystals doped with sili-
con remains could not be explained, so the authors of [134] focused mostly 
on the behavior of germanium and tin in InP crystals. 
 The same samples were used to measure the Hall effect and total 
impurity concentration after the removal of contacts. The electron concen- 
 
 

 
 

Figure 2.40. The n0(N) dependence in InP<IV> crystals [134]. 
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tration variation with impurity content in the solid phase is presented in 
Figure 2.40. One can see that germanium is more amphoteric than tin. 
Calculations show that about 90% of tin atoms are localized in the In-
sublattice and only 53–55% in the Ge-sublattice. The analysis of the binding 
energy of impurity and host atoms in InP and of their tetrahedral radii 
indicates [135] that the behavior of germanium and tin cannot be accounted 
for by a chemical interaction. One must also consider the deformation energy 
which causes the remarkable amphoteric behavior of germanium, since its 
tetrahedral radius lies approximately halfway between the tetrahedral radii of 
indium and phosphorus. 
 

 
 
Figure 2.41. Photoluminescence spectra of undoped InP samples grown at 77 K by 
the following methods [135]: 1 – from the gas phase (n = 3×1014 cm–3); 2 – from a 
solution melt; 3 – from a stoichiometric melt (n = 3×1016 cm–3); 4, 5 – photolumi-
nescence spectra of InP<Si> samples cut out of various parts of an ingot (n = Nd – 
Na): 1’ – 1.7×1013 cm–3; 2’ – 5.4×1016 cm–3. 
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 Doping with group-IV impurities (Figure 2.41) changes considerably the 
photoluminescence spectra of doped samples, as compared with undoped 
crystals. When a strong compensation is present (curve 1), the 1.33 eV line 
has the same intensity as the 1.41 eV line. The origin of the former, like the 
origin of the other lines except for 1.41 eV, is unclear and may reflect the 
ability of silicon to interact with other impurities. This idea is supported by a 
considerable change in photoluminescence intensity with the doping 
technology used, as was pointed out in [135]. 
 The photoluminescence spectra of indium phosphide doped with Ge and 
Sn are shown in Figure 2.41. Clearly, these impurities contribute similarly to 
the optical properties as well. Their spectral lines at ∼1.37–1.36 eV seem to 
belong to a group-IV impurity in one of the amphoteric states, most likely, in 
the acceptor state. In other words, these are radiation lines arising during the 
transition of an electron from a shallow donor level (or from the conduction 
band) to the acceptor state of amphoteric germanium or tin.  
 The longer wavelength bands at 1.16–1.15 eV are likely to belong to as-
sociates of the AIV–Vp-type of donor–acceptor pairs, but this is to be proved 
experimentally. 
 Amphoteric impurities in gallium antimonide. The compound GaSb has a 
high concentration of defects and is normally of the p-type with the 
concentration of “natural” acceptors of 1018 cm–3. 
 Of interest is GaSb doping with group-IV elements, whose amphoteric 
behavior has a strong influence on the ensemble of intrinsic defects in both 
the cation and anion sublattice. In combination with a high compensation 
degree under heavy doping conditions, this promises new luminescence 
properties of these materials. Photoluminescence studies of slightly doped 
GaSb<Si>, GaSb<Ge>, and GaSb<Sn> did not show a significant difference 
from the doping (p ∼ 1017 cm–3) with conventional shallow impurities of 
group-II and group-VI elements. 
 The authors of [136] studied photoluminescence of heavily doped [p = 
(2–5)×1019 cm–3] and strongly compensated (Ki = 0.6–0.8) epitaxial 
GaSb<Sn> p-layers. Epitaxial layers grown from the melt and single crystals 
show a discrepancy between the carrier concentration (p) and the number of 
tin atoms (NSn), indicating the amphoteric behavior of the impurity. The 
compensation degree Ki was found to be 0.6–0.8. It was calculated from the 
layer composition data obtained analytically with the neutrality equation on 
the assumption of a complete ionization of impurity atoms at 300 K. 
 In addition to the edge line (hνm= 0.799 eV), the representative photo-
luminescence spectra had a line corresponding to the first charge state of a 
natural acceptor at 0.775 eV and bands at hνm = 0.736 eV (B), 0.695 eV (C), 
and 0.650 eV (D). Of these bands, only B and C could be reliably attributed 

© 2004 by CRC Press LLC© 2004 by CRC Press LLC© 2004 by CRC Press LLC



to amphoteric tin, because the investigators [137] used the effect of ampho-
teric impurity redistribution between the sublattices when the doping with an 
additional impurity shifted the Fermi level and reduced the number of substi-
tuting positions in one of the sublattices. The acceptor impurity used for this 
purpose was Cd. It was found from the photoluminescence spectra and the 
compensation degree that the tin concentration in the Ga-sublattice (band C) 
increased but its concentration in the Sb-sublattice (band B) decreased. Un-
fortunately, there are no other reliable reports of the cation–anion amphoteric 
behavior of other group-IV impurities in GaSb. 
 Cation–anion amphoteric impurities in CdSb. The behavior of tin is 
understood better than that of other group-IV impurities. Electrical properties 
of CdSb samples with known impurity contents were studied experimentally 
in order to identify the states of tin atoms [138]. It was found that only about 
16% of the total amount of impurity atoms in the depletion region were 
ionized. It was natural to suggest from the diffusion and solubility data that 
most tin atoms were localized at interstices and that these atoms were 
electrically neutral, while tin atoms substituting Sb had acceptor properties. 
 An increase of cadmium vapor pressure decelerated tin diffusion, which 
was interpreted by the authors of [138] as being due to a higher 
concentration of vacancies in the Sb-sublattice and to the “pumping” of 
interstitial tin to the positions VSb. Obviously, tin atoms must be doubly 
charged acceptors in these positions and doubly charged donors in the V 
positions. However, there is no experimental evidence for the existence of tin 
atoms in the Cd-sublattice, and this circumstance does not permit the 
conclusion to be made that this and other group-IV impurities in CdSb 
possess cation–anion amphoteric properties. 
 Cation–anion amphoteric impurities in SiC. According to the data of 
[139, 140], SiC crystals doped with nitrogen exhibit properties that should be 
treated in terms of the amphoteric nature of this impurity. 
 Every silicon or carbon atom in the silicon structure is tetrahedrally sur-
rounded by four atoms of the other sublattice. The SiC structure has a 
polytype character. The first coordination spheres have a completely identi-
cal arrangement of atoms in all SiC polytypes, but in higher spheres, begin-
ning with the second one, there are differences in the arrangement of 
neighboring atoms. For example, 4H–SiC has two unequivalent positions of 
atoms in the host lattice. The lattices of 6H–SiC and 15R–SiC have, respec-
tively, three and five unequivalent positions, and so on. 
 Substitutional impurity atoms will also occupy unequivalent positions in 
the SiC lattice. EPR data indicate that impurity nitrogen mainly substitutes 
sites in the Si-sublattice, but there is also a probability, though not very high,  
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that nitrogen atoms can occupy the C-sublattice sites. It follows from simple 
considerations that a nitrogen atom capable of substituting atoms in both 
sublattices must be a donor. Indeed, donor levels N have been found to be 
101, 158, and 163 meV, counted from the conduction band bottom. 
 It is quite fair to mention an alternative model, in which a donor center, 
producing one level at ∼100 MeV and another at 150 MeV, is ascribed to 
background impurity oxygen. Note that the choice of interpretation of ex-
perimental levels determines the validity of amphoteric nitrogen content 
data, since it is the unequivalence of substituted positions which underlies 
amphoteric properties [139, 140]. The properties are due to the different 
depths of the energy levels. Of course, the impurity does not change its sign, 
as is the case with group-IV impurities in both AIIIBV sublattices. But since 
the level depth is Ei = f(Z), where Z is the impurity effective charge, then the 
difference in the ionization energies of the levels is an evidence for different 
values of Z for impurity nitrogen in different unequivalent positions in the 
C-sublattice of SiC. 
 Impurity nitrogen appears to show a similar amphoteric behavior in the 
Si-sublattice. The values of the three donor levels counted off from the 
conduction band were found to be 159, 247, and 255 meV [139, 140]. 
 It should be emphasized that further investigations are necessary because 
the “attribution” of observable lines to foreign impurities or to amphoteric 
behavior implies different applications of SiC<N> crystals. The former 
interpretation will require the development of additional deep purification 
techniques and the latter will require different ways of charge exchange of 
the levels. 
 
 
 
2.4  ISOVALENT IMPURITIES 
 
 
2.4.1  General concepts 
 
The investigation of isovalent impurity states in semiconductors was 
initiated in the 1960s [141]. Since that time, interest in the behavior of this 
class of impurities has been slowly but steadily increasing. The earlier 
studies were reviewed in the publications [142–144], which describe the 
basic experimental data and theoretical concepts concerning isovalent 
impurity effects on electron energy spectra. 
 To begin with, isoelectron states can be produced in several ways. One 
way is by heavy doping of semiconductor compounds, for examples, AIIIBV 
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crystals with ordinary shallow donors and acceptors. Acceptors, say Zn 
atoms, substitute the AIII element and donors, say Te atoms, substitute the BV 
element. If the number of both types of atoms is large, there is a high 
probability for them to be located at neighboring lattice sites to form a 
donor–acceptor pair. Then, the total valence of the pair will be equal to the 
sum of the valences of the substituted AIII and BV atoms. 
 Another way is to produce a neutral vacancy in a crystal lattice. A single 
vacancy can be regarded as a kind of “quasi-atom” possessing the same 
absolute valence as the substituted host atom. Of course, the vacancy’s 
coordination number will be different from that of a normal lattice atom. For 
this reason, vacancies represent a special type of isoelectron state. It should 
be mentioned that the role of vacancies in semiconductors has not been 
considered at this angle.  
 Finally, there is a more obvious way of creating an isoelectron 
situation— by doping a crystal with isovalent impurities. Then, the impurity 
atoms belong to the same group in the periodic table as the host atoms they 
substitute. This isovalent doping (substitution) is the simplest way of 
creating isoelectron states, because this is an elemental doping which does 
not change the coordination number of the substituted crystallographic 
position. 
 Today, isovalent impurities are classified into two groups [142, 145]. 
One group consists of impurities introducing local states into the forbidden 
gap: either single energy levels or excitonic levels bound by an isoelectron 
impurity center. The other group includes isovalent impurities, whose energy 
states are involved in the formation of allowed energy bands. In this case, we 
deal with what is known as continuous solid solutions with a band spectrum 
monotonically changing with the concentration of isovalent impurities. 
 The latter are capable, at the beginning, of producing quasi-local levels in 
allowed bands [146]. These are so called resonance levels possessing indi-
vidual properties, like any local levels, but also belonging to a continuous 
band spectrum, or, more exactly, being in resonance with it. 
 The ionization of an isovalent impurity can be described by the same re-
actions as that of any other impurity center [145]: 
 
    EI           EI 
   X0 → X+ + e–  (donor),  X0 → –X– + e+ (acceptor),         (2.4.1) 
 
where X0, X+, and X– are neutral and charged states of a center; e– and e+ are 
a free electron and a free hole; EI is the center ionization energy necessary 
for the reaction (2.4.1) to occur. 
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 The binding energies of charge carriers, Ebd, for a donor and an acceptor 
are described by the neutralization reactions 
 
     Ebd           Ebd 
    X+ → X0 + e+  (donor),  X– → X0 + e– (acceptor).      (2.4.2) 
 
In these reactions, a charged impurity becomes neutral. The combination of 
the ionization reaction and the neutralization reaction yields the ionization 
reaction of the host semiconductor: 0 →

Eg  e+ + e–, where Eg is the forbidden 
gap width. Hence, we have Eg = EI + Ebd; isovalent impurities have low va-
lues of Ebd. For example, when a phosphorus atom is substituted by a Bi 
atom in GaP, holes are bound by the energy Ebd = 0.038 eV [147]. Since 
Eg = 2.338 eV in GaP, a BiP atom in GaP is a very deep donor with the ioni-
zation energy EI = 2.3 eV. The impurity NP in GaP binds an electron using 
the energy Ebd = 0.008 eV [148]. Therefore, this impurity is a very deep ac-
ceptor with the ionization energy EI = 2.33 eV. These illustrations show that 
the problem of isovalent impurities is part of the more general problem of 
deep impurity centers in semiconductors. Therefore, most of the unsolved 
problems of deep levels are equally relevant to isovalent impurities. 
 The isovalent impurity levels are so deep that they can be regarded, in 
many situations, as coinciding with the allowed band edges Ec and Ev. Thus, 
isovalent impurities do not practically contribute additional energy levels to 
the forbidden gap of the host semiconductor, and this is their specific feature. 
 Historically, there were two distinct periods in the study of isovalent im-
purities. During the initial period (1963–1977), much research effort was 
focused on the manifestation of such impurities in nonequilibrium effects 
observed in a limited number of semiconductor materials. More recently, the 
focus was on equilibrium characteristics of semiconductors doped with 
isovalent impurities. 
 As early as 1963, Gross and co-workers [141] detected a series of narrow 
lines in photoluminescence spectra of GaP<N> crystals (Figure 2.42). The 
spectral lines were shown to be associated with the presence of nitrogen in 
GaP crystals, and its evolution with increasing nitrogen concentration was 
followed. 
 The basic idea underlying the interpretation of the GaP<N> spectra was 
the formation of an exciton bound by an isovalent impurity. This process 
was represented as consisting of two stages [148]. A neutral isovalent atom 
first captures an electron (or a hole) in the short-range impurity field and 
becomes charged. There is already a long-range impurity potential in this 
state as screened Coulomb potential which pulls out a hole (or an electron).  
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Figure 2.42. Photoluminescence spectra of GaP samples slightly doped with nitrogen 
at a concentration less than 5×1017 cm–3, T = 4.2 K [141]. 
 
As a result, the isovalent impurity again becomes neutral, but this new state 
is an excited one. The electron–hole complex around an isovalent impurity 
was called an exciton bound by an isoelectron trap [149]. The energy 
released in exciton annihilation produces narrow A and B lines in 
luminescence spectra (Figure 2.42). The other spectral lines represent 
phonon reproductions. In the first approximation [150], the annihilation 
energy is the sum of binding energies of both carriers. The binding energy of 
a carrier in a Coulomb field is often known; so, the luminescence 
measurements can be used to find the binding energy of the first carrier in 
the short-range impurity potential field. This is the way the binding energies 
of most isovalent impurities were determined [142, 143]. For example, the 
energy of exciton binding by NP in GaP is 21 meV [151] and by BiP in GaP 
about 107 meV [152]. 
 A similar type of luminescence (recombination radiation) is observed in 
other semiconductors with isovalent impurities (Table 2.22). 
 Isovalent impurity pairs capable of binding excitons can arise as the im-
purity content in the crystal increases. An illustration is GaP heavily doped 
with nitrogen. An increased nitrogen concentration leads to a shorter N–N 
distance, and the respective energy lines shift toward the long wavelength 
region (Figure 2.43). 
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Table 2.22. Experimental data on the isovalent impurity effect on electron energy 
spectra in semiconductors. 

 

Type of spectral 
change 

Semiconductor–impurity 
system 

References 

Continuous change of 
Eg(x) 

GaAs1–xSbx [153–155] 

 Ga1–xInxAs [153–155] 
 GaxAl1–xAs [153] 
Singularities in Eg(x) Ge1–xSix [156] 
 CdS<Te> [153] 
Levels inside Eg ZnTe<O> [148] 
 Ge<Sn> [157] 
 GaP<Bi>;  GaP<N> [148] 
 InP<Bi> [157] 
 GaP<Zn,O> [158] 
 GaP<Cd,O> [159] 
 GaP<Li,O>;  Si<C>  [160] 
Resonance levels GaAs1–xSbx [161] 
Bound excitons CdS<Te> [162] 
 ZnTe<O>;  GaP<N> [148] 
 GaP1–xAsx<N> [163] 
 AgBr<J>;  AgCl<J>  [143] 

 
 

 
 
Figure 2.43. Photoluminescence spectra of GaP heavily doped with nitrogen at a 
concentration 5×1018 cm–3 at T = 4.2 K [144]. 
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 Luminescence studies have shown that isovalent impurities can bind not 
only single excitons but also excitonic molecules [164] consisting of several 
electrons and holes, but this phenomenon remains poorly understood. 
 The above two-stage model of exciton binding by isovalent impurities 
was successful in interpreting the luminescence and optical absorption spec-
tra in various semiconductor–isovalent impurity systems. Nevertheless, 
many aspects of the impurity involvement in the formation of non-
equilibrium properties are still unclear. For example, it is not clear whether 
an isovalent impurity state can exist with one carrier. In any case, there is no 
direct evidence for the localization of only one type of carrier at an impurity, 
even in the well studied GaP<N> system; such transitions, however,  seem to 
occur in GaP<Bi> crystals [146]. 
 Further, it is not clear whether an exciton is formed in a two-stage or one-
stage process, i.e., whether the capture of both carriers occurs simultaneously 
or with a time delay at different potentials. Ryvkin and co-workers [165] 
suggested a one-stage process of exciton formation in their study of thermal 
attenuation of the A band (Figure 2.42). But later, these authors reconsidered 
this idea in favor of a two-stage model. The reason for the long duration of 
afterglow following a temperature increase in GaP<N> crystals is also 
obscure [167]. Thermal decay of an exciton in these crystals is known to 
begin at 12 K, but excitonic radiative transitions dominate in the spectrum at 
room temperature, too. 
 This phenomenon stimulated the designing of commercial green lumines-
cence emitters on GaP<N> crystals, although many aspects of isovalent im-
purity behavior still remain unclear. 
 Recombination radiation studies have revealed bound isovalent impurity 
states in the forbidden gap in some semiconductors. Of interest is the appear-
ance of an isoelectron situation after double doping in GaP<Zn,O> and 
GaP<Cd,O>. The bound states here are produced by impurity atoms at 
neighboring lattice sites. A more complicated isoelectron situation arises in 
the formation of Li2O in GaP<Li,O> crystals. It was shown in [168] that an 
OP atom and one LiGa atom substitute neighboring sites, while the other Li 
atom is in an interstitial position. A complex isovalent impurity with an in-
terstitial C atom was found in silicon [169]. Among special states, which an 
isovalent impurity can produce, are resonance and antiresonance levels in the 
allowed electronic spectrum. Experimental observation of such states promi-
ses their manifestations in optical phenomena. Today, however, there is only 
one report [170] of an additional feature at ω = 2 1. eV  in the photoconduc-
tivity spectrum of GaAs1–xSbx at x ≤ 0.02, which is interpreted by the authors 
as a resonance level of isovalent Sb at 0.6 eV in the valence band. This value 
coincides with the theoretical value obtained by the same authors. Still, the 
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identification of this spectral feature as a resonance level in GaAs<Sb> re-
quires additional evidence. 
 Considering the effect of isovalent impurities on electron energy spectra, 
one should not ignore possible singularities in the band structure. The study 
of optical absorption spectra in Ge1–xSix (x = 9×10–4–1.2×10–3) revealed a 
discontinuity in the Eg(x) function. Detailed investigations of Eg(x) at very 
small x in GaAs1–xSbx and in Ga1–xInxAs [154, 155] detected no singularities 
but, on the contrary, supported the validity of equations of the type Eg = Eg0 
– ax + bx2 [153, 171] describing a monotonic variation of Eg(x) over the 
whole range of x values. Investigators of equilibrium effects in 
semiconductors should bear in mind that isovalent impurities produce very 
deep bound states, if at all. For this reason, their identification from the 
temperature dependence of equilibrium density of charge carriers, for 
example, from Hall coefficient measurements, does not seem to be possible. 
This is an important distinction of isovalent impurities from all other types of 
impurities. In spite of the fact that isovalent impurities can scatter free 
charge carriers and, thereby, be detected from the mobility changes, from 
differential thermal e.m.f. and other transfer phenomena, a lower mobility 
was actually observed only in GaP<N> crystals [142]. This effect could not 
be detected reliably in other semiconductor–isovalent impurity systems 
mostly because of the difficulty of separating it from side effects. 
 In our view, the isovalent impurity effect on scattering cannot be ex-
pected to be strong, since isovalent atoms have a characteristic short-range 
potential, so they must scatter carriers like neutral rather than ionized impu-
rities. On the other hand, the concentration of isovalent impurity atoms in a 
crystal is one or two orders of magnitude higher than that of the usual 
shallow, ionized impurities. So, it is only quantitative evaluations that can 
help us to answer the question of whether isovalent atoms can scatter charge 
carriers. The scattering cross section can be approximately taken to be equal 
to R2, where R is the extent of the electron wave function. Figure 2.44 shows 
that the wave function maxima of an isovalent atom and an ordinary 
impurity are shifted. The RIVI

2/R2 ratio is less than 1/30. This means that the 
concentration of isovalent atoms can be increased by a factor of 30, as 
compared with that of an ordinary impurity, to make both types of atoms 
scatter carriers identically. When recalculated as the isovalent impurity 
content, these values show that an additional scattering by isovalent 
impurities can be expected to manifest itself at NIVI > 0.1 at. %. 
 Isovalent impurity atoms do not usually produce energy levels in the for-
bidden gap of a doped semiconductor but they are involved in chemical and 
quasichemical reactions in the liquid phase, from which a crystal is grown, 
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Figure 2.44. The radial wave function of an electron with me = 0.35, localized in a 
potential well of 2 Е width and 10 meV depth (1) and of an electron bound by a 
charged donor with the binding energy 100 meV (2): 1 – short-range potential; 2 – 
Coulomb potential; vertical line – the potential well boundary [149]. 
 
 
and in the solid phase during the crystal cooling or thermal treatment. 
Thereby, isovalent impurities strongly affect the solubility and distribution 
coefficients of other impurities, the homogeneity region boundaries of a 
semiconductor compound, and the formation of defect associates. As a 
result, isovalent impurities change the arrangement of background impurities 
and defects in a crystal. 
 Below, we discuss mechanisms and give illustrations of this “indirect” 
influence of isovalent impurities on the properties of semiconductors. 
 
 
2.4.2  Empirical models of isovalent impurities  
 
Because of the absence of a rigorous theory, various empirical models have 
been suggested to describe the electron spectrum of deep impurities, in 
particular of isovalent impurities. For example, carrier binding by such an 
impurity was considered to be due to the difference in the electronegative 
charge ∆χ of the substituted and isovalent atoms. At χIVI > χa, an impurity 
atom must bind an electron to become a deep acceptor. But at χIVI < χa, a 
hole will be bound, and the isovalent atom must become a donor. 
 Table 2.23 summarizes electronegative charges of atoms measured by 
three workers. The differences in these data are of little importance to this  
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Table 2.23. Electronegative charges of atoms, as measured by different authors [172]. 
 

Atom Pauling Phillips John Atom Pauling Phillips John 

Al 1.5 1.18 1.48 Ge 1.8 1.35 1.59 
Ga 1.6 1.13 1.46 Sn 1.8 1.15 1.40 
In 1.7 0.99 1.32 Pb 1.8 1.09 1.41 
Te 1.8 0.94 1.37 N 3.0 3.00 2.99 
C 2.5 2.50 2.50 P 2.1 1.64 1.87 
Si 1.8 1.41 1.64 As  2.0 1.57 1.71 
B 2.0 2.00 2.00 Sb 1.9 1.31 1.52 
    Bi 1.9 1.24 1.46 

 
review, although John’s data obtained from nonlocal atom pseudopotentials 
are more accurate. 
 According to the data of Table 2.23, χN > χP, so NP in GaP must be a 
deep acceptor. On the contrary, χBi < χP and χSb < χP, so BiP and SbP in GaP 
must be deep donors. These predictions agree with experiments. However, 
AsP in GaP and PAs in GaAs are expected to be a donor and an acceptor, re-
spectively, but experimental studies do not reveal any bound states in these 
two cases at all. Similarly, the behavior of N, Bi, and Sb in GaAs is expected 
to be the same as in GaP. However, neither nitrogen [144], nor Bi [173] nor 
Sb [174] show bound states in GaAs. 
 The donor states of Bi in InSb reported by some researchers [175, 176], 
were later re-identified as manifestations of interstitial bismuth [176]; there-
fore, they have nothing to do with the states to be predicted from electro-
negative charges. 
 A limitation of the electronegative charge approach is that it completely 
ignores the genetic affinity of the bound states of an isovalent impurity to the 
conduction band for an acceptor and to the valence band for a donor. This 
drawback can be removed by comparing the atomic pseudopotential depths 
[177] for s- and p-states, instead of electronegative charges. The data analy-
sis [178] shows that if the impurity atom is heavier (or lighter) than the 
lattice atom, the isovalent impurity can bind a hole (or an electron). It 
appears, in fact, that the use of atomic pseudopotentials contributes nothing 
new, as compared with the electronegative charge rules. The demerit of both 
approaches is the complete neglect of electron polarization and local lattice 
distortions in the defect vicinity [179]. The character and value of local 
lattice distortions are, in turn, determined by the nature of forces binding an 
electron to an impurity atom with a short-range potential. 

© 2004 by CRC Press LLC© 2004 by CRC Press LLC



110             2. IMPURITY BEHAVIOR IN SEMICONDUCTORS 

 If we use the Koster–Slater approximation and approximate the impurity 
potential by a rectangular potential well, as was done in [149], then the real 
space wave function ψ of a bound electron outside the well can be written as 
 

        ΨIVI  ∼ ( )1
1R
Rexp −γ ,                              (2.4.3) 

 
where R is the vector radius of an electron; 
 

         ( )γ1
1/21 2= m Ue IVI ,                           (2.4.4) 

 
where me is the effective mass of an electron and UIVI is the potential well 
depth. 
 If, however, we deal with an ordinary donor retaining an electron due to 
Coulomb potential, the wave function Ψd is  
 
        Ψd  ∼ ( )exp −γ 2R ,                                     (2.4.5) 
 
where γ2 has the same form as in (2.4.4), except that UIVI is replaced by the 
energy of electron binding to the donor nucleus. 
 Figure 2.44, borrowed from [149], shows the radial wave function for an 
electron localized in a potential well of 2 Е wide and 10 meV deep. 
Although the binding energy for an electron bound by an ordinary donor is 
an order of magnitude higher than that for an electron bound by an isovalent 
impurity, the localization of the impurity is, on the contrary, higher than that 
of the ordinary donor. Due to the strong localization, the excess electron 
(negative) charge is concentrated in the central unit cell, whereas the 
neighboring atomic skeletons are charged positively. As a result, the 
isovalent atom and the nearest host atoms of the same sublattice have to 
come closer to one another. The influence of the other sublattice atoms 
remains unclear. 
 The key role of atomic shifts in the vicinity of an isovalent impurity atom 
was also emphasized in [180]. Phillips, in contrast, believes [181] that local 
lattice distortions reduce the difference ∆U = UIVI – Ua until the potential 
well disappears completely. But then, isovalent impurities will bind neither 
electrons nor holes. The fact that some isovalent impurities do form bound 
states makes one suggest the presence of some repulsive forces leading to 
∆U ≠ 0. One can see, therefore, that the isovalent impurity problem involves 
the problem of band structure and that of crystal lattice dynamics. 
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 There are other empirical approaches to the explanation of energy level 
spectra of isovalent impurities. 
 Allen [182, 183] tried to find ∆U from the difference in the elastic pro-
perties of an isovalent impurity and a substituting atom. Eventually, this ap-
proach reduces to the consideration of the difference in the sizes of both 
atoms, and so it cannot be regarded as satisfactory either.  
 Zakharov and Shcherbak [180] tried to find ∆U as the difference in the 
forbidden band widths at the band edges Eg(x), where x is a mole fraction of 
the isovalent impurity. This value was normalized to a unified unit cell vo-
lume of the initial crystal (x = 0) as 
 

       
( )

∆ ∆ ∆U E
E x

V
V

V
= −

=
g

g∂
∂

1
ln

,                        (2.4.6) 

 
where ∆Eg = ∆Eg|x=0 – Eg|x=1 and ∆V/V is a relative change in the crystal vo-
lume at the transition from x = 1 to x = 0. 
 The condition for an energy level to appear in the forbidden gap is 
 

          ∆U
E
2

v
,                                         (2.4.7) 

 
where Ev is the valence band width. Seven cases (GaP : Sb; ZnTe : Cd; GaP : 
In; AlP : In; PbSe : Te; CdTe : S; CdSe : Te) out of 45, calculated in [180], 
should be expected to exhibit local levels inside the forbidden gap. Unfortu-
nately, these systems have not yet been studied experimentally. 
 The mechanism of production of isovalent bound states is clear qualita-
tively. The difference in the electronegative charges or ion pseudopotentials 
of the two atoms, their screening by valent electrons and local lattice distor-
tions give rise to a short-range potential allowing an isovalent atom to cap-
ture a charge carrier. This potential must exceed a certain threshold value 
determined by the kinetic energy of a free carrier in the band, in which the 
bound state originated. This is the conduction band for deep acceptors and 
the valence band for donors. 
 The threshold energies E for deep acceptors or deep donors depend only 
on the semiconductor band structure and can be calculated by the empirical 
pseudopotential method [184]. These energies for isovalent impurities which 
bind holes (deep donors) are shown in Figure 2.45 as a function of ionic 
charge of the chemical bonding [185, 186] in binary semiconductors. One 
can see that the conditions for the hole binding by isovalent impurities are  
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Figure 2.45. The threshold energy E for isoelectron donors as a function of ionic 
binding fi for some semiconductors; the straight line – E = 1.7(l – f) eV. 
 
 
facilitated in ionic crystals having a narrower valence band. With a 10% er-
ror, the data in Figure 2.45 fit well the dependence E = 1.7(1 – fi) eV [178]. 
 Since isovalent impurity potential U(r) in diamond or zincblend types of 
crystal has the point group symmetry Td, the impurity potential matrix proves 
to be diagonal in the base of three Vannier functions in the conduction band, 
i.e., U αβ = U δαβ. For this reason, the condition for bound states of deep 
donors does not differ from that of deep acceptors, except for U < 0  and 
E < 0  for deep acceptors and U > 0  and E > 0  for deep donors. 
 
Table 2.24. Matrix elements U (eV) for various cases [189]. 
 

Doped      Bound states 
semicon- 
ductor 

ULS U (X=0)  
unscreened 

U (X=0) 
screened 

U (X=1) 
screened 

X theory exp. 

Si<Ge> 0.04 0.32 0.08 0.54 0.41 No No 
Si<Sn> 0.14 1.96 0.45 2.34 0.36 No – 
Si<Pb> 0.43 2.45 0.72 3.63 0.35 No – 
GaP<As> 0.06 1.24 0.30 0.76 0.43 No No 
GaP<Sb> 0.20 4.49 1.07 2.80 0.37 Yes No 
GaP<Bi> 0.72 5.60 1.71 4.12 0.35 Yes Yes 
ZnS<Se> 0.11 4.81 1.20 1.01 0.51 No No 
ZnS<Te> 0.28 9.46 2.41 2.98 0.48 Yes Yes 
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 To calculate U  for deep donors, one should take into account  
 (1) the difference in ionic pseudopotentials of the two atoms [178]; 
 (2) the screening of this difference by the crystal valent electrons [187]; 
 (3) local distortions of the lattice [182]; 
 (4) the effect of spin-orbital interaction [184].  
The latter circumstance can be easily taken into account as the difference 
between model relativistic pseudopotentials of the two atoms [188], because 
the respective contribution to U  is independent of the local lattice distor-
tions. The contributions to U LS for some deep donors are presented in Table 
2.24. For the binding by isovalent impurities, only symmetrical local distor-
tions of the lattice are important [178]. 
 Generally, the distance d between an impurity atom and the nearest 
lattice atom differs from the unperturbed bonding length di, defined by the 
sum of covalent radii and from the distance dk between neighboring atoms in 
a perfect crystal. An elastic strain field is induced near the impurity atom. 
 The contribution of the elastic strain field to U  can be accounted for by 
assuming that the shifts of remote atoms are described by elastic continuum 
theory [190]. Then, the elastic strain field is fully defined by prescribing the 
distance between the impurity atom and its nearest neighbor or by prescrib-
ing an equivalent parameter X = (d – dk)/(di – dk), which can vary from X = 0 
in the absence of local distortions to X = 1 for maximum lattice distortions 
near the impurity atom. 
 The value of U  at X = 0 is estimated as the locally screened difference 
between the ionic pseudopotentials of the impurity and host atoms [182]. 
One can see from Table 2.24 that the screening of the impurity ionic poten-
tial considerably decreases U , so that the conditions for the binding by an 
isovalent impurity are not satisfied, except for BiP in GaP and SeS and TeS in 
ZnS ( E  values are given in Figure 2.45). At X = 0, i.e., in the absence of 
local lattice distortions, SeS in ZnS must bind a hole, but this contradicts ex-
perimental data. 
 The value of U  at X = 1 can be roughly estimated from the crystal pseu-
dopotential difference, with the pseudopotential pertaining to the central unit 
cell [178]. One can make use of the empirical pseudopotentials from [184] to 
obtain the data of Table 2.24. The behavior of U  in the intermediate region 
is a linear extrapolation of the data for X = 0 and X = 1, as is done in Figu-
re 2.46 with the primes marking the threshold energy for hole binding. 
 It is clear that local lattice distortions stimulate the capture of holes by 
isovalent impurity atoms. The same is true of the capture of electrons. The 
calculation of the equilibrium value of X for each particular case requires  
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Figure 2.46. The dependence of a host element U  for isoelectronic donors on the X 
parameter of local lattice distortions: points – X values in equilibrium conditions; 
dashed lines – threshold energies E. 
 
minimization of the total energy of a crystal containing an isovalent 
impurity. The equilibrium X values were estimated in [178, 182] by mini-
mizing the elastic energy in terms of the known force constants for the 
Martin adiabatic potential [191]. These values are marked by dots in Figure 
2.46 and presented in Table 2.24. We see that the agreement between 
experiment and theory for the hole binding by isovalent impurities is quite 
satisfactory. The conclusion about a higher binding energy between a 
quasiparticle and an isovalent impurity due to local lattice distortions is valid 
only for neutral isovalent impurities in quasi-equilibrium conditions, when 
the impurity empty level for an electron is much higher. Under 
nonequilibrium conditions, when an impurity captures a quasiparticle, the 
binding energy may decrease because of the local distortions, as described 
by Phillips [182]. The mechanism suggested by Phillips is based on the 
assumption that the lifetime of a quasiparticle bound by an isovalent 
impurity is short, as compared with the lattice vibration period. Then, the 
hole binding by an impurity may be affected by asymmetrical local 
distortions (Yan–Teller effect). The conditions for quasiparticle binding, of 
course, imply its long lifetime. 
 The problem of localized states in crystals containing isovalent impurities 
was first formulated generally by Lifshitz [192]. The Hamiltonian H0 = T + 
V0 of a perfect crystal with the kinetic energy operator T and potential energy 
V0 has a quasicontinuous spectrum of elementary excitations, but the 
intrinsic Hamiltonian states H = T + V in a similar crystal cannot be 
numbered with a wave vector. An impurity atom introduces a localized 
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perturbation U = V – V0, which may give rise to discrete energy levels in the 
forbidden gap (bound states) or to an essential rearrangement of the levels in 
the quasicontinuous spectrum (virtual states). 
 The most detailed description can be achieved with the operator G(E) = 
(E – H)–1 [191–193]. However, it is more convenient to introduce another 
operator, Q(E) = 1 – G0U, with the Green function for a perfect crystal G0(E) 
and impurity potential U. In the presence of perturbation, the spectrum is 
identified by solving the equation Re∆(E) = Re detQ(E) = 0. Lifshitz [192] 
was the first to point out that the impurity potential matrix U(r) can often be 
approximated by a finite order matrix, so that the order of the determinant 
∆(E) appears finite for isovalent impurities. 
  The choice of the base for Q(E) representation is of no principal impor-
tance. One can use unlocalized base functions (Bloch functions [194] or 
plane waves [195]). The order of ∆E in this case will be defined by the in-
trinsic state extent. More convenient are localized base functions (Vannier 
functions [196–199], atomic orbitals [200], and generalized Vannier func-
tions [201]). Here, the order of ∆E is determined by the impurity potential 
extent. For bound impurity states, the wave function covers a larger number 
of unit cells than the impurity potential, so the use of localized base 
functions is preferable [192].  
 The wave function of the virtual state |ν> with energy Eν satisfies the or-
dinary Lippman–Swinger equation 
 

( )| | |ν νν> = > + >k G E U0 , 
 
where the Bloch function |k> corresponds to the state of a perfect crystal 
with energy E0(k) = Eν, and G0(E) is taken to be limG0(E + iδ) at δ → 0. The 
density of electron states in a doped crystal 
 

        ( ) ( )ρ
π

E SpG E= −
1 Im                               (2.4.8) 

 
differs from the density of states ρ0(E) in a perfect crystal by the value 
 

     ( ) ( ) ( ) ( )∆ρ ∆E E E
E

E= − ≅ρ ρ
π

0 1 Im lnd
d

                (2.4.9) 

 
and satisfies the following condition [179]: 
 
         ( )dE E∆ρ∫ = 0 .                                  (2.4.10) 
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Figure 2.47. Bound (b), resonance (r), and antiresonance (a) levels in a semicon-
ductor doped with an isovalent impurity.  
 
 The wave function of a bound state satisfies another equation: 
 
        ( )| |ν νν>= >G E U0 ,                                (2.4.11) 
 
where G0(Eν) is the real function of energy Eν. For bound states, Re∆(Eν) = 
Im∆(Eν) = 0, and from (2.4.9) we have ∆ρ(E) = δ(E – Eν). If there are only 
Nδ bound states, expression (2.4.10) can be re-written as dE∆ρ(E) = Nδ, 
where the integral is taken only with respect to the quasicontinuous spectral 
energies. Clearly, the appearance of bound states is always accompanied by a 
rearrangement of quasicontinuous spectral levels. 
 The quantity ∆ρ(E) often proves to be large only in certain spectral re-
gions known as resonances and antiresonances. For resonances, dE∆ρ(E) is 
equal to a positive integer and for antiresonances it is a negative integer. In 
the absence of bound states, the number of resonances is the same as that of 
antiresonances. The number of bound states is smaller than that of antireso-
nances exactly by the number of resonances. Antiresonance levels are often 
referred to as hole resonances. 
 Figure 2.47 illustrates a typical situation taking place in a semiconductor 
with an isolated band, density of states ρ0(E), and the Gilgert transformant 
 

       ( ) ( )ReG E
E E
E E

0
0

=
′ ′
− ′∫

d ρ
.                             (2.4.12) 
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If there is a deep donor with average potential U  < 0, the straight line 1/U  
will not intercept ReG0 at any point at small |U | (line 1). In this case, there 
will be neither bound nor virtual levels. At higher |U |, a resonance state (p) 
and an antiresonance state (a) arise (line 2), and a peak and a valley appear 
in the density of states line ρ(E). By increasing |U | further (line 3), one can 
obtain a bound state (c) and an antiresonance state (a). It is seen that there is 
a critical value of |U | separating the regions of bound and resonance states.  
 The foregoing is equally applicable to deep acceptors with U  > 0. Line 
4 in Figure 2.47 describes the case when an acceptor produces one resonance 
level (p) and one antiresonance level (a) in the isolated band. Again, there is 
a critical value of |U | separating the regions of bound and resonance states. 
In principle, we can imagine a semiconductor with ReG0(E) > 0 in the 
energy region of interest [198, 199]. Of course, localized states can arise in 
this semiconductor only in the presence of deep acceptors. 
 This illustration is not an exact reproduction of a real situation; it is 
known as the Koster–Slater one-band/one-site model [196]. This model re-
sults from the use of Vannier functions as the basis, ignoring all nondiagonal 
matrix elements of impurity potential, i.e., 
 
    ( ) ( ) ( )< − − >=′ ′a r R U r a r R Un i m i n m i i

0 0
0 0 0 0δ δ δ δ ,           (2.4.13) 

 
where 0 indicates the isolated band number and the central impurity cell 
number, simultaneously. It is within the framework of the Koster–Slater one-
band/one-site model that the applicability of the quasiclassical 
approximation to isovalent impurities can be substantiated and the conditions 
for the existence of bound states formulated.  
 The subdivision of localized isovalent impurity states into bound, reso-
nance, and antiresonance states is absolutely rigorous. For resonances and 
antiresonances, Im∆(Eν) ≠ 0, and the variation in the density of electron 
states is approximately described as 
 

       ( )
( )

∆ρ
Γ

Γ
E

E E
=

− +
1

2 2π ν

,                          (2.4.14) 

 
where Γ, characterizing the resonance width (Γ > 0) or the antiresonance 
width (Γ < 0), is defined as 
 

         ( )
( )Γ

∆
∆

=
′

Im
Re

E
E

.                                   (2.4.15) 
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Here, the prime indicates a derivative with respect to energy. 
 In a simple case, Γ may be independent of U and have the form 
 

       ( ) ( )
( )Γ = −πρ ν

0
0

E
G E
E

d
d

Re
.                       (2.4.16) 

 
The /2|Γ| ratio is a lifetime measure of the virtual state. [198]. Large life-
times are characteristic of sharp resonances which normally lie at the wings 
ρ0(E), where Re G0(E) varies rapidly with energy. 
 The Koster–Slater model is unable to describe adequately all aspects of 
the isovalent impurity spectrum. For example, Faulkner [150] failed to ac-
count for the energies of excitons bound by NNi pairs in terms of this ap-
proximation using  potential U fitted to the energy of exciton binding by an 
isolated nitrogen atom. Nevertheless, Faulkner’s one-band multisite model 
[150], accurate within the limits of very long-range potentials, provides a 
nearly correct series for impurity potential as a Gaussian well. Still, this 
series does not approach the A line of an exciton bound by an isolated 
impurity as fast as the observable excitonic lines bound by atomic pairs 
(Figure 2.43). Therefore, a very short-range potential of an isovalent 
impurity in a semiconductor does not permit an adequate description of all 
aspects of this problem. Clearly, effective potential must allow for the crystal 
lattice relaxation and electron polarization. These effects are of a longer-
range type than the impurity ionic potential. They will decrease the binding 
energy sensitivity to average potential energy and make the interband matrix 
elements weaker, which may result in splitting off the excited states from the 
allowed band edges. However, there must be a strong short-range impurity 
potential, too, because it provides a strong optical absorption in GaP<N> 
crystals. 
 Jaros and co-workers [194, 202] calculated the local self-consistent im-
purity potential NP in GaP in terms of the multiband model and found that 
the electron polarization led to an oscillating potential with short-range 
attraction components and long-range repulsion components. In this 
situation, the binding energy of an electron bound by NP in GaP is close to 
zero due to the compensation of short- and long-range potentials. This 
compensation was neglected by Faulkner [150] who ignored the valence 
band effect and the potential repulsion components. 
 But Brand and Jaros [202] failed to find a satisfactory explanation for the 
excitonic series NNi in GaP, although the predicted electron binding energies 
are close in their order of magnitude to experimental values. The discrepancy 
is due to the neglect of local lattice distortions and electron–hole correlation. 
Cohen and Sturge [203] subtracted from the observable exciton binding 
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energy the hole binding energy Eh found by extrapolation over excited exci-
tonic states. For NP in GaP, they obtained Eh ∼ 40 meV even for remote NNi 
pairs. This fact confirms the applicability of the phenomenological bound 
exciton model suggested by Hopfield and co-workers [148] but questions 
Allen’s model [204]. 
 Some workers [205] have suggested that the potential of a nitrogen 
atomic pair in GaP contains two components: a short-range electron attrac-
tion owing to the difference in the ionic pseudopotentials and electron polari-
zation, and a long-range component due to local lattice distortions. In 
contrast to Phillips [181] who considered the long-range part as repelling an 
electron, they assumed the attraction. Thus the model impurity potential was 
approximated by 
 
        ( )U r U= − 0  for r a≤ 0 , 

(2.4.17) 

      ( )U r U r
a

= − 



0

0

3

 for  r a> 0 . 

 
The width a0 and the depth U0 were to be found from experimental data on 
the energies of electron binding by NNi in GaP. 
 The electron states bound by NNi at distance Ri are described, in a quasi-
classical approximation, by the Hamiltonian [204, 205] 
 

       ( ) ( )H m
m

U r U r R= − ∇ + + +2
i ,                  (2.4.18) 

 
where the effective mass m does not coincide with that of a carrier in the vi-
cinity of the conduction band maximum. The energies of bound states were 
determined by the variational analysis with the test function 
 

      ( ) ( )[ ] ( ) ( )[ ]Φ ∆i i i i ir U r U r R= + + +
−2 1 1

,          (2.4.19) 

 
where 
 

( ) ( ) ( )U r a a ri i i= −3 1/2
π exp , ( ) ( )∆ i i i i i i i= + + −1 32 2α α αR R Rexp  
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Figure 2.48. The binding energy E of an electron bound by a pair of nitrogen atoms 
NNi in GaAs versus interatomic distance R. 
 
and αi is a variational parameter. One can see from the data in Figure 2.48 
that an agreement with experiment was achieved  at (ma0

2U0)–1 = 0.88, so 
that with a0 = 1.185 Е, we will have U0 = 3.08 at m m= . 
 This shows that the calculation of electron binding by NNi in GaP must 
take into account all components of impurity potential, including the ionic 
pseudopotential difference, electron polarization, and local lattice distortions. 
Moreover, one should bear in mind that local distortions increase the 
electron binding energy, rather than decrease it. It follows from the above 
quasiclassical calculation that isolated nitrogen atoms, namely NN∞ pairs, 
cannot bind electrons at all, but they, of course, are able to bind excitons. 
Generally, this calculation does not contradict the suggestions made by 
Baldareschi and Hopfield [178, 182] but rejects the applicability of Phillips’ 
model considerations [181] concerning the role of local distortions. 
 The problem of binding quasiparticles by atomic pairs of the Zn–O, Cd–
O, and Mg–O types in GaP crystals was discussed in [206], ignoring local 
lattice distortions. The symmetry group for these defects is the point group 
C3V containing nondegenerate σ-like A1 states and doubly degenerate π-like 
E states. The latter arise from p-like T2 states of an isolated impurity and 
have energies close to those of T2 states because of their π-like nature. But A1 
states are of the σ-type, so that their energy can vary considerably with the 
kind of metal atom in the atomic pair. 
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 Coupling of a metal atom with oxygen can considerably change the ener-
gy of electron binding by OP in GaP, depending on the electron energy dif-
ference in isolated atoms. The bound states appears to be of the resonance 
type for the larger energy difference. 
 Although it is clear from the foregoing that the theory of isovalent impu-
rities in semiconductors is not yet completed, it is as clear how it can be de-
veloped further. Exciton binding by isovalent impurities seems to be inter-
preted satisfactorily in terms of Hopfield’s model [144], in which an isoelec-
tronic acceptor first captures an electron by short-range forces of the central 
cell, and the induced Coulomb field then captures a hole. The exciton 
binding energy is given by the sum of binding energies of the electron and 
the hole [150]. Since the hole binding can be described by the effective mass 
method, the main problem that remains is to describe the electron binding by 
short-range forces of the central cell. The difficulty is to calculate the hole 
binding energy for an isolated donor. 
 The short-range forces of the central cell are determined by three factors: 
ionic impurity potential, electron polarization, and local lattice distortions. 
The Koster–Slater one-band/one-site approximation can take into account 
only the first factor. Both the electron polarization and local distortions ex-
tend the range of impurity potential, so the Koster–Slater approximation 
proves unsuitable for the calculation of binding energies of electrons and 
holes. On the other hand, this approximation with empirical impurity poten-
tial satisfactorily describes optical properties of isovalent impurities. 
 It is quite obvious that the binding of an electron or a hole by an isovalent 
impurity atom requires a self-consistent theory of the type suggested in [207, 
208] for a neutral vacancy. Such a theory can yield a self-consistent impurity 
potential for any fixed configuration of atoms and vary the energy of the im-
purity ground state in a crystal to determine the equilibrium configuration. It 
may turn out that the stage of the impurity potential self-consistency will ap-
pear unnecessary, because Lannoo [209] obtained similar results by means 
of a simple screening function. 
 The principal difficulties are associated with the equilibrium configura-
tion calculation. In principle, evaluation of the band structure contribution to 
the ground state energy does not present a problem, but the contribution of 
ion–ion repulsion and the change in the exchange–correlation corrections are 
not easy to consider. Fortunately, the contribution and corrections determine 
the short-range adiabatic potential, so one can use Kiting’s phenomenologi-
cal adiabatic potential, whose parameters are to be selected from experimen-
tal data. This has not been done yet, but the approach seems quite promising 
for isovalent impurities in semiconductors. 
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 Energy variation of the center ground state with its charge state defines 
its ionization energy. For an isovalent impurity, ionization energies are high, 
about the forbidden gap width, while bound states are fairly extensive. In 
these conditions, one should not expect an essential contribution of exchange 
and correlation to the ionization energy (in contrast to multicharge centers). 
For this reason, we have to recognize the important role of local lattice dis-
tortions in the formation of bound impurity states. While only symmetrical 
local distortions seem to be essential for isoelectronic acceptors, asymmetric 
local distortions should not be neglected when dealing with isoelectronic 
donors. The possible Yan–Teller effect was emphasized by Morgan [210]. 
 Electron polarization and local lattice distortions leading to long-range 
components of impurity potential must be treated in terms of a multiband 
isovalent impurity theory. It is quite likely that such a theory could be deve-
loped in the spirit of Kleiman’s one-site model [211], which considers long-
range potential by renormalizing the perfect crystal spectrum. Although this 
model contains some flaws, it is capable of explaining the presence of ex-
cited states of isovalent impurities quite clearly. 
 Little attention has so far been given to virtual impurity states which are 
to occur with a higher probability than bound states. Experimental observa-
tion of such states is possible only in sharp resonances lying near the forbid-
den gap of a semiconductor. If this ever happens, one should expect to find 
specific features in the photoconductivity and optical absorption spectra. The 
effect will certainly depend on the details of the resonance state, the symmet-
ry and localization degree of the wave function, as well as on the interaction 
with the lattice and the presence of other impurities. Experimental study of 
virtual states of isovalent impurities may contribute much to our understan-
ding of the nature of isovalent substitution. 
 
 
2.4.3  Physicochemical behavior of the host–IVI system 
 
Elemental isovalent impurities belong to the same groups in the periodic 
table as the elements comprising the host semiconductor. For this reason, the 
physicochemical behavior of such impurities have been studied with refer-
ence only to binary (for Ge and Si) and quasibinary (for AIIIBV, AIIBVI, 
AIVBVI, etc.) systems characterized mostly by infinite substitutional solid 
solutions of the cation and anion types. The fundamental characteristics of 
such solid solutions—the crystal lattice period and forbidden gap width—
were assumed to vary monotonically with the composition. This refers to 
solutions with macrocontents (from units to dozens at. %) of isovalent 
atoms. Thermodynamic studies of solid solutions with a low content (less 
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than 1–2 at. %) of one of the components and the physicochemical analysis 
of semiconductor–isovalent impurity systems have demonstrated some 
principal differences between a diluted and a concentrated solution. These 
differences show that it is impossible to extend the physicochemical 
concepts of donor and acceptor impurities to the behavior of isovalent 
impurities at their “microconcentrations”. 
 Briefly, the specific aspects of the physicochemical behavior of isovalent 
impurities can be stated as follows. 
 (1) Experiments using the electromotive force of a galvanic cell and dif-
ferential calorimetry have revealed sign reversal deviations from the Raoult 
law [212], negative for diluted, and positive for concentrated InSb-Bi solu-
tions. 
 (2) Measurements of vapor pressure above Bi and InP–Bi liquid solutions 
have shown positive deviations from the Raoult law and a tendency for  
liquid stratification [213]. 
 (3) Measurements of electrical conductivity, viscosity, and density of 
InSb-GaSb and InSb-GaAs liquid solutions have shown that the liquid phase 
contains well-ordered regions corresponding to “triple chemical compounds” 
of the Ga2InSb3 and In2GaSb3  types [214]. 
 (4) High precision measurements of the crystal lattice period and X-ray 
diffuse scattering intensities have demonstrated that isovalent impurities 
could, under certain conditions, occupy sites and interstices simultaneously 
in crystal–isovalent impurity solid solutions. Among these are GaAs<Sb>, 
GaAs<In>, InSb<Bi>, and some others [176]. 
 The most important feature of the physicochemical behavior of isovalent 
impurities is their dual role in semiconductors. On the one hand, they are 
ideal solvents (Ga, In, Bi, InBi, In2Bi, Sn, etc.) possessing a low melting 
temperature and a low vapor pressure. On the other hand, they are suitable as 
doping impurities in liquid phase epitaxy. The latter decreases the crystalli-
zation temperature and allows the growth of semiconductor films with a low 
defect concentration. 
 
 
2.4.4  Possible mechanisms of the isovalent impurity effect 
 
Isovalent impurities can affect a semiconductor in the liquid and solid 
phases. 
 Through the liquid phase, an impurity admixture increases the number of 
constituents, so that the crystal grows from (n + 1) components, as compared 
with n components in the absence of impurity. The quantity n also includes 
various background impurities. A typical example is epitaxial GaAs crystal 
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growth. The basic components are GaAs and Ga with Si as the main back-
ground. The degree of Si incorporation into the growing crystal is described 
by the distribution coefficient KSi = (Cs/Cl)Si. When In or Sb is added to the 
liquid phase, the distribution coefficient of silicon impurity incorporated into 
the crystal changes because of the interaction between In or Sb with silicon. 
Of course, the distribution coefficients of the isovalent impurity itself will 
also vary with its content in the liquid phase and with temperature. 
 In other words, isovalent impurity doping changes the heterogeneous 
equilibrium of the melt-layer system. Therefore, it can be stated that the in-
teraction between background and doping impurities will be most effective 
only if the impurity has the highest thermodynamic interaction parameter 
[215]. This qualitative conclusion will be supported by quantitative evalua-
tions in Section 2.4.5. 
  The effect of isovalent impurities on the point defect ensemble in the 
solid phase is associated with their interaction with vacancies. Since isova-
lent impurities are uncharged, their interaction is likely to be purely elastic. 
This issue was treated theoretically in detail in [216]. A point defect is re-
garded by the authors of this work as a source of internal stresses. The prin-
cipal theoretical result of their consideration is the analysis of interaction 
energy E( ~R ) of defects in an isotropic crystal:  
 
         ( )E R~ ∼ ~R −6 ,                                       (2.4.20) 

 
where ~R  is the distance between two defects. 
 It is clear from (2.4.20) that one must first take into account the interac-
tion of isovalent impurities with other defects, for example, with vacancies 
located in the first coordination sphere. The probability for defects to en-
counter one another at neighboring sites will be described as [217] 
 
       W aN N DV IVI V IVI V− = 12 ,                           (2.4.21) 
 
where a is the crystal lattice period, DV is the coefficient of the most mobile 
defect—vacancy, and NV and NIVI are the concentrations of vacancies and 
isovalent impurities, respectively. For a common electrically charged impu-
rity, for instance silicon, the probability of the encounter with a vacancy is 
 
        W lN N DV Si V Si V− = 12 ,                          (2.4.22) 
 
where l is the Bohr orbital radius. 
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Figure 2.49. Energy diagram of basic defects in undoped GaAs. 
 
 For the estimation, we will take GaAs with l = 83.3 Е and a = 5.5 Е. 
Taking NSi ≅ 1017 cm–3 and NV ≅ 5×1019 cm–3, we will get 
 
         WV-IVI/WV-Si >> 1                                (2.4.23) 
 
for both gallium and antimony vacancies. Therefore, the probability of defect 
encounter appears to be higher when vacancies interact with isovalent im-
purities rather with silicon. 
 The intensity of complexation involving isovalent and other impurities 
available in the crystal varies with the nature and concentration of the latter. 
The concentration ratio of two complexes Z1 and Z2 produced by impurities 
C1 and C2 can be written as 
 
      ( ) ( )Z Z C C Q Q kT1 2 1 2 1 2= −exp ,                     (2.4.24) 
 
where Q1 and Q2 are the binding energies in the complexes. The dominant 
process will be the formation of complexes with impurity atoms having a 
higher binding energy or a higher concentration. The above illustration of V-
isovalent impurity and V-Si complexes is just characteristic of the case when 
the concentration of the isovalent impurity is higher than that of silicon. 
 Another illustration is GaAs with In or Sb as an isovalent impurity at a 
concentration of 1018–1020 cm–3. Undoped GaAs is characterized by the pre-
sence of associated defects N1 and N2 (Figure 2.49), which include silicon 
atoms, a Ga vacancy in the N2 associate, and an As vacancy in the N1 associ-
ate [218, 219]. The doping of GaAs with Sb decreases the concentration of 
N2, while the doping with In produces the opposite effect [220, 221].  Similar 
data were obtained for the N1 center [220, 221]. These results indicate a de-
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crease in the concentration of Ga vacancies for Sb doping and its increase for 
In doping. This conclusion was supported by a uniform distribution of the 
amphoteric germanium between the GaAs sublattices in the presence of 
isovalent impurities [219]. 
 In addition to the binding of vacancies, isovalent impurities are capable 
of generating vacancies. This process is associated with the concept of an 
isovalent impurity as a source of elastic strain in the crystal lattice. Due to 
this strain, the defect formation energy at the impurity site differs by a dozen 
angstroms from that in an undoped crystal. As a result, the average con-
centration of defects in a crystal changes. It has been shown theoretically 
[224] that the total concentration of vacancies V in the case of isovalent im-
purity doping is expressed as 
 
        ( )V V N Q= + ′0 01 Ω exp ,                          (2.4.25) 
 
where V0 is the concentration of vacancies in an undoped crystal, N is the 
concentration of impurities, Ω is the volume of a defect potential well, cre-
ated by impurity atoms in an elastic field [225], and ′Q  is the binding 
energy of an impurity–vacancy complex. This result was supported 
experimentally, for example, in Si<Sn> [226] and in GaAs<B> [227]. 
 
 
2.4.5  Isovalent doping effects 
 
Transformation of the homogeneity region. The effect of the crystallization 
medium composition on the homogeneity region of the compound being 
crystallized, i.e., on the equilibrium of intrinsic point defects, can be 
conveniently analyzed with reference to AIIIBV compounds produced from 
melts containing isovalent impurities. A quantitative evaluation of the intrin-
sic defect equilibrium can be made in terms of  equilibrium of the quasi-
chemical reactions which describe the production of such defects. 
 Assuming that the main types of intrinsic point defects are vacancies of 
AIII(VA) and BV(VB) components, as well as interstitial BV(Bi) atoms, and that 
isovalent impurities produce substitutional solid solutions, we can write 
these reactions as follows: 
 
          K1 
         Al ←

→  AA + VB                                (2.4.26) 
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          K2 
         Bl ←

→  BB + Bi + VA                            (2.4.27) 
 
            K3 
         Al

∗  ←
→  AA

∗  + VB                               (2.4.28) 
 
          K3

∗  

         Bl
∗

←
→ BB

∗  + VA,                                 (2.4.29) 
 
where A* and B* are impurities isovalent to the elements A and B, respec-
tively; K are equilibrium constants of direct quasi-chemical reactions.  
 A possible interaction of intrinsic point defects in the solid phase is de-
scribed as 
 
              K4 
          Bi + VB ←

→  BB.                              (2.4.30) 
 
The concentrations of point defects in atomic fractions can be expressed 
using equations (2.4.26) through (2.4.30) as 
 
        [ ]V K K K a al l

A A B= 8 1 2 4                                (2.4.31) 

        [ ]V K al
B A= 2 1                                            (2.4.32) 

 
        [ ]Bi A= 0 25 1 4. K K al                                (2.4.33) 
 
        [ ]AA A A

∗ = ∗K a K al l
3 12                               (2.4.34) 

 
       [ ]BB B A B

∗ ∗= ∗K a K K K a al l l
3 1 2 48 .                      (2.4.35) 

 
These five equations show that concentrations of all defects are in an un-
stable equilibrium varying with ai

l and K. The former are calculated from the 
known ratios for regular solutions, and the equilibrium constants of the reac-
tions are found with the algorithm suggested in [229]. 
 The knowledge of the values of ai

l and K1 – K4 is necessary for the calcu-
lation of intrinsic defect concentrations in AB<A*> or AB<B*> as a function 
of temperature and isovalent impurity concentration. Such calculations have  
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Figure 2.50. Calculated temperature dependences of IPD relative concentration va-
riation in GaAs during crystallization from a 3-component (Ga-As-isovalent 
impurity) liquid phase: solid lines – [VGa]; dashed lines – [VAs]; broken lines – [Asi]; 
isovalent impurities: 1 – In, 2 – Sb, 3 – Bi; calculation for In and Sb at CIVI

sol = 
4.4×1020 cm–3, for Bi at CIVI

sol corresponding to solubility limit; index II is for the 
two-component Ga-GaAs system. 
 
 

 
 
Figure 2.51. Polythermal cross sections of homogeneity regions in GaAs<Bi> for 
CBi

sol, cm–3: 1 – 0; 2 – 1×1018; 3 – 3×1018; 4 – 5×1018. 
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Figure 2.52. Polythermal cross sections of homogeneity regions in InAs<Bi> for 
CBi

sol, cm–3: 1 – 0; 2 – 2×1018; 3 – 8×1018; 4 – 1.4×1019. 
 
 
 

 
 
Figure 2.53. Temperature dependences of IPD concentrations in GaSb obtained from 
solutions: 1 – Ga; 2 – Sn; for crystallization from Bi-solutions, the dependence is 
close to line 2; 3 – calculations neglecting the activity of components in the liquid 
phase. 
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been made for GaAs<IVI> [230], InAs<IVI> [231], and GaSb [232]. For 
illustration, we present Figures 2.50 through 2.52. It should be noted that an 
essential role in GaSb is played by antistructural defects. In this case, the 
author of [232] referred the GaSb type of defects to the intrinsic defects listed 
above. The calculations are illustrated in Figure 2.53. All the results show 
that the effect of isovalent impurities on the concentration of intrinsic point 
defects increases with decreasing temperature and that Bi has the greatest 
perturbative effect on defect equilibrium. 
 Amphoteric impurity redistribution between the AIIIBV sublattices. It was 
shown in Section 2.3 that cation–anion amphoteric impurities have a definite 
thermodynamic distribution between the crystal sublattices under 
equilibrium conditions. Since doping with isovalent impurities leads to a 
transformation of the homogeneity region, one should also expect a 
sublattice redistribution of an amphoteric impurity in the presence of an 
isovalent impurity. Indeed, such a redistribution was established 
experimentally in [219] and is illustrated in Figure 2.54. 
 ”Purification” of a semiconductor by isovalent doping. The effect of iso-
valent impurities on the distribution coefficients of background impurities in 
the liquid phase can decrease their concentration in a growing crystal, i.e., it 
 
 

 
 
Figure 2.54. Hole concentration in GaAs:IVI:Ge epitaxial layers versus Ge content in 
the solution melt: x – GaAs:Ge; o – GaAs1–xSbx:Ge, x = 0.006; ■ – Ga1–xInxAs : Ge, 
x = 0.006. 
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can produce a kind of purifying action to remove the background. It was 
mentioned in Section 2.4.4 that the greatest effect should be expected from 
isovalent impurities with the maximum thermodynamic parameter in the in-
teraction with a background impurity. Let us consider this problem quantita-
tively now. 
 The interaction parameter in the liquid phase, ωl, can be evaluated for a 
system with an infinite solubility in the liquid phase and a practically zero 
solubility in the solid phase, such as the isovalent impurity-Si systems, using 
the following relation [215]:  
 

      
( )

ω l Si
f

Si
f

Si
l

Si
l=

− +

−

∆H T T RT x

x

1

1

ln
,                     (2.4.36) 

 
where TSi

f and ∆HSi
f are the melting temperature and enthalpy of a back-

ground impurity and x is the atomic fraction of silicon in the liquid phase. 
 The estimations of ωl for the interaction of silicon with an isovalent im-
purity in GaAs are given in Figure 2.55. It is seen that the Si–Bi system has 
the maximum value of ωl, so the experimental checkup of isovalent purifica-
tion was undertaken in [173] during the GaAs epitaxial growth from a bis-
muth melt. The experimental data show a considerable decrease in electron 
concentration and an increase in electron mobility, while the impurity back-  
 
 
 

 
 
Figure 2.55. The temperature dependence of the interaction parameter in the liquid 
phase for Si–IVI systems: 1 – Si<Bi>, 2 – Si<In>, 3 – Si<Sb>, 4 – Si<Ga>. 
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Figure 2.56. The relationship between donor and acceptor concentrations in GaAs 
and GaAs<Bi> samples. 
 
ground (Figure 2.56) was reduced to 8×1015–3×1016 cm–3, as compared with 
8×1016–6×1017 cm–3 in control samples containing no Bi.  
 Another striking example of the purification effect of isovalent doping 
was reported in [174] from a photoluminescence study of GaAs epitaxial 
layers doped with In and Sb. The results presented in Figure 2.57 show that 
the In doping considerably reduced the radiation band at 1.4 eV, and Figure 
2.49 demonstrates that this reduction corresponds to the radiation transition 
of electrons from the N1 center levels to the conduction band. In other words, 
indium impurity has lowered appreciably the concentration of these back-
ground centers. 
 The effect on the compensation degree of a semiconductor. A direct 
consequence of isovalent purification is a changed compensation of shallow 
impurities in the semiconductor. It is clear from the curve slopes in Figure 
2.56 that the compensation degree of GaAs<Bi>, i.e., the component k = 
Na/Nd = 0.8, appears to be higher than k = 0.5 for GaAs samples containing 
no bismuth. With the assumption of the compensation being due to ampho-
teric background silicon, this result also indicates a redistribution of the am-
photeric impurity between the Ga and As sublattices in the presence of bis-
muth. We showed in Section 2.3 (see expressions (2.3.65) and (2.3.66)) that 
k ∼ PAs

–2; therefore, the experimentally observable increase in the compensa-
tion degree unambiguously indicates a decrease in PAs above the crystal 
grown from a bismuth melt, as compared with the conventional growth from 
a gallium melt. This was established by direct measurements in [233]. 
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Figure 2.57. Photoluminescence spectra at T = 2K: (a) – GaAs1–xSbx (x = 0.0034); (b) 
– GaAs; (c) – Ga1–xInxAs (x = 0.007). 
 
 Variation in the compensation degree due to isovalent doping was ana-
lyzed from photoluminescence spectra [234] and from the electrical behavior 
of crystals doped with isovalent impurities [221]. 
 The effect on the dislocation structure. The effect of impurities on the 
macroscopic elasticity and dislocation mobility was considered, before the 
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application of isovalent doping, as a manifestation of impurity electrical ac-
tivity. But there was an alternative view, according to which elastic interac-
tion of impurity atoms with dislocations dominated at T ≥ 0.7Tf. The use of 
isovalent impurities, which are uncharged in a crystal, unambiguously con-
firmed the latter point of view in studies of single crystals doped with In or 
Sb [236]. 
 The effect on solid solution decomposition. The elastic deformation of a 
crystal lattice produced by doping has also an effect on defect formation due 
to decomposition of oversaturated solid solutions. If an impurity “expands” a 
crystal lattice, its decomposition is slowed down to liberate components with 
a larger specific volume than that of the host crystal. An illustration of this 
effect is the slower decomposition of an oversaturated oxygen solid solution 
in silicon single crystals doped with isovalent Ge and Sn [237]. 
 
 
 
2.5  VOLATILE IMPURITIES 
 
2.5.1  Hydrogen 
 
All available data indicate that hydrogen atoms occupy interstitial positions 
in the crystal lattice of diamond-like semiconductors. Debatable is only the 
type of interstice. For silicon and germanium, the preferable position seems 
to be the “antibinding” position along the <111> axis at a distance of ∼0.16 
nm from the nearest regular atom, with a slight dispersion (∼0.01 nm) in the 
transverse direction. This conclusion follows from the channeling effect in 
silicon samples with implanted deuterium [238]. The study of infrared 
absorption spectra in the same samples [239] led to the finding of a 
considerable binding energy of about 2.0 eV between deuterium atoms 
(hence, of hydrogen) and silicon atoms. This is sufficient evidence for their 
strong chemical bonding. 
 A similar bonding occurs between hydrogen and other impurity atoms in 
a crystal. An example is the interaction between hydrogen and copper impu-
rities in germanium [240]. This effect can be identified from the change in 
the energy spectrum of the interacting components, similar to that observed 
in copper–lithium complexation in germanium, when some copper levels in 
the forbidden gap disappear and others are shifted. 
 Hydrogen in germanium and silicon interacts actively with intrinsic point 
defects. Some models of this interaction are discussed in [241]. Any point 
defects can produce complex defects, whose energy spectrum is similar to 
that of hydrogen-like impurities but differs in the impurity center symmetry 

© 2004 by CRC Press LLC© 2004 by CRC Press LLC



2.5. VOLATILE IMPURITIES             135 

from common hydrogen-like substitutional impurities. In contrast to single 
hydrogen atoms, these complex centers produce numerous shallow donor 
and acceptor levels at Ec – 12.3 and Ev + 11.3 eV. 
 It has been established reliably by the MSR technique that germanium 
and silicon contain atomic muonium [242, 243]. Since muonium and hydro-
gen are actually isotopes, everything established for muonium will be valid 
for hydrogen. The most important result is the “swelling” of a muonium 
atom in germanium and silicon crystals, as compared with the muonium size 
in vacuum (5.32 nm). For example, the muonium sizes in germanium and 
silicon are 6.4 and 7.2 nm, respectively [244]. However, the observable 
increase in the size cannot be described in terms of the effective mass theory. 
 Kittel and co-workers [245] have explained theoretically the experimen-
tally detected increase of the Bohr orbital radius of muonium in germanium 
and silicon crystals. Their conclusion is that muonium, and, therefore, hydro-
gen, are to be deep donors with the ionization energies 1.52÷1.58 and 1.58–
1.70 eV, respectively. These values agree satisfactorily with the above value 
of 2.0 eV. Such high ionization energies account for the fact that atomic hy-
drogen does not show electrical properties in germanium and silicon. 
 Among more complex semiconductors, only SiC was found to have a 
similar increase in muonium size [246], which was 14% of its vacuum value. 
Besides, SiC crystals were subjected to hydrogen ion implantation followed 
by a photoluminescence spectral analysis of one of the polytypes, 6H–SiC 
[247]. The author suggested a model of a center consisting of a hydrogen 
atom at a vacant silicon site. In this position, a hydrogen atom is surrounded 
by four carbon atoms and is shifted toward one of them. No data are avai-
lable on the state and behavior of hydrogen impurity in other semiconductor 
compounds. 
 When discussing hydrogen behavior in semiconductors, one should not 
ignore its effect on crystal surface properties. Although this behavior is still 
poorly understood, we do know that atomic hydrogen forms fast recombina-
tion centers on a germanium surface [248]. Some effort has been made to 
study hydrogen saturation of amorphous semiconductors, mostly silicon 
[249], in which hydrogen atoms saturate dangling chemical bonds of the host 
atoms, thereby stabilizing the semiconductor properties. This problem, how-
ever, does not involve the behavior of hydrogen in a bulk crystal. For this 
reason, we do not discuss it in this book.  
 
2.5.2  Oxygen 
 
Oxygen is abundant in semiconductors, because it possesses a high diffusion 
coefficient in melts and solid crystals. It finds its way to a growing crystal 
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from the quartz chamber walls, the substrates used and the ambient 
atmosphere. For these reasons, oxygen content in a semiconductor depends 
to a great extent on the crystal growth technique used. This is especially 
typical for silicon. The concentration of oxygen atoms in crystals grown 
from a melt may be as high as 1018 cm–3 and even more, but in samples 
produced by zone melting it is less than 1016 cm–3. It is quite difficult to 
measure the oxygen content in silicon. There are various ways of doing this, 
but the most reliable method is radioactivational analysis aimed at 
determining the isotope 18O after irradiation by accelerated 3He ions [250]. 
The radioactive isotope 18O has a short half-decay time, which greatly 
decreases the feasibility of the method. On the other hand, this method 
removes from analysis the adsorbed surface oxygen, yielding absolute 
values. An alternative is an optical technique using the characteristic 
absorption band in the infrared spectral region at λ = 9.1 µm (the frequency 
1106 cm–1) and the proportionality of absorption coefficient Km at the band 
peak and the oxygen concentration: 
 

N AKO m= . 
 
At the same time, spectral studies show complex oxygen behavior in silicon. 
Oxygen is involved in different types of bonding, which readily transform to 
one another. Table 2.25 shows eight bands due to ogygen in silicon. 
 The three bands at 1106, 1205, and 515 cm–1 are due to the nonlinear 
configuration of Si–O–Si [251, 252]. The first band was identified as an 
antisymmetric external oscillation ν1 (Figure 2.58) and the other two as 
symmetrical valent oscillation ν2 and deformation oscillation ν3. The other 
absorption bands due to oxygen presented in Table 2.25 are associated with  
 
 
Table 2.25. Infrared absorption bands in silicon with impurity oxygen. 
 

Type of 
center 

Si–Oi–
Si* 

V–Oi 
A-center 

Ci–Oi 
X-center 

Sii–Oi–
C 

Oi SiO Si–Oi–
Si** 

Si–Oi–
Si*** 

Absorp- 
tion band 
at ν, cm–1 

 
515 

 
830 

 
865 

 
890 

 
935 

 
1000 

 
1106 

 
1205 

 
* symmetrical bending oscillations, ** antisymmetrical stretching oscillations, *** 
symmetrical stretching oscillations. 
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Figure 2.58. Nonlinear configurations of the Si2O molecule, corresponding to absor-
ption at K, cm–1: ν1 = 1106; ν2 = 1205; ν3 = 515. 
 
thermal treatment of silicon at 1000°C for several days. This considerably 
reduced the main band intensity at 1106 cm–1. 
 The main feature of oxygen behavior in silicon is the formation of what 
is known as thermal donors produced during thermal treatment. Today, the 
general view, based on the data of [253] presented in Figure 2.59, is that 
there are two kinds of thermal donors. One, represented by the low tempera-
ture peak in Figure 2.59, is attributed to complexes consisting of four oxygen 
atoms [253] and the other, corresponding to the high temperature peak in the 
same figure, is due to oxygen precipitates. 
 A model was suggested in [251] to account for the formation of groups of 
the On type. If the formation of, say, “pairs” and “triplets” is in equilibrium, 
the following reactions occur: 
 
         [ ]O O2 1 2= α  

         [ ][ ]O O O3 2 2= α .                                 (2.5.1) 
 
The formation kinetics of “quartets” is described as [251] 
 

    [ ] [ ] [ ] [ ] [ ]
d
d

O O O O
Ot

K4 1 2
3

4
3

1 1= − +





















α α

α
.           (2.5.2) 

 
The solution to this kinetic equation is 
 
      [ ]( ) [ ] ( )[ ]O O4 4 1t t= − −max exp τ                            (2.5.3) 

 
with 
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Figure 2.59. Relationship between thermal donor concentration Nth.d. and annealing 
temperature for Si samples with various oxygen concentrations NO, cm–3:  1 – 1×1018; 
2 – 1.85×1018; 3 – 1.6×1018; 4 – 1.2×1018. 
 
 

       [ ] [ ]

[ ]
O

O

O

4
1 2

2

3
1 1

max =
+

α α

α

, 

     [ ] [ ] [ ]
1 1 1

3 3τ α α
= + = +









K K KO O

O
.                          (2.5.4) 

 
It is easy to see that the formation kinetics of thermal donors are described 
satisfactorily by equation (2.5.2) at 
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          [ ]α3 1O >> .                                    (2.5.5) 
 
Hence, the reaction producing quartets from triplets is essentially non-
equilibrium. Quartets are more likely to form from quintets. 
 Higher temperature donors are formed only following a low temperature 
treatment [246]. This work describes a model, in which neutral complexes 
containing more than four oxygen atoms are produced at 300–500°C, in ad-
dition to electrically charged O4. During the treatment at 600–800°C, the 
decomposition of a supersaturated oxygen solution occurs actively and Om 
complexes dissociate into simpler ones. The electrical properties of oxygen 
tetrahedra begin to manifest themselves again. This model was supported by 
the temperature dependences of concentrations of electrons which go from 
the first and second thermal donor levels to the conduction band [246]. It 
was found that both have the same energy level at Ec – 0.02 eV. 
 Oxygen in silicon also interacts with vacancies to produce the well-
known A-center [117]. The A-center has an acceptor level in the silicon for-
bidden gap at Ec – 0.16 eV. This complex is stable and is annealed at 
∼600 K. Besides, an oxygen atom forms two unstable associates, (O–V)<111> 
and (O–V)<100>, which are annealed at 100 and 120 K, respectively [254], 
with the second associate transforming to a stable A-center. 
 When an oxygen atom captures a vacancy, it is displaced and becomes 
localized nearly at the vacant site (Figure 2.60). When an A-center captures 
an electron, it becomes negatively charged and paramagnetic, which permits 
its study using the spin and double resonance (ENDOR) method. This prob-
lem has been studied extensively, so we will only mention a recent review 
[255]. 
 Oxygen atoms in silicon are “polymerization” centers for vacancies. The 
following types of centers have been reported [156, 257]: (V2–O), (V2–O2), 
 
 

 
 
Figure 2.60. The model A-center (vacancy + oxygen atom) in silicon: the black circle 
– an oxygen atom with closed bonds of neighbors around a vacant site. 
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Figure 2.61. The model of an electrically inactive structural group (a) and its elec-
trically active oxygen complex (b) in germanium: black circle – impurity oxygen 
atoms, without allowance for the lattice relaxation. 
 
(V3–O), (V3–O2), and (V3–O3). The stability of such complexes increases 
with their “size.” The ability of oxygen atoms to form associates with vacan-
cies, intrinsic and doping impurity atoms stems from the interstitial position 
of oxygen atoms on the Si–Si bonds in the silicon lattice. 
 Oxygen behavior in germanium is similar to that in silicon. For example, 
the vibrational modes shown in Figure 2.58 are also valid for germanium 
[258, 259], with the only difference that the ν3 mode corresponds to the 
11.7 µm band in the infrared absorption spectrum, instead of the 9.1 µm 
band. 
 The interstitial oxygen model for germanium is shown in Figure 2.61 
[260]. One can see that tetrahedral GeO2 is made up of GeO4 groups. Such 
defect associations are electrically inactive, because valent electrons of oxy-
gen atoms are bound by intrinsic crystal atoms. If GeO4 centers capture va-
cancies (Figure 2.61b), they become electrically charged. Further attachment 
of the second and third vacancy shifts the donor level of the complex into the 
forbidden gap. 
 The existence of A-centers was also suggested for germanium, but this 
question still remains debatable (see, for example, [117]). The formation of 
thermal donors in germanium doped with oxygen has been reported [261], 
but there are no detailed studies of their formation and transformation. There 
has been much interest in oxygen doping of III-V semiconductors, but it has 
been investigated only in GaAs and GaP. 
 The principal difficulty in the investigation of these crystals doped with 
oxygen is that it is impossible to remove the oxygen background during oxy-
gen doping. The main sources of oxygen contamination are surface oxide 
films on the initial AIIIBV components, the oxygen dissolved in the AIII bulk, 
quartz, etc. It was found that the use of hydrogen stimulates the reaction 
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       SiO2|s + H2|Γ ←
→  SiO|Γ + H2O|Γ                        (2.5.6) 

 
producing oxygen contamination of the growing crystal via SiO. 
 Vacuum also produces oxygen contamination of AIIIBV compounds be-
cause of the interaction between AIII and quartz [263]: 
 
       3SiO2|s + 2Gal ←

→  Ga2O3|Γ + 3SiO|Γ.                (2.5.7) 
 
The introduction of oxygen or Ga2O3 into the reaction region can decrease 
the contamination via SiO and increase the oxygen content in material. It 
was shown for GaP [264] that the introduction of Ga2O3 into the melt 
decreased Si content, increasing oxygen concentration. 
 A high oxygen background is an obstacle to obtaining reliable data on 
oxygen solubility in AIIIBV compounds at various temperatures. For 
GaP<O>, for example, no solidus curve has been found, but there are only 
data indicating that the total oxygen content in GaP may be as high as 
2×1019 cm–3. For GaAs<O>, the solidus curve was found in [265]. The solu- 
bility has a retrograde character with a maximum of 3×1019 cm–3 at 1100°C. 
Note that the doping was carried out in two ways: by adding Ga2O3 or As2O3 
into the melt. The light absorption spectrum for such crystals has a peak in 
the doping through As2O3 [266]. The authors of this work even demonstrated 
that this peak shifted on dilution of As2O3 with the isotope 18O. They 
interpreted their data as follows. The doping through Ga2O3 produces ap-
proximately 1017 cm–3 oxygen atoms at an As site, i.e., this is substitutional 
oxygen. The doping through As2O3 produces about 1017 cm–3 interstitial oxy-
gen, which is a neutral impurity. The total oxygen content was found to be 
1019 cm–3. 
 In spite of the lack of data on oxygen contents in samples, there are many 
reports on the electrical, optical, and photoelectrical properties of GaP<O> 
and GaAs<O>. 
 For example, there was an appreciable EPR signal detected in GaP<O> 
[267, 268], which permitted a partial determination of oxygen abundance at 
phosphorus sites. The Hall measurements made in these samples revealed a 
level Ec – 0.89 ± 0.02 eV (Figure 2.62). Indirect evidence for this level being 
an Op state is the coincidence of concentrations found from Hall measure-
ments and EPR studied. Direct evidence could be obtained  from pho-
tostimulated EPR, by illuminating electrons by light at hν = 0.9 eV into the 
conduction band, thereby changing the number of charged 0.9 eV centers 
and following this change from the EPR line intensity variation. Such an ap-
proach, however, has not yet been used. The application of GaP for the fabri- 
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Figure 2.62. Impurity levels and radiative recombination transitions (arrows) in im-
purity gas. 
 
cation of efficient emitters has stimulated the investigation of GaP<O> lumi-
nescence. Luminescence spectra of such samples clearly show the tendency 
for oxygen to produce impurity pairs and complexes with other impurity 
atoms. 
 The formation of impurity pairs and complexes with oxygen will be dis-
cussed in detail in Chapter 6. Here, we will only mention the principal differ-
ence between them. The partners in a pair are merely bound by Coulomb 
forces, while a complex involves a chemical bonding changing it to a kind of 
quasimolecule. In the pair interaction, the energy levels of the partners and 
their shift toward the allowed band edges are preserved. When a complex is 
formed, new levels arise in the semiconductor forbidden gap, which have 
nothing to do with the partner levels (Ec – 0.26 eV).  
 Pair luminescence was observed in GaP<O,Zn> [269], which had a lower 
intensity than other group-VI impurities. The maximum intensity of the pair 
luminescence (1.3 eV), the zinc level position (0.064 eV), and the forbidden 
gap value in GaP (2.12 eV) allowed identification of the level of the second 
partner in a pair (0.9 eV) shown in Figure 2.62, which coincides with the Op 
level. 
 Figure 2.62 shows another recombination radiation transition with a 
maximum at ∼1.8 eV, which was interpreted in [270] as being due to pair 
luminescence between a ZnO-type complex and a single Zn level. Similar 
radiation was observed in GaP<O,Cd>. 
 When discussing the behavior of oxygen in GaP, one should not ignore 
the formation of what is known as D–-centers. A D–-center is one of the three 
possible Op states: D+ is an ordinary ionized state with the transition of an 
electron to the conduction band; D0 is a neutral state, or a deep center having  
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Figure 2.63. The configuration coordinate diagram of an oxygen-containing E1-center 
in GaAs; Q – configuration coordinate. 
 
an electron with the optical ionization energy of 0.9 eV; D– is a state with a 
second, attached electron. The optical ionization energy of D– was found 
experimentally [271, 272] to be 2 eV below the conduction band (Figure 
2.62). Interestingly, a D–-state appears only under the action of 0.4 optical 
pumping. For this reason, some workers believe that illumination by this 
light makes an electron jump onto the level Ec – 0.4 eV, after which the 
optical ionization energy Ec becomes equal to 2.0 eV due to a strong 
electron–phonon interaction during the lattice relaxation. An alternative 
model is a mere doubling of the binding energy of each of the two 0.9 eV 
electrons. 
 Both models raise many questions. The formation of D–-states of oxygen-
containing centers was also observed in GaAs<O> [273]. It has been estab-
lished in many investigations that oxygen atoms in GaAs produce two levels: 
E1 = Ec – (∼0.69) eV and E2 = Ec – 0.18 eV. Both values correspond to ther-
mal ionization. The study of photoelectric properties and the use of optically 
induced light absorption modulation (for details, see Section 5.4 of this book 
and [22]) have yielded electronic configurations for both centers, E1 and E2, 
shown in Figures 2.63 and 2.64. In Figure 2.63, curve U1t represents the 
energy E1 of an oxygen-containing center in a singly charged state D0, curve 
U1

* is the metastable excited state of this center, and curve U1
– is the state of  
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Figure 2.64. The configuration coordinate diagram of an oxygen-containing E2-center 
in GaAs; Q – configuration coordinate. 
 
a D–-center. The quantitative characteristics for the diagrams shown in 
Figure 2.63 are given in Table 2.26. 

One can see from Table 2.26 a remarkable Frank–Condon shift for the 
E1-center, which is likely to be due to the Yan–Teller effect, when an oxygen 
atom is displaced from a BV site, leaving behind part of the vacancy. This is 
the way an associative defect is produced, which can be treated as a kind of 
quasimolecule. It seems quite likely that the second electron can be captured 
only by such a quasimolecule. In any case, this model accounts for the exis-
tence of D–-states when the sample is illuminated by light, i.e., under non-
equilibrium conditions, both in GaAs and GaP. 
 Table 2.26 also presents configuration diagram parameters for another 
oxygen-containing center in GaAs. Both diagrams in Figures 2.63 and 2.64 
show a similarity of the two oxygen-containing centers in GaAs. It seems 
surprising that the D–-state should exist only for the E1-center. This is 
probably due to the fact that E1 belongs to an Oi–VAs molecule and E2 to an 
O–Si molecule, as is stated in the publications. 
 
Table 2.26. Some configuration parameters of E1- and E2-centers in GaAs [22]. 
 

Parameter ET Eop dFC EB Eop
* EB

* ET
– Eop

– EB
– 

E1-center, eV 0.69 0.83 0.14 0.08 – 0.2 0.31 0.55 – 
E2-center, eV 0.18 0.43 0.25 0.06 0.36 – – – – 
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 Available data on the oxygen behavior in other AIIIBV compounds are too 
ambiguous to be discussed in this book. 
 
 
2.5.3  Carbon 
 
Most information on carbon states in silicon was obtained by EPR tech-
niques [274, 275]. A positively charged interstitial state Ci

+ producing a 
dumbbell pair with a silicon atom along the <100> direction was identified. 
When the samples were heated to 65°C, the spectrum of the pair disappeared 
for 30 min to be replaced by a more stable Cs–Ci pair spectrum along the 
<111> axis. Such pairs were stable up to 520 K. 
 The three types of pairs were electrically active. The transitions between 
them correspond to the following levels: Ci

0 → Ci
+: Ev + 0.28 eV; Ci

– → Ci
0: 

Ec – 0.12 eV, and Cs–Ci pairs have Ev + 0.36 eV levels. The light absorption 
spectrum of silicon doped with carbon contains several bands, whose energy 
positions and identification are given in Table 2.27. 
 Among other behavioral features of carbon in silicon is a slower forma-
tion of thermal donors due to the presence of carbon. The mechanism of this 
process is unknown, but the production of COn-type associates was estab-
lished with certainty. This process leads to a lower concentration of oxygen 
atoms constituting thermal donors. 
 The carbon state in AIIIBV compounds may be considered to be practi-
cally unknown. There is only a report [276] of the activation energy of car-
bon in GaAs equal to Ev + 0.019 eV and in GaP equal to Ev + 0.041 eV and 
Ev + 0.048 eV [277, 278]. 
 Since carbon belongs to group-IV elements, one may expect this impurity 
to show cation–anion amphoteric properties in AIIIBV semiconductors. How-
ever, there have been no direct experimental observations of this kind, 
probably because of the “small” size of the carbon atom, resulting in its in-
stability at AIIIBV lattice sites. 
 
 
Table 2.27. Infrared light absorption bands in silicon doped with carbon. 
 

Type of center C–Si 12C SiC* Ci–Oi
** Sii–Oi–C Ci C–O 

Absorption band 
 ν, cm–1 

604 
 

607 
 

820 
 

865 
 

890 
 

921 
 

1111 
 

 * precipitates observed in Si<C> crystals, ∗∗ X-center. 
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2.5.4  Nitrogen 
 
It is very difficult to introduce nitrogen into silicon by the conventional 
techniques of pulling from the melt or zone melting. This is associated with 
the low distribution coefficient in solid silicon and because nitrogen is more 
liable to form silicon nitride than to be incorporated by a crystal lattice as an 
impurity. For this reason, nitrogen is introduced by ion implantation 
followed by sample annealing. It is concluded [279] that a nitrogen atom 
occupies an interstitial position in silicon at the level Ec – 0.14 eV. The light 
absorption spectrum of Si<N> shows a peak at 10.6 µm. Nitrogen in AIIIBV 
semiconductors was discussed in Section 2.4 with reference to GaP, for 
which it is an isovalent impurity. 
 As an impurity, nitrogen has proved to be most important in silicon car- 
bide, to which it may be incorporated, substituting sites in both SiC sublat-
tices. Table 2.28 presents the energy levels of impurity nitrogen atoms in SiC 
crystal positions. 
 
Table 2.28. Energy levels Ei (eV) of impurity nitrogen atoms in various SiC crystal 

positions. 
 

C-sublattice  Si-sublattice Interstice 

Ec – 101 Ec – 159 Ec – 94     N 0 ←
→ N+ 

Ec – 158 Ec – 247 Ec – 192   N + ←
→ N2+ 

Ec – 163 Ec – 255 Ec – 307   N 2+ ←
→ N3+ 

  Ec – 501   N 3+ ←
→ N4+ 

  Ec – 633   N 4+ ←
→ N5+ 

 
 The energy values given in Table 2.28 cannot be taken to be absolutely 
reliable. There are alternative data on the energy levels of nitrogen in SiC. 
The ambiguity is due to the difficulty of identifying optical transitions be-
cause of the presence of oxygen and the difficulties in the identification of 
the polytype and preparation of single crystal samples. As an impurity, nitro-
gen plays an important role in semiconductor diamond. 
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Chapter 3 
 

Impurity Solubility in Semiconductors 
(a Macroscopic Approach) 
 
 
 
3.1  RETROGRADE SOLUBILITY OF IMPURITIES 
 
The solubility of most impurities in semiconductors has a retrograde charac-
ter. This means that maximum solubility occurs above eutectic melting tem-
perature and decreases with decreasing temperature. This phenomenon is 
also known as negative solubility. In most metallic systems, the maximum 
solubility of one metal in another metal occurs at eutectic temperature. The 
solubility in such systems had been studied long before this was done in 
semiconductors. It is probably for this reason that maximum solubility at 
eutectic temperature was considered as a common rule and retrograde 
behavior as an exception to this rule. 
 A possible appearance of a negative solubility region was pointed out by 
Van Laar in 1908, but his work did not attract the researchers’ attention at 
that time. It was only forty years later, after the solubility curves were 
studied in detail, that this problem received due attention. Mejering was one 
of the first to derive general expressions for this solidus region [1]. The 
principal results of the calculations are given below. 
 Impurity solubility is calculated in macroscopic thermodynamics from 
the equilibrium condition of the liquid and solid phases. With the activity 
coefficients, it is written as follows: 
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     µ γ µ γα α α α α αl l l s s s
0 0+ = +kT x kT xlog log .               (3.1.1) 

 
It should be noted that chemical potentials must, in reality, refer to an idea-
lized state, rather than to a pure substance, when this component is present 
under conditions similar to those in the solution [2]. In the solid phase, for 
example, the ideal state should have a crystal lattice corresponding to a tetra-
hedral semiconductor. To avoid these complications, one normally uses 
chemical potential values for a pure component α having its own structure, 
while all deviations are taken into account by introducing activity coeffi-
cients. 
 The coefficient of impurity distribution between the solid and liquid 
phases is defined by the impurity concentration ratio in both phases: 
 

     log log logK
x
x kTα

β α
β

α

α α α

α

µ µ γ
γ

= =
−

+s

l

l s s

l

0 0
,                 (3.1.2) 

 
where xαs

β(xαl) is the fraction of α substance in the solid (liquid) phase, γ is 
an activity coefficient, and superscript β indicates the dissolved impurity 
position in a crystal. 
 The first term in (3.1.2) can be expressed with sufficient accuracy 
through the melting enthalpy ∆Hα

f and entropy ∆Sα
f of the dissolved com-

ponent, taken at the melting temperature of the pure component. Their tem-
perature dependence, which is the heat capacity difference in both phases, is 
neglected. As a result, one gets the equation first derived by Thurmond and 
Struthers [3] for the treatment of solidus lines for various impurities in ger-
manium and silicon: 
 

    log logK
H H

kT
S S

Rα
β α α

β
α α

β

αγ=
−

−
−

+
∆ ∆ ∆ ∆f f

l .               (3.1.3) 

 
This formula is convenient for a comparison with experimental data. This is 
a straight line equation in the coordinates logK = f (103/T), and the line slope 
is used to find the impurity dissolution enthalpy. 
 The dissolution enthalpy of a substance is involved in (3.1.3) as a pa-
rameter, and the temperature dependence of the distribution coefficient is 
purely exponential. It is easy to see, therefore, that negative solubility arises 
when the dissolution enthalpy is higher than the melting enthalpy of a pure 
substance. This result will become clearer if equation (3.1.3) is combined 
with that for the liquidus line of a perfect solution [2]: 
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Figure 3.1. Solidus lines for impurity solubility in material with melting heat ∆Hm = 
33.5 kJ×mole and melting entropy ∆Sm = 12.6 J/(g×atom×degrees K), calculated for 
various dissolution enthalpy values: 1 – 92; 2 – 69; 3 – 46; 4 – 23; 5 – 15 kJ/mole. 

 
 

      ( )log 1 1 1− = −












x

H

k T Tα
β

β
l

f

f

∆
,                            (3.1.4) 

 
where ∆Hβ

f and Tβ
f refer to solvent melting. From (3.1.3) and (3.1.4), we 

have [4] 
 

 N N
T S H

kT
H H T S

kα
β β β β α α

β
α= −

−













− −
1 exp exp
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f f f f

.            (3.1.5) 

The results of calculations obtained with this formula are given in Figure 3.1 
[4]. They support the above reasoning concerning the appearance of retro-
grade solubility. 
 Hall [5] used the above equations in a linear approximation of the tem-
perature dependence of enthalpy 
 
        ∆ ∆H H T= −0 α .                                      (3.1.6) 
 
They drew the conclusion that there was a common point in the distribution 
coefficient curves when these were extrapolated to a high temperature 
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region. This permitted a correction to be made of the available experimental 
findings. 
 However, the linear dependence in (3.1.6) and the existence of intercep-
tion points of the curves was subjected to criticism by some investigators. In 
particular, Trumbor and co-workers found in their analysis of tin solubility in 
silicon and germanium that the distribution coefficient logarithm near the 
semiconductor melting temperature rose abruptly, deviating considerably 
from the dependence in (3.1.3), whereas it was indeed valid at a lower tem-
perature [6]. This is not surprising because there are appreciable positive 
deviations from the Raoult law near the melting point in the liquid phase [7], 
which affects the activity coefficient and, hence, the distribution coefficient. 
 In a study of aluminum solubility in gallium and germanium, Trumbor 
and co-workers [6] found the respective deviations from Hall’s suggestion of 
a common point in distribution coefficient curves at high temperatures. But 
this time, the abrupt rise of this coefficient could not be interpreted as being 
due to the behavior of the activity coefficient, because the liquid Al–Ge sys-
tem has a negative deviation from the Raoult law and the Ga–Ge liquidus is 
practically perfect [7]. The slope of the solubility curve was suggested in 
[8, 9] to result  from the impurity ionization. 
 It was assumed in the derivation of (3.1.3) that the dissolved impurity 
was in a neutral state in both phases. In the solid phase, however, impurities 
are partly ionized. The electrical interaction affects the solubility later. This 
circumstance was taken into account in [9] to obtain an exact expression 
allowing for interactions in the solution and impurity ionization: 
 

  ( )K f H TS x H kTnα
β

α α α α
β= − + − −











−1 21exp ∆ Ωf f
l l ,          (3.1.7) 

 
where fn is the Fermi–Dirac function and Ωl is the interaction parameter in a 
regular solution. 
 As the temperature increases, the distribution coefficient K given by this 
formula normally decreases, which fits well the retrograde character of the 
impurity behavior. The solubility decrease at high temperatures (in the cons-
tant temperature approximation of Gibbs partial potential) is associated with 
a lower impurity activity in the melt, calculated from the equilibrium 
liquidus curve. 
 The fact that the Fermi–Dirac function appears in (3.1.7) demonstrates 
that impurity solubility is affected by all active defects available in a crystal. 
This permits allowance for double doping effects, in particular, simultaneous 
introduction of donors and acceptors into a crystal. 
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 Consider, as an illustration, the solubility of a donor impurity. Suppose 
the solubility is not high and the semiconductor remains nondegenerate. 
Then, in accordance with the known approximation for the Fermi energy 
from (3.1.7), one gets [4] 
 

    ( ) ( )K g kT R N
n

kT ra
α
β

β
α
β

α
β

α
β

α
βγ

α
ε= +





exp expc ,         (3.1.8) 

 
where ( )R rα

β
α
β  are degeneration factors of the unfilled (filled) electronic state 

of the impurity. Incorporation of donors increases the free electron concen-
tration. As soon as this concentration reaches a level at which they begin to 
determine the free carrier concentration, the distribution coefficient begins to 
decrease. Further introduction of impurities into the melt does not raise ap-
preciably the free electron concentration. If acceptors are introduced simulta-
neously, the free electron concentration goes down because of the compen-
sation, thereby increasing the donor solubility. Maximum solubility occurs at 
complete compensation. A similar result was obtained earlier by Glazov and 
co-workers [10, 11]. 
 It is worth noting that the solubility curve exponent contains the differ-
ence ∆Hα

f – ∆Hα
β. Therefore, the retrograde character of solubility is asso-

ciated in both cases with the fact that the solubility enthalpy is higher than 
the melting heat of the component. The high interaction energy during 
dissolution decreases the concentration of dissolved impurities, producing a 
negative solubility region. 
 
 
 
3.2  SOLUBILITY OF HYDROGEN-LIKE IMPURITY 

ATOMS IN GERMANIUM AND SILICON 
 
The authors of [12, 13] took into account the ionization of dissolved impu-
rities in the derivation of expressions (3.1.7) and (3.1.8). The ionization 
should necessarily be allowed for in the case of hydrogen-like impurities 
because of the appearance of shallow energy levels. 
 If the fraction of neutral atoms, Fn, in their total abundance xc is 
 

         F x
xn

n
s

= c

c
,                                            (3.2.1) 
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one can derive a general expression for the distribution coefficient allowing 
for the impurity ionization in the solid phase: 
 

    ln ln lnK H
RT

S S
R

Fnα
α α

αγ= − −
−

+ −∆ ∆ ∆f s
l ,                   (3.2.2) 

 
where ∆H is described by a straight line of (3.1.6), according to Hall. 
 The necessity to account for the quantity Fn is due to the fact that the 
equilibrium C0 ←

→  C+ + e– for donors or C0 ←
→  C– + p+ for acceptors in the 

high temperature region can shift appreciably toward the neutral component 
at high concentrations of intrinsic carriers. The quantity Fn can be easily ob-
tained by considering the equilibrium between neutral and ionized impurities 
in a crystal. For a hydrogen-like impurity center, it is 
 

       

,exp1

1

iF
2
1


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


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


 −
+

=

RT
EE

Fn                             (3.2.3) 

 
where EF and Ei are the positions of the Fermi and local levels of the impu-
rity, counted from the conduction band bottom. 
 Unfortunately, a straightforward calculation of Fn is complicated by the 
fact that a solid solution containing over 1020 cm–3 impurity atoms is degen-
erate in a wide temperature range [14]. Moreover, the available information 
on the band structure of germanium and silicon at high temperatures is very 
limited. A rough value of Fn for germanium can be obtained from 
Blakemore’s plots [15] in the approximation of a simple band model and 
Boltzmann’s statistics. In this approach, Fn varies slightly, within 0.85÷0.90, 
in the low temperature region (< 800°C), but above 800°C it falls relatively 
fast to 0.4 at the melting temperature of germanium.  
 For a degenerate semiconductor, the value of Fn can be found from the 
expression 
 

        ( )F F kTn = +1 1
2 1 2/ µ ,                             (3.2.4) 

 
where F1/2(µ/kT) is the known Fermi integral of the “half” index, tabulated in 
[16], and the Fermi level for this case is calculated from a formula in [15]: 
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(3.2.5)  
 
with the recommended value of c = 0.27. 
 The first detailed treatment of solubility of basic hydrogen-like impurities 
in germanium and silicon taking account of impurity ionization was carried 
out by Lehovec [17]. Later, this problem was considered [8, 9], with refer-
ence to germanium, in terms of a regular solution approximation, using 
equations similar to (3.2.2), the only difference being that the dissolution en-
thalpy was replaced by experimental values of K. In one work [9], the 
authors found the solidus curves from the theoretical Fermi level position, 
and in the other [8], they solved the inverse problem, namely, estimated the 
Fermi level position from solubility data for various impurities in germa-
nium. The Fn value was found from Blakemore’s plots as a function of tem-
perature and doping impurity concentration.  
 Comprehensive information on the solubilities of  group-III and group-V 
elements of the periodic table is presented in the book by Glazov and 
Zemskova [10]. Here, we only list the authors’ principal conclusions. 
 (1) Liquidus curves for the states of group-III and group-V solid 
solutions can be basically described in terms of the regular solution theory. 
Solutions with acceptors show a better fit to the theory than those with 
donors. This may be due to the high donor vapor elasticity, so that a 
thermodynamic equilibrium in the system is observed only in closed 
volumes with the counterpressure of saturating vapors at a particular 
temperature. It is, probably, for this reason that the liquidus curves for these 
solutions are not quite accurate. In particular, the high temperature liquidus 
curve for phosphorus in silicon is hypothetical and was extrapolated from the 
low temperature region of the state diagram.  
 (2)  The impurity solubility is fairly high. Most atoms in a solution are 
neutral, so electrical measurements cannot provide a total concentration of 
dissolved atoms. This circumstance should be taken into account when com-
paring theoretical and experimental values. 
 Intensive investigations of equilibrium solubility of hydrogen-like impu-
rities were carried out during the 1950–1960s, and their principal results can 
be found in the reviews [6, 13]. Since the 1960s, the focus has been on sili-
con. For some impurities (B, C, N, P), experimental data on solubility in 
germanium are still quite scanty. 
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Table 3.1. Solubility data for group-III and -V hydrogen-like impurities in germa-
nium. 

 

Impu- Solubility 
 

Dissolution enthalpy ∆H (eV) 
rity Cmax, Tmax, K1 Exper. Theory 
 cm–3 °C   [18] [19] [22] 

B ≤1018  17.4 [20]     
   12.2 [21]     
Al 4.3×1020 675 0.073 [14] 0.12 –0.02 0.12 –0.04 
    0.31 [23]    
Ga 4.9×1020 670 0.087 [14] 0.12 –0.01 0.10 0.14 
In 4.0×1018 800 7×10–4 [6] 0.2 [6] 0.64 0.57 0.69 
In 6.0×1018 835  0.85 [24]    
    0.872 [5]    
    0.70 [25]    
P 2×1020 600 0.01 [6]   0.11  
 8×1019 800 0.02 [6] 0.54 [27]  0.26 –0.13 
As    0.323 [5]    
    0.40 [28]    
 1.2×1019 800 3×10–3 [6] 0.70 [27] 0.36 0.45 0.19 
Sb    0.63 [29]    
    0.40 [28]    
    2.19 [3]    

 
1 K – distribution coefficient at melting temperature. 
2 Theoretical ∆H = 0.87 – 3.17×10–4 T (eV). 
3 Theoretical ∆H = 0.32 – 1.13×10–4 T (eV). 
 
 Tables 3.1 and 3.2 give experimental and theoretical results on the solu-
bility and dissolution enthalpy of hydrogen-like impurities in germanium and 
silicon. 
 The data in Tables 3.1 and 3.2 sometimes demonstrate a considerable 
spread of the values of Cmax and, especially, of ∆H found by different wor-
kers. For many impurities, no theoretical calculations are available. A step 
forward was made by Bulyarsky and co-workers [4, 43, 44], who suggested 
finding equilibrium impurity solubility by taking into account various inter-
actions between impurities and other point defects and the activities of dis-
solved atoms. An attempt was made in [43, 44] to calculate Gibbs partial 
free energies of some hydrogen-like donors and acceptors in silicon. In this 
treatment [4], the distribution coefficient was represented, in addition to 
 

© 2004 by CRC Press LLC



Table 3.2. Solubility data for group-III and -V hydrogen-like impurities in silicon. 
 

Impu- Solubility  Dissolution enthalpy ∆H (eV) 

rity 
Cmax, Tmax, 

K1 
Exper. Theory 

 cm–3 °C   [18] [19] [22] 

B 5×1020 1200 0.43 [31] 0.43 [30]    
 8×1020 1200  0.73 [31]    
Al 2×1019 1150 0.002 [6] 0.46 [6] 0.47 0.69  0.17 
    0.43 [33] 

0.66 [32] 
1.002 [5] 

   

Ga 4.0×1019 1250 0.008 [6] 0.46 [6] 0.44 0.50 0.43 
In 1.6×1018 1300 4×10–4 [6] 2.51 [34] 1.22 0.93 1.28 
P 1.3×1021 1200 0.35 [6] 0.50 [38]  0.03  
 2×1020 1200  0.70 [31]    
 5×1021 1100  0.763 [39]    
As 2×1021 1150 0.3 [6] 0.24 [6]  –0.03 –0.06 
    0.47 [40]    
 5×1019 1300 0.023 [6] 0.31 [6] 0.34 0.39 0.64 
Sb 5.3×1019 1300  0.58 [42]    
    3.49 [41]    

 
1 K – distribution coefficient at melting temperature. 
2 Theoretical ∆H = 1.00 – 2.56×10–4  T (eV). 
3 Theoretical ∆H = 0.76 – 2.8×10–4 T (eV). 
 
Formula (3.1.7) derived in the regular solution approximation without 
allowance for multiply charged states, as 
 

    K
g
kT
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where the designations are the same as in Section 3.1. 
 The concentration of a dissolved, say, donor impurity was described in 
[43, 44] as 
 

    N a
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Figure 3.2. Experimental (circles) and calculated (triangles) solidus lines for Al in 
silicon. 
 
The Fermi level position, EF, was calculated with (3.2.5), and the activity 
coefficients were found using the ratios in the regular solution theory [45]: 
 

   
( )

γ α
α=

−
exp

Ωl l1 2x
kT

  
( )

γ β
α= exp

Ωl lx
kT

2

,                 (3.2.8) 

 
where the interaction parameter was found from the liquidus curve as 
 

     ( )[ ]Ω ∆l
l

f f
l= − − −1 1

x
TS H kT x

α
β β αlg .                     (3.2.9) 

 
Besides, the partial potentials contain the difference between the chemical 
potentials of mixed components. This difference can be written as 
 
      ( )µ µα β α β α β

0 0− = − − −∆ ∆H H T S Sf f f f .               (3.2.10) 

 
After the substitution of (3.2.8) through (3.2.10) into (3.2.6), one gets 
(3.1.7). 
 The consistency between (3.1.7) and (3.2.6) is justified since it was 
shown in Section 1.2 that the approaches based on free energy minimization 
and on chemical potentials are identical. However, free energy analysis al- 
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Figure 3.3. Theoretical solidus lines for different Au charge states in undoped silicon 
(a) and in silicon doped with donors at the concentration N = 1020 cm–3:  1 – NAu

–;  2 
– NAu

+;  3 – Na
–;  4 – Nd

+. 
 
lows a better understanding of the physical mechanisms of interaction and a 
discussion of more complicated situations, such as multiply charged impuri-
ties and their interactions via force fields. 
 A combined solution of equations (3.2.5) and (3.2.7) with the substitution 
of (3.1.8), (3.2.6), and (3.2.8) with respect to exp(–gs/kT) yielded Gibbs par-
tial potential and temperature dependences of impurity dissolution enthalpy 
and entropy [43, 44]. As a result, a better agreement was achieved between 
experimental and calculated solidus curves. This is illustrated in Figures 3.2 
and 3.3. The principal result is illustrated in Figure 3.4 showing clearly the 
nonlinear character of the ∆H(T) curve. This means that Hall’s concept 
formulated as (3.1.6) does not work, as was suggested by many workers. 
 
 
 

 
 
Figure 3.4. The temperature dependence of dissolution enthalpy for Ga in silicon. 
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3.3  HYDROGEN-LIKE IMPURITY SOLUBILITY IN 
AIIIBV COMPOUNDS 

 
Impurity solubility mechanisms in AIIIBV compounds have been a subject of 
interest to many investigators [46–50]. Without claiming present all this 
material, we would like to point out some general mechanisms and factors 
that distinguish the impurity solubility in these compounds from that in 
elemental semiconductors. 
 (1) The process of impurity dissolution is much affected by the formation 
of complexes, which is stimulated by a high concentration of point defects 
and their greater diversity than in elemental semiconductors. For details of 
defect association, the reader is referred to Chapters 5 and 6. 
 (2) The significance of crystal growth conditions rises. The governing 
factors in elemental semiconductors are temperature and impurity concentra-
tions in the ambient. An additional factor in AIIIBV compounds is elasticity 
of the volatile component vapor. By varying this parameter, we can vary the 
homogeneity region width and the concentrations of cation and anion 
vacancies. This, in turn, changes the conditions for impurity dissolution and 
formation of complexes. 
 (3) Dislocations and their interaction with impurities also play an impor-
tant role [47]. 
 It is clear that an adequate description of impurity solubility in such com-
pounds is not a simple task. Nevertheless, it was possible to draw certain 
conclusions. The concentration of complexes decreases abruptly at high tem-
peratures, and so high temperature data can be treated without considering 
defects associations. Complexation results in a lower concentration of free 
charge carriers than the dissolved impurity concentration. However, direct 
concentration measurements of dissolved material do give an absolute value 
of dissolved impurity concentration. Therefore, such measurements should 
be preferred to electrical measurements. 
 Variations in the external factors, including vapor pressure of volatile 
components in the ambient, has been accounted for by theory. For this rea-
son, the theoretical considerations and the data treatment presented below 
may appear useful. As an illustration, let us consider the solubility of tellu-
rium in GaAs, which has been studied in greater detail than other impurities. 
 The distribution coefficient of tellurium has been discussed by several 
workers. The experimental results were reviewed in [48] and summarized in 
Table 3.3 of this book, together with data for other AIIIBV compounds [52]. 
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Table 3.3. Distribution coefficients of some impurities in AIIIBV compounds [31, 52]. 
 

 
Distribution coefficients 

Impurity 
AlSb GaP GaAs GaSb InP InAs InSb 

S 0.03 0.23 0.17; 0.06 0.8 1.0 0.1 
   0.5–1.0     
Se 0.003 0.29 0.44–0.55 0.18; 0.4 0.6 0.93 0.5; 0.35; 

 0.17 
Te 0.01 0.026 0.3; 

0.054–
0.016 

0.4 – 0.44 3.5; ≈1; 
0.54 

Zn 0.02 – 0.3–0.9; 
0.1 

0.3; 0.16; 
 0.02 

– 0.77 2.3; 3.0; 
4.9 

Cd 0.002 – < 0.02 – – 0.13 0.26 
Si 0.045 – 0.1; 0.014 1.0 – 0.4 – 
Ge 0.026 – 0.02; 0.03 0.02; 0.2; 

0.08 
0.05 0.07 0.045 

Sn (2÷8)10 – 0.03; <0.02 0.01 0.03 0.09 0.57 

 
 The temperature dependence of the distribution coefficient is defined as 
 

     K
a

g
kT

E E
kT
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F Te
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exp exp 1 .            (3.3.1) 

 
This dependence was used [4] to find the partial free energy of tellurium 
solubility in GaAs (Figure 3.5). The Fermi energy was calculated on the as-
sumption that the conductivity was determined by tellurium atoms; not all of 
the atoms, however, are in an active state. The calculations yielded the fol-
lowing thermodynamic parameters of tellurium solubility: ∆HTe

As  = –

0.52 eV; STe
As  = 8.7k at T = 1273 K and Nd = 1.7×1017 cm–3. The enthalpy 

and entropy were found to be practically constant in the temperature range 
970–1500 K and independent of the doping impurity concentration. 
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Figure 3.5. The temperature dependence of Gibbs partial potential of Te solubility in 
GaAs. 
 
 
 
3.4  SOLUBILITY OF DEEP IMPURITIES  
 
 
3.4.1  Solubility in AIV semiconductors 
 
It was shown in Section 2.2 that 3d-atoms are primarily dissolved at in-
terstices of elemental semiconductors and always produce deep energy levels 
in the band spectrum. Here we discuss some general physicochemical and 
technological problems important to the analysis of deep centers, their distri-
bution in the semiconductor bulk, and behavior during thermal treatment. 

Since the formation of every deep center in semiconductors (vacancy, 
antistructural defect, and, of course, doping impurity) is closely related to the 
parameters of the ambient, in which the host crystal is formed, the discussion 
of solubility can be effective only if it considers these parameters. When a 
thermodynamic equilibrium is established between the semiconductor crystal 
and the ambient, the conditions are said to be equilibrium. In this case, every 
type of defect acquires an equilibrium concentration for these particular 
conditions; the concentration can then be expressed by the respective 
thermodynamic quantities. In practice, however, we mostly deal with 
conditions which are close, to a greater or lesser extent, to equilibrium 
conditions. In that case, we must take into consideration the kinetic factors 
defining the degree of this closeness. 
 Let us discuss some aspects of deep center formation by impurities and 
their behavior in the processes of crystal growth and thermal treatment. The 
behavior of 3d-atoms during crystallization and thermal treatment is prima-
rily determined, as in the case of hydrogen-like and other impurities, by 
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such impurity parameters as the distribution coefficient Kα, the maximum 
solubility Cαmax, and the diffusion coefficient Dα at various temperatures. 
These characteristics of impurity atoms depend on how close the physico-
chemical properties of the doping element(s) are to those of the host ele-
ment(s). They also depend on their size ratio and on the electron shell struc-
ture of the substituting and the substituted atoms. It is well known that these 
parameters define the character and specificity of impurity atom incorpora-
tion into the crystal lattice and, therefore, the spectrum of the energy levels 
produced by impurity centers in the semiconductor forbidden gap. Thus, the 
physical, physicochemical, and technological aspects of impurity behavior in 
semiconductor materials appear to be intimately interrelated. 
 For crystallization from a melt, the distribution coefficients of impurities 
under equilibrium conditions, ( Kα

0 ), can be found from the state diagrams of 
respective semiconductor–impurity systems as the ratio C Cα αs l

0 0/ , or they 
can be calculated from a thermodynamic model for solutions with equal 
chemical potentials of the impurity in the equilibrium liquid and solid 
phases, as was demonstrated in Section 3.1. Good results for 3d-impurities 
can be obtained from the calculation of Kα

0  in the regular solution 
approximation with formula (3.2.6), which we will borrow from [54] but 
modify as 
 

   
( ) ( )

K
H x x

RT
S
Rα

α α α α0
21 1

=
+ − − −

−












exp
∆ Ω Ω ∆f

l l s s
f

.        (3.4.1) 

 
In formula (3.4.1), the parameters of intermolecular interaction in the liquid 
and solid phases, Ωl and Ωs, are taken to be constant (a rigorously regular 
approximation) or dependent on temperature as, say, Ω = a + bT (a quasi-
regular approximation). The quasichemical solution theory and the assump-
tion of a random particle distribution in the phase of interest can yield an 
expression for Ω, in the binary system consisting of components A and B: 
 
       ( )Ω = − +− − −H H HA B A A B B0 5. ,                 (3.4.2) 
 
where HA-B, HA-A, and HB-B are interatomic interaction energies of compo-
nents of different and identical signs. 
 Regular solutions obey the expressions of (3.2.8). At Ω > 0, γα > 1, and 
aα > xα, the interaction in the solution is characterized by repulsion of atoms 
of components with different signs, while at Ω < 0, γα < 1, and aα < xα, the 
attraction of such atoms is dominant. The character of interaction in a liquid 
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solution affects the equilibrium between the liquid and gas phases: the vapor 
pressure of the α-component above the solution is higher at Ω > 0 but lower 
at Ω < 0 than above an ideal solution ( P x Pidα α α= 0 ) under identical condi-
tions (here, Pα

0 is the gas pressure of the pure α-component at a given tem-
perature). 
 Under real crystallization conditions, the time is too short for the equilib-
rium to be established at the interface because of kinetic limitations. So, 
crystallization from a melt is usually described using the effective distribu-
tion coefficient Kαeff which is, in a simple case, related to the equilibrium 
coefficient as 
 

    ( ) ( )[ ]K K K K f Dα α α α αδeff
l= + − −0 0 01 exp ,                  (3.4.3) 

 
where f is the growth rate, δ is the diffusion layer thickness in the melt at the 
crystallization front, and Dα

l is the diffusion coefficient of the impurity in the 
melt. 
 It is seen from (3.4.3) that the value of Kαeff is affected by the rate ratio of 
impurity accumulation in the diffusion layer (at Kα

0  < 1), by the subsequent 
equalization of the melt composition defined by f and Dα

l, and by the melt 
mixing conditions which determine δ. 
 Generally, the coefficient Kαeff is affected by a number of additional fac-
tors, such as the doping level, the interaction between the melt and the ambi-
ent, contaminating impurities and their electrical behavior in the semi-
conductor, the crystallographic orientation of the growth surface, and some 
others. 
 Normally, d-atoms producing deep centers in semiconductors differ from 
the host atoms in the electron shell structure and size, due to which reason 
their building-in into the semiconductor crystal lattice is usually quite diffi-
cult in terms of energy. The “resistance” of the host crystal to this building-
in leads to relatively large positive values of Ωs; the values of Kα and Cα max 
are usually much lower than for shallow impurities, as is seen from a 
comparison of Tables 3.2 and 3.4. 
 Natural segregation of impurities occurring during oriented crystalliza-
tion results in their nonuniform distribution along the crystal length. If the 
flat crystallization front is distorted, the distribution becomes nonuniform in 
the transverse direction, too. As a rule, the larger the difference between Kα 
and unity, the more nonuniform is the impurity distribution in both macro- 
and microvolumes of the growing crystal. The longitudinal impurity distribu-
tion in crystals grown by oriented crystallization is described by the equation 
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Table 3.4. Solubility data for d-impurities in silicon. 
 

 
Solubility 

 
Dissolution enthalpy ∆H (eV) 

Impurity 
Cmax, Tmax, 

K1 
Experim. Theory 

 cm–3 °C   ∆Hi ∆Hs 

Sc 2×1016    2.10  
Ti 1016     3.56 
V 1015    4.47  
Cr 1016 1250 1×10–8 2.00 1.82  
Mn 1016 1350  2.10 0.56  
Fe 5×1016 1350 8×10–6 2.40 1.59  
Co 2.5×1016 1240  1.45 1.13  
Ni 7×1017 1310  1.40 1.52  
Y     3.56  
Zr 1019    6.02  
Mo 1015    5.78  
Ru 3×1016   3.35 5.27  
Rh 1017   1.68 4.15  
Pd 2.9×1016   1.52 1.16  

 
1 K – distribution coefficient at melting temperature; theoretical ∆H values are for the 
most probable states—interstices (i) or sites (s). 
 

       ( )[ ]C K C g K
j
s

eff
l eff= −

−
α α

α0 1
1 ,                        (3.4.4) 

 
where Cl

α
0 is the initial impurity concentration in the melt and g is the crys-

tallized melt fraction. Equation (3.4.4) shows that the accumulation rate of 
impurities with Kαeff in the melt during crystallization and, hence, the steep-
ness of the impurity concentration profile along the crystal increase with de-
creasing Kαeff. For this reason, if the initial melt contains, for example, two 
kinds of background impurities, one of which produces shallow and the other 
deep levels, the  situation in Figure 3.6 may arise. If the initial concentrations 
of both impurities in the melt are the same, their concentration ratio along 
the crystal length appears to be different due to the difference in Kα. In the 
absence of a special doping, this is responsible for the respective change of 
the Fermi level position and for the difference in the electrophysical parame-
ters along the crystal, for example, an abrupt rise of ρ in the crystal tail. 
 When deep impurities are introduced into a semiconductor in order to 
give it the necessary recombinational and insulating properties, the doping  
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Figure 3.6. A possible distribution of shallow (1) and deep (2) impurities along the 
single crystal length. 
 
impurity concentration often becomes very high, nearly reaching its 
solubility limit. An important role then is played by the solidus profile 
characterizing the temperature dependence of the limit solubility of a 
particular impurity in a particular semiconductor. The position and 
configuration of the solidus curve are determined by the physicochemical 
interaction of the system components and are implicitly present in equation 
(3.4.1). If we assume, for simplicity, the liquid solutions in the system of 
interest to be perfect, i.e., Ωl = 0, it will follow from (3.4.1) with xs

α << 1 

that the temperature dependence of Kl
α
0  and the related quantity xαs are 

defined by the relation between Ωs and ∆Hα
f. At Ωs < ∆Hα

f, both quantities 
increase with decreasing temperature, while at Ωs > ∆Hα

f they decrease, 
giving rise to retrograde solubility. We then observe a certain regularity: the 
larger the value of Ωs, the lower the impurity solubility and the greater the 
retrograde character of the solidus curve. Since deep impurities have large Ωs 
values, their specificity reveals itself especially clearly. At least two impor-
tant conclusions should be drawn from this behavior: 
 (1) High doping levels require technologies providing crystallization at 
temperatures with maximum Cαmax; 
 (2) It is desirable to use less retrograde impurities in order to reduce the 
probability of decomposition of semiconductor–impurity solid solutions dur-
ing crystal cooling. 
 The first condition is important, for example, for the production of single 
crystals with semi-insulating properties when the concentration of doping 
impurity must exceed that of shallow background impurities. When low tem-
perature techniques are used (e.g., crystallization from a solution-melt), the 
solubility of a deep impurity at technological temperatures may prove com-
parable in value with the concentration of shallow background impurities. A 
stable compensation of the latter then becomes a problem, and it is difficult 
to achieve stable properties of crystallized material. 
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 Decomposition of oversaturated impurity solid solutions in a 
semiconductor, when the impurity changes from an electrically active state 
to a neutral state as the second phase products, is largely responsible for  
thermal instability of parameters of semiconductor materials. 
Decomposition-related problems are quite serious in view of the large 
number of deep impurities having a well-defined retrograde solubility at high 
doping levels. In a first approximation, the decomposition probability is 
determined by the degree of solid solution oversaturation and the seed 
growth kinetics. The problems of decomposition of oversaturated 
semiconductor solutions are discussed at length in [55]. Generally, the 
probability of solution decomposition during its cooling grows with the  
solidus curve steepness at high temperatures, although the decomposition 
process is affected by some additional factors, such as defect content in the 
crystal, the presence and type of contaminating impurities, etc. 
 The composition macro-inhomogeneities can largely be avoided by using 
special–purpose techniques, for example, by programming the crystal growth 
conditions by means of varying the value of Kαeff in accordance with (3.4.3) 
or by maintaining an approximately constant composition of the liquid phase 
during the whole crystallization process using various dopants. It is much 
more difficult to control micro-nonuniformities of impurity distribution in 
the crystal bulk. They arise from technological conditions, such as instability 
of equipment performance during crystal pulling from a melt, periodic 
temperature variations in the melt at the crystallization front because of 
imperfect thermoregulation, strong convective flows in the melt, distortions 
in the flat crystallization front, etc. Most of these reasons can be removed. 
But there are fundamental reasons associated with the crystallization process 
itself. It is known that crystal growth in directions with small 
crystallographic indices, which are usually used for the production of most 
semiconductor single crystals, requires a certain overcooling of the melt in 
the crystallization front vicinity. Therefore, crystallization represents, to 
some extent, a self-excited oscillation process. When accumulated 
overcooling reaches a critical value, it gives rise to a fast layer-by-layer 
crystallization of material followed by a slowing of the process, because the 
temperature at the crystallization front begins to increase due to the latent 
heat release in the phase transition during the crystallization. Then this heat 
is dissipated, the overcooling is accumulated, and the cycle is repeated. The 
alternation of these cycles also produces periodic temperature variations at 
the crystallization front. Variation in the crystallization rate gives rise to a 
periodic inhomogeneity, in accordance with (3.4.3). 
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Figure 3.7. A hypothetical origin of periodic micro-nonuniformity in a crystal due to 
temperature variation at the crystallization front in the presence of shallow donor (1) 
and deep acceptor (2) impurities in the melt: f – crystallization rate;  τ – time;  EF – 
Fermi level. 
 
 
 Figure 3.7 illustrates a situation which may arise, for example, in  simul-
taneous crystal doping with two impurities, of which one is a deep level im-
purity. The concentration nonuniformity produces an electrical nonunifor-
mity because of internal electric fields induced by spatial charge separation. 
It is worth noting that periodic nonuniformities manifest themselves more 
clearly in dislocation-free single crystals. Growth (high temperature) disloca-
tions are fairly effective sinks for impurity atoms and can essentially smooth 
out such nonuniformities. Fortunately, periodic nonuniformities at high Dα

s 
and low cooling rates of the crystal are diffusionally smeared due to their 
small period. 
 Among general characteristics of deep impurity solubility in silicon is its 
correlation, at least for 3d-impurities, with the diffusion characteristics, the 
filling degree of the d-shell (outside the crystal), and the energy level (Table 
3.5). However, we know little  about the solubility of transition 4d- and 5d-
metals in silicon. 
 The solubilities and energy levels are summarized in Tables 3.6 and 3.7. 
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Table 3.5. Diffusion and filling characteristics of deep 3d-impurity levels in silicon. 
 

Impurity Sc Ti V Cr Mn Fe Co Ni 

Electronic 3d14s2 3d24s2 3d34s1 3d54s2 3d54s2 3d64s2 3d74s2 3d84s2 
configuration         
∆E, eV – 1.5 – 1.0 1.5 0.66 0.51 0.47 
Type of level D D D D D D D, A A 
D0, cm/s – 2.10 – 10 2.610 6.210 8.510 2.3×10–3 

 
D – donor, A – acceptor, D = D0 exp(–∆E/kT). 
 
Table 3.6. Solubility and energy levels of 4d-impurities in silicon. 
 

Impurity Solubility, cm–3 Energy levels, eV 

 
Nmax Na from c-band from v-band 

Y  8×1013 0.29D;  0.4D 0.45A 
Zr 1019 2×1016 0.17D  
Mo 1015 1014 0.33D 0.3D;  0.34A 
Ru 3×1016 5×1015 0.24A;  0.45D  
Rh 1017 5×1015 0.3A;  0.55A  
Pd 6×1016 5×1015 0.2A;  0.28D 0.34A 

 
D – a donor, A – an acceptor, D = D0exp(–∆E/kT). 
 
Table 3.7. Solubility and energy levels of 5d-impurities in silicon. 
 

 Solubility, cm–3 Energy levels, eV 

Impurity 
Nmax Na from c-band from v-band 

Hf 4×1016 4×1016  0.09D 
W – 1014 0.23A; 0.3A; 

0.37A 
0.34D; 0.3D 

Re 1016 2×1015 0.18A; 0.3A; 
0.53A 

0.4D 

Os 6×1016 1015 0.18A; 0.53A 0.18D 
Ir 1017 7×1015 0.33D; 0.55A  
Pt 1017 2×1016 0.25A 0.3A; 0.3D 
Au 1017 5×1016 0.54A 0.35D 
Hg – 1014 0,36A; 0.31A 0.33D; 0.25D 
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 It should be mentioned that most of these impurities are multiply charged 
and amphoteric. They will be discussed later in this chapter but we give their 
general characteristics here. Besides, one cannot be sure that the energy le-
vels refer to single impurities rather than to their complexes or, in general, to 
defects. 
 We know little about the solubility of impurities with empty shells in 
germanium, except for the group-I atoms—Cu, Au, and Ag. These have 
found a wide application in fast response semiconductor devices as effective 
recombination centers in doped germanium and silicon. On the other hand, 
the application of other impurities with empty d-shells is quite limited. The 
same is true of f-atoms in both silicon and germanium. Their doping with f-
atoms by the conventional methods of pulling from the melt, zone melting, 
and liquid phase epitaxy, is difficult because of the strong interaction 
between rare earth elements and oxygen in the liquid phase. 
 There has been no thermodynamic analysis aimed at determining ∆Hs for 
many deep level impurities. 
 
 
3.4.2  Solubility in semiconductor compounds 
 
Impurities with partly filled electron d-shells were shown in Section 2.2 to 
dissolve at the A-sublattice sites of AIIIBV compounds. The solubility data 
available for some impurities in semiconductors are summarized in Table 
3.8. They should be regarded only as preliminary data, because the investiga-
tors determined them in samples with different point defect backgrounds 
(with various degrees of deviation from the stoichiometry), with different 
dislocation structures, under different technological conditions leading, 
again, to very different sample stoichiometries, etc. The strong concentration 
dependence of a doping impurity on the background impurity and on the in-
trinsic defect content (vacancies in the A- and B-sublattices) results in a shift 
from the thermodynamic equilibrium in the semiconductor–impurity system. 
Besides, the associations of various point defects become in these conditions 
more important than in elemental semiconductors.  
 These factors make a rigorous and detailed analysis of solubility of deep 
impurities in binary and more complex semiconductor compounds quite a 
difficult task. The reader can find some fragments of such an analysis in the 
subsequent sections, in particular in Chapter 6. 
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Table 3.8. Solubility, dissolution enthalpy, and distribution coefficients of deep 
impurities in AIIIBV semiconductors. 

 

 AIIIBV semiconductors 

Impurity 
InAs GaAs InP GaP InSb 

 Nmax Nmax K Nmax Nmax K K 

Cu 0.04 0.7 2×10–3 – 6×10–4 – 6.6×10–4 
Ag 0.03 0.05 0.1 – – – 4.9×10–5 
Au 0.02 0.2 – – 3×10–4 – 1.9×10–6 
Cr – 0.016 6×10–4 – 0.001 – – 
Mn – 0.01 0.05 0.3 – 0.015 – 
Co – 0.001 8×10–5 – – – – 
Ni – 0.001 0.02 – – – 6×10–5 
Ti – 0.033 – – – – – 
Fe – 0.1 0.03 – – 10–4 0.04 

 
 
 
3.5  SOLUBILITY OF AMPHOTERIC IMPURITIES 
 
 
3.5.1  A thermodynamic analysis 
 
In the previous section, we mentioned some amphoteric d-impurities, but a 
complete thermodynamic analysis of a semiconductor doped with an am-
photeric impurity requires that its total concentration  
 

[A] = N0 + N – + N + 
 
be related to the parameters of the ambient phase, from which a crystal is 
being grown, and to the other point defects present in the crystal. To begin 
with, consider an impurity-free elemental semiconductor consisting of S 
atoms and then a semiconductor doped with an amphoteric impurity A. The 
ambient phase is supposed to be the gas phase containing associated Sm-type 
molecular pairs. Partial gas pressure will be denoted as PSm. Suppose also 
that the crystal of interest is a perfect point defect solution. Since the type of 
solution is taken to be known, let us make a thermodynamic analysis by 
finding the chemical potentials of intrinsic and impurity point defects (see 
Section 1.2).  

© 2004 by CRC Press LLC



 Since an amphoteric impurity can occupy sites and interstices both sepa-
rately and simultaneously, we will introduce into our consideration a hypo-
thetical defect—an “interstitial vacancy” denoted as VI. Therefore, we should 
introduce the concept of an occupied interstice. In a doped crystal, these may 
be AI and SI-type defects; in an impurity-free crystal this is only the SI defect. 
In other words, an elemental crystal is considered as a binary SI consisting of 
two sublattices—S and I. 
 It is more convenient to begin the analysis with a doped semiconductor. 
In this case, its composition will be described by the following quantities: SS, 
II, VS, and VI. Vacancies may be charged; therefore,  
 
      V V VS S S= + −0  and V V VI I I= + +0 .               (3.5.1) 
 
 Here, as usual, the true site vacancies are assumed to have an acceptor 
character, and hypothetical interstitial vacancies are ascribed a donor charac-
ter. This is an arbitrary expedient, the more so that the assumption of  intrin-
sic point defects having a charge is of no principal importance, because their 
true nature must be established experimentally in every particular case. 
Moreover, if the concentration of charged defects is taken in the first ap-
proximation to be much lower than that of un-ionized defects, it will be clear 
from (3.5.1) that the whole analysis of intrinsic defects can be made, in the 
first approximation, without indicating their charge. If necessary, the charge 
of intrinsic defects can be easily introduced with expressions (2.3.6) and 
(2.3.10). 
 Therefore, the thermodynamic analysis must yield the equilibrium values 
of the mole fractions 
 
    x V SS S S= ,  x V II I I= ,  γ = I SI S .               (3.5.2) 
 
Of the three mole fractions, it is only the quantity xS which has a physical 
meaning for an impurity-free elemental crystal. Indeed, all interstices in such 
a crystal are free, or 
 
        VI = II   and xI = 1.                             (3.5.3) 
 
 For such a semiconductor as germanium and silicon, we have 
 
          II = SS = NL,                                    (3.5.4) 
 
where NL is the concentration of crystal atoms, which leads to γ = 1. Never-
theless, it will become clear from further analysis that all the three mole 
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fractions in a semiconductor compound (or in case of dissociative amphoter-
ic impurities) have a real physical sense. So they remain in (3.5.2) for a 
further analysis. 
 The sought for concentration VS  is defined by the equilibrium conditions 
between the point defects and the external gas phase, as well as the other 
point defects VI  in the crystal bulk: 
 
         mV S mSS m S+ ←

→ ,                                 (3.5.5) 
 
          V VS I+ ←

→0 .                                     (3.5.6) 
 
These two quasichemical reactions correspond to equations relating partial 
chemical potentials 
 
       ( ) ( ) ( )m V S m Sµ µ µS m S

0 + = ,                           (3.5.7) 

 
        ( ) ( )µ µV VI S

0 0 0+ = .                                   (3.5.8) 

 
 In these expressions and below, the brackets denote the components with 
chemical potentials. Using the general expression for the chemical potential 
of any point defect as a perfect solution component, we can write 
 

      ( ) ( ) [ ]
[ ] [ ]µ V g V T

V

I VI I
I

I I

0 0
0

= +
+

ln ,                          (3.5.9) 

 

      ( ) ( ) [ ]
[ ] [ ]µ V g V T

V

S VS S
S

S S

0 0
0

= +
+

ln ,                      (3.5.10) 

 
where the square brackets stand for the defect concentration. The gas phase 
is considered as an ideal gas, so that the chemical potential has the form 
 
       ( ) ( )µ S T T Pm S Sm= +Ψ ln ,                           (3.5.11) 
 
where ΨS(T) is a standard potential of the gas phase and T is temperature 
expressed in energy units. 
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 Expression (3.5.7) also includes the chemical potential µ(SS). It is easy to 
see that the equality µ(SS) = g(SS) is valid, which means that µ(SS) 
represents, physically, the crystal formation energy per atom and is a 
characteristic of a perfect crystal. It is important for us that this quantity is a 
function of temperature only. 
 Substituting the chemical potentials of (2.3.20) and (2.3.21) into (2.3.19), 
we find 
 

 
[ ][ ]

[ ] [ ]( ) [ ] [ ]( )
( ) ( ) ( )

V V

V I V S

g V g V

T
K T

I S

I I S S

I S
S

0 0 0 0

1+ +
= −

+














= ′exp .        (3.5.12) 

 
From (3.5.7), (3.5.9), and (3.5.11), we get 
 

  
[ ]

[ ] [ ]
( ) ( )V

V S
P

g V m g S

T
KmS

S S
Sm

S S S
S

0
1

0

2+
= −

+ −














= ′/ exp

Ψ
.       (3.5.13) 

 
 There are three unknown quantities in the last two equations: VS, VI, and 
II.  In order to find them, we should add the condition of site equality in the 
hypothetical SI crystal: 
 
        [ ] [ ] [ ] [ ]I V S VI I S S+ = + .                           (3.5.14) 
 
 The solution to the set of equations (3.5.12) through (3.5.14) yields ge-
neral mole fractions (3.5.14). In other words, we can completely define the 
composition of an impurity-free crystal containing intrinsic atoms and intrin-
sic defects as constituents. If we remember that the number of site vacancies 
in an elemental crystal is always smaller than that of occupied sites, VS  << 
SS, and that all interstices are vacant, or, the other way round, that the 
number of interstitial vacancies is always larger than that of occupied 
interstices, VI  << II, then equation (3.5.14) will transform to  
 
         [ ] [ ]V S NI S L= = ,                               (3.5.15) 
 
coinciding with (3.5.4). Consequently, equations (3.5.12) and (3.5.13) will 
be simplified and together with (3.5.4) will appear as 
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    [ ] ( ) ( ) ( )V N
g V g V

T
N K TS L

I S
L S

0
0 0

1= −
+














= ′exp ,          (3.5.16) 

 

 [ ] ( ) ( )
( )V P N

g V m g S

T
N K Tm

S Sm L
S S S

L S
0 1

0

2
/ exp= −

+ −














=

Ψ
.      (3.5.17) 

 
The first of these expressions reflects the equilibrium of intrinsic defects in-
side the crystal and the second describes the equilibrium between the solid 
and the ambient gas phases. The concentration of the only type of defect VS 
in this crystal, which can be found from (3.5.17), is  
 
        [ ] ( )V K T P m

S S Sm
0

2
1= − / .                             (3.5.18) 

 
One should note this equality 
 
        ( ) ( )K T K T P m

1 2
1

S S Sm= − / ,                       (3.5.19) 
 
which is useful because it is sufficient to find one equilibrium constant, K1 or 
K2, experimentally, while the other one can be calculated from (3.5.19), 
using the known function PSm(T). 
 Consider now the same crystal doped with an amphoteric impurity, 
whose vapor pressure at the doping temperature is denoted as PAk. In other 
words, by analogy with Sm, the impurity vapor will be considered as 
consisting of Ak molecules. In this case, the crystal composition is defined by 
the following mole fractions, instead of (3.5.2): 
 

      
x V

S A
x V

I A

x A
S A

x A
I A

=
+

=
+

=
+

=
+







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S

S S
I

I

I I
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S

S S
AI

I

I I

, ,

, .
.               (3.5.20) 

 
 Here, we will assume that the amphoteric impurity has a dissociative na-
ture, namely, A atoms can occupy both sites and interstices in the SI crystal. 
The equilibrium between the crystal and the gas (vapor) phase will be 
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characterized by two independent quasichemical reactions (the vapor is an 
ideal gas) 
 
         mV S mSS m S

0 + ←
→ ,                               (3.5.21) 

 
         kV A kAS k S

0 0+ ←
→                                  (3.5.22) 

 
instead of one reaction (3.5.5). 
 The equilibrium between point defects in the crystal bulk will be ex-
pressed, with account taken of the doping impurity, by two reactions 
 

         V VS I
0 0 0+ ←

→
,                                       (3.5.23) 

 

        A V A VS I I S
0 0 0 0+ +←

→
.                                 (3.5.24) 

 
 The equilibrium quasichemical reactions correspond to the relations be-
tween the chemical potentials 
 
       ( ) ( ) ( )m V S m Sµ µ µS m S

0 + = ,                         (3.5.25) 

 
       ( ) ( ) ( )k V A k Aµ µ µS k S

0 0+ = ,                           (3.5.26) 

 
        ( ) ( )µ µV VS I

0 0 0+ = ,                                 (3.5.27) 

 
      ( ) ( ) ( ) ( )µ µ µ µA V A VS I I S

0 0 0 0 0+ − − = .                 (3.5.28) 

 
 The expressions for µ of the solid state components are taken in the same 
form as in (3.5.9) and (3.5.10) and for the gas phase as (3.5.11). Then, the 
solution to the set of equations (3.5.25) through (3.5.28) will provide all un-
known concentrations VS

0, VI
0, AS

0, and AI
0, together with the total concen-

tration of the amphoteric impurity A0 = AI
0 + AS

0. The results of this evalua-
tion are given Table 3.9, taking into account the inequalities 
 
     VI + AI << NL  and VS + AS << NL.                   (3.5.29) 
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Table 3.9. Intrinsic and impurity point defect concentrations in elemental semicon-
ductors doped with an amphoteric impurity. 

 

Point defect Concentration vs. temperature and gas pressure 

VS
0  N K P m

L S Sm2
1− /  

VI
0  N K

K
P Nm

L
S

S
Sm L= ≈−2

1

1/  

VS
−  ( )N K K P n nm

L S V Sm i2 3
1 2− / /  
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0  N K

K
P P N K

K
Pm k k

L
S

A
Sm Ak

L S

A
Ak

2

2

1 1 1

2

1− =/ / /  

AI
0  N K

K K
P N

K
P Pk m kL S

S A
Ak

L

A
Sm Ak

2

1 2

1

2

1 1/ / /=  

A AS I
0 0/  K P K Pm m

2
2

1
1

S Sm S Sm
− −=/ /  

A AS I
− / 0  ( ) ( )K K P n n K n nm

3 2
2 2 2

A S Sm i A i
− =/ / /  

 
 The values of temperature functions K in Table 3.9 have the form 
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S A S

= −
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


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


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


exp
Ψ

.                  (3.5.32) 

 
 If an amphoteric impurity dissolves mostly at lattice sites, we have AS/AI 
>> 1, but if it is mostly dissolved at interstices, then AS/AI  << 1. 
 So far, we have discussed un-ionized impurities and intrinsic point 
defects. But now, let us take their ionization into account. Site vacancies and 
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amphoteric site atoms will be considered to be acceptors and interstitial 
amphoteric impurities as donors. The content of interstitial intrinsic atoms  
will be neglected, as before. The conditions listed above are usually fulfilled 
in real germanium and silicon crystals. 
 For simplicity, the amphoteric impurity will be assumed to be singly 
charged. Then, AS

– and AI
+ will be described by formulas (2.3.3) and (2.3.7) 

which can be used to write the ratio A–/AI
+ as 

 

     
A
A

A
A

g
g

N n
N n

E E
kT

S

I

S

I
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v

c i

dA aA
−

+ =
−





0

0

2

2 exp ,                (3.5.33) 

 
where EdA and EaA are the energy levels of the amphoteric impurity counted 
from “their” bands: EdA  from the conduction band and EaA  from the valence 
band; g are respective factors of the level degeneracy.  
 We can also write the concentration of ionized vacancies as 
 

      V g
g

N n
n

V E
kTS

V

aV

v

i
S

aV− = −



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0
2

0 exp ,                      (3.5.34) 

 
where EaV  is the vacancy energy level counted from the valence band top. 
 By substituting into (3.5.34) the expression for VS

0 from Table 3.9, we 
obtain VS

– in the form shown in the same table. The determining temperature 
dependent function K3 is 
 

       K g
g

N E
kT3

0
V

V

aV
v

aV= −



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exp .                      (3.5.35) 

 
 Let us now turn to equation (3.5.33) and substitute into it the AS

0/AI
0 ratio 

taken from Table 2.13: 
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where 

      K g
g

N
N

E E
kT3A

dA

aA

v

c

dA aA=
−



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exp                     (3.5.38) 

 
        K K K P m

A A S Sm= −
3 2

2/ .                          (3.5.39) 
 
 For the high temperature region with all centers ionized, we have 
 
        A AS S

− ≅ ,   A AI I
+ ≈ .                     (3.5.40) 

 
In this case, the ratio is 
 
        ( )A A K n nS I A i= 2 .                             (3.5.41) 
 
 If we assume that the impurity atoms do not have enough time to be re-
distributed over the crystallochemical positions during the crystal cooling 
from the doping temperature, the ratio of (3.5.41) will show the amphoteric 
impurity distribution at sites and interstices in an elemental semiconductor. 
This ratio, together with the expression for AS

0 from Table 3.9 makes it pos-
sible to evaluate the total concentration of an amphoteric impurity A = AS + 
AI , which dissolves in an elemental semiconductor: 
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where the functions f and ϕ have the form 
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       ϕ = −
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c dAexp .                          (3.5.44) 

 
 The solubility of the site component of an amphoteric impurity in an ele-
mental semiconductor is 
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       ( )A N K
K

f P Pm k
S L
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A
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and the solubility of the interstitial component of an amphoteric impurity is 
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3.5.2  Solubility of dissociative amphoteric impurities 
 
The thermodynamic analysis of the solubility of dissociative amphoteric 
(multiply charged) impurities will be carried out with reference to their typi-
cal representatives—gold and silver in silicon. 
 The maximum solubilities of these and other dissociative amphoteric im-
purities in silicon are presented in Table 3.10. 
 The solidus lines for solid solutions of silicon doped with these 
impurities were found using the radioactive isotope technique. A comparison 
with Hall effect measurements shows that all doping atoms are electrically 
active, so the formulas for nondegenerate semiconductors are applicable in 
this case. 
 Since these impurities can have any of the three charged states—neutral, 
donor, and acceptor state—the formula for a multiply charged impurity is [4] 
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1exp exp exp , 

(3.5.47) 
where ra(rd) is the degeneracy factor of the acceptor (donor) state of a multi-
ply charged impurity and Ea(Ed) is the ionization energy of the acceptor  
 
Table 3.10. Maximum total solubilities and distribution coefficients of amphoteric 

impurities in silicon. 
 

Impurity Nmax cm–3 T °C Distribution coefficient 

Ag 2×1017 1350 – 
Au 1×1017 1250 3×10–5 
Cu 1×1018 1200 4×10–3 
Ni 7×1017 1310 – 
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(donor) state of the same impurity. The concentrations of free electrons and 
holes are related by the known expression np = ni

2. The analysis of this 
formula shows that most impurity atoms will be neutral if a pure 
semiconductor is doped with gold or silver. An additional doping with 
donors transforms impurity gold to the acceptor state [4]. 
 The conclusion about the redistribution of an amphoteric impurity over 
crystallochemical positions due to the introduction of other point defects into 
the semiconductor fully agrees with the analysis made in Section 3.5.1. This 
conclusion is valid for all associative amphoteric impurities. 
 Consider now available solubility data for some dissociative impurities in 
various semiconductors. 
 Copper impurity in germanium. The state of copper atoms in germanium 
was discussed in Section 2.3.7 (see Table 2.18). It should be added here that 
many investigations [58] have shown that copper atoms are dissolved at Cus 
sites and Cui interstices in comparable quantities. This means that the 
Ge<Cu> solid solution is a substitution solution and an incorporation solu-
tion simultaneously, with copper concentrations varying with temperature in 
both cases. Figure 3.8 presents data on Ce measured by electrophysical me-
thods and on total copper concentration C found by the isotope technique. 
From this, we have 
 
 

 
 
Figure 3.8. Copper solubility in germanium according to the data:  I – [59],  II – [60],  
III – [61],  IV – [62];  1 – [60] for Ci,  2 – [63] for Ce,  3 – [64, 65] for C. 
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     ( )C C Ci e= −1
2

,  ( )C C C Cs e e= + −1
2

.            (3.5.48) 

 
In our view, the data  of the work [61] are more reliable. The values of ∆Hs 
and ∆Hi for copper dissolution at sites and interstices are 1.47 and 2.0 eV, 
respectively. 
 Copper impurity in silicon. Copper solubility was discussed in detail in 
[61], and the results of this work are still valid. The solubility was studied in 
undoped and doped silicon of both types of conductivity separately. For this, 
the radioactive copper isotope 64Cu was diffused into crystal samples grown 
by pulling from the melt and by zone melting.  
 Curve 1 in Figure 3.9 illustrates the results obtained. The copper solubil-
ity in p-samples doped with boron strongly depended on the boron concen-
tration. The experimental points fit well the calculated dependences 
 

        N N
kT

+ +=
−



i

iexp µ µ ,                         (3.5.49) 

 

        N N
kT

− −=
−



i

iexp
µ µ ,                         (3.5.50) 

 
when the data of curve 1 in Figure 3.9 are substituted as Ni and the concen- 
 
 

 
 
Figure 3.9. Copper solubility in undoped silicon: 1, 3 – interstitial solubility;  2 – site 
solubility [61]. 
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Figure 3.10. Copper solubility in n-silicon: I – doped with As;  II – doped with P. 
Temperatures of diffusion doping with Cu, °C: 1 – 500;  2, 3 – 600;  4, 5 – 700. 
 
tration narrowing of the forbidden gap is taken into account. In formulas 
(3.5.49) and (3.5.50), µ is the Fermi level position in an intrinsic semicon-
ductor. The agreement between the experimental data and equation (3.5.49) 
indicates unambiguously that curve 1 in Figure 3.9 reflects interstitial 
solubility, with Cui as a single positively charged center. 
 The results on copper solubility in n-silicon doped with phosphorus or 
antimony [61] are illustrated in Figure 3.10. As the shallow donor concentra-
tion increases, the concentration of Cui

+ having the same sign decreases, 
which is indeed observed on the left of the curve maximum. The rapid 
growth of solubility on the right of the maximum is evidence for the 
dominance of oppositely charged copper centers Cu– in this region. These 
can be only the site centers Cus

–. Since C sCu  rises approximately in propor-
tion to Nd

3, this is more evidence that the copper site in silicon is a triple ac-
ceptor [66]. Since the minima in Figure 3.10 are observed at very high con-
centrations of shallow donors (> 1018 cm–3), we have C sCu << C iCu  at the 
same dissolution temperatures. Taking equations (3.5.49) and (3.5.50) to be 
valid and relating the first one to interstitial and the second one to site copper 
atoms, we can describe the total concentration of dissolved copper as 
 
       ( ) ( )C C n n C n n= +i

i
i i

s
i

3 ,                            (3.5.51) 
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where superscripts i and s denote interstitial and site solubilities and the sub-
script indicates intrinsic undoped silicon; the cubic power of the second term 
reflects triply charged site copper. 
 Using expression (3.5.51), the authors of [61] found the dependence 
Ci

s(T) shown by curve 2 in Figure 3.9. 
 There is eutectic temperature Teu in the diagrams of the Si–Me state; 
therefore, the copper solubility in the temperature ranges T < Teu and T > Teu 
should be considered separately. For the Si-Cu system, the eutectic tempera-
ture is Teu = 1075 K. Solubility curves 1 and 2 in Figure 3.9 are valid up to 
this temperature. At higher temperatures, the formation of copper silicide 
Cu3Si is possible. 
 The total copper solubility in silicon from radioactive analysis [61, 67] is 
shown by curve 3 in Figure 3.9. The dissolution enthalpy in the region up to 
the eutectic temperature is 1.49 eV. 
 Gold impurity in silicon. In addition to the information on gold in silicon 
given in Section 2.3.7 [68], it is necessary to mention that the low distri-
bution coefficients (Table 3.11) do not permit the production of samples 
heavily doped with gold by pulling from the melt or by zone melting. To do 
this, large quantities of gold should be introduced into the liquid phase, re-
sulting in strongly nonuniform samples liable to polycrystallization. Besides, 
impurities concomitant with gold and having higher distribution coefficients 
will create a heavy foreign impurity background in the samples. For these 
reasons, conventional growth techniques can produce large quality samples 
with a low background and a fairly uniform bulk distribution of gold only up 
to the concentrations NAu ≤ 1.5×1015 cm–3. Samples with a higher gold con-
tent can be produced only by diffusion. 
 Curve 1 in Figure 3.11 represents data obtained by several authors using 
diffusion saturation. The high temperature portion of the curve was 
measured especially carefully in the range of 1000–1380°C [68]. Since the 
initial samples contained a large number of dislocations, the sink density for 
Aui was high and the interstitial gold atoms reached the sink fast. So the data 
of [68] seem to refer to the site Aus solubility. This suggestion was made 
earlier by the authors of [69] who used dislocation-free samples in diffusion 
experiments and obtained different CAu(x) profiles. They treated them as an 
interstitial impurity distribution and found curve 2 in Figure 3.11 reflecting, 
in their view, the interstitial gold solubility in silicon. But at the time those 
experiments [69] were performed, almost nothing was known about so called 
swirl defects that may occur in dislocation-free samples. For this reason, the 
absence of sinks for interstitial gold suggested in [68] seems doubtful. Be-
sides, it is not quite clear how large is the capacity of swirl defects as Aui 
sinks. 
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Figure 3.11. Gold solubility at silicon sites (1, 3) and interstices (2), according to the 
data:  I – [68];  II – [70];  III – [71];  IV – [72]. 
 
 Figure 3.11 also shows the results obtained in [70], which are somewhat 
lower than those of [68] and are not believed to be quite correct. 
 Therefore, curve 1 in Figure 3.11 representing site gold solubility in pure 
silicon can be considered as sufficiently reliable. Curve 2 showing  
interstitial solubility should, strictly speaking, be checked again in samples 
with a better controlled density of inner sinks in their up-to-date sense. 
 Silver impurity in silicon. The solubility of silver reported in [78] is 
retrograde solubility with a maximum at 1350°C. The solubility below this 
temperature is satisfactorily described by the exponent law with ∆H = 
2.6 eV. 
 Amphoteric 4d- and 5d-impurities in silicon. Investigations of the dif-
fusion properties and decomposition of 4d-impurity atoms of Ru, Rh, and Pd 
[79, 80] have shown that all of them are amphoteric in silicon. Their basic 
characteristics are presented in Table 2.20 which also contains data on 5d-
amphoteric impurities in silicon, namely, W, Re, Os, Ir, Pt, Au, and Ag [81–
83]. Note that none of the 4d- and 5d-impurities have been studied thor-
oughly. The reliability of the energy level data for some of them is doubtful. 
Much remains unknown about their nature. Are they single impurity atoms 
in certain crystal positions or the product of interactions with crystal lattice 
defects and other impurity atoms? 
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3.5.3  Solubility of cation–anion impurities in semiconductor compounds 
 
The experimental information on the solubilities of group-IV impurities in 
AIIIBV compounds is too scanty to describe its qualitative characteristic—the 
dissolution enthalpy. Yet, we know that the solubility is fairly high and has a 
retrograde character. The other parameters of these impurities in AIIIBV 
compounds are given in Table 3.11. 
 The solubility mechanism for some impurities (Ge, Si, and GaAs) differs 
from that of common doping impurities, for example, Zn, Te, and Se. The 
difference is due to the fact that the liquid phase equilibrium is established 
with the crystal surface rather than with its bulk. This follows from the linear 
dependence of Cs(Cl) described by equation (1.1.23) but not by the square 
root of (1.1.18). Therefore, one can draw the conclusion about a slow diffu-
sion sinking of group-IV impurities into the crystal bulk (see Section 1.1). 
 Table 3.11 shows the distribution coefficients, maximum solubilities, and 
respective temperatures. These data have a considerable dispersion, espe-
cially in the distribution coefficients. In addition to occasional reasons, these 
discrepancies are due to deviations from the stoichiometry, as was predicted 
theoretically. This can be easily followed by comparing the values of K for 
 
Table 3.11. Some physicochemical parameters of basic AIIIBV compounds doped 

with group-IV elements. 
 

Impu- Distribution coeff. K Solubility Cm, cm–3 Tm, K 

rity 
GaAs GaP InP GaAs GaP InP GaAs GaP InP  

C 0.8∗ 

0.2∗ 
10–4∗∗ – – – – – – – 

Si 0.1–0.14∗ 
0.062∗∗ 

0.1–0.2∗∗ 
0.3–0.5∗∗ 

0.55∗ 
30∗∗ 

1.5×2020 7×1020 3×1019 1353 1323 1335 

Ge 0.1–
0.03∗∗ 

8.3×10–3∗ 

0.1–0.12∗ 
0.1–0.1∗∗ 

0.2–0.4∗ 
6×10–3∗∗ 

4×1020 2×1020 7×1019 1173 1323 1173 

Sn 5×10–3–
8×10–2∗ 
4×10–4∗∗ 

8×10–3 
3×10–2 

4×10–4∗∗ 

2.5×10–3∗ 8×1019 2×1019 (2–5)× 
1018 

1273 1323 1335 

Pb <0.02∗∗ 
<1×10–5∗ 

– – – – – – – – 

 
∗ – growth from a stoichiometric melt; ∗∗ – growth from a nonstoichiometric solution 
melt; Cm – maximum solubility, cm–3; Tm – temperature in K, corresponding to Cm. 
 

© 2004 by CRC Press LLC



 

samples grown from stoichiometric and nonstoichiometric solutions. There-
fore, there is a strong influence of the volatile component vapor pressure. 
 The considerable spread of K values even for the same growth technique 
may be due to several reasons. A significant role is played by the closeness 
to the equilibrium conditions, the identification method used, the account or 
neglect of some group-IV impurities which interact with other point defects, 
and, finally, the doping level because it also affects the degree of the 
compound stoichiometry. 
 Cation–anion impurities in CdSb. Among the few reports available on 
the solubility of group-IV impurities in CdSb, one should note the work [84] 
on tin segregation, solubility and diffusion on ingots grown by the Chohkral-
sky method, and oriented crystallization. 
 An analysis has shown that the temperature variation of solubility in 
CdSb has a retrograde character. The maximum solubility at a minimum 
cadmium gas pressure is achieved at (360 ± 20)°C and is ∼1.6×1019 cm–3. 
The maximum solubility increases with the gas pressure. 
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Chapter 4 
 

Microscopic Analysis of Impurity 
Solubility in Semiconductors 
 
 
 
4.1  DISSOLUTION ENTHALPY CALCULATION BY 

WEISSER’S METHOD 
 
In contrast to the macroscopic approach described in the previous chapter, a 
microscopic analysis is aimed at treating the energy requirements for 
impurity dissolution in terms of the structure and type of chemical bonding. 
The relation to the macroscopic theory is through the values of dissolution 
enthalpy ∆H calculated from the first principles. 
 A detailed microscopic analysis of impurity solubility in semiconductors 
was first performed by Weisser [1]. It was based on the consideration of 
atomic interactions in the solution. 
 
 
4.1.1  Site solubility 
 
According to Weisser’s model, the dissolution of impurity atoms at crystal 
lattice sites can be represented as a sum of several consecutive stages il-
lustrated in Figure 4.1. The total dissolution enthalpy will be defined by the 
sum of the energy requirements in each stage. Let us discuss them in some 
detail. 
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Figure 4.1. Model incorporation of an impurity atom into a semiconductor crystal 
lattice via substitution. 
 
 (1) For the incorporation of impurity atoms into crystal lattice sites, a 
certain number of sites must become free, i.e., vacancies must be formed in 
the host lattice. This process requires energy for the breakage of chemical 
bonds in the crystal and for the removal of liberated host atoms.  
 (2) Simultaneously, the impurity atoms that were initially in the solid 
phase in their crystal are sublimated from the lattice. They are transported to 
the host semiconductor, are adsorbed there, transported by diffusion to va-
cancies, and condense at them. 
 (3) The impurity atoms form new chemical bonds with neighboring host 
atoms at the crystal vacancies. Note that this dissolution pattern does not 
essentially change even if there is vacancy migration, in addition to impurity 
diffusion, in the host semiconductor. 
 The energy balance of the whole dissolution process in Weisser’s model 
can be expressed as 
 
     ∆ ∆ ∆ ∆H E H H H= − + −4 0A sub

A
sub
B

AB ,                     (4.1.1) 
 
where A refers to host atoms and B to impurity atoms, EA0 is chemical bind-
ing energy of the host crystal, ∆Hsub is sublimation heat, and ∆HAB is the 
energy released in the condensation of an impurity atom at a host vacancy. 
 Expression (4.1.1) describes dissolution in an elemental semiconductor, 
like silicon, consisting of four valent atoms, so it contains the term 4EA0. The 
first two terms represent the vacancy formation energy in a host semiconduc-
tor. The quantity HAB consists of two components: EAB which is the energy 
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of chemical bonding between impurity and host atoms, and Edef, which is the 
elastic deformation energy of the lattice, arising from the difference in the 
sizes of impurity and host atoms. The energy of chemical bonding was 
described in [1] by the equation 
 

     E
H H

AB AB
sub
A

sub
B= = +























−

4 1
4

1 1
1

ε
∆ ∆

,                 (4.1.2) 

 
where εAB is the energy of a single chemical bond AB. Energy Edef was 
calculated in terms of elasticity theory, accounting for the difference ∆r in 
the sizes of the substituting and substituted atoms and for the displacement 
of the four nearest host atoms by the value ∆r1 smaller than ∆r because of the 
AB bond compression. On these two assumptions, Edef is 
 
     ( ) ( )E gK r r Gr rdef c= − +4 81

2 1
2

0 1
2∆ ∆ ∆π ,                (4.1.3) 

 
where the first term is the energy of chemical bond compression and the sec-
ond is the tensile energy of the neighboring atoms, g is a dimensionless pa-
rameter close to unity, G is the displacement module, r0 is the initial radius 
of a substituted host atom, and Kc is the crystal elastic constant defined as 
 
       ( )K ma C Cc = +0 11 122 ,                                  (4.1.4) 
 
where m ≈ 1, a0 is the host lattice period, C11 and C12 are elastic constants of 
the crystal.  
 After the substitution of numerical values for the constants into (4.1.3) 
and (4.1.4), we get 
 
      for Si:  Edef = 9.2×1023 ∆r2 J/g×atom, 

 (4.1.5) 
      for Ge:  Edef = 7.1×1021∆r2 J/g×atom, 
 
where ∆r is expressed in centimeters. 
 Weisser identified the quantity ∆S only with the variation of the oscilla-
tion component which was defined by Debye temperatures ΘA and ΘB: 
 

       ∆ ∆
Θ
Θ

S S k T
T

cm
s

osc
A A

f

B B
f= = 3 ln .                        (4.1.6) 

© 2004 by CRC Press LLC



 The calculations of ∆H from (4.1.1) showed a quantitative difference 
with experimental values of K, sometimes as large as an order of magnitude 
or more. This, no doubt, was mostly due to the significant simplifications 
accepted by Weisser. First of all,  this is the calculation of vacancy formation 
energy as the difference between the breakage energy of the four bonds, EA, 
and the sublimation energy of a host atom. Today there are some publica-
tions, e.g. [2–4], using semi-empirical approaches and calculations from first 
principles, which provide more rigorous values of vacancy formation 
enthalpy ∆HV in elemental and compound semiconductors. Therefore, it 
would be more reasonable to replace the first two terms in (4.1.1) by a ∆H 
value borrowed from one of the above publications. 
 Further, the EAB values calculated from (4.1.2) cannot be considered cor-
rect either, because this formula does not take into account the interactions 
between an impurity atom and the basic host atoms. These interactions have 
a complicated character and cannot be described by sublimation energies of 
impurity and host atoms, required for their removal from the respective lat-
tices. For this reason, a numerical calculation of binding energies from sub-
limation heats of the respective substances can hardly be regarded as being 
correct. 
 The concept of constant covalent radius used by Weisser for finding de-
formation energy from (4.1.3) cannot be taken for granted either. First, there 
are many kinds of atomic radii and, second, the atomic size is a variable 
quantity varying with the particular structure and type of chemical bond. We 
will consider this problem below.  
 Another drawback of Weisser’s calculations [1] was that the dissolved 
impurity ionization was ignored. But it must be taken into consideration 
since an ion located at a lattice site causes a displacement of the electron 
density of neighboring atoms, inducing polarization. It is pointed out in [5] 
that the allowance for the ionization decreases the total crystal energy by an 
appreciable value which may exceed ∆H values found from (4.1.1). 
 On the other hand, the calculated and experimental values for impurity 
indium in germanium and silicon, as well as for tin in germanium, more or 
less coincide. But this is likely to be due to the compensation of one kind of 
error by another. 
 
 
4.1.2  Interstitial solubility 
 
Weisser analyzed the energy balance for interstitial dissolution in a way 
similar to that for site solubility [6, 7]. This process is illustrated schemati-
cally in Figure 4.2. 
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Figure 4.2. Weisser’s model of impurity dissolution at crystal interstices [6, 7]. 
 
 An impurity atom is sublimated from its own lattice by energy ∆Hsub. 
Then it is transported to the semiconductor surface and incorporated into an 
interstice, thus producing a doped crystal. The atom may become ionized on 
the semiconductor surface, thereby changing the Fermi level position. 
 An interstitial atom or ion is affected by repulsive or attractive forces. 
The expression for ∆Hs for an ionized interstitial impurity is 
 
      ∆Hs = ∆Hsub + I = AB + Urep – Uim,                        (4.1.7) 
 
where I is the ionization potential of an impurity atom and AB is the work 
function for an electron sublimated from substance B. 
 For a neutral impurity requiring no energy for ionization, ∆H will be ex-
pressed, instead of (4.1.7), as 
 
       ∆Hs = ∆Hsub + Urep – Uim – AB.                        (4.1.8) 
 
Since the values of ∆Hsub, I, and AB were tabulated in [8], one has only to 
find the polarization and repulsion energies to determine ∆H. To calculate 
the polarization energy Up, Weisser used the Mott–Littleton method for 
alkali-halide crystals [9]. This method is as follows. 
 A positive ion incorporated into a crystal lattice induces polarization of 
electron shells of the neighboring atoms, and the induced dipoles interact 
with the impurity atom and with one another. The total energy of the system 
decreases by Uim. 
 For semiconductors, Weisser suggested the following assumptions: 
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 (1) The dipole moment µ induced in the host atoms varies linearly with 
an electric field of strength E. 
 (2) Polarizability of crystal atoms, αB, is chosen such that it does not de-
pend on the polarization of other atoms, especially, of the nearest neighbors. 
Polarizability is an isotropic quantity. 
 (3) The dipole moment is directed along the vector radius away from 
charge q. 
 (4) The electric field at the atom center is equal to the vector sum of the 
field induced by the charge and the fields from all other dipoles induced in 
the crystal atoms. 
 Since the dipole moment of an atom, µi, depends on the dipole moments 
of other atoms, the problem of finding a dipole moment includes N simulta-
neous equations for N lattice atoms. The dipole moments of atoms located in 
the same sphere are assumed to be identical. 
 In an n-sphere approximation, the general set of equations for dipole 
moments is 
 

       µ δ
αi ij ij

i

n
E q

r
−







 =∑

=

1
21 B m

,                             (4.1.9) 

 
where Eij are matrix elements varying with the structure geometry, rm is the 
radius of the respective coordination sphere, and δij is the Kronecker delta. 
 The quantities Eij are the functions of atomic coordinates to be described 
by the expressions 
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E
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j

ij
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1
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,                               (4.1.10) 
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.       (4.1.11) 

 
The summation is made over all j-atoms of the lattice, located in the j-sphe-
re; xj, yj, and zj are the coordinates of an atom in the j-sphere; x0, y0, and z0  
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Figure 4.3. Polarization energy of the silicon lattice in different approximations 
(sphere numbers): 1 – tetrahedral interstice;  2 – hexagonal interstice. 
 
are the coordinates of an atom in the i-sphere; ξ, η, ρ, and rk are the 
components of interatomic distances of the lattice with the coordinates x0, y0, 
z0, and xj, yj, and zj; and Rj is the j-sphere radius. We also have 
 
         ζ = xj – x0, 
         η = yj – y0, 
         ρ = zj – z0, 
         rk = rj – r0,                                          (4.1.12) 
 
and rj, r0 are the radii of the respective spheres. 
 Potential ϕ at the point of charge q location is calculated from 
 

       ϕ µ
ε

= −
+

−



∑∑ i

j nij

n

R
q

R2 1
1 1 .                      (4.1.13) 

 
The second term in (4.1.13) takes into account the contribution of all other 
atoms located outside the j-sphere. 
 As a result, the polarization energy Uim is described by the equation 
 

         U qim = − 1
2

ϕ .                                   (4.1.14) 
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 The calculation accuracy is determined by the optimal choice of the num-
ber of atoms surrounding an interstitial impurity ion. Weisser [7] used an 8-
sphere approximation. The calculated values of Uim (Figure 4.3) were con-
stant, beginning with the third order. This result did not change even when 
the number of spheres was increased to 14 [10]. 
 To find the repulsion energy Urep, Weisser used the Born–Mayer two-
parametric potential of the form 
 
       ( )[ ]U A r r rrep i s= + −exp ρ ,                        (4.1.15) 

 
where ri, rs, and r are the radii of an impurity ion, a host atom, and the dis-
tance between impurity atoms, respectively; A and ρ are parameters calcu-
lated from crystal compressibility data. The calculation procedure details are 
described in [11]. 
 We doubt the correctness of this determination, because the structure of 
silicon and germanium radically differs from the NaCl crystal structure. In 
particular, the concept of Madelung’s constant used in the case of covalent 
silicon and germanium crystals makes no sense. 
 It is clear from equation (4.1.15) that the repulsion energy is a function of 
the host atomic and impurity ion radii, whose choice is ambiguous, as was 
pointed out above. All systems of radii stem from the assumption that they 
are constant and additive. The systems of atom–orbital radii are no 
exception, although they are based on quantum mechanical calculations. 
Still, they are essentially related to the quasichemical concept of radii being 
constant and additive. 
 In reality, the sizes of atoms and ions vary with the kind of host com-
pound, i.e., they change from one nonequivalent bond to another, depending 
on the structure geometry. Therefore, there is no size of an ion in general, 
but there is the size of a particular ion. The radius value is always 
determined for an ionic pair. 
 Because of the ambiguity of radius and other parameters describing Uim 
and Urep, Weisser’s theory failed to yield results fitting the experimental data 
well. There is a more or less good agreement with experiments only for Li in 
silicon and germanium. 
 Millea [12], Hasiguti [13], and Oxenhandler [10] made attempts to im-
prove Weisser’s model by choosing different values of atomic radii, the 
measure of potential drop ρ and the A constant used in the Born–Mayer po-
tential in (4.1.15). In particular, Millea considered the interaction between 
interstitial ions and the atomic skeleton of the host  semiconductor, ignoring 
valent electrons of Si and Ge atoms but using Si and Ge ionic radii according 
to Pauling [14]. The values of ρ were taken to be different for different im-
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purities, but the calculations were made as in [11] from compressibility data 
for the respective alkali-halide compounds. They were chosen according to 
the arrangement of elements in the periodic table—the serial number of an 
alkali metal increased (NLi < NK < NCs) with increasing serial number of the 
impurity in the group (NLi < NCu < NAu). Since NGe > NSi, the serial number of 
halogen was larger than for Si (NCl > NF). Naturally, this approach cannot be 
justified either, although the agreement with experimental data is somewhat 
better than in Weisser’s method. 
 Hasiguti [13] determined A and ρ from the compressibility values of ger-
manium and silicon, using the Madelung constant for ionic sphalerite crys-
tals, explaining his choice by their structural similarity to the diamond 
lattice. Obviously, the use of the Madelung constant for the analysis of 
solubility in germanium and silicon remains questionable. 
 In contrast to Weisser, Oxenhandler [10] introduced factor F into equa-
tion (3.1.17) to account for the degree of the outer shell filling of an impurity 
atom. He used an original method for the calculation of Urep, representing it 
as a two-component quantity [15]: 
 
        U U Urep rep

cor
rep
ext= + ,                                (4.1.16) 

 
where cor

repU  is the repulsion energy due to the inner electron shells of an 

impurity atom, defined by the Born–Mayer potential, and ext
repU  is the repul-

sion energy arising from the interaction between the outer s-electron of an 
impurity atom and the chemical bond electrons of a host atom. The latter 
component was calculated in [17] using Mulliken’s method [18] to be dis-
cussed below. 
 The procedure suggested by Oxenhandler makes it possible to extend 
Weisser’s approach to more complex impurities, in particular, to transition 
metals. This could not be done before because of the restructuring of their 
electron shells in the dissolution at lattice sites and interstices. However, the 
use of the Born–Mayer potential together with the ambiguity of its para-
meters considerably decreased the applicability of the results. In addition to 
the criticism above, a general disadvantage of the approaches discussed in 
this section is the neglect of non-zero internal crystal potential Ucr in the 
interstitial space. Of importance is also the lattice relaxation in the vicinity of 
an interstitial impurity atom. 
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4.2  DISSOLUTION ENTHALPY IN THE PSEUDO-
ALLOY MODEL 

 
An alternative approach to the calculation of ∆Hs was used in [19]. The 
mixing enthalpy was found from the sum of two terms varying with the mole 
fraction of the doped compound: 
 
       ( ) ( ) ( )∆ ∆ ∆H x H x H xs s

i= +0 ,                          (4.2.1) 
 
where ∆Hs

0(x) was calculated from the difference between the total 
formation heat of  initial binary compounds, say, MeP and GaP as applied to 
Me-doped GaP, and the formation heats of the pseudobinary alloy Ga1–

xMexP, with account taken of the mole fraction x: 
 
    ( ) ( )∆ ∆ ∆ ∆H x x H x H H

x x
s GaP MeP Ga Me P
0 0 0 01

1
= − + −

−
.        (4.2.2) 

 
 The value of ∆Hi in the right-hand side of (4.2.1) was found from a spec-
troscopic binding model to be 
 

∆H Ra Dfi
i= −3 ,  

 
where R is a dimensional factor, a  is a mean interatomic distance, D is the  
chemical bonding energy, and f is a factor describing the host crystal ionicity 
equal to 

         ( )2H
2

2

i
Ec

cf
+

= ,                                 (4.2.3) 

 
where c is the electronegativity of the compound atoms and EH is their ho-
mopolar binding energy. 
 The change in entropy, ∆Scm, necessary for finding K was calculated in 
[19], using the well-known formula 
 
      ( )∆S R x x x xcm = − +1 1 2 2ln ln ,                            (4.2.4) 
 
where x are the mole fractions of the components being mixed. 
 These expressions were further used to calculate ∆Hcm and ∆Scm [19], as 
well as to find the distribution coefficients of the impurities Fe, Mn, and Cr 
in GaP. The calculated values of K0 were found to be 1.1×10–4, 1.6×10–2, and 
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1.05×10–2, respectively. They agree well with the experimental values of K0 
for  these impurities: 2×10–4, 2×10–2, and 1.6×10–3.  
 In spite of this coincidence, this approach has a serious disadvantage be-
cause of the ambiguous ionicity value. It was found in [19] in terms of elec-
tronegativity. However, there are many electronegativity systems, and the 
concept itself has no physical sense. So it is hardly justifiable to use this con-
cept in numerical calculations of chemical bonding energies. Moreover, there 
is a large number of publications on the calculation of ionicity in terms of 
dielectric theory (see e.g., [20]). Today it is impossible to give a definite 
value of ionicity for AIIIBV and AIIBVI compounds because of the consider-
able difference in the values calculated by different workers. On the other 
hand, the calculations of ∆Hi, ∆Hs, and K are very sensitive to the chosen 
ionicity value. 
 
 
 
4.3  WEISSER’S MODIFIED SOLUBILITY THEORY 
 
Weisser’s solubility theory was considerably modified for the treatment of 
impurity atoms with partly filled electron shells [21] and extended to 
common impurity atoms. In the latter case, the solubility theory must take 
into account the specific behavior of d- and f-electrons when impurity atoms 
are distributed in a host crystal. Since the electron shell configuration is 
transformed differently at lattice sites and interstices, these two situations 
should be treated individually. 
 
 
4.3.1  Interstitial d-atom solubility  
 
The dissolution model implies the following assumptions: (a) transition 
metal atoms in the gas phase are free and have a d nsm electronic configura-
tion; (b) impurity atoms do not interact with one another in the gas phase or 
in the incorporation positions in the crystal lattice, interacting only with host 
atoms at interstices. Impurity dissolution is presented schematically in Figure 
4.4. Here, work is done on an impurity atom to separate it from a free 
crystal, to transport to the semiconductor surface, and to incorporate into an 
interstice. In contrast to the scheme in Figure 4.2., there is a change in the 
electronic configuration from d nsm to d n+m. 
 It follows from general thermodynamics that enthalpy is a function of the 
system state, i.e., it is independent of the course of the process but is deter- 
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Figure 4.4. Model dissolution of d-impurity atoms at silicon interstices. 
 
mined only by the initial and final states of the system of interest. We have 
assumed the atom state in the gas phase to be the initial state and its state at 
an interstice as the final state. For convenience, we have accepted a scheme 
[21], in which a free impurity atom is produced by sublimation from its own 
lattice. The energy required for this process is equal to atomization energy 
∆Hat which is the energy characteristic of the initial state of an im-purity 
atom. In the final (interstitial) state, an impurity atom is affected by repulsive 
forces because of the electron shell overlap of the impurity and crystal 
atoms, by the internal crystal field Ucr, and by the repulsive forces due to the 
lattice polarization by an impurity ion, if the impurity center is ionized. 
 The energy requirements also include the energy necessary for electronic 
restructuring, or promotion energy ∆P, and so called extra-stabilization 
energy ∆δex. The extra-stabilization energy, like the repulsion energy, is a 
function of the electronic configuration of the d-impurity at H- and T-in-
terstices and is defined by the d-level splitting by the crystal field. Since the 
values of δex

T,H are fractions of the splitting value Dq [22] and the latter va-
ries between 0.1 and 0.3 eV for different interstitial d-impurities, the differ-
ence ∆δex for such small values will lie within the calculation error. So the 
difference between extra-stabilization energies can be neglected in the first 
approximation. Dissolution enthalpy ∆Hs

i represents an algebraic sum of 
energy requirements for the transition from the initial to the final state of the 
impurity atom. If an interstitial impurity atom is neutral, the polarization 
energy Uim is zero, and ∆Hs

i  has the form: 
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     ( )∆ ∆ ∆H H U U Ps
i

at rep crMe0 = + − + ,                      (4.3.1) 

 
where the superscript i indicates impurity dissolution at interstices and the 
subscript s its dissolution in the solid phase. 
 For an ionized impurity state, one must make allowance for the host lat-
tice polarization energy and the ionization energy of an impurity atom. The 
latter is evaluated using ionization potential Is, taken in [21] to be the s-elec-
tron orbital ionization potential of a free atom. This approach suggests that 
the electronic configuration of an impurity center becomes dn+m–1 due to si-
multaneous restructuring and ionization. 
 Dissolution enthalpy is  
 
    ( )∆ ∆ ∆H H U U U P Is

i
at rep cr im sMe+ = + − − + + .          (4.3.2) 

 
The values of ∆Hat are tabulated values. 
 The promotion energy ∆P can be evaluated as the transition energy of an 
electron between term-averaged levels for the final and initial configurations: 
 
       ( ) ( )∆P E d E d sn m n m= −+ ,                            (4.3.3) 

 
for ionized impurities, it is 
 
       ( ) ( )∆P E d E d sn m n m= −+ −1 .                         (4.3.4) 

 
The energies of the centers of mass for terms with various valent configura-
tions of atoms were calculated and tabulated in [24]. 
 For common non-transition metal impurities and for impurity atoms with 
a completely filled d-shell, there is no electronic configuration restructuring; 
hence, ∆P = 0. 
 Polarization energy Uim in expression (4.3.2) was calculated from 
(4.1.14). Table 4.1 presents the matrix elements of (4.1.10) for T- and H-in-
terstices and for crystal lattice sites. The numerical values of the matrix ele-
ments are dimensionless. They are universal and apply to any semiconductor 
crystallizing in the diamond- and sphalerite-type of lattice. To go to dimen-
sional values, it is necessary to divide the tabulated values of Eij by a0

3, 
where a0 is the crystal lattice period of a particular semiconductor. 
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Table 4.1. Matrix elements Eij for polarization energy calculations for the diamond- 
and sphalerite-types of lattice. 

 
  

Values of j 

Eij i 
1 2 3 4 

 1 –14.14 –52.06 –16.17 16.08 
 2 –34.71 –18.97 0.96 –10.30 
Eij

T 3 –5.39 0.48 –15.58 –20.54 
 4 21.14 –7.73 –16.48 –6.15 
 1 –44.60 24.34 12.82 –7.96 
 2 –18.27 –25.57 –10.00 –4.71 
Eij

H 3 12.86 –12.58 –6.10 –27.95 
 4 –2.84 –1.47 –7.35 –27.09 
 1 –14.14 –18.45 –16.17 –2.84 
 2 –6.15 –21.61 –33.35 –6.47 
Eij

s 3 –5.39 –33.35 –15.58 –10.79 
 4 –1.89 –12.94 –21.59 –2.37 

 
 
 The values of Uim for silicon were found in [25] to be Uim

T = 4.54 eV and 
Uim

H = 5.32 eV; for site solubility Uim
s = 4.40 eV. 

 A limitation of the above ionization energy evaluation is the neglect of 
the host lattice distortion effect on Uim, which seems impossible to calculate 
rigorously because we do not know the absolute displacements of atoms 
from their equilibrium positions, necessary in the calculation with (4.1.9) 
and (4.1.10) involving the distances between impurity centers and host 
lattice atoms, rm and Ri. Lattice distortions were taken into consideration in 
[21] in the calculation of repulsion energy Urep. Note that we used 
Mulliken’s method [18] in that work instead of the “radius” approach with 
the Born–Mayer potential (4.1.15). As a result, repulsion energy was 
expressed as 
 
        U I Skl kl

kl
rep = ∑βν 2 ,                                   (4.3.5) 

 
where Ikl is the average ionization potential of the k-th electron of a host 
atom, Skl is the electron overlap integral, β is a calibration parameter (β < 1) 
selected from the best agreement between theoretical and experimental 
values of ∆H of a well-studied model impurity, and ν is a factor accounting 
for local lattice distortions near an interstitial impurity atom. 
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Figure 4.5. The state of 3d-impurities at a silicon tetrahedral interstice. 
 

With the hexagonal interstice D3d, the crystal field effect on the d-orbitals 
of an impurity atom is different at the two interstices. The d-impurity states 
at T-interstices were described in terms of the model suggested by Ludwig 
and Woodbury [26], based on the crystal field theory of Roitzin and 
Firshtein [27] and verified in many experiments. In this model, the internal 
tetrahedral crystal field partly compensates the 5-fold degeneracy of the d-
shell. Doubly degenerate e-states at a T-interstice appear to have a higher 
energy than triply degenerate t-states (Figure 4.5). The outer s-electrons go 
to the d-shell under the crystal field action,  resulting in the dn+m electronic 
configuration of the atom. 
 The electronic state of a d-impurity at an H-interstice was treated in 
detail in [21]. The character of the d-level splitting is shown in Figures 4.6, 
4.7, and 4.8. The filling of the t- and e-states (T-interstice) and of the a1g, eg′, 
and eg′′-states (H-interstice) is, as usual, described from the Pauli principle 
and Hund rule. According to the crystal field theory [25], 3d-impurities with 
d4–d7 configurations (T-interstices) and d2–d7 configurations (H-interstices) 
will have high spin states (Figure 4.6), while 4d- and 5d-impurities will have 
low spin states (Figure 4.8). 
 In our calculation of overlap integrals Skl [21], the wave functions of 
bond electrons in silicon were chosen as a linear combination of atomic 
orbitals (LCAO), each of which was a sp-hybrid built on Slater’s wave 
functions. The wave functions of outer impurity electrons were chosen as 
Slater’s d-functions, in accordance with the state of a d-atom at a silicon  
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Figure 4.6. The state of 3d-impurities at a silicon hexagonal interstice. 
 
 

 
 

Figure 4.7. The state of 4d- and 5d-impurities at a silicon tetrahedral interstice. 
 
interstice. The overlap integrals of the d-orbitals of an interstitial atom with 
sp-hybrid atomic orbitals were reduced to diatomic ones, with respective 
coefficients obtained from the transformation matrices of d-functions for an 
impurity atom and of s- and p-functions for silicon atoms. The summation in  
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Figure 4.8. The state of 4d- and 5d-impurities at a silicon hexagonal interstice. 
 
(4.3.5) was performed over all outer electrons of an impurity atom and the 
bond electrons of silicon atoms within two coordination spheres. The 
contribution of the third sphere to Urep was estimated to be less than 1%. 
 Since the calculation of Urep was made for two spheres around an impu-
rity atom, which are subject to the greatest distortions, it appeared important 
to find coefficient ν in (4.3.5) allowing for local lattice distortions. These 
may be of two kinds—symmetrical and asymmetrical (Figure 2.11). But we 
considered only symmetrical distortions [21] which are due to an electron–
phonon interaction. 
 The absolute displacements are described as 
 

         Θ
Ω

∆= 1 2 E
M

,                                    (4.3.6) 

 
where ∆E is the energy difference in the formation of an occupied and an 
empty interstice, M is the mass of a cluster consisting of  an impurity atom 
and its neighbors interacting with it, and Ω is the cluster oscillation fre-
quency. 
 The coefficient ν was expressed in [21] as 
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       ν = =
Θ
Θ

∆
∆

x x

x

E M
E MM

M

M
,                                  (4.3.7) 

 
where the subscript x refers to the impurity under consideration and the sub-
script M to the model impurity. The model impurities were taken to be 
Ni0(3d10) and Cu+(3d10), whose charges at silicon interstices were reliably 
established experimentally. 
 The β values found from the best agreement between the experimental 
and calculated values of ∆E were 0.5 for Ni0 and 0.154 for Cu+. Lattice dis-
tortions for these model impurities were taken into account from the very 
beginning. For the other impurities, the distortions were allowed for by ac-
cepting these β values and introducing the coefficient of (4.3.7) into (4.3.5), 
but with respect to the model impurity this time. 
 Expressions (4.3.1) and (4.3.2) for ∆Hs

i also include internal crystal field 
potential Ucr which is difficult to calculate because it depends on the electron 
density distribution at interstices, whose exact value is unknown. For this 
reason, there were several assumptions made on the calculation of Ucr. It was 
suggested in [28], for example, that Si4+ and Ge4+ ions were immersed in a 
homogeneous valent electron gas. The calculation for silicon in terms of the 
pseudopotential method yielded Ucr

T = 17.5 eV and Ucr
H = 21.4 eV. In an 

alternative model [29], valent electrons were considered as being localized 
 
Table 4.2. Calculated dissolution enthalpies ∆Hs

T (eV) of d-impurities at silicon T-
interstices. 

 

Impurity ∆Hs
T(Me0) ∆Hs

T Impurity ∆Hs
T(Me0) ∆Hs

T 

Sc 6.02 2.10 Ru 5.33 5.27 
Ti 8.36 4.21 Rh 4.15 4.17 
V 8.03 4.47 Pd 1.16 2.91 
Cr 3.12 1.82 Ag 0.42 0.93 
Mn 1.81 0.56 La 9.44 1.79 
Fe 2.02 1.59 Hf 18.62 8.4 
Co 1.13 1.73 Ta 18.11 10.5 
Ni 1.52 3.18 W 14.93 9.91 
Cu 1.08 1.08 Re 12.87 9.38 
Y 9.68 1.13 Os – 8.9 
Zr 11.59 6.02 Ir 7.97 7.6 
Nb 10.69 6.37 Pt 3.81 6.12 
Mo 7.67 5.78 Au 1.32 3.50 
Tc 6.43 4.54    
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Table 4.3. The most probable charge states of d-impurities at silicon T-interstices. 
 

d2 d3 d4 d5 d6 d7 d8 d9 d10 d10s1 

Sc+ *Ti+ V+ *Cr+ *Mn+ *Fe+ *Fe0 *Co0 *Ni0  
        *Cu+ *Cu0 

Y+ Zr+ Nb+ Mo+ Tc+ Ru+ Ru0    
      Rh+ Rh0 Pd0 Ag0 

La+  Hf+ Ta+ W+ Re+ Os+ Ir+ Ir0 Pt0 Au0 
 
* States confirmed experimentally. 
 
halfway between the lattice atoms. This potential was assumed to be a long-
range one. The summation was performed for 16- or 18-atom spheres around 
an interstice to give Ucr

T = 5.97 eV and Ucr
H = 5.67 eV. Both models de--

scribe the extreme cases. The true values of Ucr must lie within these limits. 
We calculated ∆Hs

i, using the values of Ucr
T and Ucr

H found in [29]. 
 As a result, the interstitial solubility enthalpies were calculated for a large 
number of transition metal impurities in silicon. T-interstitial impurities have 
the lowest ∆Hs values, i.e., tetrahedral interstices are their ground states. The 
most probable charge states of the impurities, calculated from the lowest 
values of ∆Hs

T(Me0) and ∆Hs
T, are clear from Tables 4.2 and 4.3. 

 
 
4.3.2  Site solubility of d-atoms 
 
Similarly to the interstitial solubility discussed above, the dissolution 
enthalpy of transition metals at lattice sites represents an algebraic sum of 
energy requirements for the dissolution process. For the site component, 
these are (Figure 4.1): the energy required for the production of elemental 
transition metal gas, ∆Hat, at the initial stage of the process; the energy for 
vacancy formation, ∆Hat

V; and the energy D0 released at the final stage 
during the chemical bonding of an impurity atom to the nearest host atoms. 
Therefore, we have 
 
       ∆ ∆ ∆H H H Ds

s
at at

V= + − 0 .                              (4.3.8) 
 
Here, the superscript s denotes the site position of an impurity atom. In [21], 
we accepted for silicon ∆Hf

V = 2.88 eV, as was found in [3].  
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 Let us consider, in some detail, the procedure for the calculation of 
chemical bonding energy D0 in expression (4.3.8). For silicon, D0 can be 
calculated by Mulliken’s quantum chemical method [18], in which 
 

     D X K Y P Eij mn kl0
1
2

1
2

= ∑ + ∑ − ∑ − +∆ i ,              (4.3.9) 

 
where ΣXij is exchange energy over all binding electron pairs, ΣKmn and ΣYkl 
are energies of non-binding electron pairs, ∆P is promotion energy, and Ei is 
ion interaction energy. Energy ΣXij is expressed as 
 

       X A S I
Sij i ij ij

ij
∑ =

+
∑

1
1

,                             (4.3.10) 

 
where Sij is the overlap integral of an i-electron of silicon and a j-electron of 
the impurity atom, involved in chemical bonding; Iij  is their average ioniza-

tion potential; Ai is an empirical parameter equal to 0.65 for s-s bonds, 1 for 
s-p and σ-bonds, and 1.5 for π-bonds.  
 The electron–electron repulsion energy ΣYkl is 
 
        Y I Skl kl kl

kl
∑ = ∑β 2 ,                                   (4.3.11) 

 
coinciding with (4.3.5) for the repulsion energy Urep of interstitial impurities. 
So, we will further denote ΣYkl as s

repU . 

 The exchange energy ΣKmn for non-binding electron pairs can be neg-
lected because it is so low [30]. 
 The ion interaction energy Ei was calculated by Mulliken as the square 
difference of electron electronegativities on Pauling’s scale [14]. To avoid 
ambiguity in the calculation of electronegativities, Ei should be identified 
with the energy of crystal lattice polarization by an impurity ion in the 
substitution position (Ei = s

imU ). The procedure of Uim calculation was 

described in the preceding section, and the numerical value of s
imU  was 

found in [21] to be 4.40 eV for singly ionized impurities in silicon.  
 This approach to finding Ei = s

imU  is justified, because an ionized impu-
rity induces dipole moments in the lattice atoms, causing attraction between 
the impurity ion and the host atoms, leading, in turn, to an ionic interaction 
between them. 
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 To calculate the promotion energy ∆P, one must know the electronic 
configurations of impurity atoms at the crystal sites. The Ludwig–Woodbury 
model considered above describes well the electronic configurations of in-
terstitial d-atoms but seems doubtful when applied to their site positions. 
There are several reasons for this doubt. 
 (1) This model predicts the Me4+ state, because a d-atom is to give off 
four electrons for the binding to silicon atoms. But this would require the 
energy of 30–60 eV [31], which is very unlikely. 
 (2) Donor states in silicon are to have the transition d n+m–4 → d n+m–5 + e– 
and acceptor states must have the transition d n+m–4 + e– → d n+m–3. To illus-
trate, the electronic configuration of Cu, Ag, and Au atoms at silicon sites 
must be d 7, which must change as d 7 → d 6 + e– in the donor-type ionization 
and as d 7 + e– → d 8 in the acceptor ionization, but this would require ∼100 
eV, which is a very unrealistic value. 
 (3) The promotion of several electrons, capable of producing tetrahedral 
bonds, to the excited state on the p-shell would require high energies. In par-
ticular, the promotion energy for a neutral iron atom Fe0(3d 64s2) with a con-
secutive promotion of d-electrons to the p-shell, producing the 
Fe0(3d 64s14p1) states, would require ∼3 eV, while for the excitation of the 
Fe0(3d 54s14p2) state, the necessary energy would be ∼10 eV. Clearly, the 
promotion of still another 3d-electron to the 4p-shell to produce 
Fe0(3d 44s14p1) would require much more energy than 10 eV (see the valent 
state energies of d-elements in [24]). The same is true of other d-impurities.  
 Therefore, the sp-hybrid chemical bonding of d-impurities to silicon 
atoms is very unlikely because of the great energy requirements for the elec-
tron shell restructuring of the d-atom. More feasible is the formation of tetra-
hedral bonds between an impurity atom and silicon atoms by involving d-
electrons into the chemical bonding. With the concept of atomic orbital hy-
bridization, one can suggest the production of d 3s-hybrids geometrically 
equivalent to a tetrahedron, similar to the sp3-hybrid. Electronic configura-
tions producing d 3s-hybrids are illustrated in Figure 4.9. It should be noted 
that d-atoms with the Me0(d 7s2) and Me0(d 8s2) configurations in the free 
state may have the d 

2sp bond which represents a distorted tetrahedron. In 
this case, the lattice distortions around the impurity atom must be appre-
ciable, and the d-atom displacement from the lattice site is likely to occur 
(the Yan–Teller effect). 
  The d-shell electrons which are not involved in tetrahedral bonding are 
located on the loosened t- and e-levels, with the e-states lying lower than the 
t-states. It is these electrons that should be taken into account in the repulsion 
energy calculation from (4.3.11). 
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Figure 4.9. Electronic configurations of transition metals in the free state (a) and at 
silicon lattice sites (b). 
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 The calculation of exchange energy ΣXij from (4.3.10) requires know-
ledge of overlap integrals corresponding to the impurity atomic orbital 
bonding to the sp3-silicon atomic orbitals. For simplicity, the calculation can 
be restricted to the atomic orbitals of an impurity and a host atom oriented 
only toward each other. The details of the calculation can be found in [1]. 
 Expression (4.3.9) for energy D0 contains the quantity ΣYkl = s

repU . Its 

calculation from (4.3.11) similarly to (4.3.5) requires factor ν to allow for the 
crystal lattice relaxation around an impurity atom. The difference with a site 
atom is the choice of another model impurity, which may conveniently be a 
host (silicon) atom. In this case, ν = 1 and the lattice is undistorted. Neglect-
ing ∆ ∆E Ex / Si  in (4.3.7), we can define νs as M MxSi / . 

 The average ionization potential Iij  from (4.3.10) is  

 

       
( ) ( )

I
I I Me

ij
sp d s=

+Si 3 3

2
,                           (4.3.12) 

 
where ( )I spSi 3  = 9.5 eV [30],  

 

       ( )I I Id sMe s d3
1
4

3
4

= +                                 (4.3.13) 

 
for the d 3s-hybridization of a d-atom, and 
 

       ( )I I I Id spMe d s d2
1
2

1
4

3
4

= + +                     (4.3.14) 

 
for the d 3s-hybridization of an impurity atom. In these expressions, Is, Id, and 
Ip are orbital potentials for the respective electronic configurations of the d-
atom [32]. 
 The average ionization potential Ikl in (4.3.11) is calculated as 
 

        I
I I

kl =
+d sp3

2
,                                       (4.3.15) 

 
where Id is the ionization potential of the d-electron in the respective valent 
state of the d-atom [32]. The promotion energy in (4.3.9) for neutral site im 
 

© 2004 by CRC Press LLC



Table 4.4. Calculated dissolution enthalpies ∆Hs
s (eV) of site d-impurities in silicon. 

 

Impurity ∆Hs
s(Me0) ∆Hs

s(Me–) Impurity ∆Hs
s(Me0) ∆Hs

s(Me–) 

Sc  6.55 Y  6.57 
Ti 3.56 7.28 Zr 6.69 8.09 
V 5.41 7.64 Nb 7.68 9.35 
Cr 4.04 no bond Mo 8.75 no bond 
Mn no bond no bond Tc 8.83 9.18 
Fe 6.31 3.75 Ru 10.03 8.40 
Co 5.08 6.86 Rh no bond 8.23 
Ni 5.06  Pd no bond  

 
purities are chosen from the energy difference of the valent states for the cor-
responding electronic configurations [11]. There are no reports of energy 
data for the valent states of 5d-impurities, whose  electronic configurations 
are Me(d 7s2) and Me(d 8s1), and so the dissolution enthalpies of interstitial 
5d-impurities in silicon have not been calculated. 
 In contrast to interstitial solubility, the calculation of site dissolution en-
thalpy does not require internal crystal potential, since the interaction with 
the nearest neighbors in this case is defined by D0, while Ucr is a long-range 
potential which cannot affect D0. 
 The calculated dissolution enthalpies for transition metal impurities in 
substitutional positions in silicon are given in Table 4.4. 
 No bonding occurs between silicon atoms and d-atoms at D0 < 0, because 
the energy requirements for the repulsion and promotion are larger than for 
the interatomic attraction  and exchange. This means that forces pushing an 
atom out of the site dominate over those confining it to the site. The absence 
of chemical bonding is designated in Table 4.4 as “no bond”, so no ∆H data 
for such impurities are given. It is still unclear how to calculate interstitial 
dissolution enthalpy of neutral scandium and yttrium in the silicon lattice, 
because their configurations in the free state are Sc0(3d 14s2) and Y0(4d 15s2): 
the outer shells of these Y and Sc atoms are deficient in one electron and 
incapable of producing tetrahedral bonds. So the ∆H values have been calcu-
lated only for their ionized states Sc–(3d 34s1) and Y–(3d 35s1). The concepts 
of d 2sp- and d 3s-hybridization  appear to be inapplicable to nickel and palla-
dium atoms in substitutional ionized states in silicon because of a large num-
ber of paired d-electrons (Figure 4.9). The dsp2-hybridization of valent elec-
trons is applicable but it corresponds to the square geometry, and strong 
asymmetric lattice distortions around an impurity atom must be taken into 
account. This, however, is impossible at the present stage of evolution of the  
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microscopic solubility theory. Because of the lack of data on the energies of 
the valent states Cu0(3d 74s14p3), Ag0(4d 75s15p3), and Au0(5d 76s16p3), ∆Hs

s 
values cannot be analyzed theoretically for the site solubility of these impuri-
ties in silicon. 
 
 
 
4.4  SOLUBILITY OF INTERSTITIAL f-ATOMS IN 

SILICON 
 
The above treatment was extended to the solubility of interstitial f-impurities 
in silicon [33]. Like for d-impurities, it is based on the consideration of 
interaction potentials of an impurity and a host atom. So the model of f-atom 
incorporation into a silicon crystal will be identical to the one depicted in 
Figure 4.4, except that the restructuring and ionization will refer to the f-
electron shell. 
 Therefore, ∆Hs

i values for neutral and ionized interstitial impurities will 
be defined by the above equations (4.3.1) and (4.3.2). The total energy ba-
lance for d-impurities involves the promotion energy ∆P which is the energy 
of transition of the outer s-electrons of an impurity atom to the d-shell. It is 
reasonable to suggest that a similar approach will also be valid for f-impuri-
ties: Me(f nsm) → Me(f n+m). There are no data on the energy values of the 
centers of mass of terms for various valent configurations of f-elements. For 
this reason, the promotion energy was ignored in the first approximation 
[33]. The polarization energy and crystal potential are completely identical to 
those calculated for d-impurities and were found to be 4.54 and 5.97 eV, 
respectively. The repulsion energy can also be calculated by Mulliken’s 
method using (4.3.5). 
 The model accepted for f-states is basically as follows.  
 (1) The internal tetrahedral crystal field removes the 7-fold degeneracy of 
the f-shell. 
 (2) The level splitting of f-elements at a tetrahedral interstice corresponds 
to that for an octahedral symmetry. This is due to a stronger effect of the sec-
ond sphere around an interstitial atom. There is a singlet state A2U and two 
triplet states T2U and T1U (Figure 4.10). 
 (3) The outer s-electrons of incorporated impurity atoms are promoted by 
the crystal field to the f-shell, i.e., there is the shell restructuring Me(f nsm) → 
Me(f n+m). 
 The filling of the states by f-electrons occurs according to the Pauli prin-
ciple and Hund rule. The states and the level filling by electrons are shown 
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Figure 4.10. Splitting of f-levels in a tetrahedral medium. 
 

 
 

Figure 4.11. Electron filling of splitted f-levels at T-interstices. 
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Table 4.5. Dissolution enthalpy of interstitial 4f-impurities in silicon. 
 
 

 Neutral state Ionized state 

Configu- 
ration 

∆Hat, eV 
Urep, eV ∆Hs(Me0) Urep, eV ∆Hs 

Ce0(4f 4) 4.84 8.30 7.17   
Ce+(4f 3) 4.84   6.98 6.78 
Pr0(4f 5) 3.86 10.00 7.89   
Pr+(4f 4) 3.86   9.82 8.59 
Nd0(4f 6) 3.40 9.81 7.24   
Nd+(4f 5) 3.40   9.60 7.98 
Pm0(4f 7) 2.73 7.74 4.50   
Pm+(4f 6) 2.73   8.79 6.56 
Sm0(4f 8) 2.14 7.14 3.31   
Sm+(4f 7) 2.14   6.68 4.14 
Eu0(4f 9) 1.83 5.75 1.61   
Eu+(4f 8) 1.83   5.44 2.42 
Cd0(4f 10) 4.15 4.38 2.56   
Cd+(4f 9) 4.15   3.04 2.84 
Tb0(4f 11) 4.03 3.10 1.16   
Tb+(4f 10) 4.03   3.09 2.46 
Dy0(4f 12) 3.10 2.25 0.62   
Dy+(4f 11) 3.10   2.29 0.81 
Ho0(4f 13) 3.04 1.71 1.71   
Ho+(4f 12) 3.04   1.74 0.29 
Er0(4f 14) 2.88 1.20 1.89   
Er+(4f 13) 2.88   1.30 0.23 
Tm0(4f 143d 2) 2.56 4.79 1.38   
Tm+(4f 145d 1) 2.56     
Yb0(4f 145d 2) 1.57 9.20 4.80   
Yb+(4f 145d 1) 1.57   1.44 1.26 
Lu0(4f 145d 3) 4.43 11.05 5.51   
Lu+(4f 145d 2) 4.43   2.56 1.91 

 
in Figure 4.11a. It should be emphasized that the interstitial f-shell of the im-
purities Tm(4f 135d 06s2), Yb(4f 145d 06s2), and Lu(4f 145d 16s2) appear to be 
completely filled, whereas the other electrons have to occupy the d-shell 
under the action of the crystal field. In other words, these impurities undergo 
the following restructuring: 
 

Tm(4f 135d 06s2) → Tm(4f 145d 1) 
 

Yb(4f 145d 06s2) → Yb(4f 145d 2) 
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Lu(4f 145d 16s2) → Lu(4f 145d 3). 
 
The splitting of levels and their filling by electrons for these impurities are 
similar to those for d-impurities at the silicon T-interstice (Figure 4.11b). 
 The electron states of f-atoms at hexagonal interstices were not discussed 
in [33], because they are more important for the calculation of migration 
energies than solubility. The overlap integrals for the first two nearest 
neighbors were calculated by taking the states of f-impurities at the T-
interstice into account. 
 With the present state of the art, it appears impossible to allow for the 
crystal lattice distortions for f-elements, because the approach discussed 
above for d-impurities implies the use of a model impurity. We, however, 
failed to choose such an impurity because of the lack of reliable experimen-
tal data. Consequently, the coefficient ν in (4.3.5) was taken to be unity. The 
coefficient β was chosen from the best agreement between the experimental 
and theoretical values of dissolution enthalpy. Since there are no experimen-
tal enthalpy data for f-impurities, the coefficient β was intuitively taken to be 
0.05. This provides the dissolution enthalpy values of about several electron 
volts. The coefficient β is quite likely to be refined by further experiments. 
 The coefficient β for Tm, Yb, and Lu impurities with valent d-electrons 
was taken to be 0.5 for a neutral state and 0.154 for an ionized state, as in the 
case of d-impurities. The calculations of the dissolution enthalpy of neutral 
and ionized 4f-impurities at silicon interstices are given in Table 4.5. The 
dominant state is that with the lowest enthalpy. It can be concluded, there-
fore, that interstitial 4f-elements in silicon must be mostly neutral, except for 
Nd, Ho, Er, Yb, and Lu which must be ionized. 
 
 
 
4.5  ON SOLUBILITY THEORY FOR 

SEMICONDUCTOR COMPOUNDS 
 
The above modification of Weisser’s theory can be extended to more 
complex semiconductors, in particular, to AIIIBV compounds crystallizing in 
the sphalerite-type  lattice. These compounds have some specific features to 
be taken into consideration. First, it is the existence of two sublattices and, 
hence, of two types of T-interstices. One interstice (TA) is first surrounded by 
the nearest AIII atoms and then by BV atoms. The other interstice (TB) is first 
surrounded by the nearest BV atoms and then by AIII atoms. A hexagonal in-
terstice is made up of both AIII and BV atoms. This diversity considerably 
increases the amount of calculations. 
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 A substitutional position requires the treatment of two possible vari-
ants—AIII and BV. Of importance is the calculation of internal crystal 
potentials at TA, TB, and H-interstices of AIIIBV compounds. The knowledge 
of these potentials is necessary because they enter expressions like (4.3.2). 
So far, there have been no calculations of Ucr for binary semiconductors. 
 The calculation of overlap integrals must consider the fact that the bond-
ing between A and B atoms in binary semiconductors is not purely covalent, 
as in silicon. It can be regarded as a mixed bonding, namely, as covalence 
involving some ionicity. One way of describing this chemical bonding is by 
representing the interaction between the nearest AIII and BV neighbors as a 
combination of the sp3-hybrid wave functions of these atoms. 
 The calculation of site solubility requires the knowledge of formation 
energies of vacancies VA and VB. The available calculations are contradictory 
and agree poorly with one another. For this reason, a further development of 
models permitting a correct calculation of vacancy formation energies is a 
necessary prerequisite for extending the modified impurity solubility theory 
to semiconductor compounds. Their specific features are an obstacle to a 
rigorous treatment of dissolution enthalpies in binary semiconductors. 
 Nevertheless, a qualitative assessment of ∆Hs

s with reference to group-IV 
amphoteric impurities in gallium arsenide was made in [34], using the sim-
plified expression (4.3.11). The tabulated values of ∆Hat were borrowed from 
[31], and the vacancy formation energies for gallium and arsenic were taken 
to be 1.8 and 2.6 eV, respectively. The other terms in (4.3.8) were found 
from (4.3.9) and (4.3.10). It is noteworthy that all four valent electrons in a 
group-IV impurity are involved in the production of tetrahedral bonds, which 
means that all elements are located on the binding electron orbitals. So, the 
second and third sums in (4.3.9) were neglected [31] because they reflect the 
interaction of electrons located, according to molecular orbital theory, on 
loosened orbitals which are free from electrons in this case. The chemical 
bond between gallium and arsenic atoms was considered as being sp3-
hybridized due to the partial transition of one electron of the As(4s24p3) atom 
to the Ga(4s24p1) atom, which, therefore, acquire the electronic con-
figurations As+(4s14p3) and Ga(4s14p3). The overlap integrals Siij in (3.2.1) 
of the S(sp3, sp3) type were reduced to diatomic ones based on Slater’s wave 
functions. The summation in (4.3.10) was performed over all outer electrons 
of the impurity atom and its nearest neighbors. 
 The promotion energy ∆P was taken to be the energy of the s-electron 
transition to the p-orbital, and the differences between the tabulated orbital 
ionization potentials for the s2p2 and s1p3 states were equated.  
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Table 4.6. Calculated dissolution enthalpies (eV) of AIV impurities in GaAs. 
 

 Substitution Incorporation 

Impurity 
Ga-sublattice As-sublattice Ga-interstice As-interstice 

C 9.09 9.04 12.20 12.13 
Si 5.77 6.22 11.40 12.72 
Ge 5.97 6.43 12.07 12.73 
Sn 4.88 5.07 10.61 12.40 

 
 The quantity Ei in (4.3.9) is ionic interaction energy having the physical 
meaning of lattice polarization energy. Its calculation by the Mott–Littleton–
Weisser method was described in Section 4.1 [see expression (4.1.14)]. The 
calculations of ∆Hs

s are presented in Table 4.6. 
 The dissolution enthalpy of interstitial group-IV impurities in both GaAs 
sublattices was calculated from the simplified expression 
 

      ∆ ∆ ∆H H Y P Eij
ij

s
i

at i= + ∑ + −1
2

.                          (4.5.1) 

 
No chemical bond is formed between an impurity atom and its lattice 
neighbors. The electrons of the impurity atom are located on loosening 
orbitals; so, only the repulsion energy was calculated with (4.3.5). The value 
of ΣKmn was neglected because it is small. 
 The promotion and polarization energies were found as described above, 
with the s1p3 state taken as the excited state of the impurity atom. The calcu-
lated values of ∆Hs

i are also given in Table 4.6. 
 
 
 
4.6  COMPARISON WITH EXPERIMENTAL DATA 
 
In spite of the qualitative character of the data presented in Tables 4.2 and 
4.4, one can conclude that most d-atoms dissolve at silicon interstices rather 
than at its sites. Only titanium atoms can occupy sites. The ∆Hs

s values for 
other d-atoms have proved to be too large. Indeed, it is known from 
experimental data [15] that practically all impurities dissolve at interstices in 
the silicon lattice. 
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Figure 4.12. Dissolution enthalpy of 3d-impurities versus the serial number of the 
d-element: 1 – theory (for high probability charge states); 2 – experiment. 
 
 A comparison with absolute experimental values of ∆Hs

s is hard to make 
for several reasons. The main reason is the absence of experimental temper-
ature dependences of solubility or of the distribution coefficient, from which 
experimental ∆Hs

s values are found. 
 But the calculations of ∆Hs

s provided the data of Table 4.3, with the indi-
cation of the most probable charge states of interstitial d-atoms in silicon. 
The charge states confirmed by experiments are also indicated there. One 
can see a good agreement between the experimental and theoretical values 
for the charge states and electronic configurations of d-impurities. A review 
of many publications on this issue can be found in [16]. Since 4d- and 5d-
impurities are still poorly understood, the theoretical results of Tables 4.2 
and 4.3 concerning these impurities can be regarded only as hypothetical. 
 Indeed, one cannot expect a good agreement with experiment because the 
modified solubility theory is only qualitative. Still, if we plot ∆Hs

i as a func-
tion of the shell filling degree of an impurity atom, as is done in Figure 4.12, 
the behavior of the experimental and theoretical curves will be identical, and 
this is a good indication of the model validity. Figure 4.12 shows another 
specific feature: the solubility curves have bendings at n = 4 and 6. Such 
bendings are typical of many transition metal characteristics—melting and 
evaporation temperatures, thermal expansion coefficients, compressibility, 
etc. [35], and this fact also supports the general validity of the dissolution 
model used. Of much importance for the further development of this model 
is the change from energy characteristics to concentration dependences. To 
do this, we need to describe reliably the entropy contribution to solubility, 
which was totally ignored by the modified Weisser theory. 
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Figure 4.13. Dissolution enthalpy of f-impurities in silicon: solid line – ionized 
impurity; dashed line – neutral impurity.  
 
 To check the theoretical conclusions of solubilities of f-impurities in sili-
con is a more difficult task than for d-impurities because of the complete 
absence of experimental ∆H data for f-impurities. We would like only to 
note that the enthalpy dependence on the serial number of the element 
(Figure 4.13) has characteristic bendings in the middle of the period, namely, 
at Gd(4f 10) and Eu(4f 9), and an abrupt rise of dissolution enthalpy at the end 
of the period at Lu(4f 145d 2). These dependences are consistent with changes 
in the physicochemical properties of 4f-elements, such as melting and 
evaporation temperatures, ionization potentials, and others. The dependences 
shown in Figure 4.13 also have a bending at Eu and Gd. 
 The modified Weisser theory makes the treatment of semiconductor 
compounds all the more qualitative. Indeed, it follows from the minimum 
∆H values in Table 4.6 that group-IV impurities in GaAs are to occupy 
mostly the lattice sites. Besides, the close enthalpy values for the AIII and BV 
lattice sites is a theoretical indication of the amphoteric nature of group-IV 
atoms in GaAs. These two facts are well known from numerous 
experimental studies. However, one should pay attention to the excessively 
large values of ∆Hs

s. If they were correct, these impurities would have a low 
solubility. On the contrary, the solubility values were shown experimentally 
to be quite high. This contradiction is due to the neglect of the crystal 
potential and lattice relaxation effect which are impossible to allow for at 
present. Were this possible, the absolute values of ∆Hs

s would be lower and 
close for both sublattices. The conclusion about the amphoteric nature of AIV 
impurities in GaAs would then be valid. 
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4.7  QUANTUM CHEMICAL CALCULATION OF 
DISSOLUTION ENTHALPY 

 
 
4.7.1  Formulation of the quantum chemical problem 
 
The modified Weisser theory represents a simplified phenomenological 
approach using the pair potential approximation, which is close, to some ex-
tent, to the short-range interaction of an impurity atom with the host 
neighbors. As a consequence, this theory provides reasonable results for d- 
and f-impurities possessing a short-range potential extending to a limited 
number of coordination spheres (Figure 4.2). It is, however, inapplicable to 
the solubility treatment of hydrogen-like impurities, whose potential extends 
much farther from the impurity center. 
 The delocalized perturbation potential affects such a large crystal region 
that it cannot be calculated by conventional quantum chemical methods. This 
problem is complicated by the fact that the energies to be found (∆H) are to 
have very low values (< 1 eV) comparable with the error limit for most 
quantum mechanical methods. So we need to find an approach which could 
satisfy, at least, two conditions: it must consider the fact that an impurity is 
actually built into an infinite crystal, and the method accuracy must be high 
enough to allow calculation of small absolute ∆H values. Moreover, the 
quantum chemical method must account for the lattice polarization energy 
released in the displacement of the host electron density by the impurity 
center, and do this much better than the Weisser theory does. 
 Following Volkov [36], let us consider the lattice polarization within two 
coordination spheres of atoms with a high electronegativity, shown schemat-
ically in Figure 4.14. For systems with a rigid covalent bonding, this process 
can naturally be reduced to a displacement of the “center of mass” of elec-
tron bond bridges toward the polarizing center, resulting in a consistent re-
distribution of electron density in the crystal. The total energy of this process 
can be represented as a sum of terms responsible for the individual bonds. 
 Therefore, the calculation of polarization for the whole crystal will re-
quire an analysis of the tetrahedral crystal structure which can be considered 
in two ways. The most commonly used concept is that a crystal is simulated 
by an array of atoms arranged in a special way. For tetrahedral structures 
(point group symmetry Td), one atom can be conveniently selected as the 
central one, the others located on spherical surfaces surrounding the center. 
The arrangement of atoms on such a surface, termed as a coordination 
sphere, obeys the symmetry rules and can be found by means of projection 
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Figure 4.14. Schematic diagram of tetrahedral crystal lattice polarization by the C 
atom with a higher electrical neutrality within two coordination spheres: 1, 2 – 
coordination sphere numbers; arrows indicate the direction of electron density 
displacement of a covalent bond. 
 
operators in the group theory [37], if the coordinates of at least one atom on 
the sphere are known. The sphere radius Ri is defined by the sphere number i 
and can be found for the tetrahedral structures of interest as follows: 
 

      for odd i:  R d i
i =

−
0

4 1
3

,                             (4.7.1) 

 

      for even i:  R d i
i = 0

4
3

,                                  (4.7.2) 

 
where d0 is the shortest interatomic distance corresponding to the first coor-
dination sphere radius. Generally, this approach describes fairly well the 
crystal lattice geometry but leaves aside the problem of the nature and orien-
tation of chemical bonds. 
 A better concept of the lattice structure for covalent crystals is that based 
on the graph theory which can be called topological. In this theory, the focus 
is on the rigid orientation of the interatomic bond. The crystal is simulated  
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Figure 4.15. A fragment of the tetrahedral structure of a diamond-like semiconductor, 
including the central atom and atoms of the nearest five coordination spheres (CS): 1 
– central atom; 2 – 1st CS atoms; 3 – 2nd CS atoms;  4 – 3rd CS atoms;  5 – 4th CS 
atoms;  6 – 5th CS atoms. 
 
by a topological N×N matrix D, symmetrical relative to the principal diago-
nal (here N is the number of atoms in the system under study). The matrix 
elements dij are the topological distances between the atoms, which may be 
chosen to be different if the choice reflects the additive pattern of localized 
bonds. Obviously, a crystal is then represented as a system of chemical 
bonds connecting the atoms, rather than as a system of individual atoms 
(Figure 4.15). If the minimum bond length d0 is taken to be unity, dij can be 
represented as an integral number corresponding to the minimum number of 
bonds between the atoms i and j [38, 39]. This approach can sometimes be 
used for a qualitative evaluation of the system stability by minimizing the  
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Table 4.7. Numbers of topological spheres I = (ij)*. 
 

CS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
i 0 1 2 2 3 3 4 5 5 6a 11a 6b 6b 7a 7b 
j 1 2 3 5 4 6a 7a 6b 8 7b 9 7a 11 10 12a 

 
* i and j are coordination sphere numbers designating the bond beginning and end; 0 
is the central atom; CS – coordination sphere. 
 
half-sum of topological matrix elements or Wiener’s number [38–40]. Be-
sides, dij can be taken to be unity for directly bonded atoms i and j and zero 
for the other cases. 
 For further analysis, it is convenient to unite the atoms of one coordi-
nation sphere and transform the matrix in such a way that its dimension 
would correspond to the total number of coordination spheres N0. Then the 
topological matrix element dij will be expressed as the total number of bonds 
Nij between the i- and j-spheres. A fragment of the matrix for the diamond-
type crystal is shown in Figure 4.7. It follows from this picture that the atoms 
of the same coordination sphere may appear to be different in terms of the 
topological environment. For example, of the 24 atoms belonging to the 6th 
coordination sphere, 12 are bonded to the 3rd, 7th, and 9th spheres while the 
other 12 atoms to the 4th, 7th, and 11th spheres. Therefore, it is reasonable to 
group the atoms of such spheres by the character of binding in the crystal 
lattice. In the illustration above, the 6th sphere is subdivided into the 6a and 
6b spheres. A similar situation is true for the spheres numbered 7, 12, 13, 14, 
15, etc.  
 Since all atoms of a crystal lattice are grouped on the respective coordi-
nation spheres, all localized electron pairs of the (ij)-type for atoms of the i- 
and j-spheres, directly bonded to one another, represent a symmetric array 
which can be considered as an independent topological (bond) sphere. For 
example, the topological sphere (23) includes 12 bonds of atoms of the 2nd 
and 3rd coordination spheres, indicated by a dashed line in Figure 4.15. The 
double subscript (ij), in which i is the beginning and j the end of the bond, 
can be replaced by the same index I, chosen with the increasing i-numbers 
(Table 4.7) of coordination spheres and the j-numbers for spheres with the 
same i.  
 In this approach, a crystal can be regarded as lying at the base of topo-
logical bonds, whose interception points are the lattice atoms. This structural 
representation of a crystal lattice allows the construction of an inverse topo-
logical matrix N. The matrix element nijkl is represented by the total number  
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Figure 4.16. Schematic dissolution process of an impurity (C) in a semiconductor (A): 
(a) – neutral isovalent impurity; (b) – ionized acceptor impurity; (c) – ionized donor 
impurity. 
 
of atoms bound simultaneously to the topological spheres (ij) and (kl). 
Therefore, the crystal structure can be regarded as the matrix D at the base of 
coordination spheres (Figure 4.15) and as the matrix N at the base of topolo-
gical (bond) spheres. Each of its elements is the number of coordination 
sphere atoms at the interception of respective bonds (Table 4.7).  
 Both representations were used in [36] to calculate electron density dis-
tributions among lattice atoms in diamond-type tetrahedral semiconductors. 
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4.7.2  The dissolution model for a substitutional impurity 
 
Quantum chemical theory, like Weisser’s theory, treats dissolution enthalpy 
as the sum of energy contributions to the incorporation of impurity atoms 
into the crystal solvent to produce a solid solution. 
 In [36], the initial state was assumed to be a perfect defect-free crystal, 
and the final state was the impurity solid solution in the crystalline host. It 
was considered that the solution was infinitely dilute and the impurity was 
uniformly distributed throughout the crystal. The concentration of impurity 
atoms was taken to be so small that their interaction with one another could 
be neglected. In fact, it was an infinitely dilute crystal. 
 Microscopically, the real process of impurity incorporation into the crys-
tal lattice can be conveniently represented as a sum of several consecutive 
intermediate states (Figure 4.16) similar to those suggested by Weisser. They 
can be treated as the system transitions from one virtual state to another, with 
the total dissolution enthalpy defined by the sum of energy contributions at 
the individual stages. To calculate these energy contributions (per atom), it is 
reasonable to single out the following processes leading to the formation of a 
substitutional impurity center in the host crystal:  
– the formation of a vacant site in the host lattice; 
– atomization of impurity substance; 
– the binding of the impurity to the vacant site; 
– ionization of the impurity center (for hydrogen-like impurities). 
 
 
4.7.3  Quantum chemical calculations of impurity solubility 
 
The details of quantum chemical calculations of impurity solubility in 
semiconductors at all stages of the process can be found in [1]. Their de-
scription would take too much space in this book, so we present only the fi-
nal results summarized in Table 4.8. 
 The numerical discrepancy between the calculated and experimental va-
lues of  dissolution enthalpy ∆H are due to the experimental error (nonequi-
librium conditions) and simplifications accepted by the theory. Among the 
latter are insufficient allowance for lattice relaxation, especially for boron 
impurity in silicon, and the neglect of the temperature dependence of en-
thalpy and interimpurity interactions. Nevertheless, there is a satisfactory 
coincidence in the order of theoretical and experimental ∆H values in all 
cases, except for boron in silicon. The calculations suggest slightly higher 
enthalpy values in silicon than in germanium. 
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Table 4.8. Calculations of dissolution enthalpy (eV) of III-V substitutional impu-
rities in silicon and germanium [43]. 

 
 

Silicon Germanium 

Impurity 
Calculation Experiment Calculation Experiment 

B 2.03 0.43–0.73  1.90 – 
Al 0.59 0.43–0.66 0.12 0.12 
Ga 0.67 0.46 0.50 0.12 
In 0.88 – 0.33 0.20–0.85 
C 2.37 2.30 2.62 – 
Sn 0.56 0.20 0.33 0.03 
N 1.64 – 1.61 – 
P 0.73 0.50–0.70 0.40 – 
As 0.51 0.47 0.11 – 
Sb 0.55 0.24–0.58 0.11 – 

 
 Besides, it follows from the quantum chemical calculations that ∆H va-
lues decrease with increasing serial number of the impurity element within 
the same group of elements. This tendency has been observed experimen-
tally for group-IV and group-V elements in silicon. 
 
 
4.7.4  Perspectives of the quantum chemical method 
 
The improvement of the quantum chemical method for the calculation of 
impurity dissolution enthalpy in semiconductors primarily depends on refin-
ing the atomic parameter system of the CNDO method [41]. This problem 
will require a detailed account of electron interaction integrals, internuclear 
repulsion potentials, and bonding parameters of impurity and host atoms. 
 The authors of [42] took account of the fact that the repulsion energy of 
atomic skeletons at small internuclear distances R must tend to 1/R rather 
than to the one-center integral of electron interaction. They suggested using 
additional parameters in the calculation of skeleton interaction energy, which 
will no doubt complicate the calculation of dissolution enthalpy but will not 
change quantitatively the general calculation scheme. On the other hand, this 
may give the theory a more profound physical sense. The idea of re-evalua-
tion of the repulsion energy of atomic skeletons has become quite common 
in the MINDO and MNDO methods [43, 44, 45]. This approach to the inter-
atomic repulsion calculation may contribute to the solution of the problem of 
a dimensionality factor for defects considerably distorting the crystal lattice. 
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Table 4.9. Bonding parameters βAB for AIIIBV compounds, found from atomization 
heat [36]. 

 

Compounds AlP AlAs AlSb GaP GaAs GaSb InP InAs InSb 
–βAB, eV 3.07 2.66 2.62 3.16 2.79 2.79 3.05 2.67 2.66 

 
 The problem of the method parametrization becomes more acute when 
the quantum chemical method is extended to the calculation of impurity dis-
solution enthalpies in AIIIBV compounds. In the first approximation, the 
bonding parameters βAB for AIII and BV atoms can be found from experimen-
tal data on atomization heat ∆HAB of AIIIBV compounds. Enthalpy variation 
in a decomposition reaction producing simple substances in an elemental 
gaseous state was considered in [43]: 
 
       AIIIBV

gas = AIII
gas + BV

gas.                                 (4.7.3) 
 
 The value of ∆HA

at can be found from tabulated thermodynamic data as   
 
      ∆HAB = ∆HA + ∆HB – ∆HAB

f,                                (4.7.4) 
 
where ∆HAB

f is the enthalpy of AIIIBV formation from simple substances in 
their standard state. 
 A rather cumbersome procedure of finding the parameters βAB from ato-
mization heat ∆HAB is described in [36]. We give the final results of this 
work in Table 4.9. 
 The estimations of dissolution enthalpy for Al, Ga, P, and As in GaAs 
and GaP, using the bonding parameters from Table 4.9 [36], have shown that 
this method provides reasonable results (∆Hs

s ≤ 0.2 eV) and its further im-
provement is very desirable. 
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Chapter 5 
 

Impurity Interactions in 
Semiconductors 
 
 
 
5.1  TYPES OF IMPURITY INTERACTIONS 
 
It follows from the general propositions of phase equilibrium thermodyna-
mics that the concentration of a dissolved impurity is defined from the equa-
lity of chemical potentials. One way of macroscopic thermodynamic analysis 
of solubility Cs is to find particular values of µl and µs (see Section 1.2). It is 
simple to do this if both phases are ideal solutions. This assumption was used 
to obtain the ratios in (1.1.18) and (1.1.19). The principal feature of an ideal 
solution is the absence of chemical interactions of impurity atoms with one 
another and with other point defects. In this case, every subsystem consisting 
of one type of point defects has a partial chemical potential 
 
        µ i i i= +g kT C0 ln .                                    (5.1.1) 
 
Here, Ci is the concentration of i-defects, T is temperature expressed in 
energy units, and gi

0 is Gibbs free energy necessary for the incorporation of a 
single defect into a pure crystal. The total chemical potential of the solid 
phase represents just an additive value (1.2.16). 
 The description of impurity solubility in a crystal requires knowledge of 
defect types “populating” the crystal and the assurance that the defect so-
lutions in the crystal are ideal. Of course, we do not mean just any defects, 
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but only those whose concentrations are more or less close to the sought for 
concentration of the doping impurity. Such defects are normally unknown a 
priori in a theoretical treatment. Besides, if a defect has a very large value of 
gi

0, its contribution to µs may be appreciable even at a low concentration. 
Both facts make it necessary to take into account as many defects as possible 
in a thermodynamic analysis of solubility Cs. Consequently, equilibrium is 
established in a heterogeneous crystal when the chemical potentials of its 
components in the different phases are identical. These conditions are simple 
if there are no interactions between the system atoms. 
 However, a complete absence of interactions is too strong a restriction 
for the systems under study. It was shown above that impurity ionization 
shifts the equilibrium processes and may affect the solubility of elements. To 
take these processes into account, it is necessary to supplement the chemical 
potential of an atom with that of an electron. This is a consequence of the 
general change in free energy, both total and partial, due to the interaction of 
crystal defects. 
 In Section 1.1, we subdivided all impurity interactions into two groups—
external and internal interactions. The former, reflecting the effects of the 
ambient phases, were discussed in the previous chapters. In this chapter, the 
focus will be on internal interactions which change the free energy of a 
crystal representing a closed thermodynamic system. These interactions can 
be classified as follows. 
 – Statistical interactions are associated with the distribution of structural 
elements over the crystal lattice positions. They largely affect the configura-
tion entropy of the system. 
 – Charge interactions are electromagnetic and responsible for the fulfill-
ment of the charge conservation law. They, however, do not produce excess 
potential energy of the crystal. 
 – Potential interactions are a combination of various interactions chang-
ing free energy owing to the rise of crystal potential energy. These are all 
kinds of interactions, in which crystal structural elements do not form quasi-
molecules (associates) in crystal positions. 
 – Associative (complexation) interactions give rise to associates or com-
plexes, i.e., new structural elements of the lattice possessing quasimolecular 
properties and occupying crystal positions as an entity. 
 The diversity of impurity interactions makes us consider this problem in 
detail, as was done in [1]. 
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5.2  STATISTICAL INTERACTION 
 
This kind of interaction is associated with the arrangement of host structural 
elements and foreign objects (impurities) in crystal lattice positions. The 
composition of structural elements and the symmetry of objects determine 
the number of arrangement patterns and, thereby, the configuration entropy 
described by the well-known Boltzmann formula 
 
         S k Wconf = ln ,                                     (5.2.1) 
 
where W is the thermodynamic probability of the system, or the number of 
arrangement patterns of structural elements and objects which implement its 
macroscopic thermodynamic state. 
  An ideal crystal can be produced in just one way—by arranging all 
atoms in their respective site positions in the lattice, with W = 1 and Sconf = 0. 
But such a system is unstable. The tendency for a closed system to increase 
its entropy leads to disordering processes producing defects. 
 The origin of a statistical interaction is essentially due to the fact that two 
objects or structural elements cannot occupy the same position in a crystal. 
Therefore, they must be arranged in a certain way. The number of arrange-
ment patterns makes its own contribution to the system entropy. 
 Strictly, Gibbs total energy of a crystal can be described as 
 
         ( )G N P T= µ ,                                       (5.2.2) 
 
only for a one-component system. But it was established in Section 1.1 that a 
crystal is a multiphase and multi-component system. 
 If all kinds of interaction, except for the statistical one, are neglected, the 
Gibbs partial free energy of individual elements and objects can be used to 
calculate the total Gibbs energy per unit crystal volume: 
 
        G g N TSi i

i
= ∑ − conf ,                                (5.2.3) 

 
where gi are respective partial free energies and Ni are concentrations of ele-
ments and objects. 
 Formula (5.2.3) contains partial free energies instead of chemical poten-
tials for the following reasons. These quantities are identical for atoms. For 
vacancies, the use of chemical potential is incorrect, because a medium con-
sisting of vacancies only is vacuum. There is no vacancy outside the crystal. 
On the other hand, the contribution of a vacancy to free energy is unques-
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tionable. Almost the same is true of complexes (quasimolecules) consisting 
of several structural elements: of atoms only or of atoms and vacancies. A 
complex exists only within a crystal, and its free energy is the sum of atomic 
chemical potentials, the interaction energies of the structural elements of a 
complex, and the energy of interaction between a complex and the host lat-
tice. In this case, one cannot speak about the chemical potential of a com-
plex, because there is no one-component substance consisting only of com-
plexes, whose free energy could be expressed by formula (5.2.2). 
 Partial free energy describes interactions occurring within objects and 
chemical potentials describe interactions of atoms. The latter also includes 
the heat components of entropy of atoms and complexes and can be ex-
pressed as 
 
         gi = hi – TSiT,                                        (5.2.4) 
 
where hi is partial enthalpy, including internal and interaction energies, and 
SiT is oscillation and thermal entropy. 
 The derivative of total free energy with respect to Ni will contain, in ad-
dition to partial free energy, the derivative of configuration entropy 
 

      ∂
∂

∂
∂

G
N

g T S
Ni T P

i
i T P







 = −









, ,

conf .                       (5.2.5) 

 
 If the derivative is differentiated with respect to one kind of atoms, the 
chemical potential of the atom can be said to have gained from statistical 
interaction, and this gain is expressed via the configuration entropy deriva-
tive: 
 

        µ µ ∂
∂i i

i T P
T S

N
= −







0

,
.                             (5.2.6) 

 
This formula is more general than the one above 
 
        µ µi i ikT x= +0 ln ,                                     (5.2.7) 
 
where xi is the fraction of positions occupied by the i-element. The second 
term in the right-hand side of (5.2.7) is the consequence of the mixing en-
tropy derivative which is the simplest form of configuration entropy, more 
exactly, the configuration mixing entropy of two components. Expression 
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(5.2.6), on the contrary, includes the mixing entropy of many components, 
with the account of their symmetry and possible arrangement patterns in the 
crystal lattice. 
 Various structural elements (atoms and vacancies) having no symmetry 
and objects (complexes and precipitates) with a more complex structure and 
their own symmetry will all contribute to the configuration entropy value. 
The object symmetry may be responsible for its various orientations relative 
to the crystal axes, thus increasing the configuration entropy. Finally, an ap-
preciable contribution to this entropy component is made by electrons and 
holes. These can occupy free states in the conduction and valence bands, as 
well as the energy states of defects with different degrees of degeneracy. All 
structural elements and objects are involved in statistical interactions. 
 Consider now various arrangement patterns of defects in a crystal lattice 
and calculate the configuration entropy for different cases [2, 3]. 
 
 
5.2.1  Configuration entropy of a lattice with Nββββ sites and NV

ββββ vacancies 
 
The number of ways in which NV

β vacancies can be arranged at N sites is 
equal to the number of positions [3]: 
 

         ( )A N

N N
=

−

β

β
!

!V

.                                  (5.2.8) 

 
 Since vacancies are identical, the thermodynamic states, in which only 
two vacancies have interchanged positions, are also identical. Therefore, the 
number of independent arrangement patterns is smaller as many-fold as the 
number of possible rearrangements of NV-vacancies. In other words, the 
number of vacancies is reduced by a factor of NV!  and is equal to the num-
ber of combinations 
 

       ( )W N

N N N
=

−

β

β β β
!

! !V V

.                                   (5.2.9) 

 
 
5.2.2  A lattice with several defect types 
 
Every structural element occupies its crystal position independently.  The 
same is true of host atoms, whose number is  
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        N N Nβ

β β
α
β

α
= − ∑ .                                  (5.2.10) 

 
With the reasoning above, we have 
 

       W N

N N N
=

− ∑






 ∏

β

β
α
β

α
α
β

α

!

! !
.                         (5.2.11) 

 
 
5.2.3  A lattice with structural elements in several positions 
 
Structural elements may occupy positions in several sublattices of a binary 
or multi-component semiconductor, or in different sublattices and types of 
interstice. Then the general thermodynamic probability is the product of 
probabilities of defect arrangement in individual subsystems. This is because 
every arrangement occurs independently. The thermodynamic probability is 
 

      W N

N N N
=

− ∑






 ∏

∏
β

β
α
β

α
α
β

α

β

!

!
.                            (5.2.12) 

 
 
5.2.4  The arrangement of complexes 
 
When arranging complexes, one should take into account that every complex 
may have different  orientations in a crystal lattice. Let us select an atom in a 
complex as the base atom. This atom can be made to occupy sites or 
interstices as an ordinary structural element. But the complex position may 
vary with the base atom position. Every turn of the complex relative to the 
base atom produces a new arrangement which is to be allowed for in the cal-
culation of thermodynamic probability. This concerns all complexes present 
in a lattice. 
 Suppose a complex has gk arrangements in the lattice relative to the fixed 
base atom. Or, every position of the base atom is gk-fold degenerate. Then, 
for one complex, the thermodynamic probability of the system increases gk 
times while for all complexes (gk)Nk times: 
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        ( )W N g
N N N

k
Nk

k k
=

−

β

β ! !
.                            (5.2.13) 

 
 The degeneracy factor of a complex, gk, can be calculated from the fol-
lowing considerations. The set of symmetry elements of an ideal lattice 
forms a point group. The appearance of a complex with its own symmetry 
reduces the group rank of the ideal lattice. The set of symmetry elements of 
this new lattice containing the complex is a subgroup of the old lattice. 
Indeed, a real crystal lattice can only be combined by the same operations as 
an ideal lattice, but the number of operations will be smaller because of the 
lower symmetry. All symmetry operations of a particular subgroup make up 
a complex in the same position, and the thermodynamic states thus produced 
are identical. The orientation of the complex is changed by operations which 
are left outside the real lattice subgroup. These operations make up their own 
subgroup, which is also a subgroup of the ideal lattice. Using the Lagrange 
theorem, one can conclude that the degeneracy multiplicity of a complex is 
equal to the subgroup index in a real lattice.  
 
 
5.2.5  The arrangement of electrons and holes 
 
Electrons and holes can occupy free states in the conduction and valence 
bands and electronic states of defects. If there is no electron degeneracy (n 
<< Nc), free electrons have a set of identical levels, whose number per unit 
volume is equal to the effective density of states in the band [3]. Since these 
states do not differ in energy, they are Nc-fold degenerate. The thermody-
namic probability for n electrons to occupy states within the band is 
 

         ( )W
N
n

n
= c

!
.                                       (5.2.14) 

 
The factor (Nc)n gives the number of states related by the Nc-fold degeneracy. 
The quantity n! in the denominator rules out identical thermodynamic states 
due to electron rearrangement. Similarly, we have for holes: 
 

         ( )W
N

p

p
= v

!
.                                      (5.2.15) 
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 To calculate the thermodynamic probability of arrangement of nα
β elec-

trons in Nα
β defects, one must take into account the spin degeneracy. For the 

simple case of nondegenerate levels, the following two situations may arise. 
 (1) An electron occupies an energy level already occupied by another 
electron. It gets its spin adjusted and occupies the rest of the space. The de-
generacy multiplicity is equal to unity. 
 (2) An electron occupies an empty level and its spin can take any of the 
two possible orientations. The degeneracy multiplicity is equal to 2. 
 If the energy level is energy degenerate, the degeneracy multiplicity must 
be calculated individually. 
 With the allowance for spin degeneracy, the thermodynamic probability 
is 
 

       ( )W N r R
N n n

n N n
=

−

−
α
β

α α

α
β

α
β

α
β

α
β

α
β

α
β

!

! !
,                                  (5.2.16) 

 
where rα

β is the degeneracy multiplicity of an electron-filled state and Rα
β is 

that of a free state. 
 Note that the calculation of the probability of an ionized defect state re-
quires that the probabilities of (5.2.11) and (5.2.16) should be multiplied 
together, because electrons become arranged independent of the arrangement 
of atoms. The co-factors Nα

β! are reduced by the multiplication. Moreover, it 
is necessary to account for the arrangement of free electrons in the allowed 
bands. Thus, we obtain the following thermodynamic probability for ionized 
atoms: 
 

    ( ) ( ) ( ) ( )
( ) ( )W

N
n

N
p

N r R

N N N n n

n p
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− −
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α
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β

.           (5.2.17) 

 
 We have discussed above all typical situations involving the calculation 
of thermodynamic probabilities of systems. The configuration entropy is cal-
culated using the Boltzmann formula (5.2.1). Let us now find the derivative 
[see (5.2.5)] characterizing the statistical interaction of a system with the 
thermodynamic probability (5.2.17): 
 

       ( )
∂
∂ α

β
α
β

α
β

α
β β

α
β

S
N

k N n
R N N

conf = −

−
ln .                      (5.2.18) 
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One can see that the contribution to the interaction decreases with decreasing 
defect concentrations. Note that if the number of defects in the denominator 
is neglected, the derivative will include positions occupied by defects un-
filled by electrons. In contrast with this situation, expression (5.2.7) includes 
the fraction of positions occupied by a particular kind of atoms, irrespective 
of whether they are ionized or not. This expression contains no degeneracy 
multiplicity. This is what we meant when we mentioned that formula (5.2.6) 
was more rigorous than (5.2.7) and better accounted for the statistical inter-
action. 
 
 
 
5.3  CHARGE INTERACTION 
 
Charge interaction is a manifestation of electromagnetic interaction. In the 
absence of external electromagnetic fields, a semiconductor crystal tends to 
preserve its neutrality. Therefore, all charged particles must obey the elec-
trical neutrality law: 
 The net positive electric charge of all kinds of particles, both free and 
bound, must be equal to the net charge of negative particles: 
 
          Qi

i
=∑ 0 .                                        (5.3.1) 

 
 In this law, if energy states capable of capturing a hole appear in a semi-
conductor, additional free electrons or energy states that can capture them 
must be produced. In accordance with this, we have from (5.3.1) 
 
       n N p Ni

i
j

j
+ ∑ = + ∑− +

a d .                                  (5.3.2) 

 
 As was mentioned above, charge interactions play an important role in 
double doping. Doping with additional donors raises acceptor solubility, and 
vice versa. In this connection, it is necessary to differentiate between donor 
and acceptor states when writing down Gibbs free energy of a crystal. 
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5.4  POTENTIAL INTERACTION 
 
The introduction of a defect into a crystal inevitably induces nonuniform 
force fields of different nature. Defect ionization induces electrostatic fields. 
When a defect enters a crystal lattice, the latter experiences extension or 
compression, and the natural fluctuations in defect distribution lead to mac-
roscopic nonuniform mechanical stresses. There is also a gravitational inter-
action, but it can be ignored in defect formation problems,  in contrast to the 
first two interactions. 
 The existence of a force field changes the crystal energy, because there 
appears potential energy of interacting particles, in addition to the crystal 
internal energy. This is why this kind of interaction was called a potential 
interaction [1].  
 The total crystal energy will then be equal to the sum of free Gibbs ener-
gy and  potential energy of the force field: 
 
         E G E= + p .                                         (5.4.1) 

 
 Let us find the exact differential of the total energy in a physically small 
volume, within which the force field value does not change: 
 

   d d d dE E
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.       (5.4.2) 

 
The potential energy of the force field can be assumed to be independent of 
temperature and pressure; then we have 
 

    d d d dE S T V P G
N

E
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i
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i T P
i

i
= − + + +






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∂
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∂ ,

.                (5.4.3) 

 
The first bracketed term is the chemical potential of a particle at zero force 
field. The second term is the potential of the particle interaction with the 
force field: 
 

        ϕ ∂
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i T P

E
N

=








,
.                                       (5.4.4) 
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 The total crystal energy is an extensive parameter, and so it can be 
described by a relation similar to (5.2.2.): 
 
        ( )E N P T Fi i

i
= ∑ µ , , ,                               (5.4.5) 

 
where F is the force field strength or another extensive parameter charac-
terizing it. 
 We get from (5.4.5) 
 
     ( ) ( )( )d d dE N P T F P T F Ni i i i

i
= +∑ µ µ, , , , .             (5.4.6) 

 
From the comparison of (5.4.3) and (5.4.6), we find 
 
       ( )N P T F S T V Pi id d dµ , ,∑ = − − ,                  (5.4.7) 
 
       ( ) ( )µ µ ϕi i iP T F P T, , , ,= +O .                      (5.4.8) 
 
 Thus, the chemical potential of a particle in a force field increases by the 
potential of interaction between  this particle and the field. 
 Lannoo and Bourgoin consider potential interaction [4] as a long-range 
interaction because its action extends for some distance. The distance, how-
ever, is not large: from 0.8 to 80 nm for an elastic field and from 10 to 50 nm 
for an electrostatic field. So the term “potential interaction” seems 
preferable. 
 The charge conservation law can be considered to be strictly valid for 
most defect formation problems. Therefore, the crystal electrostatic field is 
zero and does not contribute to chemical potentials. Nevertheless, it is easy 
to give illustrations to support the validity of (5.4.8) for electrostatic fields. 
First, it is the well-known Frenkel effect stating that impurity activation 
energy decreases in a strong electric field. This effect  primarily refers to 
centers possessing a Coulomb potential in interaction with an electron. 
Figure 5.1 shows that, because of the summation of the Coulomb field 
attracting an electron to an atom and the external electric field, the activation 
energy reduces by the value 
 

        ∆E e FF
s

=










3 1/2

πε
,                                   (5.4.9) 
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Figure 5.1. Decreasing potential barrier of an attracting center in an electric field. 
 
where F is electric field strength and εs = εε0 is dielectric permittivity of the 
semiconductor. 
 Defect formation in strong electric fields is poorly understood, and there 
is no information about the electric field effect on defect formation enthalpy. 
 Electrostatic fields are also due to the ionization of a defect possessing a 
point charge, whose value is determined by the ion charge state. The ion in-
teraction energy is  
 
        ∆E z z e r= 1 2

2 4πεs ,                               (5.4.10) 
 
where z1 and z2 are the charge states of interacting ions and r is the distance 
between them. 
 Formula (5.4.10) is approximate because it accounts only for electrostatic 
interactions, neglecting other effects. However, it can be used profitably for 
a qualitative treatment of interactions. If defects have opposite signs, they are 
attracted to each other and the energy given by formula (5.4.10) is negative. 
For this reason, Coulomb interaction is one of the causes of the formation of 
complexes, because mutual attraction stimulates coupling [4–6]. Since an 
electrostatic interaction is not the only factor leading to complexation, this 
problem will be discussed individually. 
 Two situations can prevent coupling in an electrostatic interaction: 
 (1) when defects of the same sign are repelled from each other and the 
interaction energy (5.4.10) is positive; 
 (2) when defects of opposite signs have a low mobility and cannot ap-
proach one another to form a stable pair. 
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 The latter often occurs at low temperatures. On the one hand, diffusion 
coefficients decrease with decreasing temperature, but, on the other, the 
electrostatic interaction radius can be defined as a characteristic distance, at 
which the interaction energy module (5.4.10) is equal to the most probable 
particle energy (kT). This radius increases with decreasing temperature, so 
the situation of interest becomes more probable. 
 Let us find the Gibbs free energy of a crystal with N sites statistically 
occupied by charged impurities at concentrations Nα

β and Nγ
β. With formula 

(5.4.8) and the condition for the absence of stable pairs, we have 
 
  ( ) ( )G N N N kT W= + + + + −µ µ ϕ µ ϕβ

β
β
β

α
β

αγ α
β

γ
β

γα γ
β ln .        (5.4.11) 

 
 Since no stable pairs are formed, impurities arrange themselves at sites 
individually. Besides, impurities are completely ionized, so the arrangement 
of electrons and holes can be ignored: 
 

       ( )W N
N N N N N

=
− −
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β
α
β
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β
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β

γ
β

!

! ! !
.                     (5.4.12) 

 
 The electrostatic interaction potential is described by (5.4.10): 
 

      ϕ ϕ
πεαγ γα
α γ

αγ αγ
= = =

z z e
r

Q
r

2

4 s
,                            (5.4.13) 

 
where rαγ is the mean distance between defects, Q > 0 is repulsion, and Q < 0 
is attraction. 
 In view of a statistical distribution of defects at lattice sites, the mean 
distance between them can be evaluated from the formula: 
 

        ( )r N Nαγ α
β

γ
β= +

−1/3
.                             (5.4.14) 

 
 The crystal free energy is expressed as 
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Hence, we have 
 

( )[ ]∂
∂

µ
α
β α

β
α
β

γ
β β

α
β

γ
β

α
βG

N
Q N N kT N N N N= + + − − − −5

3
3 ln ln .       (5.4.16) 

 
 One can see that the chemical potential of a non-interacting atom has a 
gain associated with an electrostatic interaction. This gain affects the impu-
rity concentration. From (5.4.16), we have 
 

     N N
kT

Q
kT

N Nα
β β α

β

α
β

γ
βµ= − − +









exp 5

3
3 .               (5.4.17) 

 
 Formula (5.4.17) was derived from a simple algorithm and is approxi-
mate. In particular, it does not allow for Debye–Huckel corrections for elec-
trostatic screening [1, 4]. Note, however, that the screening effect requires 
charge carriers with a high mobility. Such carriers do exist in electrolytes, 
but in solid solutions the impurity mobilities are not high enough to produce 
screening. For this reason, screening in semiconductors is due to the motion 
of free charge carriers.  
 Still, one can conclude from formula (5.4.17) that the concentrations of 
doping impurities affect one another because of interactions. At Q > 0, im-
purities are repelled from each other and their solubility is lower. The same 
is true of a single impurity in heavy doping: the mean distance becomes 
smaller at higher concentrations (rα = Nα

–1/3) and the solubility must 
decrease. But at Q < 0, impurities are attracted to one another, and their 
intermixing increases. 
 Let us consider the contribution of elastic interaction. When a defect en-
ters a crystal lattice, the latter experiences an extension or compression. 
Charge–exchange processes cause an additional lattice relaxation and polari-
zation due to electron–phonon interactions. Deformation produces excess 
energy which can decrease because of pairing or precipitation. Therefore, 
deformation stimulates the formation of some types of complexes. Elastic 
strains can disappear owing to dislocation formation.  
 Of primary interest is how elastic strains influence defect formation. To 
answer this question, we must find a way of evaluating the potential of 
elastic forces. We will reproduce the evaluations made above for an 
electrostatic interaction.  
 Elastic interaction problems are discussed in detail in the book of Leib-
fried and Brener [7]. The authors derived the energy of interaction between a 
defect and an external elastic deformation field and the interaction energy for 
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two defects creating deformation fields between themselves. The expansion 
of this interaction energy in terms of the power r–1 shows that the principal 
expansion term varies with distance as r–3. The same result follows from [8]. 
So, the interaction potential will be  
 

    { } ( )[ ]ϕ σ
π

αγ

α
= = −

r
P
e r

S P R P RP
b b

3
0

11
34

3 , , .             (5.4.18) 

 
The designations in formula (5.4.18) are the same as in [7].  
 Using the interaction potential expressed as (5.4.18), we have for free 
energy in (5.4.11) 
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(5.4.19) 
 
Hence,  
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N
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 The second term in (5.4.20) accounts for elastic interactions of defects 
with one another. Such interactions affect the intermixing of defects. From 
(5.4.20), we obtain 
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βµ σ= − − +













exp 2 .                  (5.4.21) 

 
One can see that the defect concentration depends on both the interaction 
potential and the concentration of defects inducing elastic strains. 
 Thus, external force fields and internal fields created by defect formation 
processes change crystal energy. Chemical potentials have gains associated 
with force interactions. As a result, the defect concentration varies with the 
interaction potential value. One should bear in mind that potentials created 
by point defects are of the short-range type. For this reason, these effects 
manifest themselves in heavy doping. Besides, external fields can produce 
effects similar to the Frenkel effect for Coulomb attracting centers. The de-
fect formation enthalpy decreases and their concentration rises when defect 
formation occurs in an external force field. 
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5.5  DEFECT INTERACTION IN A REGULAR 
APPROXIMATION 

 
Solutions in the liquid and solid phases are classified by the degree of 
components involvement in the interaction. An ideal solution is a solution 
satisfying the three independent conditions: 
 (1) the partial internal energy of a component is independent of the solu-
tion concentration, and the total internal energy of the solution is the sum of 
internal energies of the mixing components; 
 (2) the partial molar volume of a component does not change on mixing; 
 (3) the partial molar entropy increases by the mixing entropy value 
 

∆S k xi= − ln , 
 
where xi is the fraction of positions occupied by the i-th component. 
 The first condition is not always fulfilled because there are different 
types of interaction (see above). 
 A regular solution is a solution satisfying the second and third conditions 
for an ideal solution but it does not satisfy the first condition. There is a cer-
tain non-zero mixing enthalpy.   
 Most solid solutions do not behave as regular solutions but it may be 
convenient to consider them as such, assuming “regularity” to be a deviation 
from perfection [6]. 
 The mixing enthalpy of a regular solution is usually found by a quasi-
chemical approximation. Suppose two sorts of atoms, A and B, are miscible. 
The atoms if each kind individually create ideal solutions. For this reason, 
only new, additional interactions between the neighboring A and B atoms can 
contribute to the mixing enthalpy. Sometimes, chemical bonds are said to be 
formed, but this is not necessary. Of importance is the fact that their interac-
tion enthalpy is equal to HAB. The mixing enthalpy value is equal to the 
product of the excess energy produced by this bond and the number of 
bonds.  
 Let us denote the coordination number of the crystal lattice as z and find 
the number of positions in the crystal and the fractions of positions occupied 
by both sorts of atoms: 
 
    N = NA + NB,  xA = NA / N,  xB = NB / N.              (5.5.1) 
 
 The probability for atoms to occupy their proper positions is equal to the 
fraction of positions intended for them. Therefore, the probability for an 
atom A to occupy a particular position is xA and for an atom B it is xB. 
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 In accordance with the probability multiplication rule, the probability for 
both atoms to occupy their proper positions simultaneously is xAxB. The 
probability will not change if the positions of these atoms are interchanged. 
Therefore, the probability for neighboring positions to be occupied by differ-
ent atoms is 2xAxB [16]. 
 The number of A–B bonds is equal to the total number of bonds in a 
crystal (zN/2) multiplied by the formation probability of a bond: 
 

      N x x zN zNx xAB A B A B= =2 1
2 0 .                         (5.5.2) 

 
Then the number of A–A and B–B bonds is 
 

    ( )N
z N N

AA
A AB=

−
2

,  ( )N
z N N

BB
B AB=

−
2

.      (5.5.3) 

 
Total crystal enthalpy can be written as 
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.      (5.5.4) 

 
 The first and second terms in (5.5.4) describe the enthalpy of miscible 
components (similar components exist in an ideal solution). The third term is 
the mixing enthalpy 
 
         H x xmix A B= Ω ,                                  (5.5.5) 
 
where the interaction energy is 
 

      ( )Ω = − +





zN H H HAB AA BB
1
2

.                       (5.5.6) 

 
 It is easy to see that a regular solution transforms to an ideal one under 
the condition 

        ( )H H HAB AA BB= +1
2

.                          (5.5.7) 

 

© 2004 by CRC Press LLC



 Mixing enthalpy may be positive or negative, depending on the type of 
interaction. A negative enthalpy value means that atoms are attracted to one 
another; the physical reason for this attraction is not particularly important. 
A negative mixing enthalpy value indicates repulsion. Attraction may give 
rise to a short-range order in the solution, so that the module of mixing 
enthalpy will increase to become more negative. 
 With Gibbs free energy of the solution, we find, after differentiation, the 
well-known result: 
 
      ( )µ µB B B B= + + +0 21kT x xln Ω ,                       (5.5.8) 
 
where 
 

        ( )1 2− =x
kTB B
Ω ln γ ,                                (5.5.9) 

 
with γB as an activity coefficient. The activity of the component B is 
 
         a xB B B= γ .                                       (5.5.10) 
 
Similarly, we can find it for the second component. 
 These formulas are normally used to describe the behavior of com-
ponents in a medium, with which a particular crystal is in equilibrium. In 
case of a liquid phase, a certain short-range order is implied.  
 Let us consider the contribution of a regular interaction to defect forma-
tion processes. Note again that there were only two sorts of atoms in the 
situation discussed above. One was the solvent and the other the solute. It 
was between these two kinds of atoms that the interaction took place. From 
the point of view of defect formation, this means the interaction of a defect 
with the host lattice, where it was produced. Besides, it was assumed in the 
derivation of the regular solution formulas that the elements were close to 
one another and that the interaction was due to short-range forces until 
chemical bonds were formed. In fact, this is the process of defect formation. 
Therefore, regular interaction energy must contribute to defect formation 
enthalpy. 
 One should keep in mind another circumstance. The fraction of positions 
occupied by defects is much less than unity, so the value of xB in the third 
term of (5.5.8) is neglected. One can see then that, in the first approximation, 
defect enthalpy has a constant gain due to the regular interaction. 
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 To summarize, a regular interaction of defects in a solid crystal can be 
neglected. The parameters of this interaction are independent of defect con-
centrations because these are low. These parameters are summed with ther-
modynamic parameters of defect formation.  
 
 
 
5.6  INTERACTION LEADING TO COMPLEXATION 
 
Complexes, or associates [5], can be formed in crystals under certain 
conditions, usually at low temperatures. A complex is a stable structure rep-
resenting a quasimolecule in the host crystal and possessing specific physi-
cal properties. A complex has its own symmetry different from that of a 
perfect crystal and, therefore, can occupy several equivalent positions in a 
lattice with respect to the fixed base atom. It was pointed out in Section 5.2 
that the degeneracy multiplicity of the spatial orientation of a complex, rc, is 
equal to the subgroup index of the real crystal. 
 Physically, the nature of forces producing complexes may be different. In 
particular, an important role in this process is played by an electrostatic in-
teraction. Without going into detail, we would like only to note that every 
complex has its own formation energy Ec. 
 Let us see how the process of complexation influences chemical poten-
tials and solubility of the structural constituents of a complex.  
 We will illustrate this with a simple complex made up of an impurity and 
a vacancy. Ionization processes will be neglected for simplicity. The crystal 
free energy in this case can be defined as 
 
    G N N g N g N kT W= + + + −µ µβ

β
β
β

α
β

α
β β β β

V V c c ln ,           (5.6.1) 

 
where 
 

( ) ( ) ( ) ( )
W N r

N N N N N N N N N N

N
=

− − − −





− −

β

β
α
β β

α
β β

!

! ! ! !
c

c V c c V c c

c

.    (5.6.2) 

 
 Taking into account the reasoning concerning the applicability of the 
chemical potential concept (Section 1.1), we used partial Gibbs free energies 
for vacancies and complexes in (5.6.1). Expression (5.6.2) took into consid-
eration that it was necessary to arrange free structural elements; so the de-
nominator contains (Nα

β – Nc) for free impurities and (NV
β – Nc) for vacan-
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cies free from complexation. The free energy could be written differently, 
using the bonding equation, with the minimization performed with Lagrange 
indeterminate factors. This will be done in Chapter 6. 
 By differentiating with respect to Nc and equating the derivative to zero, 
we obtain the familiar result for the concentration of similar complexes [4] 
 

     
( )( )
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N N N N

N
g
kTc

c V c c=
− −

−
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


α
β β

β exp .                  (5.6.3) 

 
 The chemical potential of the impurity involved in complexation is 
 

     ( )[ ]∂
∂
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α
β α

β β
α
βG

N
kT N N N

N









 = − − −ln ln c .            (5.6.4) 

 
It follows from (5.6.4) that complexation processes change the defect chemi-
cal potential, and this is primarily due to a statistical interaction. 
 
 
 
5.7  DEFECT IONIZATION IN SOLIDS 
 
The ionization of defects, like other defect formation processes, can be 
analyzed in terms of the active mass law. 
 In accordance with the routine procedure of problem solution with the 
active mass law, we will write the impurity ionization reaction [see (1.2.30)] 
of, say, the donor type 
 
          B ←

→  B+ + e–.                                  (5.7.1) 
 
The respective equilibrium constant is 

      
[ ]
[ ]K
B

B kTBe
B B e= = + −

+ +
exp µ µ µ ,                      (5.7.2) 

 
where µe is chemical potential of an electron, whose value is determined by 
the Fermi energy, and µB

+ is chemical potential of an ionized atom. 
 The physical meaning of the Fermi energy implies that 
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        ( )n N kT= −c eexp µ                                 (5.7.3) 
 
and that the Fermi level difference between an ionized and an un-ionized 
state can be taken to be the ionization energy of the defect. Then, with 
(5.7.3) and (5.7.2), we have 
 

      K B n
B

N
kTBe c

B= = −





+[ ]
[ ]

exp ε .                          (5.7.4) 

 
 Expression (5.7.4) often used in calculations is not rigorous enough. To 
demonstrate its inaccuracy, let us turn to quantum transition theory in the 
solid state, since its details have been described in many fundamental books. 
Without citing the details here, we will mention only the initial approxima-
tions. 
 The quantum transition of an electron from the ground to an excited state 
necessarily requires the analysis of the electron–lattice system as a whole. 
The transition changes the potential energy, or the lattice polarization. The 
Hamiltonian of the system contains the following terms: 
 
      ( ) ( ) ( ),H H r H r R H R= + +e eL L ,                        (5.7.5) 

 
where He  is the Hamiltonian of electrons (fast subsystem) in the field of 

atoms (slow subsystem), HL  is the Hamiltonian of free oscillations of 

crystal atoms, HeL  is an operator of electron–phonon interaction, r  is the 

combination of electron coordinates, and R  is the combination of nuclear 
coordinates.  
 An adiabatic approximation implies that the wave function varies slowly 
with the nuclear coordinates. The Hamiltonian terms in (5.7.5) including the 
derivatives with respect to the nuclear coordinates (a non-adiabaticity opera-
tor) are ignored. With the assumption of the fast and slow subsystems, the 
wave function can be represented as the product of the wave functions for 
electrons Φe( r , R ) and those for nuclei ϕL( R ) 
 
        ( ) ( )Ψ Φ= e Lr R R, ϕ .                                (5.7.6) 

 
The Schrodinger equation is divided into two equations: 
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  ( ) ( ) ( ) ( )− + =∑ −h M R W R R E R
2

2
1

8π
α α

α
∆ Ψ Ψ ΨL L L .                    (5.7.8) 

 
The first of the two equations describes the state of the electron subsystem in 
a field of motionless nuclei. The other one describes the motion of nuclei in 
an averaged electron field. The eigenvalues of electron energy W( R ) are, 
simultaneously, the potential energy of nuclei, known as adiabatic 
potentials. 
 A low vibration approximation and the transition to normal coordinates 
provide adiabatic potentials W( R ) as an expansion with respect to normal 
vibration modes. 
 Further calculations are unable to cover the whole vibration spectrum, so 
a one-coordinate approximation is used. This approximation means that the 
interaction with one, normally, totally symmetric vibration mode is dominant 
in a particular system [9]. It sets fairly rigid requirements on the nature of 
vibrations in the system, requiring, in particular, the dominant role of local 
vibrations. The conditions under which local and pseudo-local vibrations can 
arise in the vicinity of a defect are discussed in [9, 10]. 
 Of principal importance is the frequency of intramolecular vibrations in a 
crystal. If this frequency is in the range of allowed frequencies of the host 
crystal, the intramolecular vibration energy is generated into the crystal, and 
the vibration is damped fast. This kind of vibration is unable to make an ap-
preciable contribution to electron–phonon interactions in defect charge–ex-
change processes. On the contrary, if the frequency of “molecular” vibration 
is in the range of forbidden lattice frequencies, no wave is generated, and the 
vibrations are damped slowly. Vibrations involve only atoms located close to 
a defect. Such vibrations are referred to as local; they can make a consider-
able contribution to interactions. 
  However, the local vibration frequency must be beyond the resonance 
frequencies of the crystal; therefore, the energy of such vibrations must be 
higher than that of optical phonons in the host lattice. This condition cannot 
always be fulfilled for intramolecular vibration, but there are situations when 
local modes lying in the allowed frequency range are only slightly related to 
the host lattice or to a vibration symmetry not inherent in the crystal. Such 
vibrations are known as pseudo-local and may contribute much to the 
interactions. 
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 The solution to the Schrodinger equation in the one-coordinate approxi-
mation shows that the transition of an electron to an excited state not only 
raises the potential energy but changes the coordinate of its minimum. This 
supports the fact that the transition to an excited state due to an electron–
phonon interaction is accompanied by displacement of nuclei relative to their 
initial positions in the system ground state. Two solutions for potential ener-
gy in the one-coordinate model are described by simple formulas similar to 
(2.2.16): 
 

       E E Qg g= +1
21

2
ω , 

(5.7.9) 

       ( )20e2e 2
1 QQEE −ω+= , 

 
where Eg is the potential energy of the ground state and Ee is that of the ex-
cited state; ω is the energy of the phonon involved in the interaction, the 
subscripts g and e indicating that the effective frequencies differ in the 
ground and excited states; Q is a running value of the configuration coordi-
nate; Q0 is the coordinate of the potential energy minimum for the excited 
state. 
 Formulas (5.7.9) are given in a harmonic approximation. They represent 
intercepting parabolas known as a configuration coordinate diagram. It 
should be emphasized that the allowance for anharmonism causes deviations 
from the parabolic pattern. Besides, the curves do not intercept in the case of 
resonance interaction (Figure 5.2), in contrast to the case discussed earlier 
(Figure 2.17). 
 The electron transition due to an optical excitation involves the Frank–
Condon principle. The particle transition from the ground to an excited state 
occurs too fast for the equilibrium position of nuclei to change at that mo-
ment. For this reason, the optical transition with phonon absorption is shown 
in the diagram by a vertical arrow at point 0; in the case of radiation, the ar-
row is at point Q0. Transition energies with radiation and absorption are, re-
spectively, 
 
     e0

abs ω+=ν sEh ,  g0
rad ω−=ν sEh ,           (5.7.10) 

 
where s is a factor indicating the number of phonons emitted in the thermoli-
zation process and E0 = E2 – E1 is the difference between minimum energies  
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Figure 5.2. The coordination coordinate diagram of the defect ground and excited 
states in a crystal. 
 
of the excited and ground states, often termed as the energy of purely elec-
tron transition. The simple situation described by formula (5.7.10) implies 
that the phonon energy does not change during the system transition to an 
excited state. 
 The quantity s ω characterizes the energy released after the optical 
transition when the system tends to take an equilibrium position. The energy 
difference between optical absorption and radiation characterizes the lattice 
polarization energy. It is named the Frank–Condon shift, Stokes losses, or 
heat release: 
 
       ω=∆=ν−ν sEhh 2radabs ,                          (5.7.11) 
 
where ∆E is released heat. 
 The energy minimum position for the excited state is related to the value 
of factor s. To find this relation, let us express the optical transition energy 
through the factor s and Q0: 
 

      h E Q E sν ω ωabs = + = +0 0
2

0
1
2

.                    (5.7.12) 

Hence, we have 
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       sQ 20 = ,  2
02

1 Qs = .                          (5.7.13) 

 
 Classically, a nonradiative transition from the ground to an excited state 
must go through the interception point C of the potential curves. Absorbing 
one phonon after another, the system, which was initially at zero point, goes 
as far as the hump point C to join the potential curve for the excited state. In 
the configuration coordinates model, this is the process of thermal emission. 
Thermal activation energy is expressed as the energy of a purely electron 
transition and the heat release is described by a formula which can be 
derived from (5.7.9) by equating Eg and Ee. At first, we should find the 
configuration coordinate, at which the transition occurs: 
 

   ( )20
2

eg 2
2
1

2
1 sQEQEEE xxxt −ω+=ω=== .            (5.7.14) 

 
From (5.7.14), we have 
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Then we find the energy of a classical thermal transition: 
 

       ( )E Q
E s

sx x= =
+1

2 4
2 0

2
ω

ω
ω

.                     (5.7.16) 

 
 The reverse transition from point B to the ground equilibrium state 0 
must go through point C. This transition actually reflects electron capture by 
a center. Obviously, the capture must have activation energy EB (Figure 5.2): 
 

        ( )E
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.                                (5.7.17) 

 
 From the classical point of view, the transition from point A to point B is 
forbidden, because it represents tunneling of nuclei with a large mass and, 
hence, has a low probability. In practice, such transitions take place at low 
temperatures. A shift of the transition point leads to the temperature depen-
dence of capture coefficients, observed experimentally. One should bear in 
mind that the transition energies were derived for a simple situation, when an 
electron interacted with one type of phonon. This is very unlikely and re-
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quires the use of special models of the center. In addition, formulas (5.7.15) 
and (5.7.16) are valid at temperatures which are hard to obtain experimen-
tally, so it is unreasonable to use them for the calculation of electron–phonon 
interaction parameters. 
 Indeed, experiments involving activation energy measurement are carried 
out at relatively low temperatures, less than 400 K. Experiments using vari-
ous capacitance spectroscopic techniques are normally made at temperatures 
below room temperature. The temperature range for activation energy mea-
surements of shallow impurities is near the boiling point for nitrogen or be-
low it. In this case, the crystal lattice does not follow the classical restructur-
ing pattern during the impurity ionization but goes from A to B by tunneling 
with an activation energy E0. 
 The temperature range of defect formation processes occurring at observ-
able rates begins approximately at 600 K. This temperature is sufficient for a 
system to go to an excited state classically, so that formulas (5.7.15) and 
(5.7.16) should be valid.  
 To sum up, experimental activation energies measured at low tempera-
tures cannot always be used in equilibrium constants describing high tem-
perature defect formation, because the contribution of electron–phonon inter-
actions is essential. A configuration diagram shows the energy difference 
between purely electron, thermal, and optical transitions with absorption and 
radiation. It is also used to get a qualitative description of the Stokes shift 
and activation dependences of capture coefficients. Note that equilibrium 
constants of photochemical reactions differ from those for reactions occur-
ring in the dark. They depend on the spectral composition of the light flow 
inducing ionization. 
 The configuration coordinate model accounts for the spectral line broad-
ening. Indeed, absorption may occur not only at the zero point but at any 
value of Q, since the system can absorb or emit several phonons. The 
absorbed light energy changes, and transitions at non-zero points have a 
lower intensity since absorption of several phonons is very unlikely. As a 
result, the spectral line is broadened to form a bell-shaped band containing 
information about the parameters of electron–phonon interaction [11]. The 
analysis of the band shape can yield experimental parameters of this 
interaction to be used in further investigations. 
 It is worth making another comment. Thermal emission liberates charge 
carriers. An electron bound by a level is liberated to go to the conduction 
band and the hole goes to the valence band. For this reason, many semicon-
ductor researchers relate either the ground or an excited state to band poten-
tials. Strictly, this is not quite the case. The configuration coordinate model  
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was suggested to describe intra-center transitions. The potential curves de-
scribed above are the lattice energies in the vicinity of a defect creating a 
deep level, when an electron is in the ground and an excited state. The model 
does not allow for the transition from the bound state to the free state. Non-
radiative capture in this case accounts for the multiphonon transition mecha-
nism, or the energy transfer from a defect to the lattice. For this to happen, 
the electron must be captured, or, more exactly, become localized near the 
defect creating a deep level. So the configuration coordinate diagram does 
not show band potentials. Rather, one should speak of electron states, when 
an electron or a hole is liberated from a trap. The energy of such electron 
states coincides with the conduction band bottom or with the valence band 
top. 
 Defect ionization excites the crystal lattice and it becomes polarized. The 
effective frequency of a phonon involved in electron-vibrational transitions 
can change during the defect ionization and lattice transition to an excited 
state [12]. Sometimes, this can be observed experimentally [13]. 
 It follows from the foregoing that a rigorous theory is necessary for the 
calculation of quantities contained in the equilibrium constant (5.7.2) for the 
defect ionization reaction (5.7.1). At present, no theory of this kind exists for 
defect formation processes: the adiabatic approximation is inapplicable and 
no other approaches have been suggested. 
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Chapter 6 
 

Associations of Impurity Atoms  
 
 
 
6.1  ION PAIRS 
 
An important type of impurity interactions is ion pairing. The understanding 
of this phenomenon stems from the theory of electrolytes developed by De-
bye and Huckel, who considered the electrostatic interaction of oppositely 
charged ions in a solution. 
 The Debye–Huckel theory suggests that a dense atmosphere of oppo-
sitely charged ions is formed, with time, around every ion in an electrolytic 
solution. So, the interaction of ions is actually an interaction of ionic atmos-
pheres. The charge of an ionic atmosphere grows with total ion concentra-
tion in the solution and decreases with distance from the atmosphere center. 
In an external electric field, cations and anions move in opposite directions, 
together with their atmospheres slightly lagging behind, thereby retarding the 
movement of ions. Ions are also retarded because of the attrac-tion between 
oppositely charged ionic atmospheres. These retarding effects decrease ion 
mobility. So the internal energy of an electrolytic solution appears to be the 
sum of two components: one is U0 characterizing the inter-nal energy of the 
uncharged particle subsystem and the other is Ue charac-terizing the subsys-
tem of electrical charges. All thermodynamic functions are thought to consist 
of two parts corresponding to the uncharged and char-ged components of the 
solution. The behavior of uncharged particles is des-cribed fairly rigorously 
by well-known thermodynamic relations. But in order to describe the 
behavior of charged particles, one has to find the Helmholtz free energy due 
to the action of charges, or to inter-ion interactions. 
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 Debye and Huckel introduced two assumptions to solve this problem: 
they replaced the concept of ion point charges by that of a continuous charge 
distribution of variable density and assumed the field between interacting 
ions to be a Coulomb field. Both assumptions permitted the use of Poisson’s 
equation for charge distribution. With the allowance for the radial symmetry 
of the solution, they derived an equation describing the variation of electro-
static potential of any k-th ion, ϕk, along the r-axis: 
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where εs is the dielectric constant of the medium (solution). The exponent of 
this equation contains the quantity qZjϕk representing the energy of the j-th 
ion with charge Z in the field of the k-th ion.  
 An exact integration of equation (6.1.1) is impossible, so the Debye–
Huckel theory considers several approximations for some particular cases, of 
which the following two are of the greatest interest. 
 
 
6.1.1  Point ions 
 
For point ions, the desired potential of the k-th ion is 
 

        χ
ε

ϕ
s

k
k

qz−= .                                         (6.1.2) 

 
 Comparing this result with the point charge potential known from elec-
trostatics, ϕk = eZk/εsr, one can easily see that the quantity 1/χ having the 
dimensionality of length plays the same role as the distance r in the Coulomb 
law. Physically, 1/χ is the radius of an ionic atmosphere. Of course, one 
should remember that this concept is arbitrary, since the same ions cannot 
compose an ionic atmosphere because of thermal motion. This, in turn, leads 
to the fact that ions comprising an ionic atmosphere cannot preserve a fixed 
position in space. 
 
 
6.1.2  Ions with a fixed radius 
 
For ions with a fixed radius, the desired potential of the k-th ion, ϕk, is 
described as 

© 2004 by CRC Press LLC



        ϕ
ε

χ
χk

k

k

qz
b

= −
+s 1

,                                  (6.1.3) 

 
where bk is the final ion radius. This expression differs from (6.1.2) by the 
factor 1/(1 + χbk). 
 The Debye–Huckel theory was further developed by Byerrum [2] who 
rejected any attempts to integrate equation (6.1.1) but employed a variational 
approach to the calculation of ion concentration in the central k-th ion field. 
It was Byerrum who showed that there was a critical interionic distance r0 
characterizing the boundary between completely dissociated (r > r0) and as-
sociated (r < r0) ions, the latter producing pair associations. Hence, the con-
clusion was drawn about the production of ion pairs in concentrated solu-
tions. 
 The Debye–Huckel–Byerrum theory is, of course, valid only for liquid 
solutions, in which any spatial positions of ions are admissible and equally 
probable. In solid crystal solvents, ions occupy fixed positions and are 
incapable of moving at normal temperatures. Therefore, the concepts of ionic 
atmosphere and ion pairing are inapplicable directly to impurity ions. How-
ever, the basic features of ion pairing do manifest themselves in doped semi-
conductors because of a larger Bohr orbit of doping impurities. The latter 
fact is due to a small effective mass of electrons in semiconductors, to a 
nearly complete ionization of shallow hydrogen-like impurities, and to a low 
dielectric permittivity of semiconductor crystals. 
 An approach similar to that suggested by Byerrum can be applied to 
semiconductors. For this, let us calculate the probability G(r)dr of location 
of one-type impurity atom (A) at distance r from an ion of the other type (B). 
As in the Debye–Huckel theory, a crystal is regarded as a continuous 
medium, in which possible values of r are not discrete. 
 Let us bring the reference point of the coordinates into coincidence with 
the position of an A ion in the lattice. Delineate a sphere of radius r for 
consideration, such that there are no B ions within its volume. The 
probability of this event, W1, will be 
 

        ( )∫−=
r

r
rrGW

0

d11 ,                                      (6.1.4) 

 
where r0 is the shortest distance between ions. 
 The formation of an ion pair will be considered to occur when a B ion is 
at distance r + dr, i.e., when it is located in a sphere layer between spheres of  
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Figure 6.1. The distribution of ionic pairs as a function of interionic distance. 
 
radii r and (r + dr). This layer volume is approximately equal to 4πr2dr. The 
probability of this event, W2, will be 
 
        ( )rrFrW d4 2

2 π= ,                                     (6.1.5) 
 
where F(r) is the probability of an elementary pairing event 
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N are the concentrations of A and B ions, (assuming them, for simplicity, to 
be the same), and ∆Hr is ion interaction energy at distance r. 
 The probability of a concurrent event is defined as W1×W2. Hence, by 
equating this product to the probability G(r)dr, we find 
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The solution to this integral equation has the form 
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 This distribution function is shown in Figure 6.1. Its extremal points are 
described as 
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 Therefore, the curve in Figure 6.1 has two maxima. The first peak at rc, 
corresponding to the minimum distance between ions, can be treated as the 
“short-order range” maximum and the peak at rm as the “long-range order” 
maximum. It is clear from (6.1.10) that rm coincides with the mean interionic 
distance for a random ion distribution. The subdivision of ions into two 
groups makes it possible to consider all ions separated by distance rc ≥ r  ≥ r0 
as being bound as ion pairs and all ions separated by distance r > rc as being 
free. 
  It follows from (6.1.9) that rc decreases with increasing temperature, and 
Figure 6.1 shows that ion pairs in this case will disappear. They will disap-
pear completely at rc = r0. One can easily derive from this, using (6.1.9), the 
criterion for ion pairing: 
 
         ∆H kTr >> 2 .                                     (6.1.11) 
 
In other words, ion pairs can exist until the ion interaction energy remains 
greater than the energy of ion thermal motion. It should be emphasized that 
this criterion is totally valid only for a continuous medium, but a crystal 
doped with impurities is, strictly, not continuous. 
 Ion pairs can be regarded as new defects, and their concentration can be 
calculated in terms of the active mass law. For this, ion pairing will be repre-
sented as a chemical reaction: 
 
        ( ) rr H∆++ →

← ABBA .                             (6.1.12) 
 
 The concentration of ion pairs is defined by the ratio 
 
    ( )[ ] [ ][ ] ( ) ( )kTHfZK rrrr r

∆−== expBAAB AB ,          (6.1.13) 

 
where Z is the number of ways of ion pairing; in other words, Z reflects the 
configuration component of entropy variation: 
 
        ( )Z S k= exp ∆ conf .                                (6.1.14) 

© 2004 by CRC Press LLC



For an AB ion pair, Z is equal to the number of equivalent positions at the 
shortest distance from A, which can be occupied by B ions, or, vice versa, to 
the number of positions occupied by A ions at the shortest distance from B. 
The quantity f reflects the other component of entropy variation—the vibra-
tional component ∆S: 
 

         ( )f
S

k
=

exp ∆ vib .                               (6.1.15) 

 
 In equation (6.1.13), [A] and [B] are concentrations of free, unpaired 
ions. If there are pairs with a different interionic distance, or with variable r, 
the concentration of unpaired ions of one kind, for example, A ions, will be 
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where n is the number of ion pairs with variable r, meeting the criterion of 
(6.1.11). 
 Equation (6.1.13) can be re-written as 
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This equation refers to the equilibrium of ion pairs of one kind (one fixed r 
value at K) with all other ions. The description of a crystal may need n equa-
tions of the (6.1.17) type. For simplicity, we will assume NA = NB = N, as 
before. Then, we will have 
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 Since the calculation of KΣ is performed here with respect to discrete 
values of r, the crystal, therefore, is not considered in this approach as a con-
tinuous medium. Such an analysis was carried out in [3]. When the crystal is 
considered as a continuous medium, the sum in (6.1.18) is replaced by the 
integral 
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 The two approaches give close results for one kind of ion pairs. Indeed, 
in many cases, the concentration of ion pairs with the shortest interionic dis-
tance is much higher than that of all other ion pairs. So, these latter can be 
ignored, and the interaction will be defined by one ∆H value. 
 A still simpler picture can be obtained if one has a clear understanding of 
the nature of interaction forces. In principle, variation in ion pairing enthalpy 
∆H may be due to various causes: a Coulomb interaction with or without a 
charge polarization effect, the formation of chemical (e.g., covalent) bonds, 
elastic interaction, or vibrational effects. 
 It is generally accepted that a Coulomb interaction is the most important 
factor, whereas the contribution of other forces is so small that it is usually 
neglected. In our view, of greater importance, sometimes, is the affinity of 
one kind of ions to some others, or the formation of stable chemical bonds. 
Evidence for this was given in [4]. The authors studied the solubility iso-
therms for AIII and BV impurities in germanium and silicon at an equiatomic 
ratio of the doping impurities. They observed a stable chemical interaction 
between these impurities, producing chemical complexes. 
 If we assume that a Coulomb interaction makes the largest contribution 
to ion pairing, then we have 
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2

ε
.                                (6.1.20) 

 
 Ignoring, however, the comments above, we can show in the first ap-
proximation with (6.1.20) that the integral defining KΣ in (6.1.19) is 
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where Q(α) is the Byerrum function of argument α = ZAZBq2/εr0kT tabulated 
in [2]. 
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6.1.3  Ion pairing manifestation in semiconductor properties 
 
The above simplified approach to the description of ion pairing was suf-
ficient while ion pairs were detected experimentally in the variation of soli-
dus lines, in impurity diffusion, and in electron scattering phenomena. A 
fairly detailed description of pairing effects can be found in the books [5, 6]. 
However, the formation of ion pairs proved to be a much more complicated 
process, as soon as its effect was revealed in charge carrier recombination in 
semiconductors. 
 To understand this phenomenon, let us turn to possible electron transi-
tions in the band diagram of a semiconductor containing simple ions and ion 
pairs. Figure 6.2 shows schematically unpaired ion levels Ed and Ea (r = ∞), 
when interimpurity recombination is impossible. But if two ions produce a 
pair, the energy levels of each ion in the pair change, approaching the al-
lowed band edges. The level of the positively charged donor goes up because 
the negative charge of the acceptor partner is now located at a shorter dis-
tance r, so that it is difficult for the donor to attach an electron. Similarly, it 
is difficult for the acceptor to attach a hole, and so its level in the forbidden 
band goes down. 
 Quantitatively, the level will change by the value 
 

          ∆E q
r

=
2

ε
,                                    (6.1.22) 

 
and since ion pairs may have a set of r values, a set of paired ion levels will 
 
 

 
 
Figure 6.2. Paired ion energy levels as a function of interionic distance: 1,2,3, ... k – 
pair numbers with decreasing interionic distance r in a pair. 
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Figure 6.3. Photoluminescence spectrum of Zn-S ion pairs in GaP: the pair number 
decreases with decreasing interionic distance in a pair. 
 
arise in the crystal. Some levels corresponding to small r can be pushed out 
of the forbidden band into allowed bands. 
 Since the ions in a pair are close to each other, the Coulomb interaction 
occurring between them may produce an electron–hole recombination. This 
is what is known as interimpurity recombination [7]. Any recombination 
process is preceded by generation of excess carriers, for which some energy 
is required. In the reverse process (recombination) this energy is released. 
Sometimes, it is released as light quanta. This radiative recombination may 
also occur in a system of paired ion levels, so the crystal will emit the whole 
spectrum of thin lines with the energies 
 
         ( )h E E rν = −d a .                               (6.1.23) 

 
 Experimentally, a luminescence spectrum of this kind was first observed 
in ZnS doped with Cu (acceptor) and Ga (donor) [8], as well as in GaP 
doped with S and Zn. Figure 6.3 illustrates a spectrum observed in that work. 
One can identify three spectral regions. In the low energy range, there is a 
wide band with a maximum at Es, where some lines are unresolvable. Then 
there is a region of well-resolved lines and, finally, a region where this series 
of lines stops abruptly at ∼2.31 eV. 
 Ion pairs with variable r can be conveniently described by an integral 
number m (coordination number), such that m = 1 corresponds to the most 
“packed” pair, m = 2 to a pair with the next degree of packing, and so on. 
The coordination numbers are shown in Figure 6.3 near the respective lines. 
One can see that experiments reveal ion pairs with a fairly large coordination 
number. 
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 Since the time of that publication [8], the luminescence effect of ion 
pairing has been observed in many AIIIBV and AIIBVI crystals. But one 
should bear in mind that interimpurity recombination can often occur in a 
nonradiative way. Besides, other recombination channels in a crystal may 
dominate interimpurity recombination, which makes experimental observa-
tion of spectra like the one in Figure 6.3 possible only under very strict con-
ditions. This does not mean that, otherwise, ion pairs are absent. This does 
not mean either that the formation of all m ion pairs must always be taken 
into account. The physical properties of, and processes in, semiconductors 
have different sensitivities to the presence of ion pairs, so every particular si-
tuation should be analyzed to see whether a simple theory is suitable for the 
treatment of experimental data. 
 The above consideration of ion pairing implied a fairly high mobility of, 
at least, one ion in a pair. This is a very important condition because, other-
wise, the ion distribution in a crystal will always be only random, without 
any correlation in their arrangement.  
 The kinetic feasibility of ion pairing is easy to evaluate by equating r to 
the diffusion pathway from the known relation 
 
         r l Dt= = ,                                      (6.1.24) 
 
in which D is a diffusion coefficient and t is diffusion time.  
 A trivial conclusion follows from (6.1.24): mobile atoms are more liable 
to produce ion pairs. For this reason, ion pairing may be essential to the 
process of solid solution decomposition. Indeed, an excess impurity atom 
liberated from a lattice site occupies an interstitial position (and it may take 
an opposite sign). Many impurity ions in interstitial positions possess rather 
high diffusion coefficients [6]. For this reason, an interstitial ion has a high 
probability to encounter an oppositely charged ion substituting a lattice site. 
They interact to produce a stable ion pair. The interaction of impurity atoms 
with vacancies is a particular case of ion pairing between a vacancy and a 
donor of opposite signs. 
 
 
 
6.2  POLYTROPIC IMPURITIES 
 
In addition to ion pairs, a crystal, especially when doped heavily, may 
contain associated defects including impurity atoms. Such associations were 
first observed independently by two groups of researchers [10, 11] during the  

© 2004 by CRC Press LLC



 

 
 
Figure 6.4. A comparison of concentrations of carriers n0 and impurities N in semi-
conductors:  1 – Ge<Sb>; 2 – Ge<As>; 3 – Si<As>; 4 – GaAs<Te>; 5 – GaAs<Se>; 
6 – GaAs<S>. 
 
investigations of impurity ionization in germanium and silicon. Later, simi-
lar experiments were carried out with binary AIIIBV compounds [12–14]. The 
experimentally observed effect (Figure 6.4) is that, beginning with some 
threshold impurity concentrations, there is a regular discrepancy between the 
chemical concentration of the doping impurity, N, and the concentration of 
charge carriers (electrons), n, found from Hall coefficient measurements. 
 These results convincingly indicate that not all of the donor impurity 
present at a high concentration in the crystal enters a substitution solid 
solution but exists in several states simultaneously. Since the problem of 
exact identification of the state of impurity atoms in heavily doped crystals 
has long been debated, such atoms even acquired a special name—polytropic 
(multistate) impurities. Some suggestions have been made [15] concerning 
the factors producing polytropic impurities, among which the main but 
poorly identifiable factors are the common second-phase inclusions and the 
formation of impurity associates in the still one-phase solution. 
 Let us consider the thermodynamics of associate formation, as was done 
in [16]. Suppose m donor atoms (D) unite with a lattice defect C, or without 
it, to form a complex Z q possessing charge q. This process can be 
represented as the reaction  
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       ( )mD m q e C Z q+ −
←
→+ − + 0 .                        (6.2.1) 

 
 If equilibrium is established at a certain temperature T, at which electrons 
obey Boltzmann’s statistics, the equilibrium concentrations of the reactants 
satisfy the active mass law 
 

        [ ] ( )[ ]Z K T D nq m m q= + − .                          (6.2.2) 

 
Here, we are making use of the fact that the concentration of intrinsic defects 
[C0] depends only on temperature, so it has been included in the equilibrium 
constant K(T).  
 Donors are assumed to be completely ionized at all temperatures. The 
neutrality equation for temperature T is 
 
       ( ) [ ] [ ]n T D q Z pq= + ++ .                                (6.2.3) 

 
At room temperature, the concentration of holes in this equation can be ne-
glected: 
 
        [ ] [ ]n D q Zq

0 = ++ .                                   (6.2.4) 

 
 Substituting (6.2.3) into (6.2.4) and using the relation p × n = ni

2, we find 
that the equilibrium electron concentration n(T) at high temperature T is re-
lated to the concentration n0, measured at room temperature T0, by the ex-
pression 
 

       n n n n= + +





1
2

40 0
2 2

i ,                                (6.2.5) 

 
where ni is the intrinsic electron concentration at temperature T. 
 If the condition 
 
         n n0

2 24>> i ,                                           (6.2.6) 
 
is fulfilled, expression (6.2.5) will have a simple form: 
 
          n n= 0 .                                            (6.2.7) 
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 Total chemical concentration of donor impurity, N, is a sum of concen-
trations of free donors and impurity atoms involved in defect associates, of-
ten termed as complexes: 
 
        [ ] [ ]N D m Zq= ++ .                                   (6.2.8) 

 
 By eliminating [D+], [Z q], and n from equations (5.3.2)–(5.3.5), we get a 
general relation between n0 and N: 
 

      ( ) ( )
( )

N n K T
n mn qN

m q

m q m

m− =
−

−

−

−0
0 0

1 .                     (6.2.9) 

 
 We will now consider some particular cases which seem to be most prob-
able. 
 A neutral complex. By putting q = 0 in (6.2.9), we find 
 
       ( )N n mK T n m= +0 0

2 .                                    (6.2.10) 
 
It follows from (6.2.10) that N : N = n0 in the low concentration range, while 
at high concentrations N, we have 
 
        ( )N mK T n m= 0

2  
or                               (6.2.11) 

      log log logn
m

mK
m

N0
1

2
1

2
= − + . 

 
 Thus, the function n0(N) in the logarithmic scale will have a straight 
asymptote 1/2m, as is shown by curve 1 in Figure 6.5. 
 A charged complex. We will consider the simplest charged complex, in 
which a donor atom unites with a lattice defect. Putting m = 1 in (6.2.9), we 
find 
 

       ( )
( )

N n
K T n

qK T n

q

q=
+

+

−

−0
0
1

0
1

1

1
.                                (6.2.12) 

 
Positively charged complexes (q = +1) can be excluded from consideration 
at once, because, at best, they do not decrease the electron concentration n. 
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Figure 6.5. The n0(N) curves for impurity complexation: 1 – formation of neutral 
complexes; 2 – formation of singly charged complexes. 
 
Generally, their formation at q > +1 would lead to an excess of the concen-
tration n over the doping impurity concentration N, but this has never been 
observed experimentally. 
 If a complex has a negative charge, then we have 
 

    q q= −   and  ( )
( )

N n
K T n

q K T n

q

q
=

+

−

+

+0
0
1

0
1

1

1
.       (6.2.13) 

 
 At low concentrations N, the curve looks as n = N. At large N, n0 reaches 
saturation (curve 2 in Figure 6.5) to give a shoulder: 
 

        ( ) ( )n
q K T

q0 1 1
sh = + .                             (6.2.14) 

 
In particular, for q = –1, we have 

         ( ) ( )n
K T0

1
sh = .                               (6.2.15) 

 
 Therefore, the experimental n(N) curves can be accounted for by 
impurity complexation. 
 However, the curves will have the same shape when impurity atoms are 
located in the second-phase inclusions. Therefore, the inequality n < N can-
not be considered to indicate unambiguously the formation of complexes. 
 In reality, the presence of polytropic impurities implies the existence of 
impurity states which remain, chemically, in the one-phase solution but are 
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the product of impurity associations. Such impurity complexes manifest 
themselves in many physical phenomena. For example, their presence in a 
crystal is to affect the relaxation time of charge carriers, τ, in their scattering, 
as well as the mobility of electrons and holes, which  is directly related to τ: 
u = eτ / m. 
 Suppose M atoms have united into Zq associates. Since the probability of 
electron scattering is proportional to the number of scattering centers and 
their square charge, the contribution of M singly ionized free atoms to the 
mobility will be inversely proportional to M. But M atoms associated into 
complexes change the mobility in inverse proportion to Mq2/m, where m is 
the number of impurity atoms in a complex. The ratio of these quantities, 
q2/m, defines the mobility change due to complexation. 
 There may be three situations concerning the mobility:  
 – at q2/m > 1, the mobility drops; 
 – at q2/m = 1, the mobility does not change; 
 – at q2/m < 1, the mobility rises.  
 It follows that the formation of neutral complexes (q = 0) must increase 
the electron mobility, while the formation of a complex containing one im-
purity atom (m = 1) must leave it, at best (i.e., at q = –1), unchanged; but  the 
mobility generally decreases. If a singly charged complex contains more 
than one impurity atom (m > 1), the electron mobility will increase. 
 The effects of impurity complexes manifest themselves in many other 
physical properties of semiconductors, in particular in their heat conductivity 
[27], mechanical properties [18], diffusion [19], additional optical absorp-
tion, for example in GaAs [20]. Being centers of nonradiative recombination, 
such complexes reduce the quantum yield of photo- and electroluminescence 
[21].  
 We will not dwell on the effects of complexes on the physical properties 
of crystals, because this would take too much space. We will only discuss 
the available approaches to the explanation of the nature of impurity 
complexes in heavily doped semiconductors. There are two approaches to 
this problem. The chemical approach considers the interaction 
thermodynamics of two impurity atoms. Like in the case of ion pairing, a 
crystal is regarded as a solution which involves interactions producing AA or 
BB ion pairs, in addition to AB pairs. Several workers have emphasized the 
possibility of formation of more complex polymeric groups consisting of 
more than two atoms [22–24]. The thermodynamic ratios discussed above 
with reference to ion pairs are, in principle, applicable to complexes. In this 
case, the enthalpy variation ∆H cannot, of course, be due to a Coulomb 
attraction. Formally, this approach permits the functional relation n = f (N) to 
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be found and the theoretical curve to be fitted to the experimental one by 
choosing the appropriate value of m for the number of atoms in a complex, 
Am [15, 25]. 
 The formation of impurity complexes in AIIIBV semiconductors was dis-
cussed in [26, 27] in terms of regular solution theory. The authors calculated 
the Gibbs free energy variation for a large number of reactions in AIIIBV-im-
purity systems and showed that the decrease in electrical activity in the Te, 
Se, S series (Figure 6.4) correlated with the growing chemical strength in the 
A2Te3, A2Se3, A2S3 series. Compounds of Zn and Cd acceptors with BV ele-
ments appeared to have a lower strength than AIIIBV compounds themselves, 
and this fact correlates with the absence of polytropic p-semiconductors. 
 The chemical approach was able to provide only correlations or, at best, 
qualitative descriptions of experimental facts. Its principal limitation was 
that the nature of forces keeping ions of like sign together remained unclear. 
To explain why donors of like sign could keep together, an electrolytic 
model was proposed assuming the presence of an oppositely charged ion at 
the coordination sphere center. It is only a vacancy that may be the central 
ion in an n-crystal, because one can hardly imagine the presence of an accep-
tor impurity in quantities commensurate with the donor concentration.  
 Therefore, if a vacancy in Ge and Si is considered to have a four-fold 
charge, the crystallographic model of a donor complex coherent with the 
host lattice will be VD4. This makes it clear why such complexes are absent 
when Ge and Si are doped with acceptors: vacancies and acceptors then have 
the same sign. 
 The suggested model of a complex as a hollow tetrahedron accounts for 
the fact that a further increase in the donor concentration leads to the forma-
tion of second-phase seeds. A comparison between the tetrahedral VAs4 
group and the arsenic structure shows that interatomic distances change but 
little, and the mutual orientation of atomic layers is preserved. The rear-
rangement reduces to a by-pair approach of layers, made up of “polymer-
ized” tetrahedra, to each other. 
 This model also offers only a qualitative explanation; besides, it raises 
some doubts. First, a vacancy is to be bonded to four donor ions, which 
seems, intuitively, very unlikely. Second, the state diagrams indicate that the 
equilibrium phase in Ge and Si doped with arsenic should be GeAs or SiAs, 
respectively, rather than metallic As. Finally, a four charged vacancy appears 
quite unlikely. Of course, if a vacancy is doubly charged, this will give rise 
to the VD2-type complexes, and the reasoning concerning their polymeriza-
tion will remain valid. In any case, the phenomenon of polytropy is currently 
attributed to the formation of associates, in which donor atoms (probably, 
ions) interact with charged vacancies. 
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 The necessary number of vacancies for complexation to occur seems to 
be always present in a crystal. These may be vacancies which were in equi-
librium at high temperatures, and all processes of their binding to donors 
occur on crystal cooling from the high growth temperatures (or in a special 
thermal treatment). Semiconductor compounds of the AIIIBV group may con-
tain vacancies produced due to deviations from the real crystal 
stoichiometry. Finally, these may be vacancies formed by sublimation of 
excess atoms from the lattice sites. 
 An interesting mechanism of vacancy interaction with impurity ions may 
take place when the number of vacancies in a crystal is very small. This 
mechanism may be termed a “vacancy pump.” At any given moment of time, 
the number of vacancies and, hence, of complexes, is quite small, but these 
complexes migrate to some sinks, say, to dislocations. When an impurity 
atom reaches a sink, it becomes fixed to it, whereas the vacancy disappears. 
The disappearance of a vacancy in one place gives rise to a vacancy in ano-
ther place. Migrating through the crystal, a vacancy has a chance to encoun-
ter an impurity atom, to interact with it, and to “tow” it to a sink; then the 
process is repeated.  
 This interaction model was suggested in [29] to describe decomposition 
of metallic solid solutions, but it is quite applicable to semiconductors be-
cause a vacancy–impurity complex diffuses much faster than a single impu-
rity atom or a vacancy [30]. 
 
 
 
6.3  COMPLEXATION THERMODYNAMICS IN A 

SEMICONDUCTOR COMPOUND 
 
Let us consider a semiconductor compound in equilibrium with the ambient. 
The probability for point defects to associate and produce secondary com-
plex defects increases with decreasing temperature. This is due to electro-
static and elastic interactions, on the one hand, and to the fairly high mobility 
of vacancies and interstitial atoms at normal temperatures, on the other. Mi-
grating through a crystal, a vacancy may come to occupy a site next to an 
impurity atom. They may interact to produce a donor–acceptor complex [31–
34]. The diversity of such defects increases with the number of semiconduc-
tor constituents. 
 It is believed that a complex is produced by an electrostatic interaction 
between oppositely charged defects. But the association of defects decreases 
the lattice stress and is energetically profitable. Evidently, a gallium vacancy 
forms more stable complexes with impurities located in the anion sublattice, 
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because it comes closer to such an impurity. As for IV-group elements 
producing donor states by substituting cation atoms, a vacancy cannot come 
up as close to an impurity, so the complex produced is less stable. 
 High concentrations of doping impurities may stimulate the formation of 
compounds which can affect the solubility of these impurities. Such 
processes can occur at heterojunctions and during the formation of natural 
oxides on the semiconductor surface. 
 Thermodynamically, the complexation of intrinsic nonstoichiometric 
defects and molecules statistically distributed in the crystal bulk and not 
leading to the second phase sublimation can be described by the same 
theory. However, the details of defect formation theory are not sufficiently 
elaborated, especially for semiconductor compounds. In this case, it is hard 
to employ a method based on the active mass law in view of the large 
number of reactions to be taken into account. The difficulties associated with 
the choice of reactions and unknown equilibrium constants rise, and so it is 
preferable to minimize the Gibbs potential of a defect crystal. 
 This problem was generally solved for simple non-interacting defects 
[35, 36]. In [36] the problem solution was generalized for a crystal 
containing simple defects and complexes consisting of several intrinsic 
defects and impurity atoms. The results obtained allow the treatment of 
various situations, and this will be demonstrated by several illustrations. 
 Complexation occurs during crystal cooling from the growth 
temperature. The established concentrations of host atoms do not change 
because the exchange of atoms between the crystal and the ambient is 
limited. The concentration of point defects varies due to their association  
and interaction with the sinks (dislocations, grain boundaries, etc.). 
 Consider an idealized system consisting of a crystal AB containing op-
positely charged impurity atoms and vacancies. Let us calculate the equilib-
rium concentration of donor–acceptor complexes, minimizing the Gibbs po-
tential of the system. A real crystal containing simple point defects and 
complexes can be regarded as an ensemble of particles statistically 
distributed over definite positions. A particle is understood as a lattice site or 
interstice, or their combination. Then this particle is a simple defect 
occupying one position, and the complex occupies several positions simulta-
taneously. 
 The system of crystal particles is in equilibrium with the ambient, so that 
the total number of particles remains the same. Concentrations of complexes 
of various types will be denoted as Nc. Every complex includes several sim-
ple particles. The number of simple particles of one kind in a complex will 
be denoted as m. 
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 Particle concentrations are not independent but are related by the conser-
vation laws for the number of positions in every sublattice 
 

      ϕβ β
α
β

α
β

α
= − + ∑







 =∑N N N mc c

c
0 ,                    (6.3.1) 

 
the number of atoms of each kind 
 

      ϕα α α
β

α
β

β
= − + ∑







 =∑N N N mc c

c
0 ,                   (6.3.2) 

 
the total number of defects of a particular type 
 
      ϕα

β
α
β

α
β

α
β= − − ∑ =N N N mc c

c
tot 0 ,                        (6.3.3) 

 
the total number of particles in the system 
 

      ϕ α
β

α
β

α β

N
c c

c
N N N m= − + ∑







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,
,                         (6.3.4) 

 
and the electroneutrality condition 
 

  ( )ϕ δα
β

α
β

α
β

α βα β
α
β

e = − + − ∑∑ + ∑ − ∑








 −n p n N d n N dc

c
c c

c,,
1 .      (6.3.5) 

 
 These laws permit allowance for all aspects of a statistical interaction in 
the system. Note also that there are two new conservation laws here, as com-
pared with free defects, which are to be taken into account when treating 
complexation processes. The two laws are expressed by (6.3.3), which 
allows for the involvement of structural elements of a real crystal to various 
complexes, and (6.3.4), which allows for the fact that a complex can occupy 
positions in different sublattices and types of crystal interstices. 
 The number of states with the same number of particles of each kind 
having the same free energy but differing in the spatial arrangement of parti-
cles determines the thermodynamic probability. States differing in the rear-
rangement of one kind of particle are taken to be identical; therefore, such 
rearrangements must be excluded from thermodynamic probability calcula- 
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tions. In addition, a complex can occupy a lattice position in several equiva-
lent ways by varying its orientation relative to the crystal lattice directions. 
The number of such orientations is known as degeneracy multiplicity.  
 Let us discuss a possible method of degeneracy multiplicity calculation. 
The set of symmetry elements of an ideal lattice forms a point group. The 
presence of a defect in the crystal lattice reduces the symmetry. However, 
the set of symmetry elements of this lattice forms a subgroup of the point 
group.  
 As in the case of free defects, the lattice sites will be occupied by atoms. 
The crystal energy states will be occupied by electrons and holes. To calcu-
late the thermodynamic probability for the rearrangement of complexes, let 
us do the following. We will take one of the atoms as the base one and place 
it at different lattice sites. The other atoms of this complex will arrange 
themselves automatically. The various orientations of the complex in the 
lattice and, hence, the concurrent growth of thermodynamic probability, is 
taken into account by the degeneracy multiplicity coefficient derived above. 
The expression for the thermodynamic probability will have the factor Yc

N c . 
 The account of the degeneracy multiplicity of energy states associated 
with complexes gives rise to factors Rc and rc, and the account of electron 
distribution over complexes gives rise to factors Nc![(Nc – nc)!nc!]–1. There-
fore, we can write the thermodynamic probability for a semiconductor com-
pound containing simple defects and associates as 
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.              (6.3.6) 

 
 The Gibbs potential of the system under consideration consists of the 
thermal and configuration components 
 
        ∆ ∆ ΘG G W= −T ln ,                                 (6.3.7) 
 
where Θ = kT, ∆GT is the thermal component of Gibbs potential, including 
defect formation enthalpy and thermal entropy due to the change in the pho-
non spectral density of an ideal crystal during defect formation. 
 Indeed, a real crystal lattice can only be matched by the same operations 
as the ideal lattice, but the number of operations will be smaller because 
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some symmetry elements will be eliminated by the symmetry reduction. All 
symmetry operations of a particular subgroup leave the complex in situ. The 
thermodynamic states obtained by these transformations are identical. The 
orientation of a complex can be changed using the point group symmetry 
operations not included in the real lattice subgroup. It can be concluded from 
Lagrange’s theorem that the degeneracy multiplicity of defects will be equal 
to the real lattice subgroup index. 
 As an illustration, consider a donor–acceptor complex consisting of a va-
cancy and an impurity atom occupying adjacent sites. Most semiconductors 
form high symmetry ideal lattices of the On or Td isomorphous groups with 
the order 24. It is easy to see that a real lattice with this complex possesses 
the point group C3V  with the order 6. 
 The degeneracy multiplicity factor (Yc) is equal to the subgroup index 
which is the quotient of division of the ideal crystal group order by the real 
crystal subgroup order. In the illustration just given, this factor is 4. For a 
simple defect, this result can be obtained without resorting to group theory. 
The appearance of degeneracy multiplicity due to the spatial orientation of 
the complex as a whole is also a specificity of defect association. 
 To conclude the discussion of statistical interaction during complexation, 
let us consider the procedure of finding the thermodynamic probability. The 
thermal component can be conveniently expressed by introducing what is 
known as Gibbs partial potentials 
 

g H S Tα α
β

α
β= − T , 

 
   g H S Tc c cT= − , 

 
where Hc is enthalpy and ScT is thermal entropy of complexation. These pa-
rameters take into account interactions and changes in the lattice vibrations 
during complexation. 
 Crystal energy increases owing to defect formation and charge carrier 
excitation. The former is allowed for by summing up all products of Gibbs 
partial potentials and the concentration of respective defects, while the latter 
is taken into account by including the products of electron and hole concen-
trations and respective transition energies. The electron transition from the 
valence to the conduction band increases free energy by the forbidden gap 
energy. The number of such transitions is equal to that of free holes, except 
for the electrons leaving the valence band to occupy acceptor states. The 
transition of electrons from donor states to the conduction band and from the 
valence band to acceptor states also increases the system free energy. Con-
sidering the foregoing, the thermal component of Gibbs potential is 
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 To find equilibrium concentrations of defects, one should minimize the 
functional 
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where λα, λβ, λα

β, λe, and λN are Lagrange indeterminate factors. The mean-
ing of λα, λβ, and λe was defined in Section 1.2, but only the first and the 
third factors retain their meaning.  
 The appearance of factors λα

β and λN is related to the conservation laws 
to be taken into account in complexation. If there is a possibility to neglect 
these processes, λα

β can be made to tend to zero. This becomes possible, for 
example, at high temperatures when the probability of defect association is 
low. 
 Let us now substitute expressions (6.3.4) through (6.3.7) into (6.3.9) and 
write explicitly the functional to be minimized 
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(6.3.10) 
 To find equilibrium defect concentrations, it is necessary to take partial 
derivatives of the functional (6.3.10). Some of them make the physical 
meaning of the Lagrange factors in this equation clear.  As a result, we find 
 
       λe F= E ,  λ µα α= .                                (6.3.11) 
 
 The use of the conservation laws for structural elements in complexation 
and for the total number of particles changes the factor λβ. It follows from 
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∂ β

βN
= 0   that λ µ λβ

β β
β= − −Θ log N N .           (6.3.12) 

 
 The physical meaning of λN is found by calculating the derivative with 
respect to the total number of particles. It follows from 
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By substituting (6.3.12) into (6.3.13), we find 
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 Equilibrium defect concentrations are found from the respective deriva-
tives being equal to zero. Begin with point defects: 
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Using these expressions and (6.3.10) through (6.3.14), we find 
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where gα

β = gα
β′  + µβ

0 – µα
0. The account of complexation processes has 

given another exponential factor indicating the fraction of free point defects. 
This factor is 
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where Nα

β is the number of free point defects and Nαtot
β is the total number 

of defects, including those bound in complexes.  
 One should note that the total number of all sorts of particles, N, was re-
duced and is absent from (6.3.18). This is because we are discussing point 
defects which occupy positions only in one sublattice or one type of inter-
stice. 
 Let us find derivatives related to the concentration of complexes: 
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 As was mentioned above, mαc

β is the number of one type of structural 
element in a complex. Consequently, if some constituents of a sublattice or 
of one type of interstice are not involved in complexation, then mαc

β are 
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equal to zero. For this reason, the indices in (6.3.20) acquire values meaning-
ful only for a particular complex: 
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 From (6.3.20) and (6.3.21), we have 
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The concentration of electrons bound by complexes is 
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 Formula (6.3.23) describes the concentration of complexes of any rea-
sonable complexity and the donor and acceptor configurations. The concen-
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tration is proportional to the concentration of constituents of a complex to a 
power equal to the number of these constituents. Formulas (6.3.17) and 
(6.3.23) permit the analysis of crystal properties, using fairly complicated 
defect formation models. 
 
 
 
6.4  IMPURITY–VACANCY COMPLEXES IN AIIIBV 
 COMPOUNDS 
 
Cation vacancies in AIIIBV compounds have a fairly high mobility and are 
multiply charged acceptors [32, 37]. Consequently, the probability of inter-
action between these vacancies and donor impurities is quite high. Chokral-
sky-grown n-GaAs samples possessing a high concentration of vacancies at 
the growth temperature have a luminescence spectrum with a maximum at 
1.17–1.20 eV at 77 K. In crystals doped with Te, this band is attributed to the 
complex of a Ga vacancy and a Te donor atom substituting As at the 
adjacent lattice site [32]. Similar centers were identified in GaP [38, 39]. The 
authors of [40] noticed that the symmetry of the complex contradicted the 
model of two defects at neighboring sites in the anion and cation sublattices. 
The symmetry was found to be lower and multiwedge, rather than three-
wedge. A detailed study of polarized luminescence in uniaxial deformation 
led to the conclusion that the symmetry reduction was due to additional 
distortion by the Yan–Teller interaction, rather than to the attachment of a 
third constituent [41, 42]. The same authors observed an alignment of 
complexes along a certain crystal direction under the deformation action and 
studied the tree-particle complexes VAsVGaSnAs and VAsVGaTeAs. In spite of 
the Yan–Teller interaction reducing the symmetry, the first type complexes 
are thermodynamically simple two-particle complexes. 
 Let us discuss the complexation of charged vacancies and impurities of 
opposite signs. These structural elements are attracted to each other by Cou-
lomb forces to produce a neutral donor–acceptor complex. Suppose that a 
particular vacancy interacts with a particular impurity. The numbers of free 
vacancies, complexes, and impurities are related as 
 
      NV + Nc = Ntot,  Nim + Nc = Nim tot,                 (6.4.1) 
 
where Ntot is the total number of vacancies after the crystal growth and Nim tot 
is the total number of impurities. From formula (6.3.23), we have for a do-
nor-type complex: 
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where N is the total number of positions and factor 4 is a degeneracy factor. 
 Suppose that the concentration of impurity atoms is larger than that of 
vacancies. The condition Nim tot >> NV tot automatically yields Nim tot ≈ Nim. 
From the conservation law for the number of vacancies, we have 
 

        N
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,                                     (6.4.3) 

 
where 
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 The interaction of partners in a donor–acceptor complex is mainly of the 
Coulomb type. If an n-semiconductor has a shallow donor and a deep accep-
tor, the former will be charged positively and the latter negatively; as a 
result, they will be attracted to each other. However, the interaction enthalpy 
is not high [43]. Besides, it is negative because the interaction results in 
attraction. For this case, the following inequalities are satisfied: ′N >> NV tot 
and Nc ≈ NV tot. In other words, all vacancies produced during crystallization 
are bound into complexes. 
 Therefore, when the concentration of shallow donors in an n-semicon-
ductor is higher than that of vacancies, there should be no free vacancies. 
Indeed, electron paramagnetic resonance studies show that an EPR signal 
which could be attributed to vacancies is only observed in a p-semiconductor 
[32], which agrees with the above hypothesis. 
 Another fact is noteworthy. The main contribution to the formation of a 
neutral complex is made by acceptor vacancies. Their concentration can be 
written as  
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In the first approximation for material doped with one impurity type, the 
following equality is valid at high temperature: 
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          n N= im .                                        (6.4.5)  
 
Then, substituting (6.4.4) and (6.4.5) into (6.4.2), we have 
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At different proportions of the terms between the brackets of the last co-fac-
tor, the concentration of complexes is proportional either to that of free im-
purities or to their square concentration. The quantity εV

A can be evaluated 
from the point of transition between the linear and quadratic dependences. 
This concentration behavior of complexes agrees with the data of [44].  
 Of the great diversity of impurity–vacancy complexes in AIIIBV com-
pounds, it is worth mentioning one of the Cr impurity states in GaAs. In 
addition to the states discussed in Section 2.2, an associate containing a deep 
donor of the type CrGa

–DAs
+ was observed, with CrGa

– having the d4-configu-
ration [53]. This associate has the cubic (not trigonal) symmetry. The con-
figuration diagram of this associate defect, borrowed from [53], is shown in 
Figure 6.6a. The authors of this model attributed the role of DAs

+ to the anion 
vacancy V. Both components of this associate create deep t2-symmetry levels 
in the GaAs forbidden gap (Figure 6.6b). The Cr– level, free from electrons 
 

 
 
Figure 6.6. The configuration diagram (a) and energy levels of [CrD] associated com-
ponents (b) in a tetrahedral (Td) and trigonal (C3V) field: arrows (a) – light-induced 
optical transitions [199]. 
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in the ground state, is lower than the filled V0 level (Figure 6.6b). When the 
components approach each other, an electron transition is possible from the 
vacancy to the Cr impurity, according to the reaction 
 
       V0 + Cr0(d3) → [Cr–V+].                                   (6.4.7) 
 
Because of the strong localization of the wave function near every partner in 
the associate, the electron “senses” a double-well asymmetric potential and 
is transported by the tunneling effect at T → 0. 
 The theory of this mechanism [45] explains successfully the observable 
details of optically induced light absorption modulation spectra which 
allowed the authors of [45] to identify the associate CrGa

–DAs
+ state. Such 

tunneling states appear to be typical of associate defects, whose components 
occupy neighboring crystal positions and represent deep level centers. 
 
 
 
6.5  IMPURITY–VACANCY COMPLEXES IN SILICON 
 
Silicon crystals heated up to 1000–1250°C actively generate vacancies and 
host interstitial atoms. Obviously, impurities will interact with both to 
produce associate defects. Complexes with host interstices are likely to 
accumulate at sinks, because most intrinsic interstices return to their 
positions due to recombination with vacancies or to the  substitution of other 
impurities at lattice sites. They may also migrate to other crystal areas to 
produce various complexes like oxides, silicides, etc. Therefore, there are 
vacancies left, which can form complexes with impurity atoms. Impurities 
can produce an electron bond, although only dangling, with the silicon 
lattice.  
 A dynamic equilibrium concentration of such complexes will be estab-
lished at a given temperature. On fast cooling from a high temperature, some 
of the complexes will decay but others will be frozen as impurity–vacancy 
associates. In silicon, they often reveal themselves as deep level impurity 
centers in the forbidden gap. 
 Evidence for the existence of impurity–vacancy complexes in silicon was 
obtained in experiments on irradiation of doped crystals with γ-quanta and 
fast electrons. This technique appeared very convenient for the investigation 
of this problem, since the energy position of impurity levels could be reliably 
determined in samples prior to their irradiation. In the control (undoped) 
samples, it was possible to detect the positions of the remnant, stable 
vacancies. Monitoring of transformations of both and of their concentration 
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variations induced by irradiation allows a reasonable conclusion to be made 
concerning their states, including the processes of impurity–vacancy 
interactions. 
 The principal result of many investigations of this kind was that the inter-
actions of primary radiational defects, mostly vacancies, with impurity atoms 
give rise to deep level complexes. A typical example is the formation of E-
centers representing V-P complexes in silicon doped with phosphorus [46]. 
This complex is an acceptor with the energy level at Ec – 0.43 eV, which 
anneals at ∼400 K. Similarly, a V-Sn complex is observed in silicon with the 
level E + 0.35 eV. 
 The authors of [47] identified the Au-V interaction in silicon, and the 
energy levels of V-Fe complexes were found in [48] to be Ec – 0.36 eV and 
Ev + 0.22 eV. The doping impurities Ni, Co, and Mn also interact with radia-
tional defects in silicon [49, 50]. In the latter case, the structure of complexes 
proves to be much more complex due to the interstitial state of these impuri-
ties in the silicon lattice. For this reason, the impurity atoms have a high 
mobility and a good chance to encounter not only vacancies but other point 
defects, primarily impurity oxygen and carbon. This complicates identifica-
tion of various types of complexes and makes their structure quite sophisti-
cated. This effect manifests itself clearly in silicon samples doped with an-
other interstitial fast diffusing impurity—lithium—producing complexes of 
the Li–O–V and Li–V2 types with the levels Ec – 0.27 eV and Ev + 0.48 eV 
[51, 52]. 
 Thus, the general tendency for the formation of impurity–vacancy com-
plexes is related to a high concentration of vacancies and/or heavy doping 
with active impurities. For this reason, complexation is stimulated not only 
by radiational but also by thermal doping of nonequilibrium vacancies [53]. 
 
 
 
6.6  IMPURITY SYNERESIS 
 
Impurity and impurity–vacancy interactions can also reveal themselves in 
the redistribution of impurity atoms over crystallochemical positions. This 
effect is very clearly observed in the distribution of amphoteric impurities. It 
was shown in Section 2.3 that some impurities, for example Cu atoms, can 
occupy both sites and interstices in elemental semiconductors, such as Ge 
and Si. The former have acceptor properties and the latter donor properties. 
In semiconductor compounds, such as AIIIBV, amphoteric properties are ex-
hibited by group-IV atoms which are donors in the AIII positions and accep- 
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tors at the BV sublattice sites. Since an amphoteric impurity has an opposite 
sign in various crystallochemical positions, its redistribution can be easily 
followed by determining charge carrier concentrations equal to the difference 
between the concentrations of atoms in these positions: n0 = ND – NA or p0 = 
NA – ND. The values of n and p are found from Hall coefficient measure-
ments. 
 At first sight, the distribution of an amphoteric impurity over possible 
positions in a crystal (or, the function n0(A), where A is the total amphoteric 
impurity concentration) can be found using a macroscopic approach and 
standard thermodynamic methods. This attempt was made in [54] in the 
study of interactions between vacancies and isovalent impurities. The 
general nature of this approach permits its application for the study of 
amphoteric and, more generally, of any impurities. Similarly, vacancies can 
be replaced by any other point defects—intrinsic or impurity defects, 
including a self-identical amphoteric A atom. Following [55], the authors of 
[54] took into account the interaction of defects in both sublattices, DA1 and 
DB1, with atoms AA1 and AB1 and with host atoms A1 and B1 by preserving 
the first non-zero cross terms of the second order of smallness in the 
expansion of crystal thermodynamic potential Φ in terms of small (as 
compared to NA1 and NB1) concentrations of all other components of the 
A1B1 compound. Below, the concentrations NA1, NB1, and so on will just be 
replaced by A1 and B1, etc. These cross terms have the form [55]: 
 
       ( )L1A1AAA A

11A
NDDg ,                                 (6.6.1) 

 
where gAA1

 and DA1 are the Gibbs energies of a single associate defect con-

sisting of an amphoteric atom A in the A1 position and of defect D in the 
same sublattice A1; NL is the concentration of atoms in each sublattice of the 
A1B1 crystal. 
 With the cross terms, the thermodynamic potential will be 
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 To find partial chemical potentials of the partners, expression (6.6.2) is 
differentiated, neglecting the empty sites: 
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It is seen from these equations that defect formation energies are not constant 
but vary with the crystal–solid solution composition: 
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0
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0
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1A1B1A1B1B1B1B1B AAAA
0 xgxggg DDDD ++= .                (6.6.7) 

 
 For the chemical potential of the B1 component, we accept the relation 
well known from thermodynamics: 
 
       ( ) ( ) ( )m1Bm1B ln PTT +Ψ=µ ,                            (6.6.8) 

 
which makes allowance for the volatility of the B1 partner representing (B1)m 
molecular structures, when under pressure P in the gas phase. The function 
Ψ(T) represents the standard potential of the gas phase at temperature T ex-
pressed in energy units. In other words, equation (6.6.8) expresses the as-
sumption of the gas phase as being an ideal gas. 
 The relations between the atomic fractions of the partners are described 
by the equations 
 
        1

1A1AA1A =++ Dxxx                                 (6.6.9) 

 
        1

1B1BA1B =++ Dxxx ,                              (6.6.10) 

 
which reflect the site balance in each sublattice of the A1B1 compound. In 
addition, there are two equations reflecting the relation between chemical 
potentials: one for the defect formation–annihilation process 
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         0
1B1A
=µ+µ DD                                  (6.6.11) 

 
and the other for evaporation–condensation of the volatile B1 component 
 

        ( )m1B 1B1B
1 µ+µ=µ
mD .                            (6.6.12) 

 
 By substituting expressions (6.6.3) through (6.6.5) and (6.6.8) into ex-
pressions (6.6.9) through (6.6.12), we obtain the mole fraction ratios of de-
fects containing an amphoteric impurity: 
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In these equations, 0

1ADx  and 0
1BDx  are equilibrium atomic fractions of de-

fects in a pure, impurity-free crystal. Therefore, if D are understood as va-
cancies, these equations describe the change in the homogeneity region of 
the A1B1 compound doped with an A1 impurity (isovalent doping) 
interacting directly with intrinsic point defects—vacancies. For a compound 
semiconductor, only equation (6.6.13) is necessary. 
 Let us analyze equations (6.6.13) and (6.6.14). The simplest case is the 
interaction between the nearest neighbors—an impurity atom and a defect 
located in different sublattices of a A1B1 compound. Then, 0

1A1AA =Dg  and 

0
1B1AA =Dg . Hence, an amphoteric impurity can change the vacancy con-

centration only in the adjacent sublattice and cannot do this in its own 
sublattice. For an appreciable change in 

1ADx  or 
1BDx , the quantitative 

evaluation requires that the following condition be fulfilled: 
 

          gx
T

∼ 1.                                         (6.6.15) 

 
 By putting x ∼ 0.01, which is an extreme value for many impurities in 
semiconductors, and equating T to the crystallization temperature of the 
semiconductor (T ≈ 1400–1500 K), the condition of (6.6.15) will be satisfied 
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at g > 12 eV. This energy is too large if the binding between an impurity 
atom and a defect (vacancy) in the other sublattice is regarded as resulting 
from an elastic or Coulomb interaction of the nearest neighbors. The energy 
of such interactions does not exceed 1–5 eV. Therefore, an additional gene-
ration of vacancies by the doping impurity is unlikely in an elastic or purely 
Coulomb interaction. This may become possible, say, for InSb grown from a 
melt at T = 470°C and for AIIIBV crystals grown by liquid-phase epitaxy at T 
= 700–800 K.  
 The next case is the interaction in the same sublattice. Then g A DA A1 1 0≠  
and gA DB B1 1 0≠ , but these values may have the same or different signs. If 
the impurity repels the defect, g > 0. It is quite obvious that the g values in 
the exponents of equations (6.6.13) and (6.6.14) may, in practice, have dif-
ferrent signs. Then the absolute exponent may become small, resulting in a 
considerable change in the vacancy concentration in amphoteric doping. A 
simple illustration of this situation is the case when an amphoteric impurity 
occupies lattice sites of a semiconductor compound and is an acceptor [AA1

–], 
while interstices are occupied by a donor [AB1

+]; vacancies are then 
acceptors [DA1

–]. Here, interstices are treated as the B1 “sublattice” with 
g A DA A1 1 0>  and gA DB B1 1 0< . Thus, the solubility, i.e., concentration, of 
impurities in semiconductors is determined by the vacancy content in the 
crystal, but sometimes the concentration of compensating defects (vacancies) 
themselves depends on the amphoteric impurity concentration. This is the 
effect of impurity syneresis. 
 In the study of group-IV impurity behavior in GaAs, the authors of [56] 
suggested a possible transition of impurity atoms, for example silicon, from 
the charged to the neutral state, rather than from one sublattice to the other. 
This transition depends on the silicon concentration and the crystal growth 
conditions determining the ensemble of intrinsic point defects. The latter 
determine the transition of a group-IV impurity to the neutral state either by 
being involved in neutral associates or by accelerating the loss of electrical 
activity of the impurity. The principal feature of this model is its self-consis-
tency: the concentration of the electrically active fraction of a group-IV im-
purity depends on the defect content of the host crystal, while this content 
itself varies with the impurity content. 
 This kind of syneresis has been confirmed by many studies of doping 
impurity behavior in various semiconductor compounds, irrespective of the 
model used. 
 In practice, a semiconductor is often doped with two impurities simulta-
neously. Suppose one impurity is amphoteric and the other is just a common 
impurity M. The question is whether the distribution of the amphoteric im-
purity over sublattices of a semiconductor compound will vary with the con-
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centration of impurity M due to their interaction. Generally, the above ap-
proach allowing for the interaction in thermodynamic potential Φ is totally 
applicable to this problem. What is to be done is to replace DA1 and DB1 de-
fects by MA1 and MB1 concentrations and to solve equations (6.6.13) and 
(6.6.14) with respect to the mole fractions xAA1  or xAB1 . The resulting gene-
ral solution is too cumbersome. A simpler approach, without losing the gene-
rality, was suggested in [57] and refined in [58]; we will follow it below. 
 It will be assumed that non-amphoteric impurity M is introduced into a 
crystal without an external action. The crystal already contains amphoteric 
impurity A in two possible positions A1 and A2. The role of M impurity will 
be played by an intrinsic point defect D. In the problem discussed above, the 
D concentration was a dynamic variable, but now M (or D) is a constant 
value varying only with the intensity of the external action (diffusion, ion 
implantation, etc.) for introducing M into the crystal. 
 The energies required for the incorporation of amphoteric atoms to both 
positions will be denoted as E1 and E2 and the interaction potentials of all 
amphoteric atoms as V11, V22, V12, and V21. Obviously, we will have V12 = 
V21. The potentials of M impurity interaction with amphoteric atoms will be 
V1M and V2M.  
 The results of a theoretical treatment in terms of concentrations [58] are: 
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where N0 is total amphoteric impurity concentration. The quantities A1 and 
A2 can be found from the following equation [57]: 
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         A A A
N

= +1 2

0
,                                     (6.6.19) 
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Figure 6.7. A plot of the solution to equation (6.6.21): 1 – for the left-hand side of the 
equation; 2, 3 – for the right-hand side of the equation at E1 > E2, V1M > V2M (2) and 
E1 < E2, V1M < V2M (3). 
 
 

         Q A A
N

= −1 2

0
.                                    (6.6.20) 

 
 For simplification, only potentials V1M and V2M in (6.6.18) are taken to be 
non-zero. Then, the solution is Q1 < 0, or Q2 > 0. Let us assume that ampho-
teric atoms do not interact. Then, (6.6.18) will transform to 
 

     ( )ln A Q
A Q kT

E E M
N

V VM M
−
+

= − + −










1
1 2

0
1 2 ,        (6.6.21) 

 
i.e., M impurity is capable of redistributing A impurity atoms over positions 
1 and 2 in (6.6.20). 
 It is easy to see that this conclusion will hold even without simplifying 
equation (6.6.18). Its right-hand side will not be parallel to the Q-axis in the 
coordinates of Figure 6.7 but approach it at a certain angle. It is seen that, 
owing to the interaction with A1 and A2, M impurity can redistribute the am-
photeric impurity in such a way that even the crystal conductivity type will 
change, provided that the A1 and A2 states have different signs. Suppose the 
A impurity is a charged acceptor at a site and a charged donor at an 
interstice. The transition from one type of conductivity to the other will 
occur abruptly at a certain critical M concentration, at which 
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−
+









 = 0 .                                  (6.6.22)  

 
 Hence, we find from (6.6.21) 
 

         M N E E
V VM M

= −
−0

1 2

2 1
.                             (6.6.23) 

 
 In a more general case, with all amphoteric atoms at any position inter-
acting with one another, equation (6.6.18) equalized to zero at point Q = 0 
will yield 
 

      ( )( )M N
E E A V V

V VM
=

− + −
−0

1 2 11 22

2

2
.                (6.6.24) 

 
 Here again, an impurity syneresis manifests itself: M impurity redistri-
butes A impurity, with the value of M depending on the A concentration. Due 
to the impurity syneresis, the curves n0(A), where n0 is electron concentration 
in an n-type crystal, can have fanciful shapes very different from curves for 
zero interaction of M impurity with amphoteric atoms at constant M (or D) 
concentration. In practice, one can find numerous examples of complicated 
n0(A) curves. This is good evidence for the existence of impurity interactions 
and for the manifestation of impurity syneresis. On the other hand, the lack 
of knowledge of E1 and E2, as well as of interaction potentials V11, V12, and 
V22, make the processing of experimental n0(A) curves nearly impossible. 
 
 
 
6.7  COMBINED COMPLEXATION 
 
Both types of interaction—impurity–vacancy and ion–impurity pairing—
often occur together. A typical example is the precipitation of excess impu-
rity from an oversaturated semiconductor solution, discussed in [59, 60] with 
reference to germanium doped with two impurities simultaneously—copper 
and antimony. 
 Figure 6.8 shows the kinetic curves for solid solution decomposition in 
Sb-free samples (curve 5) and Sb-doped samples (curves 1–4) at different 
annealing temperatures. The differences in these curves were interpreted in  
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Figure 6.8. Variation in the Hall concentration Na – Nd with annealing time t in 
Ge<Cu> samples (curve 5) and in Ge<Cu,Sb> samples (curves 1–4) at temperatures, 
°C: 1 – 500; 2 – 485; 3 – 450; 4 – 425; 5 – 485. 
 
[59, 60], with the allowance for doubly charged vacancy, in terms of the fol-
lowing family of reactions between various defects: 
 
          K1 

        Cu Cus i
−
←
→ + =+V ,                                       (6.7.1) 

           K2 
 
           K3 

        Cu Cus i
−
←
→ + − −+ +V e ,                               (6.7.2) 

           K4 
 
           K5 

        ( )D nV Z n+ =
←
→ − −+ 2 1 ,                               (6.7.3) 

           K6 
 
             K7 

        ( )m Z ZnCui
+ − −

←
→

+ ′2 1 ,                              (6.7.4) 
             K8 
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             K9 
         Cui

+ → sinks,                                       (6.7.5) 
 
             K10 
         V= → sinks.                                          (6.7.6) 
 
 The charge states of interacting point defects are designated with account 
taken of the Fermi level position at the forbidden band center at annealing 
temperatures. That vacancies are doubly charged was demonstrated in [61].  
 The key reaction linking all other reactions is (6.7.4); its product is a 
complex with a zero charge structure (D+ – V= – Cui

+)0. This process is pre-
ceded by the formation of another complex (D+ – V=)– having an acceptor 
character. The appearance of these new acceptors corresponds to a “lower” 
decomposition rate represented as a kink in the kinetic curves in Figure 6.8. 
 The formation of charged associates was supported by charge carrier 
mobility measurements. As soon as a slower decomposition region appeared 
in the kinetic curves, the mobility dropped, indicating the production of new 
charged centers. Different behavior was observed  in Sb-free samples. As 
copper atoms sublimated from the lattice sites, the number of scattering 
centers decreased, leading to a higher mobility. Moreover, the mobility rise 
fitted well the theoretical curve calculated on the assumption that the 
scattering centers were copper ions. 
 Finally, the formation of new acceptors (Z associates) in the slower ki-
netic curve region was detected by direct measurements of the low tempera-
ture dependence of the Hall coefficient. The energy level position of Z-
centers was found from the curve slope to be Ev + 0.08 ± 0.02 eV. 
 Similar complexes were observed in the Ge–Sb–Ni systems [62]. It was 
shown in experiments with nonstoichiometric GaAs crystals [63, 64] that 
gallium vacancies make a considerable contribution to complexation. 
Therefore, complicated interactions of impurity atoms, ions, and vacancies 
are common phenomena in doped semiconductors. 
 To conclude, we present an analytical expression taking into account 
both interaction types—donor–acceptor ion pairing and complexation: 
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,                                       (6.7.7) 

 
where NA is the extreme acceptor concentration in the presence of a donor, 
NA

0 is the acceptor concentration in the host semiconductor, ND
0 is the donor 

concentration, and K is a complexation constant. The first two terms in 
(6.7.7) allow for ion pairing (donor–acceptor interaction) and the third one 
describes complexation. 
 The value of K appears to be always indeterminate in experimental data 
processing. It must be found from a particular case at ni/NA

0 >> 1; then, 
(6.7.7) transforms to 
 

      N N N
KN nA A D

A i
= + +











0
01 1 .                          (6.7.8) 

 
For example, Ge<Cu> samples have N sCu = 2.3×1016 cm–3 at T = 850°C, 
while Ge<Sb,Cu> samples have N sCu = 4.6×1016 cm–3 at NSb = 5×1016 cm–3 
and the same temperature. The value of K calculated for these conditions 
from (6.7.8) is 3.7×10–36 cm–6. 
 
 
 
6.8  INDIRECT ION–ION INTERACTION 
 
Many experimental studies have demonstrated an increased solubility of one 
impurity in the presence of another impurity, which could not be interpreted 
as being due to ion pairing or complexation. The former was unlikely 
because of the low impurity concentration, since the mean distance between 
impurity atoms 
 

          
3

im

7.0
N

r =                                       (6.8.1) 
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was 20.0 µm at Nim = NSb + NCu = 1017 cm–3, and the Coulomb interaction 
energy at such distances was 0.06 eV, which was much less than 2kT varying 
from 0.15 to 0.19 eV. Elastic interaction at these distances is also negligible. 
 Experiments showed [60] that vacancy concentration variation in 
Ge<Cu,Sb> samples did not affect the order of magnitude of copper solubil-
ity. For this reason, the complexation via the reaction 
 
       Cui + V + Sb ←

→  (Cus
q Sb)                               (6.8.2) 

 
was discarded. 
 A similar situation was observed in Ge<Sb,Ni> samples [65]. Complexa-
tion due to a direct interaction of antimony and copper atoms could not con- 
tribute much to the experimentally established fact of increased Cus 
solubility in germanium in the presence of Sb impurity. 
 This effect can be accounted for by an indirect interaction of impurity 
atoms occurring via the electron subsystem of the crystal. In this case, the 
Fermi level is at the forbidden gap center, and the process of copper dissolu-
tion can be represented as:  
 in undoped germanium 
 
      [ ]Cu Cu Cus i

0
1 02←

→ = ++ + + +p e H∆ ,                  (6.8.3) 

 
 in donor-doped germanium 
 
    [ ]Cu Cu Cu D p e e H0

1 2 12←
→ = + ++ + + + + +s i ∆ ,             (6.8.4) 

 
where [Cu0] is copper concentration in the ambient phase; p, e1, and e2 are 
concentrations of holes and electrons determined, respectively, by the con-
centrations Cs

=, Ci
+ and D+; ∆H0 and ∆H1 are copper dissolution enthalpies in 

undoped and doped germanium, respectively. It follows from these reactions 
that electrons, excited to the donor level, charge Cu0 atoms without 
activation up to Cu= in the presence of a donor compensating impurity (in 
contrast to undoped germanium). This is supported by the fact that the effect 
of high copper solubility in the concentration range of interest is only 
determined by the donor concentration and is independent of the kind of 
donor impurity (Sb, P, As) [60, 61]. 
 There is no doubt that direct complexation makes an increasingly greater 
contribution with increasing donor content. This process is accompanied by 
the generation of new energy centers in the semiconductor forbidden gap. 
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6.9  APPLIED ASPECTS OF COMPLEXATION 
 
 
6.9.1  Deep center content versus growth temperature and free electron 

concentration 
 
Complexation has a profound effect on defect formation in semiconductor 
compounds. Most point defects are isolated at high growth temperatures. 
Hardening freezes the defect concentration without affecting complexation. 
The most mobile defects seek for sinks and find them in associates being 
formed. These processes were discussed in the previous section. Note that 
their investigation allows determination of some thermodynamic characteris-
tics of defects. This is considered with reference to GaP in [58]. 
 Epitaxial n-type GaP layers were grown by liquid phase epitaxy. Two 
sets of samples differing in the growth conditions were studied. The 
temperature range of cooling was the same in both cases: minus 1020–
950°C. The first group of samples consisted of epitaxial structures grown in 
graphite piston cassettes in an open system with a continuous hydrogen flow. 
However, the concentration of free electrons in epitaxial layers varied from 
5×1015 to 5×1017 cm–3 because of the addition of sulphur to the melt. The 
second group of samples was grown in a quasi-closed volume. No additional 
impurities were added. The growth temperature range was varied in order to 
find the temperature dependence of deep center content. The content of 
centers was measured by the thermally stimulated capacity method. 
Normally, three deep levels with the activation energies 0.35, 0.53, and 0.65 
eV were observed in the temperature range of 150–280 K. 
 Since the levels of interest lie in the upper half of the band and their acti-
vation energies are smaller than the forbidden gap halfwidth, the thermal 
emission rate of electrons, en

+, exceeds that of holes, ep
+. The levels are 

completely ionized. For these conditions, the concentration of centers can be 
described as 
 

( )N
N N C

Ct
d a=
−2 ∆

, 

 
where Nd – Na is shallow donor concentration obtained from the CVC data 
and ∆C is the capacity variation due to ionization of a deep center. 
 The measurements are presented in Figures 6.9 and 6.10. The concentra-
tion of centers rises linearly with that of uncompensated donors and with the 
growth temperature of n-GaP epitaxial layers. It follows from formula  
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Figure 6.9. Deep center concentration versus uncompensated donor concentration in 
n-GaP for various levels of deep centers: 1 – 0.35 eV; 2 – 0.53 eV; 3 – 0.63 eV. 
 

 
 
Figure 6.10. The deep center concentration (1) and the parameter exp(–gV

Ga/θ) (2) 
versus GaP annealing temperature. 
 
(6.4.4) that an increase in deep level concentration with increasing free 
electron content is characteristic of acceptor centers; their energy levels, 
however, lie in the upper half of the forbidden gap. 
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 The epitaxial layers discussed were grown from high purity materials by 
different growth techniques at different laboratories. So it is very unlikely 
that the formation of the centers was associated with impurities. More prob-
able is the suggestion that the centers were associated with intrinsic defects. 
A gallium vacancy creates three levels in the lower half of the band. Anti-
structural defects can create levels in the upper half. So far, only PGa  defect 
has been identified in GaP [64, 66]. The energy levels of this defect were 
identified by the DLTS technique in [67]. Mechanical stress applied at a 
current of 5 A×cm–2 gives rise to a dislocation network and to a deep donor 
level in the forbidden gap located 0.8 eV lower than the conduction band. 
The concentration of such deep centers is proportional to the applied stress 
and time. Removal of external stress by passing current through a diode pro-
duces two levels—at 0.71 and 1.18 eV below the conduction band bottom. 
The activation energies of these centers correspond to the theoretical values 
of the first and second ionization levels of the antistructural defect PGa. Opti-
cal data consistent with these results are presented in [68]. However, the PGa 
defect is a donor, so there should be no dependence on free electron concen-
tration (because the center creates deep levels and must be neutral at growth 
temperatures) or its concentration should decrease with increasing n. 
 A semi-empirical calculation method was suggested [69], in which a 
cation antisite defect, GaP, creates levels at 0.84, 1.14, and 1.44 eV, counted 
from the valence band. No one has ever observed this center. The calcula-
tions made in this work [69] are so different from its experimental data that 
one can hardly identify these defects as being antistructural, even with the 
theoretical error. 
 An alternative suggestion is that these centers have a complex structure. 
We mentioned earlier that a reasonable model is that of a complex consisting 
of a cation vacancy and a shallow donor, in particular, the VGaS-type of 
complexes. Such complexes may be more stable than those with silicon be-
cause of the defect localization at neighboring sites. 
 It was shown in Section 6.4 that the concentration of complexes is pro-
portional to vacancy concentration which, in turn, is proportional to free 
electron concentration. Vacancy concentrations rise with growth tempe-
rature.  
 
 
6.9.2  Homogeneity region width in AIIIBV compounds 
 
The formation of point defects, both intrinsic and due to impurities and 
complexes, results in the chemical composition of the crystal being different 
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from its chemical formula. The crystal composition is then said to deviate 
from the stoichiometric pattern.  
 The deviation from crystal stoichiometry can be described by the mole 
fraction of the excess component. Let us assume that the excess A 
component in a binary compound corresponds to a positive stoichiometric 
deviation and the excess B component to a negative deviation. The sum-
mation will be made with respect to this characteristic. The stoichiometric 
deviation of a binary compound is 
 
   ( )∆ = ∑ − ∑ + −∑N N N N N N Nj j j

j
α

α
α

α

B B A A A B ,            (6.9.1) 

 
where j is a running index for various types of interstices. 
 The first term in (6.9.1) unites all structural elements substituting B lat-
tice atoms, thereby promoting the excess A component. The second term 
does exactly the opposite. The third term allows for the mole fractions of 
atoms at different interstitial vacancies. In summation, the subscript α runs 
through all types of substitutional defects, except for the values of A and B 
corresponding to antistructural defects. Antistructural disordering does not 
affect the homogeneity region width. Indeed, the transition of, say, a gallium 
atom from its site to an anion site does not change the total number of gal-
lium atoms in the system. Therefore, there is no direct influence. However, 
the antistructural defect that will appear will compensate n-type material, 
leading to a change in the homogeneity region width. 
 The same is true of complexation processes. Without changing the total 
number of defects, these processes change the Fermi level position, thereby 
changing the stoichiometric deviations. We will illustrate this with the 
following [58]. The stoichiometric deviation through point defect concen-
trations will be expressed as 
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Index β in formula (6.9.2) runs through two values—A and B, while index j 
runs through values related to interstices. 
 Therefore, the calculated deviation values are affected by the factors: 
 (1) the compound growth conditions (via temperature and activity coef-
ficients of various ligands); 
 (2) partial free energies of defect formation and ionization energies; 
 (3) doping levels and compensation degrees. 
 Gallium arsenide has been studied much better than other AIIIBV com-
pounds. In spite of this, it is useful to evaluate the variation limits of the  ho-
mogeneity region width in additional donor doping of GaAs. Such calcula-
tions were performed in [58], using the available parameters of defect for-
mation and ionization [71, 72]. The results of the calculation are shown in 
Figure 6.11. 
 Doping changes the homogeneity region width so much that this should 
not be ignored in designing various technological processes. Similar calcula-
tions for GaP [58] provided results illustrated in Figures 6.12 and 6.13. The 
reader can find in this work other illustrations of applied aspects of impurity 
interaction. 
 
 

 
 
Figure 6.11. The homogeneity region width δ in GaAs with account taken of doping 
and complexation (calculation) at various impurity concentrations, cm–3:  1 – 0; 2 – 
1×1017; 3 – 5×1017; 4 – 1×1018. 
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Figure 6.12. The temperature dependence of the vacancy concentration for Ga (1) and 
P (2) in GaP: 1, 2 – Ga-enriched; 1’, 2’ – P-enriched. 
 
 
 

 
 
Figure 6.13. The homogeneity region width for GaP: solid curve – calculation;  
circles – experiment [73, 74]. 
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Chapter 7 
 

Impurity Kinetics in Semiconductors 
 
 
 
7.1  IMPURITY MIGRATION ENERGY 
 
The impurity migration model to be discussed in this chapter is based on a 
modified Weisser theory concerning the transition of an impurity atom from 
the equilibrium interstitial position to a new equilibrium position through a 
saddle point. The theory of equilibrium positions, or the type of interstice 
(tetrahedral or hexagonal), discussed in Section 4.3, can be easily extended 
to impurity migration. 
 The migration energy ∆E can be represented as 
 
      ∆Em = ∆Urep – ∆Uim – ∆Ucr – ∆δex,                       (7.1.1) 
 
where 
 
        HT UUU repreprep −=∆                                    (7.1.2) 

 
        TH UUU imimim −=∆                                     (7.1.3) 
 
        TH UUU crcrcr −=∆                                       (7.1.4) 
 
        TH

exexex δ−δ=δ∆ .                                       (7.1.5) 
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 The first three expressions representing, respectively, the energy 
differences of  repulsion,  polarization, and crystal field at H- and T-
interstices were defined in Section 4.3; ∆δex is the difference in 
extrastabilization energies of these interstices. The small values of ∆δex will 
be neglected, as was done for the solubility calculations in Section 4.3. If the 
migrating impurity is ionized, expression (7.1.1) should be replaced by 
 
     ∆Em = ∆Urep – ∆Uim – ∆Ucr – ∆δex + ∆Is,                    (7.1.6) 
 
where 
 
         ∆I I IT H

s s s= −                                     (7.1.7) 
 
represents the ionization potential difference of the impurity atom at both 
interstices. 
 For a particular semiconductor, ∆Uim and ∆Ucr are constant values inde-
pendent of the kind of impurity, so ∆Em for different impurities will be de-
fined by ∆Urep and ∆Is. The numerical values of Uim and Ucr used in Section 
4.3 are ∆Uim = 0.78 eV and ∆Ucr = 0.3 eV. The calculations of ∆Urep with 
crystal lattice relaxation for transition metal impurities in silicon allowed the 
determination of ∆Em values (Table 7.1). The comparison with experimental 
data suggests that Fe, Co, and Ni impurities in silicon diffuse over interstices 
in the neutral state, Cu diffuses in the Cu+ state, and Ag and Au diffuse in a 
more complicated way, because their experimental values for ∆Em are far 
from the calculated values for diffusion as Me0 and Me+. Below, we will 
show that they may migrate via dissociative diffusion.  
 
Table 7.1. Migration energies (eV) of amphoteric transition metal impurities in 

silicon [1]. 
 

Impurity ∆Em (Me0)  ∆Em (Me+) ∆Em (exp.) 

Fe 0.61 0.38 0.69  [75] 
Co 0.57 0.31 0.51  [76] 
Ni 0.48 0.39 0.47  [72] 
Cu 0.34 0.42 0.43  [77] 
Pd 0.47 0.29 – 
Ag 0.44 0.24 1.6  [78] 
Pt 0.34 1.43 – 
Au 0.53 0.53 0.38  [79] 
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A theoretical analysis of migration energies ∆Em is possible, at present, only 
for elemental semiconductors of the silicon-type. The difficulties associated 
with AIIIBV and AIIBIV semiconductor compounds are similar to those 
discussed in Section 4.3. 
 
 
 
7.2  MICROSCOPIC THEORY OF IMPURITY 

KINETICS 
 
Impurities exhibit various migration effects at high temperatures. One is 
dissociative diffusion which represents a combined migration of impurity 
atoms over lattice interstices and vacancies with an exchange of positions, 
i.e., the capture of an impurity atom by a vacancy to produce a free 
interstice. A more general migration process is decomposition of an 
oversaturated solid solution, involving diffusion as a stage in a more 
complicated process [2]. There are several models to describe decomposition 
of a semiconductor–impurity solid solution. These have been discussed in 
detail in the book [2]. Irrespective of which model applies better to which 
case, a common feature is that the interaction of impurity atoms with other 
point defects is involved in any migration process. 
 A consistent account of these interactions in kinetic theory requires the 
introduction of a variable diffusion coefficient, but this requires the know-
ledge of its functional dependence on the concentrations of all “participants” 
of the kinetic process. One should bear in mind that these concentrations are 
interdependent and continuously vary in time, and that impurity atoms, espe-
cially amphoteric atoms, change their charge when changing their position in 
the crystal. Finally, if one takes into account the ability of impurity atoms to 
form associate defects, the problem of direct introduction of a variable diffu-
sion coefficient into theory will appear meaningless. 
 More fruitful is the approach based on the equivalence of diffusional and 
quasichemical descriptions of concentration variation of impurity atoms and 
defects. In this approach, the processes involving impurity atoms are treated 
as chemical reactions, namely, the reactions of impurity transition from a site 
(s) to an interstice (i) to produce a vacancy, and vice versa: 
 
        A Zp A VZ Z Z

s i
s i V+ ++

←
→ , 

              K3      K4                             (7.2.1) 
               
              sinks   sinks 
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where the superscript in brackets denotes the charge value of every reagent. 
This reaction also involves positive holes. Here, a p-semiconductor is dis-
cussed as an illustration; an n-semiconductor was analyzed in [3]. The 
quantities K1 and K2 are the rate constants of direct and reverse reactions. For 
an amphoteric impurity changing its charge in the transition from a site to an 
interstice, this change is allowed for by the inequality Zs ≠ Zi for both the 
value and sign. If an amphoteric impurity has several charge states simulta-
neously but is in the same position in the crystal, this can be allowed for by 
introducing into (7.2.1) the sum AZs1 + AZ

s s2 + ... or AZ
i

i1 + AZ
i

i2 + ... We will 
omit this cumbersome series. The possible changes in the charge state are 
determined by the change in the Fermi level which can always be taken into 
account by using its relation to the carrier concentration.  
 There are two other kinetic processes taken into account by (7.2.1): the 
migration of interstitial impurity atoms and vacancies to sinks. These can 
also be treated as quasichemical reactions with their own rate constants K3 
and K4. This assumption is permissible if the conditions formulated in [4] are 
fulfilled: the sink identity for all defects, a uniform distribution of sinks 
throughout the crystal, their constant number and unlimited capacity, as well 
as the absence of elastic stress fields. 
 Another important quasichemical reaction is the interaction between a 
site impurity and a vacancy to produce an associate defect X ZX : 
 
           K5 
       A V X Z pZ Z Z

s s V X+ + ′ +←
→ + .                 

           K6                                                   (7.2.2) 
               KZ 
              sinks 
 
 The number of electrons involved in each of the above reactions is de-
fined by the charge conservation condition: 
 
     Z Z Z Z= − −s V i ,  ′ = − −Z Z Z ZX V s .            (7.2.3) 
 
 The time variation of volume average concentrations are written as ki-
netic equations 
 

  d
d

s
s i V s V X

C
t

K C p K C C K C C K C pZ Z= − + − + ′
1 2 6 5    
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  ( )d
d

i
s i V i i

C
t

K C p K C C K C CZ= − − −1 2 3
0  

 

  ( )d
d

V
s i V s V X V V

C
t

K C p K C C K C C K C p K C CZ Z= − − + − −′
1 2 6 5 4

0  

 

  ( )d
d

X
X s V X X

C
t

K C p K C C K C CZ= − + − −′
5 6 7

0 ,                         (7.2.4) 

 
where 
 
     K2 = 4πr0 (Di + DV),  K3 = γρDi, 
 
     K4 = γρDV,    K6 = 4πρ0DV,                       (7.2.5) 
 
     K7 = γρDX. 
 
Here, Di, DV, and DX are diffusion coefficients of respective defects; ρ is the 
sink density per unit area; γ is a factor determined by sink geometry, ap-
proximately equal to unity; r and ρ are effective capture radii for an intersti-
tial atom–vacancy pair and a substitutional atom–vacancy pair, respectively. 
 The rate constants for direct and reverse reactions are not independent. 
Their relationship can be easily found from equilibrium conditions with 
dCs/dt = 0 and dCX/dt = 0 and, respectively, Cs = Cs

0, Ci = Ci
0, and CX = CX

0. 
With these conditions, we obtain from (7.2.6) 
 

   K K C C
C

p Z
1 2

0 0

0 0= −i V

s
,  K K C C

C
p Z

5 6

0 0

0 0= − ′V s

X
.              (7.2.6) 

 
 The set of equations (7.2.4) must be supplemented by the crystal neutral-
ity condition which permits finding the concentration of the fifth compo-
nent—free holes, p: 
 
     p Z C Z C Z C Z C n p= + + + +s s i i V V X X i

2 .              (7.2.7) 
 
Here, the last term represents the concentration of negatively charged elec-
trons. 
 All Z values in (7.2.7) are taken with their own signs corresponding to 
the character of ionization of the reactants. The set of equations (7.2.4) and 
(7.2.7) contains concentration products, so they are nonlinear. To solve this 

© 2004 by CRC Press LLC



set of equations, one should accept additional assumptions leading to its 
linearization. 
 There are two assumptions to be made. One is the approximation of equi-
librium defect concentration (EDC) [5], which implies that the concentration 
of the most mobile defects is equal, at any moment of time, to the thermody-
namically equilibrium concentration at a given temperature. The EDC ap-
proximation is fairly rough, because point defects are in quasi-equilibrium 
with one another at every moment of time, and the presence of a nonequi-
librium fraction of one defect type (say, impurity atoms at lattice sites) 
entails an excess content of other defects. 
 The other approximation [6,7] is based on the assumption that excess 
concentrations of all defects are much lower than their equilibrium concen-
trations. This  approximation was termed in [7] nonequilibrium defect con-
centration (NDC) [7]. We believe that the latter approach is preferable be-
cause it better fits experimental conditions. 
 The set of equations (7.2.4) was most completely solved in the work [7], 
where the NDC approximation was mathematically represented as the condi-
tion 
 

         δC
C

C C
C0

0

0= − .                                     (7.2.8) 

 
It follows from (7.2.7) that in the absence of equilibrium, the neutrality 
equation is 
 

    1
2

+








 = + + +n

p
p Z C Z C Z C Z Ci

s s j j V V X Xδ δ δ δ δ .         (7.2.9) 

 
 Normally, the concentration of one component, say, site impurity, is 
larger than the other concentrations. Then, since we have p >> pi, expression 
(7.2.9) should be replaced by  
 
         δp = ZsδCs.                                         (7.2.10) 
 
 To simplify the theoretical treatment, we will assume one type of defect 
to be dominant. The further presentation is an illustrative application of the 
above reasoning to the general process of solid solution decomposition, as-
suming at the beginning that an impurity atom leaves the substitution 
solution to be incorporated and then diffuses to sinks. This means that the 
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rates of reactions (7.2.2) are too low, and K5 and K6 can be taken to be zero. 
The kinetic equations in this case are 
 

     ( )
( )

d
d

d
d

d
d

s
s i V

i
s i V i i

V
s i V V V

C
t

K C p K C C

C
t

K C p K C C K C C

C
t

K C p K C C K C C

Z

Z

Z

= − +

= − − −

= − − −















1 2

1 2 3
0

1 2 4
0

.       (7.2.11) 

 
 In the linear approximation allowing for the neutrality condition (7.2.7), 
we have 
 
d
d s

i V

s
s

s
s

V V
i

i i V
V

V

t
C K C C

C
ZZ C

p n
C

K C ZZ C
p n

C K C ZZ C
p n

C

δ δ

δ δ

= − +
+











+ −
+









 + −

+










2

0 0

0

0

0 0

2
0

0

0 0
2

0
0

0 0

1

1 1

 

d
d i

s V

s
s

s
s

V i
i

i i V
V

V

t
C K C C

C
ZZ C

p n
C

K C ZZ C
p n

K C K C ZZ C
p n

C

δ δ

δ δ

= +
+











− −
+









 +













− −
+











2

0 0

0

0

0 0

2
0

0

0 0
3 2

0
0

0 0

1

1 1

 

d
d V

i V

s
s

s
s

V i
i

i i V
V

V

t
C K C C

C
ZZ C

p n
C

K C ZZ C
p n

C K C ZZ C
p n

K C

δ δ

δ δ

= −
+











− −
+









 − −

+








 +













2

0 0

0

0

0 0

2
0

0

0 0
2

0
0

0 0
4

1

1 1

 

 (7.2.12) 
 
The characteristic equation of this set  
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   (7.2.13) 

 
has three roots. The smallest of them determines the time constant of the de-
composition process. 
 To avoid cumbersome formulas, let us make some simplifying assump-
tions. We will put Zs = –1, which is valid for the acceptor state of a site im-
purity but will not consider its state with Zs = –2. Of course, the latter as-
sumption simplifies the situation but oversimplifies the theoretical results. 
Besides, the site state will be assumed to be dominant and this means that the 
sample conductivity type remains unchanged during the kinetic process. 
 To solve the set of equations (7.2.12), let us introduce the variable x, de-
fined as 
 

        ( )
( )[ ]x
D D

=
+

1 τ
γρ i V

,                                 (7.2.14) 

 
and the designations 
 

      α π
γρi

i= 4 0
0r C ,  C

C
i

s
i

0

0 = β ,                           (7.2.15) 
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      α π
γρV

V= 4 0
0r C ,  C

C
V

s
V

0

0 = β .                         (7.2.16) 

 
The characteristic equation (7.2.13) takes the form: 
 

( )
( )

( )

x Z

Z x D
D D

Z x D
D D

− +

+ − −
+

−

+ − − −
+

=

1

1

1

0

α β α α

α β α α

α β α α

i V V i

i V V
i

i V
i

i V V i
V

i V

, 

(7.2.17) 
 
where Z should be substituted with its own sign: minus for an acceptor and 
plus for a donor. 
 Equation (7.2.17) is nothing else but the cubic equation 
 

   

( )[ ]
( )

( )

( )
( )

x Z x D D
D D

Z D D
D D

x

Z D D
D D

3 2
2

2

1 1

1

1 0

− + + + + +
+

+






+ + + +
+




 −

− +
+

=

α α α β

α β α α

α β

i V i V
i V

i V

i V
i i V V

i V

i V
i V

i V

.    (7.2.18) 

 
Since x << 1, we neglect the cubic term and, considering CV to be a small 
value, put 
 
       αV  << 1 and     βV  << 1.                             (7.2.19) 
 
Then, (7.2.18) transforms to the quadratic equation ax2 + bx + c = 0 with 
such a structure of coefficients that the inequality b2/(4ac) >> 1 is always 
valid for αi ≥ 1. Hence, the smallest root will be 
 

          
b
cx = ,                                          (7.2.20) 

namely, 
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  ( ) ( )

( )
( )

x Z

D D

D D
D D

D D
Z D D

D D

= +
+

+
+ + + +

+

1
1

2

2

α β

α β α α

i V
i V

i V

i V

i V
i V

i i V V

i V

.        (7.2.21) 

 
 The sink density ρ can be considered to be high during solid solution 
decomposition at any impurity concentration. Even if the sink density in the 
sample is small, its surface acting as a sink provides large ρ values. Then, it 
follows from (7.2.15) and (7.2.16): 
 
        αi  << 1,  αV  << 1                             (7.2.22) 
 
        βi  << 1,  βV  << 1                             (7.2.23) 
 
 Note that an amphoteric impurity dominant at lattice sites will be de-
scribed by the relations βi ≅ 1 and βV ≅ 1, instead of (7.2.23). They will also 
be valid for deep inhomogeneous impurities. With the reverse substitution of 
(7.2.14) and using (7.2.22) and (7.2.23), we obtain the final dimensional so-
lutions for two possible relations between coefficients Di and DV: 
 

    ( ) ( )
1 1
τ

γρ α β
α

= +
+

Z D
D D

i V V

V i i
 at Di >> DV                (7.2.24) 

 

    ( ) ( )
1 1
τ

γρ α β
α

= +
+

Z D
D D

i V i

i V V
 at DV >> Di.               (7.2.25) 

 
These expressions are valid for shallow hydrogen-like impurities. For deep 
impurities, the solutions have a different form: 
 

 ( ) ( ) ( )
1 1

1τ
γρ α β

α β α α
= +

+ + +
Z D

D D Z
i V V

V i V V i i
 at Di  >> DV      (7.2.26) 

 

 ( ) ( ) ( )
1 1

1τ
γρ α β

α β α α
= +

+ + +
Z D

D D Z
i V i

i V i V i V
 at DV  >> Di.     (7.2.27) 

 
 The solutions obtained as various values of 1/τ determine the experimen-
tal time constants of solution decomposition: 
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Table 7.2. Effective activation energies Qeff for interstitial decomposition of ampho-
teric impurities at αi >> 1, αV << 1, βi ≅ 1, βV ≅ 1. 

 

Kinetic conditions Activation energies 

DV/Di  >> 1 
(Z + 1)βV > Di/DV > βV/βi –Ei

M 
(Z + 1)βV < Di/DV > βV/βi –EV + Es – EV

M 
(Z + 1)βV > Di/DV < βV/βi –Ei

M 
(Z + 1)βV < Di/DV < βV/βi –Ei + Es – Ei

M 
DV/Di  << 1 

(Z + 1)βV  > DV/Di < βi/βV –EV 
(Z + 1)βV < DV/Di < βi/βV –EV + Es – EV

M 
(Z + 1)βV > DV/Di > βi/βV – EV

M 
(Z + 1)βV  < DV/Di > βi/βV –Ei + Es – Ei

M 

 
 
Table 7.3. Effective activation energies Qeff for interstitial decomposition of ampho-

teric impurities at αi << 1, αV << 1, βi ≅ 1, βV ≅ 1. 
 

Kinetic conditions Activation energies 

1 > Di/DV < αV –Ei + Es – Ei
M 

1 > Di/DV > αV –Ei – EV + Es – EV
M 

1 < Di/DV < αi –EV + Es – EV
M 

1 > Di/DV > αi –Ei – EV + Es – Ei
M 

 
 
 
        ( )τ τ= 0 exp Q kT ,                                  (7.2.28) 
 
where Q is the effective activation energy representing a combination of the 
activation energies of diffusion in Di(T) and DV(T) and the energy defining 
the temperature dependences of solubility Ci

0(T), CV
0(T), and Cs(T) present 

in the quantities αi, αV, βi, and βV. From a comparison of experimental 
values of Q and Qeff (Tables 7.2 and 7.3), one can understand the 
decomposition mechanism in the crystals under study.   
 For compiling Tables 7.2 and 7.3, we used the identity αV/αi = βV/βi 
which follows from (7.2.15) and (7.2.16), because the values of γρ present in 
α were very difficult to determine experimentally. The above solutions for 
1/τ were obtained in the NDC approximation. The solutions in the EDC ap-
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proximation will be similar but having no factor (Z + 1). They are simpler 
and easier to use in experimental data processing. Let us see what physical 
picture corresponds to each approximation. 
 The determinant in (7.2.17) is symmetrical relative to interstitial atoms 
and vacancies. So, for simplicity, consider only the case with DV >> Di. Let 
us expand (7.2.17) into the third column elements, taking account of the 
inequality x << 1: 
 

( )
( ) ( )

( )
( )

( ) ( )
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1
1

1

1
1

1
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−
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αβα+−
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α

DDxZ
Zx

Z
Zx

DDxZ
Z

 

(7.2.29) 
 
 The diagonal element of the third column of (7.2.17) contains two terms. 
The first one, αi, characterizes the elimination rate of free vacancies from the 
crystal volume due to recombination with interstitial impurity atoms, accord-
ing to reaction (7.2.1). The second term, DV/(Di + DV) ≈ 1, describes the 
migration of free vacancies to sinks. If vacancy diffusion to sinks dominates, 
i.e., αi << 1, the expansion of (7.2.29) will contain only the third term: 
 

     
( )

( ) ( )
x Z

Z x D D

− +

+ − −
=

1

1
0

α β α

α β α
i V V

i V V i V
,          (7.2.30) 

 
which corresponds to the EDC approximation. 
 Indeed, after a fast elimination of nonequilibrium vacancies from a 
crystal, their concentration comes to equilibrium in a very short time equal to 
the diffusion time. If a vacancy recombines with an interstitial atom sooner 
than it diffuses to a sink, i.e., αi >> 1, the expansion of (7.2.29) will contain 
all the terms. For the set of equations (7.2.13), this will correspond to the 
condition (d/dt)δCV = 0, or to the NDC approximation. 
 Thus, the physical sense of the NDC approximation is that the concentra-
tion of the most mobile defect is “adjusted” fast to the concentrations of the 
other reactants and comes to a quasi-equilibrium state with slower reactants. 
 A similar analysis of the set of kinetic equations (7.2.4) can be carried 
out for a more complicated decomposition process occurring via reactional 
diffusion and a mixed mechanism. Reactional diffusion implies the for-
mation of associate defects (substitutional impurity–vacancy complex) and 
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their migration to the sinks. The mixed mechanism represents a simul-
taneous migration of associate defects and interstitial atoms to the sinks. For 
reactional diffusion, the set of equations (7.2.4) takes the form: 
 

      d
d

s
s V X

C
t

K C C K C nZ= − + ′
6 5 , 

 

      d
d

V
s V X V

C
t

K C C K C n K CZ= − + −′
6 5 4δ ,          (7.2.31) 

 

      d
d

X
s V X X

C
t

K C C K C n K CZ= − −′
6 5 7δ , 

 
where CX is the concentration of associate defects and ′Z  = Zs – ZV – ZX. 
 Let us ignore, for the time being, a possible multiple charge of the site 
amphoteric impurity by taking Z = 1. Then we can write, in the linear ap-
proximation (7.2.8) with the neutrality equation: 
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(7.2.32) 
 
The characteristic cubic equation of this set for dimensionless time constants 
 

         x
D

= 1 1
τ γρ V

                                      (7.2.33) 

 
has the form 
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(7.2.34) 
 
where we included, in addition to (7.2.15), 
 

         α π
γρs

s= 4 0
0r C .                                    (7.2.35) 

 
As in the case of interstitial decomposition mechanism, the cubic term will 
be neglected. Assuming DX/DV << 1 and αs << 1, we obtain an equation of 
the type ax2 + bx + c = 0: 
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After the reverse substitution, the smallest root of this equation, x = c/b, is 
 

     ( )
( ) ( )

1 1
0 0

0 0τ
γρ= ′ +

+
Z D C C

D D C C
X V s

X V V X
.                        (7.2.37) 

 
 In contrast to the interstitial decomposition mechanism, there are only 
two limit kinetic conditions here: 
 

    D
D

C
C

X

V

V

X
<<

0

0 :  ( ) ( )1 1 0 0
τ

γρ= ′ +Z D C CX X s ,              (7.2.38) 

 

    D
D

C
C

X

V

V

X
>>

0

0 :  ( ) ( )1 1 0 0
τ

γρ= ′ +Z D C CV V s .              (7.2.39) 

 
Inequality (7.2.38) takes into account the identical relation 
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Table 7.4. Effective activation energies Qeff for reactional and mixed decomposition. 
 

Decomposition 
mechanism 

Kinetic condition Activation energy 

Migration of defect 
associates 

DX/DV  << CV
0/CX

0 –EX
M – EX + Es ≡ Es

M 

Mixed: DX/DV  >> CV
0/CX

0 –EV
M – EV + Es 

Simultaneous migration 
of associates and 
interstitial atoms 

Di/DX  << 1 
Di/DX  >> 1 

–Ei
M 

–Es
M – Es + EX = –EX

M 

 
 
    ( )D D C Cs X X s≡ 0 0   at  C CX s

0 0<< .                  (7.2.40) 

 
 The values of Qeff for this decomposition mechanism (migration) are 
given in Table 7.4. 
 For the mixed mechanism occurring via migration of associates and in-
terstitial atoms, the linearization of the set of equations (7.2.4) gives four 
linear equations, making it difficult to derive an analytical solution for 1/τ. 
To reduce the number of equations, we will assume, as in [2], that vacancies 
are the most mobile defects and that CV = CV

0 at every moment of time. In 
other words, vacancies will be treated in the EDC approximation and other 
defects in the NDC approximation. 
 The linearized set of equations has the form: 
 

  ( ) ( )δ δ δ δ δd
d

s
V i s s X V s

C
t

K C C Z K C C K C K C C
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= − + + −2
0

1
0

5 6
01 , 

 

  ( ) ( )δ δ δ δd
d

i
V i s s i

C
t

K C C Z K C C K C
Z

= − + + −2
0

1
0

31 ,                (7.2.41) 

 

  δ δ δ δd
d

X
V s X X

C
t

K C C K C K C= − −6
0

3 7 . 

 
 It should now be found what kind of diffusion limits the process. Assume 
at first DX >> Di, i.e., the limiting factor is interstitial diffusion. Then, in the 
first approximation, we have δdCX/dt = 0, and δCX is found from the last 
equation of (7.2.41) as 
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        δ δC K C C
K KX

V s=
+

6
0

5 7
.                                   (7.2.42) 

 
 By substituting (7.2.42) into the first two equations of (7.2.41) and 
equating the characteristic equation to zero with respect to 1/τ, we find 
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This equation was derived for K7 >> K5, i.e., under the condition that associ-
ates reach sinks before they dissociate. 
 Let us take K3 >> K2CV

0; otherwise, interstitial atoms would annihilate 
rather than reach sinks. If interstitial diffusion is the limiting factor, then 
 

     ( ) ( )Z K C K C K C K
Z

+ + + >>1 1
0

6
0

2
0

3s V V .                (7.2.44) 

 
 Using the above assumptions and simple transformations, we obtain the 
minimum time constant of decomposition: 
 

         1
3τ

γρ= =K Di .                                 (7.2.45) 

 
 Similarly, the other limiting case will be described as 
 

       1
7

0

0τ
γρ γρ= = ≡K D D C

CX
s s

X
.                         (7.2.46) 

 
The respective expressions for Qeff can be found in Table 7.4. 
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7.3  DISSOCIATIVE DIFFUSION OF IMPURITIES 
 
Dissociative diffusion represents impurity migration involving a change of 
the crystallographic position. It is described by quasichemical reactions 
(7.2.1). Its difference from decomposition is that the diffusant enters a 
sample from the outside because diffusion is a technological process. In de-
composition, it comes from the inside, i.e., from the lattice sites. For this rea-
son, the theoretical treatment of dissociative diffusion is basically similar to 
that of decomposition carried out in Section 7.2. However, the dissociative 
diffusion analysis requires the consideration of surface concentration Csur, 
which decreases with depth in time and along the coordinate. The measure of 
its decrease in time is the time constant 1/τ determined by the migration 
mechanism in the sample bulk. Its coordinate dependence is determined by 
the sample shape and the boundary conditions of the diffusion problem. 
 The treatment of diffusion involves two problems. The first problem 
deals with the macroscopic diffusion coefficient D, while the second reveals 
its microscopic nature, because D is a combination of partial diffusion coef-
ficients of the components Ds, Di, DV, and DX and of their concentrations Cs, 
Ci, CV, and CX. It does not seem worthwhile discussing the first problem, 
since it is of interest mostly to particular situations which will be described 
in Section 7.5. The general analysis of the second problem (Section 7.2) is 
too cumbersome to be compared with experiments. Also, a simplified treat-
ment is often sufficient for a qualitative and semi-quantitative interpretation 
of experimental data. This simplified theory will be presented in this section. 
 The principal simplification is the use of the EDC approximation, but it 
will be necessary to find which defect is in equilibrium. Below, the criteria 
for its identification will be formulated. Further, the charge states of defects 
will be neglected in the first approximation. The charge value can be intro-
duced into the derived formulas any moment by multiplying the result by (Z 
+ 1), as was done in Section 7.2. Finally, this treatment will be restricted to 
two defects—impurity atoms, occupying sites and interstices, and vacancies. 
In other words, the interaction of defects producing associates, or reactional 
diffusion, will be ignored. 
 With these assumptions, the set of kinetic equations (7.2.4) becomes 
simplified: 
 

      d
d

s
s i V

C
t

K C K C C= − +1 2 ,                                     (7.3.1) 

 

      ( )d
d

i
s i V i i

C
t

K C K C C K C C= − − −1 2 3
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      ( )d
d

V
s i V V V

C
t

K C K C C K C C= − − −1 2 4
0 .           (7.3.3) 

 
The relation between K1 and K2 is defined, as before, by expression (7.2.6) 
but with Z = 0. 
 The nature of sinks was not discussed in Section 7.2, so we will specify it 
now. 
 Sinks for interstitial impurity atoms and vacancies may be dislocations, 
the sample surface, and defects of the impurity associate type. If the latter are 
neglected (this can be done for the usual samples containing dislocations), 
the rate constants K3 and K4, according to [8] will be: 
 

      ( ) ( )K l D
n D
r r3 4

2

0

2
, ,

,
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= +
′

π
π

i V
D i V

D
.                          (7.3.4) 

 
The first term in this expression reflects recombination on the surface of a 
sample of thickness l. The second term corresponds to recombination of im-
purities or vacancies on dislocations with density nD, with the effective cap-
ture radius 0r′ . The value of rD is equal to the half mean distance between 
dislocations, which is, in turn, defined by their density: 
 

         
D

D
1
n

r
π

= .                                         (7.3.5) 

 
 The linearization of equations (7.3.1) through (7.3.3) can be carried out 
in the EDC approximation with Ci = Ci

0 or CV = CV
0. Which of these condi-

tions should be chosen for experimental data processing? The answer to this 
question was found in [8] by analyzing the distribution “tails” of concentra-
tion Cs, Ci, and CV established at the end of the diffusion process when 
relation (7.2.8) becomes valid. Substituting it into (7.3.1) through (7.3.3) for 
every concentration and neglecting the terms of the second order smallness 
δCiδCV, we obtain a set of differential equations similar to (7.2.12) but much 
simpler because of the above assumptions: 
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    ( )d
d

V
s i V V i V

δ δ δ δ δC
t

K C K C C C C K C= − + −1 2
0 0

4 . 

 
The sets of equations (7.2.12) and (7.3.6) will drop out when Z = 0 and 
(7.2.6) are substituted into (7.2.12). 
 The left-hand sides of equations (7.3.6) will vanish in the range of large 
time intervals when the concentrations are close to equilibrium values. Then, 
the solutions for Cs, Ci, and CV have the exponential form exp(αt), where α 
is the minimum root of the characteristic equation 
 
        x3 + ax2 + bx + c = 0,                                  (7.3.7) 
 
in which  
 
     a = K1 + K4 + K3 + K2CV

0 + K2Ci
0, 

 
     b = K1K4+ K1K3 + K2K4CV

0 + K2K3Ci
0 + K3K4,           (7.3.8) 

 
     c = K1K3K4. 
 
 Similarly to the solution to equation (7.2.13), the minimum root of equa-
tion (7.3.7) is x = c/b. It is this root that determines the value of α 
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+ + + +
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and essentially coincides with (7.2.21) in terms of diffusion coefficients. 
 To linearize equations (7.3.1) through (7.3.3), let us put, at first, Ci = Ci

0. 
Then the equation of the set (7.3.2) turns to zero and the other two equations 
transform to 
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 The respective characteristic equation defining α in this particular case is 
 
       ( )x x K K C K K K2

1 2
0

4 1 4+ + + +i .                (7.3.11) 
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The minimum root α is defined as 
 

        α =
+ +

K K
K K C K

1 4

1 2
0

4i
.                            (7.3.12) 

 
 Similarly, the author of [8] derived the expression 
 

        α =
+ +

K K
K K C K

1 3

1 2
0

3V
,                            (7.3.13) 

 
which is valid for CV = CV

0, i.e., another linearization condition for equations 
(7.3.1) through (7.3.3). It is easy to see, from the comparison of (7.3.12) and 
(7.3.13) with the general result in (7.3.9), that the criteria for this or that 
linearization condition are the relations: 
 
 K1K3 + K2K3Ci

0 + K3K4 > K1K4 + K2K4CV
0  at Ci = Ci

0,            (7.3.14) 
 
 K1K4 + K2K4CV

0 + K3K4 > K1K3 + K2K3Ci
0  at CV = CV

0.          (7.3.15) 
 
 If the reaction constants, the sink concentrations, and the sources of va-
cancies and interstitial atoms are known, one can find from (7.3.14) and 
(7.3.15) which point defects—vacancies or interstitial atoms—are closer to 
equilibrium and, thereby, to know which equation—(7.3.2) or (7.3.3)—
should be used together with (7.3.1) for the interpretation of experimental 
diffusion data on dissociative and cation–anion amphoteric impurities.  
 If (7.3.14) is applicable, dissociative diffusion will be described by the 
set of equations (7.3.10), whose solution at K2Ci

0 > K1K4 with the initial 
conditions t = 0 and Cs = CV = 0 is [9] 
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(7.3.16) 
 
 At large t, the ratio CV

0K4/(Cs
0K2Ci

0 < 1) and expression (7.3.16) trans-
form to 
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 If the other criterion, i.e., (7.3.15), is applicable, only the first two equa-
tions remain from the sets of (7.2.1) through (7.3.3); their solution derived 
under similar conditions is 
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(7.3.18) 
 
and for large t, we have 
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 The foregoing referred to fixed sources and sinks of vacancies and in-
terstitial impurity atoms. But in real crystals, there are also unfixed sources 
and sinks, which change their capacity with the degree of generation or ab-
sorption of vacancies or atoms. An example of an unfixed source is a Frank 
dislocation loop. Such loops act as vacancy sources, and as the vacancies are 
generated, they become larger, changing their ability to generate vacancies.  
 The mathematical description of diffusion, taking unfixed sources or 
sinks into account, is similar to that of diffusion with a movable boundary. It 
is, however, difficult to apply this theory to the mixed case of simultaneous 
action of fixed and unfixed sinks (or sources), although it is this situation 
that is so typical of dissociative diffusion of impurities in semiconductors. 
 An alternative approach to the analysis of vacancy diffusion [9] implies 
the presence of independent and non-interacting fixed (CVf) and unfixed 
(CVv) sinks and sources. The reader can find this cumbersome analysis in the 
original work [9]. Here, we will give only the final expression for Cs(t) in 
dissociative diffusion when fixed and unfixed vacancy sinks (sources) act 
simultaneously: 
 

      ( ) ( )[ ]C C f t C f ts s
s= +













0
2 0 2

4
β .                         (7.3.20) 

 
The following designations are used here: β = π b nf , where b is the Bur-
gers vector of a dislocation loop and nf is the concentration of fixed sinks 
and sources; f(t) is the function [9] 
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(7.3.21) 
 
in which KVf is the rate constant of vacancy migration to fixed sinks.  
 In the particular case of unfixed sources (sinks), or at β = ∞, equation 
(7.3.20) transforms to  
 
         Cs = Cs

0th2ϕ,                                       (7.3.22) 
 
where ϕ is the function of time defined in [9]. So, instead of (7.3.20), we will 
have 
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 To conclude this section, Table 7.5 gives expressions for Cs(t) and re-
spective conditions, which should be used for the analysis of experimental 
data on dissociative diffusion. 
 If the criterion of (7.3.14) or (7.3.15) is not fulfilled, the equations in 
Table 7.5 derived in the EDC approximation become invalid. Then, experi-
mental data are to be analyzed in terms of the more general theory developed 
in Section 7.2.   
 
Table 7.5. Dissociative diffusion equations and conditions for data analysis. 
 

Type of sink Equilibrium Applicable Condition Formula 
(source) concentration formula  Cs(t) Cs(t → ∞) 

 Ci = Ci
0 (7.3.14) Cs|t = 0 = 0 (7.3.16) (7.3.17) 

Fixed   CV|t = 0 = 0   
 CV = CV

0 (7.3.15) K2Ci
0 > K1K4 (7.3.18) (7.3.19) 

   Cs|t = 0 = 0   
   Ci|t = 0 = 0   
Unfixed Ci = Ci

0 (7.3.14) – (7.3.23) – 
Mixed Ci = Ci

0 (7.3.14) – (7.3.20) – 
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7.4  KINETIC EFFECTS IN SUBSURFACE LAYERS 
 
The impurity diffusion is characterized by high rates, because it is stimulated 
by an interstitial present as a single diffusant or a component of dissociative 
diffusion. This circumstance leads to important features of impurity profiles 
in heated semiconductor samples. The principal mechanism determining the 
impurity profiles at a semiconductor surface involves the interaction between 
impurity atoms and vacancies, which are always present in excessive quanti-
ties near the surface. Initially, this mechanism was attributed to the injection 
of vacancies from the surface into the crystal bulk. But it has recently been 
established [10] that an essential contribution is made by the process, in 
which vacancies unite to produce pores with their subsequent decoration by 
the diffusing impurity. The production of excess nonequilibrium vacancies is 
of no importance. For example, the nonequilibrium processing of a GaAs 
sample in [10] was performed by arsenic evaporation and in [11] by 
chemical etching of silicon. So, the theoretical analysis of near-surface 
impurity kinetics was carried out in [12] in a general form, irrespective of the 
vacancy injection technique used. 
 Suppose there are excess nonequilibrium vacancies, NV0 in a subsurface 
crystal layer of thickness δ (Figure 7.1). What processes occur in it when the 
crystal is heated stage-by-stage? In the first stage, the oversaturated vacancy 
solution is decomposed and vacancies diffuse. They produce the “second 
vacancy phase”—pores. After most vacancies have been utilized for the pro-
duction of pores and the nonequilibrium vacancy concentration becomes 
low, their diffusion to the surface and into the bulk will be accompanied by 
coalescence of pores (the second stage). At the end of this stage, all excess 
vacancies will come up to the crystal surface. 
 
 

 
 
 
Figure 7.1. The vacancy profile at the initial moment of time prior to thermal 
treatment of the sample; Neq – equilibrium vacancy concentration in the 
semiconductor. 
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 The system evolution in the first stage is described by equations [12] 
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,                                   (7.4.2) 

 
where NV is the concentration of nonequilibrium vacancies, D is their diffu-
sion coefficient, r is the pore radius, NL is the vacancy concentration in a 
pore or reciprocal volume 1/Ω per vacancy, and N is the concentration of 
pores. 
 The first right-hand term in (7.4.1) describes nonequilibrium vacancy 
diffusion from the surface into the sample bulk and the second term 
describes the vacancy fraction extracted for pore formation. The initial and 
boundary conditions of the problem, according to Figure 7.1, are 
 

 N xV = =0 0 ,  N
N x

xtV
V at

at= =
≤
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

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0
0

δ
δ

,  r t = =0 0 .     (7.4.3) 

 
 The first condition implies a fast absorption of vacancies on the surface, 
i.e., the characteristic time for excess vacancy absorption at x = 0 is much 
smaller than the other characteristic times in this problem. 
 Consider the solution to the problem for the first stage, as was done in 
[12]. For this, substitute (7.4.2) into (7.4.1), integrate with respect to time 
and introduce new variables according to the equalities: 
 
       x = µξ,  t = ντ,  τ2 = λq,                          (7.4.4) 
 
where 
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        ν µ= 2D ,                                                   (7.4.6) 
 
        ( )λ µ π= −4 28 3 N .                                     (7.4.7) 
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As a result, expressions (7.4.1) and (7.4.2) take the dimensionless form: 
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with the boundary and initial conditions: 
 
    q τ= =0 0 ,  q ξ= =0 0 ,  q ξ=∞ = 0 .             (7.4.11) 

 
The function f (ξ) is found by substituting the initial conditions into equation 
(7.4.8). The first stage duration τ varies with the elimination time of most 
vacancies, which can be found from (7.4.8) by excluding the diffusion term 
∂ 2q/∂ξ2 (in the order of magnitude, ≈1). The necessary condition for pore 
formation at the surface is the restriction τl ≤ τs, which means that the pore 
formation time should not be larger than the time of vacancy migration to the 
surface. At the end of the first stage, ∂q/∂τ = 0, and the established pore 
profile can be found from (7.4.8) by equating this expression to zero with the 
boundary conditions of (7.4.11). The qualitative view of the solution ob-
tained is shown in Figure 7.2. The parameter determining the profile shape is 
∆ having the sense of the characteristic time ratio of the vacancy migration 
to the surface and the formation of a pore. 
 Every curve in Figure 7.2 can be subdivided into three regions of ξ 
coordinate variation. The respective solutions for the regions are [12]: 
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Figure 7.2. The square pore radius Rp

2 as a function of distance to the semiconductor 
surface (in dimensionless units) at various values of the ∆ parameter; ξ1/2 – the 
coordinate defined by the equation q(ξ1/2) = qmax/2. 
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q∆ and q are defined by the equations 
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In the limit cases, we have 
 

   ∆ << 1 : q qmax ≈ ≈∆
∆2

2
, ξ1/2 2 2 6 2≈ +. .∆
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   ∆ >> 1 : qmax ≈ 1 ,    ξ1/2 2 5≈ +∆ . ,                  (7.4.19) 
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 It is seen from Figure 7.2. that the profile has a stepwise shape at ∆ >> 1; 
at ∆ << 1, the profile halfwidth increases and the profile becomes slightly 
smeared. 
 It should be noted that the pore profile at ξ ≥ ∆ coincides with that de-
fined as a particular case in [13]: 
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                                   (7.4.20) 

 
with the characteristic value of x0 
 

        x
N DN

v0

2 1 5

=
















−
V Ω

/

,                          (7.4.21) 

 
where v is the surface motion rate during crystal evaporation or etching. 
 The duration of the second stage when the pores become larger, or the 
“lifetime” of pores, can be evaluated from the coalescence characteristic time 
[14]: 
 

        
( )

t r kT
D NV

II
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3

2σΩ
,                               (7.4.22) 

 
where σ is the surface tension at the crystal–vacuum interface. 
 The dimensional characteristic times of the first stage are 
 

         t v
DI = =τ µ

1
2

,                                   (7.4.23) 

 

        t v
Ds s= =τ δ2

.                                         (7.4.24) 

 
The quantitative evaluation of the times [12] shows that the relations 
 
         tI ≤ ts << tII                                          (7.4.25) 
 
are valid in a wide temperature range for Ge, Si, and GaAs. Therefore, we 
can draw the conclusion that a quasi-stationary pore profile is formed in the 
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subsurface layer of these crystals. Its formation requires the fulfillment of the 
condition ∆ ≥ 1: 
 

        δ π128
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 ≥ .                          (7.4.26) 

 
 The typical characteristic time values for GaAs at 1000 K lie within the 
following ranges: tI = 0.2–20 s, ts = 1–10 s, tII = 4×105–4×107 s. If an impu-
rity is diffused into a crystal with the subsurface vacancy profile, it will 
decorate the profile if it can cover a distance ∼δ for a time tA shorter than tII. 
Therefore, the condition for the formation of a subsurface impurity profile is 
 

         t
D

tA
A

II= ≤δ2
,                                  (7.4.27) 

 
where DA is the impurity diffusion coefficient. The analytical expression to 
describe the impurity profile derived in [13] is a power function 
 

         NA ∼ 1
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−
x
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,                             (7.4.28) 

 
in which x0 is defined by (7.4.21). 
 The above analysis and evaluation of the characteristic times of the 
stages in the interaction between impurities and vacancies, which are quite 
abundant in the subsurface layer of any semiconductor sample, have shown 
that the impurity profile cannot be described by the conventional diffusion 
equation. Therefore, it cannot be used to find impurity diffusion coefficients. 
Moreover, expression (7.4.28) is very close to the exponent in the range of 
not very large x [13], which can be easily taken for exp(DAt/l2) used in 
diffusion theory. 
 It is necessary to emphasize that the probability of impurity decoration of 
a pore profile decreases with increasing temperature. This is because the 
pore coalescence time tII is too short for the impurity profile to be established 
and vacancies do not come up to the crystal surface. Most amphoteric impu-
rities have high diffusion coefficients, and this circumstance facilitates the 
fulfillment of inequality (7.4.27) practically at any reasonable temperature. 
 Normally, shallow hydrogen-like impurities have low diffusion coeffi-
cients, so they rarely decorate pores. Impurities with partly filled d-shells 
(Ni, Fe, Cu, and others) and amphoteric impurities containing an interstitial 
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component and diffusing via the dissociative mechanism possess high 
diffusion coefficients. This facilitates the fulfillment of (7.4.27) at various 
temperatures. Vacancy porosity in solids is a well-known fact frequently 
observed in metals in normal diffusion and radiational swelling [16]. The 
mechanism of these processes is related to the Kirkendale–Frenkel effect, in 
which porosity arises at the interface of two solids because of the different 
diffusion coefficients of their constituent atoms. 
 Vacancy porosity in semiconductors is less familiar. It was first observed 
in the study of selenium diffusion in GaAs [17]. Interestingly, the semicon-
ductor crystal  contacted, in this experiment, selenium vapor, i.e., the gas-
phase, but not a solid. The authors also interpreted their results as being due 
to the Kirkendale–Frenkel effect. 
 It follows from the above theory that the necessary condition for the for-
mation of pores is oversaturation of the sample subsurface layer by vacan-
cies. These conditions were created in [14] when a GaAs crystal was 
presaturated uniformly by copper and subjected to thermal treatment during 
continuous pumping of arsenic vapor. Evaporation of arsenic atoms provid-
ed the initial stepwise vacancy profile corresponding to Figure 7.1. Copper 
atoms decorated the pore profile, which was registered experimentally. The 
profile of copper atoms obtained by secondary ion mass-spectrometry is 
shown in Figure 7.3, together with the initial fairly uniform distribution of 
copper atoms in the sample prior to thermal treatment. Besides, the copper 
concentration after diffusion saturation was 2×1023 m–3, which is close to 
copper solubility in GaAs at the saturation temperature of 1073 K. 
 The samples thus prepared were annealed in a quartz ampoule continu-
ously pumped out at 950 K. The annealing time of 6 hours was longer than 
the characteristic time of copper migration to the sample surface due to de-
composition of the Cu–As solid solution. 
 Figure 7.3 also shows the calculated profiles. Curve 1 was plotted in ac-
cordance with the equation suggested in [10]: 
 
        ( )N N x LV V V= −0 exp ~ ,                       (7.4.29) 
 
where ~x  is the coordinate equal to ~x  = x – vt at the boundary motion rate v; 
LV is the characteristic length of the vacancy profile. 
 Curve 2 in Figure 7.3 was plotted using formula (7.4.28). One can see 
that only the beginning of the experimental copper profile fits equation 
(7.4.29). There is an interesting feature looking like a subsurface maximum. 
To explain this maximum, consider the problem of a stationary pore and va- 
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Figure 7.3. Theoretical and experimental Cu profiles in GaAs after vacuum treatment 
at 950 K [14, 16]: 1 –  from formula (6.5.29);  2 – from formula (6.5.28);  3 – initial 
Cu distribution. 
 
cancy profile, taking into account the interaction between vacancies and im-
purity atoms (for example, copper) diffusing via the dissociative mechanism. 
We have the set of equations 
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where 
 

∆N N Nr l r RV V V≡ −= = , 
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∆N N Nr l r Rs s s≡ −= = . 

 
Assuming Di >> L2/t, where L is the sample size and t is diffusion time, we 
obtain Ni = Ni0, with Ni0 as a constant. Going over to the moving coordinate 
system and assuming  a stationary distribution of impurity atoms, vacancies, 
and pores, i.e., (∂N/∂t) ~x =0 = 0 and (∂R2/∂t) ~x =0  = 0, we obtain the following 
set of equations 
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The boundary conditions are 
 
    N NxV V~= =0 0 ,  N N NxV V V~→∞ ∞= << 0  

(7.4.32) 

    N Nxs s~= =0 0 ,  N K
K

N Nxs i0 V~→∞ ∞= 1

2
. 

 
 The distribution of components, described by the set of equations 
(7.4.31), possesses three characteristic lengths D/v, (Dτ)1/2, and Lpore, where 
D is any of the diffusion coefficients Di, DV, or Ds. All characteristic lengths 
are related to crystal surface motion, the interactions between vacancies and 
impurities and those between diffusing components and pores, respectively. 
 Of special interest is the case of low sublimation rates of arsenic atoms 
from the sample, or D/v >> (Dτ)1/2, Lpore. From here, we have the restrictions 
v << (Dτ)1/2, D/Lpore. Under the conditions 
 
     Dτ  << Lpore  or  Dτ  >> Lpore              (7.4.33) 
 
the set of equations is simplified for small and large distances from the crys-
tal surface. 
 Consider the case with (Dτ)1/2 << Lpore. At small x << Lpore, equations 
(7.4.31) transform to 
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The solution of this set of equations yields 
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 It is easy to get the solution to the set of equations (7.4.31) for large x >> 
(Dτ)1/2 as well. It coincides with (7.4.27): 
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Thus, formulas (7.4.35) and (7.4.36) are the basis for the analysis of experi-
mental pore profiles produced by the interaction of impurity atoms with va-
cancies and pores. 
 Let us return to the analysis of the profile in Figure 7.3 to find L1 from 
(7.4.35). For this, we take for copper atoms Ds = 10–14 m2/s, for vacancies DV 
= 10–12–10–13 m2/s [10], and the characteristic time τ ≤ 1 necessary for equi-
librium to be established in the reaction Cui + VAs ←

→  CAs. Then, L1 = 1µm, 
in agreement with the experimental distance from the sample surface to the 
copper distribution maximum. Therefore, this maximum is due to the copper 
surface concentration being lower than its quasi-equilibrium concentration in 
the initial region of the pore profile. 
 
 
 
7.5  DIFFUSION PROFILES OF INTERACTING 

IMPURITIES 
 
7.5.1  General principles 
 
In most situations of practical importance, diffusion occurs in multicompo-
nent systems. However, the research into the behavior of impurity profiles in 
multicomponent diffusion has been quite limited [19–28]. Our consideration 
of diffusion profiles will mostly follow M. I. Sinder’s model [18].  
 The interpretation of diffusion in a multicomponent system is difficult for 
two reasons. One is that the experiment providing reliable information is 
very complicated technically. The other reason why diffusion is difficult to  
 
 

 
 
 

Figure 7.4. The distributions of Sb (a) and In (b) in different Ge samples [23]. 
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Figure 7.5. The distributions in silicon: (a) – of iron in the presence of P (1) and in 
the absence of P (2); (b) – of phosphorus in the presence of Fe (1) and in the absence 
of Fe (2) [15]. 
 
interpret is that the interaction of impurity atoms must be taken into account, 
and this circumstance makes theoretical models quite sophisticated. But we 
can derive simple analytical expressions permitting a comparison with 
experiments only in certain approximations [19]. We will resort to numer-
ical methods of equation solution with a preliminary qualitative analysis of 
experimental data, because it will provide the basis for accepting or 
discarding certain factors from the mathematical consideration. 
 A theoretical interpretation of diffusion profiles is also difficult because 
of the necessity to draw a distinction between the effects of interacting and 
non-interacting impurities. Moreover, even if only one impurity diffuses, the 
diffusion process itself may involve many components. We demonstrated 
this above when discussing dissociative diffusion (Section 7.3) and the 
strong effect of interaction with vacancies at the sample surface (Section 7.4) 
and in its bulk (Section 6.5). Figures 7.4–7.7 illustrate impurity profiles for 
simultaneous and stepwise impurity diffusion in semiconductors. 
 A simple mathematical model of sequential diffusion, widely used in 
practice, is possible only if the diffusion coefficient of the pre-doping impu-
rity is much higher than that of the subsequent impurity. This condition 
permits the consideration of this problem as that of impurity diffusion into a 
uniformly doped sample [23, 25, 26]. Otherwise, it would be necessary to 
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Figure 7.6. Concentration profiles for Cu and Zn in GaAs in sequential diffusion: 
(a) – of Cu into a Zn-doped sample (1); (b) – of Zn into a Cu-doped sample (1); 
curves 2 – control distributions of Cu (a) and Zn (b) [3]. 
 
consider diffusion into a nonuniformly doped sample, which would involve 
sophisticated computations. 
 Figures 7.4–7.7 show complicated profiles which cannot be described by 
a simple diffusion equation 
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whose solution is represented by the well-known expressions 
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Many experimental profiles have extrema under certain conditions. 
 Complicated profiles can be analyzed within two approaches. One is 
based on the thermodynamics of irreversible processes. It employs the 
interaction models of diffusing components—the complexation model and  
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Figure 7.7. Concentration profiles (a) of Fe in silicon after B diffusion at T = 1273 K: 
1 – t = 3τ;  2 – t = 5τ;  3 – control, no B diffusion in sample annealing at t = 5τ; (b) of 
Cu (2) and Zn (4) in simultaneous diffusion into GaAs; 1, 3 – control distributions of 
Cu and Zn in their separate diffusion. 
 
the model of interaction via internal fields: an electric field [19] and an 
elastic field [27, 28]. 
 Note that the impurity profiles for multicomponent diffusion in semicon-
ductors have a common pattern for various solids. For example, the profiles 
of simultaneous diffusion of silicon, chromium, and carbon into iron have 
the same pattern. We should remember, however, that the study of impurity 
profiles in metals and alloys is complicated by a high density of dislocations, 
second-phase products, small-angle boundaries, and structural defects. Of 
course, their interactions in semiconductors are easier to avoid.  
 
 
7.5.2  Impurity interactions in terms of thermodynamics of irreversible 

processes 
 
Let us analyze diffusion kinetics in terms of the linear thermodynamics of 
irreversible processes [29, 30]. The equation for component flows ji ex-
pressed through chemical potential gradients is 
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where Lik are Onzager’s coefficients and µik is the chemical potential of the 
k-th component. 
 Going from the chemical potentials to the concentrations of components, 
Ck, we can write 
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,                                      (7.5.5) 
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are partial diffusion coefficients. 
 From the continuity theorem for a one-dimensional case, we have 
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 Therefore, diffusion in an n-component system is described by n2 diffus-
ion coefficients, each of which is generally a variable depending on the con-
centration of components and other state parameters. Solutions to the set of 
equations (7.5.6) were derived in [30, 36] for various boundary conditions at 
constant diffusion coefficients Dik in simultaneous and sequential diffusion 
of two components into a semi-infinite body. 
 Before discussing the details of these solutions, we should specify the 
concepts of sequential and simultaneous diffusion. Usually, these concepts 
are associated with various initial conditions and with the presence or ab-
sence of components in the sample bulk. To make the classification of solu-
tions to diffusion equations convenient, we will define them in terms of vari-
ous boundary conditions. If constant concentrations of components are as-
signed at the boundary, such a process will be termed simultaneous diffu-
sion. If the boundary condition assigns the absence of one component in the 
sample bulk at the initial moment of time, such a process will be referred to 
as sequential diffusion.  
 Equation (7.5.6) for two components is written as 
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The initial and boundary conditions for sequential diffusion are 
 

C1(x, 0) = C1
0,  C(∞, t) = C1

0,  C2(0, t) = C2
0, 

 
C2(∞, t) = 0,  C2(x, 0) = 0, 
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For simultaneous diffusion, they are 
 

C1(x, 0) = C2(0, t) = 0 at   x > 0,  
 

C1(∞, t) = C2(∞, t) = 0, C1(0, t) = C1
1,  C2(0, t) = C2

1, 
 
where C1

0, C2
0, C1

1, and C2
1 are constants. 

 The solutions to the set of equations (7.5.7) for sequential diffusion 
(Figure 7.8) are [28]: 
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            (7.5.8) 

 
and for simultaneous diffusion (Figure 7.9), they are [28]: 
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Figure 7.8. Distributions of concentrations C1 and C2 in sequential diffusion: (a) – at 
D12 > 0; (b) – at D12 < 0 [3]. 
 
 
 
 

 
 
 
Figure 7.9. Distributions of the active component in simultaneous diffusion [3] of (a) 
impurities of different signs and (b) impurities of the same sign (λ ≡ x/2t1/2 is the 
Boltzmann variable): (a) – n0 = 1; p0 = 0.1 (1), 0.5 (2), 2 (3), 5 (4);  (b) – n0 = 10; p0 = 
0.2 (1), 3 (2), 5 (3), 10 (4). 
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where 
 

( )u D D D2
11 22

1
2

= + − ,  ( )v D D D2
11 22

1
2

= + + , 

 

( )D D D D D= − +11 22
2

12 214 . 

 
 It is seen from Figure 7.8 that in sequential diffusion, the distribution of 
component 1 pre-doped into the sample contains an extremum: a maximum 
at D11 > 0 and a minimum at D12 < 0. In simultaneous diffusion of two com-
ponents, their concentrations decrease monotonically into the sample bulk 
due to the initial and boundary conditions assigned at a fairly large distance 
from the surface. At the surface, however, the distribution of the components 
may show a maximum (Figure 7.9). The condition for the appearance of the 
maximum can be easily derived from (7.5.9). 
 Therefore, the distribution of components can be described in terms of 
phenomenological diffusion coefficients. An advantage of this approach is 
its universal character permitting the description of experimental impurity 
profiles without going into the interaction details. It follows from this that a 
non-monotonic character of impurity distributions is one of the characteris-
tics of the interaction between the components. On the other hand, the as-
sumption of coefficients Dik being independent of concentration is a fairly 
rough approximation. 
 The phenomenological character of coefficients Dik does not permit their 
numerical evaluation or the understanding of interimpurity interaction. This 
is a common property of all phenomenological models. For this reason, 
model approaches are more often used to analyze impurity profiles.  
 
 
7.5.3  Impurity interactions in terms of a model approach 
 
The electrostatic interaction model for impurity atoms analyzes internal field 
effects on impurity diffusion. It is based on a combined solution of diffusion 
equations and Poisson’s solution for electrostatic potential [18, 23, 32]. We 
will discuss briefly some qualitative features arising in electrical interactions 
[19]. 
 In sequential diffusion, the distribution of a pre-diffused impurity shows 
an extremum: a maximum in donor–donor and acceptor–acceptor 
interactions and a minimum in donor–acceptor interactions. In simultaneous 
diffusion of two impurities (Figure 7.9), the impurity concentrations in 
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donor–acceptor interactions decrease monotonically with distance from the 
sample surface.  
 When the impurities have the same sign, the distribution pattern of the 
rapidly diffusing impurity may have a maximum if the slowly diffusing im-
purity has a high surface concentration (Figure 7.9a). The distribution of the 
latter remains monotonic.  
 Of interest is another feature. If the diffusion coefficients of impurities 
differ considerably, the rapidly diffusing impurity has little effect on the con-
centration distribution of the other impurity, irrespective of the initial and 
boundary conditions. The distribution pattern of the former impurity has two 
regions: a region of an abrupt change of concentration with depth, associated 
with the electric field effect of the slowly diffusing impurity, and a region of 
free diffusion. 
 The comparison of solutions derived from the set of equations (7.5.7) and 
from the field-affected interaction model shows their agreement. An advan-
tage of the “field” model is the relation between the characteristic features of 
impurity profiles and physically clear reasons, as well as diffusion coeffi-
cients. 
 It might seem from the analogy with an electric field that impurity elastic 
field should have a strong effect on diffusion. This, however, is not the case. 
Let us discuss this problem in some detail, as was done in [33–35]. 
 The study of elastic interactions of point defect pairs has a rather long 
history [35]. It has recently been established that the solution to the problem 
of strong interaction greatly depends on the boundary conditions. For 
example, the authors of [36] consider two elastically interacting point defects 
in the form of two spheres made from foreign material, built into a cavity of 
a somewhat different radius. The interaction energy Eint of the spheres is 
 
         E ARint ≅ −6 ,                                     (7.5.10) 
 
where R is the interdefect distance, A = (G/G1 – 1), G and G1 are the modules 
of the matrix shift and inclusion.  
 Hence, the energy of elastic interaction for dilatation centers (G = G1) is 
zero. This seems to be the reason why most authors take into account only 
the stress field arising from a nonuniform distribution of defects, although 
elastic interaction of defect pairs also exists in an unstressed crystal, i.e., at σ 
= 0 [35, 37, 38]. Any real solid is finite. When a dilatation center is intro-
duced into it, the body surface is compressed or dilated, unless it is fixed 
rigidly. The induced surface forces deform the lattice, creating what is 
known as an imaginary deformation field. The relative change in the body 
volume is described as 
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      ε
να

α

α α

α
= + ∑ = ∑∞div divu U CΩ ,                  (7.5.11) 

 
where U is intrinsic energy of a defect; Ω = ϑ1 – ϑ is the volume difference 
between the sphere (ϑ1) and the cavity (ϑ), into which the sphere was in-
serted; C is the defect concentration; ν is Poisson’s coefficient; summation is 
made over all defect kinds α. 
 The first term in (7.5.11) is the body lattice deformation and the second 
term represents deformation concentrated on defects (dilatation centers). The 
total energy of pair interaction of centers α and β, or the elastic contribution 
to the free energy of a homogeneous defect solid solution for bodies with 
unfixed boundaries was found to be [35] 
 

     E N K C C v
vint = − −

−
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1
2

2
3

1 2
1s

Ω Ωα β
α β

βα ϑ
,            (7.5.12) 

 
where K is the hydrostatic compression module and Ns is the number of sites 
in a defect-free crystal. 
 Normal diffusion conditions are close to this case of free crystal boun-
dary. The respective expression for a diffusional defect flow was found in 
[35]: 
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Ω , 

(7.5.13) 
 
where σkk is a stress tensor. 
 If diffusion into a thick plate is uniform, we have 
 

σ σ
νxx yy

E C= = −
−

Ω
3 1

, 

(7.5.14) 
σxy = σyz = σxz = σzz = 0, 

 
where E is Young’s module. 
 The lattice is compressed (σkk < 0) if the covalent radius of an impurity 
atom is larger than that of the host atom (Ω > 0). By substituting (7.5.14) 
into (7.5.13) with K = E/3(1 – 2ν), it is easy to obtain a zero effect of elastic 
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fields on one-dimensional diffusion of dilatation centers in an isotropic me-
dium, which is consistent with the conclusion of [38]. It is interesting that 
the authors of [39, 40] thought it necessary to add a drift term to the 
expression for impurity atom flow to describe the diffusion. 
 Finally, most semiconductors are known to be anisotropic. This means 
that the elastic interaction value and the stress concentration vary with the 
direction n  of the sample cleavage. According to [40], we have  
 
         j D C= − ∇el ,                                     (7.5.15) 
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,            (7.5.16)  

 
where D is a diffusion coefficient of atoms uninvolved in the lattice defor-
mation, Y( n ) is a complex function of elastic constants C11 and C12, of com-
ponents nx, ny, nz, and an anisotropic factor 
 

       ξ = + + ≠C C C
C

12 44 11

44

2 0 .                            (7.5.17) 

 
 The pair interaction of dilatation centers does not completely compensate 
the stress field, and the diffusion coefficients must differ in different 
crystallographic directions, namely, [35]: 
 
        D111 > D110 > D100.                                   (7.5.18) 
 
These relations were observed experimentally in silicon in diffusion of phos-
phorus with a high surface concentration [41]. 
 Diffusion conditions, in which the boundary of a solid can be considered 
to be fixed rigidly, are very rare in semiconductor practice. But if this situa-
tion does take place, one should use, instead of (7.5.16), the solution derived 
by Krivoglazov [42], showing that concentration elastic stresses affect diffu-
sion even at ζ = 0 and the relations of (7.5.18) are also fulfilled. Those inter-
ested in the mathematical results concerning this situation can turn to the 
original work [42]. 
 The next interaction model which describes impurity diffusion in semi-
conductors is the complexation model. Complexation mechanisms are di-
verse [43] but any model implies that the range of forces producing com-
plexes must be small. It is only under this condition that a complex can be 
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regarded as a point defect. Otherwise, say, in electrostatic interaction, the 
complexation model will allow only for short-range forces, with the long-
range component replaced by an average field induced by the nearest 
neighbors. This is characteristic of the internal electric field model. 
Therefore, the two models—the complexation model and the electric field 
model—supplement each other and describe, respectively, the short- and 
long-range interactions between diffusing components. It is easy to notice, 
however, that the interaction in the field model may be both attraction and 
repulsion, whereas the complexation model describes only attraction. Short-
range repulsion is usually taken into account by a factor in the diffusion 
coefficient. 
 
 
7.5.4  Diffusion theory for immobile complexes 
 
The equations for the diffusion of two components A and B with the 
instantaneous formation of the complex Q ←

→  A + B are 
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where NA, NB, and Q are the total concentrations of the components; DA, DB, 
and DQ are their diffusion coefficients; K is a complexation constant. 
 Here, we will discuss the solution to the set of equations (7.5.19) for 
small DQ, as compared to DA and DB, or for practically immobile complexes. 
The authors of [44, 45] considered the problem of sequential diffusion of 
component A into a sample uniformly doped with component B with the ini-
tial boundary conditions:  
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Figure 7.10. Distributions of (a) A atoms and (b) B atoms in a strong complexation 
after sequential diffusion [45]. 
 
 The solution to equations (7.5.19) with the boundary conditions of 
(7.5.20) was obtained in the extreme cases of strong complexation (K = 0) 
and weak complexation (K >> NA, NB). 
 (1) A strong complexation is shown in Figure 7.10 at K = 0: 
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where λ = x/2t1/2 is Boltzmann’s variable, dA

2 = DA, dB
2 = DB, and 
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The characteristic value of λ is defined by the equation 
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 (2) A weak complexation is shown in Figure 7.11 at K >> NA, NB: 
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Figure 7.11. Distributions of (a) A atoms and (b) B atoms in a weak complexation 
after sequential diffusion [45]. 
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 It is seen from Figures 7.10 and 7.11 that the surface concentration of 
component A in both complexation types increases by the concentration 
value of the complexes. Simultaneously, there is an increase in the sub-
surface concentration of component B due to its inflow into the complexa-
tion region. The distribution of component B has a minimum, which is very 
distinct in a strong complexation but is hardly visible in a weak complex-
ation. 
 The set of equations (7.5.19) was solved in [46] for simultaneous diffu-
sion without restrictions on the complexation constant, i.e., without drawing 
a distinction between the types of complexation. It was suggested only that 
the diffusion coefficient of the component uniformly distributed in the 
sample was much larger than that with zero concentration. 
 The boundary and initial conditions for this problem are 
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The solution to this problem can be facilitated by using Boltzmann’s variable 
which transforms the set of equations (7.5.19) to 
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where 
 

HA ≡ NA – Q,  HB ≡ NB – Q. 
 
 By putting into (7.5.27), alternately, dA = 0 at λ → ∞ and dB → ∞ at x = 
0, we find the external and internal expansions for HA and HB: 
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where C1 and C2 are constants derived from the “sowing” conditions of the 
internal and external expansions: 
 

  ( ) ( ) ( ) ( )N H
H H

K
H

K
dA A

A B B
Aerfc= +









 +0

0 0
1

0
λ             (7.5.30) 

 

( ) ( ) ( )[ ] ( ) ( ) ( ) .01erfc00erfc0 A
BBA

B
BBBB d

K
H

K
HH

d
HHHN +λ+λ∞−+∞=

 
 Expressions (7.5.30) somewhat differ from those derived in the original 
work [46]. They are more simple and contain no constants with an ambigu-
ous physical sense. The NB distribution minimum appears under the 
condition HB(0) < HB(∞), which means that the boundary concentration of 
the free component B must be smaller than in the sample bulk. The minimum 
arises from two opposite B flows—one consisting of B atoms bound in 
complexes and migrating into the sample bulk; the other consisting of free B 
atoms migrating outward.  
 The solutions to the set of equations (7.5.9) under the condition DQ << 
DA, DB show that complexation has a greater effect on the profile of the 
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higher mobility component. As in the field model, the distribution of the 
rapidly diffusing component has two regions. In one region, the concentra-
tion distribution is determined by the bound component and in the other by 
the free-diffusing component. 
 In sequential diffusion, the distribution pattern of the initially uniform 
component contains only a minimum, but if the field mechanism is involved, 
it contains both a minimum and a maximum. In simultaneous “field” 
diffusion into an undoped sample, the distribution pattern of the higher 
mobility component may have a maximum, which is absent if the process 
involves low mobility complexes (DQ << DA, DB) or nearly immobile 
complexes. 
 The kinetic models of impurity interaction discussed in this chapter have 
a strong restriction on the mobility of complexes. These models have another 
limitation—the neglect of complexation kinetics, which means that “the time 
for equilibrium to be established between complexes and free impurities is 
much shorter than the characteristic times of diffusion” [45]. In other words, 
the reaction producing complexes Q is instantaneous, as was pointed out at 
the beginning of this section. 
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Chapter 8 
 

Impurity Migration in the Formation of 
Mobile Complexes 
 
 
 
8.1  DIATOMIC COMPLEXES: FORMATION AND 

DECOMPOSITION 
 
Complexes are often formed by particles possessing electrical activity. This 
is likely to be associated with long-range potential interaction. Thermal 
treatment inevitable in semiconductor technology or device heating during 
its application accelerates particle association. 
 Consider a set of kinetic equations for the formation of two-particle 
complexes. Suppose that the association occurs in an elemental semiconduc-
tor and involves two constituents according to the reaction A + B ←

→  K. This 
process is described by the set of equations: 
 

       BAccc
c

d
d NNCNe

t
N +−=  

 

       d
d

A
c c c A B

N
t

e N C N N= −                                (8.1.1) 

 

       d
d

B
c c c A B

N
t

e N C N N= − + , 
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where ec is the thermal decay rate of a complex; Cc is the capture coefficient 
of complexation; Nc is the concentration of complexes; NA and NB are con-
centrations of A and B particles, respectively. 
 Equations (8.1.1) are written in accordance with the theory presented 
above. The superscripts have been omitted, because the process occurs in an 
elemental semiconductor and the particles are substitutional atoms. 
However, this set of equations can describe a semiconductor of any 
complexity. Moreover, the role of a particle can be played by another 
complex; in that case (8.1.1) describes its enlargement and transformation to 
a more complex associate. This set of equations will be solved under the 
following boundary conditions: 
 
  NA(t = 0) = NA

0,  NB(t = 0) = NB
0,  Nc(t = 0) = 0.            (8.1.2) 

 
This suggests that there are no complexes at the initial moment of time and 
that the concentration of partners in a complex is minimal. 
 The variables in (8.1.1) are not independent. At every moment of time, 
they are related by the conservation law for the number of particles of sort A 
and sort B: 
 
     NA

0 = NA(t) + Nc(t),  NB
0 = NB(t) + Nc(t).              (8.1.3) 

 
With these equations, the complexation kinetics will be  
 

       d
d

c
c c

N
t

aN bN d= + +2 ,                                  (8.1.4) 

 
where 
 

a = Cc,  b = –ec – Cc(NA
0 + NB

0),  d = CcNA
0NB

0. 
 
 Equation (8.1.4) can be solved using the following substitutions. 
(1) Nc(t) = Y(t) + Nc

e, where Nc
e is the equilibrium solution to be found from 

the equation 
 
        aNc

2 + bNc + d = 0,                                     (8.1.5) 
 
and the equation for Y(t) will be 
 

       ( )d
d c

eY
t

aY b N Y= + +2 2 .                                (8.1.6) 
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(2) Equation (8.1.6) reduces to a linear equation after the substitution of 
expression Y(t) = 1/Z(t): 
 

        ( )d
d c

eZ
t

b N Z a= + −2 .                               (8.1.7) 

 
With the solution to linear equation (8.1.7) and the initial conditions (8.1.2), 
the time dependence of the concentration of complexes can be found from 
the expression 
 

   ( ) ( )[ ] ( )N t N c t
N

tc c
e

c
e= + − − − −













−

λ
λ λexp exp1 1

1

,            (8.1.8) 

 
where λ = –ec – Cc(NA

0 + NB
0 – 2Nc

e). 
 The equilibrium solution is found from the quadratic equation (8.1.5): 
 

      N e
C

N N Dc
e c

c
A B= + + −









1
2

0 0  

(8.1.9) 

      D e
C

N N N N= + +






 −c

c
A B A B
0 0

2
0 04 . 

 
One equation root is discarded in view of the condition Nc

ec ≤ NA
0, NB

0. 
 The function Nc

e = f(T) for low temperatures (T → 0) is equal to the con-
stant (min{NA

0, NB
0}); as the temperature rises, it decreases as exp(– gc/kT), 

(gc < 0). 
 Figure 8.1 presents the results of complexation kinetics modeling. The 
curves have a characteristic shape, while the time constant is not strictly 
constant. An important feature is the temperature dependence of the steady 
state value. At low temperatures, the process is shifted toward the larger 
number of complexes. Their maximum concentration is equal to the concen-
tration of those partners in an associate which are less abundant in the semi-
conductor. Some complexes decompose at higher temperatures and the am-
plitude of the kinetic process goes down. 
 The temperature dependence of the steady state concentration is shown in 
Figure 8.2, together with isochronous annealing data for p-silicon [1]. One 
should note that the curves converge in the high temperature region and  
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Figure 8.1. Complexation kinetics at different temperatures, °C: 1 – 500; 2 – 550; 
3 – 600; 4 – 650; 5 – 700. 
 
significantly differ at low temperatures. If the experimental data coincide 
with the bell-shaped curve, the steady state concentration of complexes is a 
kink. This is because complexation at low temperatures is confined to diffu- 
sion processes and the time is too short for the concentration to reach the 
steady state level during isochronous annealing. More exactly, the restriction 
is due to the capture of one partner by another, and the capture coefficient  
 
 

 
 
Figure 8.2. The temperature dependence of (1) the steady state concentration of 
complexes and (2) their concentration after isochronous annealing. 
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determining this process contains the diffusion coefficient [2, 3]. The differ-
ence between the steady state and experimental curves allows determination 
of the capture coefficient. The parameter fitting of the steady state process in 
the high temperature region yields the defect concentration and 
complexation energy. 
 Complexation kinetic coefficients can be found from the concentration 
kinetics of complexes at various temperatures. This can be done using equa-
tion (8.1.8). Complexation parameters can also be derived from the decrease 
in the number of A and B particles. But this is not always possible because of 
experimental difficulties. A very common experiment involves an isochro-
nous semiconductor annealing. This experiment can be described by equa-
tions (8.1.8) and (8.1.9). For this, the annealing time in (8.1.8) must be taken 
to be fixed (t = t0) and the concentration of complexes must be considered as 
a function of temperature. Modeling shows that the experimental plot in the 
concentration–temperature coordinates represents a bell-shaped curve. The 
calculations show that complexation is very effective in a certain temperatu-
re range. As the annealing time becomes longer, the concentration maximum 
shifts toward lower temperatures. 
 Formulas (8.1.8) and (8.1.9) are difficult to use for an experimental data 
description, but they can be simplified on the following assumption. Suppose 
the initial concentration of one type of particles is much higher than that of 
the other (for definiteness, NA

0 >> NB
0, Nc

e); then (8.1.8) and (8.1.9) will 
transform to 
 

  N N N
N N g C N N

g
C N N

c
e A B

A B c B A c A B
≈

+ +
≈ + +











−0 0

0 0 0 0 0 0

1
1 1           (8.1.10) 

 
   ( ) ( )[ ]N t N tc c

e= −1 exp λ , ( )λ T e C N= − −c c A
0 .              (8.1.11) 

 
 This approximation corresponds to a fairly common situation when, say, 
the impurity concentration exceeds the vacancy concentration. At non-zero 
initial concentration of complexes, the following solution can be obtained 
easily: 
 
      ( ) ( ) ( )N t N N N tc c

e
c
e= + −0 exp λ ,                     (8.1.12) 

 
where Nc(t = 0) = N0. The annealing curve will be described by formula 
(8.1.12) if the time in it is taken to be fixed (t = t0 is annealing time) and Nc 
is considered as a function of temperature. 
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 The derived formulas can describe the formation of electrically active 
complexes in a large number of situations. 
 The temperature effect on the concentration of electrically active centers 
was studied in [1] using thermally stimulated currents. The temperature de-
pendence of the concentration of centers with Ev + 0.46 eV in silicon during 
isochronous annealing was shown to be a bell-shaped curve with their maxi-
mum concentration of 7×1013 cm–3. The authors suggested that this kind of 
center was a complex produced by point defects; but there were no sugges-
tions concerning the nature of this center. Some of the center parameters 
were found in [4] with formula (8.1.12). The calculation procedure for find-
ing complexation parameters was as follows. 
 (1) The tail of the bell-shaped curve lying in the high temperature region 
is described by formula (8.1.10). This is because the concentration rapidly 
reaches its equilibrium value in this region. After the parameter fitting, the 
equilibrium defect concentration can be written as 
 

    
( )

N
kT

c
e =

× + × −− −
1

6 2 10 7 97 10 17915 5. . exp .
.            (8.1.13) 

 
The concentration of one partner in the center is 1.6×1014 cm–3, according to 
(8.1.10). The energy of the center formation is approximately equal to 
1.8 eV. 
 (2) The expression for equilibrium concentration (8.1.10) and formula 
(8.1.12) were used to derive the dependence 
 

( )λ T
t

N N
N N

= −
−

1

0 0
ln c c

e

c
e . 

 
The initial concentration of the centers in question was found to be 
1.78×1011 cm–3. 
 (3) The activation energy of complexation can be found from the slope of 
the curve in the low temperature region if one plots the logarithmic function 
λ(T) versus 1/T. The high temperature slope can yield the activation energy 
of decomposition of the complex. 
 For this case, the activation energy of complexation was found to be 2.5 
± 0.1 eV, which coincides with that of oxygen diffusion (the latter was found 
to be 2.52 eV [5]). This suggests that an electrically active complex is 
produced by attachment of an oxygen atom to some particles. The 
concentration of such particles is ∼1.6×1014 cm–3. These may be background  
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Fe, Cu, Mn, and C atoms. No activation energy of decomposition has been 
traced in this temperature range; therefore, its probability is quite low. In 
accordance with (8.1.12) and (8.1.13), the concentration of such centers is 
described as 
 

( ) ( ) ( )( )N T N T N N T
kT

tc c
e

c
e= + − − × −













0

11
08 3 10 2 5exp . exp . .        (8.1.14) 

 
 Thus, isochronous annealing curves can be used to find the energy char-
acteristics of the complex. These characteristics, in turn, can help to identify 
the center composition. Its nature may be clarified, with account taken of the 
energy level position, by quantum chemical methods or by detailed investi-
gations of its complexation kinetics.  
 
 
 
8.2  DIFFUSION MODEL FOR MOBILE COMPLEXES1 
 
In contrast to the kinetics of immobile complexes described by equation 
(7.5.24), the set of equations for the diffusion of components in the reaction 
A + B ←→  Q has the general form: 
 

      ∂
∂

∂
∂

H
t

D H
x

K H H K QA
A

A
A B= − +

2

2 1 2 , 

 

      ∂
∂

∂
∂

H
t

D H
x

K H H K QB
B

B
A B= − +

2

2 1 2 ,                (8.2.1) 

 

      ∂
∂

∂
∂

Q
t

D Q
x

K H H K Q= + −Q A B

2

2 1 2 , 

 
where HA is the concentration of free component A, HB is the concentration 
of free component B, Q is the concentration of complexes, K1 is the rate 
constant of complexation, and K2 is the rate constant of decomposition of a 
complex.  

                                                           
1  Here, we follow M. I. Sinder’s dissertation  A Theoretical Treatment of Sub-surface Profiles 
in Semiconductors (Moscow, 1982) done under the author’s supervision, and the publications 
[6–8]. 
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 The set of equations (8.2.1) has no analytical solution. For this reason, it 
is usually solved by computational techniques to obtain the dependences 
HA(x, t), HB(x, t), Q(x, t). 
 Let us analyze qualitatively the processes occurring during A, B, and Q 
diffusion into a sample uniformly doped with A, B, and Q impurities. We 
will first evaluate the order of magnitude of the terms of equations (8.2.1): 
 
∂
∂
H

t
A ∼ H

t
A ,  D H

xA
A∂

∂

2

2 ∼ H
x

A
2 , K H H K Q1 2A B − ∼ HA

τ
    and so on, 

 
where τ is the characteristic time of the reaction A + B ←→  Q, or the charac-
teristic time for chemical equilibrium to be established in a uniform closed 
system. 
 By substituting these evaluations into (8.2.1), we get 
 

         1 1
2t

D
x

≈ +A
τ

 

 

         1 1
2t

D
x

≈ +B
τ

                                         (8.2.2) 

 

         1 1
2t

D

x
≈ +Q

τ
. 

 
It follows from (8.2.2) at short times  t << τ that the terms ∼1/τ describing 
the interaction of diffusing particles can be neglected; (8.2.1) transforms to 
 

        ∂
∂

∂
∂

H
t

D H
x

A
A

A=
2

2 , 

 

        ∂
∂

∂
∂

H
t

D H
x

B
B

B=
2

2 ,                                    (8.2.3) 

 

         ∂
∂

∂
∂

Q
t

D Q
x

= Q

2

2 . 
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This means that the three components diffuse independently into the sample 
bulk at small time values.  
 There may be three situations at large times, t >> τ. 
 At the sample surface with x << (Dt)1/2 (D is an arbitrary coefficient of 
diffusion DA, DB, or DQ), it follows from (8.2.2) that ∼1/t terms describing 
the time variation of concentration can be neglected; (8.2.1) transforms to 
 

      D H
x

K H H K QA
A

A B
∂
∂

2

2 1 2 0− + = , 

 

      D H
x

K H H K QB
B

A B
∂
∂

2

2 1 2 0− + = ,                       (8.2.4) 

 

      D Q
x

K H H K QQ A B
∂
∂

2

2 1 2 0+ − = . 

 
This set of equations describes steady state profiles of particles at the sample 
surface. 
 In the sample bulk with x >> (Dt)1/2, the terms describing the interaction 
of particles become much larger than the other terms, and it immediately 
follows from (8.2.1) and (8.2.2) that 
 
         K1HAHB = K2Q.                                    (8.2.5) 
 
 The two missing equations can be obtained by taking into account the 
other terms in equations (8.2.1). To have only commensurable terms in the 
equations, we add the first two equations of (8.2.1) to the third term to get 
the expressions 
 

      ∂
∂

∂
∂

∂
∂

∂
∂

H
t

Q
t

D H
x

D Q
x

A
A

A
Q+ = +

2

2

2

2 ,                   (8.2.6) 

 
which, together with (8.2.5), form a full set of equations. It coincides with 
the set of equations (8.2.1) suggested in [9] and describes a consistent 
migration of particles into the sample bulk. For the finite sample length L, 
we get the following conditions for the transformation of equations (8.2.1) to 
(8.2.5) and (8.2.6): 
 
      Dτ  << x << L,  τ << t << L2/D.                    (8.2.7) 
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Note that if the sample is sufficiently long, the diffusion term for the region x 
>> (Dt)1/2, (Dτ)1/2 in the sample bulk can be neglected, and the set of equa-
tions (8.2.1) transforms to the conventional chemical kinetics equations: 
 

       ∂
∂
H

t
K H H K QA

A B= − +1 2 , 

 

       ∂
∂
H

t
K H H K QB

A B= − +1 2 ,                            (8.2.8) 

 

       ∂
∂
Q
t

K H H K QA B= −1 2 . 

 
 Let us consider in more detail the sets of equations (8.2.4), (8.2.5), and 
(8.2.6) describing stationary and nonstationary distributions of particles in a 
sample at large times t >> τ.  
 The boundary conditions at x = 0 for equations (8.2.4) coincide with 
those for (8.2.1): 
 
  H HxA A= =0 0 ,  H HxB B= =0 0 ,  Q Qx= =0 0 .             (8.2.9) 

 
The solution to the set of equations (8.2.4) with the boundary conditions of 
(8.29) and a limited concentration at x → ∞ is 
 

       ( )[ ]H H
D
D

Q Q xA A
Q

A
= + −0 0 , 

 

       ( )[ ]H H
D
D

Q Q xB B
Q

B
= + −0 0 ,                      (8.2.10) 

 

       ( )Q
D

Y x= 1

Q
. 

 
 The dependences HA(x), HB(x), and Q(x) have a monotonic character. For 
K1HA0HB0 = K2Q0, the solutions to (8.2.10) transform to identical constants. 
Therefore, the necessary condition for a steady state subsurface profile is 
K1HA0HB0 ≠ K2Q0, which means that the concentration of particles at the 
sample boundary must be the equilibrium concentration for the crystal bulk. 
Physically, there must be a subsurface layer of finite thickness, for which 
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these conditions are fulfilled. Therefore, a steady state profile is produced by 
“screening” of nonequilibrium concentrations on the crystal surface. This 
situation is similar to that for a Debye screening layer under a charged sur-
face [10]. If there is an electric double layer, the electrical neutrality in the 
bulk is established due to electrical interactions of diffusing particles. In the 
case under consideration, equilibrium is established due to a chemical 
interaction of diffusing particles. 
 We can show that (8.2.10) at x → ∞, HA(x) → HA(0), HB(x) → HB(x), and 
Q(x) → Q(x) satisfies the relations 
 
      DAHA(0) + DQQ(0) = DAHA0 + DQQ0 
 
      DBHB(0) + DQQ(0) = DBHB0 + DQQ0                  (8.2.11) 
 
         K1HA(0)HB(0) = K2Q(0), 
 
i.e., a chemical equilibrium is established in the sample bulk, or, more 
exactly, the particle concentrations satisfy the active mass law (8.2.5). 
 To solve the set of equations (8.2.4) and (8.2.6), it is necessary to define 
the initial and boundary conditions. The boundary concentrations at x << 
(Dt)1/2 (x→ 0) are equal to HA(0), HB(0), and Q(0), respectively. This is be-
cause there is a variation region (Dτ)1/2 << x << (Dt)1/2, in which  both sets of 
equations—(8.2.4) and (8.2.6)—are valid. They are smoothly sewn together 
in the indicated range of x, permitting the use of concentrations HA(0), 
HB(0), and Q(0) as the boundary conditions for these sets of equations. 
 If the initial concentrations HA

0, HB
0, and Q0 are equilibrium concentra-

tions (K1HA
0HB

0 = K2Q0), they act as the initial conditions for equations 
(8.2.4) and (8.2.6). If the initial concentrations are nonequilibrium ones 
(K1HA

0HB
0 ≠ K2Q0), equilibrium bulk concentrations HA(∞), HB(∞), and 

Q(∞) are established at large times t >> τ, whose values can be obtained by 
solving the set of equations (8.2.8): 
 

( ) ( ) ( )H H H K H H K K H QA B A A B B∞ = − − + − + + +



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

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40 0 0 0 2 0 0  

 

( ) ( ) ( )H H H K H H K K H QB ∞ = − − + − + + +

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40 0 0 0 2 0 0
A B A B B    (8.2.12) 
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( ) ( ) ( )Q H H K Q H H K K H Q∞ = + + + − − + + +











1
2

2 40 0 0 0 0 2 0 0
A B A B B , 

 
where K = K1/K2. 
 The concentration distribution in the sample bulk remains uniform, and 
the values of HA(∞), HB(∞), and Q(∞) will act as the initial conditions for the 
set of equations (8.2.4) and (8.2.6).  
 Thus, the qualitative analysis of diffusion of particles A, B, and Q into a 
plane sample uniformly doped with the same particles A, B, and Q involved 
in the reaction A + B ←→  Q provides the following picture of the process. 
 At short times, t << τ, there is an independent diffusion of A, B, and Q 
into the sample. Then, at t ∼ τ, there is an interaction of particles because of 
the reaction A + B ←→  Q, resulting, first, in a change of the particle motion 
away from the sample surface and, second, in a chemical equilibrium in the 
crystal bulk (x >> (Dt)1/2, (Dτ)1/2). At times τ << t << L2/D, a steady state 
distribution is established at the sample surface. A chemical equilibrium is 
established in the bulk at x >> (Dt)1/2, (Dτ)1/2. A diffusion-like wave propa-
gates through the region of (Dτ)1/2 << x << L, representing a consistent 
movement of the particles from the surface into the bulk. Thus, a wave 
propagates through the bulk, “absorbing” the equilibrium distribution in the 
bulk HA(∞), HB(∞), and Q(∞) and prescribing a new equilibrium distribution 
HA(0), HB(0), and Q(0), which has been established at the steady state profile 
boundary. At t >> L2/D, a uniform equilibrium concentration distribution is 
established in the sample: HA(0), HB(0), and Q(0). At the surface, there are 
steady state distributions extending as far as the length (Dτ)1/2. 
 When particles A, B, and Q diffuse into a plane sample, the absence of 
one of them, say, HB, is prescribed at its boundary: 
 

∂
∂
H
x x

B

=
=

0
0 , H HxA A= =0 0 ,  Q Qx= =0 0 . 

 
Then at times t >> τ, an equilibrium will be established on the sample sur-
face, and the concentration HB will have the value HB|x=0 = KQ0/HA0. Since 
the surface concentrations will satisfy relation (8.2.5), no subsurface steady 
state profile will be formed but the rest of the process will remain the same 
as in the previous case. 
 If the absence of two kinds of particles, for example HB and Q, is pre-
scribed at the sample boundary 
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∂
∂
H
x x

B

=
=

0
0 ,  ∂

∂
Q
x x=

=
0

0 ,  H HxA A= =0 0 , 

 
then the equilibrium will be established on the surface at times t >> τ, 
exactly as above, and there will be no steady state surface profiles. However, 
in contrast to the case above with the completely defined boundary 
conditions for (8.2.4) and (8.2.6) at x = 0 (HA|x=0 = HA0, HB|x=0 = KQ0/HA0, 
Q|x=0 = Q0), we have now only one boundary condition HA|x=0 = HA0. The 
missing boundary condition is  
 

D H
x

D Q
x x

B
B

Q
∂
∂

∂
∂

+ =
=0

0  

 
reflecting the conservation of the total amount of B impurity during 
diffusion. Indeed, equations (8.2.6) are valid for any moments of time. By 
integrating the second equation with respect to x, we will get 
 

∂
∂

∂
∂

∂
∂t

H x Q x D H
x

D Q
xB B

B
Qd d

0 0 0 0
0

∞ ∞ ∞ ∞

∫ + ∫ = + = ; 

hence, 

( )H Q xB d+ =∫
∞

0
0

. 

 
The above boundary condition unambiguously defines the solution to the 
sets of equations (8.2.4) and (8.3.6). 
 Similarly, one can analyze diffusion processes occurring in a plane 
sample, when its one half is uniformly doped with, say, A particles, at the 
initial moment of time and the other half with B particles. As in the above 
case, we can show that the concentration distribution is described by (8.2.4) 
and (8.2.6) at large times, t >> τ. Note that no steady state profiles are 
formed in this case. Steady state profiles at the boundary separating the 
crystal regions doped with different impurities A and B can arise only if the 
reaction rate constants K1 and K2 in the region doped with A are not equal to 
those in the region doped with B.  
 Of special interest for the analysis of experimental diffusion profiles in 
semiconductors is the nonstationary impurity diffusion from the sample sur-
face into the bulk, described by equations (8.2.4) and (8.2.6). Since we con-
sider problems only with initial uniform distribution, we can make 
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Boltzmann’s substitution λ ≡ x/2t1/2 simplifying significantly the sets of 
equations (8.2.4) and (8.2.6): 
 

      ( )d H d Q H QA A Q A
2 2 2 0′′ + ′′ + + ′ =λ  

 

      ( )d H d Q H QB B Q B
2 2 2 0′′ + ′′ + + ′ =λ                     (8.2.13) 

 
      H H KQA B = , 
 
where dA

2 ≡ DA, dB
2 ≡ DB, dQ

2 ≡ DQ, and the primes designate differentiation 
with respect to λ. 
 The set of equations (8.2.13) can also be written in terms of total concen-
trations NA ≡ HA + Q and NB ≡ HB + Q: 
 

      ( )d N Q d Q NA A Q A
2 2 2 0− ″ + ′′ + ′ =λ  

 

      ( )d N Q d Q NB B Q B
2 2 2 0− ″ + ′′ + ′ =λ                    (8.2.14) 

 
      ( )( )N Q N Q KQA B− − = . 
 
 The solution to the set of equations (8.2.13) will be considered for the 
three most common situations: sequential diffusion, simultaneous diffusion, 
and interdiffusion. The boundary conditions are as follows. 
 (1) For sequential diffusion: 
 
     ( )H HA Aλ= =0 0   ( )H HA Aλ=∞ = ∞  

(8.2.15) 
    d H d QB B Q

2 2
0

0′ + ′ =
=λ

  ( )H HB Bλ=∞ = ∞ . 

 
 (2) For simultaneous diffusion: 
 
     ( )H HA Aλ= =0 0   ( )H HA Aλ=∞ = ∞  

(8.2.16) 
     ( )H HB Bλ= =0 0   ( )H HB Bλ=∞ = ∞ . 

 

© 2004 by CRC Press LLC



 (3) For interdiffusion 
 
     ( )H HA Aλ=−∞ = −∞  HA λ=+∞ = 0  

(8.2.17) 
     HB λ=−∞ = 0     ( )H HB Bλ=+∞ = +∞ . 

 
 Sequential diffusion corresponds to the absence of two particle flows at 
the sample boundary 
 

∂
∂
H
x x

B

=
=

0
0    ∂

∂
Q
x x=

=
0

0  

 
in the solution of equations (8.2.1). Simultaneous diffusion corresponds to 
the prescription of, at least, two concentrations at the sample boundary. In-
terdiffusion is for diffusional homogenization of the sample, whose one half 
is doped with A particles and the other half with B particles It would be easy 
to re-write the boundary conditions (8.2.15) through (8.2.17) in terms of total 
concentrations NA and NB. 
 The set of equations (8.2.13) with the boundary conditions (8.2.15)–
(8.2.17) generally has no analytical solutions. So we will consider some 
limiting cases, following mainly the work [11]. 
 The strong complexation approximation (K = 0). Physically, the strong 
complexation approximation means that the reaction A + B ←→  Q is sharply 
shifted toward the formation of a complex. Formally, it follows from equa-
tion (8.2.5) at K = 0 that the concentration of, at least, one free component is 
zero, i.e., HA= 0 or HB = 0. This generally leads to two regions on the λ-axis, 
separated by a special point λ0. An independent diffusion of the Q complex 
and a free component (HA or HB) occurs within each region. From the con-
tinuous concentration condition, HA and HB at λ0 are equal to zero, i.e., par-
ticles HA and HB migrate toward point λ0, which physically means the 
chemical reaction front in the formation of the Q complex. 
 The weak complexation approximation (K >> HA, HB). The weak 
complexation approximation corresponds to the shift of the reaction A + B 
←→  Q toward the formation of free components. From (8.2.13) in the zero 
approximation (K = ∞), we have Q0 = 0, and the components A and B will 
diffuse independently. In the next approximation, we have 
 

( )Q H H
K

H H1
0 0

= <<A B
A B,  
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permitting a trivial perturbation theory to be built. 
 The linear approximation (∆NA << NA, ∆NB << NB). Here, the change in 
the concentrations of all particles during their diffusion is much smaller than 
the concentration values. These conditions permit linearization of the set of 
equations (8.2.14) 
 

( ) ( ) ( )D N D N NAA A AB B A∆ ∆ ∆″ + ″ + ′ =2 0λ  
(8.2.18) 

( ) ( ) ( )D N D N NBB B BA A B∆ ∆ ∆″ + ″ + ′ =2 0λ . 
 
This set of equations coincides with the one considered in [12], but the coef-
ficients DAA, DBB, DAB, and DBA were introduced formally in [12]. In our 
case, they have a clear physical meaning and are expressed via the diffusion 
coefficients DA, DB, and DQ, the rate constant of the reaction A + B ←→  Q, 
and the initial concentrations HA(∞), HB(∞), and Q(∞): 
 

     
( )[ ] ( )
( ) ( )D

D K H D H
K H HAA

A A Q B

A B
=

+ ∞ + ∞
+ ∞ + ∞

 

 

     
( )[ ] ( )
( ) ( )D

D K H D H
K H HBB

B B Q A

A B
=

+ ∞ + ∞
+ ∞ + ∞

                     (8.2.19) 

 

     ( ) ( )
( ) ( )D D D

H
K H HAB Q A

A

A B
= −

∞
+ ∞ + ∞

. 

 
 The approximation of close diffusion coefficients. In the case of DA = DB 
+ DQ, the set of equations (8.2.14) has a simple analytical solution. It is of 
much interest because one can follow the variation in the distributions HA, 
HB, and Q as a function of the reaction rate constant K. 
 
 
8.3  SOLUTION OF DIFFUSION EQUATIONS FOR 

VARIOUS BOUNDARY CONDITIONS 
 
Here we will present the solutions to equations (8.2.14) with the boundary 
conditions (8.2.15)–(8.2.17). The boundary conditions are typical for the 
situation when a semiconductor is doped with one sort of impurity. 
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8.3.1  Sequential diffusion 
 
Consider the problem of diffusion of component A into a semi-infinite 
sample uniformly doped with component B in the absence of B sublimation 
from the sample. The boundary conditions for this problem are 
 

( )N NA Aλ= =0 0   N A λ=∞ = 0  

(8.3.1) 

( )d N Q d QB B Q
2 2

0
0− ′ + ′ =

=λ
  ( )N NB Bλ=∞ = ∞ . 

 
These conditions correspond to the following boundary conditions of equa-
tions (8.2.1): 
 

H tA = =0 0 ,  Q t=0 ,  H HtB B= =0
0 , x > 0 

(8.3.2) 

H HA x x= =0 0 , ∂
∂
Q
x x=

=
0

0 ,  ∂
∂
H
x x

B

=
=

0
0  

 
or 

H tA = =0 0 ,  Q t=0 ,  H HtB B= =0
0 , x >0 

(8.3.3) 

Q Qx= =0 0 ,  ∂
∂
Q
x x=

=
0

0 ,  ∂
∂
H
x x

B

=
=

0
0 . 

 
 Conditions (8.3.3) are more general than (8.3.2) because if we prescribe  
the Q content at the boundary, the content of the free component HA at the 
boundary may be zero, which is ruled out for conditions (8.3.2). 
 (1) The strong complexation approximation (K = 0). Suppose NB(∞) > 
(dQ/dB)NA(0), corresponding to the absence of a free particles at the boun-
dary. Then, the solution to (8.2.14) has the form (Figure 8.3): 
 
       ( ) ( )N Q N dA A Qerfc= = 0 λ  
 

       ( ) ( )N N
d
d

N dB B
Q

B
A Berfc= ∞ − 0 λ                  (8.3.4) 

 
       N H QB B= + . 
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Figure 8.3. Distributions of components and directions of flows in sequential dif-
fusion in the strong complexation approximation at NB(∞) > dQ NA (0)/dB. 
 
 One can see from Figure 8.3 c and d that the NB curve has an extremum 
with the coordinate λm: 
 

λm
B Q

2

B Q

B

Q

2
2

2 2

2

2=
−

d d
d D

d
d

ln . 

 
It is a minimum at dB > dQ (Figure 8.3c) and a maximum at dB < dQ (Figure 
8.3d). The extremum appears in the distribution of NB and of complexes Q if 
the particle flows are those shown in Figure 8.3e. Complexes Q migrate in-
ward where their concentration is zero. The formation of complexes at the 
boundary, where they bind some free particles HB, leads to an outward flow 
of the component HB. 
 Suppose now NB(∞) < (dQ/dB)NA(0), corresponding to the presence of the 
free component HA at the sample boundary. The solution to (8.2.14), repre-
sented in Figure 8.4, is 
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Figure 8.4. Distributions of components and directions of flows in sequential dif-
fusion in the strong complexation approximation at NB(∞) < dQ NA (0)/dB. 
 
 

  
( )( )H N Q

N N d

d
A A

A B
erfc

erfc
A

A
≡ − =

− −












 ≤

>










0 1

0

1 0

0

0

λ

λ λ λ

λ λ
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  ( )H N Q
N d

d

B B
B

erfc

erfc
B

B

≡ − =

≤

∞ −












 >










0

1

0

0
0

λ λ

λ λ
λ

λ
                    (8.3.5) 

 

      Q

N

N d

d

≡

≥

<










B

B
erfc

erfc
Q

Q

1 0

1 0
0

λ λ

λ λ
λ

λ
. 

 
Constants λ0 and NB1 are found from the balance equation for NA and NB: 
 

( ) ( )[ ]N NB B dλ λ− ∞∫ =
∞

0
0  

(8.3.6) 

( ) ( )2
0

2
0N d N Q d QA A A Qdλ λ λ

∞

=∫ = − − ′ − ′ . 

 
The equalities of (8.3.6) are derived by integrating the first two equations in 
(8.2.14) with respect to λ from 0 to ∞. They are the integral form of the par-
ticle conservation law in this problem. By substituting the solutions to (8.3.5) 
into (8.3.6), we eventually get the equations describing λ0 and NB1: 
 
      ( ) ( ) ( )N T d N T dB Q B B1 0 0λ λ= ∞  
 
     ( ) ( )( ) ( )N T d N N S dA Q A B A1 0 1 00λ λ= −               (8.3.7) 

 

     ( ) ( )
( ) ( ) ( )

( )
T x

x

x x
S x

x

x x
≡

−
≡

−exp exp2 2

π πerfc erfc
. 

 
The same equations can be derived from the condition at the reaction front: 
 

d H d Q d Q QA A Q Q
2 2

0
2

0 0
0 0 0 0

2 0′ + ′ − ′ + =
= = + = − =λ λ λ λ λ λ λ λλ  

(8.3.8) 
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d H d Q d Q QB B Q Q
2 2

0
2

0 0
0 0 0 0

2 0′ + ′ − ′ + =
= = + = − =λ λ λ λ λ λ λ λλ , 

 
which are obtained by integrating equations (8.2.13) in the vicinity of the 
reaction front. Note that NA(0) – NB1 ≡ HA(0). 
 It is clear from Figure 8.4 e, and f that an extremum appears in the distri-
bution NB with the coordinate λm, which is defined by the equality 
 

λ λm
B Q

B Q

B

Q

2
0
2

2 2

2 2

2

2= +
−

d d
d d

d
d

ln . 

 
 The presence of the free component HA at the boundary changes qualita-
tively the distribution pattern. Two regions with λ < λ0 and λ > λ0 appear. 
The free component HB is absent from the first regions. The free component 
HA migrates inward to the complexation front λ0. The free component HA is 
absent from the λ > λ0 region. There is a HB flow outward to the complexa-
tion front, while a flow of Q complexes moves inward from this front. 
 The existence of counterpropagating flows HB and Q gives rise to an ex-
tremum in the λ > λ0 region. The absence of Q flow from the λ < λ0 region is 
associated with the boundary condition  
 

( )d N Q d Q xB B Q
2 2

0 0− ′ + ′ ==  

 
and with the absence of free HB in this region. 
 In the limit dQ → 0, the solutions to (8.3.5) transform to the solutions to 
(7.5.21) and (7.5.22). 
 (2) The weak complexation approximation (K >> NA, NB). In the zero 
approximation (K = ∞), we have Q = 0; so it follows from (8.2.14) that the 
migration of NA and NB is described by the common diffusion equations. 
Therefore, we have 
 

( )N N
dA A

A
erfc0 0 1= ,  ( )N NB B= ∞ . 

 
 In the first approximation with respect to NA

0/K, NB
0/K, we get Q(1) = 

(NA
0 NB

0)/K. Considering Q(1) as a perturbation, we derive, to an accuracy of 
NA/K or NB/K, the following expressions for NA and NB (Figure 8.5): 
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Figure 8.5. Distributions of components and sequential diffusion flows in the weak 
complexation approximation. 
 
 

( )
( ) ( )

N N

d
N

K
d d

A A

A
B

Q A

erfc=

+
∞

−

0
2 2 2

λ  

 (8.3.9) 

( ) ( )N N
N

K
d d
d d

d d
d

dB B
A Q B

A B
A

A

B
Berfc erfc= ∞ +

−
−

−
















1

0 2 2

2 2 λ λ . 

 
 It is seen from Figure 8.5f that the NB distribution has an extremum, like 
in a strong complexation, associated with the counterpropagating Q and HB 
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flows: a minimum at dB > dQ and a maximum at dB < dQ. The extremum co-
ordinated is defined by the equality 
 

λm
A B

B A

B

A

2
2 2

2 2

2

2=
−

d d
d d

d
d

ln . 

 
Note that there is no abrupt reaction front in a weak complexation. 
 The applicability of expressions (8.3.9) imposes additional restrictions on 
the complexation constant: 
 

( )
K

N
d
dB

Q

B∞
>> −1

2

2  

(8.3.10) 

( )
K

N
d
dA

Q

B0
1

2

2>> − , 

 
which is equivalent to the condition that a complex is not to migrate too fast, 
as compared with HA and HB. The above restrictions follow from the re-
quirement of the smallness of perturbation Q(1) in equation (8.2.14). At dQ → 
0, the solutions to (8.3.9) transform to (7.5.24) and (7.5.25). 
 (3) The linear approximation (∆NA << NA; ∆NB << NB). With (8.2.19), 
we have the following expressions for the coefficients of equations (8.2.18): 
 

     ( ) ( )D D K
K N

D K
K NAA A

B
Q

B
=

+ ∞
+

+ ∞
 

 
     D D dBB B BB= ≡ 2 ,  DAB = 0                            (8.3.11) 
 

     ( ) ( )
( )D D D

N
K NBA Q B

B

B
= −

∞
+ ∞

. 

 
Using formulas (7.5.7), we get 
 

( )N N dA A AAerfc= 0 λ  
(8.3.12) 
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( ) ( )N N
N D
d d

d d
d

dB B
A BA

BB AA
BB

BB

AA
AAerfc erfc= ∞ +

−
−





0
2 2 λ λ . 

 
 The NB distribution has an extremum: a minimum at dQ < dB and a maxi-
mum at dQ > dB. The extremum coordinates are defined by the equation 
 

λm
AA BB

AA BB

AA

BB

2
2 2

2 2

2

2=
−

d d
d d

d
d

ln . 

 
 The condition for the applicability of this approximation is 
 

      ( ) ( ) ( )N
d d d

D
NA

AA AA BB

BA
B0 <<

+
∞ ,                (8.3.13) 

 
indicating the smallness of the boundary concentration NA(0). 
 (4) The approximation of close diffusion coefficients. Putting dA = dB = 
dQ = d in the set of equations (8.2.14), we find that the total profiles for the 
concentrations NA and NB are described by conventional diffusion equations. 
Their solution yields 
 
        ( )N N dA A erfc0 0= λ  

(8.3.14) 
        ( )N NB B0 = ∞ . 
 
The concentration of complexes is found from the third equation of (8.2.14): 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )Q N N K N N K N N0 0 0 2 0 0 0 01
2

2= −



 + +



 − + +
















A B A B A B . 

(8.3.15) 
 
  The plots for the solutions are presented in Figure 8.6 showing the distri-
bution profiles of free components at various complexation constants K. 
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Figure 8.6. Distributions of components in sequential diffusion in the approximation 
of close diffusion coefficients. 
 
 
8.3.2  Simultaneous diffusion 
 
Let us consider the problem of diffusion of two components A and B mi-
grating from fixed sources into a semi-infinite sample uniformly doped with 
component B. The boundary conditions are expressed by (8.2.16) at HA(∞) = 
0. As was pointed out above, the boundary conditions for the set of equations 
(8.2.14) correspond to those for equations (8.2.1), when the boundary con-
centrations of, at least, two other components HA, HB, or Q are prescribed. 
 (1) The strong complexation approximation (K = 0). Suppose NA(0) < 
NB(0), corresponding to the absence of the free component HA at the sample 
boundary. The solution (Figure 8.7) is 
 

( ) ( )N Q N d Q dA A Q Qerfc erfc= = =0 0λ λ  
 
   ( ) ( ) ( )[ ] ( )H N N N d NB B B A B Berfc= − ∞ − + ∞0 0 λ          (8.3.16) 

 

N H QB B= + . 
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Figure 8.7. Distributions of components and simultaneous diffusion flows in the 
strong complexation approximation at NA(0) < NB(0). 
 
 At [NB(0) – NB(∞) – NA(0)] ≥ 0, the concentration of the free component 
at the sample boundary is higher than in the bulk, and the flow HB migrates 
inward, together with the flow of complexes Q. For this reason, the NB distri-
bution falls monotonically with distance from the boundary. At [NB(0) – 
NB(∞) – NA(0)] < 0, the HB flow migrates, in contrast, outward in the direc-
tion opposite to the Q flow, giving rise to an extremum in the HB 
distribution. The extremum coordinate is 
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Figure 8.8. Distributions and flows of free components HA, HB, and Q in simulta-
neous diffusion at NA (0) > NB (0). 
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 Suppose NA(0) > NB(0), i.e., there is the free component HA on the 
sample surface. The solution to (8.2.14), illustrated in Figure 8.8, is 
 

( ) ( )[ ] ( )
( )H H Q

N N
d
dA A

A B
B

A

erfc
erfc≡ − =

− −












≤

>









0 0 1

0

0

0
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λ

λ λ

λ λ

,

,
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  ( ) ( )
( )

H H Q
N

d
d

B B
B

B

A

erfc
erfc

≡ − =

≤

∞ −












>









0

1

0

0

,

,

λ λ

λ
λ

λ λ
       (8.3.17) 

 

( ) ( )[ ] ( )
( )

( )
( )

Q
N N N

d
d

N
d
d

=
+ − ≤

>











B B B
B

A

B
B

A

erfc
erfc

erfc
erfc

0 01 0

1 0

λ
λ

λ λ

λ
λ

λ λ

,

,
 

 
 The parameters λ0 and NB1 are found, as in Section 8.3.1, from the bal-
ance of total concentrations NA and NB or from equations (8.3.8) 
 
  ( ) ( )[ ] ( ) ( ) ( )N N S d N T dA B A B B0 0 0 0− = ∞λ λ  

(8.3.18) 
  ( ) ( )[ ] ( ) ( ) ( ) ( )N N S d N T d N T dB B Q B Q B B1 0 1 00 0− + = ∞λ λ λ , 

 
where S(x) and T(x) are found from (8.3.7). 
 Figure 8.8 shows that the flows of free components HA and HB are di-
rected toward the reaction front λ0, as described in Section 8.3.1. In contrast 
to sequential diffusion, the Q flow can migrate, at λ < λ0, either outward, 
with NB1 > NB(0), or inward, with NB1 < NB0.  
 It is easy to obtain from (8.3.17) the distributions of total concentrations 
NA and NB (Figures 8.9 and 8.10). The analysis of the analytical expressions 
shows that the distribution NB at λ > λ0 depends on the sign of the expression 
(NB1 –

~N B1)(dB – dQ), where 
 

( ) ( )
( )

~N N
T d
T dB B

B

Q
1

0

0
≡ ∞

λ
λ

. 

 
At (NB1 –

~N B1)(dB – dQ) > 0, an extremum appears in the NB distribution at λ 
> λ0 with the coordinate λmB (Figure 8.9b,c) defined as 
 

λ λmB
B Q

B Q

B

B
2

0
2

2 2

2 2
1

1
= +

−
d d

d d
N
N

ln ~ . 
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Figure 8.9. Possible distribution patterns for NB in simultaneous diffusion in the 
strong complexation approximation at NA (0) > NB (0). 
 
With (NB1 –

~N B1)(dB – dQ) < 0, the function NB(λ) is monotonic at λ > λ0  
(Figure 8.9a,d). 
 The NA distribution pattern at λ < λ0 depends on the relations between the 
diffusion coefficients dA

2 and dQ
2 and between the quantities z, z0, and zλ 0 : 

 
( )

( ) ( )z
N N

N N
B B

A B
≡

−
−

1 0
0 0

,  z
d d
d d0

0

0
≡ Q Q

A A

erf
erf

λ
λ

, 

 

( )
( )z

d d
d d

d

d
λ

λ
λ

λ

λ0
0

0

0
2 2

0
2 2

≡ Q Q

A A

Q

A

erf
erf

exp

exp
. 

 
 When z falls within the range of z0 and zλ 0 , the NA distribution at λ < λ0 
has an extremum with the coordinate 
 

© 2004 by CRC Press LLC



 
 
Figure 8.10. Possible distribution patterns for NA in simultaneous diffusion in the 
strong complexation approximation at NA (0) > NB (0). 
 
 

λ λ
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2 2 00

= +
−

=
−
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d d
d d

z
z

ln ln , 

 
which is a maximum at dA > dQ and a minimum at dA < dQ. 
 The analysis of total concentration distributions of components in simul-
taneous diffusion shows that these distributions (Figures 8.9 and 8.10) reveal 
themselves even at relatively simple distributions of free components HA and 
HB and of complexes Q (Figure 8.8) and that they may be very diverse. 
 (2) The weak complexation approximation (K > NA, NB). As in Section 
8.3.1, we have in the zero approximation: 
 

     ( ) ( )N N dA A Aerfc0 0= λ  
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     ( ) ( ) ( )[ ] ( )N N N d NB B B B Berfc0 0= − ∞ + ∞λ           (8.3.19) 

 
     ( )Q 0 0= . 
 
 To calculate the further approximations, additional restrictions should be 
imposed on the relations between the diffusion coefficients dA

2 and dB
2. Sup-

pose dA << dB, then we have 
 

     ( ) ( ) ( )Q
N N

K
d1 0 0

= A B
Aerfcλ  

 

   ( ) ( ) ( )
( ) ( )

N N N

d d d
N

K

A A A

A Q A
B

erfc0 1

2 2 2

0
0

+ =

+ −

λ           (8.3.20) 

 

   

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )

N N N N d

N
N N
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d d

d
d d

B B B B B

B
A B B Q

B
B A

erfc

erfc erfc

0 1

2 2

2

0

0 0

+ = − ∞ +

+ ∞ +
−

−

λ

λ λ
. 

 
 At dA >> dB, we have 
 

( ) ( ) ( ) ( ){ } ( ) ( )Q
N N N

K
d

N N
K

d1 0 0 0
=

− ∞
+

∞A B B
B

A B
Aerfc erfcλ λ  

 
( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ } ( )

N N N

d d d
N

K
N N N

K
d
d

d d

A A A

A Q A
B

A B B Q

A
B A

erfc

erfc erfc

0 1

2 2 2

2

2

0

0 0
1

+ =

+ −
∞

+

+
− ∞

−








 −

λ

λ λ

    (8.3.21) 
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( ) ( ) ( ) ( ) ( )[ ]
( ) ( )

( ) ( ) ( )

N N N N N

d d d
N

K
N N

K
d d

d
d d

B B

B

B B B

B Q B
A

A Q B

A
A B

erfc

erfc erfc

0 1

2 2 2

2 2

2

0
0

0

+ = ∞ + − ∞

+ −

+

+
∞ −

−

λ

λ λ

 

 
 At dA = dB = d, we obtain 
 

  ( ) ( ) ( ) ( ) ( ) ( )[ ]Q
N N

K
t

N N N
K

t1 20 0 0
=

∞
+

− ∞A B A B B
erfc erfc  

 

  

( ) ( ) ( )
( )

( ) ( ) ( ){ } (

N N N t

d
d

N
K

N N N
K

d
d

t

t t t tt t

A A A
Q B

A B B Q

erfc
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e erfc e erfc

0 1

2

2

2

2
2

0

1 1

0 0
1

2 2 1 22 2

+ =

+ −










∞
+

+
− ∞

−








 −

− + − +







− −

π π π

                 (8.3.22) 
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d
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




∞
∞ −
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− ∞

−








 −

− + − +







− −

π π π
 
 
where t ≡ λ/d. 
 The above solutions are valid under the condition 
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K
N A

,  K
N

d
dB

Q>> −1
2

2 . 

 
 (3) The linear approximation (∆NA << NA, ∆NB << NB). According to 
(8.2.19), the diffusion coefficients DAA, DAB, DBA, and DBB are 
 

      ( )
( )D

D K D N
K N

dAA
A Q B

B
AA=

+ ∞
+ ∞

≡ 2  

 
      D D dBB B BB= ≡ 2  
 
      DAB = 0  
 

      ( ) ( )
( )D D D

N
K NBA Q B

B

B
=

∞
+ ∞

                              (8.3.23) 

 
and the solutions for NA and NB have the form: 
 
  ( )N N dA A AAerfc= 0 λ  

  (8.3.24) 

  
( ) ( )[ ]

( ) ( ) ( )[ ] ( ){ }
N N

d d
N D d

d d N N N D d

B B
BB AA

A BA AA

AA BB B B A BA BB

erfc

erfc

= ∞ +
−

+

+ − − ∞ −

1 0

0 0

2 2

2 2

λ

λ
 

 
 But at (dAA

2 – dBB
2)[NB(0) – NB(∞)] – NA(0)DBA < 0, the NB distribution 

pattern shows an extremum with the coordinate 
 

( ) ( ) ( )[ ]
( )λm

AA BB

AA BB
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AA BB B B
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2

2 2

2 2

2 2
1

0
0

=
−

−
− − ∞
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A minimum is observed under the condition 
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Figure 8.11. Distributions of components in simultaneous diffusion in the approxi-
mation of close diffusion coefficients at NA (0) > NB (0). 
 
otherwise, there is a maximum. 
 The applicability conditions for the linear approximation in this case are 
 
      ( ) ( ) ( )∆N N N NB B B B= − ∞ << ∞0  

(8.3.25) 

      ( ) ( )N N
d d

DA B
AA BB

BA
0

2 2
<< ∞

−
. 

 
 (4) The approximation of equal diffusion coefficients. Like in Section 
8.3.1, we have 
 

      ( ) ( )N N dA A erfc0 0= λ  
(8.3.26) 

      ( ) ( ) ( )[ ] ( )N N N
d

NB B B Berfc0 0= − ∞ + ∞λ . 
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To calculate Q(0), one should use formula (8.3.15). The plots illustrating the 
solutions are given in Figure 8.11. 
 
 
8.3.3  Interdiffusion 
 
Consider the problem of outward interdiffusion from a semi-infinite sample 
uniformly doped with A and B impurities, respectively. The boundary 
conditions are obtained from (8.2.17) with Q = 0 at t = 0: 
 
    ( )N NA Aλ=−∞ = −∞ ,  NA λ=+∞ = 0  

(8.3.27) 
    NB λ=−∞ = 0 ,   ( )N NB Bλ=+∞ = ∞ . 

 
 (1) The strong complexation approximation (K = 0). The solution to 
(8.2.14) was obtained in [7] and is illustrated in Figure 8.12. For the sake of 
definiteness, we will only consider the case with NA(–∞)dA > NB(+ ∞)dB. 
One can see from Figure 8.12 that the free components HA and HB migrate 
toward the reaction front, while complexes Q migrate away from the front 
into the sample bulk. 
 Similarly to simultaneous diffusion, the distribution patterns of total con-
centrations NA and NB (Figures 8.13 and 8.14) exhibit a considerable varia-
tion. The NB distribution is defined by the relations between the diffusion 
coefficients dB

2 and dQ
2 and between the quantities Q1 and ~Q 1B, where 

 

( )~ expQ N
d d
d d d d1 0

2
2 2

1 1
B B

Q Q

B B B Q

erfc
erfc

≡ +∞ −






















λ
λ

λ . 

 
 Under the condition (Q1 – ~Q 1B)(dB – dQ) > 0, the NB distribution at λ > 
λ0 shows an extremum with the coordinate λmB: 
 

λ λmB
B Q

B Q B

2
0
2

2 2

2 2
1

1
= +

−

d d

d d
Q

Q
ln ~ . 

 
 Under the condition (Q1 – ~Q 1B)(dB – dQ) < 0, the distribution NB(λ) at λ 
> λ0 is monotonic. 
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Figure 8.12. Distributions of free components HA, HB, and Q in interdiffusion in the 
strong complexation approximation at dA NA (–∞) > dB NB (+∞). 
 
 
 The NA distribution is defined by the relation between the diffusion coef-
ficients dA

2 and dQ
2, as well as by the relation between Q1 and ~Q 1A, where 

 

  ( ) ( )
( )

~ expQ N
d d
d d d d

1 0 2 2

1

1
1 1

A A
Q Q

A A Q A

erfc

erfc
= −∞

+

+
−

























λ

λ
λ .        (8.3.28) 

 
 If we have (Q1 –

~Q 1A)(dQ – dA) > 0, the NA distribution at λ < λ0 has two 

extrema with the coordinates +λmA and –λmA. But at (Q1 –
~Q 1A)(dQ – dA) < 0,  
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Figure 8.13. Possible distribution patterns of NB in interdiffusion in the strong 
complexation approximation at NA (–∞)dA > NB (+∞)dB. 
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Figure 8.14. Possible distribution patterns of NA in interdiffusion in the strong 
complexation approximation at NA (–∞)dA > NB (+∞)dB. 
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there is only one extremum with the coordinate –λmA, where λmA is 
 

λ λmA
A Q

A Q A

2
0
2

2 2

2 2
1

1
= +

−

d d

d d
Q

Q
ln ~ . 

 
 (2) The weak complexation approximation (K >> NA, NB). At K → ∞, 
 

( ) ( )( )N N dA A Aerfc0 1
2

1= −∞ − λ  

(8.3.29) 
( ) ( )( )N N dB B Berfc0 1

2
1= +∞ + λ . 

 
 For the first order calculations in the perturbation theory, let us discuss 
the situations with dA << dB and dA = dB individually. At dA << dB, we have 
 

( ) ( ) ( )( )Q
N N

K
d d( )1

4
1 1=

−∞ +∞
− +A B

A Berfc erfcλ λ  

 

( )

( ) ( ) ( )

( ) ( )

( )

N

N N
K

d d

d
d d

N N
K

d

d d d
d

d
d

d

A

A B Q A

B
B A

A B Q

B A A
B

A

B
A

erfc

erfc

1

2 2

2

2

2

2

2

2

2

2
1

4
1

1

=

−∞ +∞ −









 + <<

−∞ +∞
−











 − −









 +






>>

+ −























λ λ

λ
π

λ λ

λ

exp  

(8.3.30) 
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(8.3.31) 
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Figure 8.15. Distributions of components in interdiffusion in the approximation of 
equal diffusion coefficients. 
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 At dA = dB ≡ d, we have 
 

    ( ) ( ) ( ) ( )Q
N N

K
d1 2

4
1=

−∞ +∞
−A B erfc λ  

 

    

( ) ( ) ( ) ( )N
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d d
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erf
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
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



 − −

− −








 − −











λ

π
λ λ λ

π
λ λexp exp

 

    ( ) ( )N NB A
1 1= . 

 
 (3) The approximation of equal diffusion coefficients. As in Section 8.3.1, 
we have 
 

( ) ( )( )N N dA A erfc0 1
2

1= −∞ − λ  

(8.3.32) 
( ) ( )( )N N dB B erfc0 1

2
1= +∞ − λ . 

 
To calculate Q0, one should use formula (8.3.10). The plots illustrating the 
solutions are shown in Figure 8.15. 
 
 
8.3.4  The allowance for the finite front thickness 
 
In the above strong complexation approximation (K = 0) for diffusion 
involving the reaction A + B ←→  Q, the chemical reaction front had a zero 
thickness in the limit K → 0. At small but finite K, the front thickness has a 
finite value. Consider an immobile complex Q. The initial equations have the 
same form as in (8.2.13). 
 For the sake of definiteness, let us discuss sequential diffusion with the 
initial and boundary conditions of (8.2.15). Considering the finite front 
thickness, let us subdivide the λ-axis into three regions:  
 (I) the near-surface region with λ ≤ λ0; 
 (II) the complexation front region with λ ≈ λ0; 
 (III) the external region with λ ≥ λ0. 
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Taking into account K << HA(0) and HB(∞), we obtain from (8.2.13) and 
(8.2.15) the following solutions for the subsurface region: 
 

( )H H M dA
I

A Aerf= −0 λ ,  H KQ
HB

II
I

A
I= ,  QI const=             (8.3.33) 

 
HA

III = 0 ,  ( )H H N dB
III

B Berfc= ∞ − λ , QIII = 0 ,                     (8.3.34) 
 
where M and N are constants which will be defined later from the sewing 
conditions for the solutions in the various regions. 
 To calculate the component distributions at the reaction front, we will 
introduce, like in [13], the following denotations: 
 
      ( ) ( )H K H KA

II
A O= +1/2 1/2η  

      ( ) ( )H K H KB
II

B O= +1/2 1/2η                              (8.3.35) 

      ( ) ( ) ( )Q K H H KII
A B O= +1/2 1/2η η , 

 
where η = (λ – λ0)/K1/2. 
 From (8.3.18), we obtain the equations for H A(η) and H B(η): 
 

( )d H H HA A A B
2

02 0′′ + ′ =λ  

(8.3.36) 

( )d H H HB B A B
2

02 0′′ + ′ =λ , 

 
where the differentiation was made with respect to η. By integrating 
(8.3.36), we obtain 
 

       
d H H H

d H H H
A A A B

B B A B

2
0

2
0

2

2

′ + =

′ + =







λ α

λ β
.                           (8.3.37) 

 
The sewing conditions for regions I and III yield 
 
   ( )HB η → 0 ,  H H QA B → ′   at η→ −∞  

(8.3.38) 
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   ( )HA η → 0 ,  H HA B → 0   at η→ +∞ . 
 
Hence, we obtain with (8.3.37) 
 
        α = 0 ,  ′ =Q β λ2 0 .                     (8.3.39) 
 
After the subtraction of the second equation in (8.3.37) from the first one, 
followed by integration, we obtain 
 
      − + = + −d H d H KA A B B2 2 1/2βη γ ,                        (8.3.40) 
 
where γK1/2 is an integration constant. Using (8.3.38), we can obtain from 
(8.3.40) 
 

η→ −∞ ,  H
d d

KA
A A

→ − − −β η γ
2 2

1/2  

(8.3.41) 

η→ +∞ ,  H
d d

KB
B B

→ − + −β η γ
2 2

1/2 . 

 
 Using (8.3.41) and the solution expansions in regions I and III near λ0, 
we perform the standard joining of the internal and external variables to ob-
tain 
 

  ( ) ( )β
π

λ
π

λ= − = −2 2
0
2 2

0
2 2d M d d N dA A B Bexp exp  

(8.3.42) 
  ( ) ( )[ ] ( )[ ]γ λ λ= ∞ − = − +d H N d d H M dB B B A A Aerfc erfc2

0
2

00 . 

 
 Taking into account that λ0 is being evaluated in the zero approximation, 
we have 
 

( ) ( ) ( ) ( )H S d H T dA A B B0 0 0λ λ= ∞ ,  γ = 0  
 

( )
( )M

H
d

= A

Aerfc
0

0λ
,  ( )

( )N
H

d
=

∞B

Berfc λ0
,  β λ= 2 0 1NB . 
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Figure 8.16. The distribution of components HA, HB, and Q at the reaction front for 
an immobile complex: dashed line – with the account of finite front thickness. 
 
 For convenience, let us transform the set of equations (8.3.37) as 
 
      X XY+ =2 0 ,  Y XY+ =2 1 ,                     (8.3.43) 
 
where 
 

X H= A Aω , Y H= B Bω ,  η ωη= t ,  ωA
B

A
B= d

d
N2 1  

ωB
A

B
B= d

d
N2 1 ,  ω

λη = d d
N

A B

B0 12
 

 
and carry out the differentiation in (8.3.43) with respect to t. 
 Let us find the solution to the set of equations (8.3.43) satisfying the 
boundary conditions 
 

t → –∞, X → –t, Y → 0, 
 

t → +∞, X → 0, Y → t. 
 
The desired solutions are 
 

    
( )

( )
X

t

t
=

−

+

exp 2

1π erf
,  

( )
( )

Y
t

t
t=

−

+
+

exp 2

1π erf
.             (8.3.44) 

 
Therefore, the solution for the reaction region has the form (Figure 8.16): 
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       ( )H d
d

KN X tA
II B

A
B= 2 1  

       ( )H d
d

KN Y tB
II A

B
B= 2 1                                 (8.3.45) 

       ( ) ( )Q N X t Y tII
B= 2 1 , 

 
where t = [(λ – λ0)λ0/dAdB](2NB1/K)1/2. 
 The reaction front thickness is 
 

   ∆λF
A B

B
≈ d d K

Nλ0
2

1
, or  

( )
K

N d dB A B
<< λ0

4

2 .            (8.3.46) 

 
 The concentration of mobile complexes in region II is approximately 
constant, so the set of equations (8.3.36) is replaced by 
 

        
( )





λ=
=′′−′′

.
0

0BA

B
2
BA

2
A

QHH
HdHd

                               (8.3.47) 

 
By solving this set of equations in the same way as (8.3.36), we obtain  
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   ( )η
λ

β
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2 2

2=
Q d dA B ,  η λ λ= − 0

1/2K
. 

 
 The reaction region thickness is found from the condition η ≈ 2η0; hence, 
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       ( ) ( )∆λF
A B

Q
= 2

0 0 0

K
Q

d d
T dλ λ λ

.                   (8.3.48) 

 
 The condition for the existence of the reaction front is 
 

         ∆λF
λ0

1<< .                                         (8.3.49) 

 
 The critical value Kcr separating the regions of diffusion parameters, at 
which the reaction front can be formed, is described as 
 

      ( )
( )

K Q
d d

T
dcr

A B Q
=









λ λ λ

0
0
4

2
2 0

4
.                     (8.3.50) 

 
 To conclude, the above treatment can be easily extended to arbitrary 
boundary conditions (in simultaneous diffusion or interdiffusion). The prin-
cipal result of these calculations for experimental profile analysis is focused 
in expressions (8.3.46) and (8.3.50) for immobile (dQ = 0) and mobile (dQ ≠ 
0) complexes, respectively. The condition necessary for the reaction front to 
be formed is K << Kcr. 
 The approach to the analysis of complex impurity profiles, developed in 
this chapter with reference to the reaction A + B ←→  Q, can be extended to an 
arbitrary number of diffusing components and quasichemical interactions 
involving them. An essential aspect is that this approach allows for the 
migration at times much longer than the characteristic times of establishing 
an equilibrium in quasichemical reactions. This permits diffusion interaction 
to be taken into account via the active mass law.  
 Similarly to the approach discussed above, we suggest the following 
treatment strategy for impurity profiles, making allowance for quasichemical 
interactions of diffusing components. The initial information must include 
possible types of reactions among particles. As in Section 8.2, one derives a 
set of equations to describe a consistent diffusion of particles at times much 
longer than the characteristic reaction times. Then, definite initial and boun-
dary conditions are prescribed  for the solution of the set of equations. As-
suming that the reactions are sharply shifted to the right or to the left and 
using an exhaustive search, one obtains all possible distribution patterns for 
the prescribed initial and boundary conditions. Note that if there are several 
diffusing components and quasichemical reactions, the transition from total  
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Figure 8.17. Qualitative impurity profiles of HA and HB (a) and of Q (b) for sequen-
tial diffusion, with account taken of the concentration dependence of the diffusion 
coefficients. 
 
concentrations of particles to free particles and back is guaranteed by the 
theorem proved in [14]. 
 The diffusion theory discussed in this chapter deals with constant diffu-
sion coefficients independent of particle concentrations. The theory was ex-
tended to this case, too, in [15]. For the mathematical details, the reader is 
referred to this original work. Here, we will present only its qualitative re-
sults for the distributions HA, HB, and Q, illustrated in Figure 8.17. Qualita-
tively, they look like those for constant diffusion coefficients (see Figure 
8.15), but there are some differences. Because of the finite values of 
d(HA

m)/dλ and d(HB
m)/dλ at the reaction front, the distributions HA and HB 

intercept the λ-axis at the right angle [HA ∼ (λF – λ)1/m, HB ∼ (λ – λF)1/n at λ 
→ λF]. 
 Here and below, the constants m, n, and q denote the concentration de-
pendence of diffusion of the components A, B, and Q, respectively. The con-
centration dependence of the diffusion coefficient and the absence of Q at λ 
→ ∞ give rise to the front λ0 in the distribution of Q behind the reaction 
front. One can see, therefore, that if the diffusion coefficient of one of the 
components depends on its concentration, there may appear a front in its dis-
tribution. The necessary condition for the front appearance is the absence of 
the respective component at λ → ∞. A specific feature of such a front is its 
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existence in the distribution of only one component, in which case d(Qq)/dλ 
→ 0 and d(Qq– 1)/dλ → const at λ → λ0. 
 By plotting experimental impurity profiles for the front region in the co-
ordinates ln |H – HF|, ln |λ – λF|, and [HF ≡ H(λF)] along the slope attained by 
the straight line, one can calculate the values of m, n, and q for the front of a 
chemical reaction and that related to the concentration dependence of the 
diffusion coefficient. The treatment of impurity profiles for sequential diffu-
sion to be presented in the next section can be easily extended to more com-
plex diffusion mechanisms. 
 
 
8.3.5  The physics of impurity diffusion with interactions 
 
The solutions obtained in Section 8.3.4 demonstrate that the strong compen-
sation approximation is the most informative and physically explainable ap-
proach. One can see from the solutions obtained in this approximation that 
the complicated profiles of total components NA and NB arise from the super-
position of profiles of the free components HA and HB and of complexes Q. 
 The solutions of Section 8.3 show that the allowance for the mobility of 
complexes reveals a new important feature in the concentration profiles, 
namely, the possible appearance of a total concentration distribution maxi-
mum (Figures 8.3–8.5, 8.7–8.10, 8.13, and 8.14). The interpretation of ex-
trema and bendings in the concentration profiles has been refined. 
 The figures just mentioned show that the reaction front is generally char-
acterized by a bending in the total concentration distribution. The appearance 
of a maximum or a minimum indicates the presence of counterpropagating 
flows containing one kind of impurity (see, for example, Figure 8.3f). The 
directions of flows under various boundary conditions are illustrated in 
Figure 8.18. A common feature of all types of diffusion is the presence of HA 
and HB flows toward the λ0 boundary and the formation of complexes there. 
Therefore, λ0 can be interpreted (in the strong complexation approximation) 
as the complexation front. Note that the minimum in the distribution of 
complete component NB in the case of an immobile complex coincides with 
the reaction front λ0 (7.5.22), but this coincidence does not exist for a mobile 
complex. 
 The formation of the chemical reaction front is due to the possible sub-
division of a sample into two regions, in which only one of the two free com-
ponents, HA or HB, can migrate. For this reason, the reaction front arises only 
under boundary conditions permitting the existence of these two com-
ponents in two different regions. If the boundary conditions do not meet this 
requirement, no reaction front is formed (see, for example, Figure 8.3). 
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Figure 8.18. Schematic flows in various types of diffusion in the strong complexation 
approximation. 
 
 The comparison of solutions obtained in the strong and weak complexa-
tion approximations shows that in a weak complexation, the Q(1) flow and 
the related HA

(1) and HB
(1) flows are small, as compared with the HA

(0) and 
HB

(0) flows, so the features distinct in the strong complexation approximation 
are quite weak here. The Q(1), HA

(1), and HB
(1) flows indicate the tendency in 

the variation of concentration profiles and directions of flows, which are 
well-defined in a strong complexation. 
 There are only two flows, HA

(0) and HB
(0), in the zero approximation of a 

weak complexation. So, in the next approximation, which is practically a 
linear combination of these flows, only one extremum is possible. This is 
also characteristic of the linear approximation. 
 The solutions obtained in the approximation of close diffusion coeffi-
cients (Figures 8.6; 8.11; 8.15) reveal qualitative changes in the concentra-
tion profiles on transition from large complexation constants (weak com-
plexation) to small ones (strong complexation) with arbitrary diffusion coef-
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ficients DA, DB, and DQ. Numerical estimations of the conditions for the ap-
pearance of a reaction front can be easily made using formulas (8.3.46) and 
(8.3.50). 
 
 
 
8.4  DIFFUSION THEORY VERSUS EXPERIMENT 
 
When the approach described above is applied to experimental data 
treatment, it is first necessary to make sure that the experimental profiles are 
nonstationary. In other words, the impurity profiles obtained at different 
times and plotted in the coordinates of concentration–Boltzmann variable 
x/(2t1/2) must coincide with one another. To facilitate the interpretation of 
impurity distribution patterns, diffusing components should be measured 
individually and direct methods for concentration recalculation should be 
employed.  
 For a comparison with measured profiles, it is natural to use distributions 
of total concentrations NA and NB. To analyze the sources of specific fea-
tures, it will be more convenient to turn to the free components HA and HB, 
as well as to complexes Q. Note that the well-known effect of solubility in-
crease in complexation [16] is screened due to the prescribed boundary 
conditions for total components. The transition to the free components at the 
boundary makes this effect explicit. 
 
 
8.4.1  Chemical diffusion of phosphorus into silicon 
 
The distribution of phosphorus during its diffusion into silicon was studied 
experimentally in [17–20]. The following basic features of the impurity 
profile were revealed. 
 (1) The profile has an unsteady state diffusion-like pattern clearly seen in 
Figure 8.19 borrowed from [20]. 
 (2) Phosphorus profiles are described by the standard function (7.5.2) at 
low surface concentrations. When these concentrations are above 1025 m–3, 
there are considerable deviations from (7.5.2), and the deviation becomes 
greater with increasing phosphorus concentration, as is clear from Figure 
8.20. At concentrations exceeding 3.5×1026 m–3, dislocations and dislocation 
networks are formed at the surface. 
 (3) There are two specific features of electrically active phosphorus at  
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Figure 8.19. The distribution of phosphorus after diffusion at 1173 K for the times, 
min: 1 – 10;  2 – 30;  3 – 60;  4 – 120;  5 – 240;  (a) in the conventional coordinates; 
(b) in the c = x/t1/2 coordinates. 
 
 
diffusion temperatures T ≤ 1373 K and surface concentrations 1025 m–3 ÷ 
5×1026 m–3:  a shoulder in the subsurface region and a tail extending into the 
sample bulk (Figure 8.20).  
 (4) These specific features are smoothed out at diffusion temperatures T 
≥ 1373 K; however, the surface profile is not described by expression 
(7.5.2). 
 
 

 
 
Figure 8.20. Phosphorus profiles in silicon at various surface concentrations after 
diffusion at 1373 K for 60 min; points – electrical measurements [18]; dashed line – 
function (7.5.2). 
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 A qualitative model was suggested in [17] to explain the above features 
of phosphorus profiles. It was assumed that phosphorus migrates in silicon 
by two mechanisms—via interstitial migration and via mobile E-centers. 
Using this model and the approach discussed in Section 8.3.5, we will 
analyze possible distribution patterns of components during phosphorus 
migration. 
 The quasichemical interaction reactions involving three phosphorus 
states—at a site, at an interstice, and at an E-center—are 
 
         Pi + V ←

→  Ps,                                        (8.4.1) 
 
         Ps + V ←

→  E,                                         (8.4.2) 
 
where Pi, Ps, V, and E are standard designations for atomic phosphorus at 
sites and interstices, for a vacancy, and for a vacancy-P atom complex, re-
spectively. 
 The equations for consistent diffusion of components at times larger than 
the characteristic reaction times are derived exactly as in Section 8.2: 
 

     ( )d V d E d P V E PV E i i i
2 2 2 2 0′′ + ′′ − ′′+ + − ′ =λ  

     ( )d E d P P E PE i i s i
2 2 2 0′′ + ′′+ + + ′ =λ                          (8.4.3) 

     PV K Pi I s= ;  PV K Es II= , 
 
where dV

2 is the diffusion coefficient of vacancies, di
2 is the diffusion coeffi-

cient of interstitial P atoms, dE
2 is the diffusion coefficient of an E-center, KI 

is an equilibrium constant of reaction (8.4.1), and KII is an equilibrium cons-
tant of reaction (8.4.2). 
 The initial and boundary conditions will be 
 
   ( )V Vλ=∞ = ∞ ;  P P Ei sλ λ λ=∞ =∞ =∞= = = 0             (8.4.4) 

 
   ( )P Pi iλ= =0 0 ;  ( )P Pss λ= =0 0 .                                    (8.4.5) 

 
Following the procedure described in Section 8.3.5, let us calculate these 
initial and boundary conditions for the distribution of components when the 
reactions (8.4.1) and (8.4.2) shift to the right or to the left, using the set of 
equations (8.4.3). 
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Figure 8.21. Possible distribution patterns of components after chemical diffusion of 
phosphorus into silicon. 
 
 (1) Reactions (8.4.1) and (8.4.2) are shifted to the right, toward Ps and E  
decomposition: 
 

Pi + V ← Ps,  Ps + V → E; 
or 

KI >> Pi, V KII<< Ps, V. 
 
The set of equations (8.4.3) transforms to 
 
        Ps = 0,  E = 0, 
        d V VV

2 2 0′′ + ′ =λ ,                                     (8.4.6) 

        d P Pi i i
2 2 0′′+ ′ =λ . 

 
 The solutions to this set of equations are illustrated qualitatively in Figure 
8.21a. Vacancies and interstitial atoms migrate independently, without inter-
acting with one another. 
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 (2) Reaction (8.4.1) is shifted to the left and reaction (8.4.2) to the right, 
toward the formation of an E-center: 
 

Pi + V ← Ps,  Ps + V → E, 
or, 

KI >> Pi, V,  KII << Ps, V. 
 
The set of equations (8.4.3) transforms to 
 
     Ps = 0,  PsV = 0, 

     ( )d V d E d P V E PV E i i i
2 2 2 2 0′′ + ′′ − ′′+ + − ′ =λ ,            (8.4.7) 

     ( )d E d P E PE i i i
2 2 2 0′′ + ′′+ + ′ =λ . 

 
This set of equations does not permit an unambiguous identification of con-
centration profiles at the initial and boundary conditions of (8.4.3) and 
(8.4.4). The missing information can be derived from the analysis of the total 
reaction 
 
         Pi + 2V ←

→  E,                                       (8.4.8) 
 
for which the active mass law is PiV2 = KIKIIE. One can see that the restric-
tions imposed on KI and KII are insufficient to identify the direction of shift 
of reaction (8.4.8). Some additional conditions are necessary. 
 If reaction (8.4.8) is shifted sharply to the left: 
 

Pi + 2V ← E,  or  KIKII >> PiV, V2, 
 
equations (8.4.7) transform to (8.4.6), and their solution corresponds to 
Figure 8.21a. 
 If reaction (8.4.8) is shifted sharply to the right: 
 

Pi + 2V → E,  or  KIKII << PiV, V2, 
 
the set of equations (8.4.7) transforms to 
 
     Ps = 0,  PsV = 0, PiV2 = 0, 

     ( )d V d E d P V E PV E i i i
2 2 2 2 0′′ + ′′ − ′′+ + − ′ =λ ,            (8.4.9) 

     ( )d E d P E PE i i i
2 2 2 0′′ + ′′+ + ′ =λ . 
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 The solution to (8.4.9) is illustrated in Figure 8.21b showing the forma-
tion of the reaction front. One can see that interstitial P atoms migrate to the 
reaction front from the surface and vacancies migrate to it from the crystal 
bulk. The mobile E-centers produced at the front migrate inward.  
 (3) Reaction (8.4.1) is shifted sharply to the right and reaction (8.4.8) to 
the left: 
 

Ps + V ← E,  or  KI << Pi, V 
  

Pi + V → Ps,  or  KII >> Ps, V. 
  
The set of equations (8.4.3) transforms to 
 
       E = 0,  PiV = 0 

       ( )d V d P V PV i i i
2 2 2 0′′ − ′′+ − ′ =λ                     (8.4.10) 

       ( )d P P Pi i s i
2 2 0′′+ + ′ =λ . 

 
The solutions are illustrated qualitatively in Figure 8.21c. Vacancies and 
interstitial P atoms migrate toward the reaction front where reaction (8.4.1) 
representing the capture of P atoms by vacancies occurs. 
 (4) Reactions (8.4.1) and (8.4.2) are shifted sharply to the right: 
 

Pi + V → Ps,  Ps + V → E, 
or 

KI << Pi, V,  KII << Ps, V. 
 
Equations (8.4.3) transform to 
 
     PiV = 0,  PsV = 0, 

     ( )d V d E d P V E PV E i i i
2 2 2 2 0′′ + ′′ − ′′+ + − ′ =λ ,          (8.4.11) 

     ( )d E d P P V PE i i s i
2 2 2 0′′ + ′′+ + + ′ =λ . 

 
 As in case (2), the information for an unambiguous identification of the 
distribution pattern is obtained from the analysis of the total reaction 
 
         E + Pi ←

→  2Ps.                                    (8.4.12) 
 
The active mass law for this is 
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EP K
K

Pi
I

II
s= 2 . 

 
 Suppose reaction (8.4.12) is shifted sharply to the left: 
 

E + Pi ← 2Ps,  or  K
K

I

II
>> 1 . 

 
Then, the set of equations (8.4.12) transforms to (8.4.11), and the 
distribution pattern changes to the one shown in Figure 8.21b.  
 If reaction (8.4.12) is shifted sharply to the right: 
 

E + Pi→ 2Ps,  or  KI << KII, 
 
equations (8.4.11) take the form 
 
     PiV = 0,  PsV = 0,  EPi = 0 

     ( )d V d E d P V E PV E i i i
2 2 2 2 0′′ + ′′ − ′′+ + − ′ =λ            (8.4.13) 

     ( )d E d P P V PE i i s i
2 2 2 0′′ + ′′+ + + ′ =λ .  

 
The solutions are illustrated qualitatively in Figure 8.21d.  
 A specific feature of the distributions thus obtained is that two reactions 
occur at the front. This is because of the assumption of immobile site phos-
phorus, ds = 0. If we assume ds ≠ 0, this will lead to two reaction fronts 
(Figure 8.22). The front closest to the sample surface is for the formation of 
site phosphorus via the reaction E + Pi → 2Ps, and the other front is for the 
formation of E-centers via the reaction Ps + V → E. In the case of ds → 0, 
both fronts merge to yield the distribution patterns shown in Figure 8.21d. 
 The comparison of experimental (Figures 8.19 and 8.20) and theoretical 
(Figure 8.21) distributions shows that the characteristic features of the phos-
phorus profile in silicon are reproduced only in case (4), under the condition 
E + Pi → 2Ps (Figure 8.23). The formulas for component distributions in this 
case are 
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Figure 8.22. The distribution of components in P diffusion into silicon on the 
assumption of ds ≠ 0 under the following conditions: Pi + V → Ps;  Ps + V → E;  Pi + 
E → 2Ps. 
 
 

 
 
Figure 8.23. Distributions of electrically active phosphorus (a), its total concentration 
(b), and component flows (c) after chemical diffusion of phosphorus into silicon. 
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.                (8.4.14) 

 
 The constants λ0 and ~E  are found from the set of equations derived from 
the balance conditions of the type of (8.3.8) at the reaction front: 
 
    ( ) ( ) ( ) ( ) ( )~ ~E P S d ET d V T d= + − ∞i i E V0 0 0 0λ λ λ  

(8.4.15) 
    ( ) ( ) ( ) ( ) ( )P P S d V T ds i i V0 2 0 0 0= − ∞λ λ . 
 
Using the interpretation of the characteristic points of the P level, indicated 
in Figure 8.18, we can obtain from Figure 8.20 
 

( )Ps m0 5 1026 3= × − ,  λ0
9 1/24 10= × − m s/ , 

~E = × −4 1025 3m ,  d DE E m s2 17 25 10≡ = × − / . 
 
In order to make numerical estimations, let us transform (8.4.15) by remov-
ing the term Pi(0)S(λ0/di). Multiplying the first equation in (8.4.9) by 2 and 
subtracting the result from the second equation, we find 
 
    ( ) ( ) ( ) ( )[ ]V T d P E T d∞ = + −λ λ0 00 2 1V s E

~ .               (8.4.16) 

 
Taking into account λ0/dE ∼ 1 and ~E << Ps(0) from (8.4.16), we get the rela-
tion between the vacancy concentration in the sample bulk V(∞) and the dif-
fusion coefficient of vacancies DV ≡ dV

2: V(∞)T(λ0/dV) = Ps(0). 
 By varying the diffusion coefficient DV in the range 10–9–10–14 m2/s, we 
obtain the concentration values of vacancies, V(∞): 
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DV, m2/s 10–9 10–10 10–12 10–14 
V(∞) 1×1023 3×1023 3×1024 3×1025 

 
These relatively large concentrations V(∞) indicate that the diffusion of 
phosphorus in silicon seems to involve vacancies bound into complexes, 
rather than free vacancies. Moreover, when vacancies are substituted by any 
other point defect containing no P atom in reactions (8.4.1) and (8.4.2), all 
the properties of impurity phosphorus described above remain unchanged. 
 
 
8.4.2  Radiation-stimulated P diffusion into uniformly O2-doped silicon 
 
Phosphorus distribution in radiation-stimulated diffusion into silicon was 
studied in [21] at various oxygen contents in the initial samples. Diffusion 
was stimulated by bombardment with argon ions which were absorbed by a 
thin (∼0.01 µm) surface layer. It was suggested in the analysis of post-radia-
tion profiles that the diffusion involved vacancy–oxygen and vacancy–phos-
phorus complexes. 
 Let us analyze the impurity profiles obtained in [21] and shown in Figure 
8.24 on the assumption that they are unstationary and diffusion-like profiles. 
 The interaction reactions between impurities and vacancies are 
 
    Pi + V ←

→  Ps,  Ps + V ←
→  E,  Qs + V ←

→  Q,          (8.4.17) 
 
where Q is an oxygen–vacancy complex. 
 
 

 
 
Figure 8.24. Phosporus distribution due to stimulated diffusion at 873 K as a function 
of oxygen content in silicon [21], N×10–22 m–3: 1 – 0.12; 2 – 2.3; 3 – 6.8. 
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 The equations for consistent diffusion are 
 

   ( )d V d Q d E d P V Q E PV Q E i i i
2 2 2 2 2 0′′ + ′′ + ′′ − ′′+ + + − ′ =λ  

   ( )d Q Q QQ s
2 2 0′′ + + ′ =λ  

   ( )d E d P E PE i i s
2 2 2 0′′ + ′′+ + ′ =λ  

   PV K Pi I s= , PV K Es II= , Q V K Qs III= .                          (8.4.18) 
 
where Qs is the diffusion coefficient of oxygen atoms and dQ

2 is the diffusion 
coefficient of a complex. 
 The boundary conditions are written as 
 

( )P Pi iλ= =0 0 ,  ( )P Ps sλ= =0 0 ,  ( )Q Qs sλ= =0 0  

(8.4.19) 
P Pi sλ λ=∞ =∞= = 0 ,  ( )Q Qλ=∞ = ∞ . 

 
The solution to the set of equations (8.4.18) under the boundary and initial 
conditions given in (8.4.19) and the comparison with experimental distribu-
tions presented in Figure 8.24 has shown [8] that an agreement between ex-
perimental and theoretical profiles is possible only if the three reactions 
(8.4.17) are shifted sharply to the right. The distribution of components for 
this case is illustrated in Figure 8.25 and described by the formulas 
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Figure 8.25. Theoretical distribution of components in stimulated diffusion of phos-
phorus into silicon. 
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.                                        (8.4.20) 

 
The constants λ0, 

~E , and Qs(∞) are defined by the equations 
 
   ( ) ( ) ( ) ( )Q Q Q T ds s Q0 0= ∞ + ∞ λ  

   ( ) ( ) ( ) ( ) ( )~ ~E Q T d ET d P S d= ∞ − −λ λ λ0 0 00Q E i i           (8.4.21) 

   ( ) ( ) ( ) ( ) ( )P P S d Q T ds i i Q0 2 0 0= − ∞λ λ . 
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Table 8.1. Model parameter values. 
 

Profile number 
(Figure 8.24) 

Q(∞) + Qs(∞), 
m–3 

Ps(∞), 
m–3 

E, m–3 λ0, m/s1/2 dE, 
m/s1/2 

1 0.12×1022 8.3×1023 1×1023   
2 2.3×1022 4.8×1023 4×1023 5×10–9 5×10–9 
3 6.8×1022 2.6×1023 7×1023   

 
 The distributions described by (8.4.20) show that an interstitial P flow 
migrates from the sample surface to the reaction front λ0 and a flow of Q 
complexes moves from the sample bulk outward. There are two reactions 
occurring at the front: Pi + E → 2Ps and Ps + Q → Q + E. The E-centers pro-
duced at the front migrate inward. Vacancies are intermediate reaction prod-
ucts here. Comparing Figures 8.23 and 8.25, one can see that Q complexes 
act as vacancies in the latter case. 
 Let us make some numerical estimations using the theoretical results. 
The experimental profiles yield the following values for the model 
parameters (Table 8.1). 
 Note that the DE value for radiation-stimulated diffusion at 873 K is ap-
proximately equal to that for chemical diffusion at 1273 K (Section 8.4.1). 
 Using (8.4.21), let us estimate the diffusion coefficient of a Q complex. 
By multiplying the second equation of (8.4.15) by 2 and summing it up with 
the third equation, we obtain 
 
     ( ) ( )[ ] ( ) ( )P E T d Q T ds E E0 2 1 0 0+ + = ∞~ λ λ .          (8.4.22) 

 
Hence, with the assumption that Q(∞) ≤ Q(∞) + Qs and using the values of 
Table 8.1, we find DQ ∼ 6×10–13 m2/s. 
 From the second equation in (8.4.21) and (8.4.22), the relation between 
Pi(0) and di is 
 
     ( ) ( ) ( ) ( )[ ]P S d P E T di i s E0 0 10 0λ λ= + +~ .              (8.4.23) 

 
When Pi(0) varies within 1020–1023 m–3, di

2 varies within 10–13–10–16 m2/s. It 
also follows from equation (8.4.21) that the increase in Q(∞) due to a higher 
oxygen content corresponds to a higher value of ~E  at constant λ0 and Pi(0); 
this is what is, in fact, observed in experimental profiles. 
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8.4.3  Fe redistribution in B and P diffusion-doped silicon 
 
Section 6.8 considered an indirect redistribution of impurity atoms over 
crystallochemical positions, mediated by the crystal electronic subsystem. 
But there is also a direct redistribution via a chemical interaction of migrat-
ing atoms. This effect was studied in [22] with reference to phosphorus and 
boron diffusion into silicon pre-doped with iron. The diffusion temperature 
for both phosphorus and boron was 1273 K and the diffusion times were 18 
hours and 3–5 hours, respectively. 
 The impurity distribution patterns are shown in Figure 7.5. The charac-
teristic features of the Fe profiles are the minima and maxima arising after 
the diffusion of boron and phosphorus. The non-monotonic character of Fe 
distribution was interpreted in [22] as being due to the formation of 
complexes involving P, B, and Fe. However, because of the theory 
limitations at that time, the maxima in Fe distribution remained unclear. 
Assuming the Fe distribution feature to be associated with quasichemical 
reactions among the diffusing components, the authors of [8] suggested the 
following interactions of Fe and P impurities in silicon: 
 
        P Pi s+ ←

→V  

        Ps + ←
→V E  

        Fe Fei s+ ←
→V  

        [ ]Fe P Fe Pi i i s+ ←
→  

        [ ]Fe Fei i+ ←
→E E .                                   (8.4.24) 

 
Bearing in mind that the diffusion mechanisms of B and P in silicon are 
similar, we believe that this model is also valid for the B–Fe–Si system. 
 Further, assuming the complexes [FeiPs], [FeiE], and Fes to have a low 
mobility and taking into account the high migration rate of interstitial Fe, we 
have concluded that Fe decorates Pi, E, and V involved in P diffusion. In-
deed, a comparison of the Fe distribution (Figure 7.5a) and the distributions 
of components in P diffusion (Figure 8.21f) allows the following conclusion 
to be made. The maximum in the distribution of Fe is due to its decoration of 
E-centers. The descending region in front of the maximum indicates the 
decoration of P site atoms. The specific features of the Fe profile in B diffu-
sion can be interpreted in a similar way. 
 It should be noted that the lower rate of P diffusion into a Fe-doped 
sample (Figure 7.5b) can be naturally accounted for, as in [22], by the bind-
ing of some P atoms to Fe atoms to produce complexes. 
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