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Preface

The design of formal calculi in which the fundamental concepts underlying inter-
active systems can be described and studied has been a central theme of theoretical
computer science over the last two decades. In this book we refer to the formal
description of mobility in computer science by using π-calculus, ambient calculus,
bioambients, brane calculi and systems of mobile membranes.

In process algebra the moving entities are the links (π-calculus), the ambients
(ambient calculus and bio-ambients) and the branes (brane calculi). In membrane
systems the movement is provided by rules inspired by endocytosis and exocytosis.
Cell movement is a dynamic phenomenon that is essential to a variety of biological
processes (e.g., immune response).

In Chapter 1: Mobility in Process Calculi we refer to the formal description of
mobility in process calculi [52]. When expressing mobility, we should mention what
entities move and in what space they move. The π-calculus [121] is a formalism
where links are the moving entities, and they move in a virtual space of linked
processes (the network of web pages is a good example for this approach). This
option is powerful enough to express moving processes both in a physical space of
computing locations and in a virtual space of linked processes [121]. The π-calculus
has a simple semantics and a tractable algebraic theory [121]; it is a widely accepted
model of interacting systems with dynamically evolving communication topology
and (channel) mobility. Its mobility increases the expressive power enabling the
description of many high-level concurrent features.

Timed distributed π-calculus (tDπ) [67] is a rigorous framework for describing
distributed systems with time constraints. The timers on channels define timeouts for
communications, and timers on the channel types restrict the channels’ availability.
Whenever the timer of either a channel or a channel type expires, the corresponding
channel is discarded, and respectively the channel type is lost. tDπ combines tempo-
ral constraints with types and locations in order to give the possibility of modelling
located and timed interactions between distributed processes with time-restricted
resource access.

v



vi Preface

Another formalism able to express mobility is the ambient calculus [42]; it de-
scribes computation carried out on mobile devices (i.e. networks having a dynamic
topology), and mobile computation (i.e. executable code able to move around the
network). The primitive concept of the calculus is the ambient defined as a bounded
place in which computation can occur. Ambients can be nested inside other ambi-
ents. Each ambient has a name used to control access to it. Computation is repre-
sented as the movement of ambients: they can be moved as a whole, changing their
location by consuming certain capabilities: in, out, open.

Mobile ambients with timers (tMA) [9, 10, 15] represent a conservative extension
of the ambient calculus. Inspired by [41], we introduce types for ambients in tMA.
The type system associates to each ambient a set of types in order to control its
communication by allowing only well-typed messages. For instance, if a process
inside an ambient sends a message of a type which is not included in the type system
of the ambient, then the process fails. In tMA the process may continue its execution
after the timer of the corresponding output communication expires.

The biological inspiration is predominant in the case of brane calculi [40]. The
operations of the two basic brane calculi, namely pino, exo, phago (for the PEP
fragment) and mate, bud, drip (for the MBD fragment) are directly inspired by the
biologic processes of endocytosis, exocytosis and mitosis. Since some proteins are
embedded in cell membranes, and can act on both sides of the membrane simultane-
ously, brane calculi use both sides of the membrane, emphasizing that computation
happens also on the membrane surface.

On the other hand, in Chapter 2: Mobility in Membrane Computing, we study
mobility in the framework of natural computing. Natural computing refers to both
computational models inspired by nature and biological processes. When complex
natural phenomena are analyzed in terms of computational processes, our under-
standing of both nature and computation is enhanced. Natural computing is looking
for concepts, principles and mechanisms underlying natural systems.

Membrane computing is part of natural computing, being a rule-based formal-
ism inspired by biological cells [128]. Mobile membranes represent a formalism
describing the movement of membranes inside a spatial structure by applying spe-
cific rules from a given set. We define several systems of mobile membranes: simple,
enhanced and mutual mobile membranes, as well as mutual mobile membranes with
objects on surface. When membrane systems are considered as computing devices,
two main research directions are considered: the computational power in compar-
ison with the classical notion of Turing computability, and the efficiency in algo-
rithmically solving hard problems (e.g., NP-problems) in polynomial time. In this
chapter we present mobile systems which are both powerful (mostly equivalent to
Turing machines) and efficient (membrane system algorithms provide efficient so-
lutions to NP-complete problems through the generation of an exponential space in
polynomial time).

Reachability is the problem of deciding whether a system may reach a given
configuration during its execution. This is one of the most critical properties in the
verification of systems; most of the safety properties of computing systems can be
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reduced to the problem of checking whether a system may reach an “unintended
state”. We investigate the problem of reaching a certain configuration in systems of
mobile membranes with replication rules, starting from a given configuration. We
prove that reachability in systems of mobile membranes can be decided by reducing
it to the reachability problem of a version of pure and public ambient calculus from
which the open capability has been removed.

In Chapter 3: Encodings we establish several links between process calculi and
membrane computing in order to be able to use techniques from one area in the other
one. The difference between these two research areas is the fact that process alge-
bras provide a tool for the high-level description of interactions, communications,
and synchronizations between a collection of independent agents or processes, pro-
viding also algebraic laws that allow process descriptions to be manipulated and
analyzed, and permit formal reasoning about equivalences between processes (e.g.,
using bisimulation), while membrane computing uses techniques from languages,
automata, complexity, and dynamical systems. We consider our encodings as the
first efforts towards bridging the gap between process calculi and mobile mem-
branes.

In order to study the expressive power of tDπ we use a method of embeddings
among languages introduced in [148]. The method is based on a tuple composed
of a set of process expressions P , a partial operation over P (in process cal-
culi we choose the parallel composition operator) and an observational equivalence.
To compare two formalisms by looking at their sets of syntactic expressions (lan-
guages) L1 and L2, we are required to identify the corresponding algebraic lan-
guages (P; | ;�) respectively (P ′; | ′ ;�′

). We adapt this method and use it to
show that tDπ is more expressive than the underlining Dπ .

Although both the π-calculus and the calculus of mobile ambients are Turing-
complete [42, 121] and they have almost the same field of application (mobile
computations), it is widely believed (see [77]) that the π-calculus does not directly
model phenomena such as the distribution of processes within different localities,
their migrations, or their failures. We present a translation of mobile ambients into
the asynchronous π-calculus: in order to imitate the spatial structure of mobile am-
bients we impose some very rigid restrictions on the structural congruence rules of
the π-calculus. A key idea of the encoding is based on the separation of the spatial
structure of mobile ambients from their operational semantics.

Membrane systems [127, 128] and mobile ambients [42] have similar structures
and common concepts. Both have a hierarchical structure representing locations,
and are used to model various aspects of biological systems. Mobile ambients are
suitable to represent the movement of ambients through ambients and the communi-
cation which takes place inside the boundaries of ambients. Membrane systems are
suitable to represent the movement of objects and membranes through membranes.
We consider these new computing models used in describing various biological phe-
nomena [40, 65], and encode the ambients into membrane systems [12, 19]. We
present such an encoding, and provide an operational correspondence between the
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safe ambients and their encodings, as well as various related properties of the mem-
brane systems [14].

Some work has been done trying to relate membrane systems and brane calculi
[35, 37, 47, 105, 106]. Inspired by brane calculi, a model of membrane systems
having objects attached to membranes has been introduced in [45]. In [31], a class
of membrane systems containing both free floating objects and objects attached to
membranes has been proposed. We are continuing this research line, and simulate
a fragment of brane calculi by using systems of mutual membranes with objects on
surface. By defining an encoding of the PEP fragment of brane calculi into systems
of mutual membranes with objects on surface, we show that the difference between
the two models is not significant.

A relation can be established between mobile membranes and coloured Petri nets
by providing an encoding of the first formalism into the second one. By considering
the endocytic pathway for low-density lipoprotein degradation, we show how mo-
bile membranes can be used to model such a biological phenomenon, while coloured
Petri nets can be used to analyze and verify automatically some behavioural prop-
erties of the pathway. Some connections between membrane systems and Petri nets
are presented for the first time in [78] and [137]. In [101, 102], a direct structural
relationship between these two formalisms is established by defining a new class of
Petri nets called Petri nets with localities. This new class of Petri nets has been used
to show how maximal evolutions from membrane systems are faithfully reflected in
the maximally concurrent step sequence semantics of their corresponding Petri nets
with localities.

The book is devoted to researchers. However, since it contains examples and
exercises, it can be used as a course support. The dependencies of its chapters and
sections are represented by the following graph

1.1 1.5 2.2 2.1

1.2 3.2 1.3 3.4 2.3

3.1 1.4 3.3 2.4 2.5 2.6 3.5

The book is designed primarily for computer scientists working in concurrency
(process calculi, Petri nets), in biologically inspired formalisms (brane calculi,
membrane systems), and also for the mathematically inclined scientists interested
in formalizing moving agents and biological phenomena. As far as we know, the
book is the first monograph that treats mobility as its central topic.

Iaşi, 2011 Bogdan Aman
Gabriel Ciobanu
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Chapter 1
Mobility in Process Calculi

Abstract Mathematical models are useful in different fields to provide a deeper
and more insightful understanding of various systems and notions. We refer here to
the formal description of mobility in computer science [52]. The first formalism in
computer science able to describe mobility is the π-calculus [121]. It was followed
by ambient calculus [42]. A biologically-inspired version of ambient calculus is
given by bioambients [138] and several brane calculi [40].

When expressing mobility, we should mention what entities move and in what
space they move. There are several possibilities: processes moving in a physical
space of computing locations, processes moving in a virtual space of linked pro-
cesses, links moving in a virtual space of linked processes, etc.

1.1 π-calculus

The π-calculus is a formalism where links are the moving entities, and they move
in a virtual space of linked processes (the network of web pages is a good exam-
ple of this approach). This option is powerful enough to express moving processes
both in a physical space of computing locations and in a virtual space of linked
processes [121].

The π-calculus was developed as a calculus of communicating systems that
allows the representation of concurrent computations whose configuration may
change during the computation. The computational world of the π-calculus con-
tains just processes (also called agents) and channels (also called ports). In contrast
to the λ -calculus which represents computations through functions, the π-calculus
uses the process as an abstraction of an independent thread of control. A channel
is an abstraction of the communication link between processes, and processes in-
teract by sending information through these channels. Since variables may be chan-
nel names, computation can change the channel topology and process mobility is
supported. Milner emphasized the importance of identifying the “elements of inter-
action” [120], and his π-calculus extends the Church-Turing model by adding the

B. Aman, G. Ciobanu, Mobility in Process Calculi and Natural Computing,
Natural Computing Series, DOI 10.1007/978-3-642-24867-2 1,
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2 1 Mobility in Process Calculi

interaction between a sender and a receiver to the algebraic elegance of λ -calculus.
The π-calculus has a simple semantics and a tractable algebraic theory [121]. Ac-
tually the π-calculus is a widely accepted model of interacting systems with dy-
namically evolving communication topology and (channel) mobility. Its mobility
increases the expressive power enabling the description of many high-level concur-
rent features. The π-calculus can model networks in which messages are sent from
one site to another site and may contain links to active processes or to other sites;
it is a general model of computation which takes interaction as primitive. This for-
malism is also used in modelling biological systems [53, 72].

1.1.1 Syntax

We briefly present the monadic version of the π-calculus (“monadic” means that
the messages sent between processes consist of exactly one name). Let X be an
infinite countable set of names. The elements of X are denoted by x,y,z, . . . The
terms (expressions) of this formalism are called processes, and they are denoted by
P,Q,R, . . . .

The processes are defined over the set X of names as follows:

Table 1.1 Syntax of π-calculus

P ::= processes
0 empty process
x〈z〉.P output
x(y).P input
P | Q parallel composition
P+Q choice
!P replication
νx P restriction

The π-calculus expressions are defined by guarded processes x〈z〉.P and x(y).P,
parallel composition P | Q, nondeterministic choice P + Q, replication !P and a re-
striction νx P creating a local fresh channel x for process P. The π-calculus repli-
cation !P can also be expressed by recursive equations of parametric processes. 0 is
the empty process.

Input guards and output guards represent sending and receiving a channel name
along a link. The output guarded process x〈z〉.P sends z along x and then, after the
output has completed, continues as P. An input guarded process x(y).Q waits until a
name is received along x, substitutes it for the bound variable y and continues as Q1.

1 There is an important distinction between input and output guards. The output guard is a simple
sending of a name z along a channel x, but the input guard has a more complex action: the name
received along the channel x replaces y in the process following the input guard. The input guard
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The parallel composition x〈z〉.P | x(y).Q may thus synchronize on x, and so the pro-
cesses can interact by using channels they share. A name received in one interaction
can be used in another; by receiving a channel name, a process can interact with
processes which are unknown to it, but now they share the same channel name. This
aspect is important in defining mobility in the π-calculus, together with the scope
of names defined by νx P and extrusion of names from their scopes.

Over the set of processes is defined a structural congruence relation ≡ provid-
ing a static semantics. The structural congruence is defined as the smallest congru-
ence over the set of processes which satisfies the following equalities involving the
set f n(P) of the free occurrences in a process P and standard α-conversion denoted
by =α :

Table 1.2 Structural Congruence of π-calculus

P≡ Q if P =α Q
P+0≡ P, P+Q≡ Q+P, (P+Q)+R≡ P+(Q+R),
P | 0≡ P, P | Q≡ Q | P, (P | Q) | R≡ P | (Q | R),
!P≡ P | !P
νx0≡ 0, νxνyP≡ νyνxP, νx(P | Q)≡ P | νxQ if x �∈ f n(P).

The rule νx(P |Q)≡ P | νxQ whenever x �∈ f n(P) describes the extrusion of names
from their scope, and it plays an important role in defining mobility in π-calculus.

1.1.2 Operational Semantics

The evolution of a process is described in the π-calculus by a reduction relation
over processes called reaction. This relation contains those transitions which can be
inferred from a set of rules. The reduction relation over processes is defined as the
smallest relation → satisfying the following rules:

Table 1.3 Operational Semantics of π-calculus

(com) (x〈z〉.P+R1) | ( x(y).Q+R2)→ P | Q{z/y}
(par) P→ Q implies P | R→ Q | R
(res) P→ Q implies νx P→ νx Q
(str) P≡ P′, P′ → Q′ and Q′ ≡ Q implies P→ Q

is a binding operator involving substitutions: in x(y).P, the name y binds free occurrences of y in
P. In a second binding operator νx P, the name x binds free occurrences of x in P.
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Example 1.1. We give an example describing a simple interaction between a mo-
bile phone carried in a car and two base stations. The connections between the car
(mobile phone) and a base station can change as the car moves around.

Fig. 1.1 A Car and Two Base Stations Interaction in π-calculus

We consider three processes B1,B2 and C corresponding to the two base stations
and the car, respectively. We start with their parallel composition B1 | C | B2 de-
scribed by the left square of the picture. The base B1 and the car C are connected
by a channel talk, and B1 and B2 by a channel switch. This means that talk is free
in both B1 and C, and switch is a free name in both B1 and B2. By the process
expression ν talk (B1 | C) | B2, the name talk is restricted to B1 and C, and we
interpret that B1 and C have an exclusive communication along the channel talk.
If B1 = switch〈talk〉.B′1, then base B1 wishes to send the name of channel talk to
base B2 along the channel switch. Moreover, if talk is not free in B′1 (talk �∈ f n(B′1)),
then B′1 will lose its link to C. Base B2 is waiting for a channel name sent by B1,
namely B2 = switch(y).B′2. Applying the reduction rule (com) and the extrusion of
name talk from its previous scope given by B1, we get the transition

ν talk (B1 |C) | B2 −→ B′1 | ν talk (C | B′′2)

where B′′2 = B′2{talk/y}. The initial process ν talk (B1 |C) | B2 changes its commu-
nication topology, and it becomes as it is described in the right square of the figure
above. Now B′′2 and C have an exclusive communication along the channel talk.
This is essentially the mobility mechanism offered by the π-calculus. More details
are in [121].

Various forms of behavioural equivalence in process algebras are based on the
notion of bisimulation. There are several definitions in the literature for bisimula-
tion; their definitions are given by using the labelled transition system defined by
the reduction rules. Systems can be checked automatically by studying the bisimi-
larity between two processes, namely the model and its specification. The properties
of finite state transition systems can be specified in a very powerful logic called μ-
calculus. Thus it is possible to use various verification techniques for proving prop-
erties about the mobile concurrent systems modelled in the π-calculus. Modelling
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with π-calculus and verifying with the μ-calculus and some of its proper subsets
have been thoroughly investigated in the literature. Model checking π-calculus pro-
cesses is discussed in several papers, and the Mobility Workbench [152] is a soft-
ware tool supporting this model checking.

1.1.3 Extensions

There are several variants and extensions of the π-calculus: Spi [1], Dpi [91],
tDpi [67], appliedPi [2], bigraphs [122]. An important change is introduced in the
distributed version Dpi of the π-calculus presented in [91]: mobility is expressed in
a simpler way, by using an explicit migration primitive goto l.P enabling mobility
between explicit location names. Regev and Shapiro use the π-calculus in describ-
ing biochemical systems by abstracting “cell-as-computation”, and using processes
as abstractions of molecules in biomolecular systems [139]; the authors use these
abstractions for representation, simulation, and analysis of metabolic pathways.

1.1.4 Computational Power

The π-calculus is a universal model of computation as stated by Milner in [119], in
which he presents two encodings of the λ -calculus in the π-calculus. The features of
the π-calculus that make these encodings possible are name-passing and replication
(or, equivalently, recursively defined agents). In the absence of replication/recursion,
the π-calculus ceases to be Turing-powerful [145].

1.2 Timed Distributed π-calculus

We take up Dπ , extending it with decreasing timers attached to communication
channels and to channel types. The new formalism is called timed distributed π-
calculus (tDπ) [67], and it is presented as a rigorous framework for describing dis-
tributed systems with time and resource constraints. The timers on channels define
timeouts for communications, and timers on the channel types restrict the channels’
availability. Whenever the timer of either a channel or a channel type expires, the
corresponding channel is discarded, and respectively the channel type is lost. tDπ
combines temporal constraints with types and locations in order to give the pos-
sibility of modelling located and timed interactions between distributed processes
with time-restricted resource access. Following the method introduced in [153], we
prove that the typing system of tDπ is sound with respect to the equivalence and
reduction relations of the π-calculus. Moreover, time does not interfere with the
typing system.



6 1 Mobility in Process Calculi

1.2.1 Syntax

By adding timers to communication channels, communication along a channel is
no longer available for an indefinite time (like in Dπ). If no interaction happens in
the predefined interval of time determined by the timer value, the process goes to
another state. Each channel has two alternatives: one when the communication is
achieved, and another when we have no communication. Channel timers are created
once with the channel, but started only when the channel becomes active (available
for communication).

1.2.1.1 tDπ Syntax

The syntax of a Dπ channel a is extended by tagging it with a timer Δ t; this means
that the channel aΔ t waits for communication only for the period of time determined
by the timer value t (namely t units of time). We use a discrete time domain; this
is related to the fact that we have synchronous communications in the standard π-
calculus. If we want to model asynchronous systems, then a model based on dense
time [8] would be more appropriate.

Table 1.4 Syntax of tDπ

u ::= x
| aΔ t

l ::= x
| k

v ::= bv
| u | l
| u@l
| (v1,..,vn)

X ::= x
| X@l
| (X1,..,Xn)

Variable Name
Timed Channel
Variable Name
Location Name
Base Value
Name
Located Name
Tuple of Values
Variable
Located Variable
Tuple of Variables

P, Q ::= stop
| P | Q
| (ν u : A)P
| gol.P
| u!〈v〉.(P,Q)
| u?(X :T ).(P,Q)
| ∗P

M, N::= M | N
| (ν u@l : T )N
| l[[P]]Γ

Termination
Composition
Channel Restriction
Movement
Output
Input
Replication
Composition
Located Restriction
Located Process

The syntax of Input and Output communication uses a pair of processes (P,Q).
For instance, the Input expression aΔ t?(X : T ).(P,Q) evolves to P whenever a com-
munication is established on channel a during the interval of time given by Δ t,
otherwise it evolves to Q. In this expression, the variable X of type T is considered
bound only in P. We consider timers for both input and output channels. In general,
in synchronous systems an input process waits for a resource for a certain period of
time, and an output process offers a resource for a certain period of time.

Table 1.4 defines in order the channel names and location names, values, vari-
ables, processes and tagged located processes of tDπ . For a variable X of the Input
expression aΔ t?(X : T ).(P,Q) we must also provide its type T , and for the chan-
nel name u in the Channel Restriction expression we have to provide its channel
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type A (types are presented in Subsection 1.2.2). Note that we may have a vari-
able x in place of a channel name (in the Input, Out put or Located Restriction) or
in place of a location (in the Located Processes, Located Names or Movement). On
an output channel, a process can send a value consisting of either a channel name
(together with its timer), a location name, a name of a variable, a name of a channel
(or variable) located at some location or a tuple of values. Note that with the located
restriction (ν a@k : T )N we specify a new private channel a and its location k. For
example, in the process

(ν a@k : T )(l[[P]] | k[[Q]]) | k[[Q′]]

the channel a is private for P and Q, and it is located at the current location k of Q.
Moreover, Q′ does not have any knowledge about channel a even though it also runs
at location k. This means that process P must move to location k before commu-
nicating on the private channel a. Also note that channel restriction refers only to
names.

The interaction between processes is given through the input and output process
expressions which must have the same channel name; the channel timers play a
secondary role in such an interaction.

Example 1.2. The following two processes running in parallel can interact along the
common channel a.

aΔ t!〈v〉.(P,Q) | aΔ t ′?(X : T ).(P′,Q′)−→ P | P′{v/
X}

Intuitively, the process on the left of the reduction arrow evolves to the process on
the right after such an interaction. The output process (the process on the left of
the parallel composition operator) sends the value v on the channel named a and
then behaves as P. When receiving the value v, in the input process (the process
on the right of the parallel composition operator) all the occurrences of the bound
variable X are replaced by v in P′.

Waiting indefinitely on a channel a is allowed by considering Δ t as ∞. An output
process expression a∞!〈v〉.(P,Q) awaits forever to send the value v, simulating the
behaviour of an output process in untimed synchronous π-calculus.

1.2.2 Typing System

Each located process is tagged with a type environment Γ which is a set of location
types denoted by K in Table 1.5. Formally the type environment is a mapping from
free location names k to location types K. A location type K may contain location
capabilities denoted by κ; these capabilities may express either capabilities of using
channel names ã with their corresponding channel types Ã (ã:Ã), or move capabil-
ities go, or channel restriction capabilities (i.e., permissions to create private chan-
nels) newch. A channel type A may contain the following channel capabilities gener-
ically denoted by α: reading/writing/restricted reading messages of type T respec-
tively denoted by r〈T 〉/w〈T 〉/ro〈T 〉. A type T may contain tuples (T1, . . . ,Tn) of
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types, and channel types A1, . . . ,An@K corresponding to channel names a1, . . . ,an

located at a location of type K. B represents the set of base types.

Table 1.5 Type System and Subtyping Relation of tDπ-calculus

Types: Subtyping:
K ::= loc{κ̃}
A ::= res{α̃}Δ t
E ::= A | K |B
T ::= E | (T1, . . . ,Tn)

| A1, . . . ,An@K
Capabilities:

κ ::= a : A
| go | newch

α ::= r〈T 〉 | w〈T 〉 | ro〈T 〉

κ <: κ
a : A <: a : B if A <: B

K <: L if ∀λ ∈ L: ∃κ ∈ K: κ <: λ
A <: B if ∀β ∈ B: ∃α ∈ A: α <: β

Ã@K <: B̃@L if K <: L and Ã <: B̃
S̃ <: T̃ if ∀i : Si <: Ti

r〈T 〉 <: r〈T ′〉 if T <: T ′

w〈S〉 <: w〈S′〉 if S′ <: S
ro〈T 〉 <: ro〈T ′〉 if T <: T ′

We may have only one instance of the capabilities go and newch in a location
type K; they represent respectively the capability of a process to move to a location
of type K, and the capability to create private channel names at a location of type K.

In order to exemplify, let us consider a process which has in its type environ-
ment Γ a channel name a with a channel type res{r〈T 〉,w〈T ′〉,ro〈T ′′〉}. This means
that along this channel a the process can receive messages of type T , and send mes-
sages of type T ′. The ro capability is similar to an r capability, with the difference
that the types of the received messages are not added to the type environment of
the process. Types are accumulated when a name is received along an input channel
with capability r〈〉.

Having ro〈〉 capabilities, we can describe processes which may use the data re-
ceived in a message through an input channel with capability ro〈〉 only if there exists
a proper type for the new data within their type environments. More precisely, let
us consider a process P at location k which receives a located channel name b@k
on the input channel a of type res{ro〈T 〉}. The located process k[[P]]Γ can use the
new channel name b to communicate without generating errors only if its type envi-
ronment Γ contains at location k the corresponding type of b, i.e., Γ (k,b) should be
defined. Runtime errors are presented at the end of Section 1.2.3, where Table 1.12
contains the rules of the error system.

In Dπ resources are accumulated, but can never be discarded. We extend the
channel types of Dπ with timers of form Δ t. These timers define the existence of
the channel types inside the type environment. We assume that we have a universal
clock, and the timers decrease with each “tick” of the universal clock. Commu-
nication actions can be performed along a channel until the timer on its type has
expired. After expiration, the channel capabilities are discarded and any commu-
nication would generate a runtime error. Timers are created once with the channel
types, and they are activated when types are added to the type environment. For a
clearer presentation, we write only the channel types res{α} instead of the chan-
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nel types with the attached timers res{α}Δ t whenever we are not interested in the
timing aspects.

In our approach a process can move to a certain location, and wait for a period
of time to establish a communication on a channel (a fixed local resource) with a
complementary process. It is necessary to offer capabilities as r〈T 〉, w〈T 〉, and ro〈T 〉
for these fixed resources in order to restrict the actions performed by a process.
The capabilities of the locations, and the capabilities of the channels from the type
environment define what actions are allowed to be executed at each location. An
example of a type environment is:

Γ = {l : loc{a : A,b : B},k : loc{a : A′}}

where we denote by Γ (k) the type loc{a : A′} of location k, and by Γ (l,b) the chan-
nel type B of the channel b located at l. The process of accumulating capabilities
is made explicit by using environment extensions. We denote by Γ {k : K} an envi-
ronment Γ extended with a new location k of type K. Moreover, considering Γ as
above, we can extend the type environment with a new type B′ of a channel c located
at k by

Γ {c@k : B′}= {l : loc{a : A,b : B},k : loc{a : A′,c : B′}}

When a process receives new channel names together with their associated types,
capabilities of the new names become available (are added to the type environment
of the process). As an example, let us suppose a process receiving a name of a
located channel c@k with channel type B′ through an input channel with reading
capability. The type of the new channel is added to the type environment at the cor-
responding location type of k : loc{. . .}. It means that now the process knows about
the new channel, and gains the capability to communicate through the accumulated
channel c according to type B′.

A subtyping relation (<:) is introduced to compare type environments. If we
consider Γ = {l : loc{ã : Ã, b̃ : B̃}} and Γ ′ = {l : loc{ã : Ã}} as type environments,
then we have Γ <: Γ ′ according to the definition in the second column of Table 1.5.
Comparing type environments Γ and Γ ′, we see that an environment with more
capabilities (Γ ) is a subtype of an environment with fewer capabilities (Γ ′). The
reason for such an interpretation of the subtyping relation is that Γ ′ is more restric-
tive than Γ . The subtyping relation represents the inverse of the subset relation from
the set theory; if we consider type environments as sets of location types, the relation
above becomes Γ ⊇ Γ ′.

We extend both the partial meet � and partial join � operators of Dπ with the
new channel capability ro〈〉. Intuitively � behaves as the union operator of set the-
ory, and � behaves as the intersection operator. The partial meet operator for loca-
tion types K�K′ is undefined if and only if there exists a channel name a such that
a : A ∈ K, a : A′ ∈ K′ and A�A′ is undefined (see Table 1.7 for the definition of �
for channel types).

We denote by γ any of the location capabilities go or newch. By a : − �∈ K we
denote the fact that in the location type K there is no channel type A for channel a
such that a : A ∈ K.
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Table 1.6 Partial Meet Operator for Locations in tDπ-calculus

K�K′ = {γ | γ ∈ K or γ ∈ K′}
∪ {a : A | a : A ∈ K and a :− �∈ K′}
∪ {a : A′ | a :− �∈ K and a : A′ ∈ K′}
∪ {a : A′′ | a : A ∈ K and a : A′ ∈ K′ and A′′ = A�A′}

The method of removing capabilities is formalised by a binary subtraction op-
erator \Δ defined by using a join operator � (see Table 1.8), and a symmetrical
difference operator denoted by \ similar to the one defined in set theory (in our case
it is applied to type environments). We write \Δ for the operation of removing from
the first type environment all the types contained in the second type environment.
We denote by E the set of type environments. The subtraction operator \Δ described
above is defined as \Δ : E ×E → E where Γ \Δ Γ ′ = Γ � (Γ \Γ ′).

Table 1.7 Partial Meet Operator for Channel Types in tDπ-calculus

Partial meet operator for channel types (A�A′) is undefined iff:
r〈T 〉 ∈ A and r〈T 〉 ∈ A′ and T �T ′ undefined
ro〈T 〉 ∈ A and ro〈T 〉 ∈ A′ and T �T ′ undefined
w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S�S′ undefined
r〈T 〉 ∈ A and w〈S′〉 ∈ A′ and S′ �<: T
w〈S〉 ∈ A and r〈T ′〉 ∈ A′ and S �<: T ′

ro〈T 〉 ∈ A and w〈S′〉 ∈ A′ and S′ �<: T
w〈S〉 ∈ A and ro〈T ′〉 ∈ A′ and S �<: T ′

ro〈T 〉 ∈ A and r〈T ′〉 ∈ A′ and T ′ \Δ T undefined
The definition
A�A′ = {ro〈T 〉 | ro〈T 〉 ∈ A and ro〈−〉 �∈ A′}

∪ {ro〈T ′′〉 | ro〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T ′′ = T �T ′}
∪ {w〈S〉 | w〈S〉 ∈ A and w〈−〉 �∈ A′}
∪ {w〈S′′〉 | w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S′′ = S�S′}
∪ {ro〈T ′〉 | r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ }
∪ {r〈T 〉 | r〈T 〉 ∈ A and ro〈−〉 �∈ A′ and r〈−〉 �∈ A′ or

r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′, r〈−〉 �∈ A′ and T �T ′ = /0 or
undefined}

∪ {r〈T ′′〉 | r〈T 〉 ∈ A and ro〈−〉 �∈ A′ and r〈T ′〉 ∈ A′ and T ′′ = T �T ′ or
r〈T 〉 ∈ A and ro〈S〉 ∈ A′ and r〈T ′〉 ∈ A′ and T ′′ = T �T ′ and T �S = /0 or
undefined }

∪ {r〈T ′′〉 | r〈T 〉 ∈ A and ro〈T ′〉 ∈A′ and r〈−〉 �∈A′ and T ′′= T \Δ T ′ or
r〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and r〈S〉 ∈ A′ and T ′′ = T \Δ T ′ and T �S = /0 or
undefined }

plus all other natural cases resulted from swapping A with A′

If we consider two type environments

Γ = {loc{a : A,b : B}} and Γ ′ = {loc{b : B,c : C}},
each composed of one location type with two channel types, then by applying the
subtraction operator \Δ we obtain
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Γ \Δ Γ ′ = loc{a : A,b : B}� (loc{a : A,b : B}\ loc{b : B,c : C}) = loc{a : A}
A process which has a channel type with a capability ro〈T 〉 can receive only mes-
sages of type T (or any subtype of T ) without generating errors. When the type of
the channel is extended with the capability ro〈T ′〉, then the process is able to re-
ceive messages of a less restrictive type T ′′ = T �T ′. We solve the possible conflict
between r〈〉 and ro〈〉 by providing a higher priority to ro〈〉 capability (because it is
more restrictive than r〈〉). In consequence, ro〈〉 keeps its types and r〈〉 loses them in
favour of ro〈〉 whenever r〈T 〉 and ro〈T ′〉 overlap (i.e., T �T ′ �= /0). When extending
the writing capability w〈S〉 with a new capability w〈S′〉, the channel becomes more
restricted, having the capability w〈S′′〉 where S′′=S�S′.

We denote by r〈−〉 �∈ A the fact that there is no type T such that r〈T 〉 ∈ A. The
notations w〈−〉 �∈ A and ro〈−〉 �∈ A are defined analogously.

Table 1.8 Partial Join Operator in tDπ

K�K′ = {γ | γ ∈ K and γ ∈ K′}
∪ {a : A′′ | a : A ∈ K and a : A′ ∈ K′ and A′′ = A�A′}

A�A′ = {r〈T ′′〉 | r〈T 〉 ∈ A and r〈T ′〉 ∈ A′ and T ′′ = T �T ′}
∪ {ro〈T ′′〉 | ro〈T 〉 ∈ A and ro〈T ′〉 ∈ A′ and T ′′ = T �T ′}
∪ {w〈S′′〉 | w〈S〉 ∈ A and w〈S′〉 ∈ A′ and S′′ = S�S′}

Note that (i) (E , �) is a commutative monoid; (ii) (E , \) is a commutative group;
(iii) � is distributive over \, and (E ,\,�) is a ring. The proofs of these remarks are
based on the facts that � and \ are commutative, and the empty environment is the
identity element. The distributivity of � over \ can be simply verified by translating
the set operators into boolean operators, and using truth tables.

We define a cleanup function ψ which changes the type environments according
to the passage of time. It decreases the timers of the channel types, and removes the
types with an expired timer. It also removes location types with only go capability.

Definition 1.1 (Cleanup Function). ψ : LPΓ → LPΓ is defined over the set of tagged
located processes LPΓ by:

ψ(l[[P]]Γ ) = l[[P]]Γ ′

where l can be any location of a distributed system, Γ ′ is obtained from Γ such that
every channel type res{α̃}Δ t with t > 1 and t �= ∞ is changed to res{α̃}Δ(t− 1),
and every res{α̃}Δ1 is removed. Moreover, location types loc{go} are removed.

By removing channel types from Γ , we get Γ ′ where it is possible to have lo-
cation types having only go capabilities. We consider these location types as empty
because the only allowed action is a movement. Even if we have k : loc{go} in Γ ′,
and a sequence of movements for a process gok.gol.P, this process can be reduced
to gol.P because we can avoid the intermediary code migration to location k with-
out losing any useful effect. Therefore ψ removes k : loc{go} from Γ ′. A process
moving to a location l having the type loc{go} has no other capability, thus when
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performing any action (communication or channel creation) it gives rise to runtime
errors.

To simulate the passage of time we use a time-stepping function φ defined over
the set Pl of processes running at an arbitrary location l. The possible communi-
cations are performed at each tick of the universal clock; active channels are those
which could be involved in these communications. The time-stepping function af-
fects the active channels which do not communicate at that tick; the timers of the af-
fected channels are decreased by one unit of time. The channels involved in commu-
nication disappear together with their timers. In the definition of the time-stepping
function φ , we omit the channel type and the transmitted message in the input and
output processes in order to simplify the presentation.

Definition 1.2 (Time-Stepping Function φ : Pl →Pl).

φ(P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aΔ(t−1).(R,Q) if P = aΔ t .(R,Q), t > 1 and t �= ∞
Q if P = aΔ t .(R,Q), t ≤ 1
φ(R) | φ(Q) if P = R |Q
(ν a : A)φ(R) if P = (ν a : A)R
P otherwise

We also define a tagged time-stepping function φΔ taking care of the missing
types. φΔ is a global function defined by using the local function φ .

The tagged time-stepping function φΔ is applied to tagged located processes
(l[[P]]Γ ); it also changes the type environment of the located process by applying
the cleanup function ψ .

Definition 1.3 (Tagged Time-Stepping Function φΔ : LPΓ → LPΓ ).

φΔ (l[[P]]Γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l[[φ(P)]]Γ ′ if P = aΔ t .(R,Q), t > 1 and t �= ∞
l[[Q]]Γ ′ if P = aΔ t .(R,Q), t ≤ 1

or if P = aΔ t .(R,Q), t > 1 and Γ ≮: Γ (l,a)
φΔ (l[[R]]Γ ) |φΔ (l[[Q]]Γ ) if P = R |Q
(ν a@l : A)φΔ (l[[R]]Γ {a@l:A}) if P = (ν a : A)R
l[[φ(P)]]Γ ′ otherwise

where Γ ′ is obtained by applying the cleanup function ψ .

The static semantics of tDπ is defined as a set of inference rules which describe
the relationship between expressions and their corresponding types. Here we con-
sider the type environment as a mapping from free names to types. A type environ-
ment is associated with each located process to restrict the range of resources it may
access. The typing rules describe the behaviour of a process with respect to its types.
A typing system is used to decide the well-typedness of the processes. Syntactically
we write Γ � P, and say that a process P is well-typed with respect to a type envi-
ronment Γ . We also write Γ �k P and say that P is well-typed to run at location k.

In Table 1.9 we give the rules for the typing system of tDπ . Considering the
rules (T-Rnew) and (T-Wnew), we observe that the intuitive notion of well-typedness
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Table 1.9 Typing Rules in tDπ

Processes
(T-R)
Γ �l a : res{r〈T 〉}Δ t
f v(X)∩ f v(Γ ) = /0
Γ {X@l : T} �l P
Γ �l Q
Γ �l aΔ t ?(X : T ).(P,Q)

(T-RO)
Γ �l a : res{ro〈T 〉}Δ t
f v(X)∩ f v(Γ ) = /0
Γ �l P
Γ �l Q
Γ �l aΔ t ?(X : T ).(P,Q)

(T-W)
Γ �l a : res{w〈T 〉}Δ t
Γ �l v : T
Γ �l P
Γ �l Q
Γ �l aΔ t !〈v〉.(P,Q)

(T-NEWCH)
Γ (l) <: loc{newch}
a �∈ f n(Γ )
Γ {a@l : A} �l P
Γ �l (ν a : A)P

(T-STR)
Γ �l P
Γ �l Q
Γ �l stop,P |Q,*P

(T-GO)
Γ (k) <: loc{go}
Γ �k P
Γ �l gok.P

(T-Rnew)
a :− �∈ Γ (l) Γ �l Q
Γ �l aΔ t ?(X : T ).(P,Q)

(T-Wnew)
a :− �∈ Γ (l) Γ �l Q
Γ �l aΔ t !〈v〉.(P,Q)

Located Processes

(N-RUN)
Δ �l P
Γ <: Δ
Γ � l[[P]]Δ

(N-SRT)
Γ � M
Γ � N
Γ � 0, M |N

(N-NEWCH)
Γ (l) <: loc{newch}
a �∈ f n(Γ )
Γ {a@l : A} � N
Γ � (νa@l : A)N

from Dπ is no longer valid in tDπ . In our calculus we accept tagged located pro-
cesses with missing channel types (the types are removed with the passage of time),
and these processes do not generate errors.

In order to say that aΔ t!〈v〉.(R,Q) is well-typed to run at location k with respect
to type environment Γ , the following statements should hold:

• Γ �k v : T which means that v is a value of type T at location k;
• Γ �k a : res{w〈T 〉}Δ t ′ which means that channel a exists at location k, and may

send values of type T for t ′ units of time;
• Γ �k R; Γ �k Q which means that both R and Q are well-typed to run at location k.

For a tagged located process k[[P]]Δ , the well-typedness relation is denoted by �
and is defined by using the well-typedness relation �k for a process P running at
location k (see rule (N-RUN) in Table 1.9).

If a process communicates on a channel for which it has no capability, it can still
be well-typed if the alternative process Q is well-typed. We call this second process
the safety process. This behaviour is reflected in one of the cases in the definition
of φΔ .

We can imagine the process action flow as a binary decision tree because of
the decision-like syntax of the channels. At each time step one of the following
alternatives must be chosen for an action: communication action, timer expiration
or move action (see Section 1.2.3 for the extension of the go operator with a choice
syntax). An alternate definition for well-typedness of processes is: A process is well-
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typed if in the action flow tree there exists a path from the root to a leaf which does
not generate a runtime error.

Since the cleanup function ψ changes the type environment Δ by removing chan-
nel and location types, we are interested in whether the process is still well-typed
under the new type environment Δ ′.

Lemma 1.1 (Well-Typedness is Preserved by the Cleanup Function).
If Γ � l[[P]]Δ , then Γ � ψ(l[[P]]Δ ). In other words, if Γ � l[[P]]Δ , then Γ � l[[P]]Δ ′
where Δ ′ is obtained by removing channel and location types from the type environ-
ment Δ .

Proof. The proof proceeds by induction on the structure of P, having a case for each
process expression. We give here only the most interesting and significant cases. For
a complete proof see [67].

Case 1.1 (Composition: R | Q). By the equivalence rule (SΓ -SPLIT) we have that
Γ � l[[R]]Δ | l[[Q]]Δ which, by rule (N-STR) for located processes, is transformed
into Γ � l[[R]]Δ and Γ � l[[Q]]Δ . Applying the induction hypothesis, we obtain
Γ � ψ(l[[R]]Δ ) and Γ � ψ(l[[Q]]Δ ) which, by applying ψ , become Γ � l[[R]]Δ ′ and
Γ � l[[Q]]Δ ′ . For both processes we have the same Δ ′ because the application of ψ
to the tagged located processes takes into account only the type environment, and in
our case the type environment is the same Δ . By applying the relation (SΓ -SPLIT)
we get the result Γ � l[[R | Q]]Δ ′ which means Γ � ψ(l[[R | Q]]Δ ).

Case 1.2 (Restriction: (ν a:A)Q). From (N-RUN) we have that Δ �l (νa : A)Q and
Γ <: Δ . By (T-NEWCH) we get Δ{a@l : A} �l Q and Γ {a@l : A}<: Δ{a@l : A}.
By applying the weakening property, we infer that Γ {a@l : A} � l[[Q]]Δ{a@l:A}.
Applying the induction hypothesis, we get Γ {a@l : A}� ψ(l[[Q]]Δ{a@l:A}) which is
equivalent to Γ {a@l : A}� l[[Q]]Δ ′{a@l:A} because the application of the function ψ
does not affect the new name a. We apply again the (T-NEWCH) rule obtaining
Γ � (νa : A)l[[Q]]Δ ′{a@l:A} which is structurally equivalent to Γ � l[[(νa : A)Q]]Δ ′ .

Case 1.3 (Movement: gok.Q). By the same line of reasoning as before we have that
Δ �l go k.Q and Γ <: Δ . By (T-GO) we get that Δ �k Q and Δ(k) <: loc{go}.
Using (N-RUN) we have Γ � k[[Q]]Δ which by induction implies Γ � k[[Q]]Δ ′ .
We now infer that Δ ′ �k Q and Γ <: Δ ′ are true. By application of the ψ function,
the capability of the process to move to location k cannot be lost. This means that
Δ ′(k) <: loc{go} holds and, together with what we obtained above and by using
the rule (T-GO), we have Δ ′ �l gok.Q and again Γ � l[[gok.Q]]Δ ′ . This is another
syntactic form of what we were looking for, namely Γ � ψ(l[[Q]]Δ ).
The proof proceeds in the same manner if instead of (T-GO) we use the new rules
(T-GO1) and (T-GO2) defined in Section 1.2.3.

Case 1.4 (Input: aΔ t?(X : T ).(R,Q)). If we consider that channel a has the type ro〈〉,
then from Δ �l aΔ t?(X : T ).(R,Q) and by using (T-RO) we have the following
statements: Δ �l a : res{ro〈T 〉}, f v(X)∩ f v(Δ) = /0, Δ �l R and Δ �l Q. Applying
the induction hypothesis, the last two statements are transformed into Γ � l[[R]]Δ
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and Γ � l[[Q]]Δ which provide the following two true statements: Γ � ψ(l[[R]]Δ )
and Γ � ψ(l[[Q]]Δ ). This means that three ( f v(X)∩ f v(Δ) = /0, Δ ′ �l R and Δ ′ �l Q)
of the four statements needed by (T-RO) are true. If the cleanup function does not
remove the type of the input channel from the capability set, then it is valid in the
new environment Δ ′. Thus by (T-RO), we obtain that Γ � l[[aΔ t?(X : T ).(R,Q)]]Δ ′ .
On the other hand, if the type of the active channel is missing, we can use the rule
(T-Rnew) and obtain the same result as before which is equivalent to the desired
result, namely Γ � ψ(l[[aΔ t?(X : T ).(R,Q)]]Δ ).

The cases for Output, Replication and Termination are natural, and they follow
the proof steps of the cases presented above. ��

Exercise 1.1. Prove the Output, Replication and Termination cases of Lemma 1.1.

The following lemma shows that the passage of time does not interfere with the
typing system. The lemma states that if a tagged located process is well-typed with
respect to a type environment Γ , then the application of the tagged time-stepping
function φΔ preserves its well-typedness property.

Lemma 1.2 (Tagged Time Passage).

If Γ � l[[P]]Δ , then Γ � φΔ (l[[P]]Δ ).

Proof. We use induction on the inference depth of Γ � l[[P]]Δ . From the hypothe-
sis we derive that Δ �l P by (N-RUN), and Γ <: Δ . We get Γ �l P by using the
weakening property. The proof continues by considering a case for each line in the
definition of φΔ .

Case 1.5 (P = R |Q). Using (T-STR) we have Δ �l R and Δ �l Q which is equiv-
alent to Δ � l[[R]]; by applying the weakening property we get Γ � l[[R]]Δ . The
same result is obtained for process Q. By applying the induction hypothesis, we get
that Γ � φΔ (l[[R]]Δ ) and Γ � φΔ (l[[Q]]Δ ). These lead to the desired result, by the
application of φΔ to R |Q, i.e. Γ � φΔ (l[[P]]Δ ).

Case 1.6 (P = aΔ t .(R,Q), t ≤ 1). We have two subcases, one when a is an input
channel, and another when a is an output channel. The result of the application
of φΔ to P is l[[Q]]Δ ′ (with Δ ′ obtained by applying the cleanup function ψ) because
t ≤ 1. Let us suppose that a is an output channel, and thus Δ �l aΔ t!〈v〉.(R,Q) and
Γ <: Δ . Using (T-W), we get Δ �l Q, and by Lemma 1.1 we get Δ ′ �l Q. Since
Γ <: Δ <: Δ ′, we infer Γ � l[[Q]]Δ ′ . A similar proof is obtained when we consider
an input channel, by using the rules corresponding to the type of the input channel.

Case 1.7 (P = aΔ t .(R,Q), t > 1 and Γ ≮: Γ (l,a)). This case is similar to the previ-
ous one, but instead of using the normal typing rules we use (T-Rnew) and (T-Wnew)
because the capabilities of a are not included in the type environment.

Case 1.8 (P = aΔ t .(R,Q), t > 1 and t �= ∞). For this case we consider the input ex-
pression, namely Δ �l aΔ t?(X : T ).(R,Q). In this case φΔ decreases the channel
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timer from aΔ t to aΔ t−1. From the point of view of the typing system, the pro-
cesses aΔ t?(X : T ).(R,Q) and aΔ t−1?(X : T ).(R,Q) are the same, and we can apply
Lemma 1.1 and get Δ ′ �l aΔ t?(X : T ).(R,Q). Since Γ <: Δ <: Δ ′, we get the con-
clusion Γ � l[[aΔ t?(X : T ).(R,Q)]]Δ ′ .

The case of channel restriction is similar, and uses the typing rule (T-NEWCH).
��

Exercise 1.2. Prove the channel restriction case of Lemma 1.2.

Definition 1.4 (Structural equivalence ≡ over timed channels). Is defined by

aΔ t1
1 ≡ aΔ t2

2 if and only if a1 = a2 and t1 = t2.

If the timers of the same channel name have different values, the corresponding
processes have different behaviour. This aspect must be considered when defining
timed bisimulations [25].

Table 1.10 Tagged Structural Equivalence in tDπ

(SΓ -GARBAGE)
(SΓ -SPLIT)
(SΓ -COPY)
(SΓ -NEW)
(SΓ -EXTR)
(SΓ -ASSOC)
(SΓ -COMMU)
(SΓ -NEUTR)

l[[stop]]Γ ≡ stop
l[[P | Q]]Γ ≡ l[[P]]Γ | l[[Q]]Γ

l[[*P]]Γ ≡ l[[P]]Γ | l[[*P]]Γ
l[[(ν a : A)P]]Γ ≡ (ν a@l : A)l[[P]]Δ if a �∈ f n(Γ )∪{l} and Δ = Γ {a@l : A}

M|(νa@k : A)N ≡ (νa@k : A)(M |N) if a �∈ f n(M)
l[[P]]Γ | l[[Q |R]]Γ ≡ l[[P |Q]]Γ | l[[R]]Γ

l[[P]]Γ | l[[Q]]Γ ≡ l[[Q]]Γ | l[[P]]Γ
l[[P]]Γ |stop ≡ l[[P]]Γ

The subject reduction property states that well-typedness is preserved by the
reduction relation. This is a general approach in functional programming frame-
works [153, 124]. We are also interested in proving that the well-typedness property
is preserved by the structural equivalence relation. We present now such a result
related to the structural equivalence relation. A more general subject reduction the-
orem is presented in Section 1.2.4.

If we have two tagged located processes which are structurally equivalent, and
one of them is well-typed with respect to a type environment Γ , then the other
process is also well-typed with respect to type environment Γ .

Theorem 1.1 (Subject Reduction for Tagged Equivalence Relation).
For all tagged located processes N,N′ such that N ≡ N′,

Γ � N if and only if Γ � N′.

Proof. We must consider all the equivalences given in Table 1.10.

Case 1.9 (SΓ -NEW). From the hypothesis we have Γ � l[[(νa : A)P]]Δ , which
means that Γ <: Δ and Δ �l (νa : A)P. By using the rule (T-NEWCH) we get
Δ{a@l : A} �l P. By the rule (N-RUN) we get Δ{a@l : A} � l[[P]], and with
Γ {a@l : A} <: Δ{a@l : A} we have Γ {a@l : A} � l[[P]]Δ{a@l:A}. We again apply
the rule (T-NEWCH) for tagged processes and get Γ � (νa@l : A)l[[P]]Δ{a@l:A}.
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Case 1.10 (SΓ -SPLIT). We start from Γ <: Δ and Δ �l P |Q, and by (T-STR)
we get that Δ �l P and Δ �l Q. From Γ <: Δ and by (N-RUN) we obtain that
Γ � l[[P]]Δ and Γ � l[[Q]]Δ . We apply again (N-STR) and obtain the conclusion
Γ � l[[P]]Δ | l[[Q]]Δ .

Case 1.11 (SΓ -COPY). This case follows the steps of the previous one, and we
leave it as an exercise for the reader.

Case 1.12 (SΓ -EXTR). For this case we use the rules for located processes. Start-
ing from M |(νa@k : A)N and by (N-STR), we get Γ � M and Γ � (νa@k : A)N.
Both Γ � (νa@k : A)N and (N-NEWCH) infer Γ {a@k : A} � N. By weakening,
and because a �∈ f n(Γ ), we get Γ {a@k : A} � M. We again apply (N-STR) and
then (N-NEWCH), and we get the desired result Γ � (νa@k : A)(M |N).

The cases inferred from (SΓ -GARBAGE) and other rules are similar to the
monoid laws of the π-calculus. ��

Exercise 1.3. Prove the other cases of Theorem 1.1.

1.2.3 Operational Semantics

We consider the tagged located processes ranged over by N and M, namely N and M
can be thought as process expressions of the form l[[P]]Γ . We denote by �→ the fact
that rules (RΓ -COM1) and (RΓ -COM2) cannot be applied. Using these notations,
we give the following reduction rules in Table 1.11 providing an operational seman-
tics for tDπ .

Table 1.11 Reduction Relation of tDπ

(RΓ -GO)
l[[gok.P]]Γ → ψ(k[[P]]Γ ) (RΓ -IDLE)

l[[P]]Γ �→
l[[P]]Γ → φΔ (l[[P]]Γ )

(RΓ -COM1)
Γ (l,a) <: res{r〈T 〉}

l[[aΔ t !〈v〉.(P,Q)]]Δ | l[[aΔ t ′?(X : T ).(P′,Q′)]]Γ →
ψ(l[[P]]Δ ) | ψ(l[[P′{v/

X}]]Γ {v@l:T})

(RΓ -COM2)
Γ (l,a) <: res{ro〈T 〉}

l[[aΔ t !〈v〉.(P,Q)]]Δ | l[[aΔ t ′?(X : T ).(P′,Q′)]]Γ →
ψ(l[[P]]Δ ) | ψ(l[[P′{v/

X}]]Γ )

(RΓ -PAR)
N → N′ M →M′

N | M → N′ | M′ (RΓ -RES)
N → N′

(ν a@l : A)N → (ν a@l : A)N′

(RΓ -CONG)
N ≡ N′ N →M M ≡M′

N′ →M′

We have two communication rules which depend on the type of the communica-
tion channel. In (RΓ -COM2) we consider ro〈〉 channels, and the process may use
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the received information without adding the new type to its type environment Γ ,
contrary to the behaviour of rule (RΓ -COM1). The communication rules and the
rule (RΓ -GO) do not enter under the scope of φΔ . In this case the type environments
are affected by the cleanup function ψ . In (RΓ -IDLE) the function φΔ decreases the
timers on channels, and for the expired timers it discards the channels and changes
the state of the process. At each tick of the universal clock, the rule (RΓ -IDLE)
is applied to processes which do not enter any communication. When applying the
rule (RΓ -PAR), if process M does not have an internal communication reduction,
then it is transformed into M′ by rule (RΓ -IDLE). The same argument is valid for N
as well.

Removing location types from the type environment can lead to errors generated
by go actions. We solve this problem by extending the syntax of go with a choice
syntax similar to the one given for channels; therefore go l.P becomes go l.(P,Q). If
Γ (l) is not defined, then Q is executed. If the location type of l contains a capability
go, then P is executed; otherwise, if the location type of l does not contain a capabil-
ity go, an error is generated. We must change the corresponding typing rules where
the operator go appears. Thus (T-GO) is translated into (T-GO1) and (T-GO2).

(T-GO1)
k �∈ dom(Γ ) Γ �l Q

Γ �l gok.(P,Q)
(T-GO2)

Γ (k) : loc{go} Γ �k P
Γ �l gok.(P,Q)

A process P generating an error is denoted by P
err−→. The cases when a process

generates a runtime error are defined by a set of rules in Table 1.12.

Table 1.12 Runtime Errors in tDπ

(E-GO)
Γ (k) is defined and Γ (k) �<: loc{go}

l[[gok.(P,Q)]]Γ
err−→

(E-SUBC)
Γ (l) �<: loc{newch}
l[[(ν a : A)P]]Γ

err−→

(E-SND)
Γ (l,a) is defined and Γl(v) �<: wob j(Γ (l,a))

l[[aΔ t !〈v〉.(P,Q)]]Γ
err−→

(E-RCV)
Γ (l,a) is defined and rob j(Γ (l,a)) �<: T or roob j(Γ (l,a)) �<: T

l[[aΔ t?(X : T ).(P,Q)]]Γ
err−→

(E-COM)
Γ (l,a) and Δ(l,a) are defined and

wob j(Γ (l,a)) �<: rob j(Δ(l,a)) or wob j(Γ (l,a)) �<: roob j(Δ(l,a))
l[[aΔ t !〈v〉.(P,Q)]]Γ | l[[aΔ t ′?(X : T ).(P′,Q′)]]Δ

err−→

(E-NEW)
N

err−→
(ν a@k : T )N err−→

(E-PAR)
N

err−→
N |M err−→

(E-STR)
M ≡ N N

err−→
M

err−→

The partial functions robj( ), roobj( ), wobj( ) are defined over the set of channel
types, and return the type of the corresponding channel capabilities. For example,
considering a channel type a : res{w〈T 〉} in the type environment Γ at location l,
the application of wob j(Γ (l,a)) returns T . In order to derive a runtime error, the
channel type or location type must be in the type environment. A runtime error
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appears when a process tries to do something against the types accumulated in its
type environment. When a type is not in the type environment of the process, the
safety process is chosen by φΔ .

The reduction rule (RΓ -GO) cannot check if the type of the location is in the
type environment, and consequently we change the time-stepping function φΔ by
adding two more lines to its definition:

{
k[[R]]Γ ′ if P = gok.(R,Q) and Γ (k) <: loc{go}
l[[Q]]Γ ′ if P = gok.(R,Q) and k �∈ dom(Γ )

The rule (RΓ -GO) is changed into l[[gok.(P,Q)]]Γ → φΔ (l[[gok.(P,Q)]]Γ ) which
is captured by the (RΓ -IDLE) rule. A process of the form gok.(P,Q) is beyond the
scope of any of the reduction rules RΓ , excepting (RΓ -IDLE), and so φΔ is applied.
One of the above new lines is applied, and φΔ changes the process either by allowing
the movement to the new location, or by choosing the safety process.

Regarding the behaviour of the tDπ system, we can say that a nondeterministic
method is applied to select two interacting processes for each communication chan-
nel at each location of a distributed system. Afterwards the reduction rules are ap-
plied, and the communications are performed. φΔ is applied to the processes which
do not enter in any communication. The type environments of the communicating
processes are affected by the application of the ψ function.

A system described with tDπ satisfies the following properties [92]:

• Time Determinism: at each time only one reduction rule can be applied. A pos-
sible problem could appear only if we apply RΓ -IDLE when we can apply a
communication rule. However this is not possible because RΓ -IDLE is applied
only if the process does not enter in any communication (�→).

• Maximal Progress: a process cannot delay if it can enter in a communication.
This property is sometimes referred to as urgency.

Regarding the global time aspect in distributed systems, we consider a global
clock synchronising all the timers. Recent work [118] on Network Time Synchro-
nisation Protocol (NTP) shows that it is possible to achieve time synchronisation
in real applications. Having this technology we can suppose that the theoretical as-
sumption about a universal clock is practical rather than speculation. Our global
timing function φΔ has to apply the local time-stepping function φ for the locations
of the distributed system. If we adopt the NTP synchronisation model, we can get
a guaranteed frequency and local oscillator phase precision of no more than a few
milliseconds, which in many cases is acceptable.

1.2.4 Soundness of tDπ

Regarding the soundness of tDπ , we follow a method based on subject reduction
and type safety [153] used also in proving the soundness of Dπ . This is a syntac-
tic approach, in contrast to other approaches based on denotational semantics or
structural operational semantics.
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Theorem 1.2 (Subject Reduction). For all tagged located processes N and N′

(a) If N ≡ N′ then Γ � N if and only if Γ � N′.
(b) If N → N′ then Γ � N if and only if Γ � N′.

Proof. Part (a) is in fact Theorem 1.1; its proof is in Section 1.2.2.
Part (b) is similar to the result presented in [124] which asserts consistency between
the static and the dynamic semantics. We use the same technique, and proceed by in-
duction on the depth of inference for N →N′. We also use Lemma 1.1 which relates
time and type environments, and Lemma 1.2 which relates time and communication
channels. More details can be found in [67].

Case 1.13 (RΓ -IDLE). This is covered by Lemma 1.2.

Case 1.14 (RΓ -RES). From the hypothesis we know that Γ � (νa@k : A)N. This
means that Γ {a@k : A} � N, and according to the induction hypothesis we have
that Γ � N′. Since Γ {a@k : A} <: Γ , by applying the weakening property we get
Γ {a@k : A}� N′. Simply applying again (N-NEWCH) we get Γ � (νa@k : A)N′.

Case 1.15 (RΓ -COM1 or RΓ -COM2). These rules can be treated in the same way.
For RΓ -COM1, starting from Γ � l[[aΔ t!〈v〉.(P,Q)]]Δ | l[[aΔ t ′?(X : T ).(P′,Q′)]]Δ ′
and after applying the rule (N-STR) we obtain that Γ � l[[aΔ t!〈v〉.(P,Q)]]Δ (*) and
Γ � l[[aΔ t ′?(X : T ).(P′,Q′)]]Δ ′ (**). By using the rule (N-RUN) and (*) we have
Δ �l aΔ t!〈v〉.(P,Q) and with (**) we have Δ ′ �l aΔ t ′?(X : T ).(P′,Q′). By applying
(T-W) we get Δ �l P which together with (N-RUN) give the statement Γ � l[[P]]Δ .
We also have Δ �l v : T and the subtyping reactions Γ <: Δ , Γ <: Δ ′ which means
that Δ(l,u) and Δ ′(l,u) must agree on the type they use. So by weakening we get
Δ ′{v@l : T} �l v : T .

The difference between (RΓ -COM1) and (RΓ -COM2) is given by the typing
rule used for the type of the input channel. By applying the rule (T-R) we get
Δ ′{X@l : T} �l P′. We denote by Δ ′′ the type environment Δ ′{v@l : T}. Thus,
by weakening we get Δ ′′{X@l : T} �l P′, and we can use the substitution lemma
of [93] to obtain Δ ′′ �l P′{v/

X}. However Γ <: Δ ′′ and so, by applying (N-RUN),
we get Γ � l[[P′{v/

X}]]Δ ′{v@l:T}. We apply Lemma 1.1 twice, and (N-STR) to get
the result Γ � ψ(l[[P]]Γ ) | ψ(l[[P′{v/

X}]]Δ ′{v@l:T}).
It is easy to prove the second inference for (RΓ -COM2), but we have to pay

attention to the rules we use, because the type of the channel is now different.

Case 1.16 (RΓ -PAR). We have Γ � N |M which by applying (N-STR) gives us
Γ � N and Γ � M. We can also infer by induction that Γ � N′. By Lemma 1.2
we have that Γ � φ(M), and we can apply again (N-STR) obtaining the result
Γ � N′ | φ(M). For the case when M reduces to M′ by a rule other than (RΓ -IDLE)
(i.e., it is not affected by the passage of time), the proof steps are easy to find (and
left to the reader). ��

Subject reduction assures us that once it is well-typed, a process remains well-
typed during its evolution. Note that well-typedness must be preserved by both
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equivalence rules and reduction rules. In the following we give a result of type safety
which is necessary to have a complete proof of the soundness property of tDπ . The
type safety property states that if a system is well-typed, then it cannot generate

runtime errors, and this is denoted by P
err
�−→.

Theorem 1.3 (Type Safety). We have N
err
��−→ for all tagged located processes N,

and all type environments Γ such that Γ � N.

Proof. The outline of the proof follows a method which proves the contrapositive,
namely if N gives rise to a runtime error (N

err�−→) then N cannot be well-typed
under any type environment Γ (Γ �� N for all Γ ). In [153] the authors use the same
statement as a lemma to prove that the faulty expressions are untypable. We use
induction on the definition of the runtime errors, and have a proof case for each rule
of Table 1.12.

Case 1.17 (E-SND). The rule says that l[[aΔ t!〈v〉.(P,Q)]]Γ
err�−→ if Γ (l,a) is defined

and Γ (l,v) �<: wob j(Γ (l,a)). Let us suppose that there is a type environment Δ such
that the process generating a runtime error is well-typed under this environment, i.e.,
Δ � l[[aΔ t!〈v〉.(P,Q)]]Γ . This means that Δ <: Γ and Γ �l aΔ t!〈v〉.(P,Q). Therefore
there are two typing rules which can be applied, depending on the type of the output
channel. If a : − �∈ Γ (l), then we have a contradiction with the fact that Γ (l,a)
must be defined from the definition of the rule. Otherwise we have to use (T-W),
obtaining Γ �l a : res{w〈T 〉}Δ t and Γ �l v : T . Statement Γ �l v : T implies that
Γ (l,v)<: T . From Γ �l a : res{w〈T 〉}Δ t we get Γ (l,a)= res{w〈T 〉} (by definition),
which by application of the function wob j leads to wob j(Γ (l,a)) = T . Together
with Γ (l,v) <: T , this leads us to the contradiction Γ (l,v) <: wob j(Γ (l,a)).

Case 1.18 (E-GO). We have that l[[gok.(P,Q)]]Γ
err�−→ if Γ (k) is defined and thus

Γ (k) �<: loc{go}. We suppose that there exists a type environment Δ such that we
have Δ � l[[gok. (P,Q)]]Γ , and try to see if we can conclude a contradiction. If
the location k is not defined in the type environment Γ , then we can use (T-GO1);
however this would result in a contradiction. By (T-GO2), we have Γ (k) : loc{go}
which means that Γ (k) <: loc{go}; we get again a contradiction. Therefore we
have the statement: there is no type environment Δ such that Δ � l[[gok.(P,Q)]]Γ
and l[[gok.(P,Q)]]Γ

err�−→.

Case 1.19 (E-RCV). We consider that there exists a type environment Δ such that
Δ � l[[aΔ t?(X : T ).(P,Q)]]Γ . Thus we have Δ <: Γ and Γ �l aΔ t?(X : T ).(P,Q). If
we suppose our input channel to be reading only, then we apply the rule (T-RO) and
we get Γ �l a : res{ro〈T 〉}Δ t. Thus Γ (l,a) = res{ro〈T 〉}, and applying the function
roob j we get roob j(Γ (l,a)) = T , and thus roob j(Γ (l,a)) <: T , contradicting the
definition.

Case 1.20 (E-COMM). We use the same method as before, and suppose a type
environment Δ ′ such that Δ ′ � l[[aΔ t!〈v〉.(P,Q)]]Γ | l[[aΔ t ′?(X : T ).(P′,Q′)]]Δ . By
applying the rule (N-STR), and then (N-RUN), we get Δ ′ <: Γ , Δ ′ <: Δ , and
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Γ �l aΔ t!〈v〉.(P,Q), Δ �l aΔ t ′?(X : T ).(P′,Q′). By (T-W), we get Γ �l a : res{w〈T 〉}
which means that Γ (l,a) = res{w〈T 〉}. We apply the function wob j and obtain that
wob j(Γ (l,a)) = T (1). We suppose that the channel a under type environment Δ
is an r〈〉 channel, and infer from Δ �l aΔ t ′?(X : T ).(P′,Q′) that Δ �l a : res{r〈T 〉}.
As before, we can apply the function rob j and get rob j(Δ(l,a)) = T (2). From (1)
and (2) we have the contradiction wob j(Γ (l,a)) <: rob j(Δ(l,a)).

Case 1.21 (E-SUBC, E-NEW, E-PAR and E-STR). These rules are the same as
in Dπ , and the proofs are similar to those presented above. ��
Exercise 1.4. Prove the other cases of Theorem 1.3.

Timed distributed pi-calculus uses a global clock which decrements all the
timers. A simplified timed distributed pi-calculus called TiMo using local clocks
and timing constraints to control migration and communication is defined in [58]
and [59]. The authors provided an operational semantics for this new formalism of
distributed systems with mobility, and succeeded in translating finite TiMo specifi-
cations into a class of high-level Petri nets with time.

PerTiMo extends TiMo by working with processes having appropriate access
rights to communicate; moreover, the access permissions are dynamic (can change
in time and space). PerTiMo uses local clocks and local maximal parallelism of
actions. Operational semantics of PerTiMo and safety of communication and mi-
gration in terms of access permissions are presented in [60].

A software platform for timed mobility and timed interaction is presented in [56],
and a high-level language for mobile agents with timers in [57].

1.3 Mobile Ambients

Another formalism able to express mobility is the ambient calculus [42]. The am-
bient calculus describes computation carried out on mobile devices (i.e. networks
having a dynamic topology), and mobile computation (i.e. executable code able to
move around the network). The primitive concept of the ambient calculus is the am-
bient defined as a bounded place in which computation can occur. Ambients can be
nested inside other ambients. Each ambient has a name used to control access to
it. Computation is represented as the movement of ambients: they can be moved as
a whole, changing their location by consuming certain capabilities: in, out, open.
These basic operations are expressive enough to simulate name-passing channels
in the π-calculus. In certain conditions, the π-calculus is also able to simulate the
ambient calculus [73].

We consider a variant of mobile ambients called safe ambients for which the
movement of an ambient takes place only if both participants agree [112]. The mo-
bility is provided by the consumption of pairs of capabilities. Safe ambients differ
from ambients by co-actions: whereas in ambients a movement is initiated only by
the moving ambient and the target ambient has no control over it, in safe ambi-
ents both participants must agree by using a matching between an action and its
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co-action. We present here a short description of pure safe ambients (SA); more
information can be found in [112].

1.3.1 Syntax

Given an infinite set of names N (ranged over by m,n, . . . ), we define the set A of
SA-processes (denoted by A,A′,B,B′, . . . ) together with their capabilities (denoted
by C,C′, . . . ) as follows:

Table 1.13 Safe Mobile Ambients Syntax

C ::= capabilities A ::= processes
| in n | in n in capabilities | 0 inactive process
| out n | out n out capabilities |C.A movement
| open n | open n open capabilities | n[A] ambient

| A | B composition

Process 0 is an inactive mobile ambient. A movement C.A is provided by the ca-
pability C, followed by the execution of A. An ambient n[ A ] represents a bounded
place labelled by n in which an SA-process A is executed. A | B is a parallel com-
position of mobile ambients A and B.

1.3.2 Operational Semantics

The structural congruence ≡amb over ambients is the least congruence such that
(A , |,0) is a commutative monoid. The operational semantics of safe ambients is
given in terms of a reduction relation ⇒amb by the following axioms and rules:

Table 1.14 Safe Mobile Ambients Operational Semantics

Axioms
(In) n[ in m.A | A′ ] | m[ in m.B | B′ ]⇒amb m[ n[ A | A′ ] | B | B′ ];

in m.A

A′

n in m.B

B′

m

amb
A

A′

n B

B′

m
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(Out) m[ n[ out m.A | A′ ] | out m.B | B′ ]⇒amb n[ A | A′ ] | m[ B | B′ ];

A
A′

n B
B′

m

out m.A
A′

n out m.B
B′

m

amb

(Open) open n.A | n[ open n.B | B′ ]⇒amb A | B | B′ .

open n.A
open n.B

B′

n

amb A
B
B′

Rules:

(Comp1) A⇒amb A′

A | B⇒amb A′ | B
; (Comp2) A⇒amb A′ B⇒amb B′

A | B⇒amb A′ | B′
;

(Amb) A⇒amb A′

n[ A ]⇒amb n[ A′ ]
; (Struc) A≡ A′, A′ ⇒amb B′, B′ ≡ B

A⇒amb B .

⇒∗
amb denotes a reflexive and transitive closure of the binary relation ⇒amb.

1.3.3 Computability and Decidability

Over the years, many variants and dialects have been proposed; among them, we
mention mobile safe ambients [112] (used to investigate security issues in mobile
systems), push and pull ambient calculus [94, 134] (formalises objective rather than
subjective mobility), boxed ambients [34] (used to model systems in which ambient
boundaries cannot be dissolved and direct communication between parent and child
ambients is permitted) and BioAmbients [138] (defined to model the behaviour of
biological systems).

Following in the tradition of process calculi, mobile ambients and its variants
have been equipped with a rich variety of formal tools (e.g., behavioural seman-
tics [116], type system [41], logics [43]) for reasoning about and verifying properties
of systems specified with these calculi (e.g., reasoning about both the behaviour and
spatial structure of ambients). Another line of research looks at the expressiveness
of these calculi to distinguish between necessary and redundant features.

The computational strength of mobile ambients has been investigated in several
papers. The most interesting result is that many of the mobile ambients operators
are not required in the proof of Turing completeness for the calculus. Figure 1.2
from [39] shows a history of the main results on Turing completeness for fragments
of mobile ambients. Cardelli and Gordon showed in [42] how to model Turing ma-
chines in mobile ambients. This encoding of Turing machines made use of all the
capabilities of mobile ambients as well as the restriction operator. Subsequently,
in [38] it was proved that restriction is unnecessary. This result was obtained by
showing how to model Random Access Machines [149] (which are a well-known
register-based Turing-complete formalism) in mobile ambients without using the
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Fig. 1.2 Overview of the Results for Turing Completeness and the (Un)Decidability of Reachabil-
ity in Pure Mobile Ambients (Arrows Represent the Sublanguage Relation) [39]

restriction operator. More recently, in [114] it was proved that the open capability
is unnecessary by presenting an improved modelling of Random Access Machines
without using open; moreover, the replication operator !P is only applied to prefixed
processes of the form M.P.

The proofs of Turing completeness mentioned above imply, as a direct conse-
quence, that termination is not decidable in the fragments of mobile ambients con-
sidered. Another property of processes, which is in some cases even more interest-
ing than termination, is process reachability: the reachability problem consists of
verifying whether a target process can be reached from a source process.

The first work devoted to the investigation of reachability in mobile ambients
was [28], which proved that reachability is undecidable even in a minimal fragment
of pure mobile ambients where both the restriction operator and open capability
are removed. Figure 1.2 indicates the known results of Turing completeness and
the undecidability of reachability for fragments of mobile ambients considered in
the papers mentioned above. The decidability of reachability in the fragment with
in, out, !M.P may appear surprising in light of the result on Turing completeness
proved in [114]; it follows from the following monotonicity property deriving from
the absence of the open capability (and from the impossibility of applying the repli-
cation operator to ambients): during a computation, the number of active ambients
cannot increase. The existence of this bound allows the modeling of all possible
computations as computations in finite Petri nets, a formalism in which the reacha-
bility problem is decidable.

The (un)decidability of the termination problem is presented in Figure 1.3. Even
if the calculi with replication are not syntactically subsets of the corresponding cal-
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Fig. 1.3 Overview of the Results for the (Un)Decidability of Termination in Mobile Ambients [38]

culi with recursive definition, these are considered as sub-calculi in [38] because
recursive definition is more general than replication. In Figure 1.3 the following
notations are used: MA! (resp. MAr) for the fragment of mobile ambients with repli-
cation (resp. recursion);−mv (resp.−ν) stands for the fragment of mobile ambients
without movement (resp. name restriction).

1.4 Mobile Ambients with Timers

TTL value and strategies for retransmission in TCP/IP protocols provide a good
motivation to add timers to ambients. In [9, 10, 15] we associate timers not only to
ambients, but also to capabilities and communication channels. The resulting for-
malism is called mobile ambients with timers (tMA), and represents a conservative
extension of the ambient calculus. Inspired by [41] we introduce types for ambients
in tMA. The type system associates to each ambient a set of types in order to control
its communication by allowing only well-typed messages. For instance, if a process
inside an ambient sends a message of a type which is not included in the type sys-
tem of the ambient, then the process fails. In tMA, by using timers, the process may
continue its execution after the timer of the corresponding output communication
expires.
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1.4.1 Syntax

In tMA communication channels (input and output channels), capabilities and am-
bients are used as temporal resources. A timer Δ t of each temporal resource makes
the resource available only for a period of time t.

The novelty of this approach results from the fact that a location, represented
by an ambient, can disappear. We denote by nΔ t [P]μ the fact that an ambient n has
a timer Δ t, while the tag μ is a neutral tag that indicates whether an ambient is
active or passive. If t > 0, the ambient nΔ t [P]μ behaves exactly like the untimed
ambient n[P]. Since the timer Δ t can expire (i.e., t = 0) we use a pair (nΔ t [P]μ ,Q),
where Q is a safety process. If no open n capability appears in t units of time, the
ambient nΔ t [P]μ is dissolved, the process P is cancelled, and the safety process Q is
executed. If Q = 0 we can simply write nΔ t [P]μ instead of (nΔ t [P]μ ,Q). If we want
to simulate the behaviour of an untimed mobile ambient, then we use ∞ instead
of Δ t, i.e., n∞[P]μ .

Similarly, we add a safety process for the input and output communications and
the movement processes. The process openΔ tn.(P,Q) evolves to process P if before
the timer Δ t expires, the capability openΔ tn is consumed; otherwise it evolves to
process Q. The process cΔ t !〈m〉.(P,Q) evolves to process P if before the timer Δ t
expires, a process captures name m from channel c; otherwise it evolves to pro-
cess Q.

Since messages are undirected, it is possible for a process cΔ t !〈m〉.(P,Q) to send a
message which is not appropriate for any receiver. To restrict the communication and
be sure that m reaches an appropriate receiver, we add types expressed by Amb[Γ ]
and write cΔ t !〈m : Amb[Γ ]〉.(P,Q). We use types inspired by [41]; the set of types
is defined in Table 1.15. We use types for communication in order to validate the
exchange of messages, namely that if we expect to communicate integers, then we
cannot communicate boolean values. B represents a set of base types. The intuitive
meaning of the subtyping relation is that <: represents the inverse of the set
inclusion relation (Γ <: Γ ′ for types means Γ ⊃ Γ ′ for sets and Γ �Γ ′ for types
means Γ ∪Γ ′ for sets).

Table 1.15 Types in tMA

Set of types:
Γ ::= B | Amb[Γ ] | Γ �Γ ′

Amb[Γ ] ambient name allowing Γ exchanges

If an appropriate message is received before the timer Δ t expires, then the process
cΔ t?(x : Amb[Γ ]).(P,Q) evolves to process P; otherwise it evolves to process Q.
According to the syntax of tMA presented in Table 1.16, Amb[Γ ] can be used in a
restriction process (νn : Amb[Γ ])P, which means that n of type Amb[Γ ] is new in
process P. A variable x is bound only in process P when we consider the process
cΔ t?(x : Amb[Γ ]).(P,Q).
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Table 1.16 Syntax of tMA

a, p ambient tags P,Q::= processes
c channel name 0 inactivity
n,m ambient names MΔ t .(P,Q) movement
x variable (nΔ t [P]μ ,Q) ambient
M ::= capabilities P |Q composition

in n can enter n (νn : Amb[Γ ])P restriction
out n can exit n cΔ t !〈m : Amb[Γ ]〉.(P,Q) output action
open n can open n cΔ t ?(x : Amb[Γ ]).(P,Q) input action

∗P replication

If it does not matter if an ambient is passive or active, we simple use μ as the
tag of the ambient. When we initially describe the ambients, we consider that all
ambients are active, and we associate the tag a to them.

1.4.2 Operational Semantics

The passage of time is described by a discrete global time progress function φΔ
defined over the set P of mobile ambients with timers. The actions are performed
at every tick of a universal clock. The opened ambients, the channels involved in a
communication and the consumed capabilities disappear together with their timers.
If a channel, capability or ambient has the timer ∞ we use ∞− 1 = ∞ when apply-
ing the function φΔ . This function modifies a process accordingly with the global
passage of time. Another property of the function φΔ is that passive ambients can
become active in the next unit of time in order to participate in other reductions.
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Definition 1.5 (Global Time Progress Function). We define φΔ : P →P by:

φΔ (P) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MΔ(t−1).(R,Q) if P = MΔ t .(R,Q), t > 0
Q if P = MΔ t .(R,Q), t = 0
cΔ(t−1)!〈m : Amb[Γ ]〉.(R,Q) if P = cΔ t!〈m : Amb[Γ ]〉.(R,Q), t > 0
Q if P = cΔ t!〈m : Amb[Γ ]〉.(R,Q), t = 0
cΔ(t−1)?(x : Amb[Γ ]).(R,Q) if P = cΔ t?(x : Amb[Γ ]).(R,Q), t > 0
Q if P = cΔ t?(x : Amb[Γ ]).(R,Q), t = 0
φΔ (R) | φΔ (Q) if P = R |Q
(νn : Amb[Γ ])φΔ (R) if P = (νn : Amb[Γ ])R
(nΔ(t−1)[φΔ (R)]a,Q) if P = (nΔ t [R]μ ,Q), t > 0
Q if P = (nΔ t [R]μ ,Q), t = 0
P if P = ∗R or P = 0

For the processes cΔ t!〈m : Amb[Γ ]〉.(P,Q), cΔ t?(x : Amb[Γ ]).(P,Q) and MΔ t .(P,Q),
the timer of process P is activated only after the consumption of cΔ t!〈m : Amb[Γ ]〉,
cΔ t?(x : Amb[Γ ]) and MΔ t (in at most t units of time). Reduction rules (Table 1.18)
show how the time function φΔ is used.

Processes are grouped into equivalence classes by the equivalence relation ≡
called structural congruence. This relation provides a way of rearranging expres-
sions such that interacting parts can be brought together.

Table 1.17 Structural Congruence in tMA

(S-Refl) P≡ P
(S-Sym) P≡ Q implies Q≡ P
(S-Trans) P≡ R, R≡ Q implies P≡ Q
(S-Res) P≡ Q implies (νn : Amb[Γ ])P≡ (νn : Amb[Γ ])Q
(S-Par) P≡ Q implies P |R≡ Q |R
(S-Repl) P≡ Q implies ∗P≡ ∗Q
(S-Amb) P≡ Q and R≡ S implies (nΔ t [P]μ ,R)≡ (nΔ t [Q]μ ,S)
(S-Cap) P≡ Q and R≡ S implies MΔ t .(P,R)≡MΔ t .(Q,S)
(S-Input) P≡ Q and R≡ S implies cΔ t ?(x : Amb[Γ ]).(P,R)≡ cΔ t ?(x : Amb[Γ ]).(Q,S)
(S-Output) P≡ Q and R≡ S implies cΔ t !〈m : Amb[Γ ]〉.(P,R)≡ cΔ t !〈m : Amb[Γ ]〉.(Q,S)
(S-Par Com) P |Q≡ Q |P
(S-Par Assoc) (P |Q) |R≡ P |(Q |R)
(S-Res Res) (νn : Amb[Γ ])(νm : Amb[Γ ′])P≡ (νm : Amb[Γ ′])(νn : Amb[Γ ])P if Γ �= Γ ′

(S-Res Par) (νn : Amb[Γ ])(P |Q)≡ P |(νn : Amb[Γ ])Q if (n : Amb[Γ ]) /∈ f n(P)
(S-Res Amb Dif) (νn : Amb[Γ ])(mΔ t [P]μ ,Q)≡ (mΔ t [(νn : Amb[Γ ])P]μ ,Q)

if m �= n and n /∈ f n(Q)
(S-Res Amb Eq) (νn : Amb[Γ ])(mΔ t [P]μ ,Q)≡ (mΔ t [(νn : Amb[Γ ])P]μ ,Q)

if m = n, n /∈ f n(Q) and Γ �= Γ ′ where m : Amb[Γ ′]
(S-Zero Par) P |0≡ P
(S-Repl Par) ∗P≡ P | ∗P
(S-Zero Res) (νn : Amb[Γ ])0≡ 0
(S-Zero Repl) ∗0≡ 0

The rule (S-Res Amb Eq) states that if an ambient n : Amb[Γ ′] is in the scope of
a restriction (νn : Amb[Γ ]) and Γ �= Γ ′, then the scope of (νn : Amb[Γ ]) is restricted



30 1 Mobility in Process Calculi

to the process running inside ambient n : Amb[Γ ′]. This rule is able to distinguish
between two ambients having the same name (m = n), but different types.

We denote by �→ the fact that none of the rules (R-In), (R-Out), (R-Open) and
(R-Com) can be applied. The behaviour of processes is given by the rules from
Table 1.18.

In the rules (R-In), (R-Out), (R-Open) the ambient m can be passive or active,
while in the rules (R-In), (R-Out) the ambient n is active. The difference between
passive and active ambients is that passive ambients can be used in several reduc-
tions in a unit of time, while active ambients can be used in at most one reduction
in a unit of time, by consuming their capabilities. In the rules (R-In), (R-Out) the
active ambient n becomes passive, forcing it to consume only one capability in one
unit of time. In (R-Open) we imposed the condition Γ <: Γ ′ to avoid releasing an
unwanted set of types inside the surrounding ambient m. The ambients which are
tagged as passive, become active again by applying the global time-stepping func-
tion (R-GTProgress).

Table 1.18 Reduction Rules in tMA

(R-GTProgress)
P �→

P→ φΔ (P)
(R-In) (nΔ t ′ [inΔ t m.(P,P′) |Q]a,S′) |(mΔ t ′′ [R]μ ,S′′)→ (mΔ t ′′ [(nΔ t ′ [P |Q]p,S′) |R]μ ,S′′)
(R-Out) (mΔ t ′ [(nΔ t ′′ [outΔ t m.(P,P′) |Q]a,S′′) |R]μ ,S′)→ (nΔ t ′′ [P |Q]p,S′′) |(mΔ t ′ [R]μ ,S′)
(R-Com) cΔ t !〈m : Amb[Γ ]〉.(P,Q) |cΔ t?(x : Amb[Γ ]).(P′,Q′)→ P |P′{m/x}

(R-Open)
n : Amb[Γ ′], m : Amb[Γ ], Γ <: Γ ′

(mΔ t ′ [openΔ t n.(P,P′) |(nΔ t ′′ [Q]μ ,S′′)],S′)→ (mΔ t ′ [P |Q]μ ,S′)

(R-Res)
P→ Q

(νn : Amb[Γ ])P→ (νn : Amb[Γ ])Q

(R-Amb)
P→ Q

(nΔ t [P]μ ,R)→ (nΔ t [Q]μ ,R)
(R-Par1)

P→ Q
R |P→ R |Q

(R-Par2)
P→ P′, Q→ Q′

P |Q→ P′ |Q′ (R-Struct)
P′ ≡ P, P→ Q, Q≡ Q′

P′ → Q′

In tMA, if one process evolves by one of the rules (R-In), (R-Out), (R-Open),
(R-Com), while another one does not perform any reduction, then the rule (R-Par1)
is applied. We define only the left composition (R-Par1), because the right compo-
sition results from (R-Struct) and (R-Par1). If more than one process evolves in
parallel by applying one of the rules (R-In), (R-Out), (R-Open), (R-Com) then
the rule (R-Par2) is applied. The rule (R-GTProgress) is applied to simulate the
global passage of time, changing all the p tags to a, and so permitting the ambients
to participate in new reductions in the next unit of time.

Even if we consider types for ambients as in [41], we do not take into account
the environment parameter. Instead, we consider that each ambient has its own set
of types Γ , which control the communication of processes inside that ambient as it
results from Table 1.18.
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1.4.3 Subject Reduction

Well-typedness of a process is defined by a set of rules regarding only the communi-
cation inside ambients. The typing rules of Table 1.19 express the conditions which
must be satisfied by each syntactic construction of a process in order for it to be
well-typed. These rules describe the relationship of a process to its types, providing
the static semantics of tMA. We write P : Γ and say that a process P is well-typed
with respect to the set of types Γ , meaning that process P can exchange only mes-
sages of types from set Γ ; usually Γ represents the set of types valid in the ambient
containing process P.

Table 1.19 Typing Rules in tMA

(T-Null) 0 : Γ (T-Write)
P : Γ , Q : Γ , Γ <: Amb[Γ ′]

cΔ t !〈m : Amb[Γ ′]〉.(P,Q) : Γ (T-Par)
P : Γ , Q : Γ

P |Q : Γ

(T-Read)
P : Γ �Amb[Γ ′], Q : Γ

cΔ t ?(x : Amb[Γ ′]).(P,Q) : Γ �Amb[Γ ′]
(T-New)

P : Γ �Amb[Γ ′]
(νn : Amb[Γ ′])P : Γ

(T-Amb)
n : Amb[Γ ], P : Γ , Q : Γ ′

(nΔ t [P]μ ,Q) : Γ ′ (T-Cap)
P : Γ , Q : Γ

MΔ t .(P,Q) : Γ (T-Repl)
P : Γ
∗P : Γ

Since process 0 cannot communicate, 0 is well-typed under any set of types, this
being expressed in rule (T-Null). Rule (T-Write) states that only messages of types
from the set Γ can be sent. Similar reasoning is expressed in (T-Read). An ambient
has only internal communication, meaning that it cannot send messages to sibling
processes; therefore an ambient is well-typed under any set of types, and this is ex-
pressed in rule (T-Amb). If P and Q are sibling processes which can exchange mes-
sages of types from the set Γ , then P |Q is also such a process. Rule (T-New) states
that if a process can exchange messages of types from the set Γ �Amb[Γ ′], then
the restricted process (νn : Amb[Γ ′])P cannot exchange messages of type Amb[Γ ′]
with sibling processes. By adding a capability to a process we do not affect the
well-typedness of that process as it results from rule (T-Cap).

Lemma 1.3. If (νn : Amb[Γ ′])P : Γ and n /∈ f n(P) then P : Γ .

Lemma 1.4. If P : Γ �Amb[Γ ′], x,m : Amb[Γ ′], x ∈ f n(P) and m /∈ f n(P) then
P{m/x} : Γ �Amb[Γ ′].

In order to say that cΔ t!〈m : amb[Γ ′]〉.(P,Q) is well-typed with respect to the set of
types Γ , the following statements should hold:

(i) m : Amb[Γ ′], which means that ambient m contains the set of types Γ ′;
(ii) Γ <: Amb[Γ ′], which means that Γ contains the type Amb[Γ ′];
(iii) P : Γ ; Q : Γ , which means that P and Q are well-typed with respect to the set

of types Γ . If one of the statements is not true, the process cΔ t!〈m : Amb[Γ ′]〉.(P,Q)
can still be well-typed, if the alternative process Q is well-typed, with respect to the
same set of types Γ .
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The following proposition states that the application of the global time progress
function φΔ to a process P does not change its property of being well-typed.

Proposition 1.1 (Time Passage). If P : Γ then φΔ (P) : Γ .

Proof. We take into account all the cases which enter in the definition of φΔ . We
present only one case, the others being treated in a similar manner.

Case 1.22 (P = MΔ t .(R,Q), t > 0). The syntax is a general notation to capture all the
capabilities because their behaviour is the same in this context. As a consequence,
the rule (T-Cap) is applied and the expected result MΔ(t−1).(R,Q) : Γ is obtained
which is the same as φΔ (P) : Γ . ��

Exercise 1.5. Prove the other cases of Proposition 1.1.

The following proposition states that if a process P is well-typed, then all the
processes from its equivalence class are well-typed.

Proposition 1.2 (Subject Congruence). If P≡ Q then P : Γ iff Q : Γ .

Proof. We proceed by structural induction. We present only one case, the others
being treated in a similar manner.

Case 1.23 (S-Res Amb Dif). We have that P = (νn : Amb[Γ ′])(mΔ t [P′]μ ,P′′) and
Q = (mΔ t [(νn : Amb[Γ ′])P′]μ ,P′′) with n �= m. Assume P : Γ . This must have been
derived from (T-New) and (T-Amb) with P′′ : Γ � Amb[Γ ′]. Because n does not
affect the process P′′, by applying Lemma 1.3 we have that P′′ : Γ . By applying
(T-Amb) we obtain that Q : Γ . ��

Exercise 1.6. Prove the other cases of Proposition 1.2.

The following proposition states that if a process P is well-typed, then the process
obtained after applying a reduction rule is well-typed.

Proposition 1.3 (Subject Reduction). If P→ Q then P : Γ iff Q : Γ .

Proof. We proceed by induction on the derivation of P → Q. We present only one
case, the others being treated in a similar manner.

Case 1.24 (R-Com). We have that P = cΔ t!〈m〉.(P,Q) |cΔ t ′?(x : Amb[Γ ′]).(P′,Q′)
and Q = P |P′{m/x}. Assume P : Γ . This must have been derived from (T-Par) with
cΔ t!〈m〉.(P,Q) : Γ and cΔ t ′?(x).(P′,Q′) : Γ and by applying the rules (T-Write) and
(T-Read) we obtain that P : Γ , P′Γ and Γ <: Amb[Γ ′]. By applying Lemma 1.4 and
the rule (T-Par) we obtain that P |P′{m/x} : Γ . ��

Exercise 1.7. Prove the other cases of Proposition 1.3.
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Table 1.20 Error System in tMA

(E-Com)
Γ �= Γ ′

cΔ t !〈m : Amb[Γ ′]〉.(P,Q) |cΔ t?(x : Amb[Γ ]).(P′,Q′) err−→

(E-Open)
n : Amb[Γ ′], m : Amb[Γ ], Γ �<: Γ ′

(mΔ t ′ [openΔ t n.(P,P′) |(nΔ t ′′ [Q]μ ,S′′)]μ ,S′) err−→ (E-Par)
P

err−→
P |Q err−→

(E-Amb)
P

err−→
(nΔ t [P]μ ,Q) err−→

(E-New)
P

err−→
(νn : Amb[Γ ])P err−→

(E-Str)
P≡ Q Q

err−→
P

err−→

In Table 1.20 we describe the error system of tMA, where by
err−→ we denote the

fact that an error occurred. An error can occur only when a process tries to exchange
a message of a wrong type. Note that if a process wants to communicate a message
of a wrong type, it can still be well-typed if the alternative process Q is well-typed.

Rule (E-Com) states that a process can receive only messages of a certain type. In
rule (E-Open) we express the fact that if messages of types from Γ ′ are exchanged
in an ambient n, by opening the ambient, in order for the processes to exchange mes-
sages of types from Γ ′, the ambient m containing ambient n must allow exchange of
messages of types from Γ ′. The rest of the rules are obvious and state the fact that if
a process generates an error then including it in another process, the error does not
disappear.

Proposition 1.4. If a process is well typed, then it does not generate errors:
P : Γ implies P � err−→.

Proof. The proof considers the opposite of the fact that if P gives rise to a run-
time error (P

err−→), then P cannot be well-typed under any set of types Γ (P � : Γ ,
f or all Γ ). We use induction on the structure of P and consider a proof case for each
rule in Table 1.20. We present only one case, the others being treated in a similar
manner.

Case 1.25 (E-Com). We suppose that there exists a set of types Γ such that R : Γ ,
where R = cΔ t!〈m〉.(P,Q) |cΔ t ′?(x : Amb[Γ ′]).(P′,Q′). This must have been derived
from (T-Par) with cΔ t!〈m〉.(P,Q) : Γ and cΔ t ′?(x : Amb[Γ ′]).(P′,Q′) : Γ . Applying
(T-Write), (T-Read) we have that Γ <: Amb[Γ ′] and n : Amb[Γ ′], which is in con-
tradiction with the hypothesis of the rule (E-Com), and so we have that R � err−→. ��

Exercise 1.8. Prove the other cases of Proposition 1.4.

We denote by P
t→ Q the fact that process P evolves to process Q after applying

the rule (R-GTProgress) t ≥ 0 times, and by tφΔ (R) the fact that function φΔ is
applied t times to process R. We denote by ∼= the relation which respects all the
rules of Table 1.17 except replication, namely rule (S-Repl Par). The following
result claims that if two processes are structurally congruent and both idle for t units
of time, then the obtained processes are also structurally congruent.
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Proposition 1.5. Time passage cannot cause a nondeterministic behaviour:
if P∼= Q, P

t→ P′ and Q
t→ Q′ then P′ ∼= Q′.

Proof. We proceed by structural induction and present only one case, the others
being treated in a similar manner.

Case 1.26 (S-Res). We have P = (νn : Amb[Γ ′])P′ and Q = (νn : Amb[Γ ′])Q′ with

P ∼= Q. By induction, if P′ ∼= Q′, P′
t→ P′′ and Q′ t→ Q′′ then P′′ ∼= Q′′. By apply-

ing (R-Res) to both P′
t→ P′′ and Q′ t→ Q′′ we obtain that P

t→ (νn : Amb[Γ ])P′′

and Q
t→ (νn : Amb[Γ ])Q′′. By applying (S-Res) to P′′ ∼= Q′′ we obtain that

(νn : Amb[Γ ])P′′ ∼= (νn : Amb[Γ ])Q′′. ��

Exercise 1.9. Prove the other cases of Proposition 1.5.

The following example motivates why we remove replication. Let P = inΔ5n.
Then we have ∗P≡ P | ∗P. By applying the function φΔ , we obtain

φΔ (P | ∗P) = inΔ4n | ∗P �≡ ∗P = φΔ (∗P).

Example 1.3. We extend the cab protocol described in [94] by introducing new
operations which describe a recall for a taxi when a certain period of time has
passed, and the payment for the trip. Roughly speaking, the cab protocol is about
a city with various sites, cabs and clients willing to go from one site to another.
At http://www-sop.inria.fr/mimosa/ambicobjs/taxis.html, a graphical implementa-
tion of the cab protocol is presented. The implementation is written in Java, and
presents the ambients as named and coloured circles, whose limits act as boundaries
for what is inside. A capability in c is described by an anchor which remains in
the ambient a, and an arrow outside which is linked to any ambient with name c.
When such an arrow finds an ambient c, the ambient a is entirely moved inside c.
A capability out c is described by an anchor pointing outside. A capability open c
is represented as a small square trying to find an ambient with the same name. If
it does, the boundaries are dissolved and the content of that ambient is released. A
snapshot of the cab protocol is presented in the following figure:
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The whole system consists of one city, n sites, and several cabs and clients. The
cabs can be empty waiting in a precise site or can have clients and be anywhere
in the city, while the clients can be either at some sites waiting for a free cab to
arrive, or already travelling with a cab. In order to initiate a trip a client must obtain
a cab, and it does this by sending a request for an empty cab. In what follows we
use this protocol to illustrate how mobile ambients with timers work, emphasizing
the timing aspects. It is worth noting that each ambient of the system is well-typed
because we do not consider communication. Considering the fact that we have only
ambients with no internal communication, all the processes are well-typed under
any set of types Γ .

A message emitted by a client located at a site from in order to call a cab is
described by

load client = loadingΔ t1 [outΔ t2cab. inΔ t3client]μ

call = callΔ t7 [outΔ t8client.outΔ t9 f rom. inΔ t10cab. inΔ t11 f rom. load client]μ

recall = recallΔ t12 [outΔ t13cab. inΔ t14 f rom. inΔ t15client]μ

call f rom client = (call, recall)
This ambient can enter a cab; here it gets opened and releases the process load client.
After it exits the ambient client and successively the ambient from it looks for a cab
to enter. If it finds a cab then it enters it by applying the (R-In) rule:

(callΔ t7 [inΔ t10cab.inΔ t11 f rom. . . .]a,recall) | cab∞[ ]μ

→ cab∞[callΔ t7 [inΔ t11 f rom. . . .]p,recall]μ

If the timer Δ t7 of the ambient call expires before it enters a cab, then an ambient
recall is released. This is possible if no cab ambient becomes sibling with the am-
bient call in the period of time represented by the timer Δ t7. To discard the ambient
call with the expired timer we apply the (R-GTProgress) rule which launches the
safety process recall:

(callΔ t7 [inΔ t10cab.inΔ t11 f rom. . . .]a,recall)→ recall
The recall ambient enters the ambient client, and announces that he can make an-
other call. This process of recalling is repeated until the process load client is re-
leased. The process load client is launched by opening the ambient call using the
(R-Open) rule:

cab∞[(callΔ t7 [load client]μ ,recall) | openΔ t44call.openΔ t45trip. . . .]μ

→ cab∞[load client | openΔ t45trip. . . .]μ

As a consequence, the cab goes to from in order to meet its client, and it releases an
ambient loading. All the steps necessary for a correct evolution of the trip are per-
formed by applying the appropriate reduction rules. Once loading has been released,
it enters the ambient client.

The address given to the driver by a client to go from the current location from
to address to, as well as the payment for the trip are described by

trip f rom to c = tripΔ t20 [outΔ t21client.outΔ t22 f rom. inΔ t23to. pay driver]μ

pay driver = payΔ16 [inΔ t17c. inΔ t18wallet. inΔ t19money]μ

Whenever the client opens loading it means that the cab is present, and therefore the
client may enter it. Consequently, the client enters the cab and releases an ambient
trip, which the cab receives and opens. The process which is released moves the cab
to its destination where it releases another synchronization ambient pay to inform
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the client to pay for the trip. An ambient pay enters the client wallet and moves an
ambient money to the driver wallet.

paid driver = paidΔ t28 [outΔ t29money.outΔ t30wallet.outΔ t31driver. inΔ t32c]μ

money client = money∞[openΔ t33 pay.outΔ t34wallet.outΔ t35c. inΔ t36driver.
inΔ t37wallet. paid driver]μ

wallet client = wallet∞[money client | . . . |money client]μ

bye cab = byeΔ t24 [outΔ t25c. inΔ t26cab.outΔ t27to]μ

client f rom to = (νc)c∞[∗(openΔ t38recall.call f rom c) |recallΔ t39 [ ]μ |
openΔ t40 loading. inΔ t41cab. trip f rom to c |openΔ t42 paid.
outΔ t43cab.bye cab |wallet client]μ

Once the ambient money enters the driver wallet, an ambient paid is released and
sent to the client telling him to get out of the cab. The client opens it, leaves the cab,
and sends the last synchronization ambient bye to the cab, instructing it to leave the
current location to. The cab and the city are described by

driver = driver∞[wallet∞[money∞[ ]μ | . . . |money∞[ ]μ ]μ ]μ

cab = cab∞[rec X .openΔ t44call.openΔ t45trip.openΔ t46bye.X |driver]μ

city = city∞[cab | . . . |cab |site∞
1 [client site1 sitei |client site1 site j | . . .]μ

| . . . |site∞
i [. . .]μ ]μ

In the discussion above we have supposed that only the timer Δ t7 of the ambient call
expires, and this may produce the execution of the safety process recall. This was
made only for the sake of simplicity. In order to simulate other possible scenarios,
we can suppose that other timers may also expire:

• Δ t1 - the loading ambient does not reach the ambient client, and a safety process
should be released in order to instruct cab to create another loading ambient;

• Δ t16 - the pay ambient does not reach the ambient client, and a safety process
should be released in order to instruct cab to create another pay ambient;

• Δ t20 - the trip ambient does not reach the ambient cab, and a safety process
should be released in order to instruct the client to create another trip ambient;

• Δ t28 - the paid ambient does not reach the ambient client, and a safety process
should be released in order to instruct cab to create another paid ambient;

• Δ t24 - the bye ambient does not reach the ambient cab, and a safety process
should be released in order to instruct the client to create another bye ambient;

• various other scenarios can be simulated by introducing several other timers over
capabilities and ambients.

1.5 Brane Calculi

Biological inspiration is predominant in the case of brane calculi [40]. The opera-
tions of the two basic brane calculi, namely pino, exo, phago (for the PEP fragment)
and mate, bud, drip (for the MBD fragment) are directly inspired by the biological
processes of endocytosis, exocytosis and mitosis. Since some proteins are embedded
in cell membranes, and can act on both sides of the membrane simultaneously, brane
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calculi use both sides of the membrane, emphasizing that computation happens also
on the membrane surface. We present here an overview of the PEP fragment of brane
calculi without replication. Cardelli motivates that the replication operator is used to
model the notion of a “multitude” of components of the same kind, which is in fact a
standard situation in biology. We do not consider the replicator operator because we
are not able to define a corresponding membrane system without knowing exactly
the initial membrane structure. More details on brane calculi can be found in [40].

1.5.1 Syntax

A membrane structure consists of a collection of nested membranes as shown in Ta-
ble 1.21. Membranes are formed of patches σ , where a patch can be composed from
other patches ρ | τ . A patch σ consists of an action a followed, after its consump-
tion, by another patch σ1; thus σ = a.σ1. Actions often come in complementary
pairs which cause interaction between membranes. The names n are used to pair-up
actions and co-actions.

Table 1.21 Brane Calculi Syntax

Systems P,Q::=P◦Q | σ( ) | σ(P)
Branes σ ,τ::=0 | σ | τ | a.σ
Actions a,b ::=phagon | phagon(σ) | exon | exon | pino(σ)

| maten | maten | budn | budn(σ) | drip(σ)

We abbreviate a.0 as a, 0(P) as (P), and 0( ) as ( ).

1.5.2 Operational Semantics

The structural congruence relation is a way of rearranging the system such that
the interacting parts come together; the structural congruence ≡b is defined in Ta-
ble 1.22.

Table 1.22 Brane Calculi Structural Congruence

P◦Q≡b Q◦P σ | τ ≡b τ | σ
P◦ (Q◦R)≡b (P◦Q)◦R σ | (τ | ρ)≡b (σ | τ) | ρ

σ | 0≡b σ

P≡b Q implies P◦R≡b Q◦R σ ≡b τ implies σ | ρ ≡b τ | ρ
P≡b Q and σ ≡b τ implies σ(P)≡b τ(Q) σ ≡b τ implies a.σ ≡b a.τ
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Table 1.23 Brane Calculi Reduction Rules

pino(ρ).σ | σ0(P)→b σ | σ0(ρ( )◦P) Pino

P

pino(ρ).σ

σ0

b P

σ

σ0

ρ

exon.τ | τ0(exon.σ | σ0(P)◦Q)→b P◦σ | σ0 | τ | τ0(Q) Exo

P Q

τ0

σ0

τ σ

Q

τ0

exon.τ

P σ0

exon.σ

b

phagon.σ | σ0(P)◦ phagon(ρ).τ | τ0(Q)→b τ | τ0(ρ(σ | σ0(P))◦Q) Phago

P σ0

phagon.σ
Q

τ0

phagon(ρ).τ

b Q

τ0

τ

ρ
P σ0

σ

maten.σ | σ0(P)◦maten.τ | τ0(Q)→b τ | τ0 | σ | σ0(P◦Q) Mate

P σ0

maten.σ
Q

τ0

maten.τ

b P Q

τ0

σ0

τ σ

budn(ρ).τ | τ0(budn.σ | σ0(P)◦Q)→b ρ(σ | σ0(P))◦ τ | τ0(Q) Bud

Q

τ0

budn(ρ).τ

P σ0

budn.σ

b
ρ

P σ0

σ
Q τ0

τ

drip(ρ).σ | σ0(P)→b ρ( )◦σ | σ0(P) Drip

P

drip(ρ).σ

σ0

b P

σ

σ0

ρ

P→b Q implies P◦R→b Q◦R Par
P→b Q implies σ(P)→b σ(Q) Mem
P≡b P′ and P′ →b Q′ and Q′ ≡b Q implies P→b Q Struct

In what follows we explain the rules of Table 1.23. The action pino(σ) creates
an empty bubble within the membrane where the pino action resides. The original
membrane buckles inwards and pinches off; the patch σ on the empty bubble is a pa-
rameter of pino. The exo action exon comes with a complementary co-action exon;
they model the merging of two nested membranes which starts with the membranes
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touching at a point. In this process (which is a smooth and continuous process),
the subsystem P gets expelled to the outside, and all the residual patches of the
two membranes become contiguous. Actions maten and maten synchronize to ob-
tain membrane fusion. Action budn permits splitting of an internal membrane, and
synchronizes with the coaction budn. Action drip permits splitting off zero inter-
nal membranes. Actions bud and drip are equipped with a process σ , that will be
associated to the new membrane created by the brane performing the action.

The phago action phagon comes with a complementary co-action phagon(ρ);
they model a membrane (the one with Q) “eating” another membrane (the one
with P). Again, the process has to be smooth and continuous, i.e., biologically im-
plementable. It proceeds by the Q membrane wrapping around the P membrane
and joining itself on the other side. Thus an additional layer of membrane is cre-
ated around the eaten membrane: the patch on that membrane is specified by the
parameter ρ of the co-phago action (similar to the parameter of the pino action).

1.5.3 Computability and Decidability

According to [37], a fragment of PEP, namely, the calculus without the pino ac-
tion, is Turing powerful. The result is proved by showing how to model Random
Access Machines (RAM). A direct consequence of this result is the undecidability
of universal termination for PEP. Such an encoding is deterministic and enjoys the
following property: the RAM terminates if and only if its encoding terminates. As
a consequence, both the universal termination property (i.e., checking if the system
has a divergent computation) and the existential termination property (i.e., checking
if the system has a terminating computation) turn out to be undecidable for PEP.

In [37] it is shown that universal termination is a decidable property for the MBD
fragment; the proof is based on the theory of well-structured transition systems [85].
In [36] it is stated that the decidability of universal termination provides an expres-
siveness gap between MBD and PEP, as a deterministic encoding of Random Access
Machines can be provided in the second calculus, but not in the first calculus. Thus
it is impossible to provide an encoding of PEP in MBD that preserves the universal
termination property.

In [35] a non-deterministic encoding of RAMs in MBD is provided which pre-
serves the existence of a terminating computation. The encoding is non-deterministic
because it introduces additional computations which do not follow the expected be-
haviour of the modelled RAM. Since all the computations are infinite, given a RAM,
its modelling has a terminating computation if and only if the RAM terminates.
A direct consequence of this result is the undecidability of existential termination
for MBD.

The decidability of universal termination for MBD in [37] ensures that it is im-
possible to provide a deterministic encoding of RAMs in MBD. If it is required that
the RAM terminates if and only if all the computations of the encoding terminate, it
is also impossible to provide a (non-deterministic) encoding of RAMs in MBD.
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The computational power of MBD is increased if the interleaving semantics is
replaced with a maximal parallelism semantics as in membrane computing [130].
According to the maximal parallelism semantics, at each computational step a max-
imal set of independent reductions is simultaneously executed. Hence, all the mem-
branes that can evolve have to do so. Using such a semantics, in [35] a deterministic
encoding of RAMs in MBD with maximal parallelism is provided that preserves the
existence of a terminated computation (hence also the existence of a divergent com-
putation). In this case is obtained the undecidability of both existential and universal
termination for MBD with maximal parallelism. This result confirms the intuition
emerging from [89], where the interleaving (sequential) and the maximal parallelism
semantics of many variants of P systems are compared: in most cases, the computa-
tional power increases when moving from interleaving to maximal parallelism.



Chapter 2
Mobility in Membrane Computing

Abstract Membrane computing is part of natural computing, being a rule-based
formalism inspired by biological cells. The basic model of membrane computing is
usually called transition membrane systems. When membrane systems are consid-
ered as computing devices, two main research directions are considered: their com-
putational power in comparison with the classical notion of Turing computability,
and their efficiency in algorithmically solving hard problems (e.g., NP-problems)
in polynomial time. In this chapter we define mobile membrane systems which are
both powerful (equivalent to Turing machines) and efficient (algorithms have been
developed which provide efficient solutions to NP-complete problems).

2.1 Mobility in Cell Biology

The cell is the functional basic unit of life, and is often called the building block of
life [7]. The cells of living organisms are categorised into prokaryotic and eukaryotic
cells. Any organism contains either prokaryotic or eukaryotic cells. Prokaryotic are
very simple cells that are smaller than the more complex eukaryotic cells. Bacteria
are made up of one or more prokaryotic cells. The cell membrane in a prokaryotic
cell consists of a fluid phospholipid bilayer without carbohydrates. The prokaryotic
cell is incapable of endocytosis or exocytosis unlike the eukaryotic cell.

Eukaryotic cells are found inside plant and animal life and are more advanced
and larger, and differ fundamentally from their prokaryotic counter-parts by their
possession of membrane-bounded internal compartments. The emergence of an en-
domembrane system was a crucial stage in the prokaryote-to-eukaryote evolutionary
transition [76]. A feature that distinguishes prokaryote cells from eukaryote cells is
the presence in eukaryote cells of a cytoskeleton that maintains their structural in-
tegrity. Thus the cell can afford to have a membrane that consists of a fluid phospho-
lipid bilayer that includes carbohydrates. The increased fluidity of the outer mem-
brane allowed the development of two mechanisms, called endocytosis and exocyto-
sis. Endocytosis and exocytosis are complementary operation that allow substances
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to enter (endocytosis) or exit (exocytosis) the cell through membrane-bounded vesi-
cles. In endocytosis, the vesicle is formed by the invagination of a small segment
of the outer membrane that contains substances from outside the cell. In the reverse
process of exocytosis, the vesicle fuses with the outer cell membrane releasing its
content into the extracellular space.

The development of endocytosis and exocytosis prepared the way for all subse-
quent steps of eukaryotic evolution [100]. According to [76], several innovations
appeared during this evolution from prokaryote to eukaryote cells (see Figure 2.1
and Table 2.1).

Fig. 2.1 Prokaryote to Eukaryote Evolutionary Transition

Table 2.1 Major Innovations in the Evolution of the Endomembrane System

Prokaryote Early Eukaryote Extant Eukaryote
Unfolded substrate exported Folded substrate exported Multiple modes of endocytosis
Membrane translocation Vesicular transport Multiple modes of exocytosis

Limited modes of endocytosis Tissue-specific pathways
Phagocytosis Lineage-specific pathways
Lysosomal degradation Secondary losses

Endocytosis of eukaryotic cells also enhances communication between cells [150],
a feature that enables eukaryote cells to form multicellular organisms. Cells sense
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the environment and communicate with each other through activation of signalling
receptors on the cell surface. Endocytosis regulates cell signalling by physically re-
ducing the number of signalling receptors available for activation. In some cases,
a reduction in the number of surface receptors does not attenuate the maximal sig-
nalling response, but instead shifts the dose response relationship so that a higher
concentration of ligand is required to trigger a response of the same magnitude. This
is of physiological importance in settings of limited ligand concentration. In this
way, endocytosis and cell signaling are intertwined in many biological processes,
such as cell motility and cell fate determination [150].

We use endocytosis and exocytosis as abstract operations in membrane comput-
ing, a new biologically inspired model of computation.

2.2 Membrane Computing

Membrane computing is part of natural computing, being a rule-based formalism
inspired by biological cells. The basic model of membrane computing is usually
referred to as transition membrane systems. In this model, objects are represented
using symbols from a given alphabet, and each symbol from this alphabet can ap-
pear inside a region in many different copies. That is, the content of a region is rep-
resented as a multiset over a given alphabet. Rules are essentially multiset rewriting
rules with some extra features: targets appear in the right hand side of the rules and
are used to specify where to move the produced objects.

Definition 2.1. A transition membrane system of degree n≥ 1 is a construct
Π = (V,H,T,C,μ ,w1, . . . ,wn,(R1,ρ1), . . . ,(Rn,ρn), iO)

where:

1. n represents the number of membranes;
2. V is an alphabet of symbols; its elements are called objects;
3. T ⊆V is the terminal (or output) alphabet;
4. C ⊆V , C∩T = /0 is the alphabet of catalysts;
5. H is a finite set of labels for membranes;
6. μ ⊂H×H describes the membrane structure, such that (i, j)∈ μ denotes that the

membrane labelled by j is contained within the membrane labelled by i; we dis-
tinguish the external membrane (usually called the “skin” membrane) and several
internal membranes; a membrane without any other membrane inside it is said to
be elementary;

7. wi ∈ V ∗, for each 1 ≤ i ≤ n is a multiset of objects assigned initially to mem-
brane i;

8. Ri, for all 1 ≤ i ≤ n, is a finite set of evolution rules which is associated with
membrane i; an evolution rule is a multiset rewriting rule of the form u→ v, with
u ∈ V +, v = v′ or v = v′δ , v′ ∈ ((V ×{here,out})∪ (V ×{in j | 1 ≤ j ≤ n}))∗,
and δ a special symbol not appearing in V ;
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9. ρi, for all 1 ≤ i ≤ n, is a partial order relationship defined over the rules in Ri

specifying a priority relation between these rules;
10. iO is the label of an elementary membrane of μ which identifies the output region.

R2 = {r3 : a→ (b,out)(a,here)}
∪ {r4 : b→ (b,out)}

R1 = {r1 : a→ (a, in2)}
∪ {r2 : b→ (a, in2)}

2

a3 b5

1
b2 a4

As an example, we consider a membrane system
with two nested membranes (the inner membrane
labelled by 2, the outer membrane labelled by 1),
two sets of evolution rules R2 and R1 and two sym-
bols (a and b). Initially, membrane 1 contains the
multiset b2 a4, and membrane 2 contains the mul-
tiset a3 b5.

Fig. 2.2 A Transition Membrane System

Therefore, a transition membrane system of degree n ≥ 1 consists of a mem-
brane structure μ containing n membranes where each membrane i is assigned a
finite multiset of objects wi and a finite set of evolution rules Ri, with an associated
priority relation ρi. An evolution rule is a multiset rewriting rule which consumes
a multiset of objects from V and produces a multiset of pairs (a, t), with a ∈V and
t ∈ {here,out, in} a target specifying where to move the objects after the applica-
tion of the rule. As well as this, an evolution rule can produce the special object δ
to specify that, after the application of the rule, the membrane where the rule has
been applied has to be dissolved. After dissolving a membrane, all objects and mem-
branes previously contained in it become contained in the membrane containing it,
while the rules of the dissolved membrane are removed.

2.3 Mobile Membranes

Mobile membranes represent a formalism describing the movement of membranes
inside a spatial structure by applying rules from a given set. Mobile membranes
represent a variant of membrane computing [128]. Several systems of mobile mem-
branes are studied in [17], and their computational universality are proved by using
a small number of membranes [18]. The model is characterized by two essential
features:

• A spatial structure consisting of a hierarchy of membranes (which do not inter-
sect). The membranes produce a delimitation between regions. For each mem-
brane there is a unique associated region. To each membrane we associate a mul-
tiset of objects placed on its surface and a multiset of objects placed inside the
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corresponding region. A membrane without any other membranes inside is called
elementary, while a membrane containing other membranes is called composite.

• The general rules describing the evolution of the structure: endocytosis (mov-
ing an elementary membrane inside a neighbouring membrane) and exocytosis
(moving an elementary membrane outside the membrane where it is placed).
More specific rules are given by pinocytosis (creating an elementary membrane)
and phagocytosis (engulfing just one sibling elementary membrane). A move-
ment rule consists in fact of two steps: rewriting the objects that initiated the
movement to multisets of objects and changing the membrane structure.

The computations are performed in the following way: starting from an initial
structure, the system evolves by applying the rules in a nondeterministic and maxi-
mally parallel manner. A rule is applicable when all the involved objects and mem-
branes appearing in its left hand side are available. The maximally parallel way of
using the rules means that in each step we apply a maximal multiset of rules, namely
a multiset of rules such that no further rule can be added to the set. A halting con-
figuration is reached when no rule is applicable. The result is represented by the
number of objects associated to a specified membrane.

Let N be the set of positive integers, and consider a finite alphabet V of sym-
bols. A multiset over V is a mapping u : V → N. The empty multiset is repre-
sented by λ . We use the string representation of multisets that is widely used in
the field of membrane systems. An example of such a representation is the multiset
u = aabca, where u(a) = 3, u(b) = 1, u(c) = 1. Using such a representation, the
operations over multisets are defined as operations over strings. Given two multisets
u,v over V , for any a ∈ V , we have (u� v)(a) = u(a)+ v(a) as the multiset union,
and (u\v)(a) = max{0,u(a)− v(a)} as the multiset difference.

2.3.1 Simple Mobile Membranes

A first definition of mobile P systems is given in [133] with rules coming from mo-
bile ambients [42]. Inspired by the operations of endocytosis and exocytosis, namely
moving a membrane inside a neighbouring membrane (endocytosis) and moving a
membrane outside the membrane where it is placed (exocytosis), P systems with
mobile membranes are introduced in [108] as a variant of P systems with active
membranes [128]. We use the name simple mobile membrane system instead of P
systems with mobile membranes.

Definition 2.2. A simple mobile membrane system is a construct
Π = (V,H,μ ,w1, . . . ,wn,R, iO)

where:

1. n, V , H, μ , wi, iO are as in Definition 2.1;
2. R is a finite set of developmental rules, of the following forms:

(a) [[a→ v]m]k, for k,m ∈ H, a ∈V , v ∈V ∗; local object evolution
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M3

k

M2 m
a M1 M3

k

M2 m
v M1

These rules are called local because the evolution of an object a of mem-
brane m is possible only when membrane m is inside membrane k. By M1, M2

and M3 we denote (possible empty) multisets of objects, elementary and com-
posite membranes.

M2 m
a M1 M2 m

v M1

If the restriction of nested membranes is not imposed, that is, the evolution of
the object a in membrane m is allowed irrespective of where membrane m is
placed, then we say that we have a global evolution rule, and write it simply
as [a → v]m. By M1 and M2 we denote (possible empty) multisets of objects,
elementary and composite membranes.

(b) [a]h[ ]m → [[b]h]m, for h,m ∈ H, a,b ∈V ; endocytosis

M3
h

a M1

m

M2 M3

m

M2
h

b M1

An elementary membrane labelled h enters the adjacent membrane labelled m,
under the control of object a; the labels h and m remain unchanged during the
process; however the object a is modified to b during the operation; m is not
necessarily an elementary membrane. By M1 we denote a (possibly empty)
multiset of objects, and by M2 and M3 we denote (possibly empty) multisets
of objects, elementary and composite membranes.

(c) [[a]h]m → [b]h[ ]m, for h,m ∈ H, a,b ∈V ; exocytosis

M3

m

M2
h

a M1 M3
h

b M1

m

M2

An elementary membrane labelled h is sent out of a membrane labelled m,
under the control of object a; the labels of the two membranes remain un-
changed, but the object a of membrane h is modified during this operation;
membrane m is not necessarily elementary. By M1 we denote a (possibly
empty) multiset of objects, and by M2 and M3 we denote (possibly empty)
multisets of objects, elementary and composite membranes.

The rules are applied according to the following principles:

1. Rules are applied in parallel, non-deterministically choosing the rules, the mem-
branes, and the objects in such a way that the parallelism is maximal; this means
that in each step we apply a certain set of rules such that no further rule can be
added to the set.
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2. The membrane m from the rules of type (a)− (c) is said to be passive, while the
membrane h is said to be active. In any step of a computation, any object and
any active membrane can be involved in at most one rule. However, the passive
membranes can be used by several rules at the same time. In a rule [a → v]m of
type (a), object a is active, while membrane m is passive.

3. When a membrane is moved across another membrane, by endocytosis or exo-
cytosis, its whole contents (its objects) are moved; the inner objects evolve first
(if rules are applicable for them), and then any membrane is moved with the
contents as obtained after its internal evolution.

4. If a membrane exits the system (by exocytosis), then its internal evolution stops,
even if there are rules of type (a) which could be applied.

5. The objects and membranes which do not evolve at a given step are passed un-
changed to the next configuration of the system.

By using the rules in this way, we get transitions among the configurations of the
system. A sequence of transitions is a computation, and a computation is successful
if, starting from the initial configuration, it halts (it reaches a configuration where
no rule can be applied). The multiplicity vector of the multiset from a special mem-
brane called the output membrane is considered to be the result of the computation.
Thus, the result of a halting computation consists of all the vectors describing the
multiplicity of objects from the output membrane; a non-halting computation pro-
vides no output. The set of vectors of natural numbers produced in this way by a
system Π is denoted by Ps(Π). A computation can produce several vectors, all of
them considered in the set Ps(Π).

Hence a computation is structured as follows: it starts with an initial configuration
of the system (the initial membrane structure and the initial distribution of objects
within regions), then the computation proceeds, and when it stops the result is to be
found in a specific output membrane.

2.3.2 Enhanced Mobile Membranes

Enhanced mobile membranes were introduced in [16] for describing some biolog-
ical mechanisms of the immune system. The presentation of the immune system is
taken from [98], a book which is revised every few years to keep pace with the new
discoveries in this field. The cells of the immune system work together with differ-
ent proteins to seek out and destroy anything foreign or dangerous which enters our
body. It takes some time for the immune cell to be activated, but once this happens
very few hostile organisms have a chance. There are several types of immune cells,
each of them with its own strengths and weaknesses. Some seek out and engulf in-
vaders, while others destroy infected or mutated body cells. One type of immune
cells are the B cells which have the ability to release special proteins called anti-
bodies which mark intruders so that they may be destroyed by macrophages. The
immune system also has the ability to produce some cells able to remember ene-
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mies which it fought in the past. In this way, once the immune system recognizes an
invader it attacks more quickly and strongly against it.

Fig. 2.3 Immune System Mechanisms

Dendritic cells can engulf bacteria, viruses, and other cells. Once a dendritic
cells engulfs a bacterium, it dissolves this bacterium and places portions of bac-
terium proteins on its surface (see Figure 2.3). These surface markers serve as an
alarm to other immune cells, namely helper T cells, which then infer the form of
the invader. This mechanism makes the T cells sensitive to recognize the antigens
or other foreign agents which trigger a reaction of the immune system. Antigens are
often found on the surface of bacteria and viruses.

New rules are introduced following this biological example. We define a new
variant of mobile membranes, namely the enhanced mobile membranes, originally
introduced in [16]. The object a is the one indicating the membrane which initializes
the move in the rules of type (a)− (d).

Definition 2.3. An enhanced mobile membrane system is a construct
Π = (V,H,μ ,w1, . . . ,wn,R, iO), where:

1. n, V , H, μ , wi, iO are as in Definition 2.1;
2. R is a finite set of developmental rules of the following forms:

(a) [a]h[ ]m → [[w]h]m, for h,m ∈ H,a ∈V,w ∈V ∗; endo

M3
h

a M1

m

M2 M3

m

M2
h

w M1

An elementary membrane labelled h enters the adjacent membrane labelled m,
under the control of object a; the labels h and m remain unchanged during this
process, however, the object a is modified to w during the operation; m is not
necessarily an elementary membrane.

(b) [[a]h]m → [w]h[ ]m, for h,m ∈ H,a ∈V,w ∈V ∗; exo
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M3

m

M2
h

a M1 M3
h

w M1

m

M2

An elementary membrane labelled h exits a membrane labelled m, under the
control of object a; the labels of the two membranes remain unchanged, but
the object a from membrane h is modified during this operation; membrane m
is not necessarily elementary. By M1 we denote a (possibly empty) multiset of
objects, and by M2 and M3 we denote (possibly empty) multisets of objects,
elementary and composite membranes.

(c) [ ]h[a]m → [[ ]hw]m, for h,m ∈ H,a ∈V,w ∈V ∗; fendo

M3
h

M1

m

a
M2

M3

m

w
M2 h

M1

An elementary membrane labelled h is engulfed by the adjacent membrane
labelled m, under the control of object a of m; the labels h and m remain
unchanged during this process, however, the object a is modified to w during
the operation; m is not necessarily an elementary membrane. By M1 we denote
a (possibly empty) multiset of objects, and by M2 and M3 we denote (possibly
empty) multisets of objects, elementary and composite membranes.

(d) [a[ ]h]m → [ ]h[w]m, for h,m ∈ H,a ∈V,w ∈V ∗; fexo

M3

m

a
M2 h

M1 M3
h

M1

m

w
M2

An elementary membrane labelled h is expelled by a membrane labelled m,
under the control of object a of m; the labels of the two membranes remain
unchanged, but the object a from membrane m is modified during this opera-
tion; membrane m is not necessarily elementary. By M1 we denote a (possibly
empty) multiset of objects, and by M2 and M3 we denote (possibly empty)
multisets of objects, elementary and composite membranes.

(e) [u]h[v]m → [[u]hv]m, for h,m ∈ H,u,v ∈V ∗; pendo

M3
h

u M1

m

v
M2

M3

m

v
M2 h

u M1

An elementary membrane labelled h containing u enters the adjacent mem-
brane containing v; the objects do not evolve in the process. By M1 we denote
a (possibly empty) multiset of objects, and by M2 and M3 we denote (possibly
empty) multisets of objects, elementary and composite membranes.

(f) [v[u]h]m → [u]h[v]m, for h,m ∈ H,u,v ∈V ∗; pexo
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M3

m

v
M2 h

u M1 M3
h

u M1

m

v
M2

An elementary membrane labelled h containing u comes out of the membrane
labelled m containing v. The objects do not evolve in the process. By M1 we
denote a (possibly empty) multiset of objects, and by M2 and M3 we denote
(possibly empty) multisets of objects, elementary and composite membranes.

(g) [[a] j[b]h]k → [[w] j[b]h]k for h, j,k ∈ H,a,b ∈V,w ∈V ∗; cevol

M4 M3

k
j

a M1
h

b M2 M4 M3

k
j

w M1
h

b M2

An object a in membrane m evolves into w when membranes h and m are
adjacent to each other inside membrane k. By M1, M2, M3 and M4 we denote
(possibly empty) multisets of objects, elementary and composite membranes.

The rules of enhanced mobile membranes are applied according to the principles
of simple mobile membranes. Here endo and exo represent endocytosis and exocy-
tosis, f endo and f exo represent forced endocytosis and forced exocytosis, pendo
and pexo represent pure endocytosis and pure exocytosis, while cevol represents
contextual evolution. When we restrict |w|= 1 in rules (a) - (d), we call the opera-
tions rendo, rexo, r f endo and r f exo where r stands for “restricted”.

Example 2.1. In order to simulate the evolution presented in Figure 2.3, we need
first to encode all the components of the immune system into a membrane system.
This can be realized by associating a membrane to each component, and objects to
the signals, states and parts of molecules. For the steps done by the dendritic cells
presented in Figure 1 we use the following encodings:

• dendritic cell - [eat]DC

An immature dendritic cell is willing to eat any bacterium it encounters, so we
translate it into a membrane labelled by DC which has inside an object eat used to
engulf the bacterium. Once the dendritic cell matures, the object eat is consumed.

• bacterium cell - [antigen]bacterium

A bacterium cell contains antigen so we simply represent it as a membrane la-
belled by bacterium containing a single object antigen which contains the infor-
mation of the bacterium.

• lymph node - [ ]lymph node

The lymph node is the place to which the mature dendritic cells migrate in order
to start the immune response, so we translate it into a membrane labelled by
lymph node.

Using the above membranes we can describe the membrane system as follows (here
skin stands for the body skin):
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[[eat]DC[ ]lymph node]skin[antigen]bacterium

with the following rules which describe its evolution:

• [antigen]bacterium[ ]skin → [[antigen]bacterium]skin

A bacterium enters through the skin by performing an endocytosis rule in order
to infect the body. The bacterium contains an object antigen which represent its
signature.

• [eat]DC[ ]bacterium → [eat[ ]bacterium]DC

Once an immature dendritic cell becomes sibling to a bacterium, it “eats” the bac-
terium by performing a forced endocytosis rule. Until this moment the bacterium
has controlled its own movement; in this step of the evolution the movement
becomes controlled by the dendritic cell which eats the bacterium.

• [[antigen]bacterium]DC → [[antigen δ ]bacterium]DC

Once the bacterium has entered the dendritic cell, an object δ is created in order
to dissolve the membrane bacterium, and the content of the bacterium is released
into the dendritic cell.

• [antigen]DC[ ]lymph node → [[antigen]DC]lymph node

Once the dendritic cell contains antigen, it enters the lymph node in order to
activate a special class of T cells, namely the helper T cells.

• [[eat]DC]lymph node → [[ ]DC]lymph node

Once the dendritic cell enters the lymph node it matures and the capacity to
engulf bacteria disappears, namely the eat object is consumed.

Using only these few rules we can simulate the way a bacterium is engulfed and
its content is displayed by the eater cell. The proteins produced by helper T cells
activate the B cells.

Fig. 2.4 Activation of T cells (a) and B cells (b)

For the process of activating the helper T cells and B cells we use the following
encodings:

• helper T cell - [passive]helper T cell
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A helper T cell is initially passive, so we represent it as a membrane labelled
hel per T cell in which the object passive is placed. When the cell is activated
the object passive is transformed into active.

• B cell - [passive]B cell

A B cell is initially passive, so we represent it as a membrane labelled B cell in
which the object passive is placed. When the cell is activated the object passive
is transformed into active.

The activation of the helper T cells and B cells is conditioned by the presence in the
lymph node of the dendritic cells, and that is why we use the following contextual
evolution rules:

• [[antigen]DC[passive]helper T cell ]lymph node →
[[antigen]DC[active]helper T cell ]lymph node

Once the dendritic cell containing antigen enters the lymph node, it activates a
special class of T cells, namely the helper T cells. This is denoted by changing
the object passive to active in helper T cells.

• [[passive]B cell [active]helper T cell ]lymph node →
[[active]B cell [active]helper T cell ]lymph node

Once the helper T cells are activated, the B cells that are sibling with them are
the next cells which are activated.

The B cell searches for antigen matching its receptors. If it finds such antigen,
then inside the B cell a triggering signal is set off. Using the proteins produced by
helper T cells, the B cell starts to divide and produce clones of itself. During this
process, two new cell types are created: plasma cells which produce an antibody,
and memory cells which are used to “remember” specific intruders.

These examples motivate the introduction of the new class of mobile membranes;
more exactly, they motivate the new rules and the way they can be used in modelling
some biological systems.

2.3.3 Mutual Mobile Membranes

Mutual mobile membrane systems represent a variant of mobile membrane sys-
tems in which endocytosis and exocytosis work whenever the involved membranes
“agree” on the movement. This agreement is described by using dual objects a and a
in the involved membranes, with a = a. The duality relation is distributive over a
multiset, namely u = a1 . . .an for u = a1 . . .an.

Definition 2.4. A mutual mobile membrane system is a construct
∏ = (V,H,μ ,w1, . . . ,wn,R, iO), where:

1. n, V , H, μ , wi, iO are as in Definition 2.1;
2. R is a finite set of developmental rules of the following forms:
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(a) [uv]h[uv′]m → [ [w]hw′]m for h,m ∈ H,u,u ∈V +,v,v′,w,w′∈V ∗; mendo

uv

h

uv′ M1

m

M2 w′
M1

m

M2w

h

An elementary membrane labelled h enters the adjacent membrane labelled m
under the control of the multisets of objects uv and uv′. The labels h and m
remain unchanged during this process; however the multisets of objects uv
and uv′ are replaced with the multisets of objects w and w′, respectively. By M1

and M2 we denote (possibly empty) multisets of objects, elementary and com-
posite membranes.

(b) [uv′[uv]h]m → [w]h[w′]m for h,m ∈ H,u,u ∈V +,v,v′,w,w′∈V ∗; mexo

w

h

w′ M1

m

M2uv′
M1

m

M2uv

h

An elementary membrane labelled h exits a membrane labelled m, under the
control of the multisets of objects uv and uv′. The labels of the two membranes
remain unchanged, but the multisets of objects uv and uv′ are replaced with the
multisets of objects w and w′, respectively. By M1 and M2 we denote (possibly
empty) multisets of objects, elementary and composite membranes.

The rules of the mutual mobile membranes are applied according to the principles
of simple mobile membranes. Here mendo and mexo represent mutual endocytosis
and mutual exocytosis. A multiset u indicates the membrane which initializes the
move in the rules of type (a)−(b), while a multiset u indicates the membrane which
accepts the movement.

2.3.4 Mutual Mobile Membranes with Objects on Surface

Membrane fusion occurs when two separate membranes containing complementary
proteins merge into a single membrane. The process described in Figure 2.5 is per-
formed in several well-distinguished steps.

Initially, the two involved membranes mutually identify each other by means of
complementary proteins: v-SNARES and t-SNARES. Then SNARES located on the
vesicles (v-SNARES) and on the target membranes (t-SNARES) interact with one
another to form a stable complex that brings the two membranes very close. Finally,
the vesicle and target membranes distort and then fuse. Each vesicle must only fuse
with the correct target membrane in order to avoid an unwanted mixing of proteins.
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Fig. 2.5 Vesicle Fusion Mediated by Complex Formation of Complementary SNARES

These biological facts provide the motivation for using objects and co-objects
for the pino, exo and phago rules as done in [20]. These rules are also related to the
formal approach defined in [45]. After presenting some technical notions, we define
systems of mutual mobile membranes with objects on surface.

Definition 2.5. A system of n mutual mobile membranes with objects on surface
(M3OSn) is a construct

Π = (V,μ ,u1, . . . ,un,R, iO)
where:

1. n, V , iO are as in Definition 2.1;
2. μ is a membrane hierarchical structure with n≥ 2 membranes;
3. u1, . . . ,un are multisets of proteins (represented by strings over V ) bound to the n

membranes at the beginning of the computation; the membranes are bijectively
mapped to {1, . . . ,n}; the skin membrane is labelled with 1 and u1 = ε;

4. R is a finite set of rules of the following forms:

(a) [ ]auav →m [[ ]cu]d v, for a,a ∈V,c,d,u,v ∈V ∗
pino

M1 M2

auav
m M1 M2

dv
cu

An object a together with a complementary object a model the creation of
an empty membrane within the membrane on which are objects a and a. We
should imagine that the original membrane buckles towards the inside, and
pinches off by breaking the connection between a and a. The multiset of ob-
jects u on the newly created (empty) membrane is transferred from the initial
membrane. The objects a and a are modified during this step to the multisets c
and d, respectively. On the surface of the membrane appearing on the left hand
side of the rule there are some objects (other than auav) which are ignored;
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these objects are also not specified on the right hand side of the rule, being ran-
domly distributed between the two resulting membranes. By M1 and M2 we
denote (possibly empty) multisets of elementary and composite membranes.

(b) [[ ]au]av →m [ ]cud v, for a,a ∈V,c,d,u,v ∈V ∗
exo

M1 M2 M3

cudv

M1 M2

av

M3 au m

An object a together with a complementary object a model the merging of a
nested membrane with its surrounding membrane. We should imagine that the
connection between a and a represent the point where the membranes connect
to each other. In this merging process (which is a smooth and continuous
process), the membrane having the multiset au on its surface gets expelled to
the outside, and all objects of the two membranes are united into a multiset on
the membrane which initially contained v. The objects a and a are modified
during this evolution to the multisets c and d, respectively. If the membrane
having on its surface the object a is composite, then its content is released near
the newly merged membrane after applying the rule. On the surface of the
membranes appearing on the left hand side of the rule there are some objects
(other than au and av) which are ignored; these objects are also not specified
on the right hand side of the rule, being moved onto the resulting membrane.
By M1, M2 and M3 we denote (possibly empty) multisets of elementary and
composite membranes.

(c) [ ]au[ ]av→m [[[ ]cu]d ]v, for a,a ∈V,c,d,u,v ∈V ∗
phago

M1 au M2

av

m M1 M2

v
d

cu

An object a together with its complementary object a model a membrane (the
one with a on its surface) “eating” an elementary membrane (the one with a
on its surface). The membrane having a and v on its surface wraps around the
membrane having a and u on its surface. An additional membrane is created
around the eaten membrane; the objects a and a are modified during this evo-
lution to the multisets c and d (the multiset c corresponds to a and remains
on the eaten membrane, while the multiset d corresponds to a and is placed
on the newly created membrane). On the surface of the membranes appearing
on the left hand side of the rule there are some objects (other than au and av)
which are ignored; these objects are also not specified on the right hand side of
the rule. The objects appearing on the membrane initially having the object a
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on surface remain unchanged, while the objects appearing on the membrane
initially having the object a on surface are randomly distributed between the
two resulting membranes (the ones with d and v). By M1 and M2 we denote
(possibly empty) multisets of elementary and composite membranes.

The rules of mutual mobile membranes with objects on surface are applied ac-
cording to the principles of simple mobile membranes.

2.4 Computability Power of Mobile Membranes

Several notions and notations from the field of formal languages that are used here
can be found in [80] and [142].

2.4.1 Preliminaries

For an alphabet V = {a1, . . . ,an}, we denote by V ∗ the set of all strings over V ; λ
denotes the empty string. V ∗ is a monoid with λ as its unit element. For a string
x ∈V ∗, |x|a denotes the number of occurrences of symbol a in x. A multiset over V
is represented by a string over V (together with all its permutations), and each string
precisely identifies a multiset. For an alphabet V , the Parikh vector is ψV : V ∗ →Nn

with ψV (x) = (|x|a1 , . . . , |x|an), for all x ∈V ∗. For a language L, the Parikh vector is
ψV (L) = {ψV (x) | x ∈ L}, while for a family FL of languages, the Parikh vector is
PsFL = {ψV (L) | L ∈ FL}.

Definition 2.6. A matrix grammar with appearance checking G = (N,T,S,M,F)
is a construct where N, T are disjoint alphabets of non-terminals and terminals,
S ∈ N is the axiom, M is a finite set of matrices (A1 → x1, . . . ,An → xn) of context-
free rules, and F is a set of occurrences of rules in M. For w,z ∈ (N ∪ T )∗, we
write w ⇒m z if there is a matrix m = (A1 → x1, . . . ,An → xn) in M and the strings
wi ∈ (N∪T )∗, 1≤ i≤ n+1, such that w = w1, z = wn+1, and for all i, 1≤ i≤ n, either
(1) wi = w′iAiw′′i , wi+1 = w′ixiw′′i , for some w′i, w′′i ∈ (N ∪T )∗, or (2) wi = wi+1, Ai

does not appear in wi, and the rule Ai → xi appears in F. The language generated
by G is L(G) = {x ∈ T ∗ | S ⇒∗ x}.

Definition 2.7. A matrix grammar in the strong binary form G = (N,T,S,M,F) is
a construct where N = N1∪N2∪{S,#}, with these three sets mutually disjoint, two
distinguished symbols B(1),B(2) ∈ N2, and the matrices in M of one of the following
forms:

(1) (S → XA), with X ∈ N1,A ∈ N2;
(2) (X → Y,A→ x), with X ,Y ∈ N1,A ∈ N2,x ∈ (N2∪T )∗, |x| ≤ 2;
(3) (X → Y,B( j) → #), with X ,Y ∈ N1, j = 1,2;
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(4) (X → λ ,A→ x), with X ∈ N1,A ∈ N2,x ∈ T ∗, |x| ≤ 2.

If we ignore the empty string when comparing languages, then the rules of type (4)
are of the form (X → a,A→ x), with X ∈ N1, a ∈ T , A ∈ N2, x ∈ T ∗.

We denote by PsRE the family of Turing computable sets of vectors generated
by arbitrary grammars.

By NRCM(M,CF −λ ,ac) and NMATac we denote the families of sets of num-
bers computed by random context non-erasing matrix grammars with appearance
checking, and non-erasing matrix grammars with appearance checking, respectively.
These can also be looked at as the families of sets of numbers recognized by these
languages. It is known that NRCM(M,CF−λ ,ac) = NMATac ⊂ NRE (see [80]).

Definition 2.8 (Left Quotient). The left quotient of a language L by a letter a is
given by ∂a(L) = {x | ax ∈ L}.

Definition 2.9 (Random Context Matrix Grammars ). A random context matrix
grammar is a construct G = (N,T,M,S,F) where N,T,S are as in a usual matrix
grammar and M is a finite set of triples ((A1 → x1,A2 → x2, . . . ,An → xn),Q,R)
where Ai → xi are context-free rules, 1 ≤ i ≤ n, Q,R ⊆ N, Q∩ R = /0. A matrix
can be applied to a string x = x1X1x2X2 . . .Xlxl+1 in order to rewrite effectively the
symbols X1, . . . ,Xl only if x1, . . .xl+1 contains all symbols of Q and no symbols
of R. We denote by RCM(M,β ,max(α,γ)) the family of languages generated by
random context matrix grammars G = (N,T,S,M,F) with rules of type β , with
β ∈ {CF,CF −λ}. If γ = ac, then F is arbitrary, and if γ is empty, then F = /0. If
α = ac, then R is arbitrary in ((r1, . . . ,rn),Q,R)∈M and if α is empty, no forbidding
contexts are involved. max (α,γ) = ac if at least one of α,γ is ac. Thus, if no
appearance checking is used, and if no forbidding contexts are used, we have the
family RCM(M,β , /0).

Minsky introduced the concept of register machines in [125] by showing that the
power of Turing machines can be achieved by such abstract machines using a finite
number of registers for storing arbitrarily large non-negative integers. A register
machine runs a program consisting of labelled instructions which encode simple
operations for updating the content of the register.

Definition 2.10 (Register Machine). An n-register machine is M = (n,B, l0, lh, I),
where:

• n is the number of registers; B is a set of labels; l0 and lh are the labels of the
initial and halting instructions;

• I is a set of labelled instructions of the form li : (op(r), l j, lk), where op(r) is an
operation on register r of M, and li, l j, lk are labels from the set B.

• the machine is capable of the following instructions:

1. li : (ADD(r), l j, lk): Add one to the content of register r and proceed, in a non-
deterministic way, to instruction with label l j or to instruction with label lk; in
the deterministic variant, l j = lk and then the instruction is written in the form
li : (ADD(r), l j).



58 2 Mobility in Membrane Computing

2. li : (SUB(r), l j, lk): If register r is not empty, then subtract one from its con-
tents and go to instruction with label l j, otherwise proceed to instruction with
label lk.

3. lh : halt: This instruction stops the machine and can only be assigned to the
final label lh.

Theorem 2.1 ([146]). A 3-register machine can compute any partial recursive func-
tion of one variable. It starts with the argument in a counter, and (if it halts) leaves
the answer in a counter.

Definition 2.11 (E0L System). G = (V,T,ω ,R) is a construct where V is the alpha-
bet, T ⊆V is the terminal alphabet, ω ∈V ∗ is the axiom, and R is a finite set of rules
of the form a→ v with a∈V and v∈V ∗ such that for each a∈V there is at least one
rule a→ v in R. For w1,w2 ∈V ∗, we say that w1 ⇒w2 if w1 = a1 . . .an, w2 = v1 . . .vn

for ai → vi ∈ R, 1≤ i≤ n. The generated language is L(G) = {x ∈ T ∗ | ω ⇒∗ x}.

Definition 2.12 (ET0L System). G = (V,T,ω ,R1, . . .Rn) is a construct such that
each (V,T,ω ,Ri) is an E0L system; each Ri is called a table, 1≤ i≤ n. The generated
language is defined as L(G) = {x ∈ T ∗ | ω ⇒R j1

· · · ⇒R jm
wm = x}, with m ≥ 0,

1 ≤ ji ≤ n, 1 ≤ i ≤ m. We denote by PsET 0L the families of languages generated
by extended table 0L grammars.

2.4.2 Simple Mobile Membranes

The computational power of simple mobile membranes is treated in [108].
The family of all sets Ps(Π) generated by systems of degree at most n using rules

α ∈ {levol,gevol,endo,exo} is denoted by PsMM(α) If the number of membranes
is not bounded, this is denoted by PsMM∗(levol,endo,exo). Here levol and gevol
represent local and global evolution, endo and exo represent endocytosis and exo-
cytosis. The number of membranes does not increase during the computation, but it
can decrease by sending membranes out of the skin.

The following result establishes a universality result using nine membranes and
the operations of endocytosis and exocytosis:

Theorem 2.2 ([108]). PsMM9(endo,exo) = PsRE.

A strengthening of the previous universality result is:

Corollary 2.1 ([108]). PsMM∗(endo,exo) = PsMMn(endo,exo) =
PsMMn(gevol, endo,exo) = PsMMn(levol,endo,exo) = PsRE, for all n≥ 9.

An improvement of Theorem 2.2 is:

Theorem 2.3 ([103]). PsMM4(gevol,endo,exo) = PsRE.

We improve the previous result by decreasing the number of membranes to three.
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Theorem 2.4. PsMM3(levol,endo,exo) = PsRE.

Proof. Consider a matrix grammar G = (N,T,S,M,F) in the improved strong bi-
nary normal form (hence with N = N1∪N2∪{S;#}), having n1 matrices of types (2)
and (4) (that is, not used in the appearance checking mode), and n2 matrices of
type (3) (with appearance checking rules). Let B(1) and B(2) be the two objects
in N2 for which we have rules B( j) → # in matrices of M. The matrices of the
form (X → Y,B( j) → #) are labelled by m′

i, with i ∈ lab j, for j ∈ {1,2}, such
that lab1, lab2, and lab0 = {1, . . . ,n1} are mutually disjoint sets.

We construct a mobile membrane system Π = (V,H,μ ,w1,w2,w3,R,2) of degree
three, where:

V = N∪{X ,Xi, j | X ∈ N1,1≤ i≤ n1,0≤ j ≤ n1}
∪{a,a′ | a ∈ T}∪{x | x ∈ (N2∪T )∗}
∪{A,Ai, j | A ∈ N2,1≤ i≤ n1,0≤ j ≤ n1}

H = {1,2,3}
μ = {(1,2);(1,3)}
w2 = XA, where (S→ XA) is the initial matrix of G
wh = λ , for all h ∈ {1,3}

The set R of rules is constructed as follows:

(i) For each (nonterminal) matrix mi : (X → Y,A → x), X ,Y ∈ N1, x ∈ (N2 ∪ T )∗,
A ∈ N2, with 1≤ i≤ n1, we consider the rules:

1. [X ]2[ ]3 → [[Xi,0]2]3 (endo)
2. [[A]2]3 → [A j,0]2[ ]3 (exo)
3. [[Xi,k → Xi,k+1]2]1, k < i (levol)
4. [[A j,k → A j,k+1]2]1, k < j (levol)
5. [[A j, jXi,i → xY ]2]1, j = i (levol)
6. [[A j,iXi,i → #]2]1, j > i (levol)
7. [[A j, jXi, j → #]2]1, j < i (levol)

In the initial configuration, we have the objects X and A corresponding to the
initial matrix in membrane 2. To simulate a matrix of the above type we start
by applying the endocytosis rule 1, thus replacing X with Xi,0, followed by the
exocytosis rule 2, thus replacing a single A∈N2 with A j,0. No other A∈N2 can be
replaced until membrane 2 enters membrane 3. Rule 3 (for X) and rule 4 (for A)
are used to increment the second indices of X and A. This is done to check if the
first indices of X and A are the same, and in this case to rewrite A according to
the matrix mi. Once the first indices are equal, rule 5 is applied to complete the
simulation of matrix mi. If the first indices of X and A are not the same, rule 6
(if the first indices of X is lower than the first indices of A) or rule 7 (if the first
indices of X is bigger than the first indices of A) is applied, the computation is
blocked without producing any output. We now illustrate the evolution of the
configurations during one simulation of a type (2) matrix.
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1
2

XA
3

1−→

1
2

Xi,0A

3

2−→

1
2

Xi,0A j,0
3

3,4↓

1
2

Xi,1A j,1
3

3,4...,3,4←−

1
2

Xi,iAi,i
3

5←−

1
2

xY
3

(ii) For a terminal matrix mi : (X → a,A→ x), X ∈ N1, a ∈ T , A ∈ N2, x ∈ T ∗, where
1≤ i≤ n1, we use rules 1-7, where rule 5 is replaced by the rules:

8. [ai,iXi,i → a′Y ]1 (levol)
9. [[a′]2]1 → [a]2[ ]1 (exo)

Observe that simulation of a type (4) matrix follows similar steps, except that
we have an a in place of Y . During the finishing stages of a type (4) simulation,
we use rule 8 to replace ai,i by a′, and then to rewrite it to a when sending the
membrane 2 out of the skin membrane, namely membrane 1. We now illustrate
the evolution of the configurations during one simulation of a type (4) (terminal)
matrix.

1
2

XA
3

1−→

1
2

Xi,0A

3

2−→

1
2

Xi,0Ai,0
3

3,4↓

1
2

Xi,1Ai,1
3

3,4...,3,4←−

1
2

Xi,iAi,i
3

5←−

1
2

a′Y
3

9↓

1
2

aY
3

(iii) For each matrix m′
i : (X → Y,B(k) → #), X ,Y ∈ N1, where n1 + 1 ≤ j ≤ n1 + n2,

j ∈ labk, k = 1,2, we consider the rules:

10. [X ]2[ ]3 → [[Xk]2]3, for i ∈ labk (endo)
11. [[XkB(k) → #]2]3, k = 1,2 (levol)
12. [[Xk]2]3 → [Y ]2[ ]3, k = 1,2 (exo)

The simulation of matrices of type (3) begins with a rule of type 10. This is fol-
lowed by a rule 11 in case B(k) exists, blocking membrane 2 inside membrane 3
and the computation stops without producing any output. If no B(k) exists, then
rule 12 can be used to send out membrane 2, successfully completing the simula-
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tion. We now illustrate the evolution of the configurations during one simulation
of a type (3) matrix.

1
2

XA
3

11−→

1
2

XkA
3

12−→

1
2

YA
3

��

2.4.3 Enhanced Mobile Membranes

The operations governing the mobility of enhanced mobile membranes are endo-
cytosis (endo), exocytosis (exo), enhanced endocytosis (fendo) and enhanced exo-
cytosis (fexo). The interplay between these four operations is quite powerful, and
the computational power of a Turing machine is obtained using twelve membranes
without using the context-free evolution of objects [107].

The family of all sets Ps(Π) generated by systems of degree at most n using
rules α ⊆ {exo,endo, f endo, f exo, pendo, pexo,rendo,rexo,r f endo,r f exo,cevol}
is denoted by PsEMMn(α). Here cevol represents contextual evolution. The main
results are the following.

Theorem 2.5 ([107]). PsEMM12(endo,exo, f endo, f exo) = PsRE.

Theorem 2.6 ([107]). PsEMM3(cevol) = PsRE.

Theorem 2.7 ([107]). PsEMM3(endo,exo) = PsEMM3( f endo, f exo).

We improve the result of Theorem 2.5 as follows:

Theorem 2.8. PsEMM9(endo,exo, f endo, f exo) = PsRE.

Proof. Consider a matrix grammar G = (N,T,S,M,F) in the improved strong bi-
nary normal form (hence with N = N1∪N2∪{S;#}), having n1 matrices m1, . . . ,mn1

of types (2) and (4) (that is, not used in the appearance checking mode), and n2 ma-
trices of type (3) (with appearance checking rules). The initial matrix is m0, with
m0 : (S → XA). Let B(1) and B(2) be the two objects in N2 for which we have rules
B( j) → # in matrices of M. The matrices of the form (X → Y,B( j) → #) are la-
belled by m′

i, 1 ≤ i ≤ n2 with i ∈ lab j, for j ∈ {1,2}, such that lab1, lab2, and
lab0 = {1,2, . . . ,n1} are mutually disjoint sets.

We construct a mobile membrane system Π = (V,H,μ ,w1, . . . ,w9,R,7) of de-
gree nine, where:

V = N∪T ∪{X ′
0i,A

′
0i | X ∈ N1,A ∈ N2,1≤ i≤ n1}

∪{Xji,A ji | 0≤ i, j ≤ n1}∪{X ( j)
i ,Xj | X ∈ N1, j ∈ {1,2},1≤ i≤ n2}

H = {1, . . . ,9}
μ = {(1,7);(1,8);(1,9);(1,2);(2,3);(2,4);2,5);(2,6)}
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w7 = XA, where (S→ XA) is the initial matrix of G
wh = λ , for all h ∈ {1, . . . ,9}\{7}

The set R of rules is constructed as follows:

(i) For each (nonterminal) matrix mi : (X → Y,A → x), X ,Y ∈ N1, x ∈ (N2 ∪ T )∗,
A ∈ N2, with 1≤ i≤ n1, we consider the rules:

1. [X ]7[ ]8 → [[Xi,i]7]8 (endo)
2. [[A]7]8 → [A j, j]7[ ]8 (exo)
3. [Xk,i]7[ ]9 → [[Xk−1,i]7]9, k > 0 (endo)
4. [[Ak, j]7]9 → [Ak−1, j]7[ ]9, K > 0 (exo)
5. [ ]8[X0,i]7 → [X ′

0,i[ ]8]7 (fendo)
6. [ ]9[A0, j]7 → [A′0, j[ ]9]7 (fendo)
7. [ ]8[X0, j]7 → [#[ ]8]7 (fendo)
8. [[A0, j]7]9 → [#]7[ ]9 (exo)
9. [X ′

0, j[ ]8]7 → [ ]8[Y ]7 (fexo)
10. [A′0, j[ ]9]7 → [ ]9[x]7 (fexo)

We now illustrate the evolution of the configurations during one simulation of a
type (2) matrix, when i = j.

. . .
1

7
XA

8 9

1−→
. . .

1
7

Xi,iA

8 9

2↓

. . .
1

7
Xi,iA j, j

8 9

3,4,...,3,4←−
. . .

1
7

X0,iA0, j

8
9

5,6↓

. . .
1

7

X ′
0,iA

′
0, j

8 9

9,10−→
. . .

1
7

Y x
8 9

In the initial configuration, we have the objects X , A corresponding to the initial
matrix in membrane 7. To simulate a matrix of type (2), we start by applying
the endocytosis rule 1, thus replacing X with Xi,i, followed by the exocytosis
rule 2, thus replacing a single A ∈ N2 with A j, j. Rule 3 (for X) and rule 4 (for A)
are used to decrement the first indices of X and A. This is done to check if the
indices of X and A are the same, and in this case to rewrite A according to the
matrix mi. By using fendo rules 5 and 6, membranes 8 and 9 enter membrane 7
replacing X0,i and A0, j with X ′

0,i and A′0, j, respectively. This is then followed
by rules 9 and 10, when membranes 8 and 9 exit membrane 7 by fexo rules
replacing X ′

0,i and A′0,i with Y and x, respectively. If i > j, then we obtain A0, j

before X0,i. In this case, we have a configuration where membrane 7 is inside
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membrane 9 containing A0, j. Then rule 8 is used, replacing A0, j with #, and an
infinite computation is obtained (rule 17). If j > i, then we obtain X0,i before A0, j.
In this case, we reach a configuration with X0,iAk, j, k > 0 in membrane 7, and
membrane 7 placed inside membrane 1. Rule 3 cannot be used now, and the only
possibility is to use rule 7, which leads to an infinite computation. Thus, if i = j,
then we can correctly simulate a matrix of type (2).

(ii) For each matrix m′
i : (X →Y,B(k) → #), X ,Y ∈ N1, A ∈ N2, n1 +1≤ j ≤ n1 +n2,

j ∈ labk, k = 1,2, we consider the rules:

11. [X ]7[ ]2 → [[X ( j)
i ]7]2, j = 1,2 (endo)

12. [ ] j+2[X
( j)
i ]7 → [X ( j)

i [ ] j+2]7, j = 1,2 (fendo)
13. [ ] j+4[B( j)]7 → [#[ ] j+4]7, j = 1,2 (fendo)

14. [X ( j)
i [ ] j+2]7 → [ ] j+2[Yj]7, j = 1,2 (fexo)

15. [[Yj]7]2 → [Y ]7[ ]2, j = 1,2 (exo)

The simulation of matrices of type (3) begins with a rule of type 11. Inside mem-
brane 2, rules 12 and 13 are used, and so membrane ( j +2) enters membrane 7,
and membrane ( j + 4) enters membrane 7 if the symbol B( j) is present. In this
case, B( j) is replaced with #. Otherwise, membrane ( j + 2) comes out of the

membrane 7 replacing X ( j)
i with Yj. Then membrane 7 exits membrane 2, by

replacing Yj with Y thus successfully simulating a matrix of type (3). We now
illustrate (only the membranes appearing in the rules 11-15 and j = 1) the evo-
lution of the configurations during one simulation of a type (3) matrix.
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X ( j)
i A

2
3

12↓
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2
3

14←−
. . .
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1
7

YjA

2
3

15↓
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...

1
7
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2

3

(iii) For a terminal matrix mi : (X → a,A→ x), X ∈ N1, a ∈ T , A ∈ N2, x ∈ T ∗, where
1≤ i≤ n1:

16. [[a′]7]1 → [a]7[ ]1 (exo)
17. [ ]8[#]7 → [#[ ]8]7 (fendo)

[#[ ]8]7 → [ ]8[#]7 (fexo)

Observe that simulation of a matrix of type (4) is similar to that of a matrix of
type (2), except that we have an a′ in place of Y in rule 9. During the finishing
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stages of a matrix of type (4) simulation, we use rule 16 to replace a′ with a when
sending the membrane 7 out of the skin membrane. We now illustrate (only the
membranes appearing in the rules 1-8,16-17) the evolution of the configurations
during one simulation of a type (4) (terminal) matrix.

. . .
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7
XA

8 9

1−→
. . .

1
7

Xi,iA

8 9

2↓

. . .
1
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Xi,iA j, j

8 9

3,4,...,3,4←−
. . .

1
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X0,iA0, j

8
9

5,6↓

. . .
1

7

a′A′0, j
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. . .

1
7

a x
8 9
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The family of all sets of numbers N(Π) which are obtained as a result of a halting
computation by a P system Π with enhanced mobile membranes of degree at most n
using rules α ⊆ {exo,endo, f endo, f exo, pendo, pexo}, is denoted by NEMMn(α).
In what follows we present the results obtained in [61].

Theorem 2.9. NEMM5(endo,exo, f endo, f exo) = NRE.

Proof. We only prove the assertion NRE ⊆ NEMM5(endo,exo, f endo, f exo), and
infer the other inclusion from the Church-Turing thesis. The proof is based on the
observation that each set from NRE is the range of a recursive function. Thus, we
will prove that for each recursively enumerable function f : N → N, there is a Π
with five membranes satisfying the following condition: For any arbitrary x ∈N, the
system Π first “generates” a multiset of the form cx and halts if and only if f (x) is
defined, and, if so, the result of the computation is f (x).

In order to prove this assertion, we consider a register machine M with three
registers, the last one being a special output register which is never decremented.
Let there be a program P consisting of h instructions l1, . . . , lh which computes f .
Let lh correspond to the instruction HALT and l1 be the first instruction. The input
value x is expected to be in register 1 and the output value in register 3. Without loss
of generality, we can assume that all registers other than the first one are empty at
the beginning of a computation. We construct the membrane system

Π = (V,{0,1,2,3,4},{(0,1);(0,2);(0,3);(0,4)}, /0,{a0},{a1},{K0}, /0,R,3)
with V = {li, l′i , l

′′
i ,Li,L′i | 1≤ i≤ h} ∪{K0,a0,a1,c}. The rules R are:

1. [K0]3[ ]1 → [[K0]3]1 (endo)
[[ ]3a0]1 → [ ]3[a0c]1 (fexo)
[[K0]3]1 → [l1]3[ ]1 (exo)
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Generation of cx, the initial contents of register 1: Membrane 3 with K0 enters
membrane 1, and comes out each time adding a c to membrane 1. To termi-
nate, K0 is changed to l1.

2. [li]3[ ]1 → [[l j]3]1 (endo)
[[ ]3a0]1 → [ ]3[a0c]1 (fexo)

3. [li]3[ ]2 → [ [l j]3]2 (endo)
[[ ]3a1]2 → [ ]3[a1c]2 (fexo)

4. [li]3[ ]4 → [[l jc]3]4 (endo)
[[l j]3]4 → [l j]3[ ]4 (exo)
Simulation of an increment instruction: li : (inc(k), l j). An endo and fexo rule
given by rule 2 is used to increment counter 1: membrane 3 enters mem-
brane 1 changing the instruction label, and comes out after adding a c to mem-
brane 1. There is a similar rule (rule 3) between membranes 2, 3 for incrementing
counter 2, with a1 playing the role of a0 for increment. To increment counter 3,
we use the rules (rule 4) between membranes 3 and 4.

5. [ ]1[li]3 → [[ ]1Li]3 (fendo)
6. [[c]1]3 → [ ]1[ ]3 (exo)

[ ]4[Li]3 → [[ ]4L′i]3 (fendo)
7. [[ ]1L′i]3 → [ ]1[l′′i ]3 (fexo)
8. [[ ]4l′′i ]3 → [ ]4[l′′i ]3 (fexo)
9. [[ ]4L′i]3 → [ ]4[L′i]3 (fexo)

10. [L′i]3[ ]4 → [[l′i ]3]4 (endo)
11. [[l′i ]3]4 → [l′i ]3[ ]4 (exo)

Simulation of a decrement instruction li : (dec(1), l′i , l
′′
i ). The simulation is ini-

tiated by rule 5: when membrane 1 enters membrane 3 by a fendo rule, li is
replaced with Li. If there is a c in membrane 1, then membrane 1 exits mem-
brane 3 using rule 6; in parallel, membrane 4 enters membrane 3 using a fendo
rule, replacing Li with L′i. If there were no c’s in membrane 1, then membrane 1
will still be inside membrane 3, hence rule 7 is used, replacing L′i with l′′i , a
fexo rule. Membrane 4 exits membrane 3 irrespective of when membrane 1 exits
membrane 3. If the symbol L′i is present in membrane 3 after both membranes 1
and 4 exit it, then it means that there was a c in membrane 1; this L′i is now re-
placed with l′i using the endo, exo rules 10, 11. Rules for decrementing counter 2
are similar, with membrane 2 playing the role of membrane 1.

If M halts, then eventually we will have the instruction lh in membrane 3 and
membranes 1, 2 will have the final contents of counters 1, 2. Using the rule
[lh]3[ ]4 → [[ ]3]4, the label lh is erased. If we assign 3 as the output membrane,
then its contents will be same as the contents of the output counter 3 at the end of a
halting computation. ��

Theorem 2.10. NEMM10( f endo, f exo) = NRE.

Proof. The proof is done by simulating a matrix grammar G = (N,T,S,M,F) with
appearance checking in the strong binary normal form. We construct the P system

Π = (V,{0,1,1′,2,2′,3,4,5,6,7},μ ,{XA}, /0, . . . , /0,R,0)
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with μ = {(7,0);(7,3);(7,4);(7,5);(7,1);(7,1′);(7,2);(7,2′);(7,6)}.
V = N∪T ∪{Xi j,Ai j | 0≤ i, j ≤ n1,X ∈ N1,A ∈ N2}
∪ {X ′

j,X
′′
j | X ∈ N1,n1 +1≤ j ≤ n1 +n2} ∪ {Z,†}.

Here, XA in membrane 0 corresponds to the initial matrix (S → XA). Membrane 0
is the output membrane. Let there be n1 matrices of types (2), (4) in G labelled
1, . . .n1 and n2 matrices of type (3) in G labelled n1 +1, . . . ,n1 +n2. The rules are

1. [X ]0[ ]3 → [Xii[ ]3]0 (fendo)
[A[ ]3]0 → [A j j]0[ ]3 (fexo)

2. [Xki]0[ ]4 → [Xk−1i[ ]4]0 (fendo)
[Ak j[ ]4]0 → [Ak−1 j]0[ ]4, k > 0 (fexo)

3. [X0,i]0[ ]5 → [Y [ ]5]0 (fendo)
[A0, j[ ]5]0 → [x]0[ ]5 (fexo)

4. [Ak j[ ]5]0 → [†]0[ ]5, k > 0 (fexo)
5. [A0 j[ ]4]0 → [†]0[ ]4 (fexo)
6. [†]0[ ]4 → [†[ ]4]0 (fendo)

[†[ ]4]0 → [†]0[ ]4 (fexo)
Simulation of a type (2) matrix mi : (X →Y,A→ x). Rules 1 are used to remem-
ber the matrix mi to be simulated. If X , A belong to the same matrix, then we
obtain Xii and Aii. Rules 2 are then used to check if both X , A belong to the same
matrix. If yes, then A0i is generated in membrane 0 in the immediate next step
after X0i. This is followed by rule 3, by which X0i and A0i are replaced. In case
rule 1 gives rise to Xii and A j j with i �= j, then an infinite computation is triggered
by rules 4, 5 and 6.
For i ∈ {1,2}, and a matrix m j : (X → Y,B(i) → †) of type (3),

7. [X ]0[ ]i → [X ′
j[ ]i]0 (fendo)

8. [X ′
j]0[ ]i′ → [X ′′

j [ ]i′ ]0 (fendo)

[B(i)[ ]i]0 → [†]0[ ]i (fexo)
9. [X ′′

j [ ]i′ ]0 → [Y ]0[ ]i′ (fexo)
10. [Y [ ]i]0 → [Y ]0[ ]i (fexo)
11. [†]0[ ]i → [†[ ]i]0 (fendo)

[†[ ]i]0 → [†]0[ ]i (fexo)
Simulation of a type (3) matrix m j : (X →Y,B(i) → †). The membrane labelled i
enters membrane 0 replacing X with X ′

j. This is followed by two parallel rules:
membrane i′ entering membrane 0 replacing X ′

j with X ′′
j , and membrane i exiting

membrane 0 in the presence of B(i). If B(i) is present, an infinite computation
is triggered by rule 11. Membrane i′ exits membrane 0 replacing X ′′

j with Y .

If B(i) is absent, then membrane i will be inside membrane 0. In this case, it exits
membrane 0 replacing Y with Y .

12. [Z]0[ ]6 → [[ ]6]0 (fendo)
[A[ ]6]0 → [†]0[ ]6,A ∈ N2(fexo)
Simulation of a type (4) matrix m j : (X → λ ,A → x). This is done using the
rules 1-6, replacing X with a new symbol Z. After this, we check if membrane 0
contains any non-terminals, and if so, an infinite computation is triggered by
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rule 6. Otherwise, a halting computation is obtained, with membrane 0 containing
the output. ��

Theorem 2.11. NEMM9(endo,exo, pendo) = NRE.

Proof. The proof is done by simulating a matrix grammar G = (N,T,S,M,F) with
appearance checking in the strong binary normal form. As in Theorem 2.10, let there
be n1 matrices of types 2, 4 and n2 matrices of type 3. We construct the P system

Π = (V,{0,1,2,3,4,5,6,7,8},μ ,w0, . . . ,w8,R,0)
with μ = {(8,0);(8,3);(8,4);(8,5);(8,6);(8,7);(6,1);(6,2)}

w0 = XA, w1 = α , w2 = B(1)B(2), w3 = . . . = w8 = /0
V = N∪T ∪{Xi j,Ai j | 0≤ i, j ≤ n1,X ∈ N1,A ∈ N2}
∪ {Xj | n1 +1≤ j ≤ n2} ∪ {α,β} ∪ {Z,†}.

Membrane 0 is the output membrane and XA corresponds to the initial matrix
(S → XA). The rules are

1. [X ]0[ ]3 → [[Xii]0]3 (endo)
[[A]0]3 → [A j j]0[ ]3 (exo)

2. [Xil ]0[ ]4 → [[Xi−1l ]0]4 (endo)
[[A jk]0]4 → [A j−1k]0[ ]4 for i, j > 0 (exo)

3. [X0i]0[ ]5 → [[Y ]0]5 (endo)
[[A0i]0]5 → [x]0[ ]5 (exo)

4. [[A jk]0]5 → [†]0[ ]5 if j > 0 (exo)
[[A0k]0]4 → [†]0[ ]4 (exo)

5. [†]0[ ]5 → [[†]0]5 (endo)
[[†]0]5 → [†]0[ ]5 (exo)
Simulation of a type (2) matrix mi : (X → Y,A→ x). Similar to Theorem 2.10.

6. [X ]0[ ]6 → [[Xj]0]6 (endo)
[XjB(i)]0[B(i)]2 → [[B(i)]2XjB(i)]0 (pendo)
[α]1[]0 → [[α]1]0 (endo)

7. [[B(i)]2]0 → [†]2[]0 (exo)
[[α]1]0 → [β ]1[ ]0 (exo)

8. [Xj]0[β ]1 → [[Xj]0β ]1 (endo)
[[Xj]0]1 → [Y ]0[ ]1 (exo)

9. [β ]1[Y ]0 → [[β ]1Y ]0 (pendo)
[[β ]1]0 → [α]1[ ]0 (exo)

10. [[Y ]0]6 → [Y ]0[ ]6 (exo)
11. [[β ]1]6 → [†]1[ ]6 (exo)
12. [[†]i]6 → [†]i[ ]6 (exo)

[†]i[ ]6 → [[†]i]6 for i = 1,2 (endo)
Simulation of a type (3) matrix m j : (X →Y,B(i) → †). Membrane 0 enters mem-
brane 6 replacing X with Xj. This is followed by the pendo,endo rules 6, by
which membranes 1, 2 enter 0. Of course, membrane 2 enters only if there is
a B(i) in membrane 0. The presence of a B(i) in membrane 0 triggers an infi-
nite computation. Membrane 1 exits membrane 0 replacing α with β . This is
followed by a pendo rule in 8, by which membrane 0 enters membrane 1. This
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helps in replacing Xj with Y . Next, β is replaced with α by rule 9. If rule 10 is
used before rule 9, we get an infinite computation. Membrane 0 comes out using
rule 10, and another matrix can be simulated.

13. [Z]0[ ]7 → [[ ]0]7 (endo)
[[A]0]7 → [†]0[ ]7,A ∈ N2 (exo)
Simulation of a type (4) matrix m j : (X → λ ,A → x). This is similar to Theo-
rem 2.10. ��

Theorem 2.12. NEMM8( f endo, f exo, pendo) = NRE.

Theorem 2.13. NEMM12(endo,exo, f endo) = NRE.

Exercise 2.1. Prove Theorems 2.12 and 2.13 using the techniques from Theo-
rems 2.9 and 2.10.

The following result can be observed from the above Theorems.

Theorem 2.14. NMAT ⊆ NEM5(endo,exo).

Theorem 2.15. For all n ∈ N, we have
NEMn(rendo,rexo,r f endo,r f exo)⊆ NMATac ⊂ NRE.

Proof. Consider the membrane system Π = (V,H,μ ,w1, . . . ,wn, i0). We construct a
random context matrix grammar G = (N,T,S,M,F) with appearance checking but
without λ -rules, and use the result NRCM(M,CF − λ ,ac) = NMATac ⊂ NRE. In
our construction, F = /0, the appearance checking comes from the forbidden sets R
used in the matrices.

Let Vi = {ai | a ∈ V}, V ′
i = {a′i | a ∈ V},V ′′

i = {a′′i | a ∈ V} for 1 ≤ i ≤ n, and
H = {(i, j) | 1≤ i, j≤ n, i �= j}, and Q = {E j, /0,E ′

j, /0,Nj,list ,N′
j,list , N′

j,listw̄ | 1≤ j≤ n}.
By list, w, and listw we denote strings of length at most n over the symbols 1, . . . ,n,
with no repetition of symbols. Then, N = Q∪{C,E,U,Z,X}∪P(H)∪Vj∪V ′

j ∪V ′′
j

for 1≤ j≤ n is the set of non-terminals of G, and T =V ∪{Y}, is the set of terminal
symbols, where Y is a new symbol. P(H) is the power set of all distinct pairs of
labels of membranes.

The idea is to construct a grammar that not only simulates Π , but also keeps
track of the membrane structure at each step. Let Ei, /0 denote that membrane i is
elementary, and Nj,list denote that membrane j is non-elementary, and list is the
list of its children. One step of Π is simulated by G in several steps: G selects
pairs of membranes one after the other in random fashion and checks if there is any
applicable rule between them; if so, the rule is used, else the next pair of membranes
is selected.

We start with the initial matrix

(S →CZE1, /0 . . .Ni,list . . .En, /0w1w j . . .wi0 , /0, /0)

where

1. C is a symbol to choose randomly a pair (i, j) of membranes whose interaction
we are going to simulate,
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2. Ei, /0, Nj,list gives the status of membranes in the initial configuration,
3. wi is the content of membrane i in the initial configuration,
4. Z is a set that keeps track of the pairs of membranes that have interacted so far in

the simulation of a step of Π . To simulate one step of Π , we have to check if all
rules applicable to all pairs of membranes (i, j), i �= j have indeed been applied.

The content of the output membrane wi0 is kept at the tail of the string. Z is initial-
ized to /0. We randomly keep selecting pairs of membranes to simulate a rule for a
step of Π ; this is continued until we have examined all possible pairs. The proof idea
is essentially to update the symbols Ei, /0,Nj,list to reflect (i) whether i has been ac-
tive in a step : we replace Ei, /0 with E ′

i, /0 if i is elementary; (ii) if i is elementary and
some membrane k entered i, we replace Ei, /0 with N′

i,k̄
; (iii) if i is non-elementary

and some membrane k entered i, we replace one of Ni,list ,N′
i,list with N′

i,listk̄
; (iv)

if i is non-elementary, and some membrane k left membrane i, we replace one of
Ni,list ,N′

i,list with N′
i,list−{k}. The prime on a symbol just tells us that the correspond-

ing membrane has already been a part of a rule. In the case of E ′
i, /0, this means we

can no longer utilize i, in the case of N′
j,list , since j is passive in the current step, j

can be part of more than one rule. Let ki be the number of symbols in membrane i
in the initial configuration. This number remains constant, since the rules do not
change the length of symbols evolving. We begin to write matrices that simulate Π
and keep track of the membrane structure at every step. Assume that we decide to
pick the pair of membranes (1, i) first for simulation. Then we have the following
matrices:

1. ((C →C1,i,Z → Z∪{(1, i)},a1 → b′1,E1, /0 → E ′
1, /0, Ni,list → N′

i,list1̄,

Nj,list ′ → N′
j,list ′−{1}), /0,{(1, i)}) if there is a rendo rule [a]1[ ]i → [[b]1]i, and

list ′ contains 1 and i (hence j is the parent of 1, i). Here we assume i is non-
elementary. In case i is elementary, a similar matrix with Ni,list replaced with Ei, /0

can be considered. In that case, we will have
((C →C1,i,Z → Z∪{(1, i)},a1 → b′1,E1, /0 → E ′

1, /0,Ei, /0 → N′
i,1̄,

Nj,list ′ → N′
j,list ′−{1}), /0,{(1, i)}).

2. ((C →C1,i,Z → Z∪{(1, i)},a1 → b′1,Ei, /0 → E ′
i, /0,E1, /0 → N′

1,ī,

Nj,list ′ → N′
j,list ′−{i}), /0,{(1, i)}) if there is a r f endo rule [a]1[ ]i → [b[ ]i]1,

and list ′ contains 1 and i. Similarly, we can consider a matrix when membrane 1
is non-elementary.

3. ((C →C1,i,Z → Z∪{(1, i)},a1 → b′1,E1, /0 → E ′
1, /0,Ni,list → N′

i,list−{1},

Nj,list ′ → N′
j,list ′1̄), /0,{(1, i)}) if there is a rexo rule [[a]1]i → [b]1[ ]i and j is the

parent of i; i.e, list ′ contains i.
4. ((C →C1,i,Z → Z∪{(1, i)},ai → b′i,E1, /0 → E ′

1, /0,Ni,list → N′
i,list−{1},

Nj,list ′ → N′
j,list ′1̄), /0,{(1, i)}) if there is a r f exo rule [a[ ]1]i → [ ]1[b]i and j is the

parent of i; i.e, list ′ contains i.
5. We can consider rexo,r f exo when i is a child of 1. This is similar to the above

and we do not give details.
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Now we consider cases when any rule cannot be used for a pair of mem-
branes (1, i). Recall that the number of objects in any membrane remains constant
and there are ki objects in membrane i. In the case when 1, i are adjacent, first
check all symbols in membrane 1 to check that they are not involved in any rule.
This is followed by checking all symbols of membrane i. A total of (k1 +ki) · |R|
steps are required where R is the set of rules of Π . Assume 1, i are siblings, 1 is
elementary and i is non-elementary.

6. ((C → C1
1,i,Z → Z ∪ {(1, i)},a1 → a′′1),{Nj,list ′ ,E1, /0,Ni,list}, /0) if list ′ contains

both 1 and i, and there is no endo rule involving a in membrane 1 between 1, i.
Continue incrementing the superscript Cl

1,i to Cl+1
1,i until we finish checking all

symbols of membranes 1 and i.
7. ((Cl

1,i →Cl+1
1,i ,b1 → b′′1),{Nj,list ′ ,E1, /0, Ni,list}, /0) if list ′ contains both 1 and i, and

there is no endo rule involving b in membrane 1 between 1, i, and l < k1.
8. ((Ck1

1,i → Ck1+1
1,i ,ai → a′′i ),{Nj,list ′ ,E1, /0, Ni,list}, /0) if list ′ contains both 1 and i,

and there is no f endo rule involving a in membrane i between 1, i.
Once the superscript reaches k1 + ki, we are done in checking. As (1, i) is

added to Z, we remember that this pair is checked already. Now, to make the
symbols of membranes 1, i available for rules with other membranes, we unprime
them.

9. ((Ck1+k2
1,i → D1,i,a′′1 → a1), /0, /0)

10. ((D1,i → D1,i,a′′1 → a1), /0, /0)
Rules 6-10 consider the case when membranes 1, i are siblings, but cannot partic-
ipate in a rule with each other. We run through all elements in membranes 1, i to
make sure of this. A similar set of rules can be written when 1 is non-elementary
and i is elementary. If 1, i are siblings, and both are non-elementary, then we
cannot use them in any mutual rule. In this case, it is enough to have a matrix
that directly produces D1,i checking the presence of N1,list ,Ni,list ′ (or their primed
versions) and Nj,list ′′ (or its primed version) such that list ′′ contains both 1, i. An-
other possibility to consider is when 1, i are such that one is a child of the other
and we cannot employ any rules between them. This is done in a similar manner
to rules 6-10. The third possibility is that 1, i are not adjacent. Then we have

11. ((C → D1,i,Z → Z∪{(1, i)}), /0,{Nj,list ,N1,list ′ ,Ni,list ′′ | j �= 1, i})
We check all the Nα,list symbols to ensure that 1, i are not adjacent. Thus, we
need to put these in the forbidden symbols. Here list contains membranes 1, i,
while list ′ contains membrane i; list ′′ contains membrane 1.

The next pair of membranes will be chosen by replacing D1,i with an appropriate
symbol (either Dr,s or Cr,s or C1

r,s as is the case); we must check that all double
primed symbols are replaced - this is achieved by placing V ′′

1 ∪V ′′
i in the forbidden

list.
The above rules represent the first choice of a pair of membranes to begin a

simulation. In general, for a pair of membranes r,s,

(a) For the case when a rule is applicable between the pair r,s, we will have a matrix
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((Di, j →Cr,s,Z → Z∪{(r,s)},rules as appropriate), /0,{(r,s)}∪V ′′
i ∪V ′′

j )

or
((Ci, j →Cr,s,Z → Z∪{(r,s)},rules as appropriate), /0,{(r,s)})

or
((C →Cr,s,Z → Z∪{(r,s)},rules as appropriate), /0,{(r,s)})

The third matrix represents the case when we begin a round of simulation of Π . In
all matrices, we will choose rule depending on the current relationship between
r,s. The rules are based on the following guidelines:

• When r,s are siblings and not both are non-elementary: A matrix each for the
cases when there is a rendo,r f endo rule between r,s. Things to look out for:
replace ar or as as is the case by b′r or b′s (the prime on the symbols is so
that they do not get used by another pair involving r or s); change the status
of r, s: (i) if we have Er, /0, and if r is active in that step, indicate it by changing
it into E ′

r, /0; update the parent information of r, and also the child list of the
former parent of r, s; similarly if s is active - this covers the case when r,s are
both elementary (ii) if r is passive and s is active, then we may have (a) Nr,list

(this indicates that so far nothing has entered r or left r) or (b) N′
r,list (this

indicates that something left r) or (c) N′
r,listw̄ (this indicates that everything

in w entered r previously in this step). Update these symbols appropriately: In
cases (a), (b) we get N′

r,lists̄, and in case (c), we get N′
r,listw̄s̄. The case when s

is active and r is passive is similar. Update the parent j of r,s by deleting
from j’s list r or s: if we had Nj,list , it becomes N′

j,list−{r} or N′
j,list−{s}, if we

had N′
j,list , it becomes N′

j,list−{r} or N′
j,list−{s} and if we had N′

j,listw̄, it becomes

N′
j,list−{r}w̄ or N′

j,list−{s}w̄.
• When r is a parent of s and s is elementary: A matrix each for the cases of

r f exo,rexo. Updates to be done similarly to the above case.
• When s is a parent of r and r elementary: A matrix each for the cases of

r f exo,rexo. Updates to be done similarly to the above case.

(b) When there is no applicable rule between r,s:

Case (i): r,s are adjacent, and both are non-elementary. In this case, we have
a matrix which directly gives Dr,s; Z is updated to contain (r,s). The permit-
ting context is either {Nr,list ,Ns,list ′ ,Nk,list ′′} such that list ′′ contains r,s, or is
{Nr,list ,Ns,list ′} such that list ′ contains r or list contains s. The permitting context
can also be a set consisting of primed versions of these symbols; the only point
to note is that we do not have a symbol α and its primed version α ′ together. The
forbidding context contains (r,s).
Case (ii) r,s are adjacent but not both are non-elementary. We have a matrix of
one of the forms

((Ci, j →C1
r,s,Z → Z∪{(r,s)},rules as appropriate),A,{(r,s)})

or
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((Di, j →C1
r,s,Z → Z∪{(r,s)},rules as appropriate),A,{(r,s)}∪V ′′

i ∪V ′′
j )

or
((C →C1

r,s,Z → Z∪{(r,s)},rules as appropriate),A,{(r,s)})

The last matrix represents the beginning of a round of simulation of Π . We are
checking all forms of adjacency : siblings, parent or child. Here we consider
A = {Er, /0,Ns,list ′ , Nj,list ′′ } or {Nr, /0,Es,list ′ ,Nj,list ′′ } where list ′′ contains both r, s
or A = {Er, /0,Ns,list ′} or {Es, /0, Nr,list ′′} where list ′ contains r and list ′′ contains s.
For brevity, we explain only these cases for A here: the case when the members
of A are primed also should be included - the only point to notice is that a symbol
and its prime are not both together in A. The rules are chosen by the following
guidelines: the permitting context A checks that r,s are indeed adjacent. For each
symbol ar, we check that there is no applicable rule with respect to s, and in-
crement the counter till kr. We have matrices for each of these, until we reach
counter kr. Note that since the number of rules in Π and the number of symbols
in membrane r are both finite, this can be done. Then we check for each symbol
of s that no rule is applicable till the counter reaches kr + ks. At this point, we
switch to Dr,s and unprime the symbols of r, s, and finally Dr,s is replaced with
some symbol that kick starts the simulation for another pair.

Case (iii) r,s are not adjacent. We check this is the case by having a matrix of the
form

((Ci, j → Dr,s,Z → Z∪{(r,s)}), /0,{(r,s)}∪B)

or
((Di, j → Dr,s,Z → Z∪{(r,s)}), /0,{(r,s)}∪V ′′

i ∪V ′′
j ∪B)

or
((C → Dr,s,Z → Z∪{(r,s)}), /0,{(r,s)}∪B)

The last matrix represents the beginning of a round of simulation of Π . Let

B = {Nr,list ,N
′
r,list ,N

′
r,listw̄,Ns,list ′ ,N

′
s,list ′ ,N

′
s,list ′ ȳ,Nj,list ′′ ,N

′
j,list ′′ ,N

′
j,list ′′ x̄}

where j is a membrane different from r,s, and list contains s, list ′ contains r,
and list ′′ contains r,s. The matrix says it all; the absence of symbols of B, which
spans all possibilities of r,s being adjacent, is enough. We add (r,s) to Z, so that
we know that this pair has already been considered.

To terminate simulation of one step of Π , we do the following:

1. ((Cp,q → E),{Z | |Z|= (
n
2
)−n}, /0) or

((Dp,q → E),{Z | |Z|= ( n
2
)−n},V ′′

p ∪V ′′
q )

At some point, we check that all pairs of membranes have been examined. This

is the case if the size of Z is (
n
2
)−n.
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2. ((Z → /0),{E}, /0), ((a′i → ai),{E}, /0) for all i,
3. ((E ′

i, /0 → Ei, /0),{E}, /0, /0),
In the presence of E, unprime all the primed symbols, replace Z with /0

4. ((N′
j,listw̄ → Nj,list ′),{E}, /0), where list ′ is list union w,

5. ((N′
j,list → Nj,list),{E}, /0) if list �= /0, ((N′

j,list → E j, /0),{E}, /0) if list = /0
Update the lists appropriately after a round of simulation

6. ((E →C), /0, {primed symbols like a′i,N
′
j,list ,E

′
j, /0, N′

j,listw̄})
Once all updates are completed, replace E with C to start the next round of sim-
ulation. The absence of primed symbols tells us that all updates are complete.

To terminate the simulation of G, we guess that Π has reached a halting configura-
tion and validate our guess.

1. ((C →U), /0, /0),
2. For i �= i0 and i is elementary: ((ai → X),W ∪{U}, /0) where W is the set of all

symbols Ei, /0, Nj,list such that list contains i, and there are no rexo rules in Π
between a in membrane i and membrane j, and for all l ∈ list, there are no
rendo,r f endo rules in Π between a in membrane i and membrane l. This can be
checked in finite time: Π has a finite collection of rules, and the number of sym-
bols in the current sentential form of G is finite : (k1 + · · ·+kn)+n+2. Compar-
ing each symbol ai with the rules of Π pertaining to the appropriate membrane l
in list and membrane j is enough to apply this matrix.

3. i0 is elementary: ((ai0 → a),W ∪{U}, /0) where W is similar to above,
4. For i �= i0 and i is non-elementary: ((ai → X),W ′ ∪ {U}, /0) where W ′ is the set

of all symbols Ni,list ,Nk,list ′′ such that list ′′ contains i, and there are no r f endo
rules in Π between a in membrane i and membranes in list ′′, there are no r f exo
rules between a in membrane i and membranes in list. As in rule 1, this can be
checked in finite time.

5. i0 is non-elementary: ((ai0 → a),W ′ ∪{U}, /0) where W ′ is similar to above,
6. ((U → X), /0,Vi),

After all symbols ai are replaced with X or a, we replace U with X .
7. ((Nj,list → X),{X},Vi∪{U}), ((E j, /0 → X),{X},Vi∪{U}),

((Z → X),{X},Vi∪{U})
After U has also been replaced, replace all the symbols Nj,list and E j, /0,Z with X .

8. ((X → Y ), /0,N\{X})
Replace all occurrences of X in the absence of all non-terminals different from X .

To terminate, we have to make sure that we have reached a halting computation.
For this, at some non-deterministic point of time, we replace C with U . Then for
all membranes other than the output, we replace the contents with symbols X after
making sure that they have no rule to participate in given the current configuration.
We replace symbols ai0 of i0 with a after ensuring the same. We are then left with
a string of the form XZN1,list . . .En, /0X . . .Xw, where w is the contents of i0. Then
we also replace the symbols Nj,list ,Ei, /0,Z with X . Then the number of symbols X
we have is κ = n+2+(k1 + · · ·+ kn)− ki0 which is finite. When we get a string of
the form Xκ w, made over X and V , we replace all occurrences of X with Y . Since
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the family MATac is closed under quotient by letters, we do the quotient operation κ
times on L(G). Then we have N(∂ κ

Y (L)) = N(Π).
Note that if our guess is incorrect, i.e, if we replace C with U before Π has

reached a halting configuration, we will not be able to proceed further, since the
remaining matrices will not be applicable. In this case, we do not obtain a terminal
string.
Note: In the above matrices, for ease of notation, we have kept the symbol Z in the
rules and updated it, in an algorithmic style. In pure grammar notation, this can be
thought of as replacing the current set with a larger set, and in the last step of a

simulation, replacing a set of size (
n
2
)−n with /0. ��

Theorem 2.16. For all n ∈ N, we have
NEMn(rendo,rexo,r f endo,r f exo, pendo, pexo)⊆ NMATac ⊂ NRE.

Proof. A minor change to the proof of Theorem 2.15 will do. The only extra book-
keeping that needs to be done is to keep track of a pendo, pexo rule that has
happened. After choosing a pair (r,s) of membranes, we check if there are any
pendo, pexo rules which could be simulated as follows:

1. If r,s are siblings: If there exist symbols in membranes r,s such that r is entering s
(pendo), then prime these symbols, prime the symbol Er, /0, change Ns,list to Ns,listr̄

or Es, /0 to Ns,r̄, and continue as usual. The case of a pexo is similar.
2. In case we have chosen r,s and there are no pendo, pexo rules applicable to

them, after checking that there are no rendo,rexo,r f endo,r f exo rules applica-
ble to them, do a check for non-applicability of pendo, pexo rules. We have the
symbol Dr,s after checking for non-applicability of rendo,rexo,r f endo,r f exo. In
case r, s are adjacent, this will look like

((Dr,s → Er,s,a
′′
r → a′′′r ,Nj,list or N′

j,list → itself), /0,B)

where B = {b′′r ,c
′′
s | there is a pendo rule involving a,b of membrane r and sym-

bol c of membrane s}. Continue this process by replacing a double primed sym-
bol with a triple primed symbol, provided it is not part of a context that will
enable a pendo, pexo rule. Er,s is retained until this finishes. The exact descrip-
tion of B depends on the rules of Π . After replacing all symbols of r,s with triple
primed symbols, replace Er,s with the next choice of membranes. Similarly check
to ensure non-applicability of pexo rules. ��

2.4.4 Mutual Mobile Membranes

The family of all sets Ps(Π) generated by systems of n mobile membranes using the
mutual endocytosis rule mendo and the mutual exocytosis rule mexo is denoted by
PsMMn(mendo,mexo). We denote by PsRE the family of Turing computable sets
of vectors generated by arbitrary grammars.
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We prove that it is enough to consider only systems with three mobile membranes
together with the operations of mutual endocytosis and mutual exocytosis to get the
full computational power of a Turing machine. The proof is done in a similar manner
to the proof of the computational universality of enhanced mobile membranes [107].

Theorem 2.17. PsMM3(mendo,mexo) = PsRE.

Proof. It is proved in [90] that each recursively enumerable language can be gen-
erated by a matrix grammar in the strong binary normal form. We consider a
matrix grammar G = (N,T,S,M,F) in the strong binary normal form, having n1

matrices m1, . . . ,mn1 of types (2) and (4), and n2 matrices of type (3) labelled
by m′

i, n1 + 1 ≤ i ≤ n1 + n2 with i ∈ lab j, for j ∈ {1,2}, such that lab1, lab2, and
lab0 = {1,2, . . . ,n1} are mutually disjoint sets. The initial matrix is m0 : (S→ XA).

We construct a system Π = (V,H,μ ,w1,w2,w3,R,2) with three mutual mobile
membranes, where

V = N∪T ∪{α,α,β ,β}
∪{X ′

0i,A
′
0i | X ∈ N1,A ∈ N2,1≤ i≤ n1}

∪{Xji,A ji | 0≤ i, j ≤ n1}
∪{β j,β j,X

( j)
i ,Yj | X ∈ N1, j ∈ {1,2},1≤ i≤ n2}

H = {1,2,3}; μ = {(1,2);(1,3)}
w1 = /0; w2 = α α1 α2ββ1β2XA; w3 = αα1α2β β 1 β 2

where (S → XA) is the initial matrix and the set R is constructed as follows:

(i) For each (nonterminal) matrix mi : (X → Y,A → x), X ,Y ∈ N1, x ∈ (N2 ∪ T )∗,
A ∈ N2, with 1≤ i≤ n1, we consider the rules:

1. [Xβ ]2[β ]3 → [[Xiiβ ]2β ]3 (mendo)
[[Aβ ]2β ]3 → [A j jβ ]2[β ]3 (mexo)

2. [Xkiβ ]2[β ]3 → [[Xk−1iβ ]2β ]3, k > 0 (mendo)
[[Ak jβ ]2]β ]3 → [Ak−1 jβ ]2[β ]3, k > 0 (mexo)

3. [X0iA0 jβ ]2[β ]3 → [[X ′
0iA

′
0 jβ ]2β ]3 (mendo)

[[X ′
0iA

′
0 jβ ]2β ]3 → [Y xβ ]2[β ]3 (mexo)

4. [[XkiA0 jβ ]2β ]3 → [#β ]2[β ]3, k > 0 (mexo)
5. [X0iAk jβ ]2[β ]3 → [[#β ]2β ]3, k > 0 (mendo)

By rule 1, membrane 2 enters membrane 3, replacing X ∈ N1 with Xii. A symbol
A∈N2 is replaced with A j j, and membrane 2 comes out of membrane 3. The sub-
scripts represent the matrices mi(m j), 1≤ i, j ≤ n1 corresponding to which X , A
have a rule. Next, rule 2 is used until Xii and A j j become X0i and A0 j, respec-
tively. If i = j, then we have X0i and A0 j simultaneously in membrane 2. Then
rule 3 is used, by which membrane 2 enters membrane 3 replacing X0i and A0 j

with X ′
0i and A′0 j, while X ′

0i and A′0 j are replaced with Y and x when membrane 2
exits membrane 3. If i > j, then we obtain A0 j before X0i. In this case, we have
a configuration where membrane 2 is inside membrane 3 containing A0 j. Rule 2
cannot be used now, and the only possibility is to use rule 4, replacing Xki and A0 j

with #, which leads to an infinite computation (due to rule 12). If j > i, then we
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obtain X0i before A0 j. In this case, we reach a configuration with X0iAk j, k > 0 in
membrane 2, and membrane 2 is in the skin membrane. Rule 2 cannot be used
now, and the only possibility is to use rule 5, replacing X0i and Ak j with #, which
leads to an infinite computation. In this way, we correctly simulate a type (2) ma-
trix whenever i = j. We now illustrate the evolution of the configurations during
one simulation of a type (2) matrix, for i = j.

1
2

XAβ
3

β 1−→

1
2

Xi,iAβ
3

β 1−→

1
2

Xi,iA j, jβ
3

β

2,. . . ,2↓

1
2

X0,iA0, jβ
3

β3←−

1
2

X ′
0,iA

′
0,iβ

3
β3←−

1
2

Y xβ
3

β

(ii) For each matrix m′
i : (X →Y,B( j) → #), X ,Y ∈N1, B( j) ∈N2, n1 +1≤ i≤ n1 +n2,

i ∈ lab j, j = 1,2, we consider the rules:

6. [Xβ j]2[β j]3 → [[X ( j)
i β j]2β j]3 (mendo)

[[X ( j)
i β j]2β j]3 → [X ( j)

i β j]2[β j]3 (mexo)

7. [B( j)β j]2[β j]3 → [[#β j]2β j]3 (mendo)

8. [X ( j)
i β j]2[β j]3 → [[Yjβ j]2β j]3 (mendo)

9. [[Yjβ j]2β j]3 → [Y β j]2[β j]3 (mexo)

Membrane 2 enters membrane 3 by rule 6, and creates an object X ( j)
i depending

on whether it has the symbol B( j), j = 1,2 associated with it, and then exits with
the newly created object. Next, by rule 7, membrane 2 enters membrane 3 if the
object B( j) is present, replacing it with #. If this rule is applied, membrane 2 ex-
its membrane 3 by applying rule 12. Regardless of the existence of object B( j),

membrane 2 enters membrane 3 replacing X ( j)
i with Yj. Membrane 2 exits mem-

brane 3, replacing Yj with Y , successfully simulating a matrix of type (3). We now
illustrate the evolution of the configurations during one simulation of a type (3)
matrix.

1
2

XAβ j
3

β j
6−→

1
2

X ( j)
i Aβ j

3
β j

6−→

1
2

X ( j)
i Aβ j

3
β j

8↓

1
2

YjAβ j

3
β j

9←−

1
2

YAβ j
3

β j
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(iii) For a terminal matrix mi : (X → λ ,A → x), X ∈ N1, A ∈ N2, x ∈ T ∗, 1 ≤ i ≤ n1.
We begin with rules 1-5 as before and simulate the matrix (X → Z,A → x) in
place of mi, where Z is a new symbol.

10. [α]3[Zα]2 → [λα[α]3]2 (mendo)
11. [Aα[α]3]2 → [α]3[#α] (mexo)
12. [#β ]2[β ]3 → [[#β ]2β ]3 (mendo)

[[#β ]2β ]3 → [#β ]2[β ]3 (mexo)

Now we use rule 10 to erase the symbol Z while membrane 3 enters membrane 2.
This is followed by rule 11 if there are any more symbols A ∈ N2 remaining, in
which case they are replaced with the trap symbol #. An infinite computation is
obtained if the symbol # is present in membrane 2. It is clear that if the compu-
tation proceeds correctly, then membrane 2 contains a multiset of terminal sym-
bols x ∈ T ∗. In this way we can conclude that Ps(Π) equals Ps(L(G)). We now
illustrate the evolution of the configurations during one simulation of a type (4)
(terminal) matrix.

1
2

XAβ
3

β 1−→

1
2

Xi,iAβ
3

β 1−→

1
2

Xi,iA j, jβ
3

β

2,. . . ,2↓

1
2

X0,iA0, jβ
3

β3←−

1
2

X ′
0,iA

′
0,iβ

3
β

3,10←−

1
2

xβ
3

β

��

It is worth noting that three is the smallest number of membranes when using
effectively the movement of membranes given by endocytosis and exocytosis.

It is reasonable to investigate whether we can obtain new computability results
using parallel mechanisms instead of sequential mechanisms. For systems of mo-
bile membranes using mutual endocytosis and mutual exocytosis, we get the same
computation power, but the results can be obtained more efficiently using parallel
mechanisms. The following proof links parallel systems of mutual mobile mem-
branes to sequential register machines. The register machines work in a slow and
biologically unrealistic way; the results show that it is possible to get similar results
with parallel mechanisms (based on the Church-Turing thesis).

Considering the number of objects and reduction to a register machine, we prove
that the family NRE of all sets of natural numbers generated by arbitrary grammars
is the same as the family NMM3(mendo,mexo) of all sets of natural numbers gen-
erated by systems with three mobile membranes using mendo and mexo rules. This
is calculated by looking at the cardinality of the objects in a specified output mem-
brane of the mutual mobile membrane system at the end of a halting configuration.
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Theorem 2.18. NMM3(mendo,mexo) = NRE.

Proof. In view of the Church-Turing thesis, only NRE ⊆ NMM3(mendo,mexo) has
to be proved. The proof is based on the observation that each set from NRE is the
range of a partial recursive function. Thus, we prove that for each partial recursive
function f : N→N, there is a mutual mobile membrane system Π with three mem-
branes satisfying the following condition: for any arbitrary x ∈ N, the system first
“generates” a multiset of the form ox

1 and halts if and only if f (x) is defined, and, if
so, the result is f (x).

In order to prove the assertion, using similar arguments as in Ibarra et al [96],
we can assume that the output register is never decremented during computation.
This happens without loss of generality. Let there be a program P consisting of h
instructions P1, . . . ,Ph which computes f . Let Ph correspond to the instruction HALT
and P1 be the first instruction. The input value x is expected to be in register 1 and
the output value in register 3.

We construct a mutual mobile membrane Π = (V,H,μ ,w0,wI ,wop,R, I):
V = {s}∪{or | 1≤ r ≤ 3}∪{Pk,P′k | 1≤ k ≤ h}∪{β ,β ,γ,γ}

∪{βr | 1≤ r ≤ 3}
H = {0, I,op} μ = {(0, I);(0,op)} wI = sβγ w0 = /0 wop = β γ

(i) Generation of the initial contents x of register 1:

1. [sβ ]I [β ]op → [[sβ ]Iβ ]op (mendo)
[[sβ ]Iβ ]op → [so1β ]I [β ]op (mexo)

2. [[sβ ]Iβ ]op → [P1β ]I [β ]op (mexo)

Rule 1 can be used any number of times, generating a number x (ox
1) as the initial

content of register 1. Rule 2 replaces s with the initial instruction P1, and we are
ready for the simulation of the register machine.

(ii) Simulation of an add rule Pi = (INC(r), j), 1≤ r ≤ 3, 1≤ i < h, 1≤ j ≤ h

3. [Piβ ]I [β ]op → [[Piβ ]Iβ ]op (mendo)
4. [[Piβ ]Iβ ]op → [Pjorβ ]I [β ]op (mexo)

Membrane I enters membrane op using rule 3, and then exits it by replacing Pi

with Pjor (rule 4), thus simulating an add instruction.
(iii) Simulation of a subtract rule Pi = (DEC(r), j,k), 1≤r≤3, 1≤ i<h, 1≤ j,k ≤ h

5. [[Piβ ]Iβ ]op → [P′jβrβ ]I [β ]op (mexo)

6. [orβrβ ]I [β ]op → [[β ]Iβ ]op (mendo), otherwise
[P′jβrβ ]I [β ]op → [[P′kβ ]Iβ ]op (mendo)

7. [[P′jβ ]Iβ ]op → [Pjβ ]I [β ]op (mexo)

[[P′kβ ]Iβ ]op → [Pkβ ]I [β ]op (mexo)

To simulate a subtract instruction, we start with rule 3, with membrane I enter-
ing membrane op. Then rule 5 is used, by which Pi is replaced with P′jβr, and
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membrane I exits membrane op. The newly created object βr denotes the reg-
ister which has to be decreased. If there is an or in membrane I, then by rule 6
the object or is erased together with βr, and membrane I enters membrane op.
This is followed by rule 7, where P′j is replaced with Pj and membrane I is back
inside the skin membrane. If there are no or’s in membrane I, then by applying
rule 6, P′j together with βr is replaced by P′k. This is followed by rule 7, where P′k
is replaced with Pk and membrane I is inside the skin membrane, thus simulating
a subtract instruction.

(iv) Halting:

8. [γ]op[Phγ ]I → [[γ]opγ]I (mendo)

To halt the computation, the halt instruction Ph must be obtained. Once we ob-
tain Ph in membrane I, membrane op enters membrane I and the computation
stops (rule 8). When the system halts, membrane I contains only o3’s, the con-
tent of register 3. ��

This result reveals a different technique in proving the computational power of a
system with three mutual mobile membranes.

There are many families of languages included in RE. Although Theorem 2.18
is valid for all of them, these families can have particular sets of rules simulating
them. We exemplify this aspect by an effective construction of a system with three
mutual membranes able to simulate an ET0L system in the normal form.

In order to get the power of an ET0L system by using the operations of mutual
endocytosis and mutual exocytosis, we need only three membranes.

Proposition 2.1. PsET 0L⊆ PsMM3(mendo,mexo).

Proof. In what follows, we use the following normal form: each language L∈ET 0L
can be generated by G = (V,T,ω ,R1,R2). Moreover, from [141], any derivation
starts with several steps of R1, then R2 is used exactly once, and the process is
iterated; the derivation ends by using R2.

Let G = (V,T,ω ,R1,R2) be an ET0L system in the normal form. We construct
the mutual mobile membrane system

Π = (V ′,H,μ ,w0,w1,w2,R,0)
as follows:

V ′ = {†,α,α,β ,β}∪{βi,β i | i = 1,2}∪V ∪Vi, where Vi = {ai | a ∈V}, i = 1,2
H = {0,1,2} μ = {(2,0);(2,1)} w0 = ωαβ1β w1 = αββ i
Simulation of table Ri, i = 1,2

1. [βi]0[βi]1 → [[βi]0β i]1 (mendo)
2. [[aβi]0β i]1 → [wiβi]0[β i]1, if a→ w ∈ Ri (mexo)
3. [β ]1[aβ ]0 → [[β ]1†β ]0 (mendo)
4. [[aiβi]0β i]1 → [aβi]0[β i]1 (mexo)
5. [β ]1[aiβ ]0 → [[β ]1†β ]0 (mendo)
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6. [[β1α]0α]1 → [βiα]0[α]1 (mexo)
[[β2α]0α]1 → [β1α]0[α]1 (mexo)
[[β2α]0α]1 → [α]0[α]1 (mexo)

7. [[β ]1†β ]0 → [β ]1[†β ]0 (mexo)
[β ]1[†β ]0 → [[β ]1†β ]0 (mendo)

In the initial configuration the string β1ω is in membrane 0, where ω is the axiom,
and β1 indicates that table 1 should be simulated first. The simulation begins with
rule 1: membrane 0 enters membrane 1. In membrane 1, the only applicable rule
is 2, by which the symbols a ∈ V are replaced by w1 corresponding to the rule
a → w ∈ R1. Rules 1 and 2 can be repeated until all the symbols a ∈ V have been
replaced according to a rule in R1, thus obtaining only objects from the alphabet V1.
In order to keep track of which table Ri of rules is simulated, each rule of the form
a→ w ∈ Ri is rewritten as a→ wi.

If any symbol a∈V is still present in membrane 0, i.e., if some symbol a∈V has
been left out of the simulation, membrane 1 enters membrane 0, replacing it with
the trap symbol † (rule 3), and this triggers a never ending computation (rule 7).
Otherwise, rules 1 and 4 are applied as long as required until all the symbols of V1

are replaced with the corresponding symbols of V . Next, if a symbol a1 ∈V1 has not
been replaced, membrane 1 enters membrane 0 and the computation stops, replacing
it with the trap symbol † (rule 5), and this triggers a never ending computation
(rule 7). Otherwise, we have three possible evolutions (rule 6):

(i) if β1 is in membrane 0, then it is replaced by βi, and the computation continues
with the simulation of table i;

(ii) if β2 is in membrane 0, then it is replaced by β1, and the computation continues
with the simulation of table 1;

(iii) if β2 is in membrane 0, then it is deleted, and the computation stops.

It is clear that Ps(Π) contains all the vectors in Ps(L(G)). ��

Corollary 2.2. PsE0L⊆ PsMM3(mendo,mexo).

We can interpret the multiset of objects present in the output membrane as a
set of strings x such that the multiplicity of symbols in x is the same as the mul-
tiplicity of objects in the output membrane. In this way, the multiset of objects in
the output membrane generates a language. For a system Π , let L(Π) represent this
language (all strings computed by Π ), and let LMMn(α) represent the family of lan-
guages L(Π) generated by systems having≤ n membranes, using a set of operations
α ⊆ {mendo,mexo}. We get the following result.

Lemma 2.1. LMM3(mendo,mexo)−ET0L �= /0.

Proof. L={x ∈ {a,b}∗ | |x|b = 2|x|a} /∈ ET 0L [141]. We construct
Π = ({a, b, b′, †, β , β1, β , β 1, β2, β 2}, β3, β 3}, {0, . . . ,2}, [[η b in]1[in]2]0, R, 1)

with rules as given below to generate L.
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1. [ β ]1 [ β ]2 → [ [ β ]1 β ]2, (mendo),
[ [ b β ]1 β ]2 → [ b′ b′ β ]1[ β ]2, (mexo),
[ [ β ]1 β ]2 → [ β ]1 [ β ]2, (mexo),

2. [ β ]1 [ β ]2 → [ [ a β1 ] β 1 ]2, (mendo),
3. [ [ b β1 ]1 β 1 ]2 → [ † β1 ]1 [ β 1 ]2, (mexo),

[ † β1 ]1 [ β 1 ]2 → [ [ † β1 ]1 β 1 ]2, (mendo),
[ [ † β1 ]1 β 1 ]2 → [ † β1 ]1 [ β 1 ]2, (mexo),

4. [ [ β1 ] β 1 ]2 → [ β2 ]1 [ β 2 ]2, (mexo),
[ b′ β2 ]1 [ β 2 ]2 → [ [ b β2 ]1 β 2 ]2, (mexo),
[ [ β2 ]1 β 2 ]2 → [ β2 ]1 [ β 2 ]2 (mexo)

5. [ β2 ]1 [ β 2 ]2 → [ [ β3 ]1 β 3 ]2, (mendo),
6. [ [ b′ β3 ]1 β 3 ]2 → [ † β3 ]1 [ β 3 ]2, (mexo),

[ † β3 ]1 [ β 3 ]2 → [ [ † β3 ]1 β 3 ]2, (mendo),
[ [ † β3 ]1 β 3 ]2 → [ † β3 ]1 [ β 3 ]2, (mexo),

7. [ [ β3 ]1 β 3 ]2 → [ ]1 [ ]2, (mexo),
8. [ [ β3 ]1 β 3 ]2 → [ β ]1 [ β ]2, (mexo).

The system works as follows: Rule 1 is used to replace every b with b′b′. Rule 2
can be used at any moment to replace β and β with β1 and β 1 (guessing that all b’s
have been replaced) and also to create an object a. Rule 3 checks that every b has
been replaced with b′b′, and if not an infinite computation is obtained. If there is no b
then rule 4 replaces β1 and β 1 with β2 and β 2, and then is used to replace every b′

with b. Rule 5 can be used at any moment to replace β2 and β 2 with β3 and β 3
(guessing that all b′’s have been replaced). Rule 6 checks that every b′ has been
replaced with b, and if not an infinite computation is obtained. The computation can
halt using rule 7, and can continue using rule 8. It is easy to see that membrane 1
contains strings of L at the end of a halting computation. ��
Exercise 2.2. What is the minimum number of membranes used to get full compu-
tational power for the class of mutual mobile membranes, if instead of the mutual
endocytosis rule

[uv]h[uv′]m → [ [w]hw′]m
we consider the enhanced endocytosis rule

[v]h[uv′]m→[[w]hw′]m?
Perform the proof using either matrix grammars or register machines.

Exercise 2.3. Consider other combinations of rules from the simple, enhanced and
mutual mobile membranes and find the minimal set of ingredients in order to obtain
the computational power of a Turing machine.

2.4.5 Mutual Mobile Membranes with Objects on Surface

We explore now the computational power of systems of mutual mobile membranes
with objects on surface using (pino,exo) and (phago,exo) as applicable pairs of
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rules. The power of these classes was already investigated in [105]; we improve
those results with respect to the number of membranes used in computation. A sum-
mary of the results (existing results, as well as new ones) is given in Table 2.2.

Table 2.2 Summary of Results

Operations Number of membranes Weights RE Ref.

Pino, exo 8 4,3 Yes Theorem 6.1 [105]
Pino, exo 3 5,4 Yes Theorem 2.19

Phago, exo 9 5,2 Yes Theorem 6.2 [105]
Phago, exo 9 4,3 Yes Theorem 6.2 [105]
Phago, exo 4 5,4 Yes Theorem 2.20

In each of the combinations presented in Table 2.2, the rules pino and phago are
used to increase the number of membranes, while rule exo is used to decrease the
number of membranes. Thus we combine the rules pino and phago with exo just to
balance the number of membranes.

The result of a computation is considered to be the multiplicity vector of the
multiset representing the union of the multisets placed on all the membranes of a
system. Thus, the result of a halting computation consists of all the vectors describ-
ing the multiplicity of objects from all the membranes (a non-halting computation
provides no output). The number of objects on the right hand side of a rule is called
its weight. The family of all sets Ps(Π) generated by systems of mutual mobile
membranes with objects on surface using at any moment during a computation at
most n membranes, and any of the rules r1 ∈{pino, phago} and r2 ∈{exo} of weight
at most r, s respectively, is denoted by PsM3OSn(r1(r),r2(s)).

In what follows, we study the computational power of the (pino,exo) combina-
tion of operations, and prove their universality by using during the computation at
most three membranes.

Theorem 2.19. PsRE = PsM3OSm(pino(r),exo(s)), for all m≥ 3, r ≥ 5, s≥ 4.

Proof. The inclusion of PsM3OSm(pino(r),exo(s)) into PsRE is assumed true by
invoking the Church-Turing thesis. This implies that we have to prove only the in-
clusion PsRE ⊆ PsM3OS3(pino(5), exo(4)). For this, we construct a system Π of
three mutual mobile membranes with objects on surface,

Π = (V,{(3,1);(3,2)},AX ,AX ,λ ,R).
The finite alphabet V of objects is defined as follows:

V = {β ,β}∪{X ,X ,X ′
l ,X

′
l ,X

( j),X ( j),X ( j)
l ,X ( j)

l ,X ( j)′
l ,X ( j)′

l
| X ∈ N1,1≤ l ≤ n1 +n2,1≤ j ≤ 2}

The set of types of rules R is constructed as follows:

(i) For each (nonterminal) matrix ml : (X → Y,A → x), X ,Y ∈ N1, x ∈ (N2 ∪ T )∗,
A ∈ N2, |x| ≤ 2, with 1≤ l ≤ n1, we consider the rules:
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1. [ [ ]Au]Av →m [ ]AlAluv (exo)
2. [ ]XXuv →m [ [ ]x′X ′l u]X ′l v (pino)

(If ml : (X → Y,A→ α1α2) then x′ = α ′
1α2 or x′ = α1α ′

2,
and if ml : (X → Y,A→ α1) then x′ = α ′

1)
3. [ [ ]Alu]Alv

→m [ ]α ′uv (exo)
4. [ ]α ′α ′uv →m [ [ ]αu]v (pino)
5. [ [ ]X ′l u]X ′l v →m [ ]X ′′l X ′′l uv (exo)

6. [ ]X ′′l X ′′l uv →m [ [ ]u]Yv (pino)

7. [ [ ]Xu]Xv →m [ ]ββuv (exo)
8. [ ]ββuv →m [ [ ]βu]βv (pino)
9. [ [ ]βu]βv →m [ ]ββuv (exo)

We start the simulation of a type (2) matrix by using rule 1; A and A are replaced
by Al and Al , marking the beginning of the simulation. This is followed by rule 2,
where X and X are replaced by x′, X ′

l and X ′
l . Next, we apply rule 3 to replace Al

and Al by α ′, in order to prevent replacing more A’s from now on. In rule 4 we re-
place α ′ and α ′ by α , while rule 5 replaces X ′

l and X ′
l by X ′′

l and X ′′
l , respectively.

Rule 6 is used to replace X ′′
l and X ′′

l by Y , thus successfully simulating a type (2)
matrix and returning to the initial membrane structure. In case the corresponding
symbol A ∈ N2 is not present (we cannot apply rule 1), rule 7 introduces two
symbols β and β which lead to an infinite computation (by using rules 8 and 9).
We now illustrate the evolution of the configurations during one simulation of a
type (2) matrix.

λ
AX AX

1−→

λAlAlXX

2−→

λ
x′AlX AlX

3↓

λ
x′x′X ′

l X ′
l

4←−

λ
xX ′

l X ′
l

5←−

λ
xX ′′

l X ′′
l

6↓

λ
x Y

(ii) For each matrix m′
l : (X → Y,B( j) → #), X ,Y ∈ N1, A ∈ N2 and B( j) → # ∈ F ,

where n1 +1≤ l ≤ n1 +n2, l ∈ lab j, j = 1,2, we consider the rules:

10. [ [ ]Xu]Xv →m [ ]
X( j)

l X( j)
l X( j)X( j)uv

(exo)

11. [ ]
X( j)X( j)uv

→m [ [ ]
X( j)u

]
B( j)v

(pino)
12. [ [ ]B( j)u]B( j)v

→m [ ]ββX( j)uv (exo)
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13. [ [ ]
X( j)

l u
]
X( j)

l v
→m [ ]B( j)uv (exo)

14. [ ]
B( j)B( j)uv

→m [ [ ]u]Y v (pino)

Rule 10 starts the simulation of a type (3) matrix by replacing X with X ( j)
l X ( j)

and X by X ( j)
l X ( j), thereby remembering the index l of the matrix and the index j

of the possibly present symbol B( j). This is followed by rule 11 in which X ( j)

and X ( j) are replaced by X ( j) and B( j), respectively. At this step we need to
check if the corresponding symbol B( j) ∈ N2 is present. If B( j) is present, rule 12
replaces it and its co-object B( j) with ββ together with X ( j). In this case, by
applying rule 11, we go to the configuration obtained before replacing B( j). Re-

gardless of the presence of B( j), rule 13 is applied replacing X ( j)
l and X ( j) by B( j).

Rule 14 involves the creation of Y , thus successfully simulating a type (3) matrix
and returning to the initial membrane structure. We now illustrate the evolution
of the configurations during one simulation of a type (3) matrix.

λ
X A

10−→

λX ( j)
l X ( j)

l X ( j)X ( j)

11−→

λ
X ( j)X ( j)

l B( j)X ( j)
l

12↓

λX ( j)B( j)B( j)

14←−

λ
X ( j) Y

(iii) For a terminal matrix ml : (X → a,A → x), X ∈ N1, a ∈ T , A ∈ N2, x ∈ T ∗,
|x| ≤ 2, where 1≤ l ≤ n1, we consider the rule

15. [ ]X ′′l X ′′l uv →m [ [ ]u]av (pino)

We now illustrate the evolution of the configurations during one simulation of a
type (4) (terminal) matrix.

λ
AX AX

1−→

λAlAlXX

2−→

λ
x′AlX AlX

3↓

λ
x′x′X ′

l X ′
l

4←−

λ
xX ′

l X ′
l

5←−

λ
xX ′′

l X ′′
l

15↓

λ
x a
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By replacing rule 6 with rule 15 in the sequence 1-9, we correctly simulate a
terminal matrix. The result of a correct simulation is the multiset of all symbols
present on the surfaces of all membranes. ��

We also study the computational power of the (phago,exo) combination of op-
erations and prove their universality by using during the computation at most four
membranes. We initially consider a system of three membranes. Compared with
Theorem 2.19, the higher number of membranes is related to the (use of) phago
operation.

Theorem 2.20. PsRE = PsM3OSm(phago(r),exo(s)), for all m≥ 4, r ≥ 5, s≥ 4.

Proof. The inclusion of PsM3OSm(phago(r),exo(s)) in PsRE is assumed true by
invoking the Church-Turing thesis. This implies that we have to prove only the in-
clusion PsRE ⊆ PsM3OS4(phago(5), exo(4)). For this we construct a system Π of
three mutual mobile membranes with objects on surface

Π = (V,{(3,1);(3,2)},AX ,AX ,λ ,R)
The finite alphabet V of objects is defined as

V = {β ,β}∪{X ,X ,Xl ,Xl ,X ′
l ,X

′
l ,X

( j),X ( j),X ( j)
l ,X ( j)

l ,X ( j)′
l ,X ( j)′

l
| X ∈ N1,1≤ l ≤ n1 +n2,1≤ j ≤ 2}

The set of types of rules R is constructed as follows:

(i) For each (nonterminal) matrix ml : (X → Y,A → x), X ,Y ∈ N1, x ∈ (N2 ∪ T )∗,
A ∈ N2, |x| ≤ 2, with 1≤ i≤ n1, we consider the rules:

1. [ ]Au[ ]Av →m [ [ [ ]Alu]X ]v (phago)
2. [ [ ]Xu]Xv →m [ ]AlXluv (exo)
3. [ ]Alu[ ]Alv

→m [ [ [ ]x′u]Xl
]v (phago)

(If ml : (X → Y,A→ α1α2) then x′ = α ′
1α2 or x′ = α1α ′

2,
and if ml : (X → Y,A→ α1) then x′ = α ′

1)
4. [ [ ]Xlu

]Xlv →m [ ]α ′X ′l uv (exo)

5. [ ]α ′u[ ]α ′v →m [ [ [ ]αu]X ′l ]v (phago)

6. [ [ ]X ′lu]X ′l v →m [ ]Yuv (exo)

7. [ ]Xu[ ]Xv →m [ [ [ ]βu]β ]v (phago)
8. [ [ ]βu]βv →m [ ]ββuv (exo)
9. [ ]βu[ ]βv →m [ [ [ ]βu]β ]v (phago)

We start the simulation of a type (2) matrix by using rule 1; A and A are replaced
by Al and X , marking the beginning of the simulation. This is followed by rule 2
replacing X and X by Al and Xl , respectively. In rule 3, Al is replaced by x′ in
order to prevent replacing more A’s from now on, while Al is replaced by Xl . This
is followed by rule 4 in which Xl and Xl are replaced by α ′ and X ′

l , respectively.
Rule 5 replaces α ′ and α ′ by α and X ′

l . Rule 6 involves the replacing of X ′
l and X ′

l
by Y , thus successfully simulating a type (2) matrix and returning to the initial
membrane structure. If the corresponding symbol A ∈ N2 is not present (i.e., we
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cannot apply rule 1), rule 7 introduces two symbols β and β which lead to an
infinite computation (by using rules 8 and 9).

(ii) For each matrix m′
l : (X → Y,B( j) → #), X ,Y ∈ N1, A ∈ N2 and B( j) → # ∈ F ,

where n1 +1≤ i≤ n1 +n2, i ∈ lab j, j = 1,2, we consider the rules:

10. [ ]Xu[ ]Xv →m [ [ [ ]
X( j)

l X( j)u
]
X( j)

l X( j)
]v (phago)

11. [ [ ]X( j)u]X( j)v
→m [ ]

B( j) X( j)uv
(exo)

12. [ ]B( j)u[ ]
B( j)v

→m [ [ [ ]βu]βX( j) ]v (phago)
13. [ ]

X( j)
l u

[ ]
X( j)

l v
→m [ [ [ ]u]B( j) ]v (phago)

14. [ [ ]B( j)u]B( j)v
→m [ ]Yuv (exo)

Rule 10 starts the simulation of a type (3) matrix by first replacing X and X

by X ( j)
l , X ( j), X ( j)

l and X ( j), thereby remembering the index l of the matrix and
the index j of the possibly present symbol B( j). This is followed by rule 11 in
which X ( j) and X ( j) are replaced by B( j) and X ( j), respectively. At this step we
need to verify if the corresponding symbol B( j) ∈ N2 is present. If B( j) is present,
rule 12 replaces it and its co-object B( j) with ββ together with X ( j). In this case,
by applying rule 11, we go to the configuration obtained before replacing B( j).

Regardless of the presence of B( j), rule 13 is applied; X ( j)
l and X ( j) are replaced

by B( j). Rule 14 involves the creation of Y , successfully simulating a type (3)
matrix and returning to the initial membrane structure.

(iii) For a terminal matrix ml : (X → a,A → x), X ∈ N1, a ∈ T , A ∈ N2, x ∈ T ∗,
|x| ≤ 2 where 1≤ i≤ n1, we consider the rule

15. [ [ ]X ′lu]X ′l v →m [ ]auv (exo)

By replacing rule 6 with rule 15 in the sequence 1-9, we correctly simulate a
terminal matrix. The result of a correct simulation is the multiset of all symbols
present on the surfaces of all membranes. ��

Exercise 2.4. Perform the proofs of this subsection using register machines instead
of matrix grammars. Do the weights of the used operations differ?

2.5 Complexity of Mutual Mobile Membranes

Regarding the complexity aspects [126], polynomial time solutions to NP-complete
problems in the framework of membrane computing are presented comprehensively
in [131]. The authors of this survey use P systems with active membranes having as-
sociated electrical charges, membrane division and membrane creation. We present
solutions to NP-complete problems by using systems of mutual mobile membranes
that can perform only mobility and elementary division rules. In order to find such a
solution, mutual mobile membranes are treated as deciding devices that respect the
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following conditions: (1) all computations halt, (2) two additional objects yes and no
are used, (3) only one of the objects yes and no appears in the halting configuration.
The computation is accepting if the yes object is present in the halting configuration,
and rejecting if the no object is present in the halting configuration.

A family of mutual mobile membrane systems {Π} solves a decision problem if
there is a member of the family to recognize every instance of the problem. To en-
sure that the construction algorithm of each member of the family does not increase
the set of problems decided by the family, we require that the algorithm, is com-
putable within certain restricted resources (time/space). When the algorithm maps
an instance size to a membrane system that decides all instances of that length, then
the algorithm is called a uniformity condition. The notion of uniformity was first
introduced by Borodin [30] for boolean circuits. When the algorithm maps a sin-
gle instance to a membrane system that decides that instance, then the algorithm is
called a semi-uniformity condition. The notions of uniformity and semi-uniformity
were first applied to membrane systems in [132].

2.5.1 SAT Problem

The SAT problem checks the satisfiability of a propositional logic formula in con-
junctive normal form (CNF). Let {x1,x2, . . . ,xn} be a set of propositional variables.
A formula in CNF is of the form ϕ = C1 ∧C2 ∧ ·· · ∧Cm where each Ci,1 ≤ i ≤ m
is a disjunction of the form Ci = y1 ∨ y2 ∨ ·· · ∨ yr (r ≤ n), where each y j is either
a variable xk or its negation ¬xk. In this section, we propose a uniform polynomial
time solution to the SAT problem using the operations of mendo, mexo and ele-
mentary division (for any instance of SAT we construct a system of mutual mobile
membranes which solves it). Consider the formula ϕ = C1 ∧C2 ∧ . . .Cm, over the
variables {x1, . . . ,xn}. Consider a system of mutual mobile membranes having the
initial configuration

[[c0 β ]J[β ]K [c d]L[gn−1g0]1[a1]0]2
and working over the alphabet:

V = {c,c,d,d,g,g0,β ,β ,yes,no}∪{ai, ti, fi | 1≤ i≤ n}
∪{βi,β i | 1≤ i≤ m}∪{ci | 0≤ i≤ n+2m+1}

In addition to mutual endocytosis and mutual exocytosis rules, we use elementary
division rules to generate all the possible assignments. An elementary division rule
has the form:

[a]h → [u]h[v]h, for h ∈ H, a ∈V , u,v ∈V ∗ (div)
where a copy of each object from membrane h is placed inside the newly created
membranes, except for object a which is replaced by the multisets of objects u and v.
If w is the multiset of objects from h except the a object, then the rule is illustrated as:

h

a w

h

u w

h

v w
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The system of mutual mobile membranes solving the SAT problem uses the rules:

(i) [ai]0 → [ti ai+1]0[ fi ai+1]0, for 1≤ i≤ n−1 (div)
[an]0 → [tn β1]0[ fn β1]0 (div)
[g]1 → [ ]1[ ]1 (div)
[g0]1 → [β1]1[β1]1 (div)
The first two rules create 2n membranes labelled by 0 containing all the possible
assignments over variables {x1, . . . ,xn}. In each membrane labelled by 0 is placed
also a symbol β1 . The next two rules create 2n membranes labelled by 1 each
containing an object β1. The symbols β1 and β1 are used to determine in two
steps which assignments are true for C1.

(ii) [t j βi]0[βi]1 → [[t j βi]0βi]1 (mendo)
[[t j βi]0βi]1 → [t j βi+1]0[βi+1]1, 1≤ i≤ m−1, 1≤ j ≤ n (mexo)
(if clause Ci contains the literal x j)
[ f j βi]0[βi]1 → [[ f j βi]0βi]1 (mendo)
[[ f j βi]0βi]1 → [ f j βi+1]0[βi+1]1, 1≤ i≤ m−1, 1≤ j ≤ n (mexo)
(if clause Ci contains the literal ¬x j)
[t j βm]0[βm]1 → [[t j βm]0βm]1 (mendo)
[[t j βm]0βm]1 → [t j c]0[βm]1, 1≤ j ≤ n (mexo)
(if clause Cm contains the literal x j)
[ f j βm]0[βm]1 → [[ f j βm]0βm]1 (mendo)
[[ f j βm]0βm]1 → [ f j c]0[βm]1, 1≤ j ≤ n (mexo)
(if clause Cm contains the literal ¬x j)
If some assignments satisfy the clause Ci, 1 ≤ i < m, then the objects βi from
the corresponding membranes 0 are replaced by βi+1. The assignments from the
membranes containing βi+1 satisfy the clauses C1, . . . ,Ci, the object βi+1 marking
the fact that in the next step the clause Ci+1 is checked. If there exist assignments
which satisfy all the clauses, then the membranes containing these assignments
contain an object c after n+2m steps.

(iii) [ci β ]J[β ]K → [[ci+1 β ]Jβ ]K (mendo)
[[ci β ]Jβ ]K → [ci+1 β ]J[β ]K , 0≤ i≤ n+2m (mexo)
[[cn+2m+1 β ]Jβ ]K → [d β ]J[β ]K (mexo)
[cn+2m+1 β ]J[β ]K → [[cn+2m+1 β ]Jβ ]K (mendo)
These rules trace the number of steps performed. If this number is greater than
n + 2m + 1, then an object d is created, which will subsequently create an ob-
ject no; n+2m+1 is determined by: generating space (n steps), verifying assign-
ments (2m steps), creating a yes object (1 step). An extra step can be performed,
such that membrane J containing the object cn+2m+1 becomes sibling with mem-
brane K, thus increasing the number of steps needed to create d to n+2m+2.

(iv) [c]0[c]L → [[yes]L]0 (mendo)
[d]J[d]L → [[no]J]L (mendo)
A yes object is created whenever membrane L enters some membrane 0 in the
(2m + n + 1)-th step. If no membrane 0 contains an object c, then a no object
is created, in step (2m + n + 2) or (2m + n + 3), whenever membrane J enters
membrane L. By applying one of these two rules, the other one cannot by applied
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anymore, so at the end of the computation the system contains either an object yes
or an object no.

The number of membranes in the initial configuration is 6, and the number of objects
is n + 6. The size of the working alphabet is 4n + 4m + 13. The number of rules in
the above system: n + 2 rules of type (i), 4nm rules of type (ii), n + 2m + 3 rules
of type (iii), and 2 rules of type (iv). Hence, the size of the constructed system of
mutual mobile membranes is O(mn).

Example 2.2. Consider the SAT problem with φ =C1∧C2∧C3 and X = {x1,x2,x3},
C1 = x1∨¬x3, C2 = ¬x1∨¬x2 and C3 = x2. In this case, n = 3, m = 3 and

[[c0 β ]J[β ]K [c d]L[g2g0]1[a1]0]2
Graphically this is illustrated as:

J

c0β
K

β
L

cd
1

g2g0

0

a1

2

The evolution of the system is described by the following steps, where [w]ni stands
for n membranes [w]i. The working space is created in n = 3 steps leading from the
initial configuration 1 to configuration 4:

1. [[c0 β ]J[β ]K [c d]L[g2g0]1[a1]0]2
2. [[[c1 β ]Jβ ]K [c d]L[g2β1]21[t1 a2]0[ f1 a2]0]2
3. [[c2 β ]J[β ]K [c d]L[gβ1]41[t1 t2 a3]0[t1 f2 a3]0[ f1 t2 a3]0[ f1 f2 a3]0]2
4. [[[c3 β ]Jβ ]K [c d]L[β1]81[t1 t2 t3 β1]0[t1 t2 f3 β1]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0

[ f1 t2 t3 β1]0[ f1 t2 f3 β1]0[ f1 f2 t3 β1]0[ f1 f2 f3 β1]0]2
Graphically the working space is described by the following picture:

K
β

J
c3β

L
cd

1
β1

1
β1

1
β1

1
β1

1
β1

1
β1

1
β1

1
β1

0
t1t2t3

β1

0
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The next two steps mark the solutions of C1 by replacing β1 by β2:
5. [[c4 β ]J[β ]K [c d]L[β1]21[β1[t1 t2 t3 β1]0]1[β1[t1 t2 f3 β1]0]1[β1[t1 f2 t3 β1]0]1

[β1[t1 f2 f3 β1]0]1[β1[ f1 t2 f3 β1]0]1[β1[ f1 f2 f3 β1]0]1[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
6. [[[c5 β ]Jβ ]K [c d]L[β1]21[β2]61[t1 t2 t3 β2]0[t1 t2 f3 β2]0[t1 f2 t3 β2]0[t1 f2 f3 β2]0

[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
The new configuration is graphically represented by:
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The next two steps mark the solutions of C2 by replacing β2 by β3:
7. [[c6 β ]J[β ]K [c d]L[β1]21[β2]21[β2[t1 f2 t3 β2]0]1[β2[t1 f2 f3 β2]0]1[β2[ f1 t2 f3 β2]0]1

[β2[ f1 f2 f3 β2]0]1[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
8. [[[c7 β ]Jβ ]K [c d]L[β1]21[β2]21[β3]41[t1 f2 t3 β3]0[t1 f2 f3 β3]0[ f1 t2 f3 β3]0

[ f1 f2 f3 β3]0[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
The new configuration is graphically represented by:
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The next two steps mark the solutions of C3 by replacing β3 by c:
9. [[c8 β ]J[β ]K [c d]L[β1]21[β2]21[β3]31[β3[ f1 t2 f3 β3]0]1[t1 f2 t3 β2]0[t1 f2 f3 β2]0

[ f1 f2 f3 β2]0[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
10. [[[c9 β ]Jβ ]K [c d]L[β1]21[β2]21[β3]41[ f1 t2 f3 c]0[t1 f2 t3 β3]0[t1 f2 f3 β3]0

[ f1 f2 f3 β3]0[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
The new configuration is graphically illustrated below, where we have placed the
membrane labelled by L near the membrane labelled by 0 containing the symbol c
to illustrate that an interaction is possible:
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In the next step, an object yes is created and placed in membrane L, marking the
fact that there exists an assignment such that the formula (C1 ∧C2 ∧C3) holds.
The number of steps needed to create an object yes is n+2m+1 = 3+6+1 = 10.
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11. [[c10 β ]J[β ]K [β1]21[β2]21[β3]41[ f1 t2 f3 [yes d]L]0[t1 f2 t3 β3]0[t1 f2 f3 β3]0
[ f1 f2 f3 β3]0[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
The new configuration is graphically illustrated as below:
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An object d used to create an object no is created after performing the steps:
12. [[[c10 β ]Jβ ]K [β1]21[β2]21[β3]41[ f1 t2 f3 [yes d]L]0[t1 f2 t3 β3]0[t1 f2 f3 β3]0

[ f1 f2 f3 β3]0[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
13. [[d β ]J[β ]K [β1]21[β2]21[β3]41[ f1 t2 f3 [yes d]L]0[t1 f2 t3 β3]0[t1 f2 f3 β3]0

[ f1 f2 f3 β3]0[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 t3 β1]0[ f1 f2 t3 β1]0]2
The new configuration is graphically illustrated below, where we place the mem-
brane labelled by J near the membrane 0 containing membrane L to illustrate that
an interaction between membranes J and L is not possible, and so the computa-
tion stops after n+2m+3 = 12 steps.
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The fact that the computation ends in n+2m+3 steps is given by the fact that n+
2m is an odd number, and thus we had to perform an extra step before generating d
from cn+2m+1. If instead n+2m is an even number, then d is created after n+2m+2
steps.

Exercise 2.5. Solve the SAT problem using other classes of mobile membranes.

2.5.2 2QBF Problem

In this section, we propose a polynomial time solution for solving satisfiability of
2QBF using mutual mobile membranes using the operations mendo, mexo and div.
A quantified boolean formula is said to be in 2QBF if it is of the form ϕ = ∀X∃Y ψ
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or ∃X∀Y ψ where ψ is in CNF and X ,Y partition the variables of ψ . By ψ is denoted
the quantifier free part of ϕ . For 2QBF formulae of the form ∃X∀Y ψ , satisfiability
simplifies to the SAT problem ∃Xψ ′ where ψ ′ is the CNF obtained from ψ by
removing all occurrences of universal literals. Hence we deal only with 2QBF of the
form ϕ = ∀X∃Y ψ .

Consider the formula ϕ = ∀X∃Y ψ where ψ = (C1∧C2 · · ·∧Cm). ψ is a proposi-
tional logic formula in CNF. Let X = {x1, . . . ,xk} and Y = {xk+1, . . . ,xn}, X ∩Y = /0,
and each Ci be a clause (disjunction of literals xi or ¬xi). Consider a system of mu-
tual mobile membranes having the initial configuration

[[d c0 β ]J[β ]K [d]L[gn−1g0]1[a1]0]2
and working over the alphabet:

V = {b,c,d,d,z,z,no,yes,g,g0,α,α,β ,β}∪{ai, ti, fi | 1≤ i≤ n}
∪{ti, fi | 1≤ i≤ k}∪{βi,βi | 1≤ i≤ m}
∪{ci | 0≤ i≤ n+2m+4k +4}∪{di,d′i ,d

′′
i ,d′′′i ,di

′′′ | 1≤ i≤ k}∪{dk
′′}

In addition to mutual endocytosis and mutual exocytosis rules, we use elementary
division rules to generate all the possible assignments. The system of mutual mobile
membranes solving the 2QBF problem uses the rules:

(i) [ai]0 → [ti ai+1]0[ fi ai+1]0, for 1≤ i≤ n−1 (div)
[an]0 → [tn β1]0[ fn β1]0 (div)
[g]1 → [ ]1[ ]1 (div)
[g0]1 → [β1]1[β1]1 (div)
The first two rules generate 2n membranes labelled by 0 containing all the pos-
sible assignments over variables {x1, . . . ,xn}. In each membrane labelled by 0 is
placed also a symbol β1 . The next two rules generate 2n membranes labelled
by 1 each containing an object β1. The symbols β1 and β1 are used in mobility,
where the membranes containing the object β1 are the ones that move. These
objects are used to determine in two steps which assignments are true for C1.

(ii) [t j βi]0[βi]1 → [[t j βi]0βi]1 (mendo)
[[t j βi]0βi]1 → [t j βi+1]0[βi+1]1, 1≤ i≤ m−1, 0≤ j ≤ n (mexo)
(if clause Ci contains the literal x j)
[ f j βi]0[βi]1 → [[ f j βi]0βi]1 (mendo)
[[ f j βi]0βi]1 → [ f j βi+1]0[βi+1]1, 1≤ i≤ m−1, 0≤ j ≤ n (mexo)
(if clause Ci contains the literal ¬x j)
[t j βm]0[βm]1 → [[t j βm]0βm]1 (mendo)
[[t j βm]0βm]1 → [t j c]0[βm]1, 0≤ j ≤ n (mexo)
(if clause Cm contains the literal x j)
[ f j βm]0[βm]1 → [[ f j βm]0βm]1 (mendo)
[[ f j βm]0βm]1 → [ f j c]0[βm]1, 0≤ j ≤ n (mexo)
(if clause Cm contains the literal ¬x j)
If some assignments satisfy the clause Ci, 1 ≤ i < n, then the objects βi from
the corresponding membranes 0 are replaced by βi+1. The object βi+1 marks
the fact that the assignment satisfies clauses C1, . . . ,Ci and that in the next step
the clause Ci+1 is checked. If there exist assignments which verify all the clauses,
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then the membranes containing these assignments contain an object c after n+2m
steps.

(iii) [ci β ]J[β ]K → [[ci+1 β ]Jβ ]K (mendo)
[[ci β ]Jβ ]K → [ci+1 β ]J[β ]K , 0≤ i≤ n+2m−1 (mexo)
[[cn+2m β ]Jβ ]K → [cn+2m β ]J[β ]K (mexo)
[cn+2md]J[d]L → [[cn+2md]Jd]L (mendo)
[[cn+2md]Jd]L → [cn+2m+3]J[d1]L (mexo)
These rules trace the number of steps performed. If this number is greater than
n+2m, then an object d1 is created in membrane L that marks the end of check-
ing ψ . If there are solutions for ψ , the corresponding membranes contain the
object c. The number n + 2m + 3 is determined by: generating space (n steps),
verifying assignments (2m steps), creating a d1 object (2 steps) and eventually
one step to perform the third rule if necessary.

(iv) [di]L → [d′i ]L[d′′i ]L, for 1≤ i≤ k (div)

[d′i ]L → [ti 2n−i
d′′′i z]L[ fi

2n−i

d′′′i z]L, for 1≤ i≤ k−1 (div)

[d′k]L → [tk
2n−k

d′′′k ]L[ fk
2n−k

d′′′k ]L (div)
[d′′i ]L → [d′′′i ]L[d′′′i ]L, for 1≤ i≤ k−1 (div)
[d′′k ]L → [d′′k ]L[d′′k ]L (div)
[d′′k ]L → [d′′′k ]L[d′′′k ]L (div)
[d′′′i ]L[d′′′i ]L → [[di+1]L]L, for 1≤ i≤ k−1 (mendo)
[tic]0[ti]L → [[tic]0ti]L, for 1≤ i≤ k (mendo)
[ fic]0[ fi]L → [[ fic]0 fi]L, for 1≤ i≤ k (mendo)
Next, after finding the solutions of ψ , the ∀ part of the formula over variables
x1, . . . ,xk is checked. This amounts to checking if all the 2k combinations of
ti, fi,1 ≤ i ≤ k contain an object c. If so, then ϕ is true, and any last n− k sym-
bols will suffice for a solution. In order to check that all the 2k combinations
are in membranes containing a c object, membrane L is divided and a mem-
brane structure is created in 3k steps. First, d1 is replaced with d′1,d

′′
1 in two

membranes. This is followed by the division of the membrane containing d′1 into
two new membranes in which this object is replaced by a multiset containing t1,
respectively f1. The membrane containing d′′1 is used to obtain two new mem-
branes that are sent inside the membranes containing t1, respectively f1, in order
to continue the construction until membranes containing tk, respectively fk, are
obtained. In parallel, the membranes 0 containing an object c, enter the newly
created structure.

(v) [tkd′′′k ]L[d′′′k ]L → [[b z]Lz]L (mendo)
[ fkd′′′k ]L[d′′′k ]L → [[b z]Lz]L (mendo)
If at the end of the construction from step (iv) there exists an elementary mem-
brane L containing an object tk or fk, it means that not all possible assignments
over the variables x1, . . . ,xk are solutions, so the object b is created which will
subsequently create an object no.

(vi) [[z]Lz]L → [z]L[z]L (mexo)
[[z]Lz t1]L → [zα]L[z t1]L (mexo)
[[z]Lz f1]L → [zα]L[z f1]L (mexo)
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If there exists a membrane L containing an object z together with the object no,
then in k steps it reaches membrane 2, in order to deliver the answer inside mem-
brane J.

(vii) [ci β ]J[β ]K → [[ci+1 β ]Jβ ]K (mendo)
[[ci β ]Jβ ]K → [ci+1 β ]J[β ]K , n+2m+3≤ i≤ n+2m+4k +3 (mexo)
In parallel, the counter in membrane J evolves until it reaches n + 2m + 4k + 4.
The extra 4k+1 steps from n+2m+3 to n+2m+4k+4 is determined by: gen-
erating the structure starting from membrane L and movement of membranes 0
containing a c object inside membranes L containing tk or fk (3k steps), creat-
ing a no object (1 step), and moving the membrane L containing an object z to
membrane 2 (k steps).

(viii) [[cn+2m+4k+4 β ]Jβ ]K → [cn+2m+4k+4 β α]J[β ]K (mexo)
[cn+2m+4k+4 α]J [α b]L → [[no]Jα ]L (mendo)
[β ]K → [α]K [α]K (div)
[cn+2m+4k+4 α]J [α]K → [[yes]Jα]K (mendo)
In case all the 2k assignments do not contain an object c, a membrane L contain-
ing an object b and an object z reaches membrane 2. Membrane J with the counter
value n+m+4k +4 exits membrane K, and in the next step enters membrane L
containing a b object and creates an object no inside J, deleting the one in K.
In case all the 2k assignments contain an object c, then there is no membrane L
containing a b object that will ever reach membrane 2. In this case, a yes object
is created in membrane J by allowing it to enter membrane K after a determined
period of time. The maximum number of steps needed to obtain a no object is
n+2m+4k +6, while to obtain a yes object is n+2m+4k +7.

The number of membranes in the initial configuration is 6, and the number of
objects is n+6. The size of the working alphabet is 4n+4m+11k+18. The number
of rules in the above system is: n+2 rules of type (i), 2(n+1)(2m−1) rules of type
(ii), 2(n + 2m)+ 3 rules of type (iii), 6k rules of type (iv), 2 rules of type (v), 3 of
type (vi), 4k +1 rules of type (vii) and 4 rules of type (viii). Hence, the size of the
constructed system of mutual mobile membranes is O(mn).

Example 2.3. Consider the 2QBF problem with φ = ∀X∃Y (C1 ∧C2), X = {x1,x2},
Y = {x3}, C1 = ¬x1∨ x2, C2 = x1∨ x3. In this case, n = 3, m = 2, k = 2 and

[[c0 d β ]J[β ]K [d]L[g2g0]1[a1]0]2
Graphically this is illustrated as:
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The evolution of the system is described by the following steps. The working space
is generated in n = 3 steps leading from the initial configuration 1 to configuration 4:

1. [[c0 d β ]J[β ]K [d]L[g2g0]1[a1]0]2
2. [[[c1 d β ]Jβ ]K [d]L[g2β1]21[t1 a2]0[ f1 a2]0]2
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3. [[c2 d β ]J[β ]K [d]L[gβ1]41[t1 t2 a3]0[t1 f2 a3]0[ f1 t2 a3]0[ f1 f2 a3]0]2
4. [[[c3 d β ]Jβ ]K [d]L[β1]81[t1 t2 t3 β1]0[t1 t2 f3 β1]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0

[ f1 t2 t3 β1]0[ f1 t2 f3 β1]0[ f1 f2 t3 β1]0[ f1 f2 f3 β1]0]2
Graphically the working space is described by the following picture:
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The next two steps mark the solutions of C1 by replacing β1 by β2:
5. [[c4 d β ]J[β ]K [d]L[β1]21[β1[t1 t2 t3 β1]0]1[β1[t1 t2 f3 β1]0]1[β1[ f1 t2 f3 β1]0]1

[β1[ f1 f2 f3 β1]0]1[β1[ f1 t2 t3 β1]0]1[β1[ f1 f2 t3 β1]0]1[t1 f2 f3 β1]0[t1 f2 t3 β1]0]2
6. [[[c5 d β ]Jβ ]K [d]L[β1]21[β2]61[t1 t2 t3 β2]0[t1 t2 f3 β2]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0

[ f1 t2 t3 β2]0[ f1 f2 t3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2
The new configuration is graphically represented by:
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The next two steps mark the solutions of C2 by replacing β2 by c:
7. [[c6 d β ]J[β ]K [d]L[β1]21[β2]21[β2[t1 t2 t3 β2]0]1[β2[t1 t2 f3 β2]0]1[β2[ f1 t2 t3 β2]0]1

[β2[ f1 f2 t3 β2]0]1[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2
8. [[[c7 d β ]Jβ ]K [d]L[β1]21[β2]61[t1 t2 t3 c]0[t1 t2 f3 c]0[ f1 t2 t3 c]0[ f1 f2 t3 c]0

[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2
The new configuration is graphically represented by:
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In the next step, an object d1 is generated. The number of steps needed to create
this object is n+2m+3 = 3+4+3 = 10.

9. [[c7 d β ]J[β ]K [d]L[β1]21[β2]61[t1 t2 t3 c]0[t1 t2 f3 c]0[ f1 t2 t3 c]0[ f1 f2 t3 c]0
[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2

10. [[[c7 d β ]Jd]L[β ]K [β1]21[β2]61[t1 t2 t3 c]0[t1 t2 f3 c]0[ f1 t2 t3 c]0[ f1 f2 t3 c]0
[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2

11. [[c10 β ]J[d1]L[β ]K [β1]21[β2]61[t1 t2 t3 c]0[t1 t2 f3 c]0[ f1 t2 t3 c]0[ f1 f2 t3 c]0
[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2
The new configuration is graphically illustrated as below:
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In what follows we check the ∀ part of the formula, namely whether all assign-
ments over variables x1, . . . ,xk appear in the existing solutions (the membranes 0
containing an object c). We need 3k = 3∗2 = 6 steps to see if there exists a com-
bination that is missing from the membranes containing an object c, in order to
create an object no.

12. [[[c11 β ]Jβ ]K [β1]21[β2]61[d
′
1]L[d′′1 ]L[t1 t2 t3 c]0[t1 t2 f3 c]0[ f1 t2 t3 c]0[ f1 f2 t3 c]0

[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2
13. [[c12 β ]J[β ]K [β1]21[β2]61[t1

4d′′′1 z]L[ f1
4
d′′′1 z]L[d′′′1 ]L[d′′′1 ]L[t1 t2 t3 c]0[t1 t2 f3 c]0

[ f1 t2 t3 c]0[ f1 f2 t3 c]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0[t1 f2 t3 β1]0[t1 f2 f3 β1]0]2
14. [[[c13 β ]Jβ ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0

[t14z[d2]L[t1 t2 t3 c]0[t1 t2 f3 c]0]L[ f1
4
z[d2]L[ f1 t2 t3 c]0[ f1 f2 t3 c]0]L]2

15. [[c14 β ]J[β ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[t14z[d′2]L[d′′2 ]L[t1 t2 t3 c]0[t1 t2 f3 c]0]L
[ f1

4
z[d′2]L[d′′2 ]L[ f1 t2 t3 c]0[ f1 f2 t3 c]0]L]2

16. [[[c15 β ]Jβ ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[t14z[t22d′′′2 ]L[ f2

2
d′′′2 ]L[d′′2 ]2L[t1 t2 t3 c]0[t1 t2 f3 c]0]L

[ f1
4
z[t22d′′′2 ]L[ f2

2
d′′′2 ]L[d′′2 ]2L[ f1 t2 t3 c]0[ f1 f2 t3 c]0]L]2

17. [[c16 β ]J[β ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[t14z[t22d′′′2 [t1 t2 t3 c]0[t1 t2 f3 c]0]L[ f2

2
d′′′2 ]L[d′′′2 ]4L]L

[ f1
4
z[t22d′′′2 [ f1 t2 t3 c]0]L[ f2

2
d′′′2 [ f1 f2 t3 c]0]L[d′′′2 ]4L]2

Since not all assignments for the variables x1 and x2 are present in the mem-
branes containing a c object, then the answer provided is no. This is achieved
by an elementary membrane containing an object t2 or f2 entering a membrane
containing the object d′′′2 in 1 step. The membrane containing the object b is sent,
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in k steps to membrane 2 (skin membrane). The new configuration is graphically
illustrated as below:

J
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K
β

L
L

t2
2d′′′2

L

f2
2
d′′′2

t1
4z

L
d′′′2

L
d′′′2

L
d′′′2

L
d′′′2

L
L

t2
2d′′′2

L

f2
2
d′′′2

f1
4
z

L
d′′′2

L
d′′′2

L
d′′′2

L
d′′′2

1
β2

1
β2

1
β1

1
β1

1
β2

1
β2

1
β2

1
β2

0
t1t2t3

c

0
t1t2 f3

c

0
t1 f2t3

β1

0
t1 f2 f3

β1

0
f1t2t3

c

0
f1t2 f3

β2

0
f1 f2t3

c

0
f1 f2 f3

β2

2

18. [[[c17 β ]Jβ ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[t14z[t22d′′′2 [t1 t2 t3 c]0[t1 t2 f3 c]0]L[z[b z]L]L[d′′′2 ]3L]L
[ f1

4
z[t22d′′′2 [ f1 t2 t3 c]0]L[ f2

2
d′′′2 [ f1 f2 t3 c]0]L[d′′′2 ]4L]2

19. [[c18 β ]J[β ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[t14z[t22d′′′2 [t1 t2 t3 c]0[t1 t2 f3 c]0]L[z]L[b z]L[d′′′2 ]3L]L
[ f1

4
z[t22d′′′2 [ f1 t2 t3 c]0]L[ f2

2
d′′′2 [ f1 f2 t3 c]0]L[d′′′2 ]4L]2

20. [[[c19 β ]Jβ ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[b zα ]L[t14z[t22d′′′2 [t1 t2 t3 c]0[t1 t2 f3 c]0]L[z]L[d′′′2 ]3L]L
[ f1

4
z[t22d′′′2 [ f1 t2 t3 c]0]L[ f2

2
d′′′2 [ f1 f2 t3 c]0]L[d′′′2 ]4L]2

The new configuration is graphically illustrated as below:
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If a membrane L contains a b object and has reached membrane 2, then an object
no is created inside membrane J. If not, an extra step is performed in order to
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have a yes object in membrane J. The maximum number of steps performed for
an no object is n +2m +4k +5 = 21. For a positive answer the number of steps
needed is 21+1 = 22.

21. [[c19 βα]J[β ]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[b zα ]L[t14z[t22d′′′2 [t1 t2 t3 c]0[t1 t2 f3 c]0]L[z]L[d′′′2 ]3L]L
[ f1

4
z[t22d′′′2 [ f1 t2 t3 c]0]L[ f2

2
d′′′2 [ f1 f2 t3 c]0]L[d′′′2 ]4L]2

22. [[α]K [α]K [β1]21[β2]61[t1 f2 t3 β1]0[t1 f2 f3 β1]0[ f1 t2 f3 β2]0[ f1 f2 f3 β2]0
[[no]J zα ]L[t14z[t22d′′′2 [t1 t2 t3 c]0[t1 t2 f3 c]0]L[z]L[d′′′2 ]3L]L
[ f1

4
z[t22d′′′2 [ f1 t2 t3 c]0]L[ f2

2
d′′′2 [ f1 f2 t3 c]0]L[d′′′2 ]4L]2

Exercise 2.6. Solve the 2QBF problem using other classes of mobile membranes.

2.5.3 Bin Packing Problem

The Bin Packing problem can be stated as follows: given a finite set A, a weight
function g : A→N, and two constants b ∈N and c ∈N, decide whether or not there
exists a partition of A into b subsets such that the weight of each subset does not
exceed c.

Consider A = {a1, . . . ,an}, and a system of mutual mobile membranes having
the initial configuration

[[α]M[αe0]J[α]K [dn−1e]1 . . . [dn−1e]b[a1 . . .anc1,0 . . .cb,0β1,0 . . .βb,0β ]0]L
and working over the alphabet

V = {α,α,α1,β ,β ,no,yes,e,d}∪{γi | 1≤ i≤ n−1}∪{di | 1≤ i≤ b−2}
∪{wi | 1≤ i≤ b}∪{ai | 1≤ i≤ n}∪{ei | 1≤ i≤ 2bn+2c+3}
∪{ψi, j,βi, j,xi, j,yi, j,zi, j | 1≤ i≤ b,1≤ j ≤ n}
∪{ci, j | 1≤ i≤ b,0≤ j ≤ 2bn+2c+1}

In addition to mutual endocytosis and mutual exocytosis rules, elementary division
rules are used to generate all the possible subsets. The system of mutual mobile
membranes solving the bin packing problem uses the rules:

(i) If b = 2 we have the rules:
[ai]0 → [x1,i]0[x2,i]0, for 1≤ i≤ n (div)
[d] j → [ ] j[ ] j, for 1≤ j ≤ 2 (div)
[e] j → [β j,0] j[β j,0] j, for 1≤ j ≤ 2 (div)
If b > 2 we have the rules:
[ai]0 → [x1,i]0[y1,i]0, for 1≤ i≤ n (div)
[y j,i]0 → [x j+1,i]0[y j+1,i]0, for 1≤ j ≤ b−3 and 1≤ i≤ n (div)
[yb−2,i]0 → [xb−1,i]0[xb,i]0, for 1≤ i≤ n (div)
[d] j → [ ] j[d1] j, for 1≤ j ≤ b (div)
[dk] j → [ ] j[dk+1] j, for 1≤ k ≤ b−3 and 1≤ j ≤ b (div)
[db−2] j → [ ] j[ ] j, for 1≤ j ≤ b (div)
[e] j → [β j,0] j[e1] j (div)
[ek] j → [β j,0] j[ek+1] j, for 1≤ k ≤ b−3 and 1≤ j ≤ b (div)
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[eb−2] j → [β j,0] j[β j,0] j, for 1≤ j ≤ b (div)
Different sets of rules are needed, depending on the number of bins (2 or more).
The rules containing the objects a, x or y are used to create bn membranes la-
belled by 0 containing all the possible subsets over {a1, . . . ,an}. In x j,i, the bin
is denoted by j, while i denotes the variable placed in bin j. The objects x j,i are
used to introduce objects that represent the weight of the object ai. In each mem-
brane are placed also the objects β j,0, 1≤ j≤ b, that are used to count the weight
of each bin. The next rules create, for each 1≤ j ≤ b, bn membranes labelled by
j each containing an object β j,0.

(ii) [β j,i] j[x j,iβ j,i]0 → [[β j,i+1] jx j,iβ j,i+1]0, for 0≤ i≤ n−1 and 1≤ j ≤ b (mendo)

[[β j,i] jx j,iβ j,i]0 → [β j,i] j[z j,i wg(ai)
j β j,i]0, for 1≤ i≤ n and 1≤ j ≤ b (mexo)

[[β j,i] jβ j,i]0 → [β j,i] j[β j,i]0, for 1≤ i≤ n and 1≤ j ≤ b (mexo)

These rules are used to replace x j,i by z j,i wg(ai)
j . If x j,i is not present in a mem-

brane 0, then that membrane just increments the second index associated to β .
After applying these rules, each membrane 0 contains a number of objects w j

equal to the weight contained in the bin j, and also objects z j,i used to remember
which objects are contained in each bin.

(iii) [β j,n] j[w j β j,n]0 → [[β j,n] jβ j,n]0 (mendo)
[[β j,n] jc j,i β j,n]0 → [β j,n] j[c j,i+1 β j,n]0, for 0≤ i and 1≤ j ≤ b (mexo)
These rules are used to calculate the weights of each bin j, by using the ob-
jects c j,0 that appear in all 0 membranes.

(iv) [α ei]J[α]K → [[α ei+1]Jα]K for 0≤ i < (b+1)n+2c−1 (mendo)
[[α ei]Jα ]K → [α ei+1]J[α]K , for 0≤ i < (b+1)n+2c−1 (mexo)
[[α ei]Jα ]K → [α ei+1]J[αei+1]K , for i = (b+1)n+2c−1 (mexo)
The above rules are used in parallel to calculate the number of steps performed.
The number (b + 1)n + 2c is determined by: generating space ((b− 1)n steps),
replacing x j,i by corresponding weight (2n steps) and calculating weights (2c
steps).

(v) [[α e(b+1)n+2c]Jα]K → [α e(b+1)n+2c]J[αe(b+1)n+2c]K (mexo)
If b = 2 we have the rules
[α e(b+1)n+2c]J → [γ1]J[ψ1]J (div)
[γi]J → [γi+1]J[γi+1]J , for 1≤ i≤ n−2 (div)
[γn−1]J → [β ]J[β ]J (div)
If b > 2 we have the rules
[α e(b+1)n+2c]J → [γ1]J[ψ1,1]J (div)
[ψi, j]J → [γi]J[ψi, j+1]J , for 1≤ j ≤ b−3 and 1≤ i≤ n−1 (div)
[ψi,b−2]J → [γi]J[γi]J , for 1≤ i≤ n−1 (div)
[γi]J → [γi+1]J[ψi+1,1]J , for 1≤ i≤ n−2 (div)
[ψn, j]J → [β ]J[ψn, j+1]J , for 1≤ j ≤ b−3 (div)
[ψn,b−2]J → [β ]J[β ]J (div)
For b≥ 2 we have the rules
[β ]J[ck, jk β ]0 → [[ ]0 ]J , if jk > c (mendo)
After an extra step needed to prepare the membrane J for division, bn mem-
branes J are created ((b− 1)n steps) to check which membranes respect the
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weight condition. All membranes 0 that do not respect the condition are blocked
inside the J membranes. In this way by choosing any membrane that is not placed
inside a J membrane, we obtain a solution to the problem.

(vi) [α ei]K [α]M → [[α ei+1]Kα]M for (b+1)n+2c≤ i≤ 2bn+2c+2 (mendo)
[[α ei]Kα]M → [α ei+1]K [α]M , for (b+1)n+2c≤ i < 2bn+2c+2 (mexo)
[[α ei]Kα]M → [ββ ]K [α1]M , for i = 2bn+2c+2 or i = 2bn+2c+3 (mexo)
[β ]K [β ]0 → [yes[ ]0]K (mendo)
[α1]M → [β ]M[β ]M (mendo)
[β ]K [β ]M → [[no]K ]M (mendo)
The above rules are used in parallel to calculate the number of steps performed.
The number 2bn + 2c + 2 is determined by: generating space ((b− 1)n steps),
replacing x j,i by corresponding weight (2n steps), calculating weights (2c steps),
generating J membranes ((b−1)n steps), preparing division of J (1 step), block-
ing all membranes 0 that do not satisfy conditions (1 step). If there still exists a
membrane 0 that is not inside a membrane J, then the object yes is created in-
side membrane K. Otherwise, after one more step, the no object is created inside
membrane K. The computation stops after 2bn + 2c + 5 steps, with the answer
placed inside membrane K.

The number of membranes in the initial configuration is b + 5, and the number of
objects is nb+n+2b+3. The size of the working alphabet is 7bn+3b+2n+2c+
2b2n + 2bc + 9. The number of rules in the above system is: n + 4 rules of type (i)
if b = 2 or 3bn−7n+4b if b > 2, 3bn−b rules of type (ii), 2cb rules of type (iii),
2(b+1)n+4c rules of type (iv), and n+1 rules of type (v) if b = 2 or bn+bc−n+b
if b > 2. Hence, the size of the constructed system of mutual mobile membranes is
max{O(bn), O(bc)}.

Example 2.4. Consider the bin packing problem with A = {a1,a2,a3}, g(a1) = 1,
g(a2) = 3, g(a3) = 2, b = 3 and c = 3. In this case, n = b = c = 3 and

[[α]M[αe0]J[α]K [d2e]1[d2e]2[d2e]3[a1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L
Graphically this is illustrated as:

J

α e0

K
α

1
d2e

2
d2e

3
d2e

M
α

0
a1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β

L

The evolution of the system is described by the following steps. The working space
is created in 2n = 2∗3 = 6 steps leading from the initial configuration 1 to configu-
ration 7.

1. [[α]M[αe0]J[α]K [d2e]1[d2e]2[d2e]3[a1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L
2. [[α]M[[αe1]Jα]K [d e]1[d1d e]1[d e]2[d1d e]2[d e]3[d1d e]3

[x1,1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[y1,1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L
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3. [[α]M[αe2]J[α]K [e]1[d1 e]1[d e]21[e]2[d1 e]2[d e]22[e]3[d1 e]3[d e]23
[x1,1x1,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1y1,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1a2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L

4. [[α]M[[αe3]Jα]K [β1,0]1[e1]1[e]41[d1 e]21[β2,0]2[e1]2[e]42[d1 e]22[β3,0]3[e1]3[e]43[d1 e]23
[x1,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x1,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x2,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x3,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x1,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1y1,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x1,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1y1,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L

5. [[α]M[αe4]J[α]K [β1,0]71[e1]41[e]
4
1[β2,0]72[e1]42[e]

4
2[β3,0]73[e1]43[e]

4
3

[x1,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x2,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x3,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x1,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x2,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x3,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x1,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x2,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x3,2a3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L

6. [[α]M[[αe5]Jα]K [β1,0]19
1 [e1]41[β2,0]19

2 [e1]42[β3,0]19
3 [e1]43

[x1,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x2,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x2,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x3,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x3,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x2,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x3,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x2,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x3,2y1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L

7. [[α]M[αe6]J[α]K [β1,0]27
1 [β2,0]27

2 [β3,0]27
3

[x1,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x2,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x2,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x1,1x3,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x1,1x3,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x2,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x2,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x2,1x3,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x2,1x3,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x1,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x1,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
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[x3,1x1,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x2,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x2,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x2,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x3,2x1,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0[x3,1x3,2x2,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0
[x3,1x3,2x3,3c1,0c2,0c3,0β1,0 β2,0 β3,0β ]0]L
Graphically the working space is described by the following picture, where for
membranes labelled by 1, 2 and 3 we draw only two representatives:
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In what follows we replace x j,i by z j,iw
g(ai)
j , such that in each membrane we

obtain a number of objects w j equal to the weight of the objects contained in the
bin j. The objects z j,i are used to remember which objects are contained in each
membrane 0.

8. [[α]M[[αe7]Jα]K
[[β1,1]1[β2,1]2[β3,1]3x1,1x1,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x1,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x1,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x2,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x2,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x2,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x3,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x3,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x1,1x3,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
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[[β1,1]1[β2,1]2[β3,1]3x2,1x1,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x1,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x1,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x2,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x2,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x2,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x3,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x3,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x2,1x3,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x1,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x1,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x1,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x2,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x2,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x2,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x3,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x3,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[[β1,1]1[β2,1]2[β3,1]3x3,1x3,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0]L

9. [[α]M[αe8]J[α]K [β1,1]27
1 [β2,1]27

2 [β3,1]27
3

[w1z1,1x1,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w1z1,1x1,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w1z1,1x1,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w1z1,1x2,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w1z1,1x2,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w1z1,1x2,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w1z1,1x3,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w1z1,1x3,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w1z1,1x3,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w2z2,1x1,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w2z2,1x1,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w2z2,1x1,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w2z2,1x2,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w2z2,1x2,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w2z2,1x2,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w2z2,1x3,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w2z2,1x3,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w2z2,1x3,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w3z3,1x1,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w3z3,1x1,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w3z3,1x1,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w3z3,1x2,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w3z3,1x2,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w3z3,1x2,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w3z3,1x3,2x1,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0[w3z3,1x3,2x2,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0
[w3z3,1x3,2x3,3c1,0c2,0c3,0β1,1 β2,1 β3,1β ]0]L
By applying in a similar way the set of rules (ii) for 2 ≤ i ≤ 3, after 4 steps we
obtain the configuration.

13. [[α]M[αe12]J[α]K [β1,3]27
1 [β2,3]27

2 [β 27
3,3]3

[w6
1z1,1z1,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w4
1w2

2z1,1z1,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w4

1w2
3z1,1z1,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w3
1w3

2z1,1z2,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w1w5

2z1,1z2,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
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[w1w3
2w2

3z1,1z2,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w3

1w3
3z1,1z3,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w1w3
3w2

2z1,1z3,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w1w5

3z1,1z3,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w2w5

1z2,1z1,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w3

2w3
1z2,1z1,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w2w3
1w2

3z2,1z1,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w4

2w2
1z2,1z2,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w6
2z2,1z2,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w4
2w2

3z2,1z2,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w2w3

3w2
1z2,1z3,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w2w3
3w2

1z2,1z3,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w2w5

3z2,1z3,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w3w5

1z3,1z1,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w3w3

1w2
2z3,1z1,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w3
3w3

1z3,1z1,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w3w2

3w2
1z3,1z2,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w3w5
2z3,1z2,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w3
3w3

2z3,1z2,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w4

3w2
1z3,1z3,2z1,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0

[w4
3w2

2z3,1z3,2z2,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0
[w6

3z3,1z3,2z3,3c1,0c2,0c3,0β1,3 β2,3 β3,3β ]0]L
By applying in a similar way the set of rules (iii) for 1 ≤ i ≤ 3, after 6 steps we
obtain the next configuration, in which the second index of cl,m objects equals
the number of w j objects.

19. [[α]M[αe18]J[α]K [β1,3]27
1 [β2,3]27

2 [β 27
3,3]3

[z1,1z1,2z1,3c1,6c2,0c3,0β1,3 β2,3 β3,3β ]0[z1,1z1,2z2,3c1,4c2,2c3,0β1,3 β2,3 β3,3β ]0
[z1,1z1,2z3,3c1,4c2,0c3,2β1,3 β2,3 β3,3β ]0[z1,1z2,2z1,3c1,3c2,3c3,0β1,3 β2,3 β3,3β ]0
[z1,1z2,2z2,3c1,1c2,5c3,0β1,3 β2,3 β3,3β ]0[z1,1z2,2z3,3c1,1c2,3c3,2β1,3 β2,3 β3,3β ]0
[z1,1z3,2z1,3c1,3c2,0c3,3β1,3 β2,3 β3,3β ]0[z1,1z3,2z2,3c1,1c2,2c3,3β1,3 β2,3 β3,3β ]0
[z1,1z3,2z3,3c1,1c2,0c3,5β1,3 β2,3 β3,3β ]0[z2,1z1,2z1,3c1,5c2,1c3,0β1,3 β2,3 β3,3β ]0
[z2,1z1,2z2,3c1,3c2,3c3,0β1,3 β2,3 β3,3β ]0[z2,1z1,2z3,3c1,3c2,1c3,2β1,3 β2,3 β3,3β ]0
[z2,1z2,2z1,3c1,2c2,4c3,0β1,3 β2,3 β3,3β ]0[z2,1z2,2z2,3c1,0c2,6c3,0β1,3 β2,3 β3,3β ]0
[z2,1z2,2z3,3c1,0c2,4c3,2β1,3 β2,3 β3,3β ]0[z2,1z3,2z1,3c1,2c2,1c3,3β1,3 β2,3 β3,3β ]0
[z2,1z3,2z2,3c1,0c2,3c3,3β1,3 β2,3 β3,3β ]0[z2,1z3,2z3,3c1,0c2,1c3,5β1,3 β2,3 β3,3β ]0
[z3,1z1,2z1,3c1,5c2,0c3,1β1,3 β2,3 β3,3β ]0[z3,1z1,2z2,3c1,3c2,2c3,1β1,3 β2,3 β3,3β ]0
[z3,1z1,2z3,3c1,3c2,0c3,3β1,3 β2,3 β3,3β ]0[z3,1z2,2z1,3c1,2c2,3c3,1β1,3 β2,3 β3,3β ]0
[z3,1z2,2z2,3c1,0c2,5c3,1β1,3 β2,3 β3,3β ]0[z3,1z2,2z3,3c1,0c2,3c3,3β1,3 β2,3 β3,3β ]0
[z3,1z3,2z1,3c1,2c2,0c3,4β1,3 β2,3 β3,3β ]0[z3,1z3,2z2,3c1,0c2,2c3,4β1,3 β2,3 β3,3β ]0
[z3,1z3,2z3,3c1,0c2,0c3,6β1,3 β2,3 β3,3β ]0]L
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Graphically the working space is described by the following picture:

J

α e18

K
α

1

β1,3 . . .

1

β1,3

2

β2,3 . . .

2

β2,3

3

β3,3 . . .

3

β3,3

0
z1,1z1,2z1,3

c1,6c2,0c3,0
β1,3 β2,3 β3,3

0
z1,1z1,2z2,3

c1,4c2,2c3,0
β1,3 β2,3 β3,3

0
z1,1z1,2z3,3

c1,4c2,0c3,2
β1,3 β2,3 β3,3

0
z1,1z2,2z1,3

c1,3c2,3c3,0
β1,3 β2,3 β3,3

0
z1,1z2,2z2,3

c1,1c2,5c3,0
β1,3 β2,3 β3,3

0
z1,1z2,2z3,3

c1,1c2,3c3,2
β1,3 β2,3 β3,3

0
z1,1z3,2z1,3

c1,3c2,0c3,3
β1,3 β2,3 β3,3

0
z1,1z3,2z2,3

c1,1c2,2c3,3
β1,3 β2,3 β3,3

0
z1,1z3,2z3,3

c1,1c2,0c3,5
β1,3 β2,3 β3,3

0
z2,1z1,2z1,3

c1,5c2,1c3,0
β1,3 β2,3 β3,3

0
z2,1z1,2z2,3

c1,3c2,3c3,0
β1,3 β2,3 β3,3

0
z2,1z1,2z3,3

c1,3c2,1c3,2
β1,3 β2,3 β3,3

0
z2,1z2,2z1,3

c1,2c2,4c3,0
β1,3 β2,3 β3,3

0
z2,1z2,2z2,3

c1,0c2,6c3,0
β1,3 β2,3 β3,3

0
z2,1z2,2z3,3

c1,0c2,4c3,2
β1,3 β2,3 β3,3

0
z2,1z3,2z1,3

c1,2c2,1c3,3
β1,3 β2,3 β3,3

0
z2,1z3,2z2,3

c1,0c2,3c3,3
β1,3 β2,3 β3,3

0
z2,1z3,2z3,3

c1,0c2,1c3,5
β1,3 β2,3 β3,3

0
z3,1z1,2z1,3

c1,5c2,0c3,1
β1,3 β2,3 β3,3

0
z3,1z1,2z2,3

c1,3c2,2c3,1
β1,3 β2,3 β3,3

0
z3,1z1,2z3,3

c1,3c2,0c3,3
β1,3 β2,3 β3,3

0
z3,1z2,2z1,3

c1,2c2,3c3,1
β1,3 β2,3 β3,3

0
z3,1z2,2z2,3

c1,0c2,5c3,1
β1,3 β2,3 β3,3

0
z3,1z2,2z3,3

c1,0c2,3c3,3
β1,3 β2,3 β3,3

0
z3,1z3,2z1,3

c1,2c2,0c3,4
β1,3 β2,3 β3,3

0
z3,1z3,2z2,3

c1,0c2,3c3,4
β1,3 β2,3 β3,3

0
z3,1z3,2z3,3

c1,0c2,0c3,6
β1,3 β2,3 β3,3

M
α

L

The next steps are used to create a yes object inside membrane K. We present
only the final configuration:

29. [[β ]2M[β ]12
J [β1,3]27

1 [β2,3]27
2 [β 27

3,3]3
[[z1,1z1,2z1,3c1,6c2,0c3,0β1,3 β2,3 β3,3]0]J[[z1,1z1,2z2,3c1,4c2,2c3,0β1,3 β2,3 β3,3]0]J
[[z1,1z1,2z3,3c1,4c2,0c3,2β1,3 β2,3 β3,3]0]J[[z1,1z2,2z2,3c1,1c2,5c3,0β1,3 β2,3 β3,3]0]J
[z1,1z2,2z3,3c1,1c2,3c3,2β1,3 β2,3 β3,3β ]0[z1,1z3,2z1,3c1,3c2,0c3,3β1,3 β2,3 β3,3β ]0
[z1,1z3,2z2,3c1,1c2,2c3,3β1,3 β2,3 β3,3β ]0[[z1,1z3,2z3,3c1,1c2,0c3,5β1,3 β2,3 β3,3]0]J
[[z2,1z1,2z1,3c1,5c2,1c3,0β1,3 β2,3 β3,3]0]J[z2,1z1,2z2,3c1,3c2,3c3,0β1,3 β2,3 β3,3β ]0
[z2,1z1,2z3,3c1,3c2,1c3,2β1,3 β2,3 β3,3β ]0[[z2,1z2,2z1,3c1,2c2,4c3,0β1,3 β2,3 β3,3]0]J
[[z2,1z2,2z2,3c1,0c2,6c3,0β1,3 β2,3 β3,3]0]J[[z2,1z2,2z3,3c1,0c2,4c3,2β1,3 β2,3 β3,3]0]J
[z2,1z3,2z1,3c1,2c2,1c3,3β1,3 β2,3 β3,3β ]0[z2,1z3,2z2,3c1,0c2,3c3,3β1,3 β2,3 β3,3β ]0
[[z2,1z3,2z3,3c1,0c2,1c3,5β1,3 β2,3 β3,3]0]J[[z3,1z1,2z1,3c1,5c2,0c3,1β1,3 β2,3 β3,3]0]J
[z3,1z1,2z2,3c1,3c2,2c3,1β1,3 β2,3 β3,3β ]0[z3,1z1,2z3,3c1,3c2,0c3,3β1,3 β2,3 β3,3β ]0
[z3,1z2,2z1,3c1,2c2,3c3,1β1,3 β2,3 β3,3β ]0[[z3,1z2,2z2,3c1,0c2,5c3,1β1,3 β2,3 β3,3]0]J
[z3,1z2,2z3,3c1,0c2,3c3,3β1,3 β2,3 β3,3β ]0[[z3,1z3,2z1,3c1,2c2,0c3,4β1,3 β2,3 β3,3]0]J
[[z3,1z3,2z2,3c1,0c2,2c3,4β1,3 β2,3 β3,3]0]J[[z3,1z3,2z3,3c1,0c2,0c3,6β1,3 β2,3 β3,3]0]J
[yes[z1,1z2,2z1,3c1,3c2,3c3,0β1,3 β2,3 β3,3]0β ]K ]L

Exercise 2.7. Solve the Bin Packing problem using other classes of mobile mem-
branes.
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2.5.4 Subset Sum Problem

The problem can be enounced as follows: given a finite set, A, a weight function,
g : A → N, and a constant s, determine whether or not there exists a non-empty
subset B of A such that g(B) = s.

Consider A = {a1, . . . ,an}, and a system of mutual mobile membranes having
the initial configuration

[[α]M[α e0]J[α]K [dn−1d0]1[a1 c0 β0]0]2
and working over the alphabet

V = {no,yes,d,d0,b,α,α,α1,β ,β}∪{βi,βi | 0≤ i≤ n}
∪{ai,xi,yi | 1≤ i≤ n}∪{γi | 1≤ i≤ n−1}
∪{ei | 0≤ i≤ 4n+2s+1}∪{ci | 0≤ i≤ g(A)}

In addition to mutual endocytosis and mutual exocytosis rules, elementary division
rules are used to generate all the possible subsets. The system of mutual mobile
membranes solving the Subset problem uses the rules:

(i) [ai]0 → [xiai+1]0[ai+1]0, for 1≤ i≤ n−1 (div)
[an]0 → [xnβ ]0[β ]0 (div)
[d]1 → [ ]1[ ]1 (div)
[d0]1 → [β ]1[β ]1 (div)
The first two rules generate 2n membranes labelled by 0 containing all the possi-
ble subsets over variables {x1, . . . ,xn}. In each membrane labelled by 0 is placed
also a symbol β . The next two rules generate 2n membranes labelled by 1 each
containing an object β . The symbols β and β are used in mobility, where the
membranes containing the object β are the ones that move.

(ii) [β ]0[β ]1 → [[β1]0β1]1 (mendo)
[βi]0[βi]1 → [[βi+1]0βi+1]1, for 1≤ i≤ n−1 (mendo)
[[xiβi]0βi]1 → [yi bg(ai)βi]0[βi]1, for 1≤ i≤ n (mexo)
[[βi]0βi]1 → [βi]0[βi]1, for 1≤ i≤ n (mexo)
These rules are used to replace xi by yi bg(ai), for 1 ≤ i ≤ n. If xi is not present
in a membrane 0, then the indexes of β and β are incremented. After applying
these rules, each membrane 0 contains a number of objects b equal to the weight
of the contained subset of A, and also objects yi used to remember which objects
are contained in this membrane.

(iii) [b βn]0[βn]1 → [[βn]0βn]1 (mendo)
[[ci βn]0βn]1 → [ci+1 βn]0[βn]1, for 0≤ i (mexo)
These rules are used to calculate the weights of the subsets B of A, by using the
objects c0 that appear in all 0 membranes. For each b present in a membrane 0,
the subscript of c, present in the same membrane, is incremented.

(iv) [α ei]J[α]K → [[α ei+1]Jα]K , for 0≤ i < 3n+2s−1 (mendo)
[[α ei]Jα ]K → [α ei+1]J[α]K , for 0≤ i < 3n+2s−1 (mexo)
[[α ei]Jα ]K → [α ei+1]J[α ei+1]K , for i = 3n+2s−1 (mexo)
These rules are used in parallel to calculate the number of steps performed. The
counting stops after 3n+2s steps, a number determined by: generating space (n
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steps), replacing xi by corresponding weight (2n steps) and calculating weights
(2s steps).

(v) [[α e3n+2s]Jα]K → [α e3n+2s]J[αe3n+2s]K (mexo)
[α e3n+2s]J → [γ1]J[γ1]J (div)
[γi]J → [γi+1]J[γi+1]J , for 1≤ i≤ n−2 (div)
[γn−1]J → [β0]J[β0]J (div)
[ciβ0]0[β0]J → [[ ]0]J , for 0≤ i, i �= s (mendo)
An extra step, needed to prepare the membrane J for division, is performed if
needed. If membrane J contains an object e3n+2s, and is placed near membrane K,
then 2n membranes are generated (n steps) in order to check which membranes
contain the object cs. All membranes 0 that do not respect the condition are
blocked inside a J membrane. In this way by choosing any membrane that it
is not placed inside a J membrane, we obtain a solution to the problem.

(vi) [α ei]K [α]M → [[α ei+1]Kα]M for 3n+2s≤ i≤ 4n+2s (mendo)
[[α ei]Kα]M → [α ei+1]K [α]M , for 3n+2s≤ i < 4n+2s (mexo)
[[α ei]Kα]M → [β0β0]K [α1]M , for i = 4n+2s or i = 4n+2s+1 (mexo)
[β0]K [β0]0 → [yes[ ]0]K (mendo)
[α1]M → [β0]M[β0]M (div)
[β0]K [β0]M → [[no]K ]M (mendo)
The above rules are used in parallel to calculate the number of steps performed.
The number 4n + 2s + 1 is determined by: generating space (n steps), replac-
ing xi by corresponding weight (2n steps),calculating weights (2s steps), gener-
ating the J membranes (n− 1 steps), preparing division of J (1 step), blocking
all membranes 0 that do not satisfy conditions (1 step). If there still exists a
membrane 0 that is not inside a membrane J, then the object yes is created in-
side membrane K. Otherwise, after one more step, the no object is created inside
membrane K. The computation stops after 4n + 2s + 3 steps, with the answer
placed inside membrane K.

The number of membranes in the initial configuration is 6, and the number of objects
is n +7. The size of the working alphabet is 10n +4s +12. The number of rules in
the above system is: n + 2 rules of type (i), 3n rules of type (ii), 2(s + n− 1) rules
of type (iii), 3n + 2s rules of type (iv), n + 2 rules of type (v) and 2n + 5 rules of
type (vi). Hence, the size of the constructed system is O(n).

Example 2.5. Consider the Subset problem with A = {a1,a2,a3}, s = 2, g(a1) = 1,
g(a2) = 2 and g(a3) = 1. In this case, n = 3, s = 2, and the initial configuration of
the system of mutual mobile membranes

[[α]M[α e0]J[α]K [d2d0]1[a1 c0 β0]0]2
Graphically this is illustrated as:

J
α e0

M
α

K
α

1
d2d0

0
a1c0β0

2

The evolution of the system is described by the following steps. The working space
is generated in n = 3 steps leading from the initial configuration 1 to configuration 4:
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1. [[α]M[α e0]J[α]K [d2 d0]1[a1 c0 β0]0]2
2. [[α]M[[α e1]Jα]K [d d0]21[x1 a2 c0 β0]0[a2 c0 β0]0]2
3. [[α]M[α e2]J[α]K [d0]41[x1 x2 a3 c0 β0]0[x1 a3 c0 β0]0[x2 a3 c0 β0]0[a3 c0 β0]0]2
4. [[α]M[[α e3]Jα]K [β ]81[x1 x2 x3 c0 ββ0]0[x1 x2 c0 ββ0]0[x1 x3 c0 ββ0]0[x1 c0 ββ0]0

[x2 x3 c0 ββ0]0[x2 c0 ββ0]0[x3 c0 ββ0]0[c0 ββ0]0]2
Graphically the working space is described by the following picture:

K
α

J
e3 α

M
α

1
β

1
β

1
β

1
β

1
β

1
β

1
β

1
β

0

c0 β β0

0
x1

c0 β β0

0
x2

c0 β β0

0
x3

c0 β β0

0
x1x2

c0 β β0

0
x1x3

c0 β β0

0
x2x3

c0 β β0

0
x1x2x3
c0 β β0

2

In the next steps we replace xi by yi and bg(ai). We use yi to mark the fact that
in the membrane 0 containing it there is a subset containing ai. The multiset of
objects bg(ai) is used to denote the weight of object ai.

5. [[α]M[α e4]J[α]K [[x1 x2 x3 c0 β1 β0]0β1]1[[x1 x2 c0 β1 β0]0β1]1[[x1 x3 c0 β1 β0]0β1]1
[[α]M[x1 c0 β1]0β1]1[[x2 x3 c0 β1 β0]0β1]1[[x2 c0 β1 β0]0β1]1
[[x3 c0 β1 β0]0β1]1[[c0 β1 β0]0β1]1]2

6. [[α]M[[α e5]Jα]K [β1]81[b y1 x2 x3 c0 β1 β0]0[b y1 x2 c0 β1 β0]0[b y1 x3 c0 β1 β0]0
[b y1 c0 β1 β0]0[x2 x3 c0 β1 β0]0[x2 c0 β1 β0]0[x3 c0 β1]0[c0 β1 β0]0]2

7. [[α]M[α e6]J[α]K [[b y1 x2 x3 c0 β2 β0]0β2]1[[b y1 x2 c0 β2 β0]0β2]1
[[b y1 x3 c0 β2 β0]0β2]1[[b y1 c0 β2 β0]0β2]1[[x2 x3 c0 β2 β0]0β2]1
[[x2 c0 β2 β0]0β2]1[[x3 c0 β2 β0]0β2]1[[c0 β2 β0]0β2]1]2

8. [[α]M[[α e7]Jα]K [β2]81[b
3 y1 y2 x3 c0 β2 β0]0[b3 y1 y2 c0 β2 β0]0[b y1 x3 c0 β2 β0]0

[b y1 c0 β2 β0]0[b2 y2 x3 c0 β2 β0]0[b2 y2 c0 β2 β0]0[x3 c0 β2 β0]0[c0 β2 β0]0]2
9. [[α]M[α e8]J[α]K [[b y1 x2 x3 c0 β3 β0]0β3]1[[b y1 x2 c0 β3 β0]0β3]1

[[b y1 x3 c0 β3 β0]0β3]1[[b y1 c0 β3 β0]0β3]1[[x2 x3 c0 β3 β0]0β3]1
[[x2 c0 β3 β0]0β3]1[[x3 c0 β3 β0]0β3]1[[c0 β3 β0]0β3]1]2

10. [[α]M[[α e9]Jα]K [β3]81[b
4 y1 y2 y3 c0 β3 β0]0[b3 y1 y2 c0 β3 β0]0[b2 y1 y3 c0 β3 β0]0

[b y1 c0 β3 β0]0[b3 y2 y3 c0 β3 β0]0[b2 y2 c0 β3 β0]0[b y3 c0 β3 β0]0[c0 β3 β0]0]2
Graphically the working space is described by the following picture:
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α

J
e9 α

M
α

1
β3

1
β3

1
β3

1
β3

1
β3

1
β3

1
β3

1
β3

0

c0 β3 β0

0
y1

b c0 β3 β0

0
y2

b2c0 β3 β0

0
y3

b c0 β3 β0

0
y1y2

b3c0 β3 β0

0
y1y3

b2c0 β3 β0

0
y2y3

b3c0 β3 β0

0
y1y2y3

b4c0 β3 β0

2
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In what follows we calculate the weight of each membrane 0 by using the ob-
ject c0, until we reach c2 since s = 2.

11. [[α]M[α e10]J[α]K [β3]1[[b3 y1 y2 y3 c0 β3 β0]0β3]1[[b2 y1 y2 c0 β3 β0]0β3]1
[[b y1 y3 c0 β3 β0]0β3]1[[y1 c0 β3 β0]0β3]1[[b2 y2 y3 c0 β3 β0]0β3]1
[[b y2 c0 β3 β0]0β3]1[[y3 c0 β3 β0]0β3]1[c0 β3]0]2

12. [[α]M[[α e11]Jα]K [β3]81[b
3 y1 y2 y3 c1 β3 β0]0[b2 y1 y2 c1 β3 β0]0[b y1 y3 c1 β3 β0]0

[y1 c1 β3 β0]0[b2 y2 y3 c1 β3 β0]0[b y2 c1 β3 β0]0[y3 c1 β3 β0]0[c0 β3 β0]0]2
13. [[α]M[α e12]J[α]K [β3]31[[b

2 y1 y2 y3 c0 β3 β0]0β3]1[[b y1 y2 c0 β3 β0]0β3]1
[[y1 y3 c0 β3 β0]0β3]1[y1 c0 β3 β0]0[[b y2 y3 c0 β3 β0]0β3]1
[[y2 c0 β3 β0]0β3]1[y3 c0 β3 β0]0[c0 β3 β0]0]2

14. [[α]M[[α e13]Jα ]K [β3]81[b
2 y1 y2 y3 c2 β3 β0]0[b y1 y2 c2 β3 β0]0[y1 y3 c2 β3 β0]0

[y1 c1 β3 β0]0[b y2 y3 c2 β3 β0]0[y2 c2 β3 β0]0[y3 c1 β3 β0]0[c0 β3 β0]0]2
Graphically the working space is described by the following picture:
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J
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1
β3
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Now we divide membrane J, after performing an extra step that moves mem-
brane J out of membrane K, in order to check if the index of ci from the 0 mem-
branes equals s. In parallel, if there still exist membranes 0 containing b objects,
then the subscript of ci is increased.

15. [[α]M[α e13]J[α e13]K [β3]51[[b y1 y2 y3 c2 β3 β0]0β3]1[[y1 y2 c2 β3 β0]0β3]1
[y1 y3 c2 β3 β0]0[y1 c1 β3 β0]0[[y2 y3 c2 β3 β0]0β3]1[y2 c2 β3 β0]0[y3 c1 β3 β0]0
[c0 β3 β0]0]2

16. [[α]M[α[α e14]K ]M[γ1]2J [β3]81[b y1 y2 y3 c3 β3 β0]0[y1 y2 c3 β3 β0]0[y1 y3 c2 β3 β0]0
[y1 c1 β3 β0]0[y2 y3 c3 β3 β0]0[y2 c2 β3 β0]0[y3 c1 β3 β0]0[c0 β3 β0]0]2

17. [[α]M[γ2]4J [α e15]K [β3]71[[y1 y2 y3 c3 β3 β0]0β3]1[y1 y2 c3 β3 β0]0[y1 y3 c2 β3 β0]0
[y1 c1 β3 β0]0[y2 y3 c3 β3 β0]0[y2 c2 β3 β0]0[y3 c1 β3 β0]0[c0 β3 β0]0]2

18. [[α[α e16]K ]M[β0]8J [β3]81[y1 y2 y3 c4 β3 β0]0[y1 y2 c3 β3 β0]0[y1 y3 c2 β3 β0]0
[y1 c1 β3 β0]0[y2 y3 c3 β3 β0]0[y2 c2 β3 β0]0[y3 c1 β3 β0]0[c0 β3 β0]0]2

19. [[α1]M[β0β0]K [β0]8J [β3]81[[y1 y2 y3 β3]0]J[[y1 y2 β3]0]J[y1 y3 c2 β3 β0]0
[[y1 β3]0]J[[y2 y3 β3]0]J[y2 c2 β3 β0]0[[y3 β3]0]J [[β3]0]J]2
The next steps are used to generate a yes object inside membrane K. We present
only the final configuration obtained after 4n+2s+3 = 12+4+3 = 19 steps:

20. [[β 1]
2
M[β0 yes[y1 y3 c2 β3]0]K [β0]8J [β3]81[[y1 y2 y3 β3]0]J[[y1 y2 β3]0]J

[[y1 β3]0]J[[y2 y3 β3]0]J[y2 c2 β3 β0]0[[y3 β3]0]J [[β3]0]J]2
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Exercise 2.8. Solve the Subset Sum problem using other classes of mobile mem-
branes.

2.5.5 Knapsack Problem (0/1)

The decision Knapsack problem can be stated as follows: Given a knapsack of ca-
pacity k ∈ N, a set A of n elements, a weight function g : A → N, a value function
r : A → N, and a constant l ∈ N, decide whether or not there exists a subset of A
such that its weight does not exceed k and its value is greater than or equal than l.

Consider A = {a1, . . . ,an}, and a system of mutual mobile membranes having
the initial configuration

[[ψn]M[α e0]J[α]K [dn−1d0]1[dn−1d0]2[a1 b0 c0 β0]0]3
and working over the alphabet

V = {yes,no,d,d0,b,c,ϕ ,α,α,β ,β ,ψ ,ψ}
∪{ai,xi,yi,ψi,ψi,ϕi,γ i | 1≤ i≤ n}∪{βi,βi | 0≤ i≤ n}
∪{bi,ci | 0≤ i≤ n+max{k, l}}∪{ei | 0≤ i≤ 3n+2max{k, l}}

In addition to mutual endocytosis and mutual exocytosis rules, elementary division
rules are used to generate all the possible subsets. The system of mutual mobile
membranes solving the Knapsack problem uses the rules:

(i) [ai]0 → [xiziai+1]0[ai+1]0, for 1≤ i≤ n−1 (div)
[an]0 → [xnznβψ ]0[βψ ]0 (div)
[d] j → [ ] j[ ] j, for 1≤ j ≤ 2 (div)
[d0]1 → [β ]1[β ]1 (div)
[d0]2 → [ψ ]2[ψ ]2 (div)
The first two rules generate 2n membranes labelled by 0 containing all the pos-
sible subsets over variables {x1, . . . ,xn}. When an object xi appears in a mem-
brane 0, there appears also an object zi. The objects xi and zi are used to intro-
duce objects that represent the weight and value, respectively, of each object ai

from a subset of A. In each membrane are placed also two symbols β and ψ . The
next two rules generate 2n membranes labelled by 1 each containing an object β
and 2n membranes labelled by 2 each containing an object ψ . The symbols β , β ,
ψ , and ψ are used in the mobility of membranes 1 and 2.

(ii) [β ]1[β ]0 → [[β1]1β1]0 (mendo)
[βi]1[βi]0 → [[βi+1]1βi+1]0, for 1≤ i≤ n−1 (mendo)
[[βi]1xiβi]0 → [βi]1[yi bg(ai)βi]0, for 1≤ i≤ n (mexo)
[[βi]1βi]0 → [βi]1[βi]0, for 1≤ i≤ n (mexo)
These rules are used to replace xi by yi bg(ai), for 1 ≤ i ≤ n. If xi is not present
in a membrane 0, then the indexes of β and β are incremented. After applying
these rules, each membrane 0 contains a number of objects b equal to the weight
of the contained subset of A, and also objects yi used to remember which objects
are contained in this membrane.

(iii) [ψ ]2[ψ]0 → [[ψ1]2ψ1]0 (mendo)
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[ψi]2[ψi]0 → [[ψi+1]2ψi+1]0, for 1≤ i≤ n−1 (mendo)
[[ψi]2ziψi]0 → [ψi]2[cr(ai)ψi]0, for 1≤ i≤ n (mexo)
[[ψi]2ψi]0 → [ψi]2[ψi]0, for 1≤ i≤ n (mexo)
In parallel with the rules (ii), these rules are used to replace zi by cr(ai), for
1 ≤ i ≤ n. If zi is not present in a membrane 0, then the indexes of ψ and ψ are
incremented. After applying these rules, each membrane 0 contains a number of
objects c equal to the value of the contained subset of A.

(iv) [βn]1[b βn]0 → [[βn]1βn]0 (mendo)
[[βn]1bi βn]0 → [βn]1[bi+1 βn]0, for 0≤ i (mexo)
These rules are used to calculate the weights of the subsets B of A, by using the
objects b0 that appear in all 0 membranes. If an object b is present, then the index
of bi, placed in the same membrane as b, is incremented.

(v) [ψn]2[c ψn]0 → [[ψn]2ψn]0 (mendo)
[[ψn]2ci ψn]0 → [ψn]2[ci+1 ψn]0, for 0≤ i (mexo)
In parallel with the rules (iv), these rules are used to calculate the value of the
subsets B of A, by using the objects c0 that appear in all 0 membranes. If an
object c is present, then the index of ci, placed in the same membrane as c, is
incremented.

(vi) [α ei]J[α]K → [[α ei+1]Jα]K (mendo)
[[α ei]Jα ]K → [α ei+1]J[α]K , for 0≤ i≤ 3n+2max{k, l}−1 (mexo)
We use these rules in parallel to calculate the number of steps performed. The
counting stops after 3n + 2max{k, l} steps, a number determined by: generating
space (n steps), replacing xi by the corresponding weight (2n steps) and calculat-
ing weights and values (2max{k, l} steps).

(vii) [α e3n+2max{k,l}]J[α]K → [[α e3n+2max{k,l}]Jα]K (mendo)
[[α e3n+2max{k,l}]Jα ]K → [α e3n+2max{k,l}]J[ϕ ]K (mexo)
[α e3n+2max{k,l}]J → [γ1]J[γ1]J (div)
[γi]J → [γi+1]J[γi+1]J , for 1≤ i≤ n−2 (div)
[γn−1]J → [βn]J[βn]J (div)
[ϕ ]K → [ϕ1]K [ϕ1]K (div)
[ϕi]K → [ϕi+1]K [ϕi+1]K , for 1≤ i≤ n−2 (div)
[ϕn−1]K → [ψn]K [ψn]K (div)
[βn]J[biβn]0 → [[ ]J]0, for k < i (mendo)
[ψn]K [ciψn]0 → [[ ]K ]0, for 0≤ i < l (mendo)
One or two extra steps, needed to prepare the membranes J and K for division, are
performed if needed. If membrane J contains two objects α and 3n+2max{k, l},
and is placed near membrane K containing an object φ , then 2n membranes J are
generated to check which membranes respect the weight condition, and 2n mem-
branes K are generated to check which membranes respect the value condition.
All membranes 0 that do not respect the conditions are blocked inside a J or K
membrane. In this way by choosing any membrane that is not placed inside a J
or K membrane, we obtain a solution to the problem.

(viii) [ψn]M[ψn]K → [ψn[ψn]K ]M (mendo)
[ψn[ψn]K ]M → [β0β0]M[β0]K (mexo)
[β0]0[β0]M → [yes[ ]0]M (mendo)
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[β0]K → [β0]K [β0]K (div)
[β0]K [β0]M → [[no]M]K (mendo)
The computation stops after 2 more steps (maximum 4n+2max{k, l}+ 5 steps
in total). If there still exists a membrane 0 that is not blocked inside a J or K
membrane, then the yes object is created inside membrane M. Otherwise, after
one more step, the no object is created inside membrane M.

The number of membranes in the initial configuration is 7, and the number of objects
is 2n + 9. The size of the working alphabet is 14n + 3max{k, l}+ 15. The number
of rules in the above system is: n+4 rules of type (i), 3n rules of type (ii), 3n rules
of type (iii), k +n−1 rules of type (iv), l +n−1 rules of type (v), 3n+2max{k, l}
rules of type (vi), 4n + 2max{k, l}+ 2 rules of type (vii) and 5 rules of type (viii).
Hence, the size of the constructed system is max{O(n),O(max{k, l})}.

Example 2.6. Consider the Knapsack problem with A = {a1,a2,a3}, g(a1) = 1,
g(a2) = 2, g(a3) = 1, k = 2, r(a1) = 2, r(a2) = 1, r(a3) = 3 and l = 3. In this
case, n = 3, k = 2, l = 3, and the initial configuration of the system is

[[ψ3]M[α e0]J[α]K [d2d0]1[d2d0]2[a1 b0 c0 β0]0]3
Graphically this is illustrated as:
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The evolution of the system is described by the following steps. The working space
is generated in n = 3 steps leading from the initial configuration 1 to configuration 4:

1. [[ψ3]M[α e0]J[α]K [d2d0]1[d2d0]2[a1 b0 c0 β0]0]3
2. [[ψ3]M[[α e1]Jα]K [d d0]21[d d0]22[x1z1a2 b0 c0 β0]0[a2 b0 c0 β0]0]3
3. [[ψ3]M[α e2]J[α]K [d0]41[d0]42[x1z1x2z2a3 b0 c0 β0]0[x1z1a3 b0 c0 β0]0

[x2z2a3 b0 c0 β0]0[a3 b0 c0 β0]0]3
4. [[ψ3]M[[α e3]Jα]K [β ]81[ψ ]82[x1z1x2z2x3z3 b0 c0 β ψβ0]0[x1z1x2z2 b0 c0 β ψβ0]0

[x1z1x3z3 b0 c0β ψβ0]0[x1z1 b0 c0β ψβ0]0[x2z2x3z3 b0 c0β ψβ0]0[x2z2b0c0β ψβ0]0
[x3z3 b0 c0 β ψβ0]0[b0 c0 β ψβ0]0]3
Graphically the working space is described by the following picture:
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In the next steps we replace xi by yi and bg(ai). We use yi to mark the fact that
in the membrane 0 containing it there is a subset containing ai. The multiset of
objects bg(ai) is used to denote the weight of object ai. In parallel we replace zi

by cr(ai). The multiset of objects cr(ai) is used to denote the value of object ai.
5. [[ψ3]M[α e4]J[α]K [[β1]1[ψ1]2x1z1x2z2x3z3 b0 c0 β1 ψ1]0

[[β1]1[ψ1]2x1z1x2z2 b0 c0 β1 ψ1β0]0[[β1]1[ψ1]2x1z1x3z3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2x1z1 b0 c0 β1 ψ1β0]0[[β1]1[ψ1]2x2z2x3z3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2x2z2 b0 c0 β1 ψ1β0]0[[β1]1[ψ1]2x3z3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2b0 c0 β1 ψ1β0]0]3

6. [[ψ3]M[[α e5]Jα]K [β1]81[ψ1]82[b c2y1x2z2x3z3 b0 c0 β1 ψ1β0]0
[b c2y1x2z2 b0 c0 β1 ψ1β0]0[b c2y1x3z3 b0 c0 β1 ψ1β0]0
[b c2y1b0 c0 β1 ψ1β0]0[x2z2x3z3 b0 c0 β1 ψ1β0]0
[x2z2 b0 c0 β1 ψ1β0]0[x3z3 b0 c0 β1 ψ1β0]0[b0 c0 β1 ψ1β0]0]3

7. [[ψ3]M[α e6]J[α]K [[β2]1[ψ2]2b c2y1x2z2x3z3 b0 c0 β2 ψ2]0
[[β2]1[ψ2]2b c2x2z2 b0 c0 β2 ψ2β0]0[[β2]1[ψ2]2b c2x3z3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2b c2 b0 c0 β2 ψ2β0]0[[β2]1[ψ2]2x2z2x3z3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2x2z2 b0 c0 β2 ψ2β0]0[[β2]1[ψ2]2x3z3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2b0 c0 β2 ψ2β0]0]3

8. [[ψ3]M[[α e7]Jα]K [β2]81[ψ2]82[b
3 c3y1y2x3z3 b0 c0 β2 ψ2β0]0

[b3 c3y1y2 b0 c0 β2 ψ2β0]0[b c2y1x3z3 b0 c0 β2 ψ2β0]0
[b c2y1b0 c0 β2 ψ2β0]0[b2c y2x3z3 b0 c0 β2 ψ2β0]0
[b2c y2 b0 c0 β2 ψ2β0]0[x3z3 b0 c0 β2 ψ2β0]0[b0 c0 β2 ψ2β0]0]3

9. [[ψ3]M[α e8]J[α]K [[β3]1[ψ3]2b3 c3y1y2x3z3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b3 c3y1y2 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b c2y1x3z3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b c2y1b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b2c y2x3z3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b2c y2 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2x3z3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b0 c0 β3 ψ3β0]0]3

10. [[ψ3]M[[α e9]Jα]K [β3]81[ψ3]82[b
4 c6y1y2y3 b0 c0 β3 ψ3β0]0[b3 c3y1y2 b0 c0 β3 ψ3β0]0

[b2 c5y1y3 b0 c0 β3 ψ3β0]0[b c2y1b0 c0 β3 ψ3β0]0[b3c4 y2y3 b0 c0 β3 ψ3β0]0
[b2c y2 b0 c0 β3 ψ3β0]0[b c3y3 b0 c0 β3 ψ3β0]0[b0 c0 β3 ψ3]0β0]3
Graphically the working space is described by the following picture:
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In what follows we begin to calculate, for 2∗max{k, l}= 2∗max{2,3}= 2∗3 =
6 steps, the weight and value of each membrane 0 by using the objects b0 and c0.
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11. [[ψ3]M[α e10]J[α]K [β3]1[ψ3]2[[β3]1[ψ3]2b3 c5y1y2y3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b2 c2y1y2 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b c4y1y3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2c y1b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b2c3 y2y3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b y2 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2c2y3 b0 c0 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

12. [[ψ3]M[[α e11]Jα]K [β3]81[ψ3]82[b
3 c5y1y2y3 b1 c1β3ψ3β0]0[b2 c2y1y2 b1 c1β3ψ3β0]0

[b c4y1y3 b1 c1 β3 ψ3β0]0[c y1b1 c1 β3 ψ3β0]0[b2c3 y2y3 b1 c1 β3 ψ3β0]0
[b y2 b1 c1 β3 ψ3β0]0[c2y3 b1 c1 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

13. [[ψ3]M[α e12]J[α]K [β3]31[ψ3]22[[β3]1[ψ3]2b2 c4y1y2y3 b1 c1 β3 ψ3β0]0
[[β3]1[ψ3]2b c y1y2 b1 c1 β3 ψ3β0]0[[β3]1[ψ3]2c3y1y3 b1 c1 β3 ψ3β0]0
[[ψ3]2y1b1 c1 β3 ψ3β0]0[[β3]1[ψ3]2b c2 y2y3 b1 c1 β3 ψ3β0]0
[[β3]1y2 b1 c1 β3 ψ3β0]0[[ψ3]2c y3 b1 c1 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

14. [[ψ3]M[[α e13]Jα ]K [β3]81[ψ3]82[b
2 c4y1y2y3 b2 c2 β3 ψ3β0]0[b c y1y2 b2 c2 β3 ψ3β0]0

[c3y1y3 b2 c2 β3 ψ3β0]0[y1b1 c2 β3 ψ3β0]0[b c2 y2y3 b2 c2 β3 ψ3β0]0
[y2 b2 c1 β3 ψ3β0]0[c y3 b1 c2 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

15. [[ψ3]M[α e14]J[α]K [β3]51[ψ3]42[[β3]1[ψ3]2b c3y1y2y3 b2 c2 β3 ψ3β0]0
[[β3]1[ψ3]2 y1y2 b2 c2 β3 ψ3β0]0[[ψ3]2c2y1y3 b2 c2 β3 ψ3β0]0[y1b1 c2 β3 ψ3β0]0
[[β3]1[ψ3]2c y2y3 b2 c2 β3 ψ3β0]0[y2 b2 c1 β3 ψ3β0]0
[[ψ3]2y3 b1 c2 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

16. [[ψ3]M[[α e15]Jα ]K [β3]81[ψ3]82[b c3y1y2y3 b3 c3 β3 ψ3β0]0[y1y2 b3 c3 β3 ψ3β0]0
[c2y1y3 b2 c3β3ψ3β0]0[y1b1 c2 β3 ψ3β0]0[c y2y3 b3 c3 β3 ψ3β0]0[y2 b2 c1 β3 ψ3β0]0
[y3 b1 c3 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3
Graphically the working space is described by the following picture:
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Now we divide membranes J and K, after performing an extra step that moves
membrane J out of membrane K, in order to check if the index of bi from the 0
membranes is lower than k, and if the index of ci from the 0 membranes is greater
or equal to l. In parallel, if there still exist membranes 0 containing objects b or c,
then the subscript of bi or ci, respectively, is increased.

17. [[ψ3]M[α e15]J[ϕ ]K [β3]71[ψ3]52[[β3]1[ψ3]2c2y1y2y3b3c3β3ψ3β0]0[y1y2b3c3β3ψ3β0]0
[[ψ3]2c y1y3 b2 c3 β3 ψ3β0]0[y1b1 c2 β3 ψ3β0]0[[ψ3]2y2y3 b3 c3 β3 ψ3β0]0
[y2 b2 c1 β3 ψ3β0]0[y3 b1 c3 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

18. [[ψ3]M[γ1]2J [ϕ1]2K [β3]81[ψ3]82[c
2y1y2y3 b4 c4 β3 ψ3β0]0[y1y2 b3 c3 β3 ψ3β0]0

[c y1y3 b2 c4 β3 ψ3β0]0[y1b1 c2 β3 ψ3β0]0[y2y3 b3 c4 β3 ψ3β0]0
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[y2 b2 c1 β3 ψ3β0]0[y3 b1 c3 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3
19. [[ψ3]M[γ2]4J [ϕ2]4K [β3]81[ψ3]72[[ψ3]2c y1y2y3 b4 c4 β3 ψ3β0]0[y1y2 b3 c3 β3 ψ3β0]0

[[ψ3]2y1y3 b2 c4 β3 ψ3β0]0[y1b1 c2 β3 ψ3β0]0[y2y3 b3 c4 β3 ψ3β0]0
[y2 b2 c1 β3 ψ3β0]0[y3 b1 c3 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3

20. [[ψ3]M[β3]8J [ψ3]8K [β3]81[ψ3]82[c y1y2y3 b4 c5 β3 ψ3β0]0[y1y2 b3 c3 β3 ψ3β0]0
[y1y3 b2 c5 β3 ψ3β0]0[y1b1 c2 β3 ψ3β0]0[y2y3 b3 c4 β3 ψ3β0]0
[y2 b2 c1 β3 ψ3β0]0[y3 b1 c3 β3 ψ3β0]0[b0 c0 β3 ψ3β0]0]3
The next steps are used to generate a yes object in membrane M. We present only
the final configuration obtained after 4n+2max{k, l}+5 = 4∗3+2∗3+5 = 23
steps.

24. [[β3]5J [ψ3]4K [β0]2K [β3]81[ψ3]82[[c y1y2y3 c5 ψ3β0]0]J [[y1y2 c3 ψ3β0]0]J
[yes[y1y3 b2 c5 β3 ψ3]0β0]M[[y1b1 β3β0]0]K [[y2y3 c4 ψ3β0]0]J
[[y2 b2 β3β0]0]K [y3 b1 c3 β3 ψ3β0]0[[b0 β3β0]0]K ]3

Exercise 2.9. Solve the Knapsack problem using other classes of mobile mem-
branes.

2.5.6 2-Partition Problem

The problem can be enounced as follows: given a finite set A, a weight function
g : A → N, decide whether or not there exists a partition of A into two subsets such
that they have the same weight.

Consider A = {a1, . . . ,an}, and a system of mutual mobile membranes having
the initial configuration

[[α]M[α e0]J [α]K [dn−1d0]1[dn−1d0]2[a1 b0 c0 β0]0]3
and working over the alphabet

V = {yes,no,b,c,d,d0,α,α1,α,β ,β ,ψ ,ψ}
∪{ai,xi,yi,zi, ti,ψi,ψ i | 1≤ i≤ n}
∪{βi,βi | 0≤ i≤ n}∪{ci,bi | 0≤ i≤ g(A)}∪{ei | 0≤ i≤ 4n+g(a)+1}

In addition to mutual endocytosis and mutual exocytosis rules, elementary division
rules are used to generate all the possible subsets. The system of mutual mobile
membranes solving the 2-partition problem uses the rules:

(i) [ai]0 → [xiai+1]0[ziai+1]0, for 1≤ i≤ n−1 (div)
[an]0 → [xnβ ψ ]0[znβ ψ]0 (div)
[d] j → [ ] j[ ] j, for 1≤ j ≤ 2 (div)
[d0]1 → [β ]1[β ]1 (div)
[d0]2 → [ψ ]2[ψ ]2 (div)
The first two rules generate 2n membranes labelled by 0 containing all the possi-
ble subsets over variables {x1, . . . ,xn}. The complementary subset is formed over
variables {z1, . . . ,zn}, in a such a manner that xi and zi do not exist at the same
time inside a membrane, and the total number of xi and z j from each membrane
after the generation stage is n. The objects xi and zi are used to introduce objects
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that represent the weight of the objects ai. In each membrane are placed also
two symbols β and ψ . The next two rules generate 2n membranes labelled by 1
each containing an object β and 2n membranes labelled by 2 each containing an
object ψ . The symbols β , β , ψ and ψ are used in the mobility of membranes 1
and 2.

(ii) [β ]1[β ]0 → [[β1]1β1]0 (mendo)
[βi]1[βi]0 → [[βi+1]1βi+1]0, for 1≤ i≤ n−1 (mendo)
[[βi]1xiβi]0 → [βi]1[yi bg(ai)βi]0, for 1≤ i≤ n (mexo)
[[βi]1βi]0 → [βi]1[βi]0, for 1≤ i≤ n (mexo)
These rules are used to replace xi by yi bg(ai), for 1 ≤ i ≤ n. If xi is not present
in a membrane 0, then the indexes of β and β are incremented. After applying
these rules, each membrane 0 contains a number of objects b equal to the weight
of one partition of A, and also objects yi used to remember which objects from
the first partition are contained in this membrane.

(iii) [ψ ]2[ψ]0 → [[ψ1]2ψ1]0 (mendo)
[ψi]2[ψi]0 → [[ψi+1]2ψi+1]0, for 1≤ i≤ n−1 (mendo)
[[ψi]2ziψi]0 → [ψi]2[ticg(ai)ψi]0, for 1≤ i≤ n (mexo)
[[ψi]2ψi]0 → [ψi]2[ψi]0, for 1≤ i≤ n (mexo)
In parallel with (ii), these rules are used to replace zi by ti cg(ai), for 1 ≤ i ≤ n.
If zi is not present in a membrane 0, then the indexes of ψ and ψ are incremented.
After applying these rules, each membrane 0 contains a number of objects c equal
to the weight of the other partition of A, and also objects ti used to remember
which objects from the other partition are contained in this membrane.

(iv) [βn]1[b βn]0 → [[βn]1βn]0 (mendo)
[[βn]1bi βn]0 → [βn]1[bi+1 βn]0, for 0≤ i (mexo)
These rules are used to calculate the weights of the first partition of A, by using
the objects b0 that appear in all 0 membranes. If an object b is present, then the
index of bi, placed in the same membrane as b, is incremented.

(v) [ψn]2[c ψn]0 → [[ψn]2ψn]0 (mendo)
[[ψn]2ci ψn]0 → [ψn]2[ci+1 ψn]0, for 0≤ i (mexo)
In parallel with the rules (iv), these rules are used to calculate the weights of the
other partition of A, by using the objects c0 that appear in all 0 membranes. If
an object c is present, then the index of ci, placed in the same membrane as c, is
incremented.

(vi) [α ei]J[α]K → [[α ei+1]Jα]K (mendo)
[[α ei]Jα ]K → [α ei+1]J[α]K , for 0≤ i < 3n+g(A)−1 (mexo)
[[α ei]Jα ]K → [α ei+1]J[α ei+1]K , for i = 3n+g(A)−1 (mexo)
We use these rules in parallel to calculate the number of steps performed. The
weight of the set A is given by g(A) = ∑a∈A g(a). The counting stops after 3n +
g(A)+1 steps, a number determined by: generating space (n steps), replacing xi

and zi by corresponding weights (2n steps) and calculating weights (g(A) steps).
(vii) [[α e3n+g(A)]Jα]K → [α e3n+g(A)]J[α e3n+g(A)]K (mexo)

[α e3n+g(A)]J → [γ1]J[γ1]J (div)
[γi]J → [γi+1]J[γi+1]J , for 1≤ i≤ n−2 (div)
[γn−1]J → [βn]J[βn]J (div)
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[βn]J[βnψnbic j]0 → [[ ]J]0, for i �= j (mendo)
One extra step, to prepare the membrane J for division, is performed if needed.
We generate 2n membranes J to check which membranes respect the weight
condition. If membrane J contains an object e3n+g(A), and is placed near mem-
brane K, then 2n membranes are generated (n steps) in order to check in 2 steps
which membranes contain ci and bi.

(viii) [α ei]K [α]M → [[α ei+1]Kα]M for 3n+g(A)≤ i≤ 4n+g(A) (mendo)
[[α ei]Kα]M → [α ei+1]K [α]M , for 3n+g(A)≤ i < 4n+g(A) (mexo)
[[α ei]Kα]M → [β0β0]K [α1]M , for i = 4n+g(A) or i = 4n+g(A)+1 (mexo)
[β0]K [β0]0 → [yes[ ]0]K (mendo)
[α1]M → [β0]M[β0]M (div)
[β0]K [β0]M → [[no]K ]M (mendo)
The above rules are used in parallel to calculate the number of steps performed.
The number 4n + g(A)+ 1 is determined by: generating space (n steps), replac-
ing xi and zi by corresponding weights (2n steps) and calculating weights (g(A)
steps), generating J membranes (n− 1 steps), preparing division of J (1 step),
blocking all membranes 0 that do not satisfy conditions (1 step). If there still
exists a membrane 0 that is not inside a membrane J, then the object yes is cre-
ated inside membrane K. Otherwise, after one more step, the no object is created
inside membrane K. The computation stops after maximum 4n+g(A)+3 steps,
with the answer placed inside membrane K.

The number of membranes in the initial configuration is 6, and the number of objects
is 2n + 5. The size of the working alphabet is 13n + 3g(A) + 15. The number of
rules in the above system is: n + 4 rules of type (i), 3n rules of type (ii), 3n rules
of type (iii), 2g(A) rules of type (iv), 2g(A) rules of type (v), 3n + g(A) rules of
type (vi), n+2 rules of type (vii) and 2n+5 rules of type (viii). Hence, the size of
the constructed system of mutual mobile membranes is max{O(n),O(g(A))}.

Example 2.7. Consider the 2-partition problem with A = {a1,a2,a3}, g(a1) = 1,
g(a2) = 3 and g(a3) = 2. In this case, n = 3, g(A) = 6, and the initial configura-
tion of the system of mutual mobile membranes

[[α]M[α e0]J[α]K [d2d0]1[d2d0]2[a1b0 c0 β0]0]3
Graphically this is illustrated as:
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0

b0c0β0
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3

The evolution of the system is described by the following steps. The working space
is generated in n = 3 steps leading from the initial configuration 1 to configuration 4.

1. [[α]M[α e0]J[α]K [d2d0]1[d2d0]2[a1b0 c0 β0]0]3
2. [[α]M[[α e1]Jα]K [d d0]21[d d0]22[x1a2 b0 c0 β0]0[z1a2 b0 c0 β0]0]3
3. [[α]M[α e2]J[α]K [d0]41[d0]42[x1x2a3 b0 c0 β0]0[x1z2a3 b0 c0 β0]0

[z1x2a3 b0 c0 β0]0[z1z2a3 b0 c0 β0]0]3
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4. [[α]M[[α e3]Jα]K [β ]81[ψ ]82[x1x2x3 b0 c0 β ψ β0]0[x1x2z3 b0 c0 β ψ β0]0
[x1z2x3 b0 c0 β ψ β0]0[x1z2z3 b0 c0 β ψ β0]0[z1x2x3 b0 c0 β ψ β0]0
[z1x2z3 b0 c0 β ψ β0]0[z1z2x3 b0 c0 β ψ β0]0[z1z2z3 b0 c0 β ψ β0]0]3
Graphically the working space is described by the following picture:

K
α

J
e3 α

M
α

1

β
1

β
1

β
1

β
1

β
1

β
1

β
1

β

0
β0

x1x2x3
b0βc0ψ

0
z3β0

x1x2
b0βc0ψ

0
z2β0

x1x3
b0βc0ψ

0
z1β0

x2x3
b0βc0ψ

0
z2z3β0

x1
b0βc0ψ

0
z1z3β0

x2
b0βc0ψ

0
z1z2β0

x3
b0βc0ψ

0
z1z2z3

β0

b0βc0ψ
2

ψ
2

ψ
2

ψ
2

ψ
2

ψ
2

ψ
2

ψ
2

ψ

3

We notice from this image that each partition appears twice, but this does not
increase the number of steps performed. In the next steps we replace xi by yi and
bg(ai). We use yi to mark the fact that in the membrane 0 containing it there is a
subset containing ai. The multiset of objects bg(ai) is used to denote the weight
of object ai. In parallel we replace z j by t j. We use t j to mark the fact that in the
membrane 0 containing it there is a subset containing a j.

5. [[α]M[α e4]J[α]K [[β1]1[ψ1]2x1x2x3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2x1x2z3 b0 c0 β1 ψ1β0]0[[β1]1[ψ1]2x1z2x3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2x1z2z3 b0 c0 β1 ψ1β0]0[[β1]1[ψ1]2z1x2x3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2z1x2z3 b0 c0 β1 ψ1β0]0[[β1]1[ψ1]2z1z2x3 b0 c0 β1 ψ1β0]0
[[β1]1[ψ1]2z1z2z3 b0 c0 β1 ψ1β0]0]3

6. [[α]M[[α e5]Jα]K [β1]81[ψ1]82[b y1x2x3 b0 c0 β1 ψ1β0]0[b y1x2z3 b0 c0 β1 ψ1β0]0
[by1z2x3 b0 c0 β1 ψ1β0]0[b y1z2z3 b0 c0 β1 ψ1β0]0[c t1x2x3 b0 c0 β1 ψ1β0]0
[c t1x2z3 b0 c0 β1 ψ1β0]0[c t1z2x3 b0 c0 β1 ψ1β0]0[c t1z2z3 b0 c0 β1 ψ1β0]0]3

7. [[α]M[α e6]J[α]K [[β2]1[ψ2]2b y1x2x3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2b y1x2z3 b0 c0 β2 ψ2β0]0[[β2]1[ψ2]2by1z2x3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2b y1z2z3 b0 c0 β2 ψ2β0]0[[β2]1[ψ2]2c t1x2x3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2c t1x2z3 b0 c0 β2 ψ2β0]0[[β2]1[ψ2]2c t1z2x3 b0 c0 β2 ψ2β0]0
[[β2]1[ψ2]2c t1z2z3 b0 c0 β2 ψ2β0]0]3

8. [[α]M[[α e7]Jα]K [β2]81[ψ2]82[b
4 y1y2x3 b0 c0 β2 ψ2β0]0[b4 y1y2z3 b0 c0 β2 ψ2β0]0

[b c3y1t2x3 b0 c0 β2 ψ2β0]0[b c3y1t2z3 b0 c0 β2 ψ2β0]0[b3c t1y2x3 b0 c0 β2 ψ2β0]0
[b3c t1y2z3 b0 c0 β2 ψ2β0]0[c4 t1t2x3 b0 c0 β2 ψ2β0]0[c4 t1t2z3 b0 c0 β2 ψ2β0]0]3

9. [[α]M[α e8]J[α]K [[β3]1[ψ3]2b4 y1y2x3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b4 y1y2z3 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b c3y1t2x3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b c3y1t2z3 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b3c t1y2x3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b3c t1y2z3 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2c4 t1t2x3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2c4 t1t2z3 b0 c0 β3 ψ3β0]0]3
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10. [[α]M[[α e9]Jα]K [β3]81[ψ3]82[b
6 y1y2y3 b0 c0 β3 ψ3β0]0[b4c2 y1y2t3 b0 c0 β3 ψ3β0]0

[b3 c3y1t2y3 b0 c0 β3 ψ3β0]0[b c5y1t2t3 b0 c0 β3 ψ3β0]0[b5c t1y2y3 b0 c0 β3 ψ3β0]0
[b3c3 t1y2t3 b0 c0 β3 ψ3β0]0[b2c4 t1t2y3 b0 c0 β3 ψ3β0]0[c6 t1t2t3 b0 c0 β3 ψ3β0]0]3
Graphically the working space is described by the following picture:
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In what follows we calculate in g(A) = 1 + 3 + 2 = 6 steps, the weights of the
subsets (over {y1,y2,y3}) and complementary subsets (over {t1, t2, t3}) from each
membrane 0 by using the objects b0 and c0.

11. [[α]M[α e10]J[α]K [β3]1[ψ3]2[[β3]1b5 y1y2y3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b3c y1y2t3 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b2 c2y1t2y3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2c4y1t2t3 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b4t1y2y3 b0 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b2c2 t1y2t3 b0 c0 β3 ψ3β0]0[[β3]1[ψ3]2b c3 t1t2y3 b0 c0 β3 ψ3β0]0
[[ψ3]2c5 t1t2t3 b0 c0 β3 ψ3β0]0]3

12. [[α]M[[α e11]Jα]K [β3]81[ψ3]82[b
5 y1y2y3 b1 c0 β3 ψ3β0]0[b3c y1y2t3 b1 c1 β3 ψ3β0]0

[b2 c2y1t2y3 b1 c1 β3 ψ3β0]0[c4y1t2t3 b1 c1 β3 ψ3β0]0[b4t1y2y3 b1 c1 β3 ψ3β0]0
[b2c2 t1y2t3 b1 c1 β3 ψ3β0]0[b c3 t1t2y3 b1 c1 β3 ψ3β0]0[c5 t1t2t3 b0 c1 β3 ψ3β0]0]3

13. [[α]M[α e12]J[α]K [β3]21[ψ3]22[[β3]1b4 y1y2y3 b1 c0 β3 ψ3β0]0
[[β3]1[ψ3]2b2y1y2t3 b1 c1 β3 ψ3β0]0[[β3]1[ψ3]2b c y1t2y3 b1 c1 β3 ψ3β0]0
[[ψ3]2c3y1t2t3 b1 c1 β3 ψ3β0]0[[β3]1b3t1y2y3 b1 c1 β3 ψ3β0]0
[[β3]1[ψ3]2b c t1y2t3 b1 c1 β3 ψ3β0]0[[β3]1[ψ3]2c2 t1t2y3 b1 c1 β3 ψ3β0]0
[[ψ3]2c4 t1t2t3 b0 c1 β3 ψ3β0]0]3

14. [[α]M[[α e13]Jα ]K [β3]81[ψ3]82[b
4 y1y2y3 b2 c0 β3 ψ3β0]0[b2y1y2t3 b2 c2 β3 ψ3β0]0

[b c y1t2y3 b2 c2 β3 ψ3β0]0[c3y1t2t3 b1 c2 β3 ψ3β0]0[b3t1y2y3 b2 c1 β3 ψ3β0]0
[b c t1y2t3 b2 c2 β3 ψ3β0]0[c2 t1t2y3 b2 c2 β3 ψ3β0]0[c4 t1t2t3 b0 c2 β3 ψ3β0]0]3

15. [[α]M[α e14]J[α]K [β3]31[ψ3]32[[β3]1b3 y1y2y3 b2 c0 β3 ψ3β0]0
[[β3]1b y1y2t3 b2 c2 β3 ψ3β0]0[[β3]1[ψ3]2y1t2y3 b2 c2 β3 ψ3β0]0
[[ψ3]2c2y1t2t3 b1 c2 β3 ψ3β0]0[[β3]1b2t1y2y3 b2 c1 β3 ψ3β0]0
[[β3]1[ψ3]2t1y2t3 b2 c2 β3 ψ3β0]0[[ψ3]2c t1t2y3 b2 c2 β3 ψ3β0]0
[[ψ3]2c3 t1t2t3 b0 c2 β3 ψ3β0]0]3

16. [[α]M[[α e15]Jα ]K [β3]81[ψ3]82[b
3 y1y2y3 b3 c0 β3 ψ3β0]0[b y1y2t3 b3 c2 β3 ψ3β0]0

[y1t2y3 b3 c3 β3 ψ3β0]0[c2y1t2t3 b1 c3 β3 ψ3β0]0[b2t1y2y3 b3 c1 β3 ψ3β0]0
[t1y2t3 b3 c3 β3 ψ3β0]0[c t1t2y3 b2 c3 β3 ψ3β0]0[c3 t1t2t3 b0 c3 β3 ψ3β0]0]3
Graphically the working space is described by the following picture:
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Now we divide membrane J, after performing an extra step that moves mem-
brane J out of membrane K, in order to check whether the indexes of bi and c j

from the 0 membranes are equal or not. In parallel, if there still exist membranes 0
containing objects b or c, then the subscript of bi or ci, respectively, is increased.

17. [[α]M[α e15]J[α e15]K [β3]51[ψ3]52[[β3]1b2 y1y2y3 b3 c0 β3 ψ3β0]0
[[β3]1y1y2t3 b3 c2 β3 ψ3β0]0[y1t2y3 b3 c3 β3 ψ3β0]0[[ψ3]2c y1t2t3 b1 c3 β3 ψ3β0]0
[[β3]1b t1y2y3 b3 c1 β3 ψ3β0]0[t1y2t3 b3 c3 β3 ψ3β0]0[[ψ3]2t1t2y3 b2 c3 β3 ψ3β0]0
[[ψ3]2c2 t1t2t3 b0 c3 β3 ψ3β0]0]3

18. [[α[α e16]K ]M[γ1]2J [β3]81[ψ3]82[b
2 y1y2y3 b4 c0 β3 ψ3β0]0[y1y2t3 b4 c2 β3 ψ3β0]0

[y1t2y3 b3 c3 β3 ψ3β0]0[c y1t2t3 b1 c4 β3 ψ3β0]0[b t1y2y3 b4 c1 β3 ψ3β0]0
[t1y2t3 b3 c3 β3 ψ3β0]0[t1t2y3 b2 c4 β3 ψ3β0]0[c2 t1t2t3 b0 c4 β3 ψ3β0]0]3

19. [[α]M[α e17]K [γ2]4J [α]K [β3]61[ψ3]62[[β3]1b y1y2y3 b4 c0 β3 ψ3β0]0
[y1y2t3 b4 c2 β3 ψ3β0]0[y1t2y3 b3 c3 β3 ψ3β0]0[[ψ3]2y1t2t3 b1 c4 β3 ψ3β0]0
[[β3]1t1y2y3 b4 c1 β3 ψ3β0]0[t1y2t3 b3 c3 β3 ψ3β0]0[t1t2y3 b2 c4 β3 ψ3β0]0
[[ψ3]2c t1t2t3 b0 c4 β3 ψ3β0]0]3

20. [[α[α e18]K ]M[β3]8J [α]K [β3]81[ψ3]82[b y1y2y3 b5 c0 β3 ψ3β0]0[y1y2t3 b4 c2 β3 ψ3β0]0
[y1t2y3 b3 c3 β3 ψ3β0]0[y1t2t3 b1 c5 β3 ψ3β0]0[t1y2y3 b5 c1 β3 ψ3β0]0
[t1y2t3 b3 c3 β3 ψ3β0]0[t1t2y3 b2 c4 β3 ψ3β0]0[c t1t2t3 b0 c5 β3 ψ3β0]0]3

21. [[α1]M[β0β0]K [β3]8J [α]K [β3]81[ψ3]82[b y1y2y3β0[ ]J]0[y1y2t3β0[ ]J]0
[y1t2y3 b3 c3 β3 ψ3β0]0[y1t2t3 β0[ ]J]0[t1y2y3 β0[ ]J]0[t1y2t3 b3 c3 β3 ψ3β0]0
[t1t2y3 β0[ ]J]0[c t1t2t3 β0[ ]J]0]3
The next step is used to generate a yes object in membrane M. The computation
stops after 4n+g(A)+2 = 4∗3+6+2 = 20 steps.

22. [[β0]2M[β3]8J [α]K [β3]81[ψ3]82[b y1y2y3β0[ ]J]0[y1y2t3β0[ ]J]0[y1t2y3 b3 c3 β3 ψ3β0]0
[y1t2t3 β0[ ]J]0[t1y2y3 β0[ ]J]0[yes β0[t1y2t3 b3 c3 β3 ψ3]0]K
[t1t2y3 β0[ ]J]0[c t1t2t3 β0[ ]J]0]3

Exercise 2.10. Solve the 2-Partition problem using other classes of mobile mem-
branes.
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2.6 Decidability Results

In [11] we investigate the problem of reaching a configuration from another configu-
ration in a special class of systems of mobile membranes. We prove that reachability
can be decided by reducing it to the reachability problem of a version of pure and
public ambient calculus without the capability open. The relationship between mo-
bile ambients and mobile membranes is presented in Section 3.3.

Reachability is the problem of deciding whether a system may reach a given
configuration during its execution. This is one of the most critical properties in the
verification of systems; most of the safety properties of computing systems can be
reduced to the problem of checking whether a system may reach an “unintended
state”.

In what follows we investigate the problem of reaching a certain configuration
in systems of mobile membranes starting from a given configuration. We prove that
reachability in systems of mobile membranes can be decided by reducing it to the
reachability problem of a version of pure and public ambient calculus from which
the open capability has been removed. It is proven in [28] that reachability for this
fragment of ambient calculus is decidable by reducing it to marking reachability
for Petri nets, which is proven to be decidable in [115]. The reachability problem
is investigated in [82] for other classes of P systems, namely for extensions of PB
systems with volatile membranes.

When working with Petri nets, reachability is a property of general interest.
Given a net with initial marking ω0, we say that the marking ω is reachable if
there exists a sequence of firings ω0 →ω1 → . . .ωn = ω of the net. The reachability
problems is decidable in Petri nets, even if they tend to have a very large complexity
in practice. A good survey of the known decidability issues for Petri nets is given
in [83].

2.6.1 Mobile Membranes with Replication

Since we use reduction to mobile ambients, we construct a class of systems of mo-
bile membranes in which replication from mobile ambients is expressed explicitly
by duplicating objects or membranes in systems of mobile membranes.

Definition 2.13. A system of n mobile membranes with replication rules is a struc-
ture

∏ = (V ∪V ,H ∪H,μ ,w1, . . . ,wn,R), where:

1. n≥ 1 represents the initial degree of the system;
2. V ∪V is an alphabet (its elements are called objects), where V ∩V = /0;
3. H ∪H is a finite set of labels for membranes, where H ∩H = /0;
4. μ ⊆ H ×H describes the membrane structure, such that (i, j) ∈ μ denotes that

the membrane labelled by j is contained in the membrane labelled by i; we distin-
guish the external membrane (usually called the “skin” membrane) and several
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internal membranes; a membrane without any other membrane inside it is said to
be elementary;

5. w1,w2, . . . ,wn are multisets of objects from V ∪V placed in the n membranes of
the system;

6. R is a finite set of developmental rules, of the following forms:

a. [a↓→ a↓ a↓]h, for h ∈ H, a↓∈V , a↓∈V ; replication rule
The objects a↓ are used to create new objects a↓ without being consumed.

b. [a↓ a↓→ a↓]h, for h ∈ H, a↓∈V , a↓∈V ; consumption rule
The objects a↓ are consumed.

c. [a↑→ a↑ a↑]h, for h ∈ H, a↑∈V , a↑∈V ; replication rule
The objects a↑ are used to create new objects a↑ without being consumed.

d. [a↑ a↑→ a↑]h, for h ∈ H, a↑∈V , a↑∈V ; consumption rule
The objects a↑ are consumed.

e. [ a↓ ]h [ ]a → [ [ ]h ]a, for a,h ∈ H,a↓∈V ; endocytosis
An elementary membrane labelled h (containing an object a↓) enters the ad-
jacent membrane labelled a. The labels h and a remain unchanged during this
process; however the object a↓ is consumed during the operation. Membrane a
is not necessarily elementary.

f. [ [ a↑ ]h ]a → [ ]h [ ]a, for a,h ∈ H,a↑∈V ; exocytosis
An elementary membrane labelled h (containing an object a↑) is sent out of
a membrane labelled a. The labels of the two membranes remain unchanged;
the object a↑ of membrane h is consumed during the operation. Membrane a
is not necessarily elementary.

g. [ ]h → [ ]h[ ]h for h ∈ H, h ∈ H division rules
An elementary membrane labelled h is divided into two membranes labelled
by h and h and having the same objects.

V ∩V = /0 states that objects from V can participate only in the rules of type (a)−
(d). Similarly, H ∩H = /0 states that membranes having labels from the set H can
participate only in rules of type (g).

The rules are applied using the following principles:

1. In biological systems molecules are divided into classes of different types. We
make the same decision here and split the objects into four classes: a ↓ - ob-
jects which control the endocytosis, a ↑ - objects which control the exocytosis,
and a ↓, a ↑ - objects which produce new objects of the first two classes without
being consumed.

2. All the rules are applied in parallel, non-deterministically choosing the rules, the
membranes, and the objects in such a way that the parallelism is maximal; this
means that in each step we apply a set of rules such that no further rule, no further
membranes and objects can evolve at the same time.

3. A membrane a from each rule of type (e) and ( f ) is said to be passive, while
membrane h is said to be active. In any step of a computation, any object and any
active membrane can be involved in at most one rule, but the passive membranes
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are not considered involved in the use of rules (hence they can be used by several
rules at the same time).

4. When a membrane is moved across another membrane, by endocytosis or exo-
cytosis, its whole content (its objects) is moved.

5. If a membrane is divided, then its content is replicated in the two new copies.
6. The skin membrane can never be divided.

According to these rules, we get transitions among the configurations of the sys-
tem. For two systems of mobile membranes M and N, we say that M reduces to N
if there is a sequence of rules applicable in the system of mobile membranes M in
order to obtain the system of mobile membranes N.

In what follows we prove that the problem of reaching a configuration starting
from a certain configuration is decidable for the systems of mobile membranes from
Definition 2.13.

Theorem 2.21. For two arbitrary systems of mobile membranes with replication
rules M1 and M2, it is decidable whether M1 reduces to M2.

The main steps of the proof are as follows:

1. systems of mobile membranes are reduced to pure and public mobile ambients
without the capability open;

2. the reachability problem for two arbitrary systems of mobile membranes is ex-
pressed as the reachability problem for the corresponding mobile ambients.

3. the reachability problem is decidable for a fragment of pure and public mobile
ambients without the capability open.

The rest of this section is devoted to the proof of Theorem 2.21.

2.6.2 From Mobile Membranes to Mobile Ambients

We use the following translation steps:

1. any object a↓ is translated into a capability in a;
2. any object a↑ is translated into a capability out a;
3. any object a↓ is translated into a replication !in a
4. any object a↑ is translated into a replication !out a
5. a membrane h is translated into an ambient h
6. an elementary membrane h is translated into a replication !h[ ] while all the ob-

jects inside membrane h are translated into capabilities in ambient h using the
above steps.

A correspondence exists between the rules of the systems of mobile membranes and
the reduction rules of the mobile ambients as follows:

• rule (c) corresponds to rule (In);
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• rule (d) corresponds to rule (Out);
• rules (a),(b),(e) correspond to instances of rule (Repl).

The rule (Repl) from mobile ambients has the form A ⇒amb!A | A. If we start
with a system of mobile membranes M, we denote by T (M) the mobile ambient
obtained using the above translation steps. For example, starting from the system of
mobile membranes M = [m↓ m↑]n[ ]m we obtain T (M) = n[in m | out m] | m[ ].

Proposition 2.2. For two systems of mobile membranes M and N, M reduces to N
by applying one rule if and only if T (M) reduces to T (N) by applying only one
reduction rule.

M N

T (M) ambT (N)

T T and

M N

T (M) ambT (N)

T T

Proof (Sketch). Since M reduces to N by applying one rule, then one of the rules of
type (a), . . . ,(e) is applied. We treat only the case when a rule of type (a) is applied,
the others being treated in a similar manner.

If a rule a↓→ a↓ a↓ is applied, only one object from the system of mobile mem-
branes M is used (namely a↓) to create a new object a↓, thus obtaining the system
of mobile membranes N. By translating the system of mobile membranes M into
T (M), we have that a↓ is translated into !in a. By applying the reduction rule corre-
sponding to (a) (namely the rule (Repl)) to !in a, we have that !in a⇒amb in a | !in a,
and so a new capability in a is created. We observe that T (a↓ a↓) = !in a | in a,
which means that the obtained mobile ambient is T (N) (in fact it is structurally
congruent to T (N)). ��

According to Proposition 2.2 the reachability problem for systems of mobile mem-
branes can be reduced to a similar problem for mobile ambients.

2.6.3 From Mobile Ambients to Petri Nets

After translating the systems of mobile membranes into a fragment of mobile am-
bients, we present the algorithm used in [28] to translate this fragment of mobile
ambients into a fragment of Petri nets which is known to be decidable from [115].
The fragment of mobile ambients used here is a subset of the fragment of mobile
ambients used in [28] and the difference is provided by the extra rule !A⇒amb!A | !A
used in [28].

We observe that applying a reduction rule over a process either increases the
number of ambients or leaves it unchanged. The only reduction rule which increases
the number of ambients when applied is the rule (Repl), while the other reduction
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rules leave the number of ambients unchanged. If we reach process B starting from
process A, then the number of ambients of process B is known. Therefore, we can
use this information to know how many times the reduction rule (Repl) is applied
to replicate ambients. A similar argument does not hold for capabilities as they can
be consumed by the reduction rules (In) and (Out).

An ambient context C is a process in which some holes may occur (denoted
by �). Using the ambient contexts, we split a process into two parts: one is a context
containing ambients, whereas the other is a process without ambients. In order to
uniquely identify all the occurrences of replication, ambient, capability or hole �
within an ambient context or a process, we introduce a labelling system. Using a
countable set of labels, we say that a process A or an ambient context C is well-
labelled if any label occurs at most once in A or C . We denote by Amb(C ) the
multiset of ambients occurring in an ambient context C . We say that two processes
are label-free-equivalent if after removing all the labels from the two processes, they
are structurally congruent.

2.6.3.1 I) Labelled Transition System.

For the reachability problem A⇒∗ B, we denote by CA a well-labelled ambient con-
text, and by θA a mapping from the set of holes in CA to some labelled processes
without replicable ambients such that θA(CA) is well-labelled, and θA(CA) = A
where labels are ignored.

A labelled transition system LA,B describes all possible reductions for a con-
text CA: this includes reductions of replications and capabilities contained in CA and
in the processes associated with the holes of the context. The states of the labelled
transition system LA,B are associative-commutative equivalent classes of ambient
contexts and, for simplicity, we often identify a state as one of the representatives of
its class.

We define a mapping θLA,B which extends the mapping θA. Initially, LA,B contains
(the equivalence class of) CA as a unique state, and we have θLA,B = θA. We present
in what follows the construction steps of θLA,B , where cap stands for in or out:

1. For any ambient context C from LA,B and for any labelled capability capwn in C ,
if this capability can be executed using one of the rules (In) or (Out) leading to
some ambient context C ′, then a state C ′ and a transition from C to C ′ labelled
by capwn are added to LA,B.

2. For any ambient context C from LA,B and for any labelled replication !w in C
such that the reduction rule (Repl) is applied, we define the ambient context C ′

as follows: C ′ is identical to C except that the subcontext !wCa in C is replaced
by !wCa | γ(Ca) in C ′; the mapping γ relabels Ca with fresh labels, such that C ′

is well-labelled. If Amb(C ′) ⊆ Amb(B), then state C ′ and a transition from C
to C ′ labelled by !w is added to LA,B. Additionally, we define θ ′LA,B

as an extension

of θLA,B such that for all �w′ in Ca we have:

(i) θ ′LA,B
(γ(�w′)) and θLA,B(�w′) are label-free-equivalent,
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(ii) labels in θ ′LA,B
(γ(�w′)) are fresh in the currently built transition system LA,B,

(iii) θ ′LA,B
(γ(�w′)) is well-labelled.

Finally, we set θLA,B to be θ ′LA,B
.

3. For any ambient context C from LA,B, for any labelled hole �w in C and for any
capability capwn in the process θLA,B(�w), we consider the ambient context Cm

identical to C except that �w in C has been replaced by �w | capwn in Cm. If
the capability capwn can be consumed in Cm using one of the rules (In) or (Out)
leading to an ambient context C ′, then state C ′ and a transition from C to C ′

labelled by capwn are added to transition system LA,B.
4. For any ambient context C from LA,B and for any labelled hole �w in C associ-

ated by θLA,B with a process of the form !w′A′, if a replication !w′ can be reduced
in process θLA,B(C ) using rule (Repl), then a transition from C to itself labelled

by !w′′ is added to LA,B for any replication !w′′ in θLA,B(�w).

In the second step, the reduction of a replication contained in the ambient context by
means of the rule (Repl) is done only when the number of ambients in the resulting
process is smaller than the number of ambients in the target process B, namely
Amb(C ′) ⊆ Amb(B). This requirement is crucial as it implies that the transition
system LA,B has only finitely many states.

As an example, we give in Figure 2.6 the labelled transition system associated
with the process n[!1in m.!2out m] | m[ ] (we omit in this process unnecessary
labels). We use the labelled replications !1 and !2 to distinguish between different
replication operators which appear in this process.

Fig. 2.6 A Labelled Transition System for the Process n[!1in m.!2out m] | m[ ]

We observe that the labelled transitions in LA,B for replications and capabilities
of an ambient context correspond to the reductions performed over processes. As
shown in steps 3 and 4, the transitions applied for any capabilities or replications as-
sociated with the holes are independent of the fact that they are effectively available
to perform a transition (at this point).

2.6.3.2 II) From Processes Without Ambients to Petri Nets.

In what follows we show how to build a Petri net from a labelled process with-
out ambients. We denote by E (E) the set of all multisets which can be built with
elements from the set E.
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We recall that a Petri net is given by a 5-tuple (P,Pi,T ,Pre,Post), where

• P is a finite set of places;
• P ⊆Pi is a set of initial places;
• T is a finite set of transitions;
• Pre,Post : T → E (P) are mappings from transitions to multisets of places.

We say that an ambient-free process is rooted if it is of the form capwn.A′ or
of the form !wA′. We define the Petri net PNA′ associated with a rooted process A′

as follows: the places of PNA′ are precisely the rooted subprocesses of A′, and A′

itself is the unique initial place; the transitions are defined as the set of all capa-
bilities inwn, outw′n and replications !w occurring in A′. Finally, Pre and Post are
defined for all transitions as follows:

• Pre(capwn) = {capwn} and Post(capwn) = /0 if capwn is a place in PNA′ .
• Pre(capwn) = {capwn.(A1 | . . . | Ak)} and Post(capwn) = {A1 | . . . | Ak} if

capwn.(A1 | . . . | Ak) is a place in PNA′ (A1 | . . . | Ak being rooted processes).
• Pre(!w) = {!wA′} and Post(!w) = {!wA′,A′} if !wA′ is a place in PNA′ .

For !1in m.!2out m, we obtain the Petri net given in Figure 2.7.

Fig. 2.7 A Petri Net for the Process !1in m.!2out m

We denote by PN�w the Petri net PN(θLA,B(�w)), that is, the Petri net corre-
sponding to the rooted ambient-free process associated with �w by θLA,B . In what
follows we show how to combine the transition system LA,B and the Petri nets PN�w

into one single Petri net.

2.6.3.3 III) Combining the Transition Systems and Petri Nets.

We first turn the labelled transition system LA,B into a Petri net
PNL = (PL,P i

L,TL,PreL,PostL), where

• PL is a set of states of LA,B;
• P i

L is a singleton set containing the state corresponding to the ambient context
CA of A;

• TL is the set of transitions of the form (s, l,s′), with

– s and s′ states from LA,B,
– a transition l from s to s′ in LA,B;
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• Pre(t) = s and Post(t) = {s′} for all transitions t = (s, l,s′).

We define a Petri net PNA,B = (PA,B,P i
A,B,TA,B,PreA,B,PostA,B) by

• places (initial places) of PNA,B are the union of places (initial places) of PNL and
of each of the Petri nets PN�w (for �w occurring in one of the states of LA,B);

• transitions of PNA,B are precisely the transitions of PNL;
• the mappings PreA,B and PostA,B are defined for all transitions t = (a, f ,b) as:

(i) PreA,B(t) = {a} and PostA,B(t) = {b} if f does not occur as a transition in
any PN�w (for �w occurring in one of the states of LA,B),

(ii) if f is a transition of PN�w , then PreA,B(t)= {a}∪Pre�w( f ) and PostA,B(t)=
{b} ∪ Post�w( f ), where Pre�w and Post�w are the mappings Pre and Post
of PN�w , respectively.

2.6.4 Deciding Reachability

We recall that for a Petri net PN = (P,P i,T ,Pre,Post), a marking m is a mul-
tiset from E (P). A transition t is enabled by a marking m if Pre(t) ⊆ m. Ex-
ecuting an enabled transition t for a marking m gives a marking m′ defined as
m′ = (m \Pre(t))∪Post(t) (where \ stands for the multiset difference). A mark-
ing m′ is reachable from m if there exists a sequence m0, . . . ,mk of markings such
that m0 = m, mk = m′ and for each mi,mi+1, there exists an enabled transition for mi

whose execution gives mi+1.

Theorem 2.22 ([115]). For all Petri nets P, for all markings m,m′ of P, one can
decide whether m′ is reachable from m.

For the reachability problem A ⇒∗ B over ambients, we consider the Petri
net PNA,B and the initial marking mA defined as mA = P i

A,B. Figure 2.8 depicts the

initial marking for process n[!1in m.!2out m] | m[ ] as a combination of the labelled
transition system of Figure 2.6 and the Petri net of Figure 2.7.

It should be noticed that for any marking m reachable from mA, m contains ex-
actly one occurrence of a place from PL. Roughly speaking, to any reachable mark-
ing corresponds exactly one ambient context. Moreover, the execution of one tran-
sition in the Petri net PNA,B simulates a reduction from ⇒amb.

We define now the set MB of markings of PNA,B corresponding to B. Intuitively,
a marking m belongs to MB if m contains exactly one occurrence C of a place
from PL (that is, representing some ambient context) and in the context C , the holes
can be replaced with processes without ambients to obtain B. Each of the processes
without replication must correspond to a marking of the sub-Petri net associated
with the hole it fills up. MB is defined as the set of markings m for PNA,B satisfying:

(i) there exists exactly one ambient context Cm in m;
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Fig. 2.8 The Petri Net for the Labelled Process n[!1in m.!2out m] | m[ ]

(ii) σm(Cm) and B are label-free-equivalent, for any substitution σm from holes �w

occurring in Cm to processes without ambients defined as σm(�m) = P1 | . . . | Pk

for {P1, . . . ,Pk} the multiset corresponding to the restriction of m to the places
of PN�w ;

(iii) for all holes �w occurring in a state of the transition system LA,B but not in Cm,
the restriction of m to places of PN�w is precisely the set of initial places of PN�w .

We adapt the results presented in [28] to our restricted fragment of mobile ambients.

Proposition 2.3. For a Petri net PNA,B, there are only finitely many markings cor-
responding to a process B, and the set MB can be computed.

The translation correctness is ensured by the following result.

Proposition 2.4. For all processes A,B we have that A ⇒amb B if and only if there
exists a marking from MB such that mB is reachable from mA in PNA,B.

Using Proposition 2.4 and Theorem 2.22, we can decide whether an ambient A can
be reduced to an ambient B.

Theorem 2.23. For two arbitrary ambients A and B from our restricted fragment, it
is decidable whether A reduces to B.



Chapter 3
Encodings

Abstract The difference between the two research areas (process algebra and mem-
brane computing) is the fact that process algebra represents a tool for the high-level
description of interactions, communications, and synchronizations between a col-
lection of independent agents or processes, providing also algebraic laws that allow
process descriptions to be manipulated and analyzed, and permit formal reasoning
about equivalences between processes (e.g., using bisimulation), while membrane
computing uses techniques from languages, automata, complexity, and dynamical
systems. In this chapter we establish several links between these two fields in order
to be able to use techniques from one area in the other one. We consider our encod-
ings as the first efforts towards bridging the gap between process calculi and mobile
membranes.

3.1 Dπ into tDπ

In order to compare the expressive power of tDπ we use a method of embed-
dings among languages introduced in [148]. The method is based on a tuple com-
posed of a set of process expressions P , a partial operation over P (in process
calculi we choose the parallel composition operator) and an observational equiva-
lence. To compare two formalisms by looking at their sets of syntactic expressions
(languages) L1 and L2, we are required to identify the corresponding algebraic
languages (P; | ;�) respectively (P ′; | ′ ;�′

). The method was refined in [81]
by defining several constraints for the coder and decoder functions; the resulting
method is called modular embedding. The coder translates an expression of the
first language into an expression of the second language. The decoder translates
back the observational outcomes of the second language into observables of the first
language. We adapt this method and use it to show that tDπ is more expressive
than the underlining Dπ . The method was shown to be useful [147] first in proving
some negative results (languages not-embedded) for a set of concurrent program-
ming languages. The study was based on properties like compositionality of the
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observational equivalence, interference freedom or composition with hiding of the
languages. Later in [148] some more complicated positive results were given in the
context of the same set of concurrent programming languages.

Embeddings have also been used to compare the expressivity of some timed coor-
dination languages in [97]. Using modular embedding in [33], the authors compare
the expressive power of three classes of quite different coordination languages. Em-
beddings are extended to architectural embeddings in [29] in order to be able to
compare coordination architectures.

3.1.1 Algebraic Languages

In our case, for the message passing calculi Dπ and tDπ the first two components
are simple to identify. P and P ′ are the sets of syntactic terms denoting process
expressions defined by the syntax of each calculus. The second component of the
algebraic language represents a set of operations over the set of process expres-
sions P . We confine our presentation to tDπ and consequently we take as the sole
operation over P the parallel composition of processes (we do not have summa-
tion). Not so simple is the choice of the semantic equivalence relation � over P .

The observational equivalence of the algebraic language is defined as the kernel1

of a function O . Such a function O could be the interpretation of the process ex-
pressions of our calculi. Oi : Li → Obsi maps each term of the language Li to its
interpretation Obsi(which is sometimes called the observational outcome); i ranges
over the calculi of our interest. For example the interpretation defined for Turing
machines may return the language accepted by the machine and the interpretation
for sequential processes may return a relation between the input and the output of
the processes. We denote the set of process expressions of Dπ and tDπ by LDπ , and
respectively by LtDπ .

We give first a coding function C o : LDπ → LtDπ which is a mapping from LDπ
to LtDπ . We say that C o is a language embedding if it is homomorphic with respect
to the operations defined over the two sets of process expressions (i.e. the parallel
composition operators).

∀P,Q ∈ LDπ we have C o(P |Q) = C o(P) | ′C o(Q).
In order to have a language embedding with interesting distinguishing power, C o
must preserve semantic distinction and such an embedding is called a sound embed-
ding. The soundness is formally defined as:

∀P,Q ∈ LDπ we have P �� Q⇒ C o(P) ��′
C o(Q).

This is equivalent [147] to the existence of a mapping
D : OtDπ(LtDπ)→ ODπ(LDπ),

called a decoder for which the following is true:
∀P ∈ LDπ we have D(OtDπ(C o(P))) = ODπ(P).

For a clearer intuition we give the diagram of Figure 3.1 using general notations.

1 The kernel of a function f : X →Y is defined as the equivalence relation � over the domain X of
the function and satisfies: ∀a,b ∈ X , a� b iff f (a) = f (b).
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L1 L2
C o

O1(L1) D
O2(L2)

O1 O2

Fig. 3.1 A Sound Embedding of L1 into L2

Informally, to say that a language L1 is embedded in a language L2 we should
map each process expression from L1 into a corresponding process expression of L2

through the coder C o. Furthermore, the interpretation of the mapped expression of
L2 should behave the same as the interpretation of the process expression of L1.

3.1.2 Barbed Bisimulations

The semantic interpretation for the family of π-like calculi is usually given through
the operational semantics (i.e., the transition systems generated by the reduction
rules or the LTS generated by the labelled transitions). Besides transitions, for every
π-like calculus we can give a set of barbs. Thus, as observational equivalence we can
use the barbed equivalence generated by the barbed bisimulation. The observational
outcome of each process is the sets of barbs and the sequence of transitions. In an
LTS framework we would have worked with traces of a process.

Two processes are equivalent if an observer cannot distinguish differences in
their behaviours. Following the presentation of barbed bisimulation in [123, 143],
we specify first which actions are observable, and which are considered as internal
actions. To simplify the presentation we choose as observable only communication
along the located channel names, without considering the transmitted messages.
In tDπ we have synchronous communication on fixed located channels. In conse-
quence, the observable actions can be both input and output communication. We
consider as unobservable actions the movement action go, application of the time-
stepping function φΔ , and internal interaction of processes. Intuitively an observer
of process P is a process Q which runs in parallel with P.

For example, in order to observe if a process P communicates on the input chan-
nel a? at location k, the observer waits for an output communication along the same
channel a! at the same location k. In tDπ there are mainly four observation coordi-
nates: one involves the name of the communication channel (Milner and Sangiorgi’s
barbed bisimulation), another is given by locations, the third is given by type envi-
ronment, and the fourth is given by timers. Here it suffices to give only the classical
strong barbed bisimulation [123] for tDπ . We define first the notion of barb. Barbs
are sometimes called commitment predicates and define the possibility of a process
to immediately communicate on a specific channel.
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Definition 3.1. A barb predicate ↓μ where μ ∈ {a?,a!} with a being any channel
name, is defined inductively by the following system of rules.

aΔ t!〈v〉.(P,R) ↓a! aΔ t?(X : T ).(P,R) ↓a?

P ↓μ
P |Q ↓μ

P ↓μ and a �= μ
(νa : A)P ↓μ

P ↓μ
∗P ↓μ

We denote by μ the names of the input or output channels (e.g. if μ = a? then
μ = a).

Definition 3.2. A barbed bisimulation S is a symmetric binary relation over pro-
cesses which for each (P,Q) ∈S and for any barb ↓μ implies

1. if P ↓μ , then Q ↓μ ;
2. if P→ P′, then Q→ Q′, and (P′,Q′) ∈S

Two processes are barbed bisimilar, denoted P
�∼B Q, if and only if (P,Q) ∈S for

some barbed bisimulation S .

The barbs and the barbed bisimulation are naturally applied to located pro-
cesses N. A general notion of barbs is given in [92] in terms of acceptances
s1A1 . . .snAn, where si is a sequence of actions from the set of actions Act and
Ai ⊂ Act. However we want to look at actions separately, not at sequences si of
actions. In consequence we adopt a presentation based on the notion of barbs intro-
duced by Milner and Sangiorgi [123]. Note that, despite the fact that in tDπ we do
not have a summation operator, a process P may satisfy more than one barb because
of the parallel composition operator. Thus, if P ↓μ and Q ↓μ ′ with μ �= μ ′, then both
statements P |Q ↓μ and P |Q ↓′μ hold.

The barbed bisimulation by itself does not offer satisfactory properties. In order
to obtain a barbed equivalence (barbed congruence), the bisimulation is closed un-
der all static (respectively normal) contexts [143]. A context could be viewed as a
process running in parallel with our equated processes. In the paper cited above it
is shown that in the setting of the π-calculus, the barbed equivalence and barbed
congruence coincide with the labelled early bisimilarity, respectively congruence
relation on the class of image-finite processes [151]. We denote the barbed equiva-
lence by�B. Thus, we have the semantic interpretations for Dπ and tDπ given their
corresponding reduction rules together with the observation predicates (the barbs);
we denote them by �Dπ

B respectively �tDπ
B .

3.1.3 Coding Function

The definition of the coding function uses the syntax of the Dπ calculus which
we omit here (however it can be deduced from Definition 3.3). For a simpler pre-
sentation we choose a restricted form of Dπ which does not take into account the
matching process expression. The coding function is applied to each syntactic con-
struct of Dπ , regardless of whether it is a type expression or a process expression.
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Some entities (like locations) remain unchanged by C o. Other entities (like channel
names) are changed into timed entities of tDπ . As expressed in [81], the coder must
be defined in a compositional way, and the decoder definition should be element-
wise. The compositionality of the coder is not hard to obtain, and it is rather natural
in the definition below.

Definition 3.3. The coding function C o : LDπ → LtDπ is defined in a compositional
way for processes and types. We use α for any of the channel capabilities r/w of Dπ .
For all expressions E ∈ LDπ .

C o(E) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

res : {α〈C o(T )〉}∞ if E = res : {α〈T 〉}, a channel type
gok.(C o(P),ER) if E = gok.P, movement process
a∞!〈v〉.(C o(P),ER) if E = a!〈v〉.P, output process
a∞?(X :C o(T )).(C o(P),ER) if E = a?(X :T ).P, input process
C o(P) |C o(Q) if E = P |Q, interaction
(ν a : C o(A))C o(P) if E = (ν a : A)P, restriction
∗C o(P) if E = ∗P , replication
stop if E = stop , termination

where ER ∈ LtDπ always generates a runtime error in tDπ , and it is defined as
l[[er∞!〈v〉]]Γ with Γ (l,v) �<: wob j(Γ (l,er)).

We do not use located processes in the definition above. The extension of C o to
tagged located processes requires changing the type environments by adding ∞ as
timer value to channel types.

The element-wise property of the decoder is not so natural. The definition of a
decoder applied to all the observational outcomes of the executions of a process is
not so intuitive. The observable behaviour is defined via the operational semantics
of the calculi. In our case we use a semantics based on a reduction relation and barbs
(or commitment predicates). The set of observables of a process P is a powerset (i.e.,
the elements are sets of barbs). Moreover, the elements of the reduction relation are
the corresponding reduction rules. Instead of defining a decoder, we test whether
the reaction rules of tDπ can simulate the reaction rules of Dπ . This is equivalent
to the constraint imposed on the decoder to be defined element-wise. Moreover,
the barbs of one process must correspond to the barbs of the mapped process (the
coded process). The barbs are equivalent to the observational outcome of a process
expression.

3.1.4 Expressiveness and Faithfulness

Theorem 3.1. tDπ can express any process described in Dπ .

Proof. This means that our timed distributed π-calculus is more expressive than
the underlying Dπ . We follow the steps of the method described above. We use the
coding function C o to translate a process expression of Dπ into a process expression
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of tDπ . Then we prove that this coding function agrees with the dynamics given by
the operational semantics (i.e., the processes have the same behaviour). Moreover,
we prove that through the barbed bisimulation

�∼B we get the same set of barbs for
the two processes (i.e., the processes have the same observational outcome).

By applying C o, we get only timers with the value ∞. Consequently the appli-
cation of the cleanup function ψ has no result. Precisely, ψ cannot decrease the
value ∞ of the type timers, and thus the types are not removed anymore from the
type environments of the processes.

We look at the behaviour of the time-stepping function φΔ by examining first the
expressions of its definition which depend on the timer value t. Since the values of
the timers are ∞, the timers are always greater than 1 (∞− 1 = ∞), and we have
no expired timers. The processes of form a∞?(X : T ).(R,Q) or a∞!〈v〉.(R,Q) remain
unchanged after the application of the time-stepping function. The other cases in the
definition of φΔ follow. If we have P = gok.(R,Q) and Γ (k) <: loc{go}, then φΔ
returns k[[R]]Γ . This is the case when the location k has the go capability, and as a
consequence, the rule RΓ -IDLE of tDπ behaves as RΓ -GO of Dπ . For the remaining
expressions of the definition of φΔ , the rule RΓ -IDLE should raise a runtime error
as it happens in Dπ . This is achieved by defining an appropriate ER process instead
of the second process Q of the pair (R,Q). An example of such a process is given
when we have defined C o. It is easy to see that all the other reduction rules of Dπ
have the same behaviour as the corresponding rules of tDπ . The rule RΓ -COM of Dπ
behaves as rule RΓ -COM1 of tDπ . Furthermore, rule RΓ -COM2 of tDπ is not appli-
cable anymore because the capability ro〈〉 is not used (the coder C o does not use it
in the translation of expressions from Dπ into expressions in tDπ).

A careful look should also be given to the corresponding error systems. For the
error rules of Dπ the reader should check [93]. We should get an error in tDπ when-
ever we have an error in Dπ , as well as the other way around. It is easy to see that
the error rules EΓ -GO′′, EΓ -SUBC′′ and EΓ -SND′′ of Dπ behave like the rules EΓ -GO,
EΓ -SUBC and EΓ -SND of tDπ . Looking at the rules EΓ -RCV and EΓ -COM, the con-
ditions involving the function roob j are not valid anymore, and so they behave as
the error rules EΓ -RCV′′ and EΓ -COMM′′ of Dπ .

We still have to prove that the process expression of Dπ respects the same set
of barbs as the process expression of tDπ resulting from the codification. In Def-
inition 3.1 of a simple barb predicate we choose to observe only the name of the
communication channels. The definition of the barbed bisimulation for the syntax
of Dπ is similar (we have the same choice of barbs since we do not have other
actions that could be regarded as observable).

We consider the remaining process expressions from the definition of the coding
function C o. The process gok.P and its codification gok.(C o(P),ER) are unobserv-
able. The interaction between two processes running in parallel is unobservable in
both formalisms. The output expression a!〈v〉.P of Dπ , as well as the output codifi-
cation a∞!〈v〉.(C o(P),ER) of tDπ have the same barb ↓a!. Similarly, both the input
expression of Dπ and the codification of tDπ have the same barb. ��

We have shown that the embedding of Dπ into tDπ is faithful with respect to
the observational equivalences generated by the simple barbed bisimulations of the



3.2 Pure Mobile Ambients into π-calculus 137

calculi. Using a general notation, faithful means that, for all a,b ∈ L we have that
a � b ⇔ C o(a) �′

C o(b). According to [147], faithfulness implies the soundness
of the language embedding.

Corollary 3.1 (Faithfulness).

∀P,Q ∈ LDπ , P�Dπ
B Q⇐⇒ C o(P)�tDπ

B C o(Q).

It is easy to see that tDπ cannot be embedded into Dπ because we can give a
counterexample of a tDπ process which cannot have a corresponding process in Dπ
with the same behaviour because Dπ cannot manage the time aspects.

3.2 Pure Mobile Ambients into π-calculus

Although both the π-calculus and the calculus of mobile ambients are Turing-
complete [42, 121] and they have almost the same field of application (mobile
computations), it is widely believed (see [77]) that the π-calculus does not directly
model phenomena such as the distribution of processes within different localities,
their migrations, or their failures. At the same time the π-calculus provides a solid
and useful foundation for concurrent programming languages [86, 135] and it is also
supplied with a set of comprehensive techniques and tools for verification and anal-
ysis [84, 152]. Therefore, it is worthwhile to take those advantages of the π-calculus
that could be useful for manipulation, implementation, verification, etc. of mobile
ambients.

In a number of papers (see [42, 48, 111, 155]) it has been demonstrated that the
calculus of mobile ambients can be used for simulating π-calculus computations.
On the other hand, Fournet, Levy and Schmitt [88] have translated mobile ambients
into the distributed join-calculus. The atomic steps of mobile ambient computation
are decomposed into several elementary steps, each involving only local synchro-
nization. By combining this translation with the encoding of the distributed join
calculus into the join calculus [87] and then with the encoding of the join calculus
into the asynchronous π-calculus [86] one could obtain the translation of mobile
ambients into the asynchronous π-calculus. But to the best of our knowledge no
efforts have been made to trace this chain of encodings from the beginning to the
end. An attempt to build a straightforward translation from mobile ambients into a
subset of the synchronous π calculus has been undertaken by Brodo, Degano and
Priami [32]. In order to imitate the spatial structure of mobile ambients we impose
some very rigid restrictions on the structural congruence rules of the π-calculus. It
may be said that in [32] the encoding of mobile ambients into the π-calculus has
been achieved on the purely syntactic level.
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3.2.1 Main Idea

In what follows we also try to assess the capability of the π-calculus to encode mo-
bile ambients. The topic is interesting because mobile ambients can be considered
a higher-order calculus of fundamental character. Moreover, an encoding of mobile
ambients into the π-calculus appears challenging, in particular because distributed
conformance changes must be effectuated over varying numbers of encoded agents
and capabilities (as encoded ambients migrate or open up). The main objective of
our research is to build such a straightforward translation from the calculus of mo-
bile ambients to the π-calculus which preserves the behavioural properties of the
processes. This translation coupled with that of [42, 48, 155] may form a basis for
the development of a uniform theory of mobile computations.

As the starting point we present a rather simple variant of the straightforward
encoding of mobile ambients into the π-calculus to demonstrate the practicability
of our expectancies. A key idea of the encoding is based on the separation of the
spatial structure of mobile ambients from their operational semantics. The opera-
tional semantics of mobile ambients is given by a universal π-process Ruler which
plays the role of an interpreter routine. Each mobile ambient A is encoded into a
π-calculus term StructureA which simulates the spatial structure of A by means of
channels. Each step of the encoding is explained in some detail. We also provide an
operational correspondence between the two calculi [73].

To emphasize the key ideas of our encoding we confine ourselves to its most
simple (sequential) variant which assumes the use of the unique Ruler for the whole
system. As it can be readily seen from the description this encoding can be im-
proved in such a way that it becomes both distributed and compositional. This can
be achieved by supplying every π-process Node corresponding to an ambient with
its own interpreter Ruler.

In what follows we define a relationship between MA-processes and π-processes.
This relationship may be thought of as a non-deterministic encoding of pure am-
bients into π-processes: with every MA-process A it associates a set [[A]] of π-
processes. In the next section we prove the operational correspondence of the en-
coding by demonstrating that each π-process from [[A]] corresponds to the behaviour
of A. The only purpose of considering [[·]] as a relation is to simplify the proofs.
When using our translation in applications, one may take a single (minimum-size)
π-process from [[A]] as a true image of A.

A specific feature of pure ambient calculus is that an MA-process A has a spatial
tree-like structure which serves a dual function. On the one hand, mobile ambients
control the run of processes in A by bounding the scope of actions. On the other
hand, the mobile ambients of A are acted upon by the spatial structure of A. A
similar idea of decomposing the ambient process into a tree and actions is used
in [110] to define the normal semantics for mobile ambients. When translating A
into a π-process we separate these functions of mobile ambients. An ambient A
is translated into a π-process ProcA = StructureA|Ruler|Environment which is a
composition of three π-processes StructureA, Ruler and Environment. The process
StructureA is designed according to the following principles.
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1. The mobile ambients and capabilities from A are represented by individual sub-
processes Ambi and Act j; we will call these π-calculus terms nodes. The spatial
structure of A is maintained by means of specific tree-wire subprocesses TWk that
are used for communication between nodes that represent ambients and actions.
Thus, we have

StructureA = Amb1| . . . |AmbN |Act1| . . . |ActM|TW1| . . . |TWL

where Ambi, Act j, and TWk represent generic notations for ambients, capabilities,
and tree-wire structure.

2. Each subprocess Ambi is associated with some mobile ambient n[P] in A. It keeps
the name n of the ambient and provides communication between the ambient and
its upper and lower contexts.

3. Each subprocess Act j is associated with some action of the form in n.P, out n.P
or open n.P in A. It keeps the type of capability (in, out or open) and the name n
and also provides communication between the action and its upper and lower
context.

4. A subprocess TWk is a set of wires arranged in a tree-like structure. TWk delivers
requests from its leaf nodes to the root and sends back replies from the root to the
leaves. A tree-wire subprocess is intended to provide message exchange between
the nodes and to accumulate consumed capabilities and dissolved ambients of A.

5. When a capability is consumed or an ambient is dissolved, a corresponding node
becomes passive. A passive node becomes a wire and adds itself to some tree-
wire. Thus, the wires of StructureA take account of computation steps generated
by A. Since there are many different ways to derive the same mobile ambient
term A, it may be encoded into a whole set of π-calculus terms which have the
same nodes and differ only in the structure of their tree-wires.

The subprocess Ruler does not depend on A. It is a universal π-process intended
for simulating the operational semantics of mobile ambients. Here the Ruler is pre-
sented as a central handler. It is also possible to have Ruler acting as a virtual ma-
chine at each location; in this way the encoding becomes distributed. An execution
of Ruler conforms to the following scenario.

1. Ruler selects from StructureA an arbitrary triple of nodes Act, Ambi1 and Ambi2
and collects the information about their types, names and links.

2. If (1) the type of Act is in, (2) Act is linked with Ambi1 , (3) Act stores the
same name as Ambi2 , and (4) Ambi1 and Ambi2 are linked with the same node
in StructureA, then the subprocess Act|Ambi1 |Ambi2 corresponds to a mobile am-
bient pattern n[in m.P|Q]|m[R]. In this case Ruler simulates the implementation
of an entry instruction by switching the link of Ambi1 to Ambi2 and converting
the node Act into a wire. This changes the entry-pattern n[in m.P|Q]|m[R] into
m[n[P|Q]|R].

3. If (1) the type of Act is out, (2) Act is linked with Ambi1 , (3) Act keeps the
same name as Ambi2 , and (4) Ambi1 is linked with Ambi2 , then Act|Ambi1 |Ambi2
corresponds to a pattern m[n[out m.P|Q]|R]. In this case Ruler simulates the im-
plementation of an exit instruction by converting the node Act into a wire, and
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directing the link of Ambi1 to the same destination to which the link of Ambi2 is
directed. This changes the exit-pattern m[n[out m.P|Q]|R into m[R]|n[P|Q].

4. If (1) the type of Act is open, (2) Act keeps the same name as Ambi1 and (3)
both Act and Ambi1 are linked with Ambi2 , then Act|Ambi1 |Ambi2 corresponds to
a pattern m[open n.P|n[Q]]. In this case Ruler simulates the implementation of
an open instruction by converting both Act and Ambi1 into wires. This changes
the open-pattern m[open n.P|n[Q]] into m[P|Q].

5. If none of the above cases holds, then Ruler tries another triple of nodes Act ′, Amb j1
and Amb j2 from StructureA.

The subprocess Environment plays the role of a virtual external environment of mo-
bile ambients. It bounds every MA-process and can not be dissolved. When Ruler
simulates an open operation, it can select Environment for Ambi2 .

Now we are ready to present the formal description of the processes involved in
StructureA, Ruler and Environment and define the encoding relation between pure
mobile ambients and π-processes.

3.2.2 Tree-Wire Processes

A spatial structure of mobile ambients is represented by specific π-processes which
are called tree-wires. A tree-wire is a parallel composition of some basic processes
which are called wires. A wire serves the message passing from one agent to another
and back. By setting up an appropriate correspondence on the names of agents one
can compose wires into any tree-like communication structure.

For x �= y, we define a wire process by W (x,y) = ! (νu) x(v). y〈u〉. u(t). v〈t〉.
A wire has two parameters x and y. The parameter x is a name of a channel for
communication with low-level components of the system, whereas y is a name of a
channel for communication with its top-level component. The wire W (x,y) receives
a request x(v) from one of the low-level components, re-addresses it to the top-level
component y〈u〉, then receives a reply u(t) via a private channel u, and finally re-
addresses this reply v〈t〉 to the low-level component. It should be noticed that it may
be the case that several low-level components try to communicate at the same time
with a top-level component via W (x,y). Then the top-level component can serve all
the low-level components one by one. To avoid broadcasting a new private channel
u is selected every time.

A tree-wire process TWI,k, where I is a set of names and k is a name with k �∈ I,
is any process which is composed of basic wires TWI,k = W (x1,y1)| . . . |W (xm,ym)
in such a way that this parallel composition has a tree-like communication structure
and provides message exchange between the set of leaf nodes I and the root k.

Definition 3.4. The set of tree-wires is the minimal set of π-processes satisfying the
following requirements.

1. Every wire Wx,y is a tree-wire TW{x},y.
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2. If Wx,y is a wire, TWI,x is a tree-wire and y /∈ I, then the term (νx) (Wx,y|TWI,x) is
a tree-wire TWI,y.

3. If TWI,y and TWJ,y are tree-wires such that I∩ J = /0, then the term TWI,y|TWJ,y

is a tree-wire TWI∪J,y.

When dealing with a tree-wire TWI,y, where I = {x1,x2, . . . ,xn}, we use the short-
hand notation (νI)(P|TWI,k) for (νx1) (νx2) . . .(νxn) (P|TWI,k).

Proposition 3.1. If TWI,y is a tree-wire, then y /∈ I and f n(TWI,y) = I∪{y}.

When appending a tree-wire to a tree-wire we get again a tree-wire.

Proposition 3.2. Let TWI1,y1 and TWI2,y2 be a pair of tree-wires such that I1∩I2 = /0,
y1 /∈ I2, y2 ∈ I1. Then (νy2) (TWI1,y1 |TWI2,y2) is a tree-wire TWI3,y1 , where I3 =
(I1−{y2})∪ I2.

A tree-wire delivers requests from its leaf nodes to the root and replies from the root
to leaf nodes.

Proposition 3.3. Let TWI,y be a tree-wire and x ∈ I. Then the π-process
(νv) x〈v〉. v(z). z|TWI,y|y(u). u〈t〉

has a deterministic terminating run
(νv) x〈v〉. v(z). z|TWI,y|y(u). u〈t〉 �→∗ t|TWI,y

3.2.3 Ambients and Actions

The main difficulty of encoding pure ambient processes into π-processes is that of
simulating the consumption of capabilities, dissolving the boundaries of ambients,
and changing the structure accordingly. In an MA-process, when an action in n.P,
out n.P or open n.P is executed, the corresponding capability just disappears from
the process (it is consumed). The same effect manifests itself when the boundary
of an ambient named m[Q] is dissolved. But when simulating actions and ambients
as individual π-subprocesses of StructureA it is not possible just to reduce the con-
sumed capabilities or dissolved ambients to inactive processes 0 since in this case we
lose the links between the processes in StructureA. The simplest way to make such
processes inactive while preserving a tree-like structure of links between the remain-
ing processes is to convert consumed capabilities and dissolved ambients into wires
and use them merely to maintain links between the active processes. In this case the
process StructureA corresponding to an MA-process A will depend not only on the
spatial structure of A, but also on the way A is computed (the history of A). That is
why instead of using a deterministic encoding which maps every MA-process into a
single π-process we introduce an encoding relation |= which associates every MA-
process A with a set of π-processes [[A]]. Each process StructureA from [[A]] keeps
along with the spatial structure of A the possible history of A, i.e. the way the MA-
process A can be computed from the other processes. This history is represented by
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wires which keep track of consumed capabilities and dissolved ambients. The his-
tory of A does not influence the functionality of StructureA; its only purpose is to
maintain the links between active nodes of StructureA.

Definition 3.5. The formal description of a π-process Node(a,n,u,d,s, l) is
Node(a,n,u,d,s, l) = Reply(d,s, l)|Main(a,n,u,d,s, l)
Reply(d,s, l) = d(y). [y = l] (1)

( d(u). s〈l〉. Wd,u , (2)
y〈l〉. Reply(d,s, l) ) (3)

Main(a,n,u,d,s, l) = (νv) (νw) (νk) (4)
s〈v〉. v(x). (5)
u〈w〉. w(lu). (6)
x〈a,n, l,u,d, lu〉. v(y,z). (7)
[y = l] (8)
( d〈l〉. d〈z〉 , (9)

d〈k〉. k(w′). (10)
s〈l〉. Main(a,n,z,d,s, l) ) (11)

The π-processes Act and Amb associated with actions cap n.P, cap∈{in,out,open},
and ambients n[P] in MA-process A have a similar arrangement. An action rep-
resented by a capability cap n is encoded into Node(cap,n,up,down,sact , label),
where up and down are names of channels used for communication with upper
and lower contexts of the action, sact is a channel name shared by all action-
type nodes of StructureA for communications with Ruler, and label is an in-
dividual label of the action in A. An ambient n is encoded into the π-process
Node(amb,n,up,down,samb, label), where up, down and label have the same mean-
ing as above, amb is the key word for distinguishing ambients from capabilities,
and samb is a channel name shared by all ambient-type nodes of StructureA for com-
munications with Ruler.

The π-process Node(a,n,u,d,s, l) is a recursive process composed of two sub-
processes Reply(d,s, l) and Main(a,n,u,d,s, l). The subprocess Reply serves the
dual function of providing communication with the lower context of a node (which
is a set of nodes) and also of converting (if necessary) the node into a wire. The
subprocess Main keeps the information about the node (its type, name and context)
and communicates with Ruler.

3.2.4 Simulating the Operational Semantics of Pure Ambients

The π-process StructureA represents only the spatial structure of MA process A. The
behaviour of A is simulated by a universal π-process Ruler which does not depend
on A. This process has two parameters sact and samb as channel names for receiving
submissions from nodes corresponding to actions and ambients. The received sub-
missions indicate the readiness of the nodes to participate in the simulation of some
MA operation (entering, exiting or opening).
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Definition 3.6. The formal description of a π-process Ruler is as follows.
Ruler(sact ,samb) = (νx0) (νx1) (νx2) (νy) (12)

sact(v0). samb(v1). samb(v2). (13)
v0〈x0〉.x0(tc,nc, lc,uc,dc,ulc). (14)
v1〈x1〉.x1(ta,1,na,1, la,1,ua,1,da,1,ula,1). (15)
v2〈x2〉.x2(ta,2,na,2, la,2,ua,2,da,2,ula,2).
[tc = in∧nc = na,2∧ulc = la,1∧ula,1 = ula,2] (16)

(
v0〈lc,uc〉.v1〈y,da,2〉.v2〈y,ua,2〉 , (17)
[tc = out ∧nc = na,2∧ulc = la,1∧ula,1 = la,2] (18)
(

v0〈lc,uc〉.v1〈y,ua,2〉.v2〈y,ua,2〉 , (19)
[tc = open∧nc = na,1∧ulc = la,2∧ula,1 = la,2] (20)

( v0〈lc,uc〉.v1〈la,1,ua,1〉.v2〈y,ua,2〉 , (21)
v0〈y,uc〉.v1〈y,ua,1〉.v2〈y,ua,2〉 ) (22)

)
).sact(z0). samb(z1). samb(z2). Ruler(sact ,samb) (23)

Environment:

The environment is considered as a top-most ambient encompassing MA-process A.
But unlike conventional ambients it cannot be dissolved and no ambient can exit
from it. The environment plays the role of an upper context for unguarded actions
and ambients; it can also participate in the simulation of open operations as Amb2.
Moreover, for the sake of uniformity it is convenient to compose an environment
out of two ambient-type processes. Only one of these processes can actually partic-
ipate in simulation of some MA-operation. The other is just a dummy which gives
Ruler a possibility to operate while at least one active action-type node remains in
StructureA.

Definition 3.7. The formal description of a π-process Environment is
Environment(env,$,d,samb) = Top(env,$,d,samb) |

(ν d′) Top(env,$,d′,samb) (24)
Top(env,$,d,s) = (νv) (νl) (νu) (νw) (25)

s〈v〉. v(x). (26)
x〈env,$, l,u,d,w〉. (27)
v(y,z). s〈l〉. Top(env,$,d,s) (28)
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3.2.5 The Intended Meaning of the Encoding Constructions

We present here some details about our encoding. First we briefly explain the in-
tended meaning of some fragments of Reply and Main from the formal description
of Node(a,n,u,d,s, l):

(1)Reply(d,s, l) can receive via the channel d either a request from the lower context
of the node, or an instruction from Main which changes the whole node into a
wire. In the former case y is evaluated as a private channel name for emitting at y
the label l of the node. In the latter case the main process evaluates y as the label
l (see line (9)) which does not match any private name. Therefore, after receiving
the label l from Main the process Reply is reduced to the line (2), whereas after
receiving a request from the lower context of the node it is reduced to the line (3).

(2)After receiving the label l of the node from the main subprocess of the node,
Reply receives an updated channel name for communication with the upper con-
text of the node (see line (9)), sends a synchronization message to Ruler indi-
cating thus the completion of the instruction processing, and evolves into a wire
which connects the lower and the upper contexts of the node. This may happen
when the node becomes passive since the corresponding capability is consumed
or the ambient boundary is dissolved.

(3)If Reply receives a request from the lower context of the node it considers the
value of y as a private name of a channel and sends via this channel the label l of
the node. As a consequence, the label of the node becomes available to its lower
context. Afterwards Reply reverts to the original state.

(4)The subprocess Main(a,n,u,d,s, l) uses the following private names:

• v as a name of a channel for receiving acknowledgments and instructions from
Ruler,

• w as a name of a channel for receiving the label of a node that precedes our
node in StructureA,

• k as an arbitrary fresh name different from the label of the node to switch
Reply to the line (3).

(5)Main begins with sending a message to Ruler to indicate the readiness of the
node to participate in the simulation of some MA operation. Ruler will consider
this message as a private name of a channel for communication with the node. If
Ruler selects the node for simulating MA operation it sends via v another private
name (see lines (14),(15)). This name will be used as a channel for sending to
Ruler additional information: the name, the type and the environment of the node.

(6)The node sends a request to its upper context to know the label of the preceding
node in StructureA. The upper context replies via w and evaluates lu to the label
of the predecessor (see lines (1), (3) and Proposition 3).

(7)The node sends to Ruler its type, name and label, the channel names for com-
munication with the upper and lower context, and the label of its predecessor
in StructureA. After processing this information Ruler replies via v to the node
and informs it about its new status (active or passive) and its new upper context
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(see lines (17), (19), (21) and (22)). If the node does not match a pattern for
simulating an MA operation or corresponds to a component of MA which is not
consumed or dissolved along the operation, then Ruler emits at v some private
name which does not match l. The node considers this private name as an in-
struction to remain active. Otherwise Ruler evaluates y as the label l of the node
and this is considered as an instruction to alter the node into a wire. In both cases
Ruler evaluates z as a name of a new channel for communication with the upper
context of the node (since the context of the node may also be changed as a result
of simulation of MA operation).

(8)Main checks the instruction.
(9)If the node becomes passive due to the consumption of a capability or dissolution

of an ambient, then Reply is instructed to become a wire and receives an updated
channel name for communication with its upper context. In this case the main
subprocess of the node is reduced to 0.

(10) Otherwise the subprocess Reply is informed that the node remains active. The
input action k(w′) is used just for the sake of uniformity.

(11) Afterwards the main subprocess sends to Ruler a synchronization message
which indicates completion of the instruction processing, updates its upper con-
text and reverts to the original state.

The intended meaning of the lines in the definition of Ruler(sact ,samb) is as follows.

(12) The subprocess Ruler uses the following private names:

• x0,x1,x2 for communication with the nodes selected for simulating MA oper-
ations, and

• y for instructing the selected nodes to remain active.

(13) Ruler non-deterministically selects three nodes representing an action and a
pair of ambients in an MA-process that can participate in the simulation of MA
operation. Selection is put into effect by receiving requests via public chan-
nels sact and samb (see line (5)). The first selected node is an action-type node
since the request from this node is received via the channel sact which is shared
by action-type nodes only. Two others are ambient-type nodes. The requests in-
clude private channel names for communication with the selected nodes.

(14) Using this private channel, Ruler sends a fresh channel name x0 to the action-
type node. The node considers this message as an inquiry about its characteristics
(type tc, name nc, label lc, channel names uc,dc for communication with up-
per and lower contexts, label ulc of the preceding node). It delivers the required
names to Ruler via the private channel x0 (see line (7)).

(15) As in the case of actions (see line (14)), Ruler asks the selected ambient-type
nodes to provide the information on the names na,1 and na,2, labels la,1 and la,2,
channel names for communication with lower contexts da,1 and da,2, and labels
of the preceding nodes ula,1 and ula,2 of these nodes.

(16) From this point Ruler begins to check which operation on MA can be exe-
cuted by means of the capability represented by the selected action-type node
on the ambients represented by the selected ambient-type nodes. There are three
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conditions to ensure that Ruler simulates the application of the entering reduc-
tion step to the MA process. First, the selected action-type node labelled with lc
should represent an action which has the capability to enter (tc = in) into the
ambient named na,2 (nc = na,2); secondly, it lies on the top level in the ambient
named na,1 (ulc = la,1); and finally, the ambients named na,1 and na,2 are siblings
(ula,1 = ula,2).

(17) The entering reduction step is simulated by changing the communication net in
the π-process StructureA which represents the spatial structure of MA-process A.
Since the capability represented by the selected action-type node is consumed,
Ruler sends to this node its label lc via the private channel. After receiving this
message the node evolves into a wire (see lines (7), (8), (9), (1), (2)). Since the
ambient named na,1 enters the sibling ambient named na,2, the corresponding
ambient-type node has to change its upper context. Ruler sends to this node the
channel name da,2 for communication with its new upper context which is the
node corresponding to the ambient named na,2. The upper context of the node
corresponding to the ambient named na,2 remains the same, and Ruler acknowl-
edges this by communicating back the value ua,2. A private name y which does
not match the labels la,1 and la,2 is sent to the ambient-type nodes as an instruc-
tion to remain active (see lines (7), (8), (10), (11), (1), (3)).

(18) If the selected nodes do not match an entry-pattern, then Ruler checks for an
exit-pattern. There are three conditions to ensure that Ruler simulates the applica-
tion of an exiting reduction step to the MA process. First, the selected action-type
node labelled with lc should represent an action which has the capability to exit
(tc = out) from the ambient named na,2 (nc = na,2); secondly, it lies on the top
level in the ambient named na,1 (ulc = la,1); and finally, the ambient named na,1

lies on the top level of the ambient named na,2 (ula,1 = la,2).
(19) Since the capability represented by the selected action-type node is consumed,

Ruler sends to this node its label lc to evolve the node into a wire (see lines (7),
(8), (9), (1), (2)). Since the ambient named na,1 is transformed into a sibling of
the ambient named na,2, it changes the upper context from ua,1 to ua,2. The upper
context of the node corresponding to the ambient named na,2 remains the same.
Ruler sends a private name y which does not match the labels la,1 and la,2 to
instruct the ambient-type nodes to remain active (see lines (7), (8), (10), (11),
(1), (3)).

(20) If the selected nodes do not match an exit-pattern, then Ruler checks for an
open-pattern. If the selected action-type node labelled with lc represents an action
which has the capability to dissolve the boundary (tc = open) of the ambient
named na,1 (nc = na,1), lies on the top level in the ambient named na,2 (ulc =
la,2), and the ambient named na,1 also lies on the top level of the ambient na,2

(ula,1 = la,2), then Ruler simulates the application of an opening reduction step
to the MA process.

(21) To simulate an opening MA-operation, Ruler sends lc to the action-type node
and la,1 to the ambient-type node named na,1 to evolve these nodes into wires (see
lines (7), (8), (9), (1), (2)) since the capability is consumed and the boundary of
the ambient is dissolved. Ruler sends a private name y which does not match the
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label la,2 to instruct the ambient-type node named na,2 to remain active (see lines
(7), (8), (10), (11), (1), (3)).

(22) If the selected nodes do not match any pattern, then Ruler informs them via
private channels to remain active and to keep their channels for communication
with upper contexts unchanged.

(23) After this Ruler waits till the nodes which participated in this round of simula-
tion send their synchronization messages (the labels) to indicate that instructions
sent to them (see lines (17), (19), (21), or (22)) are performed (see lines (2) and
(11)), reverts to the initial state and tries another triple of nodes.

Finally, we comment briefly on the intended meaning of Environment.

(24) The environment is composed of two processes Top. They have the same func-
tionality, but only the first one has a global name for communication with its
lower context (top-level actions and ambients encompassed by the environment).
Nevertheless both processes can communicate with Ruler via the channel samb

shared by ambient-type nodes. The name $ is an arbitrary name which is differ-
ent from any free name in an ambient encompassed by the environment.

(25) A process Top uses the following private names:

• v as a name of a channel for receiving acknowledgments and instructions from
Ruler,

• l,u,w as dummy names that are used only for the sake of uniformity in com-
munications with Ruler (they stand for the label, upper context and label of
the predecessor of the node that are of no importance for the environment).

(26) The environment processes begin with sending to Ruler their requests for par-
ticipation in the simulation of MA operations. When participation is granted Top
receives a private channel name for communication with Ruler (see line (15)).

(27) Using this channel Top sends to Ruler the information about its type (a keyword
env), name (it should be different from any name in StructureA), channel names
for communication with its upper context (since it does not exist any private
name is possible) and lower context (d), the label of the preceding node (it does
not exist also and Top uses any private name for this purpose).

(28) Like any other node participating in the simulation of MA operation as seen in
line (7), Top receives a pair of names (y and z) which are interpreted as instruc-
tions for changing its status and updating its context. But since the environment
cannot be dissolved and it has no upper context, these names do not affect its
functionality. This input is used only for the sake of uniformity which gives Ruler
the possibility not to distinguish Top as a specific node. Therefore, Top just ac-
knowledges the receipt of these names by sending a synchronization message to
Ruler and reverts to the original state.
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3.2.6 Encoding of Pure Ambients into π-processes

The encoding of pure ambients in π-processes is defined in terms of two rela-
tions |=0 and |=. We use |=0 for constructing StructureA corresponding to MA-
process A and |= for constructing the ultimate π-process out of StructureA, Ruler
and Environment.

Definition 3.8. The encoding relation |=0 is defined inductively by the following
axioms and rules. In every pair [P,k] to the right of |=0 the second component k
stands for the free channel name used in the π-process P for communication with
its upper context.

Axioms:

Ax1 (Simple Inactivity) 0 |=0 [0,k], where k ∈N ;

Ax2 (Tree-wire) 0 |=0 [(νI) TWI,k,k], where I ⊂N , k ∈N ;

Rules:

R1 (Add tree-wire)
A |=0 [P,k]

A |=0 [(ν I) (WI,m|P),m] ,

where k ∈ I, f n(P)∩ I ⊆ {k}, m /∈ f n(P)∪ I;

R2 (Composition)
A1 |=0 [P1,k] , A2 |=0 [P2,k]

A1|A2 |=0 [P1|P2,k]
;

R3 (Restriction)
A |=0 [P,k]

(νn) A |=0 [(ν n) P,k] ; R4 (Replication)
A |=0 [P,k]

!A |=0 [!P,k] ;

R5 (Action)
A |=0 [P,k]

cap n. A |=0 [(ν k) (ν l)(Node(cap,n,m,k,sact , l)|P),m] ,

where cap ∈ {in,out,open}, l,m /∈ f n(P)∪{n};

R6 (Ambient)
A |=0 [P,k]

n[A] |=0 [(ν k) (ν l) (Node(amb,n,m,k,samb, l)|P),m] ,

where l,m /∈ f n(P)∪{n}.

The encoding relation |= is defined by the single rule
R0 (MA− to−π)

A |=0 [StructureA,k]
A |= (ν Σ) (StructureA|Ruler(sact ,samb)|Environment(env,$,k,samb))

where νΣ stands for the prefix

(ν in) (ν out) (ν open) (ν amb) (ν env) (ν sact) (ν samb) (ν $) (ν k) ,

and $ is any name from N − f n(A).

Proposition 3.4.

1. Let A,B be two MA-processes such that A ≡a B, and A |= P. Then there exists a
derivation B |= Q such that P≡π Q.

2. If A |= P, then f n(A) = f n(P).
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3.2.7 Operational Correspondence

In this section we will demonstrate that the encoding of pure ambients into the π-
calculus is complete and sound. By completeness we mean that any π-process P
associated with an MA-process A through the encoding relation A |= P admits only
those π-calculus reductions P→∗

π P′ that can be interpreted in terms of pure ambient
reductions A→a A′ such that A′ |= P′. Soundness means that any reduction A→a A′

corresponds to some chain of π-calculus reductions P→∗
π P′ of P such that A′ |= P′.

Thus, we may speak of a homomorphic embedding of pure mobile ambients into
the π-calculus.

Theorem 3.2 (Completeness). Let A0,A1 be MA-processes and P0 be a π-process
such that A0 →a A1 and A0 |= P0. Then there exists a chain of π-calculus reduction
steps

P0 ↪→3
π P′1 �→∗

π P1

such that A1 |= P1.

The proof follows straightforwardly from the description of processes Main,
Reply, Ruler, and Top and Proposition 3.3. The only non-deterministic steps in the
reduction P0 →∗

π P1 are three communications steps when Ruler selects nodes repre-
senting a capability and a pair of ambients for simulating a reduction step A0 →a A1.
Afterwards the reduction of P0 is completely deterministic until all communication
actions in the bodies of subprocesses Ruler, Main and Reply are executed to an end.

Theorem 3.3 (Soundness). Let A0 be an MA-process and P0 be a π-process such
that A0 |= P0. Let P0 →∗

π P be a chain of π-calculus reduction steps. Then there exist
an integer N, 0≤ N ≤ 2, a sequence of π-calculus terms P′1,P1,P′2,P2, . . . ,P′n,Pn and
a sequence of pure ambient terms A1,A2, . . . ,An such that the following conditions
hold

1. P ↪→N
π P′n �→∗

π Pn;
2. The chain of π-calculus reductions P0 →∗

π P→∗
π Pn can be partitioned as follows:

P0 ↪→3
π P′1 �→∗

π P1 ↪→3
π P′2 �→∗

π P2 ↪→3
π · · · ↪→3

π P′n−1 �→∗
π Pn−1 ↪→3−N

π P ↪→N
π P′n �→∗

π Pn

such that

a. Ai |= Pi for every i, 0≤ i≤ n;
b. for every i, 0≤ i < n, either Ai ≡a Ai+1 or Ai →a Ai+1.

The intended meaning of this theorem is as follows. Suppose that a π-process P0

encodes an MA-process A0, and it can be reduced to a π-process P. Then either P
encodes an MA-process An, or P is in an “intermediate” form and it can be further
reduced to a π-process Pn which encodes An. In the latter case, the reduction of P
to Pn is a composition of

• N non-deterministic reduction steps P ↪→N
π P′n, where 0 ≤ N ≤ 2; these steps

complete, if necessary, a non-deterministic selection of nodes representing an
action and ambients in an MA-process (see Subsection 3.2.5.(13)), and
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• a finite number of deterministic reduction steps P′n �→∗
π Pn corresponding to

the interaction between the Ruler and the selected process Node (see Subsec-
tion 3.2.5.(14)-(23)).

When reduction of P to Pn is completed, the whole chain of π-calculus reductions
P0 →∗

π P →∗
π Pn becomes a step-by-step simulation of some mobile ambient com-

putation A0 →∗
a An.

The proof of this theorem is by induction on the number of non-deterministic
steps ↪→π in a reduction of P0. Each triple of non-deterministic steps in such a re-
duction is followed by a chain of deterministic reduction steps that either simulate
the execution of some MA-reduction step if the selected nodes in a π-process Pi

comply with one of the MA-reduction rules, or restore Pi otherwise.
We may note that our translation has diverging reductions whenever the selected

nodes do not conform to any MA-reduction rule. In this case we may obtain an
infinite chain P ↪→3

π P′ �→∗
π P ↪→3

π P′ �→∗
π P ↪→3

π . . .

Proposition 3.5. If A is an MA-process and P is a π-process such that A |= P, then
we can see that P is a localized π-calculus term.

3.2.8 Further Extensions

The encoding makes it possible to analyze some properties of mobile ambients by
means of static analysis and the congruence-checking machinery developed for the
π-calculus. The fact that we restrict ourselves to localized and sum-free π-terms
substantially alleviates the analysis. Moreover, our encoding does not involve any
sophisticated structures that can affect the precision of such analysis.

The encoding can be extended to a full ambient calculus, adding a communica-
tion channel per ambient. This implies a “merging” of channels when an ambient is
opened; we may use the same mechanism: the Ruler randomly selects an input and
an output, checks if they belong to the same ambient, and performs communication.
On the other hand, it is worth noticing that our encoding is slightly more general
in the sense that the target language is even simpler. We can use the asynchronous
π-calculus, which is even simpler than the synchronous π-calculus, by using the
standard encoding [95].

It can readily be imagined that the encoding could be made more advanced by
combining every π-process Node corresponding to an ambient with its own inter-
preter Ruler. In this case a distributed interaction between the components of a
system can be achieved, and the encoding becomes compositional. To study the
behavioural properties of mobile ambients that are preserved by such an advanced
encoding would be our next step. The ultimate aim is to build a fully abstract trans-
lation which preserves behavioural equalities between processes, such as reduction
barbed congruence [117, 144]. If such a translation should be obtained, it provides
a sound basis for a uniform framework of the theory of mobile computations.
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3.3 Safe Mobile Ambients into Mutual Mobile Membranes

Membrane systems [127, 128] and mobile ambients [42] have similar structures and
common concepts. Both have a hierarchical structure representing locations, and are
used to model various aspects of biological systems. Mobile ambients are suitable
to represent the movement of ambients through ambients and the communication
which takes place inside the boundaries of ambients. Membrane systems are suit-
able to represent the movement of objects and membranes through membranes. We
consider these new computing models used in describing various biological phe-
nomena [40, 65], and encode the ambients into membrane systems [12, 19]. We
present such an encoding, and use it to describe the sodium-potassium exchange
pump [14]. We provide an operational correspondence between safe ambients and
their encodings, as well as various related properties of membrane systems [14].

3.3.1 Main Idea

In what follows we describe a relationship between ambients and membrane sys-
tems. This relationship is mainly provided by an encoding of safe mobile ambients
into systems of mutual mobile membranes. We use the following translation steps:

• every safe process 0 is replaced by the empty multiset λ ;
• every ambient n is translated into a membrane labelled by n;
• every capability cap n is translated both into an object “cap n” and into a mem-

brane labelled by “cap n”, both placed in the same region;
• every path of capabilities is translated into a nested structure of membranes (e.g.,

in m. out n is translated into in m [ out n [ ]out n ]in m);

out n
out n

in m

in m

• an object dlock is placed near the membrane structure after all the translation is
done; the additional object dlock prevents the consumption of capability objects
in a membrane system which corresponds to a mobile ambient from the set Damb.

A feature of pure safe ambients is that they have a spatial tree-like structure. The
nodes in this structure are represented by ambients and capabilities. When translat-
ing a pure safe ambient into a membrane system we obtain the same tree structure
by means of membranes: every node is a membrane having the same label as the
corresponding ambient or capability. Let us consider the following mobile ambient

n[ in m | t[ ] ] | m[ in m ].
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in m

m

in m
t

n

Translating it into a mobile membrane system, we obtain
dlock [ in m [ ]in m [ ]t ]n [ in m [ ]in m]m.

in m

m
in min m

in m
t

n

dlock

Remark 3.1. Whenever we encode a path of capabilities, we wish to preserve the or-
der in which the capabilities are consumed. This order is preserved by the translation
given above, even it requires lots of resources. Another solution is to encode every
capability only into an object, and to preserve the order of the objects by adding
extra objects and rules into the system. This can be done by introducing objects able
to enchain a certain sequence of rules: for instance, if we have in n. in m . . . then in
the corresponding membrane system we have the rules:

in n→ in n x, in n x→ in m y, . . .

Cardelli and Gordon in [42] use the following structure
p[ succ[ open op ] ] | open q.open p.P | op[ in succ.in p.in succ.

(q[ out succ.out succ.out p ] | open op) ]
Starting from such a structure, we look for a translation such that the capabilities’
order is preserved. For every consumed pair of capabilities in safe ambients, there
is a change in the ambient structure. We simulate this with the help of some special
developmental rules in membrane systems. An object one is used to ensure that
no more than one pair (capability, co-capability) is consumed at every tick of the
universal clock. Using rules for moving a membrane as in [104, 108], we define the
following developmental rules:

a) [ in m dlock one ]n [ in m ]m → [ in∗m in∗m dlock ]n [ in∗m ]m
If a membrane n (containing the objects in m, dlock, one) and a membrane m
(containing an object in m) are placed in the same region, then the objects in m
and one are replaced by the objects in∗m and in∗m; the object in m is replaced
by the object in∗m. The object in∗m is used to control the process of introducing
membrane n into membrane m, and the objects in∗m, in∗m are used to dissolve
the membranes in m and in m.

b) cap∗m [ ]cap m → [ δ ]cap m

If an object cap∗m and the membrane labelled by cap m are placed in the same
region, then the object cap∗m is consumed and the membrane labelled by cap m
is dissolved (this is denoted by the symbol δ ). This rule simulates the consump-
tion of a capability cap m in ambients.
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c) [ in∗m ]n [ ]m → [ [ ]n ]m |[ ¬cap∗ ]m
If an elementary membrane n (containing an object in∗m) and a membrane la-
belled by m (which does not contain star objects – this is denoted by |[ ¬cap∗ ]m)
are placed in the same membrane, then the membrane n enters the membrane
labelled by m and the object in∗m is consumed in this process. The | operator is
used to denote the fact that the rule can be applied only if the conditions on the
right hand side are initially satisfied.

d) [ out m [ out m dlock one ]n ]m → [ out∗m [ out∗m out∗m dlock ]n ]m
If a membrane m contains both an object out m and a membrane n (having the
objects out m, dlock, one), then the objects out m and one are replaced by out∗m,
out∗m; moreover, out m is replaced by the object out∗m. The object out∗m is
used to control the process of extracting membrane n from membrane m, and
the objects out∗m, out∗m are used to dissolve the membranes out m and out m,
respectively.

e) [ [ out∗m ]n ]m → [ ]n [ ]m
If a membrane m contains an elementary membrane n which has an object out∗m,
then membrane n is extracted from the membrane labelled by m, and object
out∗m is consumed in this process.

f) [open m]m open m dlock one→ [ δ ]mopen∗m open∗m dlock
If a membrane m and the objects open m, dlock, one are placed inside the same
region, then membrane m is dissolved, the object open m is consumed, and the
objects open m and one are replaced by the objects open∗m and open∗m.

g) [ U∗ [ ]t ]n → [ U∗ [out∗n in∗n U∗]t ]n |[ ¬cap∗ ]t
We denote by U∗ an arbitrary non-empty multiset of star objects placed in mem-
brane n. If a membrane n contains a multiset of star objects U∗ and a membrane t
which does not contain star objects (this is denoted by |[ ¬cap∗ ]t ), then a copy of
set U∗ and two new objects in∗n and out∗n are created inside membrane t. The
existence of a multiset U∗ of star objects indicates that membrane n can be used
by rules c), e) to enter/exit into/from another membrane. In order to move, mem-
brane n must be elementary; to accomplish this, the objects out∗n, in∗n and a
copy of the multiset U∗ are created inside membrane t such that membrane t can
be extracted. After membrane n completes its movement (this is denoted by the
fact that the membrane labelled by n does not contain star objects), membrane t
is introduced back into membrane n.

h) dlock [ ]n → dlock [ dlock ]n | ¬n [ ¬dlock ]n
If an object dlock and a membrane n (which does not already contain an ob-
ject dlock, i.e., [ ¬dlock ]n) are placed inside the same region, and there is no
object n placed in that region (denoted by ¬n), then a new object dlock is placed
inside membrane n. This rule specifies the fact that object dlock can only pass
through membranes corresponding to translated ambients; this makes impossible
the consumption of capability objects from the translated structures from Damb.

i) [ dlock ]n → [ ]n
The object dlock created by an application of rule h and located inside membrane
n is removed.

j) [ dlock ]n → [ dlock one ]n
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If a membrane n contains an object dlock, then an additional object one is created
in membrane n.

k) one→ [ δ ]
An object one is consumed; the last two rules ensure that at most one object one
exists in the membrane system at any moment.

Remark 3.2. Whenever we get the membrane system
dlock [ in m [ ]in m out n [ ]out n [ out n [ ]out n ]t ]n [ in m [ ]in m ]m

in m

m
in m

in m

in m

out n

out n

t
out n

out n

n

dlock

after applying in a maximally parallel manner the developmental rules from the set
defined above, we obtain either the membrane system [ [ ]n [ ]t ]m or [ ]t [ [ ]n ]m.
The order in which the pairs of objects corresponding to translated capabilities are
consumed in the membrane encoding should be the same as the order in which the
pairs of capabilities are consumed in the encoded ambient. However in the example
above this order cannot be established; the non-star objects can be consumed by two
rules applied in parallel. For this reason we have imposed the following priorities
between the developmental rules defined above:

b) > c), e), g) > a), d), f) > k) > h), i), j)

According to these priorities, the membrane system
dlock [ in m [ ]in m out n [ ]out n [ out n [ ]out n ]t ]n [ in m [ ]in m ]m

evolves only to the membrane system [ [ ]n [ ]t ]m if the objects in m and in m are
consumed before the objects out n and out n by a rule from the set given above.
The applied rules are the ones defined in what follows. After each evolution step we
represent graphically the membrane system obtained.

r1 : dlock [ ]n → dlock [ dlock ]n — type k) — a copy of the object dlock is created
inside the membrane n, which does not contain a dlock object;

in m

m
in m

in m

in m dlock

out n

out n

t
out n

out n

n

dlock
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r2 : dlock [ ]t → dlock [ dlock ]t — type k) — a copy of the object dlock is created
inside the membrane t, which does not contain a dlock object;

r3 : [ dlock ]n → [ dlock one ]n — type j) — an object one is created in the mem-
brane n which contains a dlock object;

in m

m
in m

in m

in m dlock one

out n

out n

t

dlock

out n
out n

n

dlock

r4 : [ in m dlock one ]n [ in m ]m → [ in∗m in∗m dlock ]n [ in∗m ]m — type a) — the
objects in m, one in membrane n are replaced by the objects in∗m, in∗m, and the
object in m in membrane m is replaced by the object in∗m;

in∗m

m
in m

in m

in∗m in∗m dlock

out n

out n

t

dlock

out n
out n

n

dlock

r5 : in∗m [ ]in m → [ δ ]in m — type b) — in the presence of an object in∗m the
membrane labelled by in m is dissolved; the object in∗m signals the fact that the
object in m has been consumed;

r6 : in∗m [ ]in m → [ δ ]in m — type b) — in the presence of an object in∗m the
membrane labelled by in m is dissolved; the object in∗m signals the fact that the
object in m has been consumed;

m

in∗m dlock

out n

out n

t

dlock

out n
out n

n

dlock

r7 : [ in∗m [ ]t ]n → [ in∗m [ in∗m out∗n in∗n ]t ]n — type g) — in the presence of
star objects in membrane n (which is not an elementary one), a copy of all the
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star objects from membrane n and two new objects out∗n, in∗n are created in the
nested membrane t;

r8 : [ in∗m [ ]out n ]n → [ in∗m [ in∗m out∗n in∗n ]out n ]n — type g) — in the presence
of star objects in membrane n (which is not an elementary one), a copy of all the
star objects from membrane n and two new objects out∗n, in∗n are created in the
nested membrane out n;

m

in∗m dlock

in∗m
out∗n
in∗n out n

out n

in∗m
out∗n
in∗n

t

dlock

out n
out n

n

dlock

r9 : [ in∗m out∗n in∗n [ ]out n ]t → [ in∗m out∗n in∗n [ in∗m out∗n in∗n in∗t out∗t ]out n ]t
— type g) — in the presence of star objects in membrane t (which is not an
elementary one), a copy of all the star objects from membrane t and two new
objects out∗t, in∗t are created in the nested membrane out n;

r10 : [ [ out∗n ]out n ]n → [ ]n [ ]out n — type e) — the membrane out n, being elemen-
tary and containing the object out∗n, is extracted from membrane n;

m

in∗m dlock out n
in∗m

in∗n out n

in∗m
out∗n
in∗n

t

dlock

out n

in∗m
out∗n
in∗n

in∗t
out∗t out n

n

dlock

r11 : [ [ out∗t ]out n ]t → [ ]t [ ]out n — type e) — the membrane out n, being elementary
and containing the object out∗t, is extracted from membrane t;

r12 : [ in∗m ]out n [ ]m → [ [ ]out n ]m — type c) — the membrane out n, being elemen-
tary and containing an object in∗m, is introduced into membrane m which does
not contain any star objects;

m

in∗m dlock out n

in∗n out n

in∗m out∗n in∗n
t

dlock out n

in∗m
out∗n
in∗n

in∗t

out n

n

dlock

r13 : [ [ out∗n ]out n ]n → [ ]n [ ]out n — type e) — the membrane out n, being elemen-
tary and containing an object out∗n, is extracted from membrane n;
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r14 : [ [ out∗n ]t ]n → [ ]n [ ]t — type e) — the membrane t, being elementary and
containing an object out∗n, is extracted from membrane n;

m

in∗m dlock out n

in∗n out n

in∗m

in∗n
t

dlock
out n

in∗m

in∗n

in∗t

out n
n

dlock

r15 : [ in∗m ]n[ ]m → [ [ ]n ]m — type c) — the membrane n, being elementary and
containing an object in∗m, is introduced into membrane m which does not contain
any star objects;

r16 : [ in∗m ]t [ ]m → [ [ ]t ]m — type c) — the membrane t, being elementary and
containing an object in∗m, is introduced into membrane m which does not contain
any star objects;

r17 : [ in∗m ]out n [ ]m → [ [ ]out n ]m — type c) — the membrane out n, being elemen-
tary and containing an object in∗m, is introduced into membrane m which does
not contain any star objects;

m

dlock out n

in∗n out nin∗n
t

dlock
out n

in∗n
in∗t

out n
n

dlock

r18 : [ in∗n ]t [ ]n → [ [ ]t ]n — type c) — the membrane t, being elementary and
containing an object in∗n, is introduced into membrane n which does not contain
any star objects;

r19 : [ in∗n ]out n [ ]n → [ [ ]out n ]n — type c) — the membrane out n, being elementary
and containing an object in∗n, is introduced into membrane n which does not
contain any star objects;

r20 : [ in∗n ]out n [ ]n → [ [ ]out n ]n — type c) — the membrane out n, being elementary
and containing an object in∗n, is introduced into membrane n which does not
contain any star objects;

m

dlock out n

out n
t

dlock
out n

in∗t
out n

n

dlock
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r21 : [ in∗t ]out n [ ]t → [ [ ]out n ]t — type c) — the membrane out n, being elementary
and containing an object in∗t, is introduced into membrane t which does not
contain any star objects;

r22 : [ dlock ]t → [ dlock one ]t — type j) — an object one is created in membrane t
which contains a dlock object;

m

dlock out n

out n
t

dlock
one

out nout n

n

dlock

r23 : [ out n [ out n dlock one ]t ]n → [ out∗n [ out∗n out∗n dlock ]t ]n — type d) —
objects one, out n are replaced in membrane t by objects out∗n, out∗n, and object
out n in membrane n is replaced by object out∗n;

m

dlock out∗n

out n
t

dlock
out∗n
out∗nout n

n

dlock

r24 : out∗n [ ]out n → [ δ ]out n — type b) — in the presence of an object out∗n the
membrane labelled by out n is dissolved; the object out∗n signals the fact that the
object out n has been consumed;

r25 : out∗n [ ]out n → [ δ ]out n — type b) — in the presence of an object out∗n the
membrane labelled by out n is dissolved; the object out∗n signals the fact that the
object out n has been consumed;

m

dlock

t
dlock out∗n

n

dlock

r26 : [ [ out∗n ]t ]n → [ ]t [ ]n — type e) — the membrane t, being elementary and
containing an object out∗n, is extracted from membrane n;

r27 : [ dlock ]n → [ ]n — type i) — the object dlock from membrane n is consumed;
r28 : [ dlock ]t → [ ]t — type i) — the object dlock from membrane t is consumed;

mtndlock
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The rules are applied in the order presented above, with the additional remark
that the tuples of rules (r5,r6), (r7,r8), (r9,r10), (r11,r12), (r13,r14), (r15,r16,r17),
(r18,r19,r20), (r21,r22), (r24,r25), (r26,r27,r28) can be applied in any order or in par-
allel. The computation stops when, after introducing all the possible objects dlock
by applying rules of form h), none of the sequences of rules j),a) or j),d) or j), f )
can be applied.

Remark 3.3. At a certain moment, the membrane out n of the example above con-
tains the objects in∗m, out∗n, in∗n, in∗t, out∗t. In order to avoid an unexpected return
of membrane out n into membrane t, we restrict the use of the object in∗t by im-
posing the lack of star objects in the target membrane. This is enough to distinguish
membrane t (having star objects) from membrane m which has no such star objects.
It is worth noting that the membrane system

dlock [ in m [ ]in m out n [ ]out n [ out n [ ]out n ]t ]n [ in m [ ]in m ]m
evolves to the membrane system [ ]t [ [ ]n ]m if the objects out n and out n are con-
sumed before the objects in m and in m.

3.3.2 Translation

We denote membrane systems by M,M′,Mi,N,N′, and the labels of the membranes
by n,m, . . ..

Definition 3.9. The set M of membrane configurations M is defined by

M ::= λ | O | [ M ]n | (νn)M | M1 M2

where by O we denote a finite multiset of objects.

We can write O or M1 M2 omitting the surrounding membrane, because all the
membrane structures are placed inside a skin membrane. Similar to the restriction
operator presented in [44], we consider in [13] an operator (νn)M for the restriction
of a name n to a membrane configuration M.

In order to give a formal encoding of pure safe ambients into simple mobile
membranes, we define the following function:

Definition 3.10. A translation T : A → M is given by T (A) = dlock T1(A),
where T1 : A →M is

T1(A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cap n[ ]cap n if A = cap n
cap n[ T1(A1) ]cap n if A = cap n.A1

[ T1(A1) ]n if A = n[ A1 ]
[ ]n if A = n[ ]
(νn)T1(A1) if A = (νn)A1

T1(A1) T1(A2) if A = A1 | A2

λ if A = 0
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A membrane structure can be represented in a natural way as a Venn diagram.
This makes clear the fact that the order of membrane structures and objects placed
in the same region in a large membrane structure is irrelevant; what matters is the
relationships between membranes and objects. A rule of the form a [ b ]n → b [ a ]n
has the same meaning as any of the rules [ b ]n a → [ a ]n b, a [ b ]n → [ a ]n b,
and [ b ]n a → b [ a ]n. Inspired by [40], we formally define the notion of structural
congruence which clarifies this aspect, and reduces the number of rules written for
a membrane system.

3.3.3 Properties Preserved Through Translation

Definition 3.11. The structural congruence ≡mem over M is the smallest congru-
ence relation satisfying:

M N ≡mem N M M (N M′)≡mem (M N) M′;
M λ ≡mem M (νn)(νm)M ≡mem (νm)(νn)M;
(νm)M ≡mem (νn)M{n/m}, where n is not a membrane name in M;
(νn)(N M)≡mem M (νn)N where n is not a membrane name in M;
n �= m implies (νn)[ M ]m ≡mem [ (νn)M ]m.

The restriction operator can float outward to extend the scope of a membrane
name, and can float inward to restrict the scope of a membrane name.

We deal with multisets of objects, and multisets of membranes. For example, we
have [ ]n [ ]m ≡mem [ ]m [ ]n, in m [ ]n ≡mem [ ]n in m and in∗n out∗m≡mem out∗m in∗n.

Proposition 3.6. The structural congruence has the following properties:
M ≡mem M;
M ≡mem N implies N ≡mem M;
M ≡mem N and N ≡mem M′ implies M ≡mem M′;
M ≡mem N implies M M′ ≡mem N M′;
M ≡mem N implies M′ M ≡mem M′ N;
M ≡mem N implies [ M ]n ≡mem [ N ]n;
M ≡mem N implies (νn)M ≡mem (νn)N.

Proposition 3.7. Structurally congruent ambients are translated into structurally
congruent membrane systems; moreover, structurally congruent translated mem-
brane systems correspond to structurally congruent ambients:

A≡amb B iff T (A)≡mem T (B).

A

T (A)

T

≡mem T (B)

B

T

·· ≡amb ··

and

A

T (A)

T

·· ≡mem ·· T (B)

B

T

≡amb
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Proof. We prove that if A≡amb B then T (A)≡mem T (B).
If A = A1 | A2 and A ≡amb B, then B = A2 | A1. Through T are obtained

T (A) = dlock T1(A1) T1(A2) and T (B) = dlock T (A2) T (A1). From the defi-
nition of ≡mem it results that T (A)≡mem T (B).

A1 | A2

dlock T1(A1) T1(A2)

T

·· ≡mem ·· dlock T1(A2) T1(A1)

A2 | A1

T

≡amb

If A = A1 | (A2 | A3) and A ≡amb B, then B = (A1 | A2) | A3. Through T are ob-
tained T (A)= dlock T1(A1) (T1(A2) T1(A3)) and T (B)= dlock(T1(A1)T1(A2))
T1(A3). From the definition of ≡mem it results that T (A)≡mem T (B).

A1 | (A2 | A3)

dlock T1(A1) (T1(A2) T1(A3))

T

·· ≡mem ·· dlock(T1(A1) T1(A2)) T1(A3)

(A1 | A2) | A3

T

≡amb

If A = A1 | 0 and A ≡amb B, then B = A1. Through T are obtained T (A) =
dlock T1(A1) λ and T (B) = dlock T1(A1). From the definition of ≡mem it results
that T (A)≡mem T (B).

A1 | 0

dlock T1(A1) λ

T

·· ≡mem ·· dlock T1(A1)

A1

T

≡amb

If A = (νn)(νm)A1 and A ≡amb B, then B = (νm)(νn)A1. Through T are ob-
tained T (A) = dlock(νn)(νm)T1(A1) and T (B) = dlock(νm)(νn) T1(A1). From
the definition of ≡mem it results that T (A)≡mem T (B).

(νn)(νm)A1

dlock(νn)(νm)T1(A1)

T

·· ≡mem ·· dlock(νm)(νn)T1(A1)

(νm)(νn)A1

T

≡amb

If A = (νn)A1, n �∈ f n(A1) and A ≡amb B, then B = (νm)A1{m/n}. Through T
are obtained T (A) = dlock(νn)T1(A1) and T (B) = dlock(νm)T1(A1){m/n}.
From the definition of ≡mem it results that T (A)≡mem T (B).
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(νn)A1

dlock(νn)T1(A1)

T

·· ≡mem ·· dlock(νm)T1(A1){m/n}

(νm)A1{m/n}

T

≡amb

If A = (νn)(A1 |A2), n �∈ f n(A1) and A≡amb B, then B = A1 | (νn)A2. Through T
are obtained T (A)= dlock(νn)T1(A1)T1(A2) and T (B)= dlockT1(A1)(νn)T1(A2).
From the definition of ≡mem it results that T (A)≡mem T (B).

(νn)(A1 | A2)

dlock(νn) T1(A1)

T

·· ≡mem ·· dlockT1(A1)(νn)T1(A2)

A1 | (νn)A2

T

≡amb

If A = (νn)m[A1], n �= m and A ≡amb B, then B = m[(νn)A1]. Through T are
obtained T (A) = dlock(νn)[T1(A1)]m and T (B) = dlock[(νn)T1(A1)]m. From the
definition of ≡mem it results that T (A)≡mem T (B).

(νn)m[A1])

dlock(νn)[T1(A1)]

T

·· ≡mem ·· dlock[(νn)T1(A1)]m

m[(νn)A1]

T

≡amb

��

Exercise 3.1. Prove the other implication in Proposition 3.7.

In [46] the authors put together the concept of “behaviour” of a biological sys-
tem and the concept of “observer”. “Biological System” represents a mathematical
model of a biological system; such a system evolves by passing from one configu-
ration to another, and producing in this way a “behaviour”. An “Observer” is placed
outside the biological system, and watches its behaviour.

Fig. 3.2 Observer
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Similar to protein observation defined in [79], we introduce a relation called
barbed bisimulation which equates systems if they are indistinguishable under cer-
tain observations. In membrane systems the observer has the possibility of watching
only the top-level membranes at any step of the computation, where the set of top-
level membranes T L is defined as follows:

if M = O, then T L(M) = /0
if M = [ N ]n, then T L(M) = {n};
if M = (νn)N, then T L(M) = T L(N)\{n};
if M = M1 M2, then T L(M) = T L(M1)∪T L(M2).

For the case M = (νn)N we have that T L(M) = T L(N)\{n} because an observer
does not have the power to observe the membranes with restricted names.

From now on, we work with a subclass of M , namely the systems obtained from
the translation of safe ambients. Representing by r one of the rules a), . . . ,k) from
our particular set of developmental rules, we use M

r→ N to denote the transfor-
mation of a membrane system M into a membrane system N by applying a rule r.
Similar to [22] where a structural operational semantics for a particular class of P
systems was defined, we can define the corresponding relation ⇒mem. Considering
two membrane systems M and N with only one object dlock, we say that M⇒mem N
if there is a sequence of rules r1, . . . ,ri such that M

r1→ . . .
ri→ N. The operational

semantics of the membrane systems is defined in terms of the transformation rela-
tion

r→ by the following rules:

(DRule) M
r→ N for each developmental rule a), . . . ,k)

(Res) M
r→ M′

(νn)M r→ (νn)M′ ; (Comp) M
r→ M′

M N
r→ M′ N

;

(Amb) M
r→ M′

[ M ]n
r→ [ M′ ]n

; (Struc) M ≡mem M′, M′ r→ N′ N′ ≡mem N
M

r→ N
.

The key ingredient of barbed bisimulation is the notion of barb. A barb is a pred-
icate which describes the observed elements of a certain structure.

Definition 3.12. A barb ↓mem is defined inductively by the following rules:
M ↓mem n if n ∈ T L(M)
M1 · · ·Mk ↓mem n1 · · ·nk if ni ∈ T L(Mj) 1≤ i, j ≤ k
(νk)M ↓mem n if k �= n

We write M ⇓mem n if either M ↓mem n or M ⇒+
mem M′ and M′ ↓mem n.

Formally, we have:

M ↓mem n
de f
= M ≡mem (νm1) . . .(νmi)[ M1 ]n M2, and n /∈ {m1, . . . ,mi}.

M ⇓mem n
de f
= either M ↓mem n or M ⇒+

mem M′ and M′ ↓mem n.
The following result reflects a relationship between structural congruence and barb
predicates.

Proposition 3.8. Structurally congruent membrane systems have the same top level
membranes. If M ≡mem N, then M ↓mem n iff N ↓mem n, for all n ∈ T L(M,N).
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Proof. M ↓mem n means that M ≡mem (νm1) . . .(νmi)[ M1 ]n M2, where n is a label
different from m1, . . . ,mi. From M ≡mem (νm1) . . .(νmi)[ M1 ]n M2 and M ≡mem N,
we get N ≡mem (νm1) . . .(νmi) [ M1 ]n M2, which means that N ↓mem n. ��

The set of membrane labels ML is defined as follows:
if M = O, then ML(M) = /0;
if M = [ N ]n, then ML(M) = ML(N)∪{n};
if M = (νn)N, then ML(M) = ML(N);
if M = M1 M2, then ML(M) = ML(M1)∪ML(M2).

If a system contains a top level membrane after applying a number of computation
steps, then a structurally congruent membrane system contains the same top level
membrane after applying the same number of computation steps.

Proposition 3.9. If M ≡mem N, then M ⇓mem n iff N ⇓mem n for all n ∈ML(M,N).

Proof. We prove only the first implication, the other being treated similarly by
switching M and N.

If M ⇓mem n, then either M ↓mem n or M ⇒+
mem M′ and M′ ↓mem n. The first case

was studied in the previous proposition, so only the second case is presented. If
M ⇒+

mem M′ and M ≡mem N, then exists N′ with N ⇒+
mem N′ and M′ ≡mem N′.

From M′ ≡mem N′ and M′ ↓mem n we have that N′ ↓mem n, which together with
N ⇒+

mem N′ implies that N ⇓mem n. ��

Exercise 3.2. Prove the other implication from Proposition 3.9.

Proposition 3.10. An ambient contains a top ambient labelled by n if and only if the
translated membrane system contains a top level membrane labelled by n.

Formally, A ↓amb n iff T (A) ↓mem n for all n ∈ T L(T (A)).

Proof. We prove only the first implication, the other being treated similarly.
If A ↓amb n, then we have A1, A2 such that A = (νm1) . . .(νmi)n[ A1 ] | A2, where

n /∈ {m1, . . . ,mi}. From A = (νm1) . . .(νmi)n[ A1 ] | A2 and the definition of the
translation function we have that T (A) = (νm1) . . .(νmi)dlock [ T1(A1) ]n T1(A2),
which means that T (A) ↓mem n. ��

Exercise 3.3. Prove the other implication from Proposition 3.10.

Proposition 3.11. An ambient eventually contains a top ambient n if and only if the
translated membrane system, after applying the same number of steps, eventually
contains a top level membrane n.

Formally, A ⇓amb n iff T (A) ⇓mem n for all n ∈ML(T (A)).

Proof. We prove only the first implication, the other being treated similarly.
If A ⇓amb n, then either A ↓amb n or A ⇒+

amb B and B ↓amb n. The first case was
studied in the previous proposition, so only the second case is presented. If A⇒+

amb B
then T (A)⇒+

mem T (B). From B ↓amb n then according to the previous proposition
we have that T (B) ↓mem n. From T (B) ↓mem n and T (A)⇒+

mem T (B), we get that
T (A) ⇓mem n. ��
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We consider that two membrane configurations are similar if they behave in the
same way when they are placed in the same (arbitrary) context. We define a contex-
tual bisimulation as in [109].

Considering a pair (M;N) of membrane systems, we construct all the possible
context pairs (Cmem(M);Cmem(N)) using the following recursive definition:

(Cmem(M);Cmem(N)) = (M;N) | ([ Cmem(M) ]n; [ Cmem(N) ]n) |
((νn)Cmem(M);(νn)Cmem(N)) | (Cmem(M) M′;Cmem(N) M′) |

(M′ Cmem(M);M′ Cmem(N)).
We define a contextual equivalence �mem over membrane systems by

M �mem N
de f
= for all n and for all the pairs (Cmem(M);Cmem(N)),

Cmem(M) ⇓mem n iff Cmem(N) ⇓mem n.

Proposition 3.12. If M ≡mem N then M �mem N.

Proof. Consider an arbitrary pair (Cmem(M);Cmem(N)), and a name n such that
Cmem(M)⇓mem n. We show that Cmem(N)⇓mem n. Cmem(M)≡mem Cmem(N) is proved
by induction on the size of Cmem(M) and Cmem(N). According to Proposition 3.9 we
have that Cmem(M) ⇓mem n implies Cmem(N) ⇓mem n; the other implication is proved
by switching M and N. ��

Proposition 3.13. If T1(A)�mem T1(B) then A�amb B.

A

T1(A)

T1

�mem T1(B)

B

T1

·· �amb ··

Proof. T1(A) �mem T1(B) means that for all n and for all pairs (Cmem(T1(A));
Cmem(T1(B))) we have that Cmem(T1(A)) ⇓mem n iff Cmem(T1(B)) ⇓mem n. For all
the contexts, the pair (Camb(A);Camb(B)) is translated into a pair (T (Camb(A));
T (Camb(B))). By applying the translation function in the second pair, we obtain the
pair (Cmem(T1(A));Cmem(T1(B))), where Cmem corresponds to Camb by translation.

We have Cmem(T1(A)) ⇓mem n⇔T (Camb(A)) ⇓mem n
Prop.3.11⇔ Camb(A) ⇓amb n.

Similarly Cmem(T1(B)) ⇓mem n⇔T (Camb(B)) ⇓mem n
Prop.3.11⇔ Camb(B) ⇓amb n.

It follows that Camb(A) ⇓amb n⇔ Camb(B) ⇓amb n which implies A�amb B. ��

Remark 3.4. A�amb B does not necessarily imply that T1(A)�mem T1(B), because
the translated contexts from mobile ambients do not represent all the contexts from
membrane systems (the set of contexts in membrane systems is larger than the
set of translated contexts). A �amb B implies that for all n ∈ ML(T (A | B)) and
for all Camb we have Camb(A) ⇓amb n ⇔ Camb(B) ⇓amb n. According to Proposi-
tion 3.11, we have T (Camb(A)) ⇓mem n ⇔ T (Camb(B)) ⇓mem n. We should check
that Cmem(T1(A)) ⇓mem n ⇔ Cmem(T1(B)) ⇓mem n for all the contexts (not only for
a particular set) in order to have T1(A) �mem T1(B), and in general this cannot be
done.
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We define deadlock for a membrane system. Deadlock is a predicate

deadlockmem(M) =
{

true if M ∈Dmem

false if M /∈Dmem,

where Dmem is a set of membrane systems in which, after introducing all the possible
objects dlock by applying rules of form h), none of the sequences of rules j),a)
or j),d) or j), f ) can be applied.

The next result relates the two notions of deadlock (in ambients and in membrane
systems) through the defined translation function.

Proposition 3.14. A ∈Damb iff T (A) ∈Dmem.
Furthermore deadlockamb(A) = deadlockmem(T (A)).

Proof. T (A) ∈ Dmem means that after applying all the possible rules of type h),
none of the rules of type a), d) or f ) can be applied. This is equivalent to the fact
that no object corresponding to a translated capability is consumed, and from the
definition of the object dlock this means that the translated ambient is a deadlock,
so A ∈Damb.

We demonstrate the other implication by checking all the rules from the definition
of Damb, and we proceed using structural induction.

If A = 0 then T (A) = dlock. No rule of the type h), a), d) or f ) can be applied
which means that T (A) ∈Dmem.

If A = cap n.A1 then T (A) = dlock cap n [ T1(A1) ]cap n. Note that no rule of
the type h), a), d) or f ) can be applied which means that T (A) ∈Dmem.

If A = n[ A1 ], A1 ∈ Damb, and TA(A1) = /0 then we have A1 = A′1 | . . . | A′k
where each A′i = cap ni.A′′i , f or all i ∈ {1, . . . ,k}. This means that T (A) =
dlock [ cap n1[ T1(A′′1) ]cap n1 . . .cap nk[ T1(A′′k ) ]cap nk ]n. Only one rule of type h)
can be applied; in the resulting configuration we cannot apply a rule of type a), d)
or f ), which means that T (A) ∈Dmem.

If A = n[ A1 ], A1 ∈ Damb, TA(A1) �= /0, open m | A1 ⇒amb A′′m together with
out n /∈ TC(A′′m), for all m ∈ TA(A1) then we have that A1 = A′1 | . . . | A′k, where
each A′i = cap ni.A′′i or A′i = ni[ A′′i ] for all i ∈ {1, . . . ,k}, and it results that T (A) =
dlock [cap ni1 [T1(A′′i1)]cap ni1

. . .cap nis [T1(A′′is)]cap nis
[T1(A′′j1)]n j1

. . . [T1(A′′jt )]n jt
]n.

After applying all the possible rules of type h), and using the fact that the membrane
systems T1(A′′j1) . . .T1(A′′jt ) do not contain the object out n and T1(A1) ∈Dmem, in
the resulting configuration we cannot apply a rule of type a), d) or f ), which means
that T (A) ∈Dmem.

If A = A1 | A2, A1,A2 ∈ Damb, open m /∈ TC(Ai), open k | Ai ⇒amb A′′i ,
in m /∈ TC(A′′i ) for all k ∈ TA(Ai), for all m ∈ TA(A j), i �= j, i, j = 1,2 then
we have that A = A′1 | . . . | A′k, where each A′i = cap ni.A′′i or A′i = ni[ A′′i ] for
all i ∈ {1, . . . ,k}, and it results that T (A) = dlock cap ni1 [T1(A′′i1)]cap ni1

. . .

cap nis [T1(A′′is)]cap nis
[T1(A′′j1)]n j1

. . . [T1(A′′jt )]n jt
. After applying all possible rules

of type h), using the fact that the membrane system Ta(A′′jd ), d = {1, . . . , t}, does
not contain objects in n jc , c = {1, . . . , t}, c �= d, and if cap nic= open nic then nic �=
n jd for all d ∈ {1 . . .t}, and Ti(Ai) ∈ Dmem, i = 1,2, in the resulting configuration
we cannot apply a rule of type a), d) or f ), which means that T (A) ∈Dmem. ��
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3.3.4 Operational Correspondence

Proposition 3.15. If A and B are two ambients and M is a membrane system such
that A⇒amb B and M = T (A), then there exists a chain of transitions M

r1→ . . .
rk→N

such that r1, . . . ,rk are developmental rules, and N = T (B).

A

M

T

r1��� . . .
rk��� N

B

T

amb

Proof. Since A ⇒amb B, then one of the requirements In, Out or Open is fulfilled
for ambients A′ and B′ which are included in A and B respectively. We treat all the
possible cases:

1. A′ = n[ in m ] | m[ in m ] and B′ = m[ n[ ] ], where n is an ambient which
contains only the capability in m. Then according to the definition of the translation
function T , M contains the membrane structure

[ in m [ ]in m ]n [ in m [ ]in m ]m,
and applying some rules of form h) we obtain the following structure:

[ in m dlock [ ]in m ]n [ in m [ ]in m ]m.
Using the rules

r1 : [ dlock ]n → [ dlock one ]n
r2 : [ in m dlock one ]n [ in m ]m → [ in∗m in∗m dlock ]n [in∗m]m
r3 : in∗m [ ]in m → [ δ ]in m

r4 : in∗m [ ]in m → [ δ ]in m
r5 : [in∗m]n[ ]m → [[ ]n]m,

and some rules of the form i) there exists the following sequence of transitions

M
k)
→∗ M1

r1→ . . .M5
r5→M6

i)
→∗ N, where M1, . . . ,M6 are intermediary configurations,

and the membrane structure N contains the membrane structure [ [ ]n ]m. Once the
objects dlock and one are created near object in m, these transitions are the only
deterministic steps which can be performed. We can notice that T1(B′) = [ [ ]n ]m.
Hence, according to the definition of translation function T and transition rela-
tion

r→, we reach the conclusion that the membrane structure M admits the required
sequence of transitions leading to the membrane structure N, and T (B) = N.

2. A′ = m[ out m n[ out m ] ] and B′ = m[ ] n[ ], where n is an ambient which
contains only the capability out m. Then according to the definition of the translation
function T , M contains the membrane structure

[ out m [ ]out m[ out m [ ]out m]n ]m,
and applying some rules of form h) we obtain the following structure:

[ out m [ ]out m[ dlock out m [ ]out m]n ]m.
Using the rules

r1 : [ dlock ]n → [ dlock one ]n
r2 : [ out m [ out m dlock one]n ]m → [ out∗m [ out∗m out∗m]n]m
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r3 : out∗m [ ]out m → [ δ ]out m

r4 : out∗m [ ]out m → [ δ ]out m
r5 : [ [ out∗m ]n ]m → [ ]m [ ]n,

and some rules of the form i) there exists the following sequence of transitions

M
k)
→∗ M1

r1→ . . .M5
r5→M6

i)
→∗ N, where M1, . . . ,M6 are intermediary configurations,

and the membrane structure N contains the membrane structure [ ]m [ ]n. Once the
objects dlock and one are created near object out m, these transitions are the only
steps which can be performed. We can notice that T1(B′) = [ ]m[ ]n. Hence, ac-
cording to the definition of translation function T and transition relation

r→, we
reach the conclusion that the membrane structure M admits the required sequence
of transitions leading to the membrane structure N, and T (B) = N.

3. A′ = m[ n[ A1 open n ] open n ] and B′ = m[ A1 ], where n is an ambient con-
taining the ambient structure A1. Then according to the definition of the translation
function T , M contains the membrane structure

[ [ T1(A1) open n [ ]open n ]n open n [ ]open n ]m,
and applying some rules of form h) we obtain the following structure:

[ [ T1(A1) open n [ ]open n ]n dlock open n [ ]open n ]m
Using the rules

r1 : [ dlock ]m → [ dlock one ]m
r2 : [open n]n open n dlock one→ [ δ ]n open∗n open∗n dlock
r3 : open∗n [ ]open n → [ δ ]open n

r4 : open∗n [ ]open n → [ δ ]open n

and some rules of the form i) there exists the following sequence of transitions

M
k)
→∗ M1

r1→ . . .M4
r4→M5

i)
→∗ N, where M1, . . . ,M5 are intermediary configurations,

and the membrane structure N contains the membrane structure [ T1(A1) ]m. Once
the objects dlock and one are created near object open m, these transitions are the
only steps which can be performed. We can notice that T1(B′) = [ T1(A1) ]m. Hence,
according to the definition of translation function T and transition relation

r→, we
reach the conclusion that the membrane structure M admits the required sequence
of transitions leading to the membrane structure N, and T (B) = N.

4. A′ = n[ in m . . .] | m[ in m ] and B′ = m[ n[ ] ], where n is an ambient which
contains the capability in m and another capabilities or ambients. We treat only the
case with A′ = n[ in m t[ ] ] | m[ in m ] and B′ = m[ n[ t[ ] ] ], where t is an empty
ambient and give some ideas on how to treat the cases with a more nested structure
for n. Then according to the definition of the translation function T , M contains the
membrane structure

[ in m [ ]in m [ ]t ]n [ in m [ ]in m]m,
and applying some rules of form h) we obtain the following structure:

[ in m dlock [ ]in m [ ]t ]n [ in m [ ]in m]m.
Using the rules

r1 : [ dlock ]n → [ dlock one ]n
r2 : [ in m dlock one ]n [ in m ]m → [ in∗m in∗m dlock ]n [ in∗m ]m
r3 : in∗m [ ]in m → [ δ ]in m
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r4 : in∗m [ ]in m → [ δ ]in m
r5 : [ in∗m [ ]t ]n → [ in∗m [ in∗m out∗n in∗n ]t ]n
r6 : [ [ out∗n ]t ]n → [ ]n [ ]t
r7 : [ in∗m ]n [ ]m → [ [ ]n ]m
r8 : [ in∗m ]t [ ]m → [ [ ]t ]m
r9 : [ in∗n ]t [ ]n → [ [ ]t ]n,

and some rules of the form i) there exists the following sequence of transitions

M
k)
→∗ M1

r1→ . . .M9
r9→ M10

i)
→∗ N, where M1, . . . ,M10 are intermediary configura-

tions, and the membrane structure N contains the membrane structure [ [ [ ]t ]n ]m.
Once the objects dlock and one are created near object in m, these transitions are the
only steps which can be performed. We can notice that T1(B′) = [ [ [ ]t ]n ]m. Hence,
according to the definition of translation function T and transition relation

r→, we
reach the conclusion that the membrane structure M admits the required sequence
of transitions leading to the membrane structure N, and T (B) = N.

If the number of membranes nested in the ambient n is more than one or we have
more capabilities, the number of rules applied increases, but the result is the same:
the membrane n is transformed into an elementary membrane, it is introduced in m,
where it regains the same nested structure, all this process being controlled by the
objects created by the sequence of rules applied. The process stops when all the star
objects are consumed and there is only one dlock object in the membrane system.

5. A′ = m[ n[ out m . . .] out m ] and B′ = m[ ] n[ ], where n is an ambient which
contains the capability out m and other capabilities or ambients. We treat only the
case with A′ = m[ n[ out m t[ ] out m ]] | m[ ] and B′ = n[ t[ ] ] m[ ], where t is an
empty ambient and give some ideas on how to treat the cases with a more nested
structure for n. Then according to the definition of the translation function T , M
contains the membrane structure

[ [ out m [ ]out m [ ]t ]n out m [ ]out m ]m,
and applying some rules of form h) we obtain the following structure:

[ [ dlock out m [ ]out m [ ]t ]n out m [ ]out m ]m.
Using the rules

r1 : [ dlock ]m → [ dlock one ]m
r2 : [ [ out m dlock one ]n out m ]m → [ [ out∗m out∗m dlock ]n out∗m ]m
r3 : out∗m [ ]out m → [ δ ]out m

r4 : out∗m [ ]out m → [ δ ]out m
r5 : [ out∗m [ ]t ]n → [ out∗m [ out∗m out∗n in∗n ]t ]n
r6 : [ [ out∗n ]t ]n → [ ]n [ ]t
r7 : [ [ out∗m ]n ]m → [ ]n [ ]m
r8 : [ [ out∗m ]t ]m → [ ]t [ ]m
r9 : [ in∗n ]t [ ]n → [ [ ]t ]n,

and some rules of the form i) there exists the following sequence of transitions

M
k)
→∗ M1

r1→ . . .M9
r9→ M10

i)
→∗ N, where M1, . . . ,M10 are intermediary configura-

tions, and the membrane structure N contains the membrane structure [ ]m [ [ ]t ]n.
Once the objects dlock and one are created near object out m, these transitions are
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the only steps which can be performed. We can notice that T1(B′) = [ ]m [ [ ]t ]n.
Hence, according to the definition of translation function T and transition relation
r→, we reach the conclusion that the membrane structure M admits the required

sequence of transitions leading to the membrane structure N, and T (B) = N.
If the number of membranes nested in the ambient n is more than one or we have

more capabilities, the number of rules applied increases, but the result is the same:
the membrane n is transformed into an elementary membrane, it is extracted from
m, then it regains the same nested structure, all this process being controlled by the
objects created by the sequence of rules applied. The process stops when all the star
objects are consumed. ��

Proposition 3.16. Let M and N be two membrane systems with only one dlock ob-
ject, and an ambient A such that M = T (A). If there is a sequence of transitions

M
r1→ . . .

rk→ N, then there exists an ambient B with A ⇒∗
amb B and N = T (B). The

number of pairs of non-star objects consumed in membrane systems is equal to the
number of pairs of capabilities consumed in ambients.

A

M

T

r1→ . . .
rk→ N

B

T

amb
∗

Proof. We proceed by structural induction. Since M does not contain any star object,
the first rule which consumes a translated capability object has one of the following
forms:

• [ in m dlock one ]n [in m]m → [ in∗m in∗m dlock ]n [ in∗m ]m,
• [ [ out m dlock one ]n out m ]m → [ [ out∗m out∗m dlock ]n out∗m ]m,
• [ open m ]mopen m dlock one→ [ δ ]m dlock open∗m open∗m.

We treat all the possible cases:
1. If the first rule applied is

[ in m dlock one ]n [in m]m → [ in∗m in∗m dlock ]n [ in∗m ]m
where the membrane n contains only the capability object in m and the correspond-
ing membrane labelled in m, then M contains the membrane structure

[ in m [ ]in m ]n [ in m [ ]in m ]m.
According to the definition of T , M can be written as M1 M′ or M2[ M′ ], where
M′ = [ in m [ ]in m ]n [ in m [ ]in m ]m and M2 represents a membrane structure in
which M′ is placed inside a nested structure of translated ambients. If A is a mobile
ambient encoded by M = M1 M′, then according to the definition of T it contains
two ambients A′ = n[ in m ] | m[ in m ] and A1 such that A = A1 | A′, T1(A′) = M′,
and T1(A1) = M1. If A is a mobile ambient encoded by M = M2[ M′ ], then according
to the definition of T it contains two ambients A′ = n[ in m ] | m[ in m ] and A2 such
that A = A2[ A′ ], T1(A′) = M′, and T1(A2) = M2.

The application of the rule defined above to the membrane system M changes
only the membrane system M′. The newly created objects in∗m, in∗m and in∗m
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control the moving of membrane n into membrane m, and are consumed by the
following rules:

• in∗m [ ]in m → [ δ ]in m

• in∗m [ ]in m → [ δ ]in m
• [ in∗m ]n [ ]m → [ [ ]n ]m.

After the application of these rules, M′ evolves to N′ = [ [ ]n ]m. The inductive
hypothesis expresses that N′ encodes an ambient B′. After obtaining N′, N has the
structure N = M1 N′ if M = M1 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M2[ N′ ] if M = M2[ M′ ] and it encodes the mobile am-
bient B = A2[B′]. The transition from M′ to N′ represents also the transition from M
to N.

It should be noticed that by consuming the capability in m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

2. If the first rule applied is
[ in m dlock one ]n [in m]m → [ in∗m in∗m dlock ]n [ in∗m ]m

where the membrane n contains the object in m, the corresponding membrane la-
belled in m and another nested membrane [ ]t , then M contains the membrane struc-
ture

[ in m [ ]in m [ ]t ]n [ in m [ ]in m ]m.
The cases in which the ambient n contains more capabilities or/and more nested

ambients are treated using structural induction on the membrane structure. Ac-
cording to the definition of T , M can be written as M1 M′ or M2[M′], where
M′ = [ in m [ ]in m [ ]t ]n [ in m [ ]in m ]m and M2 represents a membrane structure in
which M′ is placed inside a nested structure of translated ambients. If A is a mobile
ambient encoded by M = M1 M′, then according to the definition of T it contains
two ambients A′ = n[ in m t[ ] ] | m[ in m ] and A1 such that A = A1 |A′ , T1(A′) = M′,
and T1(A1) = M1. If A is a mobile ambient encoded by M = M2[ M′ ], then accord-
ing to the definition of T it contains two ambients A′ = n[ in m t[ ] ] | m[ in m ]
and A2 such that A = A2[ A′ ], T1(A′) = M′, and T1(A2) = M2.

The application of the rule defined above to the membrane system M changes
only the membrane system M′. The newly created objects in∗m, in∗m and in∗m
control the moving of membrane n into membrane m, and are consumed by the
following rules:

• in∗m [ ]in m → [ δ ]in m

• in∗m [ ]in m → [ δ ]in m
• [ in∗m [ ]t ]n [ ]m → [ in∗m [ in∗m in∗n out∗n ]t ]n [ ]m
• [ [ out∗n ]t ]n → [ ]n [ ]t
• [ in∗m ]n [ ]m → [ [ ]n ]m
• [ in∗m ]t [ ]m → [ [ ]t ]m
• [ in∗n ]t [ ]n → [ [ ]t ]n

After the application of these rules, M′ evolves to N′ = [ [ [ ]t ]n ]m. The inductive
hypothesis expresses that N′ encodes an ambient B′. After obtaining N′, N has the
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structure N = M1 N′ if M = M1 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M2[ N′ ] if M = M2[ M′ ] and it encodes the mobile am-
bient B = A2[B′]. The transition from M′ to N′ represents also the transition from M
to N.

It should be noticed that by consuming the capability in m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

3. If the first rule applied is
[ [ out m dlock one ]n out m ]m → [ [ out∗m out∗m dlock ]n out∗m ]m

where the membrane n contains only the object out m and the corresponding mem-
brane labelled out m, then M contains the membrane structure

[ [ out m [ ]out m]n out m [ ]out m ]m.
According to the definition of T , M can be written as M1 M′ or M2[ M′ ], where

M′ = [ [ out m [ ]out m]n out m [ ]out m ]m and M2 represents a membrane structure in
which M′ is placed inside a nested structure of translated ambients. If A is a mobile
ambient encoded by M = M1 M′, then according to the definition of T it contains
two ambients A′ = m[ n[ out m ] out m ] and A1 such that A = A1 | A′, T1(A′) = M′,
and T1(A1) = M1. If A is a mobile ambient encoded by M = M2[ M′ ], then according
to the definition of T it contains two ambients A′ = m[ n[ out m ] out m ] and A2

such that A = A2[ A′ ], T1(A′) = M′, and T1(A2) = M2.
The application of the rule defined above to the membrane system M changes

only the membrane system M′. The newly created objects in∗m, in∗m and in∗m are
consumed by the following rules:

• out∗m [ ]out m → [ δ ]out m

• out∗m [ ]out m → [ δ ]out m
• [ [ out∗m ]n ]m → [ ]n [ ]m.

After the application of these rules, M′ evolves to N′ = [ ]n [ ]m. The inductive
hypothesis expresses that N′ encodes an ambient B′. After obtaining N′, N has the
structure N = M1 N′ if M = M1 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M2[ N′ ] if M = M2[ M′ ] and it encodes the mobile am-
bient B = A2[B′]. The transition from M′ to N′ represents also the transition from M
to N.

It should be noticed that by consuming the capability out m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

4. If the first rule applied is
[ [ out m dlock one ]n out m ]m → [ [ out∗m out∗m dlock ]n out∗m ]m,

where the membrane n contains only the object out m, the corresponding membrane
labelled out m and another nested membrane [ ]t , then M contains the membrane
structure

[ [ out m [ ]out m ]n out m [ ]out m]m.
The cases in which the ambient n contains more capabilities or/and more nested

ambients are treated using structural induction on the membrane structure. Ac-
cording to the definition of T , M can be written as M1 M′ or M2[ M′ ], where
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M′ = [ [ out m [ ]out m ]n out m [ ]out m]m and M2 represents a membrane structure in
which M′ is placed inside a nested structure of translated ambients. If A is a mobile
ambient encoded by M = M1 M′, then according to the definition of T it contains
two ambients A′ = m[ n[ out m ] out m ] and A1 such that A = A1 | A′, T1(A′) = M′,
and T1(A1) = M1. If A is a mobile ambient encoded by M = M2[ M′ ], then accord-
ing to the definition of T it contains two ambients A′ = m[ n[ out m ] out m ] and A2

such that A = A2[ A′ ], T1(A′) = M′, and T1(A2) = M2.
The application of the rule defined above to the membrane system M changes

only the membrane system M′. The newly created objects in∗m, in∗m and in∗m
determine the application of the following rules:

• out∗m [ ]out m → [ δ ]out m

• out∗m [ ]out m → [ δ ]out m
• [ out∗m [ ]t ]n → [ out∗m [ out∗m out∗n in∗n ]t ]n
• [ [ out∗n ]t ]n → [ ]n [ ]t
• [ [ out∗m ]n ]m → [ ]n [ ]m
• [ [ out∗m ]t ]m → [ ]t [ ]m
• [ in∗n ]t [ ]n → [ [ ]t ]n

After the application of these rules, M′ evolves to N′ = [ [ ]t ]n [ ]m. The inductive
hypothesis expresses that N′ encodes an ambient B′. After obtaining N′, N has the
structure N = M1 N′ if M = M1 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M2[ N′ ] if M = M2[ M′ ] and it encodes the mobile am-
bient B = A2[B′]. The transition from M′ to N′ represents also the transition from M
to N.

It should be noticed that by consuming the capability out m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

5. If the first rule applied is
[ open m ]mopen m dlock one→ [ δ ]m dlock open∗m open∗m,

where the membrane m contains the object open m, the corresponding membrane la-
belled open m and the membrane structure M1, whereas membrane open m contains
the membrane structure M2, then M contains the membrane structure

[ open m [ ]open m M1]m open m [ M2 ]open m.
According to the definition of T , M can be written as M3 M′ or M4[ M′ ], where

M′ = [ open m [ ]open m M1]m open m [ M2 ]open m and M4 represents a membrane
structure in which M′ is placed inside a nested structure of translated ambients. We
denote with the word path a path of capabilities encoded in the membrane struc-
ture M2 with length greater or equal to zero and with the word nest the mobile
structure contained in membrane m; we have T1(nest) = M3 and T1(path) = M4.
If A is a mobile ambient encoded by M = M3 M′, then according to the definition
of T it contains two ambients A′ = m[ nest open m ] | open m.path and A3 such
that A = A3 | A′, T1(A′) = M′, and T1(A3) = M3. If A is a mobile ambient encoded
by M = M4[ M′ ], then according to the definition of T it contains two ambients
A′ = m[ nest open m ] | open m.path and A4 such that A = A4[ A′ ], T1(A′) = M′,
and T1(A4) = M4.
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The application of the rule defined above to the membrane system M changes
only the membrane system M′. The newly created objects open∗m and open∗m are
consumed by the following rules:

• open∗m [ ]open m → [ δ ]open m

• open∗m [ ]open m → [ δ ]open m

After the application of these rules, M′ evolves to N′ = M1 M2. The inductive
hypothesis expresses that N′ encodes an ambient B′. After obtaining N′, N has the
structure N = M3 N′ if M = M3 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M4[ N′ ] if M = M4[ M′ ] and it encodes the mobile am-
bient B = A4[B′]. The transition from M′ to N′ represents also the transition from M
to N.

It should be noticed that by consuming the capability open m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

6. If the first rule applied is
[ in m dlock one ]n [in m]m → [ in∗m in∗m dlock ]n [ in∗m ]m

where the membrane n contains the object in m, the corresponding membrane la-
belled in m and another nested membrane structure [. . . [ ]tn+1 . . .]t1 , then M contains
the membrane structure

[ in m [ ]in m [. . . [ ]tn+1 . . .]t1 ]n [ in m [ ]in m ]m.
We suppose that for membrane n with depth less than or equal to s the proposi-

tion is true. We prove the result for depth s+1. According to the definition of T , M
can be written as M1 M′ or M2[ M′ ], where M′ = [ in m [ ]in m [. . . [ ]tn+1 . . .]t1 ]n
[ in m [ ]in m ]m and M2 represents a membrane structure in which M′ is placed in-
side a nested structure of translated ambients. If A is a mobile ambient encoded
by M = M1 M′, then according to the definition of T it contains two ambients
A′ = n[ in m t1[. . .ts+1[ ] ] ] | m[ ] and A1 such that A = A1 | A′, T1(A′) = M′, and
T1(A1) = M1. If A is a mobile ambient encoded by M = M2[ M′ ], then according
to the definition of T it contains two ambients A′ = n[ in m t1[. . .ts+1[ ] ] ] | m[ ]
and A2 such that A = A2[ A′ ], T1(A′) = M′, and T1(A2) = M2.

The application of the rule defined above to the membrane system M changes
only the membrane system M′. The newly created objects in∗m, in∗m and in∗m
determine the application of other rules. After applying all the rules such that the
object in m is consumed and no star objects exist in the membrane system, the only
membrane structures modified by the application of these rules is M′ which evolves
to N′ = [ [ [ . . . [ ]ts+1 ]t1 ]n ]m and M1 or M2 remains the same. We know, from the
inductive hypothesis, that an ambient B′′ = m[ n[ t1[. . .ts[ ] ] ] ] is encoded into the
structure N′′ = [ [ [. . . [ ]ts ]t1 ]n ]m, and that B′′′ = ts+1[ ] is encoded into the structure
N′′′ = [ ]ts+1 . According to the definition of T there exists an ambient B′ with the
structure m[ n[ t1[. . .ts+1[ ] ] ] ] such that T1(B′) = N′. After obtaining N′, N has the
structure N = M1 N′ if M = M1 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M2[ N′ ] if M = M2[ M′ ] and it encodes the mobile
ambient B = A2[ B′ ]. The transition from M′ to N′ represents also the transition
from M to N.
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It should be noticed that by consuming the capability in m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

7. If the first rule applied is
[ [ out m dlock one ]n out m ]m → [ [ out∗m out∗m dlock ]n out∗m ]m,

where the membrane n contains only the object out m, the corresponding membrane
labelled out m and another nested membrane [. . . [ ]ts+1 . . .]t1 , then M contains the
membrane structure

[ [ out m [ ]out m [. . . [ ]ts+1 . . .]t1 ]n out m [ ]out m]m.
We suppose that for membrane n with the depth less than or equal to s the propo-

sition is true. We prove the result for depth s+1. According to the definition of T , M
can be written as M1 M′ or M2[ M′ ], where M′ = [ [ out m [ ]out m [. . . [ ]ts+1 . . .]t1 ]n
out m [ ]out m]m and M2 represents a membrane structure in which M′ is placed in-
side a nested structure of translated ambients. If A is a mobile ambient encoded
by M = M1 M′, then according to the definition of T it contains two ambients
A′ = m[ n[ out m t1[. . .ts+1[ ] ] ] ] and A1 such that A = A1 | A′, T1(A′) = M′, and
T1(A1) = M1. If A is a mobile ambient encoded by M = M2[M′], then according to
the definition of T it contains two ambients A′ = m[ n[ out m t1[. . .ts+1[ ] ] ] ] and A2

such that A = A2[ A′ ], T1(A′) = M′, and T1(A2) = M2.
The application of the rule defined above to the membrane system M changes

only the membrane system M′. The newly created objects out∗m, out∗m and out∗m
determine the application of other rules. After applying all the rules such that the
object out m is consumed and no star objects exist in the membrane system, the only
membrane structures modified by the application of these rules is M′ which evolves
to N′ = [ ]m [ [. . . [ ]ts+1 ]t1 ]n and M1 or M2 remains the same. We know, from the
inductive hypothesis, that an ambient B′′ = m[ ] n[ t[. . .ts[ ] ] ] is encoded into the
structure N′′ = [ ]m [ [. . . [ ]ts ]t1 ]n, and that B′′′ = ts+1[ ] is encoded into the structure
N′′′ = [ ]ts+1 . According to the definition of T there exists an ambient B′ with the
structure m[ ]n[ t[. . .ts+1[ ] ] ] such that T1(B′) = N′. After obtaining N′, N has the
structure N = M1 N′ if M = M1 M′ and it encodes the mobile ambient B = A1 | B′,
or N has the structure N = M2[ N′ ] if M = M2[ M′ ] and it encodes the mobile
ambient B = A2[ B′ ]. The transition from M′ to N′ represents also the transition
from M to N.

It should be noticed that by consuming the capability out m we have A′ ⇒amb B′.
So the transition from M to N with the consumption of only one non-star object is
simulated by the transition of A to B.

All the sequences of rules from all the cases above are determined uniquely by
the star objects and by the priorities imposed. ��

Remark 3.5. If M
r1→ . . .

rk→N, and both M and N contain only one dlock object, then
the number of steps which transform ambient A into ambient B is the number of pairs
of non-star objects consumed during the computation in the membrane evolution.
The order in which the reductions take place in ambients is the order in which the
pairs of non-star objects are consumed in the membrane systems.
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Considering together the previous two propositions, we have in [12] the follow-
ing result.

Theorem 3.4 (Operational correspondence).

1. If A⇒amb B, then T (A)⇒mem T (B).

A

T (A)

T

mem T (B)

B

T

amb

2. If T (A)⇒mem M, then there exists B such that A⇒amb B and M = T (B).

A

T (A)

T

mem M

B

T

amb

3.4 Branes into Mobile Membranes with Objects on Surface

Some work has been done trying to relate membrane systems and brane calculi [35,
37, 47, 105, 106]. Inspired by brane calculi, a model of membrane systems having
objects attached to the membranes has been introduced in [45]. In [31], a class
of membrane systems containing both free floating objects and objects attached to
membranes have been proposed. We are continuing this research line, and simulate
a fragment of brane calculi by using systems of mutual membranes with objects on
surface.

“At the first sight, the role of objects placed on membranes is different in mem-
brane and brane systems: in membrane computing, the focus is on the evolution
of objects themselves, while in brane calculi the objects (“proteins”) mainly control
the evolution of membranes” [129]. By defining an encoding of the PEP fragment of
brane calculi into systems of mutual membranes with objects on surface, we show
that the difference between the two models is not significant. Another difference
regarding the semantics of the two formalisms is expressed in [35]: “whereas brane
calculi are usually equipped with an interleaving, sequential semantics (each com-
putational step consists of the execution of a single instruction), the usual semantics
in membrane computing is based on maximal parallelism (a computational step is
composed of a maximal set of independent interactions).”
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3.4.1 Translation

Definition 3.13. A translation T2 : P →M is given by

T2(P) =

⎧
⎨

⎩

[ ]S (σ) if P = σ( )
[T2(R)]S (σ) if P = σ(R)
T2(Q) T2(R) if P = Q | R

where S : P → A is defined as:

S (σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ if σ = phagon or σ = exon or σ = exon

phagon S(ρ) if σ = phagon(ρ)
pino S(ρ) if σ = pino(ρ)
S (a) S (ρ) if σ = a.ρ
S (τ) S (ρ) if σ = τ | ρ
λ if σ = 0

The rules of systems of mutual membranes with objects on surface are in Table 3.1.

Table 3.1 Pino/Exo/Phago Rules of M2OS

[ ]S(phagon.σ |σ0)[ ]S(phagon(ρ).τ |τ0) →m [[[ ]S(σ |σ0)]S(ρ)]S(τ |τ0)
[[ ]S(exon.σ |σ0)]S(exon.τ |τ0) →m [ ]S(σ |σ0|τ |τ0)
[ ]S(pino(ρ).σ |σ0) →m [[ ]S(ρ)]S(σ |σ0)

3.4.2 Preservation of Properties Through Translation

The next proposition states that two PEP systems which are structurally equivalent
are translated into two systems of mutual membranes with objects on surface which
are structurally equivalent.

Proposition 3.17. If P≡b Q then T2(P)≡m T2(Q).

P

T2(P)

T2

·· ≡m ··T2(Q)

Q

T2

≡b

Proof. We proceed by structural induction.
If P = P1 ◦P2 where P1 and P2 are two brane systems, then from the definition

of ≡b we have that Q = P2 ◦P1. Using the definition of T2 and P = P1 ◦P2 we have
that T2(P) = T2(P1)T2(P2). From Q = P2 ◦P1 and the definition of T2 we have that
T2(Q) = T2(P2)T2(P1). From the definition of ≡m we get T2(P)≡m T2(Q).
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If P = P1 ◦ (P2 ◦P3) where P1, P2 and P3 are three brane systems, then from the
definition of ≡b we have that Q = (P1 ◦P2)◦P3. Using the definition of T2 and P =
P1 ◦ (P2 ◦P3) we have that T2(P) = T2(P1)(T2(P2)T2(P3)). From Q = (P1 ◦P2)◦P3

and the definition of T2 we have that T2(Q) = (T2(P1)T2(P2))T2(P3). From the
definition of ≡m we get T2(P)≡m T2(Q).

Let P = P1 ◦P3 and Q = P2 ◦P3 such that P1 ≡b P2. From the definition of ≡b it
results that P≡b Q. Using the definition of T2 we have that T2(P) = T2(P1)T2(P3)
and T2(Q) = T2(P2)T2(P3). Using the structural induction, from P1 ≡b P2 it results
that T2(P1)≡m T2(P2). From the definition of ≡m we get T2(P)≡m T2(Q).

Let P = ρ(P1) and Q = τ(P2) such that P1 ≡b P2 and ρ ≡b τ . From the definition
of ≡b it results that P ≡b Q. Using the definition of T2 we have that T2(P) =
[T2(P1)]S (ρ) and T2(Q) = [T2(P2)]S (τ). Using the structural induction, from P1 ≡b

P2 it results that T2(P1) ≡m T2(P2) and from ρ ≡b τ it results that S(ρ) ≡m S(τ).
From the definition of ≡m we get T2(P)≡m T2(Q).

In what follows we prove that indeed from ρ ≡b τ it results that S(ρ) ≡m S(τ).
We proceed also by structural induction.

If ρ = ρ1 | ρ2 where ρ1 and ρ2 are two combinations of brane actions, then
from the definition of ≡b we have that τ = ρ2 | ρ1. Using the definition of S and
ρ = ρ1 | ρ2 we have that S (ρ) = S (ρ1)S (ρ2). From τ = ρ2 | ρ1 and the definition
of S we have that there exist v such that S (τ) = S (τ2)S (τ1). From the definition
of ≡m we get S(ρ)≡m S(τ).

If ρ = ρ1 | (ρ2 | ρ3) where ρ1, ρ2 and ρ3 are three combinations of brane actions,
then from the definition of≡b we have that τ = (ρ1 | ρ2) | ρ3. Using the definition of
S and ρ = ρ1 | (ρ2 | ρ3) we have that S (ρ) = S (ρ1)(S (ρ2)S (ρ3)). From τ =
(ρ1 | ρ2) | ρ3 and the definition of S we have that S (τ) = (S (ρ1)S (ρ2))S (ρ3).
From the definition of ≡m we get S(ρ)≡m S(τ).

If ρ = ρ1 | 0 where ρ1 is a combination of brane actions, then from the definition
of ≡b we have that τ = ρ1. Using the definition of S and ρ = ρ1 | 0 we have
that S (ρ) = S (ρ1)λ . From τ = ρ1 and the definition of S we have that S (τ) =
S (τ1). From the definition of ≡m we get S(ρ)≡m S(τ).

Let ρ = ρ1 | ρ3 and τ = ρ2 | ρ3 such that ρ1 ≡b ρ2. From the definition of ≡b it
results that ρ ≡b τ . Using the definition of S we have that S (ρ) = S (ρ1)S (ρ3)
and S (τ) = S (ρ2)S (ρ3). Using the structural induction, from ρ1 ≡b ρ2 it results
that S (ρ1)≡m S (ρ2). From the definition of ≡m we get S(ρ)≡m S(τ).

Let ρ = a.ρ1 and τ = a.ρ2 such that ρ1 ≡b ρ2. From the definition of ≡b it
results that ρ ≡b τ . Using the definition of S we have that S (ρ) = S (a)S (ρ1)
and S (τ) = S (a)S (ρ2). Using the structural induction, from ρ1 ≡b ρ2 it results
that S (ρ1)≡m S (ρ2). From the definition of ≡m we get S(ρ)≡m S(τ).

Proposition 3.18. If T2(P)≡m M then there exists Q such that M = T2(Q).

P

T2(P)

T2

≡m M

Q

T2
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Proof. If P = P1 ◦P2 where P1 and P2 are two brane systems, then from the defini-
tion of T2 we have that T2(P) = T2(P1)T2(P2). From the definition of ≡m we get
T2(P)≡m M, where M = T2(P2)T2(P1). For this M there exists Q with Q = P2 ◦P1

such that M = T2(Q).
If P = P1 ◦ (P2 ◦P3) where P1, P2 and P3 are three brane systems, then from the

definition of T2 we have that T2(P) = T2(P1)(T2(P2)T2(P3)). From the definition
of ≡m we get T2(P) ≡m M, where M = (T2(P1)T2(P2))T2(P3). For this M there
exists Q with Q = (P1 ◦P2)◦P3 such that M = T2(Q).

If P = P1 ◦ P3, where P1 and P3 are two brane systems, then from the defini-
tion of T2 we have that T2(P) = T2(P1)T2(P2). From the definition of ≡m we get
T2(P) ≡m M, where M = T2(P2)T2(P3) for T2(P1) ≡m T2(P2). For this M there
exists Q with Q = P2 ◦P3 such that M = T2(Q).

If P = ρ(P1), where P1 is a brane system and ρ is a combination of brane actions,
then from the definition of T2 we have that T2(P) = [T2(P1)]S (ρ). From the defini-
tion of≡m we get T2(P)≡m M, where M = [T2(P2)]S (τ) for T2(P1)≡b T2(P2) and
S (ρ)≡m S (τ). For this M there exists Q with Q = σ(P2) such that M = T2(Q).

Remark 3.6. In Proposition 3.18 it is possible that P �≡b Q. If P = phagon. exon( ),
then by translation M = T2 = [ ]phagonexon ≡m [ ]exon phagon=N. It is possible to have
Q = exon.phagon( ) or Q = exon | phagon( ) such that N = T2(Q), but P �≡b Q.

Proposition 3.19. If P→b Q then T2(P)→m T2(Q).

P

T2(P)

T2

m T2(Q)

Q

T2

b

Proof. We proceed by structural induction.
If P = pino(ρ).σ | σ0(P1), where P1 is a brane system and pino(ρ).σ | σ0 is a

combination of brane actions, then from the definition of →b we have that Q = σ |
σ0(ρ( ) ◦P1). Using the definition of T2 and P = pino(ρ).σ | σ0(P1) we have that
T2(P) = [T2(P1)]S (pino(ρ).σ |σ0). From Q = σ | σ0(ρ( ) ◦P1) and the definition of
T2 we have that T2(Q) = [[T2(P1)]S (ρ)]S (σ |σ0). From the definition of →m we get
T2(P)→m T2(Q).

If P = exon.τ | τ0(exon.σ | σ0(P1)◦P2), where P1, P2 are two brane systems and
exon.τ | τ0, exon.σ | σ0 are combinations of brane actions, then from the definition
of →b we have that Q = P1 ◦ σ | σ0 | τ | τ0(P2). Using the definition of T2 and
P = exon.τ | τ0(exon.σ | σ0(P1)◦P2) we have that T2(P) = [[T2(P1)]S (exon.σ |σ0)
T2(P2)]S (exon.τ |τ0). From Q = P1 ◦σ | σ0 | τ | τ0(P2) and the definition of T2 we
have that T2(Q) = T2(P1)[T2(P2)]S (σ |σ0|τ |0). From the definition of →m we get
T2(P)→m T2(Q).

If P = phagon.σ | σ0(P1) ◦ phagon(ρ).τ | τ0(P2), where P1, P2 are two brane
systems and phagon.σ | σ0, phagon(ρ).τ | τ0 are combinations of brane actions,
then from the definition of →b we have that Q = τ | τ0(ρ(σ | σ0(P1)) ◦P2). Using
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the definition of T2 and P = phagon.σ | σ0(P1) ◦ phagon(ρ).τ | τ0(Q2) we have
that T2(P) = [T2(P1)]S (phagon.σ |σ0)[T2(P2)]S (phagon(ρ).τ |τ0). From Q = τ | τ0(ρ(σ |
σ0(P1))◦P2) and the definition of T2 we have that T2(Q) = [[[T2(P1)]S (σ |σ0)]S (ρ)
T2(P2)]S (τ |τ0). From the definition of →m we get T2(P)→m T2(Q).

Let P = P1 ◦P3 and Q = P2 ◦P3 such that P1 →b P2. From the definition of →b it
results that P→b Q. Using the definition of T2 we have that T2(P) = T2(P1)T2(P3)
and T2(Q) = T2(P2)T2(P3). Using the structural induction, from P1 →b P2 it results
that T2(P1)→m T2(P2). From the definition of →m we get T2(P)→m T2(Q).

Let P = σ(P1) and Q = σ(P2) such that P1 →b P2. From the definition of →b it
results that P→b Q. Using the definition of T2 we have that T2(P) = [T2(P1)]S (σ)
and T2(Q) = [T2(P2)]S (σ). Using the structural induction, from P1 →b P2 it results
that T2(P1)→m T2(P2). From the definition of →m we get T2(P)→m T2(Q).

Let P→b Q such that P≡b P′, P′ → Q′ and Q≡b Q′. Using the definition of T2

we have that T2(P) = T2(P′) and T2(Q) = T2(Q′). Using the structural induction,
from P1 →b P2 it results that T2(P1)→m T2(P2). From the definition of →m we get
T2(P)→m T2(Q).

Proposition 3.20. If T2(P)→m M then there exists Q such that M = T2(Q).

P

T2(P)

T2

m M

Q

T2

Proof. If P = pino(ρ).σ | σ0(P1), where P1 is a brane system and pino(ρ).σ | σ0 is
a combination of brane actions, then from the definition of T2 we have that T2(P) =
[T2(P1)]S (pino(ρ).σ |σ0). From the definition of→m we get T2(P)→m M, where M =
[[T2(P1)]S (ρ)]S (σ |σ0). For this M there exists Q with Q = σ1(ρ1(P1)) with S(σ1) =
S(σ | σ0) and S(ρ1) = S(ρ) such that M = T2(Q).

If P = exon.τ | τ0(exon.σ | σ0(P1)◦P2), where P1, P2 are two brane systems and
exon.τ | τ0, exon.σ | σ0 are combinations of brane actions, then from the defini-
tion of T2 we have that T2(P) = [[T2(P1)]S (exon.σ |σ0)T2(P2)]S (exon.τ |τ0). From the
definition of →m we get T2(P)→m M, where M = T2(P1)[T2(P2)]S (σ |σ0|τ |0). For
this M there exists Q with Q = P1 ◦σ1(P2) and S(σ1) = S(σ | σ0 | τ | τ0) such that
M = T2(Q).

If P = phagon.σ | σ0(P1)◦ phagon(ρ).τ | τ0(Q2), where P1, P2 are two brane sys-
tems and phagon.σ | σ0, phagon(ρ).τ | τ0 are combinations of brane actions, then
from the definition of T2 we have that T2(P) = [T2(P1)]S (phagon.σ |σ0)
[T2(P2)]S (phagon(ρ).τ |τ0). From the definition of →m we get T2(P) →m M, where
M = [[[T2(P1)]S (σ |σ0)]S (ρ) T2(P2)]S (τ |τ0). For this M there exists Q with Q =
τ1(ρ1(σ1(P1)) ◦P2) and S(τ1) = S(τ | τ0), S(ρ1) = S(ρ), S(σ1) = S(σ | σ0) such
that M = T2(Q).

If P = P1 ◦P3 where P1, P3 are two brane systems, then from the definition of T2

we have T2(P) = T2(P1)T2(P3). From the definition of →m we get T2(P)→m M,
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where M = T2(P2)T2(P3) for T2(P1) →m T2(P2). For this M there exists Q with
Q = P2 ◦P3 such that M = T2(Q).

If P = σ(P1) where P1 is a brane system, then from the definition of T2 we have
T2(P) = [T2(P1)]S (σ). From the definition of →m we get T2(P) →m M, where
M = [T2(P2)]S (σ) for T2(P1)→m T2(P2). For this M there exists Q with Q = σ1(P2)
and S(σ1) = S(σ) such that M = T2(Q).

If P ≡b P′ where P′ is a brane system, then from the definition of T2 we have
that T2(P) = T2(P′). From the definition of →m we get T2(P)→m M, where M =
T2(Q′) for T2(P′) →m T2(Q′). For this M there exists Q with Q ≡b Q′ such that
M = T2(Q).

The next remark is a consequence of the fact that we translate a formalism with
an interleaving semantics into a formalism with a parallel semantics.

Remark 3.7. In Proposition 3.20 it is possible that P �→b Q. Consider the process
P = exon.exon(exon.phagon( )). By translation M = [[ ]exon phagon ]exon exon , such that
M →m [ ]phagonexon . We observe that there exists Q = phagon.exon( ) such that N =
T2(Q), but P �→b Q.

The PEP calculus may be extended as in [40] to contain also molecules inside the
membranes. A new reduction simulates the exchanging of molecules simultaneously
between the interior and exterior of a membrane. In this case the translation can be
easily extended by introducing objects in membranes as in [31] and an antiport
evolution rule in the definition of →m.

3.5 Mobile Membranes with Objects on Surface into Petri Nets

Systems biology is an emerging field which arises from the interaction of biology,
mathematics and computer science. In order to cope with ensembles and quanti-
ties in biology, new formal approaches are required. Biologists increasingly recog-
nize that mathematics and computational methods have become powerful enough
to model the complexity of biological entities and systems. In this sense, “mathe-
matics is biology’s next microscope, only better”[75]. In biology, new ensemble be-
haviours emerge from the interactions of biological elements, and new formalisms
are required to cope with these properties. In this sense, “biology is mathematics’
next physics, only better”[75]. Formal models are used for many purposes, and each
purpose influences the degree of detail. If we provide greater detail, the number
of systems to which our model applies will decrease. Moreover, a formal model
should have three properties, and each of these properties trades off against the
other two [113]: generality (the number of systems and situations to which the
model correctly applies), realism (the degree to which the model mimics the real
world), power and precision (collection of revealed properties, and the accuracy of
the models’ predictions).

In what follows we use two formalisms: mobile membranes (more realism, being
inspired by cell biology) and coloured Petri nets (power and precision provided
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also by complex software tools). A relation can be established between these two
formalisms by providing an encoding of mobile membranes into coloured Petri nets.
By considering the endocytic pathway for low-density lipoprotein degradation, we
show how mobile membranes can be used to model such a biological phenomenon,
while coloured Petri nets can be used to analyze and automatically verify some
behavioural properties of the pathway.

There exist already some formal approaches to describe the endocytic pathway
for low-density lipoprotein (LDL) degradation. In [35] is presented a model of the
LDL degradation pathway in brane calculi and in symport-antiport membrane sys-
tems. Another paper investigating such a pathway is [136], where the LDL degrada-
tion pathway is modelled using bioambients, and then static analysis techniques are
applied. However, none of the previous descriptions of the pathway is translated into
a formalism having a software tool able to automatically check complex behavioural
properties.

Some connections between membrane systems and Petri nets are presented for
the first time in [78] and [137]. In [101, 102], a direct structural relationship between
these two formalisms is established by defining a new class of Petri nets called Petri
nets with localities. This new class of Petri nets has been used to show how max-
imal evolutions from membrane systems are faithfully reflected in the maximally
concurrent step sequence semantics of their corresponding Petri nets with localities.

3.5.1 Coloured Petri Nets

Coloured Petri nets (CPN) represent a graphical language used to describe systems
in which communication, synchronization and resource sharing play an important
role [99]. The CPN model contains places (drawn as ellipses or circles), transitions
(drawn as rectangular boxes), a number of directed arcs connecting places and tran-
sitions, and finally some textual inscriptions located near the places, transitions and
arcs.

The places are used to represent the state of the modelled system, and this state
is given by the number of tokens of all the places. Such a state is called a marking of
the CPN model. By convention, we write the names of the places inside the ellipses.
The names have no formal meaning, but they have a practical importance for the
readability of a CPN model, just like the use of mnemonic names in traditional
programming.

The arc expressions on the input arcs of a transition determine when the transition
is enabled, i.e., activated by a certain marking. A transition is enabled whenever
it is possible to find a binding of the variables that appear in the surrounding arc
expressions of the transition such that the arc expression of each input arc evaluates
to a multiset of tokens that is present in the corresponding input place. When a
transition occurs with a given binding, it removes from each input place the multiset
of tokens to which the corresponding input arc expression evaluates. Analogously, it



3.5 Mobile Membranes with Objects on Surface into Petri Nets 183

adds to each output place the multiset of tokens to which the corresponding output
arc expression evaluates.

Coloured Petri nets also have a mathematical representation with a well defined
syntax and semantics. This formal representation is the framework for the study of
different behavioural properties. We denote by EXPR the set of expressions pro-
vided by the inscription language (which is ML in the case of CPN Tools), and
by Type[e] we denote the type of an expression e ∈ EXPR, i.e., the type of the
values obtained when evaluating e. The set of free variables in an expression e is
denoted Var[e], and the type of a variable x is denoted Type[x]. We denote the set
of variables by X; the set of expressions e ∈ EXPR such that Var[e] ⊆ X is de-
noted by EXPRX . The set of all multisets over S, i.e., the multiset type over S is
denoted SMS. The following definition differs from that presented in [99] in that si-
multaneous parallel arcs from the same place to the same transition are not allowed
(it is enough to have only one arc).

Definition 3.14. A non-hierarchical Coloured Petri Net is a nine tuple
CPN = (P,T,A,Σ ,X ,C,G,E, I), where

1. P is a finite set of places;
2. T is a finite set of transitions T such that P∩T = /0;
3. A⊆ (P×T )∪ (T ×P) is a set of directed arcs;
4. Σ is a finite set of non-empty colour sets;
5. X is a finite set of typed variables such that Type[x] ∈ Σ for all x ∈ X ;
6. C : P→ Σ is a colour set function that assigns a colour set to each place;
7. G : T → EXPRX is a guard function that assigns a guard to each transition t

such that Type[G(t)] = Bool;
8. E : A → EXPRX is an arc expression function that assigns a guard to each arc

a such that Type[E(a)] = C(p)MS, where p is the place connected to the arc a;
9. I : P→ EXPR /0 is an initialization function that assigns an initialization expres-

sion to each place p such that Type[I(p)] = C(p)MS.

A distribution of tokens over the places of a net is called a marking. A set U of
transitions is called enabled at a marking m if all its transitions are enabled at m
(each transition requires a number of tokens that cannot be shared with any other
transition). We use the notation m[U〉m′ to express that m enables the set U of tran-
sitions, and the marking m′ results from m after applying all the transitions of U .

3.5.2 Mobile Membranes as Coloured Petri Nets

We denote by Π = (M0,R) a system of mobile membranes with a set R of rules
having an initial membrane configuration M0 = (w0

1, . . . ,w
0
n,μ), where w0

i denotes
the initial multiset of objects placed on membrane i, and μ the initial membrane
structure. We consider that the system has at any point of evolution at most k > 0
membranes. Given such a system of mobile membranes, the corresponding coloured
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Petri net is denoted by CPNΠ = (P,T,A,Σ ,X ,C,G,E, I), where the components are
defined as follows:

◦ P = {1, . . . ,k}∪{structure}, where structure is a place that contains the structure
of the corresponding membrane system, namely the pairs (i, j);

◦ T =
⋃

1 ≤k≤s

tk, where each tk represents a distinct transition for a rule of R; since

the rules over mobile membranes contains no explicit label for membranes, it
means that:

• a pino rule can be instantiated at most k times in each step;

• a phago rule can be instantiated at most
k!

2!(k−2)!
times in each step;

• an exo rule can be instantiated at most
k!

2!(k−2)!
times in each step; 2 rep-

resents the number of membranes from the left hand side of an exo rule, and
k!

2!(k−2)!
represents all the possible combinations of membranes;

Thus s = s1 ∗ k + s2 ∗
k!

2!(k−2)!
+ s3 ∗

k!
2!(k−2)!

, where s1, s2 and s3 represent

the numbers of pino, phago and exo rules from R.

◦ A contains input arcs (P×T ) and output arcs (T ×P); for a rule r and its associ-
ated transition t, we build the arcs as follows:

• the input arcs are from the places that represent the membranes appearing in
the left hand side of the evolution rule r, and from the place structure, to the
transition t;

• the output arcs are from the transition t to the places that represent the mem-
branes appearing in the right hand side of the evolution rule r and to the place
structure;

◦ Σ = U ∪ L, where U is the colour set containing all the objects from O, and
L = {1, . . . ,k}×{1, . . . ,k} is a colour set containing the membrane structure;

◦ X = {x,y,z, . . .} is a set of variables used when modifying the content of place
structure;

◦ C(p) =

{
U, if p ∈ {1, . . . ,k}
L, if p = structure

◦ G(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[x = y], if t is a transition simulating a phago rule; it checks if

both membranes from the left hand side of a phago rule

have the same parent;

true, otherwise.

◦ For a rule r and its associated transition t, we build E as follows:
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• we place the multiset of objects u on an input arc from a place that represents
a membrane appearing in the left hand side of the evolution rule r (being
marked with a multiset of objects u) to the transition t;

• we place all the pairs (i, j) describing the membrane structure appearing in the
left hand side of the evolution rule r on the input arc from the place structure
to the transition t;

• we place the multiset of objects v on an output arc from a transition t to a place
that represents a membrane appearing in the right hand side of the evolution
rule r (being marked with a multiset of objects v);

• we place all the pairs (i, j) describing the membrane structure appearing in the
right hand side of the evolution rule r on the output arc from the transition t
to the place structure;

◦ I(p) =

{
w0

p, if p ∈ {1, . . . ,k}
{(i, j) | i, j ∈ {1, . . . ,k},(i, j) ∈ μ}, if p = structure.

We formally prove the relationship between the dynamics of the mobile mem-
brane Π and that of the corresponding coloured Petri net CPNΠ .

Theorem 3.5. If M and M′ are two membrane configurations of Π , then

M
R′⇒M′ if and only if φ(M) [ψ(R′)〉φ(M′),

where

φ(M)(i) =

{
wi, for all places i ∈ P;

μ , i=structure.
, and

ψ(R) =
⋃

ri∈R

ψ(ri) with ψ(ri) = ti.

Proof. The function φ represents a bijection between the multisets of objects of Π
and the markings of CPNΠ based on the corresponding links between objects and
tokens, and between membranes and places, respectively. Let (w1, . . . ,wk,μ) be the
multisets of objects from the membrane configuration M, together with its struc-
ture μ . Similarly, for a set of rules R′ = {r1, . . . ,ri} of Π , the function ψ is a bijec-
tion constructing the set ψ(R′) = {t1, . . . , ti} of transitions of CPNΠ from the set R
of rules.

A membrane configuration M1 can evolve to a membrane configuration M2 by
applying an evolution rule r from R′ if and only if, given the marking φ(M1), we
can obtain the marking φ(M2) by firing a transition t in CPNΠ , where ψ(R′)(t) = r.
Overall, this is a direct consequence of the fact that ψ and φ are bijections. ��

From the construction above it results that the initial configuration of Π corresponds
through φ to the initial marking of CPNΠ . Moreover, according to Theorem 3.5 it
results that the computation of Π coincides with the evolution of the CPNΠ .
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3.5.3 LDL Degradation Pathway in Mobile Membranes

LDL is one of several complexes carrying cholesterol through the bloodstream. An
LDL particle is a lipoprotein complex that contains one thousand or more choles-
terol molecules in the form of cholesteryl esters. A monolayer of phospholipid sur-
rounds the cholesterol and contains a single molecule of a large protein apolipopro-
tein B (known as apoB). In a receptor-mediated endocytosis, a cell engulfs a particle
of low-density lipoprotein from the outside. To do this, the cell uses receptors that
specifically recognize and bind to the LDL particle. The receptors are clustered
together. By this mechanism cells acquire from the bloodstream the cholesterol re-
quired for the membrane synthesis that occurs during cell growth.

Fig. 3.3 Endocytic Pathway for Low-Density Lipoprotein

The degradation of LDL particles is realized in five steps (see Figure 3.3):

1. Cell-surface LDL receptors bind to an apoB protein of an LDL particle forming
a receptor-ligand complex.

2. Clathrin-coated pits containing receptor-LDL complexes are pinched off.
3. After the vesicle coat is shed, the uncoated endocytic vesicle (early endosome)

fuses with the late endosome. The acidic pH in this compartment causes a con-
formational change in the LDL receptor that leads to freeing the bound LDL
particle.

4. The late endosome fuses with the lysosome, and the proteins and lipids of the
free LDL particle are broken down into their constituent parts by enzymes in the
lysosome.
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5. The LDL receptor recycles to the cell surface where at the neutral pH of the
exterior medium the receptor undergoes a conformational change so that it can
bind another LDL particle.

In what follows we show how to model the LDL degradation pathway in terms of
mobile membranes with objects on surface, by simulating the five steps presented
in Figure 3.3. We describe an LDL particle in membrane systems as [ ]apoB cho rep-
resenting the monolayer of phospholipid that contains a single apoB protein and
cholesterol cho. The cell engulfing the LDL particle is described as

[[ ]lyso ‖ [ ]late aux]recep recep, where
:

• [ ]recep recep represents the cell containing on its surface two receptors recep able
to recognize an apoB protein; we do not use clathrin and other receptors of the
cell since we are not interested in their evolution;

• [ ]lyso represents the lysosome;
• [ ]late aux represents the late endosome, and aux is an auxiliary object in creating

new membranes by pino and phago rules.

This means that the initial configuration of the system is
M1 = [ ]apoB cho‖[ [ ]lyso aux‖[ ]late aux]recep recep

The steps depicted in Figure 3.3 are simulated using the following rules:

1. [ ]apoB ‖ [ ]recep recep → [[[ ]apoB]recep]recep (phago) (recep = apoB)

2. [ ]recep‖[ ]late aux → [ [ [ ]recep]aux]late (phago) (aux = recep)

3. [ [ ]recep]aux → [ ]recep1 aux (exo) (aux = recep)

4. [[ ]aux]late → [ ]aux4 late (exo) (late = aux)

5. [ ]lyso aux‖[ ]late → [ [ [ ]late]aux1]lyso (phago)(aux = late)

6. [ [ ]recep1]aux1 → [ ]recep2 aux2 (exo) (aux1 = recep1)

7. [ ]late recep2 aux2 aux4 → [[ ]late recep3 aux4]aux3 (pino) (aux2 = recep2)

8. [ [ ]aux3]lyso → [ ]lyso aux (exo) (lyso = aux3)

9. [ [ ]apoB]lyso → [ ]lyso apoB (exo) (lyso = apoB)

10. [ ]late recep3 aux4 → [ [ ]recep4 aux4]late (pino) (late = recep3)

11. [ ]aux4 recep4 → [ [ ]recep5]aux5 (pino) (aux4 = recep4)

12. [ [ ]aux5]late → [ ]late aux (exo) (late = aux5)

13. [ [ ]recep5]recep → [ ]recep recep (exo) (recep = recep5)

where by writing recep = apoB we mean that an object recep is complementary to
an object apoB.

The evolution of the system can be represented graphically as in Figure 3.4. By
M1, . . . ,M24 we denote the possible configurations of the system, and on each ar-
row from an Mi to an Mj is placed the number of the rule which is applied in or-
der to evolve from Mi to Mj. To denote that an object recep changes its position
and interacts with different objects, we use different notations to denote it (namely,
recep,recep1, . . . ,recep5) in the evolution of the system.
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Fig. 3.4 Evolution of the Membrane System

Remark 3.8. The number of rules applied to reach the configuration M24 starting
from the configuration M1 is always 13.

3.5.4 Simulating LDL Degradation by CPN Tools

Now the LDL degradation pathway description by using mobile membranes is en-
coded in coloured Petri nets. The translation is provided in order that one may use
a complex software tool able to automatically verify some important behavioural
properties of the biological systems. For coloured Petri nets a complex software
called CPN Tools is available in which simulations can be performed, and certain
decidability results can be checked automatically: reachability, boundedness, dead-
lock, liveness, fairness, etc. CPN Tools (cpntools.org) is a tool for editing, simulat-
ing, state space analysis, and performance analysis of systems described as coloured
Petri nets. In what follows we show how the rules of mobile membranes used to
model the LDL degradation pathway can be simulated using CPN Tools. To make
it easier to observe how the evolution takes place using CPN Tools, we simplify the
system and use only the transitions that eventually occur.

A CPN model is always created in CPN Tools as a graphical drawing. Figure 3.5
describes the LDL degradation pathway model, namely the membrane configuration
M1 from Subsection 3.5.3. The diagram contains eight places (drawn as ellipses or
circles), four substitution transitions (drawn as double-rectangular boxes), a number
of directed arcs connecting places and transitions, and finally some textual inscrip-
tions next to the places, transitions and arcs. The inscriptions are written in ML,
the programming language of CPN Tools. Places and transitions are called nodes.
Together with the directed arcs, they constitute the net structure. An arc always con-
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nects a place to a transition or a transition to a place; it is illegal to have an arc
between two nodes of the same kind, i.e., between two places or two transitions.
The arc expressions are built from variables, constants, operators, and functions.
When all variables in an expression are bound to values of the correct type, the ex-
pression can be evaluated. In general, arc expressions may evaluate to a multiset of
token colours. Next to each place is an inscription which determines the set of token
colours (data values) that the tokens on that place are allowed to have. The set of
possible token colours is specified by means of a type (familiar from programming
languages) which is called the colour set of the place. By convention, the colour
set is written below the place. The place structure1 has the colour set P, while all
the others have the colour set U . The colour set P is used to model the structure of
a membrane configuration (pairs of integer numbers of the form (i, j)), while the
colour set U is used to model the set of objects from a mobile membrane.

Fig. 3.5 LDL Degradation Pathway in CPN Tools

Colour sets are defined using the CPN ML keyword colset:

colset I = int;
colset P = product I ∗ I;
colset U = with cho | apoB | lyso | late | aux | aux1 | aux2 | aux3 | aux4 |

aux5 | recep | recep1 | recep2 | recep3 | recep4 | recep5;

The inscription on the upper side of a place specifies the initial marking of that
place. The inscription of the place late endosome(4) is 1‘late + +1‘aux specify-
ing that the initial marking of this place consists of two tokens with the values late
and aux. The symbols ++ and ‘ are operators used to construct a multiset of tokens.
The infix operator ‘ takes a non-negative integer as its left argument, specifying
the number of appearances of the element provided as the right argument. The op-
erator ++ takes two multisets as arguments and returns their union (sum of their
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multiplicities). The absence of an inscription specifying the initial marking means
that the place initially contains no tokens. The marking of each place is indicated
next to the place. The number of tokens on the place is shown in a small circle, and
the detailed token colours are indicated in a box positioned next to the small circle.

The four transitions drawn as rectangles represent the events that can take place in
the system. The names of the transitions are written inside the rectangles. The tran-
sition names have no formal meaning, but they are very important for the readability
of the model. In Figure 3.5 the transition names are step2, step3, step4 and step5
symbolizing that each of these transitions simulate the corresponding steps of the
LDL degradation pathway described in Figure 3.3.

A transition with a double-line border is a substitution transition. Each of them
has a substitution tag positioned next to it. The substitution tag contains the name
of a submodule which is related to the substitution transition. Intuitively, this means
that the submodule presents a more detailed view of the behaviour represented by
the substitution transition, and this is particularly useful when modelling large sys-
tems. The input places of substitution transitions are called input sockets, and the
output places are called output sockets. The socket places of a substitution transition
constitute the interface of the substitution transition. To obtain a complete hierarchi-
cal model, it must be specified how the interface of each submodule is related to the
interface of its substitution transition. This is done by means of a port-socket relation
which links the port places of the submodule to the socket places of the substitution
transition. Input ports are related to input sockets, output ports to output sockets,
and input/output ports to input/output sockets.

For instance, behind the substitution transition step4 is another coloured Petri
net presented in Figure 3.6. The substitution transitions that appear in this coloured
Petri net are:

• the substitution transition phago1-step4 simulates the mobile membrane rule 5
from the description of the LDL degradation pathway;

• the substitution transition exo1-step4 simulates the mobile membrane rule 6 from
the description of the LDL degradation pathway;

• the substitution transition pino-step4 simulates the mobile membrane rule 7 from
the description of the LDL degradation pathway;

• the substitution transition exo2-step4 simulates the mobile membrane rule 8 from
the description of the LDL degradation pathway;

• the substitution transition exo3-step4 simulates the mobile membrane rule 9 from
the description of the LDL degradation pathway;

We may observe that the marking of places appearing in Figure 3.6 is similar to the
one of the corresponding places in Figure 3.5. The substitution transition exo1−
step4 is replaced by the Petri net presented in Figure 3.7.

In Figure 3.8, transition phagostep2 is surrounded by a green shadow indicating
that it is enabled. When the transition occurs, it removes a token apoB from place
apoBprotein(2), a token recep from place cell(5), and two tokens (0,2) and (0,5)
from place structure1. The arc expressions of the input arc from the place structure1
are (x,2) and (y,5); they are tested using the test expression [x = 0,y = 0]. The test
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Fig. 3.6 Step 4 Transition

Fig. 3.7 Exo1 Step 4 Transition

is performed in order to see that the simulated membranes 2 and 5 have the same
parent 0. After firing the transition, a token recep is added to the place aux1(6),
a token apoB is added to the place apoBprotein(2), and three tokens (0,5), (6,2)
and (5,6) are added to the place structure1.

A state space is a directed graph where we have a node for each reachable mark-
ing and an arc for each occurring transition. The state space of a CPN model can
be computed fully automatically which makes it possible to automatically analyze
and verify an abundance of properties concerning the behaviour of the model: the
minimum and maximum numbers of tokens in a place, reachability, boundedness,
etc. When working with Petri nets, some behavioural properties (e.g., reachability,
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boundedness, liveness, fairness) are easier to study once a state space is calculated.
A good survey for known decidability issues for Petri nets is given in [83].

Fig. 3.8 Phago Step 2 Transition

We can now define similar properties for mobile membranes with objects on
surface. Given a mobile membrane with object on surface Π with initial configu-
ration M0, we say that a configuration M is reachable in Π if there exists sets of
transitions U1, . . . ,Un such that M0[U1〉 . . . [Un〉Mn = M. We say that a membrane
system is bounded if the set of reachable configurations is finite. A membrane sys-
tem has the liveness property if each rule can be applied again in another evolution
step, and it is fair if no infinite execution sequence contains some configurations
which occur only finitely. A home configuration is a configuration which can be
reached from any reachable configuration.

3.5.5 Preservation of Properties Through Translation

By considering a coloured Petri net CPNΠ obtained from a mobile membrane Π ,
we have the following results:

Proposition 3.21. If the reachability problem is decidable for CPNΠ , then the
reachability problem is also decidable for Π .

Proof (Sketch). The initial marking of CPNΠ is the same as the initial configuration
of Π according to the construction presented in Subsection 3.5.1, and each step of
the Petri net corresponds to an evolution of the mobile membranes with objects on
surface (according to Theorem 3.5). Thus the reachability problem becomes decid-
able for mobile membranes with objects on surface as soon as it is decidable for
coloured Petri nets. ��
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In a similar way, we can prove several properties for mobile membranes with objects
on surface as soon as they hold for their corresponding coloured Petri nets.

Proposition 3.22.

• If CPNΠ is bounded, then Π is bounded.
• If CPNΠ has the liveness property, then Π has the liveness property.
• If CPNΠ is fair, then Π is fair.

Since the properties of reachability, boundedness, liveness and fairness can be de-
rived automatically by using CPN Tools, these results are of great help when study-
ing similar properties for mobile membranes with objects on surface. For instance,
using CPN Tools and the model for the LDL degradation pathway, we can check
whether we can reach the configuration in which the membrane marked by apoB is
inside the membrane marked by lyso, for instance.

Applying CPN Tools on this system we obtain the following output file:
Home Markings: [24] Dead Markings: [24];
Dead Transition Instances: None Live Transition Instances: None
Fairness Properties: No infinite occurrence sequences

meaning that we always reach configuration M24 (home marking), the computation
stops here (dead marking), and that there are no infinite occurrence sequences.

Fig. 3.9 LDL Degradation Pathway with Input

This simulation is not entirely correct from a biological point of view since a cell
is able to process more than one LDL molecule. An arbitrary number of LDL
molecules cannot be simulated in mobile membranes, but it can be simulated in
coloured Petri nets by adding a new transition input and a new place applied as in
Figure 3.9.
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In Figure 3.10 we show how the transition input is built, namely what are the
input arcs and output arcs together with their inscriptions. This transitions works
as follows: if the cell has the initial structure less the initial LDL molecule, than a
new LDL molecule is added to the system in order to reiterate the entire process.
Applying the CPN Tool on this extended system we obtain the following output file:

Home Markings: All Dead Markings: None;
Dead Transition Instances: None Live Transition Instances: All
Fairness Properties: All

meaning that from any reachable configuration Mi we can always reach any config-
uration Mj (home marking), the computation never stops (dead marking), and that
there are infinite occurrence sequences.

Fig. 3.10 LDL Degradation Pathway with Input



Summary

This book contains the results obtained and published recent last years on mobility
aspects in process algebra and membrane computing. It presents new ideas con-
cerning several formalisms (π-calculus, mobile ambients, brane calculi, membrane
systems), new properties and relationships. The emphasis is mainly on the compu-
tational properties of the models. Moreover, the formalisms are used to model and
analyze biological systems.

What is mobility in process algebra? The first formalism in computer science
able to describe mobility was the π-calculus. It was followed by ambient calculus. A
biologically-inspired version of ambient calculus is given by bioambients and sev-
eral brane calculi. When expressing mobility, it should be mentioned what entities
move and in what space they move. There are several possibilities: processes mov-
ing in a physical space of computing locations, processes moving in a virtual space
of linked processes, links moving in a virtual space of linked processes, etc.

What is mobility in membrane systems? Mobile membranes represent a for-
malism able to describe the movement of membranes inside a spatial structure.
When they are considered as computing devices, two main research direction are
considered in order to prove that they are both powerful, mostly equivalent to Turing
machines, and efficient, membrane system algorithms have been developed which
provide efficient solutions to NP-complete problems through the generation of an
exponential space in polynomial time.

What is the relationship between these two research areas? The difference
between the two research areas (process algebra and membrane computing) is the
fact that process algebras provide a tool for the high-level description of interac-
tions, communications, and synchronizations between a collection of independent
agents or processes, providing also algebraic laws that allow process descriptions
to be manipulated and analyzed, and permit formal reasoning about equivalences
between processes (e.g., using bisimulation), while membrane computing uses tech-
niques from languages, automata, complexity, and dynamical systems. Several links
between these two fields are established in order to be able to use techniques from
one area in the other one. We consider our encodings as the first efforts towards
bridging the gap between process calculi and systems of mobile membranes.
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What are other research directions into these fields? Several papers have been
devoted to process algebra, by defining faithful π-nets [70], abstract structures for
distributed systems [62], a π-calculus machine [71] and Markov abstractions for
probabilistic π-calculus [21]. A simplified timed distributed π-calculus called TiMo
is defined in [58, 59]. PerTiMo extends TiMo by working with processes having ap-
propriate access rights to communicate [60]. On the subject of complex systems with
interaction, there are a few papers using process algebra to model biological phe-
nomena [49, 72]. A concrete description of a biological system by using P systems
is provided in [26]. Starting in 2002, several papers have been devoted to membrane
computing and distributed computing [50, 54], to P systems implementations on a
single computer [27, 64] and on clusters of computers [74]. A software platform for
timed mobility and timed interaction is presented in [56], and a high-level language
for mobile agents with timers in [57]. The formal semantics for P systems was in-
troduced and studied in [22, 24, 51]. Some papers have been devoted to various
aspects relating to membrane systems: P transducers [66], Mealy multiset automata
[55], control mechanisms of membranes [23] and cellular modelling [140]. A dis-
tributed evolutionary algorithms using membrane systems [154] and a P system with
minimal parallelism [63] represent two important contributions to membrane com-
puting. Some complexity aspects in membrane systems are presented in [6, 68, 69].
The problem of causality is of great importance for any computational model that
aims to be supported by good analysis methods and tools, and even more signifi-
cant for membrane computing where such approaches are in many cases based on
methods developed for other computational models. Research work on causality in
membrane systems is presented in [3, 4, 5].
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