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Preface 

Cryptography provides techniques, mechanisms, and tools for private and 
authenticated communication, and for performing secure and authenticated 
transactions over the Internet £ts well as other open networks. It is highly 
probable that each bit of information flowing through our networks will have 
to be either encrypted and decrypted or signed and authenticated in a few 
years from now. This infrastructure is needed to carry over the legal and con­
tractual certainty from our paper-based offices to our virtual offices existing in 
the cyberspace. In such an environment, server and client computers as well as 
handheld, portable, and wireless devices will have to be capable of encrypting 
or decrypting and signing or verifying messages. That is to say, without ex­
ception, all networked computers and devices must have cryptographic layers 
implemented, and must be able to access to cryptographic functions in order 
to provide security features. In this context, efficient (in terms of time, area, 
and power consumption) hardware structures will have to be designed, imple­
mented, and deployed. Furthermore, general-purpose (platform-independent) 
as well £18 special-purpose software implementing cryptographic functions on 
embedded devices are needed. An additional challenge is that these implemen­
tations should be done in such a way to resist cryptanalytic attacks launched 
against them by adversaries having access to primary (communication) and 
secondary (power, electromagnetic, acoustic) channels. 

This book, among only a few on the subject, is a fruit of an international 
collaboration to design and implement cryptographic functions. The authors, 
who now seem to be scattered over the globe, were once together as students 
and professors in North America. In Oregon and Mexico City, we worked on 
subjects of mutual interest, designing efficient reahzations of cryptographic 
functions in hardware and software. 

Cryptographic reahzations in software platforms can be used for those 
security applications where the data traffic is not too large and thus low en­
cryption rate is acceptable. On the other hand, hardware methods offer high 
speed and bandwidth, providing real-time encryption if needed. VLSI (also 
known as ASIC) and FPGAs are two distinct alternatives for implementing 
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cryptographic algorithms in hardware. FPGAs offer several benefits for cryp­
tographic algorithm implementations over VLSI, as they offer flexibility and 
fast time-to-market. Because they are reconfigurable, internal architectures, 
system parameters, lookup tables, and keys can be changed in FPGAs with­
out much effort. Moreover, these features come with low cost and without 
sacrificing efficiency. 

This book covers computational methods, computer arithmetic algorithms, 
and design improvement techniques needed to obtain efficient implementations 
of cryptographic algorithms in FPGA reconfigurable hardware platforms. The 
concepts and techniques introduced in this book pay special attention to the 
practical aspects of reconfigurable hardware design, explain the fundamental 
mathematics behind the algorithms, and give comprehensive descriptions of 
the state-of-the-art implementation techniques. The main goal pursued in this 
book is to show how one can obtain high-speed cryptographic implementations 
on reconfigurable hardware devices without requiring prohibitive amount of 
hardware resources. 

Every book attempts to take a still picture of a moving subject and will 
soon need to be updated, nevertheless, it is our hope that engineers, scien­
tists, and students will appreciate our efforts to give a glimpse of this deep 
and exciting world of cryptographic engineering. Thanks for reading our book. 

May 2006 

F. Rodriguez-Henriquez, Nazar A. Saqib, A. Diaz-Perez, and Qetin K. Kog 



Introduction 

This chapter presents a complete outhne for this Book. It explains the main 
goals pursued, the strategies chosen to achieve those goals, and a summary of 
the material to be covered throughout this Book. 

1.1 Main goals 

The choice of reconfigurable logic as a target platform for cryptographic algo­
rithm implementations appears to be a practical solution for embedded sys­
tems and high-speed applications. It was therefore planned to conduct a study 
of high-speed cryptographic solutions on reconfigurable hardware platforms. 

Both efficient and cost effective solutions of cryptographic algorithms are 
desired on reconfigurable logic platform. The term "efficient" normally refers 
to "high speed" solutions. In this Book, we do not only look for high speed 
but also for low area (in terms of hardware resources) solutions. 

Our main objective is therefore to find high speed and low area implemen­
tations of cryptographic algorithms using reconfigurable logic devices. That 
imphes careful considerations of cryptographic algorithm formulations, which 
often will lead to modify the traditional specifications of those algorithms. 
That also imphes knowledge of the target device: device structure, device re­
sources, and device suitability to the given task. The design techniques and 
the understanding of the design tools are also included in the implications 
imposed by efficient solutions. An optimized cryptographic solution will be 
the one for which every step; starting from its high-level specification down 
to the physical prototype realization is carefully examined. 

It is known that the final performance of cryptographic algorithms heavily 
depends on the efficiency of their underlying field arithmetic. Consequently, 
we begin our investigation by first studying the algorithms, solutions and cor­
responding architectures for obtaining state-of-the-art finite field arithmetic 
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realizations. Our study was carried out for both, prime and binary extension 
finite fields. We investigated field arithmetic algorithms for the operations of 
field addition, multiplication, squaring, square root, multiplicative inverse and 
exponentiation among others. 

Thereafter, we selected a set of three of the most important cryptographic 
building blocks, for their implementation on reconfigurable logic devices: hash 
functions, symmetric block ciphers and pubhc key cryptosystems in the form 
of elliptic curve cryptography. 

We described first the basic principles for attaining efficient hardware im­
plementation of hash functions. In the subject of symmetric ciphers, we study 
the two most emblematic algorithms, namely, the Data Encryption Standard 
(DES) and the Advance Encryption Standard (AES). In the case of asym­
metric cryptosystems we analyze fast implementations of Elliptic Curve op­
erations defined over binary extension fields. 

Several considerations were made to achieve high speed and economical 
implementations of those algorithms on reconfigurable logic platforms. One 
of them was to exploit high bit-level parallelism where and whenever it was 
possible. Similarly, we employed design techniques especially tailored for ex­
ploiting the structure of the target devices. 

A variety of hash function algorithms were studied first. Emphasis was 
made on MD5, by providing a step-by-step analysis of its algorithm flow. An 
explanation of the SHA-2 family was also included. In our descriptions we 
pondered hardware implementation aspects of the hash algorithms. 

DES was the second cryptographic building block studied in this Mono­
graph. The basic primitives involved in block ciphers specifically for DES 
were analyzed for their implementations on reconfigurable logic platform. A 
compact one round FPGA implementation of DES was carried out exploiting 
high bit-level parallelism. Experiments were made for optimizing the proposed 
FPGA architecture with respect to hardware area. 

A more detailed study was planned regarding AES due to its importance 
for the current security needs in the IT sector. Each step of the algorithm was 
investigated looking for improvements in the standard transformations of the 
algorithm and for an optimal mapping to the target device. Both, iterative 
and pipeline approaches for encryption were used for AES FPGA implemen­
tation. We attempted to reduce the critical paths for encryption/decryption 
by sharing common resources or optimizing the standard transformations of 
the algorithm. 

In the case of Elhptic Curve Cryptography (ECC), we utihzed a hierar­
chical six-layer model, but only the lower three layers were addressed in this 
Book. The first layer of the model deals with the efficient implementation of 
finite field arithmetic. The Second layer makes use of the underlying arith­
metic for implement elliptic curve arithmetic main primitives: point addition 
and point doubling. The third layer implements elliptic curve scalar multipli­
cation which is achieved by adding n copies of the same point P on the curve. 
Both the point addition and doubling operations from the second layer serve 
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as building blocks for the third layer. We strived for using parallel techniques 
for all the three layers. This way, a generic architecture for the elliptic curve 
scalar multiplication was proposed and implemented on the FPGA platform. 
We also presented parallel formulations of the scalar multiphcation operation 
on Koblitz curves an architecture that is able to compute the elliptic curve 
scalar multiplication using the half-and-add method. Additionally, we pre­
sented optimizations strategies for computing a point addition and a point 
doubling using LD projective coordinates in just eight and three clock cycles, 
respectively. 

1,2 Monograph Organization 

Next chapters present a short introduction to the cryptographic algorithms 
chosen to illustrate the design strategies discussed previously as well as the 
mathematical background required for the correct understanding of the mate­
rial to be presented. Design comparisons and conclusion remarks are presented 
at the end of each Chapter. A short summary of each chapter is given below. 

In Chapter 2, a brief review of modern cryptographic algorithms is given. 
Topics addressed include: Secret-key and public-key cryptography, hash func­
tions, digital signatures, an so forth. Furthermore, we also discuss in this 
Chapter potential real-world cryptographic applications and the suitability of 
reconfigurable hardware devices for accommodate them. 

In Chapter 3 a brief introduction to reconfigurable hardware technology is 
given. We explain the historical development of FPGA devices and include a 
detailed description of the FPGA families of two major manufacturers: Xilinx 
and Altera. We also cover reconfigurable hardware design issues, metrics and 
security. 

In Chapter 4, some important mathematical concepts are presented. Those 
concepts are particularly helpful for the understanding of cryptographic oper­
ations for AES and elliptic curve cryptosystems. Key mathematical concepts 
for a class of eUiptic curves are also described at the end of this Chapter. 

In Chapter 5, we discuss state-of-the-art arithmetic algorithms for prime 
fields. We present efficient hardware design alternatives for operations such 
as adders, modular adders, modular multipliers and exponentiation among 
others. We give at the end of each Section a comparison analysis with some 
of the most significant works reported in this topic. 

In Chapter 6, state-of-the-art algorithms for binary extension fields are 
studied. We discuss relevant algorithms for performing efficiently field mul­
tiplication, squaring, square root, inversion and reduction among others. We 
give at the end of each Section a comparison analysis with some of the most 
significant works reported in this topic. 
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In Chapter 7, we study efficient reconfigurable hardware implementations 
of hash functions. Specifically, we carefully analyze MD5, arguably the most 
studied hash function ever. We give at the end of each Section a comparison 
analysis with some of the most significant works reported in this topic. 

In Chapter 8, a general guideline for implementing symmetric block ci­
phers is described. Basic primitives involved in block ciphers are listed and 
design tips are provided for their efficient implementations on reconfigurable 
platform. DES is presented as a case of study. A compact and fast DES im­
plementation on reconfigurable platform is explained. We give at the end of 
this Chapter a comparison analysis with some of the most significant works 
reported in this topic. 

In Chapter 9, we explore multiple architectures for AES. Several efficient 
techniques for AES implementation are described. Several efficient AES en-
cryptor and encryptor/decryptor cores based on those techniques are pre­
sented on reconfigurable platforms. The benefits/drawbacks of all AES cores 
are examined. We give at the end of this Chapter a comparison analysis with 
some of the most significant works reported in this topic. 

In Chapter 10 we discuss several algorithms and their corresponding hard­
ware architecture for performing the scalar multiphcation operation on ellip­
tic curves defined over binary extension fields GF{2'^). By applying parallel 
strategies at every stage of the design, we are able to obtain high speed im­
plementations at the price of increasing the hardware resource requirements. 
Specifically, we study the following four different schemes for performing el­
liptic curve scalar multiplications, 

• Scalar multiplication applied on Hessian elliptic curves. 
• Montgomery Scalar Multiplication applied on Weierstrass elliptic curves. 
• Scalar multiplication applied on Koblitz elliptic curves. 
• Scalar multiplication using the Half-and-Add Algorithm. 
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A Brief Introduction to Modern Cryptography 

In our Information Age, the need for protecting information is more pro­
nounced than ever. Secure communication for the sensitive information is not 
only compelhng for miHtary or government institutions but also for the busi­
ness sector and private individuals. The exchange of sensitive information over 
wired and/or wireless Internet, such as bank transactions, credit card numbers 
and telecommunication services are already common practices. As the world 
becomes more connected, the dependency on electronic services has become 
more pronounced. In order to protect valuable data in computer and com­
munication systems from unauthorized disclosure and modification, reliable 
non-interceptable means for data storage and transmission must be adopted. 

Figure 2.1 shows a hierarchical six-layer model for information security 
applications. Let us analyze that figure from a top-down point of view. On 
layer 6, several popular security applications have been listed such as: secure 
e-mail, digital cash, e-commerce, etc. Those applications depend on the imple­
mentation in layer 5 of secure authentication protocols like SSL/TLS, IPSec, 
IEEE 802.11, etc. However, those protocols cannot be put in place without 
implementing layer 4, which consists on customary security services such as: 
authentication, integrity, non-repudiation and confidentiahty. The underlying 
infrastructure for such security services is supported by the two pair of cryp­
tographic primitives depicted in layer 3, namely, encryption/decryption and 
digital signature/verification. Both pair of cryptographic primitives can be 
implemented by the combination of public-key and private key cryptographic 
algorithms, such as the ones listed in layer 2. Finally, in order to obtain a high 
performance from the cryptographic algorithms of layer 1, it is indispensable 
to have an eflftcient implementation of arithmetic operations such as, addition, 
subtraction, multiplication, exponentiation, etc. 

In the rest of this Chapter we give a short introduction to the algorithms 
and security services listed in layers 2-4. Hence, the basic concepts of cryp­
tography, fundamental operations in cryptographic algorithms and some im-
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Appl icat ions: secure email, digital cash, 
e-commerce, firewalls, etc. 

Authentication Protocols: SSUTLS/WTLS/, IPSEC, IEEE 
802.11, etc. 

Security Services: Confidentiality, Integrity, 
Authentication; Non-repudiation 

Cryptographic Primitives: Encryption/Decryption, 
SignatureA/erificatlon 

Public-Key Cryptography: RSA, DSA, ECC 
Private-Key Cryptography: AES, DES, RC4, etc. 

Computer Ari thmetic: Addi t ion, Substraction, Squaring, 
Multipl ication, Division, Exponentiation, Square Root 

Computation 

Fig. 2.1. A Hierarchical Six-Layer Model for Information Security Applications 

portant cryptographic applications in the industry are studied and analyzed. 
Furthermore, alternatives for the implementation of cryptographic algorithms 
on various software and hardware platforms are also discussed. 

2.1 Introduction 

A cryptographic cipher system can hide the actual contents of every message 
by transforming (enciphering) it before transmission or storage. The tech­
niques needed to protect data belong to the field of cryptography, which can 
be defined as follows. 

Definition 2.1. We define Cryptography as the discipline that studies the 
mathematical techniques related to Information security such as providing the 
security services of confidentiality, data integrity, authentication and non-
repudiation. 

In the wide sense, cryptography addresses any situation in which one wishes 
to limit the effects of dishonest users [110]. Security services, which include 
confidentiality, data integrity, entity authentication, and data origin authen­
tication [228], are defined below. 



2.2 Secret Key Cryptography 9 

• Confidentiality: It guarantees that the sensitive information can only be 
accessed by those users/entities authorized to unveil it. When two or more 
parties are involved in a communication, the purpose of confidentiality is to 
guarantee that only those two parties can understand the data exchanged. 
Confidentiality is enforced by encryption. 

• Data integrity: It is a service which addresses the unauthorized alter­
ation of data. This property refers to data that has not been changed, 
destroyed, or lost in a malicious or accidental manner. 

• Authentication: It is a service related to identification. This function 
applies to both entities and information itself. Two parties entering into 
a communication should identify each other. Information delivered over a 
channel should be authenticated as to origin, date of origin, data content, 
time sent, etc. For these reasons this aspect of cryptography is usually sub­
divided into two major classes: entity authentication and data origin au­
thentication. Data origin authentication implicitly provides data integrity. 

• Non-repudiation: It is a service which prevents an entity from denying 
previous commitments or actions. For example, one entity may authorize 
the purchase of property by another entity and later deny such authoriza­
tion was granted. A procedure involving a trusted third party is needed to 
resolve the dispute. 

In cryptographic terminology, the message is called plaintext. Encoding the 
contents of the message in such a way that its contents cannot be unveiled by 
outsiders is called encryption. The encrypted message is called the ciphertext. 
The process of retrieving the plaintext from the ciphertext is called decryp­
tion. Encryption and decryption usually make use of a key^ and the coding 
method use this key for both encryption and decryption. Once the plaintext is 
coded using that key then the decryption can be performed only by knowing 
the proper key. 

Cryptography falls into two important categories: secret and public key 
cryptography. Both categories play their vital role in modern cryptographic 
applications. For several crucial applications, a combination of both secret 
and public key methods is indispensable. 

2.2 Secret Key Cryptography 

Definition 2.2. Matematically, a symmetric key cryptosystem can be 
defined as the tuple (P,C,/C, ^,X>), where [110]: 

V represents the set of finitely many possible plain-texts. 
C represents the set of finitely many possible cipher-texts. 
JC represents the key space, i.e, the set of finitely many possible keys, 
y K e JC 3EK G S (encryption rule), 3DK G V (decryption rule). 
Each EK '. V -^ C and DK : C -^ V are well-defined functions such that 

yxer,DK{EK{x)) = X. 
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Secret-Key 

^^M 0 ^ 

. i ^ 

Encryption Decryption 

Fig. 2.2. Secret Key Cryptography 

Both encryption and decryption keys (which sometimes are the same keys) 
are kept secret and must be known at both ends to perform encryption or 
decryption as is shown in Fig. 2.2. Symmetric algorithms are fast and are 
used for encrypting/decrypting high volume data. It is customary to classify 
symmetric algorithms into two types: stream ciphers and block ciphers. 

• Stream ciphers: A stream cipher is a type of symmetric encryption algo­
rithms in which the input data is encrypted one bit (sometimes one byte) 
at a time. They are sometimes called state ciphers since the encryption of 
a bit is dependent on the current state. Some examples of stream ciphers 
are SEAL, TWOPRIME, WAKE, RC4, A5, etc. 

• Block ciphers: A block cipher takes as an input a fixed-length block 
(plaintext) and transform it into another block of the same length (ci-
phertext) under the action of a user-provided secret key. Decryption is 
performed by applying the reverse transformation to the ciphertext block 
using the same secret key. Modern block ciphers typically use a block 
length of 128 bits. Some famous block ciphers are DES, AES, Serpent, 
RC6, MARS, IDEA, Twofish, etc. 

The most popular block cipher algorithm used in practice is DEA {Data En­
cryption Algorithm) defined in the standard DES [251]. The secret key used in 
DEA has a bit-length of 56 bits. Even though that key length was considered 
safe back in the middle 70's, nowadays technology can break DEA in some 
few hours by launching a brute-force attack. That is why DEA is widely used 
as Triple DEA (TDEA) which may offer a security equivalent to 112 bits. 
TDEA uses three 56-bit keys (namely, iiTi, K2 and K3). If each of these keys 
is independently generated, then this is called the three key TDEA (3TDEA). 
However, if Ki and K2 are independently generated, and K^ is set equal to 
Ki, then this is called the two key TDEA (2TDEA) [258]. 

On October 2000, a new symmetric cryptographic algorithm "Rijndael" 
was chosen as the new Advanced Encryption Standard (AES) [60] by NIST 
(National Institute of Standards and Technology) [253]. Due to its enhanced 
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security level, it is replacing DEA and triple DEA (TDEA) in a wide range 
of applications. 

Although all aforementioned secret key ciphers offer a high security and 
computational efficiency, they also exhibit several drawbacks: 

• Key distribution and key exchange The master key used in this kind 
of cryptosystems must be known by the sender and receiver only. Hence, 
both parties should prevent that this key can get compromised by unau­
thorized entities^ 

• Key management Those system having many users, must generate/manage 
many keys. For security reasons, a given key should be changed frequently, 
even in every session. 

• Incompleteness It is impossible to implement some of the security ser­
vices mentioned before. In particular, Authentication and non-repudiation 
cannot be fully implemented by only using secret key cryptography [317]. 

2.3 Hash Functions 

Definition 2.3. A Hash function H is a computationally efficient function 
that maps fixed binary chains of arbitrary length {0,1}* to bit sequences H{B) 
of fixed length. H{B) is the hash value or digest of B. 

Encrypted 
private key 

AESkey(128 bits) 
passphrase — M MD5 

1 
AES 

(decryptor 
Decrypted 

private 
key 

Fig. 2.3. Recovering Initiator's Private Key 

In words, a hash function h maps bit-strings of arbitrary finite length to 
strings of fixed length, say n bits. MD5 and SHA-1 are two examples of hash 
functions. MD5 produces 128-bit hash values while SHA-1 produces 160-bit 
hash values. 

Hash functions can be used for protecting user's secret key as depicted in 
Fig. 2.3. Fig. 2.3 shows the customary procedure used for accomplishing that 

This implies that in a community of n users a total of ^̂ ^̂  secret keys must 
be created so that all users can communicate with each other in a confidential 
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Pseudo - random 
sequence 

Fig. 2.4. Generating a Pseudorandom Sequence 

goal. It is noticed that the AES secret key is generated by means of the hash 
value corresponding to the pass-phrase given by the user. Another typical 
application of Hash functions is in the domain of pseudorandom sequences as 
shown in Fig. 2.4. 

Nevertheless, the main application of hash function is as a key building 
block for generating digital signatures as it is explained in the next Section. 

2.4 Public Key Cryptography 

A breakthrough in Cryptography occurred in 1976 with the invention of pub­
lic key cryptography by Diffie and Hellman^ [68]. This invention not only 
solved the key distribution and management problem but also it provided the 
necessary tool for implementing authentication and non-repudiation security 
services effectively. 

Private-Key 

^ 
A 

^ 

Encryption Decryption 

Fig. 2.5. Public Key Cryptography 

^ Although Diffie and Hellman were the first in publishing the concepts of public 
key cryptography in the open literature, we know now that they were not the first 
inventors. In 1997, a British Security agency (CESG, National Technical Authority 
for Information Assurance) published documents showing that in fact James Ellis 
and Clifford Cocks came out with the mechanisms needed for performing RSA-
like public key cryptography in 1973. Short after that, M. Williamson discovered 
what is now known as Diffie-Hellman key exchange [374, 317, 206]. 
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Asymmetric algorithms use a different key for encryption and decryption, 
and the decryption key cannot be easily derived from the encryption key. 
Asymmetric algorithms use two keys known as public and private keys as 
shown in Fig. 2.5. 

The public key is available to everyone at the sending end. However a 
private or secret key is known only to the recipient of the message. An im­
portant characteristic of any public key system is that the public and private 
keys are related in such a way that only the public key can be used to encrypt 
(decrypt) messages and only the corresponding private key can be used to 
decrypt (encrypt) them. 
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Fig. 2.6. Basic Digital Signature/Verification Scheme 

Public key cryptosystems can be used for generating digital signatures^ 
which cannot be repudiated. The concept of digital signature is analog to the 
real-world autograph signature, but it is more powerful as it also protects 
against malicious data modifications. A digital signature scheme is based in 
two algorithms: signature and verification as explained below. 

• A encrypts the message m using its private key ci := EI^^^.^(^A){'^) 
• A encrypts the result ci using B's public key and send the result to B, 

• B recovers m by performing. 

Since B is able to recover m using ^ ' s public key, B can verify whether A 
really sign the message using its private key. Moreover, since the signature 
depends on the message contents, theoretically nobody else can reuse the 
same signature in any other message. 
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In practice, as is shown in Fig.2.6, a digital signature is applied not to the 
document to be signed itself, but to its hash value. This is due to efficiency 
reasons as public key cryptosystems tend to be computationally intensive. A 
hash function H is applied to the message to append its hash value h — H{M), 
to the document itself. Thereafter, h is signed by "encrypting" it with the 
private key of the sender. This becomes the signature part of the message. 

Public Key Crypto-scheme 

Signature/Decryption 
(Private Operation) 

Verification/Encryption 
(Public Operation) 

Fig. 2.7. Public key cryptography Main Primitives 

As shown in Fig. 2.7 Public key cryptosystems' main primitives are: 

1. Domain Parameter Generation. This primitive creates the mathemat­
ical infrastructure required by the particular cryptosystem to be used. 

2. Key Generation. This primitive create users' pubhc/private key. 
3. Public Operation. This primitive is used for encrypting and/or verifying 

messages. 
4. Private Operation. This primitive is used for decrypting and/or signing 

messages. 

Theoretically, a public key cryptosystem can be constructed by means of 
specialized mathematical functions called "trapdoor one-way functions" which 
can be formally defined as follows. 

Definition 2.4. A One-way Function [110] is an injective function f{x) 

/ : { 0 , 1 } - - { 0 , 1 } * , 

such that f{x) can be computed efficiently, but the computation of f~^{y) 
is computational intractable, even when using the most advanced algorithms 
along with the most sophisticated computer systems. We say that a one-way 
function is a One-way trapdoor function if is feasible to compute f~^{y) if 
and only if a supplementary information (usually the secret key) is provided. 

In words, a one-way function / is easy to compute for any domain value 
X, but the computation of f~^{x) should be computationally intractable. A 
trapdoor one-way function is a one-way function such that the computation 
f~^{x) is easy, provided that certain special additional information is known. 
The following three problems are considered among the most common for 
creating trapdoor one-way functions. 
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Integer Factorization problem: Given an integer number n, obtain its 
prime factorization, i.e., find n = Pi^^P2^^P3^^ ' • 'Pk^'', where pi is a prime 
number and ê  > 1. 
It is noticed that finding large prime numbers^ is a relatively easy task, 
but solving the problem of factorizing the product of prime numbers is 
considered computationally intractable if the prime numbers are chosen 
carefully and with a sufficient large bit-length [196]. 
Discrete Logarithm problem: Given a number p, a generator g E Zp* 
and an arbitrary element a G Zp*, find the unique number z, 0 < z < p— 1, 
such that a = g^{modp). 
This problem is useful in cryptography due to the fact that finding dis­
crete logarithms is difficult. The brute-force method for finding g^{modp) 
for 1 < j < p — 1 is computationally unfeasible for sufficiently large prime 
values. However, the field exponentiation operation can be computed ef­
ficiently. Hence, g'^(modp) can be seen as a trapdoor one-way function 
function for certain values of p. 
Elliptic curve discrete Logarithm problem: Let E]^^ be an elliptic 
curve defined over the finite field F^and let P be a point P G Ew^ with 
primer order n. Consider the /c-multiple of the point P, Q = kP defined as 
the elliptic curve point resulting of adding P, /c — 1 times with itself, where 
/c is a positive scalar in | l , n — 1]. The elliptic curve discrete logarithm 
problem consists on finding the scalar k that satisfies the equation Q =^ kP. 
This problem is considered a strong one-way trapdoor function due to the 
fact that computing k given Q and P is a difficult computational problem. 
However, given k is relatively easy to obtain the k-th multiple of P , namely, 
Q=-kP. 

2.5 Digital Signature Schemes 

• A4 represents the set of all finitely many messages that can be signed 
• S represents the set of all finitely many signatures (usually the signatures 

are fixed-length binary chains). 
• JCs represents the set of private keys. 
• /Cy represents the set of public keys. 
• Se'. M —> S represents the transformation rule for an entity S. 
• Vs: M X S —> {true^ false} represents the verification transformation 

for signatures produced by £̂ . It is used for other entities in order to verify 
signatures produced by <f. 

Se y Ve define a digital signature scheme for S. 

Definition 2.5. A Digital signature scheme is the triple {Gen,Sig,Ver) of 
algorithms such that, 

^ In the cryptography domain a large prime number has a bit-length of at least 512 
bits. 
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i. Gen is a Key generation algorithm, with input s; known as the security 
parameter; and possibly another extra information I, which gives as an 
ouptut (k^jky) G JCs X /Cv corresponding to private key, and public key, 
respectively. 

ii. Sig is a Signature algorithm, with input (m,k^) e M x JCs, which gives 
as an output an element a ^ S, called Signature (of the message m with 
the private key ks). 

iii.Ver is a Verification algorithm, with input (m, a, ky) £ M x S x JCy, 
which gives as an output the set {true, false} and 

Ver{in, Sig{m,ks),ky) = true 

V valid (k^, ky) obtained from Gen and for all m e M. 

Undoubtedly, the most popular public-key algorithms are RSA (based on 
factoring large numbers), DSA and ElGamal (batsed on discrete log problem) 
and Elliptic Curve Cryptosystems. Elliptic curve cryptography is now popu­
lar due to the fact that it offers the same security level as offered by other 
contemporary algorithms at a shorter key length. It is based on elliptic curve 
addition operation. 

2.5.1 RSA Digital Signature 

The most popular algorithm for commercial applications is RSA'^. RSA algo­
rithm is symmetric in the sense that both, the public key and the private key 
can be utilized for encrypting a message. 

RSA Key Generation 

Algorithm 2.1 shows RSA key generation procedure. The public key is com­
posed by the two integers (n,e), where n is called the RSA modulus and is 
defined as the product of two prime numbers p,q, of approximately the same 
bit-length. Both, p, q should be generated randomly and must be kept secret. 
The number e is called the public exponent. It must satisfy: 1 < e < 0 and 
gcd(e, 0) = 1 where (j) = (p — l)(g - 1). The private key d is called the private 
exponent and it must satisfy: 1 < d < (j) and ed = l(mod 0). It is noticed 
that the problem of determining the key d given the public key (n, e) has 
a computacional difficulty equivalent to the integer factorization problem of 
finding p OT q given n. 

^ RSA stands for the first letter in each of its inventors' last names: Rivest, Shamir 
and Addleman. These three distinguished professors were declared the 2002 A.M 
Turin award winners. At that time, Professor Shamir consider it "the ultimate 
seal of approval" for Cryptography os a Computer Science discipline [325]. 
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Algorithm 2.1 RSA Key Generation 
Require: bit-length /c, a public exponent e, where e is a small prime number. 
Ensure: RSA public key (n, e) and private key d. 

1: Randomly find two primes | -b i t numbers p and q. 
2: n == pq; 
3: cf^{n) = {p-l){q-iy, 
4: if gcd(e,0(n)) y^ 1 then 
5: Go to Step 1. 
6: end if 
7: Find d such that d = e~^ mod (/)(n). 
8: Return (n, e,(i). 

RSA Digital Signature 

RSA encryption/decryption and Signature/verification are based in the Euler 
theorem identity, which establishes that, 

m^^ = m (mod n) (2.1) 

for any arbitrary integer m. Signature and verification processes are shown in 
Algorithms 2.2 and 2.3. The author A of the message m computes the hash 
value h = H(m), Then, A computes the signature s — h^. Then A can send 
the message m along with the signature s to a verifying entity, say B. B can 
verify v4's signature as follows. It recovers the hash value from s by computing 
h = s^. Thereafter, B computes once again the hash value, say, h = H{m). If 
h -• h, then the signature is accepted otherwise, it is rejected. 

Algorithm 2.2 RSA Digital Signature 
Require: Sender's public key (n,e), Sender's private key d, message m. 
Ensure: digital signature s. 

1: h = H{m); 
2: s = h^ mod n. 
3: Return s. 

2.5.2 RSA Standards 

RSA is specified in [193, 253, 255]. Additionally, there exist a number of 
standards where the digital signature algorithm RSA just described is utilized. 
The Public Key Cryptography Standard (PKCS), is a set of standards that 
include among others, PKCS#1^ PKCS#36 and PKCS#12'^. PKCS series 

^ RSA Cryptography Standard 
^ Diffie-Hellman key agreement Standard 
^ Personal Information Exchange Syntax Standard 
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Algorithm 2.3 RSA Signature Verification 
Require: Sender's public key (n, e), message m, digital signature s. 
Ensure: Accept/Reject. 
I: h = H{m); 
2: h =• s^ mod n; 
3: \{ h — h then 
4: Return( Accept); 
5: else 
6: Ret urn (Reject); 
7: end if 

have become part of many formal and de facto standards, including ANSI X9 
documents, PKIX, SET, S/MIME, and SSL [193]. 

2.5.3 DSA Digital Signature 

The Digital Signature Algorithm (DSA) is based in the crypto-scheme pro­
poned by ElGamal in 1984, which in turn is based on the discrete logarithm 
problem. Many versions of the original ElGamal procedure has been proposed. 
In 1991, the ElGamal procedure was adopted by the U.S. National Institute of 
Standards and Technology and registered under the name of Digital Signature 
Standard (DSS). 

DSA Key Generation 

The prime numbers p and q and the generator g are public domain parameters. 
They define a multiplicative Abelian group modulus p. The parameter g G 
[2,p — 1] specifies a generator of the multiphcative cyclic subgroup (g) of 
order q. This mathematically implies that q\{p — 1) and no other smaller 
positive integer is a prime divisor of p — 1 satisfying g^ = I. The private 
key X is randomly selected among the subgroup elements, i.e., x e [l,g — 1], 
whereas the corresponding public key is generated by computing y ~ g^ mod 
p, as is shown in Algorithm 2.5. The problem of finding x given the domain 
parameters {p,q^g) and the public key y is known as the discrete logarithm 
problem. 

DSA Digital Signature Algorithm 

Once that the public/private key pair has been generated, a given entity A can 
generate the DSA signature S = (r, s) of a message m by proceeding as follows 
(see Algorithm 2.6). First, A must select a random number k G [1,^ — 1], which 
must be secret and should be destroyed after the DSA has been generated. 
Then, A must compute T = g^ mod p, and r — T mod q. Thereafter, the 
message m is processed using a secure hash algorithm H so that h = H{m) is 
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Algorithm 2.4 DSA Domain Parameter Generation 
Require: Security parameters I and t. 
Ensure: Domain parameters {p,q,g). 
1: Select a prime number q of t bits and another prime number p of / bits such 

that q\ip- 1). 
Find an element g of order q. 
repeat 

p - i 
randomly select a number he [l,p — 1] and compute g — h "i mod p. 

until {g ^ 1} 
Return {p^q^g). 

Algorithm 2.5 DSA Key Generation 
Require: Domain parameters p,q,g. 
Ensure: Private key x and public key y. 
1: Randomly select x £ [l,q — I]. 
2: y = g"" mod p; 
3: Return {y,x). 

computed. Then, the other component of the DSA signature can be computed 
as, 

s = k~^(h + xr) mod q (2.2) 

DSA signature is composed by the pair (s, r). The verifying entity B can check 
the correctness of the DSA based on the following observation, 

k = 5"^(/z + xr) mod q. (2.3) 

Which imphes, 
gk = gS-'hg^S-^r ^^^ p (2.4) 

Finally, knowing that T — g^ mod p and y = g^ mod p, we have, 

T = g^'~'y'''~' modp (2.5) 

Lats equation corresponds to the computation accomplished by the verifier 
at line 8 of Algorithm 2.7. Therefore, the verifier entity B can assess the 
correctness of a DSA signature by verifying that the equality r = T mod q 
holds. This can be done by knowing the domain parameters (p, q, g), the public 
key y and the DSA signature (r, s). DSA signature generation and verification 
are shown in Algorithms 2.6 and 2.7, respectively. 

2.5.4 Digital Signature with Elliptic Curves 

Elliptic curves over real numbers are defined as the set of points (x, y) which 
satisfy the elliptic curve equation of the form: 

y'^ = x^ -^ax-\-b (2.6) 
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Algorithm 2.6 DSA Signature Generation 
Require: domain parameters {p,q,g), Sender's private key x, message m. 
Ensure: Signature (r, s). 
1: randomly select fc G [1, g — 1]. 
2: T = g^ mod p; 
3: r = T mod q; 
4: if r = 0 then 
5: Go to Step 1; 
6: end if 
7: h = H{m)] 
S: s — k~^{h + xr) mod g; 
9: if s = 0 then 

10: Go to Step 1; 
11: end if 
12: Return (r,s). 

Algorithm 2.7 DSA Signature Verification 
Require: Domain parameters {p,q,g), Sender's public key t/, message m and sig­

nature (r, s). 
Ensure: Accept/Reject. 
1: if r, s are not in the interval [1, ̂  — 1] then 
2: Ret urn ("Reject") 
3: end if 
4: h^H{m)\ 
b: w = s~^ mod q; 
6: ui = hw mod q; 
7: U2 = rw mod g; 
8: T = g'''y''^ mod p; 
9: r = T mod qf; 

10: if r = r then 
11: Return( Accept); 
12: else 
13: Return(Reject); 
14: end if 

y"^ = x'^ -\-ax-\-b (2.6) 

where a and b are real numbers. Each choice of a and b produces a different 
elliptic curve as shown in Figure 4.1. The elliptic curve in Equation 2.6 forms 
a group if 4a^ 4- 276^ ^ 0. An elliptic curve group over real numbers consists 
of the points on the corresponding elliptic curve, together with a special point 
O called the point at infinity. Elliptic curve groups are additive groups; that 
is, their basic function is addition. The negative of a point P = (x, y) is its 
reflection in the x-axis: the point — P is (x, —y). If the point P is on the curve, 
the point — P is also on the curve. 
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In elliptic curve cryptography we are only interested in elliptic curves 
defined over finite fields. This means tha t the coordinates of the points in the 
elliptic curve can only take values t ha t belong to the finite field over which, 
the elliptic curve has been defined. In part icular we define elliptic curves over 
binary extension fields GF{2^), using the following adjusted curve equation, 

y"^ ^xy = x^ -\- ax^ + h (2.7) 

where a ,6 G GF{T^) and 6 7̂  0. Once again, the elliptic curve includes all 
the points {x^y) t ha t satisfy above equation in GF(T^) ar i thmetic , plus the 
point at infinity O. The set of point t ha t belong to the curve E is denoted as 

El l ip t i c C u r v e D o m a i n P a r a m e t e r s 

The domain parameters needed for obtaining a public key cryptosystem based 
on the elliptic curve discrete logari thm problem over F^ are the following [133], 

1. T h e number of field elements (finite field order) q. 
2. T h e coeffcients a ,6 G Fg tha t define the eUiptic equation E over Fg. 
3. A base point P = (xp, yp) e¥q t ha t belongs to the curve E. P must have 

a prime order. 
4. The order n of P. 
5. T h e cofactor h - #E{¥q)/n. 

E C D S A K e y G e n e r a t i o n 

Let P e E{¥q) with order n, where E is an elliptic curve as defined above. We 
consider the field order q, the elliptic curve equation E and the base point P 
as public domain parameters . The private key d is a. randomly chosen integer 
in the range [ l , n — 1] and the corresponding public key is the point Q = dP 
as computed in Algori thm 2.8 below. T h e problem of defining d given P and 
Q is known as the elliptic curve discrete logarithm problem. 

A l g o r i t h m 2.8 ECDSA Key Generat ion 

Require: Elliptic curve public domain parameters {q, E, P, n) 
Ensure: public/private key pair Q = {xQ.yq) and d. 

Randomly choose d in the range [1, n -
0 = dP; 
Return {Q,d). 

^ Elliptic curve theory is covered in Chapter 4. Reconfigurable hardware implemen­
tations of elliptic curve cryptosystems are studied in Chapter 10. 
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E C D S A D i g i t a l S i g n a t u r e 

Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve ana­
logue of the Digital Signature Algorithm (DSA) [141]. It was accepted in 1999 
as an ANSI s tandard , and in 2000 it was accepted as I E E E and NIST stan­
dards. Unlike the ordinary discrete logari thm problem and the integer factor­
ization problem, no subexponential- t ime algorithm is known for the elliptic 
curve discrete logari thm problem. For this reason, the strength-per-key-bit is 
substantial ly greater in an algorithm tha t uses elliptic curves. 

A l g o r i t h m 2.9 ECDSA Digital Signature Generat ion 

Require: Domain parameters: (g, a,6, P, n, / i) , Sender's private key d, message m. 
Ensure: Signature {r,s). 

1: Randomly Select k in the interval [ l ,n — 1] 
2: kP = {xi,yi)] and convert xi into an integer xi. 
3: Compute r = xi mod n. 
4: if r = 0 then 
5: goto step 1; 
6: end if 
7: e = H{m)] 
8: s = k~^{e + dr) mod n. 
9: if 5 = 0 then 

10: goto step 1; 
11: end if 
12: R e t u r n ( r , s). 

The ECDSA digital s ignature algorithm is shown in Fig. 2.9. The signature 
for this message is the pair (r, s). It is to be noted t ha t the s ignature depends 
on the private key and the message. This implies tha t , at least in theory, no 
one can subst i tu te a different message for the same signature. Note t ha t if a 
message m has a valid digital signature (r, s) then, 

s = k~^{e -h dr) mod n. 

which implies, 

k = s~^{e -f dr) = s~^e + s~^dr = we -{- wdr = ui -^ U2 • d mod n. 

Thus , X = U1P + U2Q = {ui +U2d)P — kP, and consequently we validate the 
signature \f[ v = r. Above verification process is carried out by the procedure 
shown in Algori thm 2.10. Notice tha t in line 8 of t ha t procedure, the elliptic 
curve point X = ui • P -\- U2 - Q, is computed. As explained above, if the 
signature to be verified is a valid one then the equality v = xi mod n = r 
should hold. 
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Algorithm 2.10 ECDSA Signature Verification 
Require: Domain parameters: {q,a,b,P,n,h), signature {r,s), Sender's public key 

Q, message m. 
Ensure: Reject/Accept. 
1: if r, s are not in the interval [1, n — 1] then 
2: Ret urn ("Reject") 
3: end if 
4: e = /f(m); 
5: w = s~^ mod n; 
6: ui = ew mod n; 
7: U2 = rw mod n; 
8: X = iii -P-f W2 -Q; 
9: if X=0 then 

10: Return "Rejected". 
11: end if 
12: Convert the x coordinate of X to an integer xi. 
13: V = xi mod n; 
14: if V = r then 
15: Return( Accept); 
16: else 
17: Return(Reject); 
18: end if 

2.5.5 Key Exchange 

In secret key cryptography, it is necessary that both parties at the sending and 
receiving ends agree on a secret key for transferring data in a secure way. Thus, 
several key agreement protocols have been proposed in order to establish a 
shared secret. The first such protocol is the DifRe-Hellman protocol, which 
provides the key establishment of a key with two message transfers. In the 
following, we will describe the basic Diffie-Hellman exchange protocol followed 
by its elliptic curve version. 

Diffie-Hellman Key Exchange Protocol 

Difhe-Hellman key exchange was invented in 1976 by Whitfield Difhe, Martin 
Hellman and Ralph Merkle. It was the first practical method for establishing 
a shared secret over an unprotected communication channel. Let us suppose 
that A and B have already agreed on working with a group G (for example, 
let us say the group of integers modulo p) and a generator element g in G. 
Then, the protocol dataflow is as follows (Figure 2.8): 

• A picks a random natural number a and sends g°' io B. 
• B picks a random number h and sends g^ to A. 
• A computes K=:(^^)". 
• B computes K=(^" 
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In the Diffie-Hellman protocol, g and p are the domain parameters and K is 
the private key for the session which can be used as a shared secret for secure 
communication between A and B via symmetric cryptography. 

Diffie-Hellman protocol is considered secure if G and g are chosen properly, 
i.e., the eavesdropper has an enormous difficulty to compute the element g""^, 
because he/she needs to solve the discrete logarithm problem over the group 
G. 

t known Diffie-Hellman B (g, G) 
I I known 
? geG b 
I G is a group of prime order p . ' 

g^ mod p g mod p 

K={Q'rmodp K=(g^f mod p 

Fig. 2.8. Diffie-Hellman Key Exchange Protocol 

Elliptic Curve DifRe-Hellman Key Exchange Protocol 

Let A and B agree on an elliptic curve E over a large finite field F and a point 
P on that curve. Then the necessary steps for exchanging a secret key by using 
elliptic curve discrete logarithmic algorithm are as shown in Figure 2.9. 

• A and B each privately choose large random integers, denoted ri and r2. 
• Using elliptic curve point-addition, A computes riP on E and sends it to 

B. B computes r2P on E and sends it to A. 
• Both A and B can now compute the point r\r2P by performing the eUiptic 

curve scalar multiplication of the received value of r2P, viP by his/her 
secret number r i , r2, respectively. 

A and B agree that the x coordinate of this point will be their shared 
secret value. 

2.6 A Comparison of Public Key Cryptosystems 

Due to the high difficulty of computing the elliptic curve discrete logarithm 
problem, one can obtain the same security provided by other existing public-
key cryptosystems, but at the price of much smaller fields, which automati­
cally implies shorter key lengths. Having shorter key lengths means smaller 
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A EC Diffie-Hellman B 
I I 
ri P e E(Fq): / + xy = x^ + ax^ + b ^2 
' P is a point on the curve of prime order n ' 

Q/\= riP QB^ r2P 

1' H 
Q-nQ, °'"°' 

Fig. 2.9. Elliptic Curve Variant of the DifRe-Hellman Protocol 

bandwidth and memory requirements. These characteristics are especially im­
portant in most embedded system applications, where both memory and pro­
cessing power are constrained. 

High performance implementations of elliptic curve cryptography depend 
heavily on the efficiency in the computation of the finite field arithmetic op­
erations needed for the elliptic curve operations. On the other hand, the level 
of security offered by protocols such as the Diffie-Hellman key exchange al­
gorithm relies on exponentiation in a large group. Typically, the implementa­
tion of this protocol requires a large number of exponentiation computations 
in relatively big fields. Therefore, hardware/software implementations of the 
group operations are, for all the practical sizes of the group, computationally 
intensive. 

Nowadays, there exist algorithms able to solve the factorization problem 
as well as the discrete logarithm problems in a sub-exponential time. For 
instance, the Number Field Sieve (NFS) [203] is the best option for solving 
the integer factorization problem. The Number Field Sieve (NFS) [115] and 
the Pollard's rho algorithm [273] can solve the discrete logarithm problem. 

In the case of RSA, the largest RSA modulus factored is a 640-bit (193-
digit) integer in November, 2005 [195]. In the case of ECDSA, the largest 
known example was solved using the Pollard's rho method for both, prime 
and binary finite fields. The elliptic curve discrete logarithm problem for an 
elliptic curve over a 109-bit prime field was broken on November 2002 [44], 
whereas another elliptic curve defined over a 109-bit binary field was broken 
in April, 2004. The effort required 2600 computers and took 17 months [45]. 
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2.7 Cryptographic Security Strength 

Some of the major factors that determine the security strength of a given 
symmetric block cipher algorithm include, the quality of the algorithm itself, 
the key size used and the block size handled by the algorithm^. 

The security strength of an n-bit key symmetric block cipher algorithm, 
which has no known security flaws, is measured in terms of the amount of 
work it takes to try all possible keys, an attack traditionally known as the 
brute-force attack. 

A generic cryptographic algorithm that has an m-bit key, but whose 
strength is comparable to an n-bit key of a strong symmetric block cipher 
algorithm is said to have an equivalent n-bit security strength. In general, 
however, the equivalent n-bit security strength of a given algorithm is less 
than m due to the possibility that certain specific attack to that algorithm 
may provide computational advantages compared with the brute-force attack 
[257]. 

Determining the security strength of an algorithm is not trivial. For ex­
ample, one might expect that 3TDEA would provide 56 * 3 •= 168 bits of 
strength. However, the so-called birthday and meet-in-the-middle attacks on 
3TDEA [227, 315] reduces the strength of 3TDEA to merely 112-bit equiv­
alent security strength. In the case of 2TDEA, provided that the attacker 
can manage to gather approximately 2̂ °̂ plaintext-cipher pairs, then 2TDEA 
would have a strength comparable to an 80-bit algorithm [257]. 

On the other hand and due to performance, functionality or compatibiHty 
reasons, algorithms of different strengths and key sizes are frequently com­
bined in the same application. In general, the weakest algorithm and key size 
used for cryptographic protection determines the strength of the protection 
provided to the system. As an example, if SHA-512 is used with 1024-bit RSA, 
only 80-bit of security strength will be provided to data application. If the 
application requires 128 bits of security, then 3072-bit RSA key must be used. 
Alternatively, 256-bit ECC can be used to substitute RSA as a public key 
cryptographic engine. 

Table 2.1 compares the security strengths of a set of algorithms divided 
into three categories: Symmetric block cipher algorithms, pubhc key crypto-
systems and hash functions. Notice, however, that novel or improved attacks 
and/or technologies may be developed in the future, leaving some of the al­
gorithms included in Table 2.1 partially or completely broken. In particular, 
all hash functions listed in Table 2.1 have recently been subject of successful 
attacks, thus casting doubts on their security [368, 369, 103]. 

The block size is also a factor that should be considered, since if a collision-attack 
is launched, collisions become probable after 2 2 blocks have been encrypted with 
the same key for certain block ciphers' modes of operation [71, 70, 69]. 
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Table 2.1. A Comparison of Security Strengths (Source: [258]) 

27 

Private key Algorithm 
Two-key triple DES 
Triple-key triple DES 
128-bit AES 
192-bit AES 
256-bit AES 

Public key Algori thm 

DSA ( p = 1024,9= 160) 
DSA (p = 2048, 9 = 224) 
p S A (p = 3072, 9 = 256) 
DSA (p = 7680,9 = 384) 
DSA ( p = 15360,9 = 512) 
1024-bit RSA 
2048-bit RSA 
3072-bit RSA 
7680-bit RSA 
15360-bit RSA 
{160-223}-bit ECC 
{224-255}-bit ECC 
{256-383}-bit ECC 
{384-511}-bit ECC 

[{512-}-bit ECC 

[Hash functions 

SHA-1 
SHA-224 
SHA-256, 
SHA-384 
SHA-512 

bit security 
80 
112 
128 
192 
256 

bit security 

80 
112 
128 
192 
256 
80 
112 
128 
192 
256 
80 
112 
128 
192 
256 

bit security 

80 
112 
128 
192 
256 

Expected Security lifetime 
through 2010 
through 2030 
beyond 2030 
beyond 2030 
beyond 2030 

Expected Security lifetime 

through 2010 
through 2030 
beyond 2030 
beyond 2030 
beyond 2030 
through 2010 
through 2030 
beyond 2030 
beyond 2030 
beyond 2030 
through 2010 
through 2030 
beyond 2030 
beyond 2030 
beyond 2030 

Expected Security lifetime 

through 2010 
through 2030 
beyond 2030 
beyond 2030 
beyond 2030 

2.8 Potential Cryptographic Applications 

During the last few years we have seen formidable advances in digital and 
mobile communication technologies such as cordless and cellular telephones, 
personal communication systems, Internet connection expansion, etc. The vast 
majority of digital information used in all these applications is stored and also 
processed within a computer system, and then transferred between computers 
via fiber optic, satellite systems, and/or Internet. In all those new scenarios, 
secure information transmission and storage has a paramount importance in 
the international information infrastructure, especially, for supporting elec­
tronic commerce and other security related services. 

Under such a dynamic scenario, some of the most popular applications in 
the domain of information security include. 



28 2.A Brief Introduction to Modern Cryptography 

• Secure e-mail 
• World Wide Web 
• Client-Server transactions 
• Virtual Private Networks 
• E-cash 
• Electronic Financial transactions 
• Grid Computing 

Many multinational firms now sell security products using cryptographic 
algorithms. Those products are in use by military or government organizations 
and they play a vital role in secure communications between individuals, small 
and large business groups. 

Various international organizations have been working in developing stan­
dards for determining security and speed of products such as cellular phones, 
video conferencing equipment, secure telephone, etc. Examples include stan­
dards for video conferencing: H310, H323, H324 by ITU [154], for mobile 
communications: GSM by ETSI [87], for wireless LANs: 802.11a, 802.11b by 
IEEE LAN/MAN Committee [144], etc. 

Numerous useful activities for increasing the security of cryptographic 
algorithms have happened in the few last years. The selection of the new 
Advance Encryption Standard (AES) 'Rijndael' and the inclusion of Elliptic 
curve cryptography (ECC) in international standards provide such examples. 

Promising applications for cryptographic algorithms may be classified into 
two categories [250]. 

1. Processing of large amount of data at real time potentially in a high 
speed network. Examples include telephone conversation, telemetry data, 
video conferencing, streaming audio or encoded video transmissions and 
so forth. 

2. Processing of very small amount of data at real time in a moder­
ately high-speed network transmitted unpredictably. Examples include e-
commerce or m-commerce transactions, credit card number transmission, 
order placement with signature, bank account information extraction, e-
payments, and micro-browser-based (WAP-style) HTML page browsing 
and so forth. 

A short list of the candidate applications corresponding to category 1 are 
presented in Table 2.2. Those applications belong to the "highly efficient" 
category of appfications, thus requiring high data rates. 

Table 2.2 presents both the downstream and upstream data transfer ranges 
on VDSL (Very high speed Digital Subscriber Line) [88, 252]. The downstream 
defines transmission of line terminal toward network terminal (from customer 
to network premise) and upstream in the reverse direction, that is, from net­
work terminal to line terminal (from network to customer premise). 

Table 2.2 can help to mark a line between high speed (highly efficient) 
and low speed (slow or relatively less speed) applications. The data rates for 
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Table 2.2. A Few Potential Cryptographic Applications 

Application 

Distance learning 
Telecommuting 
Multiple digital TV 
Internet Access 
Web hosting 
Video conferencing 
Video on demand 
Interactive video 
Telemedicine 
High-definition TV 

Upstream 

384Kbps-l.5Mbps 
1.5Mbps-3.0Mbps 
6.0Mbps-24.0Mbps 
400Kbps-1.4Mbps 
400Kbps-1.5Mbps 
384Kbps-1.5Mbps 
6.0Mbps-18Mbps 
1.5Mbps-6.0Mbps 
6.0Mbps 
16Mbps 

Downstream 

384Kbps-l.5Mbps 
1.5Mbps-3Mbps 
64Kbps-640Kbps 
128Kbps-640Kbps 
400Kbps-1.5Mbps 
384Kbps-l.5Mbps 
64Kbps-128Kbps 
128Kbps-1.5Mbps 
384Kbps-1.5Mbps 
64Kbps 

highly efficient applications ranges from 384Kbps to 24Mbits for upstream 
and 64Kbps to 3Mbps for the downstream traffic. Prom Table 2.2, the appli­
cations requiring a speed factor of less than 400Kbps can be grouped as low 
speed apphcations. Those applications require either stand-alone software im­
plementations of cryptographic algorithms or the usage of software methods 
on embedded processors. High speed or highly efficient applications therefore 
reside in the range from 400Kbps onward. 

Software methods on general-purpose processors cannot achieve such a 
high frequency gains for cryptographic algorithms. On the other hand, high 
speeds above 400Kbps can easily be achieved on both hardware platforms, 
the traditional (ASICs) and the reconfigurable hardware FPGA devices. 

2.9 Fundamental Operations for Cryptographic 
Algorithms 

Symmetric or secret key cryptographic algorithms are based on well-understood 
mathematical and cryptographic principles. The most common primitives en­
countered in various cryptographic algorithms are permutation, substitution, 
rotation, bit-wise XOR, circular shift, etc. This is one of the reasons for their 
fast encryption speed. On the other hand, asymmetric or pubUc key crypto­
graphic algorithms are based on mathematical problems difficult to solve. The 
most common primitives in various such types of algorithms include modular 
addition/subtraction, modular multiplication, variable length rotations, etc. 
Those primitives give algorithmic strength but they are hard to implement: 
occupy more space and consume more time. 

Therefore those algorithms are not used for encrypting large data files, 
but rather, they are applied to other important cryptographic applications 
like key exchange, signature, verification, etc. 
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A detail survey conducted in [44], identifies the basic operations involved 
in several cryptographic algorithms. That survey has been slightly updated 
as shown in Table 2.3. 

Table 2.3. Primitives of Cryptographic Algorithms (Symmetric Ciphers) 

Modular addition or 
subtraction 

Bitwise XOR 

Bitwise AND/OR 
Variable-length rotations 
Fixed-length rotations 

Modular multiplication 
Substitution 

Permutation 
Non-circular shifts 

Blowfish, CAST, FEAL,GOST, IDEA, WAKE 
RC5, RC6, TEA, SAFER K-64, Twofish, RC4 
SEAL, TWOPRIME 
Blowfish, CAST, DEAL, TWOPRIME, FEAL, A5 
IDEA, COST, RC4, RC5, SAFER, SEAL, Twofish 
DES, WAKE, LOKI97, L0KI91, Rijndael, MISTY 
TEA, MMB, RC6, K-64 
MISTY 
CAST, Madryga, RC5, RC6 
DEAL, DES, CAST, FEAL, COST, Serpent, RC6 
Twofish 
CAST, IDEA, RC6, MMB, Rijndael, 
Blowfish, DEAL, DES, L0KI91, LOKI97, Twofish 
Rijndael 
DEAL, DES, ICE, L0KI91, LOKI97 
Serpent, TEA 

Prom Table 2.3, it is clear that most cryptographic algorithms include bit­
wise operations such as XOR, AND/OR, etc. Those operations can be nicely 
implemented on hardware platforms. Long word length is another peculiarity 
of cryptographic algorithms, which is recommended by various international 
standards in order to attain sufficient security against brute force attacks. 

The long key/word length of cryptographic algorithms is an obstacle for 
parallel dataflow on 8, 16, 32-bit general-purpose processors resulting on 
high time delays for the execution of crypto algorithms. This is not the case 
for hardware implementations. For example, in FPGAs, more than 1000 in­
put/output pins are available for their use as either input or output buflFers 
allowing high parallefism of data [392, 394]. 

In order to confuse the relationship between input and output, crypto­
graphic algorithms perform a number of iterations on the same input data 
block for one encryption. DES performs 16 iterations or rounds and AES sup­
port 10, 12, and 14 rounds depending on the word length. In software, all 
iterations are performed sequentially while in hardware, all rounds can be 
implemented in parallel, thus ensuing significant improvements in timings. 
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2.10 Design Alternatives for Implementing 
Cryptographic Algorithms 

The implementation approaches for cryptographic algorithms are based on 
the question: what needs to be secured? 

High-speed network where large amount of data traffic must be processed 
in unpredictable and in real time are not supposed to be a good candidate 
for software implementations as data is coming at significant high speeds and 
must be treated in real time. Examples of such situation include telephone 
conversation, video conferencing, and so forth. 

Hardware solutions on VLSI can accommodate high data rates but they 
take long development cycle for the application. Any change or modification 
in the design is a difficult or even impossible task. 

A hardware solution that overcomes the difficulties of VLSI designs, while 
still allowing high dataflow, is reconfigurable hardware platforms. Indeed, Re-
configurable hardware devices such as FPGAs (Field Programmable Gate 
Arrays) provide fast solutions in short time with a high degree of flexibility. 

Table 2.4 presents a quick comparison of reconfigurable logic against soft­
ware and VLSI based solutions. 

Table 2.4. Comparison between Software, VLSI, and FPGA Platforms 

Size 
Cost 
Speed 
Memory 
Flexibility 
Time-to-market 
Power consumption 
Testing/Verification 
Run-time configuration 

1 Software 

|small (depends) 
|low 
|low 
|fine 
1 highly flexible 
1 short 
[depends 
|easy 
|none 

VLSI 

big 
high cost 
Very high 
fine 
no flexibility 
very high 
low 
difficult 
none 

FPGAs 

small 
low cost 
high 
fine 
highly flexible 
short 
high 
easy 
yes 

Software implementations are low cost, easy to debug, take short time 
cycle but are slow. VLSI implementations are very fast but their application 
development cycle is too large and also they are not flexible. Reconfigurable 
devices are fast, highly flexible, easy to debug and take small developing cycle 
offering cost effective solutions. 

In summary, using reconfigurable hardware for cryptographic algorithms 
is beneficial in several ways: 

• Most cryptographic algorithms, especially symmetric ciphers, contain bit­
wise logic operations whose implementation fits very well on the FPGA 
CLB structure. 
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• In Section 2.9, it was mentioned the iterative nature of most cryptographic 
algorithms. An iterative looping design (IL) implements only one round. 
Hence, n iterations of the algorithm are carried out by feeding back pre­
vious round results. For a high speed network, instead of implementing 
one round, n rounds of the algorithm can be replicated and registers are 
provided between the rounds to control the flow of data. Reconfigurable 
FPGA logic results useful for both design strategies due to its high speed 
and high-density features. 

• Substitution is the fundamental operation in most block ciphers like DBS 
or Rijndael which implies the usage of lot of memory resources. The usage 
of pipeline design strategies, tend to provoke significant memory require­
ments. Fortunately modern FPGA families like Xilinx Virtex series device 
are equipped with more than 280 built-in memory blocks 4K each, called 
BlockRAMs (BRAM). 

• At the same time, in several contexts, designers may use reconfigurable 
FPGA logic to implement in the same hardware both the public key al­
gorithm for the generation and secure exchange of key and the private 
key algorithm traditionally used in the bulk encryption of the underlying 
traffic. 

• The usage of different cryptographic algorithms for various applications 
faces several compatibility issues. A dynamic configuration for any cryp­
tographic algorithm on FPGA might be a good compromise solution to 
this problem. 

• FPGA devices are ideal for debugging and fast prototyping, especially if 
the synthesized hardware description can be mapped by the design team 
from FPGA domain to ASIC. 

• The flexibihty for integration into larger platform together with straight­
forward architecture modifications are significant pluses for FPGA plat­
form implementations. 

2.11 Conclusions 

In this Chapter we gave a short introduction to the algorithms and security 
services corresponding to layers 2-4 of Fig. 2.1. This way, basic concepts of 
cryptography along with a description of the main building blocks necessary 
for constructing security applications was given. We described the basic op­
eration of symmetric block ciphers, hash functions, three major public key 
cryptosystems and the celebrated Diffie-Hellman key-exchange protocol. We 
also gave some comments on the security provided by the main cryptographic 
schemes and their equivalent security strength. Furthermore, alternatives for 
the implementation of cryptographic algorithms on various software and hard­
ware platforms were also analyzed and discussed. 

As a conclusion, we believe that Reconfigurable logic offers numerous use­
ful advantages, however its usage in inexpensive consumer-oriented devices 
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such as electronic gadgets, wireless PDAs and handsets seems to be impossi­
ble at present time. 

On the contrary, FPGA devices can be contemplated on embedded sys­
tems, large wireless equipments, electronic transmitters and receivers, re­
peaters, spectrum scanning devices, and intelligent equipment. 



Reconfigurable Hardware Technology 

An FPGA is an integrated circuit that belongs to a family of programmable 
devices called Programmable Logic Devices (PLDs). An FPGA contains 
tenths of thousands of building blocks, known as Configuration Logic Blocks 
(CLB) connected through programmable interconnections. Those CLBs can 
be reconfigured by the designers themselves resulting in a functionally new 
digital circuit, this way, virtually any kind of digital circuit can be imple­
mented using FPGAs [11, 272, 304, 244]. 

At first, FPGA devices were mainly applied for logic design, and as a 
consequence of that, numerous tools were designed for synthesizing logic de­
signs on them. Among those tools, Hardware Description Languages (HDL) 
and schematic diagram editors have been traditionally used as a starting point 
for such a synthesis process. Among the many hardware description languages 
available today, Verilog, and especially, VHDL, are the two most widely spread 
hardware languages. 

In recent years, FPGAs have been used for reconfigurable computing when 
the main goal is to obtain high performance at a reasonable cost out of hard­
ware implemented algorithms. The main advantage of FPGAs is their recon-
figurability, i.e., they can be used for different purposes at different stages of a 
computation and they can be, at least partially, reprogrammed on run-time. 
The two most popular FPGA manufacturers are Xilinx [396] and Altera [4]. 
Those two makers have over 70% of the FPGA market share. 

Besides Cryptography, applications of FPGAs can be found in the domains 
of evolvable and biologically-inspired hardware, network processors, real-time 
systems, rapid ASIC prototyping, digital signal processing, interactive multi­
media, machine vision, computer graphics, robotics, embedded applications, 
and so forth. In general, FPGAs tend to be an excellent choice when deal­
ing with algorithms that can benefit from the high parallelism offered by the 
FPGA fine-grained architecture. 
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In this chapter we present the generahties of FPGA technology. We stress 
that the material of this Chapter is mainly intended for those readers non-
familiar with this technology. 

We begin in Section 3.1 by reviewing some historical milestones of FPGA 
development and then we review in Section 3.2 the two most currently used 
FPGA technologies, namely, Xilinx and Altera. Then we compare in Sec­
tion 3.3 the performance of FPGA realizations against the ones on ASICs and 
general-purpose processor platforms. We continue in Section 3.4 by briefly 
introducing the reconfigurable computing paradigm main concepts. In Sec­
tion 3.5 we review several key strategies to achieve good designs for crypto­
graphic applications. Then, we define in Section 3.6 several metrics and figures 
of merit needed to evaluate design performance for reconfigurable computing 
as well as several security concerns related to FPGA technology. In Section 3.7 
we give a brief overview of some of the security concerns and attacks on FPGA 
technology. Finally, in Section 3.8 concluding remarks are given. 

More experimented readers might be interested in reviewing more ad­
vanced material. For them, we recommend excellent sources such as the ones 
found in [124, 365, 217, 199, 192]. Those readers having more technology ori­
ented interests may profit from consulting [259, 244] as well. 

3.1 Antecedents 

The concept of reconfigurable computing was first introduced by G. Estrin in 
1960 [101]. His invention consisted of a hybrid machine composed by a general 
purpose microprocessor interconnected with programmable logic devices. The 
programmable logic could be configured for accomplishing a specific function 
with the characteristic efficiency of hardware designs. Once the function was 
completed, another task could be performed by manually reconfiguring the 
hardware. This resulted in a hybrid computer structure combining the best 
features of software (flexibility) and hardware (speed) platforms. It is nothing 
but remarkable how Estrin's concept come close to what is oflFered by nowadays 
modern reconfigurable devices [217]. 

In the mid 1970s, Programmable Logic Devices (PLDs) were introduced by 
companies such as IBM, Monohthic Memories, Inc (MMI) and AMD. The first 
PLDs were called PAL (Programmable Array Logic) or PLA (Programmable 
Logic Array) depending on the programming scheme utilized [272]. Earlier 
PLDs consisted of logic gate arrays with no clocked memory components. 
However, registered PLDs including one flip-flop at each output of the circuit, 
were soon available. Register PLDs allowed for the first time the design of 
simple reprogrammable sequential circuits. 

An innovation of PAL devices was the Generic Array Logic (GAL) device, 
which had the same logical properties as the PAL but the functionahty could 
be erased and reprogrammed. From the point of view of today's standards. 
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PALs and GALs devices are small devices having an equivalent computational 
power of just some few hundred logic gates. 

As a consequence of Moore's law, the semiconductor technology has expe­
rienced an unrelenting improvement over the last three decades. That allowed 
the integration in the mid 1980s of several either GAL or PAL devices on the 
same chip, thus given birth to the CPLD (Complex PLD) devices. CPLDs 
can emulate the computational power of hundreds of thousands of logic gates 
and they are still very popular due to their outstanding cost-benefit compro­
mise (some CPLD devices can be bought for less than a dollar). A typical 
modern CPLD device has a structure consisting of several GAL blocks whose 
outputs are connected to a switch matrix used for programming the intercon­
nections as well as the Input/Output pins. Each GAL block consists of one 
or more programmable sum-of-products logic arrays ended with a relatively 
small number of registers. CPLDs are usually programmed via a serial data 
port that can be connected to a personal computer. Internally, the CPLD con­
tains a decoding module that interprets the data stream in order to perform a 
specific logic function. The preferred standard for this programming method is 
the IEEE 1149.1 standard usually known as Joint Test Action Group (JTAG) 
interface [272]. As of 2006, most CPLDs are non-volatile electrically-erasable 
programmable devices. 

Field Programmable Gate Array (FPGA) devices were introduced by Xil-
inx in the mid 1980s. Roughly speaking, FPGA devices are built using a 
grid of logic gates. They differ from CPLDs in several key aspects. FPGA 
architectures consists of a matrix of Configurable Logic Blocks (CLBs) inter­
connected by an intricate array of switch matrices. This architecture provides 
great flexibihty to hardware designers but it also implies much more sophis­
ticated routing technologies [123]. The fact that most modern FPGAs have 
higher-level embedded modules such as built-in multipliers, distributed RAM 
blocks and so on is another important difference with CPLD devices. More­
over, in contrast to CPLD devices, most modern FPGAs support (at least 
partially) in-system reconfiguration, thus allowing designs to be changed dy­
namically "on run-time". This feature can be particularly useful for system 
updates. 

Significant technical advances have led to architectures that combine 
FPGA's logic blocks and interconnect matrices, with one or more micropro­
cessors and memory blocks integrated on a single chip. This hybrid technology 
is called Configurable System-on-Chip (CSoC). Examples of the CSoC tech­
nology are the Xihnx Virtex-II PRO, and the Virtex-4 and Virtex-5 FPGA 
families, which include one or more hard-core PowerPC processors embedded 
along with the FPGA's logic fabric [398, 396, 397]. 

Alternatively, soft processor cores that are implemented using part of the 
FPGA logic fabric are also available. This approach is more flexible and less 
costly than the CSoC technology [217]. Many soft processor cores are now 
available in commercial products. Some of the most notorious examples are: 
Xihnx 32-bit MicroBlaze and PicoBlaze, and the Altera Nios and the 32-bit 



38 3. Reconfigurable Hardware Technology 

Nios II processor [394, 5]. These soft processor cores are configurable in the 
sense that the designer can introduce new custom instructions or processor 
data paths. Furthermore, unlike the hard-core processors included in the CSoC 
technology, designers can add as many soft processor cores as they may need 
(some designs could include 64 such processors or even more [130, 217]). 

Programmable 
Logic Devices 

(PLDs) 

GALs 

CPLDs 

F-PGAs 

CSoC f 

Fig. 3.1. A Taxonomy of Programmable Logic Devices 

Fig. 3.1 shows the taxonomy of the programmable logic devices just dis­
cussed. In the next Section, more specific details of the FPGA device internal 
architecture are given. 

3.2 Field Programmable Gate Arrays 

In a very rough way, an FPGA can be seen as a matrix of Configurable Logic 
Blocks (CLBs), where not only the logic but also the connection is user pro­
grammable. The specific design of the CLE blocks varies from manufacturer 
to manufacturer and even, from device to device. A CLE can be a^ simple as 
just one four-input Look Up table (LUT) or as complex as a 4-input Arith­
metic Logic Unit (ALU), or a 6-input Look Up Table [398]. It is customary 
to define the granularity of the reconfigurable logic as the size of the smallest 
functional unit that can be addressed by the programming tools. 

Architectures having finer granularity tend to be more useful for data ma­
nipulation at bit level and, in general, for combinatorial circuits. On the other 
hand, blocks with a coarse grain granularity are better suited for higher levels 
of data manipulation, for example, for developing circuits at register-transfer 
level. The level of granularity has a great impact in the device configuration 
time. Indeed, a device with low granularity (also known as fine-grained de­
vices) requires many configuration points producing a bigger vector data for 
reconfiguration. That extra routing has an unavoidable cost on power and 
area. 

On the other hand, a coarse grained architecture tends to decrease its per­
formance when dealing with computations smaller than what its granularity 
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is. For example, if for a specific application, bit-level operations are required 
and the smallest functional unit is four-bit wide, then a waste of three bits 
would occur. 

FPGA interconnection has a major role in the performance of an FPGA 
device due to the need of fast and efficient communication highways among 
the different logic blocks which are organized by rows and columns. Xilinx 
devices^ are equipped with four kinds of interconnects: long lines, hex fines, 
double fines and direct lines. Direct connect fines are intended for connecting 
neighbor components (for example, carry circuitry). Hex and double lines are 
medium length interconnects aimed for connecting many CLBs. Finally long 
lines interconnects are implemented along the whole chip and are normally 
utilized for global system signals. 

In recent years, huge technological developments have had a great impact 
on FPGA industry. The most advanced FPGA devices operate up to 550 
MHz internal clock with a gate complexity of over 10 Milfion gates on a single 
Virtex-5 FPGA chip using a technology of just 65 rjm operating at l.OV [395]. 
The improvements in technology are not only limited to an ever growing 
internal number of logic gates but also to the addition of many functional 
blocks like fast access memories, multipliers or even microprocessors integrated 
within the same chip. 

There are quite a few FPGA commercial manufacturers, and usually each 
one of them has developed one or more device families. Table 3.1 shows some 
of the most popular manufacturer families. 

Table 3.1. FPGA Manufacturers and Their Devices 

Manufacturer 
Xilinx 

Altera 
Lattice 
Actel 

Quick Logic 
Atmel 

Achronix 

F P G A Family 
Virtex-5, Virtex-4, 

VirtexII, Spartan HI 
Stratix, Stratix II, Cyclone 

LatticeXP 
Fusion, MTFusion 

Eclipse II 
AT40KAL 

Achronix-ULTRA 

Feature 
FPGA market leader 

6577m technology 
9077m technology 

first non-volatile FPGA 
first mixed-signal FPGA 

programmable-only-once FPGA 
fine-grained reconfigurable 

1.6GHz - 2.2GHz speed 

3.2.1 Case of Study I: Xilinx FPGAs 

Table 3.2 shows the main features that are included in the Xifinx FPGA 
families: Virtex-5, Virtex-4, Virtex II Pro and Spartan 3E. The architecture of 
those Xilinx FPGA families consists of five fundamental functional elements. 

^ At the time that this book was being written, Xilinx released the Virtex-5 family 
which has a radically different CLB interconnection pattern [395]. 
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Fig. 3.2. Xilinx Virtex II Architecture 

Table 3.2. Xihnx FPGA FamiUes Virtex-5, Virtex-4, Virtex II Pro and Spartan 3E 

Feature/family 

Logic Cells 
BRAM 

(ISKbits each) 
Multipliers 

DCM 
lOBs 

DSP Slices 
PowerPC Blocks 

Max. freq. 
Technology 

Price 

Virtex-5 

up to 330K 
576 

32 - 192' 
up to 18 

up to 1200 
32-192 
N/A 

550MHz 
l.OV, 65?7m 

copper CMOS 
N/A 

Virtex-4 

12K-200K 
36-512 

32-512 
4-20 

240-960 
32-192 

0-2 
500MHz 

1.2V, 90r)m, 
triple-oxide process 

From $345 

Virtex II Pro 

3K-99K 
12-444 

12-444 
4-12 

204-1164 

— 
0-2 

547 MHz 
1.5V, 130r7m, 

9-layer CMOS 
From $139 

Spartan 3 & 3E | 

1.7K-74K 
4-104 

4-104 
2-18 

63-633 

-
-

up to 300MHz 
1.2V, 90r/m, 

triple-oxide process 
From $2 up to $85 

'25 X 18 embedded multipliers 

• Configurable Logic Block (CLB) and Slice architecture; 
• Input/Output Blocks (lOBs); 
• Block RAM; 
• Dedicated Multipliers and; 
• Digital Clock Managers (DCMs). 

Those components are physically organized in a regular array as shown in 
Fig. 3.2. In the following we explain each one of those five elements^. 

^ Virtex-5 devices can be considered second generation FPGA devices. In particu­
lar, a Virtex-5 slice contains four true 6-input Look Up Tables (LUTs). 
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SHIF 

T 

Silice 
X0Y1 

Silice 
XOYC 

i I 
TOUT 1. 

COUT 

Silice 
X1Y1 

Silice 
X1Y0 

GIN 

* -m\ 

Fig. 3.3. Xilinx CLB 

Configuration Logic Blocks (CLBs) 

The Configurable Logic Blocs (CLBs) are the most important and abundant 
hardware resource of an FPGA. They are typically utilized for both, combi­
natorial and synchronous logic design. Each CLB is composed of four slices^ ̂  
which are interconnected as shown in Fig. 3.3. The slices are grouped by pairs 
and each pair is organized by a column with independent carry chain [395]. 

All four slices have the following common elements: two Look-Up Tables 
(LUTs), two type D fiip-flops, multiplexers, logic circuits for carry handling 
and arithmetic logic gates. Both, the left and right pair of shces utihze those 
elements for providing logic functions, arithmetic and ROM. Besides that, the 
left pair supports two additional functions: data storage using a distributed 
RAM and 16-bit shift register functionahty. Fig.3.4 shows the internal struc­
ture of a CLB. The atomic building block of a Virtex CLB is the logic cell 
(LC). An LC includes the Look-Up Table block, carry logic, and a storage 
element (flip-flop) as shown in Figure 3.5. 

As it was mentioned, a CLB can be configured to work into two modes: 
logic) mode and memory mode. As shown in Fig. 3.6, in logic mode, each CLB 
Look Up Table behaves as a combinational logic block and a one bit register. 
In the case of Xihnx devices those Look Up Tables can be reprogrammed 
to any arbitrary combinational logic function of four inputs/one output. In 
memory mode. Look Up Table blocks behave as two small pieces of memory 
blocks. 

^ Slice is a term introduced by Xilinx. It specifies a basic processing unit in a Xilinx 
FPGA. 
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Fig. 3.4. Slice Structure 
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Input/Output Blocks 

Input/output Blocks (lOB) provide a bidirectional programmable interface 
between the outside world and the internal logic structure of the FPGA device. 
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There exist three types of routing possibilities for an lOB: output signal, input 
signal and third state (high impedance) signal. Each one of those signals has 
their own pair of storage elements that can behave as registers or as latches 
[395]. 

Block R A M 

Virtex devices include built-in 18K-bit RAM memory, called BRAM. BRAMs 
can be configured in a synchronous manner. BRAMs are intended for storing 
big amounts of data, while the distributed RAM is more useful for storing 
small amounts of data. 

BRAMs are polymorphic blocks in the sense that its width and depth 
can be configured. Even multiple blocks can be connected in a back-to-back 
configuration in order to create wider and/or deeper memory blocks. A BRAM 
block supports several configuration modes, including single or double port 
RAM and several possible combination of data/address sizes as is shown in 
Table 3.3. 

Table 3.3. Dual-Port BRAM Configurations 

Configuration 

16K X 1 bit 
8K X 2 bit 
4K X 4 bit 
2K X 9 bit 
IK X 18 bit 
512 X 36 bit 

Depth 

16Kb 
8Kb 
4Kb 
2Kb 
1Kb 
512 

Data bits 

1 
2 
4 
8 
16 
32 

Parity bits 

0 
0 
0 
1 
2 
4 

18x18 Bit Multiplier 

Xilinx FPGAs have several dedicated multiplier blocks. Those multipliers ac­
cept two 18-bit operands in two's complement form computing their product 
also in two's complement form. Such multipliers blocks have been optimized 
for performing at a high speed while their power consumption is kept low when 
compared with multipliers directly implemented using the CLB resources. The 
total number of multipliers varies from device to device as is shown in Table 
3.2. 

Digital Clock Managers 

Digital Clock Managers (DCMs) provide a flexible control over clock fre­
quency, phase shift and skew. The three most important functions of DCMs 
are: To mitigate clock skew due to different arrival times of the clock signal, 
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to generate an ample range of clock frequencies derived from the master clock 
signal and, to shift the signal of all its output clock signals with respect to 
the input clock signal. 

3.2.2 Case of Study II: Altera FPGAs 

Altera offers a wide variety of programmable hardware devices which are 
grouped into four categories [4]. 

• Complex Programmable Logic Devices(CPLDs) 
• Low-Cost FPGAs 
• High-density FPGAs 
• Structured ASICs 

CPLDs 

Altera's CPLDs include MAX (EPM3032A, EPM3512A) and MAX-H (EPM 
240/G, EPM 2210/G) family of devices. They are low complexity, low density 
and easy to use CPLD family for which software tools can be downloaded 
from Internet and they are free of cost. 

Low-Cost FPGAs 

Cyclone (EP1C3,EP1C20) and Cyclone-II (EP2C5, EP2C7) family of devices 
are considered low cost FPGAs. Their main features include embedded DSP 
blocks, on chip memory modules and support for embedded processor (NIGS). 

High-Density FPGAs 

The category of high density FPGAs from Altera comprises Stratix-II (EP2S15, 
EP2S180), Stratix (EPISIO, EP1S80), Stratix^x-H (EP2SGX30C/D, EP2SG-
X130G) and Stratix^x (EPISGXIOC, EP1SGX40G) family of devices. Stratix 
and Stratix-II families are general purpose FPGAs with fast performance, 
large on-chip memory modules, and DSP blocks. StratixGx and StratixGx-H 
families, in addition, include integrated transceivers. 

Structured ASICs 

Structured ASICs comprise Hardcopy (HC1S25, HC240) and Hardcopy-II 
(HC210W, HC240) solutions. They have similar design flow as that of Stratix 
and Stratix-II respectively. They are low cost structured ASIC solutions with 
sufficient number of gates supported by all major EDA vendors. 

To provide an idea of what kinds of resources are present in Altera FPGA 
devices, let us discuss the structure of the Stratix family of devices. Detailed 
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data sheets of Stratix £ts well as all other Altera devices can be consulted 
in [4, 207, 208]. The quantitative information presented in this subsection 
has been extracted from [4]. Table 3.4 provides a quantitative measure of 
Stratix major resources, while Fig. 3.7 shows the physical distribution of those 
resources. 

Feature 

Logic 
Elements 
M512 RAM 
Blocks 
M4K RAM 
Blocks 
M-RAM 
Blocks 
Total 
RAM bits 
DSP Blocks 
Embedded 

1 Multipliers 
PLLs 

1 Maximum 
| l / 0 Pins 

Table 3.4 . Altera Stratix Devices 

Device \ 
EPISIO 
10,570 

94 

60 

1 

0.9205M 

6 
48 

6 
426 
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82 

2 

1.669M 

10 
80 

6 
586 

EP1S25 
25,660 

224 

138 

2 

1.945M 

10 
80 

6 
706 

EP1S30 
32,470 

295 

171 

4 

3.317M 

12 
96 

10 
726 

EP1S40 
41,250 

384 

183 

4 

3.423M 

14 
112 

12 
822 

EP1S60 
57,120 
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6 
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12 
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Fig. 3.7. Stratix Block Diagram 

As shown in Fig. 3.7, the main building blocks in Stratix devices are the 
following: 

• Logic Array Blocks (LABs) 
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• Memory Blocks 
• Digital Signal Processing (DSP) Blocks 
• Input/Output Elements (lOEs) 
• Interconnects 

Logic Array Blocks (LABs) 

LABs are arranged in rows and columns across the device. Each LAB consists 
of 10 Logic Elements (LE). An LE is the smallest unit in Stratix architecture. 
It contains four input LUT, carry chain with carry select capabihty and a 
programmable register as shown in Fig. 3.8. The LUT serves as a function 
generator which can be programmed to any function with four variables. By 
using LAB-wide control signal, a dynamic addition or subtraction mode can 
also be selected. It is to be noted that number of resources are not fixed for 
an LAB in all kind of Altera devices. As an example, a LAB in Stratix-II 
architecture comprises 8 Adoptive Logic Modules (ALM) where each ALM 
contains a variety of LUT-based resources. 
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Fig. 3.8. Stratix LE 

The Stratix LE can be configured into two modes: 

• Normal mode 
• Dynamic arithmetic mode 

In normal mode, a four input LUT can be used to implement any function. 
The normal mode is therefore useful for implementing combinational logic and 
general logic functions. In dynamic arithmetic mode, an LE utihzes four 2-
input LUTs which can be mapped to a dynamic adder/subtractor. First two 
LUTs perform two summations with possible carry-in and the other two LUTs 
compute carry outputs to drive two chains of the carry select circuitry. The 
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arithmetic mode is therefore useful for wide range of applications like adders, 
accumulators, wide parity functions, etc. 

Memory Blocks 

Three types of memory blocks are present in Stratix devices as shown in 
Fig. 3.7. Those are referred to as M512 RAM, M4K RAM and M-RAM 
(MegaRAM) blocks. M512 RAM is a simple dual port memory with sizes 
of 512 bits plus parity (576 bits). It can be configured as a maximum 18-bit 
wide single or dual port memory at up to 318 MHz. M4K is a true dual port 
memory with 4K bits plus parity. It can be configured as a maximum 36-bit 
wide dedicated dual port, simple dual or single port memory at 291 MHz. 
Several M-RAM blocks can also be located individually in logic arrays across 
the device. It is a true dual port memory with 512K bits plus parity (589,824 
bits). A single M-RAM can be configured as a maximum 144-bit wide dedi­
cated dual port, simple dual or single port memory which can operate at 269 
MHz. 

DSP Blocks 

Those are dedicated Stratix resources which are vertically arranged into two 
columns in each device. DSP blocks can be configured into either eight 9 x 9 -
bit multiplier, four 18 x 18-bit multiplier or one full 36 x 36 multipher. In 
addition, DSP blocks also contain 18 x 18-bit shift registers, Finite Impulse 
Response (FIR) and Infinite Impulse Response (HR) filters. 

Input/Output Elements (lOEs) 

Large number of lOEs can be located at the end of LAB row or column 
around the periphery of a Stratix device as shown in Fig. 3.7. Each I/O 
element comprises a bi-directional I/O buff"er and six registers for buff'ering 
input, output and output-enable signals. Each Stratix I/O pin is fed by an 
I/O element and support several single-ended and differential I /O standards. 

Interconnects 

All LEs within the same LAB, or all LABs within the same device or Memory 
blocks or DSP blocks can be interconnected. A single LE can drive 30 other 
LEs through locally available fast and direct link interconnects. A direct link 
is also used by adjacent LABs, memory and DSP block to drive LABs local 
interconnects. The availability of direct hnks helps in reducing row and column 
interconnects resulting on higher performance and flexibility. 
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Table 3.5. Comparing Cryptographic Algorithm Realizations on different Platforms 

Algorithm FPGA 
Throughput | year 

ASIC 
Throughput I year 

/^Processor 
Throughput year 

MD5 5.86 Gbps [156] 2005 2.09 Gbps [312] 2005 1.27Gbps (est)* [31] 1996 
SHA-1 0.9 Gbps 67] 2002 2.006 Gbps [312] 2005 0.678Gbps (est)* [31] 1996 
DBS 21.3 Gbps 301] 2003 lOGbps [381] 1999 0.127Gbps [22] 1997 
AES 25.1Gbps 113] 2005 7.5Gbps [303] 2001 0.8Gbps[109] 2004 

1024-bit RSA 6.1 mS 6] 2005 1.47mS [210] 2005 22.1mS [294] 2004 
ECC (binary) 17.64/iS [54] 2006 190/^8 [313] 2003 475/zS [133] 

20011 190MS[313] | 2 0 0 3 | 325/XS [133]" 

from the clock cycle count given in [31] 

2004 
ECC (prime) 3600AiS [262] 2004 
* Estimated for a 2GHz Pentium IV 

3.3 FPGA Platforms versus ASIC and General-Purpose 
Processor Platforms 

Table 3.5 presents a quick performance comparison of several relevant crypto­
graphic algorithms implemented in three different platforms: Reconfigurable 
hardware devices, ASIC and general purpose processors. We included imple­
mentat ions for hash functions (MD5 and SHA-1), block ciphers (DES and 
AES) and pubHc key cryptography (RSA and ECC) . All those algorithms will 
be studied in the next Chapters . 

Referring to Table 3.5, it is noticed t ha t software implementat ions are al­
ways slower t han either, ASIC or F P G A implementat ions. The performance 
gap of software implementat ions is more noticeable for block ciphers and for 
the binary elliptic curve cryptosystem. On the contrary, the best reported 
prime elliptic curve cryptosystem is faster than the fastest F P G A design re­
por ted in [262]. 

We stress t h a t the information included in Table 3.5 is intended for a first 
order comparison. As it has been already mentioned, it is extremely difficult 
to make fair performance comparisons among designs implemented in differ­
ent platforms using the different technologies available at the t ime of their 
publications. In the rest of this Section we give some more insights about the 
advantages/disadvantages of implementing a design on reconfigurable hard­
ware compared with other platform options. 

3 .3 .1 F P G A s v e r s u s A S I C s 

Traditionally, in the design of embedded systems, the Apphcation-Specific In­
tegrated Circuit (ASIC) technology has played a major role for providing high 
performance a n d / o r low cost building blocks necessary for the vast majori ty 
of systems during the (usually) large and sinuous design cycle. In 1980 the 
usage of reprogrammable components was introduced, and short after t ha t 
the first F P G A device was developed by Xilinx. F P G A devices offer shorter 
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design cycle because of its ability of providing fast and accurate functionality 
testing. 

However, the relatively high size and power consumption shown by FPGA 
devices has been the most important drawback of that technology towards an 
eventual substitution of the virtually ubiquitous ASIC technology. Therefore, 
historically FPGAs have been utilized primarily for prototyping development. 

In recent years, however, FPGA manufacturers have significantly reduced 
the gap that still exist between FPGA and ASIC technology, paving the 
way for the utilization of FPGA not only as prototype tools but also as 
key components of embedded systems or even, becoming the system itself 
[364, 149, 331, 199]. 

However, the exact size of the performance gap between FPGAs and ASICs 
is currently subject of intense analysis and debate. Recently, several experi­
mental results reported in [192], seems to suggest that for circuits designed 
utihzing the FPGA fabric only (i.e., LUTs and flip flops), an FPGA design is 
on average 40 times larger, consumes 12 times more dynamic power and it is 
3.2 times slower than a standard ASIC implementation. On the other hand, in 
[364] it was developed a low-power FPGA core which was specially tailored for 
battery-powered applications such as those found in the automotive industry. 
The experimental results show that this solution is competitive with similar 
ASIC solutions. 

Undoubtedly, new technological challenges must be faced for both, FPGA 
and ASIC platforms when the 45 rjm and 32 r]m technologies come to place. 
Under this scenario, it is not certain how FPGA new architectures will deal 
with the power consumption issue. It might be the case that manufacturers 
would need to trade device performance for a more flexible/predictable device 
power-consumption [141]. 

3.3.2 F P G A s versus General-Purpose Processors 

The speedup that one can expect by implementing an algorithm on an FPGA 
device rather than using a general purpose processor (i.e. the traditional CPU) 
has been well documented in the Hterature [365, 124]. In [124], speedups of 
one to two orders of magnitude were measured when executing benchmarks 
applications in the domains of video and image processing. Roughly speaking, 
the same range of speedups has been confirmed in cryptographic algorithms. 

From the quahtative point of view, it is interesting to study the main 
factors that produce this phenomenon. On the one hand, the typical maximum 
clock frequency achieved by FPGA designs fall in the range of 20MHz to 
lOOMHz, while embedded microprocessors have frequencies ranging from 300 
to 600 MHz and high-end workstation-class processors have frequencies of up 
to 3.2GHz. Hence, the clock frequency of general-purpose processors is 10-100 
times faster than the typical clock frequency found in FPGA designs. On the 
other hand, there are two factors that help to compensate and even overcome 
that component, namely, 
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1. FPGA Iteration-lev el parallelism^ obtained by, among others, loop-unroUing, 
pipeline and sub-pipeline techniques, and; 

2. FPGA Instruction efficiency, obtained by carefully designed datapaths, 
the insertion of distributed memory blocks as needed and, taking advan­
tage of the FPGA low granularity, the elimination of several instructions. 

Those two factors combine together for obtaining a notable reduction in 
the total number of clock cycles required by an FPGA implementation. That 
reduction impHes that CPU implementations may require up to 2500 times 
more clock cycles than that of FPGA implementations [124]. In other words, 
even though CPU platforms enjoy a much higher operating clock frequency, 
this factor is not enough for compensating the enormous clock cycle reduction 
that can potentially be obtained in FPGA platforms. 

In the context of Moore's Law, an examination of peak floating-point per­
formance trends for FPGA and CPU platforms is presented in [365]. The 
author concludes that although CPUs' performance obeys Moore's law (i.e., 
it doubles every 18 months), FPGA performance is growing at a rate of four 
times every two years. For applications using the FPGA new functionality 
(embedded multipliers, RAM blocks, etc.) the performance increase rate may 
be as high as five times every two years. 

3.4 Reconfigurable Computing Paradigm 

Reconfigurable computing may be defined as computer processing with highly 
flexible computing fabric. The main idea of reconfigurable computing is to 
take advantage of the best of two scenarios: flexibility from general purpose 
computing and speed from reconfigurable logic. 

Some of the reconfigurable computing distinguished features when com­
pared to general purpose microprocessors are [123]: 

• Due to the inherent fine-grained granularity the parallelism tends to be 
very high. 

• Registers, latches and even distributed RAM blocks can be created and 
distributed wherever needed by the data path. This characteristic has a 
tremendous impact on the device performance because reduces unneces­
sary re-computations and/or memory accesses. 

• The amorphous nature (lack of a fixed architecture) of reconfigurable com­
puting devices, allows the designers to tailor design's data path and control 
flow arbitrarily. 

FPGAs can be properly used for rapid prototyping algorithms at hard­
ware level. Considering the restrictions of FPGA devices, desirable FPGA 
appHcations should belong to one or more of the categories fisted below. 

1. Applications that employ only integer arithmetic or at most low precision 
fixed point arithmetic. 
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2. Applications that rely on logical operations to make decisions. Compara­
tors, selectors and multiplexers are good examples of that. 

3. Applications amenable for being decomposed in independent and pipelined 

4. Applications that show regularity in the way they apply a processing. 
5. Applications with locality in the interconnection network they require. 

That means that the apphcation modules should only have interconnec­
tions with their neighbors. 

Considering FPGA capabilities and limitations some potential applications 
for FPGAs are: 

1. Image processing algorithms such as point type operations (grey scale 
transformation, histogram equalization, requantization, etc.) and filtering 
(template matching, window techniques, convolution/correlation, median 
filtering, etc.) seem to be good candidates for FPGA implementation. 

2. Dynamic programming algorithms requiring only integer arithmetic. Dy­
namic programming is in essence a bottom up procedure in which solutions 
to all subproblems are first calculated and then these results are used to 
solve the whole problem. A good example of this approach is the Floyd's 
shortest path algorithm. 

3. Relaxation techniques requiring fixed point arithmetic. The relaxation 
technique is an iterative approach useful to many problems, which updates 
in parallel at each point and in each iteration based on the data available 
in the most recent updating or in the immediate preceding iteration. 

4. Associative retrieval operations. Filling and retrieving data by associa­
tion appears to be a powerful solution to many high volume information 
processing elements. An associative processing system is very adequate at 
recognition and recall from partial information and has remarkable error 
correcting capabilities. The major advantage of associative memory over 
RAM is its capability of performing parallel search and parallel compar­
ison operations. Th6?e are many examples of that kind of applications: 
pattern matching, artificial inteUigence, computer vision, data encoding, 
compression, and every application maintaining a dictionary data struc­
ture. 

5. Highly regular and iterative applications with non-standard word lengths. 
Cryptography is a meaningful example of this kind of applications since it 
applies basic transformations mostly based on bit-level operations. Those 
basic operations are performed in long wordlengths starting from 128 bits 
to up 4096 bits or even in wordlengths non-standard, such as 163 and 
233 bits (in the case of public-key cryptography). The basic transforma­
tions are repeated iteratively a number of times to process information in 
stages. In the following chapters we will explain how to take advantage of 
cryptographic algorithm features for reconfigurable computing. 
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3.4.1 F P G A Programming 

The design cycle for programming FPGAs starts with a behavioral descrip­
tion of the design, using either hardware description languages (HDLs) such 
as VHDL or Verilog or a schematic design entry. Thereafter, the HDL code 
is compiled in order to produce a netlist which represents the mapping of the 
HDL code to the actual target device hardware resources. After the first com­
piling step, the netlist is reprocessed in order to perform the place-and-route 
process whose main goal is to establish how the different design's modules 
are going to be physically allocated and connected. This will create a binary 
file which is used for programming or reprogramming the FPGA device. Most 
designs included in this book have been compiled using the Xilinx Integrated 
Software Environment (ISE) version 8.1i software [393]. 

Hardware Description Languages (HDLs) are analogous to other high level 
languages (C, C+-f, etc.) with some significant differences. Both types are 
processed by a compiler, and both of them are function-oriented languages. 
However they differ in the way that the compiled code is executed. HDL 
languages are used for formal description of electronic circuits. They describe 
circuit's operation, its design, and tests to verify its operation by means of 
simulation. Typical HDL compilers tools [393], verify, compile and synthesize 
an HDL code, providing a list of electronic components that represent the 
circuit and also giving details of how they are connected. 

3.4.2 VHSIC Hardware Description Language (VHDL) 

The Very-High-Speed Integrated Circuit Hardware Description Language 
(VHDL) was created by the US Department of Defense in the early 1980s. In 
December of 1987, VHDL was adopted as an IEEE Standard [272]. VHDL is 
a functional language that borrows much of its structure from the program­
ming language Ada along with a set of constructs for supporting the inherent 
parallelism of hardware designs. 

The original version of VHDL, included a wide range of data types such 
as, logical (bit and boolean), numerical, character and time, plus bit and 
character. In later versions, the stdJogic data type was introduced, along 
with signed and unsigned types to facilitate arithmetical operations, analog 
and mixed-signal circuit design extensions [367]. 

Furthermore, the designer can know how his/her HDL instruction was 
mapped to FPGA components (such as slices, flip-flops, tri-state buffers, etc.). 
For example, an if statement in HDL describes a multiplexer or a flip-flop. It 
can occur that the frequent use of this statement would insert large number of 
multiplexers or flip-flops in a circuit, which is functionally correct but may or 
may not be efficient. As a matter of fact, HDL languages have been designed 
favoring a hardware designer perspective, in the sense that first the specific 
hardware architecture should be envisioned, and then an HDL piece of code 
representing it should be written. If for instance a programmer requires a 
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flip-flop functionality then he/she should select a suitable flip flop for the 
design and then he/she can write a code for it. That would generate a list of 
components for an electronic circuit prior to its implementation providing a 
designer complete control over available/used FPGA resources. 

3.4.3 Other Programming Models for FPGAs 

Several voices, both from the Academia and Industry sectors, have stated 
that the main obstacle towards a massive use of reconfigurable computing 
lies in the difficulty of programming FPGA devices. After all, HDLs were de­
signed primarily from the perspective of designers trying to describe hardware 
structures, which quite often implies that an FPGA programmer should be 
primarily a hardware designer. 

Considering that, it has been proposed as an alternative to HDLs as design 
entry tool to combine high level languages (such as C or C-f-f) with concur­
rency primitives, thus allowing even faster design cycles for FPGAs than what 
is now possible using traditional HDLs [119, 189, 39, 229]. 

Table 3.6 shows some of the commercial software tools currently available 
in the market. 

Table 3.6. High Level FPGA Programming Software 

Vendor 
Celoxica 

Mentor Graphics 
Impulse Accelerated Tech. 
Annapolis Microsystems 

Open System C 
Initiative (OSCI) 

Product 
Agility Compiler 

Catapult C 
Impulse C 

Core Fire Design Suite 
SystemC 

Base Language 
Handel-C 

C 
C 

GUI Design Entry 
C-f+, 

IEEE standard 1666 

In other order of ideas, designing a complex system in FPGAs can be 
greatly alleviated by using existing pre-designed libraries. Those libraries, fre­
quently called IP (Intellectual Property) cores, have been fully tested and 
optimized for performing commonly used building blocks, such as large mul­
tiplexers, counters, divisors, digital filters and so forth. 

3.5 Implementation Aspects for Reconfigurable 
Hardware Designs 

3.5.1 Design Flow 

In general, most FPGA design tools consist of six basic steps [390] as shown 
in Fig. 3.9. Those steps must not be executed in a specific order but they can 
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Fig. 3.9. Design flow 

be repeated to improve design's performance. A short description of each step 
is provided below. 

1. Design Entry : There are two standard ways to specify an FPGA design, 
namely, 

• Design Entry through HDLs (Hardware Description Languages): A de­
signer can describe an FPGA design in high-level abstract language 
like VHDL (Very high speed integrated circuit Hardware Description 
Language) or Verilog. Those languages are ideal to build state ma­
chines, combinational logic, complex and large designs. Most software 
tools have sophisticated compilers that can efficiently translate HDL 
specifications to FPGA hardware resources. 

• Design Entry through Schematic: An FPGA design can also be de­
scribed by using library components of the devices through a graphi­
cal interface. It is easy to optimize a circuit for speed/area and conse­
quently it saves time and efforts of the design tool in hardware map­
ping, placement and routing, etc. However, it is hard to debug and 
modifications to the design are not straightforward as compared to 
design entry through HDLs. 

2. Functional verification and simulation: In this step, the logical cor­
rectness of an FPGA design is validated. Once that the design has been 
specified, either by using HDLs or schematic design entry, it is necessary 
to verify if such description meets the design specifications. 

3. F P G A synthesis: Synthesis converts a design entry specification into 
gates/blocks of an FPGA device. A netlist of basic gates is prepared from 
HDL/schematic design entry, which is further optimized at gate level. 
The next step is to map that netlist into IPPGA real resources. This is an 
important step based on design entry. When writing HDL code or using 
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schematic device's libraries, an FPGA designer should always take into 
account the basic structure of the target device. 

4. F P G A place and route: Place and route selects the optimal physi­
cal positioning of elementary design blocks and minimal interconnection 
distance among them. Place and route tools normally use device vendor 
specifications. Usually they provide hand-placement and also automatic 
features for optimizing critical paths either for speed or for area. 

5. Circuit analysis: Circuit analysis evaluates different design performance 
metrics. Timing verification is made which may differ from functional 
simulation as it provides logical correctness taking into account all circuit 
delays occurring in the real device. Similarly, a power analysis evaluation 
provides an estimation of the design power consumption. 

6. Programming FPGA device: Programming FPGA implies download­
ing bit stream codes from the last design steps onto the target FPGA 
device. Universal programming tools work with FPGAs from different 
vendors. However there are dedicated programming tools bounded only 
with a single family of FPGA devices. 

3.5.2 Design Techniques 

It has been observed that better design techniques for both design entry and 
design implementation play a crucial role for optimizing circuit's performance. 
A short description of some of those optimizing techniques is given below. 

Design Strategy 

Design strategy is application dependent. For some time critical applications, 
timing performance is the most important requirement regardless other factors 
such as hardware resources or device cost. On the contrary, other applications 
may require a design architecture as compact as possible or with a certain 
functionality. 

Block cipher cryptographic algorithms have an iterative nature, where n 
iterations (or rounds) having the same functionality must be executed. It is 
therefore possible to implement either just one round and consume n cycles 
(iterative looping), or n rounds of the algorithm (using a pipeline structure) in 
order to achieve high timing performances. The designer choice will be made 
depending on design's minimum requirements in terms of speed and area. 

Fig. 3.10 shows a basic methodology usually followed when implementing 
an FPGA design. 

Choice of Target Device 

Choosing the target device (FPGA) depends on the design strategy. As it 
is shown in Table 3.1, an ample spectrum of FPGA devices are available in 
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Fig. 3.10. Hardware Design Methodology 

the market from various manufacturers. The basic structure of all FPGAs is 
similar, however some models offer additional features like built-in-memories, 
built-in-arithmetic functions, etc. As it is shown in Table 3.2 for Xilinx de­
vices, different functionality and sizes are available depending on the device's 
cost. 

For example, in the case of block cipher designs it may be useful to select 
an FPGA device that has embedded Block RAMs (BRAMs) on it. As it was 
explained above, BRAMs are fast access memories and might be excellent 
choices for a straightforward implementation of the characteristic S-box blocks 
of symmetric ciphers. Alternatively, S-Boxes can be implemented using the 
FPGA CLB fabric configured in memory mode. 

In short, the selection of an FPGA depends upon the design size and design 
requirements. 

Design Analysis 

Design/algorithm analysis helps reducing the design's size and critical path 
delays. It might not be a good idea to directly implement a fast software code 
in hardware. Software codes are often optimized for high granularity proces­
sors, for example, 8, 16 or 32 bit general-purpose microprocessors. Due to 
its inherent low granularity, hardware implementations quite often can bene­
fit from a bit-level parallelism only limited by data dependencies or resource 
limitations. For instance, let us consider an instruction from a software code 
optimized for a 32-bit word-size general-purpose microprocessor: 

work - [((left > 16) | right) & Ox OOOOFFFF]; 

That requires 16 right shifts, one logical XOR and then one logical AND 
with Ox OOOOFFFF. In software platforms, we have no option but to execute 
an XOR operation for the 16 most significant bits of 32-bit 'left' and 'right' 
registers. 

On the contrary, in hardware description languages, the same instruction 
can be implemented almost for free, just caring for language notations. One 
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of the best options is to eliminate the AND operation and 16 logical Shifts by 
executing instead an XOR operation directly applied to the 16 most significant 
bits of left and right registers, that is, 

work = left[31:16] 0 right[31:16] 

Selecting F P G A Resources 

An FPGA designer can pick multiple options for performing a function. For 
example, two choices for implementing a 2-bit multiplexer are shown in Fig­
ure 3.11. 

SELECT^ 

A>^ 

B>+- ^ 

-OUT 

SELECT 

'OUT 

(a) (b) 

Fig. 3.11. 2-bit Multiplixer Using (a) Tristate Buffer, (b) LUT 

Figure 3.11.a shows usage of tri-state buffers for a multiplexer. A large 
number of tri-state buffers are available in FPGAs and it seems logical to make 
use of them. However, experience shows that, using large number of tri-state 
buffers slows down the circuit. This tends to require the physical distribution 
of tri-state buffers all around FPGA, which requires long routing paths. A 
multiplexer can also be implemented using LUTs as shown in Figure 3.11.b. 
Using adjacent LUTs for an n to 1 multiplexer would be useful when a circuit 
must be optimized for speed. 

Similarly, some FPGA devices contain built-in memory modules. It would 
be useful to utilize those memories as they provide faster access to the data as 
compared to distributed memories in FPGAs which are formed using several 
LUTs. 

Hardware Approach 

A careful selection and usage of the design tools results useful in our method­
ology for obtaining better performances. The design tools by Xilinx [390], 
Altera [3], Synopsis Galaxy Design Platform [351], LeonardoSpectrum and 
ModelSim by Mentor Graphics [231, 230], etc. provide several useful features 
for getting design improvements. Better placement of the components or bet­
ter routing of the architecture modules can be helpful in cutting critical path 
delays in the circuit. 
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3.5.3 Strategies for Exploiting FPGA Parallelism 

Achieving high-speed implementations for cryptographic algorithms is an ex­
citing task requiring deep considerations at every stage of the design. De­
sign strategies should therefore not only be based on the best implementing 
techniques on reconfigurable platforms but also on trying to innovate in the 
theoretical side by improving the standard transformations of cryptographic 
algorithms. In this sense, the designs included in this book try to take as 
much advantage as possible of the hardware inherent parallelism while keep­
ing as low as possible the hardware resource requirements. In the following 
we discuss various strategies used by designers to implement cryptographic 
algorithms. 

Iterative Looping (IL) 

An iterative looping design (IL), implements only one round and n iterations 
of the algorithm are carried out by feeding back previous round results as 
shown in Figure 3.12a. It utiUzes less area but consumes more clock cycles 
resulting on a relatively low speed encryption. 

Loop Unrolling 

Architecture with loop unrolling is shown in Figure 3.12b. In a loop unrolling 
or pipeline design (PP), rounds are replicated and registers are provided be­
tween the rounds to control the flow of data. The design offers high speed but 
area requirements tend to be too high. 

multiplexer 
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one f 
round i 

Combinational 
logic 
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n 
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multiplexer 

round 1 
round 2 

round n 

(a) (b) 

Fig. 3.12. Basic Architectures for (a) Iterative Looping (b) Loop Unrolling 
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Inner-Round Pipelining 

Figure 3.13a shows an inner-round pipehning architecture where extra reg­
isters are provided at different stages of the same round in such a way that 
several blocks of data can be processed by the circuit at the same time. This 
approach produces high speed circuits at the cost of more hardware resources 
in the form of registers. 

Outer-Round Pipelining 

Outer-round pipelining is created through loop unrolling by adding extra reg­
isters at different stages of the same round as shown in Figure 3.13b. This 
approach directly trades circuit speed with circuit area. 
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pipeline stage 1=round 1 

pipeline stage 2=round 2 
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Fig. 3.13. Round-pipelining for (a) One Round (b) n Rounds 

Both the iterative and pipeline architectures would be optimized for the 
implementation of secret-key ciphers. Pubhc key algorithms exhibit different 
nature. They do not have rounds however they maintain a hierarchical struc­
ture that can be further exploited. 

3.6 FPGA Architecture Statistics 

Just as it occurs with software platform comparisons, comparing FPGA de­
signs is a difficult and a bit ambiguous task. The two single most important 
performance metrics usually considered are the time complexity^ sometime 
called design throughput and the area complexity. 

For combinatorial designs (such as adders, squarers, fully-parallel multipH-
ers, etc), time complexity is determined from the Maximum Clock Frequency 
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(MCF), which in turns is proportional to the maximum combinational path 
delay. In the case of sequential designs (such as block ciphers, sequential mul­
tipliers, etc.), time complexity must also consider the total number of clock 
cycles required before the result is ready. In the case of block cipher designs, it 
is customary to consider also how many bits are processed at the same time. 
In this work we define the throughput of a given design as follows, 

Throughput 

Throughput is an important factor to measure timing performances of the 
design [82, 103, 382]. Throughput of the design is obtained by multiplying the 
allowed frequency for the design with the number of bits processed per cycle. 
For cryptographic algorithms, throughput is defined as: 

Throughput = ^ " " " - ^ a ^ y o f c y T e ^ " ^ " " ^ (b**^^) 

The higher the throughput of a design is the better its efficiency. 

Area 

Design statistics provided by the design software expresses hardware area 
occupied by the design. Unfortunately, there is no universal metric to measure 
the hardware costs associated with an FPGA based design. After mapping a 
design to a particular FPGA device, FPGA compiler provides FPGA resources 
utilized by that design. 

Following are some common FPGA resources listed by the mapping tool: 

• Number of slices 
• Number of Slice FHp Flops 
• Number of 4-input Look Up Tables (LUTs) 
• Number of Input/Output Blocks 
• Number of Clocks 
• Maximum combinational path delay 
• Maximum output required time after clock 
• Maximum Clock Frequency (MCF) 
• BlockSelect RAMs (BRAMs) 

A designer, however, can report hardware area in terms of LUTs as well as 
CLB slices. An ideal comparison would be therefore comparing all resources 
on the similar FPGA device. A design using dedicated resources of the device 
will show less logic resources as compared to other design which implements 
the whole logic without using any dedicated unit of the device. It also affects 
the throughput statistic. It has been experimentally observed that the imple­
mentation of even the same code on different grades of the same family of 
devices influence the final design's throughput. That situation becomes more 
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crucial when the same design targets two different devices by two different 
manufactures. In such cases, for the purpose of classifying an FPGA design, 
we can ignore some of those factors. 

It can be said, as a first approximation, that the fastest design is the one 
which achieves fastest speed no matter what type of device has been targeted 
for design implementation. However, when considering a compact design (a 
design optimized for hardware area), this criterion cannot be applied. The 
comparison of two compact designs can be only justified if it is made between 
similar devices. 

Both area and throughput factors provide a measure for comparing dif­
ferent designs. Additionally, in order to decide how efficient a design is, we 
utilize the following figure of merit. 

Throughput/Area 

It is the ratio of the above two figures of merits and shows how efficient the 
design is with respect to both area and throughput. The ratio is higher in case 
of high throughput and less space. 

3.7 Security in Reconfigurable Hardware Devices 

The selection of an implementation platform in a digital system depends on 
many design criteria. Besides the design performance figures such as, system 
speed and area costs, there exist other performance and security factors that 
should be taken into account such as: physical security (for instance, against 
key recovery and algorithm manipulation), flexibility, power consumption and 
other secondary factors, that may as well affect the design selections. 

Even though there exist a fair amount of papers reporting cryptographic 
implementations on FPGA devices, there are not that many papers reporting 
the convenience (or not) of utilizing FPGA as a target device for security 
applications from a system point of view. In particular, few works report the 
resilience of FPGA against physical or system attacks, which are potentially 
more dangerous than algorithm attacks [379, 342, 343]. 

In [380, 379] a comprehensive analysis of FPGA security aspects is given. 
Authors conclude that FPGA technology can provide a reasonable level of 
security when used properly. 

The fourth generation design security of Xilinx Virtex-4 family is equipped 
with bit-stream encryption/decryption technology based on 256-bit AES. The 
user generates the encryption key and encrypted bit-stream using Xilinx ISE 
software. In a second step, during configuration, the Virtex-4 device decrypts 
the incoming bit-stream using a decryption logic module with dedicated mem­
ory for storing the 256-bit encryption key [393]. 
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For the cryptographic apphcations, the most important threat is unautho­
rized access to a confidential cryptographic key, either a symmetric key or the 
private key of an asymmetric algorithm^. 

FPGA implementations are also vulnerable to side-channel attacks. A side 
channel attack is based on information gained directly from the physical im­
plementation. Examples for side channels include: power consumption, timing 
behavior, and electromagnetic radiation. Most relevant papers on side-channel 
attacks and related defenses have been published in [183, 184, 182, 159, 366, 
157, 278). 

Power analysis attacks were introduced in 1998 by Kocher et al. [186]. 
The main idea behind this attack is to measure the power consumption of the 
FPGA device during the execution of a cryptographic operation. Thereafter, 
that power consumption can be analyzed in an effort for finding regions in 
the power consumption trace of a device that are correlated with algorithm's 
secret key. 

In [262], the first experimental results of power analysis attack on an FPGA 
implementation of elliptic curve cryptosystem were presented. RSA, AES and 
DES FPGA implementations have also been subjects of attacks in [341, 342, 
343]. 

3.8 Conclusions 

In this chapter we presented some of the most relevant aspects related to 
FPGA devices considering both, technological and reconfigurable program­
ming aspects. 

The material covered in this Chapter includes a brief review of the tech­
nological antecedents that gave birth to FPGA devices. We also studied the 
structure of several emblematic FPGA families from the two market lead­
ers, Xilinx and Altera. We compare the performance of FPGA realizations 
against the ones on ASICs and general-purpose processor platforms and we 
briefly introduced the main concepts related to the reconfigurable computing 
paradigm. 

Furthermore, we reviewed several key strategies to achieve good designs 
when working with cryptographic applications. As a way to measure area and 
time performances for a given design, we defined several metrics and figures 
of merit. Finally, several security concerns related to FPGA technology were 
outhned. 

As it was described in the precedent chapter, most cryptographic algorithms have 
been standardized and therefore, they are publicly known. 



Mathematical Background 

The material presented in this Chapter, discusses several relevant mathemat­
ical concepts, fundamental for the understanding of elliptic curve public-key 
cryptosystems, the RSA algorithm, etc.. This material is also useful for a 
better understanding of the basic operations involved in the specifications of 
Rijndael algorithm (new Advanced Encryption Standard (AES)). 

For a more detailed treatment of these aspects, the reader is referred to 
Number theory books like [376, 220, 47, 297], and to excellent cryptography 
books such as [226, 176, 129, 227, 106, 107]. The material presented in this 
chapter was written based on [56, 42, 289]. 

The rest of this Chapter is organized as follows. In Section 4.1 we give 
several basic definitions and theorems of the elementary theory of numbers. 
Then, in Section 4.2 we explain the concept of finite field, defining the as­
sociated arithmetic operations. Elliptic curves defined over R are described 
in Section 4.3. Thereafter, in Section 4.4, elhptic curves defined over binary 
extension fields are discussed in more detail. Several coordinate systems for 
representing elliptic curve points are presented in Section 4.5. Then diff"er-
ent schemes for scalar representation are discussed in Section 4.6. Concluding 
remarks are given in Section 4.7. 

4.1 Basic Concepts of the Elementary Theory of 
Numbers 

Elementary theory of numbers is perhaps the single most important tool for 
developing cryptographic algorithms. Therefore, we start this chapter given 
some important definitions, theorems and results relevant to the subject of 
cryptography. 
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4.1.1 Basic Notions 

Definition 4.1 (Integer Numbers). Integer numbers are defined as the set 
of numbers Z — {..., —2, —1,0,1, 2, 3,.. .}. Within this set we have the subset of 
the natural numbers, N ={1,2,3,4, . . .}; i.e., the subset of all positive numbers 
(greater than zero) 

Definition 4.2 (Divisibility). Let a and b be two integers with a ^ 0. We 
say that a divides b, that a is a divisor or factor of b, that b is a multiple of a 
or that b is divisible by a, if there exists an integer k such that b — ak. This 
is written as a\b. If a does not divide b we write it as a J(b. 

Let a, b^ c e Z, some important divisibility properties are, 

i. For all a ^ 0, a\a. At the same time 1|6 for all 6, 
ii. If a\b then a\bc, 
Hi. If a\b and 6| c then a|c, 
iv. If a\b and a\c then a\{b ± c), 
V. If a\b and a J(c then a /(6 ± c), 
vi. If a\b and a\c then a\{sb H- tc) for any arbitrary integers s and t. 

Theorem 4.3 (Integer division theorem). Let a G Z and b e N. Then 
there exist q, r e Z with 0 < r < b such that a = m,q + r. Additionally, q and 
r are unique. 

Definition 4.4 (Greatest common divisor). Given two integers a and b 
different than 0, we say that the integer d > 1 is the greatest common divisor, 
or gad, of a and b if d\a, d\b and for any other integer c such that c\a and c\b 
then c\d. In other words, d is the greatest positive number that divides both, a 
and b. 

Some of the properties of the greatest common divisor are, 

• gcd{a,b) = gcd{\a\,\b\) 
• gcd(ka,kb) =k gcd{a,b) 
• gcd{a,b) — d <=^ d\a,d\b and gcd{aldfi/d)—l 

It is possible to compute the greatest common divisor by means of the 
Euchdian algorithm shown in Algorithm 4.1. 

Definition 4.5 (Prime numbers). We say that a positive integer p > \ is 
a prime number if its only positive divisors are 1 and p. 

Definition 4.6 (Relative Primes). We say that two integers a and b are 
relatively primes if gcd(a,b)=l. 

Definition 4.7 (Composite Numbers). / / an integer number q > 1 is not 
a prime, then it is a composite number. Therefore, an integer q is a composite 
number if and only if there exist a,b positive integers (less than q) such that 
q = ab. 
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Algorithm 4.1 Euclidean Algorithm (Computes the Greatest Common Di­
visor) 
Require: two positive integers a and 6 where a > b. 
Ensure: the greatest common divisor of a and b, namely d — gcd{a,b). 
1: while 6 7̂  0 do 
2: r ^— a mod 6; 
3: a <- 6; 
4: 6 <— r; 
5: end while 
6: Return a 

Theorem 4.8 (Fundamental Theorem of Arithmetic). Any natural 
number n > 1 is either a prime number, or it can be factored as a product of 
powers of prime numbers pi, 

with Ci G N, V i G [l,/-]. Furthermore, except for the order of the factors, 
this factorization is unique. 

Corollary 4.9. / / n G N, then the number of positive divisors of n is (ei + 
I)(e2 + l ) - - - ( e r 4 - l ) . 

Corollfiry 4.10. If p is a prime number, a, b e Z and p\ab then p\a or p\b. 

Notice that above result is not necessarily true if p is a composite number. 
For example, 10|5 • 4 but 10 /5 and 10 /4. 

n m 

Let a, 6 G N C Z and a — TTpiS and ^ — TT 9j ? be their prime fac-
i = l 3=1 

torization with I < i < n, 1 < j < m. Let Ri, R2,... ,Rs be the distinct 
prime numbers that are included in both factorizations. Rewriting a and b as 

s s 

a = jQ J?*% 6 = J l R'!^' with ti, î i > 0 for 1 < z < 5, we have, 

s 

gcd{a, )̂ -= n ^"i" 
^mm{ti,Ui} 

Example 4'ii-

2520 - 2^ • 3^ • 5^ • 7̂  

2700 = 2^ • 3^ • 5^ • 7° 

then gcd{2520, 2700) :== 2^ • 3^ • 5^ = 180. 
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Definition 4.12. Let n G N. We define the Euler function (j){n), as the num­
ber of relatively prime numbers that n has in the interval [I, n). 

In other words, 0(n) = \{m G N : gcd{m, n) = 1 and 1 < TTI < n} | . Let p 
be a prime number and m, n, r G N with r > 1, then 

i. (fiip^) = p^ (1 — ^ j — p^~^{p — 1), In particular (/)(p) = p — 1, 

ii. (j){mn) = (f){m)(j){n)^ if gcd{m,n) = 1. 

Therefore, we may compute the Euler function 0 for a given number n by 
obtaining first the integer factorization of n. 

Example 4-^3. 

0(720) = 0(2^)0(3^)0(5) - 2 ^ . ( 2 - l ) - 3 ^ • ( 3 - l ) - ( 5 - l ) = 192. 

Theorem 4.14 (Fermat's Little Theorem). If{a,p) = 1, then 

^p-i ^ 2 mod p, (a^ = b mod p) 

a</>(p) ^ 1 mod p. 

Corollary 4.15. If x = y mod (p — 1), ^/len a^ = a^ mod p. 

Theorem 4.16 (Euler Theorem). If a e Z and gcd(m,a)=l then 

Corollary 4.17. If x = y mod 0(m), ^/len â  = a^ mod m. 

Definition 4.18 (Order of a number x). If x andm are relatively primes, 
we say that the order of x modulo m is the smallest integer r such that 

a^ = 1 mod m. 

Definition 4.19 (Primitive Root) . Let m be a prime number and g G Zm, 
then we say that g is a primitive root of m, if and only if the order of g 
modulo m is equal to the value of the Euler function 0(m). According to Euler^s 
theorem, there is always a primitive root since, g^^"^^ = 1 mod m. 

Let gbea, primitive root of a prime number p, then the following properties 
hold, 

i. If n is an integer, then g'^ = 1 mod p if and only if n = 0 mod p — 1. 
ii. If j and k are two integers, then g^ = g^ mod p if and only if j = /c mod p— 

1. 
Hi. If a is a primitive root, then a^ is also a primitive root if and only if 

gcd{x,p- 1) = 1. 
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iv. If ^"' = 1 mod p then n\{p — 1). 

If p = 1223, p — 1 = 2 • 13 • 47, if a is not a primitive root, then either a^^ or 
â ^ or a^^^ must be congruent 1 modulo 1223. o — 2, 3 are not primitive roots, 
since 2^^^ = 3 '̂̂  = 1 mod 1223. However, a = 5 is a primitive root since, 

a^e, a^\a^^^ ^ 1 mod 1223. 

Furthermore, using above properties we can see that 5^ = 25 is not a primitive 
root since gcd(2,p — 1) ^ 1. On the other hand, the element 5"̂  = 125 is a 
primitive root given that gcd{3,p — 1) — 1. 

4.1.2 Modular Arithmetic 

Definition 4.20 (Congruency). Given m € Z , m > 1, we say that a, 6 G Z 
are congruent modulo m if and only if m\{a — b). We write this relation as 
a = b mod m. Where m is the modulus of the congruency. Notice that if m 
divides a — b, this implies that both, a andb have the same residue when divided 
by m. 

We define Z ^ as the set of all positive residues modulo m, which is com­
posed by the set, Z ^ == {0,1, 2,..., m — 1}. Invoking the integer division the­
orem it is easy to see that for every integer a there exists a residue r that 
belongs to Z^.. 

If m G N and a,b,c,d e Z such that a = b mod m and c = d mod m, then 
the following properties hold, 

• a-{- c = b -\- d mod m 
• a — c = b — d mod m 
• a ' c = b ' d mod m 

The relationship of congruency modulus m is a relationship of equiva­
lence for all m G Z. Let a,b,c e Z, then the congruence relation satisfies the 
following properties, 

1. Reflexive: a = a mod m. 
2. Symmetric: If a = 6 mod m then b = a mod m. 
3. Transitivity: If a = 6 mod m and b = c mod m then a = c mod m. 

Modular Addition and subtraction If tt, 6 G Zfji then we define the mod­
ular addition operator a -f- 6 mod m as an element within Z ^ . For example, 
17 + 20 mod 22 — 15. The most important properties of the modular addition 
are, 

1. It is commutative, a -\-b mod m = b-{- a mod m. 
2. It is associative, (a 4- 6) + c mod m = a + {b-\- c) mod m. 
3. It has a neutral element (0), such that a + 0 = a mod m. 
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4. For every a and b in Z ^ there exists a unique element x in Z ^ such that 
a -\- X = b mod m. 

Using last property and 6 = 0, it can be seen that for every a in Zm there 
exists a unique element X in Ẑ Tj, such that ci -f- x = 0 mod ui. 

Modular multiplication If a,b G Z ^ then we define modular multiplica­
tion as, c = a • 6 mod m, where c is an element in Z ^ . The most important 
properties of modular multiplication are, 

1. It is conmutative a • b mod m = b - a mod m. 
2. It is associative (a • 6) • c mod m — a • (6 • c) mod m. 
3. It has a neutral element (1), such that a • 1 = a mod m 
4. If gcd{m^ c)=l and a • c = 6 • c mod m, then a~b mod m. If m is a prime 

number, this property always hold. 

Using last property, we define the multiplicative inverse of a number a as 
follows. 

Definition 4.21 (Multiplicative Inverse). We say that an integer a has 
an inverse modulo m if there exists an integer b such that I = ab mod m. 
Then, the integer b is the inverse of a and it is written as a~^. The inverse 
of a number a mod m exists if and only if there exist two integer numbers x, 
y such that ax -f my = 1 and these numbers exist if and only if gcd(a,m)=\. 

In order to obtain the modular inverse of a number a we may use the extended 
EucHdean algorithm [178], with which it is possible to find the two integer 
numbers x, y that satisfy the equation^, 

ax -f my = 1. 

Modular Division Using above definition we say that if a, 6 G Zp and p 
is a prime number, we can accomplish the division of a by 6 by computing 
a ' b~^ mod m, where b~^ is the multiplicative inverse of 6 modulo p. 

For example, we can compute ^ mod 23 , by performing 17 • (20)"^ mod 
23, where (20)"^ mod 23 = 15. Thus, 

]- mod 23 - 17 • 15 mod 23 = 2. 
20 

Modular Exponentiation We define modular exponentiation, as the prob­
lem of computing the number 6 = a^ mod m, with a,b e Z ^ , and e G N. From 
the observation that, 

X ' y mod m = [{x mod m) • y mod m] mod m. 

^ In §6.3 we present an efficient implementation of a variation of this algorithm: 
the Binary Euclidean Algorithm (BEA). 
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A l g o r i t h m 4 .2 Extended Euclidean Algorithm as Repor ted in [228] 

Require: Two positive integers a and b where a > b. 
Ensure: d =gcd(a, 6) and the two integers x^y that satisfy the equation ax + by = d. 

1: if 6 = 0 then 
2: d = a;, X — 1;, y = 0] 
3: Return {d,x,y) 
4: end if 
5: xi = 0;, X2 = 1;, yi = 1;, 2/2 = 0; 
6: while 6 > 0 do 
7: q = a div b; r = a mod 6; 
8: x = X2- qxi; y = 2/2 - qyi] 
9: a = 6; 6 = r; X2 = a;i; 

10: a:i = a;; 2/2 = 2/i; 2/i = y\ 
11: end while 
12: d = a, X = X2, y = 2/2; 
13: Heturn {d,x,y) 

it can be seen t h a t the exponentiat ion problem, can be solved by multiplying 
numbers t h a t never exceed the modulus m. 

Rather t han computing the exponentiat ion by performing e — 1 modular 
multiplications as, 

e—lmults. 

b = a • a.. .a (mod m) , 

we employ a much more efficient method tha t has complexity 0{log{e)). For 
example if we want to compute 12^^(mod23), we can proceed as follows, 

12^ =:. 144 = 6 mod 23; 

12^ = 6 2 = 36 = 13 mod 23; 

12^ = 132 = 169 = 8 mod 23; 

12^^ = 8 2 = 64 = 18 mod 23. 

Then, 

12^6 = 12(16+8+2) ^ ^2^^ • 12® . 12^ = 18 • 8 . 6 = 864 = 13 mod 23. 

This algori thm is known as the binary exponentiat ion algori thm [178], 
whose details will be discussed in §5.4. 
C h i n e s e R e m a i n d e r T h e o r e m ( C R T ) This theorem hats a t remendous im­
por tance in cryptography. It can be defined as follows, 

Let Pi for i = 1 , 2 , . . . , /c be pairwise relatively prime integers, i.e.. 

gcd{pi,pj) = 1 for z^^ j . 
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Given Ui G [0,Pi — 1] for z = 1, 2 , . . . , /c, the Chinese remainder theorem states 
that there exists a unique integer u in the range [0, P—l] where P = p\P2 ' "Pk 
such that 

u = Ui (mod Pi). 

4.2 Finite Fields 

We start with some basic definitions and then arithmetic operations for the 
finite fields are explained. 

4.2.1 Rings 

A ring R is a set whose objects can be added and multiphed, satisfying the 
following conditions: 

• Under addition, M is an additive (AbeHan) group. 
• For all x; y; z E R we have, x{y -\- z) = xy -{- xz\ {y -h z)x — yx -\- zx \ 
• For all a:; y G R, we have {xy)z — x{yz). 
• There exists an element e G R such that ex = xe = x for all a: G R. 

The integer numbers, the rational numbers, the real numbers and the complex 
numbers are all rings. An element a: of a ring is said to be invertible if x has 
a multiplicative inverse in R, that is, if there is a unique ii G R such that: 
xu=^ ux = \. \ \s called the unit element of the ring. 

4.2.2 Fields 

A Field is a ring in which the multiplication is commutative and every element 
except 0 has a multiplicative inverse. We can define a Field F with respect to 
the addition and the multiplication if: 

• F is a commutative group with respect to the addition. 
• F \ {0} is a commutative group with respect to the multiplication. 
• The distributive laws mentioned for rings hold. 

4.2.3 Finite Fields 

A finite field or Galois field denoted by GF(g = p^), is a field with char­
acteristic p, and a number q of elements. Such a finite field exists for every 
prime p and positive integer m, and contains a subfield having p elements. 
This subfield is called ground field of the original field. For every non-zero 
element a G GF(g), the identity a^~^ = 1 holds. 

In cryptography the two most studied cases are: q = p, with p a prime 
and q = 2'^. The former case, GF(p), is denoted as prime field, whereas the 
latter, GF(2"^), is known as finite field of characteristic two or simply binary 
extension field. A binary extension field is also denoted as F2m. 
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4.2.4 Binary Finite Fields 

A polynomial p in GF{q) is irreducible if p is not a unit element and \ip — fg 
then f ox g must be a unit, that is, a constant polynomial. 

Let P{x) be an irreducible polynomial over GF{2) of degree m, and let a 
be a root of P(x), i.e., P{OL) = 0. Then, we can use P{x) to construct a binary 
finite field F = GF(2^) with exactly g = 2^ elements, where a itself is one 
of those elements. Furthermore, the set 

forms a basis for F , and is called the polynomial (canonical) basis of the field 
[221]. Any arbitrary element A e GF{2^) can be expressed in this basis as. 

A = ^ aia\ 
i=0 

Notice that all the elements in F can be represented as (m — l)-degree poly­
nomials. 

The order of an element 7 € F is defined as the smallest positive integer k 
such that 7^ = 1. Any finite field contains always at least one element, called 
a primitive element, which has order g — 1. We say that P{x) is a primitive 
polynomial if any of its roots is a primitive element in F . If P{x) is primitive, 
then all the q elements of F can be expressed as the union of the zero element 
and the set of the first g — 1 powers of a [221, 379] 

{ 0 , a , a 2 , a 3 , . . . , a ' - i = l } . (4.1) 

Some special classes of irreducible polynomials are more convenient for 
the implementation of efficient binary finite field arithmetic. Some important 
examples are: trinomials, pentanomials, and equally-spaced polynomials. Tri­
nomials are polynomials with three non-zero coefficients of the form, 

P{x) = x ^ + x ^ - f l (4.2) 

Whereas pentanomials have five non-zero coefficients: 

P{x) = x^ + x^2 4- x""' -f- x'̂ ^ -f 1 (4.3) 

Finally, irreducible equally-spaced polynomials have the same space separa­
tion between two consecutive non-zero coefficients. They can be defined as 

P{x) - o;^ + x(^-^)^ -f • • • + a;2̂  4- x^ + 1 , (4.4) 

where m = kd. The ESP specializes to the all-one-polynomials (AOPs) when 
d=^ I, i.e., P{x) = x^-\-x'^~^-\ hx-fl, and to the equally-spaced trinomials 
when d == f, i.e., P{x) = a:"̂  -I- x ^ -h 1. 
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In this Book we are mostly interested in a polynomial basis representation 
of the elements of the binary finite fields. We represent each element as a 
binary string {am-i • • • a2<^i«o), which is equivalently considered a polynomial 
of degree less than m, 

am-ix'^~^-^ • • •-^ ci2x'^ + aix-{-QQ, (4.5) 

The addition of two elements a,b e F is simply the addition of two poly­
nomials, where the coefficients are added in GF{2), or equivalently, the bit­
wise XOR operation on the vectors a and b. Multiplication is defined as the 
polynomial product of the two operands followed by a reduction modulo the 
generating polynomial p{x). Finally, the inversion of an element a e F is the 
process to find an element a~^ e F such that a - a~^ = mod P{x). 

Addition is by far the less costly field operation. Thus, its computational 
complexity is usually neglected (i.e., considered 0). Inversion, on the other 
hand, is considered the most costly field operation. 

Example 4-22. The sum of the two polynomials A and J5, denoted in hexadec­
imal representation as 57 and 83, respectively, is the polynomial denoted by 
D4, since: 

(a;̂  4- a:̂  4- x^ + x + 1) © (a;̂  + a; + 1) 

-: a;'̂  -f x^ + o;̂  -f x^ + (1 0 l)a; -f (1 0 1) 

= a:'̂  4- a;̂  + a;'̂  4- a;̂  

In binary notation we have: 01010111010000011 =- 11010100. Clearly, the 
addition can be implemented with the bitwise XOR instruction. 

Example 4-23. Let us consider the irreducible pentanomial P(x), defined as, 

P{x) == a;̂  4- x'̂  4- a;̂  4- a; 4- 1 (4.6) 

Since P(x) is irreducible over GF{2), we have constructed a representation for 
the field GF(2^). Hence we can say that byte chains can be considered as ele­
ments of GF(2^). For example, consider the multipfication of the field elements 
A = (57)i6 and B = (83)i6. The resulting field product, C =^ AB mod P{x), 
is C — (Cl)i6, since, 

{x^ -\-x'^ -{-x'^ -{-x-\-l) X {x'^ -^x-\-1) 

= {x^^ -h x^^ 4- a;̂  4- a;̂  4- x'^) 0 {x'^ 4- a;̂  + a;̂  + x^ + a:) 

0(a;^ -l-x^ -ha;2 4-a:-hl) 

and 

= x^^ 4- x^^ + x^ 4- x^ 4- x^ 4- x^ 4- x'̂  4- x^ 4-1 

{x^^ 4- x^^ 4- x^ 4- x^ 4- x^ 4- x^ 4- x^ 4- x^ 4-1) 

= x"̂  4- x^ -f 1 mod (x^ -h x^ 4- x^ 4- X + 1) 



4.3 Elliptic curves 73 

4.3 Elliptic curves 

The theory of elliptic curves has been studied extensively in number theory 
and algebra for the past 150 years. It has been developed a rich and deep 
theoretical background initially tailored for purely aesthet/c reasons. Elliptic 
curve cryptosystems were proposed for the first time by N. Koblitz [180] and 
V. Miller [236]. Since then a vast amount of literature has been accumulated 
on this topic. Recently elliptic curve cryptosystems are widely accepted for 
security applications hke key generation, signature and verification. 

Elliptic curves can be defined over real numbers, complex numbers and 
any other field. In order to explain the geometric properties of elliptic curves 
let us first examine elliptic curves defined over the real numbers E. 

Nonetheless, we stress that elhptic curves over finite fields are the only 
relevant ones from the cryptographic point of view. More specifically binary 
representation of elliptic curves will be discussed here which is directly related 
to the work to be presented in Chapter 10. 

In the rest of this section, basic definitions and common operations of 
elliptic curves will be explained. 

2/̂  = x^ + X + 9 2/̂  = rĉ  - 9a; -f- 9 y"^ = x^ -h 2x-\-6 

Fig. 4.1. Elliptic Curve Equation y^ = x'^ -\- ax -\-b for Different a and b 

4,3.1 Definition 

Elliptic curves over real numbers are defined as the set of points (x, y) which 
satisfy the elliptic curve equation of the form: 

— X -{• ax -^b (4.7) 
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where a and 6 are real numbers. Each choice of a and b produces a different 
elHptic curve as shown in Figure 4.1. The elhptic curve in Equation 4.7 forms 
a group if 4a^ H- 276^ ^ 0. An elliptic curve group over real numbers consists 
of the points on the corresponding elliptic curve, together with a special point 
O called the point at infinity. 

4,3.2 Elliptic Curve Operations 

Elliptic curve groups are additive groups; that is, their basic function is ad­
dition. To visualize the addition of two points on the curve, a geometric rep­
resentation is preferred. We define the negative of a point P = (x, y) as its 
reflection in the x-axis: the point — P is [x, —y). Also if the point P is on the 
curve, the point — P is also on the curve. 

In the rest of this subsection the addition operation for two distinct points 
on the curve are explained. Some special cases for the addition of two points 
on the curve are also described. 

• Adding distinct P and Q: Let P and Q be two distinct points on an 
elliptic curve, and P ^ —Q. The addition law in an elliptic curve group 
is P 4- Q — P. For the addition of the points P and Q, a line is drawn 
through the two points that will intersect the curve at another point, call 
—R. The point — P is reflected in the x-axis to get a point R which is the 
required point. A geometrical representation of adding two distinct points 
on the elhptic curve is shown in Figure 4.2. 

^ X J 

- 5 - 3 - 1 1 3 5 

Fig. 4.2. Adding two Distinct Points on an Elliptic curve (Q ^ —P) 
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- 5 - 3 - 1 1 3 5 

Fig. 4.3. Adding two Points P and Q when Q = -P 

• Adding P and —P: The method for adding two distinct points P and 
Q cannot be adopted for the addition of the points P and —P because 
the line through P and — P is a vertical line which does not intersect the 
eUiptic curve at a third point as shown in Figure 4.3. This is the reason 
why the elliptic curve group includes the point at infinity O. By definition, 
P-\- {—P) — O. As a result of this equation, P-hO == P in the eUiptic curve 
group. The point at infinity O is called the additive identity of the elliptic 
curve group. All well-defined elliptic curves have an additive identity. 

- 4 - 2 0 2 4 6 

Fig. 4.4. Doubling a Point P on an Elliptic Curve 
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• Doubling P(x, y) when y / 0: 

- 4 - 2 0 2 4 6 

Fig. 4.5. Doubling P{x,y) when y = 0 

The law for doubling a point on an elliptic curve group is defined by: 
P -\- P = 2P = R. To add a point P(x, y) to itself, a tangent line to the 
curve is drawn at the point P. U y ^ 0, then the tangent line intersects 
the elliptic curve at exactly one other point —R as shown in Figure 4.4. 
The point —R is reflected in the x-axis to R which is the required point. 
This operation is called doubling the point P. 
Doubling P{x^y) when y = 0: If for a point P{x,y), y — 0, then it does 
not intersect the elliptic curve at any other point because the tangent line 
to the elliptic curve at P is vertical. By definition, 2P = O for such a point 
P. If one wants to find 3P in this situation, one can add 2P + P . This 
becomes P -f O - P . Thus 3P - P , 4P = O, 5P =. p^ 6P-=^ O, 7P = P , 
etc. 

4.3.3 Elliptic Curve Scalar Multiplication 

There is no multiplication operation in elliptic curve groups. However, the 
scalar product kP can be obtained by adding k copies of the same point 
P , which can be accompHshed using the addition and doubling operations 
explained in the last Subsection. Thus the product kP = P -{- P -\- P ob­
tained in this way is referred to elliptic curve scalar multiplication. Figure 4.6 
shows the scalar multiplication process for obtaining 6 copies of the point P . 
However for professional elliptic curve cryptosystem implementations, much 
higher values of k are used. Typically, the bit-length of k is selected in the 
range of 160-521 bits. 
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)P \. 

5 0 

(d)4P 

5 -5 0 

( e ) 5 P 

5 -5 0 

( f ) 6 P 

5 

Fig. 4.6. Elliptic Curve Scalar Multiplication /cP, for /c = 6 and for the Elliptic 
Curve 2/̂  = a:̂  - 3a; + 3 

4.4 Elliptic Curves over GF(2^) 

Because of the chracteristic two, the equation for the elliptic curve with the 
underlying field GF{2^) is slightly adjusted as shown in Equation 4.8. It is 
formed by choosing the elements a and b within GF(2^) with 6 7̂  0. 

The elliptic curve includes all points (x, y) which satisfy the elliptic curve 
equation over GF{2'^) (where x and y G GF{2^)). An elliptic curve group over 
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GF{2'^) consists of the points on the corresponding elHptic curve, together 
with a point at infinity, O. 

The points on an elhptic curve can be represented using either two or three 
coordinates. In affine-coordinate representation, a finite point on E{GF{2'^)) 
is specified by two coordinates x\ y ^ GF{2'^) satisfying Equation 4.8. The 
point at infinity has no affine coordinates. 

We can make use of the concept of a projective plane over the field 
GF{2'^) [228]. In this way, one can represent a point using three rather than 
two coordinates. Then, given a point P with affine-coordinate representation 
x; y\ there exists a corresponding projective-coordinate representation X\ Y 
and Z such that, 

P(x;y) = P{X;Y;Z) 

The formulae for converting from affine coordinates to Jacobian projective 
coordinates and vice versa are given as: 

Affine-to-Projective: X = x; Y = y; Z=l 
Projective-to-Affine: x = X/Z^; y = Y/Z^ 

The algebraic formulae for the group law are different for affine and pro­
jective coordinates. In the next subsections the group law over GF{2^) is 
explained using aflftne coordinates representation. The group laws for several 
projective coordinates representations are studied in §4.5. 

4.4.1 Point Addition 

The negative of a point P — {x^ y) is —P = (x, x 4- y). Assuming that P ^ Q, 
then R{x3,y3) = P{xi,yi) + Q{x2,y2) where: 

{y2+yi 

' (4.9) 
m = 
X3 -

2/3 = 

(x2+x: 

= m^ 4-
= m{xi 

it 
m -\- xi + X2 -\- a 
-i-xs) -\-x3-hy1 

As with elliptic curve groups over real numbers, P 4- (—P) = O, where O 
the point at infinity. Furthermore, P H- O = P for all points P in the elliptic 
curve group. 

4.4.2 Point Doubling 

Let P(xi,yi) be a point on the curve. If xi = 0, then 2P = O. If xi y^ 0 then 
R = 2P, and R{x2,y2) is given as: 

Xo ^^ X i -f- —y 

y2 = x\ ^-[xi + f-^)x2 + X2 

Let us recall that a is one of the parameters chosen with the elliptic curve 
and that m is the slope of the line through P and Q. 
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4.4.3 Order of an Elliptic Curve 

Notice that the elliptic curve E{¥q)^ namely the collection of all the points 
in ¥q that satisfy Eq. (4.10) can only be finitely many. Even if every possible 
pair (x, y) were on the curve, there would be only q'^ possibilities. As a matter 
of fact, the curve E{¥q) could have at most 2q-\-l points because we have one 
point at infinity and 2q pairs (x,y) (for each x we have two values of y). 

The total number of points in the curve, including the point (9, is called 
the order of the curve. The order is written #E{¥q), A celebrated result 
discovered by Hasse gives the lower and the upper bounds for this number. 

Theorem 4.24. [227] Let #E{¥q) he the number of points in E{¥q). Then, 

\#Ei¥q)-{q + l)\<2^ (4.11) 

The interval [̂  -f 1 — 2y/g, q -\-l -\- 2y/q] is called the Hasse interval. 

As we did in the case of finite fields, we can also introduce the concept of the 
order of an element in elHptic curves. The order of a point P on E{¥q) is the 
smallest integer n such that nP = 0. The order of any point it is always 
defined, and divides the order of the curve #E(¥q). This guarantees that if r 
and / are integers, then rP = IP if and only if r = / (mod n). 

AAA Elliptic Curve Groups and the Discrete Logarithm Problem 

Every cryptosystem is based on a hard mathematical problem that is compu­
tationally infeasible to solve. The discrete logarithm problem is the basis for 
the security of many cryptosystems including Elliptic Curve Cryptosystems. 
More specifically the security of elliptic curve cryptosystems relies on Elliptic 
Curve Discrete Logarithmic Problem (ECDLP). 

In the last Section we examined two elliptic curve operations: point ad­
dition and point doubling. Both point addition and doubling operations can 
be used to compute any number of copies of a point (2P, 3P, kP^ etc). The 
determination of a point kP in this manner is referred to as Scalar Multipli­
cation of a point. In the rest of this Section we present a small example of 
how to compute such elliptic curve operation. 

4.4.5 An Examiple 

Let F = GF{2'^) be a binary finite field with defining primitive trinomial 
p{x) given as, 

p{x) = x ^ - f x - h l . (4.12) 

Then, if a is a root of p(a;), we have p{a) = 0, which impHes, 

p{a) = a ^ - f a + 1 = 0. (4.13) 
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For binary field arithmetic, addition is equivalent to subtraction. Hence, the 
above equation can be rewritten as 

a^ = a + 1 . (4.14) 

Using equation (4.14), one can now express each one of the 15 nonzero ele­
ments of F as is shown in Table 4.1. Notice that we can define any one of the 
q = 2^ elements of F using only four coordinates. 

Element in GF(2^) 

0 

a 

a^ 

a^ 

a' 

a' 

a« 

a' 

a« 

«» 

a'" 

a " 

a'^ 

a'^ 

a " 

a'= 

Polynomial 

0 

a 

a^ 

a' 

a + 1 

a^ -f- a 

a^ + a^ 

a^ + a + 1 

a^ + l 

a^ + a 

a^ -1- a + 1 

a^ + a^ + a 

a^ + a^ + a + 1 

a^ 4- a^ + 1 

a^ + 1 

1 

Coordinates 

(0000) 

(0010) 

(0100) 

(1000) 

(0011) 

(0110) 

(1100) 

(1011) 

(0101) 

(1010) 

(0111) 

(1110) 

(1111) 

(1101) 

(1001) 

(0001) 

Table 4.1. Elements of the field F = GF(2^), Defined Using the Primitive Trinomial 
of Eq. ((4.12)) 

Notice that all the elements in F can be described by any of the three rep­
resentations used in Table 4.1, namely, polynomial representation, coordinate 
representation and powers of the primitive element a. 

Let us now consider a non-supersingular elliptic curve defined as the set 
of points {x,y) e F X F that satisfy 

y^ •\-xy = x^ -f a^^x'^ + a^ (4.15) 

Notice that for the coefficients a and b of equation (4.8), we have selected the 
values a^^ and a^, respectively. There exist a total of 14 solutions in such a 
curve, including the point at infinite O. Using table 4.1, we can see that, for 
example, the point. 
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satisfies equation (4.15) over F2, since 

(4.16) 

- ( a 3 ) 3 + ai3(a3)2-f.a' 

(4.17) 

(0011) 4- (0110) - (1010) + (0011) + (1100) 
(0101) = (0101), 

Where we have used the identity a^^ = 1. All the thirteen finite points which 
satisfy equation (4.15) are shown in figure 4.7. 

a'' 

â  

d 
a« 
n7 
d 
a« 

â  
ar 

a=̂̂  

a 

! ! ! ! ! 1 ! ! ! 1 1 

i i i i i i i i i i 

1 1 • ! 1 

X, \ 

A 

1 i i 
a di 3^ â  a® â  ? a^ a11 0 I2 Q 1 3 O 1 4 

Fig. 4.7. Elements in the Elliptic Curve of Equation (4.15) 

Let us now use equation (4.10) to double the point P = (a^^a^). Using 
once again table 4.1, we obtain, 
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r.2 I A X2p 

y2p 
- ^2 . (4.18) 

- a ^ + a i 4-a^2 + ai3 = a^ 

It can be verified from figure 4.7 that the result obtained above is indeed a 
point in the elliptic curve of equation (4.15). 

As we mentioned in §4.4.3, we can keep adding P to its scalar multiples, 
but eventually, after n < #E{¥q) scalar multiplications, we will obtain the 
point at infinite O as a result. Recall that the integer n is called the order of 
the point P. For the case in hand, P happens to have a prime order k = 7. 
Notice that as it was stated in §4.4.3, the order n of P divides the order of 
the curve #E{¥q). Table 4.2 lists all the six finite multiples of P. 

P 2P W AP 5P 6P 

{a\a^)\{a'',a')\{a'\a')\{a'\a%a'\a'')\{a\a') 

Table 4.2. Scalar Multiples of the Point P of Equation (4.16) 

Obviously, in a true cryptographic application the parameter n should 
be chosen large enough so that efficient generation of such a look-up table 
approach, becomes unfeasible. In today's practice, n > 2^^^ has proved to be 
sufficient. 

4.5 Point Representation 

In order to generate an Abelian group over elliptic curves, it was necessary 
to define an elliptic curve group law. More specifically, we defined the point 
addition and point doubling primitives of Equations (4.9) and (4.10). However, 
the computational cost of those equations involves the calculation of a costly 
field inverse operation plus several field multiplications. 

Since the relation (I/M) defined as the computational cost of a field in­
version over the computational cost of a field multiplication is above 8 and 
20 in hardware and software implementations, respectively, there is a strong 
motivation for finding alternative point representations that allow the trading 
of the costly field inversions by less expensive field multiplications. 

As we have seen at the beginning in §4.4, elliptic point representation in 
two coordinates is called affine representation^ whereas the equivalent point 
representation in three coordinates is called Projective representation. 
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It can be shown that each affine point can be related one-to-one with a 
unique equivalence class. Then, each elliptic point is represented by a triple 
that satisfy the corresponding equivalence class. Notice that it results neces­
sary to redefine the addition and doubling operations in the projective repre­
sentation. 

As it will be explained in the rest of this Section, the projective group law 
can be implemented without utilizing field inversions at the price of increasing 
the total number of field multiplications. As a matter of fact, field inversions 
are only required when converting from projective representation to affine 
representation^, which becomes valuable in situations where we are planning 
to perform many point additions and doublings in a successive manner (such 
as in elhptic curve scalar multiphcation). 

4.5.1 Projective Coordinates 

Let c and d be positive integers over the field K. It is possible to define an 
equivalent class K^ \ {(0,0,0)} as follows. 

(XuYuZi) - (X2,y2,Z2) | If Xi = A^Xs,^! - A^y2,Zi = XZ^. 

The equivalent class 

{X'.Y :Z) = {(A"X, A^y, AZ) : A G K*} . 

is called a projective point [129], and (X, y, Z) a representative point of such 
class, that is to say, any point within the class is a representative point. 
Specifically, if Z ŷ  0, ( ^ , J^, 1) is a point representative of the equivalence 
class (X : y : Z). 

Therefore, if we define the set of all projective points (equivalent cletsses) 
for each possible A in the field K* as, 

P[KY - {(X : y : Z) : X, y, Z G i^, Z 7̂  0} , 

we obtain a one-to-one correspondence between the point P{Ky and the set 
of afl[ine points, 

A(K) = {{x,y:x,yeK)}. 

Each point in the affine coordinate system^ corresponds to the set defined by 
an equivalence class in particular. The set of point belonging to P{K)^ — 
{{X : Y : Z) : X,Y, Z e K, Z = 0} is called the line at infinity, because this 
class does not correspond with any element in the set of aflfine points. 

^ In §4.4 the explicit conversion equations from affine to Jacobian projective coor­
dinates and vice versa were stated. 
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The Weierstrass equation for an eUiptic curve E{K) can be defined in 
projective coordinates by replacing a; by -^ and yhy-^. The constant values 
c and d will determine the characteristic of the elliptic curve arithmetic and 
hence, the definition of the point addition algorithm in such representation. 

4.5.2 Lopez-Dahab Coordinates 

The most popular projective coordinate system are the standard where c= I 
and d = 1^ Jacobians, with c = 2 and d = 3 and Lopez-Dahab (LD) co­
ordinates, , with c = 1 and d — 2. The latter system of coordinates offers 
algorithms for computing the addition in mixed coordinates, i.e., one point is 
given in affine coordinates while the other is given in projective coordinates. 
LD coordinates are highly attractive for hardware implementation because 
they only employ 8 field multiplications for performing a point addition op­
eration. 

In Lopez-Dahab (LD) projective coordinates [210] the projective point (X: 
Y: Z) with Z^ 0 corresponds to the affine coordinates x = X/Z and y = 
Y/Z'^. Therefore, the elliptic curve equation (4.8) mapped to LD projective 
coordinates can be written as, 

y2 -f XYZ = X^Z -}- aX'^Z^ 4- Z"^ (4.19) 

The point at infinity is represented now as O = (1 : 0 : 0). For any arbitrary 
point P on the curve, it holds that P-fO = O-^V = V. Let P -= {Xi : Yi : Zi) 
and Q — {X2 : Y2 : I) he two arbitrary points belonging to the curve 4.19. 
Then the point —P = {Xi : Xi -\-Yi : Z) is the addition inverse of the point 
P. The point doubling primitive 2(Xi \ Y\ \ Z\) = (J^a : Y^ : Z^) can be 
performed at a computational cost of 2 general field multiplications plus two 
field multiplication by the elliptic curve constant b as [212], 

Xs = Xt-^b'Zt, (4.20) 

Ys = bZi^'Zs + X3 • {aZs + Yi^ -f bZi"^) 

Whereas if Q ^ — P , the point addition primitive {Xi : Yi : Zi) + {X2 : 
I2) = (^3 ' ys ' Z3) can be performed at a computational cost of 8 field 
multiplications as, 

A = Y2-Zf-\- Yi; B = X2'Zi+ Xi; 
C = ZiB] D = B^'{C-^aZl)\ 

Z3 = C'^] E = AC] (4.21) 
Xs^A^-^-D-^E] F = X3 4- X2 • Z3; 

G = (X2 + Y2)' Zl; Ys = {E + Z3)'F + G 
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4.6 Scalar Representation 

The vast majority of algorithms reported for computing the scalar multipHca-
tion in an efficient manner are based in the Horner polynomial representation, 

anx''-i-an-ix''~^-i-. • .+a2x'^-}-aix-\-ao = ao+(ai-|-(a24-(.. .4-(an-i4-(an+a:)x).. .)x)x)x. 

where the scalar k is represented using its binary expansion, namely, k = 
6^2^ + bn-i + 2^-1 4 - . . . + 6i2 + 6o where bi G [0,1]. 

4.6.1 Binary Representation 

Algorithm 4.3 Basic DoubUng & Add algorithm for Scalar Multiplication 
Require: A; = {km-i, fcm-2 ,ki, fco)2 with kn-i - 1, Pix, y, z) 6 E{¥2m) 
Ensure: Q = kP 

P\ 
for i = m — 2 downto 0 do 

Q = 2 • Q (point doubling) ; 
if ki = 1 then 

Q = Q -\- P (point addition); 
end if 

end for 
Return Q 

The traditional method for computing the elliptic operation kP is based 
in the binary representation of k. U k = S j = ^ bj2^, where each bj G {0,1}, 
then kP can be computed as [227]: 

TTl — 1 

kP=^Yl ^3^'^ == 2{...2{2bm-lP 4- bm-2P) + .-.) + ^O^-

This method requires m — 1 point doublings and ic/c — 1 point additions, where 
Wk is the Hamming weight (total number of coefficients bj — I) of the binary 
representation of the scalar k. 

4.6.2 Recoding Methods 

It is possible to reduce the number of subsequent point additions using a 
recoding of the the exponent [154, 239, 76, 176]. The recoding techniques use 
the identity 

2iH-i 4. 2^+J"-2 ^... ^2' = 2'+-̂ " - 2' 

to collapse a block of Is in order to obtain a sparse representation of the 
exponent. Thus, a redundant signed-digit representation of the exponent using 
the digits {0,1, —1} will be obtained. For example, (011110) can be recoded 
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Algorithm 4.4 The Recoding Binary algorithm for Scalar Multiplication 
Require: k = {km 
Ensure: Q = kP 

Ukrr ,ki,ko)2 w i th ki G [ [ - 1 , 0 , 1]), P{x,y,z) G E{¥2m) 

Q = P\ 
for i = m — 2 do-wnto 0 do 

Q = 2 • Q (point doubling) ; 
if ki = 1 then 

Q = Q -\- P (point addition); 
else if fci = 1 then 

Q = Q — P (point subtraction); 
end if 

end for 
Return Q 

(011110)-2^ + 2^4-2^ + 2^ 

(lOOOiO) - 2 ^ - 2 \ 

The recoding binary method is given in the Algorithm 4.4. Note that even 
though the number of bits of k is equal to m, the number of bits in the recoded 
exponent k can be m + 1, for example, (111) is recoded as (1001). Thus, the 
recoding binary algorithm starts from the bit position m in order to compute 
kP by computing kP where k is the (A; + l)-bit recoded exponent such that 
k = k. 

Let us discuss an expHcit toy example of scalar multiplication using the 
recoding binary method. Let /c == 119 = (1110111). The (nonrecoding) binary 
method requires 6 point doublings plus 5 point additions in order to compute 
119P. In the recoding binary method, we first obtain a sparse signed-digit 
representation of 119. It is easy to verify the following: 

Exponent: 119 = 01110111, 
Recoded Exponent: 119 = lOOOlOOL 

The recoding binary method then computes 119P as follows: 

fi 
1 
0 
0 
0 
1 
0 
0 
1 

Step 3 
P 
2(P) = 2P 
2(2P) = 4P 
2(4P) = 8P 
2(8P) = 16P 
2(15P) = SOP 
2(30P) = 60P 
2(60P) = 120P 

Steps 4-8 
P 
2P 
4 P 
8 P 
16P - P = 15P 
30P 
60P 
1 2 0 P - P = 119P 

Table 4.3. A Toy Example of the Recoding Algorithm 

The number of point doublings plus additions is equal to 7 + 2 = 9 which 
is 2 less group operations than that of the binary method. The number of 
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point doubling operations required by the recoding binary method can be at 
most 1 more than that of the binary method. The number of subsequent point 
additions, on the other hand, can be significantly less. This is simply equal 
to the number of nonzero digits of the recoded exponent. Thus, the number 
of point addition operations can be reduced if we obtain a sparse signed-digit 
representation of the scalar k. 

4.6.3 cj-NAF Representation 

Algorithm 4.5 a;-NAF Expansion Algorithm 
Require: A positive integer k. 
Ensure: U = uNAF{k) 

for {i = 0; A; > 0; z + +} do 
if k is odd then 

Ui = k mods 2^ 
k = k-Ui\ 

else 

end if 
k = /c/2; 

end for 
Return(U); 

The recoding binary algorithm can be generalized for designing algorithms 
even more efficient at the price of using memory for storing pre-computed 
results. The basic window method u with uj > I expand any positive integer 
k using a Non-Adjacent Form (NAF) of width u expressed as, 

i-\ 

k = Y,Ui2' 
1=0 

Where, 

• Each coefficient ui different than zero is odd and with magnitude less than 

• Given two consecutive coefficients Ui, at least one of them is nonzero; 
• When using (j = 2 we have the recoding binary algorithm explained above. 

We write the uNAF as, 

uNAF{k) = {ui-i,...uo}. 

Algorithm 4.5 generates an uNAF expansion of a positive scalar k. Every 
time that k is odd, the u most significant bits are scanned in order to determine 
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the corresponding congruence class (mod 2^) for k. The congruence class Ui 
is then subtracted from A;, making the new coefficient k — Ui divisible by 2^. 
This will guarantee a run of it; — 1 zero coefficients in the next iterations. 

In average, the Hamming weight of a UJNAF expansion is {w -\-l)~^. This 
will directly impact the performance of the scalar multiplication algorithm 
because of a saving on the point additions required for computing the scalar 
multiplication. That saving is obtained at the price of storing multiples of the 
base elliptic point. Notice, however, that the total number of point doublings 
remains the same. Table 4.4 presents the main characteristics of the binary, 
recoded binary an CJNAF expansions of the scalar /c, respectively. 

Table 4.4. Comparing Different Representations of the Scalar k 

Point Represen ta t ion 
Binary 
recoded b inary 
a;NAF 

Length 
m 
m 

m 

# P A 

T 
T 

TJ+T 

# P D 
m 

m + 1 
m + 1 

P r e - c o m p u t a t i o n 

— 
— 

Table of2''^-^ - 1 
m-bit multiples. 

4.7 Conclusions 

In this Chapter we briefly reviewed some of the most important mathematical 
concepts useful for understanding cryptographic algorithms. We explained the 
most relevant definitions and theorems of the elementary theory of numbers 
relevant to the subject of cryptography. Moreover, we defined the concept of 
finite fields and related arithmetic operations. We gave a brief introduction to 
elliptic curve cryptography, explaining the mathematical concepts of elliptic 
curve group, group order, group law and point representation among others. 

These concepts will be useful for understanding the material contained in 
the Chapters to come. 
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The modular exponentiation operation is a common operation for scrambling; 
it is used in several cryptosystems. For example, the Diffie-Hellman key ex­
change scheme requires modular exponentiation [64]. Furthermore, the ElGa-
mal signature scheme [80] and the Digital Signature Standard (DSS) of the 
National Institute for Standards and Technology [90] also require the compu­
tation of modular exponentiation. However, we note that the exponentiation 
process in a cryptosystem based on the discrete logarithm problem is slightly 
different: The base (M) and the modulus (n) are known in advance. This al­
lows some precomputation since powers of the base can be precomputed and 
saved [35]. In the exponentiation process for the RSA algorithm, we know the 
exponent (e) and the modulus (n) in advance but not the base (M); thus, 
such optimizations are not likely to be applicable. 

In the following sections we will review techniques for implementation 
of the modular exponentiation operation in hardware. We will study tech­
niques for exponentiation, modular multiplication, modular addition, and ad­
dition operations. We intend to cover mathematical and algorithmic aspects of 
the modular exponentiation operation, providing the necessary knowledge to 
the hardware designer who is interested implementing modular algorithm on 
hardware platforms. We draw our material from computer arithmetic books 
[352, 138, 370, 187], collection of articles [75, 335], and journal and conference 
articles on hardware structures for performing the modular multiplication and 
exponentiations [288, 185, 322, 135, 34, 179, 180, 181, 365]. 

Therefore, in the remainder of this Chapter we will study algorithms 
for computing efficiently the most basic modular arithmetic operations. We 
will assume that the underlying exponentiation heuristic is either the binary 
method, or any of the advanced m-ary algorithm with the necessary register 
space already made available. This assumption allows us to concentrate on de­
veloping time and area efficient algorithms for the basic modular arithmetic 
operations, which is the current challenge because of the operand size. 
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modular arithmetic operations, which is the current challenge because of the 
operand size. 

The literature is replete with residue arithmetic techniques applied to sig­
nal processing, see for example, the collection of papers in [337]. However, 
in such applications, the size of operands are very small, usually around 5-
10 bits, allowing table lookup approaches. Besides the moduh are fixed and 
known in advance, which is definitely not the case for our application. Thus, 
entirely new set of approaches are needed to design time and area efficient 
hardware structures for performing modular arithmetic operations to be used 
in cryptographic applications. 

5.1 Addition Operation 

In this section, we study algorithms for computing the sum of two /c-bit inte­
gers A and B. Let Ai and J5̂  for i = 1, 2 , . . . , /c - 1 represent the bits of the 
integers A and B^ respectively. We would like to compute the sum bits Si for 
z = l ,2 , . . . , /c — 1 and the final carry-out Ck as follows: 

Ak-i Ak-2 ••• Ai AQ 

+ Bk-i Bk-2 • • • Bi BQ 

Ck Sk-i Sk-2 • •' Si So 

We will study the following algorithms: the carry propagate adder (CPA), the 
carry completion sensing adder (CCSA), the carry look-ahead adder (CLA), 
the carry save adder (CSA), and the carry delayed adder (CDA) for computing 
the sum and the final carry-out. 

5.1.1 Full-Adder and Half-Adder Cells 

The building blocks of these adders are the full-adder (FA) and half-adder 
(HA) cells. Thus, we briefiy introduce them here. A full-adder is a combi­
national circuit with 3 input and 2 outputs. The inputs Ai, Bi, Ci and the 
outputs Si and Ci^i are boolean variables. It is assumed that Ai and Bi are 
the zth bits of the integers A and J5, respectively, and Ci is the carry bit 
received by the ith. position. The FA cell computes the sum bit Si and the 
carry-out bit Ci+i which is to be received by the next cell. The truth table of 
the FA cell is as follows: 

Ai Bi Gj 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

C'i-j-1 Si 
0 0 
0 1 
0 1 
1 0 
0 1 
1 0 
1 0 
1 1 
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The boolean functions of the output values are as 

Ci-i-i = AiBi -f- AiCi + BiCi, 

Similarly, an half-adder is a combinational circuit witja 2 inputs and 2 outputs. 
The inputs Ai, Bi and the outputs Si and Ci^i are boolean variables. It is 
assumed that Ai and Bi are the zth bits of the integers A and J5, respectively. 
The HA cell computes the sum bit Si and the carry-out bit Q-fi. Thus, an 
half-adder is easily obtained by setting the third input bit Ci to zero. The 
truth table of the HA cell is as follows: 

AiBi 
0 0 
0 1 
1 0 
1 1 

Ci-\-\ Si 
0 0 
0 1 
0 1 
1 0 

The boolean functions of the output values are as Ci+i = AiBi and Si — 
Ai ® Bi^ which can be obtained by setting the carry bit input Ci of the FA 
cell to zero. Fig. 5.1 illustrates the FA and HA cells. 

Full-Adder Cell Half-Adder Cell 

Fig. 5.1. Full-Adder and Half-Adder Cells 

5.1.2 Carry Propagate Adder 

The carry propagate adder is a linearly connected array of full-adder (FA) 
cells. The topology of the CPA is illustrated below in Fig. 5.2 for /c = 8. 
The total delay of the carry propagate adder is k times the delay of a single 
full-adder cell. This is because the iih. cell needs to receive the correct value 
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A, B, A. B, A, B, A, B, A3 B3 

j_L l i j_i j_i 1 1 j a 
F A 

^ r 
3. 

C5 

F A 

S4 

c. 
F A 

1 
S3 

C3 

F A 

1 
4 

Ca 

F A 

1 
Si 

Ci 

F A 

So 

Fig. 5.2. Carry Propagate Adder 

of the carry-in bit Ci in order to compute its correct outputs. Tracing back 
to the 0th cell, we conclude that a total of k full-adder delays is needed to 
compute the sum vector S and the final carry-out Ck- Furthermore, the total 
area of the /c-bit CPA is equal to k times a single full-adder cell area. The 
CPA scales up very easily, by adding additional cells starting from the most 
significant. 

The subtraction operation can be performed on a carry propagate adder 
by using 2's complement arithmetic. Assuming we have a /c-bit CPA avail­
able, we encode the positive numbers in the range [0, 2^~^ — 1] as /c-bit binary 
vectors with the most significant bit being 0. A negative number is then rep­
resented with its most significant bit as 1. This is accomplished as follows: Let 
X G [0,2^"-^], then —x is represented by computing 2^ — x. For example, for 
/c = 3, the positive numbers are 0,1,2, 3 encoded as 000,001,010, Oil, respec­
tively. The negative 1 is computed as 2 ^ - 1 = 8 - 1 — 7 = 1 1 1 . Similarly, - 2 , 
—3, and —4 are encoded as 110, 101, and 100, respectively. This encoding sys­
tem has two advantages which are relevant in performing modular arithmetic 
operations: 

• The sign detection is easy: the most significant bit gives the sign. 
• The subtraction is easy: In order to compute x — y, we first represent —y 

using 2's complement encoding, and then add x to —y. 

The CPA has several advantages but one clear disadvantage: the computation 
time is too long for RSA computations, in which the operand size is in the 
order of several hundreds, up to 2048 bits. Thus, we need to explore other 
techniques with the hope of building circuits which require less time without 
significantly increasing the area. 

5.1.3 Carry Completion Sensing Adder 

The carry completion sensing adder is an asynchronous circuit with area re­
quirement proportional to k. It is based on the observation that the average 
time required for the carry propagation process to complete is much less than 
the worst case which is k full-adder delays. For example, the addition of 15213 
by 19989 produces the longest carry length as 5, as shown below in Fig. 5.3. 
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A = 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 
6 = 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 

4 1 5 1 

Fig. 5.3. Carry Completion Sensing Adder 

A statistical analysis shows that the average longest carry sequence is 
approximately 4.6 for a 40-bit adder [108]. In general, the average longest 
carry produced by the addition of two k-hit integers is upper bounded by 
log2 k. Thus, we can design a circuit which detects the completion of all carry 
propagation processes, and completes in log2 k time in the average. 

A = 01 1 1 0 1 1 0 1 1 0 1 1 0 1 
B=1 001 1 1 0 0 0 0 1 0 1 0 1 

0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
N = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C = 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 
N = 0 0 0^ 0^ 0̂ 1 0 0 0 0̂ 0 1 0 

C = 00111 1 0 0 0 0 0 1 1 0 1 
N = 0000001 1 0 0 0 0 0 1 0 

ie ie 
C = 01 1 1 1 1 00001 1101 
N = 0000001 1 0 0 0 0 0 1 0 

-0 r-C = 1 1 1 1 1 1 0001 11101 
N = 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 

0 = 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 
N = 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 

Fig. 5.4. Detecting Carry Completion 

t=0 

t=1 

t=2 

t=3 

t=4 

t=5 

In order to accomplish this task, we introduce a new variable N in addition 
to the carry variable C. The value of C and N for ith. position is computed 
using the values of A and B for the zth position, and the previous C and N 
values, as follows: 
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(AuBi) = (0,0) =^ (CuNi) = (0,1) 

(AuBi) = {1,1) =^ id,Ni) = (1,0) 

(AuBi) = (0,1) =^ (CuNi) = {Ci-.i,Ni.i) 

(AuBi) = (1,0) =^ (CuNi) = id-uNi-i) 

Initially, the C and Â  vectors are set to zero. The cells which produce C and 
N values start working as soon as the values of A and B are applied to them 
in parallel. The output of a cell {Ci^Ni) settles when its inputs (C^-i, Ni-i) 
are settled. When all carry propagation processes are complete, we have either 
(Ci, Ni) = (0,1) or {Ci,Ni) = (1,0) for alH = 1,2,.. . , /c. Thus, the end of 
carry completion is detected when all Xj = Ci-¥ Ni = 1 for alH = 1,2,. . . , A;, 
which can be accompHshed by using a /c-input AND gate. The procedure 
described above is illustrated in Fig. 5.4. 

5.1.4 Carry Look-Ahead Adder 

The carry look-ahead adder is based on computing the carry bits Ci prior 
to the summation. The carry look-ahead logic makes use of the relationship 
between the carry bits Q and the input bits Ai and Bi. We define two variables 
Gi and Pj, named as the generate and the propagate functions, as follows: 

Pi = Ai + Bi. 

Then, we expand Ci in terms of GQ and PQ, and the input carry CQ as 

Ci = ^0^0 4- Co{Ao -h Bo) - Co 4- CQPQ, 

Similarly, C2 is expanded in terms Gi, Pi , and Ci as 

C2 = G i -hC iP i . 

When we substitute Ci in the above equation with the value of CQ in the 
preceding equation, we obtain C2 in terms GQ^ G î, Po, Pi, and CQ as 

C2 - Gi + CiPi =Gi-\- {GQ + CQPQ)PI =Gi+ GQPI -h CQPQPL 

Proceeding in this fashion, we can obtain d as function of CQ and Go, G i , . . . , Ci 
and Po, P i , . . . , Pi. The carry functions up to C4 are given below: 

Ci = GQ -i- CQPQ, 

C a - C i - f - G o P i + C o P o P i , 

C3 = G2 + G1P2 H- GQPIP2 + C0P0P1P2, 

C4 - Ca + G2P3 + G1P2P3 + GQP1P2P3 + C0P0P1P2P3. 
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The carry look-ahead logic uses these functions in order to compute all CiS in 
advance, and then feeds these values to an array of EXOR gates to compute 
the sum vector S. The zth element of the sum vector is computed using 

The carry look-ahead adder for /c = 3 is illustrated in Fig. 5.5. 

B2 Bi Bo 

C4f 

^ r ^ r ^ r f f f T f 

Carry Look-Ahead Logic 

C3 
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C, 

A3 

J*B, t 
r ^ 

Ci 

A3 

J B, (̂  
r ^ 

Co 

< 
J^B, 
r 

c ̂
 

A3 

J*B„ 
' 

S3 S2 Si $0 

•Fig. 5.5. Carry Look-Ahead Adder 

The CLA does not scale up very easily. In order to deal with large operands, 
we have basically two approaches: 

• The block carry look-ahead adder: First we build small (4-bit or 8-bit) 
carry look-ahead logic cells with section generate and propagate functions, 
and then stack these to build larger carry look-ahead adders [138, 370, 187]. 

• The complete carry look-ahead adder: We build a complete carry look-
ahead logic for the given operand size. In order to accomphsh this task, 
the carry look-ahead functions are formulated in a way to allow the use of 
the parallel prefix circuits [32, 188, 196]. 

The total delay of the carry look-ahead adder is 0(log k) which can be signif­
icantly less than the carry propagate adder. There is a penalty paid for this 
gain: The area increases. The block carry look-ahead adders require 0{k log k) 
area, while the complete carry look-ahead adders require 0(k) area by making 
use of efficient parallel prefix circuits [196, 197]. It seems that a carry look-
ahead adder larger than 256 bits is not cost effective, considering the fact 
there are better alternatives, e.g., the carry save adders. Even by employing 
block carry look-ahead approaches, a carry look-ahead adder with 1024 bits 
seems not feasible or cost eflfective. 
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5.1.5 Carry Save Adder 

The carry save adder seems to be the most useful adder for our application. It 
is simply a parallel ensemble of k full-adders without any horizontal connec­
tion. Its main function is to add three k-hit integers A^ J5, and C to produce 
two integers C and S such that 

C' -{-S = A-{-B + C. 

As an example, let A = 40^ B = 25, and C = 20, we compute S and C as 
shown below: 

A = A^= 101000 
B = 2b= 011001 
C = 20- 010100 
5 = 37 = 10 0 10 1 
C' - 48 = 0 1 1 0 0 0 

The ith bit of the sum Si and the (i -h l)st bit of the carry C[j^i is calculated 
using the equations 

ui '^=^ Ji-i xj^ iDi q7 O^. 

^i-\.\ ^^ AiJDi -\- AiUi -\- JDiC/ij 

in other words, a carry save adder cell is just a full-adder cell. A carry save 
adder, sometimes named a one-level CSA, is illustrated in Fig. 5.6 for /c — 6. 

iii 
FA 

c; s, 

A4B,C, A3B3C3 A . B i C , A , B , C , 

lit ill ill ill 
FA FA FA FA 

c; S4 c; S3 ĉ  sz c; s, 

Fig. 5.6. Carry Save Adder 

• u — u -

111 
FA 

rr TT TT TT TT TT 
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Since the input vectors A, B, and C are applied in parallel, the total delay 
of a carry save adder is equal to the total delay of a single FA cell. Thus, the 
addition of three integers to compute two integers requires a single FA delay 
Furthermore, the CSA requires only k times the areas of FA cell, and scales 
up very easily by adding more parallel cells. The subtraction operation can 
also be performed by using 2's complement encoding. There are basically two 
disadvantages of the carry save adders: 
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• It does not really solve our problem of adding two integers and producing 
a single output. Instead, it adds three integers and produces two such that 
sum of these two is equal to the sum of three inputs. This method may 
not be suitable for application which only needs the regular addition. 

• The sign detection is hard: When a number is represented as a carry-save 
pair (C, 5) such that its actual value is C 4- 5, we may not know the exact 
sign of total sum C -\- S. Unless the addition is performed in full length, 
the correct sign may never be determined. 

We will explore this sign detection problem in an upcoming section in more 
detail. For now, it suffices to briefly mention the sign detection problem, and 
introduce a method of sign detection. This method is based on adding a few of 
the most significant bits of C and S in order to calculate (estimate) the sign. 
As an example, l e t ^ = —18, B = 19, C = 6. After the carry save addition 
process, we produce S = —5 and C — 12, as shown below. Since the total 
sum C" + 5 = 12 — 5 = 7, its correct sign is 0. However, when we add the first 
most significant bits, we estimate the sign incorrectly. 

A =• 

B = 
C = 
S = 

a = 

-18 = 
19 = 
6 = 

-5 = 
12 = 

101110 
0 10011 
000110 
111011 

000110 
1 (1 MSB) 
1 1 (2 MSB) 
0 0 0 (3 MSB) 
0 0 0 1 (4 MSB) 
0 0 0 11 (5 MSB) 
0 0 0 1 1 1 (6 MSB) 

The correct sign is computed only after adding the first three most significant 
bits. In the worst case, up to a full length addition may be required to calculate 
the correct sign. 

5.1.6 Carry Delayed Adder 

The carry delayed adder is a two-level carry save adder. As we will see in 
§5.3.6, a certain property of the carry delayed adder can be used to reduce 
the multiplication complexity. The carry delayed adder produced a pair of 
integers {D,T), called a carry delayed number, using the following set of 
equations: 

Di = J\i © Ui ® Oj , 

Ci^i = AiBi -j- AiCi + BiCi, 

i i = ui ® O ,̂ 

Di^i = SiCij 
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where DQ =^ 0. Notice that C^+i and Si are the outputs of a full-adder cell 
with inputs Ai, Bi, and Q , while the values A + i and Ti are the outputs of 
an half-adder cell. 

An important property of the carry delayed adder is that Di-^iTi = 0 for 
alH — 0 , 1 , . . . , /c — 1. This is easily verified as 

Di^\Ti — SiCi{Si®Ci) — SiCi{SiCi-\-SiCi) = 0. 

As an example, let A = 40, B = 2b, and C = 20. In the first level, we compute 
the carry save pair (C, S) using the carry save equations. In the second level, 
we compute the carry delayed pair {D,T) using the definitions A + i — ^iCi 
and Ti- Si® Ci as 

A = 40= 101000 
B = 25= 011001 
C = 20= 010100 
5 = 37 - 10 0 10 1 
C^48:^0110000 
T = 21= 010101 
^^64:^1000000 

Thus, the carry delayed pair (64, 21) represents the total of A-i- B -\- C = Sb. 
The property of the carry delayed pair that TiDi^i = 0 for alH — 0 , 1 , . . . , /c—1 
also holds. 

T = 21 - 0 1 0 1 0 1 
i:):::r 64 ^ 1 0 0 0 0 0 0 
T̂  A + i ^ 0 0 0 0 0 0 

We will explore this property in § 5.3.6 to design an efficient modular mul­
tiplier which was introduced by Brickell [33]. Fig. 5.7 illustrates the carry 
delayed adder for k = 6. 

5.2 Modular Addition Operation 

The modular addition problem is defined as the computation of S = A -^ B 
(mod n) given the integers A, B, and n. It is usually assumed that A and B 
are positive integers with 0 < A,B < n, i.e., they are least positives residues. 
The most common method of computing S is as follows: 

1. First compute S' = A-h B. 
2. Then compute S" = S' - n, 
3. If S'^ > 0, then S = S' else S = S". 

Thus, in addition to the availability of a regular adder, we need fast sign 
detection which is easy for the CPA, but somewhat harder for the CSA. How­
ever, when a CSA is used, the first two steps of the above algorithm can be 
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Fig. 5.7. Carry Delayed Adder 

combined, in other words, S' = A-\- B and S" = A-{- B -n can be computed 
at the same time. Then, we perform a sign detection to decide whether to 
take S' or S" as the correct sum. We will review algorithms of this type when 
we study modular multiplication algorithms. 

5.2.1 Omura's Method 

An efficient method computing the modular addition, which especially useful 
for multioperand modular addition was proposed by Omura in [260]. Let n < 
2^. This method allows a temporary value to grow larger than n, however, it 
is always kept less than 2^. Whenever it exceeds 2^, the carry-out is ignored 
and a correction is performed. The correction factor is m = 2̂ ^ — n, which 
is precomputed and saved in a register. Thus, Omura's method performs the 
following steps given the integers A,B<2'^ (but they can be larger than n). 

1. First compute S' = A-\- B. 
2. If there is a carry-out (of the /cth bit), then 5 = 5 ' + m, else S — S'. 

The correctness of Omura's algorithm follows from the observations that 

• If there is no carry-out, then 5 = .4 4- -B is returned. The sum S is less 
than 2^, but may be larger than n. In a future computation, it will be 
brought below n if necessary. 

• If there is a carry-out, then we ignore the carry-out, which means we 
compute 

S' = A-hB-2''. 

The result, which needs to be reduced modulo n, is in effect reduced mod­
ulo 2̂ .̂ We correct the result by adding m back to it, and thus, compute 
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= A-{-B-2^^2^-n 

= A-hB -n. 

After all additions are completed, a final result is reduced modulo n by using 
the standard technique. As an example, let assume n = 39. Thus, we have 
m = 2^ - 39 = 25 = (011001). The modular addition of A - 40 and 5 - 3 0 
is performed using Omura's method as follows: 

A = 40 - (101000) 
B = 3 0 = (011110) 
S' = >l -f- B = 1(000110) Carry-out 
m = (011001) 
S = S' + m= (011111) Correction 

Thus, we obtain the result as 5 = (011111) = 31 which is equal to 70 (mod 39) 
as required. On the other hand, the addition of A = 23 by B = 26 is performed 
as 

A = 23= (010111) 
B = 2 6 = (011010) 
S' = A + B = 0(110001) No carry-out 
S = S' = (110001) 

This leaves the result as 5 = (110001) = 49 which is larger than the modulus 
39. It will be reduced in a further step of the multioperand modulo addition. 
After all additions are completed, a final negative result can be corrected by 
adding m to it. For example, we correct the above result S = (110001) as 
follows: 

S = (110001) 
m = (011001) 
S = S-\-m = 1(001010) 
S = (001010) 

The result obtained is 5 = (001010) = 10, which is equal to 49 modulo 39, as 
required. 

5.3 Modular Multiplication Operation 

The modular multiplication problem is defined as the computation of P = AB 
(mod n) given the integers A, B, and n. It is usually assumed that A and B are 
positive integers with 0 < A^B < n, i.e., they are the least positive residues. 
There are basically four approaches for computing the product P. 

• Multiply and then divide. 
• The steps of the multiplication and reduction are interleaved. 
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• Brickell's method. 
• Montgomery's method. 

The multiply-and-divide method first multiplies A and B to obtain the 
2/c-bit number 

P ' : - AB. 

Then, the result P' is divided (reduced) by n to obtain the /c-bit number 

P:=P' mod n. 

The result P is a /c-bit or 5-word number. 
The reduction is accomplished by dividing P' by n, however, we are not in­

terested in the quotient; we only need the remainder. The steps of the division 
algorithm can be somewhat simplified in order to speed up the process. 

5.3.1 Standard Multiplication Algorithm 

Let A and B be two 5-digit (s-word) numbers expressed in radix W as: 

s - l 

A = {As-iAs-2---Ao) = Y^AiW\ 

s-l 

B = {Bs-iBs-2"'Bo) = Yl^'^'^ 
j=0 

where the digits of A and B are in the range [0, VF — 1]. In general W can be 
any positive number. For reconfigurable hardware implementations, we often 
select W = 2'^ where w is the word-size or granularity of the device, e.g., 
w = 4. The standard (pencil-and-paper) algorithm for multiplying A and B 
produces the partial products by multiplying a digit of the multiplier (B) 
by the entire number A, and then summing these partial products to obtain 
the final number 2s-word number P'. Let P-j denote the (Carry,Sum) pair 
produced from the product Ai • Bj. For example, when W = 10, and Ai = 7 
and Bj = 8, then P^ = (5,6). The Plj pairs can be arranged in a table as 

X 

+ ^^3 

P' 
P' •^32 

P' ^ 1 3 
P' •^22 
P' 

^ 3 

^ 3 

M)3 
P' 
^ 1 2 P' ^ 2 1 
P' 
^ 3 0 

^ 2 

P2 
P' 
^ 0 2 
Pii 
P' 
-^20 

^ 1 

P i 
P' 
M ) l P' 

^Q 

Bo 
p' 
M)0 

pt p / pf pi pi pi pi pi 
^7 ^6 -^5 -M ^3 ^2 ^l M) 

The last row denotes the total sum of the partial products, and represents the 
product as an 2s-word number. The standard algorithm for multiplication 
essentially performs the above digit-by-digit multiplications and additions. In 
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order to save space, a single partial product variable P' is being used. The 
initial value of the partial product is equal to zero; we then take a digit of B 
and multiply by the entire number A, and add it to the partial product P'. 
The partial product variable P' contains the final product A- B dX the end of 
the computation. Algorithm 5.1 shows the standard procedure for computing 
the product A- B. 

Algorithm 5.1 The Standard Multiplication Algorithm 
Require: A^B. 
Ensure: P' = A-

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

Initially P[ := 
for i = 0 to s 

C : = 0 ; 

B. 
0 for all i -
- 1 do 

for ji = 0 to s — 
(C,5):=: 
Pi^j := S 

end for 
Pi+3 '•— C] 

end for 
Return(P2s-

P' 

1P23-

1 do 
+ Aj 

= 0, 

Bi 

-2---Po) 

l , . . . , 2 s 

+ C; 

In the following, we show the steps of the computation of A- B = 348 • 857 
using the standard algorithm. 
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j Step (C, S) Partial P ' 
0 0 P(5 4- Aobo -f C (0, *) 000000 

0 + 8-7 + 0 (5,6) 000006 
1 P{ + Aibo + C 

0 + 4 -7 + 5 (3,3) 000036 
2 P^ + A260 + C 

0 + 3-7 + 3 (2,4) 000436 
002436 

1 0 Pi' + Aobi + C (0, *) 
3 + 8-5 + 0 (4,3) 002436 

1 Pi + Aibi + C 
4 + 4 . 5 + 4 (2,8) 002836 

2 P;̂  + A2bi + C 
2 + 3-5 + 2 (1,9) 009836 

019836 
2 0 P^ + A062 + C (0, *) 

8 + 8-8 + 0 (7,2) 019236 
1 P3' + Aib2 + C 

9 + 4 -8 + 7 (4,8) 018236 
2 P^ + A2b2 + C 

1 + 3 - 8 + 4 (2,9) 098236 
298236 

In order to implement this algorithm, we need to be able to execute Step 5 of 
Algorithm 5.1 as, 

{C,S)~Pi+j+Aj-Bi + C, 

where the variables P/+j, Aj^ Bi, C, and S each hold a single-word, or a 
W-bit number. This step is termed as an inner-product operation which is 
common in many of the arithmetic and number-theoretic calculations. The 
inner-product operation above requires that we multiply two VK-bit numbers 
and add this product to previous 'carry' which is also a VK-bit number and 
then add this result to the running partial product word P/^-j- From these 
three operations we obtain a 2V^-bit number since the maximum value is 

->vr ^w w -)2Vr 1 + (2'^ - 1)(2^ _ 1) -f 2 ^ - 1 - 2^^ - 1. 

Also, since the inner-product step is within the innermost loop, it needs to run 
as fast as possible. Of course, the best thing is to have a single microprocessor 
instruction for this computation; unfortunately, none of the currently available 
microprocessors and signal processors offers such a luxury. A brief inspection 
of the steps of this algorithm reveals that the total number of inner-product 
steps is equal to 5^. Since s = k/w and it; is a constant on a given computer, 
the standard multiphcation algorithm requires 0{k'^) bit operations in order 
to multiply two k-hit numbers. 
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5.3.2 Squaring is Easier 

Squaring is an easier operation than multipHcation since half of the single-
precision multiplications can be skipped. This is due to the fact that P/.- = 
Ai' Aj = P-^. 

X 

4-

-f 

P^ 

P' 

P' ^33 
P' 

P' 
V23 P' V23 

2-^23 

Pi 

P' ^13 
P' -^22 

P[z 

2Pl'3 
p' 
V22 

P' 

^ 3 

^ 3 

P' 
P' 
^12 P' ^12 
P' 
^03 

2-^03 
2P{2 

^ 3 ' 

^2 

A2 
P' 
P' 
P' 

2^02 
^ 1 1 

V 2 

^ 1 

Al 
P' 
M)l 
î l̂ 

2P^i 

A' 

^ 0 

Ao 
P' 
M)0 

P ' 

n 
Thus, we can modify the standard multiplication procedure as shown in Al­
gorithm 5.2 to take advantage of this property of the squaring operation. 

Algorithm 5.2 The Standard Squaring Algorithm 
Require: A. 
Ensure: P' — A- A. 
1: Initially Pi := 0 for alH = 0 , 1 , . . . , 2s - 1. 
2: for i = 0 to s - 1 do 
3: {C,S)-PU,^-Ai-Ai 
4: for j = z -I- 1 to s - 1 do 
5: {C,S):=PU,-Y2'ArAi-\-C-
6: PUj := 5; 
7: end for 
8: Pi^s '•— C\ 
9: end for 

10: Return(P^,_iP^,_2 • • • Po) 

However, we warn the reader that the carry-sum pair produced by opera­
tion 

{C,S)-Pl^^^2-Aj-Ai-^C 

in Step 5 of Algorithm 5.2 may be 1 bit longer than a single-precision number 
which requires w bits. Since 

(2^ - 1) + 2(2^ - 1)(2^ - 1) -f (2^ - 1) = 22^^-^ - 2^+^ 

and 
I ^ Q^if+i _ 2^"^^ <' o'^'^'^^ _ 1 
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the carry-sum pair requires 2w-\-l bits instead of 2w bits for its representation. 
Thus, we need to accommodate this 'extra' bit during the execution of the 
operations in Steps 5, 6, and 7 of Algorithm 5.2. The resolution of this carry 
may depend on the way the carry bits are handled by the particular processor's 
architecture. This issue, being rather implementation-dependent, will not be 
discussed here. 

5.3.3 Modular Reduction 

The multiply-and-reduce modular multiplication algorithm first computes the 
product A ' B (or, A - A) using one of the multiplication algorithms given 
above. The multiplication step is then followed by a division algorithm in 
order to compute the remainder. However, as we have mentioned before, we 
are not interested in the quotient; we only need the remainder. Therefore, the 
steps of the division algorithm can somewhat be simphfied in order to speed 
up the process. The reduction step can be achieved by making one of the 
well-known sequential division algorithms. In the rest of this subsection, we 
describe the restoring and the nonrestoring division algorithms for computing 
the remainder of P' when divided by n, where n is a general modulus^ 

Division is the most complex of the four basic arithmetic operations. First 
of all, it has two results: the quotient and the remainder. Given a dividend 
P' and a divisor n, a quotient Q and a remainder R have to be calculated in 
order to satisfy 

P' = Q'n-\-R with R < n. 

If P' and n are positive, then the quotient Q and the remainder R will be 
positive. The sequential division algorithm successively shifts and subtracts n 
from P' until a remainder R with the property 0 < -R < n is found. However, 
after a subtraction we may obtain a negative remainder. The restoring and 
nonrestoring algorithms take different actions when a negative remainder is 
obtained. 

Restoring Division Algorithm 

Let Ri be the remainder obtained during the zth step of the division algorithm. 
Since we are not interested in the quotient, we ignore the generation of the 
bits of the quotient in the following algorithm. The procedure given below 
first left-aligns the operands P' and n. Since P' is 2/i;-bit number and n is a 
k-h\t number, the left ahgnment implies that n is shifted k bits to the left, 
i.e., we start with 2^n. Furthermore, the initial value of R is taken to be P', 
i.e., RQ = P', We then subtract the shifted n from P' to obtain R\\ if Ri is 

^ It is noted that Solinas proposed in [338] primes of special form for which the 
reduction step can be accomplished with high efficiency. However the material 
for Solinas special primes is not covered in this book. The interested reader may 
consult [37]. 
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positive or zero, we continue to the next step. If it is negative the remainder 
is restored to its previous value as is shown in Algorithm 5.3 below. 

Algorithm 5.3 The Restoring Division Algorithm 
Require: P\n, 
Ensure: R = P' mod n. 
1: RQ := t; 
2: n := 2^n\ 
3: for 2 = 1 to /c do 
4: Ri := Ri-m; 
5: if Ri <0 then 
6: Ri := Ri-i', 
7: end if 
8: n := n/2 
9: end for 

10: Return(i?/e) 

In Step 5 of Algorithm 5.3, we check the sign of the remainder; if it is 
negative, the previous remainder is taken to be the new remainder, i.e., a 
restore operation is performed. If the remainder Ri is positive, it remains as 
the new remainder, i.e., we do not restore. The restoring division algorithm 
performs k subtractions in order to reduce the 2/c-bit number t modulo the 
/c-bit number n. Thus, it takes much longer than the standard multiplication 
algorithm which requires s = k/w inner-product steps, where w is the word-
size of granularity being employed. 

In the following, we give an example of the restoring division algorithm for 
computing 3019 mod 53, where 3019 = (101111001011)2 and 53 - (110101)2-
The result is 51 = (110011)2. 
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RQ 

n 
-

Ri 
n/2 

+ 
R2 
n/2 

4-
Rs 
n/2 

+ 
R4 
n/2 
n/2 
n/2 

4-
R5 

101111 OOIOIU 
110101 subtract 
000110 negative remainder 
101111 001011 restore 

11010 1 shift and subtract 
10100 1 positive remainder 
10100 101011 not restore 
1101 01 shift and subtract 
0111 01 positive remainder 
0111 011011 not restore 

110 101 shift and subtract 
000 110 positive remainder 
000 110011 not restore 

11 0101 shift 
1 10101 shift 

110101 shift and subtract 
000010 negative remainder 
n o o n restore 

R n o o n final remainder 

Also, before subtracting, we may check if the most significant bit of the re­
mainder is 1. In this case, we perform a subtraction. If it is zero, there is no 
need to subtract since n > Ri. We shift n until it is aligned with a nonzero 
most significant bit oiRi. This way we are able to skip several subtract/restore 
cycles. In the average, k/2 subtractions are performed. 

Nonrestoring Division Algorithm 

The nonrestoring division algorithm allows a negative remainder. In order to 
correct the remainder, a subtraction or an addition is performed during the 
next cycle, depending on the whether the sign of the remainder is positive 
or negative, respectively. This is based on the following observation: Suppose 
Ri — Ri-\ — n < 0, then the restoring algorithm assigns Ri \= Ri-i and 
performs a subtraction with the shifted n, obtaining 

Ri^i ==Ri- n/2 = Ri-i - n/2. 

However, if Ri = Ri-i — n < 0, then one can instead let Ri remain negative 
and add the shifted n in the following cycle. Thus, one obtains 

Ri^i = Ri-^ n/2 ^ {Ri-i - n) 4- n/2 = Ri-i - n/2, 

which would be the same value. The steps of the nonrestoring algorithm, 
which implements this observation, are given in Algorithm 5.4. 

Note that the nonrestoring division algorithm requires a final restoration 
cycle in which a negative remainder is corrected by adding the last value of n 
back to it. 
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Algorithm 5.4 The Nonrestoring Division Algorithm 
Require: P',n. 
Ensure: R = P' mod n. 

Ro '•= t\ 
n := 2'̂ n; 
for i = 1 to /c do 

if Ri-i > 0 then 
Ri := Ri-i — n; 

else 
Ri := Ri-i + n; 

end if 
n := n/2; 
if î fc < 0 then 

i?:= /?-f n; 
end if 

end for 
Return(J^fc) 

In the following we compute 51 — 3019 mod 53 using the nonrestoring 
division algorithm. Since the remainder is allowed to stay negative, we use 2's 
complement coding to represent such numbers. 

Ro 0101111 001011 i 
n 0110101 subtract 

Ri 1111010 negative remainder 
n/2 011010 1 add 
R2 010100 1 positive remainder 
n/2 01101 01 subtract 
Ĵ 3 00111 01 positive remainder 
n/2 0110 101 subtract 
R4 0000 110 positive remainder 
n/2 Oil 0101 
n/2 01 10101 
n/2 0 110101 subtract 
Rs 1 111110 negative remainder 

_ji 0 110101 add (final restore) 
R 0 n o o n Final remainder 

5.3.4 Interleaving Multiplication and Reduction 

The interleaving algorithm has been known. The details of the method are 
sketched in papers [27, 334]. Let Ai and Bi be the bits of the k-hit positive 
integers A and JB, respectively. The product P' can be written as 
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fc-i fc-i 

P' =: A'B^A'Y^ Bi2' = Y^{A • Bi)2' 
i=0 i=0 

= 2("' 2(2(0 -f A . Bk-i) + A . Bk-2) -\-'--)-{-A - BQ 

This formulation yields the shift-add multiphcation algorithm. Notice that we 
also reduce the partial product modulo n at each step of Algorithm 5.5. 

Algorithm 5.5 The Interleaving Multiplication Algorithm 
Require: A,B,n. 
Ensure: P = A - B mod n. 
1: P : = 0 ; 
2: for i = 0 to A; - 1 do 
3: P := 2P-{-A • Bk-i-i', 
4: P := P mod n; 
5: end for 
6: Return(P) 

Assuming that A, B^P < n, we have 

P :=2P + A' Bj 

< 2 ( n - l ) - f ( n - 1 ) = 3 n - 3 . 

Thus, the new P will be in the range 0 < P < 3n — 3, and at most 2 sub­
tractions are needed to reduce P to the range 0 < P < n. We can use the 
following algorithm to bring P back to this range: 

P ' := P - n ; If P ' > 0 then P = P' 
P ' := P - n ; If P ' > 0 then P = P' 

The computation of P requires k steps, at each step we perform the following 
operations: 

• A left shift: 2P 
• A partial product generation: A - Bj 
• An addition: P := 2P -h A • Bj 
• At most 2 subtractions: 

P ' := P - n ; If P ' > 0 then P =^ P' 
P ' := P - n ; If P ' > 0 then P =^ P' 

The left shift operation is easily performed by wiring. The partial products, 
on the other hand, are generated using an array of AND gates. The most 
crucial operations are the addition and subtraction operations: they need to 
be performed fast. We have the following avenues to explore: 

• We can use the carry propagate adder, introducing 0{k) delay per step. 
However, Omura's method can be used to avoid unnecessary subtractions: 
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3a. P := 2P 
3b. If carry-out then P := P -{- m 
3c. P \= P-\- A' Bj 
3d. If carry-out then P := P -h m 

• We can use the carry save adder, introducing only 0(1) delay per step. 
However, recall that the sign information is not immediately available in 
the CSA. We need to perform fast sign detection in order to determine 
whether the partial product needs to be reduced modulo n. 

5.3.5 Utilization of Carry Save Adders 

In order to utilize the carry save adders in performing the modular multipli­
cation operations, we represent the numbers as the carry save pairs (C^S), 
where the value of the number is the sum C-f 5. The carry save adder method 
of the interleaving algorithm is given in Algorithm 5.6. 

Algorithm 5.6 The Carry-Save Interleaving Multiphcation Algorithm 
Require: A,B,n. 
Ensure: P = A • B mod n. 
1: (C,5):=(0,0); 
2: for i = 0 to fc - 1 do 
3: (C, S):=2C-\-2S + A- Bk-i-i] 
4: (C\S'):=C-\-Sn', 
5: if SIGN > 0 then 
6: (C,5) :=(C^50; 
7: end if 
8: end for 
9: Return(C,5) 

The function SIGN gives the sign of the carry save number C -\- S', Since 
the exact sign is available only when a full addition is performed, we calculate 
an estimated sign with the SIGN function. A sign estimation algorithm was 
introduced in [185]. Here, we briefly review this algorithm, which is based on 
the addition of the most significant t bits of C and S to estimate the sign of 
C 4- 5. For example, let C = (011110) and S = (001010), then the function 
SIGN produces 
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C - 0 1 1 1 1 0 

S = 001010 

{t = 1) SIGN = 0 

(t = 2) SIGN = 01 

(t = 3) SIGN = 100 

(̂  = 4) SIGN = 1001 

(t = 5) SIGN = 10100 

(t = 6) SIGN = 101000. 

In the worst case the exact sign is produced after adding all k bits. If the 
exact sign of C + 5 is computed, we can obtain the result of the multiplication 
operation in the correct range [0, n). If an estimation of the sign is used, then 
we will prove that the range of the result becomes [0, n + Zl), where A depends 
on the precision of the estimation. Furthermore, since the sign is used to decide 
whether some multiple of n should be subtracted from the partial product, 
an error in the decision causes only an error of a multiple of n in the partial 
product, which is corrected later. We define function T{X) on an n-bit integer 
X as 

T{X) = X-{X mod 2*), 

where 0 < t < n — 1. In other words, T replaces the first least significant t 
bits of X with t zeros. This implies 

T{X)<X <T{X)-^2K 

We reduce the pair (C, S) by performing the following operation Q times: 

I. {C,S):=C + S-n. 
J . If T(C) + T(S) > 0 then set C := C and S := 5. 

In Step J, the computation of the sign bit R of T{C) + T{S) involves n — t 
most significant bits of C and S. The above procedure reduces a carry-sum 
pair from the range 

0 < C o + 5 o < (Q + l)n + 2* 

to the range 
0 < CK 4-5i? < n + 2*, 

where (CQ,SO) and {CR,SR) respectively denote the initial and the final carry-
sum pair. Since the function T always underestimates, the result is never 
over-reduced, i.e., 

CR-hSR> 0. 

If the estimated sign in Step J is positive for all Q iterations, then QN is 
subtracted from the initial pair; therefore 
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CR-^SR^CO + SO-QN <n-{- 2^ 

If the estimated sign becomes negative in an iteration, it stays negative there­
after to the last iteration. Thus, the condition 

T{C) 4- T{S) < 0 

in the last iteration of Step J implies that 

T(C)-f T(5) < -2\ 

since T{X) is always a multiple of 2^ Thus, we obtain the range of C and S 
as 

T(C) + T(S) <C + S< T(C) + T{S) + 2*+\ 

It follows from the above equations that 

C 4-5 < 2*+^ - 2̂  = 2^ 

Since in Step I we perform (C, S) := C -\- S ~ n and in the last iteration the 
carry-sum pair is not reduced (because the estimated sign is negative), we 
must have 

CR-\-SR=^C^-S + n, 

which implies 
CR^SR<n-\-2K 

The modular reduction procedure described above subtracts n from (C, S) in 
each of the Q iterations. The procedure can be improved in speed by sub­
tracting 2^~^n during iteration j , where (Q -f 1) < 2^ and j = 1, 2 , 3 , . . . , /c. 
For example, if Q = 3, then k = 2 can be used. Instead of subtracting n 
three times, we first subtract 2N and then n. This observation is utilized in 
Algorithm 5.7. 

The parameter t controls the precision of estimation; the accuracy of the 
estimation and the total amount of logic required to implement it decreases 
as t increases. After Step 7 of Algorithm 5.7, we have 

CW+^CO < n - h 2 S 

which implies that after the next shift-add step the range of Ĉ *"̂ ^̂  + S^'^'^^^ 
will be [0,3N -f 2*+^). Assuming Q = 3, we have 

3iV + 2*+^ < (Q + l)n + 2* = 4iV + 2\ 

which implies 2* < n, or t < n - 1. The range of Ĉ *"̂ ^̂  4- Ŝ *"*"̂ ^ becomes 

0 < C^^+i) -f. 5(^+1) < 3A^ 4- 2*-̂ ^ < 3A^ 4- 2^ < 2^-^^ 

and after Step 4 of Algorithm 5.7, the range will be 
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Algorithm 5.7 The Carry-Save Interleaving Multiplication Algorithm Re­
visited 
Require: A, B, n. 
Ensure: P — A • B mod n. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Set 5^°^ := 0 and C °̂> := 0. 
for i = 1 to /c do 

{C'<'\S^'^) := 2C(^-^) + 25^^-^^ + An-iB 
{C^'\S^'^) := C^^)-f-5^^) - 2 n ; 
if T{C^'^)+T(S^''>) > O t h e n 

C(̂ ) :=C(^> and5(^^ := S^'\ 
end if 
(C(^\5(^>) := C^̂ -̂f-5̂ ^̂  - n ; 
if T(C'(^))+T(5(^)) > O t h e n 

Ĉ )̂ :=C(^) and5(^) :=5(^); 
end if 

: end for 
: Return(C(^\5^^^) 

_2n+i < _2jv < C^^+i) + 5̂ +̂̂ ^ < n 4- 2^ < 2"^+^ 

In order to contain the temporary results, we use (n-f-3)-bit carry save adders 
which can represent integers in the range [—2"""̂ ,̂ 2""^^). When t = n — 1, 
the sign estimation technique checks 5 most significant bits of C^^^ and S^^^ 
from the bit locations n — 2 to n 4- 3. This algorithm produces a pair of 
integers (C, 5) = (C(^),5(^)) such that P = C + 5 is in the range [0,2N). 
The final result in the correct range [0, n) can be obtained by computing 
P — C -{• S and P = C -{• S — n using carry propagate adders. If P < 0, 
we have P = P -\- n < n^ and thus P is in the correct range. Otherwise, we 
choose P because 0<P = P — n<2^<n implies P € [0, n). The steps of 
the algorithm for computing 47 • 48 (mod 50), are illustrated in the following 
figure. Here we have 

/c=[log2(50)J + l = 6, 

A = 4 7 = (000101111), 

B = 4S = (000110000), 

n = 5 0 = (000110010), 

M = -n = (111001110). 

The algorithm computes the final result 

(C, S) = (010111000,110000000) = (184, -128) 

in 3k = 18 clock cycles. The range of C -f- 5" = 184 - 128 = 56 is [0, 2 • 50). 
The final result is found by computing C H- 5 = 56 and C -\- S — n = 6^ and 
selecting the latter since it is positive. 
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7-0 

Z = 1 

\i = 2 

i-3 

z-4 

z-5 

z-6 

2a 
2b 
2c 

2a 

2b 

2c 

2a 

2b 

2c 

2a 

2b 

2c 

2a 

2b 

2c 

2a 

2b 

2c 

C 

000000000 

000000000 
000000000 
000000000 

000000000 

000000000 

010000000 

000100000 

001011000 

001011000 

101100000 

001000000 

001000000 

101100000 

101100000 

010010000 

001000000 

010111000 

010111000 

s 
000000000 

000110000 
000110000 

000110000 

001100000 

001100000 

110101110 

001101100 

111010000 

111010000 

100100000 

111011100 

111011100 

100001000 

100001000 

110100110 

001011100 

110000000 

110000000 

c 
-

-
000100000 
000000000 

-

000000000 

010000000 

-

001011000 

110110000 

-

001000000 

110011000 

-

000010000 

010010000 

-

010111000 

100010000 

s 
-
-

110101100 
111111110 

-

111111100 

110101110 

-

111010000 

001000110 

-

111011100 

001010010 

-

111110100 

110100110 

-

110000000 

011110110 

T{C)-i-T{S) 

-
-

111000000 
111100000 

-

111100000 

000100000 

-

000000000 

111100000 

-

000000000 

111000000 

-

111100000 

000100000 

-

000100000 

111100000 

R\ 
-

-
1 
1 

-

1 

0 

-

0 

1 

-

0 

1 

-

1 

0 

-

0 
1 

5.3.6 Brickell's Method 

This method is based on the use of a carry delayed integer introduced in 
§5.1.6. Let A be a carry delayed integer, then, it can be written as 

fc-i 

i=0 

The product P = AB can be computed by summing the terms: 

{To-B + Do'B)-2^ -{-

{Ti'B-{-Di'B)-2^ ^ 

(T2 • B + D2 • 5 ) . 22 4-

{n-i-B^Dk-i-B)-2^-' 

Since DQ = 0, we rearrange to obtain 

2^-To-B + 2^ 'Di'B -{-
2^'Ti'B-\'2'^'D2'B + 
2'^'T2'B-^2^-D3'B + 

rik-2 Tk-2 • B + 1^-^ • Dk-i 
2'=-! • Tk-i • B 

B + 



5.3 Modular Multiplication Operation 115 

Also recall that either Ti or Di^i is zero due to the property of the carry 
delayed adder. Thus, each step requires a shift of B and addition of at most 
2 carry delayed integers: 

# Either. {Pd,Pt):={Pd, Pt)-\-2'-Ti-B 
. Or: {Pd^Pt):={Pd, Pt)-\-2'^''Di^,-B 

After k steps P — {Pd,Pt) is obtained. In order to compute P (mod n), we 
perform reduction: 

If P > 2^-1-n then P : 
If P > 2^-2 . n then P : 
If P > 2^ -̂̂  . n then P : 

= p -
- p -
= p -

2fc-
2/e-

2/e-

-1 

-2 

-3 

n 
n 
n 

If P > n then P := P - n 

We can also reverse these steps to obtain: 

^k-l ^Tk-i'B'2^ 

= P + Tk-2'B'2''-^-i-Dk-i'B'2'' 

= P-\-Tk-3-B-2^ Dk-2 •B'2^ 

p — p-I-Ti • P . 2^ + Ĵ 2 • 5 • 2^ 

P — P- f To • P • 2° + A • P • 2^ 

Also, the multiplication steps can be interleaved with reduction steps. To per­
form the reduction, the sign of P — 2* • n needs to be determined (estimated). 
Brickell's solution [33] is essentially a combination of the sign estimation tech­
nique and Omura's method of correction. We allow enough bits for P , and 
whenever P exceeds 2̂ ,̂ add m = 2^ — n to correct the result. 11 steps after 
the multiplication procedure started, the algorithm starts subtracting multi­
ples of n. In the following, P is a carry delayed integer of /c 4- 11 bits, m is 
a binary integer of k bits, and t\ and 2̂ control bits, whose initial values are 
ti-=^t2 = 0. 

1. Add the most significant 4 bits of P and m • 2^^ 
2. If overflow is detected, then t2 = I else 2̂ — 0. 
3. Add the most significant 4 bits of P and the most significant 3 bits of 

m.2 io . 
4. If overflow is detected and 2̂ = 0, then ^i = 1 else ti = 0. 

The multiplication and reduction steps of Brickell's algorithm are as follows: 

B' :=Ti-B + 2' A + i • B 

m' :=t2'm'2^^ -\-ti • m • 2^° 

P := 2(P + P ' - f mO 

A := 2A. 
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5.3.7 Montgomery's Method 

In 1985, P. L. Montgomery introduced an efficient algorithm [238] for comput­
ing R = A- B mod n where A, B, and n are k-hit binary numbers. The Mont­
gomery reduction algorithm computes the resulting /c-bit number R without 
performing a division by the modulus n. Via an ingenious representation of 
the residue class modulo n, this algorithm replaces division by n operation 
with division by a power of 2. This operation is easily accomplished on a 
computer since the numbers are represented in binary form. Assuming the 
modulus n is a /c-bit number, i.e., 2^~^ < n < 2^, let r be 2^. The Mont­
gomery reduction algorithm requires that r and n be relatively prime, i.e., 
gcd(r, n) = gcd(2'^,n) = 1. This requirement is satisfied if n is odd. In the 
following we summarize the basic idea behind the Montgomery reduction al­
gorithm. 

Given an integer 4̂ < n, we define its n-residue with respect to r as 

A== A ' r mod n. 

It is straightforward to show that the set 

{ i' r mod n\0<i<n — 1} 

is a complete residue system, i.e., it contains all numbers between 0 and n— 1. 
Thus, there is a one-to-one correspondence between the numbers in the range 
0 and n — 1 and the numbers in the above set. The Montgomery reduction 
algorithm exploits this property by introducing a much faster multiplication 
routine which computes the n-residue of the product of the two integers whose 
n-residues are given. Given two n-residues A and B, the Montgomery product 
is defined as the n-residue 

R=: A- B ' r~^ mod n 

where r~"̂  is the inverse of r modulo n, i.e., it is the number with the property 

The resulting number R is indeed the n-residue of the product 

R = A' B mod n 

since 

R== A- B ' r~^ mod n 

= A • r ' B ' r ' r~^ mod n 

= A ' B ' r mod n. 

In order to describe the Montgomery reduction algorithm, we need an addi­
tional quantity, n', which is the integer with the property 
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r ' r~^ — n- n' = I. 

The integers r~^ and n' can both be computed by the extended Euclidean 
algorithm [178]. The Montgomery product algorithm, which computes 

u==^ A' B • r~^ (mod n) 

given A and 5 , is given in Algorithm 5.8 below. 

Algor i thm 5.8 Montgomery Product 
Require: A,B,r,n. 
Ensure: ti=MonPro(^, B)=A • B • r~^ (mod n). 

t:=AB; 
m '.•= t' n' mod r; 
u \= {t •]- in ' n)/r\ 
if u > n then 

Return(u — n) 
else 

Return(u) 
end if 

The most important feature of the Montgomery product algorithm is that 
the operations involved are multiplications modulo r and divisions by r, both 
of which are intrinsically fast operations since r is a power 2. The MonPro 
Algorithm 5.9 can be used to compute the product of A and B modulo n, 
provided that n is odd. 

Algor i thm 5.9 Montgomery Modular Multiplication: Version I 
Require: A, B, an odd number n. 
Ensure: x = A • B (mod n). 
1: Compute n' using the extended Euclidean algorithm. 
2: A := A ' r mod n; 
3: B '.— B ' r mod n; 
4: X := MonPro(i, 5); 
5: X := MonPro(x, 1); 
6: Return(a;) 

A better algorithm can be given by observing the property 

MonPro(A, B) = (A • r) • B - r''^ = A - B (mod n), 

which modifies Algorithm 5.9 as shown in Algorithm 5.10. However, the 
preprocessing operations, especially the computation of n', are rather time-
consuming. 
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Algorithm 5.10 Montgomery Modular Multiplication: Version II 
R e q u i r e : A,B, an odd number n. 
E n s u r e : x = A • B (mod n). 

1: Compute n ' using the extended Euclidean algorithm. 
2: A := A • r mod n; 
3: X := MonPro( i , B); 
4: Re turn(a ; ) 

Nevertheless, there is an efficient algorithm for computing the single pre­
cision integer UQ. The computation of no can be performed by a specialized 
Euclidean algorithm instead of the general extended Euclidean algorithm. 
Since r = 2^^ and 

r ' r~^ — n- n' = I, 

we take modulo 2^ of the both sides, and obtain 

- n - n ' - l (mod 2^), 

or, in other words, 
U'Q == -n^^ (mod 2^), 

where UQ and n^^ are the least significant words (the least significant w bits) 
of n' and n ~ \ respectively. In order to compute —UQ^ (mod 2^), we use 
algorithm 5.11 given below which computes x~^ (mod 2^) for a given odd x. 

Algorithm 5.11 Specialized Modular Inverse 
R e qu i re : an odd number x and 
E n s u r e : yuj = x~ 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

y\ •= 1; 
for i — 2 to w 

if 2'-^ < X ' 
Vi := Vi-i 

else 
Vi -.= Vi-i 

end if 
e n d for 
Return(?/ty) 

' (mod 2^). 

do 
yi-i (mod 2') 
+ 2^-^ 

J 

w. 

t h e n 

The correctness of the algorithm follows from the observation that, at every 
step z, we have 

X • yi = I (mod 2^). 

This algorithm is very eflftcient, and uses single precision addition and multipli­
cations in order to compute x~^. As an example, we compute 23"^ (mod 64) 
using the above algorithm. Here we have a; = 23, ii; = 6. The steps of the 
algorithm, the temporary values, and the final inverse are shown below: 
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i 

2 
3 
4 
5 
6 

2' 

4 
8 
16 
32 
64 

Vi-i 

1 
3 
7 
7 
7 

X ' yi-i (mod 2̂ ) 

23 • 1 = 3 
23 • 3 = 5 
23 • 7 = 1 
23-7-1 
23 • 7 = 33 

22-1 

2 
4 
8 
16 
32 

2/i 
1 + 2 = 3 
34-4 = 7 

7 
7 

7 + 32 = 39 

Thus, we compute 23 ^ = 39 (mod 64). This is indeed the correct value since 

23 • 39 = 14 • 64 -h 1 = 1 (mod 64). 

Also, at every step z, we have x - yi = 1 (mod 2*), as shown below: 

X • yi mod 2* 

23 • 1 = 1 mod 2 
23 • 3 = 1 mod 4 
23 • 7 = 1 mod 8 
23 • 7 = 1 mod 16 
23 • 7 = 1 mod 32 
23 • 39 = 1 mod 64 

Montgomery Exponentiation 

The Montgomery product algorithm is more suitable when several modular 
multiplications with respect to the same modulus are needed. Such is the case 
when one needs to compute a modular exponentiation, i.e., the computation 
of M^ mod n. Using one of the addition chain algorithms given in §5.4, we 
replace the exponentiation operation by a series of square and multiplication 
operations modulo n. This is where the Montgomery product operation finds 
its best use. In the following we summarize the modular exponentiation op­
eration which makes use of the Montgomery product function MonPro. The 
exponentiation Algorithm 5.12 below uses the binary method. 

Thus, we start with the ordinary residue M and obtain its n-residue M 
using a division-like operation, which can be achieved, for example, by a series 
of shift and subtract operations. Additionally, Steps 2 and 3 of Algorithm 5.12 
require divisions. However, once the preprocessing has been completed, the 
inner-loop of the binary exponentiation method uses the Montgomery product 
operations which performs only multiplications modulo 2^ and divisions by 2^, 
When the binary method finishes, we obtain the n-residue x of the quantity 
X = M^ mod n. The ordinary residue number is obtained from the n-residue 
by executing the MonPro function with arguments x and 1. This is easily 
shown to be correct since 

X = X ' r mod n 

immediately impHes that 

x = X'r~^modn — x - l - r ~ ^ m o d n := MonPro(x,l). 
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Algorithm 5.12 Montgomery Modular Exponentiation 
Require: A, B, and odd number n. 
Ensure: x = M^ (mod n). 
1: Compute n' using the extended Euclidean algorithm. 
2: M := M • r mod n; 
3: X \= I • r mod n; 
4: for i == k — 1 down to 0 do 
5: X := MonPro(x,x); 
6: if Ci = 1 then 
7: X := MonPro(M,x); 
8: end if 
9: end for 

10: X :— MonPro(x, 1); 
11: Return(x) 

The resulting algorithm is quite fast as was demonstrated by many researchers 
and engineers who have implemented it, for example, see [72, 200]. However, 
this algorithm can be refined and made more efficient, particularly when the 
numbers involved are multi-precision integers. For example, Dusse and Kaliski 
[72] gave improved algorithms, including a simple and efficient method for 
computing n'. We will describe these methods below. 

An Example of Exponentiation 

Here we show how to compute x = 7^° mod 13 using the Montgomery expo­
nentiation algorithm. 

• Since n = 13, we take r == 2^ == 16 > n. 
• Computation of n'\ 

Using the extended EucHdean algorithm, we determine that 16-9 —13-11 = 
1, thus, r~^ = 9 and n' = 11. 

• Computation of M: 
Since M = 7, we have M := M • r (mod n) = 7 • 16 (mod 13) = 8. 

• Computation of x for a; = 1: 
We have x := x • r (mod n) = 1 • 16 (mod 13) = 3. 

• Steps 5 and 7 of the ModExp routine: 
ei 

1 
0 
1 
0 

Step 5 

MonPro(3,3) = 3 
MonPro(8,8) = 4 
MonPro(4,4) = 1 
MonPro(7,7) = 12 

Step 7 

MonPro(8,3) = 8 

MonPro(8,l) = 7 

o Computation of MonPro(3,3) = 3: o Computation of MonPro(8,3) = 8: 
t := 3 • 3 = 9 t := 8 • 3 = 24 
m := 9 • 11 (mod 16) = 3 m := 24 • 11 (mod 16) = 8 
^ := (9 -f 3 .13)/16 = 48/16 = 3 u := (24 -|- 8 • 13)/16 = 128/16 = 8 
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o Computation of MonPro(8,8) = 4: ^ Computation of MonPro(4,4) = 1; 

t - = 8 8 = 64 i : = 4 - 4 = 16 

m := 64 . 11 (mod 16) = 0 '^ •= . ] l ' ' ("1°^/,^) = » , , 
M := (64 + 0 • 13)/16 = 64/16 = 4 « ^= (16 + 0 • 13)/16 = 16/16 = 1 

o Computation of MonPro(8,1) == 7: o Computation of MonPro(7, 7) = 12: 
t:=S'l = S t:=7'7 = 49 
m := 8 • 11 (mod 16) - 8 m : - 49 • 11 (mod 16) = 11 
u:= (84-8-13) /16= 1 1 2 / 1 6 - 7 u := ( 49+1M3) /16 - 192/16 = 12 

• Step 7 of the ModExp routine: x = MonPro(12,1) = 4 
i — 1 2 - 1 = 12 
m : = 12-11 (mod 16) = 4 
u:={12 + 4' 13)/16 = 64/16 - 4 

Thus, we obtain x = 4 as the result of the operation 7^° mod 13. 

Hardware Implementation of the Montgomery Method 

In the rest of this section, we introduce an efficient binary add-shift algorithm 
for computing MonPro(yl, J9), and then generahze it to the m-ary method. 
We take r = 2^, and assume that the number of bits in 4̂ or B is less than 
k. Let A = {Ak-iAk-2 - • • AQ) be the binary representation of A. The above 
product can be written as 

k-l 

2-^ • {Ak-iAk-2 "'Ao)'B = 2-''-Y^Ai'2''B (mod n). 
i=0 

The product t = (^o 4- Ai2 H Ak-i2^~'^) • B can be computed by starting 
from the most significant bit, and then proceeding to the least significant, as 
follows: 

1. t:=0 
2. for z = /c - 1 to 0 
2a. t:=t-\-Ai-B 
2b. t\=2't 

The shift factor 2~^ \n 2~^ - A - B reverses the direction of summation. Since 

2-^'{A^-{-Ax2-{-"'Ak-i2^-^) = Aifc_l2-l+Afc_22-2...Ao2-^ 

we start processing the bits of A from the least significant, and obtain the 
following binary add-shift algorithm to compute t = A - B - 2'^^, as shown in 
Algorithm 5.13. 

Procedure 5.13 computes the product t ~ 2~^ - A ' By however, we are 
interested in computing u = 2~^ - A- B (mod n). This can be achieved by 
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Algorithm 5.13 Add-and-Shift Montgomery Product 
Require: A,B. 
Ensure: t = A-B-2~''. 
1: t :=0; 
2: for i = 0 to fc - 1 do 
3: t:=t + Ai-B; 
4: t := t/2] 
5: end for 
6: Return(t) 

subtracting n during every add-shift step, but there is a simpler way: We add 
n to n if li is odd, making new u an even number since n is always odd. If u is 
even after the addition step, it is left untouched. Thus, u will always be even 
before the shift step, and we can compute 

u := u- 2~^ (mod n) 

by shifting the even number u to the right since u = 2v implies 

u :— 2v • 2~^ = V (mod n). 

The binary add-shift algorithm computes the product u~ A'B-2~^ (mod n) 
as shown in Algorithm 5.14. 

Algorithm 5.14 Binary Add-and-Shift Montgomery Product 
Require: A, B, an odd number n. 

(mod n). Ensure: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

u := 
for i 

u 
if 

u = A- B 
0; 
= 0 to A; -

•.= u-{- Ai • 

.2-' 

1 do 
B; 

u is odd then 
u := li + n; 

end if 
u - «/2; 

end for 
Reti arn(u) 

We reserve a {k + l)-bit register for u because if u has k bits at beginning 
of an add-shift step, the addition oi Ai - B and n (both of which are /c-bit 
numbers) increases its length to A; + 1 bits. The right shift operation then 
brings it back to k bits. After k add-shift steps, we subtract n from u if it is 
larger than n. 

Also note that Steps 2a and 2b of the above algorithm can be combined: 
We can compute the least significant bit î o of u before actually computing 
the sum in Step 2a. It is given as 



5.3 Modular Multiplication Operation 123 

Thus, we decide whether u is odd prior to performing the full addition oper­
ation u := u -\- AiB. This is the most important property of Montgomery's 
method. In contrast, the claissical modular multiplication algorithms (e.g., the 
interleaving method) computes the entire sum in order to decide whether a 
reduction needs to be performed. 

5.3.8 High-Radix Interleaving Method 

Since the speed for radix 2 multipliers is approaching limits, the use of higher 
radices is investigated. High-radix operations require fewer clock cycles, how­
ever, the cycle time and the required area increases. Let 2^ be the radix. 
The key operation in computing P = AB (mod n) is the computation of an 
inner-product steps coupled with modular reduction, i.e., the computation of 

P:=2^ 'P-\-A'Bi-Q'n, 

where P is the partial product and Bi is the ith digit of B in radix 2^. 
The value of Q determines the number of times the modulus n is subtracted 
from the partial product P in order to reduce it modulo n. We compute Q 
by dividing the current value of the partial product P by n, which is then 
multiplied by n and subtracted from the partial product during the next 
cycle. This implementation is illustrated in Fig. 5.8. 

B (Multiplier) 

Shift Left 
bbits 

Shift Left 
bbits 

bbits 

Accumulator 

B (Multiplier) B (Multiplier) 

<8) 
t t 

-€) 
^^27 k b+1 bits 

Divide by n H 

Fig. 5.8. High-Radix Interleaving Method 

For the radix 2, the partial product generation is performed using an array of 
AND gates. The partial product generation is much more complex for higher 
radices, e.g., Wallace trees and generalized counters need to be used. However, 
the generation of the high-radix partial products does not greatly increase cy­
cle time since this computation can be easily pipeHned. The most complicated 
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step is the reduction step, which necessitates more complex routing, increasing 
the chip area. 

5.3.9 High-Radix Montgomery's Method 

The binary add-shift algorithm is generalized to higher radix (m-ary) algo­
rithm by proceeding word by word, where the wordsize is w bits, and k = sw. 
The addition step is performed by multiplying one word of A by B and the 
right shift is performed by shifting w bits to the right. In order to perform an 
exact division of -u by 2^, we add an integer multiple of n to ii, so that the 
least significant word of the new u will be zero. Thus, if u j^ 0 (mod 2^), we 
find an integer m such that u -h m • n = 0 (mod 2^). Let UQ and no be the 
least significant words of u and n, respectively. We calculate m as 

m = —UQ'nQ^ (mod 2^). 

The word-level (m-ary) add-shift Montgomery product algorithm is given in 
Algorithm 5.15. 

Algorithm 5.15 Word-Level Add-and-Shift Montgomery Product 
Require: A, B, an odd number n, k — sw. 
Ensure: u = A- B • 2~^ (mod n). 
1 
2 
3 
4 
5 
6 
7; 

u := 0; 
for i = 0 to s — 1 do 

u := u -\- Ai ' B; 
m := —uo ' UQ^ mod 2" 
u := u + m • n; 
u:=i t /2^ ; 

end for 
Return(tx) 

This algorithm specializes to the binary case by taking w = 1. In this 
case, when u is odd, the least significant bit UQ is nonzero, and thus, m = 
—UQ ' UQ^ = 1 (mod 2). 

5.4 Modular Exponentiation Operation 

Modular exponentiation can be defined in terms of field multiplication as 
follows. Let a: be a positive integer in [1, n]. Let also e be defined as an arbitrary 
positive integer. Then, we define modular exponentiation as the problem of 
finding the number y such that, 

y= x^ mod n (5.1) 
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Taking advantage of the linearity property of the modular operation, (5.1) 
can be evaluated by performing a reduction modulo n at each step of the 
exponentiation thus guaranteeing that all the partial results will not grow 
larger than twice the length of the modulus. In the rest of this Section we 
will consider that every multiplication operation always includes a subsequent 
reduction step. 

In general one can follow two strategies in order to optimize the compu­
tation of (5.1). One approach is to implement field multiphcation, the main 
building block required for field exponentiation, as efficiently as possible. The 
other is to reduce the total number of multiplications needed to compute 
(5.1). In this Section we address the latter approach, assuming that arbitrary 
choices of the base x are allowed but considering that the exponent e has been 
previously fixed. 

In this section, we include a brief review of the main deterministic heuristic 
proposed in the literature for computing field exponentiation. 

5.4.1 Binary Strategies 

Let e be an arbitrary m-bit positive integer e, with a binary expansion repre­
sentation given as, e — (lem-2 • • • 6160)2 — 2^~^ -h X]^o^ 2*ei. Then, 

m - 2 

i=0 

Binary strategies evaluate (5.2) by scanning the bits of the exponent e one 
by one, either from left to right (MSB-first binary algorithm) or from right to 
left (LSB-first binary algorithm) applying the so-called Horner's rule ^. Both 
strategies require a total of m - 1 iterations. At each iteration a squaring 
operation is performed, and if the value of the scanned bit is one, a subsequent 
field multiplication is performed. Therefore, the binary strategy requires a 
total of m — 1 squarings and H{e) — 1 field multiphcations, where H{e) is the 
Hamming weight of the binary representation of e. The pseudo-code of the 
MSB-first and the LSB-first binary algorithms are shown in Figures 5.16 and 
5.17, respectively. The computational complexity of the algorithm in Figure 
5.16 is given as, 

P{e,m) = m-hH{e)-2 = [log2(e)J-f i/(e) - 1 (5.3) 

2 Horner's rule, named after W. G. Horner, ranks among the most efficient algo­
rithms for the computation of nth degree polynomials of the form, 
p{x) — pnx^ -h pn-ix^ - 1 H h pix + uo,pn 7̂  0, for fixed values of x. 
Horner's rule solves this problem by evaluating p{x) as, 
p{x) = (. . . {pnX •i-pn-l)x + '-')x-j- po-

This elegant algorithm was discovered independently by Isaac Newton 150 years 
earlier than Horner and by the Chinese mathematician C. C. Chao in the 13th 
century [178] 
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An Example. Let us define e = 1903 = (11101101111)2. Then m = 11 
and H{e) = 9. According to (5.3) the computational complexity of the binary 
algorithm is given as, 

P(e) = m - f / / ( e ) - 2 = 1 1 + 9 - 2 = 18. 
After evaluating the algorithm of Figure 5.16, the resulting binary sequence 

is given as. 

x' 
-* 
^ 

^x'^^x'^ 
^59 ^ ^118 ^ 

^951 ^ ^1902 . 

x^^a; 
x 2 3 6 ^ 

-. x''°' 

7 _^ 

X^'' 

x'" 
-» 

—» X 

x''^ 

28 

—> 
^x^^ - * x ^ « 
x"'^ - . x«50 

We compare the MSB-first and the LSB-first binary algorithms in terms of 
time and space requirements below: 

• Both methods require m — \ squarings and an average of | ( m — 1) multi-
pUcations. 

• The MSB-first binary method requires two registers: x and y. 
• The LSB-first binary method requires three registers: x, y, and P. However, 

we note that P can be used in place of M, if the value of M is not needed 
thereafter. 

• The multiplication (Step 4) and squaring (Step 5) operations in the LSB-
first binary method are independent of one another, and thus these steps 
can be parallelized. Provided that we have two multipliers (one multi-
pher and one squarer) available, the running time of the LSB-first binary 
method is bounded by the total time required for computing h—\ squaring 
operations on /c-bit integers. 

Algorithm 5.16 MSB-First Binary Exponentiation 
Require: x, n, e = (em-i . . . ei 
Ensure: y == x^ mod n. 

1 
2 
3 
4 
5 
6 
7 
8 

y = 0;; 
for i — m — 2 downto 0 do 

y = y^ ; 
if Ci —— 1 then 

y = y - x ; 
end if 

end for 
Return(y) 

5.4.2 Window Strategies 

The binary method discussed in the preceding section can be generahzed 
by scanning more than one bit at a time. Hence, the window method (first 
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Algorithm 5.17 LSB-First Binary Exponentiation 
Require: x, n, e = (cm-i 
Ensure: y = x^ mod n. 

1 
2 
3 
4 
5 
6 
7 
8 

p = X ; y = 1; 
for i = 0 to m — 1 do 

if d = = 1 then 
y = y p; 

end if 

end for 
Return(y) 

.6160)2 

described in [178]) scans k bits at a time. The window method is based on 
a /c-ary expansion of the exponent, where the bits of the exponent e are 
divided into /c-bit words or digits. The resulting words of e are then scanned 
performing k consecutive squarings and a subsequent multiplication as needed. 
In the following we describe the window method in a more formal way. 

Algorithm 5.18 MSB-First 2'^-ary Exponentiation 
Require: x, n, e = (em-i •.. 6160)2? k divisor of m such that ^ = m/k. 
Ensure: y = x^ mod n. 

1: Pre-compute and store x^ for all j = 1, 2, 3 , 4 , . . . , 2̂ ^ — 1. 
2: Divide e into k-hii words Wi for i = 0 ,1 , 2 , . . . , 1̂  - 1. 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

y^^W^-l. 

for z = ?̂  — 2 downto 0 do 
2/c 

y = y ; 
if H î ^ 0 then 

y = y • x*^*; 
end if 

end for 
Return(y) 

Let e be an arbitrary m-bit positive integer e, with a binary expansion 
representation given as, 

m-2 

e = ( le^-2 . . .e ieo)2 = 2 ^ - 1 + ^ 2 ^ 6 ^ . 

Let A: be a small divisor of m. Then this binary expansion of e can be 
partitioned into ^ words of length /c, such that k^ = m.lf k does not divide 
m, then the exponent must be padded with at most k — 1 zeros. Let us define 
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fc-i 

^i = {eik+{k-i)eik-\-(k-2)'' • eik-^ieik)^ = ^ 2^e(^n,^j) (5.4) 
j=o 

Then, we can equivalently represent e as, Y2i=o' ̂ i ' 2^ .̂ Using the above 
definition we have, 

y = X« = xS*="o' ̂ ^""^^ = n X'*"'^' (5.5) 

(5.5) is the beisis of the window MSB-first procedure for exponentiation de­
scribed in the pseudo-code of Figure 5.18. The window method first pre-
computes the values of x^ for j = 1, 2, 3 , . . . , 2̂ ^ — 1. Then, the exponent 
e is scanned k bits at a time from the most significant word (Wq^-i) to the 
least significant word (Wo). At each iteration the current partial result y is 
raised to the 2^ power and multiplied with x^\ where Wi is the current 
nonzero word being processed. Referring to Figure 5.18, it can be seen that, 

• The first part of the algorithm consists on the pre-computation of the first 
2^ powers of x at a cost of 2^ — 2 preprocessing multiplications. 

• At each iteration of the main loop, the power y^ can be computed by 
performing k consecutive squarings. The total number of squarings is given 
by {^ - l)k = m - k. 

• At each iteration one multiplication is performed whenever the i-th word 
Wi is different than zero. Since all but one of the 2^ different values of Wi 
are nonzero, the average number of required multiplications is given as, 
( ! ^ - l ) ( l - 2 - ^ ) - ( f - l ) ( l - 2 - ^ ) . 

Thus, the average number of multiplications needed by the window method 
in order to compute an m-bit field exponentiation is given as, 

P{m, k) = (2^ _ 2) + (m - /c) -h ( ^ - 1)(1 - 2"^). (5.6) 
K 

For A; = 1,2,3,4 the window method sketched at Figure 5.18 is called, respec­
tively, binary, quaternary, octary and hexa MSB-first exponentiation method. 
In particular, note that by evaluating (5.6) for /c = 1, the average number 
of multiplications for the binary algorithm can be found as | ( m — 1) field 
operations on average. 

One obvious improvement of the strategy just outlined is that instead of 
calculating and storing all the 2^ first powers of x, one can just pre-compute 
the windows needed for a given exponent e, thus saving some operations. This 
last idea is illustrated in the examples below. 

Example. Once again, let us consider the exponent e = 1903 = 
(11101101111)2 with m = 11. Then, the window method computational 
complexity and resulting sequence using k = 2,3,4 can be found as, 
Quaternary: e = 1903 = (011101101111)2 
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P(m, k) = 2 Pre-comp mults -f 10 Sqrs -f 5 mults = 17. 
Precomp. Sequence: x^ —̂  x^ —> x^. 
Main sequence: 

x' 
-^ 
—> 

-^x^-
x i i « - ^ 

^ 1 9 0 0 _ 

*X^^ 

x " « ^ 
» X ^ ' " ' ^ 

x''^ 
a;236 

x " ^ 

-^x*'^ 

x^^ 
-^ 

—f X 

x"'^ 

29 

-^ 
^ a ; ^ « 

x^^o 

Octal: e = 1903 - (011101101111)2 
P(m, A;) — 4 Pre-comp mults 4- 9 Sqrs -f 3 mults — 16. 
Precomp. Sequence: x^ -^ x^ —^ x^ —^ x^ -^ x^. 
Main sequence: 

237 , ^474 , 948 . ^1896 , ^1903 

Hexa: e = 1903 = (011101101111)2 
P{m, k) = 6 Pre-comp mults H- 8 Sqrs + 2 mults .= 16. 
Precomp. Sequence: x^ -^ x'^ -^ x^ -^ x^ —^ x'^ -^ x^^ -^ x^^. 
Main sequence: 

r"^ - 4 r^^ - 4 r28 _ . r^6 112 118 . 236 , „472 

—^ a;944 __̂  ^1888 _^ ^1903 

However, none of the above deterministic methods is able to find the short­
est addition chain'^ for e = 1903. 

5.4.3 Adaptive Window Strategy 

The adaptive or sliding window strategy is quite useful for exponentiations 
with extremely large exponents (i.e. exponents with bit length greater than 
128 bits) mainly because of its ability to adjust its method of computation 
according to the specific form of the exponent at hand. This adjustment is done 
by partitioning the input exponent into a series of variable-length zero and 
nonzero words called windows. As opposed to the traditional window method 
discussed in the previous section, the sliding window algorithm provides a 
performance tradeoff in the sense that allows the processing of variable-length 
zero and nonzero digits. The main goal pursued by this strategy is to try to 
maximize the number and length of zero words, while using relatively large 
values of k. 

A sliding window exponentiation algorithm is typically divided into two 
phases: exponent partitioning and the field exponentiation computation itself. 

Addition chains are formally defined in §6.3.3. 
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In the first phase, the exponent e is decomposed into zero and nonzero words 
(windows) Wi of length L{Wi) by using some partitioning strategy. Although 
in general it is not required that the window's lengths L{Wi) must all be 
equal, all nonzero windows should have a length L(Wi) smaller than a given 
number k. Let Z be the number of zero windows and NZ be the number of 
non-zero windows, so that their addition ^ represents the total number of 
windows generated by the partitioning phase, i.e., 

^ = Z + NZ (5.7) 

It is useful to force the least significant bit of a nonzero window Wi to be 
equal to 1. In this way, when comparing with the standard window method 
discussed in the previous Section, the number of preprocessing multiplications 
are at least nearly halved, since x^ must only be pre-computed for w odd. 

q consecuUve zeros 
detected 

Fig. 5.9. Partitioning Algoritm 

Several sliding window partitioning approaches have been proposed [116, 
178, 191, 181, 30, 35]. Proposed techniques differ in whether the length of a 
nonzero window has to have a constant or a variable length. The partitioning 
algorithm instrumented in this work scans the exponent from the most signif­
icant to the least significant bit according to the finite state machine shown 
in Figure 5.9. Hence, at any moment the algorithm is either completing a zero 
window or a nonzero window. Zero windows are allowed to have an arbitrary 
length. However, the maximum length of any given nonzero window should 
not exceed the value of k bits. 

Starting from the Zero Window State (ZWS), the exponent bits are 
checked one by one. As long as the value of the current scanned bit is zero, the 
algorithm stays in ZWS accumulating as many consecutive zeros as possible. 
If the incoming bit is one, the finite state machine switches to the Nonzero 
Window State (NZWS). The automaton will stay there as long as q con­
secutive zeros had not been collected. If this condition occurs the automaton 
switches to ZWS (usually q is chosen to be a small number, namely, q e [2,5]). 
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Otherwise, if k bits can been collected, the partitioning algorithm stores the 
new formed nonzero window and stays in NZWS in order to generate another 
nonzero window. 

Algorithm 5.19 Shding Window Exponentiation 
Require: x, n, e = (em-i . • • 6160)2-
Ensure: y = x^ mod n. 
1: Pre-compute and store x^ for at most all j = 1, 2, 3,4,. . . , 2̂^ — 1. 
2: Divide e into zero and nonzero windows Wi of length L{Wi) for 

i = 0 , 1 , 2 , . . . , * ' - 1 . 

for i = ^ — 2 downto 0 do 
y = y ; 
ifWi^O then 

w y = y •x'̂ '̂ ;̂ 
end if 

end for 
Return(y) 

The pseudo-code for the shding window exponentiation algorithm is shown 
in Figure 5.19. Prom that figure it can be seen that, 

• The first part of the algorithm consists on the pre-computation of at most 
the first 2^ odd powers of x at a cost of no more than 2^~-̂  —1 preprocessing 
multiplications. 

• At step 2, the exponent e is partitioned using the strategy described above 
and depicted in Figure 5.9. As a consequence, a total of Z zero windows 
and NZ nonzero windows will be produced. 

• At step 3, y is initialized using the value of the Most Significant Window 
as y = a;^*-^. It is always assumed that W^^-i ^ 0. 

• At each iteration of the main loop, the power y^ ' can be computed by 
performing L{Wi) consecutive squarings. The total number of squarings is 
given by m - L( iy^- i ) 

• At each iteration one multipHcation is performed whenever the i-th word 
Wi is different than zero. Recall that NZ represents the number of nonzero 
windows. Therefore, the number of multiphcations required at this step of 
this algorithm is NZ — 1. Although the exact value of NZ will depend 
on the partitioning strategy instrumented, our experiments show that an 
approximate value for NZ using q — 2, /c = 5, is about 0.15m. 

Thus, we find that the average number of multiplications needed to compute 
a field exponentiation for an m-bit exponent e is given as, 

P{m,k) = {2^-^-l)-^{m-L{Wk-i))-i-NZ~l (5.8) 

^ 2 ' ^ - ^ - l + 1.15m-L(P^fc_i). 
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Due to the considerable high efficiency of the partitioning strategy for collect­
ing zero words, the sHding window method significantly outperforms the stan­
dard window method when sufficiently large exponents are computed [181]. 
However, notice that the value of the parameter k cannot be chosen too large 
due to the exponentially increasing cost of pre-computing the first 2̂ ^ odd 
powers of x (step 1 of Figure 5.19). In practice and depending on the value of 
m^ k e [4,8] is generally adopted. 

After executing the above algorithm, it is found that the modular exponen­
tiation operation M^ mod n with e — 1903, can be computed by performing 9 
field squarings and 6 field multiplications, according with the sequence shown 
below, 

^ a;300 _^ ^600 _^ ^900 _^ ^1800 

Each of the deterministic heuristics just described clearly sets an upper 
bound on the number of field operations required for computing the modular 
exponentiation operation. In particular, the theoretical cost of the binary 
algorithm given in (5.3) imphes that /(e) < m 4- H{e) — 1. A lower bound for 
/(e) was found in [321] as, log2 e 4- log2 H{e) — 2.13. Therefore we can write, 

log2 e + log2 H{e) - 2.13 < /(e) < L/o^2(e)J + H{e) - 1 (5.10) 

Let us suppose that we are interested in computing the modular exponen­
tiation for several exponents of a given fixed bit-length, say, m. Then, as it 
was shown in [191], the minimum number of underlying field operations is a 
function of the Hamming weight H{e). Indeed, one can expect that on average 
/(e) will be smaller for both, H{e) closer to 0 and for H{e) closer to m. On the 
contrary, when H{e) is close to m/2, i.e., for those m-bit exponents having a 
balanced number of zeros and ones, /(e) happens to be maximal [191]. 

5.4.4 RSA Exponentiation and the Chinese Remainder Theorem 

Let us recall from Chapter 2 that the RSA algorithm requires computation of 
the modular exponentiation which is broken into a series of modular multi-
phcations by the apphcation of exponentiation heuristics. Before getting into 
the details of these operations, we make the following definitions: 

• The public modulus n is a k-hii positive integer, ranging from 512 to 2048 
bits. 

• The secret primes p and q are approximately k/2 bits. 
• The public exponent e is an h-hit positive integer. The size of e is small, 

usually not more than 32 bits. The smallest possible value of e is 3. 
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• The secret exponent d is a large number; it may be as large as (/)(n) — 1. 
We will assume that d is a k-hit positive integer. 

After these definitions, we will study how the RSA modular exponentiation 
can be greatly benefit by applying the Chinese Remainder Theorem to it. 

The Chinese Remainder Theorem 

The Chinese Remainder Theorem(CRT) hats a tremendous importance in 
cryptography. For instance, Quisquater and Couvreur proposed in [279] to 
use it for speeding up the RSA decryption primitive. It can be defined as 
follows. 

Let Pi for 2 = 1,2,. . . , /c be pairwise relatively prime integers, i.e., 

gcd{pi,pj) = 1 for Z7^ j . 

Given lî  G [0,pi — 1] for i = 1, 2 , . . . , /c, the Chinese remainder theorem states 
that there exists a unique integer u in the range [0, -P—1] where P = pip2 • • -Pk 
such that 

u = Ui (mod Pi). 

In the case of RSA decryption primitive. The Chinese remainder theorem tells 
us that the computation of 

M : - C ^ (modp .^ ) , 

can be broken into two parts as 

Ml := C^ (mod p), 

M2 : - C^ (mod q), 

after which the final value of M is computed (lifted) by the application of a 
Chinese remainder algorithm. There are two algorithms for this computation: 
The single-radix conversion (SRC) algorithm and the mixed-radix conversion 
(MRC) algorithm. Here, we briefly describe these algorithms, details of which 
can be found in [105, 355, 178, 209]. Going back to the general example, we 
observe that the SRC or the MRC algorithm computes u given ui^U2^.. - ^Uk 
and pi,p2) • • • ,PA;- The SRC algorithm computes u using the summation 

k 

u = ^^UiCiPi (mod P) , 
1=1 

where 
P 

Pi =PlP2"'Pi-lPi-\-l'-'Pk = —, 
Pi 

and Ci is the multiphcative inverse of Pi modulo pi, i.e.. 
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CiPi = 1 (mod Pi). 

Thus, applying the SRC algorithm to the RSA decryption, we first compute 

Ml := C^ (mod p), 

M2 : - C^ (mod g), 

However, applying Per mat's theorem to the exponents, we only need to com­
pute 

Mi—C^' (modp), 

M2 := C^^ (mod q), 

where 

di := d mod (p— 1), 

d2 := d mod {q — 1). 

This provides some savings since (ii, c/2 < d; in fact, the sizes of di and ^2 are 
about half of the size of d. Proceeding with the SRC algorithm, we compute 
M using the sum 

PQ pq 
M = MiCi— + M2C2— (mod n) = MiCiq-{- M2C2P (mod n), 

where ci = ^~^ (mod p) and C2 = p~^ (mod ^). This gives 

M = Mi{q~^ mod p)q -f M2{p~^ mod g')p (mod n). 

In order to prove this, we simply show that 

M (mod p) = Ml • 1 -f 0 = Ml, 

M (mod Q') = O-I-M2 • 1 = M2. 

The MRC algorithm, on the other hand, computes the final number u by 
first computing a triangular table of values: 

Uu 
U2\ U22 

Uu U32 U33 

Ukl Uk2 Uk,k 

where the first column of the values un are the given values of Uj, i.e., un = Ui. 
The values in the remaining columns are computed sequentially using the 
values from the previous column according to the recursion 

^i,j+i = {uij - Ujj)cji (mod Pi), 
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where Cji is the multiphcative inverse of pj modulo pi, i.e., 

CjiPj = 1 (mod Pi). 

For example, U32 is computed as 

U32 = {usi - un)ci3 (mod pa), 

where C13 is the inverse of pi modulo pa. The final value of u is computed 
using the summation 

U = Uu-{- U22VI + 1̂ 33PlP2 -f • • • -f UkkPlP2 '-'Pk-l 

which does not require a final modulo P reduction. Applying the MRC algo­
rithm to the RSA decryption, we first compute 

Ml : - C^^ (mod p), 

M2 := C^^ (mod g), 

where di and ^2 are the same as before. The triangular table in this case is 
rather small, and consists of 

Mil 
M21 M22 

where M u = Mi, M21 = M2, and 

M22 = (M21 - Mii)(p~-^ mod q) (mod q). 

Therefore, M is computed using 

M :== Ml + [(M2 - Ml) • (p~^ mod q) mod q] - p. 

This expression is correct since 

M (mod p) = Ml + 0 = Ml, 

M (mod q) = Mi-\- (M2 - Mi) • 1 = M2. 

The MRC algorithm is more advantageous than the SRC algorithm for two 
reasons: 

• It requires a single inverse computation: p~^ mod q. 
• It does not require the final modulo n reduction. 

The inverse value (p~^ mod q) can be precomputed and saved. Here, we note 
that the order of p and q in the summation in the proposed public-key cryptog­
raphy standard PKCS # 1 is the reverse of our notation. The data structure 
[194] holding the values of user's private key has the variables: 

exponent1 INTEGER, — d mod (p-1) 
exponent2 INTEGER, — d mod (q-1) 
coe f f i c i en t INTEGER, — ( inverse of q) mod p 
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Thus, it uses {q~^ mod p) instead of {p~^ mod q). Let Mi and M2 be defined 
as before. By reversing p, q and Mi, M2 in the summation, we obtain 

M := M2 -f [(Ml - M2) • {q~^ mod p) mod p] • g. 

This summation is also correct since 

M (mod ^) = M2 + 0 = M2, 

M (mod p) == M2 4- (Ml - M2) • 1 = Mi, 

as required. Assuming p and q are {k/2)-hit binary numbers, and d 
is as large as n which is a k-hit integer, we now calculate the total number 

of bit operations for the RSA decryption using the MRC algorithm. Assuming 
di, 0̂ 2, {p~^ mod q) are precomputed, and that the exponentiation algorithm 
is the binary method, we calculate the required number of multiplications as 

• Computation of Ml: |(/c/2) (/c/2)-bit multiplications. 
• Computation of M2: ^{k/2) (A;/2)-bit multiplications. 
• Computation of M: One {k/2)-h\t subtraction, two (A;/2)-bit multiplica­

tions, and one k-hit addition. 

Also assuming multiplications are of order /c^, and subtractions are of order 
A;, we calculate the total number of bit operations as 

2 ^ ( f c / 2 ) ^ + 2{fc/2)^ + (fc/2) + fc = 3 P ^ £ + ^ 

On the other hand, the algorithm without the CRT would compute M = C^ 
(mod n) directly, using (3/2)/c k-hit multipHcations which require 3/c^/2 bit 
operations. Thus, considering the high-order terms, we conclude that the CRT 
based algorithm will be approximately 4 times faster. 

5.4.5 Recent Prime Finite Field Arithmetic Designs on F P G A s 

In this Subsection, we show some of the most significant designs recently pub­
lished in the open Uterature for modular exponentiation. All designs included 
in Table 5.1 were implemented either on VLSI or on reconfigurable hardware 
platforms. Notice also that there is a strong correlation between design's speed 
and the date of publication ,i.e., fastest designs tend to be the ones which have 
been more recently published. 

Liu et al. presented in [210] a design based on the distributed module 
cluster microarchitecture especially designed to reduce long datapaths. The 
throughput achieved by their technique ranks as the fastest design published 
to date. Amanor et al. presented in [6] several designs based on different 
multiplier strategies. Their redundant interleaved multiplier can compute a 
1024-bit RSA decryption exponentiation in just 6.1 mS. On the other hand, 
authors in [6] also essayed designs based on a Montgomery multipHer block. 
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Table 5.1. Modular Exponentiation Comparison Table 

Work 

Liu et al.plO] 

Amanor et al [6] 

Kelley et al.[170] 

Mukaida et al. [243] 

Amanor et al.[6] 

Blum et al. [29] 

Harris et al. [134] 

Kelley et al.[170] 

Todorov[361] 

Tencaet al.[359] 

year 

2005 

2005 

2005 

2004 

2005 

2001 

2005 

2005 

2000 

2003 

Platform 

0,13Mm 
CMOS 
Virtex 

Virtex II 

0,11/im 
CMOS 
Virtex 

Virtex 

Virtex 
II Pro 
Virtex 

II 
0,5/im 
CMOS 
0,5/i?7i 

CMOS 

Cost 

221K 
gates 
4608 
CLBs 
2847 
LUTs 
61K 

gates 
8640 
CLBs 
6613 
CLBs 
5598 

LUTs 
780 

LUTs 
28K 

gates 
28K 

gates 

BRAMs, 
18-bit M 

None 

None 

5Kb, 32 

~ 

None 

"" 

5Kb, -

5Kb, 8 

~ 

"~ 

Freq. 
MHz 

714 

69.4 

102 

250 

42.1 

45 

144 

102 

64 

80 

1024-bit 
time(mS) 

1.47 

6.1 
(est.) 
6.6 

7.3 

9.7 
(est.) 

12 

16 

22 

46 

88 

Mult. Block 
Utilized 

DMC 
Mont. Mult. 
Interleaved 

Mult. 
16-bit Seal 
radix 2^^ 

64-bit Seal 
radix 2̂^ 

CSA Mont. 
Mult. 

Mont. Mult, 
radix 2^ 

16-bit Seal 
radix 2 

16-bit Seal 
radix 2^^ 

16-bit Seal 
radix 8 

8-bit Seal 
radix 2 

but the timing performance obtained was somehow lesser than that of the 
interleaved multipher. Kelley et al. presented in [170] a 16-bit Montgomery 
scalable multipher of radix 2^^, the highest radix for a Montgomery multiplier 
published to date. With that multiplier block, authors in [170] were able to 
achieve a 1024-bit exponentiation in just 6.6 mS. It is noted though, that 
the design by Kelley et al. utilized 32 embedded multipliers plus some 5K 
bit RAMs. Blum et al. designed in 2001 a high-radix Montgomery multiplier 
architecture able of achieving an exponentiation time of 12mS [29]. 

On the other side of the spectrum, designs by Todorov [361] and Tenca 
et al. [359] rank among the most economical of all high performance designs 
included in Table 5.1. 

Due to the diversity of platforms and resources employed by the designs 
featured in Table 5.1, it results rather difficult to establish reasonable criteria 
for selecting the most efficient of all of them. Here, we say that a given de­
sign is efficient if it offers a great cost-benefit compromise. Nevertheless, the 
design by Mukaida et al. reported in [243] seems to be our best bet for this cat­
egory. Utilizing a radix 16 multipher implemented on ASIC at a clock speed 
of 250MHz, authors in [243] produced a design able to compute a 1024-bit 
exponentiation within 7.3mS at a hardware price of just 61K gates. 
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A final word about the performance comparison presented here. 1024-bit 
RSA exponentiation is one of the few major cryptographic primitives which 
shows a moderate performance speedup when hardware implementations of 
it are compared with its software counterparts. On this regard, Table 5.2 
compares two RSA software designs against two of the fastest designs surveyed 
here. 

As it can be seen, the speedup attained by the design in [210] is of 25.17 
and 15.03 when compared with an XScale and a Pentium IV implementations, 
respectively. 

Table 5.2. Modular Exponentiation: Software vs Hardware Comparison Table 

Work 

Liu et al.[210] 

Amanor et al.[6] 

Martmez-Silva et al.[219] 

Lopez-Peza et al.[294] 

year 

2005 

2005 

2005 

2004 

Platform 

0,13/Lim 
CMOS 
Virtex 

IPAQ H5550 
Intel XScale 

Intel 
Pentium IV 

Cost 

221K 
gates 
4608 
CLBs 

~ 

• ~ 

Freq. 
MHz 

714 

69.4 

400MHz 

2.4GHz 

1024-bit 
time(mS) 

1.47 

6.1 
(est.) 

37 

22.10 

Speedup 

1 

4.5 

25.17 

15.03 

5.5 Conclusions 

In this Chapter we reviewed several relevant algorithms for performing effi­
cient modular arithmetic on large integer numbers. Addition, modular addi­
tion, Reduction, modular multiplication and exponentiation were some of the 
operations studied throughout the material contained in this Chapter. Strong 
emphasis was placed on discussing the best strategies for implementing those 
algorithms on hardware platforms, either in the domain of ASIC designs or 
reconfigurable hardware platforms. 

We intended to cover some of the most significant mathematical and algo­
rithmic aspects of the modular exponentiation operation, providing the neces­
sary knowledge to the hardware designer who is interested implementing the 
RSA algorithm using the reconfigurable hardware technology. 

The last Section of this Chapter contains a small survey of some of the 
most representative designs published in the open literature for modular ex­
ponentiation computation. 
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Binary Finite Field Arithmetic 

In this Chapter we review some of the most relevant arithmetic algorithm 
on binary extension fields GF{2^). The arithmetic over GF{2'^) has many 
important applications in the domains of theory of code theory and in cryp­
tography [221, 227, 380]. Finite field's arithmetic operations include: addition, 
subtraction, multiphcation, squaring, square root, multiplicative inverse, di­
vision and exponentiation. 

Addition and subtraction are equivalent operations in GF{2'^). Addition 
in binary finite fields is defined as polynomial addition and can be imple­
mented simply as the XOR addition of the two m-bit operands. 

That is why we begin this Section with a review of the main algorithms 
reported in the open literature for perhaps the most important field arithmetic 
operation: field multiplication. 

6.1 Field Mult ipl icat ion 

Let A{x),B{x) and C'{x) G G'F(2^) and P(x) be the irreducible polyno­
mial generating (7F(2^). Multiplication in GF{2'^) is defined as polynomial 
multiplication modulo the irreducible polynomial P(x), namely, 

C'(x) = A{x)B{x) mod P{x). 

One important factor for designing multipliers in binary extension fields is 
the way that field elements are represented, i.e, the sort of basis that is being 
used^ Indeed, field element representation has a crucial role in the design of 
architectures for arithmetic operations. 

Besides the polynomial or canonical basis, several other bases have been 
proposed for the representation of elements in binary extension fields [221, 
51, 390]. Among them, probably the most studied one is the Gaussian normal 
basis [281, 285, 164, 89, 405]. 

More details about field element representation can be found in §4.2. 
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Even though efficient bit-parallel multipliers for both canonical and normal 
basis representation have been regularly reported in the specialized literature, 
in this Section we will mainly focus on polynomial basis multiplier schemes, 
mostly because they are consistently more efficient than their counterparts in 
other bases^. 

Traditionally, the space complexity of bit parallel multipliers is expressed 
in terms of the number of 2-input AND and XOR gates. For reconfigurable 
hardware devices though, the total number of CLBs and/or LUTs utilized 
by the design is preferred. Depending on their space complexity, bit parallel 
multipliers are classified into two categories: quadratic and subquadratic space 
complexity multipliers. 

Several quadratic and subquadratic space complexity multipliers have been 
reported in literature. Examples of quadratic multipHers can be found in [220, 
182, 389, 390, 350, 129, 352, 315, 129, 282, 391, 112, 201, 292, 283, 284, 247, 90, 
146). On the other hand, some examples of sub-quadratic multipliers can be 
found in [267, 268, 269, 270, 291, 86, 298, 117, 293, 349, 16, 106, 91, 377, 239]. 
This latter category offers low space complexity especially for large values of 
n and therefore they are in principle attractive for cryptographic apphcations. 

Among the several approaches for computing the product C'{x), we will 
study the following strategies, 

• Two-Step multipliers 
• Interleaving Multiplication 
• Matrix-Vector Multipliers 
• Montgomery Multiplier 

In the case of two-step multipliers, first the polynomial product C{x) of 
degree at most 2m — 2 is obtained as, 

m —1 m—1 

C{x) = Aix)Bix) = ( ^ aix')iY^ bix') (6.1) 
1=0 1=0 

Then, in a second step, the reduction operation needs to be performed in 
order to obtain the m — 1 degree polynomial C"(x), which is defined as 

C'{x)^C{x)modP{x) (6.2) 

It is noticed that once the irreducible polynomial P{x) has been selected, the 
reduction step can be accomplished by using XOR gates only. 

In the rest of this section different implementation aspects and several effi­
cient methods for computing GF(2^) finite field multiplication are extensively 
studied. In § 6.1.1 the analysis of the school or classical method is presented. 
Subsection § 6.1.2 analyzes a variation of the classical Karatsuba-Ofman algo­
rithm as one of the most efficient techniques to find the polynomial product of 

^ Examples of efficient normal b£isis multiplier designs recently published in the 
open literature can be found in [164, 89, 285, 281, 405, 352, 283]. 
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product of Equation 6.1. In subsection § 6.1.3 we describe an efficient method 
to compute polynomial squaring in hardware, at a complexity cost of just 
0(1). Subsections § 6.1.4 and § 6.1.5 explain an efficient hardware method­
ology that carries on the reduction step of Equation 6.2 considering three 
separated cases, namely, reduction with irreducible trinomials, pentanomials 
and arbitrary polynomials. Then in §6.1.6 a method that interleaves the steps 
of multiplication and reduction is presented. Subsection §6.1.7 outlines field 
multiplication methods that solve Equation 6.1 by reformulating it in terms of 
matrix-vector operations. Then, in §6.1.8, the binary field version of the Mont­
gomery multiplier is discussed. Finally, §6.1.9 compares the most relevant bi­
nary field multiplier designs published up-to date. Designs are compared from 
the perspective of three different metrics, namely, speed, compactness and 
efficiency. 

6.1.1 Classical Multipliers and their Analysis 

Let A{x),B{x) be elements of GF(2^) , and let P{x) be the degree m ir­
reducible polynomial generating GF{2'^). Then, the field product C'{x) e 
GF{2^) can be obtained by first computing the polynomial product C{x) as 

C{x) - A{x)B{x) = I Y, ^i^' ] I Yl ^^ '̂ 
i = 0 i = 0 

(6.3) 

Followed by a reduction operation, performed in order to obtain the (m — 1)-
degree polynomial C'{x), which is defined as 

C'ix) = C{x)modP{x) . (6.4) 

Once the irreducible polynomial P{x) is selected and fixed, the reduction 
step can be accomplished using only XOR gates. The classical algorithm for­
mulates these two steps into a single matrix-vector product, and then reduces 
the product matrix using the irreducible polynomial that generates the field. 
The degree 2m — 2 polynomial C(x) in (6.3) can be written as. 

Co 
C\ 

C2 

Cm-2 
Cm —1 

Cm 

Cm-f-1 

C2m-3 

C 2 m - 2 . 

= 

"ao 
ai 

a2 

^m-

O'm-

0 
0 

0 
0 

0 
ao 
di 

-2 ^ m -

-1 Cim-

0>m-

0 

0 
0 

0 0 
0 0 
ao 0 

-3 am-4 a m - 5 ' 
-2 ttm-S O'm-A ' 
-1 O.m-2 ttm-a • 

^ m - l am-2 • 

0 0 
0 0 

•• 0 
•• 0 
•• 0 

• • ao 
•• a i 
•• a2 
•• as 

* * ^m-
" 0 

0 
0 
0 

0 
ao 
a i 

a2 

-1 am-2 
a m - 1 . 

bo 
hi 

b2 

bm-2 
_bm-l 

(6.5) 
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The computation of the field product C'{x) in (6.4) can be accomplished 
by first computing the above matrix-vector product to obtain the vector C 
which has 2m — 1 elements. By taking into account the zero entries of the 
matrix, we obtain the gate complexity of the computation of C{x) in Table 
6.1. 

Table 6.1. The Computation 

Coordinates 
Ci for 0 < i < m - 1 
Cm+i for 0 < i < m — 2 

AND Gates 

i + 1 
m - (z + 1) 

of C{x) Using Equation (6.5) 

XOR Gates 
i 

m - (i + 1) - 1 

TA 

1 
1 

Tx 
logsf i - f l l 

log2 \m — 1 — i\ 

Therefore, the total number of gates are found as 

AND Gates: l + 2 + --- + m + ( m - l ) - f ( m - 2 ) - } - - - - - f 2 + l = : m ^ , 

XOR Gates: 1 + 2 + • • • + (m - 1) + (m - 2) -f • • • + 2 -f 1 - (m - 1)^ . 

The AND gates operate all in parallel, and require a single AND gate delay 
TA- On the other hand, the XOR gates are organized as a binary tree of depth 
log2 \j] i^ order to add j operands. The total time complexity is then found by 
taking the largest number of terms, which is equal to m for the computation of 
Cm-i' Therefore, the total complexity of computing the matrix-vector product 
(6.5) so that the elements Ci for z = 0 , 1 , . . . , 2m - 2 are all found is given as. 

AND Gates = m^ 
XOR Gates = (m - 1)^ 
Total Delay = T^ + [logarn\Tx 

(6.6) 

Notice that this computation must be followed by reduction modulo the 
irreducible polynomial P{x). The reduction operation is discussed in Section 
6.1.4. 

6.1.2 Binary Karatsuba-Ofman Multipliers 

Several architectures have been reported for multiphcation in GF{2'^). For 
example, efficient bit-parallel multipliers for both canonical and normal basis 
representation have been proposed in [136, 351, 241, 389, 20]. All these algo­
rithms exhibit a space complexity 0{m'^). However, there are some asymptot­
ically faster methods for finite field multiplications, such as the Karatsuba-
Ofman algorithm [168, 268]. Discovered in 1962, it was the first algorithm 
to accomplish polynomial multiplication in under 0{7in?) operations [14]. 
Karatsuba-Ofman multipliers may result in fewer bit operations at the ex­
pense of some design restrictions, particularly in the selection of the degree of 
the generating irreducible polynomial m. 
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In [268], it was presented a Karatsuba-Ofman multiplier based on compos­
ite fields of the type GF({2'^y) with m = sn^ s — 2*, t an integer. However, 
for certain applications, quite particularly, elliptic curve cryptosystems, it is 
important to consider finite fields GF{2'^) where m is not necessarily a power 
of two. In fact, for this specific application some sources [145] suggest that, 
for security purposes, it is strongly recommended to choose degrees m primes 
for finite fields in the range [160, 512]. 

In the rest of this subsection we will briefly describe a variation of the 
classic Karatsuba-Ofman Multiplier called binary Karatsuba-Ofman multipli­
ers that was first presented in [293]. Binary Karatsuba-Ofman multipliers can 
be utilized arbitrarily, regardless the form of the required degree m. 

Let the field GF{2'^) be constructed using the irreducible polynomial P{x) 
of degree m = rn, with r = 2^, /c an integer. Let A,B be two elements in 
GF{2'^). Both elements can be represented in the polynomial basis as. 

2=0 i=^ z=0 

— x ^ ^ aj+mx* 4- V ] aix'^ = x^ A^ -f A^ 
i = 0 

and 

B=::Y1 ^̂ '̂ = Yl ^̂ '̂ + Yl ^̂ '̂ 
i=0 i=f^ 2=0 

2=0 2=0 

Then, using last two equations, the polynomial product is given as 

C = x'^A^B^ -h{A^B^-\-A^B^)x'^ -hA^B^. (6.7) 

Karatsuba-Ofman algorithm is based on the idea that the product of last 
equation can be equivalently written as, 

C = x'^A^B^ +A^B^ + 
(A^B^ + A^B^ -f (A^ + A^){B^ + 5 ^ ) ) x ^ (6.8) 

Let us define 
MA 

MB 

M 

= A^ + A^', 
= B^-{- B^; (6.9) 
= MAMB. 

Using Equation 6.8, and taking into account that the polynomial product C 
has at most 2m — 1 coordinates, we can classify its coordinates as. 
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C == [c2m-2)C2m-35 • • • J C^-fl) Cm]; f6 lO") 
C^ =[Cm-l,Cm-2,'"^Ci,Co]. 

Although (6.8) seems to be more complicated than (6.7), it is ea^y to see that 
Equation (6.8) can be used to compute the product at a cost of four polyno­
mial additions and three polynomial multiplications. In contrast, when using 
equation (6.7), one needs to compute four polynomial multiplications and 
three polynomial additions. Due to the fact that polynomial multiplications 
are in general much more expensive operations than polynomial additions, 
it is valid to conclude that (6.8) is computationally simpler than the classic 
algorithm. 

Algorithm 6.1 mul2^{C,A,B): m = 2^n-bit Karatsuba-Ofman Multiplier 

Require: Two elements A,B E GF{2'^) with m = rn = 2^n, where A,B can be 
expressed as A = x"^ A" -\-A^,B = x'^ B" + B ^ . 

Ensure: A polynomial C = AB with up to 2m —1 coordinates, where C = x^C^ + 

1: if r == 1 then 
2: C = muLn{A, B)-
3: Return(C) 
4: end if 
5: for i from 0 to | — 1 do 
6: MAi^Af-^At"; 
7: MBi = Bt + Bl'', 
8: end for 
9: mul2^{C^,A^,B% 

10: mul2''{M,MA,MB)] 
11: mul2^{C",A^,B"); 
12: for i from 0 to r — 1 do 
13: Mi = Mi-\-Ct + C,"; 
14: end for 
15: for i from 0 to r — 1 do 
16: Cj+i 
17: end for 
18: Return(C). 

Karatsuba-Ofman's algorithm can be applied recursively to the three poly­
nomial multipHcations in (6.8). Hence, we can postpone the computations of 
the polynomial products A^B^^A^B^ and M, and instead we can split again 
each one of these three factors into three polynomial products. By applying 
this strategy recursively, in each iteration each degree polynomial multiplica­
tion is transformed into three polynomial multiplications with their degrees 
reduced to about half of its previous value. 

Eventually, after no more than [log2(m)] iterations, all the polynomial 
operands collapse into single coefficients. In the last iteration, the resulting bit 
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multiplications can be directly computed. Although it is possible to implement 
the Karatsuba-Ofman algorithm until the [log2 m] iteration, it is usually more 
practical to truncate the algorithm earlier. If the Karatsuba-Ofman algorithm 
is truncated at a certain point, the remaining multiplications can be computed 
by using alternative techniques^. 

Let us consider the algorithm presented in Algorithm 6.1. If r = 1, then the 
product is trivially found in lines 1-3 as the result of the single n-bit polynomial 
multiphcation C — muLn{A,B). Otherwise, in the first loop of the algorithm 
(lines 4-6) the polynomials MA and MB of equation (6.9) are computed by a 
direct polynomial addition of A^ -h A^ and B^ + J5^, respectively. In lines 
7-9, C^^C^ and M, are obtained via §-bit polynomial multiphcation. After 
completion of these polynomial multiplications, the final value of the lower half 
of C^ as well as the upper half of C^ are found. To find the final values of the 
upper half of the polynomial C^ and the lower half of C^, we need to combine 
the results obtained from the multiplier blocks with the polynomials C^ , C^ 
and M, as described in equations (6.8) and (6.9). This final computation is 
implemented in fines 10 through 13 of figure 6.1. 

Complexity Analysis 

The space complexity of the Algorithm 6.1 can be estimated as follows. The 
computation of the loop in lines 4-6 requires 2 ( | ) == r additions. The execution 
of lines 7-9, implies the cost of 3 | -bit polynomial multiphers. Finally, lines 
10-13 can be computed with a total of 3r additions. Notice that if n > 1 the 
additions in Algorithm 6.1 need to be multi-bit operations. Noticing also that 
m-bit multipUcations in GF{2) can generate at most (2m - l)-bit products, 
we can have an extra saving of four bit-additions in lines 11 and 13. Hence, 
the addition complexity per iteration of the m = 2'^n-bits Karatsuba-Ofman 
multiplier presented in Algorithm 6.1 is given £is r -h 3r = 4r n-bit additions 
plus three times the number of additions needed in a | multiplier block, minus 
four bit additions. Notice that for n-bit arithmetic, each one of these additions 
can be implemented using n XOR gates. 

Recall that m is a composite number that can be expressed as m •= rn^ 
with r = 2^, A; an integer. Then, one can successively invoke ^-bi t multiplier 
blocks, 3̂  times each, for i — 1,2,... ,log2r. After k = log2r iterations, all 
the multiplier operations will involve polynomial multiplicands with degree n. 
These multiplications can be then computed using an alternative technique, 
like the classic algorithm. By applying iteratively the analysis given above, 
one can see that the total XOR gate complexity of the m = 2^n-bit hybrid 
Karatsuba-Ofman multiplier truncated at the n-bit operand level is given as 

such as the classical algorithm studied in §6.1.1 or other techniques 
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XOR Gates = M^or2n3^°^2^ + y ' 3 ^ ~ ^ ( ^ - 4 ) 

log2r •_-^ logar 

i = l i=l 

r. l o g 2 r ^ . l o g 2 r 

= M,,,2n3̂ ĝ̂ ^ + | r n 5 ] | " ^ E ^̂  

o log2 r 
= M,or2n3^°s^ ^ 4- 8 r n ( | - 1) - 2(3^°^^ '̂  - 1) 

- Ma,or2n3̂ ^S2 r _̂  8rn(r^°S2 f _ 1) _ 2(r^°g2 3 _ i) 

= M,,or2nr^°S2 3 ̂  8n(r^°S2 3 _ gr) - 2(r̂ °S2 3 _ i) 

= r̂ Ŝ2 3 (8^ _ 2 4- Ma;or2n) - 8rn 4- 2 

= i^-j (8 2 4-M^or2- ) -8m4-2 . 

Where Mxor2^ represents the XOR gate complexity of the block selected to 
implement the n-bit multipliers. 

Similarly, notice that no AND gate is needed in Algorithm 6.1, except when 
the block selected to implement the n-bit multiplier is called. Let Mand2^ 
be the AND gate complexity of the block selected to implement the n-bit 
multiplier. Then, since this block is called exactly 3̂ °̂ ^ ^ times, we conclude 
that the total number of AND gates needed to implement the algorithm in 
6.1 is given as, 

AND gates = r''^^'Mand2n = {'^y''^^'Mand2n 

We give the time complexity of Algorithm 6.1 as follows. The execution 
of the first loop in lines 4-6 can be computed in parallel in a hardware im­
plementation. Therefore, the required time for this part of the algorithm is of 
just 1 n-bit addition delay, which is equal to an XOR gate delay Tx- Lines 
7-9, can also be implemented in parallel. Thus, the associated cost is of one 
I-bit multiplier delay. Notice that we cannot implement this second part of 
the algorithm in parallel with the first one because of the inherent dependen­
cies of the variables. Finally, lines 10-13 can be computed with a delay of just 
3Tx. Hence, the associated time delay of the m — 2^^n-bit Karatsuba-Ofman 
multiplier of figure 6.1 is given as 

loggr 

Time Delay = Tdeiay2n + E ^ "̂  Tdeiay2n + 4Tx log2 r. 
2 = 1 

In this case it has been assumed that the block selected to implement the 
GF{2'^) arithmetic has a Tdeiay2^ gate delay associated with it. 
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In summary, the space and time complexities of the m-bit Karatsuba-
Ofman multiplier are given as 

XOR Gates < (^)^°^^ ^ ( 8 ^ - 2 + M^or2n) - 8m 4- 2 ; 
AND Gates < {^y''^^^Mand2n ; (6.11) 
Time Delay < Tdeiay2n + 4Tx log2(^) . 

As it has been mentioned above, the hybrid approach proposed here re­
quires the use of an efficient multiplier algorithm to perform the n-bit poly­
nomial multiplications. Let us recall that in §6.1.1 above, it was found that 
the space and time complexities for the classic n-bit multiplier are given as 

XOR Gates = (n - 1)^ ; 
AND Gates = n^ ; (6.12) 
Time Delay < TAND 4- Tx [logs n] . 

Combining the complexities given in equation (6.12), together with the 
complexities of equation (6.11) we conclude that the space and time complex­
ities of the hybrid m-bit Karatsuba-Ofman multiplier truncated at the n-bit 
multiplicand level are upper bounded by 

XOR Gates < ( ^ ) "̂"̂ ^ ^ (8n - 2 + M^or2n) - 8m + 2 

(6.13) (^)^''^^'(n2 4 - 6 n - l ) - 8 m + 2 

AND Gates < S'""^^"^Mand2n = {^y^'^'^^] 
Time Delay < TAND + Tx (logs ^ + 4 logs ^) • 

Let us consider now the cases where m is a power of two, m = rn = 2^^, k > 2. 
Then, n = 4 is the most optimal selection for the hybrid Karatsuba-Ofman 
algorithm. For this case using equation (6.13) we obtain 

XOR Gates < (^)^''^' ^ (n^ -h 6n - 1) - 8m + 2 

= ( T ) ' ' ^ ' ' ( 4 2 - f 6 . 4 - l ) - 8 . 2 ^ - | - 2 

= 13 .3^-1-2^^+^^ 2; (g^^^ 

AND Gates < ( ^ ) ^ " ^ ^ ' n 2 = ( ^ ) ' ' ' ' % 2 ^ iQ.^k-2. 

Time Delay < TAND + Tx (logs ^ + 4 logs ^) = 
= TAND + Tx(logs4-f41ogs2'^-2) = TAND-hTx{4k - 6) . 

Table 6.2 shows the space and time complexities for the hybrid Karatsuba-
Ofman multiplier using the results found in equation (6.14). The values of m 
presented in Table 6.2 correspond to the first ten powers of two, i.e., m — 2^ 
for z = 0 , 1 , . . . , 9. Notice that the multipliers for m = 1,2,4 are assumed to be 
implemented using the classical method only. As we will see, the complexities 
of the hybrid Karatusba multipHer for degrees m = 2^ happen to be crucial 
to find the hybrid Karatsuba-Ofman complexities for arbitrary degrees of m. 
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Table 6.2. Space and Time Complexities for Several m = 2'̂ -bit Hybrid Karatsuba-
Ofman Multipliers 

m 
1 
2 
4 
8 
16 
32 
64 
128 
256 
512 

r 
1 
1 
1 
2 
4 
8 
16 
32 
64 
128 

n 
1 
2 
4 
4 
4 
4 
4 
4 
4 
4 

AND gates 
1 
4 
16 
48 
144 
432 
1296 
3888 
11664 
34992 

XOR gates 
0 
1 
9 
55 

225 
799 

2649 
8455 

26385 
81199 

Time delay 
TA 

Tx -\-TA 

2Tx + TA 

QTx + TA 

lOTx + TA 
UTx + TA 

ISTx -f TA 
22Tx + TA 
26Tx + TA 
SOTx -}- TA 

Area (in NAND units) 
1.26 
7.24 

39.96 
181.48 
676.44 
2302.12 
7460.76 

23499.88 
72743.64 

222727.72 

Binary Karatsuba-Ofman Multipliers 

In order to generalize the Karatsuba-Ofman algorithm of Algorithm 6.1 for 
arbitrary degrees m, particularly m primes, let us consider the multiplication 
of two polynomials A,B e GF(2^) , such that their degree is less or equal to 
m — 1, where m = 2^ + d. 

A = [0,... ,0,0,a2fc+d-i'• • •''̂ 2'<=+i'̂ 2'=>^2'«-i»^2'«=-2'• • • »<^2,ai,ao]; 

A^ = [0,... ,0,0,a2/c+d_i,... ,a2fc+i,a2fc]; 
A = [a2fc_i, a2A;_2? • • •) ^2, ai, ao]; 

Fig. 6.1. Binary Karatsuba-Ofman Strategy 

As a very first approach, we could pretend that both operands have 2 "̂̂ ^ 
coordinates each, where their respective 2^'^^ — d most significant bits are 
all equal to zero. Figure 6.1 shows how the sub-polynomials A^ and A^ will 
be redefined according with this approach. If we partition the operands A 
and B as shown in Figure 6.1, then, in order to compute their polynomial 
multiplication, we can use the regular Karatsuba-Ofman algorithm with m = 
2^"^^ Although this approach is obviously valid, it clearly impHes the waste 
of several arithmetic operations, as some of the most significant bits of the 
operands are zeroes. However, if we were able to identify the extra arithmetic 
operations and remove them from the computation, we would then be able to 
find a quasi-optimal solution for arbitrary degrees of m. To see how this can 
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be done, consider the Algorithm 6.2, which has been adapted from Algorithm 
6.1 previously studied. 

Algorithm 6.2 mulgen-d{C^ A, B): m-bit Binary Karatsuba-Ofman Multi­
plier 
Require: Two elements A,B e GF{2^) with m an arbitrary number, and where 

A,B can be expressed as A = x"^A^ 4-^^,B = x"^B^ + B^. 
Ensure: A polynomial C — AB with up to 2m —1 coordinates, where C = x^C^ + 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

k = [log2 m\; 
d = m-2^\ 
if d —— 0 then 

C = Kmul2''{A,B)] 
return(C); 

end if 
for i from 0 to d - 1 do 

MAi = A f + A f ; 
MBi = Bt + Bl^', 

end for 
mul2''{C^,A^,B^); 
mul2^{M,MA,MB)\ 
mulgen.d{C",A",B")', 
for i from 0 to 2^ - 2 do 

Mi = Mi+ 0^+0!"', 
end for 
for i from 0 to 2'' - 2 do 

Ck+i = Ck+i + Mi] 
end for 
Return(C). 

In lines 1-2 the values of the constants /c, d such that m = 2^ -\- d^ are com­
puted. If d = 0, i.e, if m is a power of two, then the binary Karatsuba-Ofman 
Algorithm 6.2 reverts to the specialized Algorithm 6.1 presented previously. 
If that is not the case. Algorithm 6.2 uses the constants k and d to prevent us 
to compute unnecessary arithmetic operations. In lines 6-8, the d least signifi­
cant bits of MA and MB of equation (6.9) are computed using the d non-zero 
coordinates of A^ and B^. The remaining k — d most significant bits of MA 
and MB are directly obtained from A^ and B^, respectively. Notice that the 
operands, A^^B^^MA and MB are all 2'^-bit polynomials. Because of that, 
our algorithm invokes the multiplier of Algorithm 6.1 in fines 9 and 10. On 
the other hand, both operands A^ and B^ are rf-bit polynomials, where cZ, 
in general, is not a power of two. Consequently, in line 11, the algorithm calls 
itself in a recursive manner. This recursive call is invoked using the operand's 
degree reduced to d. In each iteration the degree of the operands gets reduced. 
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and eventually, after a total of h iterations (where h is the hamming weight 
of the binary representation of the original degree m), the algorithm ends. 

A""!! 27:01 

B'-[127:0] 

MUL 
2128 

A"(62:0] -

A'-[127:0]-

B'-[127:0] -

B"[62:0] -

XOR 
128 

XOR 
128 

(A'-+A") 

[127:0] 

(B'-+B") 

[127:0] 

MUL 
2128 

A'-B'-[255:0] 
A'-B^[127:0] 

Concatenation 

A'-B'-[255:128] 

A"B"[122:0]A'-B'-[255:128} 

(A"+A'-)(B"+B'-)[255:0] 

A"[62:0] 

B"[62:0] 

MUL A"B" 

XOR 
256 

O[380:0| 

M[252:0] 

[122:0] REDUCTION 

Fig. 6.2. Karatsuba-Ofman Multiplier GF{2^^^) 

As a design example, consider the binary Karatsuba-Ofman multiplier 
shown in Figure 6.2. That circuit computes the polynomial multiplication of 
the elements A and B e GF{2^^^). Notice that for this case m = 191 = 2^-h 
d = 2*̂  + 63. Since (191)2 = 10111111, the Hamming weight/i of the binary 
representation of m is /i — 7. This implies that we would need a total of 
seven iterations in order to compute the multiplication using the generalized 
m-bit binary Karatsuba-Ofman multipHer. 

However we can do much better by assuming that the d = 63 most 
significant leftover bits are 64 (implying m = (192)2 == 11000000). Hence, 
algorithm 6.2 can finish the computation in only two iterations, as shown in 
Figure 6.2. 

By using the complexity figures Hsted in Table 6.2, we can estimate the 
space and time complexities of the generalized 191-bit binary Karatsuba-
Ofman multiplier as, 

Number of CLBs = 2MULx{l2S) -f Mt/Lx(64) -f C 
= 2 -3379+1171+ C 
= 7929 -f C 

Delay = MUL delay (2^-^^^^ ^J) -i- O 
= MC/Lde/a^(2Ll°g2l91J)-fO 

= MULdelay{2^) + 0 

(6.15) 

Where C and O represent the overhead in space and time, respectively, asso­
ciated with the extra circuitry shown in Figure 6.2. 

The generalized 191-bit binary Karatsuba-Ofman multiplier was imple­
mented using Xilinx Foundation Series F4.1i software on Xilinx Virtex-E 
FPGA device XCV2600e-8bg560. The design is coded using VHDL, using 
library components and also by using Xilinx Coregenerator for design entry. 
The implementation occupied a total of 8721 sHces and 576 I/O Blocks. We 
obtained a total path delay of 43 r^Sec. 



6.1 Field Multiplication 151 

F ^ Control Logic h. 

Iz 
Memory Y^ 

^=^^ 
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Multipler 

XZ 
1 y1 Network K i ' 

Fig. 6.3. Programmable Binary Karatsuba-Ofman Multiplier 

P rogrammabi l i t y 

The schematic diagram shown in figure 6.2 illustrates two desirable charac­
teristics of the binary Karatsuba-Ofman multipliers. First, it is possible to 
implement them using non-recursive architectures. In addition, since these 
algorithms are highly modular, it is possible to design non-parallel scalable 
implementations. By scalable implementations we mean configurations that 
allow the user to select the size m of the multiplicands that he/she wants to 
work with. 

Consider the architecture shown in figure 6.3. We use a control logic block 
that allows us to execute the algorithm of figure 6.2 in a sequential manner. 
To do this, we also take advantage of the intrinsically modular nature of a 2^-
bit Karatsuba-Ofman multiplier, which can itself be programmed to compute 
multiplications that involve operands of a size that is any power of two lower 
than 2^. 

The partial multiplications obtained using this approach, are stored in a 
memory block as figure 6.3 shows. The control logic can then use these par­
tial results to compute the remaining operations so that the total polynomial 
product can be obtained. Notice also, that the architecture shown in figure 
6.3 can be programmed to implement multiplications with different operands' 

6.1.3 Squaring 

In this section we investigate some efficient methods to compute polynomial 
squaring, which is a special case of polynomial multiphcation. Let us assume 
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m — l 

that we have an element A given as i4 == ^ aix\ Then the square of A is 

given as 

i = 0 

C{x) = A{x)A{x) - A^{x) = {J2 aix'){J2 ^i^') ^ ^ a^x^^ (6.16) 

The main implication of the above equation is that the first k < m bits of A 
completely determine the first 2k bits of A"^. Notice also that half the bits of 
A"^ (the odd ones) are zeroes. Taking advantage of this feature, the hardware 
implementation shown in Figure 6.4 simply interleaves a zero value between 
each one of the original bits of A yielding the required squaring computation 
which must be followed by a reduction operation to be discussed in the next 
Subsection. 

SQUARE REDUCTION 

IN-

- ^ 
•OUT 

Fig. 6.4. Squaring Circuit 

6.1.4 Reduction 

Let the field GF{2^) be constructed using the irreducible polynomial P{x) 
and let A{x),B{x) € GF{2^). Assuming that we already have computed the 
product polynomial C{x) of Equation (6.1), by using any one of the methods 
described in the previous two subsections, we want to obtain the modular 
product C of Equation (6.2). Recall that the polynomial product C and the 
modular product C , have 2m — 1 and m, coordinates, respectively, i.e.. 

C = [c2m-25 C2m-3j • • • j Cm+lj Cm, • • • , Ci, CQ]; 

^ = [Cm- l>^m-25 • • • 5Ci,Co]. 
(6.17) 
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Once the generating polynomial P{x) has been selected, the reduction step 
that obtains C" from C can be computed by using XOR and shift operations 
only. 

Reduction with Trinomials and Pentanomials 

Let the field GF{2'^) be constructed using the irreducible trinomial P{x) = 
x^ -\- x'^ -h I with a root a and 1 < n < y . Let also A{x)j B{x) be elements 
in GF{2'^). In order to obtain the modular product C'(x) of (6.1), we use the 
property P{a) — 0, and write 

a"^ - 1 + a^ ; 

: (6.18) 
Q,2m-3 _ Q^rn-3 . ^ m + n - 3 . 

ym-\-n—2 

The above m — 1 set of identities suggests a method to obtain the m-
coordinates of the modular product C of Equation (6.2). We can partially 
reduce the 2m — 1 coordinates of C by reducing its most significant m — 1 bits 
into its first m + n — 1 bits, as indicated by (6.18). For instance, in order to 
obtain the first partially reduced coordinate CQ we just need to add the regular 
product coordinate Cm to the CQ coordinate, yielding CQ as CQ = CQ 4- c^ .̂ 

Similarly the whole set of m + n — 2 partially reduced coordinates can be 
found as, 

CQ — CQ + Cm ; 

c[ = Ci + Cm+1 ; 

< - l 

C'n 

^n+1 

^ m - 2 

^ m - 1 
c' 

r' 

r' 
-3 

-2 

= 
= 
^̂  

= 
= 
— 

= 
= 

Cn-1 

Cn 

Cn+1 

Cm-2 

Cm—1 

^m 

Cm-\-n-

Cm-f-n-

4-

+ 
+ 

+ 

-3 

-2 

Cm+n—1 

^Tn+n 

Cm-\-n-\-\ 

C2m-2 

) 
+ C771 ; 

+ Cm+l ; 

+ C 2 m - n - 2 5 

+ C 2 m - n - l 5 

1 C2m—n 5 

+ C2m-3 ; 

+ C2m-2 • 

(6.19) 

Notice that in the reduction process of (6.19), the constant coefficient of the 
irreducible generating trinomial P{x) reflects its influence in the first m — 1 
partially reduced bits. The middle term of P{x)^ on the other hand, affects 
the partially reduced bits of (6.19) in the range [cj^,c^^^_2]. 
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We say that the coefficients in (6.19) have been partially reduced because 
in general, if n > 1, we still need to reduce the n - 1 most significant reduced 
coordinates of (6.19). However, this same idea can be used repeatedly until 
the 771 — 1 modular coordinates of (6.17) are obtained. Each time that this 
strategy is applied we reduce m — n coordinates. 

r — 
1 
1 

2m-1 

(m-1 bits) 

_ _ _ p_ _ _i I 
\ 

^ - - 4 (n) 

(mbits) 1 

n 
(m bits) ! 

9m.1 

(m bits) i 

(m-n bits) 

v 
j 

d vv 

X 

Y 

C=W xor X xor Y xor Z 

Fig. 6.5. Reduction Scheme 

For hardware reconfigurable designs, we can implement above ideas as 
follows. According to Eq. (6.1) the polynomial product C{x) — A(x)B{x)^ 
can be represented as a 2m-coefficient vector as. 

C{x) ^ 2 m - l ^ m - 2 ^ m - 1 ^m ' ^ m - 1 ^2 -1 ^Oj (6.20) 

When working with an irreducible trinomial of the form P{x) — x^ + a:"" + 1, 
it is convenient to consider the following four sub-vectors, 

C =- A'B mod P(x) 

— ^[0,m-l] + ^[m,2m-l] + ^[Tn,2m-l-n]^ 

+ (^[2m-n,2m-l] + ^[2m-n,2m-l ]^^ j (6.21) 

Thus, the reduction step can be computed by the addition of four terms, 

X = q', 
Y = CL 

m,2m—1] 

' [ m , 2 m - l - n ] ' ^ 

^ — ^[2m-n,2m-l] + ^[2m-n,2m-l]^^ 

This procedure is shown schematically in Fig. 6.5. Notice that for those designs 
implemented in hardware platforms, the modular reduction procedure just 
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outlined can be instrumented by using XOR logic gates only. Nevertheless, 
the exact computational complexity of this arithmetic operation depends on 
the expHcit form of m and the middle coefficient n in the trinomial P{x). 

Although the strategy shown in Figure 6.5 has been designed for irre­
ducible trinomials, it can be easily extended to irreducible pentanomials. For 
example, let us consider the finite field GF(2^^^)generated using the irre­
ducible pentanomial P{x) = x^^^ -\- x'^ -\- x^ -\- x^ -\- 1 ^. The corresponding 
reduction procedure for this pentanomial is depicted in Fig. 6.6. 

Fig. 6.6. Pentanomial Reduction 

This is a NIST recommended finite field for elliptic curve applications [253]. 
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6.1.5 Modular Reduction with General Polynomials 

The algorithms studied in the previous section are highly efficient for irre­
ducible trinomials and/or pentanomials. However, when general irreducible 
polynomials are selected, i.e., irreducible polynomials with an arbitrary num­
ber of nonzero coefficients, the algorithms presented in last section are not 
efficient anymore. Because of that, we need to come out with alternative tech­
niques to handle the reduction step. In this section we present a standard 
reduction method based in look-up tables specifically intended for general 
irreducible polynomials. 

Recall that assuming that the polynomial product C with 2m — 1 coordi­
nates is given, we would like to compute 

C'{x)=^C{x)modP{x). 

Our methods are based on the observation that since we are interested 
in the polynomial remainder of the above equation, we can safely add any 
multiple of P{x) to C[x) without altering the desired result. This simple 
observation suggests the following algorithm that can reduce k bits of the 
polynomial product C at once. Assume that the m-f 1 and 2m — 1 coordinates 
of P(x) and C(x), respectively, are distributed as follows: 

C = [c2m-2, C2m-3, • • • j C2m-l-k, C2m-2-k, • • • , Ci, CQ]] 

P = bm,Pm-l , . . - ,Pl ,Po] . 

Then, there always exists a /c-bit constant scalar 5, such that 

P = I Pm, P m - 1 , • • • , Pm-/e+l, Pm-k, • • • , P i , Po]] 

S - P =[ C2m-2, C2m-3, • • • , C2m-l-/e, P'm-k^ ' ' • ' Pv Poh 

(6.22) 

(6.23) 

where I < k < m — I. Notice that all the most significant k bits of the scalar 
multiplication S • P become identical to the corresponding ones of the number 
C. By left shifting the number S • P exactly Shift = 2m — 2 — k — l positions, 
we can effectively reduce the number in C by k bits as shown in figure 6.7. 

C [c2m-2, C2m-3, . • • , C2m-l-k, C2m-2-k, • • • , Cm-2, Cm-3, • • • , Co] + 

2 5 W t ( 5 . p ) [c2m-2,C2m-3, .•.,C2m-l-fe, Pm-fc, • • • > Po, 0, . • . , 0] = 

[O^ 0 , . . . , 0̂  C2m-ki • • • , c'm-2, Cm-3, • • • , Co] 

Fig. 6.7. A Method to Reduce k Bits at Once 

One can apply this strategy an appropriate number of times in order to 
reduce all the most m — 1 significant coordinates of C. 

In summary, the main design problems that we need to solve in order to 
implement the reduction method discussed here are: 
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• Given C and P as in (6.22), find the appropriate constant S that yields the 
most significant k bits of the operation SP, identical to the corresponding 
ones in C. 

• Compute the scalar multiplication S - P oi (6.23). 
• Left shift the number 5 • P by Shift positions, so that the result of the 

polynomial addition C 4- 2^^^^^[S • P) ends up having k leading zeroes. 

Both of the first two design problems, i.e., finding the constant S and com­
puting the scalar product S • P , can be solved efficiently by using a look-up 
table approach, provided that a moderated value of k be selected. In practice, 
we have found that a selection of /c = 8 yields a reasonable memory/speed 
trade-off" in the performance of the algorithm. 

For all the 2^ different values that the k most significant bits of C can 
possibly take, we want to guarantee that the k most significant bits of the 
operation SP are identical to those of C. Hence, once that k has been fixed, 
we need to find a set of 2^ different scalars satisfying that requirement. 

Algorithm 6.3 presents a method that, given the irreducible polynomial P 
and its degree m and the selected value of /c, constructs a table containing all 
the 2^ scalars needed to obtain the required result. 

Algorithm 6.3 Constructing a Look-Up Table that Contains All the 2^ Pos­
sible Scalars in Equation (6.23) 
Require: The irreducible polynomial P; its degree m; and k, the number of bits to 

be reduced at once. 
Ensure: A table highdivtable with 2^ scalars. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
LI: 
12: 
13: 

highdivtable = 0; 
Â  = 2'̂  - 1; 
PMSBk = PmPm-l . . . Pm-fc+i; 
for i from 0 to N do 

A = Dec2Bin{i)\ 
for j from 0 to k-1 do 

if Aj — 1 then 
A^A^ RightShift{PMSBk,j)] 
highdivtable[i] = highdivtable[i] +2^ 

end if 
end for 

end for 
Return (highdivtable) 

fc-l-j. 

The Algorithm 6.3 finds all the 2^ scalars needed by reducing each one 
of them using the k most significant bits of the irreducible polynomial P . 
For convenience, these bits are stored in the variable PMSBk (see step 3 of 
Algorithm 6.3). Steps 4-9 find the appropriate scalar S for each one of all the 
2^ possible values that the k MSB of C can take. 
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In line 5 the value of C to be processed is translated to its binary represen­
tation and stored in the temporary variable A, Then, in lines 6-9 each one of 
the k bits of A is scanned and reduced, if necessary, by using an appropriate 
shift version of PMSBk, Finally, in hne 9 the k — \ — j - th bit of the i-th entry 
in table highdivtable is set. At the end of the inner loop in lines 6-9, the i-th 
entry of highdivtable contains the scalar S that would obtain the result in 
(6.23), if the k most significant bits of C where equal to the number in A. 

In order to compute the scalar multiplication S • P of (6.23), we use once 
again a look-up table approach as shown in Algorithm 6.4. 

Algorithm 6.4 Generating a Look-Up Table that Contains All the 2^ Possible 
Scalars Multiplications S • P 
Require: The irreducible polynomial P; and fc, the number of bits to be reduced 

at once. 
Ensure: A table Paddedtable, with all the 2^ S • P possible products. 
1: for i from 0 to k-1 do 
2: Pshift[i] = LeaShift(P,i); 
3: end for 
4: Â  = 2 ' ^ - l ; 
5: for i from 0 to N do 
6: 5 = Dec2Bin(i)\ 
7: for j from 0 to k-1 do 
8: if Sj = 1 then 
9: Paddedtable[i] = Paddedtable[i] -\- Pshift[k]] 

10: end if 
11: end for 
12: end for 
13: Return (Paddedtable) 

The algorithm in 6.4 is quite similar to Algorithm 6.3. In order to obtain 
all the 2^ scalar products of the irreducible polynomial P , the above algorithm 
finds first in fines 1-2 all the first 2^ multiples of P for j = 0 , 1 , . . . , /c — 1. Then, 
in lines 4-9 all the 2^ scalars S are examined one by one and bit by bit, so that 
the scalar product i • P is stored in the i-th entry of the table Paddedtable for 
i = 0,1,... ,N = 2^^ — 1. Notice that each entry of Paddedtable has a size of 
m + k bits, where m is the degree of the irreducible polynomial P . 

Using the two look-up tables generated by Algorithms 6.3 and 6.4, we 
can easily obtain the modular reduction of the polynomial C by repeatedly 
implementing the operation C + 2^^^^^{S - P). 

Consider now Algorithm 6.5, where it has been assumed that the tables 
Highdivtable and Paddedtable have been previously computed and are avail­
able. 

First, in fine 1 given k and the degree m of the irreducible polynomial P , 
the number of iterations is computed and stored in the variable Â *̂ In fine 2 it 
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Algorithm 6.5 Modular Reduction Using General Irreducible Polynomials 
Require: The degree m of the irreducible polynomial; the operand C to be reduced; 

and k the number of bits that can be reduced at once. 
Ensure: The field polynomial defined as C = C mod P , with a length of m bits. 

2: shift = 2m-2-k-l] 
3: for i from 0 to Nk do 
4: A = Cn-k-iC{n-k-i)-\ • • • C'(n-fc.i)-/e+i; 
5: 5 = Highdivtahle[A\\ 
6: Pshifted = LeftShift{Paddedtable[S], shift); 
7: C = C-\- Pshifted] 
8: s/iz/t = shift — k\ 
9: end for 

10: Return C 

is computed the amount of shift needed to apply properly the method outlined 
in figure 6.7. Then, in each iteration of the loop in lines 3-9, k bits of C are 
reduced. In line 4 the k bits of C to be reduced are obtained. This information 
is used in line 5 to compute the appropriate scalar S needed to obtain the 
result of equation (6.23). In fine 6 the S-th entry of the table Paddedtable is 
left shifted shift positions so that in line 7 the operation C-{-2^^^^^{S-P) can 
be finally computed allowing the effective reduction of k bits at once. Then, in 
fine 8 the variable shift is updated in order to continue the reduction process. 

Algorithm 6.5 performs a total of Â ;̂ = T^^x l̂ iterations. At each itera­
tion of the algorithm the look-up tables Highdivtable and Paddedtable are 
accessed once each. In line 7, and XOR addition is executed, implying that 
the complexity cost of the general reduction method discussed in this section 
is given as, 

Additions = 2Nk, .^ ^^. 
Look-up table size (in bits) = 2̂ (̂771 -h 2k) . \ - ) 

6.1.6 Interleaving Multiplication 

In this Subsection we discuss one of the simplest and most economical binary 
field multiplier schemes: the serial interleaving multiplication algorithm. 

Multiplication by a Primitive Element 

Let P(a:;) = po+pia;-f-pia;^-f.. .H-Pm-ia;"^"^ +a;'^ be an m-degree irreducible 
polynomial over GF{2). Let also a be a root of p(a;), i.e., p(a) — 0. Then, the 
set {1, a, a^ , . . . , a'^"^} is a basis for ^^(2^^), commonly called the polyno­
mial (canonical) basis of the field [221]. An element A G GF{2'^) is expressed 

m —1 

in this basis as A — ^ aia\ Let A{a) be an arbitrary element of GF{2'^). 
i=0 
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Then, the product C — a- A{a) can be expressed as, 

C = a (ao+ a i a 4 - . . .+arri_ia'^~^) = aoa + aia^ + .. . H-am-iQ;'^. (6.25) 

'T5 '^ ^ 

• # -e 

^ 

-—e 
Fig. 6.8. a • A{a) MultipUcation 

Using the fact that a is a primitive root of the irreducible polynomial, we 
can write, 

a ^ = po + Pia + . . . + p m - i a ^ " ^ (6.26) 

Substituting Eq. (6.26) into Eq. (6.25) we obtain, 

C = Co + cia 4- . . . + C m - i a ^ ~ \ 

where, CQ — am-iPo and 

di — ai-i -f am-iPi, 

for i — 1 , . . . , m — 1. A realization of the above operation is shown in 
Fig. 6.8. The main building block is an m-tap LFSR register. That regis­
ter is initially loaded with the m coordinates of the field element A, namely, 
(ao, ai , a 2 , . . . , am — 1). The signals pi represent the coefficients of the irre­
ducible polynomial. Notice that whenever a given polynomial coefficient is 
on, i.e.. Pi = 1, then the corresponding branch of the circuit will be a short 
circuit. Otherwise, if Pi = 0 the branch acts as an open circuit. After m clock 
cycles, the new register content will be the value of the field element C. 

Serial Multiplication 

Using the multiplication procedure outlined above, the multiplication of two 
arbitrary field elements can be accomplished by using a procedure inspired in 
the well-know Horner's scheme. 

Let us consider two arbitrary field elements A and B expressed in polyno­
mial basis as, 

m —1 m—l 

i=0 1=0 
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Then, the product oi A • B can be expressed as, 

C{a) - A{a)B{a) mod P{a) 

= A{a) ( Y^ bia' j mod P{a) 

m - l \ 

Y^ biA{a)a' mod P{a) 
s i=0 / 

Therefore, 

C{a) = {boAia) + biA{a)a -f b2A{a)a'^ 4 - . . . + bm-iAia)'^-'^) mod P{a). 

Algorithm 6.6 shows the standard procedure for computing above equation 
using Horner's rule. 

Algorithm 6.6 LSB-First Serial/Parallel Multipher 
Require: An irreducible polynomial P{a) of degree ?n, two elements A^ B G 

Ensure: C{a) = A{a)B{a) mod P{a). 
1 
2 
3 
4 
5 
6 

C = 0; 
for i = 0 to 772 — 1 do 

C^biA-i- C; 
A = Aa^ mod P(a); 

end for 
Return(C) . 

The multiplier realization of Algorithm 6.6 is shown in Fig. 6.9. The archi­
tecture shown in Fig. 6.9 consists of two LFSR Register plus extra circuitry. 
As it was mentioned previously, the signals pi in the first LFSR block represent 
the coefficients of the irreducible polynomial, and their values (either ones or 
zeroes) determine the LFSR structure. Furthermore, a gate array is included 
in order to compute the multiplication operation as is explained below. Ini­
tially the register C is set to zero, whereas the register in the upper part of 
Fig. 6.9 is loaded with the m coefficients of the field element A. Thereafter, 
when the clock signal is applied to the registers, the value of Aa is generated. 
Then, B coefficients, namely, 6o, ̂ i, ^2, • • •, ^m-i are serially introduced in that 
order, thus generating the values biAa\ for z = 0 , 1 , . . . , m — 1, which are ac­
cumulated in register C until all the m product coefficients CQ, ci, C2, . . . , Cm-i 
are collected. 

6.1.7 Matrix-Vector Multipliers 

The GF(2^) multiplication given by (6.1) can be described in terms of matrix-
vector operations. There are mainly two different approaches based on matrix 
vector operations to compute a field product: 
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Fig. 6.9. LSB-First Serial/Parallel Multiplier 
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1. The polynomial multiplication part is performed by any method. Then, 
the resulting product is reduced by using a reduction matrix. 

2. The polynomial multiplication and modular reduction parts are performed 
in a single step by using the so-called Mastrovito matrix. 

Let a{x) and b{x) denote two degree m polynomials representing the ele­
ments in GF(2"^). Let c{x) = a{x)b{x) mod P{x) denote their field product. 
The coefficient vectors of these polynomials are given by 

a== [ao,ai,- • • , am- i ]^ 

b = [bo.bi,--- .bm-i]'-^ 

c = [co,ci ,-" ,Cm-i]^. 

Also, let us define the polynomials 

d{x) = a{x)b{x) = do-\- dix H h (i2m-2^^^~^ , 

d(^\x) = do -f c/ix + •.. -f- dm-ix'^-'^ , (6.27) 

d^^^{x) =dm-\- dm-^-lX + • • • 4- d2m-2X'^-^ . 

The coefficient vectors representing these polynomials are 

d = [do^di,'" ,C?2m-2]^ , 

d(^) = [do,dir".dm-if , 

d^^^ = [dm, dm-\-l, • • • , C?2m-2]^ • 

The work in [284] reduces the polynomial multiplication d{x) using an 
(m X m — 1) reduction matrix Q to obtain the field product c{x) as below: 
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c = d(^) + Q • d^ )̂ . (6.28) 

Mastrovito Multiplier 

The so-called Mastrovito matrix is constructed from the coefficients of the 
first multiplicand and the irreducible polynomial defining the field. Then, the 
polynomial multiplication and modulo reduction steps are performed together 
using this matrix. The papers [351, 128, 401] follow the Mastrovito multiph-
cation scheme outHned below. 

c - M b (6.29) 

where M is the (m x m) Mastrovito matrix whose entries are the function of 
the coefficients of a(x) and P{x). The Mastrovito matrix M is related to the 
reduction matrix Q by 

M - L + Q . U , (6.30) 

where L and U are the following (m x m) and (m — 1 x m) matrices: 

L = 

U = 

ao 
ai 

(12 

O'm-2 

_<^m-l 

0 am-
0 0 

0 
ao 
a i 

0 
0 

do 

^ m - 3 <^m-4 

ttm-2 ttm-3 

1 Q'm-

dm-

-2 " ' 

-1 " • 

Cl2 

^3 

0 0 
0 0 
0 0 

ao 0 
ai ao 

a i 

a2 

(6.31) 

0 0 0 - 1 CLr, 

0 0 0 ••• 0 ttm-l. 

This is because d{x) = a{x)b{x) can be given in the vector notation by 

d = : 
d(^) 
d(^) 

L b 
U b 

Then, c = d(^) + Q • d(^) = L . b + Q . U . b = ( L + Q - U ) . b = M . b . 
The Mastrovito and the reduction matrices are studied thoroughly in 

[284, 401] for various types of irreducible polynomials. In [351] a compre­
hensive study of the Mastrovito multiplier for irreducible trinomials was pre­
sented. Authors in [401] proposed a practical and systematic design approach 
for a general Mastrovito multiplier. In [388] it was shown that non-Mastrovito 
multipliers using direct modular reduction also provide competitive perfor­
mance. Moreover, efficient non-Mastrovito multipliers for irreducible trinomi­
als were also proposed. 
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6.1.8 Montgomery Multiplier 

In this section we explain the Montgomery multiplication method in GF(2"^). 
Once again, let P{x) be an irreducible polynomial over GF{2) that defines the 
field GF(2^). Rather than computing Eq.(6.1), the Montgomery multiplica­
tion calculates 

C{x) = A[x)B{x)R-\x) mod P[x) (6.32) 

where R{x) is a fixed element and gcd{R{x),P{x)) = 1. 
Because of Bezout's identity^, one can find two polynomials i?~^(x) and 

P {x) such that 
R{x)R-\x) + P{x)P'{x) - 1 (6.33) 

where R~^{x) is the inverse of R[x) modulo P{x). These two polynomi­
als can be calculated with the extended Euclidean algorithm. Kog and Acar 
[182, 388] selected R{x) — x^ for high performance modular reduction in the 
Montgomery multiplication algorithm, which can be given as follows: 

Algorithm 6.7 Montgomery Modular Multiplication Algorithm 

Require: A{x),B{x),R(x),P'(x) 
Ensure: C{x) = A{x)B{x)R~^{x) mod P{x) 
1: T{x) = A(x)B{x); 
2: U{x) = T{x) P'{x) mod R{x)\ 
3: C\x) = [T{x) + U{x)P{x)]/R{x)] 
4: Return C 

To prove the correctness of this algorithm we note that Step 2 implies that 
there exists a polynomial 

U{x) = T{x) P\x) + H{x)R{x) . (6.34) 

We write C{x) in Step 3 by using (6.34) as follows: 

<^i^) = flfeyl^W + T{x) P'{x) P{x) + H{x)R{x) P{x)\ 

= flfe[rW(l + P'{x) P{x))+H{x)R{x) P(x)] . 

From (6.33), we can write 1 + P{x)P (x) = R{x)R''^{x) and substitute it 
into our last expression 

^(^) = W^[T{x)R{x)R-' {x) -f H{x)R{x) P{x)] 

= T{x)R'\x)-^H[x) P{x) 

= A{x)B{x)R-^ mod P{x) . 

For more details on Bezout's identity the reader is refer to §6.3.1. 
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The degree of C{x) can be verified from Step 3 as follows: 

deg[C{x)] < max{deg[T{x)],deg[U{x)] 4- deg[P{x)]} - deg[R{x)] 

< max{2m — 2, deg[R{x)] — 1 + m} — deg[R{x)] 

< max{2m — 2 — deg[R{x)],m — 1} . 

Then, it can be concluded that deg[C{x)] < m — 1, if deg[R{x)] > m — 1. If 
we choose R{x) = x'^, the result C{x) will be of degree m — 1 at most. 

It can be shown [182] that Algorithm 6.7 has an associated computational 
cost of 2m^ coefficient multiplications (ANDs) and 2m^ — 3m — 1 coefficient 
additions (XORs), whereas the total time complexity is 3TA + (2|'log2m] + 
[ l o g 2 ( m - l ) l ) r x . 

6.1.9 A Comparison of Field Multiplier Designs 

Table 6.3. Fastest Reconfigurable 

Work 

KOM variant by [47], 
implemented by [326] 
KOM variant by [85], 
implemented by [326] 

KOM variant by [293], 
implemented by [326] 

KOM [106] 

Recursive 
Classical [106] 

KOM [117] 

Massey-Omura 
[118] 

Platform 

Virtex 2 

Virtex 2 

Virtex 2 

Virtex 2 

Virtex 2 

Virtex 2 

Virtex 2 

Field 

GF(2'^^) 

GF(2'^^) 

GF(2^^^) 

240 bits 

240 bits 

240 bits 

240 bits 

Hardware GF{2'^) Multipliers 

Cost 

5307 
CLBs 
5409 
CLBs 
5840 
CLBs 
1480 

CLBs 
1582 

CLBs 
1660 

CLBs 
36857 
LUTs 

Cycles 

1 

1 

1 

30 

56 

54 

50 

timings 
I2.5677S 

13.37r?S 

14.73778 

37877S 

523r;S 

655778 

8OO778 

bits 
S licesx tim ings 

2.445M 

2.254M 

1.895M 

0.429M 

0.290M 

0.221M 

0.0336M (est.) 

In this Subsection we compare some of the most representative designs 
of GF{2'^) multipliers considering three metrics: speed, compactness and effi­
ciency. Table 6.3 shows the fastest designs reported to date for GF{2'^) field 
multiplication. It can be observed that Karatsuba-ofman Multipliers (KOM) 
are much faster than other schemes such as recursive classical multiplier or 
Massey-Omura scheme. This can be explained from the theoretical point of 
view from the fact that KOM algorithms enjoy of a sub-quadratic complexity. 

In Table 6.4 we show a selection of some of the most compact reconfigurable 
hardware multiplier designs. It is noted that this category is dominated by 
the interleaved and Montgomery multiplier schemes. 
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Table 6.4. Most Compact Reconfigurable Hardware GF(2'^) Multipliers 

Work 

Interleaved 
[104] 

Montgomery 
[97] 

Class.+Montg. 
[18] 

Montgomery 
118] 

Interleaved 
[266] 

Platform 

Virtex 

Virtex 

Virtex 

Virtex 

Virtex 

Field 

GF(2"^^^) 

GF(2'"^^) 

GF(2^^") 

GF(2^^") 

GF(2'"^") 

Cost 

359 
CLBs 
425 

CLBs (est) 
1049 

CLBs 
1427 

CLBs 
420 

CLBs (est) 

Cycles 

239 

466 

80 

160 

210 

timings 

3.1MS 

2.8lAiS 

l.U/xS 

1.66/iS 

12.3/iS 

bits 
Slicesxtiminqs 

0.215M ' 

0.195M 

0.137M 

0.0675M 

0.042M 

We measure efficiency by taking the ratio of number of bits processed over 
slices multiplied by the time delay achieved by the design, namely, 

bits 

Slices X timings 

For instance, consider the KOM variant design proposed by [47] and imple­
mented by [326]. As is shown in Table 6.3, working over GF{2^^^), that design 
achieved a time delay of just, 12.66778 at a cost of 5307 sHces. Therefore its 
efficiency is calculated as, 

bits 163 
Slices X timings 5307 x 12.56?7 

2.445M 

When comparing the designs featured in Tables 6.3 and 6.4, it is noticed 
that the most efficient multiplier designs are the Karatsuba-Ofman multipli­
ers variants as they were reported in [47, 85, 293]. This is a quite remarkable 
feature, which implies that the Karatsuba-Ofman multipliers represent both, 
the fastest and the most efficient of all multiplier designs studied in this Chap­
ter. 

6.2 Field Squaring and Field Square Root for Irreducible 
Trinomials 

Let us consider binary extension fields constructed using irreducible trinomials 
of the form P(x) = x'^ -{- x'^ -h 1, with m > 2. It is convenient to consider, 
without loss of generality, the additional restriction 1 < n < [^J ^. 

^ It is known that if P{x) = x"^ -\-x'^ -{-1 is irreducible over GF{2), so is P{x) = 
^m _̂  ajW-n _|_ ^228]. Hence, provided that at least one irreducible trinomial of 
degiee m exists, it is always possible to find another irreducible trinomial such 
that its middle coefficient n satisfies the restriction 1 < n < [ y j . 
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The rest of this Section is organized as follows. First, in Subsection 6.2.1, 
we give the corresponding formulae needed for computing the field squaring 
operation when considering arbitrary irreducible trinomials. Those equations 
are then used in Subsection 6.2.2 to find the corresponding ones for the field 
square root operator. 

6.2.1 Field Squaring Computation 

Let A = X^^^ aix'^ be an arbitrary element of GF{2'^). Then, according to 
Eq. (6.16) its square, A^, can be represented by the 2m-coefficient vector. 

A^{x) = [O ttm-i 0 am-2 . . . 0 ai 0 ao] 

= K m - l ^m-2 • • • ^m-1 «m i ^ m - 1 ^2 • • • «1 «o] (6-35) 

where a[ = 0 for i odd. Hence, the upper half of A'^ (i.e., the m most signifi­
cant bits) in Eq. (6.35) is mapped into the first m coordinates by performing 
addition and shift operations only. 

In order to investigate the exact cost of the field squaring operation, we 
categorize all the irreducible trinomials over GF{2) into four different types. 
For all four types considered and by means of Eqs. (6.35) and (6.21), the 
following explicit formulae for the field squaring operation were found. 

Type I: Computing C = A"^ mod P{x)y with P{x) = x"^ -f x" 4- 1, m even, n 
odd and n < y , 

a± + arn±i i even, z < n or z > 2n, 

a± + ttm+i -f a^_„^i i even, n < i < 2n, 

a ^ ^ i _ i i ± i i odd, i < n, 

am-n+i i odd, i > riy 

Ci = \ 

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.36) has an associated 
cost of m±E:zl XOR gates and 2T^ delays. 

Type II: Computing C = ^^ mod P{x), with P{x) = x"^ 4- a:"" 4-1, m even, 
n odd and n = ^ , 

(6.37) 

for 2 = 0,1, • • • , m — 1. It can be verified that Eq. (6.37) has an associated 
cost of ^^^ XOR gates and one Tx delay. 

ai -f am+i 
2 ~2~ 

ai 
2 

^ m + 1 - ^ 
an+i 

i even, i < n, 

i even, z > n, 

i odd, z < n. 

z odd, i > n^ 
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Type III: Computing C = A^ mod P{x), with P{x) = x"^ + x ^ -f 1, m, n odd 
numbers and n < ^^^^, 

Ci= { 

a± -ha±_^rn^ + a i ^ ( ^ _ ^ ) 

a± 4- tti , 1 

am+i + ar 
2 

am+i 

i even, i < n, 

i even, n < z < 2n, 

2 even, z > 2n, 

i odd, i < n, 

z odd, i > n^ 

(6.38) 

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.38) has an associated 
cost of ^ XOR gates and 2Tx delays. 

Type IV: Computing C = A^ mod P{x), with P{x) = x ^ -f a:̂  + 1, m odd. 
n even and n < ^̂ ^̂ ,̂ 

ai + ai 
2 2 

2 2 

a i 
2 

a rn + i 

ar 

+m—n 

+ ar 

i even, z < n, 

even, n < i < 2n, 

even, z > 2n, 

odd, z < n, 

z odd, i > n, 

(6.39) 

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.39) has an associated 
cost of ^+^~-^ XOR gates and one Tx delay. 

The complexity costs found on Equations (6.36) through (6.39) are in conso­
nance with the ones analytically derived in [386, 387]. 

6.2.2 Field Square Root Computation 

In the following, we keep the assumption that the middle coefficient n of the 
generating trinomial P{x) — x'^ -\-x'^ -\-1 satisfies the restriction 1 < n < ^ . 

Clearly, Eqs. (6.36)-(6.39) are a consequence of the fact that in binary 
extension fields, squaring is a linear operation. The Hnear nature of binary 
extension field squaring, allow us to describe this operator in terms of an 
(m X m)-matrix as, 

C = A^:=^MA (6.40) 

Furthermore, based on Eq. (6.40), it follows that computing the square 
root of an arbitrary field element A means finding a field element D ~ yA 
such that D^ = MD = A. Hence, 

D = M-'^A (6.41) 

Eq. (6.41) is especially attractive for fields GF{2^) with order sufficiently 
large, i.e., m > > 2, where the matrixes M corresponding to Eqs. (6.36)-(6.39) 
are all highly spare (each row has at most three nonzero values). 



6.2 Field Squaring and Field Square Root for Irreducible Trinomials 169 

Hence, for the trinomial types I, II, III and IV as described above, the 
element D = \fA given by Eq. (6.41) can be found by the computation of the 
inverse of the corresponding matrix M. Then using \J~A = D = M~^A, we 
can determine the m coordinates of the field element as described bellow. 

Type I: Computing D such that D"^ = A mod P{x), with P{x) =: x ^ + a:̂  + l, 
m even, n odd, and n < y : 

di = < 
(l2i + a(2i-f n) mod m -\-Cl2i-n LtJ < ^ < ^J 

^21 + a(2i-fn) mod m n<i < ^ , 

y(^{2i-\-n) mod m -j < l < TTl 

(6.42) 

for z :== 0,1, • • • , m — 1. It can be verified that Eq. (6.42) has an associated 
cost of VQd^ XOR gates and 2T^ delays. 

Type II: Computing D such that D"^ = A mod P(x), with P{x) = x^4-x"' + l, 
m even, n odd and n — ^ : 

Ci2i + Ci2i-\-^ ^ < • 
rl — J n m+2 
" i — S Ci2i 

^ ^{2i+^) mod m 

4 ^ ^ ^ 2 

^ <i <m 
(6.43) 

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.43) has an associated 
cost of ^^^^ XOR gates and one Tx delay. 

Type III: Computing D such that D"^ = A mod P{x), with P{x) = a:"' + x^^-
l, m, n odd numbers and n < ^^^^, 

di = < 

a2i 

0-21 + 0.2i-n 

<^2i-n 

\a2i-r] 

I < n-f-1 
2 ' 

21±i < ^ < m±l 
2 2 ' 

m-\-n 
2 ' 

^ < z < m 

(6.44) 

for i = 0,1, • • • , m - 1. It can be verified that Eq. (6.44) has an associated 
n—'. 

2 cost of ^^^^ XOR gates and one Tx 
delay. 

Type IV: Computing D such that D'^ = A mod P[x), with P[x) = x'^ + x'^ + 
1, m, odd, n even and [ ^ ^ 1 <n< L^^J -
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^21 + a2i^{rn-n) + <^2i+(m-2n) + ^2i-\-{m-3n) 

0>2i + a2i^{rn-n) + <^2i+(m-2n) + ^ 2 i + ( m - 3 n ) 

^21 + G^2i+(m-2n) + ^ 2 i + ( m - 3 n ) + «2i-f-(m-4n) 

0^2i + ^ 2 i + ( m - 2 n ) + ^ 2 i + ( m - 3 n ) + ^2i+(7Ti-4n) 

di—{ +a2i4-(m-5n) 

^21 

0^2i-m 

0'2i-m + a 2 i _ ( m + n ) 

tt2i-m + ^ 2 z - ( m + n ) + ^ 2 i - ( m + 2 n ) 

\^Q>2i-m + G^2i-(m+n) + ^ 2 i - ( m + 2 n ) + ^22- (m+3n) 

. 4 n - ( m - l ) 
^ ^ 2 ' 

4 n - ( m - l ) ^ A ^ n 
2 2::: «• ^ 2 ' 

21 < 7 ^ 5 n - ( 7 n - l ) 
2 — ^ ^ 2 ' 

'"-<,"'-^' < i < n, 

< i < 2d:Hl±i, m + 1 
2 

2 - ^ "^ 2 
2 n + m + l ^ n ^ 3n4-m+l 

2 :^ ^ "^ 2 
3 n ± m ± l < z < m 

(6.45) 
for z = 0,1, • • • ,m — 1. At first glance, Eq. (6.45) can be implemented 
with an XOR gate cost of, 

„ 4n—(m—1) , m — 3n — 1 „ 4n—(m —1) 
3 -̂ ^4-4 4-3 T; -^ 

, m — 3n — 1 n 
4 ^ — + 2 + 2 ' 

n ^ m — 3n — 1 ^ m — n—1 n 
2 + 3 ^ — = ^ 2 2-

However, taking advantage of the high redundancy of the terms involved in 
Eq, (6.45), it can be shown (after a tedious long derivation) that actually 
^"^^"•^ XOR gates are sufficient to implement it with a 2Tx gate delays. 

Table 6.5. Summary of Complexity Results 

Type 

I 
II 
III 
IV 
I 
II 
III 
IV 

Trinomial P(x) = a;^ + x^ + 1 

m even, n odd 
m even, n = m/2 

m o d d , n odd 
m o d d , n even 
m even, n odd 

m even, n = m/2 
m o d d , n odd 
m odd, n even 

Operation 

Squaring 
Squaring 
Squaring 
Squaring 

Square root 
Square root 
Square root 
Square root 

XOR gates 

{m^n- l)/2 
(m 4- 2)/4 
(m - l ) / 2 

( m 4 - n - l ) /2 
( m 4 - n - l ) /2 

(m 4- 2)/4 
(m - l ) / 2 

( m 4 - n - l ) /2 

Time delay 

2rx 
Tx 
2rx 
To. 
2Ta. 
Tx 
Tx 
2Tx 

Table 6.5 summarizes the area and time complexities just derived for the 
cases considered. Furthermore, in Table 6.6 we hst all preferred irreducible 
trinomials P(x) = x^-\-x^-\-\ of degree m € [160, 571] with m a prime number. 
In all the instances considered the computational complexity of computing the 
square root operator is comparable or better than that of the field squaring. 
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6.2.3 Illustrative Examples 

In order to illustrate the approach just outlined, we include in this Section 
several examples using first the artificially small finite field GF{2^^) and then 
more realistic fields, in terms of practical cryptographic applications. 

Example 6.1. Field Square Root Computation over GF{2^^) 

Let us consider GF{2}^) generated with the irreducible Type III trinomial 
P(x) = x^^ 4- x^ + 1. As it was discussed before, one can find the square root 
of any arbitrary field element A G GF[2^^) by applying Eq. (6.41). In order 
to follow this approach, based on Eq. (6.38), we first determine the matrix M 
of Eq. (6.40) as shown in Table 6.7. Then, the inverse matrix of M modulus 
two, M~^, is obtained as shown in Table 6.8. Afterwards, the polynomial 
coefficients, in terms of the coefficients of A^ corresponding to the field square 
C =^ A^ and the field square root D — y/~A elements can be found from Eqs. 
(6.40) and (6.41) as shown in Table 6.9. 

As predicted by Eq. (6.38), field squaring can be computed at a cost of 
(m - l ) /2 = (15 - l ) /2 = 7 XOR gates and one T^ delay. In the same way, 
the square root operation can be computed at a cost of ^^~ ^ = ^̂  ~̂ ^ = 7 
XOR gates with an incurred delay time of one T^, which matches Eq. (6.44) 
prediction. It is noticed that in this binary extension field, computing a field 
square root requires the same computational effort than the one associated to 
field squaring. 

Example 6.2. Field Square Root Computation over GF{2^^'^) 

Let us consider GF(2}^'^) generated using the irreducible Type II trinomial, 
P{x) = x^^'^-{-x^^ -\-1. Using the same approach as for the precedent example, 

Table 6.6. Irreducible Trinomials P{x) = x" 
Encoded as m(n), with m, a Prime Number 

+ x"" + 1 of Degree m G [160, 571] 

m,{n) 
167(35) 
191(9) 

193(15) 
199(67) 
223(33) 
233(74) 
239(81) 
241(70) 
257(41) 

263(93) 
271(70) 

Type 
III 
III 
III 
III 
III 
IV 
III 
IV 
III 
III 
IV 

m(n) 
281(93) 
313(79) 
337(55) 
353(69) 
359(117) 
367(21) 

383(135) 
401(152) 
409(87) 

431(120) 
433(33) 

Type 
III 
III 
III 
III 
III 
III 
III 
IV 
III 
IV 
III 

m{n) 
439(49) 
449(167) 
457(61) 
463(93) 
479(105) 
487(127) 
503(3) 

521(158) 
569(77) 

type^ 
III 
III 
III 
III 
III 
III 
III 
IV 
III 
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we can obtain the square root polynomial coefficients of an arbitrary element 
A from the field GF{2^^^) as, 

(6.46) 1a2i + a2z-f8i 2 < 4 1 , 

a2i 41 < z < 81 
^(2z+81) mod 162 8 1 < 2 

for 2 = 0,1, • • • , 161. As predicted by Eq. (6.43) the associated cost of the field 
square root computation for this field is given as, ^^^^^ = ^̂ '̂̂ "̂ ^̂  = 4 1 XOR 
gates with an incurred delay time of one Tx. 
Example 6.3. Field Square Root Computation over GF(2^^^) 

Let GF{2'^^^) be a field generated with the Type III irreducible trinomial^, 
P{x) = x"^^^ -f x'^^ -f 1. The square root of any arbitrary field element A is 
given as. 

Table 6.7. Squaring matrix M of Eq. (6. ,40) 

M = 

10 0 
000 
0 1 0 
000 
00 1 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

000 
000 
000 
000 
000 
000 
1 00 
000 
0 10 
000 
00 1 
000 
000 
000 
000 

000 
00 1 
000 
000 
000 
000 
000 
000 
00 1 
000 
0 0 0 
000 
1 00 
000 
0 10 

000 
000 
000 
1 00 
000 
0 1 0 
000 
00 1 
000 
000 
10 0 
000 
0 1 0 
000 
00 1 

0 0 0" 
1 00 
0 00 
0 1 0 
000 
00 1 
000 
0 00 
1 00 
1 0 0 
0 1 0 
0 1 0 
00 1 
00 1 
000 

^ This is a NIST recommended finite field for elliptic curve applications [253]. 
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Cl2i + ^21+159 + a2i+85 + a22-f 11 ^ < 32, 

Ci2i + Ci2i-\-159 + <^2i+85 + Cl2i-\-U + <^2i-63 32 < Z < 37, 

a2i + a2i+85 + tt2i+ll + a2i-63 37 < 2 < 69, 

ci2i + a2i+85 + a2i+ii + a2i-63 + a2i-i37 69 < z < 74, 

a2i 7 4 < z < 1 1 6 , 

a2i-233 116 < z < 154, 

Ci2i-233 + a2i-307 154 < Z < 191 

^21-233 4- a2i-3Q7 + a2i-381 191 < Z < 228 

<̂ 2z-233 + ^2i-307 + ^21-381 + <^2i-455 228 < Z < 233 

(6.47) 

for z = 0,1, • • • , 232. Eq. (6.47) can be implemented with an XOR gate cost of 
^"^^"•^ = 1 5 3 XOR gates with a 4Tx gate delay, which agrees with the value 
predicted by Eq. (6.45). 

6.3 Multiplicative Inverse 

Among customary finite field arithmetic operations, namely, addition, sub­
traction, multiplication and inversion of nonzero elements, the computation 
of the later is the most time-consuming one. Multiplicative inversion compu­
tation of a nonzero element a G GF{2'^) is defined as the process of finding 
the unique element a~^ G GF{2'^) such that a • a~^ = 1. 

Several algorithms for computing the multiplicative inverse in GF{2^) 
have been proposed in hterature [153, 93, 356, 135, 399, 127, 296, 122]. In 
[135], multiplicative inverse is computed using an improved modification of 

Table 6.8. Square Root Matrix M"^ of Eq. (6.41) 

M-' = 

10 0 
00 1 
000 
000 
0 1 0 
000 
000 
000 
0 1 0 
000 
000 
000 
000 
000 
000 

00 0 
00 0 
0 1 0 
000 
000 
100 
00 1 
000 
000 
100 
00 1 
000 
000 
000 
000 

00 00 
00 00 
0000 
1000 
00 10 
0000 
0000 
0 100 
000 1 
0000 
0000 
0 100 
000 1 
0000 
0000 

0 0 0 0 0" 
00 0 00 
00000 
00000 
00000 
10 000 
00 100 
0000 1 
00000 
0 1000 
000 10 
00000 
00000 
0 1000 
000 10 
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the extended Eudidean algorithm called almost inverse algorithm. That it­
erative algorithm can compute the multiplicative inverse in approximately 
2m clock cycles [135]. In [127] an architecture able to compute the Mont­
gomery multiplicative inverse for both, GF{p), for a prime p, and GF{2'^) on 
a unified-field hardware platform was proposed. 

Based on Fermat's Little Theorem (FLT) and using an ingenious re­
arrangement of the required field operations, the Itoh-Tsujii Multiplicative 
Inverse Algorithm (ITMIA) was presented in [153]. Originally, ITMIA was 
proposed to be applied over binary extension fields with normal basis field 
element representation. Since its publication however, several improvements 
and variations of it have been reported [93, 356, 399, 122, 296], showing that 
it can be used with other field element representations too. 

Unfortunately enough, cryptographic designers have historically shown 
some resistance to use FLT-related techniques for computing multiplicative in­
verses when using polynomial basis representation. This phenomenon is prob­
ably due to three frequent misconceptions: 

1. Computing multiplicative inverses by using FLT-related techniques is in­
efficient as those methods require many field multiplication and squaring 
operations; 

2. ITMIA is a competitive design option only when using normal basis rep­
resentation and; 

3. The recursive nature of the ITMIA algorithm makes the parallelization of 
that algorithm rather difficult if not impossible, forcing the implementa­
tion of the ITMIA procedure in a sequential manner. 

In the rest of this Section we describe efficient implementations of the bi­
nary Euclidean algorithm and the Itoh-Tsujii multiplicative inverse algorithm. 

Table 6.9. Square and Square Root Coefficient Vectors 

ao 
as -f ai2 

a i 

ag + ai3 
a2 

aio + ai4 
as 

a n 

a4 + as -f- ai2 
ai2 

as + ag -f ai3 
a i3 

ae + aio -f au 
au 

aj + a n 

, D = 

ao 
a2 
a4 

ae 

ai -H as 
as + aio 
as + ai2 
a? + ai4 
ai -f ag 
as -H a n 
as + ai3 

a? 
ag 

a n 
. ai3 



6.3 Multiplicative Inverse 175 

In §6.3.1 main implementation details of the binary Euclidean algorithm are 
explained. Then, S6.3.2 describes how the Itoh-Tsuii algorithm can be utilized 
for the efficient computation of multiplicative inverses. 

6.3.1 Inversion Based on the Extended Euclidean Algorithm 

Given two polynomials A and B, not both 0, we say that the greatest common 
divisor of A and B^ is the highest polynomial D = gcd{A^ B) that divides 
both A and B. Based on the property gcd = {A, B) — gcd[B ± CA, A), the 
revered Extended Euclidean Algorithhm (EEA)® is able to find the unique 
polynomials G and H that satisfies Bezout's celebrated formula, 

AG + B'H^D, 

where D = gcd{A, B). 
Several variations of the EEA have been proposed in the open literature 

[96, 127, 127, 10]. EEA variants include: the almost inverse algorithm, first 
proposed in [323], the Binary EucHdean Algorithm (BEA), the Montgomery 
inverse algorithm, etc. All those algorithms show a computational complexity 
proportional to the maximum of A and B polynomial degrees. 

Algorithm 6.8 shows the binary algorithm as it was reported in [96]. That 
algorithm takes as inputs the irreducible polynomial P of degree m and the 
field element A of degree at most m — 1. It gives as output the field element 
A~^ such that 

A' A'^ = 1 mod P. 

In steps 4 and 10, the operands U and V are divided by a; as many times 
as possible, respectively. Furthermore, the variables G and H are also divided 
by X in steps 5-8 and 11-14, respectively. Notice that in case that either G or 
H are not divisible by a:, then an addition with the irreducible polynomial P 
must be performed first. Eventually, after approximately m iterations, either 
UorV are equal to 1, which is the condition for exiting the main loop. Either 
G ox H will contain the required multiplicative inverse. 

The number of iterations required by Algorithm 6.8 depends on several fac­
tors such as design's architecture, target platform and even the exact structure 
of the irreducible polynomial P{x), Roughly speaking, the number of itera­
tions N can be estimated as N ^ m, where m is the size of the finite field. 

® Euclid's algorithm is proposed in his book Elements published 300 B.C. Never­
theless, some scholars are convinced that it was previously known by Aristotle 
and Eudoxus, some 100 years earlier than Euclid's times. According to Knuth, 
it can be considered the oldest nontrivial algorithm that has survived to modern 
era [178]. 
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Algorithm 6.8 Binary Euclidean Algorithm 
Require: An irreducible polynomial P{X) of degree m, A polynomial A 6 GF(2" 
Ensure: A~^ mod Pix). 

1: 
2: 
3 
4 
5 
6 
7; 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26; 
27; 
28; 
29; 

U =^ A',V =: P- G = l, H = 0; 
while {u^l AND t) / 1) do 

while X divides U do 

X ' 

if X divides G then 

X ' 

else 

end if 
end while 
while X divides V do 

^ X ' 

if X divides G2 then 

X ' 

else 

end if 
end while 
if (deg(C/)>deg(y)) then 

U ^U ^-V-G^G-VH-
else 

V =^V -\-U,H = H-\-G', 
end if 

end while 
if U = l then 

Return(G); 
else 

Return( / / ) ; 
end if 

6.3.2 The IToh-Tsujii Algorithm 

In this Section we describe the Itoh-Tsujii Multiplicative Inversion Algorithm 
(ITMIA). We start deriving a recursive sequence useful for finding multiplica­
tive inverses. Then, we briefly discuss the concept of addition chains^ which 
together with the aforementioned recursive sequence yield an efficient version 
of the original ITMIA procedure. 

Since the multiplicative group of the Galois field GF{2'^) is cyclic of order 
2"^ — 1, for any nonzero element a G GF{2'^) we have a~^ = a^"^"^. Clearly, 

m—2 m—1 

2 " - 2 = 2(2™-! - 1) = 2 ^ 2̂ ' = ^ 2 '̂. 
3=0 j= i 
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The right-most component of above equalities allow us to express the multi­
plicative inverse of a in two ways: 

2 r n - l 

Let us consider the sequence (/?/j(a) — a^ ~M . Then, for instance, 

l3o{a) = l , f3i{a) = a, 

and from the first equahty at (6.48), [Pm-iia)] = a~^. 
It is easy to see that for any two integers k,j > 0, 

(3k^j{a) = Pk{afPj{a). (6.49) 

Namely, 

Pk+j{a) = a^ ^- - ^ ^— 
a a 

2^ 

In particular, for j = k, 

Ma) = Pkiafpkia) = Pkiaf+'. (6.50) 

Furthermore, we observe that this sequence is periodic of period m: 

/C2 = ki mod m => Pk2 («) = A i (a)-

To see this, consider k2 — ki -\- nm. Then, by eq. (6.49) and FLT, 

Therefore, the sequence {Pkio))^ is completely determined by its values cor­
responding to the indexes /c = 0 , . . . , m — 1. 

As a final remark, notice that for any two integers /c, j , by eq. (6.49): 

Pk{o) = /?(fc-(m-j))-i-(m-j)(«) = Pk^j-m{o) (3m-j{o)-

Since the sequence of ^'s is periodic, and the rising to the power 2^ coincides 
with the identity in GF(2"^), we have 

Eq. (6.49) allows the calculation of a "current" i(= k-\-j)-i\i term as a recursive 
function of two previous terms, the /c-th and the j - t h in the sequence. 
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6.3.3 Addition Chains 

Let us say that an addition chain for an integer m — 1 consists of a finite 
sequence of integers U = {uo,ui,... ,ut), and a sequence of integer pairs 
V — ((/ci, j i ) , . . . , (/ct, jt)) such that tio = 1, "Ut = m — 1, and whenever 
I <i <t^ Ui — Uki H- Uj^. 

Example 6.4. Considei the case e -= m-1 = 193-1 = 192 = (11000000)2-
Then, a binary addition chain with length t = S iov that e is, 

^ - ( 1, 2, 4, 8, 16, 32, 64, 128, 192) 
V = { (0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (6,7)) 

i.e. the associated sequence is governed by the rule, Ui = Ui-i-^-Ui-i = 2ui-\ 
for all but the final value which is obtained using Ut — Ut~i 4- Ut-2-

Another addition chain, also with length t := 8, is 

C/ - ( 1, 2, 3, 6, 12, 24, 48, 96, 192) 
V = { (0,0), (0,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7, 7)) 

i.e. for alH 7̂  2 the combinatorial rule is Ui = Ui-i + Ui-i = 2iii_i, while 
U2 = Uo-\-Ui. D 

The concept of addition chains leads us to a natural way to generahze the Itoh-
Tsujii Algorithm, by using an addition chain for m - 1 and relations (6.48) 
and (6.49) to compute a~^ = [jSm-iia)] • 

6.3.4 ITMIA Algorithm 

Let a be any arbitrary nonzero element in the field GFiT^). Let us consider 
an addition chain U of length i for m — 1 and its associated sequence V. Then 
the multiplicative inverse a~^ ^ GF(2'^) of a can be found by repeatedly 
applying eq's. (6.49) and/or (6.50). Hence, given j3uo{ci) = a'^ ~^ — a, for 
each Ui^l < i < t, compute 

[/?.<. (a)]'"•'/?„., (a) = Pu,,+u,,ia) = /3u,(a) = a'"''' 

A final squaring step yields the required result since. 

Fig. 6.9 shows an algorithm that iteratively computes all the (3^ (a) coefficients 
in the exact order stipulated by the addition chain U as discussed above. 

We assess the computational complexity of the algorithm shown in Fig. 6.9 
as follows. The algorithm performs t iterations (where t is the length of the 
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addition chain U) and one field multiplication per iteration. Thus, we con­
clude that a total of t field multiplication computations are required. On the 
other hand, notice that at each iteration i, a total of 2'"̂ 2 field squarings are 
performed. Notice also that by definition, the addition chain guarantees that 
for each Ui^l < i < ty the relation Ui^ — Ui — ui^ holds. Hence, one 
can show by induction that the total number of field squaring operations per­
formed right after the execution of the z-th iteration \^ ui — \. Therefore, at 
the end of the final iteration t, a total oiut — \ — m-2 squaring operations 
have been performed. This, together with the final squaring operation, yield 
a total of m — 1 field squaring computations. 

Summarizing, the algorithm of Fig. 6.9 can find the multiplicative inverse 
of any nonzero element of the field using exactly, 

# Multiplications = t\ 

i^ Squarings = m — 1. (6.52) 

Algorithm 6.9 Itoh-Tsujii Multiphcative Inversion Addition-Chain Algo­
rithm 
Require: An irreducible polynomial P{X) of degree m, An element a E GF{2'^), 

an addition chain U of length t for m — 1 and its associated sequence V. 
Ensure: a"^ G GF(2^). 
1 
2 

3 
4 
5 

Puoia) = a; 
for i from 1 to t do 

/3.,(a) = [Pu,^ (a)] ' '̂ . pu,^ (a) mod P(X); 
end for 
Return(Pl^{a) mod P{X)). 

Example 6.5. Let us consider the binary field GF{2^^^) using the irreducible 
trinomial P{X) = X^^^-\-X^^ + 1. Let a G ^^(2^^^) be an arbitrary nonzero 
field element. Then, using the addition chain of Example 6.4, the algorithm 
of Fig. 6.9 would compute the sequence of fSmia) coefficients as shown in 
Table 6.3.4. Once again, notice that after having computed the coefficient 
Pus {a), the only remaining step is to obtain a~^ which can be achieved as 
a-i = Plia). D 

6.3.5 Square Root ITMIA 

Let a be any arbitrary nonzero element in the field GF{2'^). Let us consider 
an addition chain U of length Hor m - 1 and its associated sequence V. Then 
the multiphcative inverse of a, a~^ £ GF{2'^), can be found as follows [295]. 

Given 7no(a) = a^~^ = y^ , for each ui^l <i < t, compute 
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i 

0 
1 

2 

3 
4 
5 
6 

7 
8 

Table 6.10. 

Ui 

1 

2 

3 

6 

12 

24 

48 

96 

192 

Pi{a) Coefficient Generation for 

rule 

-
2ux 

Ui-i -\-U, 

2Ui 

2U'i 

2U'i 

2ui 

2ui 

- 1 

- 2 

- 1 

- 1 

- 1 

- 1 

- 1 

2ui-i 

K.(«)] •Pu,,(a) 

-
{f}uo(a)f • Puoia) 
[PuA^)^ • Puoia) 

[PuMf" -puM 
[PuMf • Pu,{a) 
[PuMf -puM 
[PuA<^)r' • PuAa) 

[PuMf 'puM) 
[Pu,{a)f -PuM 

PuAo) 

Puo(a) 

Pui{a) 

Pu2(a) 

Pna (a) 

Pui{a) 

Pus{a) 

Pue(a) 

Puria) 
Pus(a) 

m-l=192 

= g^i*-' 1 
= a''-' 

= a= ' - i 

= a'"-' 

^ o ^ ^ 

r -12 "̂ 2̂ _^ ,̂ 

Where 7{nt=m-i} = ^"^"^ == a~^ gives the required result. 
Fig. 6.10 shows an algorithm that iteratively computes all the 7ni(<^) co­

efficients in the exact order stipulated by the addition chain U as discussed 
above. We assess the computational complexity of the algorithm shown in 
Fig. 6.10 as follows. The algorithm performs one field multiplication in each 
of algorithm's t iterations, yielding a total of t field multiplication computa­
tions required. Furthermore, at each iteration z, a total of 2̂ 2̂ field square 
roots are performed. Since by definition, the addition chain guarantees that 
for each Ui^l < i < t, the relation Ui^ == Ui — Ui^ holds, one can show that 
the total number of field square root operations performed right after the exe­
cution of the i-th iteration isui — 1. Therefore, a total of t̂ t — 1 = m — 2 square 
root operations must be performed. This, together with the initial square root 
operation, yield a total of m — 1 field square root computations. 

Summarizing, the algorithm of Fig. 6.10 can find the inverse of any nonzero 
element of the field using exactly, 

i^ Multiplications = t; 

#Square root = m — 1. (6.53) 

Example 6.6. Following with our running example, let us consider the binary 
field GF{2^^^) generated using the irreducible trinomial P{X) = X^^^ -\-
X^^ 4- 1. Let a G GF{2^^^) be an arbitrary nonzero field element. Then, the 
algorithm of Fig. 6.10 would compute the sequence of 7ui(tt) coefficients as 
shown in Table 6.3.5. The multiplicative inverse is given as 7^3 = a~^. D 
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Algorithm 6.10 Square Root Itoh-Tsujii Multiplicative Inversion Algorithm 
Require: An irreducible polynomial P{X) of degree m, An element a 6 G'F(2"^), 

an addition chain U of length t for m — 1 and its associated sequence V. 
Ensure: a'^ 6 ^^(2""). Procedure SquareRootJTMIA(P(X), a, {U,V}) { 

2: for i from 1 to t do 

3: 7u,(a) = [7u , , (a ) ] ' - ju,,{a) mod P{X)-

4: end for 
5: Return(7nt (a) mod P{X)) 

i 
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Table 6.11 

Ui 

1 

2 

3 

6 

12 

24 

48 

96 

192 

• 7 

rule 

2ux 

Ui-i -{-Ui 

2tt, 

2ii, 

2u, 

2u, 

2l4, 

2u, 

- 1 

- 2 

(a) Coefficient Generation for 

|7tiii (a) 
2 ^^2 

[7.o(a)]^"^° 

[7..(a)]^-^° 

[7u.(a)l^""^ 

[7u. (a)] -"^ 

[7u.(a)]^""^ 

[7.a(a)]^";;; 

[7u7(a)]^ 

7uo(a) 

7uo(a) 

7u2(a) 

7^3(a) 

7u4(a) 

7u5(a) 

7u6(a) 

7U7(«) 

7tx,(a) 

7txo(a) 

7 u i ( a ) 

7u2(a) 

7u3(a) 

7^4(«) 

7^5(a) 

7u6(a) 

7^7(a) 

7^8(a) 

m-l=192 

= a'-^~" 

= a ^ - ^ " ' 

1 0 - 1 9 2 

6.3.6 Extended Euclidean Algorithm versus Itoh-Tsujii Algorithm 

In order to assess the performance differences between multiplicative inverse 
computation via the Extended Euclidean Algorithm and the Itoh-Tsujii Al­
gorithm, we performed the following experiment. 

Using a Virtex 2 xc2v4000-6bf957 as a target device, we implemented Al­
gorithms 6.8 and 6.9 for computing multiplicative inverses in the field GF{2^) 
generated using the irreducible trinomial P{x) = x^^^ -f x^^ H- 1. Algorithm 
6.8 was implemented according to the finite-state machine shown in Fig. 6.10, 
whereas the Itoh-Tsujii Algorithm was implemented using the architecture 
shown in Fig. 6.11. The implementation statistics obtained for each algorithm 
are summarized in Table 6.12. 

According to Table 6.12, it can be observed that the BE A scheme repre­
sents a cheaper solution in terms of hardware resource requirements. Indeed, 
the BE A scheme utihzes just 12.02% of the area required by the ITMIA de­
sign. On the contrary, the ITMIA scheme outperforms the BEA scheme in 
timing performance, with a speedup of about 3.3 times. Therefore, consider-
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Table 6.12. BEA Versus ITMIA: A Performance Comparison 

Design 

BEA 
ITMIA 

ITMIA without 
1 KOM Block 

Cost 

1195 
9945 
2345 

Cycles 

191 
40 
40 

Freq (MHz) 

76.10 
55.25 
55.25 

timings 
250977S 
724778 
7247/8 

1 1 
Slices xtiminqs 

333.53 
138.89 
589.00 

ing our customary efficiency figure of merit of slices xtiminqs' ^^ ^^^ ^^^ ^^^^ 
the BEA solution is about 2.40 times more efficient than the ITMIA design. 

Nevertheless, since for all practical cryptographic and code applications 
a binary extension field multiplier is a mandatory operator, we included the 
performance statistics of both, the ITMIA design considering the costs of the 
expensive Karatsuba-Ofman Multiplier (KOM) block and without considering 
it. In the case that the KOM block cost is taken out of the ITMIA statistics, 
Table 6.12 shows that the ITMIA solution becomes the most efficient option, 
providing An efficiency improvement of nearly 1.77 times with respect to the 
BEA design. 

6.3.7 Multiplicative Inverse F P G A Designs 

Table 6.13 shows the computational cost of several reported designs for the 
computation of multiplicative inversion over GF{2^) in hardware platforms. 
The standard Itoh-Tsujii algorithm using the architecture described here re­
quires 28 clock cycles in the design reported in [295], thus computing the 
multiplicative inverse in about 1.32/iS. 

6.4 Other Ar i thmet ic Operations 

In this Section we briefly describe some important binary finite field arith­
metic operations such as, the computation of the trace function, the half trace 
function and binary exponentiation. The first two operations are key building 
blocks for halving an eUiptic curve point, which will be studied in §10.7. 

6.4.1 Trace function 

Given C G (7F(2"^), the trace function can be defined as: 

TriC) = C-\-C^-\-C^" + .,.-{- C^"" ' (6.54) 

Due to its linearity, the trace function can be implemented such that the 
execution time is 0(1) as [133], 
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Table 6.13. Design Comparison for Multiplicative Inversion in G'F(2^ 

Work 

BEA 
divisor [403] 

BEA 
divisor [77] 

ITMIA [248] 
Parallel 

ITMIA [295] 
ITMIA [295] 

BEA 
[248] 

Montgomery 
Inversion [314] 

ITMIA [20] 
ITMIA [216] 

BEA [114] 

Platform 

0.18Aim CMOS 

0.18Atm CMOS 

Xilinx Virtex 2 
Xilinx Virtex 2 

Xilinx Virtex 2 

Xilinx Virtex 2 

0.18/im CMOS 

Xilinx Virtex 
Xilinx Virtex 

0.25Atm CMOS 

Field 

GF{2''"') 

GF{2'''^) 

GF(2^^^) 
GF(2^^") 

GF(2'^'^) 

GF{2''''^) 

160-bit 

GF(2^^') 
GF(2'^^) 
(?F(2^^^) 

Cost 

1.658 

1.192 

9945 
12021 
CLBs 
11081 
CLBs 
1195 

CLBs 
14.4K 

NANDs 

-

-

Cycles 

198 

326 

40 
20 

28 

191 

1516 

390 
711 
844 

Freq (MHz) 

400 

460 

55.25 
21.2 

21.2 

76.1 

227.3 

50 
66 
50 

timings 1 

0.495/iS 

0.709^8 

0.724//S 
0.943AtS 

1.32/iS 

2.509AtS 

2.509/iS 

7.8/^8 (est.) 
10.7/iS 

16.88/iS (est.) 

771—1 

Tr{C) - Tr{J2 ^ix') = Y, ^iTr{x') 
i = 0 

(6.55) 

As an example, consider the field defined by GF{2^^^) with the reduction 
polynomial p{x) = x^^^ -{- x'^ -{- x^ + x^ -\- 1. Then, Tr(x^) = 1 if and only 
if z G {0,157}. The implementation of the trace function in reconfigurable 
hardware only needs one XOR gate to add the bits 0 and i57 from the input 
polynomial. 

6.4.2 Solving a Quadra t i c Equa t ion over ^ ^ ( 2 ^ ^ ) 

In order to solve a quadratic Equation (10.26), we may use the half-trace 
function. Let C e GF{2'^) be defined as C{x) = X^^"^ Cix' G GF(2^) with 
Tr{C) = 0 and m an odd integer, the half-trace function can be defined as: 

H{C) = H{Y^Cix')=^CiH{x') (6.56) 
1=0 

Therefore, by using the definition of the half trace equation 6.56. We can 
precompute the m half-traces of the field elements x^ for z — 0 , 1 , . . . , m — 1; 
and by arranging these Equations in a m x m matrix B, we may obtain the 
half-trace of an arbitrary element C G GF{2'^) by computing H{C) — CB. 
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6.4.3 Exponentiation over Binary Finite Fields 

Exponentiation over binary finite fields is used for inverse computation via 
Fermat Little theorem [295] and key agreement schemes such as the Diffie-
Hellman protocol, among other applications. 

For binary extension fields GF{2'^), generated using the m-degree irre­
ducible polynomial P{x), irreducible over GF{2). Let e be an arbitrary m-bit 
positive integer e, with a binary expansion representation given as, 

( le^_2. . .eieo)2 - 2 — ^ + ^ 2 ^ 
m-2 

2 = 0 

Then, 

6 = a^ = a2""'+^r=o^2^^^ (6.57) 

m-2 

i=0 

Algorithm 6.11 MSB-first Binary Exponentiation 
Require: The irreducible polynomial P{x), a G GF{2'^)^ e = (em-i • • • ^160)2 
Ensure: b — a^ mod P{x) 
1 
2 
3 
4 
5 
6 
7 

6 = a ; 
for z = m — 2 downto 0 do 

6 = 6 ^ 
if ej == 1 then 

h = b • a mod P{x)\ 
end if 

end for 
Return b 

Binary strategies evaluate (6.57) by scanning the bits of the exponent e 
one by one, either from left to right (MSB-first binary algorithm) or from 
right to left (LSB-first binary algorithm) applying the so-called Horner's rule. 
Both strategies require a total of m — 1 iterations. At each iteration a squaring 
operation is performed, and if the value of the scanned bit is one, a subsequent 
field multiplication is performed. Therefore, the binary strategy requires a 
total of m — 1 squarings and ^ ( e ) — 1 field multipHcations, where H{e) is the 
Hamming weight of the binary representation of e. The pseudo-code of the 
MSB-first binary algorithm is shown in Algorithm 6.11. 

On the other hand, it is known from Fermat Little Theorem that for any 
nonzero a G GF{2^), we have a^"""^ = 1 which impfies â "" = a and by taking 
square root in both sides of the last relation we get â "" = ^/a — c? . I n 
general, the i-th square-root of a, with z > 1 can be written as, 
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Hence, Eq. (6.57) can be reformulated in terms of the square root operator 
as, 

m - 2 
,2^e, _ , 2 — 1 . , 2 — 2 e ^ _ 2 ^2'e, . ,20eo n 

i=Q 

= a^-.a^-'-"'-^ a^ 

a^'^* = a^ • c? ^—^ a^ <=> • a^ "=» (6 .58 ) 

m —1 
- ( m - 1 ) ^ 

i = 2 

Algorithm 6.12 Square root LSB-first Binary Exponentiation 
Require: The irreducible polynomial P(x)^ a € GF{2'^), e = (em-i . 
Ensure: b = a^ mod P{x) 

b = a ; 
Cm = eo ; 
for i = 1 to m do 

b=Vb', 
if Ci == 1 then 

b — b ' a mod P{x)\ 
end if 

end for 
Return b 

Therefore, the novel square root LSB-first binary strategy requires a to­
tal of m — 1 square root computations and H{e) — 1 field multiplications, 
where H{e) is the Hamming weight of the binary representation of e. The 
pseudo-code of the square root LSB-first binary algorithm is shown in Al­
gorithm 6.12. Algorithms 6.11 and 6.12 suggest a parallel version that can 
combine both ideas. This parallel version is especially attractive for hardware 
platforms implementations. Algorithm 6.13 shows this suggesting algorithm. 
Notice that both loop computations can be performed in parallel provided 
that the architecture has two independent field multiplier units. The compu­
tational time speedup can be estimated in about 50% when compared with 
Algorithms 6.11 and 6.12. 

6.5 Conclusions 

In this chapter, we addressed the problem of how to implement efficiently finite 
field arithmetic algorithms for reconfigurable hardware platforms. We included 
detailed analysis of complexities for binary field operations such as: multiphca-
tion, squaring, square root, multiphcative inverse computation, among others. 
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Algorithm 6.13 Squaring and Square Root Parallel Exponentiation 
Require: The irreducible polynomial P{x), a G GF{2'^), e = (em-i • • • 6160)2 
Ensure: b = a^ mod P{x) 
1: 6 = c = 1 ; 
2: em = 0 ; 

3: iV=LfJ ; 
4: for i = N downto 0 do for j — N -\- I to m do 
b: b = b^ ] c= y/c\ 
6: if ti =— 1 then if Cj == 1 then 
7: b — ba\ c = c- a; 
8: end if 
9: end for 

10: 6 = 6c ; 
11: Return 6 

In §6.1, field multipliers algorithms were studied covering the whole spec­
trum of state-of-the-art strategies for computing that crucial arithmetic oper­
ation as efficiently as possible. That spectrum goes from the mighty fully bit-
parallel Karatsuba-Ofman multiplier to the ultra compact interleaving multi­
plier which can be quite useful for constrained environments. 

The most attractive feature of the Karatsuba-Ofman algorithm variation 
analyzed in §6.1.2, is that the degree m of the generating irreducible polyno­
mial can be arbitrarily selected by the designer, allowing the usage of prime 
degrees. In addition, the new field multiplier leads to architectures which show 
a considerably improved space complexity when compared to traditional ap­
proaches. Moreover, the binary Karatsuba-Ofman multiplier leads to highly 
modular architectures that are well suited for both, VLSI and reconfigurable 
hardware implementations. 

We studied in §6.1.4 a method able to perform the reduction step of field 
multipliers when an irreducible trinomial or pentanomial is used to generate 
the field. Moreover, we also presented a general method for accomplishing 
reduction when dealing with arbitrary irreducible polynomials. 

In §6.2 a low-complexity bit-parallel algorithm for computing square roots 
over binary extension fields was studied. Although the method presented can 
be applied for any type of irreducible polynomials, we were particularly inter­
ested in studying the case of irreducible trinomials. Hence, in order to inves­
tigate the exact cost of the square root operator, we categorized irreducible 
trinomials over GF{2) into four different types. For all four types considered, 
explicit area and time complexity formulae were found for both, field squaring 
and field square root operators. It was shown that for the important practi­
cal case of finite fields generated using irreducible trinomials, the square root 
operation can be performed with no more computational cost than the one 
associated to the field squaring operation. 

In §6.3 we presented a performance comparison of two of the most pop­
ular algorithms for computing the field multiplicative inverse operation: the 
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Binary Euclidean Algorithm (BEA) and the Itoh-Tsujii Multiplicative Inverse 
Algorithm (ITMIA). It was shown that the Itoh-Tsujii strategy offers a com­
petitive performance when implemented in hardware platforms. Furthermore, 
we combined the standard Itoh-Tsuii algorithm with the concept of addition 
chains. Then, we showed that for this version of the Itoh-Tsuii algorithm the 
multiplicative inverse of an arbitrary nonzero field element in GF(2^) can be 
computed by performing exactly m — 1 field squarings and t multiplications, 
where t is the step-length of the optimal addition-chain for m-1. One of the 
main conclusions of this Section is that according to Table 6.12 there is not a 
clear winner when comparing the BEA and the ITMIA methods. 

Finally, in §6.4 some less popular field arithmetic operations were studied, 
such as, the computation of the trace function, the half trace function and 
binary field exponentiation. The first two operations are key building blocks 
for halving an elliptic curve point, which will be studied in §10.7. 



Reconfigurable Hardware Implementation of 
Hash Functions 

This Chapter has two main purposes. The first purpose is to introduce readers 
to how hash functions work. The second purpose is to study key aspects 
of hardware implementations of hash functions. To achieve those goals, we 
selected MD5 as the most studied and widely used hash algorithm. A step-
by-step description of MD5 has been provided which we hope will be useful 
for understanding the mathematical and logical operations involved in it. The 
study and analysis of MD5 will be utilized as a base for explaining the most 
recent SHA2 family of hash algorithms. 

We start this Chapter given a brief introduction to hash algorithms in 
Section 7.1. A survey of some famous hash algorithms is presented in Sec­
tion 7.2. Then we provide a detailed discussion of the MD5 algorithm in 
Sec. 7.3. All MD5 steps are explained by means of an illustrative example 
which is explained at a bit level. In Section 7.4, we describe the SHA2 family 
of hash algorithms and some tips are provided with respect to their hardware 
implementation. In Section 7.5 design strategies to achieve efficient hash algo­
rithms when implemented on reconfigurable devices are discussed. Section 7.6 
presents a review of recent hash function hardware implementations. Finally, 
in Section 7.7 concluding remarks are drawn. 

7.1 Introduction 

As it was explained in Chapter 2, a Hash function iJ is a computationally 
efficient function that maps fixed binary chains of arbitrary length {0,1}* to 
bit sequences H{B) of fixed length. H{M) is the hash value, hash code or 
digest of M [110]. 

In words, let M be a message of an arbitrary length. A hash function 
operates on Mand returns a fixed-length value, /i, as shown in Fig. 7.1. The 
value h is commonly called hash code. It is also referred to as a message 
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digest or hash value. The main application of hash functions lies on producing 
fingerprint of a file, message or other blocks of data. 

h = H(M) 

Fig. 7.1. Hash Function 

Hash functions do not use a particular key, but instead, it is a highly non 
linear function of all message bits. The code changes with the change of any bit 
or bits in the input message and thus it provides error detection capabilities. 

In practice, modern hash functions are specifically designed for having a 
short bit-length hash code h (usually from around 128 bits up to 512 bits). 
This characteristic is especially attractive for the application of hash functions 
in virtually every digital signature algorithm. Therefore, rather than attempt­
ing to sign the whole message (which by definition has arbitrary length), it 
becomes more practical to sign the hash code of the message as it was depicted 
in the basic digital signature/verification scheme shown in Figure 2.6. 

As a way of illustration, let us suppose that Ana received $500 from Bill, 
and that afterwards, she proceeded signing the hash code /il of the message 
M l as shown below. 

Ml = Ana received $500 from Bill 

hi = H(M1) = 89CB0C238A3C7A78D0DD7063C4153B65 

Bill can never claim that Ana received $5000 as the hash code h2 of mes­
sage M2 using the same hash function vastly differs, 

M2 = Ana received $5000 from Bob. 

h2=H(M2)=CCD40B907C543D96FDB7203979E55E8B 

Alternatively, Bill may try to find another message M3 whose hash value 
corresponds to the hash value of message Ml, and then claim that Ana actually 
signed message M3, not Ml. 

If we can find any two messages producing the same message digest, we say 
that we have found a collision. Collision is a not desired characteristic of hash 
functions but at the same time is unavoidable. All that one can hope is that no 
matter how determined an adversary may be, it should result computational 
unfeasible for him/her to find collisions. Therefore, a hash function H is said to 
be strong enough against collision and thus useful for message authentication, 
if it has the following properties [342, 246], 
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H applies to any block of data. 
H returns a fixed-length output. 
For any given value x, H{x) is relatively easy to compute. That feature 
makes hash function implementations more practical in both software and 
hardware platforms (Fig. 7.2a). 

T ix T r 
(a) (b) (c) 

Fig. 7.2. Requirements of a Hash Function 

• Given x, it is easy to compute H{x). Given h, it is computationally infea-
sible to find x such that H{x) = h. That is sometimes referred to as one 
way property of hash functions (Fig. 7.2b). 

• For any given block x^ it is computationally infeasible to find y {y y^ 
x), with H{y) = H{x). This is sometimes referred to as weak collision 
resistance. 

• To find a pair (x, y) such that H(x) = H{y), is computationally infeasible. 
This is sometimes referred to as strong collision resistance (Fig. 7.2c). 

7.2 Some Famous Hash Functions 

The overall structure of a typical hash function is shown in Fig. 7.3. 

SBi 

T l 

/ 

^_Jh 

SB2 

T l 

/ 

i 

Fig. 7.3. Basic Structure of a Hash Function 

The structure was first proposed by Merkle [233, 234] and then followed by 
most hash function designs in use today including MD5, SHA-1 and RIPEMD-
160 [342]. 

It is apparent from Fig. 7.3 that a typical hash function is iterative in 
nature. That is, it partitions (hashes) a given input message to L sub blocks 
SBs of some fixed length m bits and operates sequentially on each SB. Those 
message blocks shorter in length than m are padded as necessary with zeroes. 
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Table 7.1. Some Known Hash Functions 

Name 
AR 
Boognish 
Cellhash 

FFT-Hash I 
G O S T R 
34.11-94 
FFT-Hash II 
HAVAL 

MAA 
MD2 
MD4 
MD5 
N-Hash 
PANAMA 
Parallel 
FFT-Hash 
RIPEMD 
RIPEMD-128 

RIPEMD-160 

SHA-0 
SHA-1 
SHA-224 
SHA-256 
SHA-384 
SHA-512 
SMASH 
Snefru 
StepRightUp 
Subhash 
Tiger 
Whirlpool 

Author(s) 
ISO [151] 
Daemen[58] 
Daemen, Govaerts, 
Vandewalle [59] 
Schnorr [318] 
Government Committee of 
Russia for Standards [257] 
Schnorr [319] 
Zheng, Pieprzyk, Seberry [402] 

ISO [150] 
Rivest [162] 
Rivest [288] 
Rivest [289] 
Miyaguchi, Ohta, Iwata [237] 
Daemen, Clapp [56] 
Schnorr, Vaudenay [320] 

The RIPE Consortium [287] 
Dobbertin, Bosselaers, 
Preneel [70] 
Dobbertin, Bosselaers, 
Preneel [70] 
NIST/NSA [61] 
NIST/NSA [255 
NIST/NSA [255 
NIST/NSA [255 
NIST/NSA [255 
NIST/NSA [255 
Knudsen [177] 
Merkle [235] 
Daemen [55] 
Daemen [57] 
Anderson, Biham [8] 
Barreto, Rijmen [286] 

Year 
1992 
1992 
1991 

1991 
1990 

1992 
1994 

1988 
1989 
1990 
1992 
1990 
1998 
1993 

1990 
1996 

1996 

1991 
1993 
2004 
2000 
2000 
2000 
2005 
1990 
1995 
1992 
1996 
2000 

Block Size 

32 
32 

128 
256 

128 
1024 

32 
512 
512 
512 
128 
256 
128 

512 
512 

512 

512 
512 
512 
512 
1024 
1024 
256 

512-m 
256 
32 

512 
512 

Digest Size 

up to 160 
up to 256 

128 
256 

128 
128, 160, 192, 

224, 256 
32 
128 
128 
128 
128 

unlimited 
128 

128 
128 

160 

160 
160 
224 
256 
384 
512 
256 

m = 128, 256 
256 

up to 256 
192 
512 

The heart of a hash algorithm is the so-called compression function F. A 
repeated use of function F is made by the hash algorithm. F takes two inputs: 
an m-bit input block message and; an n-bit input from previous step, called 
hash h of that message block. The output is an n-bit hash /i, namely [317], 

hj = F(Sbj,hj.i) (7.1) 
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For j=:l , 2 , . . . , L, where L is the total number of SB message blocks. For 
j = 1, the function F takes the first sub block SB\ and /lo? where /lo is a fixed 
value provided by the algorithm. For /i^? (i-e. j = n), the two inputs are SBn 
and /in-i, hn is the hash value of the entire message. 

The term compression comes from the fact that the hash output has a much 
shorter bit-length n than the original input message bit-length m. Although 
it has not been formally proved, some authors consider that the security of 
a hash function strongly depends upon the security of its compression func­
tion [234, 62, 245]. Indeed, if the compression function is strongly collision 
resistant, then hashing a message using that method is also secure. Modern 
hash functions strive for improving the internal logic of their compression 
functions. At the same time, extensive research has been carried out on the 
issue of how many repetitions of the compression function are essential for ob­
taining an acceptable security and how those repetitions could be sequenced. 

Table 7.1 features a list of known hash functions prepared by [17]. Detailed 
discussions about the design of most of those h£tsh functions can be found 
in [165, 275, 234, 19, 276, 277, 276, 278, 347, 348, 360, 28, 119, 119, 138]. 

r Message J Message = M 

(Message Padding] MP =448 mod 512 

f Append Message Length 1 APL= MP + message length in 64-bit 
V - y ^ (512 bits) 

IWQ WJ W J W J W4 W5 Wg m-j Wg W9 Wjo w, J w,2 /w,3 w,4 m ^ 

ROUND 1 
FF FF FF FF 

FF FF FF FF 

FF FF FF FF 

FF FF FF FF 

ROUND 3 
HH HH HH HH 
HH HH HH HH 
HH HH HH HH 
HH HH HH HH 

J 

R 

b" 

c 
d 

ROUND 4 
// // // // 
// // // // 
// // // // 
// // // // • 1 ' 

7.3 MD5 

Fig. 7,4. MD5 

The series of Message Digest (MD) hash algorithms is due to Rivest[289]. The 
original message digest algorithm was simply called MD. MD was quickly fol­
lowed by MD2 [162]. Nevertheless, MD2 was soon found to be quite weak. 
Rivest then started working on MD3, which however was never released. 
MD4 [288] was the next family member. Soon MD4 was also found to be 
imperfect, but it provided the theoretical foundations for its successors MD5 
(designed in 1992) and also for SHA-0 [61] and RIPEMD [287], from other 
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authors. Then, in 2004, the never ending battle between hash function design­
ers and crypto analysts had yet another episode, when several advances for 
finding collisions on MD5 were announced in [24, 159]. 

Short after that, Wang et al. without revealing their method, presented on 
the rump session of [98] evidence of MD5 colliding messages [370]. Wang et 
al. method was later pubhshed in [372]. Before that happened though, several 
experimental results were presented in [174], showing for the first time how 
MD5 could be break. Recently, it has been proved that collisions on MD5 can 
be found (under certain conditions) within a minute using a standard laptop 
[175]. 

Operating on 512-bit input blocks, MD5 produces 128-bit message digests 
from input messages of arbitrary length. For longer messages, a partition 
into sub blocks is performed. The algorithm then operates iteratively on all 
message sub-blocks as shown in Fig. 7.4. In the following Subsection, MD5 
steps for hashing a message are described in detail. 

7.3.1 Message Preprocessing 

First, original message is preprocessed. The message is padded such that its 
length (in bits) is congruent to 448 mod 512. Messages shorter than 448 bits 
are padded with the first bit set to ' 1 ' and all the rest set to zero. The re­
maining 64 bits for completing a block of 512 bits are reserved for appending 
message length. For instance, a message with 200-bit length would require a 
padding of 228 bits. The padding would comprise a single ' 1 ' at the most sig­
nificant position followed by 227 zeroes. The last 64 bits are all zeroes except 
for the last byte which is "11001000" denoting message length of 200. As a 
way of illustration, we show below how a sub block of 512-bit is obtained from 
an input message. Let our input message M be, 

"MD5 was proposed by Ron Rivest in 1992." 

The ASCII representation of the message M (39 characters) is shown in 
Table 7.2. 

Table 7.2. Bit Representation of the Message M 

01001101 01000100 00110101 00100000 OUlOUl 01100001 01110011 00100000 
01110000 01110010 01101111 01110000 01101111 01110011 01100101 01100100 
00100000 01100010 01111001 00100000 01010010 01101001 01110110 01100101 
01110011 01110100 00100000 01101001 01101110 00100000 00110001 00111001 
00111001 00110010 00101110 

The first step consists on padding the Message M in order to complete a 
block of 512 bits as shown in Table 7.3. Notice the location of the padding 
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s ta r t bit (i.e. bit '1 ') and the message length (given in a 64-bit representa­
tion) appended into the last 64 bits (shaded). As it was explained above, the 
padding process assures t h a t the block message length will always be an exact 
multiple of 512. Thereafter the main loop s tar ts . A message parsing is required 
for this loop. This is accomplished by dividing the 512-bit input message block 
into sixteen 32 bit words. 

Table 7.3. Padded Message (M) 

01001101 01000100 00110101 00100000 01110111 01100001 01110011 00100000 
01110000 01110010 01101111 01110000 01101111 01110011 01100101 01100100 
00100000 01100010 01111001 00100000 01010010 01101001 01110110 01100101 
01110011 01110100 00100000 01101001 01101110 00100000 00110001 00111001 
00111001 00110010 00101110 10000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000001 00011000 

In the case of hardware implementations, designers can use various options 
for message preprocessing. One of the possible approaches is to use sixteen 
32 bit shift registers which are initialized with zeroes except for the first one 
which ha^ its first bit set to ' 1 ' . All the 16 registers are cascaded in such a 
way tha t the ou tpu t of one is placed as the input of the next register. 

Thus , whenever a message is read, all message bits are sequentially t rans­
ferred to shift registers. The s ta r t bit ' 1 ' of the first shift register is now the 
end bit of the message as shown in Fig. 7.5. Since there is no need to cascade 
final register (SRI5) with the other registers it can be reserved for appending 
the message length. T h a t register ar rangement also completes message parsing 
as all 16 registers contain 32-bit words. 

SRO 

0...00000000 

(32 - bit) 

Message 

SR1 

00...00000000 

(32 - bit) 

J::I 

SR9 

00...00000000 M 

(32 - bit) 

SR15 

00...00000000 
(32 - bit) 

Length Counter 

SRO 

00...00000000 

SR1 

00...00000000 

SR9 

00... 1 0000000 M 

SR15 

0...100011000 

Message(280 bits) Message Length 

F i g . 7.5. Message Block = 32 x 16 =512 Bits 
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Rivest selected a little-endian architecture for interpret ing a message as a 
sequence of 32-bit words. A little endian archi tecture stores the least signif­
icant byte of a word into the lowest byte address. This design decision was 
taken due to Rivest observation t ha t several processor architectures with little 
endian format offer faster processing [342]. This way, the first block message 
is converted into sixteen 32-bit words, which are then wri t ten into hex little 
endian format as shown in Table 7.4. 

Table 7.4. Message in Little Endian Format 

Message in Hex 

0x4d443520 
0x77617320 
0x70726f70 
0x6f736564 
0x20967920 
0x526f6e20 
0x52697665 
0x69207473 
0x6e203139 
0x39322e80 
0x00000000 
0x00000000 
0x00000000 
0x00000000 

0x00000000,0x00000138 

Message little endian format 

0x2035444d 
0x20736177 
0x706f7270 
0x6465736f 
0x20796220 
0x206e6f52 
0x65766952 
0x69207473 
0x3931206e 
0x802e3239 
0x00000000 
0x00000000 
0x00000000 
0x00000000 

0x00000138,0x00000000 

Appending bits to message blocks according to the Litt le endian format is 
intended for 32-bit word ra ther than one byte words. Therefore, the 64 bits 
t h a t are reserved for keeping the message length are divided into two 32-bit 
words. By applying said convention, the lower order 32-bit word is appended 
first as shown in Table 7.4 (observe the last two 32-bit words). 

7 .3 ,2 M D Buffer In i t i a l i za t ion 

As it has been already mentioned, internally MD5 operates on two inputs: 
the input message block and the ou tpu t hash from the previous step. In the 
first s tep, the initial hash values are constants provided by the algorithm. The 
initial values for MD5 are provided into four 32-bit words. A four-word buffer 
(a, 6, c, d) is used to store those values which are then replaced by the ou tpu t 
hash values after each step. MD5 a, 6, c, d four words, are also referred to as 
chain variables. The initial values for the MD5 chain variables are shown in 
Table 7.5. 
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Table 7.5. Initial Hash Values in Little Endian Format 

Normal Values Little endian format 

a - 0x01234567 a = 0x67452301 
b = 0x89abcdef b = 0xefcdab89 
c = 0xfedcba98 c = 0x98badcfe 
d = 0x76543210 d = 0x10325476 

7.3.3 Main Loop 

The Main loop is composed of four rounds. Each round has as a 512-bit mes­
sage block as an input. As it was mentioned, message blocks are grouped into 
sixteen 32-bit words. The second input comes in the form of chain variables 
which are also grouped as four words of 32-bit each (totaling 128 bits). All 
the four rounds use an auxiliary function, which takes three 32-bit inputs pro­
ducing a single 32-bit output. Table 7.6 presents the four non-linear functions 
F, G, H, and I, that are utiHzed in rounds 1 to 4. 

Table 7.6. Auxiliary Functions for Four MD5 Rounds 

F(A,B,C) = (A AND B) OR ((NOT A) AND C) 
G(A,B,C) = (A AND C) OR ( B AND (NOT C )) 
H(A,B,C) = (A XOR B XOR C) 
I(A,B,C) = (B XOR ( A OR (NOT C ))) 

All the four non-linear functions are simple and can be easily constructed 
in reconfigurable hardware. The architecture of those four functions maps 
well to those reconfigurable devices having a 4-bit input/1-bit output Look 
Up Tables (LUTs) as a basic unit. On such devices, all the four functions 
occupy a single LUT, thus using a total of 4 LUTs for one bit manipulation 
as shown in Fig. 7.6. 

1 LUT 1 LUT 

'&>' S^ 
(a) (b) 

1 LUT 1 LUT 

V G Y p H ii;>C> 
(c) (d) 

Fig. 7.6. Auxiliary Functions in Reconfigurable Hardware (a) F(X,Y,Z) (b) 
G(X,Y,Z) (c) H(X,Y,Z) (d) I(X,Y,Z) 
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Let <C S denote a left circular shift by S bits and let rrii represent the 
ith sub-block (0 to 15) of the message. Provided that there is a constant Kj 
for the jth state of a round, the four operations corresponding to four MD5 
rounds are shown in Table 7.7. 

Table 7.7. Four Operations Associated to Four MD5 Rounds 

FF(a,b,c,d, m ,̂ S, Kj) 
GG(a,b,c,d, m ,̂ S, K )̂ 
HH(a,b,c,d, m ,̂ S, Kj) 

II(a,b,c,d, mi, S, Kj) 

a = b + ((a + F(b,c,d) + m̂  + Kj)< S) 
a = b 4- ((a -f G(b,c,d) -f m̂  -f- Kj) < S) 
a = b + ((a + H(b,c,d) + m̂  + Kj) < S) 
a = b + ((a + I(b,c,d) + mi + Kj) < S) 

The architecture of a single MD5 operation can be optimized for reconfig­
urable devices by re-ordering some steps as shown in Fig. 7.7. 

L> a 

b 

c 

d 

2 

F or G or 
Horl 

\ 

\ 

\J 
- > 

+ 

LUTs 

m-

Ki-

w 
W 

< < < s 

< < < s 

< < < s 

• 

• 

w 

+ 

Fig. 7.7. One MD5 Operation 

Two changes are introduced. First, summation of word a is appended 
with the manipulation of the non-Hnear function, this occupies a single LUT. 
Similarly, instead of a single shift operation by S bits, a total of three shift 
operations have been introduced. That does not cost other logic resources but 
only the routing resources of the target reconfigurable device. 

There are a total of 64 steps in the four MD5 rounds. The output of each 
round for our example message is presented in Table 7.8, Table 7.9, Table 7.10, 
and Table 7.11 for round 1, round 2, rounds, and round 4, respectively. The 
constant values Ki can be computed by taking the integer part of 2^^ x 
abs{sin{i))^ where i is in radians. 

7.3.4 Final Transformation 

The last step consists on adding the initial and final hash values. Here addition 
is a simple integer addition modulo 2*̂ ^ and not an 'XOR' operation. The 
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Table 7.8. Round 1 

FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 
FF 

(a, b, 
(d, a, 
(c, d, 
(b, c, 
(a, b, 
(d, a, 
(c, d, 
(b, c, 
(a, b, 
(d, a, 
(c, d, 
(b, c, 
(a, b, 
(d, a, 
(c, d, 
(b, c, 

Function 
c, d, mo, 7, 
b, c, mi , 12, 
a, b, m2, 17, 
d, a, ma, 22, 
c, d, m4, 7, 
b, c, ms, 12, 
a, b, me, 17, 
d, a, my, 22, 
c, d, ms, 7, 
b, c, mg, 12, 
a, b, mio, 17, 
d, a, mi l , 22, 
c, d, mi2, 7, 
b, c, mi3, 12, 
a, b, mi4, 17, 
d, a, mi5, 22, 

0xd76aa478) 
0xe8c7b756) 
0x242070db) 
Oxclbdceee) 
0xf57c0faf) 

0x4787c62a) 
0xa8304613) 
0xfd469501) 
0x698098d8) 
0x8b44f7af) 
0xffff5bbl) 

0x895cd7be) 
0x6b901122) 
0xfd987193) 
0xa679438e) 
0x49b40821) 

a •• 

d-
C : 

b : 
a 
d 
c 
b 
a 
d 
c 
b 
a 
d 
c 
b 

Output 
= 0xbfc20e04 
= 0x2445ea9a 
= 0xbada24bf 
= 0xdae8fl05 
= 0xd3e2a4f 
= 0x618adecl 
= 0x605da696 
= 0xbl0d4538 
= 0xf0ce7848 
= 0xadc2eal9 
= 0x8cal0c71 
= 0xd06eda96 
= 0xcfc79cla 
= 0xef0992d6 
= 0x419bb7da 
= 0xa41613f9 

Table 7.9. Round 2 

GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 
GG 

[a, b, c, d. 
[d, a, b, c, 
'c, d, a, b, 
[b, c, d, a. 
[a, b, c, d. 
[d, a, b, c, 
[c, d, a, b. 
[b, c, d, a, 
[a, b, c, d. 
[d, a, b, c. 
[c, d, a, b, 
[b, c, d, a, 
[a, b, c, d. 
[d, a, b, c, 
c, d, a, b, 

[b, c, d, a. 

Function 
mi, 5, 0xf61e2562) 
me, 9, 0xc040b340) 
mil , 14, 0x265e5a51) 
mo, 20, 0xe9b6c7aa) 
ms, 5, 0x0d62fl05d) 
mio, 9, 0x02441453) 
mi5, 14, 0xd8ale681) 
m4, 20, 0xe7d3fbc8) 
mg, 5, 0x21elcde6) 
mi4, 9, 0xc33707d6) 
ma, 14, 0xf4d50d87) 
ms, 20, 0x455al4ed) 
mi3, 5, 0xa9e3e905) 
m2, 9, 0xfcefa3f8) 
mr, 14, 0x676f02d9) 
mi2, 20, 0x8d2a4c8a) 

Output 
a = 0x01816d6a 
d = 0x8d2bl4de 
c = 0xf0ec903d 
b = OxfbbOSbOO 
a = 0x3clfe25e 
d = 0x53c87df3 
c = 0xefcf863a 
b = 0x7a06c30d 
a = 0x00fb73e8 
d = 0x968fd037 
c = 0x14952739 
b = 0xcf0el9b2 
a = 0xeec09e98 
d = 0xe0cbl23e 
c = 0xadfb03b9 
b = 0x3d9b93ef 
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Table 7.10. Round 3 

HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 
HH 

[a, b, c, d, 
[d, a, b, c, 
[c, d, a, b, 
;b, c, d, a, 
Ja, b, c, d, 
Jd, a, b, c, 
[c, d, a, b, 
;b, c, d, a, 
[a, b, c, d, 
[d, a, b, c, 
[c, d, a, b, 
Jb, c, d, a, 
[a, b, c, d, 
[d, a, b, c, 
[c, d, a, b, 
^b, c, d, a, 

Functior 
ms, 
ms, 
mil 
mi4 
mi, 
m4, 
my, 
mio 
mi3 
mo, 
ma, 
me, 
mg, 
mi2 
mi5 
m2, 

4, 
11, 
16, 
23, 
4, 
11, 
6, 

23, 
4, 
11, 
16, 
23, 
4, 
11, 
16, 
23, 

I 
0xfFfa3942) 
0x8771f681) 
0x6d9d6122) 
0xfde5380c) 
0xa4beea44) 
0x4bdecfa9) 
0xf6bb4b60) 
0xbebfbc70) 
0x289b7ec6) 
0xeaal27fa) 
0xd4ef3085) 
0x4881d05) 

0xd9d4d039) 
0xe6db99e5) 
0xlfa27cf8) 
0xc4ac5665) 

a 
d 
c 
b 
a 
d 
c 
b 
a 
d 
c 
b 
a 
d 
c 
b 

Output 
= 0x3ae82d36 
= 0xf21c9795 
= 0x8043a89c 
= 0x3985c48b 
= 0xf8dd0bbf 
= 0x7a6540bb 
= 0x7263dcl7 
= 0x79d86ca3 
= 0xaf5015ec 
= 0xe9e2e73d 
= 0x860d260 
= 0xddfa26e9 
= 0x3aace80d 
= 0xdf9ale0c 
= 0xffda7edc 
= 0x4d718018 

Table 7.11. Round 4 

Function 
H (a, b, c, d, mo, 
II (d, a, b, c, mr, 
II (c, d, a, b, mi4 
II (b, c, d, a, mg, 
II (a, b, c, d, mi2 
II (d, a, b, c, ms, 
II (c, d, a, b, mio 
II (b, c, d, a, mi , 
II (a, b, c, d, ms, 
II (d, a, b, c, mi5 
II (c, d, a, b, me. 
II (b, c, d, a, mi3 
II (a, b, c, d, m4. 
II (d, a, b, c, mil 
II (c, d, a, b, m2. 
II (b, c, d, a, mg. 

6, 
10, 
15, 
21, 
6, 
10, 
15, 
21, 
6, 
10, 
15, 
21, 
6, 
10, 
15, 
21, 

0xf4292244) 
0x432aff97) 

0xab9423a7) 
0xfc93a039) 
0x655b59c3) 
0x8f0ccc92) 
0xffeff47d) 

0x85845ddl) 
0x6fa87e4f) 
0xfe2ce6e0) 
0xa3014314) 
0x4e0811al) 
0xf7537e82) 
0xbd3af235) 
0x2ad7d2bb) 
0xeb86d391) 

a = 
d = 
c = 
b = 
a = 
d = 
c = 
b = 
a = 
d = 
c = 
b = 
a = 
d = 
c = 
b = 

Output 
0xbc2cfl90 
0xc43bf785 
0x9d557285 
0xbf063e88 
0xc5ec3319 
0x20d2175b 
0xc6863889 
0xf70eal06 
0xl2f76270 
0xd40al21f 
0xe4c960a4 
0x2fb93bf8 
0xadfld7b5 
0xfd93443b 
0x5a402c56 
0x9f2895cb 
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resultant four words a, 6, c, and d would be in little-endian format. They need 
to be converted back to its original format. Finally, four words a, 6, c, and d 
are concatenated to give the 128-bit hash of the given message as shown in 
Table 7.12. 

Table 7.12. Final Transformation 

Initial 
Hash Values 

Round 
Output 

Final Conversion from 
Transformation Little Endian 

a = 0x67452301 b = 0xefcdab89 c = 0x98badcfe d = 0x10325476 
a = 0xadfld7b5 b = 0x9f2895cb c = 0x5a402c56 d = 0xfd93443b 
a = 0xl536fab6 b = 0x8ef64154 c = 0xf2fb0954 
a = 0xb6fa3615 b = 0x5441f68e c = 0x5409fbf2 

d = 0x0d508cl9 
d = 0xbl98c50d 

Final Hash = b6fa36155441f68e5409fbf2bl98c50d 

7.4 SHA-1, SHA-256, SHA-384 and SHA-512 

The FTPS 180-2 [255] supersedes FIPS 180-1 [95]. It includes four secure hash 
algorithms SHA-1, SHA-224, SHA-384 and SHA-512. SHA-1 is identical to 
SHA-1 specified in FIPS 180-1 ̂  

Some notational changes have been introduced to make it consistent with 
the other three algorithms. All four algorithms are one way iterative hash 
functions. They differ in terms of block and word size. They also differ in 
the size of the message digest, which redounds in different levels of security. 
Table 7.13 compares basic specifications of the four secure hash algorithms. 

Table 7.13. Comparing Specifications for Four Hash Algorithms 

Algorithm Message Size Block Size Word Size Message Digest Security 
(bits) (bits) (bits) (bits) (bits) 

SHA-1 
SHA-256 
SHA-384 
SHA-512 

<2'' 
<2'' 
<2^28 
<2^28 

512 
512 
1024 
1024 

32 
32 
64 
64 

160 
256 
384 
512 

80 
128 
192 
256 

^ Just as it happened with MD5, the SHA family of hash algorithms has been 
successfully attacked in several recent papers [371, 107]. 
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7.4.1 Message Preprocess ing 

Preprocessing is always done before hash computation begins. Preprocessing 
comprises three main steps, 

Step 1: Padding the message 
Step 2: Parsing the padded message 
Step 3: Setting the initial hash values 

The hash computation for SHA-1 and SHA-256 requires 512-bit block. A 
1024-bit input block is processed by SHA-384 and SHA-512 hash computation. 
Preprocessing for both categories is discussed separately. 

SHA-1 and SHA-256 

Step 1: Padding the Message 

Let / be the length of the message M in bits. Append bit ' 1 ' to 
the end of the message followed by k zeroes such that the length of the 

resulting block is 64 bits short of 512 bits, i.e.. 

Result - M 4-1 -f- /c = 448 mod 512. 

The remaining 64 bits are reserved for adding the message length / in 
its binary representation. As an example, the message 'try' has an ASCII 
representation of 24 bits (8 x 3). Therefore, it requires 423 more bits to be 
padded at the end of the message in addition to the leading bit ' 1 ' in order to 
complete a block of 448 bits. The message length / = 24 in its 64-bit Boolean 
representation is appended at the end, as shown in Fig. 7.8. 

423 64 

01110100 01110010 01111001 1 00 00 00...011000 

Fig. 7.8. Padding Message in SHA-1 and SHA-256 

Padding is always made even if the message block is of 448 bits. For a 448-
bit message, a single bit ' 1 ' is appended at the end followed by 447 zeroes. 
Thus, in that case, an apparent single block message would be treated as two 
separated blocks. 

Step 2 : Parsing the message 

A padded message is parsed to Â  512-bit blocks, namely, Mo ,Mi , . . . ^MM-
Where each Mi block is organized into sixteen 32-bit blocks, namely, Mf, M/ , 
. . . , M/^. Therefore, the first sixteen 32-bit blocks are: M^, MQS . . . , M^^. 
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Step 3: Setting the initial hash values 

Before beginning the actual hash function computation, initial values must be 
set. Those values are provided by the algorithm. Table 7.14 and Table 7.15 
show in hex format five 32-bit words for SHA-1 and eight 32-bit words for 
SHA-256, respectively. 

Table 7.14. Initial Hash Values for SHA-1 

a = 0x67452301 
b = 0xefcdab89 
c = 0x98badcfe 
d = 0x10325476 
e = 0xc3d2elf0 

Table 7.15. Initial Hash Values for SHA-256 

a = 0x6a09e667 
b = 0xbb67ae85 
b = 0x3c6ef372 
c = 0xa54fr53a 
d = 0x510e527f 
e = 0x9b05688c 
f = 0xlf83d9ab 
g = 0x5be0cdl9 

SHA-384 and SHA-512 

Step 1: Padding the message 

Padding procedure for SHA-384 and SHA-512 is similar to those of SHA-1 and 
SHA-256. However, let us recall that both SHA-384 and SHA-512 operate on 
1024-bit message blocks, which consequently causes a change in other lengths. 
Let / be the length of the message M in bits. In this case, after appending 
a single bit ' 1 ' to the end of the message, k zeroes are added such that the 
length of the resulting block is 120 bits short of 1024 bits, 

Result = M - f l + A; = 896 mod 1024 

The remaining 120 bits are reserved for appending the message length / 
in its binary representation. Once again, let us consider the same example 
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message "try" (24 bits). In this case, 871 more bits are required to be padded 
at the end of the message in addition to the mandatory leading bit ' 1 ' to 
complete a block of 896 bits. The remaining 120 bits represent the message 
length as shown in Fig.7.9. 

423 64 

01110100 01110010 01111001 1 00 00 00...011000 

"~T~" r y /=24 

Fig. 7.9. Padding Message in SHA-384 and SHA-512 

Step 2 : Parsing the message 

Padded messages are parsed to N 1024-bit blocks: Mo, M i , . . . , MM- Where 
each Mi comprises thirty-two 32-bit blocks, namely, Mf, M / , . . . ,Mf^ The 
first thirty-two 32 blocks are MQ,MQ, . . . , M ^ \ and so on. 

Step 3: Setting the initial hash values 

The initial values SHA-384 and SHA-512 comprises two sets of eight 64-bit 
words as shown in Table 7.16 and Table 7.17. 

Table 7.16. Initial Hash Values for SHA-384 

a = 0xcbbb9d5dcl059ed8 
b = 0x629a292a367cd507 
c = 0x9159015a3070ddl7 
d = 0xl52fecd8f70e5939 
e = 0x67332667ffc00b31 
f = 0x8eb44a8768581511 
g = 0xdb0c2e0d64f98fa7 
h = 0x47b5481dbefa4fa4 

7.4.2 Functions 

The auxiliary functions used in SHA-1 differ to those functions used in SHA-
256, SHA-384 and SHA-512. Functions used in SHA-256, SHA-384 and SHA-
512 are identical but they operate on different word sizes. 
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Table 7.17. Initial Hash Values for SHA-512 
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a = 0x6a09e667f3bcc908 
b = 0xbb67ae8584caa73b 
c = 0x3c6ef372fe94f82b 
d = 0xa54fr53a5fld36fl 
d = 0x510e527fade682dl 
e = 0x9b05688c2b3e6clf 
f = 0xlf83d9abfb41bd6b 
g = 0x5be0cdl9137e2179 

7.4.3 SHA-1 

The function Ft in SHA-1 takes three 32-bit words X^ Y, and Z, producing 
a single 32-bit word output, where the variable t ranges from 0 to 79. It is 
defined as indicated below. 

Ft = { Ch{X, y, Z) = {X OR Y) e {{NOT X) ORZ) 0 < t < 19 

Parity{X, Y,Z) ^ X®Y ®Z 20 < i < 39 
Maj{X, y, Z) = {X OR Y) 0 {X OR Z) ®{YORZ)A0<t< 59 
Parity{X,Y,Z) = X^Y^Z 60 < t < 79 

A reconfigurable hardware architecture for the Ft is illustrated in Fig. 7.10. 
It is noted that all three, Ch, Parity, and Maj, occupy a single LUT when 
1-bit operand is processed. 

Ch(x,y.z) 
) J}0 Parity (x, y, z) 

(b) .lO- Maj(x,y,z) 

Fig. 7.10. Implementing SHA-1 Auxihary Functions in Reconfigurable Hardware 

SHA-256, SHA-384 and SHA-512 

All three, SHA-256, SHA-384 and SHA-512, use six logical functions. Each 
function operates on three words X, "K, and Z producing a new word of 
the same size as output. SHA-256 operates on 32-bit long words X, Y and 
Z. However, both SHA-384 and SHA-512 operates on 64-bit words. The six 
functions are. 
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Ch{X, y, Z) - {X OR Y) © {{NOT X) OR Z) 
Maj{X, y, Z) = {X OR Y) 0 {X OR Z) 0 {Y OR Z) 

EQ{X) = ROTR^{X) 0 ROTR^^{X) 0 ROTR^^{X) 
Ei{X) = ROTR^lx) 0 ROTR^^lx) 0 ROTR^^{X) 
GQ{X) = ROTR'^{X) 0 ROTR^^{X) 0 ROTR^{X) 
(71 (X) - ROTR^^X) 0 ROTR^^X) 0 ROTR^^{X) 

The architectures for C/i(X, y, Z) and Maj{X,Y,Z) are identical to the 
architectures presented in Fig. 7.10. The architectures for UQ, Ui, ao, and cri, 
are also simple. Since the rotation operation can be implemented in reconfig­
urable hardware by only using routing resources, each of the aforementioned 
functions can be accommodated into a single LUT as shown in Fig. 7.11. 

USE ROUTING RESOURCES 1 LUT 

xoW'i ROTR' 

USE ROUTING RESOURCES 1 LUT 

Fig. 7.11. Uo, Ui, cro, and ai in Reconfigurable Hardware 

7.4.4 Constants 

Constants for SHA-1 and SHA-256 differ. On the other hand, SHA-384 and 
SHA-512, share the same constant values. 

SHA-1 

SHA-1 uses eighty 32-bit constant words KQ^KI,, K79 which are given below, 
in hex format. 

Kt=< 

( 0a:5a827999 
0a;5a827999 
OxSflbbcdc 
0xca62cld6 

0<t<19 
20<t<39 
40 < t < 59 
60 < i < 79 
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SHA-256 

SHA-256 uses sixty four 32-bit different constant words, KQ, Ki^... ^KQ^. 
Those constants are extracted from the first 32 bits of the fractional parts 
of the first 64 prime numbers' cube roots. They are shown in hexadecimal 
format in Table 7.18. 

Table 7.18. SHA-256 Constants 

428a2f98 71374491 bScOfbcf e9b5dba5 3956c25b 59flllfl 923f82a4 ablc5ed5 
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 cl9bfl74 
e49b69cl efbe4786 0fcl9dc6 240calcc 2de92c6f 4a7484aa 5cb0a9dc 76f988da 
98365152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967 
27b70a85 2elb2138 4d2c6dfc 53380dl3 650a7354 766a0abb 81c2c92e 92722c85 
a2bfe8al a81a664b c24b8b70 c76c51a3 dl92e819 d6990624 f40e3585 106aa070 
19a4cll6 Ie376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3 
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2 

SHA-384 &c SHA-512 

SHA-384 and SHA-512 use eighty 64-bit different constant words Ko,Ki,..., Kjg. 
Those constants are extracted from the first 64 bits of the fractional parts of 
the first 80 prime numbers' cube roots. They are shown in hexadecimal format 
in Table 7.19. 

7.4.5 Hash Computation 

The main procedure for hash calculation in SHA-256, SHA-384, and SHA-
512 is similar, only the word size varies. SHA-1 hash computation is however 
different. We can classify the hash calculation procedure of the SHA algorithm 
family into 3 major steps. 

1. Define Word 
2. Repeat Operation 
3. Final Transformation 

SHA-1 

• Define Word: After performing message preprocessing for SHA-1, an i*^ 
block message M^ (0 < n < 15), is used to get 80 words for next steps as 
follows: 

rrr _ ( Mi 0 < t < 19 
^ ' - \ ROTL\Wt-z e m - 8 e m- ie ) 16 < t < 79 
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Table 7.19. SHA-384 & SHA-512 Constants 

428a2f98d728ae22 
3956c25bf348b538 
d807aa98a3030242 
72be5d74f27b896f 
e49b69cl9efl4ad2 
2de92c6f592b0275 
983e5152ee66dfab 
c6e00bf33da88fc2 
27b70a8546d22fFc 
650a73548baf63de 
a2bfe8al4cfl0364 
dl92e819d6ef5218 
19a4cll6b8d2d0c8 
391c0cb3c5c95a63 
748f82ee5defb2fc 
90befffa23631e28 
ca273eceea26619c 
06f067aa72176fba 
28db77f523047d84 
4cc5d4becb3e42b6 

7137449123ef65cd 
59flllflb605d019 
12835b0145706fbe 
80deblfe3bl696bl 
efbe4786384f25e3 
4a7484aa6ea6e483 
a831c66d2db43210 
d5a79147930aa725 
2elb21385c26c926 
766a0abb3c77b2a8 
a81a664bbc423001 
d69906245565a910 
Ie376c085141ab53 
4ed8aa4ae3418acb 
78a5636f43172f60 
a4506cebde82bde9 
dl86b8c721c0c207 
0a637dc5a2c898a6 
32caab7b40c72493 
597f299cfc657e2a 

b5c0fbcfec4d3b2f 
923f82a4afl94f9b 
243185be4ee4b28c 
9bdc06a725c71235 
0fcl9dc68b8cd5b5 
5cb0a9dcbd41fbd4 
b00327c898fb213f 
06ca6351e003826f 
4d2c6dfc5ac42aed 
81c2c92e47edaee6 
c24b8b70d0f89791 
f40e35855771202a 
2748774cdf8eeb99 
5b9cca4f7763e373 
84c87814alf0ab72 
bef9a3f7b2c67915 
eada7dd6cde0eb le 
113f9804bef90dae 
3c9ebe0al5c9bebc 
5fcb6fab3ad6faec 

e9b5dba58189dbbc 
ablc5ed5da6d8118 
550c7dc3d5ffb4e2 
cl9bfl74cf692694 
240calcc77ac9c65 
76f988da831153b5 
bf597fc7beef0ee4 
142929670a0e6e70 
53380dl39d95b3df 
92722c851482353b 
c76c51a30654be30 
106aa07032bbdlb8 
34b0bcb5el9b48a8 
682e6ff3d6b2b8a3 
8cc702081a6439ec 
c67178f2e372532b 
f57d4f7fee6edl78 

Ib710b35131c471b 
431d67c49cl00d4c 
6c44198c4a475817 

• Repeat Operat ion: A single operat ion for SHA-1 is shown in Fig. 7.12 
which must be repeated 80 times. Let us recall t h a t for the first sub block 
message, initial values for words a, b,c,d, and e are provided by the algo 
r i thm. For the next message sub-blocks, the ou tpu t ha^h value of an i 
message block serves as initial vector for the hash computa t ion process of 
the next sub block message. The symbol Kt represents SHA-1 constant 
values. 

th 

SBi 

f 

hi 

SB2 

h2 

Fig. 7.12. Single Operation for SHA-1 

SBn 

f 

T l ^hn 

• Final Transformation: Final t ransformation is simply the addit ion (modulo 
2^^) of the initial hash value with the final ou tpu t hash value of the N^^ 
sub block message. A 160-bit hash of the message is then obtained by 
concatenat ing five 32-bit words, namely, 
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a II 6 II c N II e 

SHA-256 

• Define Word: After performing message preprocessing for SHA-256, an i^^ 
block message M^ (0 < n < 15), is used to get 64 words for next steps as 
follows^: 

Wt = Ml 0<t<19 
^ 1 ( ^ - 2 ) + Wt-7 4- (Jo{Wt-i5) 16 < i < 63 

• Repeat Operation: A single operation for SHA-256 is shown in Fig. 7.13 
which is repeated for 60 times. Similarly as in SHA-1, for the first sub block 
message, initial values for 8 words a, 6,c,c?,e,/,^, and h are provided by the 
algorithm. For next message blocks, output hash values for an i^^ block 
message serve as initial vectors for hash calculating process on next sub 
block message. The symbol Kt represents constant values for SHA-256. 

a 

b 

c 

d 

e 

f 

9 

I<^(a) ] 

hAa\(a,b,c^ 

"^ ) 

I.{e) ] 

Ch(e,f,g) 
L J 

• '̂ 
1 + —] -f |—1 + r 

1 

A 
Zl +1 

a 

b 

c 

d 

e 

f 

9 

h 

Fig. 7.13. Single Operation for SHA-256 

• Final Transformation: Final transformation is simply the addition (modulo 
2^^) of the initial hash values with the final output hash values of Â *̂  
message sub block. A 256-bit hash of the message is then obtained by 
concatenating eight 32-bit words, namely. 

« II H I c II d II e II / II 5 II ft 

The operations 0 and -I- , must not be mixed. 
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SHA-384 

• Define Word: After performing message preprocessing for SHA-384, an i^^ 
block message M^ (0 < n < 15), is used to get 80 words for the next steps 
as follows^, 

y^ {Mi 0<t<19 
''' \ (Ji{Wt-2) 4- Wt-7 + (Jo(m-i5) 16 < t < 63 

Here addition is performed modulo 2̂ ^̂ . 

• Repeat Operation: A single operation for SHA-384 is similar to that of 
SHA-256 as shown in Fig. 7.13. The difference Hes in the number of repe­
titions which are 80, instead of the 60 repetitions of SHA-256. 

• Final Transformation: Final transformation consists on the addition (mod­
ulo 2̂ *̂) of the initial hash values with the final output hash values of A''*̂  
sub block message. A 384-bit message digest is then obtained by truncating 
the last 2 words. The first six 64-bit words are concatenated as follows. 

a II Ml c N II e II / 

SHA-512 

The process of hash computation for SHA-512 is quite similar to that of SHA-
384. There are only two exceptions. The first one is due to loading the initial 
values for the 8 words a, 6,c,(i,e,/,^, and /i, which are different for both SHA-
384 and SHA-512. The second difference is that a 512-bit message digest is 
obtained by concatenating all 8 words. Last 2 words are not truncated as it 
î  in the case of SHA-384. 

f\\9\\h 

7.5 Hardware Architectures 

The main moral of the preceding Sections is that hash function computation is 
iterative in nature. To calculate hash values, several rounds must be performed 
where each round comprises a certain number of steps. The output of a step 
serves as input to the next step and the output of a round serves as the input 
of the next round. 

That characteristic does not prevent us from designing a fully pipeline or 
sub pipeline architecture for hash functions. Let us recall that the input mes­
sage M is divided into N blocks. Hash computation of a new block cannot 
start until the hash computation of the previous block has been fully com­
pleted. The hash values (output) of the first block are now the initial values 

^ It is noticed that the word size for SHA-384 is 64-bit as compared to SHA-256 
which is 32-bit long. 
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for the hash computation of the second block message. That restricts us from 
start processing the second block although only a single stage is active and 
all others are idle during hash computation. 

However, different strategies have been proposed by designers in order to 
improve the data flow at different stages of the design so that high speed gains 
can be obtained. The different design strategies are discussed in the rest of 
this Section. 

7.5.1 Iterative Design 

An iterative design is a natural approach for the implementation of hash 
functions on hardware platforms. Fig. 7.14 presents an iterative approach for 
implementing hash algorithms in hardware. 

Message 
Padding 

Appending 
Message 
Padding 

CLK 

/ Message 
Scheduler 

/ 
^ 

/ 
M, 

->( ROM yU RAM ] 

• ^ 

CVn.i 
f 

Hash Iterative Core 
Message Digest 

Fig. 7.14. Iterative Approach for Hash Function Implementation 

The input message is formatted according to the algorithm requirements 
in two steps. Those are message padding, and then appending the message 
length on it. Message scheduler shall provide a sub block or a word derived 
from some sub blocks for any given algorithm step. Constants provided by the 
algorithm can be stored in a memory block (ROM). The initial hash values 
are required till the end of one iteration of the algorithm. This is in order 
to perform the final transformation (simple XOR with the final output of 
the iteration). Hence, at the end of a given iteration, partial results must 
update the input parameters for the next iteration. BRAMs can be used for 
accomplishing this operation. 

The block labeled: "Hash Iterative Core" in Fig. 7.14, includes all log­
ical steps needed for accomplishing a particular compression function com­
putation. The exact sequence of those logical steps (i.e., when should they 
be executed and with which parameters), is synchronized by the module la­
beled "Hash Finite State Machine" block. Clearly, the main building blocks 
of Fig. 7.14 can be altered/combined/modified using different techniques ac­
cording to the characteristics of the target device and the hash algorithm in 
hand. 
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7.5.2 Pipelined Design 

In pipeline architectures, registers are provided at different stages of the algo­
rithm. At each clock cycle, the output of a stage is shifted to the next stage. 
Thus, at the first clock cycle, one input block should be loaded. At the next 
clock cycle, a second block must be loaded and so on. Once the pipehne is 
filled, i.e., the final stage outputs a data, then an output value will be ready 
at each clock cycle. 

Pipeline is a fast approach but cost has to be paid in terms of hardware 
resources. Unfortunately, that approach cannot be fully utihzed for hash func­
tion computation due to the inherent dependencies. As it was explained, the 
second iteration cannot be started until the computations for first iteration 
have been completed. However a sort of pipelining can be achieved for different 
operations of the similar stage. 

7.5.3 Unrolled Design 

Unrolled design approach is a useful technique used on the implementation 
of hash algorithms in order to improve their performance on time. In this 
approach, all or part of the stages of a hash algorithm are unrolled as is 
shown in Fig. 7.15a. That however produces long critical paths which causes 
undesirable long path delays in the circuit. Most designers therefore prefer to 
unroll some k stages and then to cascade them for the implementation of the 
whole algorithm as is shown in Fig. 7.15b. 

IVot 

Stage 
2 

(a) Hash function computation 

Stage 
Hash 

Stage 
1 

Stage 
2 

Stage 
3 

Stage [J 
4 

Stage 
n-1 

Stage 
n 

•Hash 

(b) On combining K stages 

Fig. 7.15. Hash Function Implementation (a) Unrolled Design (b) Combining k 
Stages 
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7.5.4 A Mixed Approach 

Designing circuits with long critical paths is not useful especially if the target 
devices are FPGAs. The propagation of long time delays usually implies a 
performance diminishing. However some registers can be provided as interface 
buffers between neighbor stages of the hash algorithm. That can be also helpful 
for producing a more compact design, which will help the mapping synthesis 
tool. Another enhancement can be made by combining an unrolled design 
structure with the provision of registers between different stages as shown in 
Fig. 7.16. 
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Fig. 7.16. A Mixed Approach for Hash Function Implementation 

7.6 Recent Hardware Implementat ions of Hash 
Functions 

Various hardware implementations of hash algorithms have been reported in 
literature. Some of them focus on speed optimization while others concen­
trate on saving hardware resources. Some authors have also tried to exploit 
parallelism in operations whenever this can be done. Some designs present 
a tradeoff between time and hardware resources. It has been shown that by 
adding few registers or few memory units, considerable timing improvements 
can be obtained. 

In the rest of this Section we review some of the most representative hash 
function hardware designs recently reported. In total, we review six hash 
function algorithms, namely, MD4, MD5, SHA-1, RIPEMD-160, SHA-2 and 
Whirpool. 
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M D 4 

A single MD4 FPGA architecture has been reported in the open Hterature 
[328]. The distinct feature of this design is to try to exploit as much par-
allehsm and pipelining for the MD4 hash algorithm as possible. That design 
implements arithmetic, logic and circular shift operation using a pipelined par­
allel processor. It takes 94.07 juS to compute the message digest of a 512-bit 
input message block at 6.67 MHz frequency consuming only 252 CLE slices. 

Table 7.20. MD5 Hardware Implementations 

Author(s) Target 
Device 

Cost Freq. 
MHz 

Cycles 
Mbps 

T/S 

1 'Fastest ASIC MD5 Cores \ 
Satoh et al. [312] 0.13/im 

ASIC 
17.7K 
gates 

277.8 68 2091 0.117 

Compact ASIC MD5 Cores 
Satoh et al. [312] 

Helicon [358] 

Sandra [71] 

0.13/im 
ASIC 

0.18/xm 
ASIC 
0.6)Lim 

ASIC 

10.3K 
gates 
16K 

gates 
10.9K 

gates + RAM 

133.3 

145 

59 

68 

65 

206 

1004 

1140 

146 

0.097 

0.072 

0.013 

Fastest FPGA MD5 Cores 
Jarvinen et al. [156] Virtex-II 

XC2V4000-6 
11.5K(10) 

slices(RAM) 
75.5 66 5857 0.509 

Compact FPGA MD5 Cores 
Helicon [358] Virtex-II 613(1) 

slices(RAM) 
96 66 744 1.213 

Other FPGA MD5 Cores 
Jarvinen et al. [156] 

Helicon [358] 

Sandra [71] 

Kang et al. [166] 

1 Deepak, et al. [65] 

Virtex-II 

XC2V4000-6 
Spartan3 

Virtex 
XCV300E 

Apex 
EP20K1000E 

Virtex 
XCV1000-6 

5.7K(0) 
647(2) 

slices(RAM) 
630(1) 

slices(RAM) 
2008 
slices 
10.5K 

logic cells 
880(2) 

slices(RAM) 

80.7 
75.5 

63 

42.9 

18 

21 

66 
66 

66 

206 

65 

65 

2395 
586 

488 

107 

142 

165 

0.417 
0.905 

0.774 

0.053 

0.0134 

0.187 

t Throughput 
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MD5 

A considerable number of MD5 hardware implementations have been reported 
in the open literature. Table 7.20 presents some selected designs. However, 
due to the availabihty of a large number of FPGA devices by different man­
ufacturers, with different logic complexity within the basic building block, a 
comparison of different hash cores becomes complicated. 

The ASIC MD5 design in [312] is the fastest one in its category, with a 
throughput of 2.09 Gbps at a cost of 17,764 gates on a 0.13/xm chip. 

The authors in [156] designed several MD5 architectures by unroUing a 
variable number of MD5 stages. A fully unrolled MD5 architecture is their 
fastest design, achieving a throughput of 5.8 Gbps by occupying 11498 slices 
plus 10 BRAMs on a Xilinx Virtex-II XC2V4000-6. 

A commercially available MD5 core designed by [358] is a compact design 
that occupies only 630 slices plus 1 BRAM and reports a throughput of 744 
Mbps on a Xilinx Virtex-II device. The throughput over area factor (our figure 
of merit for measuring efficiency) achieved in [358] is the best one of all designs 
considered in Table 7.20. 

Other MD5 architectures on different FPGA chips using different design 
approaches are also reported in Table 7.20. 

SHA-1 

Numerous SHA-1 FPGA implementations have been reported in the litera­
ture. A representative group of them are shown in Table 7.21. 

The authors in [312] presented two SHA-1 architectures in ASIC hardware, 
one of them is the fastest architecture reported in the literature, achieving a 
throughput of 2 Gbps by utilizing 9859 gates in a O.lSfxm chip. 

In the reconfigurable hardware category, the fastest design, reported in 
[67] achieves a throughput of 899.8 Mbps. That is also a compact design with 
the best throughput over area performance. 

A SHA-1 architecture in [120] is the 2̂ "̂  fastest FPGA core. It utilizes carry 
save adders to speed up multi-operand additions and to minimize delays with 
carry propagation. This design reduces the number of operands in a round by 
pre-computing addition of Constants (K) and Words(W) {Kt + Wt) and also 
it eliminates the final round which is incorporated as a conditional addition 
within a round. The throughput for this design is reported as 462 Mbps when 
operating at a 75.8 MHz clock frequency. 

The most compact design for SHA-1 was presented in [71] using as a 
target device a Xilinx V300E. It proposes a pipelined parallel structure by 
implementing two arithmetic logic units for SHA-1, achieving a throughput 
of 119 Mbps at a 59 MHz clock frequency. 

The design in [404] utilizes 1622 shces on an Altera EPIK100QC208-1 
achieving a throughput of 268.99 Mbps. That is another compact hardware 
SHA-1 core on Altera devices. 
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Table 7.21. Representative SHA-1 hardware Implementations 

Author(s) Target 
Device 

Hardware Freq. 
MHz 

Cycles Tt 
Mbps 

T/S"j 

Fastest ASIC SHA-1 Cores 
Satoh et al [312] O.lSfxm 

ASIC 
9.9K 
gates 

333.3 85 2006 0.2031 

Compact ASIC SHA-1 Cores 
Satoh et al [312] 

Helicon [358] 

Sandra [71] 

0.13/im 
ASIC 

0.18/xm 
ASIC 
0.6/jLm 

ASIC 

7.9K 
gates 
20K 

gates 
10.9K + RAM 

gates 

154.3 

166 

59 

85 

81 

255 

929 

1000 

119 

0.116 

0.050 

0.011 

Compact k Fastest FPGA SHA-1 Cores 
Diez et al [67] 

Grembowski et al [120] 

Virtex-II 
XC2V3000 

Virtex 
XCVlOOO-6 

1.55K 
slices 
2.2K 
slices 

38.6 

75.76 

22 

84 

899.8 

462 

0.580 

0.210 

Other FPGA SHA-1 Cores 
Sandra [71] 

Zibin et al [404] 

Kang et al [166] 

Sklavos [332] 

Virtex 
V300E 
Apex 

EPIKIOOQ 
Apex 

EP20K1000 
Virtex 

XCV300 

2.0K 
slices 
1.6K 

logic cells 
10.5K 

logic cells 
2.6K 
slices 

42.9 

43.08 

18 

37 

255 

82 

81 

86 

268.99 

114 

233 

0.042 

0.165 

0.011 

0.089 

t Throughput 

Additionally, there exist other SHA-1 cores [67, 404, 166, 332] which pro­
pose some effective techniques to save hardware resources and to increase time 
factor. In [166], a significant saving of resources was achieved. This design im­
plements a switching matrix by using multiplexers for an appropriate word 
(W) selection. It can operate at 18 MHz and achieves a throughput of 114 
Mbps. 

The SHA-1 implementation in [332] was used as a pseudo-random number 
generator. It is actually a VLSI architecture which was first captured in VHDL 
and synthesized on FPGAs. That design allows a system frequency of 37 MHz 
and can run at the rate of 233 Mbps. 

Finally, the SHA-1 core in [404] explores three Altera FPGA grades for 
the same SHA-1 code. 
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RIPEMD-160 

Table 7.22 presents two FPGA architectures for RIPEMD-160, which were 
implemented on devices made by different manufacturers. The design in [249] 
is a unified architecture in Altera EPF10K50SBC356-1 for two different hash 
algorithms:RIPEMD-160 and MD5. That design achieves a throughput over 
200 Mbps for MD5 and 84 Mbps for RIPEMD-160 when operating at 26.66 
MHz and it stands as the compact and the fastest RIPMD architecture in 
FPGAs. In [71], a RIPEMD-160 FPGA implementation on Xilinx V300E 
can run at a 42.9 MHz frequency and achieves a data rate of 89 Mbps. 

In ASIC hardware, the fastest RIPEMD architecture is due to [312]. That 
design can run at 1.442 Gbps by occupying 24755 gates on a 0.13/xm chip. 

Table 7.22. Representative RIPEMD-160 FPGA Implementations 

Author(s) Target 
Device 

Hardware Freq. 
MHz 

Cycles 
Mbps 

T /S 

Fastest ASIC RIPEMD Cores 
Satoh et al [312] 

Sandra [71] 

0.13/^m ASIC 

Q.e/im ASIC 

24775 gates 
17446 gates 

10,900 gates + RAM 

270.3 
142.9 

59 

96 
96 

337 

1442 
762 
89 

0.058 
0.044 
0.008 

Compact & Fastest FPGA RIPEMD Cores 
Ng et al [249] 

Sandra [71] 

Apex 
EPF10K50S-1 

Virtex 
V300E 

1964 logic elements 

2008 slices 

26.66 

42.9 

162 

337 

84 

65 

0.042 

0.032 

t Throughput 

SHA-2 

Table 7.23 shows several representative SHA-2 hardware cores reported in the 
open literature. 

Authors in [312] reported four ASIC architectures for SHA-224, SHA-256, 
SHA-384, and SHA-512 implemented on a 0.13^m chip. The fastest among 
them is the SHA-512 architecture that achieves a throughput of 2.9 Gbps by 
using 27297 gates. That is also the fastest ASIC hardware architecture of any 
SHA-2 family of hash algorithms. 

The fastest FPGA SHA-2 architectures have been proposed in [222]. It 
achieves a throughput of 1466 Mbps on a Xilinx Virtex-II device. The archi­
tecture employed for that SHA-2 (512-bit) design consisted on a two-step (2x) 
unrolled implementation. Authors in [222] essayed six variants of the same de­
sign which are named as SHA2 (256) basic, SHA2 (256) 2x-unrolled, SHA2 
(256) 4x-unrolled, SHA2 (512) basic, SHA2 (512) 2x-unrolled and SHA2 (512) 
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Table 7.23. Representative SHA-2 FPGA Implementations 

Author(s) Target 
Device 

Hardware Freq. 
MHz 

Cycles Tt 
Mbps 

T/S 

ASIC SHA-2 Cores 
Satoh et al [312] 
SHA-224 
SHA-256 
SHA-384 
SHA-512 
Helicon [358] 
SHA-256 

Q.Uixm ASIC 
0.13Aim ASIC 
0.13//m ASIC 
0.13Aim ASIC 

0.18/xm ASIC 

11484 gates 
15329 gates 
23146 gates 
27297 gates 

22K gates 

154.1 
333.3 
125.0 
250.0 

200 

72 
72 
88 
88 

65 

1096 
2370 
1455 
2909 

1575 

0.095 
0.154 
0.062 
0.106 

0.072 
Fastest FPGA SHA-2 Cores 

McEvoy [222] 
SHA-2(512) 

Virtex-II 
XC2V2000 

4107 slices 65.893 46 1466 0.357 

Compact FPGA SHA-2 Cores 
Sklavos et al [333] 
SHA-2(256) 

Virtex 
XCV200-6 

1060 slices 83 326 0.307 

Other FPGA SHA-2 Cores 
Sklavos et al [333] 
SHA-2(384) 
Sklavos et al [333] 
SHA-2(512) 
McLoone et al [224] 
SHA-2(384) 
McLoone et al [224] 
SHA-2(512) 
McEvoy [222] 
SHA-2(256) 

(Basic) 

(2x-unrolled) 

(4x-unrolled) 

McEvoy [222] 
SHA-2(512) 

(Basic) 

[(4x-unrolled) 

Virtex 
XCV200-6 

Virtex 
XCV200-6 

Virtex 
XCV600E-8 

Virtex 
XCV600E-8 

Virtex-II 
XC2V2000 

Virtex-II 
XC2V2000 

Virtex-II 
XC2V2000 

Virtex-II 
XC2V2000 

Virtex-II 
XC2V2000 

1966 slices 

2237 slices 

2914 slices + 
2 BRAMs 
2914 slices 
2 BRAMs 

1373 slices 

2032 slices 

2898 slices 

2726 slices 

5807 slices 

74 

75 

38 

38 

133.06 

73.975 

40.833 

109.03 

35.971 

80 

80 

68 

38 

23 

84 

27 

350 

480 

479 

479 

1009 

996.7 

908.9 

1329 

1364 

0.178 

0.214 

0.164 

0.164 

0.734 

0.490 

0.313 

0.487 

0.234 

t Throughput 
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4x-unrolled. Those architectures optimize time performances by combining 
pipehning and unrolHng techniques. 

In [333], a common architecture is customized for three SHA2 algorithms: 
SHA2 (256), SHA2 (384) and SHA2 (512). The design compares three im­
plementations in terms of operating frequency, throughput and area-delay 
product. Among them, SHA2 (256) FPGA implementation consumes least 
hardware resources in the hterature, achieving a throughput of 326 Mbps on 
a Xihnx V200PQ240-6. 

In [224], a single chip FPGA implementation is also presented for SHA2 
(384) and SHA2 (512). That architecture optimizes time factor and hardware 
area by using shift registers for message scheduler and compression block. 
Similarly, block select RAMs (BRAMs) are used to store the compression 
function constants. 

Table 7.24. Representative Whirlpool FPGA Implementations 

Author(s) Target 
Device 

Hardware Freq.l Cycles 
MHz| 

Tt 
Mbps 

T/S 

Fastest FPGA Whirlpool Cores 
McLoone et al [226] 
2 X unrolled 
Kitsos et al [173] 
LUT based 
Time optimized 

Virtex-4 
X4VLX100 

Virtex 
XCVIOOOE 

13210 slices 

5585 slices 

47.8 

87.5 10 

4896 

4480 

0.370 

0.802 

Compact FPGA Whirlpool Cores 
Pramstaller et al [274] Virtex-2P 

XC2VP40 
1456 slices 131 382 0.262 

Other FPGA Whirlpool Cores 
Kitsos et al [173] 
Boolean expression based 
Kitsos et al [173] 
LUT based 
Kitsos et al [173] 
Boolean expression based 
Time optimized 
McLoone [226] 

VirtexE 
XCVIOOOE 

VirtexE 
XCVIOOOE 

VirtexE 
XCVIOOOE 

Virtex-4 
X4VLX100 

3815 slices 

3751 slices 

5713 slices 

4956 slices 

75 

93 

72 

93.56 

20 

20 

10 

1920 

2380 

3686 

4790 

0.503 

0.634| 

0.645 

0.966 

t Throughput 

Whirlpool 

Table 7.24 lists various Whirlpool FPGA-based architectures. The fastest 
Whirlpool core has been reported in [226]. That is a 2 stages (2x) unrolled 
Whirlpool architecture implemented on a Xilinx Virtex-4 which achieves a 
throughput of 4896 Mbps by consuming 13210 CLB shces. 
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Another Whirlpool core showing similar throughput to the design in [226] 
is due to [173] which reports a throughput of 4480 Mbps on a XiHnx XCVIOOO 
by occupying 5585 CLE slices and also some dedicated memory modules. 
Three more variants of that design are also presented. Those architectures 
implement Whirlpool mini boxes by using Boolean expressions, referred to as 
BB (Boolean expressions Based) and by using FPGA LUTs, referred to as LB 
(LUT Based) respectively. Let us call them as Whirlpool BB and Whirlpool 
LB. Both Whirlpool BB and Whirlpool LB can operate at rates of 1920 Mbps 
and 2380 Mbps. Both architectures are further optimized for time, increasing 
throughputs to 3686 Mbps and 4480 Mbps. 

In contrast to the aforementioned architectures, a compact FPGA imple­
mentation of Whirlpool hash function was reported in [274]. That architecture 
focuses on saving considerable hardware resources by using LUT-based RAM 
for Whirlpool state. Authors report a hardware cost of just 1456 CLB slices 
achieving a data rate of 382 Mbps. 

7.7 Conclusions 

In this chapter, various popular hash algorithms were described. The main em­
phasis on that description was made on evaluating hardware implementation 
aspects of hash algorithms. 

MD5 description included in this Chapter can be regarded as a step by 
step example of how intermediate values are being updated during algorithm 
execution. We have mentioned that MD5 design methodology has a strong 
influence in almost all modern hash functions. The explanation provided for 
SKA family of hash algorithms can be regarded as an evidence that the struc­
ture of current hash algorithms borrows basic rules and principles from their 
predecessors. 

A fair number of hash function implementations in reconfigurable Hard­
ware have been reported so far. Those architectures do not pretend to be a 
universal solution for all the universe of hash applications such as, secure web 
traffic (https /SSL), encrypted e-mail(PGP, S/MIME), digital certificates, 
cryptographic document authenticity, secure remote access (ssh/sftp), etc. 

However, the usage of reconfigurable hardware for hash function implan­
tations can provide a unique benefit of reconfiguring customized hardware 
architecture according to the specifications of end users. Furthermore, given 
the fact that most hash functions are enduring difficult times, where several 
emblematic hash functions have been critically attacked, new security patches 
could be easily incorporated. 
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General Guidelines for Implementing Block 
Ciphers in FPGAs 

This chapter pretends to provide general guidehnes for the efficient imple­
mentation of block ciphers in reconfigurable hardware platforms. The general 
structure and design principles for block ciphers are discussed. Basic primi­
tives in block ciphers are identified and useful design techniques are studied 
and analyzed in order to obtain efficient implementations of them on recon­
figurable devices. As a case of study, those techniques are applied to the Data 
Encryption Standard (DES), thus producing a compact DES core. 

8.1 Introduction 

Block ciphers are based on well-understood mathematical problems. They 
make extensive use of non-linear functions and linear modular algebra [227]. 
Most block ciphers exhibit a highly regular structure: same building blocks are 
applied a predetermined number of times. Generally speaking, block ciphers 
are symmetric in nature. Sometimes encryption and decryption only differ in 
the order that sub-keys are used (either ascending or descending order). Thus, 
quite often pretty much the same machinery can be used for both processes. 

Implementation of block ciphers mainly use bit-level operations and ta­
ble look-ups. The bit-level operations include standard combinational logic 
operations (such as XORs, AND, OR, etc.), substitutions, logical shifts and 
permutations, etc. Those operations can be nicely mapped to the structure of 
FPGA devices. In addition, there are built-in dedicated resources like mem­
ory modules which can be used as a Look Up Tables (LUTs) to speedup the 
substitution operation, which is one of the key transformations of modern 
block ciphers. Furthermore, contemporary FPGAs are capable of accommo­
dating big circuits making possible to generate highly parallel crypto cores. 
All these features combine together for providing spectacular speedups on the 
implementation of crypto algorithms in reconfigurable devices. 
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In this chapter, we analyze key block ciphers characteristics. We explore 
general strategies for implementing them on FPGA devices. We search for 
the most frequent operations involved in their transformations and develop 
strategies for their implementations in reconfigurable devices. It has been al­
ready pointed out how bit level parallehsm can be greatly exploited in FPGAs. 
As we will see, this fact is especially true for block ciphers. As a way of il­
lustration, we test our methodology in one specific case of study: the Data 
Encryption Standard (DES). Furthermore, in the next Chapter our strategies 
are also applied to the Advanced Encryption Standard (AES). 

DES is the most popular, widely studied and heavily used block cipher. It 
has been around for quite a long time, more than thirty years now [64, 92]. It 
was developed by IBM in the mid-seventies. The DES algorithm is organized 
in repetitive rounds composed of several bit-level operations such as logical 
operations, permutations, substitutions, shift operations, etc. Although those 
features are naturally suited for efficient implementations on reconfigurable 
devices, DES implementations can be found on all platforms: software [64, 
92, 169, 25, 23], VLSI [78, 76, 381] and reconfigurable hardware using FPGA 
devices [204, 384, 167, 99, 225, 381, 271]. In this Chapter, we present an 
efficient and compact DES architecture especially designed for reconfigurable 
hardware platforms. 

The rest of this Chapter is organized as follows. Section 8.2 describes 
the general structure and design principles behind block ciphers. Emphasis is 
given on useful properties for the implementation of block ciphers in FPGAs. 
An introduction to DES is presented in Section 8.3. In Section 8.4, design 
techniques for obtaining an efficient implementation of DES are explained. In 
Section 8.5 a survey of recently reported DES cores is given. Finally, conclud­
ing remarks are drawn in Section 8.6. 

8.2 Block Ciphers 

In cryptography, a block cipher is a type of symmetric key cipher which op­
erates on groups of bits of some fixed length, called blocks. The block size is 
typically of 64 or 128 bits, though some ciphers support variable block lengths. 
DES is a typical example of a block cipher, which operates on 64-bit plaintext 
block. Modern symmetric ciphers operate with a block length of 128 bits or 
more. Rijndael (selected in October, 2000 as the new Advanced Encryption 
Standard), for instance, allows block lengths of 128, 192, or 256 bits. 

A block cipher makes use of a key for both encryption and decryption. Not 
always the key length matches the block size of the input data. For example, 
in triple DES or 3DES for short (a variant of DES), a 64-bit block is processed 
using a 168-bit key (three 56-bit keys) for encryption and decryption. Rijndael 
allows various combinations of 128, 192, and 256 bits for key and input data 
blocks. 
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As it was already mentioned in §2.7 Some of the major factors that deter­
mine the security strength of a given symmetric block cipher algorithm include, 
the quality of the algorithm itself, the key size used and the block size handled 
by the algorithm. Block lengths of less than 80 bits are not recommended for 
current security applications [253]. 

In the rest of this Section, general structure and design principles of the 
block ciphers are discussed. We explain several primitives which commonly 
form part of the repertory of block cipher transformations. Finally, we give 
some comments about their hardware implementation, specifically on recon-
figurable type of hardware. 

8.2.1 General Structure of a Block Cipher 

As is shown in Figure 8.1, there are three main processes in block ciphers: 
encryption, decryption and key schedule. For the encryption process, the input 
is plaintext and the output is ciphertext. For the decryption process, ciphertext 
becomes the input and the resultant output is the original plaintext. A number 
of rounds are performed for encryption/decryption on a single block. Each 
round uses a round key which is derived from the cipher key through a process 
called key scheduling. Those three processes are further discussed below. 

Plaintext 
1 1 1 1 1 1 

i 

Block Cipher 
Encryption 

i 
1 1 M M 

Ciphertext 

round 1 roi 

^ 

ind2 I 

keyl|key2|....|keyn 

4 

Key Schedule 

Round transformation 

Ciphertext 

1 1 1 1 1 1 
1 

Block Cipher 
Decryption 

i 
1 1 M 1 1 

Plaintext 

round n 

Fig. 8.1. General Structure of a Block Cipher 

Block Cipher Encryption 

Many modern block ciphers are Fiestel ciphers [342]. Fiestel ciphers divide 
input block into two halves. Those two halves are processed through n number 
of rounds. In the final round, the two output halves are combined to produce 
a single ciphertext block. All rounds have similar structure. Each round uses 
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a round key, which is derived from the previous round key. The round key for 
the first round is derived from the user's master key. In general all the round 
keys are different from each other and from the cipher key. 

Many modern block ciphers partially or completely employ a similar Fies-
tel structure. DES is considered a perfect Fiestel cipher. Modern block ciphers 
also repeat n rounds of the algorithm but they do not necessarily divide the 
input block into two halves. All the rounds of the algorithm are generally sim­
ilar if not identical. Round operations normally include some non-linear trans­
formations like substitution and permutation making the algorithm stronger 
against crypt analytic attacks. 

Block Cipher Decryption 

As it was explained, one of the main characteristics of a Fiestel cipher is 
the usage of a similar structure for encryption and decryption processes. The 
difference lies on the order that the round keys are applied. For decryption, 
round keys are used in reverse order as that of encryption. Modern block 
ciphers also use round keys following a similar style, however, encryption and 
decryption processes for some of them may not be the same. In any case, they 
preserve the symmetric nature of the algorithm by guaranteeing that each 
transformation will always have its corresponding inverse. As a result both, 
the encryption and decryption processes tend to appear similar in structure. 

Key Schedule 

The round keys are derived from the user key through a process called key 
scheduling. Block ciphers define several transformations for deriving the round 
keys to be utilized during the encryption and decryption processes. For some 
of them, round keys for decryption are derived using reverse transformations. 
Alternatively, keys derived for encryption can be simply used during the de­
cryption process in reverse order. 

8.2.2 Design Principles for a Block Cipher 

During the last two decades both, theoretical new findings as well as innova­
tive and ingenious practical attacks have significantly increase the vulnerabil­
ity of security services. Every day, more effective attacks are launched against 
cryptographic algorithms. We also have seen a tremendous boost in computa­
tional power. Successful exhaustive key search engines have been developed in 
software as well as in hardware platforms. As a consequence of this, old cryp­
tographic standards were revised and new design principles were suggested to 
improve current security features. In this subsection, we analyze some of the 
key features that directly impact the design of a block cipher. 
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Key Size 

If a block cipher is said to be highly resistant against brute force attack, then 
its strength is determined by its key length: the longer the key, the longer it 
takes before a brute force search can succeed. This is one of the reasons why, 
modern block ciphers employ key lengths of 128 bits or more. 

Variable Key Length 

On the one hand, longer keys provide more security against brute force at­
tacks. On the other hand, a large key length may slow down data transmission 
due to low encryption speed. Modern block ciphers therefore offer variable 
key lengths in order to support different security and encryption speed com­
promises. All the five finalists of the 2000 competition for selecting the new 
advance encryption standard, namely, RC6, Twofish, Serpent, MARS and Ri-
jndael, provide variable key lengths. 

Mixed Operations 

In order to make the job of a cryptanalyst more complex, it is considered useful 
to apply more than one arithmetic and/or Boolean operators into a block 
cipher. This approach adds more non-linearity producing complex functions 
as an alternative to S-boxes (substitution boxes). Mixed operations are also 
used in the construction of S-boxes to add non-linearity thus making them 
produce more unpredictable results. 

Variable Number of Rounds 

Round functions in crypto algorithms add a great deal of complexity, which 
impHes that the crypto-analysis process becomes significantly less amenable. 
By increasing the number of rounds larger safety margins are provided. On 
the contrary, a large number of rounds slows cipher encryption speed. Mod­
ern block ciphers provide variable number of rounds allowing users to trade 
security by time. It should be noticed that the strength of a given crypto 
algorithm is also linked with the other design parameters. For example, AES 
with 10 rounds provides higher security as compared to DES with 16 rounds. 

Variable Block Length 

The security of a block cipher against brute force attacks is dependent upon 
key and block lengths. Longer keys and block lengths obviously imply a bigger 
search space, which tend to give more security to a cipher algorithm. As 
it has been said, modern ciphers support variable key and block lengths, 
thus assuring that the algorithm becomes more flexible according to different 
security requirement scenarios. 
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Fast Key Setup 

Blowfish uses a lengthy key schedule. Therefore, the process of generating 
round keys for encrypting/decrypting a single data block may take a signifi­
cant amount of time. On the other hand, this characteristic also adds security 
to Blowfish in the sense that it greatly magnifies the time to search all possibil­
ities for round keys. However for those applications where the cipher key must 
be changed frequently, a fast key setup is needed. For example, overheads due 
to key setup during the encryption of the security Internet protocol (IPSec) 
packets are quite considerable. That is why most modern block ciphers offer 
simple and fast key schedule algorithms. Rijndael Key schedule algorithm is 
a good example of an efficient process for round key generation. 

Software/Hardware Implementations 

It was the time when crypto algorithms were designed to get an efficient im­
plementation on 8-bit processors. Most of their arithmetic/logical functions 
were designed to operate on byte level. Perhaps, encryption speed was not a 
must have issue as it is now. Those times has gone for good. There are applica­
tions which require high encryption speeds either for software or for hardware 
platforms. This is why cryptographers started to include those functions in 
crypto algorithms which can be efficiently executed in both software and hard­
ware platforms. For example, the XOR operation can be found in virtually 
all modern block ciphers, among other reasons, because of its eflficiency when 
implemented in software as well as in hardware platforms. 

Simple Arithmetic/Logical Operations 

A complex crypto algorithm might not be strong enough cryptographically 
The attribute of simplicity can be seen in most of the strong block ciphers used 
nowadays. They mainly include easily understandable bit-wise operations. 

Table 8.1 describes key features for some famous block ciphers including 
the five finalists (AES, MARS, RC6, Serpent, Twofish) of the NIST-organized 
contest for selecting the new Advanced Encryption Standard. It can be seen 
that modern block ciphers use high block lengths of 128 bits or more. Similarly 
they provide high key lengths up till 448 bits. Both block and key lengths in 
block ciphers are often variable to trade the security and speed for the chosen 
algorithm. Number of rounds ranges from 8 to 32. For some block ciphers the 
number of round is fixed but for some others that number can vary depending 
on the chosen block and key lengths. 

It is noticed that most block ciphers can be eflficiently implemented in 
software and hardware platforms. All block ciphers generally include bit-wise 
(XOR, AND) and shift or rotate operations. Excluding a small minority of 
block ciphers, most algorithms use the so-called S-boxes for substitution. Fast 
key set-up is an important feature among modern block ciphers. They are 
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not always symmetric, that is, same building blocks used for encryption not 
necessarily can be used for decryption. 

8.2.3 Useful Properties for Implementing Block Ciphers in FPGAs 

Hardware implementations are intrinsically more physically secure: key ac­
cess and algorithm modification is considerably harder. In this subsection we 
identify some useful properties in symmetric ciphers that have the potential 
of being nicely mapped to the structure of reconfigurable hardware devices. 

Bit-Wise Operations 

Most of the block ciphers include bit-level operations like AND, XOR and 
OR which can be efficiently implemented and executed in FPGAs. Indeed, 
those operations utilize a relatively modest amount of hardware resources. 
The primitive logic units in most of the FPGAs are based on 4-input/l-ouput 
configuration. This useful feature of FPGAs allow to build 2, 3, or 4 input 
Boolean function using the same hardware resources as shown in Figure 8.2. 

Substitution 

Substitution is the most common operation in symmetric block ciphers which 
adds maximum non-hnearity to the algorithm. It is usually constructed as a 
look-up table referred to as substitution box (S-Box). The strength of DES 
heavily depends on the security robustness of its S-boxes. AES S-box is used 
in both encryption and decryption processes and also in its key schedule al­
gorithm. 
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Fig. 8.2. Same Resources for 2,3,4-in/l-out Boolean Logic in FPGAs 

Formally, an S-box can be defined as a mapping of n input to m output bits, 
i.e., F : ZJ" —> ^2^. When n = m the mapping is reversible and therefore it is 
said to be bijective. AES hsts only one S-Box, which happens to be reversible, 
but all eight DES S-boxes are not^ 

FPGA devices offer various solutions for the implementation of substitu­
tion operation as shown in Figure 8.3. 

• The primitive logic unit in FPGAs can be configured into memory mode. 
A 4-in/l-out LUT provides 16 x 1 memory. A large number of LUTs can 
be combined into a big memory. This might be seen as a fast approach 
because the S-Box pre-computed values can be stored, thus saving valuable 
computational time for S-Box manipulation. 

• The values for S-boxes in some block ciphers can also be calculated. In 
this case, if the target device does not contain enough memory, then one 
can use combinational logic to implement S-boxes. That could be rather 
slow due to large routing overheads in FPGAs. 

• Some FPGA devices contain built-in memory modules. Those are fast 
access memories which do not make use of primitive logic units but they 
are integrated within FPGAs. The pre-computed values for S-boxes can 
be stored in those dedicated modules. That could be faster as compared to 
store S-box values in primitive logic units configured into memory mode. 
As it was described in Chapter 3, many FPGA devices from different 
manufacturers contain those memory blocks, frequently called BRAMs. 

Permutation 

Permutation is a common block cipher primitive. Fortunately, there is no 
cost associated with this operation since it does not make use of FPGA logic 

^ It is noticed that the number of candidate Boolean functions for building an n 
bit input/m bit output S-box is given as 2'^^ . It follows that even for moderated 
values of n and m, the size of the search space becomes huge. However, not all 
Boolean functions are suitable for building robust S-Boxes. Some of the desired 
cryptographic properties that good candidate Boolean functions must have are: 
High non-linearity, high algebraic degree and low auto-correlation, among others. 
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Fig. 8.3. Three Approaches for the Implementation of S-Box in FPGAs 

resources. It is just rewiring and the bits are rearranged (concatenated) in 
the required order. Figure 8.4 demonstrates a simple example of permuting 6 
bits only. That strategy can be extended for the permutation operation over 
longer blocks. 

Permutation for 6 bits 

Fig. 8.4. Permutation Operation in FPGAs 

Shift &; Rotate 

Shift is simpler than the permutation operation. Shift operation is normally 
performed by extracting some particular bit/byte values from a larger register. 
One practical example of this situation is: retrieving a 6-bit sub-vector from a 
48-bit state register for their further substitution in DES. This operation can 
be implemented using wide data buses, which are then divided into small buses 
carrying the required bit/byte values. A typical byte-level shift operation is 
shown in Figure 8.5a. 
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In some cases, the input data is shifted n bits and n zeroes are added, a 
process known as zero padding. In FPGAs, zero padding for n bit? is achieved 
by simply connecting n bits to the ground as shown in Figure 8.5b. 

Most block ciphers (such as AES, RC6, DEAL, etc.) use the rotation op­
eration. It is similar to shift operation but with no zero padding. Instead, bit 
wires are re-grouped according to a defined setup. For example, for a 4-bit 
buffer, shifting left aoaia2a3 by 1-bit becomes aia2as0, whereas rotating left 
by 1-bit produces aia2a3ao. 

Fixed rotation is trivial and there is no cost associated with it. Variable 
rotation is also used by some cryptographic algorithms (RC5, RC6, CAST) 
however this is not a trivial operation anymore. 

IN[31:0] 

-A=IN[31:24] 

-B = IN[16:8] 

-C = IN[23:17] 

- D = IN[7:0] 

(a) Address required 
bits only 

7 BITS 

-OUT[31:0] 

IN[24:0] — 

(b) Connect to ground 

Fig. 8.5. Shift Operation in FPGAs 

Iterative Design Strategy 

Block ciphers are naturally iterative, that is, n iterations of the same transfor­
mations, normally called rounds, are made for a single encryption/decryption. 
An iterative design strategy is a simple approach which implements the cipher 
algorithm by executing n iterations of its rounds. Therefore, n clock cycles are 
consumed for encrypting/decrypting a single block, as shown in Figure 8.6. 
Obviously, this is an economical approach in terms of required hardware area. 
But it slows cipher speed which is n times slower for a single encryption. Such 
architectures would be useful for those applications where available hardware 
resources are limited and speed is not a critical factor. 

Pipeline Design Strategy 

In a pipehne design, all the n rounds of the algorithm are unrolled and registers 
are provided between two consecutive rounds as shown in Figure 8.7. All the 
intermediate registers are triggered at the same clock by shifting data to the 
next stage at the rising/falling edge of the clock. Once all the pipeline stages 
are filled, the output blocks starts appearing at each successive clock cycle. 
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This is a fast solution which increases the hardware cost to approximately n 
times as compared to an iterative design. 

IN-H Round H Latch H 

CE CLK 

Round 
H Latch 

CE CLK 

n 
Round 

Latch ^•Out 

CE CLK 

Fig. 8.7. Pipeline Design Strategy 

Sub-pipelining Design Strategy 

Figure 8.8 represents a sub-pipeline design strategy. As shown in Figure 8.8, 
Sub-pipelining is implemented by placing the registers between different stages 
of a single round for a pipehne architecture. That improves performance of 
the pipeline architecture as those internal registers shift the results within the 
round when outputs of a round are being transferred to the next round. It has 
been experimentally demonstrated that careful placement of those registers 
within a round may produce a significant increase in the design performance. 
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Fig. 8.8. Sub-pipeline Design Strategy 
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Managing Block Size 

Modern block ciphers operate on data blocks of 128 bits or more. Unlike 
software implementations on general-purpose microprocessors, FPGAs allow 
parallel execution of the whole data block provided that there is no data de­
pendency in the algorithm. Therefore, it is always useful to dissection the 
cipher algorithm looking for possible parallelization versions of it. Furhter-
more, FPGAs offer more than 1000 external pins to be programmable for 
inputs or outputs. This is advantageous when the communication is needed 
with several peripheral devices on the same board simultaneously. 

Key Scheduling 

Fast key setup is one of the characteristics in modern block ciphers. The 
keys are required to be changed rapidly in some cryptographic applications. 
It is possible to reconfigure FPGA device for the key schedule module only 
whenever a change in the key is desired 

Key Storage 

It is recommendable for cryptographic applications to make use of different 
secret keys for different sessions. FPGAs provide enough memory resources 
to store various session keys. As the keys are stored inside an FPGA, it is 
therefore valid to say that FPGA implementations are physical secure^. 

8.3 The Data Encryption Standard 

On August, 1974, IBM submitted a candidate (under the name LUCIFER) 
for cryptographic algorithm in response to the 2nd call from National Bureau 
of Standards (NBS), now the National Institute of Standards k, Technology 
(NIST)[253], to protect data during transmission and storage. 

NBS launched an evaluation process with the help of National Security 
Agency (NSA) and finally adopted on July 15, 1977, a modification of LU­
CIFER algorithm as the new Data Encryption Standard (DES). The Data 
Encryption Standard [392], known as Data Encryption Algorithm (DEA) by 
the ANSI [392] and the DEA-1 by the ISO [152] remained a worldwide stan­
dard for a long time until it was replaced by the new Advanced Encryption 
Standard (AES) on October 2000. 

DES and TripleDES provide a basis for comparison of new algorithms. DES 
is still used in IPSec protocols, ATM encryption, and the secure socket layer 
(SSL) protocol. It is expected that DES will remain in the pubhc domain 

^ See §3.7 for more details on the security offered by contemporary reconfigurable 
hardware devices. 
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for a number of years. DES expired as a federal standard in 1998 and it 
can only be used in legacy systems. Nevertheless, DES continues to be the 
most widely deployed symmetric-key algorithm. Its variant, Triple-DES, which 
consists on applying three consecutive DES without initial (direct and inverse) 
permutations between the second and the third DES, coexists as a federal 
standard along with AES. 

A detail description of the DES algorithm can be seen in [317, 228, 362]. 
The description of DES in this chapter it closely follows that of [317]. 

Description 

DES uses a 64-bit long key. The eight bits of that key are used for odd parity 
and therefore they are not counted in the key length. The effective key length 
is therefore 56 bits, providing 2^^ possible keys. DES is a block cipher: It 
encrypts/decrypts data in 64-bit blocks using a 56-bit key. DES is a symmet­
ric algorithm: the same algorithm and the key are used for both encryption 
and decryption. DES is an iterative cipher: the basic building block (a sub­
stitution followed by a permutation) called a round is repeated 16 times. For 
each DES round, a sub-key is derived from the original key through the pro­
cess of key scheduling. Although the key scheduling algorithm for encryption 
and decryption is exactly the same, produced round keys for decryption are 
used in reverse order. Figure 8.9 shows the basic algorithm flow for both the 
encryption and key schedule processes. 

Encryption begins with an initial permutation (IP), which scrambles the 
64-bit plain-text in a fixed pattern. The result of the initial permutation is 
sent to two 32-bit registers, called the right half register, RQ and left half 
register, LQ. Those registers hold the two halves of the intermediate results 
through successive 16 applications of the function fk which is given by (n = 
0 to 15): 

Lfi = Hn-i (R ^\ 

After 16 iterations, the contents of the right and left half registers are 
passed through the final permutation I P ~ \ which is the inverse of the initial 
permutation. The output of IP~^ is the 64-bit ciphertext. 

A detailed explanation of those three operations is provided in the rest of 
this Subsection. The key sechedule algorithm of DES is explained at the end. 

3.3.1 The Initial Permutation (IP~^) 

The initial permutation is the first operation applied to the input 64-bit block 
before the main iterations of the algorithm start. It transposes the input block 
as described in Table 8.2. For example, the initial permutation moves bit 58 
to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and so forth. 
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Fig. 8.9, DES Algorithm 

The initial permuta t ion has no cryptographic relevance on DES security. 
Its pr imary purpose is to make it easier for an application to load plain-text 
into a DES chip in byte-sized pieces. Initial permuta t ion implementat ion in 
hardware is trivial bu t cumbersome in software. 

8.3.2 Structure of the Function /^ 

The 64-bit output from the initial permutation is divided into two halves LQ 
and RQ of 32 bits each as shown in Figure 8.9. Both halves go through the 16 
iterations of the function fk (Eq. 8.1) which is described below. 

For the first iteration, RQ and 48-bit round key are the two inputs. We 
first expand RQ from 32 bits to 48 bits by using the expansion permutation 
(Permutation E). 
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Table 8.2. Initial Permutation for 64-bit Input Block 

58 50 42 34 26 18 10 2 
60 52 44 36 28 20 12 4 
62 54 46 38 30 22 14 6 
64 56 48 40 32 24 16 8 
57 49 41 33 25 17 9 1 
59 51 43 35 27 19 11 3 
61 53 45 37 29 21 13 5 
63 55 47 39 31 23 15 7 

The Expansion Permutation (Permutation E) 

This operation expands 32-bit right half Ri to 48 bits. Some bits are therefore 
repeated and the order of the bits is also changed as shown in Table 8.3. 

32 
8 

16 
24 

Table 8.3. E-bit Selection 

1 2 3 4 
9 10 11 12 
17 18 19 20 
25 26 27 28 

5 4 
13 12 
21 20 
29 28 

5 6 7 8 
13 14 15 16 
21 22 23 24 
29 30 31 32 

9 
17 
25 
1 

Table 8.3 shows the position of input bits after applying the permutation 
E. For example, the bit in position 3 of input block moves to position 4, bit 
21 moves to position 30 and 32 of the output block. The redundant bits and 
their positions in the output block can be easily seen as they are outside the 
squares in boldface letter as shown in Table 8.3. 

This operation has two purposes. First, it makes the size of right half 
register equal to the size of the key to perform XOR operation. Second, the 
48-bit expanded register can be compressed during the substitution operation. 

The output 48-bit is XORed with the 48-bit round key which is then 
divided into 6-bit long eight groups. The eight groups each of six bits are 
replaced to eight groups of four bits each by applying the substitution boxes 
(S-Boxes) whose values are provided by the algorithm. 

The S-Box Substitution 

DES S-box is a 64-entry table arranged into four rows and sixteen columns. 
The input is a 6-bit address and the output is 4-bit long. The first and last 
bits aoas of 6-bit address aoaia2a3a4a5 represent the row number while the 
middle four bits aia2a3a4 denote the column number. Thus the S-box will 
substitute 101011 with the entry at row 4th (11) and column 6th (0101). To 
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substitute a 48-bit word, DES uses eight S-boxes each of size 64 x 4 = 256 
bits occupying a total of 2 Kbits memory as shown in Table 8.4 

The 32-bit S-Box output undergoes through another permutation, which 
is called P-Box Permutation. 

The P-Box Permutation 

In this step, the input 32-bit (output of the S-box) is permuted to get the 
32-bit output. The bit position for P-Box permutation is shown in Table 8.5. 
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As shown in Table 8.5, bit 21 moves to bit 4, bit 4 moves to bit 31 and so on. 
There is no repetition in bits and none of them is ignored. 

Table 8.5. Permutation P 

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10 
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25 

The 32-bit output after P-Box permutation is XORed with LQ. In the next 
iteration, we will have L2 = Ri^ which is the block we just calculated and then 
we must calculate i^2, repeating the same procedure as it was used for Ri. At 
the end of the 16*^ iteration we have the blocks Lie and RIQ. The order of 
these blocks is reversed and two blocks are concatenated into a 64-bit block 
RIQLIQ, The final permutation IP~^ is then applied. 

The Final Permutation IP'^ 

Table 8.6 provides the bit positions for the final permutation which oper­
ates on 64-bit input block producing 64-bit output block. This completes the 
encryption process for a single block. 

Table 8.6. Inverse Permutation 

40 8 48 16 56 24 64 32 
39 7 47 15 55 23 63 31 
38 6 46 14 54 22 62 30 
37 5 45 13 53 21 61 29 
36 4 44 12 52 20 60 28 
35 3 43 11 51 19 59 27 
34 2 42 10 50 18 58 26 
33 1 41 9 49 17 57 25 

Decryption is simply the inverse of encryption which is carried out by 
repeating the same steps as they were explained above. Only the round keys 
are applied in the reverse order. 

8.3.3 Key Schedule 

The round keys for all the 16 rounds are derived from the original key as shown 
in Figure 8.9. First the 64-bit DES key is reduced to 56 bits by ignoring every 
S^^ bit governed by the Table 8.7. This is referred to as Permuted Choice One 
(PC-1). The 48-bit round keys are then derived as follows. 
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Table 8.7. Permuted Choice one PC-1 

57 49 41 33 25 17 9 
10 

1 58 50 42 34 26 18 
2 59 51 43 35 27 19 11 

63 55 47 39 31 23 15 
14 

3 60 52 44 36 
7 62 54 46 38 30 22 

6 61 53 45 37 29 21 13 5 28 20 12 4 

The 56-bit output after PC-1 is divided into two halves Co and DQ. In 
each round, the two halves undergo a circular left shift or rotation by either 
one or two bits, depending on the round as shown in Table 8.8. 

Table 8.8. Number of Key Bits Shifted per Round 

Round No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Bits shifted 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 

After the shift operation, the two halves are concatenated and serve as 
input to Permuted Choice Two (PC-2) as given in Table 8.9. The resulting 
48-bit block is the required round key. Both halves before permutation PC-2 
are also used as the two inputs to generate round keys for the next round as 
is shown in Figure 8.9. 

Table 8.9. Permuted Choice two (PC-2) 

14 17 11 24 
23 19 12 4 

1 5 3 28 15 6 21 10 
26 8 16 7 27 20 13 2 

41 52 31 37 47 55 30 40 51 45 33 48 
44 49 39 56 34 53 46 42 50 36 29 32 

8.4 F P G A Implementation of DES Algorithm 

In this section DES implementation is described on reconfigurable hardware 
platform. The design steps for the development of FPGA architecture are 
explained along with some useful design techniques for the improvement of 
design performance. Performance results and comparison with the previous 
FPGA implementations of DES are presented at the end of this Section. 

8.4.1 DES Implementation on F P G A s 

Figure 8.10 is a block diagram representation of DES implementation in FP­
GAs. As it has been mentioned before, permutation operations do not occupy 
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logical resources of the device and it can be implemented by rearranging bit 
positions for the outgoing bu^ (change of wires), hence it is free of cost. DES 
includes several permutations (initial, final, permutation E, permutation P). 
The building blocks for those operations in Figure 8.10 are therefore symbolic 
representations having no logic inside. 

Each DES S-Box occupies 64 x 4—256-bit memory. Hence, a total of 2K 
(2048 bits) memory is required for the construction of eight S-Boxes. If it 
is not intended to use dedicated memory resources, only 32 CLB slices are 
needed for an S-Box on XiHnx VirtexE devices. Some other fabric resources of 
the device were occupied for the implementation of latches (Slice Flip Flops) 
and logic blocks for XOR operation. 
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Fig. 8.10. DES Implementation on FPGA 

DES chip consists of four I/O pins: three inputs and one output. The 
three input pins are Chip Enable (CE), Clock (CLK), and input data (IN). 
The single output pin is named as OUT. The CE signal activates the DES 
chip, whereas the CLK is the only master clock in charge of driving the whole 
circuitry. It is used to generate all control signals needed for the synchroniza­
tion of the data flow. 

When the CE signal is in low, it enables the circuit. As a consequence, 
the input 64-bit block after passing through initial permutation (bit wires 
rearranged) is partitioned into two halves RIN and LIN. At the first rising 
edge of CLK, both RIN and LIN are transferred to the output of the two 
registers REGA and REGB. The REGA output (RIN) goes through a number 
of operations: Permutation E, addition with sub-key, substitution (through 
S-Boxes), Permutation P, and then finally addition with the initial REGB 
output (LIN). On the next clock, the old right half (RIGHT) is the input of 
register REGB and the new left half (LEFT) is the input of register REGA. 

In the 16*^ clock cycle the two RIGHT and LEFT halves are concatenated 
(two buses joined together) and they are pass through the inverse permutation 
(IP-^) producing a vahd 64-bit DES ciphertext at OUT pin. 
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It is to be noted that the parallel structure for the eight DES S-Boxes 
contributes with a significant reduction of the critical path for encryp­
tion/decryption. 

8.4.2 Design Testing and Verification 

DES implementation wats made on XCV400e-8-bg560 VirtexE device using 
Xilinx Foundation Series F4.1i. The design tool provides two options for de­
sign testing and verification: functional simulation and timing verification. 
Functional verification tests the logical correctness of the design. It is per­
formed after the design entry has been completed using VHDL or using library 
components of the target devices. It detects logical errors without considering 
circuit overheads Uke path delays, synchronization, etc. A netlist of the logic 
components in the design is created by the design tool, which is then mapped 
to the available resources of the actual target device. Timing verifications are 
made at this stage. 

Both functional and timing verifications must be performed for a success­
ful design implementation. For both cases, test vectors are used for result 
verification and testing. Table 8.10 shows a simple test vector used to verify 
DES chip. 

Table 8.10. Test Vectors 

Input Block 1 First Permutation | /(R,K) [Second permutation 
LIN=OxFFFFOOOO 
RIN=OxAAAAAAAA 

LFOUT=0x 06060606 
RFOUT=0 X E7E7E7E7 

LEFT=0x49DE9DF2 
RIGHT=0 X C7EEC966 

LOUT=0xl7F77A33 
ROUT=0x7B7AB72A 

Figure 8.11 and Figure 8.12 show the results for the functional simulation 
and the timing verification for DES implementation in FPGA. Notice that 
the diff"erence between Figure 8.11 and 8.12. Time delays in Figure 8.12 are 
clearer. 

8.4.3 Performance Results 

FPGA implementation of DES algorithm was accomplished on a VirtexE de­
vice XCV400e-8-bg560 using Xifinx Foundation Series F4.1i as synthesis tool. 
The design was coded using VHDL language. It occupied 165 (3%) CLB slices, 
117 (1%) shce Flip Flops and 129 (41%) I/Os. The design achieves a frequency 
of 68.05 MHz (14.7 rjS). It takes 16 clock cycles to encrypt one data block 
(64-bits). Therefore, the achieved throughput is (68.05 x 64)/16=274 Mbits/s. 

8.5 Other DES Designs 

Several FPGA implementations of DES have been reported in the literature 
achieving throughput ranges from 26 Mbps to 21.3 Gbps. In Table 8.11 we 
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review the fastest designs reported in the literature. They are sorted in de­
scending order. The design reported in [299] by Rouvrou et al achieves a 
throughput of 21.3 Gbps and it is the fastest design reported up to this book 
publication's date. It consist on a pipeline architecture with a pipeline depth 
of 37 stages. The 37 stages for that design were developed by introducing a dif­
ferent formulation of DES in which a new mathematical expression especially 
tailored for FPGA devices is proposed. In the same paper, authors proposed 
a different grouping of the stages resulting in a pipeline architecture of 21 
stages. The throughput for the second architecture is reported as 14.5 Gbps. 
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Author 

Rouvroy 
et al.[301] 
Xilinx [148] 
Rouvroy 
et al.[301] 
Trimberger 
et al.[363] 
Patterson 
et al.[2711 
Swankoski 
et al.[353l 
Trimberger 
et al.[363] 
McLoone 
et al.[225] 
FreelP-
Proy [99] 

Table 8.11. DBS Comparison: Fastest Designs 

Device 

XC2V1000-6 

XC2V1000-6 

XCV300 E8 

XCV150-6 

Virtex-II 
Pro 

XCV300 E8 

XCVIOOO 

XCV400-6 
XCV400-6 

Design 
Strategy 
Pipeline 
37 cycles 

Pip. 48 stages 
Pipeline 
21 cycles 

Pip. 48 stages 
(3DES) 

Jbits and RTR 

17 parallel 
DBS blocks 

Pip. 16 stages 

Pipeline 
16 stages 
Pipeline 
16 stages 

Area 
Slices 
2965 

3900 
3775 LUT 
2904 FF 

4216 LUT 
5573 FF 

1584 

5544 

4216 LUT 
1943 FF 

6446 

2528 

Freq. 
(Mhz) 

333 

237 
227 

188.7 

168 

140.6 

132 

59.5 

47.7 

Throughput 
(Mbps) 

21300 

15100 
14500 

12000 

10752 

9000 

8400 

3808 

3100 

T / A 

7.18 

3.87 
N.D. 

N.D. 

6.75 

1.65 

N.D. 

0.59 

1.22 

The first architecture is also the most efficient architecture with a throughput 
over area ratio of 7.18. 

Trimberger et al [363, 148] presented three of the fastest DES designs ever 
reported. They are pipelined designs with 48 and 16 stages. A Java-based 
(Jbits) DES implementation in [271] achieves the encryption rate of 10752 
Mbps. It implements all DES primitives in FPGA while the key schedule 
is processed in software. The communication between the two operations is 
made through a Java-based Apphcation Programming Interface (API) which 
is intended for runtime creation and modification of the bit-stream. 

Initial high-performance designs were reported by McLoone et al [225] and 
the free IP project [99]. Both are 16-stage pipeline architectures that report 
throughputs around 3 Gbps. The architecture reported by Swankoski et al in 
[353] consists of several independent DES blocks (17). 

In Table 8.12 we review the most compact designs reported in the fiter-
ature. They are sorted in ascending order. In general, a throughput greater 
than 1 Gbps is well beyond reach of compact designs which, otherwise, is 
not the main goal of such designs. On the contrary hardware area is the ma­
jor concern for such type of architectures. Most of them implement one DES 
round and iteratively process a block to perform encryption/decryption. 

Most recent reported designs [309], [300] and [353] implement both, ci­
phering and key scheduling. The most compact design was reported by Nazar 
et al [309] with a design that occupies just 167 slices. The next one, reported 
by Rouvroy et al [300], occupies 189 CLB slices attaining better performance 
results. Some other designs implement more than one round in order to in­
crease performance [167]. FPGA implementation of DES in [167] implement 
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Table 8.12. DES Comparison: Compact Designs 

Author 

Nazar et al.[309] 
Rouvroy 
et al.[300] 
CAST [147] 
Kapse t al.[167| 
Swankoski 
et al.[353l 
Wonget al.[384J 
Kaps et al.[167] 
Leonard 
et al.[204] 
Kapse t al.[167J 

Device 

XCV400E 
XC2V1000-5 

Virtex-II 5 
XCV4013 E3 

Virtex-Il 
Pro 

XCV4020E 
XCV4013 EX3 

XCV4025-4 

XCV4013 EX3 

Design 
Strategy 
one round 
one round 

one round 
one round 
one round 

one round 
2 stage pipe 

key spec. 

4 stage pipe 

Area 
Slices 

167 
189 

238 
262 
343 

438 
433 
640 

741 

Freq. 
(Mhz) 

68.5 
274 

N.A. 
23.9 

203.3 

10 
23.0 
6.0 

25.2 

Throughput 
(Mbps) 

274 
974 

816 
91.2 
765.7 

26.7 
183.8 

24 

402.7 

T / A 

1.64 
5.15 

3.43 
0.35 
2.23 

0.06 
0.42 
0.04 

0.54 

both 2-stage and 4-stage pipeHne approaches obtaining throughput of 183.8 
Mbps and 402.7 Mbps, respectively. The design in [384] is a one round DES 
implementation on a single-chip FPGA. A fair comparison is not possible with 
this design and the one reported in [204], because they did not consider key 
scheduling. 

In Table 8.13 we select those designs presented in Tables 8.11 and 8.12 
showing a throughput over area ratio greater than one. In this sense, the 
most efficient designs are also high-performance designs. 

Author 

Houvroy 
et al.[301] 
Patterson 
et al.[2711 
Rouvroy 
et al.[300l 
Xilinx [148] 
CAST 1147] 
Swankoski 
et al.[353l 
SwauKOski 
et al.[353] 
Nazar 
et al.[309] 
FreeiP-
Proy [99] 

Table 8.13 

Dev ice 

XC2V1000-6 

XCV150-6 

XC2V1000-5 

Virtex-II 5 
Virtex-11 

Pro 
Virtex-11 

Pro 
XCV400E 

XCV400-6 

. DES Comparison: Efficient Designs 

Design 
Strategy 

Pip. 37 cycles 

J bits and HTH 

one round 

Pip. 48 stages 
one round 
one round 

17 parallel 
DES blocks 
one round 

Pip. 16 stages 

Area 
Slices 
"2965" 

1584 

189 

3900 
238 
343 

5544 

167 

2528 

Freq. 
(Mhz) 

"333'"' 

168 

274 

237 
N.A. 
203.3 

140.6 

68.5 

47.7 

Throughput 
(Mbps) 

21300" 

10752 

974 

15100 
816 

765.7 

9000 

274 

3100 

T / A 

^TIB" 

6.75 

5.15 

3.87 
3.43 
2.23 

1.65 

1.64 

1.22 

Finaly, in Table 8.14 we show some other designs for TripleDES. They 
are sorted in descending order with respect to performance. Pipeline strategy 
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Table 8.14. TripleDES Designs 

Author 

Panu 
et al.[131] 
Houvroy 
et al.pOO] 
ISwankoski 
et al.[353] 
Panu 
et al.flSl] 
Panu 
et al.[131] 
Leitold 
et al.[202] 

Device 

Virtex V800 
FG 676-6 

XC2V1000-5 

Virtex-11 
Pro 

Virtex V800 
FG 676-6 

Virtex V800 
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is applied by Panu et al in order to develop a TripleDES Core specifically 
targeting wireless communications. The design reported by Leitold et al [202] 
is not an FPGA design, but rather, it is a VLSI design specifically targeted 
to ATM communications. 

8.6 Conclusions 

This chapter provides a general guideline for the implementation of block ci­
phers in reconfigurable.logic platform. The general structure of block ciphers 
was discussed. Most frequent operations in block ciphers were presented, and 
at the same time, several useful properties for implementing block ciphers in 
FPGAs were discussed. We described the design steps and some design tech­
niques for obtaining fast and/or compact and/or efficient FPGA implemen­
tations. A general guideline, was therefore developed for the implementation 
of block ciphers in reconfigurable devices. Our methodology was then applied 
for DES implementation resulting on an efficient and compact DES core on 
reconfigurable hardware platform. 

We also showed a very compact DES architecture which can be ade­
quate for embedded and mobile systems. We presented a review of several 
DES designs reported in the technical literature. We walked through high-
performance designs to compact ones. We also reviewed efficient DES designs 
as well as several TripleDES designs, which were classified according to their 
performance metrics. 
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Architectural Designs For the Advanced 
Encryption Standard 

In this chapter we present some of the most common architectural alterna­
tives to implement Advanced Encryption Standard (AES) in reconfigurable 
hardware. The first factor to be considered on implementing AES is the appli­
cation. There are high speed applications like High Definition TV (HDTV) and 
video conferencing where high performance is required. The target through­
put, expressed in gigabits per second (Gbps), must be specified, and to achieve 
such a high performance we can replicate several functional units to increase 
parallelism. That would however imply higher power and hardware area re­
quirements. 

On the other hand, high speed designs are not always desired solutions. In 
some applications, such as mobile computing and wireless communications, 
smaller throughput is demanded. Then a good balance between hardware 
area and design performance should be achieved. In addition, since there are 
trends to incorporate secure electronic data exchange into low-end consumer 
products, inexpensive AES implementations are needed for PDAs (personal 
digital assistant), wireless devices and many other embedded applications. 
Furthermore, it has been suggested that apphcations in the domain of ra­
dio frequency identifiers (RFID), low-power AES chip may be needed, thus 
demanding extremely compact AES implementations. 

9.1 Introduction 

Two main factors impact an AES implementation for a given application: 
hardware area and timing performance. Quite frequently, both factors have 
an opposite effect: Although compact designs tend to occupy a small amount 
of hardware resources, they generally show low performances. On the con­
trary, achieving high speed gains requires that many modules should work 
simultaneously, thus demanding greater hardware area requirements. 
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Another important feature to be considered when choosing an architec­
tural alternative for AES is related to its mode of use. Many applications use 
AES in the Electronic Code Book (ECB) mode in which a complete block is 
ciphered independently of all other blocks. Then, several blocks can be pro­
cessed in parallel or pipeline strategies can be appHed to increase performance. 
Nevertheless, it is noticed that ciphering is only a part of a secure application 
and that there exist apphcations for which ciphering is accompHshed with 
authentication [214]. For those scenarios, a feedback mode is required. For 
example, in Cipher Block Chaining (CBC), a previous ciphered block is used 
to encrypt the present block. That however, prevents us from using pipeline 
architectures. Therefore, an iterative architecture with some authentication 
logic could be a solution. 

From its evaluation process to post selection period, the Advanced En­
cryption Standard (AES) has been implemented on all kind of hardware and 
software platforms. Gladman [109] and Bertoni et al. [21], reported software 
implementations in which AES specification is manipulated to increase per­
formance. AES software implementations have a throughput that ranges from 
300 to 800 Mbps depending on the specific architecture and platform selected 
by the developers. Some eflftcient AES encryptor/decryptor core VLSI imple­
mentations have been also reported in [143, 376, 215, 303]. Performance of 
VLSI implementations ranges from 2 to 7.5 Gbps. 

Similarly, various AES FPGA implementations have been reported in 
[102, 63, 83, 223]. Those are one round (iterative) or n rounds (pipeline) 
FPGA implementations optimized for encryption or encryption/decryption 
processes. Since published works have utilized an ample variety of FPGA 
devices, reported performance results are broadly variable ranging from 300 
Mbps to up to 25 Gbps. 

Clearly, modern FPGA technology has a great impact in implementation 
performances. Nonetheless, there are algorithmic and architectural strategies 
for different target appHcations that also influence the final performance. The 
asymmetric characteristics of AES encryption and decryption processes limit 
the implementation of high-performance AES cores. Each step for AES en­
cryption has its inverse counterpart for decryption. Designing separated archi­
tectures for encryption and decryption processes would imply the allocation 
of a large amount of FPGA resources and the area requirements of such de­
sign might be difficult or even impossible to meet in several FPGA families 
of devices. 

Published work about AES FPGA implementation covers a wide spectrum. 
Some designs [102, 63, 83] have considered only the encryption part of AES. 
For example, in [102, 63] an iterative design implementing one round is re­
ported. In [63] key scheduling is also considered, however, in [102] key schedul­
ing was ignored. The design in [83] implements all AES rounds with a pipeline 
organization but without key scheduling, whereas the design in [223] reported 
an FPGA implementation of a fully pipeline AES encryptor/decryptor core. 
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In this Chapter, various FPGA architectures of AES are presented. Those 
implementations cover all three basic processes: key scheduling, encryption 
and decryption. All are single-chip FPGA implementation. Different design 
architectures are considered by implementing AES encryptor, decryptor and 
encryptor/decryptor cores separately. Both iterative and pipeline techniques 
are appHed showing diverse time-area tradeoffs. All AES implementations 
were optimized for low cost, high efficiency and/or high portability. 

The rest of this Chapter is organized as follows. An introduction to AES 
algorithm is presented in Section 9.2. The basic transformations of the al­
gorithm and their effects on the algorithm cryptographic strength are also 
explained in this Section. Section 9.3 gives a brief explaination of the AES 
modes of use. Section 9.4 describes various algorithmic optimization for im­
plementing AES basic transformations on FPGAs. Those techniques help to 
improve overall algorithm performance by modifying the most costly opera­
tions of the algorithm. Section 9.5 deals with general architectures for AES 
implementation on FPGAs. Then, the algorithmic optimizations are mixed 
with architectural alternatives to obtain several different AES designs. Sec­
tion 9.6 presents performance results for each design and compare them with 
published works. Finally, in Section 9.6.1 some recent trends on AES cores 
are reviewed providing a classification of several relevant designs. Concluding 
remarks are drawn in Section 9.7. 

9.2 The Rijndael Algorithm 

On October 2000, Rijndael was selected as a new Advanced Encryption Stan­
dard (AES) by NIST [253] replacing Data Encryption Standard (DES). The 
name 'Rijndael' is a rearrangement of the names of its two inventors Rijmen 
and Daemen [60]. 

Rijndael is a symmetric block cipher which takes two inputs, namely, the 
plaintext block to be encrypted and the secret key. It applies an iterative 
procedure at the end of which an output ciphertext block is produced. During 
a single iteration, a set of transformations, called a rounds are applied to the 
state data block. For each round, a round key is generated through a process 
called key scheduling. 

In this Section we give a short explanation of the algorithm behavior. We 
start explaining the difference between AES and Rijndael. Then, we describe 
AES basic structure and building blocks. Thereafter, the round transformation 
of the algorithm is specified. Finally, the process of key generation is described. 

9.2.1 Difference Between AES and Rijndael 

AES fixes the block sizes and key lengths from the range supported by Rijn­
dael. Rijndael can process variable block and key lengths of 128, 192, and 256 
bits. Moreover, Rijndael supports all possible combinations of those si^es for 
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block and key lengths. The number of rounds depends upon the combination 
of the selected block and key lengths as shown in Table 9.1. It can be seen 
that the number of rounds ranges from 10 to 14. 

key length (bits) 

128 
192 
256 

Block length (bits) 
128 
10 
12 
14 

192 
12 
12 
14 

256 
14 
14 
14 

Table 9.1. Selection of Rijndael Rounds 

On the other hand, AES fixes the block length to 128 bits and supports 
key lengths of 128, 192 or 256 bits only. The most frequent AES case of use is 
with block and key lengths of 128 bits. In the rest of this chapter whenever we 
use the word AES, it means block and key lengths of 128 bits and therefore 
with the number of rounds equal to 10. Moreover, In the rest of this Chapter 
the names AES and Rijndael are used indistinctly. 

9.2.2 Structure of the AES Algorithm 

The basic structure of AES algorithm is shown in Figure 9.1. 

Input 

128 

AES Encryptor/Decryptor 

x: 
K 

User-key 

128 

Output 

Fig. 9.1. Basic Structure of Rijndael Algorithm 

For encryption, the input is a plaintext block and a key, and the output is 
a ciphertext block. For decryption, the input is a ciphertext block and a key 
(the same key used for encryption), and the output is the original plaintext. 
The basic algorithm flow for encrypting a single block of data is shown in 
Figure 9.2. 

The AES cipher treats the input 128 bit block as a group of 16 bytes orga­
nized in a 4 X 4 matrix called State matrix. The algorithm consists of an initial 
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Fig. 9.2. Basic Algorithm Flow 

transformation, followed by a main loop where nine iterations, called rounds^ 
are executed. Each round transformation is composed of a sequence of four 
transformations: ByteSubstitution (BS), ShiftRows (SR), MixColumns (MC) 
and AddRoundKey (ARK). For each round of the main loop, a round key is 
derived from the original key through a process called Key Scheduling. At the 
last round MC step is skipped and consequently just three transformations, 
namely, BS, SR and ARK, are executed. 

AES decryption can be performed by using same algorithm flow. However 
all four steps in the round transformation are replaced with their own inverses 
and the round keys for encryptions are used in the reverse order. 

9.2.3 The Round Transformation 

The round transformation is a sequence of four transformations BS, SR, MC 
and ARK. All four transformations contribute in AES strength by inducing 
confusion and diffusion^ which are arguably the two most important proper­
ties that a strong symmetric cipher must have. Confusion makes the output 
dependent on the key. Ideally, every key bit influences every output bit. Diffu­
sion makes the output dependent on previous input (plain/ciphertext). Ideally, 
each output bit is influenced by every (previous) input bit. Roughly speaking, 
those characteristics correspond to cipher's substitution and permutation. 

Symmetric ciphers need to be complex, so they could not be analyzed 
easily. Also, their transformations need to be simple enough to be implemented 
efficiently in hardware or software. For AES, the general criteria for round 
transformation was inverse function and simplicity besides the step-specific 
criteria. 

9.2.4 ByteSubstitution (BS) 

It is a non-linear transformation where each input byte of the State matrix is 
independently replaced by another byte. BS can be seen as a highly non-linear 
function. There are a great finite number of possible BS functions, however 
some of them are more appropriate than others. In [60] some important prop­
erties about designing a BS function are discussed. Non-linearity and algebraic 
complexity being the most important of them. 

The BS transformation of an input byte (8-bit vector) a is defined by two 
substeps: 
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1. Inverse: Let x — a ~ \ the multiplicative inverse in GF(2^) (except if 
a = 0 then x == 0). 

2. Affine Transformation: Then the output is y = M x a: 0 6, with the 
constant bit matrix M and byte h shown below: 

11111000 
0 1111100 
00111110 
00011111 
10001111 
11000111 
111000 11 
11110001 

X 

Xj 

XQ 

X5 

X4 

a^3 

X2 
Xi 

_XQ_ 

0 

0 
1 
1 
0 
0 
0 
1 
1 

(9.1) 

All bit operations are performed modulo 2. 

BS is decomposed into two transformations. First each input byte is re­
placed with its multiplicative inverse (MI) in GF(2^) with the element {00} 
being mapped to itself and then the affine transformation is applied as shown 
in Equation 9.1. 

From the implementation point of view, BS can be considered as a look-up 
table, called S-Box^ in which the input byte is considered as the address of the 
table where its substitution is found. Then an S-Box can be seen as a 256 x 8 
look up table as shown in Figure 9.3. This is the easiest way to implement BS 
and for many apphcations it is enough to consider this way of implementing 
i t^ 
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Fig. 9.3. BS Operates at Each Individual Byte of the State Matrix 

If we look for a very compact or a high efficient design, we need to look for 
the calculation of BS. MultipHcative inverse can be found using the extended 
Euchdean algorithm [228]^. Let x be the input byte and let us assume that we 

^ It has been proposed that also the multiplications associated to the MixColumn 
transformation can be implemented using the Look-up Table methodology [81]. 

^ Formal definition of field multiplicative inverse and the extended Euclidean algo­
rithm can be found in §4.1.2. Efficient computations of the multiplicative inverse 
were discussed in §6.3. 
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look for the inverse of the polynomial a{x). The extended Euclidean algorithm 
can be used to find two polynomials b{x) and c{x) such that: 

a{x) X b{x) -f m(x) x c(x) = gcd(a(a;), m{x)) (9.2) 

where gcd(a(a:),m(a:)) represents the greatest common divisor of the poly­
nomials a{x) and m(a:). If m{x) is irreducible then we know for sure that 
gcd{a{x), m{x)) = 1. Applying modular reduction to Equation 9.2 we get, 

a{x) X b{x) = 1 mod m{x) (9.3) 

which means that b{x) is the inverse element of a{x). The non-linearity of the 
AES S-box is introduced by applying the multiplicative inverse in GF(2^). The 
affine transformation has no impact on the non-linearity but it contributes in 
increasing the algebraic complexity. 

Inverse Operation (IBS) 

The inverse BS is obtained by applying inverse affine transformations followed 
by the multiplicative inverse in GF(2^). Therefore, the inverse of the affine 
transformation in Eqn. 9.1 is defined as follows. 

(9.4) 

xrl To 10 1 0 0 101 
xel 0 0 1 0 1 0 0 1 
XBI 1 0 0 1 0 1 0 0 j 
0:4 ^ 0 1 0 0 1 0 1 0 
X3\ ~ 0 0 1 0 0 1 0 1 
X2\ 1 0 0 1 0 0 1 0 
XI \ 0 1 0 0 1 0 0 1 
a;oJ [1 0 1 0 0 1 0 Oj 

For both affine and inverse affine transformations, multiplicative inverse is 
taken in GF(2^) with irreducible polynomial m{x) = x^ -\- x"^ -\- x^ -h x -{- I. 

X 
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9.2.5 ShiftRows (SR) 

It is a cyclic shift operation where each row is rotated cyclically to the left 
using 0,1,2 and 3-byte offset for encryption as shown in Figure 9.4. Diffusion 
optimality is the design criteria for selecting the offsets which requires the 
four offsets to be different. 

Inverse Operation (ISR) 

The inverse operation of ShiftRows is called Inverse ShiftRows (ISR). It is a 
cyclic shift operation used for decryption where each row is rotated cyclically 
to the right using 0,1,2 and 3-byte offset. 
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Fig. 9.4. ShiftRows Operates at Rows of the State Matrix 
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9.2.6 MixColumns (MC) 

In this transformation, each column of the State matrix is considered a poly­
nomial over GF(2^) and is multiplied by a fixed polynomial c{x) modulo x"^ 
-f 1. The polynomial c{x) is given by: 

c{x) = 03.x^ + Ol.x^ + 01.x 4- 02 (9.5) 

Let b{x) = c{x) • a{x) mod a:̂  -f 1, then the modular multiphcation with a 
fixed polynomial can be written as shown in Equation 9.6. 

(9.6) 

MixColumns operates on the columns of the state matrix £ts shown in Fig­
ure 9.5. 
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Fig. 9.5. MixColumns Operates at Columns of the State Matrix 

The design criteria for MixColumns step includes dimensions^ linearity, diffu­
sion and performance on 8-bit processor platforme. The Dimension criterion 
it is achieved in the transformation operation on 4-byte columns. 
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Inverse Operation IMC 

The inverse of MixColumns is called (IMC). The constant polynomial c{x) 
given in Eqn. 9.5 is co-prime to x"̂  -f 1 and therefore invertible. Let d{x) be 
the inverse of c{x) and written as follows. 

(03.0:^ + Ol.x^ 4- Ol.x -f 02).d{x) = 01 (mod x^ + 1) 

From Eqn. 9.7, it can be seen that d{x) is given by: 

d{x) = OB.x^ 4- OD.x'^ + 09.a: + OE 

(9.7) 

(9.8) 

Similarly to MC, in IMC each column of the state matrix is transformed by 
multiplying with constant polynomial d{x) written as a matrix multiplication 
as shown in Equation 9.9. 
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9.2.7 AddRoundKey (ARK) 

In the last step, the output of MC is XOR-ed with the corresponding round 
key. This step is denoted as ARK. Figure 9.6 illustrates the effect of key 
addition on the state matrix. 
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Fig. 9.6. ARK Operates at Bits of the State Matrix 

Inverse Operation lARK 

Inverse of ARK, called I ARK, is essentially the same for encryption and de­
cryption^. The only important thing to remember is that keys are applied for 
decryption in reverse order as in encryption. 

^ However, as is explained in §9.5.2, efficient implementations of AES encryp-
tor/decryptor cores, require to append the IMC step to the generation of round 
keys for decryption. 
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9.2.8 Key Schedule 

Both, encryption and decryption require the generation of round keys. Round 
keys are obtained through the expansion of secret user key by attaching each 
j — th round a 4-byte word kj = {ko,jykij^k2jjk3j) to the user key. The 
original user key, consisting of 128 bits, is arranged as a 4 x 4 matrix of bytes. 

Let w[0], w[l], w[2], and w[3] be the four columns of the original key. Then, 
these four columns are recursively expanded to obtain 40 more columns. Let 
us assume we have computed columns \ip to w[i — I]. Then, we can compute 
the i — th column, W[i], as follows, 

r.._(w[i-4]ew[i-l] if i mod 4 7^0 . . 
^ m -\w[i-4]e T{w[i - 1]) otherwise ^^'^^^ 

where T{w[i—1]) is a non-linear transformation of t(;[z—1] calculated as follows: 

Let w^ X, y, and z be the elements of column t(;[z - 1] then, 

1. Shift cyclically the elements to obtain ^, w, a;, and y. 
2. Replace each of the byte with the byte from BS S{z), S{w), S{x) and 

S{y)-
3. Compute the round constant rii) = 02^'"^^/'^ in GF(2^). 

Then, T{w[i - 1]) is the column vector, {S{z) 0 r(i), S{w), S{x), S{y)). In 
this way, columns from w[4] to w[43] are generated from the first four columns. 

The 16-byte round key for the j — th round consists of the columns 

{w[4j],w[4j 4- l],w[4j 4- 2lw[4j + 3]) 

Sometimes it results convenient to pre-compute the round keys once and 
for all and then store them. A similar process is utihzed for generating round 
keys for the decryption process, although they should be used in the reverse 
order. 

After the explanation of all four AES transformations and key schedule, we 
can write the sequence of those transformations when performing encryption 
and decryption as follows. 

Encryption: MI-^ A F ^ SR-> MC-^ ARK 
Decryption: lARK-^ IMC-> ISR-> IAF-> MI 

9.3 AES in Different Modes 

Most of the published work on AES implementation considers AES in Elec­
tronic Book Mode (ECB). In ECB mode, an individual plaintext block is 
converted to ciphertext block. Thus by collecting several plaintext and their 
ciphertext blocks, one can produce some pattern information which could 
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be helpful in recovering the original plaintext. ECB mode in some cases, is 
therefore not considered secure. The Cipher Block Chaining mode (CBC), the 
Cipher Feedback mode (CFB), and the Output Feedback mode (OFB) offer 
better security than ECB, but encryption of the block depends on the feed­
back of its previous block encipherment [253]. This property prevents using 
pipelining in which many different blocks are encrypted simultaneously. The 
encryption speed in CBC, CFB, and OFB modes is much slower as in ECB. 
Fortunately, there exists another mode, called Counter mode (CTR) which in­
creases the security of ECB and has not dependencies among different blocks, 
thus allowing all operations to be fully pipelined to achieve high performance. 

9.3.1 CTR M o d e 

In [100] a CTR mode implementation of AES is reported. In CTR mode, a 
plaintext is processed by encrypting a counter value with key 'K' and then 
by XORing the output with the plaintext to get the ciphertext. Figure 9.7 
presents the counter mode. Decryption procedure takes the same process to 
recover the plaintext from the ciphertext. The counter value has no dependen­
cies with previous output, thus pipelining can be fully used. Counter mode 
has no padding overhead which is required for ECB, CBC, and CFB modes 
when the data is not a multiple of block length. Counter mode does not prop­
agates error and restrict the error to the specific block as compared to CBC 
and CFB modes which pass the error to the subsequent blocks. 

Load Key 

Cipher K 

48-bit 
Counter 

40-bit 
Counter 

Cipher K 

Fig. 9.7. Counter Mode Operations 
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Figure 9.7b, presents different counter blocks for obtaining cipher key 'K'. 
A three stage counter, 40-bit cipher identification, 48-bit key counter and 40-
bit block counter, are used for each plaintext block. For each cipher artifact, 
there is a pre-assigned cipher ID. The key counter increases whenever a new 
key has been updated. Block counter increases for each block. The search 
space for each part is, although finite, large enough. If the block counter is 
exhausted, the key counter will be increased to avoid the use of the same key 
with the same counter value. Then, we guarantee that produced keys are all 
distinct. The counter value pairs can be used more than once. 

The special requirement for CTR mode is that the same counter value 
and key should not be used to encrypt more than one block of data. If this 
happens, the plaintext would be recovered by XORing the two cipher text, 
which in fact, equals to XORing the two plaintext. Especially when one of the 
plaintext is already known, the other one can be easily recovered by XORing 
the known plaintext with the output ciphertext after XOR. 

9.3.2 CCM Mode 

For applications in which more robustness is required, there is no choice and 
a feedback mode is mandatory. For example, the Wired Equivalent Privacy 
(WEP) protocol has been the most widely security tool used for protecting 
information in wireless environments. However, this protocol was broken in 
2001 by Fluhrer et al. [1]. Based on that attack, nowadays there exist a va­
riety of programs that can be downloaded from Internet to break the WEP 
Protocol in few seconds and with almost no effort. This situation has led to a 
search for new security mechanisms for guaranteeing reliable ways of protect­
ing information in wireless mobile environments. 

AES in CCM (Counter with CBC-MAC) proposed by Whiting et. al. in 
[378], has become one of the most promising solutions for achieving security in 
wireless networks. This mode simultaneously offers two key security services, 
namely, data Authentication and Encryption [214]. CCM means that two 
different modes are combined into one, namely, the CTR mode and the CBC-
MAC. CCM is a generic authenticate-and-encrypt block cipher scheme that 
has been specifically designed for being use in combination with a 128-bit 
block cipher, such as AES. Currently, CCM mode has become part of the new 
802.111 IEEE standard. 

CCM Primitives 

Before sending a message, a sender must provide the following information 
[378]: 

1. A suitable encryption key K for the block cipher to be used. 
2. A nonce N of 15 — L bytes. Nonce value must be unique, meaning that 

the set of nonce values used with any given key shall not contain duplicate 
values. 
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3. The message m, consisting of a string of l{m) bytes where 0 < l{m) < 2^^. 
4. Additional authenticated data a, consisting of a string of l{a) bytes where 

0 < /(a) < 2^^. This additional data is authenticated but not encrypted, 
and is not included in the output of this mode. 

Figure 9.8 shows CCM authentication and verification processes dataflow. 
Notice that because of the CBC feedback nature of the CCM mode a pipeline 
approach for implementing AES is not possible, therefore there is no option 
but to implement AES encryption core in an iterative fashion. 

CCM Authentication consists on defining a sequence of blocks BQ.BI,- " ^ Bn 
and thereafter CBC-MAC is apphed to those blocks so that the authentication 
field T can be obtained. Blocks BiS are defined as explained below. 

First, the authentication data a is formatted by concatenating the string 
that encodes l{a) with a itself, followed by organizing the resulting string in 
chunks of 16-byte blocks. The blocks constructed in this way are appended to 
the first configuration block J5o [375]. Then, message blocks are added right 
after the (optional) authentication blocks a. Message blocks are formatted by 
splitting the message m into 16-byte blocks which will be the main part of 
the sequence of blocks 

Bo,Bi, ...,Bn 

needed by the authentication mode. Finally, the CBC-MAC is computed as. 

Xi :=AESE{K,BO) 

Xi+i := AESE{K, Xi e Bi) for i •• 

T := firstMhytes{Xn^i) 

(9.11) 

l , . . . ,n 

Where AESE is the AES block cipher selected for encryption, and T is the 
MAC value defined as above. If it is needed, the ciphertext would be truncated 
in order to obtain T. 

IEEE 802.11 MAC Header Framebody 

NONCE 
(16 bytes) 

AAD1 
(16 bytes) 

M D 2 
(16 bytes) 

1st block 
(16 bytes) 

2nd block 
(16 bytes) 

Zero padded 
last block 
(16 bytes) 

>e' 
M 

t^ 
M 

?©> 

Bn 

>e-
Fig. 9.8. Authentication and Verification Process for the CCM Mode 

Figure 9.9 shows the CCM encryption/decryption process dataflow. CCM 
encryption is achieved by means of Counter (CTR) mode as. 
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Fig. 9.9. Encryption and Decryption Processes for the CCM Mode 

Si — AESE{K,Ai) for 2 = 0,1,2, 

Gi .'= Oi w J^i 

.12) 

where Ai stands for counters. See [378, 100] for more technical details about 
how to build the counters. 

Plaintext m is encrypted by XORing each of its bytes with the first 
l{m) bytes of the sequence resulting from concatenating the cipher blocks 
•S*!, »S'2,53,..., produced by Eq. 9.12. The authentication value is computed by 
encrypting T with the key stream block 5o truncated to the desired length 
as, 

t/ := T e firstMbytes{So) (9.13) 

The final result c consists of the encrypted message m, followed by the 
encrypted authentication value U. 

At the receiver side, the decryption process starts by recomputing the key 
stream to recover the message m and the MAC value T. Figure 9.9 shows how 
the decryption process is accompHshed in CCM Mode. 

Message and additional authentication data is then used to recompute the 
CBC-MAC value and check T. If the T value is not correct, the receiver should 
not reveal the decrypted message, the value T, or any other information. 
Figure 9.8 describes how the verification process is accompHshed. 

It is important to notice that the AES encryption process is used in en­
cryption as well as in decryption. Therefore, AES decryption functionality is 
not necessary in CCM-mode, which leads to save valuable hardware resources. 
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9.4 Implementing AES Round Basic Transformations on 
F P G A s 

Strategies for efficient fiardware implementation of AES on FPGA devices 
can be classified into two types: algorithmic and arcfiitectural optimizations. 
Algorithmic optimizations try to obtain some mathematical expressions to 
take advantage of FPGA structure. Architectural optimizations exploit design 
techniques such as iterative, pipelining and sub-pipelining. In addition, AES 
hardware implementation poses a challenge since encryption and decryption 
processes are not completely symmetrical which forces to have some additional 
observations while implementing a single encryptor/decryptor core. 

In Subsection 9.2.3 it was described the basic round transformations, BS, 
SR, MC, and ARK, and their corresponding inverse transformations IBS, ISR, 
IMC, and I ARK. That Subsection also describes the key schedule process to 
generate the necessary subkeys during an encryption or decryption process. 

But before start discussing how to implement a full encryption or decryp­
tion core, let us analyze, from the algorithmic optimization point of view, 
some important implementation properties shown by the basic round trans­
formations. 

The most important operations for the basic transformations include poly­
nomial multiphcation in GF(2^) for BS/IBS, fixed-rotation for SR/ISR, con­
stant polynomial multiplication in GF(2^) for MC/IMC, and simple addition 
(XOR) for ARK/I ARK. Fixed-rotation is hardwired and does not consume 
FPGA's logic resources. The addition used in ARK/IARK is a simple XOR 
operation. Hence, BS/IBS and MC/IMC are the two key functional units 
in AES implementations. It has been estimated that BS/IBS and MC/IMC 
take more than 65% of the total area in the entire AES encryptor/decryptor 
implementation. 

Perhaps, the most costly operation for BS/IBS is polynomial multiphca­
tion in GF(2^). We also need to perform a polynomial multiplication in GF(2^) 
for MC/IMC but we can take advantage from the fact that is a constant multi­
plication. Even though the latter transformation is relatively less costly than 
the former still it occupies considerable FPGA's resources. Therefore, both 
BS/IBS and MC/IMC are good candidates for improving overall performance 
of the round transformation. 

In the rest of this Section, we present various approaches for implementing 
BS/IBS and MC/IMC. 

Regarding BS/IBS two alternatives are considered. In the first approach 
pre-computed values are simply stored on the FPGA's built-in memory mod­
ules. This might be seen as an expensive solution but it helps to save valu­
able computational time. The second approach provides an alternative for 
constrained memory requirements and it is based on an on-fly computation 
strategy. 

Similarly, two approaches for MC/IMC implementations are presented. 
First approach, that we have called standard approach, deals with the struc-
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tural organization of MC/IMC transformations. The second approach called 
modified approach introduces a small modification before MC to perform IMC 
step. Finally, some structural changes are proposed in key schedule algorithm 
which can improve hardware performance by cutting path delays. 

9.4.1 S-Box/Inverse S-Box Implementations on FPGAs 

The straightforward approach for implementing BS is by using a look-up table 
in which pre-computed values are stored in memories. That requires memory 
modules with fast access. In FPGAs, there are two ways to organize memory: 
by using flip-flops and CLBs (i.e., FPGA fabrics), or by using FPGAs built-in 
memory modules called BRAMs (BlockRAMs). 

Implementing BS/IBS by look-up tables is simple, fast and in many cases 
desirable. A single BS/IBS table would require 8-bit wide 256 entries. We 
can make some few observations about implementing BS/IBS using look-up 
tables. 

Firstly, for the implementation of both encryption and decryption on a sin­
gle chip two different separated look-up tables are required, thus duplicating 
memory requirements. 

Secondly, if we want to increase performance, BS/IBS can be performed 
in parallel for the sixteen bytes of the state matrix. The fully parallelization 
of BS/IBS would therefore require 16 copies of the same look-up table, one 
per state matrix element. Finally, if high performance is required, unfolding 
the 10 rounds of AES to construct a pipehne architecture, would require 160 
copies of the same look-up table. 

In the following, we discuss some other alternatives to implement BS/IBS 
in FPGAs. 

I. S-Box and Inverse S-Box Implementation 

To avoid utilization of a considerable amount of FPGA resources, BS/IBS can 
be implemented using a look-up table. The look up table would be used for 
MI by implementation affine (AF) and inverse affine (lAF) transformations 
using some logic gates for BS and IBS respectively. The combination MI -f-
AF implements BS for encryption and the combination lAF -h MI gives IBS 
for decryption. For constructing an encryptor/decryptor core, two separated 
designs for encryption and decryption would result in high area requirements. 
Prom Section 9.2.4, we know that only one MI transformation in addition 
to AF and lAF transformations is required for both encryption and decryp­
tion. Therefore, a multiplexer can be used to switch the data path for either 
encryption or decryption as shown in Figure 9.10 

II. S-Box and Inverse S-Box Based on Composite Field Techniques 

BS/IBS implementations can be made using composite field techniques e.g. BS 
can be manipulated in GF((2^)^) and even GF(((22)2)^) instead of GF(2^). 
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Fig. 9.10. S-Box and Inv. S-Box Using Same Look-Up Table 

That would reduce memory requirements to 16 x 4 bits in GF(2'^) as compared 
to 256 X 8 bits in GF(2^) for a single LUT. More hardware resources would be 
however used to implement the required logic in OF(2'^). Several authors [267, 
242, 303] have designed AES S-Box based on the composite field techniques 
reported first in [267]. Those techniques use a three-stage strategy: 

1. Map the element A G OF (2^) to a smaller composite field F by using an 
isomorphism function b. 

2. Compute the multiplicative inverse over the field F. 
3. Finally, map the computations back to the original field. 

In [242], an efficient method to compute the inverse multiplicative based on 
Fermat's little theorem was outlined. That method is useful because it allows 
us to compute the multipficative inverse over a composite filed GF(2"^)" as 
a combination of operations over the ground field GF(2^). It is based on the 
following theorem: 

T h e o r e m 1 [261^ 121] The multiplicative inverse of an element A of the 
composite field GF{2'^)^, A^O, can be computed by, 

A-^ = (^'^)-M'^-i mod P{x) (9.14) 

onm _ 1 
Where A'^ G GF(2^) & 7 = 

2m _ 1 

An important observation of the above theorem is that the element A^ belongs 
to the ground field GF(2'^). This remarkable characteristic can be exploited 
to obtain an efficient implementation of the inverse multiplicative over the 
composite field. By selecting m = 4 and n = 2 in the above theorem, we 
obtain 7 = 17 and, 

A-^ = (yl'Y)-M'^-i = {A^'^y'^A^^ (9.15) 

In case of AES, it is possible to construct a suitable composite field F , by using 
two degree-two extensions based on the following irreducible polynomials. 

Fi =GF(22) Po{x)=x^-^x-^l 
F2 = GF((22)2 p,(^y):=y2^y^^ (9.16) 
F3 = GF(((22)2)2 P2(^) = Z 2 ^ ^ + A 
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where 0 = {10}2, A = {1100}2 

The inverse multipHcative over the composite field F2 defined in the Equa­
tion 9.15, can be found as follows. 

Let A e F2 = GF(2^)^ be defined in polynomial basis as A = Any 4- AL, 
and let the Galois Fields Fi, F2, and F3 be defined as shown in Equation 9.16, 
then it can be shown that, 

A^^ = Any + {AH + AL) 

A'' = A>« . ^ = O.y + {XiAnY^AH + {AL)''AL) 

= XiAnf + {ALy'AL (9.17) 

A First 
Transformation 

Ml 
Manipulation 

w Second 
Transformation 1->[ZD 

GF(2°) GF{2y & GF{2y GF(2^) 

Fig. 9.11. Block Diagram for 3-Stage MI Manipulation 

Figures 9.11 and 9.12 depict block diagram to three-stage inverse multiplier 
represented by Equations 9.15 and 9.17. 

Fig. 9.12. Three-Stage Approach to Compute Multiplicative Inverse in Composite 
Fields 

As it was explained before, in order to obtain the multiplicative inverse of 
the element A e F =GF(2^), we first map A to its equivalent representation 
{AH^AL) in the isomorphic field F2 = GF ((2^)^) using the isomorphism 6 
(and its corresponding inverse S~^). In order to map a given element A from 
the finite field F to its isomorphic composite field F2 and vice versa, we only 
need to compute the matrix multiplication of A, by the isomorphic functions 
shown in Equation 9.18 given by [242]: 
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5 = 

10100000 
11011110 
1010 1100 
10 10 1110 
11000110 
10011110 
01010010 
01000011 

5-^ = 

11100010 
01000100 
0 1100010 
0 1110110 
00111110 
00 110000 
01000011 
01110101 

(9.18) 

The isomorphism function 6 and 6~^ can be constructed as follows: 
Let a and P be roots of a same primitive irreducible polynomial {m{x) — 

x^ -\- x'^ -\- x^ -^ x^ -\- \ can be used). First search for primitive element a in 
the field A and then search for p in the field B. Once 6 and 6~^ are founded, 
the matrix representation can be obtained, where a^ is mapped to (3^ or vice 
versa. Note that there could be more than one eligible isomorphism. 

Also by taking advantage of the fact that A^'^ is an element of F2, the final 
operation {A^'^)~^A^^ of Equation 9.15 can be easily computed with further 
gate reduction. Last stage of algorithm consists of mapping computed value 
in the composite field, back to the field GF(2^). 

To further increase the depth of a pipeHne architecture, MI can be calcu­
lated by a composite field approach dealing MI manipulation in GF(2^) and 
GF(24) instead ofGF(2^). 

In [113], BS has been computed rather than using a look-up table. The 
main goal of using this formulation is to get a high-performance AES encryptor 
core without depending on look-up tables. 

Using the composite field technique, BS arithmetic in GF(2^) is performed 
via several arithmetic blocks in GF(2^). This effectively reduces an 8-bit cal­
culation to a 4-bit one, resulting on several stages of computation with lower 
delays. That allows obtaining a sort of sub-pipelining architecture in which, 
instead of having 11 unfolded stages (each stage corresponding to a single 
round), each single round is further unfolded into several stages. Thus, BS 
is (sub)divided into four pipeline stages where the first round takes only one 
stage, each middle round takes seven stages, and the final round, in which 
MC is not required, takes six stages. 

In order to keep all stages balanced, i.e., propagating similar delays, a 
pipeline architecture with a depth of 70 stages was proposed in [113]. After 70 
clock cycles when the pipeline is full, each clock cycle will deliver a ciphered 
block. This technique achieves a throughput of 25.107 Gbps, the fastest one 
reported up to date of this book pubhcation. 

The idea of dividing computations in sub fields is further exploited to its 
extreme in [42], where 4-bit calculations are broken into several 2-bit ones. 
Authors in [42] explored as many as 432 different isomorphisms. Polynomial 
as well as normal basis were considered and using an exhaustive tree- search 
algorithm [153], those isomorphisms requiring the minimum number of gates 
were selected. Logic optimizations both at the hierarchical level of the Galois 
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Field arithmetic and at the low level of individual logic gates were performed. 
The authors also reused common expressions to save space and noticing that 
NAND gates take less space than other ones, they rewrite all expressions 
in terms of such gates. Authors reported results exploring a family of 432 
implementations depending on the selected basis ranking from 138 to 195 
gates. Such compact 5—box implementations can be used in security for low-
end customer products, such as PDAs, wireless devices and other embedded 
applications. 

9.4.2 M C / I M C Implementations on F P G A 

The MC/IMC transformations are essentially the inner-product operations 
on GF(2^) expressed in equations 9.6 and 9.9. They can be reahzed using 
byte-level or bit-level substructure sharing methods [140]. 

For an encryptor/decryptor core MC/IMC steps are implemented sep­
arately and they can be realized in a small series of instructions. In case 
of FPGAs, these instructions can be reahzed by keeping in mind the basic 
CLB structure (4 input/1 output) in order to limit path delays and to save 
space. Let us call this approach the MC/IMC standard approach. Fortunately, 
there exists another approach for which the implementation of IMC is made 
by introducing small modification before MC. The first approach is efficient 
but needs separate implementation for MC and IMC. The MC/IMC modi­
fied approach reuses some modules which eliminates the need for separated 
implementation of MC/IMC. 

MC and IMC Transformation: Standard Approach 

Observing that constant terms in equations 9.6 and 9.9 are the same, it is 
possible to consider only the inner product that generates one output byte, Z 
in MC and Zinv in IMC, for an input column {ABCD^-

Z = {01}A e {01}J5 © {02}D ® {03}E (9.19) 

Using the property of {02}D = {02}D 0 0 = {02}D ® D e D, we can 
rewrite equation 9.19 in the following manner: 

Z = {AeB®DeE)e {02}{D 0 E) 0 D) (9.20) 

We can use an efficient implementation of constant multiplication by 02 
in GF(2^) calculated by the functional block xtime{v) and extracting the 
common factor in all columns t = {A®B®D^E), then equation 9.19 can 
be rewritten as: 

Z = t^ xtime{D ^ E) ® D) (9.21) 

Therefore, full MC transformation can be efficiently computed by using only 
3 steps [21, 60]: an addition step, a doubfing step and a final addition step. 
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Let us consider a complete output row of MC transformation. Consider 
now the element of State matrix's column one a[0], a[l], a[2], and a[3], then the 
transformed MC column a'[0], a'[l]^ Ci'{2], and a'[3] can be efficiently obtained 
ajs shown in Equation 9.22. 

t ==a[0]ea[l]©a[2]ea[3]; 
V = a[0] 0 a[l]; v = xtime{v)\ a'[0] = a[0] ®v®t 
V = a[i] 0 a[2l; v = xtime{v); a'[l] = a[l] 01? 0 t 
V = a[2] 0 a[3]; v = xtime(v); a'[2] = a[2] 0 t̂  0 t 
V = a[3] 0 a[0]; v = xtime{v)] a'[3] = a[3] 0 f 0 t 

(9.22) 

Observe that Ms a common expression for the four outputs and it needs 
to be calculated just once. Next four rows are calculated in parallel and the 
circuit is the same except for some input data. Finally, the sum of three 
terms requires only eight CLBs, one per bit. Given that CLBs can compute 
4-input/l-output functions, it is possible to embed the ARK transformation, 
which is just a sum, to the final expression. This does not require additional 
CLBs and improves performance since MC and ARK are computed at the 
same stage. This is expressed in the following manner: 

Stepl 
v = a [ l ]0a[2]0a[3] 
V ^ a[0] 0 a[2] 0 a[3] 
V = a[0] 0 a[l] 0 a[3] 
V = a[0] 0 a[l] 0 a[2] 

Step2 
xto = xtime{a[0]) 
xti — xtime{a[l]) 
xt2 = xtime{a[2]) 
xts = xtime{a[3]) 

Steps 
a'[0] = k[0] 0 t> 0 xto 0 30ti; 
a'[l] = k[l] 0 i; 0 a:ti 0 xt2] 
a'l2] = k[2] 0 t; 0 2:̂ 2 0 xts; 
a'[3] = k[3] 0 t* 0 xta 0 xto] 

(9.23) 

The same strategy applied above for MC can be used to compute IMC. Con­
sidering again an input column [ABCD]^, we can expressed Zinv as: 

Zinv = {Od}A 0 {09}J5 0 {Oe}D 0 {Ob}E (9.24) 

Using the same property for constant multiphcation by {02}, we can 
rewrite Equation 9.24 in the following manner: 

Ziny = D 0 TV 0 xtime{M 0 A/') 0 xtime{D 0 E) (9.25) 

where: 
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Ti = To e xtime{xtime{To)) 

TV = Ti e xtime{xtime{B 0 E)) 

M = Ti e xtime{xtime{A ® D)) 

Full IMC transformation can be computed by using seven steps: four sum steps 
and three doubling steps. The difference is due to the fact that coefficients in 
Equation 9.9 have a higher Hamming weight than the ones in Equation 9.6. 
To overcome this drawback, we use the strategy depicted in Equation 9.25 
where IMC manipulation is restructured and seven steps are cut to five steps. 
Moreover, as explained above, lARK is embedded into IMC resulting in six 
total steps. For final round (Round 10), MC/IMC steps are not executed; 
therefore a separated implementation of ARK can be made. Let us consider 
now a complete output row of IMC transformation embedded with and lARK 
transformation, where a, and a' stand as before. 

Step 1 
t = a[0] 0 a[l] 0 a[3] 

So = xtime(a[0]); 
si = xtime{a[l])] 
52 = xtime{a[2])] 
53 = xtime{a[3])\ 

Step 2 

SQ — xtime{so); 
s'l = xtime{si)] 
52 = xtime{s2)] 
53 — xtime{ss)] 

Step 8 
U ^̂^̂  S Q KJP S-t 07 So U7 So I 

f :== So 0 S i 0So 0 S2; 
V = Si 0S2 0 S i 0S3; 
V = S2 0S3 0s f )0s ' 2 ; 
v = S3 0 So 0 s; 0s'3; 

Step 4 
u — xtime{u)\ 

Step 5 
t' ^ti ) u\ 

Step 6 
a'[0] ^a[0]®t' ®v®k[0] 
a'[l] ^a[l]®t' ®v®k\\] 
a'[2] = a[2]®t' ®v®k[2] 
a'[Z] = a [ 3 ] 0 t ' 0 - ^ 0 Zeis] 

(9.26) 

MC and IMC Transformation: Modified Approach 

The strategy utilized above for MC and IMC yields up to three and six compu­
tational steps for encryption and decryption respectively. In order to minimize 
difference in number of steps, the following strategy can be used. 

Observe that it should exist a 4 x 4 byte matrix D{x) in GF(2^) such that 
the constant MC matrix of Equation 9.6 can be related to the constant matrix 
of Equation 9.9 £ts, 

OE OB OD 09 " 
09 ^E OB OD 
OD 09 OE OB 
OB OD 09 OE 

02 03 01 01 
01 02 03 01 
01 01 02 03 
03 01 01 02 

D{x) (9.27) 
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Using the fact that both constant matrices in Equation 9.27 are the inverse of 
each other in the finite field F = GF(2^), equation 9.27 can be solved using 
the AES irreducible pentanomial m{x) = x -\-x' 
column of D{x) as shown in Equation 9.28. 

-f x^ + X + 1 [60] for the first 

0^0,0 

di,o 
0^2,0 

<^3,0. 

'OE OB OD 09" 
09 OE OB OD 
OD 09 OE OB 
OB OD 09 0^;. 

'OE 
09 
OD 
OB 

(9.28) 

where di^o^ i = 0,1,2,3 represent the four coefficients of the first column of 
D{x). It follows that Equation 9.28 has a unique solution in the finite field F 
as given in Equation 9.29, 

c^o,o-5 d i , o - 0 c/2,o = 4 d3^o = 0 (9.29) 

Hence, Equation 9.27 can be re-written as shown in Eq. 9.30. 

OE OB OD 09 • 
09 OE OB OD 
OD 09 OE OB 
OB OD 09 0^; 

02 03 01 o r 
01 02 03 01 
01 01 02 03 
03 01 01 02 

05 00 04 00 
00 05 00 04 
04 00 05 00 
00 04 00 05 

(9.30) 

Equation 9.30 suggests an efficient way to compute IMC by re-using the MC 
transformation to obtain IMC constant matrix. This is useful since constant 
elements of second matrix in the right side of Equation 9.30 have a less Ham­
ming weight as compared to the constants of the original matrix for IMC. 

9.4.3 Key Schedule Optimization 

Let w[Q], w[l]^ ^̂ [̂2], and w[S] be the four columns of the original key arranged 
into 4 x 4 matrix of bytes. Then, those four columns are recursively expanded 
to obtain 40 more columns as follows. Let the columns up to it;[z — 1] have 
been determined then, 

w[i - 4] e w[i - 1] if i mod 4 7̂  0 
w[i -4]^T{w[i -1]) otherwise 

(9.31) 

Where T{w[i — 1]) a is non-Hnear transformation based on the application 
of the S-Box to the four bytes of the column. It involves also an additional 
cyclic rotation of the bytes within the column and the addition of a round 
constant {rcon) for symmetric elimination [60]. Let w[0], i(;[l], it;[2], and w[3] 
be represented as: 
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w[0] 

w[2]=^ 

ko 
/C4 

ks 
ki2_ 

k2' 
ke 
kio 
ku 

w[l] = 

w[3] = 

'ki 

/C5 

kg 

_ki3 

' k3 

kr 
ku 
kib 

(9.32) 

Then according to the above expressions, the new columns 
w'[0], w'[l], w'[2], and it;'[3] of the next round key can be calculated as 

shown in Equation 9.33. 

k[ 

^2 

^3 

Step 1 
= ko ^ SBox{ki3) e 
= ko ^ SBox{ku)', 
= ko ^ SBox{ki5); 
= ko ^ SBoxlku); 

Step 3 
/Cg '=• Kg KB fC/^') 

rCg ^==- rCg © /C5', 

/C|o — ^ 1 0 ® ^ 6 ' 

K\\ -— Kll M3 I^Y'I 

rcon 

k' 

^13 

^14 

^15 

Step 2 
\ 1^4 ^̂  1^4 ® " 0̂' 

rCg = rC5 © /Cj5 

KQ ^^^ /Cg © /C25 

Kj =^ KY ® rCgJ 

Step 4 
= ku^k'g] 
= ku^kl)] 
= ki4 © KIQ] 

— A;i5 © kii] 

(9.33) 

But it was mentioned before that in a typical FPGA device, a 4 input 
look-up table can be configured indistinctly to handle 2, 3, or 4 input logic 
gates. Hence, we can save some time by parallelizing the above computation 
using only two steps. By applying redundant computations. Equation 9.33 
can be rewritten as it is shown in Equation 9.34 for the first row. Parallel 
computations are applied to obtain k'^^ /cg, and k[2' 

Stepl 

k'o = ko ^ SBox{k\2) © rcon\ 

Step2 
1^4 ^^^ rC4 © ^0*' 

rCg = /C4 © rCg © /CQI 

rCj2 ^^ "^4 ® rv8 ® "^12 ® ^ 0 ' 

(9.34) 

9.5 AES Implementations on F P G A s 

The basic organization of the hardware implementation of the AES algorithm 
is shown in Figure 9.13 which represents three blocks: encryptor/decryptor 
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Fig. 9.13. Beisic Organization of a Block Cipher 

unit, key scheduling unit, and a control unit for synchronizing the flow of 
data between them. 

Three main processes participate in AES: 

• Key Schedule 
• Encryption 
• Decryption 

The above three processes can be implemented using different design 
strategies showing distinct time-area tradeoffs. Depending on the application 
specification, the AES implementation can be carried out for just encryption, 
encryption/decryption on the same chip, separate encryption and decryption 
cores, or simply decryption. A separate implementation of AES encryptor or 
decryptor core would be less complex and efficient. Implementing AES encryp-
tor/decryptor core on a single chip FPGA by mixing their common blocks, 
will give out an area efficient solution but one of them, either encryption or 
decryption could be performed at a time. To develop a full duplex operation 
having a capabiHty to perform both encryption and decryption simultaneously 
would require relatively high hardware resources and consequently would be­
come a bit slow. 

For AES, key schedule implementations are different for an encryptor, de­
cryptor or encryptor/decryptor cores. The usage of internal memory resources 
of an FPGA for storing pre-computed round-keys would be a simple approach. 
For encryption/decryption processes however it is recommendable not to use 
the same key for long time. A key schedule implementation will therefore pro­
vide a user the added flexibility of selecting encryption/decryption key of his 
own choice at any given time. 

9.5.1 Architectural Alternatives for Implementing AES 

Several approaches can be followed to implement AES on hardware achieving 
variable performance results [218]. 

Iterative architectures implement a reduced number of rounds (typically 
one) in an independent fashion. This kind of architectures occupy small area 
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of circuits but at the expense of low throughput. Unrolled architectures have 
a large number of rounds that are independently implemented in hardware. 
Pipelining allows to process multiples blocks of data at the same time at 
different stages to have higher throughput. Pipelining is achieved by putting 
rows of registers among different stages. Sub-pipelining inserts registers inside 
the round transformation to create sub-stages. 
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Fig. 9.14. Iterative Design Strategy 

Block ciphers are of iterative nature, that is, n iterations of the same 
algorithm are made for a single encryption/decryption. An iterative design 
strategy would be a straightforward approach to implement the algorithm 
which executes n iterations of it by consuming n clock cycles for a single 
encryption/decryption as shown in Figure 9.14. The first round only considers 
ARK, the next nine rounds implement the four basic transformation, BS, SR, 
MC and ARK. The last round implements all but MC transformation. Clearly, 
it is an economical approach with respect to the hardware area and the cost 
has to be paid in terms of design speed which gets reduced with a factor of 
n. Such architectures would be useful for applications where hardware area is 
Hmited and speed is not more critical. 

If reconfigurable platform is the choice for the implementation of a block 
cipher, a high speed architecture would result by implementing n rounds of 
the algorithm as modern FPGAs have enough logic density to accommodate 
massive circuits. The simplest way to improve performance is to use loop un-
roUing that expand the iterative structure by rephcating rounds and conecting 
the output to the input of two consecutive rounds. This architecture is shown 
in Figure 9.15. By eliminating switches (multiplexers) and registers the accu­
mulated delay can be reduced, but the duplication of multiple rounds incurs 
in large critical paths, which implies lower clock frequencies. 

By putting registers between two consecutive rounds, which operate at 
the same clock cycle, we can achieve a pipeline architecture as shown in Fig­
ure 9.16. 
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Fig. 9.15. Loop Unrolling Design Strategy 
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Fig. 9.16. Pipeline Design Strategy 

Each round forms a pipeline stage of the data flow. The critical path is cut 
into stages although it is not diminished. The main advantage is that several 
diflferent blocks can be processed at the same time but in diff"erent rounds 
of the encryption/decryption process. Once the pipeline is filled, the output 
blocks appear a* each successive clock cycle. This allows to increase perfor­
mance multiplied by the number of rounds or stages in the pipeline (typically 
eleven). This architecture increases throughput but it becomes costly in terms 
of hardware area. 

FPGAs provide large number of flip-flops, which can be used to put sev­
eral registers inside the different steps of a single round for a pipeline design 
strategy. This improves the performance of a pipeline architecture as those 
registers shift the internal results of a round while the final results are being 
transferred to the next round. It has been observed that careful use of those 
registers inside a round causes a significant increase in design performance. 
Figure 9.17 represents a sub-pipehne design strategy. This approach increases 
the depth of the pipehne up to 40 stages. 

Although one can think that the increase in performance is folded as many 
times as the number of stages this is not completely exact. The problem is 
that all stages must have similar delays which is not true for AES. According 
to the formulation of BS, it is clear that its implementation takes longer delays 
than other basic transformations. 

To keep balanced stages and at the same time to increase the depth of 
pipeline, we can break BS calculation by a four-stage composite field approach 
as it was explained in Section 9.4.1 and it is shown in Figure 9.18. Each middle 
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Fig. 9.17. Sub-pipehne Design Strategy 

round is decomposed into seven stages, four from BS and one for SR, MC 
and ARK, each. That gives a 70 stages pipehne approach which reports high 
performance at the expense of great area requirements. 
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Fig. 9.18. Sub-pipeUne Design Strategy with Balanced Stages 

Pipehning and sub-pipehning are useful only when the cipher block is 
used in the ECB mode (electronic code book). As it was mentioned in Section 
9.3, in the Output Feedback Mode (OFB) and in the COM mode (Counter 
with CBC-MAC), pipelining looses its potential since a cipherblock is used to 
encrypt the next block. The only acceptable architecture for feed back modes 
is the iterative one, also called loop architecture. 

In the rest of this section we disccuss some alternatives for implementing 
AES. All of them are intended to be implemented on a single-chip FPGA. 
There exists multi-chip implementations but as FPGA density is increasing, 
those implementations would be less meaningful in the future. 

Varieties for AES implementation include encryptor, decryptor, and en-
cryptor/decryptor cores using iterative or pipeline approaches. Each AES im­
plementation targets specific criteria composed of factors like efficiency, cost, 
effectiveness and portability. Table 9.2 provides a roadmap to all implemented 
AES designs. It consideres four parameters: design (Sec.9.5), based on Sec­
tion (Sec. 9.4), E/D/K module (encryption/decryption/key schedule) and ar­
chitecture (encryptor, decryptor or encryptor/decryptor core). Key schedule 
implementations for encryptor, decryptor and encryptor/decryptor cores are 
ateo presented. 
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Table 9.2. A Roadmap to Implemented AES Designs 

Design 

Sec. 9.5.2 

Sec. 9.5.2 

Sec. 9.5.3 

Sec. 9.5.3 

Sec. 9.5.4 

Sec. 9.5.4 

Sec. 9.5.5 

Sec. 9.5.5 

Sec. 9.5.5 

Based on 
the Section 

Sec. 9.4.3 

Sec. 9.4.3 

Sec. 9.4.1 
Sec. 9.4.2 
Sec. 9.4.1 
Sec. 9.4.2 
Sec. 9.4.1 
Sec. 9.4.2 
Sec. 9.4.1 
Sec. 9.4.2 
Sec. 9.4.1 
Sec. 9.4.2 
Sec. 9.4.1 
Sec. 9.4.2 
Sec. 9.4.1 
Sec. 9.4.2 

E /D/K Module 

(Key schedule) 

(Key schedule) 

S-box Look-up table 
MC classic 

S-box Look-up table 
MC classic 

S-box Look-up table 
MC classic 

S-box Composite field 
MC classic 

S-box Look-up table 
Modified MC/IMC 

S-box Look-up table 
MC classic 

S-box Look-up table 
Modified IMC 

Architecture 

For iterative Sz pipeline 
encryptor cores only 

For Pipehne 
encryptor/decryptor cores 

Encryptor core 
(Iterative) 

Encryptor core 
(Pipeline) 

Encryptor/decryptor 
core (Pipeline) 

Encryptor/decryptor 
core (Pipeline) 

Encryptor/decryptor 
core (Pipeline) 
Encryptor core 

(Pipeline) 
Decryptor core 

(Pipeline) 

All designs presented in this section were completely synthesized and suc-
cesfully implement using Xihnx Foundation Tool F4.1i. All designs are either 
coded in VHDL or by using libraries of the target devices. CoreGenerator is 
another tool used for design entry. 

(9.35) 

9.5.2 Key Schedule Algorithm Implementations 

Let the user key consisting of 16 bytes be arranged as: 

ko k4 ks ki2 
ki /C5 /C9 /ci3 

^2 kQ kio ku 
ks kr kii ki3 

The process of generating next round key is optimized as discussed in 
Section 9.4.3 and is shown in Figure 9.19. The KGEN block consists of four 
similar units where each unit contains an S-Box and four XORs. The first 
block is slightly different as a constant predefined value {rcon) is XOR-ed in 
each round. As shown in Figure 9.19, last four bytes ku, Â ia, /CH, /cis, of each 
round key are substituted with the bytes from S-Box and then various XOR 
operations are performed to get the next round key. 

The KGEN block is the basic building block used to generate round Keys 
for all AES implementations. However, the key management for producing 
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Fig. 9.19. KGEN Architecture 

round keys differs depending on the particular implementation's strategy be­
ing used. For an encryptor core in iterative mode, round keys are also gener­
ated in iterative mode. For fully pipeline encryptor core, all round keys must 
be available before the encryption process starts. In a fully pipeline encryp-
tor/decryptor core, the round keys for decryption are stored in reverse order 
as that of encryption. 

Key Schedule for Iterative and Pipeline Encryptor Cores 

For an encryptor core in iterative mode, a single round key is generated. The 
round key is fed to perform ARK step and also latched to feed back to KGEN 
block in order to get prepared for processing the next round key as shown in 
Figure 9.20. A multiplexer is used to switch the user-key first time and then 
for all rounds, each round key is used to generate the next round key. 
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Fig. 9,20. Key Schedule for an Encryptor Core in Iterative Mode 
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For a fully pipelined encryptor core, the round keys must be available 
for each round permanently. The key generation process for a fully pipehne 
encryptor core is shown in Figure 9.21. The internal structure of each block is 
the same as shown in Figure 9.20, however, same block is rephcated n (number 
of rounds) times. Once the round keys are generated, there is no need to repeat 
this process again and again. The same round keys serve for the whole session. 
For a fully pipeline encryptor core, the encryption process can be started in 
a parallel way, and there is no need to wait for the completion of all round 
keys. 
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Fig. 9.21. Key Schedule for a Fully Pipeline Encryptor Core 

Key Schedule for Encryptor/Decryptor Cores 

For an encryptor/decryptor core on a single-chip FPGA, all the round keys 
must be generated and latched before the encryption/decryption processes 
start. The reason why round keys cannot be generated in a parallel way is 
because they are required in reverse order for decryption. The process of key 
generation is the same as explained above, however, round keys are stored in 
the registers for encryption and decryption in ascending or descending order 
respectively as shown in Figure 9.22. Besides this difference, the same blocks 
can be used for encryption and decryption processes. 

As shown in Figure 9.22, round keys are generated by KGEN block as 
it was explained above by introducing two modifications. The first one deals 
with the generation of select signals (s^) through an up/down counter. The 
main purpose of having those select signals is to choose the correct order for 
round keys either for the encryption or for the decryption process. 

The second modification is the addition of IMC step which is required for 
generating round keys for decryption. It is applied through a multiplexer that 
allows passing round keys directly for encryption and switches the other line 
for applying IMC operation for the decryption round keys. IMC operation is 
performed before all the round keys are latched in their registers. Obeying 
algorithm description of the AES decryption process, this modification is not 
applied to first and last round keys. 
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Fig. 9.22. Key Schedule for a Fully Pipeline Encryptor/Decryptor Core 

IMC modifications discussed in Section 9.4.2 are applied in the IMC step 
for key scheduling as shown in Figure 9.23. This module is part of the second 
AES encryptor/decryptor core to be explained in the next Section. 
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Fig. 9.23. Key Schedule for a Fully Pipeline Encryptor/Decryptor Core with Mod­
ified IMC 

9.5.3 AES Encryptor Cores - Iterative and Pipeline Approaches 

FPGAs implementations of AES encryptor cores are carried out using two 
strategies: iterative and pipeline. 

AES Encryptor Core Using an Iterative Approach 

For an iterative approach, instead of implementing n iterations of the algo­
rithm, one iteration is implemented and n clock cycles are consumed to achieve 
final output. An AES iterative approach is shown in Figure 9.24. 
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Fig. 9.24. Iterative Approach for AES Encryptor Core 

The encryption process is presented in Figure 9.24, where RNDO is a simple 
ARK step: the user-key and plain-text are added. The RNDl-9 block includes 
the four AES steps, namely, BS,SR,MC,ARK. Round keys are generated for 
all iterations of the algorithm. A multiplexer selects RNDO output at the 
first cycle and then selects the latch output for RNDl-9 during the next nine 
cycles. RNDIO is implemented separately without including the MC step. 

The latch output is connected to the RNDIO block and it is also fed-back 
to the multiplexer. All latch outputs passes through RNDIO block but only 
during the tenth cycle its output is collected giving the final result. No clock 
cycle is therefore consumed to perform RNDIO. 

Sixteen ROMs (256 x 8) are configured by using CLB in memory mode for 
performing the BS step of RNDl-9. Since RNDIO also includes the BS step, 
sixteen more ROMs are required for this step. The key scheduling algorithm 
also includes the BS step for the last four bytes of each round key (See Section 
9.5.2) as shown in Figure 9.19, occupying four extra ROM blocks. A total of 36 
ROM blocks are used for encryption part only. The SR step is combined with 
BS step. The MC and ARK steps are combined to reduce area requirements 
as discussed in Section 9.4.2. 

The design was implemented on Xilinx VirtexE FPGA devices (XCV812BEG). 
It utilizes 36 ROMs, 385 I/O Blocks (95%) and 2744 slices (28%) to achieve a 
throughput of 258.5 Mbits/sec at 20.192 MHz. An encryption is completed in 
10 clock cycles. That design does not make use of FPGA dedicated resources 
(BRAMs, etc.), hence it has a high portability and can be implemented vir­
tually in every commercial FPGA device. 

Fully Pipeline AES Encryptor Core 

For a pipeline architecture, all AES rounds are unrolled. That is achieved by 
repeating one AES round 11 times as shown in Figure 9.25. 

Similar to the iterative architecture, RNDO is just ARK step. The RNDl-
9 block includes all four steps BS, SR, MC, and ARK. The RNDIO includes 
three steps BS, SR, ARK excluding MC step. 160 ROMs are required for 10 
AES rounds instead of 16 ROMs occupied by the iterative architecture to 
perform BS step. Typically, the critical data path in pipeline architecture is 
longer, which implies that the design can run at lower speeds. However, by 
using dedicated memory modules BRAMs, as explained in the introduction 
Section, it is possible to reduce critical path delays. 
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Fig. 9.25. Fully Pipeline AES Encryptor Core 

The Virtex and VirtexE FPGA devices [397, 396] contain more than 280 
BRAMs each of 4K. Each dual port BRAM can be configured as two single 
port BRAMs which reduces half of the memory requirements. A total of 80 
BRAMs are therefore used to perform BS step. The same approach is used for 
key schedule implementation by occupying 20 BRAMs instead of 40 ROMs. 

The design is targeted to Xihnx VirtexE FPGA devices (XCV812BEG) 
and occupies 2136 CLB shces (22%), 385 I/O Blocks (95%) and 100 BRAMs 
(35%). It uses a system clock of 22.41 MHz and data is processed at a rate 
of 2868 Mbits/sec. For a fully pipeline encryptor core, encryption starts from 
first clock cycle without initial delay. The round keys are generated in parallel. 
It takes 11 clock cycles to fill the pipeline first and then encrypted blocks start 
appearing at each consecutive clock cycle. 

At first look, a comparison of the iterative and pipeHne architectures sug­
gests that the number of CLB slices occupied by the pipeline architecture 
seems to be less as compared to an iterative architecture. But this is ac­
complished at the price of occupying extra memory (100 BRAMs) needed to 
achieve desired fully pipeline architecture. The usage of dedicated memory 
resources (BRAMs) makes the pipehne design importable as it can only be 
targeted to those FPGA devices equipped with embedded memory function­
ality. 

9.5.4 AES Encryptor/Decryptor Cores- Using Look-Up Table and 
Composite Field Approaches for S-Box 

For an encryptor/decryptor core, each encryption step (BS, SR, MC, ARK) 
has its own inverse (IBS, ISR, IMC, lARK) which has to be implemented 
separately. The implementation of BS and IBS on a single chip is the most 
costly operation for AES implementation on FPGAs. In this design, two ar­
chitectures are proposed for the BS/IBS implementation on FPGAs. First 
architecture proposes high performance implementations of BS/IBS step and 
second architecture is based on on-fly architecture scheme which tries to re­
duce memory requirements. The implementation of the remaining three steps 
SR, MC, and ARK is the same as the one described in Section 9.5.3. In the 
following, BS/IBS implementation strategies are discussed. 

For encryption, BS implementation can be made by computing the Mul­
tiplicative Inverse (MI) of the input byte in GF(2^) followed by the affine 
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transformation (AF). For decryption, inverse affine transformation (lAF) is 
applied first followed by MI step. Implementing MI as look-up table requires 
memory modules, therefore, a separated implementation of BS/IBS causes the 
allocation of high memory requirements especially for a fully pipelined archi­
tecture. We can reduce such requirements by developing a single data path 
which uses one MI block for encryption and decryption. Figure 9.26 shows the 
BS/IBS implementation using single block for MI. 

There are two design approaches for implementing MI: look-up table 
method and composite field calculation. 

MI Using Look-Up Table Method 

MI can be implemented using memory modules (BRAMs) of FPGAs by stor­
ing pre-computed values of MI. By configuring a dual port BRAM into two 
single port BRAMs, 8 BRAMs are required for one stage of a pipeline ar­
chitecture, hence a total of 80 BRAMs are used for 10 stages. A separated 
implementation of AF and lAF is made. Data path selection for encryption 
and decryption is performed by using two multiplexers which are switched de­
pending on the E/D signal. A complete description of this approach is shown 
in Figure 9.27 

The data path for both encryption and decryption is, therefore, as follows: 

Encryption: MI-> AF-> SR-> MC-^ ARK 
Decryption: ISR-> IAF-> MI-^ IMC->IARK 

The design targets Xilinx VirtexE FPGA devices (XCV2600) and occupies 
80 BRAMs (43%), 386 I/O blocks (48%), and 5677 CLB sHces (22.3%). It runs 
at 30 MHz and data is processed at 3840 Mbits/s. 
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Fig. 9.27. Data Path for Encryption/Decryption 

The data blocks are accepted at each clock cycle and then after 11 cy­
cles, output encrypted/decrypted blocks appear at the output at consecutive 
clock cycles. It is an efficient fully pipeline encryptor/decryptor core for those 
cryptographic applications where time factor really matters. 

MI with Composite Field Calculation 

This is composite field approach that deals with MI manipulation in GF(2^) 
and GF(2^) instead of GF(2^) as it was explained in Section 9.4.1. It is a 
3-stage strategy as shown in Figure 9.28. 
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Fig. 9.28. Block Diagram for 3-Stage MI Manipulation 

First and last stages transform data from OF (2^) to OF(2"*) and vice versa. 
The middle stage manipulates inverse MI in GF(2'^). The implementation of 
the middle stage with two initial and final transformations is represented in 
Figure 9.29 which depicts a block diagram of the three-stage inverse multiplier 
represented by Equations 9.15 and 9.17. It is noted that the Data path for 
encryption/decryption for this approach remains the same as the change in 
this approach is introduced in the MI manipulation. 

Fig. 9.29. Three-stage to Compute Multiplicative Inverse in Composite Fields 



9.5 AES Implementations on FPGAs 281 

The circuit shown in Figure 9.30 and Figure 9.31 present a gate level 
implementation of the aforementioned strategy. 

GF^^}nultipller GF(2ymultiplier 

Fig. 9.30. GF{2^f and GF{2^) Multipliers 

Fig. 9.31. Gate Level Implementation for x^ and Xx 

The architecture is implemented on Xilinx VirtexE FPGA devices (XCV2600BEG) 
and occupies 12,270 CLB shces (48%), 386 I/O blocks (48%). It runs at 24.5 
MHz and throughput achieved is 3136 Mbits/s. The increment on CLB slices 
utilized for this design is due to the manipulation for MI instead of using 
BRAMs. The increased design complexity causes the throughput to decrease 
when compared against the first design. 

9.5.5 AES Encryptor/Decryptor, Encryptor, and Decryptor Cores 
Based on Modified M C / I M C 

Three AES cores are presented in this Section. First design is an encryp-
tor/decryptor core based on the ideas discussed in Section 9.4.2 for MC/IMC 
implementations. The second and third designs implement encryption and de­
cryption paths separately for that design. There are two main reasons for the 
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separate implementation of encryption and decryption paths. First, to real­
ize the effects of the modifications introduced in MC/IMC transformations. 
Second, most of reported AES implementations are either encryptor cores or 
encryptor/decryptor cores and few attention has been put to decryptor only 
cores. 

Encryptor/Decryptor Core 

This architecture reduces the large difference between the encryption/decryption 
time by exploiting the ideas explained in Section 9.4.2 for MC/IMC transfor­
mations. For this design, BS/IBS implementations are made by storing pre-
computed MI values in FPGA's memory modules (BRAMs) with separate 
implementation of AF/IAF as explained in Section 9.5.4. The MC and ARK 
are combined together for encryption and a small modification ModM is ap­
plied before MC-f ARK to get IMC operation as shown in Figure 9.32. Two 
multiplexers are used to switch the data path for encryption and decryption. 

DEC 
ISR lAF / 

^ HKi—rf"° 
MC + ARK \-^ OUT 

Fig. 9.32. AES Algorithm Encryptor/Decryptor Implementation 

The data path for both encryption and decryption is, therefore, as follows: 

Encryption', MI-> AF-> SR-> MC-> ARK 
Decryption: ISR-> IAF-> MI-> M o d M ^ MC-> ARK 

This AES encryptor/decryptor core occupies 80 BRAMs (43%), 386 I/O 
Blocks (48%) and 5677 sHces (22.3%) by implementing on Xilinx VirtexE 
FPGA devices (XCV812BEG). It uses a system clock of 34.2 MHz and the 
data is processed at the rate of 4121 Mbits/sec. This is a fully pipehne archi­
tecture optimized for both time and space that performs at high speed and 
consumes less space. 

Encryptor Core 

It is a fully pipeline AES encryptor core. As it was already mentioned, the 
encryptor core implements the encryption path for AES encryptor/decryptor 
core explained in the last Section. The critical path for one encryption round 
is shown in Figure 9.33. 

For BS step, pre-computed values of the S-Box are directly stored in the 
memories (BRAMs), therefore, AF transformation is embedded into BS. For 
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PLMN-TEXT-»>| BS I SR I 1 MC | ARK [ - • CIPHER-TEXT 

Fig. 9.33. The Data Path for Encryptor Core Implementation 

the sake of symmetry, BS and SR steps are combined together. Similarly MC 
and ARK steps are merged to use 4-input/l-output CLB configuration which 
helps to decrement circuit time delays. The encryption process starts from 
the first clock cycle as the round-keys are generated in parallel as described 
in Section 9.5.2. Encrypted blocks appear at the output 11 clock cycles after, 
when the pipeline got filled. Once the pipeline is filled, the output is available 
at each consecutive clock cycle. 

The encryptor core structure occupies 2136 CLB sHces(22%), 100 BRAMs 
(35%) and 386 I/O blocks (95%) on targeting Xilinx VirtexE FPGA devices 
(XCV812BEG). It achieves a throughput of 5.2 Gbits/s at the rate of 40.575 
MHz. A separated realization of this encryptor core provide a measure of tim­
ings for encryption process only. The results shows huge boost in throughput 
by implementing the encryptor core separately. 

Decryptor Core 

It is a fully pipeline decryptor core which implements the separate critical 
path for the AES encryptor/decryptor core explained before. The critical path 
for this decryptor core is taken from Figure 9.32 and then modified for IBS 
implementations. The resulting structure is shown in Figure 9.34. 

CIPHER-TEXTH ' ISR IBS 

IMC 
f 

ModM 
N 

MC ARK ' PLAIN-TEXT 

Fig. 9.34. The Data Path for Decryptor Core Implementation 

The computations for IBS step are made by using look-up tables and pre-
computed values of inverse S-Box are directly stored into the memories 
(BRAMs). The lAF step is embedded into IBS step for symmetric reasons 
which is obtained by merely rewiring the register contains. The IMC step 
implementation is a major change in this design, which is implemented by 
performing a small modification ModM before MC step as discussed in Sec­
tion 9.4.2. The MC and ARK steps are once again merged into a single module. 

The decryption process requires 11 cycles to generate the entire round 
keys, then 11 cycles are consumed to fill up the pipeline. Once the pipeline is 
filled, decrypted plaintexts appear at the output after each consecutive clock 
cycle. This decryptor core achieves a throughput of 4.95 Gbits/s at the rate of 
38.67 MHz by consuming 3216 CLB slices(34%), 100 BRAMs (35%) and 385 
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I/Os (95%). The implementation of decryptor core is made on Xilinx VirtexE 
FPGA devices (XCV812BEG). 

A comparison between the encryptor and decryptor cores reveals that there 
is no big difference in the number of CLB slices occupied by these two de­
signs. Moreover, the throughput achieved for both designs is quite similar. The 
decryptor core seems to be profited from the modified IMC transformation 
which resulted in a reduced data path. On the other hand, there is a signifi­
cant performance difference between separated implementations of encryptor 
and decryptor cores against the combination of a single encryptor/decryptor 
implementation. 

We conclude that separated cores for encryption and decryption provide 
another option to the end-user. He/she can either select a large FPGA de­
vice for combined implementation or prefer to use two small FPGA chips 
for separated implementations of encryptor and decryptor cores, which can 
accomplish higher gains in throughput. 

Table 9.3. Specifications of AES FPGA implementations 

Sec. 9.5.4 [308] 
Sec. 9.5.4 [308] 
Sec. 9.5.5 [297] 
Sec. 9.5.3 [311] 
Sec. 9.5.3 [311] 
Sec. 9.5.5 [307] 
Sec. 9.5.5 [306] 

ICore 

E/D 
E/D 
E/D 

E 
E 
E 

1 ^ 

Type 

P 
P 
P 
IL 
P 
P 
P 

Device 
(XCV) 
2600E 
2600E 
2600E 
812E 
812E 
812E 
812E 

BRAMs 

80 

100 

100 
100 
100 

CLB(S) 
Slices 
6676 
13416 
5677 
2744 
2136 
2136 
3216 

Throughput 
Mbits/s (T) 

3840 
3136 
4121 
258.5 
5193 
5193 
4949 

T/S 

0.58 
0.24 
1.73 
0.09 
2.43 
2.43 
1.54 

9.5.6 Review of This Chapter Designs 

The performance results obtained from the designs presented throughout this 
chapter are summarized in Table 9.3. 

In Section 9.5.4 we presented two encryptor/decryptor cores. The first 
one utihzed a Look-Up Table approach for performing the BS/IBS transfor­
mations. On the contrary, the second encryptor/decrpytor core computed the 
BS/IBS transformations based on an on-fly architecture scheme in GF(2'^) and 
GF(2^)^ and does not occupy BRAMs. The penalty paid was on an increment 
in CLB shces. 

The encryptor/decryptor core discussed in Section 9.5.5 exhibits a good 
performance which is obtained by reducing delay in the data paths for 
MC/IMC transformations, by using highly efficient memories BRAMs for 
BS/IBS computations, and by optimizing the circuit for long delays. 

The encryptor core design of Section 9.5.3 was optimized for both area/time 
parameters and includes a complete set-up for encryption process. The user-
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key is accepted and round-keys are subsequently generated. The results of 
each round are latched for next rounds and a final output appears at the 
output after 10 rounds. This increases the design complexity which causes 
a decrement in the throughput attained. However this design occupies 2744 
CLB shces, which is acceptable for many appHcations. 

Due to the optimization work for reducing design area, the fully pipeline 
architecture presented in Sections 9.5.3 and 9.5.5 consumes only 2136 CLB 
slices plus 100 BRAMs. The throughput obtained was of 5.2 Gbits/s. Finally, 
the decryptor core of (Sec. 9.5.5) achieves a throughput of 4.9 Gbits/s at the 
cost of 3216 CLB shces. 

9.6 Performance 

Since the selection of new advanced encryption standard was finalized on Oc­
tober, 2000, the literature is replete with reports of AES implementations on 
FPGAs. Three main features can be observed in most AES implementations 
on FPGAs. 

1. Algorithm's selection: Not all reported AES architectures implement 
the whole process, i.e., encryption, decryption and key schedule algo­
rithms. Most of them implement the encryption part only. The key sched­
ule algorithm is often ignored as it is assumed that keys are stored in the 
internal memory of FPGAs or that they can be provided through an exter­
nal interface. The FPGA's implementations at [102, 83, 63] are encryptor 
cores and the key schedule algorithm is only implemented in [63]. On the 
other hand the AES cores at [223, 366, 357] implement both encryption 
and decryption with key schedule algorithm. 

2. Design's strategy: This is an important factor that is usually taken 
based on area/time tradeoffs. Several reported AES cores adopted various 
implementation's strategies. Some of them are iterative looping (XL) [102], 
sub-pipeline (SP) [83], one-round implementation [63]. Some fully pipeline 
(PP) architectures have been also reported in [223, 366, 357]. 

3. Selection of FPGA: The selection of FPGAs is another factor that in­
fluences the performance of AES cores. High performance FPGAs can be 
efficiently used to achieve high gains in throughput. Most of the reported 
AES cores utilized Virtex series devices (XCV812, XCVIOOO, XCV3200). 
Those are single chip FPGA implementations. Some AES cores achieved 
extremely high throughput but at the cost of multi-chip FPGA architec­
tures [366, 357]. 

9.6.1 Other Designs 

Comparing FPGA's implementations is not a simple task. It would be a fair 
comparison if all designs were tested under the same environment for all im­
plementations. Ideally, performances of different encryptor cores should be 
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compared using the same FPGA, same design's strategies and same design 
specifications. 

In this Section a summary of the most representative designs for AES 
in FPGAs is presented. We have grouped them into four categories: speed, 
compactness, efficiency, and other designs. 

Table 9.4. AES Comparison: High Performance Designs 

Author 

Good et al. 
Good et al. 

ll3l 
113 

Zambreno et al.[400] 
Saggese et al.[305] 
Standaert et al.[346J 
Jarvinen et al.[157] 

Core 

ETD 
E/D 

E 
E 
E 
E 

Type 

" ~ P ~ 
P 
P 
P 
P 
P 

Device 

XC3S2000-5 
XCV2000e-8 
XC2V4000 

XCVE2000-8 
VIRTEX3200E 

XCVlOOOe-8 

Mode 

"EUB" 
E C B 

EOB 
ECB 
ECB 
ECB 

Slices 
(BRAMs) 
17425(0) 
16693(0) 
16938(0) 

5819(100) 
15112(0) 
11719(0) 

(Mbps) 
25107 
23654 
23570 
20,300 
18560 
16500 

T / A 

1.44 
1.41 
1.39 
1.09 
1.22 
1.40 

* Throughput 

In the first group, shown in Table 9.4, we present the fastest cores re­
ported up to date. Throughput for those designs goes from 16.5 Gbps to 25.1 
Gbits/s. To achieve such performances designers are forced to utihze pipelined 
architectures and, clearly, they need large amounts of hardware resources. 

Up to this book's publication date, the fastest reported design achieved 
a throughput of 25.1 Gbits/s. It was reported in [113] and it applies a sub-
pipehning strategy. The design divides BS transformation in four steps by 
using composite field computation. BS is expressed in computational form 
rather than as a look-up table. By expressing BS with composite field arith­
metic, logic functions required to perform GF(2^) arithmetic are expressed 
in several blocks of GF(2^) arithmetic. That allows obtaining a sort of sub-
pipelining architecture in which each single round is further unfolded into 
several stages with lower delays. This way, BS is divided into four subpipeline 
stages. As a result, there is a single stage in the first round, each middle 
round is composed of seven stages, while the final round, in which MC is 
not required, takes six stages. To keep balanced stages with similar delays, a 
pipeline architecture with a depth of 70 stages was developed. After 70 clock 
cycles once that the pipeline is full, each clock cycle delivers a ciphered block. 

In the second group shown in Table 9.5 compact designs are shown. The 
bigger one in [297] takes 2744 slices without using BRAMs. The most compact 
design reported in [113] needs only 264 slices plus 2 BRAMS and it has a 2.2 
Mbps throughput. In order to have a compact design it is necessary to have 
an iterative (loop) design. Since the main goal of these designs is to reduce 
hardware area, throughputs tend to be low. Thus, we can see that in general, 
the more compact a design is the lower its throughput. 
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Table 9.5. AES Comparison: Compact Designs 

Author 

Good et al.[113] 
Amphion CS5220 [7] 
Weaver et al.[375] 
Chodowick et al. 52 
Chodowick et al.[52] 
Rouvry et al.[302J 
Saqib [297J 

Core 

E 
E 
E 
E 
E 
E 
E 

Type 

IL 
IL 
IL 
IL 
IL 
IL 
IL 

Device 

XCS2S15-6 
XVE-8 

XVE600-8 
XC2530-6 
XC2530-5 
XC3S50-4 
XCV812E 

Mode 

ECB 
ECB 
E O B 

ECB 
ECB 
E O B 

EOB 

Slices 
(BRAMs) 

264(2) 
421(4) 

460(10) 
522(3) 
522(3) 
1231(2) 

2744 

T* 
(MbpsJ 

2.2 
290 
690 
166 
139 
87 

258.5 

T /A 

.008 
0.69 
1.5 

0.74 
0.62 
0.07 
0.09 

* Throughput 

Since BS is the most expensive transformation in terms of area, the idea of 
dividing computations in composite fields is further exploited in [113] to break 
4-bit calculations into several 2-bit calculations. It is therefore a three stage 
strategy: mapping the elements to subfields, manipulation of the substituted 
value in the subfield and mapping of the elements back to the original field. 
Authors in [113] explored as many as 432 choices of representation both, in 
polynomial as well as normal basis representation of the field elements. 

In the third group, a list of several designs is presented. We sorted the 
designs included according to the throughput over area ratio as is shown in 
Table 9.6^. That ratio provides a measure of efficiency of how much hardware 
area is occupied to achieve speed gains. In this group we can find iterative as 
well as pipelined designs. Among all designs considered, the design in [297] 
only included the encryption phase and the most efficient design in [223] 
reporting a throughput of 6.9 Gbps by occupying some 2222 CLE sfices plus 
100 BRAMs for BS transformation. We stress that we have ignored the usage 
of BRAMs in our estimations. If BRAMs are taken into consideration, then 
the design in [346] is clearly more efficient than the one in [223]. 

The designs in the first three categories implement ECB mode only. The 
fourth one, which is the shortest, reports designs with CTR and CBC feed­
back modes as shown in Table 9.7. Let us recall that a feedback mode requires 
an iterative architecture. The design reported in [214] has a good through­
put/area tradeoff, since it takes only 731 slices plus 53 BRAMs, achieving a 
throughput of 1.06 Gbps. 

As we have seen, most authors have focused on encryptor cores, imple­
menting ECB mode only. There are few encryptor/decryptor designs reported. 
However, from the first three categories considered, we classified AES cores ac­
cording to three different design criteria: a high throughput design, a compact 
design or an efficient design. 

"̂  In this figure of merit, we did not take into account the usage of specialized FPGA 
functionality, such as BRAMs. 
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Table 9.6 

Author 

McLoone et al. 1223] 
Standaert et al.[346J 
Saqib et al. [307] 
Saggese et al,[305] 
Amphion CS5230 17] 
Rodriguez et al. [297] 
Lopez et al [214] 
Segredo et al. [325 
Segredo et al. [325 
Calder et al. [41 
Labbe et al.[193 
Gaj et al.[102J 

Core 

E 
E 
E 
E 
E 

E/D 
E 
E 
E 
E 
E 
E 

. AES Comparison: Efficient Designs 

Type 

P 
P 
P 
IL 
P 
P 
IL 
IL 
IL 
IL 
IL 
IL 

Device 

XCV812E 
VIRTEX2300E 

XCV812E 
XCVE2000-8 

XVE-8 
XCV2600E 

Spartan 3 3s4000 
XCV600E-8 
XCV-100-4 

Altera EPFIOK 
XCVlOOO-4 
XCVIOOO 

Mode 

ECB 
ECB 
ECB 
ECB 
ECB 
ECB 
ECB 
ECB 
ECB 
ECB 
ECB 
ECB 

Slices 
(BRAMsl 
2222(100) 

542(10) 
2136(100) 

446(10) 
573(10) 

5677(100) 
633(53) 
496 lO) 
496(10) 

1584 
2151(4) 

2902 

T* 
XMbps) 

6956 
1450 
5193 
1000 
1060 
4121 
1067 
743 
417 

637.24 
390 

331.5 

T/A 

3.10 
2.60 
2.43 
2.30 
1.90 
1.73 
1.68 
1.49 
0.84 
0.40 
0.18 
0.11 

"Throughput 

Table 9.7. AES Comparison: Designs with Othe 

Author 

Fu et al [100] 
Charot et al.[49] 
Lopez et al 
Lopez et al 

214 
214 

Bae et al [15] 

Core 

E 
E 
E 
E 
E 

Type 

IL 
IL 
IL 
IL 
IL 

Device 

XCV2V1000 
Altera APEX 

Spartan 3 3s4000 
Spartan 3 3s4000 

Altera Stratix 

Mode 

"CTR: 
CTR 
CBC 
CTR 

[CCMJ 

r Modes of Operation 

Slices 
iBRAMs) 
2415 (NA) 

N/A 
1031(53) 
731(53) 

5605(LC) 

T* 
(Mbps) 

1490 
512 
1067 
1067 
285 

T/A 

0.68 
N/A 
1.03 
1.45 
NA 

* Throughput 

After having analyzed the designs included in this Section, we conclude 
that there is still room for further improvements in designing AES cores for 
the feedback modes. 

9.7 Conclusions 

A variety of different encryptor, decryptor and encryptor/decryptor AES cores 
were presented in this Chapter. The encryptor cores were implemented both 
in iterative and pipeline modes. Some useful techniques were presented for the 
implementations of encryptor/decryptor cores, including: composite field ap­
proach for BS/IBS, look-up table method for BS/IBS, and modified MC/IJVIC 
approach. 

All the architectures described produce optimized AES designs with dif­
ferent time and area tradeoffs. Three main factors were taking into account 
for implementing diverse AES cores. 
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• High performance: High performances can be obtained through the effi­
cient usage of fast FPGA's resources. Similarly, efficient algorithmic tech­
niques enhance design performance. 

• Low cost solution: It refers to iterative architectures which occupy less 
hardware area at the cost of speed. Such architectures accommodate in 
smaller areas and consequently in cheaper FPGA devices. 

• Portable architecture: A portable architecture can be migrated to most 
FPGA devices by introducing minor modifications in the design. It pro­
vides an option to the end-user to choose FPGA of his own choice. Porta­
bility can be achieved when a design is implemented by using the standard 
resources available in FPGA devices, i.e., the FPGA CLE fabric. A general 
methodology for achieving a portable architecture, in some cases, implies 
lesser performance in time. 

For AES encryptor cores, both iterative and fully pipehne architectures 
were implemented. The AES encryptor/decryptor cores accomplished the 
BS/IBS implementation using two techniques: look-up table method and; 
composite fields. The latter is a portable and low cost solution. 

The AES encryptor/decryptor core based on the modified MC/IMC is 
a good example of how to achieve high performance by using both efficient 
design and algorithmic techniques. It is a single-chip FPGA implementation 
that exhibits high performance with relatively low area consumption. 

In short, time/area tradeoffs are always present, however by using efficient 
techniques at both, design and algorithm level, the always present compromise 
between area and time can be significantly optimized. 



10 

Elliptic Curve Cryptography 

In this chapter we discuss several algorithms and their corresponding hard­
ware architecture for performing the scalar multiplication operation on elhp-
tic curves defined over binary extension fields GF{2^). By applying parallel 
strategies at every stage of the design, we are able to obtain high speed im­
plementations at the price of increasing the hardware resource requirements. 
Specifically, we study the following four diff"erent schemes for performing el-
hptic curve scalar multiplications, 

• Scalar multiplication apphed on Hessian elliptic curves. 
• Montgomery Scalar Multiplication apphed on Weierstrass elliptic curves. 
• Scalar multiplication applied on Koblitz elliptic curves. 
• Scalar multiplication using the Half-and-Add Algorithm. 

10.1 Introduct ion 

Since its proposal in 1985 by [179, 236], many mathematical evidences have 
consistently shown that, bit by bit, Elhptic Curve Cryptography (ECC) offers 
more security than any other major public key cryptosystem. 

Prom the perspective of elliptic curve cryptosystems, the most crucial 
mathematical operation is the elliptic curve scalar multiplication, which can 
be informally stated as follows. Let /c be a positive integer and P a point 
on an elliptic curve. Then we define elliptic curve scalar mutiplication as the 
operation that computes the multiple Q = kP, defined as the point resulting 
of adding P -f P -h . . . 4- P , k times. Algorithm 10.1 shows one of the most 
basic methods used for computing a scalar multiplication, which is based on a 
double-and-add algorithm isomorphic to the Horner's rule. As its name sug­
gests, the two most prominent building blocks of this method are the point 
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doubling and point addition primitives. It can be verified that the computa­
tional cost of Algorithm 10.1 is given as m — 1 point doubhngs plus an average 
of ^^^^^^ point additions. 

The security of elliptic curve cryptosystems is based on the intractability 
of the Elliptic Curve Discrete Logarithm Problem (ECDLP) that can be for­
mulated as follows. Given an elliptic curve E defined over a finite field GF{p^) 
and two points Q and P that belong to the curve, where P has order r, find a 
positive scalar k G [1, r — 1] such that the equation Q — kP holds. Solving the 
discrete logarithm problem over elliptic curves is believed to be an extremely 
hard mathematical problem, much harder than its analogous one defined over 
finite fields of the same size. 

Scalar multiplication is the main building block used in all the three funda­
mental ECC primitives: Key Generation^ Signature and Verification schemes^ 

Although elliptic curve cryptosystems can be defined over prime fields, 
for hardware and reconfigurable hardware platform implementations, binary 
extension finite fields are preferred. This is largely due to the carry-free bi­
nary nature exhibit by this type of fields, which is a valuable characteristic 
for hardware systems leading to both, higher performance and lesser area 
consumption. 

Many implementations have been reported so far [128, 334, 261, 333, 20, 
311, 327, 46], and most of them utilize a six-layer hierarchical scheme such as 
the one depicted in Figure 10.1. As a consequence, high performance imple­
mentations of elliptic curve cryptography directly depend on the efficiency in 
the computation of the three underlying layers of the model. 

The main idea discussed throughout this chapter is that each one of the 
three bottom layers shown in Figure 10.1 can be implemented using parallel 
strategies. Parallel architectures oflFer an interesting potential for obtaining a 
high timing performance at the price of area, implementations in [333, 20, 339, 
9] have explicitly attempted a parallel strategy for computing elliptic curve 
scalar multiplication. Furthermore, for the first time a pipeline strategy was 
essayed for computing scalar multiplication on a GF{P) elliptic curve in [122]. 

In this Chapter we present the design of a generic parallel architecture 
especially tailored for obtaining fast computation of the elliptic curves scalar 
multiplication operation. The architecture presented here exploits the inherent 
parallelism of two elliptic curves forms defined over GF(2"^): The Hessian form 
and the Weierstrass non-supersingular form. In the case of the Weierstrass 
form we study three diflFerent methods, namely, 

• Montgomery point multipHcation algorithm; 
• The T operator applied on Koblitz elliptic curves and; 
• Point multiplication using halving 

1 Elliptic curve cryptosystem primitives, namely, Key generation, Digital Signature 
and Verification were studied in §2.5 
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Aplications ̂  

Elliptic Curve 
Protocols ' 

Elliptic Curve ^ 
Primitives ^ 

Elliptic Curve 
Operations 

Elliptic Curve 
Arithmetic 

e-Commerce Digital Money 

Secure Communications 

Diffie-Hellman Authentification 

Key Generation SignA/erification 

;y.in'-'.'.n];.r.-;l^ni' 

; - - : v ; . y , H r ; , , ^-^HSK; 
V - ' - '• . W 

l^:--'-^J^:i'^'rr . y ^..rr..--.. 

;-^v-^-ir:---; ' , - . 

-
, r , . l , - i , . , . - . ; 

• ^ 

Fig. 10.1. Hierarchical Model for Elliptic Curve Cryptography 

The rest of this Chapter is organized as follows. Section 10.2 briefly de­
scribe the Hessian form of an elliptic curve together with its corresponding 
group law. Then, in Section 10.3 we describe Weierstrass elliptic curve in­
cluding a description of the Montgomery point multiplication algorithm. In 
Section 10.4 we present an analysis of how the ability of having more than 
one field multiplier unit can be exploited by designers for obtaining a high 
parallelism on the elliptic curve computations. Then, In Section 10.5 we de­
scribe the generic parallel architecture for elliptic curve scalar multiplication. 
Section 10.6 discusses some novels parallel formulations for the scalar mul­
tiplication on Koblitz curves. In Section 10.7 we give design details of a re-
configurable hardware architecture able to compute the scalar multiplication 
algorithm using halving. Section 10.8 includes a performance comparison of 
the design presented in this Chapter with other similar implementations pre­
viously reported. Finally, in Section 10.9 some concluding remarks are high­
lighted. 
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10.2 Hessian Form 

Chudnvosky et al. presented in [53] a comprehensive study of formal group 
laws for reduced elliptic curves and Abelian varieties. In this section we discuss 
the Hessian form of elliptic curves and its corresponding group law followed 
by the Weierstrass elliptic curve form. 

The original form for the law of addition on the general cubic was first 
developed by Cauchy and was later simplified by Sylvester-Desboves [316, 66]. 
Chudnovsky considered this particular elliptic curve form: ^^By far the best and 
the prettiest'^ [63]. In modern era, the Hessian form of Elliptic curves has been 
studied by Smart and Quisquater [335, 160]. 

Let P{x) be a degree-m polynomial, irreducible over GF(2). Then P{x) 
generates the finite field ¥q = GF{2'^) of characteristic two. A Hessian 
elliptic curve E{¥q) is defined to be the set of points (x,y,z) e GF{2'^) x 
GF{2'^) that satisfy the canonical homogeneous equation, 

x^ -\-y^ + z^ = Dxyz (10.1) 

Together with the point at infinity denoted by O and given by (1 ,0 , -1) . 
Let P — {xi^yi^zi) and Q = {x2,y2yZ2) be two points that belong to 

the plane cubic curve of Eq. 10.1. Then we define ~P = {yi,xi,zi) and 
P + Q = {x3,y3,Z3) where, 

Xs = y\^X2Z2-y2^XiZi 

2/3 = xi'^y2Z2 - X2^yizi (10.2) 
Z3 = zi'^y2X2 - Z2^yixi 

Provided that P ^ Q, The addition formulae of Eq. (10.2) might be paral-
leHzed using 12 field multipHcations as follows [335], 

Al == yiX2 \2 = xiy2 A3 ^ X1Z2 
A4 = Z1X2 A5 = 2:1̂ 2 Ae = Z2yi 
si = AiAe 52 = A2A3 S3 = A5A4 (10.3) 
tl = A2A5 t2 = A1A4 t^ = XQXS 
X3 = Si- ti y3 = S2- t2 Z3 = S3- ^3 

Whereas the formulae for point doubling are giving by 

^3 = yi {zi^ - xi^); 
2/3 ==xi{yi^-zA- (10.4) 
Z3 = zi {xi^ -yi^). 

Where 2P = {x3yy3jZ3). The doubhng formulae of Eq. (10.4) can be also 
paralleHzed requiring 6 field multiplications plus three field squarings for their 
computation. The resulting arrangement can be rewritten as [335], 

Ai^a^i^ A2 = 2/î  >^3 = zi'^\ 
A4 = xiAi A5 = yiA2 Ae =-2;iA3; fio 5") 
A7 = A5 — Ae As = Ae — A4 Ag = A4 — A5; 
X2 = yiX8 y2=Xi\7 Z2=^ZI\Q] 
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Algorithm 10.1 Doubling & Add algorithm for Scalar Multiplication: MSB-
First 
Require: k = {km-ukm-2 ,fci,/co)2 with kn-i = 1, P{x,y,z) e E{GF{2'^)) 
Ensure: Q = kP 
1 
2 
3 
4; 
5: 
6 

for i = m — 2 downto 0 do 
Q = 2 • 0; /*point doubling*/ 
if fci = 1 then 

Q = Q^P'^ /*point addition*/ 
end if 

end for 
Return Q 

By implementing Eqs. (10.3) and (10.5), one can obtain the two building 
blocks needed for the implementation of the second layer shown in Figure 10.1. 
Hence, provided that those two blocks are available, one can compute the third 
layer of Figure 10.1 by using the well-known doubhng and add Algorithm 10.1. 
That sequential algorithm needs an average of ^^^^ point additions plus m 
point doublings in order to complete one scalar multiplication computation. 

Alternatively, we can use the algorithm of Figure 10.2 that can poten­
tially be implemented in parallel since in this case the point addition and 
doubling operations do not show any dependencies between them. Therefore, 
if we assume that the algorithm of Figure 10.2 is implemented in parallel, its 
execution time in average will be of that of approximately y point additions 
plus ^ point doubhngs^. 

In Subsection 10.4 we discuss how to obtain an efficient parallel-sequential 
implementation of the second and third layers of the model of Figure 10.1. 

Algorithm 10.2 Doubhng & Add algorithm for Scalar Multiphcation: LSB-
First 
Require: /c = {km-i,km-2 ,ki,ko)2 with kn-i = 1, P{x,y,z) e E{GF{2'^)) 
Ensure: Q = kP 
1 
2: 
3 
4 
5 
6 
7 

Q = l ; i ^ = P ; 
for i = 0 to m — 1 do 

if /ci = 1 then 
0 = 0 + i?; /*point addition*/ 

end if 
R=:2R; /*point doubling*/ 

end for 
Return Q 

Because of the inherent parallelism of this algorithm, ^ point doublings compu­
tations can be overlapped with the execution of about y point additions. 
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10.3 Weierstrass Non-Singular Form 

As it was already studied in Section 4.3, a Weierstrass non-supersingular ellip­
tic curve E{¥q) is defined to be the set of points {x,y) G GF{2'^)x GF{T^) 
that satisfy the affine equation, 

y^ + xy ^ x^ -f ax^ 4- 6, (10.6) 

Where a and h € Fg,6 ^ 0, together with the point at infinity denoted by 
O, The Weierstrass elliptic curve group law for affine coordinates is given as 
follows. 

Let P — (xi^yi) and Q = (0:2,2/2) be two points that belong to the curve 
10.6 then -P = {xuxi-hyi). For all P on the curve P H-O - O + P = P . If 
Q i^ -P, then P -{-Q - (x3,2/3), where 

^3 - Wf + 4 P = Q '̂"-̂ ^ 

ys \xUixi + ^)x3+X3 P = Q '̂""-"^ 

From Eqns. (10.7) and (10.8) it can be seen that for both of them, point 
addition (when P :^ -Q) and point doubling (when P — Q), the computations 
for (x3,y3) require one field inversion and two field multiplications"^. 

Notice also (a clever observation first made by Montgomery) that the x-
coordinate of 2P does not involve the y-coordinate of P. 

10.3.1 Projective Coordinates 

Compared with field multiplication in affine coordinates, inversion is by far 
the most expensive basic arithmetic operation in GF(2^) . Inversion can be 
avoided by means of projective coordinate representation. A point P in pro­
jective coordinates is represented using three coordinates X, y , and Z. This 
representation greatly helps to reduce internal computational operations^. It 
is customary to convert the point P back from projective to affine coordinates 
in the final step. This is due to the fact that affine coordinate representation 
involves the usage of only two coordinates and therefore is more useful for 
external communication saving some valuable bandwidth. 

In standard projective coordinates the projective point (X:Y:Z) with Z^ 0 
corresponds to the affine coordinates x = X/Z and y = Y/Z. The projective 
equation of the elliptic curve is given eis: 

Y^Z -h XYZ = X^-\- aX'^Z + hZ^ (10.9) 

^ The computational costs of field additions and squarings are usually neglected. 
"* Projective Coordinates were studied in more detail in §4.5 
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10.3.2 The Montgomery Method 

Let P = {xi,yi) and Q = (^2,^2) be two points that belong to the curve of 
Equation 10.6. Then P -\- Q = (0:3,2/3) and P — Q = (2:4, ̂ 4), also belong to 
the curve and it can be shown that X3 is given as [128], 

x,=x,^ - ^ + f - ^ V 5 (10-10) 
Xi 4-^2 \Xi -\-X2) 

Hence we only need the x coordinates of P , Q and P — Q to exactly determine 
the value of the x-coordinate of the point P -\- Q. Let the x coordinate of P 
be represented by X/Z. Then, when the point 2P — (X2, —, -̂ 2) is converted 
to projective coordinate representation, it becomes [211], 

X2 = X^-^b'Z'^] 
Z2 = X^- Z 2 y2, (10.11) 

The computation of Eq. 10.11 requires one general multiplication, one 
multiplication by the constant b, five squarings and one addition. Fig. 10.3 
is the sequence of instructions needed to compute a single point doubling 
operation Mdouble{Xi, Zi) at a cost of two field multiplications. 

Algorithm 10.3 Montgomery Point Doubling 

Require: P = (Xi, - ,Z i ) € £;(GF(2"')), c such that c^ = b 
Ensure: P = 2 • P / * Mdouble(Xi, Zi)*/ 
1: T = Xf] 
2: M = c-Zf-
3: Z2 = T- Zl] 
4: M = M^; 
5: T = T^; 
6: X2=T + M; 
7: Return (^2,^2) 

In a similar way, the coordinates of P + Q in projective coordinates can 
be computed as the fraction X3/Z3 and are given as: 

Z3--
X3--

= (X1-
= x- Z: 

Z2+X-^ 
, + (Xi • 

, . Z i 
Z2)-

r-, 
{X2 

The required field operations for point addition of Eq. 10.12 are three gen­
eral multiplications, one multiplication by x, one squaring and two additions. 
This operation can be efficiently implemented as shown in Fig. 10.4. 
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Algorithm 10.4 Montgomery Point Addition 
R e q u i r e : P = (Xi, - , Zi) , Q = (X2, - , Z2) G E{GF2 
E n s u r e : P = P + Q / * Madd(Xi, Zi, X2, Z2)*/ 

1: M = (Xi -Z2) + (Z i -X2) ; 
2: Z3 - M^; 
3 
4 
5 
6 

N={Xi-Z2)-{Zi'X2y, 
M = X' Z3] 
X3 = M + iV; 
R e t u r n {Xs^Zs) 

Montgomery Point Multiplication 

A method based on the formulas for doubHng (from Eq. 10.11) and for addi­
tion (from Eq. 10.12) is shown in Fig. 10.5 [211]. Notice that steps 2.2 and 
2.3 are formulae for point doubling {Mdouble) and point addition (Madd) 
from Figs. 10.3 and 10.4 respectively. In fact both Mdouble and Madd opera­
tions are executed in each iteration of the algorithm. If the test bit ki is 4 ' , 
the manipulations are made for Madd{Xi^ Zi, X2, Z2) and Mdouhle{X2^ Z2) 
(steps 5-6) else Madd{X2,Z2,Xi,Zi) and Mdouble{Xi,Zi), i.e., Mdouble 
and Madd with reversed arguments (step 8-9). 

The approximate running time of the algorithm shown in Fig. 10.5 is 6mM 
+ ( 1 / + lOM) where M represents a field multiplication operation, m stands 
for the number of bits and / corresponds to inversion. It is to be noted that the 
factor ( 1 / -f lOM) represents time needed to convert from standard projective 
to affine coordinates. In the next Subsection we explain the conversion from 
SP to affine coordinates and then in Subsection 10.4, we discuss how to obtain 
an efficient parallel implementation of the above algorithm. 

Conversion from Standard Projective (SP) to Affine Coordinates 

Both, point addition and point doubling algorithms are presented in standard 
projective coordinates. A conversion process is therefore needed from SP to 
affine coordinates. Referring to the algorithm of Fig. 10.5, the corresponding 
affine x-coordinate is obtained in step 3: 

Whereas the affine representation for the y-coordinate is computed by step 4: 

2/3 = (x + Xi/Zi)[iXi -f xZi){X2 + XZ2) + {x^ + y){ZiZ2)]{xZiZ2)-' + y. 

Notice also that both expressions for xs and 1/3 in affine coordinates include 
one inversion operation. Although this conversion procedure must be per­
formed only once in the final step, still it would be useful to minimize the 
number of inversion operations as much as possible. Fortunately it is possi­
ble to reduce one inversion operation by using the common operations from 
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A l g o r i t h m 10 .5 Montgomery Point Multiplication 

Require: k = (/cn-i,/cn-2 ,/ci,/co)2 with kn-i = 1, P{x,y,z) E E{GF2'^) 
Ensure: Q = kP 

1: Xi = cc;, Zi = 1; 
2: X2 = x^ + 6;, Z2 = x^; 
3: for i = n — 2 downto 0 do 
4: if ki = 1 then 
5: Marfd(Xi,Zi ,X2,Z2); 
6: Mdouble\x2,Z2)\ 
7: else 
8: Madci(X2,Z2,Xi,Zi) ; 
9: Mdouble{Xi,Zi)-

10: end if 
11: end for 
12: X3 = X i / Z i ; 
13: y3 = {x + Xi/Zi)[{Xi + xZi)(X2 + xZ2)-\- {x^ + 2/)(2'iZ2)](2:^1^2)-' -f 2/; 
14: Return (3:3,2/3) 

the conversion formulae for bo th x and ^-coordinates. A possible sequence of 
the instructions from SP to afRne coordinates is given by the algori thm in 
Fig. 10.6. 

A l g o r i t h m 10 .6 S tandard Projective to Affine Coordinates 
Require: P = (X i ,Z i ) , Q = {X2, Z2), P{x,y) G E{GF2'^) 
Ensure: (0:3,2/3) /* affine coordinates */ 

1: Ai = Zi X Z2; 
2: \2 = Zi X x\ 
3: A3 = A2 + Xi\ 
4: A4 = Z2 X x\ 
5: A5 = A4 4- Xi\ 
6: Ae = A4 + X2\ 
7: A7 = A3 X Ae; 
8: As = x"^ -\-y\ 
9: A9 = Ai X As; 

10: Aio = AT + A9; 
11: All = a: X Ai; 
12: A12 = mferse(Aii) ; 
13: Ai3 = A12 X Aio; 
14: 3:3 = Ai4 = A5 X A12; 
15: Ai5 = Ai4 + x\ 
16: A16 = Ai5 X A13; 
17: 2/3 = A16 -\-y\ 
18: Return (0:3,2/3) 
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The coordinate conversion process makes use of 10 muItipHcations and 
only 1 inversion ignoring addition and squaring operations. 

The algorithm in Fig. 10.6 includes one inversion operation which can be 
performed using Extended Euclidean Algorithm or Fermat's Little Theorem 
(FLT)^ 

10.4 Parallel Strategies for Scalar Point Multiplication 

As it was mentioned in the introduction Section, parallel implementations 
of the three underlying layers depicted in Figure 10.1 constitutes the main 
interest of this Chapter. Several parallel techniques for performing field arith­
metic, i.e. the first Layer of the model, were discussed in Chapter 5. However, 
hardware resource limitations restrict us from attempting a fully parallel im­
plementation of second and third layers. Thus, a compromising strategy must 
be adopted to exploit parallelism at second and third layers. 

Let us suppose that our hardware resources allow us to accommodate up 
to two field multiplier blocks. Under this scenario, the Hessian form point 
addition primitive (0:3 '. ys - Z3) = {xi : yi : zi) -\- {x2 ' y2 - ^2) studied in 
Section 10.2 can be accomplished in just six clock cycles as^. 

Cycle 1 
Cycle 2 
Cycle 3 
Cycle 4 
Cycle 5 
Cycle 6 
Cycle 6. 

Ai = y i • X2; 

A3 = Xi - Z2] 

A5 = zi - ^ 2 ; 

Si = Ai • Ae; 

S3 = A5 • A4; 

^2 = Ai • A4; 

a : 0:3 = Si - t i ; y3 = S2- t2 

A2 = a;i • 2/2; 

X4 = Zi' X2\ 

Ae == Z2 -yw 
S2 = A2 • A3; 

ti = A2 • A5; 

^3 — Ae • A3; 

^3 = S3 - ^ 3 ; 

Similarly, the Hessian point doubling primitive, namely, 2{x\ \ y\ \ z\) = 
(x2 '- y2 '• Z2) can be performed in just 3 cycles as*̂ . 

Cycle 1 : Ai = a î̂ ; A2 =-yi^; A3 == 2̂ 1̂ ; 
Cycle l . a : A4 = xi • Ai; A5 = ?/i • A2; 
Cycle 2 : Ae = ^1 • A3; Z2 = Zi • (A4 - A5); 
Cycle 2.a : A7 = A5 - Ae; As = Ae - A4; 
Cycle 3 : X2 = yi' As; y2 = ^1 • A7; 

The same analysis can be carried out for the Montgomery point multipli­
cation primitives. The Montgomery point doubling primitive 2(Xi : - \ Zi) = 

^ Efficient multiplicative inverse algorithms were studied in §6.3. 
^ Because of their simplicity, the arithmetic operations of Cycle 6.a can be com­

puted during the execution of Cycle 6. 
^ Due to the simplicity of the arithmetic operations included in cycles 1 and 2.a 

above, those operations can be merged with the operations performed in cycles 
l.a and 2, respectively. 
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{X2 : - : Z2) when using two multiplier blocks can be accomplished in just 
one clock cycle as, 

Cycle 1: T = Xf; M = c • Z?; Z2 - T • Z?; 
Cycle l . a : X 2 = r 2 + M2; ^^^'^^^ 

Whereas, the Montgomery point addition primitive {Xi : — : Zi) = {Xi : — : 
Zi) 4- {X2 : — : Z2) when using two multiplier blocks can be accomplished in 
just two clock cycles as, 

Cycle 1 : ii = (Xi • Z2); 2̂ - (^1 • ^2); 
Cycle l .a : M = 1̂ 4- 2̂; ^1 - M^; 
Cycle 2 : N = ti -12; M = x - Zi] ^ ^^ 
Cycle 2.a: Xi ^ M-i-N] 

If two multiplier blocks are available, we can choose whether we want to 
parallehze the second or the third Layer of the model shown in Fig. 10.1. 

Algorithm 10.5, i.e. the third Layer of Fig. 10.1, can be executed in paral­
lel by assigning one of our two multiplier blocks to compute the Montgomery 
point addition of Algorithm 10.4, and the other to perform the Montgomery 
point doubling of Algorithm 10.3. Then, the corresponding computational cost 
of point addition and point doubhng primitives become of four and two field 
multiplications, respectively. In exchange, steps 5-6 and 8-9 of Algorithm 10.5 
can be performed in parallel. Since those steps can be performed concurrently 
their associated execution time reduces to about 4 field multiplications. There­
fore, the execution time associated to Algorithm 10.5 would be equivalent to 
4m field multiphcations^. 

Alternatively, the second layer can be executed in parallel by using our two 
multiplier blocks for computing point addition and point doubling in just 2 
and 1 cycles, as it was shown in Eqs.(10.14) and (10.13), respectively. However, 
this decision will force us to implement Algorithm 10.5 (corresponding to the 
third layer of Fig. 10.1) in a sequential manner. Therefore, the execution time 
associated to Algorithm 10.5 would be equivalent to 3m field multiplications. 

If our hardware resources allow us to implement up to four field multiplier 
blocks, then we can execute both, the second and third Layers of Fig. 10.1 in 
parallel. In that case the execution time of AlgorithmlO.5 reduces to just 2m 
field multiplications. 

It is noticed that this high parallelism achieved by the Montgomery point 
multiplication method cannot be achieved by the Hessian form of the Elliptic 
curve. 

Table 10.1 presents four of the many options that we can follow in order to 
parallehze the computation of scalar point multiphcation. The computational 
costs shown in Table 10.1 are normalized with respect to the required number 

Since we can execute concurrently the procedures Mdouble and Madd the exe­
cution time of the former is completely overlapped by the latter. 
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Table 10.1. GF{2'^) Elliptic Curve Point Multiplication Computational Costs 

Strategy 
2nd 
Layer 
Sequential 
Sequential 
Parallel 
Parallel 

3rd 
Layer 
Sequential 
Parallel 
Sequential 
Parallel 

Req. No. 
of Field 
Mults. 

1 
2 
2 
4 

EC Operation Cost 
Hessian Form 

Doubling] Addition 
6 M 
6 M 
3 M 
3 M 

1 2 M 
1 2 M 

6 M 
6 M 

Equivalent 
Time 
Costs 

12mM 
9m M 
QmM 

ImM 

EC Operation Cost 
Montgomery Algorithm 
DoublingI Addition 

2 M 
2 M 
I M 

M 

4 M 
4 M 
2 M 
2 M 

Equivalent 
Time 
Costs 

QmM 
Am,M 
3mM 

2m M 

of field multiplication operations (since the computation time of squaring 
operations is usually neglected in arithmetic over GF(2"^)). 

Notice that the computation times of the Hessian form has been estimated 
assuming that the scalar multiplication has been accomplished by executing 
Algorithm 10.2. For instance, the execution time of the Hessian form in the 
fourth row of Table 10.1 has been estimated as follows, 

rm. ^ . ^ T-. r̂  '^ r^ A 3m , ^ 6m , ^ 9m , ^ 
Time Cost = —PD + —PA = —-M 4- — - M = —-M. 

2 2 2 2 2 

Due to area restrictions we can afford to accommodate up to two fully par­
allel field multipliers in our design. Thus, we can afford both, second and third 
options of Table 10.1. However, third option is definitely more attractive as 
it demonstrates better timing performance at the same area cost. Therefore, 
and as it is indicated in the third row of Table 10.1, the estimated computa­
tional cost of our elliptic curve Point multiplication implementation will be of 
6m field multiplications in Hessian form. It costs only 3m field multiplications 
using the Montgomery algorithm for the Weierstrgiss form. 

In the next Section we discuss how this approach can be carried out on 
hardware platforms. 

10.5 Implementing scalar multiplication on 
Reconfigurable Hardware 

Figure 10.2 shows a generic structure for the implementation of elliptic curve 
scalar multiplication on hardware platforms. That structure is able to imple­
ment the parallel-sequential approach listed in the third row of Table 10.1, 
assuming the availability of two GF(2^) multiplier blocks. 

In the rest of this Section, it is presupposed that two fully-parallel GF(2^^^) 
Karatsuba-Ofman field multipliers can be accommodated on the target FPGA 
device. 

The architecture in Figure 10.2 is comprised of four classes of blocks: 
field multipliers. Combinational logic blocks and/or finite field arithmetic (i.e. 
squaring, etc.), Blocks for intermediate results storage and selection (i.e. reg­
isters, multiplexers, etc.), and a Control unit (CU). 
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Fig. 10.2. Basic Organization of Elliptic Curve Scalar Implementation 

A Control Unit is present in virtually every hardware design. Its main 
responsibility is to control the dataflow among the different design's modules. 
Design's main architecture, on the other hand, is responsible of computing all 
required arithmetic/logic operations. It is frequently called Arithmetic-Logic 
Unit (ALU). 

10.5.1 Arithmetic-Logic Unit for Scalar Multiplication 

Figure 10.3 shows the arithmetic-logic unit designed for computing the scalar 
multiplication algorithms discussed in the preceding Sections. It is a generic 
FPGA architecture based on the parallel-sequential approach for kP compu­
tations discussed before. 

In order to implement the memory blocks of Figure 10.2, fast access 
FPGA's read/write memories BlockRAMs (BRAMs) were used. As it was 
studied in Chapter 3, a dual port BRAM can be configured as a two sin­
gle port BRAMs with independent data access. This special feature allows 
us to save a considerable number of multiplexer operations as the required 
data is independently accessible from any of the two available input ports. 
Hence, two similar BRAMs blocks (each one composed by 12 BRAMs) pro­
vide four operands to the two multiplier blocks simultaneously. Since each 
BRAM contains 4k memory cells, two BRAM blocks are sufficient. The com­
bination of 12 BRAMs provides access to a 191-bit bus length. All control 
signals (read/write, address signals to the BRAMs and multiplexer enable 
signals) are generated by the control unit (CU). A master clock is directly fed 
to the BRAM block which is afterwards divided by two, serving as a master 
clock for the rest of the circuitry. The external multiplexers apply pre and post 
computations (squaring, XOR, etc.) on the inputs of the multipliers whenever 
they are required. 



304 10. Elliptic Curve Cryptography 

M1 

MUL 
GF(2"^) 

^ tl 
MUL 

GF(2'^) M^ 
a 

f=ts T2=C 

T1=X 

Xi 

Zi 

J-i 

LK-S4 

Lr^5!n-[j 
N-So 

V 

T2=C 

Ti=x 
Xi 

Yi 
Zi 

IP 
M-Sa 

31 M2 

Control Unit 

Fig. 10.3. Arithmetic-Logic Unit for Scalar Multiplication on FPGA Platforms 

Let us recall that we need to perform an inversion operation in order to 
convert from standard projective coordinates to affine coordinates ^. A squarer 
block "Sqrinv" is especially included for the sole purpose of performing that 
inversion. As it was explained in Section 6.3.2, the Itoh-Tsujii multiphcative 
inverse algorithm requires the computation of m field squarings. This can 
be accomplished by cascading several squarer blocks so that several squaring 
operations can be executed within a single clock cycle (See Fig. 6.11 for more 
details). 

In the next Subsection we discuss how the arithmetic logic unit of Figure 
10.2 can be utihzed for computing a Hessian scalar multiplication. 

10.5.2 Scalar multiplication in Hessian Form 

According to Eq. (10.3) of Section 10.2 we know that the addition of two points 
in Hessian form consists of 12 multiplications, 3 squarings and 3 addition 
operations. Implementing squaring over GF(2^) is simple, so we can neglect 
it. Using the parallel architecture proposed in Figure 10.3, point addition can 
be performed in 6 clock cycles using two GF(2^®^) multiplier blocks. The 
Hessian curve point addition sequence using two multiplier units is specified 
in Eq. (10.13). Table 10.2 shows that sequence in terms of read/write cycles. 

^ This conversion is required when executing a Montgomery point multiplication 
in Standard Projective coordinates 
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Referring to the architecture of Figure 10.3, M l and M2 are two memory 
(BRAMs) blocks, each one composed of two independent ports PTl and PT2. 

It is noticed that the inputs/outputs of the multipliers are different from 
those read/write values at the memory blocks. This is due to pre or post 
computations required during the next clock cycle. Table 10.2 lists computed 
values during/after multiplications for both, the read and write cycles. 

Table 10.2. Point addition in Hessian Form 
Cycle 

1 
2 
3 
4 
5 
6 

Read 
Ml 

PTl 

Yi 
Xi 
Zi 
Ai 
A2 
As 

PT2 

Xi 
Zi 
Zi 
A2 
Ai 
Ae 

M2 
P T l 

^ 2 

^ 2 

Y2 
Ae 
A3 
A4 

PT2 

¥2 
X2 
Yi 

As 
A4 
A3 

Write 
M1/M2 

PTl 

Ai 
A3 
As 
X3 

ys 
Z3 

PT2 

A2 
A4 
Ae 

-
-
-

Similarly, Hessian point doubling implementation of Eq. (10.13) consists 
of 6 multiphcations, 3 squarings and 3 additions. Table 10.3 describes the 
algorithm flow implemented using the same architecture ( Figure 10.3). 

Table 10.3. Point doubling in Hessian Form 

Cycle 

1 
2 
3 

Read 
Ml 

PTl 

Xi 
A9 
A8 

PT2 

Yi 
A4 
A9 

M2 
PTl 

Xi 
Zi 
Yi 

PT2 

Yi 
Zi 
Xi 

Write 
M1/M2 

PTl 

A4 
Z2 

X2 

PT2 

Ag 
As 
2/2 

Let m represents the number of bits and M denotes a single finite field 
multiplication. Then the number of multiplications for one point addition 
and point doubfing are 6M and 3M, respectively. Referring to the algorithm 
in Figure 10.1, average of {^)QM and 3mM multiphcations are needed for 
computing all m bits of the vector k. Thus, 6mM are the total multiplication 
operations required for computing kP scalar multiplication. 

In the case of m = 191 bits, the total number of field multiplications re­
quired by the algorithm are 1146. Let T be the minimum clock period allowed 
by the synthesis tool. Then, 1146 x T is the total time required for completing 
one Hessian elliptic curve scalar multiplication. 
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10.5.3 Montgomery Point Multiplication 

Let us consider now Algorithm 10.5, where each bit of the scalar k are scanned 
from left to right (i.e., MSB-First). 

At every iteration (regardless if the bit scanned is zero or one), both 
point addition (Madd) and point doubling {Mdouble) operations must be 
performed. However, notice that the order of the arguments is reversed: if the 
tested bit is T , Mdouble{X2^Z2)^ Madd{Xi, Zi^ X2, Z2) are computed and 
Mdouble{Xi, Zi), Madd{X2, Z2, Xi.Zi) otherwise. Algorithms 10.4 and 10.3 
describe the sequence of instructions for Madd and Mdouble operations, re­
spectively, whereas Eqs. (10.14) and (10.13) specify how those primitives can 
be accomplished in 2 and 1 cycles, respectively^^. 

Tables 10.4 and 10.5 describe the multiplications performed for both point 
addition and point doubling operations in three normal clock cycles when the 
scanned bit is ' 1 ' or '0' respectively. We kept the same notations used in al­
gorithms 10.4 and 10.3 for point addition and point doubling, respectively. 
Ml and M2 represent two memory blocks (BRAMs) each one with two inde­
pendent ports PTl and PT2. Some required arithmetic operations (squaring 
etc.) need to be performed during read/write cycles at the memories before 
and after the multiplication operations. 

Table 10.4. kP Computation, if Test-Bit is '1 ' 

Cycle 

1 
2 
3 

Read 
Ml 

P T l 

Xi 
X2 
P 

PT2 

Z2 

Z2 

Q 

M2 
PTl 

Zi 
Zi 

Q 

PT2 

X2 
Tx 
T2 

Write 
M1/M2 

PTl 

P 
^ 2 = ^ 3 

Xi=X' 

PT2 

Q 
X2=X3 
Zi=Z' 

The resulting vectors Xi,Zi,X2,Z2, are updated at the memories after the 
completion of point addition and doubling operations using 3 clock cycles per 
each bit. Therefore, the total time for the whole 191-bit scalar is 191 x 3 x T, 
where T represents design's maximum allowed frequency. 

10.5.4 Implementation Summary 

All finite field arithmetic blocks and then the kP computational architecture 
were implemented on a VirtexE XCV3200e-8bg560 device by using Xilinx 
Foundation Tool F4.1i for design entry, synthesis, testing, implementation 
and verification of results. Table 10.6 lists timing performances and occupied 
resources by the said architectures. 

°̂ Provided that two multiplier units are available. 
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Table 10.5. kP Computation, If Test-Bit is '0' 

Cycle 

1 

2 

3 

Read 
M l 

P T l 

X2 

Xi 

P 

PT2 

Zi 

Zi 

Q 

M2 
P T l 

Z2 

Zi 

Q 

P T 2 

Xi 

Ti 

T2 

Write 
M1/M2 

P T l 

P 

Zi=Z3 
X2=X' 

P T 2 

Q 
X i = X 3 
Z2=-Z' 

Elliptic curve point addition and point doubling do not participate directly 
as a single computational unit in this design; however parallel computations 
for both point addition and point doubling are designed together as it was 
shown in Algorithm 10.1. 

Both point addition and point doubhng occupy 18300 (56.39 %) CLB sHces 
and it takes IOO.I77S (at a clock speed of 9.99 MHz) to complete one execution 
cycle. As it was mentioned in Section 10.2, when using two field multiplier 
units, six and three clock cycles are needed for computing point addition and 
point doubling in Hessian form, respectively. 

The total consumed time for computing each iteration of the algorithm of 
Figure 10.1 is 900.9?] if the corresponding bit is one and 300.37/5 otherwise. 
Therefore, scalar point multiphcation in Hessian form is the time needed to 
complete m/2 point additions (in average) and m point doubhngs. For our 
case m ^ l 9 1 , the total time is therefore (191/2) • (600.617) + 191 • (300.37/) = 
114.71/isii. 

Similarly, two and one clock cycles are needed to perform Montgomery 
point addition and point doubling, respectively. The associated executing time 
is thus, 200.17/5 and 100.27/5 for point addition and point doubling respectively. 
Each iteration of the algorithm thus consumes 300.37/5 for 3 clock cycles. In the 
case of m = 191, the total time needed for computing a scalar multiplication 
is 191(300.3) = 57/x5. 

Inversion is performed at the end of the main loop of Algorithm 10.5. It 
takes 28 clock cycles to perform one inversion in GF{2^^^) occupying 1312 
CLB slices. The CLB slices for inversion in fact are the FPGA resources oc­
cupied for squaring operations only and the multiplier blocks are the same 
used for point addition and point doubling. The total conversion time (See 
Algorithm 10.6) is therefore 28 • IOO.I7/ -f 10 • IOO.I7/ = 3.8/i5. Therefore, the 
execution time for algorithm 10.5 is given as the sum of the time for comput­
ing the scalar multiplication and the time to perform coordinate conversion 
namely, 

57.36+ 3.8 = 61.16/X5. 

It is noted that we did not include a conversion from projective to affine coordi­
nates in the case of the Hessian form. 
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The architecture for elliptic curve scalar multiplication in both cases (Hes­
sian form & Montgomery point multiplication) occupies 19626 (60 %) CLB 
slices, 24 (11%) BRAMs and performs at the rate of lOO.lrys (9.99 MHz). 
The design for GF(2i^i) Karatsuba-Ofman Multiplier occupies 8721 (26.87%) 
CLB slices, where one field multiphcation is performed in 43.lrjs. Table 10.6 
summarizes the design statistics. 

Table 10.6. Design Implementation Summary 

Design 

Inversion in GF{2^^^) 
Binary Karatsuba Multiplier 
1 Field Multiplication 
Point addition -f- Point 
doubling in Hessian Form 
Point Multiplication 
in Hessian form 
Point addition 4- Point doubling 
(Montgomery Point Multiplication) 
Point Multiplication 
(Montgomery Point Multiplication) 

Device 
(XCV) 

3200E 
3200E 

3200E 

3200E 

3200E 

3200E 

CLB 
slices 

1312 
8721 

18300 

19626 & 
24 BRAMs 

18300 

19626 k 
24 BRAMs 

Timings 

2.8?7s 
AS.lrjs 
lOO.lrjs 

300.3r?s (if bit = '0') 
900.9r/s (if bit = '1') 

114.71MS 

300.3?7s 
(3 Multiplications) 

61.16/xs 

10.6 Koblitz Curves 

First proposed in 1991 by N. Koblitz [180], Koblitz Elliptic Curves have been 
object of analysis and study since then, due to their superb usage of endomor-
phism via the Frobenius map for increasing the elliptic curve arithmetic com­
putational performance [180, 133]. Across the years, several efforts for speed­
ing up elliptic curve scalar multiplication on Koblitz curves have been reported 
both, in hardware and software platforms [13, 384, 216, 133, 132, 339, 340]. 

Let P{x) be a degree-m polynomial, irreducible over GF{2). Then P{x) 
generates the finite field F^ = GF{2'^) of characteristic two. A Kobhtz elliptic 
curve Ea{¥q)^ also known as Anomalous Binary Curve (ABC) [180], is de­
fined as the set of points {x,y) e GF{2'^) x GF{2'^), that satisfy the Kobhtz 
equation. 

Ea'.y'^ + xy = x^ -^ax^ -\-1, (10.15) 

together with the point at infinity denoted by O. It is customary to use the 
notation Ea where a G {0,1}. It is known that Ea forms an addition Abelian 
group with respect to the elliptic point addition operation^^. 

^̂  Notice that since Eq. (10.15) assumes a 6 {0,1}, then Koblitz curves are also 
defined over GF{2). 
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So far, most works have strived for reducing the cost associated to the 
double-and-add method by following two main strategies: Reducing the com­
putational complexity of both, point addition and point doubling primitives 
and; reducing the number of times that the point addition primitive is invoked 
during the algorithm execution. Recently, the idea of representing the scalar A; 
in mixed base rather than the traditional binary form has been proposed. This 
way, point doubUngs can be partially substituted with advantage by tripling, 
quadruphng and even halving a point [171, 69, 12, 13, 385, 176]. 

In this Section we discuss yet another approach for speeding up the com­
putational cost of scalar multiplication on Koblitz curves: the usage of parallel 
strategies. In concrete, we show that the usage of the T~^ Frobenius operator 
can be successfully applied in the domain of Koblitz elliptic curves giving an 
extra flexibility and potential speedup to known elliptic curve scalar multipli­
cation procedures. 

The rest of this Section is organized as follows. In Subsection 10.6.1 
some relevant mathematical concepts are briefly outlined. Then, in Subsec­
tion 10.6.2 several parallel formulations of the scalar multiplication on Koblit2 
curves are presented. Subsection 10.6.3 discusses relevant implementation as­
pects of the proposed parallel algorithms for hardware platforms. 

10.6.1 The r and T~^ Frobenius Operators 

In a field of characteristic two, the map between an element x and its square 
x^ is called the Frobenius map. It can be defined on elliptic points as: 

T{x,y) :={x'^,y^). 

Similarly, we can define the r~^ Frobenius operator as, 

r-'^{x,y) := {\/x,y/y). 

In binary extension fields, the Lagrange theorem^^ dictates that A^"^ — A for 
any arbitrary element A e GF{2'^), which in turn imphes that for any i G Z, 
A^ = A^ . Notice also that by applying the square root operator in both 
sides of Fermat little theorem identity, we obtain, V~A. — A? = A^"^ , 
which can be generahzed as, A^ ' = A'^'^ ' for i = 0 , 1 , . . . , m. 

Using above identities, it is easy to show that the Frobenius operator 
satisfies the properties enumerated in the next theorem. 

Theorem 10.6.1 The Frobenius operator satisfies the following properties, 

1, 
2. 
3. 

I 

TT ^ = r V = 1 
r' r^r^" '^^^, forieZ 
r-' = r^-% for i = 1,2,"-
r' = r - ( ^ - ^ ) , / o r z = l ,2,-

,m — 1 
• • ,m — 1 
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T ^ = T ^ = T 

Fig. 10.4. An illustration of the r and r ^ Abelian Groups (with m an Even 
Number) 

In other words, the r and the r~^ operators generate an Abelian group 
of order m as is depicted in Fig. 10.4. Considering an arbitrary element 
A G GF{2'^), with m even, Fig. 10.4 illustrates, in the clockwise direction, all 
the m elhptic curve points that can be generated by repeatedly computing the 
r operator, i.e., r^P for z = 0,1, • • • , m— 1. On the other hand, in the counter­
clockwise direction, Fig. 10.4 illustrates all the m points that can be generated 
by repeatedly computing the r~^ operator, i.e., r~^P for 2 = 0,1, • • • , m — 1. 

Frobenius Operator Applied on Koblitz Curves 

Koblitz curves exhibit the property that, if P = (x, y) is a point in Ea then 
so is the point (x^,y^) [338]. Moreover, it has been shown that, (x'^,^^) + 
2{x,y) = /i(x^,^^) for every (x,y) on Ea, where (i = (-1)^"^. Therefore, 
using the Frobenius notation, we can write the relation, 

r{rP) + 2P = (r2 + 2)P - firP. (10.16) 

Notice that last equation impUes that a point doubling can be computed 
by applying twice the r Frobenius operator to the point P followed by a point 

^^ Lagrange theorem can be used to prove the Fermat's little theorem and its gen­
eralization Euler's theorem studied in Chapter 4 
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addition of the points /j^rP and r'^P, Let us recall that the Frobenius operator 
is an inexpensive operation since field squaring is a linear operation in binary 
extension fields. 

By solving the quadratic Eq. 10.16 for r, we can find an equivalence be­
tween a squaring map and the scalar multiplication with the complex number 
r — ~-̂  Y ~'̂ . It can be shown that any positive integer k can be reduced 
modulo T^ — 1. Hence, a r-adic non-adjacent form ( T N A F ) of the scalar k 
can be produced as, 

i-i 

k=^ Y^UiT^^ 
i=0 

where each ui G {0, ±1} and / is the expansion's length. The scalar multiplica­
tion kP can then be computed with an equivalent non-adjacent form (NAF) 
addition-subtraction method. 

Standard (NAF) addition-subtraction method computes a scalar multi-
phcation in about m doubles and m/3 additions [129]. Likewise, the T N A F 
method implies the computation of I r mappings (field squarings) and 1/3 
additions. 

On the other hand, it is possible to process uj digits of the scalar k at 
a time. Let a; > 2 be a positive integer. Let us define ai = i mod r^ for 
i G [1,3, 5 , . . . , 2'̂ ~-̂  — 1]. A width-o; rNAF of a nonzero element k is an 
expression k — Y^JIQUIT'^ where each ui G [0, ± a i , ± a 3 , . . . , ±a2w-i_i] and 
ui-i 7̂  0. It is also guaranteed that at most one of any consecutive u coeffi­
cients is nonzero. Therefore, the CJTNAF expansion of k represents an equiv­
alence relation between the scalar multiplication kP and the expression, 

UQP + TUiP + T'^U2P + . . . + r^-^ui-iP (10.17) 

In [338, 337, 26] it was proved that for a Kobhtz elhptic curve Ea[GF{2'^)], 
the length / of a rNAF expansion, is always less or equal than m 4- a -h 3, 

^NAF < m 4- a -f- 3 

Using the properties enounced in Theorem 10.6.1, Equation (10.17) can be 
reduced even further whenever I > m. 

Indeed, given the fact that r^+^ — r^ for z = 0,1, • • • ,m — 1, we can 
reduce all the expansion coefficients ui greater than m as follows, 

m-fa+2 m—1 m + a + 2 a-\-2 m — l 

k= Yl ^̂ '̂ ' ^ XI ^̂'̂^ "̂  XI '^^^^ = X^ ('"i + ^m+i) '̂ ' + XI '^^^' 
1=0 i=Q i=m i=0 i = a + 3 

(10.18) 
Furthermore, using property 4 of Theorem 10.6.1, it is always possible to 

express a length m CJTNAF expansion in terms of the r~^ operator as follows. 
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m—l 

k-=Yl ^'^' "" ('̂ 0 "̂  '^1'^^ + ^2T^ H- . . . + Um-ir"^'^) (10.19) 

m—l 

i=0 

Summarizing, Koblitz elliptic curve scalar multiplication can be accom­
plished by processing eUiptic point addit ions and r a n d / o r r~^ mappings. 
Hence, a Koblitz multiplication algori thm is usually divided into two main 
phases: a u;-TNAF expansion of the scalar /c; and the scalar multiplication 
itself based on the r Frobenius operator and eUiptic curve addit ion sequences. 

1 0 . 6 . 2 C J T N A F Scalar M u l t i p l i c a t i o n in T w o P h a s e s 

A l g o r i t h m 10 .7 a ; rNAF Expansion[133, 132] 

Require: Curve Parameters; representative elements: a^ = Pu + JUT for 
u = 1,3,...,2^^-^ - 1 ; 5 ; ^ca/ar/u. 

Ensure: u)rNAF{k) 
1 
2 
3 
4 
5 
6 
7; 
8; 
9: 

10 
11: 
12 
13 
14; 
15 
16: 
17; 

Compute (ro,r i) <— k mod 6; 
for {i = 0; (ro ^ 0) OR ( n y^ 0); i = i -\- 1} do 

if ro is odd then 
li —̂ ro + ritw mods 2^; 
if u > 0 then 

else 
^ < 1; u < u] 

end if 
ro ^ ro - ^Pu] r i ^ n - .̂ 7 ;̂ Wi <— ^Q:^; 

else 
Ui <— 0; 

end if 
( r o , n ) ^ ( n + ' i a , ^ ) ; 

end for 
/ = i; 
Return /, (tti_i,Ui_2, • • • ,1x1,^0); 

Algorithms 10.7 and 10.8 show the adapta t ions of Solinas procedures as 
they were reported in [132, 133]. 

It should be noticed t ha t Algorithm 10.7 produces the C J T N A F expansion 
coefficients from right to left, i.e., the least significant coefficient UQ is first 
produced, then ui and so on, until the most significant coefficient, namely, 
w/-! , is obtained. Algorithm 10.8 on the contrary, computes the expression 
10.17 from left to right, i.e., it s ta r t s processing ui-i first, then ui-2 until it 
ends with the coefficient UQ. 
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Algorithm 10.8 a;TNAF Scalar Multiplication [133, 132] 

Require: uTNAF{k) = J2^Zluir\ P e Ea{F2m). 
Ensure: kP 

1: Precompute Pu = ctuP, for u e { l , 3 , 5 , ....,2^'"^ — l} where ai — i mod r^' for 
ie {1 ,3 , . . . ,2^-^ - 1 } ; 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Q^O; 
for i from / — 1 downto 0 do 

Q < - r Q ; 
if Ui y^ 0 then 

Find u such that au = i t^i; 
if li > 0 then 

Q^Q + Pu\ 
else 

Q^Q-P-u; 
end if 

end if 
end for 
Return Q; 

The combination of those two characteristics is unfortunate as it forces 
us to work in a strictly sequential manner: First Algorithm 10.7 must be 
executed and only when it finishes, Algorithm 10.8 can start the computation 
of the Koblitz curve scalar multiplication operation. However, invoking Eq. 
(10.19), we can formulate a parallel version of Algorithm 10.8 as is shown 
in Algorithm 10.9. If two separated point addition units are available, the 
expected computational speedup of the parallel version in Algorithm 10.9 is 
of about 50 % when compared with its sequential version. 

10.6.3 Hardware Implementation Considerations 

In an effort to minimize the number of clock cycles required by Algorithm 10.8 
when implemented in a hardware platform, we first proceed to pre-process the 
width-C(;rNAF expansion of coefficient k as described below. 

Firstly, without loss of generality we will assume that the length of the 
expansion is m^^. Secondly, let us recall that it is guaranteed that at most 
one of any consecutive a; coefficients of an CJTNAF expansion is nonzero. Let 
Wi e [1 ,3 ,5 , . . . , 2^"-^ — 1] denote each one of the up to Â^̂  = f z ^ l nonzero 
LorNAF expansion coefficients. Then, the expansion would have the following 
structure: 

ii;o, 0 . . . 0, ici, 0 . . . 0, it;2,0,. . . , 0, Wi-i,0... 0, WN^-I 

Above runs of up to 2i£; — 2 consecutive zeroes [340], can be counted and 
stored. Let Zi e [a; — 1,2a; — 2] denote the length of each of the at most 

"̂̂  Otherwise, if / > m, we can use Eq. (10.18) in order to reduce the expansion 
length back to m. 
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A l g o r i t h m 10 .9 C J T N A F Scalar Multiplication: Parallel Version 

Require: UTNAF{k) = YITJQ^ Uir\ P e Ea{F-2m). 
Ensure: kP 

1: PreCompute Pu = ctuP, for u ^ {l , 3, 5,...., 2^~^ ~~ l } where cti = i mod r'^' for 
ie {1,3 , . . . ,2^-^ - 1 } ; 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Q = R = 0] 
N=[f\;um==^ 0; 
for i from Â  downto 0 do 

Q - T Q ; 

if Ui ^ 0 then 
Find u such that a±u = 
if n > 0 then 

Q^Q + Pu] 
else 

Q ^ O - P _ u ; 
end if 

end if 
end for 
Q^Q-\-R-
Return Q; 

= i n^ ; 

for j = A'̂  + 1 to m do 
R^r-^R', 
if Uj 7̂  0 then 

Find u such that a±u = i^^jj 
if n > 0 then 

R^ R-{-Pu; 
else 

R ^— R — P-u] 
end if 

end if 
end for 

A l g o r i t h m 10 .10 C J T N A F Scalar Multiplication: Hardware Version 

Require: TNAFoj{k) in the format: WQ,ZI,W2, Z3,... ,ZNIU-2,'UJN^O-I^ ^W — 
2 r ^ ] . Where tî i G [1, 3, 5 , . . . , 2^"^ - 1] and Zi e [w - l,2w-2] 

Ensure: kP 
1: Precompute Pu = ctuP, for u G {l , 3, 5,...., 2^"^ - l } where ai = i mod r^' for 

le {l,3,. . . ,2^^-i - 1 } ; 

for i from N — 1 downto 0 do 
if i is odd then {/*processing a zero coefficient ^i*/} 

Q ^ r'^'-'Q 
Zi <r— Zi — (W — 1) 
if Zi ji^ 0 t h e n 

end if 
else {/*processing a nonzero coefficient lUi*/} 

Find u such that a^ = ic^i; 
if II > 0 then 

0 ^ 0 + Pu; 
else 

Q<-Q-P-u; 
end if 

end if 
end for 
Return Q; 
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Â ^ ~ llJ+ii ^^"^^ runs. Then, the proposed compact version of the expansion 
has the following form, 

Wo,Zo,Wi,Z2,. . . ,ZN^-1,WN^-1 (10.20) 

In this new format we just need to store in memory at most 2|"j^;^] expansion 
coefficients. Algorithm 10.10 shows how to take advantage of the compact rep­
resentation just described. Given the relatively cheap cost of the field squaring 
operation, steps 5-8 of Algorithm 10.10 can compute up to CJ—1 apphcations of 
the T Frobenius operator^^. This will render a valuable saving of system clock 
cycles. Moreover, using the same idea already employed in Algorithm 10.9, we 
can parallehze Algorithm 10.10 using the r and r~^ operators concurrently. 
The resulting procedure is shown in Algorithm 10.11. 

Algorithm 10.11 CJTNAF Scalar MultipHcation: Parallel HW Version 
Require: rNAF^ik) in the 

2 r - ^ l . Where li;, € [1 ,3 ,5 , 
Ensure: kP 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

PreCompute Pu = duP^ for 
ie { 1 , 3 , . . . , 2 ^ - ' - 1 } ; 
Q = R = 0\ 
i V = L ^ J ; 
for i from A'' downto 0 do 

if i is odd then 
Q ^ ^ ^ - l Q . 

Zi *r- Zi — {W — \ ) \ 

if î 7̂  0 then 

Q - r'^Q; 
end if 

else 
Find u such that a±u -
if w > 0 then 

Q^Q + Pu] 
else 

Q^Q-P-u; 
end if 

end if 
end for 
Q^Q-\-R; 

: Return Q; 

format: wo,zi,W2, zs,... ,ZNU,-2,WN^U-II ^W = 
. . . , 2^-^ - 1] and ZiElw- 1, 2w - 2] 

ue {l ,3,5, . . . . ,2 '^-^ - 1} where ai = z mod r"' for 

for j = N -f 1 to m do 
if i is odd then 

H^T-^^- '^H; 

^j ^ zj - {yj- 1 ) ; 
ii Zi ^ 0 then 

R^r'm-, 
end if 

else 
= ±Wi; Find u such that a±u = ±WJ; 

if ti > 0 then 
R^ R-^Pu] 

else 
R <^ R — P-u] 

end if 
end if 

end for 

15 Let us recall that applying i times the r Frobenius operator over an elliptic point 
Q consists of squaring each coordinate of Q i times. See §6.2 for details about 
how to compute efficiently squaring and other field arithmetic operations 
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Fig. 10.5. A Hardware Architecture for Scalar Multiplication on the NIST Koblitz 
Curve K-233 

Proposed Hardware Architecture 

According to Algorithm 10.11, one can accomplish a scalar multiplication 
operation by computing two sequences, namely, r operator-then-add and; r~^ 
operator-then-add. Both sequences are independent and therefore, they can 
be processed concurrently provided that hardware resources meet up design 
requirements. An aggressive approach would be to use two point addition 
units with r and r~^ blocks operating separately. That, however, could be 
unaffordable as the point addition block consumes a vast amount of hardware 
resources. A more conservative approach consisting of a single point addition 
unit is shown in Fig. 10.5. The main idea used there is to keep the r and 
r~^ computations in parallel while a multiplexer block allows the control 
unit to decide which result will be processed next by the point addition unit. 
Intermediate results required for next stages of the algorithm are read/written 
in a Block select RAM (BRAM). 

The inputs/output of the point addition unit read/write data from/to the 
BRAM block according to an address scheme orchestrated by the control unit. 
Data paths for the r and T~^ operators and then point addition are adjusted 
by providing selection bits for the three multiplexers MUXl, MUX2, and 
MUX3. Notice that all three multiplexers handle three 233-bit inputs/outputs. 
This is the required size for a three-coordinate LD projective point as it was 
described in Subsection 4.5.2. The r and r~^ operators were designed using the 
formulae described in §6.2. The Point Addition Unit (PAU) performs the point 
addition operation using the LD-affine mixed coordinates algorithm to be 
explained in the next Section. PAU has two inputs. One input comes from (via 
MUX3) the output of either r or r~^ blocks in the form of a three-coordinate 
LD projective point. The other input comes directly from the BRAM block 
and corresponds to one of the pre-computed multiples of P , namely, P^. = 
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auiP- Those multiples have been pre-computed in affine coordinates. A 4- bit 
counter and a ROM constitute the control unit block. The ROM block is filled 
with control wordSy which are used at each clock cycle for the orchestration 
and synchronization of algorithm's dataflow. The ROM block address bits are 
timely incremented by a 4-bit counter. A total of 11 bits (8 bits for each port 
of the BRAM, 1 bit for MUXl, 1 bit for MUX2 and 1 bit for MUX3) are used 
for controlling and synchronizing the whole circuitry. The 11-bit control word 
for each clock cycle is filled in the BRAM block, and then they are extracted 
at the rising edge of each clock cycle. 

The expected performance of the architecture shown in Fig. 10.5 can be 
estimated as follows. As it has been mentioned, in a UT N A F expansion there 
exists a total of N^ = \-j^] nonzero coefficients. Let ^ be the number of cycles 
required for computing an elliptic point addition operation. Knowing that the 
Frobenius operators depicted in Fig. 10.5 are each able to compute u — 1 r 
or r~^ operators in one cycle, it seems fair to say that our architecture can 
process a coefficient zero in -^—^ cycles. Therefore, the total number of system 
clock cycles required by Algorithm 10.10 for computing a scalar multiplication 
can be estimated as, 

#Number of Clock Cycles = ^ - ^ + _ 1 _ a ^ (10.21) 
^ "̂  ^ c j - f l c j - l c j - f - l ^ ^ 

In the case of Algorithm 10.11 since the r and r~^ operations are computed 
at the same time that the point addition processing is taking place, the total 
number of clock cycles can be estimated as just, 

771 

#Number of Clock Cycles - ^ - . (10.22) 

As a way of illustration, let us assume that the architecture shown in 
Fig. 10.5 has been implemented using the arithmetic building blocks for the 
NIST recommended K-233 Koblitz curve. Then using m = 233 and ^ = 8 and 
equations (10.21) and (10.22), a saving of 14.28%,13.51% and 13.04% can be 
obtained when using a; = 4,5,6, respectively. 

10.7 Half-and-Add Algorithm for Scalar Multiplication 

Schroeppel [322] and Knudsen [176] independently proposed in 1999 a method 
to speedup scalar multiplication on elliptic curves defined over binary exten­
sion fields. Their method is based on a novel eUiptic curve primitive called 
point halving, which can be defined as follows. 

Given a point Q of odd order, compute P such that Q = 2P. The point 
P is denoted as ^Q. Since theoretically, point halving is up to three times as 
fast as point doubUng, it is possible to improve the performance of scalar mul­
tiplication computation Q = n P by replacing the double-and-add algorithm 
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with a half-and-add method based on an expansion of the scalar n in terms 
of negative powers of 2. 

As it was discussed in Chapter 2, the efficiency of ECDSA depends on the 
arithmetic involving the points of the curve. For this reason it becomes nec­
essary to implement efficient curve operations in order to obtain high perfor­
mances. In this Section we describe an architecture that employs a parallelized 
version of the half-and-add method and its associated building blocks. 

The rest of this Section is organized as follows. Subsection 10.7.1, describes 
the algorithms utilized for implementing elliptic curve arithmetic. In Subsec­
tion 10.7.2, the proposed hardware architecture is explained in detail. 

10.7.1 Efficient Elliptic Curve Arithmetic 

With the help of the arithmetic operators described in Chapter 6, we can 
efficiently construct the three main elliptic curve operations, namely, point 
addition, point doubhng and point halving. 

As a means of avoiding the expensive field inversion operation, it results 
convenient to work with Lopez-Dahdb (LD) projective coordinates^^. For con­
venience, here we will repeat some of the main characteristics of those coor­
dinates. 

In LD projective coordinates, the projective point (X:Y:Z) with Z^ 0 
corresponds to the affine coordinates x = X/Z and y — Y/Z'^. The elliptic 
curve Equation (10.6) mapped to LD projective coordinates is given as, 

F^ + XYZ = X^Z + aX'^Z'^ + bZ^ (10.23) 

The point at infinity is represented as (9 = (1 : 0 : 0). Let P = {Xi : Yi : 
Zi) and Q — {X2 : y2 ^ 1) be an arbitrary point belonging to the curve 4.19. 
Then the point - P = {Xi \ Xi+Yi \ Z) is the addition inverse of the point 
P . 

Point Doubling 

The point doubhng primitive 2(Xi \ Yi \ Z\) — (X3 : Y^ : Z3) can be 
performed as, 

Z^ = Xi ' Z\ \ X3 = Xi -\-b ' Zi \ 
n = 6Zi^Z3 + X3 • {aZ^ + Yi^ -h bZi^ 

(10.24) 

Assuming that only one field multipHer block is available, it is possible to 
compute above Equations in just three clock cycles as shown in Table 10.7. 

^̂  LD projective coordinates were already studied in Section 4.5. 
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Table 10.7. Parallel Lopez-Dahab Point Doubling Algorithm 

A Parallel approach of point doubling, LD-affine coordinates. 
Input: P = {Xi : Yi \ Z\) in LD coordinates 
on EjK '. y^ •\- xy = x^ ^ ax^ ^ h,a ^ {0, 1}. 
Output: 2P = {Xs : Ys ' Z3) in LD coordinates 

# cycle Co 
~iy \r'2 r7'2 

Z3 = A i • Zi 
T2 = ( X f + T i ) - ( Z 3 + y i ' 
Y3 = Ti-Z3+ T2 

Ci 

1. cycle: 
2. cycle: 
3: cycle: 

+ Ti) 
Ti = 6 • Z? 

Xs = Xt + Ti 

Point Addition 

IfQ^-P, the point addition primitive {Xi : Yi : Zi) + {X2 : ¥2) = {X3 : 
Ya : Z3) can be performed at a computational cost of 8 field multiplications 
as, 

A = Y2-Z^ + Yv, 
C = Zi-B; 

Z3 = C2; 
X3 = ^2 ^ £> + E; 
G = (X2 + Y2) • Zl 

B — X2 ' Zl + Xi\ 
D = B'^-{C-\-aZl)-
E^ AC] 
F — X^ + X2 ' Z^; 
Y3 = {E + Z3)-F + G 

(10.25) 

Table 10.8. Parallel Lopez-Dahab Point Addition Algorithm 

A parallel approach of point addition, LD-affine coordinates. 
Input: P = {Xi : Yi : Zl) in LD coordinates, 
Q = (3^2,2/2) in affine coordinates 
on E/K : y"^ -\-xy = x^ -i- ax'^ + 6. 
Output: P + Q = {X3 : Y3 : Z3) in LD coordinates 

# cycle 
1. cycle: 
2. cycle: 
3. cycle: 
4. cycle: 
5. cycle: 
6. cycle: 
7. cycle: 
8. cycle: 

Co 
ya = 2/2 • Z't + Yi 

X3=X2-Zi+ Xi 

Ti = X3 • Zl 

X3 = Xl-{a'Z!-{-Ti) 

X3 = ^3 • Ti + X3 + y3^ 
Ti = X2 ' Z3 -\- X3 

Y3 = {x2 4- 2/2) • zi 
Y3 = (T2 + Z3) 'Ti-{-Y3 

Ci 

Z3 = Tf 
Ti = y3 • T i 

T2 = T3 

Once again, we point out that field multiplication is by far the most time 
consuming arithmetic operation. Field addition can be time neglected in a 
hardware implementation. 
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Therefore we can parallelize some operations in such a way that we can 
perform two operations at a time. As it is shown in Table 10.8, by rearranging 
the set of Equations 10.25 we can manage for computing a point addition 
operation in LD projective coordinates in just eight clock cycles. 

Point Halving 

Point halving can be seen as the reverse operation of point doubling [96]. We 
can define the elliptic curve point halving as follows. Let Q = (2:2,2/2) be 
an arbitrary point that belongs to the curve of Eq. (10.6). Our problem in 
hand is to find a second point P = (xi ,yi) , such that Q — 2P: This can be 
accomplished by solving the following set of equations, 

Â  4- A == X2 + a 

xi = \/y2 4-a;2(A-f 1) 
yi = Xxi + xj 

Algorithm 10.12 Point Halving Algorithm 
Require: 2P = (3:2,2/2) 
Ensure: P = {xi,yi) 
1: Solve Â  -f- A = 0:2 + a for A. 
2: t = y2 -\- X2 ' X] 
3: if Tr{t) = 0 then 
4: xi — \/i-\- X2\ 
5: else 
6: A = A + l;xi = V ;̂ 
7: end if 
8: 2/1 = A • xi -Vx\\ 
9: Return {x\^y\) 

Algorithm 10.12 was proposed in [96] for computing an elliptic point halving. 
However, it results more convenient in practice to define the X-representation 
of a point as follows. Given Q = {x,y) e E{GF{2'^))^ let us define (a:, AQ), 
where 

AQ - X + -
X 

Given the A-representation of Q, we may compute a point halving without 
converting back to aflfine coordinates. In this way, repeated halvings can be 
performed directly on A-representation. 

Half-and-Add Scalar Multiplication Algorithm 

In Chapter 6 several algorithms addressing the problem of how to perform effi­
cient finite field arithmetic were studied. Notice that Algorithm 10.12 requires 
the following GF{2^) arithmetic main building blocks. 
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1. Computing field square root (studied in §6.2). 
2. Computing the trace (studied in §6.4.1). 
3. Solving quadratic equations (studied in §6.4.2). 

Above operations constitute the building blocks for performing elliptic 
curve scalar multiplication using the half-and-add method shown in Algo­
rithms 10.12 and 10.13. 

Algorithm 10.13 Half-and-Add LSB-First Point MultipHcation Algorithm 
Require: P G £^(^^(2"")), k = /co/2"'~^ + • • • + k'^-i + 2k'm mod n, with h G 

{-1,0,1} for z =, 1,... ,m. 
Ensure: kP 
1: Q = O; 
2: if k'm = I then 
3: Q = 2P; 
4: end if 
5: for i from m — 1 downto 0 do 
6: if k'i>0 then 
7: Q = Q + P', 
8: else if /cj < 0 then 
9: Q = Q-P', 

10: end if 
11: P = P/2; 
12: end for 
13: Return (Q) 

10.7.2 Implementation 

The proposed architecture for achieving eUiptic curve scalar multiplication is 
shown in Figure 10.6. The architecture consists of two main units, namely, an 
Arithmetic Logic Unit (ALU) block (responsible of performing field arithmetic 
and elliptic curve arithmetic), and a control unit (that manages and controls 
the dataflow of the whole circuit). 

Control Unit 

Table 10.9 shows the operations that can be performed by the circuit per 
clock cycle. In the first column the operations that the ALU can perform 
are hsted. The first eight rows specify the sequence of operations needed for 
computing an elliptic curve point addition. The next three rows specify the 
operations needed for computing a point doubUng primitive. The last three 
rows show the necessary operations for computing a point halving (either in 
A-representation or in affine coordinates). 
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Fig. 10.6. Point Halving Scalar Multiplication Architecture 

The second column represents the inputs given to the ALU circuit, whereas 
the fourth column shows the ALU circuit output being written to memory. 
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Fig. 10,7. Point Halving Arithmetic Logic Unit 
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Finally, the third column includes a twenty-six bit control word that stipulates 
which parts of the Arithmetic Logic Unit must be activated by the Control 
Unit. The control word format is explained below. 

Table 10.9. Operations Supported by the ALU Module 

operation 

Vi = 2/2 • z'i + n 
X\—xi'Z\^ X\ 

Ti=Xi- Zi 
X i = X ? - ( Z ? + T i ) 

T2=-X2' Zi-^ Xi 
Yi - {X2 -}- 2/2) • Zf 

Fi = ( T i - | - Z i ) - T 2 + y i 
Zi = X't • Z'i 

Xi = (Xi^+Ti) - (y i2 + Z i + T l ) 
n = Zi • Ti -}- T2 

Point Halving (affines) 
Point Halving (A-representation) 

2/2 = \X2 + x\ 

input 
a^aia^ci-i 
yiZxYx-
X2Z1X1 — 
X1Z1--
XiZi-Ti 
y2ZiYi~ 
X2Z1X1-
X2Ziy2-
Y1T1T2Z1 
XiZi - -
YiZiXiTi 
T2Z1 - Ti 

X2 - 2 / 2 -

X2 - 2 / 2 -

X2 - 2 / 2 -

control word 
S25 • • • So 

IxxOlOOOxxllOlOOOOllOxxxlx 
llOxxxxOxxOOOlOOlOllOxxxlx 
lOxxxxxOxOxxOlOOlxxOOxxxlx 
OOxxxxxO1OxxOO1OOxxOOOO111 
OxxOlOOOxxl10100001lOxxxlx 
llOxxxxOxxOOOlOOlOllOxxxlx 
OlxxxOlOxxOlllOOOxxOOxxxlx 
OxxOOlOxlOlllOOllOOlOxxxlx 
OOxxxxxOxOxxOOOOOxxOOOOOl 1 
OxOlOxxxxlOxxxxxxxxOlOlOll 
OOxxxlOlxxOlOlOOlOllOxxxlx 
lOlxxxOlxxOlOl10101lOxxxOO 
lOlxxxOlxxOlOlUOxxOOxxxOO 
lOlxxxOlxxOlOlOOllOlOxxxlx 

output 
CoCi 

Yix 
Xix 
Tix 

XiZi 
TiXi 
T2X 
Yix 
Yix 

Z1T2 
T2X1 
Yix 

X2y2 

X2X 

- 2 / 2 

Each control word consists of a string of 26 bits organized as follows: 

XJCOOIOIO 1100 lOOllOOlOXXXlX 

direction MUX ALU 

The first eight bits designate the addresses to be read by the memory block, 
the next four bits designate which operand will be loaded to the ALU unit, 
and finally the last fourteen bits designate which operations will be performed 
by the ALU unit according to the list of supported operations shown in Table 
10.9. 

As an example, consider point halving computation in affine coordinates of 
Algorithm 10.12. The datapath for this computation is illustrated in Fig. 10.8. 
First, it is necessary to load 0:2,2/2 into the input registers Ao,A2, respectively. 
Additionally, a copy of X2 is stored in Ai. Then, the operations for loading 
HT{Ao -f 1) and Ai on the finite field multiplier are commanded by the 
Control Unit. Next, we multiply Ai • HT{Ao -h 1) and immediately after A2 is 
added to that product obtaining ^2 + Ai • HT{AQ-hi). Thereafter, the result 
obtained by the multiplication operation is computed into the trace unit, in 
order to choose the appropriate operand for the square-root unit, and to send 
the corresponding outputs Co, Ci. The dataflow just described is highlighted 
in Figure 10.8. 

As mentioned previously, our architecture allows us to perform three main 
elliptic curve operations, namely, point addition, point doubhng and point 
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«JLCZ] 
Fig. 10.8. Point Halving Execution 

halving, Table 10.10 lists the number of cycles required in order to perform 
such operations. Furthermore, Figures 10.9 and 10.10 show the time diagram 
corresponding to the execution of the point addition and point doubling prim­
itives, respectively. 

Table 10.10. Cycles per Operation 

Elliptic curve operations 
Point Halving (affine coordinates) 
Point Halving (A-representation) 
Point Doubling 
Point Addition 

# cycles 
1 
2 

3 
8 

10.7.3 Performance Estimation 

We estimate the running time of the circuit of Fig. 10.6 as follows. We need 
eight cycles and one cycle for performing a Point Addition (PA) in mixed LD 
coordinates and a Point Halving (PH) operation, respectively. On the other 
hand, the computational cost of Algorithm 10.13 is approximately, 

—PA-^mPH. 
o 
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Fig. 10.9. Point Addition Execution 
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Translating above equation to clock cycles, we get, 

^ ( 8 ) -f mPH(l) = ^m Clock Cycles, 
o o 

In other words, the architecture presented in this Section (see Figures 10.6 
and 10.7) needs approximately -ym clock cycles for performing an elliptic 
curve point multiphcation using the Half-and-Add Algorithm 10.13. 
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Talkie 10.11. Fastest Ellipt 

Author 

Cruz-A. et al.[54] 
Hernandez-R et al.[137] 

Cheung et al. [50] 
Shu et al.[329] 

Saqib et al.[310] 
Lutz [216] 

Jarvinen et al.[155] 
Gura et al. [125] 
Satoh et al. [313] 

Orlando et al.[261] 
1 Bednara et al. [20] 
1 Sozzani et al. [341] 

Ernst et al. [313] 
1 Schroeppel et al. [322] 

year 

2UU6 
2UUb 
2005 
2005 
2006 
2004 
2004 
2002 
2003 
2000 
2002 
2005 
2002 
2003 

ic Curve Scalar Multiplication Hardware Designs 

platform 

Virtex II 
Virtex II 
Virtex 4 
Virtex II 
Virtex II 
Virtex II 
Virtex II 
Virtex II 

0.13/im CMOS 
Virtex 
Virtex 

0.13Mm CMOS 
Atmel 

0.13Atm CMOS 

m 

233 
163 
113 
163 
191 
163 
163 
163 
160 
167 
191 
163 
113 
178 

clock 
MHz 

27.58 
23.94 

65 
68.9 
9.99 
66.0 
90.2 
66.4 
510.2 
76.7 
50 

417 
12 

227 

time 

[ML 
17.64 
25.0 
30 
48 

61.16 
75 
106 
143 
190 
210 
270 
270 
1400 
4400 

Cost 
LUTs 

39762(11) 
22665 

13922 (est) 
25763 

39252(24) 
10017 

36158(est) 
22665 

-
3002 

-
-
-

143K gates 

m 
T-LUT 

332.19 
287.67 
270.55 
131.81 
79.56 

216.95 
42.53 
36.14 

-
265.03 

-
-
-
-

10.8 Performance Comparison 

In this Section we compare some of the most representative eUiptic curve 
designs reported during this decade. In our survey we considered three metrics; 
speed, compactness and efRciency. Our study tries to sum up the state-of-the-
art of scalar multiplication hardware implementations. 

Table 10.11 shows the fastest designs reported to date for elliptic scalar 
multiplication over GF(2'^y^. It can be observed that the design of [54] which 
features a specialized design on Koblitz curves shows the highest speed of all 
designs considered. 

Table 10.12. Most Compact EUiptic 

Author 

Kim et al. [172] 
Oztiirk 

et al. [265] 
Aigner et al. [2] 

Schroeppel 
et al. [322] 

Shuhua 
et al. [330] 

year 

2002 
2004 

2004 
2003 

2005 

platform 

0.35/im CMOS 
0.13Mm CMOS 

0.13/im CMOS 
0.13/xm CMOS 

Virtex II 

Curve Scalar Multiplication Hardware Designs 

m 

192 binary 
167 prime 
167 prime 
191 binary 
178 binary 

192 prime 

clock 
MHz 

10 
20 

200 
10 

227 

50 

time 
(mS) 

36.2 (est) 
31.9 
3.1 

46.9 
4.4 

6 

Cost 

16.84K gates 
30.3K gates 
34.4K gates 
25K NANDs 
143K gates 

4729 LUTs 

m 
TGates 

0.315 
0.1727 

1.56 
0.163 
0.283 

~ 

^̂  Whenever the number of LUTs utilized by the design is not available, an esti­
mation based on the reported number of CLBs has been made. The number in 
parenthesis in the seventh column represents the total number of BRAMs. 
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In Table 6.4 we show a selection of some of the most compact reconfigurable 
hardware elliptic curve designs reported to date. It is noted that this category 
is dominated by those designs implemented in VLSI working with elliptic 
curves defined over GF{2'^). Indeed, the most compact GF{P) elliptic curve 
design in [265] has a hardware cost 1.8 times greater than that of the smallest 
GF{2'^) elliptic curve design in [172]. 

We measure efficiency by taking the ratio of number of bits processed over 
slices multiplied by the time delay achieved by the design, namely, 

bits 

Slices X timings 

For instance, consider the Koblitz design presented in [54]. As is shown in 
Table 10.11, working over GF(2^^^), that design achieved a time delay of just 
17.64/xS at a cost of 39762 Look Up Tables (LUTs) and 11 Block RAMs. 
Therefore its efficiency is calculated as. 

hits 233 
Slices X timings 39762 x 17.64/x 

- 332.19 

When comparing the designs featured in Tables 10.11 and 10.13, it is noticed 
that the fastest and most efficient multiplier designs are the Koblitz elliptic 
curve designs as well as the half-and-add scalar multiplication design studied 
in this Chapter. 

Table 10.13. Most Efficient Elliptic Curve Scalar Multiplication Hardware Designs 

Author 

Cruz-A. et al.[54] 
Hernandez-R et al.[137] 

Cheung et al, [50] 

Orlando et al.[261] 
Lutz [216] 

Shue t al.[329] 

Saqib et al.[310] 

Jarvinen et al.[155] 

Gura et al. [125] 
Leung et al. [205] 

year 

2006 
2005 
2005 

2000 
2004 
2005 

2006 

2004 

2002 
2002 

platform 

Virtex II 
Virtex II 
Virtex 4 

Virtex 
Virtex II 
Virtex II 

Virtex II 

Virtex II 

Virtex II 
Virtex 

m 

^33 
163 
113 
163 
167 
163 
163 
233 
191 
191 
163 
193 
233 
163 
113 

clock 
MHz 

27.58 
23.94 

65 
35 

76.7 
66.0 
68.9 
67.9 
9.99 
9.99 
90.2 
90.2 
73.6 
66.4 
31 

time 
(MS) 

17.64 
25.0 
30 
50 

210 
75 
48 
89 

61.16 
114.71 

106 
139 
227 
143 
750 

Cost 
LUTs 

39762(11) 
22665 

13922 (est) 
20047 (est) 

3002 
10017 
25763 
35800 

39252(24) 
39252(24) 
36158(est) 
38500(est) 
46040(est) 

22665 
17506 

m 
TLUT 

332.19 
287.67 
270.55 
162.61 
265.03 
216.95 
131.81 
73.13 
79.56 
42.41 
42.53 
36.06 
22.29 
36.14 
8.61 
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10.9 Conclusions 

Two major factors contribute for achieving high performances in the architec­
tures presented throughout this chapter. Firstly, the usage of parallel strate­
gies apphed at every stage of the design. Secondly, efficient elliptic curve algo­
rithms such as the Montgomery point multiplication, scalar multiplication on 
Koblitz curves, the half-and-add method, etc, along with their efficient imple­
mentations on reconfigurable hardware. Furthermore, it resulted also crucial 
to take advantage of the lower-grained characteristic of reconfigurable hard­
ware devices and their associated functionality (in the form of BRAMs and 
other resources). 

In §10.5 we studied a generic architecture able to compute the scalar mul-
tipfication in Hessian form as weU as the Montgomery point multiplication 
algorithm. It is noticed that theoretically (see Table 10.1), the Weierstreiss 
form utilizing the Montgomery point multiplication formulation can be com­
puted in about half the execution time consumed by the Hessian form. This 
prediction was confirmed in practice in [310] for elliptic curves defined over 
GF(2^^^), as is shown in Table 10.13. 

Then, we presented in §10.6 parallel formulations of the scalar multipli­
cation operation on Koblitz curves. The main idea proposed in that Section 
consisted on the concurrent usage of the r and T~^ Frobenius operators, which 
allowed us to parallelize the computation of scalar multiplication on elHptic 
curves. On the other hand, we described a compact format of the cjrNAF ex­
pansion which was especially tailored for hardware implementations. In this 
new format at most 2[j^;^] expansion coefficients need to be stored and pro­
cessed, provided that the arithmetic unit can compute up to a; — 1 subsequent 
applications of the r Frobenius operator in one single clock cycle. Further­
more, it was shown that by using as building blocks the r and r~^ Frobenius 
operators along with a single point addition unit, a parallel version of the clas­
sical double-and-add scalar multiplication algorithm can be obtained, with an 
estimated speedup of up to 14% percent when compared with the traditional 
sequential version. 

In §10.7 we presented an architecture that is able to compute the elHptic 
curve scalar multiplication using the half-and-add method. Additionally, we 
presented optimizations strategies for computing a point addition and a point 
doubling using LD projective coordinates in just eight and three clock cycles, 
respectively. 

Finally, in §10.8 we compared some of the most representative eUiptic 
curve designs reported during this decade. In our survey we considered three 
metrics: speed, compactness and efficiency. Our study tries to sum up the 
state-of-the-art of scalar multiplication hardware implementations. 
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Glossary 

Adittion Chains An addition chain for an integer m — 1 consists of a finite 
sequence of integers U = [UQ^UI^ ... ,Ut)^ and a sequence of integer pairs 
y = ((^ij Ji)j • • •, {h,jt)) such that UQ = 1^ ut = m — l, and whenever 
1 < i < tj Ui = Uki -\- Uj^. Addition chains are particularly useful for 
performing field exponentiation. 

Area (hardware) Hardware resources occupied by the design. In terms of 
FPGAs, hardware area includes number of CLBs, memory blocks, lOBs, 
etc. 

Authentication It is a security service related to identification. This func­
tion applies to both entities and information itself. 

Block cipher A type of symmetric key cipher which operates on groups of 
bits of a fixed length, termed blocks. 

BlockRAMs Built-in memory modules in FPGAs. 
Brute force attack A brute force attack is brute force search for key space: 

trying all possible keys to recover plaintext from cipher text. 
Cipher A cipher is an algorithm for performing encryption and decryption. 
Ciphertext An encrypted message is called ciphertext. 
CLB Configurable logic block (CLB) is a programmable unit in FPGAs. A 

CLB can be reconfigured by the designer resulting a functionally new 
digital circuit. 

Confidentiality It guarantees that sensitive information can only be ac­
cessed by those users/entities authorized to unveil it. 

Configurable Soc (CSoC) CSoc integrates reconfigurable hardware, one 
or more processor and memory blocks on a single chip. 

Confusion Confusion makes the output dependent on the key. Ideally every 
key bit influences every output bit. 

Cryptographic Security Strength the Security strength of a given 
cryptographic algorithm is determined by the quality of the algorithm 
itself, the key size used and the block size handled by the algorithm. 
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Data Integrity It is a service which addresses the unauthorized alteration of 
data. This property refers to data that has not been changed, destroyed, 
or lost in a malicious or accidental manner. 

Decryption The process of retrieving plaintext from ciphertext is called de­
cryption. 

DifRe-Hellman Key Exchange Protocol Invented in 1976 by Whitfield 
Diffie, Martin Hellman and Ralph Merkle, the Diffie-Hellman key exchange 
protocol was the first practical method for estabhshing a shared secret over 
an unprotected communication channel. 

Difussion Diffusion makes the output dependent on the previous input 
(plaintext/ciphertext). Ideally each output bit is influenced by every input 
bit. 

Discrete Logarithm Problem Given a number p, a generator g e Zp* and 
an arbitrary element a G Zp*, find the unique number i, 0 < i < p — 1, 
such that a = g^{modp). 

Downstream It defines the transmission from line terminal to network ter­
minal (from customer to network premise). 

Elliptic curve In mathematics, elliptic curves are defined by certain cubic 
(third degree) equations. They find applications in cryptography. 

Elliptic curve cryptography Elliptic curve cryptography (ECC) is an ap­
proach to public-key cryptography based on the mathematics of elliptic 
curves. 

Elliptic Curve Discrete logarithmic problem Let Epq be an elliptic curve 
defined over the finite field F^and let P be a point P G Ep^ with primer 
order n. Consider the /c-multiple of the point P, Q = kP defined as the 
elliptic curve point resulting of adding P , /c — 1 times with itself, where k is 
a positive scalar in [1, n — Ij . The elliptic curve discrete logarithm problem 
consists on finding the scalar k that satisfies the equation Q — kP. 

Elliptic curve scalar multiplication Let P be a point on Elliptic curve 
then the scalar product nP can be obtained by adding n copies of the 
same point P. The product nP = P -f P-|- H- P obtained in this way 
is referred as elliptic curve scalar multiplication. 

Encryption Encoding the contents of the message in such a way that it hides 
its contents from outsiders is called Encryption. 

Extended Euclidean Algorithm In order to obtain the modular inverse 
of a number a we may use the extended Euclidean algorithm, with which 
it is possible to find the two unique integer numbers x, y that satisfy the 
equation, ax 4- my = 1. 

F P G A A field-programmable gate array or FPGA is a gate array that can 
be reprogrammed, after it is manufactured. 

Full Adder A full-adder is a combinational circuit with 3 input and 2 out­
puts. The inputs Ai, Bi^ d and the outputs Si and Ci^i are boolean 
variables. It is assumed that Ai and Bi are the zth bits of the integers A 
and J5, respectively, and Q is the carry bit received by the zth position. 
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The FA cell computes the sum bit Si and the carry-out bit Ci-^i which is 
to be received by the next cell. 

Fundamental Theorem of Arithmetic Any natural number n > 1 is ei­
ther a prime number, or it can be factored as a product of powers of 
prime numbers pi. Furthermore, except for the order of the factors, this 
factorization is unique. 

Granularity Granularity of the reconfigurable logic is defined as the size of 
the smallest functional unit that can be addressed by device programming 
tools. 

Greatest common divisor Given two integers a and b different than 0, we 
say that the integer c/ > 1 is the greatest common divisor, or gcd, of a and 
b if d\a, d\b and for any other integer c such that c\a and c\b then c\d. In 
other words, d is the greatest positive number that divides both, a and b. 

HDL Hardware Description Languages (HDLs) are used for formal descrip­
tion of electronic circuits. They describe circuit's operation, its design, 
and tests to verify its operation by means of simulation. Typical HDL 
compilers tools, verify, compile and synthesize an HDL code, providing 
a list of electronic components that represent the circuit and also giving 
details of how they are connected. 

Integer Factorization Problem Given an integer number n, obtain its 
prime factorization, i.e., find n = pi^^P2^^P3^^ • • 'Pk^^ ^ where pi is a prime 
number and ê  > L 

Iterative Looping It implements only one round and n iterations of the 
algorithm are carried out by feeding back previous round results. 

JTAG The Joint Test Action Group (JTAG) is the common name for the 
IEEE 1149.1 standard that defines the interface protocol between pro­
grammable devices and high-end computers. 

Key schedule In cryptography, the algorithm for computing the sub-keys 
for each round in a block cipher from the encryption (or decryption) key 
is called the key schedule." 

Logic Cell A logic cell is a very basic unit in FPGA which includes a 4-input 
function generator, carry logic, and a storage element (flip-flop). 

Look Up Table A function generator in a logic cell is implemented as a 
look-up table which can be programmed to a desired Boolean logic, in 
addition, each look up table acts as a memory unit. 

Loop unrolling It implements n rounds of the algorithm, thus after an ini­
tial delay, output appears at each clock cycle. 

Message Digest A cryptograph hash function takes a message of an ar­
bitrary length and outputs a fixed length string, referred to as message 
digest or hash of that message. The purpose of message digest is to provide 
fingerprint of that message. 

Montgomery Multiplier In 1985, P. L. Montgomery introduced an effi­
cient algorithm for computing R = A- B mod n where A, B, and n are 
/c-bit binary numbers. The Montgomery reduction algorithm computes 
the resulting /c-bit number R without performing a division by the modu-
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lus n. Via an ingenious representation of the residue class modulo n, this 
algorithm replaces division by n operation with division by a power of 2. 

Non-Repudiation It is a security service which prevents an entity from 
denying previous commitments or actions. 

One Way Function Is an injective function / (x) , such that f{x) can be 
computed efficiently, but the computation of f~^{y) is computational in­
tractable, even when using the most advanced algorithms along with the 
most sophisticated computer systems. 

One-way Trapdoor Function We say that a one-way function is a One­
way trapdoor function if is feasible to compute f~^{y) if and only if a 
supplementary information (usually the secret key) is provided. 

Permutation Permutation refers to the rearrangement of an element. In 
cryptography, elements (bit strings) are generally permuted in according 
to some fixed permutation tables provided by the algorithm. 

Plaintext In cryptographic terminology, message is called plaintext. 
Portable Digital Assistants (PDAs) PDAs are handheld small computers 

that were originally designed as personal organizers. PDAs usually contain 
note pad, address book, task hst, clock and calculator, etc. Modern PDAs 
are even more versatile. Most of them are equipped with an Intel XScale 
^Processor running at 400 MHz with up to 128MB of RAM memory. 

Reconfigurable computing Denotes the use of reconfigurable hardware, 
also called custom computing. 

Reconfigurable hardware Hardware devices in which the functionality of 
the logic gates is customizable at run-time. FPGAs is a type of reconfig­
urable hardware. 

Stream cipher Stream ciphers encrypt each bit of the plaintext individually 
before moving on to the next. 

Substitution Substitution refers to the replacement of an element with a 
new element. In cryptography, substitution operation is mainly used in 
block ciphers where an element is replaced with the elements from the 
substitution boxes called as S-boxes. The substituted values in some block 
ciphers can also be calculated. 

System-on-Chip (SoC) SoC is a programmable platform which integrates 
many functions into a single chip. It may include analog as well digital 
components. A typical SoC includes one or more processing element (mi­
crocontroller/microprocessor or DSP), memory blocks, oscillators, ana­
log to digital or digital to analog or both and other peripherals (counter 
timers, USB, Ethernet, power supply). 

Throughput It is a measure for timing performance of a design and is calcu­
lated as: Throughput= (Allowed Frequency x Number of bits ) / Number 
of rounds (bits/s). 

Upstream It defines the transmission from network terminal to line terminal 
(from network to customer premise). 
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