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Preface

Cryptography provides techniques, mechanisms, and tools for private and
authenticated communication, and for performing secure and authenticated
transactions over the Internet as well as other open networks. It is highly
probable that each bit of information flowing through our networks will have
to be either encrypted and decrypted or signed and authenticated in a few
years from now. This infrastructure is needed to carry over the legal and con-
tractual certainty from our paper-based offices to our virtual offices existing in
the cyberspace. In such an environment, server and client computers as well as
handheld, portable, and wireless devices will have to be capable of encrypting
or decrypting and signing or verifying messages. That is to say, without ex-
ception, all networked computers and devices must have cryptographic layers
implemented, and must be able to access to cryptographic functions in order
to provide security features. In this context, efficient (in terms of time, area,
and power consumption) hardware structures will have to be designed, imple-
mented, and deployed. Furthermore, general-purpose (platform-independent)
as well as special-purpose software implementing cryptographic functions on
embedded devices are needed. An additional challenge is that these implemen-
tations should be done in such a way to resist cryptanalytic attacks launched
against them by adversaries having access to primary (communication) and
secondary (power, electromagnetic, acoustic) channels.

This book, among only a few on the subject, is a fruit of an international
collaboration to design and implement cryptographic functions. The authors,
who now seem to be scattered over the globe, were once together as students
and professors in North America. In Oregon and Mexico City, we worked on
subjects of mutual interest, designing efficient realizations of cryptographic
functions in hardware and software.

Cryptographic realizations in software platforms can be used for those
security applications where the data traffic is not too large and thus low en-
cryption rate is acceptable. On the other hand, hardware methods offer high
speed and bandwidth, providing real-time encryption if needed. VLSI (also
known as ASIC) and FPGAs are two distinct alternatives for implementing



XXVI

cryptographic algorithms in hardware. FPGAs offer several benefits for cryp-
tographic algorithm implementations over VLSI, as they offer flexibility and
fast time-to-market. Because they are reconfigurable, internal architectures,
system parameters, lookup tables, and keys can be changed in FPGAs with-
out much effort. Moreover, these features come with low cost and without
sacrificing efficiency.

This book covers computational methods, computer arithmetic algorithms,
and design improvement techniques needed to obtain efficient implementations
of cryptographic algorithms in FPGA reconfigurable hardware platforms. The
concepts and techniques introduced in this book pay special attention to the
practical aspects of reconfigurable hardware design, explain the fundamental
mathematics behind the algorithms, and give comprehensive descriptions of
the state-of-the-art implementation techniques. The main goal pursued in this
book is to show how one can obtain high-speed cryptographic implementations
on reconfigurable hardware devices without requiring prohibitive amount of
hardware resources.

Every book attempts to take a still picture of a moving subject and will
soon need to be updated, nevertheless, it is our hope that engineers, scien-
tists, and students will appreciate our efforts to give a glimpse of this deep
and exciting world of cryptographic engineering. Thanks for reading our book.

May 2006

F. Rodriguez-Henriquez, Nazar A. Saqib, A. Diaz-Pérez, and Cetin K. Kog



1

Introduction

This chapter presents a complete outline for this Book. It explains the main
goals pursued, the strategies chosen to achieve those goals, and a summary of
the material to be covered throughout this Book.

1.1 Main goals

The choice of reconfigurable logic as a target platform for cryptographic algo-
rithm implementations appears to be a practical solution for embedded sys-
tems and high-speed applications. It was therefore planned to conduct a study
of high-speed cryptographic solutions on reconfigurable hardware platforms.

Both efficient and cost effective solutions of cryptographic algorithms are
desired on reconfigurable logic platform. The term “efficient” normally refers
to “high speed” solutions. In this Book, we do not only look for high speed
but also for low area (in terms of hardware resources) solutions.

Our main objective is therefore to find high speed and low area implemen-
tations of cryptographic algorithms using reconfigurable logic devices. That
implies careful considerations of cryptographic algorithm formulations, which
often will lead to modify the traditional specifications of those algorithms.
That also implies knowledge of the target device: device structure, device re-
sources, and device suitability to the given task. The design techniques and
the understanding of the design tools are also included in the implications
imposed by efficient solutions. An optimized cryptographic solution will be
the one for which every step; starting from its high-level specification down
to the physical prototype realization is carefully examined.

It is known that the final performance of cryptographic algorithms heavily
depends on the efficiency of their underlying field arithmetic. Consequently,
we begin our investigation by first studying the algorithms, solutions and cor-
responding architectures for obtaining state-of-the-art finite field arithmetic
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realizations. Our study was carried out for both, prime and binary extension
finite fields. We investigated field arithmetic algorithms for the operations of
field addition, multiplication, squaring, square root, multiplicative inverse and
exponentiation among others.

Thereafter, we selected a set of three of the most important cryptographic
building blocks, for their implementation on reconfigurable logic devices: hash
functions, symmetric block ciphers and public key cryptosystems in the form
of elliptic curve cryptography.

We described first the basic principles for attaining efficient hardware im-
plementation of hash functions. In the subject of symmetric ciphers, we study
the two most emblematic algorithms, namely, the Data Encryption Standard
(DES) and the Advance Encryption Standard (AES). In the case of asym-
metric cryptosystems we analyze fast implementations of Elliptic Curve op-
erations defined over binary extension fields.

Several considerations were made to achieve high speed and economical
implementations of those algorithms on reconfigurable logic platforms. One
of them was to exploit high bit-level parallelism where and whenever it was
possible. Similarly, we employed design techniques especially tailored for ex-
ploiting the structure of the target devices.

A variety of hash function algorithms were studied first. Emphasis was
made on MD5, by providing a step-by-step analysis of its algorithm flow. An
explanation of the SHA-2 family was also included. In our descriptions we
pondered hardware implementation aspects of the hash algorithms.

DES was the second cryptographic building block studied in this Mono-
graph. The basic primitives involved in block ciphers specifically for DES
were analyzed for their implementations on reconfigurable logic platform. A
compact one round FPGA implementation of DES was carried out exploiting
high bit-level parallelism. Experiments were made for optimizing the proposed
FPGA architecture with respect to hardware area.

A more detailed study was planned regarding AES due to its importance
for the current security needs in the I'T sector. Each step of the algorithm was
investigated looking for improvements in the standard transformations of the
algorithm and for an optimal mapping to the target device. Both, iterative
and pipeline approaches for encryption were used for AES FPGA implemen-
tation. We attempted to reduce the critical paths for encryption/decryption
by sharing common resources or optimizing the standard transformations of
the algorithm.

In the case of Elliptic Curve Cryptography (ECC), we utilized a hierar-
chical six-layer model, but only the lower three layers were addressed in this
Book. The first layer of the model deals with the efficient implementation of
finite field arithmetic. The Second layer makes use of the underlying arith-
metic for implement elliptic curve arithmetic main primitives: point addition
and point doubling. The third layer implements elliptic curve scalar multipli-
cation which is achieved by adding n copies of the same point P on the curve.
Both the point addition and doubling operations from the second layer serve
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as building blocks for the third layer. We strived for using parallel techniques
for all the three layers. This way, a generic architecture for the elliptic curve
scalar multiplication was proposed and implemented on the FPGA platform.
We also presented parallel formulations of the scalar multiplication operation
on Koblitz curves an architecture that is able to compute the elliptic curve
scalar multiplication using the half-and-add method. Additionally, we pre-
sented optimizations strategies for computing a point addition and a point
doubling using LD projective coordinates in just eight and three clock cycles,
respectively.

1.2 Monograph Organization

Next chapters present a short introduction to the cryptographic algorithms
chosen to illustrate the design strategies discussed previously as well as the
mathematical background required for the correct understanding of the mate-
rial to be presented. Design comparisons and conclusion remarks are presented
at the end of each Chapter. A short summary of each chapter is given below.

In Chapter 2, a brief review of modern cryptographic algorithms is given.
Topics addressed include: Secret-key and public-key cryptography, hash func-
tions, digital signatures, an so forth. Furthermore, we also discuss in this
Chapter potential real-world cryptographic applications and the suitability of
reconfigurable hardware devices for accommodate them.

In Chapter 3 a brief introduction to reconfigurable hardware technology is
given. We explain the historical development of FPGA devices and include a
detailed description of the FPGA families of two major manufacturers: Xilinx
and Altera. We also cover reconfigurable hardware design issues, metrics and
security.

In Chapter 4, some important mathematical concepts are presented. Those
concepts are particularly helpful for the understanding of cryptographic oper-
ations for AES and elliptic curve cryptosystems. Key mathematical concepts
for a class of elliptic curves are also described at the end of this Chapter.

In Chapter 5, we discuss state-of-the-art arithmetic algorithms for prime
fields. We present efficient hardware design alternatives for operations such
as adders, modular adders, modular multipliers and exponentiation among
others. We give at the end of each Section a comparison analysis with some
of the most significant works reported in this topic.

In Chapter 6, state-of-the-art algorithms for binary extension fields are
studied. We discuss relevant algorithms for performing efficiently field mul-
tiplication, squaring, square root, inversion and reduction among others. We
give at the end of each Section a comparison analysis with some of the most
significant works reported in this topic.
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In Chapter 7, we study efficient reconfigurable hardware implementations
of hash functions. Specifically, we carefully analyze MD5, arguably the most
studied hash function ever. We give at the end of each Section a comparison
analysis with some of the most significant works reported in this topic.

In Chapter 8, a general guideline for implementing symmetric block ci-
phers is described. Basic primitives involved in block ciphers are listed and
design tips are provided for their efficient implementations on reconfigurable
platform. DES is presented as a case of study. A compact and fast DES im-
plementation on reconfigurable platform is explained. We give at the end of
this Chapter a comparison analysis with some of the most significant works
reported in this topic.

In Chapter 9, we explore multiple architectures for AES. Several efficient
techniques for AES implementation are described. Several efficient AES en-
cryptor and encryptor/decryptor cores based on those techniques are pre-
sented on reconfigurable platforms. The benefits/drawbacks of all AES cores
are examined. We give at the end of this Chapter a comparison analysis with
some of the most significant works reported in this topic.

In Chapter 10 we discuss several algorithms and their corresponding hard-
ware architecture for performing the scalar multiplication operation on ellip-
tic curves defined over binary extension fields GF(2™). By applying parallel
strategies at every stage of the design, we are able to obtain high speed im-
plementations at the price of increasing the hardware resource requirements.
Specifically, we study the following four different schemes for performing el-
liptic curve scalar multiplications,

e Scalar multiplication applied on Hessian elliptic curves.

e Montgomery Scalar Multiplication applied on Weierstrass elliptic curves.
e Scalar multiplication applied on Koblitz elliptic curves.

e Scalar multiplication using the Half-and-Add Algorithm.

1.3 Acknowledgments

We would like to thank to all the long list of people who contribute to the ma-
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2

A Brief Introduction to Modern Cryptography

In our Information Age, the need for protecting information is more pro-
nounced than ever. Secure communication for the sensitive information is not
only compelling for military or government institutions but also for the busi-
ness sector and private individuals. The exchange of sensitive information over
wired and/or wireless Internet, such as hank transactions, credit card numbers
and telecommunication services are already common practices. As the world
becomes more connected, the dependency on electronic services has become
more pronounced. In order to protect valuable data in computer and com-
munication systems from unauthorized disclosure and modification, reliable
non-interceptable means for data storage and transmission must be adopted.

Figure 2.1 shows a hierarchical six-layer model for information security
applications. Let us analyze that figure from a top-down point of view. On
layer 6, several popular security applications have been listed such as: secure
e-mail, digital cash, e-commerce, etc. Those applications depend on the imple-
mentation in layer 5 of secure authentication protocols like SSL/TLS, TPSec,
IEEE 802.11, etc. However, those protocols cannot be put in place without
implementing layer 4, which consists on customary security services such as:
authentication, integrity, non-repudiation and confidentiality. The underlying
infrastructure for such security services is supported by the two pair of cryp-
tographic primitives depicted in layer 3, namely, encryption/decryption and
digital signature/verification. Both pair of cryptographic primitives can be
implemented by the combination of public-key and private key cryptographic
algorithms, such as the ones listed in layer 2. Finally, in order to obtain a high
performance from the cryptographic algorithms of layer 1, it is indispensable
to have an efficient implementation of arithmetic operations such as, addition,
subtraction, multiplication, exponentiation, etc.

In the rest of this Chapter we give a short introduction to the algorithms
and security services listed in layers 2-4. Hence, the basic concepts of cryp-
tography, fundamental operations in cryptographic algorithms and some im-
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Fig. 2.1. A Hierarchical Six-Layer Model for Information Security Applications

portant cryptographic applications in the industry are studied and analyzed.
Furthermore, alternatives for the implementation of cryptographic algorithms
on various software and hardware platforms are also discussed.

2.1 Introduction

A cryptographic cipher system can hide the actual contents of every message
by transforming (enciphering) it before transmission or storage. The tech-
niques needed to protect data belong to the field of cryptography, which can
be defined as follows.

Definition 2.1. We define Cryptography as the discipline that studies the
mathematical techniques related to Information security such as providing the
security services of confidentiality, data integrity, authentication and non-
repudiation.

In the wide sense, cryptography addresses any situation in which one wishes
to limit the effects of dishonest users [110]. Security services, which include
confidentiality, data integrity, entity authentication, and data origin authen-
tication [228], are defined below.
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e Confidentiality: It guarantees that the sensitive information can only be
accessed by those users/entities authorized to unveil it. When two or more
parties are involved in a communication, the purpose of confidentiality is to
guarantee that only those two parties can understand the data exchanged.
Confidentiality is enforced by encryption.

e Data integrity: It is a service which addresses the unauthorized alter-
ation of data. This property refers to data that has not been changed,
destroyed, or lost in a malicious or accidental manner.

¢ Authentication: It is a service related to identification. This function
applies to both entities and information itself. Two parties entering into
a communication should identify each other. Information delivered over a
channel should be authenticated as to origin, date of origin, data content,
time sent, etc. For these reasons this aspect of cryptography is usually sub-
divided into two major classes: entity authentication and data origin au-
thentication. Data origin authentication implicitly provides data integrity.

¢ Non-repudiation: It is a service which prevents an entity from denying
previous commitments or actions. For example, one entity may authorize
the purchase of property by another entity and later deny such authoriza-
tion was granted. A procedure involving a trusted third party is needed to
resolve the dispute.

In cryptographic terminology, the message is called plaintext. Encoding the
contents of the message in such a way that its contents cannot be unveiled by
outsiders is called encryption. The encrypted message is called the ciphertext.
The process of retrieving the plaintext from the ciphertext is called decryp-
tion. Encryption and decryption usually make use of a key, and the coding
method use this key for both encryption and decryption. Once the plaintext is
coded using that key then the decryption can be performed only by knowing
the proper key.

Cryptography falls into two important categories: secret and public key
cryptography. Both categories play their vital role in modern cryptographic
applications. For several crucial applications, a combination of both secret
and public key methods is indispensable.

2.2 Secret Key Cryptography

Definition 2.2. Matematically, ¢ symmetric key cryptosystem can be
defined as the tuple (P,C,K,E, D), where [110]:

P represents the set of finitely many possible plain-texts.

C represents the set of finitely many possible cipher-texts.

K represents the key space, i.e, the set of finitely many possible keys.

VK € K 3Eg € € (encryption rule), 3 Dg € D (decryption rule).

Each Ex : P — C and Dk : C — P are well-defined functions such that
Ve € P,Dg(Ex(z)) = =.
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Fig. 2.2. Secret Key Cryptography

Both encryption and decryption keys (which sometimes are the same keys)
are kept secret and must be known at both ends to perform encryption or
decryption as is shown in Fig. 2.2. Symmetric algorithms are fast and are
used for encrypting/decrypting high volume data. It is customary to classify
symmetric algorithms into two types: stream ciphers and block ciphers.

e Stream ciphers: A stream cipher is a type of symmetric encryption algo-
rithms in which the input data is encrypted one bit (sometimes one byte)
at a time. They are sometimes called state ciphers since the encryption of
a bit is dependent on the current state. Some examples of stream ciphers
are SEAL, TWOPRIME, WAKE, RC4, A5, etc.

¢ Block ciphers: A block cipher takes as an input a fixed-length block
(plaintext) and transform it into another block of the same length (ci-
phertext) under the action of a user-provided secret key. Decryption is
performed by applying the reverse transformation to the ciphertext block
using the same secret key. Modern block ciphers typically use a block
length of 128 bits. Some famous block ciphers are DES, AES, Serpent,
RC6, MARS, IDEA, Twofish, etc.

The most popular block cipher algorithm used in practice is DEA (Data En-
cryption Algorithm) defined in the standard DES {251]. The secret key used in
DEA has a bit-length of 56 bits. Even though that key length was considered
safe back in the middle 70’s, nowadays technology can break DEA in some
few hours by launching a brute-force attack. That is why DEA is widely used
as Triple DEA (TDEA) which may offer a security equivalent to 112 bits.
TDEA uses three 56-bit keys (namely, Ky, K3 and K3). If each of these keys
is independently generated, then this is called the three key TDEA (3TDEA).
However, if K and K, are independently generated, and K3 is set equal to
K, then this is called the two key TDEA (2TDEA) [258].

On October 2000, a new symmetric cryptographic algorithm “Rijndael”
was chosen as the new Advanced Encryption Standard (AES) [60] by NIST
(National Institute of Standards and Technology) [253]. Due to its enhanced
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security level, it is replacing DEA and triple DEA (TDEA) in a wide range
of applications.

Although all aforementioned secret key ciphers offer a high security and
computational efficiency, they also exhibit several drawbacks:

¢ Key distribution and key exchange The master key used in this kind
of cryptosystems must be known by the sender and receiver only. Hence,
both parties should prevent that this key can get compromised by unau-
thorized entities®.

¢ Key management Those system having many users, must generate/manage
many keys. For security reasons, a given key should be changed frequently,
even in every session.

e Incompleteness It is impossible to implement some of the security ser-
vices mentioned before. In particular, Authentication and non-repudiation
cannot be fully implemented by only using secret key cryptography [317)].

2.3 Hash Functions
Definition 2.3. A Hash function H is a computationally efficient function

that maps fized binary chains of arbitrary length {0,1}* to bit sequences H(B)
of fized length. H(B) is the hash value or digest of B.

Encrypted t
private key

passphrase _. AES key (128 bits)

Fig. 2.3. Recovering Initiator’s Private Key

Decrypted
private
key

{decryplor

In words, a hash function h maps bit-strings of arbitrary finite length to
strings of fixed length, say n bits. MD5 and SHA-1 are two examples of hash
functions. MD5 produces 128-bit hash values while SHA-1 produces 160-bit
hash values.

Hash functions can be used for protecting user’s secret key as depicted in
Fig. 2.3. Fig. 2.3 shows the customary procedure used for accomplishing that

! This implies that in a community of n users a total of nnzl) gecret keys must

be created so that all users can communicate with each other in a confidential
manner.
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Pseudo — random

See
d sequence
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Fig. 2.4. Generating a Pseudorandom Sequence

goal. It is noticed that the AES secret key is generated by means of the hash
value corresponding to the pass-phrase given by the user. Another typical
application of Hash functions is in the domain of pseudorandom sequences as
shown in Fig. 2.4.

Nevertheless, the main application of hash function is as a key building
block for generating digital signatures as it is explained in the next Section.

2.4 Public Key Cryptography

A breakthrough in Cryptography occurred in 1976 with the invention of pub-
lic key cryptography by Diffie and Hellman® [68]. This invention not only
solved the key distribution and management problem but also it provided the
necessary tool for implementing authentication and non-repudiation security
services effectively.

Public-Keys ,\// i P F \E\\g\.}

Y

Encryption Decryption

Fig. 2.5. Public Key Cryptography

2 Although Diffie and Hellman were the first in publishing the concepts of public
key cryptography in the open literature, we know now that they were not the first
inventors. In 1997, a British Security agency (CESG, National Technical Authority
for Information Assurance) published documents showing that in fact James Ellis
and Clifford Cocks came out with the mechanisms needed for performing RSA-
like public key cryptography in 1973. Short after that, M. Williamson discovered
what is now known as Diffie-Hellman key exchange [374, 317, 206).
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Asymmetric algorithms use a different key for encryption and decryption,
and the decryption key cannot be easily derived from the encryption key.
Asymmetric algorithms use two keys known as public and private keys as
shown in Fig. 2.5.

The public key is available to everyone at the sending end. However a
private or secret key is known only to the recipient of the message. An im-
portant characteristic of any public key system is that the public and private
keys are related in such a way that only the public key can be used to encrypt
(decrypt) messages and only the corresponding private key can be used to
decrypt(encrypt) them.

Iniciator Responder

<=

Pubic e Equal? yos
o
eyl
‘ )
Pubic oy

g )

Fig. 2.6. Basic Digital Signature/Verification Scheme

Public key cryptosystems can be used for generating digital signatures,
which cannot be repudiated. The concept of digital signature is analog to the
real-world autograph signature, but it is more powerful as it also protects
against malicious data modifications. A digital signature scheme is based in
two algorithms: signature and verification as explained below.

e A encrypts the message m using its private key ¢; := Ek,,,,(4)(m)
e A encrypts the result ¢; using B’s public key and send the result to B,
¢ = B, (5)(01) = Br(8){ Brcyrin(4) (M)}

e B recovers m by performing,

m= DKpub(A) {DKp'riv(B) (C)}

Since B is able to recover m using A’s public key, B can verify whether A
really sign the message using its private key. Moreover, since the signature
depends on the message contents, theoretically nobody else can reuse the
same signature in any other message.
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In practice, as is shown in Fig.2.6, a digital signature is applied not to the
document to be signed itself, but to its hash value. This is due to efficiency
reasons as public key cryptosystems tend to be computationally intensive. A
hash function H is applied to the message to append its hash value h = H(M),
to the document itself. Thereafter, h is signed by “encrypting” it with the
private key of the sender. This becomes the signature part of the message.

Public Key Crypto-scheme 11

I ] I

Domain Parameter
Generation

Key Generation

Signature/Decryption
(Private Operation)

Verification/Encryption  [|5
(Public Operation) |1

Fig. 2.7. Public key cryptography Main Primitives

As shown in Fig. 2.7 Public key cryptosystems’ main primitives are:

1. Domain Parameter Generation. This primitive creates the mathemat-
ical infrastructure required by the particular cryptosystem to be used.
. Key Generation. This primitive create users’ public/private key.
3. Public Operation. This primitive is used for encrypting and/or verifying
messages.
4. Private Operation. This primitive is used for decrypting and/or signing
messages.

no

Theoretically, a public key cryptosystem can be constructed by means of
specialized mathematical functions called “trapdoor one-way functions” which
can be formally defined as follows.

Definition 2.4, A One-way Function [110] is an injective function f(x)
f:{0,1}" — {0, 1}%,

such that f(z) can be computed efficiently, but the computation of f~1(y)
is computational intractable, even when using the most advanced algorithms
along with the most sophisticated computer systems. We say that a one-way
function is a One-way trapdoor function if is feasible to compute f~1(y) if
and only if a supplementary information (usually the secret key) is provided.

In words, a one-way function f is easy to compute for any domain value
@, but the computation of f~!(x) should be computationally intractable. A
trapdoor one-way function is a one-way function such that the computation
f~*(z) is easy, provided that certain special additional information is known.
The following three problems are considered among the most common for
creating trapdoor one-way functions.
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Integer Factorization problem: Given an integer number n, obtain its
prime factorization, i.e., find n = p1®'p2®2p3® - - - pr®*, where p; is a prime
number and e¢; > 1.

It is noticed that finding large prime numbers?® is a relatively easy task,
but solving the problem of factorizing the product of prime numbers is
considered computationally intractable if the prime numbers are chosen
carefully and with a sufficient large bit-length [196].

Discrete Logarithm problem: Given a number p, a generator g € Z,"
and an arbitrary element a € Z,*, find the unique number ¢, 0 < i < p—1,
such that a = g*(modp).

This problem is useful in cryptography due to the fact that finding dis-
crete logarithms is difficult. The brute-force method for finding g7 (mod p)
for 1 < j < p—1 is computationally unfeasible for sufficiently large prime
values. However, the field exponentiation operation can be computed ef-
ficiently. Hence, g*(modp) can be seen as a trapdoor one-way function
function for certain values of p.

Elliptic curve discrete Logarithm problem: Let Ey,  be an elliptic
curve defined over the finite field Fyand let P be a point P € Ef, with
primer order n. Consider the k-multiple of the point P, @ = kP defined as
the elliptic curve point resulting of adding P, k— 1 times with itself, where
k is a positive scalar in [1,n — 1]. The elliptic curve discrete logarithm
problem consists on finding the scalar k that satisfies the equation Q = kP.
This problem is considered a strong one-way trapdoor function due to the
fact that computing &k given @ and P is a difficult computational problem.
However, given k is relatively easy to obtain the k-th multiple of P, namely,
Q=kP.

2.5 Digital Signature Schemes

M represents the set of all finitely many messages that can be signed

S represents the set of all finitely many signatures (usually the signatures
are fixed-length binary chains).

Ks represents the set of private keys.

Ky represents the set of public keys.

Sg: M — 8 represents the transformation rule for an entity £.

Ve: M x 8§ — {true, false} represents the verification transformation
for signatures produced by £. It is used for other entities in order to verify
signatures produced by £.

Se y Ve define a digital signature scheme for £.

Definition 2.5. A Digital signature scheme is the triple (Gen, Sig,Ver) of
algorithms such that,

3 In the cryptography domain a large prime number has a bit-length of at least 512

bits.
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i. Gen is a Key generation algorithm, with input s; known as the security
parameter; and possibly another extra information I, which gives as an
ouptut (ks,ky) € Ks x Ky corresponding to private key, and public key,
respectively.

#i. Sig is a Signature algorithm, with input (m,ks) € M x Ks, which gives
as an output an element o € S, called Signature (of the message m with
the private key kg ).

iii. Ver is a Verification algorithm, with input (m,o,ky) € M x 8§ x Ky,
which gives as an output the set {true, false} and

Ver(m, Sig(m, ks), ky) = true
V wvalid (ks,ky) oblained from Gen and for all m € M.

Undoubtedly, the most popular public-key algorithms are RSA (based on
factoring large numbers), DSA and ElGamal (based on discrete log problem)
and Elliptic Curve Cryptosystems. Elliptic curve cryptography is now popu-
lar due to the fact that it offers the same security level as offered by other
contemporary algorithms at a shorter key length. It is based on elliptic curve
addition operation.

2.5.1 RSA Digital Signature

The most popular algorithm for commercial applications is RSA%. RSA algo-
rithm is symmetric in the sense that both, the public key and the private key
can be utilized for encrypting a message.

RSA Key Generation

Algorithm 2.1 shows RSA key generation procedure. The public key is com-
posed by the two integers (n,e), where n is called the RSA modulus and is
defined as the product of two prime numbers p, ¢, of approximately the same
bit-length. Both, p, ¢ should be generated randomly and must be kept secret.
The number e is called the public exponent. It must satisfy: 1 < e < ¢ and
ged(e, @) = 1 where ¢ = (p—1)(g — 1). The private key d is called the private
exponent and it must satisfy: 1 < d < ¢ and ed = 1(mod ¢). It is noticed
that the problem of determining the key d given the public key (n,e) has
a computacional difficulty equivalent to the integer factorization problem of
finding p or ¢ given n.

4 RSA stands for the first letter in each of its inventors’ last names: Rivest, Shamir
and Addleman. These three distinguished professors were declared the 2002 A.M
Turin award winners. At that time, Professor Shamir consider it “the ultimate
seal of approval” for Cryptography as a Computer Science discipline [325).
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Algorithm 2.1 RSA Key Generation
Require: bit-length k, a public exponent e, where e is a small prime number.
Ensure: RSA public key (n, e) and private key d.
: Randomly find two primes 5—b1t numbers p and q.
n = pg;
p(n) = (p—1)(g —1);
o if ged(e, ¢(n)) # 1 then
Go to Step 1.
end if
: Find d such that d = e~ mod ¢(n).
: Return (n,e,d).

RSA Digital Signature

RSA encryption/decryption and Signature/verification are based in the Euler
theorem identity, which establishes that,

m® = m (mod n) (2.1)
for any arbitrary integer m. Signature and verification processes are shown in
Algorithms 2.2 and 2.3. The author A of the message m computes the hash
value h = H(m). Then, A computes the signature s = 2%, Then A can send
the message m along with the signature s to a verifying entity, say B. B can
verify A4’s signature as follows. It recovers the hash value from s by computing
h = s°. Thereafter, B computes once again the hash value, say, h = H(m). If
h = h, then the signature is accepted otherwise, it is rejected.

Algorithm 2.2 RSA Digital Signature

Require: Sender’s public key (n, e), Sender’s private key d, message m.
Ensure: digital signature s.

1: h = H(m);
2: s = h% mod n.
3: Return s.

2.5.2 RSA Standards

RSA is specified in [193, 253, 255]. Additionally, there exist a number of
standards where the digital signature algorithm RSA just described is utilized.
The Public Key Cryptography Standard (PKCS), is a set of standards that
include among others, PKCS#1%, PKCS#3% and PKCS#127. PKCS series

® RSA Cryptography Standard
¢ Diffie-Hellman key agreement Standard
7 Personal Information Exchange Syntax Standard
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Algorithm 2.3 RSA Signature Verification

Require: Sender’s public key (n,e), message m, digital signature s.
Ensure: Accept/Reject.
i h = H(m);
h = s® mod n;
if h = A then
Return(Accept);
else
Return(Reject);
end if

I

have become part of many formal and de facto standards, including ANSI X9
documents, PKIX, SET, S/MIME, and SSL [193].

2.5.3 DSA Digital Signature

The Digital Signature Algorithm (DSA) is based in the crypto-scheme pro-
poned by ElGamal in 1984, which in turn is based on the discrete logarithm
problem. Many versions of the original ElGamal procedure has been proposed.
In 1991, the ElGamal procedure was adopted by the U.S. National Institute of
Standards and Technology and registered under the name of Digital Signature
Standard (DSS).

DSA Key Generation

The prime numbers p and ¢ and the generator g are public domain parameters.
They define a multiplicative Abelian group modulus p. The parameter g €
[2,p — 1] specifies a generator of the multiplicative cyclic subgroup (g} of
order q. This mathematically implies that ¢|(p — 1) and no other smaller
positive integer is a prime divisor of p — 1 satisfying ¢¢ = 1. The private
key z is randomly selected among the subgroup elements, i.e., z € [1,q — 1],
whereas the corresponding public key is generated by computing y = g* mod
p, as is shown in Algorithm 2.5. The problem of finding x given the domain
parameters (p,q,g) and the public key y is known as the discrete logarithm
problem.

DSA Digital Signature Algorithm

Once that the public/private key pair has been generated, a given entity 4 can
generate the DSA signature S = (r, ) of a message m by proceeding as follows
(see Algorithm 2.6). First, A must select a random number k € [1, ¢—1], which
must be secret and should be destroyed after the DSA has been generated.
Then, A must compute T = g* mod p, and r = T mod ¢q. Thereafter, the
message m is processed using a secure hash algorithm H so that h = H(m) is
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Algorithm 2.4 DSA Domain Parameter Generation
Require: Security parameters | and ¢.
Ensure: Domain parameters (p,q, g).
1: Select a prime number g of ¢ bits and another prime number p of ! bits such

that ¢|(p — 1).
: Find an element g of order gq.
. repeat

~1
randomly select a number h € [1,p — 1] and compute g = R%5 mod p.
. until {g # 1}

: Return (p,q,9).

DU A W

Algorithm 2.5 DSA Key Generation
Require: Domain parameters p,q, g.
Ensure: Private key z and public key y.
1: Randomly select z € [1,¢q —1].

2: y = ¢g* mod p;

3: Return (y,z).

computed. Then, the other component of the DSA signature can be computed
as!
s=k"Y(h 4 zr) mod ¢ (2.2)

DSA signature is composed by the pair (s, 7). The verifying entity B can check
the correctness of the DSA based on the following observation,

k=s"'(h+2r) mod q. (2.3)
Which implies,

k_ s 'h zs”

g =¢""* " mod p (2.4)

Finally, knowing that T'= g* mod p and y = ¢* mod p, we have,

T=g" "y modp (2.5)

Lats equation corresponds to the computation accomplished by the verifier
at line 8 of Algorithm 2.7. Therefore, the verifier entity B can assess the
correctness of a DSA signature by verifying that the equality r = T mod ¢
holds. This can be done by knowing the domain parameters (p, ¢, g), the public
key y and the DSA signature (r, s). DSA signature generation and verification
are shown in Algorithms 2.6 and 2.7, respectively.

2.5.4 Digital Signature with Elliptic Curves

Elliptic curves over real numbers are defined as the set of points (z,y) which
satisfy the elliptic curve equation of the form:

v=z+azx+b (2.6)
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Algorithm 2.6 DSA Signature Generation

Require: domain parameters (p, g, g), Sender’s private key x, message m.
Ensure: Signature (r, s).
: randomly select k € [1,¢ —1].
T = g* mod p;
r =T mod g;
if r =0 then
Go to Step 1;
end if
h = H(m);
s =k (h +zr) mod g;
9: if s =0 then
10 Go to Step 1;
11: end if
12: Return (r,s).

e IS

Algorithm 2.7 DSA Signature Verification

Require: Domain parameters (p, g, g), Sender’s public key y, message m and sig-
nature (r, s).

Ensure: Accept/Reject.

if 7, s are not in the interval [1,¢ — 1] then
Return(“Reject”)

end if

h = H(m);

w=s"! mod g;

u; = hw mod g¢;

Uz = rw mod gq;

T = g*“'y"*? mod p;

F=T mod q;

10: if » =7 then

11:  Return(Accept);

12: else

13:  Return(Reject);

14: end if

v =z4ar+b (2.6)
where a and b are real numbers. Each choice of a and b produces a different
elliptic curve as shown in Figure 4.1. The elliptic curve in Equation 2.6 forms
a group if 4a® + 27b% # 0. An elliptic curve group over real numbers consists
of the points on the corresponding elliptic curve, together with a special point
O called the point at infinity. Elliptic curve groups are additive groups; that
is, their basic function is addition. The negative of a point P = (x,y) is its
reflection in the x-axis: the point —P is (x, —y). If the point P is on the curve,
the point —P is also on the curve.
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In elliptic curve cryptography we are only interested in elliptic curves
defined over finite fields. This means that the coordinates of the points in the
elliptic curve can only take values that belong to the finite field over which,
the elliptic curve has been defined. In particular we define elliptic curves over
binary extension fields GF(2™), using the following adjusted curve equation,

v+ zy=2a%+ax® 4+ b (2.7)

where a,b € GF(2™) and b # 0. Once again, the elliptic curve includes all
the points (z,y) that satisfy above equation in GF(2™) arithmetic, plus the
point at infinity ©. The set of point that belong to the curve E is denoted as
E(Fam )8,

Elliptic Curve Domain Parameters

The domain parameters needed for obtaining a public key cryptosystem based
on the elliptic curve discrete logarithm problem over F; are the following [133},

1. The number of field elements (finite field order) q.

2. The coeficients a, b € F, that define the elliptic equation E over Fg.

3. A base point P = (zp,yp) € F, that belongs to the curve E. P must have
a prime order,

4. The order n of P.

5. The cofactor h = #E(F,)/n.

ECDSA Key Generation

Let P € E(F,) with order n, where E is an elliptic curve as defined above. We
consider the field order ¢, the elliptic curve equation E and the base point P
as public domain parameters. The private key d is a randomly chosen integer
in the range [1,n — 1] and the corresponding public key is the point Q = dP
as computed in Algorithm 2.8 below. The problem of defining d given P and
Q is known as the elliptic curve discrete logarithm problem.

Algorithm 2.8 ECDSA Key Generation

Require: Elliptic curve public domain parameters (q, E, P,n).
Ensure: public/private key pair Q = (zg,y¢) and d.

1: Randomly choose d in the range [1,n — 1]

2: Q=dP;

3: Return (Q,d).

8 Elliptic curve theory is covered in Chapter 4. Reconfigurable hardware implemen-
tations of elliptic curve cryptosystems are studied in Chapter 10.
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ECDSA Digital Signature

Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve ana-
logue of the Digital Signature Algorithm (DSA) [141]. It was accepted in 1999
as an ANSI standard, and in 2000 it was accepted as IEEE and NIST stan-
dards. Unlike the ordinary discrete logarithm problem and the integer factor-
ization problem, no subexponential-time algorithm is known for the elliptic
curve discrete logarithm problem. For this reason, the strength-per-key-bit is
substantially greater in an algorithm that uses elliptic curves.

Algorithm 2.9 ECDSA Digital Signature Generation
Require: Domain parameters: (g, a,b, P,n, h), Sender’s private key d, message m.
Ensure: Signature (r,s).
: Randomly Select k in the interval [1,n — 1]
kP = (z1,1); and convert z1 into an integer 7.
: Compute r =7 mod n.
if r =0 then
goto step 1;
end if
s e = H(m);
s =k (e + dr) mod n.
9: if s =0 then
10:  goto step 1;
11: end if
12: Return(r,s).

QRN DD W

The ECDSA digital signature algorithm is shown in Fig. 2.9. The signature
for this message is the pair (r, s). It is to be noted that the signature depends
on the private key and the message. This implies that, at least in theory, no
one can substitute a different message for the same signature. Note that if a
message m has a valid digital signature (r, ) then,

s=k~(e+dr) mod n.
which implies,
k= s_l(e +dr)=s"le+ s dr = we + wdr = 4, + uy - d mod n.

Thus, X = w1 P+ u2@Q = (u1 +u2d)P = kP, and consequently we validate the
signature iff v = r. Above verification process is carried out by the procedure
shown in Algorithm 2.10. Notice that in line 8 of that procedure, the elliptic
curve point X = uj - P + up - @, is computed. As explained above, if the
signature to be verified is a valid one then the equality v = Ty mod n = r
should hold.
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Algorithm 2.10 ECDSA Signature Verification

Require: Domain parameters: (g, a,b, P,n, h), signature (r, s), Sender’s public key
@, message m.

Ensure: Reject/Accept.

if 7, s are not in the interval [1,n — 1] then
Return(“Reject”)

end if

e = H(m);

w=s"" modn;

u; = ew mod n;

uz = rw mod n;

X=u1~P+u2-Q;

: if X=0O then

Return "Rejected”.

. end if

: Convert the x coordinate of X to an integer T;.

T v =171 mod n;

o if v = r then

Return(Accept);

. else

Return(Reject);

. end if
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2.5.5 Key Exchange

In secret key cryptography, it is necessary that both parties at the sending and
receiving ends agree on a secret key for transferring data in a secure way. Thus,
several key agreement protocols have been proposed in order to establish a
shared secret. The first such protocol is the Diffie-Hellman protocol, which
provides the key establishment of a key with two message transfers. In the
following, we will describe the basic Diffie-Hellman exchange protocol followed
by its elliptic curve version.

Diffie-Hellman Key Exchange Protocol

Diffie-Hellman key exchange was invented in 1976 by Whitfield Diffie, Martin
Hellman and Ralph Merkle. It was the first practical method for establishing
a shared secret over an unprotected communication channel. Let us suppose
that A and B have already agreed on working with a group G (for example,
let us say the group of integers modulo p) and a generator element g in G.
Then, the protocol dataflow is as follows (Figure 2.8):

A picks a random natural number ¢ and sends ¢* to B.
B picks a random number b and sends ¢° to A.

A computes K=(g").

B computes K=(g%)®.
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In the Diffie-Hellman protocol, g and p are the domain parameters and K is
the private key for the session which can be used as a shared secret for secure
communication between A and B via symmetric cryptography.
Diffie-Hellman protocol is considered secure if G and g are chosen properly,
i.e., the eavesdropper has an enormous difficulty to compute the element g,
because he/she needs to solve the discrete logarithm problem over the group

G.

A (0, 6) —

| nown Diffie-Hellman ||3 'Ego\/(;')1

a gee

I G is a group of prime order p b I
g*mod p g° mod p

| A

K=(g")* mod p

Fig. 2.8. Diffie-Hellman Key Exchange Protocol

Elliptic Curve Diffie-Hellman Key Exchange Protocol

Let A and B agree on an elliptic curve E over a large finite field F' and a point
P on that curve. Then the necessary steps for exchanging a secret key by using
elliptic curve discrete logarithmic algorithm are as shown in Figure 2.9.

¢ A and B each privately choose large random integers, denoted r; and ry.
Using elliptic curve point-addition, A computes r1 P on E and sends it to
B. B computes 72 P on E and sends it to A.

¢ Both A and B can now compute the point r179 P by performing the elliptic
curve scalar multiplication of the received value of roP, r1 P by his/her
secret number ry, 7o, respectively.

A and B agree that the x coordinate of this point will be their shared
secret value.

2.6 A Comparison of Public Key Cryptosystems

Due to the high difficulty of computing the elliptic curve discrete logarithm
problem, one can obtain the same security provided by other existing public-
key cryptosystems, but at the price of much smaller fields, which automati-
cally implies shorter key lengths. Having shorter key lengths means smaller
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Fig. 2.9. Elliptic Curve Variant of the Diffie-Hellman Protocol

bandwidth and memory requirements. These characteristics are especially im-
portant in most embedded system applications, where both memory and pro-
cessing power are constrained.

High performance implementations of elliptic curve cryptography depend
heavily on the efficiency in the computation of the finite field arithmetic op-
erations needed for the elliptic curve operations. On the other hand, the level
of security offered by protocols such as the Diffie-Hellman key exchange al-
gorithm relies on exponentiation in a large group. Typically, the implementa-~
tion of this protocol requires a large number of exponentiation computations
in relatively big fields. Therefore, hardware/software implementations of the
group operations are, for all the practical sizes of the group, computationally
intensive.

Nowadays, there exist algorithms able to solve the factorization problem
as well as the discrete logarithm problems in a sub-exponential time. For
instance, the Number Field Sieve (NFS) [203] is the best option for solving
the integer factorization problem. The Number Field Sieve (NFS) [115] and
the Pollard’s rho algorithm [273] can solve the discrete logarithm problem.

In the case of RSA, the largest RSA modulus factored is a 640-bit (193-
digit) integer in November, 2005 [195]. In the case of ECDSA, the largest
known example was solved using the Pollard’s rho method for both, prime
and binary finite fields. The elliptic curve discrete logarithm problem for an
elliptic curve over a 109-bit prime field was broken on November 2002 [44],
whereas another elliptic curve defined over a 109-bit binary field was broken
in April, 2004. The effort required 2600 computers and took 17 months [45].
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2.7 Cryptographic Security Strength

Some of the major factors that determine the security strength of a given
symmetric block cipher algorithm include, the quality of the algorithm itself,
the key size used and the block size handled by the algorithm?.

The security strength of an n-bit key symmetric block cipher algorithm,
which has no known security flaws, is measured in terms of the amount of
work it takes to try all possible keys, an attack traditionally known as the
brute-force attack.

A generic cryptographic algorithm that has an m-bit key, but whose
strength is comparable to an n-bit key of a strong symmetric block cipher
algorithm is said to have an equivalent n-bit security strength. In general,
however, the equivalent n-bit security strength of a given algorithm is less
than m due to the possibility that certain specific attack to that algorithm
may provide computational advantages compared with the brute-force attack
[257].

Determining the security strength of an algorithm is not trivial. For ex-
ample, one might expect that 3TDEA would provide 56 = 3 = 168 bits of
strength. However, the so-called birthday and meet-in-the-middle attacks on
3TDEA {227, 315] reduces the strength of 3TDEA to merely 112-bit equiv-
alent security strength. In the case of 2TDEA, provided that the attacker
can manage to gather approximately 24° plaintext-cipher pairs, then 2TDEA
would have a strength comparable to an 80-bit algorithm [257].

On the other hand and due to performance, functionality or compatibility
reasons, algorithms of different strengths and key sizes are frequently com-
bined in the same application. In general, the weakest algorithm and key size
used for cryptographic protection determines the strength of the protection
provided to the system. As an example, if SHA-512 is used with 1024-bit RSA,
only 80-bit of security strength will be provided to data application. If the
application requires 128 bits of security, then 3072-bit RSA key must be used.
Alternatively, 256-bit ECC can be used to substitute RSA as a public key
cryptographic engine.

Table 2.1 compares the security strengths of a set of algorithms divided
into three categories: Symmetric block cipher algorithms, public key crypto-
systems and hash functions. Notice, however, that novel or improved attacks
and/or technologies may be developed in the future, leaving some of the al-
gorithms included in Table 2.1 partially or completely broken. In particular,
all hash functions listed in Table 2.1 have recently been subject of successful
attacks, thus casting doubts on their security [368, 369, 103].

® The block size is also a factor that should be considered, since if a collision-attack

is launched, collisions become probable after 2% blocks have been encrypted with
the same key for certain block ciphers’ modes of operation [71, 70, 69].
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Table 2.1. A Comparison of Security Strengths (Source: [258])

IPrivate key Algorithm|bit

securitylExpected Security lifetimel

Two-key triple DES 80 through 2010
Triple-key triple DES 112 through 2030
128-bit AES 128 beyond 2030
192-bit AES 192 beyond 2030
256-bit AES 256 beyond 2030
|Public key Algorithm [bit security|Expected Security lifetime]

DSA (p = 1024, ¢ = 160) (80 through 2010
DSA (p = 2048, q = 224) |112 through 2030
DSA (p = 3072, q = 256) |128 beyond 2030
DSA (p = 7680,q = 384) (192 beyond 2030
DSA (p = 15360, g = 512)|256 beyond 2030
1024-bit RSA 80 through 2010
2048-bit RSA 112 through 2030
3072-bit RSA 128 beyond 2030
7680-bit RSA 192 beyond 2030
15360-bit RSA 256 beyond 2030
{160-223}-bit ECC 80 through 2010
{224-255}-bit ECC 112 through 2030
256-383}-bit ECC 128 beyond 2030
384-511}-bit ECC 192 beyond 2030
{512-}-bit ECC 256 beyond 2030
IHash functions Ibit securitylExpected Security lifetimel

SHA-1 80 through 2010
SHA-224 112 through 2030
SHA-256, 128 beyond 2030
SHA-384 192 beyond 2030
SHA-512 256 beyond 2030
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During the last few years we have seen formidable advances in digital and
mobile communication technologies such as cordless and cellular telephones,
personal communication systems, Internet connection expansion, etc. The vast
majority of digital information used in all these applications is stored and also
processed within a computer system, and then transferred between computers
via fiber optic, satellite systems, and/or Internet. In all those new scenarios,
secure information transmission and storage has a paramount importance in
the international information infrastructure, especially, for supporting elec-
tronic commerce and other security related services.

Under such a dynamic scenario, some of the most popular applications in
the domain of information security include,



28 2.A Brief Introduction to Modern Cryptography

Secure e-matl

World Wide Web

Client-Server transactions
Virtual Private Networks

E-cash

Electronic Financial transactions
Grid Computing

Many multinational firms now sell security products using cryptographic
algorithms. Those products are in use by military or government organizations
and they play a vital role in secure communications between individuals, small
and large business groups.

Various international organizations have been working in developing stan-
dards for determining security and speed of products such as cellular phones,
video conferencing equipment, secure telephone, etc. Examples include stan-
dards for video conferencing: H310, H323, H324 by ITU [154], for mobile
communications: GSM by ETSI [87], for wireless LANs: 802.11a, 802.11b by
IEEE LAN/MAN Committee [144], etc.

Numerous useful activities for increasing the security of cryptographic
algorithms have happened in the few last years. The selection of the new
Advance Encryption Standard (AES) ‘Rijndael’ and the inclusion of Elliptic
curve cryptography (ECC) in international standards provide such examples.

Promising applications for cryptographic algorithms may be classified into
two categories [250].

1. Processing of large amount of data at real time potentially in a high
speed network. Examples include telephone conversation, telemetry data,
video conferencing, streaming audio or encoded video transmissions and
so forth.

2. Processing of very small amount of data at real time in a moder-
ately high-speed network transmitted unpredictably. Examples include e-
commerce or m-commerce transactions, credit card number transmission,
order placement with signature, bank account information extraction, e-
payments, and micro-browser-based (WAP-style) HTML page browsing
and so forth.

A short list of the candidate applications corresponding to category 1 are
presented in Table 2.2. Those applications belong to the “highly efficient”
category of applications, thus requiring high data rates.

Table 2.2 presents both the downstream and upstream data transfer ranges
on VDSL (Very high speed Digital Subscriber Line) [88, 252]. The downstream
defines transmission of line terminal toward network terminal (from customer
to network premise) and upstream in the reverse direction, that is, from net-
work terminal to line terminal (from network to customer premise).

Table 2.2 can help to mark a line between high speed (highly efficient)
and low speed (slow or relatively less speed) applications. The data rates for
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Table 2.2. A Few Potential Cryptographic Applications

{Application

Upstream

Downstream

J

Distance learning

384Kbps-1.5Mbps

384Kbps-1.5Mbps

Telecommuting

1.5Mbps-3.0Mbps

1.5Mbps-3Mbps

Multiple digital TV

6.0Mbps-24.0Mbps

64Kbps-640Kbps

Internet Access

400Kbps-1.4Mbps

128Kbps-640Kbps

Web hosting

400Kbps-1.5Mbps

400Kbps-1.5Mbps

Video conferencing

384Kbps-1.56Mbps

384Kbps-1.5Mbps

Video on demand

6.0Mbps-18Mbps

64Kbps-128Kbps

Interactive video

1.5Mbps-6.0Mbps

128Kbps-1.5Mbps
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Telemedicine
High-definition TV

6.0Mbps
16Mbps

384Kbps-1.5Mbps
64Kbps

highly efficient applications ranges from 384Kbps to 24Mbits for upstream
and 64Kbps to 3Mbps for the downstream traffic. From Table 2.2, the appli-
cations requiring a speed factor of less than 400Kbps can be grouped as low
speed applications. Those applications require either stand-alone software im-
plementations of cryptographic algorithms or the usage of software methods
on embedded processors. High speed or highly efficient applications therefore
reside in the range from 400Kbps onward.

Software methods on general-purpose processors cannot achieve such a
high frequency gains for cryptographic algorithms. On the other hand, high
speeds above 400Kbps can easily be achieved on both hardware platforms,
the traditional (ASICs) and the reconfigurable hardware FPGA devices.

2.9 Fundamental Operations for Cryptographic
Algorithms

Symmetric or secret key cryptographic algorithms are based on well-understood
mathematical and cryptographic principles. The most common primitives en-
countered in various cryptographic algorithms are permutation, substitution,
rotation, bit-wise XOR, circular shift, etc. This is one of the reasons for their
fast encryption speed. On the other hand, asymmetric or public key crypto-
graphic algorithms are based on mathematical problems difficult to solve. The
most common primitives in various such types of algorithms include modular
addition/subtraction, modular multiplication, variable length rotations, etc.
Those primitives give algorithmic strength but they are hard to implement:
occupy more space and consume more time.

Therefore those algorithms are not used for encrypting large data files,
but rather, they are applied to other important cryptographic applications
like key exchange, signature, verification, etc.
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A detail survey conducted in [44], identifies the basic operations involved
in several cryptographic algorithms. That survey has been slightly updated
as shown in Table 2.3.

Table 2.3. Primitives of Cryptographic Algorithms (Symmetric Ciphers)
Modular addition or Blowfish, CAST, FEAL,GOST, IDEA, WAKE

subtraction RC5, RC6, TEA, SAFER K-64, Twofish, RC4
SEAL, TWOPRIME
Bitwise XOR Blowhsh, CAST, DEAL, TWOPRIME, FEAL, A5

IDEA, GOST, RC4, RC5, SAFER, SEAL, Twofish
DES, WAKE, LOKI97, LOKI91, Rijndael, MISTY
TEA, MMB, RC6, K-64

Bitwise AND/OR MISTY

Variable-length rotations]CAST, Madryga, RC5, RC6

Fixed-length rotations |DEAL, DES, CAST, FEAL, GOST, Serpent, RC6

Twofish

Modular multiplication |[CAST, IDEA, RC6, MMB, Rijndael,

Substitution Blowfish, DEAL, DES, LOKI91, LOKI97, Twofish
Rijndael

Permutation DEAL, DES, ICE, LOKI91, LOKI97

Non-circular shifts Serpent, TEA

From Table 2.3, it is clear that most cryptographic algorithms include bit-
wise operations such as XOR, AND/OR, etc. Those operations can be nicely
implemented on hardware platforms. Long word length is another peculiarity
of cryptographic algorithms, which is recommended by various international
standards in order to attain sufficient security against brute force attacks.

The long key/word length of cryptographic algorithms is an obstacle for
parallel dataflow on 8, 16, 32-bit general-purpose processors resulting on
high time delays for the execution of crypto algorithms. This is not the case
for hardware implementations. For example, in FPGAs, more than 1000 in-
put/output pins are available for their use as either input or output buffers
allowing high parallelism of data {392, 394].

In order to confuse the relationship between input and output, crypto-
graphic algorithms perform a number of iterations on the same input data
block for one encryption. DES performs 16 iterations or rounds and AES sup-
port 10, 12, and 14 rounds depending on the word length. In software, all
iterations are performed sequentially while in hardware, all rounds can be
implemented in parallel, thus ensuing significant improvements in timings.
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2.10 Design Alternatives for Implementing
Cryptographic Algorithms

The implementation approaches for cryptographic algorithms are based on
the question: what needs to be secured?

High-speed network where large amount of data traffic must be processed
in unpredictable and in real time are not supposed to be a good candidate
for software implementations as data is coming at significant high speeds and
must be treated in real time. Examples of such situation include telephone
conversation, video conferencing, and so forth.

Hardware solutions on VLSI can accommodate high data rates but they
take long development cycle for the application. Any change or modification
in the design is a difficult or even impossible task.

A hardware solution that overcomes the difficulties of VLSI designs, while
still allowing high dataflow, is reconfigurable hardware platforms. Indeed, Re-
configurable hardware devices such as FPGAs (Field Programmable Gate
Arrays) provide fast solutions in short time with a high degree of flexibility.

Table 2.4 presents a quick comparison of reconfigurable logic against soft-
ware and VLSI based solutions.

Table 2.4. Comparison between Software, VLSI, and FPGA Platforms

| ”Software [VLSI lFPGAs ]
Size small (depends)|big small

Cost low high cost low cost
Speed low Very high  |high

Memory fine fine fine
Flexibility highly flexible |no flexibilityhighly flexible
Time-to-market short very high short

Power consumption depends low high
Testing/Verification easy difficult easy
Run-time configuration [{none none yes

Software implementations are low cost, easy to debug, take short time
cycle but are slow. VLSI implementations are very fast but their application
development cycle is too large and also they are not flexible. Reconfigurable
devices are fast, highly flexible, easy to debug and take small developing cycle
offering cost effective solutions.

In summary, using reconfigurable hardware for cryptographic algorithms
is beneficial in several ways:

e Most cryptographic algorithms, especially symmetric ciphers, contain bit-
wise logic operations whose implementation fits very well on the FPGA
CLB structure.
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e In Section 2.9, it was mentioned the iterative nature of most cryptographic
algorithms. An iterative looping design (IL) implements only one round.
Hence, n iterations of the algorithm are carried out by feeding back pre-
vious round results. For a high speed network, instead of implementing
one round, n rounds of the algorithm can be replicated and registers are
provided between the rounds to control the flow of data. Reconfigurable
FPGA logic results useful for both design strategies due to its high speed
and high-density features.

e Substitution is the fundamental operation in most block ciphers like DES
or Rijndael which implies the usage of lot of memory resources. The usage
of pipeline design strategies, tend to provoke significant memory require-
ments. Fortunately modern FPGA families like Xilinx Virtex series device
are equipped with more than 280 built-in memory blocks 4K each, called
BlockRAMs (BRAM).

e At the same time, in several contexts, designers may use reconfigurable
FPGA logic to implement in the same hardware both the public key al-
gorithm for the generation and secure exchange of key and the private
key algorithm traditionally used in the bulk encryption of the underlying
traffic.

o The usage of different cryptographic algorithms for various applications
faces several compatibility issues. A dynamic configuration for any cryp-
tographic algorithm on FPGA might be a good compromise solution to
this problem.

o FPGA devices are ideal for debugging and fast prototyping, especially if
the synthesized hardware description can be mapped by the design team
from FPGA domain to ASIC.

o The flexibility for integration into larger platform together with straight-
forward architecture modifications are significant pluses for FPGA plat-
form implementations.

2.11 Conclusions

In this Chapter we gave a short introduction to the algorithms and security
services corresponding to layers 2-4 of Fig. 2.1. This way, basic concepts of
cryptography along with a description of the main building blocks necessary
for constructing security applications was given. We described the basic op-
eration of symmetric block ciphers, hash functions, three major public key
cryptosystems and the celebrated Diffie-Hellman key-exchange protocol. We
also gave some comments on the security provided by the main cryptographic
schemes and their equivalent security strength. Furthermore, alternatives for
the implementation of cryptographic algorithms on various software and hard-
ware platforms were also analyzed and discussed.

As a conclusion, we believe that Reconfigurable logic offers numerous use-
ful advantages, however its usage in inexpensive consumer-oriented devices
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such as electronic gadgets, wireless PDAs and handsets seems to be impossi-
ble at present time.

On the contrary, FPGA devices can be contemplated on embedded sys-
tems, large wireless equipments, electronic transmitters and receivers, re-
peaters, spectrum scanning devices, and intelligent equipment.
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Reconfigurable Hardware Technology

An FPGA is an integrated circuit that belongs to a family of programmable
devices called Programmable Logic Devices (PLDs). An FPGA contains
tenths of thousands of building blocks, known as Configuration Logic Blocks
(CLB) connected through programmable interconnections. Those CLBs can
be reconfigured by the designers themselves resulting in a functionally new
digital circuit, this way, virtually any kind of digital circuit can be imple-
mented using FPGAs [11, 272, 304, 244].

At first, FPGA devices were mainly applied for logic design, and as a
consequence of that, numerous tools were designed for synthesizing logic de-
signs on them. Among those tools; Hardware Description Languages (HDL)
and schematic diagram editors have been traditionally used as a starting point
for such a synthesis process. Among the many hardware description languages
available today, Verilog, and especially, VHDL, are the two most widely spread
hardware languages.

In recent years, FPGAs have been used for reconfigurable computing when
the main goal is to obtain high performance at a reasonable cost out of hard-
ware implemented algorithms. The main advantage of FPGAs is their recon-
figurability, i.e., they can be used for different purposes at different stages of a
computation and they can be, at least partially, reprogrammed on run-time.
The two most popular FPGA manufacturers are Xilinx [396] and Altera [4].
Those two makers have over 70% of the FPGA market share.

Besides Cryptography, applications of FPGAs can be found in the domains
of evolvable and biologically-inspired hardware, network processors, real-time
systems, rapid ASIC prototyping, digital signal processing, interactive multi-
media, machine vision, computer graphics, robotics, embedded applications,
and so forth. In general, FPGAs tend to be an excellent choice when deal-
ing with algorithms that can benefit from the high parallelism offered by the
FPGA fine-grained architecture.
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In this chapter we present the generalities of FPGA technology. We stress
that the material of this Chapter is mainly intended for those readers non-
familiar with this technology.

We begin in Section 3.1 by reviewing some historical milestones of FPGA
development and then we review in Section 3.2 the two most currently used
FPGA technologies, namely, Xilinx and Altera. Then we compare in Sec-
tion 3.3 the performance of FPGA realizations against the ones on ASICs and
general-purpose processor platforms. We continue in Section 3.4 by briefly
introducing the reconfigurable computing paradigm main concepts. In Sec-
tion 3.5 we review several key strategies to achieve good designs for crypto-
graphic applications. Then, we define in Section 3.6 several metrics and figures
of merit needed to evaluate design performance for reconfigurable computing
as well as several security concerns related to FPGA technology. In Section 3.7
we give a brief overview of some of the security concerns and attacks on FPGA
technology. Finally, in Section 3.8 concluding remarks are given.

More experimented readers might be interested in reviewing more ad-
vanced material. For them, we recommend excellent sources such as the ones
found in [124, 365, 217, 199, 192]. Those readers having more technology ori-
ented interests may profit from consulting [259, 244] as well.

3.1 Antecedents

The concept of reconfigurable computing was first introduced by G. Estrin in
1960 [101]. His invention consisted of a hybrid machine composed by a general
purpose microprocessor interconnected with programmable logic devices. The
programmable logic could be configured for accomplishing a specific function
with the characteristic efficiency of hardware designs. Once the function was
completed, another task could be performed by manually reconfiguring the
hardware. This resulted in a hybrid computer structure combining the best
features of software (flexibility) and hardware (speed) platforms. It is nothing
but remarkable how Estrin’s concept come close to what is offered by nowadays
modern reconfigurable devices [217].

In the mid 1970s, Programmable Logic Devices (PLDs) were introduced by
companies such as IBM, Monolithic Memories, Inc (MMI) and AMD. The first
PLDs were called PAL (Programmable Array Logic) or PLA (Programmable
Logic Array) depending on the programming scheme utilized [272]. Earlier
PLDs consisted of logic gate arrays with no clocked memory components.
However, registered PLDs including one flip-flop at each output of the circuit,
were soon available. Register PLDs allowed for the first time the design of
simple reprogrammable sequential circuits.

An innovation of PAL devices was the Generic Array Logic (GAL) device,
which had the same logical properties as the PAL but the functionality could
be erased and reprogrammed. From the point of view of today’s standards,
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PALs and GALs devices are small devices having an equivalent computational
power of just some few hundred logic gates.

As a consequence of Moore’s law, the semiconductor technology has expe-
rienced an unrelenting improvement over the last three decades. That allowed
the integration in the mid 1980s of several either GAL or PAL devices on the
same chip, thus given birth to the CPLD (Complex PLD) devices. CPLDs
can emulate the computational power of hundreds of thousands of logic gates
and they are still very popular due to their outstanding cost-benefit compro-
mise (some CPLD devices can be bought for less than a dollar). A typical
modern CPLD device has a structure consisting of several GAL blocks whose
outputs are connected to a switch matrix used for programming the intercon-
nections as well as the Input/Output pins. Each GAL block consists of one
or more programmable sum-of-products logic arrays ended with a relatively
small number of registers. CPLDs are usually programmed via a serial data
port that can be connected to a personal computer. Internally, the CPLD con-
tains a decoding module that interprets the data stream in order to perform a
specific logic function. The preferred standard for this programming method is
the IEEE 1149.1 standard usually known as Joint Test Action Group (JTAG)
interface [272]. As of 2006, most CPLDs are non-volatile electrically-erasable
programmable devices.

Field Programmable Gate Array (FPGA) devices were introduced by Xil-
inx in the mid 1980s. Roughly speaking, FPGA devices are built using a
grid of logic gates. They differ from CPLDs in several key aspects. FPGA
architectures consists of a matrix of Configurable Logic Blocks (CLBs) inter-
connected by an intricate array of switch matrices. This architecture provides
great flexibility to hardware designers but it also implies much more sophis-
ticated routing technologies [123]. The fact that most modern FPGAs have
higher-level embedded modules such as built-in multipliers, distributed RAM
blocks and so on is another important difference with CPLD devices. More-
over, in contrast to CPLD devices, most modern FPGAs support (at least
partially) in-system reconfiguration, thus allowing designs to be changed dy-
namically “on run-time”. This feature can be particularly useful for system
updates.

Significant technical advances have led to architectures that combine
FPGA’s logic blocks and interconnect matrices, with one or more micropro-
cessors and memory blocks integrated on a single chip. This hybrid technology
is called Configurable System-on-Chip (CSoC). Examples of the CSoC tech-
nology are the Xilinx Virtex-II PRO, and the Virtex-4 and Virtex-5 FPGA
families, which include one or more hard-core PowerPC processors embedded
along with the FPGA’s logic fabric [398, 396, 397].

Alternatively, soft processor cores that are implemented using part of the
FPGA logic fabric are also available. This approach is more flexible and less
costly than the CSoC technology {217]. Many soft processor cores are now
available in commercial products. Some of the most notorious examples are:
Xilinx 32-bit MicroBlaze and PicoBlaze, and the Altera Nios and the 32-bit
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Nios II processor [394, 5]. These soft processor cores are configurable in the
sense that the designer can introduce new custom instructions or processor
data paths. Furthermore, unlike the hard-core processors included in the CSoC
technology, designers can add as many soft processor cores as they may need
(some designs could include 64 such processors or even more [130, 217]).

Programmabie
Logic Devices
(PLDs)
]
PALs GALs FPGAs
CPLDs CSoC

Fig. 3.1. A Taxonomy of Programmable Logic Devices

Fig. 3.1 shows the taxonomy of the programmable logic devices just dis-
cussed. In the next Section, more specific details of the FPGA device internal
architecture are given.

3.2 Field Programmable Gate Arrays

In a very rough way, an FPGA can be seen as a matrix of Configurable Logic
Blocks (CLBs), where not only the logic but also the connection is user pro-
grammable. The specific design of the CLB blocks varies from manufacturer
to manufacturer and even, from device to device. A CLB can be as simple as
just one four-input Look Up table (LUT) or as complex as a 4-input Arith-
metic Logic Unit (ALU), or a 6-input Look Up Table [398]. It is customary
to define the granularity of the reconfigurable logic as the size of the smallest
functional unit that can be addressed by the programming tools.

Architectures having finer granularity tend to be more useful for data ma-
nipulation at bit level and, in general, for combinatorial circuits. On the other
hand, blocks with a coarse grain granularity are better suited for higher levels
of data manipulation, for example, for developing circuits at register-transfer
level. The level of granularity has a great impact in the device configuration
time. Indeed, a device with low granularity (also known as fine-grained de-
vices) requires many configuration points producing a bigger vector data for
reconfiguration. That extra routing has an unavoidable cost on power and
area.

On the other hand, a coarse grained architecture tends to decrease its per-
formance when dealing with computations smaller than what its granularity
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is. For example, if for a specific application, bit-level operations are required
and the smallest functional unit is four-bit wide, then a waste of three bits
would occur.

FPGA interconnection has a major role in the performance of an FPGA
device due to the need of fast and efficient communication highways among
the different logic blocks which are organized by rows and columns. Xilinx
devices! are equipped with four kinds of interconnects: long lines, hex lines,
double lines and direct lines. Direct connect lines are intended for connecting
neighbor components (for example, carry circuitry). Hex and double lines are
medium length interconnects aimed for connecting many CLBs. Finally long
lines interconnects are implemented along the whole chip and are normally
utilized for global system signals.

In recent years, huge technological developments have had a great impact
on FPGA industry. The most advanced FPGA devices operate up to 550
MHz internal clock with a gate complexity of over 10 Million gates on a single
Virtex-5 FPGA chip using a technology of just 65 nm operating at 1.0V [395].
The improvements in technology are not only limited to an ever growing
internal number of logic gates but also to the addition of many functional
blocks like fast access memories, multipliers or even microprocessors integrated
within the same chip.

There are quite a few FPGA commercial manufacturers, and usually each
one of them has developed one or more device families. Table 3.1 shows some
of the most popular manufacturer families.

Table 3.1. FPGA Manufacturers and Their Devices

Manufacturer FPGA Family Feature
Xilinx Virtex-5, Virtex-4, FPGA market leader
VirtexII, Spartan III 657m technology
Altera Stratix, Stratix II, Cyclone 90nm technology
Lattice LatticeXP first non-volatile FPGA
Actel Fusion, M7Fusion first mixed-signal FPGA
Quick Logic Eclipse 11 programmable-only-once FPGA

Atmel AT40KAL fine-grained reconfigurable

Achronix Achronix-ULTRA 1.6GHz - 2.2GHz speed

3.2.1 Case of Study I: Xilinx FPGAs

Table 3.2 shows the main features that are included in the Xilinx FPGA
families: Virtex-5, Virtex-4, Virtex IT Pro and Spartan 3E. The architecture of
those Xilinx FPGA families consists of five fundamental functional elements,

! At the time that this book was being written, Xilinx released the Virtex-5 family
which has a radically different CLB interconnection pattern [395].
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Table 3.2. Xilinx FPGA Families Virtex-5, Virtex-4, Virtex II Pro and Spartan 3E

[ Feature/family [ Virtex-5 Virtex-4 I Virtex IT Pro | Spartan 3 & 3E ]
Logic Cells up to 330K 12K-200K 3K-99K 1.7K-74K
BRAM 576 36-512 12-444 4-104
(18Kbits each)
Multipliers 32 — 1927 32-512 12-444 4-104
DCM up to 18 4-20 4-12 2-18
I0Bs up to 1200 240-960 204-1164 63-633
DSP Slices 32-192 32-192 — -
PowerPC Blocks N/A 0-2 0-2 -
Max. freq. 550MHz 500MHz 547 MHz up to 300MHz
Technology 1.0V, 65nm 1.2V, 90nm, 1.5V, 1309m, 1.2V, 90nm,
copper CMOS|triple-oxide process|9-layer CMOSitriple-oxide process
Price N/A From $345 From $139 |From $2 up to $85

125 x 18 embedded multipliers

Block RAM,;

Dedicated Multipliers and;
Digital Clock Managers (DCMs).

Configurable Logic Block (CLB) and Slice architecture;
Input/Output Blocks (IOBs);

Those components are physically organized in a regular array as shown in
Fig. 3.2. In the following we explain each one of those five elements?.

2 Virtex-5 devices can be considered second generation FPGA devices. In particu-
lar, a Virtex-5 slice contains four true 6-input Look Up Tables (LUTs).
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Fig. 3.3. Xilinx CLB

Configuration Logic Blocks (CLBs)

The Configurable Logic Blocs (CLBs) are the most important and abundant
hardware resource of an FPGA. They are typically utilized for both, combi-
natorial and synchronous logic design. Each CLB is composed of four slices®,
which are interconnected as shown in Fig. 3.3. The slices are grouped by pairs
and each pair is organized by a column with independent carry chain [395].

1l four slices have the following common elements: two Look-Up Tables
(LUTs), two type D flip-flops, multiplexers, logic circuits for carry handling
and arithmetic logic gates. Both, the left and right pair of slices utilize those
elements for providing logic functions, arithmetic and ROM. Besides that, the
left pair supports two additional functions: data storage using a distributed
RAM and 16-bit shift register functionality. Fig.3.4 shows the internal struc-
ture of a CLB. The atomic building block of a Virtex CLB is the logic cell
(LC). An LC includes the Look-Up Table block, carry logic, and a storage
element (flip-flop) as shown in Figure 3.5.

As it was mentioned, a CLB can be configured to work into two modes:
logid mode and memory mode. As shown in Fig. 3.6, in logic mode, each CLB
Look Up Table behaves as a combinational logic block and a one bit register.
In the case of Xilinx devices those Look Up Tables can be reprogrammed
to any arbitrary combinational logic function of four inputs/one output. In

memory mode, Look Up Table blocks behave as two small pieces of memory
blocks.

% Slice is a term introduced by Xilinx. It specifies a basic processing unit in a Xilinx
FPGA.
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Input/Output Blocks

Input/output Blocks (IOB) provide a bidirectional programmable interface
between the outside world and the internal logic structure of the FPGA device.
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There exist three types of routing possibilities for an I0B: output signal, input
signal and third state (high impedance) signal. Each one of those signals has

their own pair of storage elements that can behave as registers or as latches
[395].

Block RAM

Virtex devices include built-in 18K-bit RAM memory, called BRAM. BRAMs
can be configured in a synchronous manner. BRAMs are intended for storing
big amounts of data, while the distributed RAM is more useful for storing
small amounts of data.

BRAMs are polymorphic blocks in the sense that its width and depth
can be configured. Even multiple blocks can be connected in a back-to-back
configuration in order to create wider and/or deeper memory blocks. A BRAM
block supports several configuration modes, including single or double port
RAM and several possible combination of data/address sizes as is shown in
Table 3.3.

Table 3.3. Dual-Port BRAM Configurations

[Configuration|Depth[Data bits[Parity bits]
16K x 1 bit | 16Kb 1 0
8K x 2 bit | 8Kb 2
4K x 4 bit | 4Kb 4
2K x 9 bit | 2Kb 8
1K x 18 bit | 1Kb 16
512 x 36 bit | 512 32

I ={olo

18x18 Bit Multiplier

Xilinx FPGAs have several dedicated multiplier blocks. Those multipliers ac-
cept two 18-bit operands in two’s complement form computing their product
also in two’s complement form. Such multipliers blocks have been optimized
for performing at a high speed while their power consumption is kept low when
compared with multipliers directly implemented using the CLB resources. The
total number of multipliers varies from device to device as is shown in Table
3.2.

Digital Clock Managers

Digital Clock Managers (DCMs) provide a flexible control over clock fre-
quency, phase shift and skew. The three most important functions of DCMs
are: To mitigate clock skew due to different arrival times of the clock signal,
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to generate an ample range of clock frequencies derived from the master clock
signal and, to shift the signal of all its output clock signals with respect to
the input clock signal.

3.2.2 Case of Study II: Altera FPGAs

Altera offers a wide variety of programmable hardware devices which are
grouped into four categories [4].

o Complex Programmable Logic Devices(CPLDs)
o Low-Cost FPGAs

e High-density FPGAs

e Structured ASICs

CPLDs

Altera’s CPLDs include MAX (EPM3032A, EPM3512A) and MAX-II (EPM
240/G, EPM 2210/G) family of devices. They are low complexity, low density
and easy to use CPLD family for which software tools can be downloaded
from Internet and they are free of cost.

Low-Cost FPGAs

Cyclone (EP1C3,EP1C20) and Cyclone-II (EP2C5, EP2C7) family of devices
are considered low cost FPGAs. Their main features include embedded DSP
blocks, on chip memory modules and support for embedded processor (NIOS).

High-Density FPGAs

The category of high density FPGAs from Altera comprises Stratix-1I (EP2S15,
EP2S180), Stratix (EP1510, EP1S80), Stratixg x-11 (EP2SGX30C/D, EP2SG-
X130G) and Stratixgx (EP1SGX10C, EP1SGX40G) family of devices. Stratix
and Stratix-1I families are general purpose FPGAs with fast performance,
large on-chip memory modules, and DSP blocks. Stratixgx and Stratixgx-II
families, in addition, include integrated transceivers.

Structured ASICs

Structured ASICs comprise Hardcopy (HC1525, HC240) and Hardcopy-lI
(HC210W, HC240) solutions. They have similar design flow as that of Stratix
and Stratix-II respectively. They are low cost structured ASIC solutions with
sufficient number of gates supported by all major EDA vendors.

To provide an idea of what kinds of resources are present in Altera FPGA
devices, let us discuss the structure of the Stratix family of devices. Detailed
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data sheets of Stratix as well as all other Altera devices can be consulted
in [4, 207, 208]. The quantitative information presented in this subsection
has been extracted from [4]. Table 3.4 provides a quantitative measure of
Stratix major resources, while Fig. 3.7 shows the physical distribution of those
resources.

Table 3.4. Altera Stratix Devices

Feature Device
EP1510|EP1S20[EP1S25|EP1S30[EP1S40[EP1S60|EP1S80

Logic 10,570 | 18,460 | 25,660 | 32,470 | 41,250 | 57,120 | 79,040

Elements

M512 RAM 94 194 224 295 384 574 767

Blocks

M4K RAM 60 82 138 171 183 292 364

Blocks

M-RAM 1 2 2 4 4 6 9

Blocks

Total 0.9205M| 1.669M | 1.945M | 3.317M | 3.423M |5.215M | 7.42TM

RAM bits

DSP Blocks 6 10 10 12 14 18 22

Embedded 48 80 80 96 112 144 176

Multipliers

PLLs 6 6 6 10 12 12 12

Maximum 426 586 706 726 822 1022 1203

I/O Pins

Logic Array DSP Blocks
Blocks
MegaRAM ™
Blocks
Phase-Locked
Loops
UO Elements
M512 RAM M4K RAM
Blocks Blocks

| |
1 ||
J';J;Jg__n;;,;_-_.._ e B = el T e ST |

Fig. 3.7. Stratix Block Diagram

As shown in Fig. 3.7, the main building blocks in Stratix devices are the
following:

e Logic Array Blocks (LABs)
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Memory Blocks

Digital Signal Processing (DSP) Blocks
Input/Output Elements (IOEs)
Interconnects

Logic Array Blocks (LABs)

LABs are arranged in rows and columns across the device. Each LAB consists
of 10 Logic Elements (LE). An LE is the smallest unit in Stratix architecture.
It contains four input LUT, carry chain with carry select capability and a
programmable register as shown in Fig. 3.8. The LUT serves as a function
generator which can be programmed to any function with four variables. By
using LAB-wide control signal, a dynamic addition or subtraction mode can
also be selected. It is to be noted that number of resources are not fixed for
an LAB in all kind of Altera devices. As an example, a LAB in Stratix-1I
architecture comprises 8 Adoptive Logic Modules (ALM) where each ALM
contains a variety of LUT-based resources.

Register chain routing LAB-wide
from previous LE syn. load =
LAB Carry-in LAB‘V‘I"de_
Carry_in 1 Sy oo > LUT chain
i LAB-wide aload routing to next
Carry_in 0 — ] I —] LE
d1 Row,Cal,
42 —— Lzl;—ll:p Carry Syn. Load/ Programmable M and{:&:?:g( link
Chain Clear Logic Flip Flo
d3 (tum) 0gl . p Flop L4
. » 43— Row,Col,
d4 (i BC d3 | - and direct link
LA t ;
amy-ou LAB-wide aclr routing
t 1 h—
Carry_ou LAB-wide enable .
Carry_out0 | AB.wide clk Local routing
> Register chain

output

Fig. 3.8. Stratix LE

The Stratix LE can be configured into two modes:

¢ Normal mode
e Dynamic arithmetic mode

In normal mode, a four input LUT can be used to implement any function.
The normal mode is therefore useful for implementing combinational logic and
general logic functions. In dynamic arithmetic mode, an LE utilizes four 2-
input LUTs which can be mapped to a dynamic adder/subtractor. First two
LUTs perform two summations with possible carry-in and the other two LUT's
compute carry outputs to drive two chains of the carry select circuitry. The
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arithmetic mode is therefore useful for wide range of applications like adders,
accumulators, wide parity functions, etc.

Memory Blocks

Three types of memory blocks are present in Stratix devices as shown in
Fig. 3.7. Those are referred to as M512 RAM, M4K RAM and M-RAM
{MegaRAM) blocks. M512 RAM is a simple dual port memory with sizes
of 512 bits plus parity (576 bits). It can be configured as a maximum 18-bit
wide single or dual port memory at up to 318 Milz. M4K is a true dual port
memory with 4K bits plus parity. It can be configured as a maximum 36-bit
wide dedicated dual port, simple dual or single port memory at 291 MHz.
Several M-RAM blocks can also be located individually in logic arrays across
the device. It is a true dual port memory with 512K bits plus parity (589,824
bits). A single M-RAM can be configured as a maximum 144-bit wide dedi-
cated dual port, simple dual or single port memory which can operate at 269
MHz.

DSP Blocks

Those are dedicated Stratix resources which are vertically arranged into two
columns in each device. DSP blocks can be configured into either eight 9 x 9-
bit multiplier, four 18 x 18-bit multiplier or one full 36 x 36 multiplier. In
addition, DSP blocks also contain 18 x 18-bit shift registers, Finite Impulse
Response (FIR) and Infinite Impulse Response (IIR) filters.

Input/Output Elements (IOEs)

Large number of IOEs can be located at the end of LAB row or column
around the periphery of a Stratix device as shown in Fig. 3.7. Each I/O
element comprises a bi-directional I/O buffer and six registers for buffering
input, output and output-enable signals. Each Stratix I/O pin is fed by an
I/0O element and support several single-ended and differential I/0O standards.

Interconnects

All LEs within the same LAB, or all LABs within the same device or Memory
blocks or DSP blocks can be interconnected. A single LE can drive 30 other
LEs through locally available fast and direct link interconnects. A direct link
is also used by adjacent LABs, memory and DSP block to drive LABs local
interconnects. The availability of direct links helps in reducing row and column
interconnects resulting on higher performance and flexibility.
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Table 3.5. Comparing Cryptographic Algorithm Realizations on different Platforms

Algorithm FPGA ASIC pProcessor

Throughput |year| Throughput [year Throughput [year

MD5 5.86 Gbps [156]{2005| 2.09 Gbps {312] [2005| 1.27Gbps (est)* [31] {1996
SHA-1 0.9 Gbps [67] {2002(2.006 Gbps [312]{2005/0.678Gbps (est)* [31]|1996
DES _ |21.3 Gbps [301]|2003| 10Gbps [381] |1999] 0.127Gbps [22] _ [1997
AES 25.1Gbps [113] 2005 7.5Gbps [303] |2001 0.8Gbps[109 2004
1024-bit RSA| 6.1 mS [6] 12005 1.47mS [210] |2005 22.1mS {294 2004
ECC (binary)| 17.641S [54] |2006] 19048 [313] |2003] 47548 [133 2004
ECC (prime) | 360048 [262] [2001] 1904S[313] |2003] 32545 [133 2004

*Estimated for a 2GHz Pentium IV from the clock cycle count given in [31]

3.3 FPGA Platforms versus ASIC and General-Purpose
Processor Platforms

Table 3.5 presents a quick performance comparison of several relevant crypto-
graphic algorithms implemented in three different platforms: Reconfigurable
hardware devices, ASIC and general purpose processors. We included imple-
mentations for hash functions (MD5 and SHA-1), block ciphers (DES and
AES) and public key cryptography (RSA and ECC). All those algorithms will
be studied in the next Chapters.

Referring to Table 3.5, it is noticed that software implementations are al-
ways slower than either, ASIC or FPGA implementations. The performance
gap of software implementations is more noticeable for block ciphers and for
the binary elliptic curve cryptosystem. On the contrary, the best reported
prime elliptic curve cryptosystem is faster than the fastest FPGA design re-
ported in [262].

We stress that the information included in Table 3.5 is intended for a first
order comparison. As it has been already mentioned, it is extremely difficult
to make fair performance comparisons among designs implemented in differ-
ent platforms using the different technologies available at the time of their
publications. In the rest of this Section we give some more insights about the
advantages/disadvantages of implementing a design on reconfigurable hard-
ware compared with other platform options.

3.3.1 FPGAs versus ASICs

Traditionally, in the design of embedded systems, the Application-Specific In-
tegrated Circuit (ASIC) technology has played a major role for providing high
performance and/or low cost building blocks necessary for the vast majority
of systems during the (usually) large and sinuous design cycle. In 1980 the
usage of reprogrammable components was introduced, and short after that
the first FPGA device was developed by Xilinx. FPGA devices offer shorter
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design cycle because of its ability of providing fast and accurate functionality
testing.

However, the relatively high size and power consumption shown by FPGA
devices has been the most important drawback of that technology towards an
eventual substitution of the virtually ubiquitous ASIC technology. Therefore,
historically FPGAs have been utilized primarily for prototyping development.

In recent years, however, FPGA manufacturers have significantly reduced
the gap that still exist between FPGA and ASIC technology, paving the
way for the utilization of FPGA not only as prototype tools but also as
key components of embedded systems or even, becoming the system itself
[364, 149, 331, 199].

However, the exact size of the performance gap between FPGAs and ASICs
is currently subject of intense analysis and debate. Recently, several experi-
mental results reported in [192], seems to suggest that for circuits designed
utilizing the FPGA fabric only (i.e., LUTs and flip flops), an FPGA design is
on average 40 times larger, consumes 12 times more dynamic power and it is
3.2 times slower than a standard ASIC implementation. On the other hand, in
[364] it was developed a low-power FPGA core which was specially tailored for
battery-powered applications such as those found in the automotive industry.
The experimental results show that this solution is competitive with similar
ASIC solutions.

Undoubtedly, new technological challenges must be faced for both, FPGA
and ASIC platforms when the 45 nm and 32 nm technologies come to place.
Under this scenario, it is not certain how FPGA new architectures will deal
with the power consumption issue. It might be the case that manufacturers
would need to trade device performance for a more flexible/predictable device
power-consumption [141].

3.3.2 FPGAs versus General-Purpose Processors

The speedup that one can expect by implementing an algorithm on an FPGA
device rather than using a general purpose processor (i.e. the traditional CPU)
has been well documented in the literature [365, 124]. In [124], speedups of
one to two orders of magnitude were measured when executing benchmarks
applications in the domains of video and image processing. Roughly speaking,
the same range of speedups has been confirmed in cryptographic algorithms.

From the qualitative point of view, it is interesting to study the main
factors that produce this phenomenon. On the one hand, the typical maximum
clock frequency achieved by FPGA designs fall in the range of 20MHz to
100MHz, while embedded microprocessors have frequencies ranging from 300
to 600 MHz and high-end workstation-class processors have frequencies of up
to 3.2GHz. Hence, the clock frequency of general-purpose processors is 10-100
times faster than the typical clock frequency found in FPGA designs. On the
other hand, there are two factors that help to compensate and even overcome
that component, namely,
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1. FPGA lteration-level parallelism, obtained by, among others, loop-unrolling,
pipeline and sub-pipeline techniques, and;

2. FPGA Instruction efficiency, obtained by carefully designed datapaths,
the insertion of distributed memory blocks as needed and, taking advan-
tage of the FPGA low granularity, the elimination of several instructions.

Those two factors combine together for obtaining a notable reduction in
the total number of clock cycles required by an FPGA implementation. That
reduction implies that CPU implementations may require up to 2500 times
more clock cycles than that of FPGA implementations [124]. In other words,
even though CPU platforms enjoy a much higher operating clock frequency,
this factor is not enough for compensating the enormous clock cycle reduction
that can potentially be obtained in FPGA platforms.

In the context of Moore’s Law, an examination of peak floating-point per-
formance trends for FPGA and CPU platforms is presented in [365]. The
author concludes that although CPUs’ performance obeys Moore’s law (i.e.,
it doubles every 18 months), FPGA performance is growing at a rate of four
times every two years. For applications using the FPGA new functionality
(embedded multipliers, RAM blocks, etc.) the performance increase rate may
be as high as five times every two years.

3.4 Reconfigurable Computing Paradigm

Reconfigurable computing may be defined as computer processing with highly
flexible computing fabric. The main idea of reconfigurable computing is to
take advantage of the best of two scenarios: flexibility from general purpose
computing and speed from reconfigurable logic.

Some of the reconfigurable computing distinguished features when com-
pared to general purpose microprocessors are [123]:

e Due to the inherent fine-grained granularity the parallelism tends to be
very high.

e Registers, latches and even distributed RAM blocks can be created and
distributed wherever needed by the data path. This characteristic has a
tremendous impact on the device performance because reduces unneces-
sary re-computations and/or memory accesses.

e The amorphous nature (lack of a fixed architecture) of reconfigurable com-
puting devices, allows the designers to tailor design’s data path and control
flow arbitrarily.

FPGAs can be properly used for rapid prototyping algorithms at hard-
ware level. Considering the restrictions of FPGA devices, desirable FPGA
applications should belong to one or more of the categories listed below.

1. Applications that employ only integer arithmetic or at most low precision
fixed point arithmetic.
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[\

. Applications that rely on logical operations to make decisions. Compara-
tors, selectors and multiplexers are good examples of that.

. Applications amenable for being decomposed in independent and pipelined
stages.

. Applications that show regularity in the way they apply a processing.

. Applications with locality in the interconnection network they require.
That means that the application modules should only have interconnec-
tions with their neighbors.

w
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Considering FPGA capabilities and limitations some potential applications
for FPGAs are:

1. Image processing algorithms such as point type operations (grey scale
transformation, histogram equalization, requantization, etc.) and filtering
(template matching, window techniques, convolution/correlation, median
filtering, etc.) seem to be good candidates for FPGA implementation.

2. Dynamic programming algorithms requiring only integer arithmetic. Dy-
namic programming is in essence a bottom up procedure in which solutions
to all subproblems are first calculated and then these results are used to
solve the whole problem. A good example of this approach is the Floyd’s
shortest path algorithm.

3. Relaxation techniques requiring fixed point arithmetic. The relaxation
technique is an iterative approach useful to many problems, which updates
in parallel at each point and in each iteration based on the data available
in the most recent updating or in the immediate preceding iteration.

4. Associative retrieval operations. Filling and retrieving data by associa-
tion appears to be a powerful solution to many high volume information
processing elements. An associative processing system is very adequate at
recognition and recall from partial information and has remarkable error
correcting capabilities. The major advantage of associative memory over
RAM is its capability of performing parallel search and parallel compar-
ison operations. There are many examples of that kind of applications:
pattern matching, artificial intelligence, computer vision, data encoding,
compression, and every application maintaining a dictionary data struc-
ture.

5. Highly regular and iterative applications with non-standard word lengths.
Cryptography is a meaningful example of this kind of applications since it
applies basic transformations mostly based on bit-level operations. Those
basic operations are performed in long wordlengths starting from 128 bits
to up 4096 bits or even in wordlengths non-standard, such as 163 and
233 bits (in the case of public-key cryptography). The basic transforma-
tions are repeated iteratively a number of times to process information in
stages. In the following chapters we will explain how to take advantage of
cryptographic algorithm features for reconfigurable computing.
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3.4.1 FPGA Programming

The design cycle for programming FPGAs starts with a behavioral descrip-
tion of the design, using either hardware description languages (HDLs) such
as VHDL or Verilog or a schematic design entry. Thereafter, the HDL code
is compiled in order to produce a netlist which represents the mapping of the
HDL code to the actual target device hardware resources. After the first com-
piling step, the netlist is reprocessed in order to perform the place-and-route
process whose main goal is to establish how the different design’s modules
are going to be physically allocated and connected. This will create a binary
file which is used for programming or reprogramming the FPGA device. Most
designs included in this book have been compiled using the Xilinx Integrated
Software Environment (ISE) version 8.1i software [393].

Hardware Description Languages (HDLs) are analogous to other high level
languages (C, C4+, etc.) with some significant differences. Both types are
processed by a compiler, and both of them are function-oriented languages.
However they differ in the way that the compiled code is executed. HDL
languages are used for formal description of electronic circuits. They describe
circuit’s operation, its design, and tests to verify its operation by means of
simulation. Typical HDL compilers tools [393], verify, compile and synthesize
an HDL code, providing a list of electronic components that represent the
circuit and also giving details of how they are connected.

3.4.2 VHSIC Hardware Description Language (VHDL)

The Very-High-Speed Integrated Circuit Hardware Description Language
(VHDL) was created by the US Department of Defense in the early 1980s. In
December of 1987, VHDL was adopted as an IEEE Standard [272]. VHDL is
a functional language that borrows much of its structure from the program-
ming language Ada along with a set of constructs for supporting the inherent
parallelism of hardware designs.

The original version of VHDL, included a wide range of data types such
as, logical (bit and boolean), numerical, character and time, plus bit and
character. In later versions, the std logic data type was introduced, along
with signed and unsigned types to facilitate arithmetical operations, analog
and mixed-signal circuit design extensions [367].

Furthermore, the designer can know how his/her HDL instruction was
mapped to FPGA components (such as slices, flip-flops, tri-state buffers, etc.).
For example, an if statement in HDL describes a multiplexer or a flip-flop. It
can occur that the frequent use of this statement would insert large number of
multiplexers or flip-flops in a circuit, which is functionally correct but may or
may not be efficient. As a matter of fact, HDL languages have been designed
favoring a hardware designer perspective, in the sense that first the specific
hardware architecture should be envisioned, and then an HDL piece of code
representing it should be written. If for instance a programmer requires a
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flip-flop functionality then he/she should select a suitable flip flop for the
design and then he/she can write a code for it. That would generate a list of
components for an electronic circuit prior to its implementation providing a
designer complete control over available/used FPGA resources.

3.4.3 Other Programming Models for FPGAs

Several voices, both from the Academia and Industry sectors, have stated
that the main obstacle towards a massive use of reconfigurable computing
lies in the difficulty of programming FPGA devices. After all, HDLs were de-
signed primarily from the perspective of designers trying to describe hardware
structures, which quite often implies that an FPGA programmer should be
primarily a hardware designer.

Considering that, it has been proposed as an alternative to HDLs as design
entry tool to combine high level languages (such as C or C++) with concur-
rency primitives, thus allowing even faster design cycles for FPGAs than what
is now possible using traditional HDLs [119, 189, 39, 229].

Table 3.6 shows some of the commercial software tools currently available
in the market.

Table 3.6. High Level FPGA Programming Software

Vendor Product Base Language
Celoxica Agility Compiler Handel-C
Mentor Graphics Catapult C C
Impulse Accelerated Tech. Impulse C C
Annapolis Microsystems [Core Fire Design Suite| GUI Design Entry
Open System C SystemC C++,
Initiative (OSCI) IEEE standard 1666

In other order of ideas, designing a complex system in FPGAs can be
greatly alleviated by using existing pre-designed libraries. Those libraries, fre-
quently called IP (Intellectual Property) cores, have been fully tested and
optimized for performing commonly used building blocks, such as large mul-
tiplexers, counters, divisors, digital filters and so forth.

3.5 Implementation Aspects for Reconfigurable
Hardware Designs

3.5.1 Design Flow

In general, most FPGA design tools consist of six basic steps [390] as shown
in Fig. 3.9. Those steps must not be executed in a specific order but they can
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Fig. 3.9. Design flow

be repeated to improve design’s performance. A short description of each step
is provided below.

1. Design Entry : There are two standard ways to specify an FPGA design,
namely,

Design Entry through HDLs (Hardware Description Languages): A de-
signer can describe an FPGA design in high-level abstract language
like VHDL (Very high speed integrated circuit Hardware Description
Language) or Verilog. Those languages are ideal to build state ma-
chines, combinational logic, complex and large designs. Most software
tools have sophisticated compilers that can efficiently translate HDL
specifications to FPGA hardware resources.

Design Entry through Schematic: An FPGA design can also be de-
scribed by using library components of the devices through a graphi-
cal interface. It is easy to optimize a circuit for speed/area and conse-
quently it saves time and efforts of the design tool in hardware map-
ping, placement and routing, etc. However, it is hard to debug and
modifications to the design are not straightforward as compared to
design entry through HDLs.

2. Functional verification and simulation: In this step, the logical cor-
rectness of an FPGA design is validated. Once that the design has been
specified, either by using HDLs or schematic design entry, it is necessary
to verify if such description meets the design specifications.

3. FPGA synthesis: Synthesis converts a design entry specification into
gates/blocks of an FPGA device. A netlist of basic gates is prepared from
HDL/schematic design entry, which is further optimized at gate level.
The next step is to map that netlist into FPGA real resources. This is an
important step based on design entry. When writing HDL code or using
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schematic device’s libraries, an FPGA designer should always take into
account the basic structure of the target device.

4. FPGA place and route: Place and route selects the optimal physi-
cal positioning of elementary design blocks and minimal interconnection
distance among them. Place and route tools normally use device vendor
specifications. Usually they provide hand-placement and also automatic
features for optimizing critical paths either for speed or for area.

5. Circuit analysis: Circuit analysis evaluates different design performance
metrics. Timing verification is made which may differ from functional
simulation as it provides logical correctness taking into account all circuit
delays occurring in the real device. Similarly, a power analysis evaluation
provides an estimation of the design power consumption.

6. Programming FPGA device: Programming FPGA implies download-
ing bit stream codes from the last design steps onto the target FPGA
device. Universal programming tools work with FPGAs from different
vendors. However there are dedicated programming tools bounded only
with a single family of FPGA devices.

3.5.2 Design Techniques

It has been observed that better design techniques for both design entry and
design implementation play a crucial role for optimizing circuit’s performance.
A short description of some of those optimizing techniques is given below.

Design Strategy

Design strategy is application dependent. For some time critical applications,
timing performance is the most important requirement regardless other factors
such as hardware resources or device cost. On the contrary, other applications
may require a design architecture as compact as possible or with a certain
functionality.

Block cipher cryptographic algorithms have an iterative nature, where n
iterations (or rounds) having the same functionality must be executed. It is
therefore possible to implement either just one round and consume n cycles
(iterative looping), or n rounds of the algorithm (using a pipeline structure) in
order to achieve high timing performances. The designer choice will be made
depending on design’s minimum requirements in terms of speed and area.

Fig. 3.10 shows a basic methodology usually followed when implementing
an FPGA design.

Choice of Target Device

Choosing the target device (FPGA) depends on the design strategy. As it
is shown in Table 3.1, an ample spectrum of FPGA devices are available in
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Fig. 3.10. Hardware Design Methodology

the market from various manufacturers. The basic structure of all FPGAs is
similar, however some models offer additional features like built-in-memories,
built-in-arithmetic functions, etc. As it is shown in Table 3.2 for Xilinx de-
vices, different functionality and sizes are available depending on the device’s
cost.

For example, in the case of block cipher designs it may be useful to select
an FPGA device that has embedded Block RAMs (BRAMs) on it. As it was
explained above, BRAMs are fast access memories and might be excellent
choices for a straightforward implementation of the characteristic S-box blocks
of symmetric ciphers. Alternatively, S-Boxes can be implemented using the
FPGA CLB fabric configured in memory mode.

In short, the selection of an FPGA depends upon the design size and design
requirements.

Design Analysis

Design/algorithm analysis helps reducing the design’s size and critical path
delays. It might not be a good idea to directly implement a fast software code
in hardware. Software codes are often optimized for high granularity proces-
sors, for example, 8, 16 or 32 bit general-purpose microprocessors. Due to
its inherent low granularity, hardware implementations quite often can bene-
fit from a bit-level parallelistn only limited by data dependencies or resource
limitations. For instance, let us consider an instruction from a software code
optimized for a 32-bit word-size general-purpose microprocessor:

work = [((left > 16) | right) & 0x 0000FFFF);

That requires 16 right shifts, one logical XOR and then one logical AND
with 0x0000FFFF. In software platforms, we have no option but to execute
an XOR operation for the 16 most significant bits of 32-bit ‘left’ and ‘right’
registers.

On the contrary, in hardware description languages, the same instruction
can be implemented almost for free, just caring for language notations. One
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of the best options is to eliminate the AND operation and 16 logical Shifts by
executing instead an XOR operation directly applied to the 16 most significant
bits of left and right registers, that is,

work = left[31:16] & right[31:16)

Selecting FPGA Resources

An FPGA designer can pick multiple options for performing a function. For
example, two choices for implementing a 2-bit multiplexer are shown in Fig-
ure 3.11.

SELECT >— —»OUT
A } SELECT >+ 1
A >l LT [TOVT
B > B >t+p»
(a) (b)

Fig. 3.11. 2-bit Multiplixer Using (a) Tristate Buffer. (b) LUT

Figure 3.11.a shows usage of tri-state buffers for a multiplexer. A large
number of tri-state buffers are available in FPGAs and it seems logical to make
use of them. However, experience shows that, using large number of tri-state
buffers slows down the circuit. This tends to require the physical distribution
of tri-state buffers all around FPGA, which requires long routing paths. A
multiplexer can also be implemented using LUTs as shown in Figure 3.11.b.
Using adjacent LLUTs for an n to 1 multiplexer would be useful when a circuit
must be optimized for speed.

Similarly, some FPGA devices contain built-in memory modules. It would
be useful to utilize those memories as they provide faster access to the data as
compared to distributed memories in FPGAs which are formed using several
LUTs.

Hardware Approach

A careful selection and usage of the design tools results useful in our method-
ology for obtaining better performances. The design tools by Xilinx [390],
Altera [3], Synopsis Galaxy Design Platform [351], LeonardoSpectrum and
ModelSim by Mentor Graphics [231, 230], etc. provide several useful features
for getting design improvements. Better placement of the components or bet-
ter routing of the architecture modules can be helpful in cutting critical path
delays in the circuit.
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3.5.3 Strategies for Exploiting FPGA Parallelism

Achieving high-speed implementations for cryptographic algorithms is an ex-
citing task requiring deep considerations at every stage of the design. De-
sign strategies should therefore not only be based on the best implementing
techniques on reconfigurable platforms but also on trying to innovate in the
theoretical side by improving the standard transformations of cryptographic
algorithms. In this sense, the designs included in this book try to take as
much advantage as possible of the hardware inherent parallelism while keep-
ing as low as possible the hardware resource requirements. In the following
we discuss various strategies used by designers to implement cryptographic
algorithms.

Iterative Looping (IL)

An iterative looping design (IL), implements only one round and n iterations
of the algorithm are carried out by feeding back previous round results as
shown in Figure 3.12a. It utilizes less area but consumes more clock cycles
resulting on a relatively low speed encryption.

Loop Unrolling

Architecture with loop unrolling is shown in Figure 3.12b. In a loop unrolling
or pipeline design (PP), rounds are replicated and registers are provided be-
tween the rounds to control the flow of data. The design offers high speed but
area requirements tend to be too high.

N

register [ ] register [ ]
one Combinational round 1
round logic n round 2
round s
round n
Y
\ )

Fig. 3.12. Basic Architectures for (a) Iterative Looping (b) Loop Unrolling
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Inner-Round Pipelining

Figure 3.13a shows an inner-round pipelining architecture where extra reg-
isters are provided at different stages of the same round in such a way that
several blocks of data can be processed by the circuit at the same time. This
approach produces high speed circuits at the cost of more hardware resources
in the form of registers.

Outer-Round Pipelining

Outer-round pipelining is created through loop unrolling by adding extra reg-
isters at different stages of the same round as shown in Figure 3.13b. This
approach directly trades circuit speed with circuit area.

N multiplexer o
register register
pipeline stage 1 pipeline stage 1=round 1
one pipeline stage 2 n pipeline stage 2=round 2
round roundsl b——————
pipeline stage k pipeline stage n=round n
(a) (b)

Fig. 3.13. Round-pipelining for (a) One Round (b) n Rounds

Both the iterative and pipeline architectures would be optimized for the
implementation of secret-key ciphers. Public key algorithms exhibit different
nature. They do not have rounds however they maintain a hierarchical struc-
ture that can be further exploited.

3.6 FPGA Architecture Statistics

Just as it occurs with software platform comparisons, comparing FPGA de-
signs is a difficult and a bit ambiguous task. The two single most important
performance metrics usually considered are the time complezity, sometime
called design throughput and the area complezity.

For combinatorial designs (such as adders, squarers, fully-parallel multipli-
ers, etc), time complexity is determined from the Maximum Clock Frequency
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(MCF), which in turns is proportional to the maximum combinational path
delay. In the case of sequential designs (such as block ciphers, sequential mul-
tipliers, etc.), time complexity must also consider the total number of clock
cycles required before the result is ready. In the case of block cipher designs, it
is customary to consider also how many bits are processed at the same time.
In this work we define the throughput of a given design as follows,

Throughput

Throughput is an important factor to measure timing performances of the
design [82, 103, 382]. Throughput of the design is obtained by multiplying the
allowed frequency for the design with the number of bits processed per cycle.
For cryptographic algorithms, throughput is defined as:

Allowed FrequencyxNumber of Bits (bits/s)

Throughput = “Number of cycles

The higher the throughput of a design is the better its efficiency.

Area

Design statistics provided by the design software expresses hardware area
occupied by the design. Unfortunately, there is no universal metric to measure
the hardware costs associated with an FPGA based design. After mapping a
design to a particular FPGA device, FPGA compiler provides FPGA resources
utilized by that design.

Following are some common FPGA resources listed by the mapping tool:

Number of slices

Number of Slice Flip Flops

Number of 4-input Look Up Tables (LUTSs)
Number of Input/Output Blocks

Number of Clocks

Maximum combinational path delay
Maximum output required time after clock
Maximum Clock Frequency (MCF)
BlockSelect RAMs (BRAMs)

A designer, however, can report hardware area in terms of LUTs as well as
CLB slices. An ideal comparison would be therefore comparing all resources
on the similar FPGA device. A design using dedicated resources of the device
will show less logic resources as compared to other design which implements
the whole logic without using any dedicated unit of the device. It also affects
the throughput statistic. It has been experimentally observed that the imple-
mentation of even the same code on different grades of the same family of
devices influence the final design’s throughput. That situation becomes more
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crucial when the same design targets two different devices by two different
manufactures. In such cases, for the purpose of classifying an FPGA design,
we can ignore some of those factors.

It can be said, as a first approximation, that the fastest design is the one
which achieves fastest speed no matter what type of device has been targeted
for design implementation. However, when considering a compact design (a
design optimized for hardware area), this criterion cannot be applied. The
comparison of two compact designs can be only justified if it is made between
similar devices.

Both area and throughput factors provide a measure for comparing dif-
ferent designs. Additionally, in order to decide how efficient a design is, we
utilize the following figure of merit.

Throughput/Area

It is the ratio of the above two figures of merits and shows how efficient the
design is with respect to both area and throughput. The ratio is higher in case
of high throughput and less space.

3.7 Security in Reconfigurable Hardware Devices

The selection of an implementation platform in a digital system depends on
many design criteria. Besides the design performance figures such as, system
speed and area costs, there exist other performance and security factors that
should be taken into account such as: physical security (for instance, against
key recovery and algorithm manipulation), flexibility, power consumption and
other secondary factors, that may as well affect the design selections.

Even though there exist a fair amount of papers reporting cryptographic
implementations on FPGA devices, there are not that many papers reporting
the convenience (or not) of utilizing FPGA as a target device for security
applications from a system point of view. In particular, few works report the
resilience of FPGA against physical or system attacks, which are potentially
more dangerous than algorithm attacks [379, 342, 343].

In [380, 379] a comprehensive analysis of FPGA security aspects is given.
Authors conclude that FPGA technology can provide a reasonable level of
security when used properly.

The fourth generation design security of Xilinx Virtex-4 family is equipped
with bit-stream encryption/decryption technology based on 256-bit AES. The
user generates the encryption key and encrypted bit-stream using Xilinx ISE
software. In a second step, during configuration, the Virtex-4 device decrypts
the incoming bit-stream using a decryption logic module with dedicated mem-
ory for storing the 256-bit encryption key [393].
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For the cryptographic applications, the most important threat is unautho-
rized access to a confidential cryptographic key, either a symmetric key or the
private key of an asymmetric algorithm?.

FPGA implementations are also vulnerable to side-channel attacks. A side
channel attack is based on information gained directly from the physical im-
plementation. Examples for side channels include: power consumption, timing
behavior, and electromagnetic radiation. Most relevant papers on side-channel
attacks and related defenses have been published in [183, 184, 182, 159, 366,
157, 278].

Power analysis attacks were introduced in 1998 by Kocher et al. [186].
The main idea behind this attack is to measure the power consumption of the
FPGA device during the execution of a cryptographic operation. Thereafter,
that power consumption can be analyzed in an effort for finding regions in
the power consumption trace of a device that are correlated with algorithm’s
secret, key.

In [262], the first experimental results of power analysis attack on an FPGA
implementation of elliptic curve cryptosystem were presented. RSA, AES and
DES FPGA implementations have also been subjects of attacks in [341, 342,
343].

3.8 Conclusions

In this chapter we presented some of the most relevant aspects related to
FPGA devices considering both, technological and reconfigurable program-
ming aspects.

The material covered in this Chapter includes a brief review of the tech-
nological antecedents that gave birth to FPGA devices. We also studied the
structure of several emblematic FPGA families from the two market lead-
ers, Xilinx and Altera. We compare the performance of FPGA realizations
against the ones on ASICs and general-purpose processor platforms and we
briefly introduced the main concepts related to the reconfigurable computing
paradigm.

Furthermore, we reviewed several key strategies to achieve good designs
when working with cryptographic applications. As a way to measure area and
time performances for a given design, we defined several metrics and figures
of merit. Finally, several security concerns related to FPGA technology were
outlined.

4 As it was described in the precedent chapter, most cryptographic algorithms have
been standardized and therefore, they are publicly known.
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Mathematical Background

The material presented in this Chapter, discusses several relevant mathemat-
ical concepts, fundamental for the understanding of elliptic curve public-key
cryptosystems, the RSA algorithm, etc.. This material is also useful for a
better understanding of the basic operations involved in the specifications of
Rijndael algorithm (new Advanced Encryption Standard (AES)).

For a more detailed treatment of these aspects, the reader is referred to
Number theory books like [376, 220, 47, 297], and to excellent cryptography
books such as [226, 176, 129, 227, 106, 107]. The material presented in this
chapter was written based on [56, 42, 289).

The rest of this Chapter is organized as follows. In Section 4.1 we give
several basic definitions and theorems of the elementary theory of numbers.
Then, in Section 4.2 we explain the concept of finite field, defining the as-
sociated arithmetic operations. Elliptic curves defined over R are described
in Section 4.3. Thereafter, in Section 4.4, elliptic curves defined over binary
extension fields are discussed in more detail. Several coordinate systems for
representing elliptic curve points are presented in Section 4.5. Then differ-
ent schemes for scalar representation are discussed in Section 4.6. Concluding
remarks are given in Section 4.7.

4.1 Basic Concepts of the Elementary Theory of
Numbers

Elementary theory of numbers is perhaps the single most important tool for
developing cryptographic algorithms. Therefore, we start this chapter given
some important definitions, theorems and results relevant to the subject of
cryptography.
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4.1.1 Basic Notions

Definition 4.1 (Integer Numbers). Integer numbers are defined as the set
of numbersZ ={...,—2,-1,0,1,2,3, ...}. Within this set we have the subset of
the natural numbers, N ={1,2,3,4,...}, i.e., the subset of all positive numbers
(greater than zero)

Definition 4.2 (Divisibility). Let a and b be two integers with a # 0. We
say that a divides b, that a is a divisor or factor of b, that b is a multiple of a
or that b is divisible by a, if there exists an integer k such that b = ak. This
is written as alb. If a does not divide b we write it as a fb.

Let a, b, ¢ € Z, some important divisibility properties are,

i. For all a # 0, ala. At the same time 1|b for all b,

ii. If alb then a|be,

ii. If a|b and b} c then alc,

iv. If a|b and ajc then a|(b +¢),

v. Ifalb and a Jfec then a f(b+c),

vi. If a|b and a|c then a|(sb + tc) for any arbitrary integers s and t.

Theorem 4.3 (Integer division theorem). Let a € Z and b € N. Then
there ezist q, v € Z with 0 < r < b such that a = mq + r. Additionally, g and
r are unique.

Definition 4.4 (Greatest common divisor). Given two integers a and b
different than 0, we say that the integer d > 1 is the greatest common divisor,
or ged, of a and b if d|a, d|b and for any other integer ¢ such that cla and c|b
then c|d. In other words, d is the greatest positive number that divides both, a
and b.

Some of the properties of the greatest common divisor are,
e ged(a,b) = ged(lal,|bl)

e gcd(ka,kb) =k ged(a,b)

o gcd{ab) = d < dla,d|b and ged(a/d,b/d)=1

It is possible to compute the greatest common divisor by means of the
Euclidian algorithm shown in Algorithm 4.1.

Definition 4.5 (Prime numbers). We say that o positive integer p > 1 is
a prime number if its only positive divisors are 1 and p.

Definition 4.6 (Relative Primes). We say that two integers a and b are
relatively primes if ged(a,b)=1.

Definition 4.7 (Composite Numbers). If an integer number ¢ > 1 is not
a prime, then it is a composite number. Therefore, an integer q is a composite
number if and only if there exist a,b positive integers (less than q) such that
q = ab.
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Algorithm 4.1 Euclidean Algorithm (Computes the Greatest Common Di-
visor)

Require: two positive integers a and b where a > b.

Ensure: the greatest common divisor of ¢ and b, namely d = ged(a, b).
1: while b # 0 do
2 r «— g mod b;
3 a+«—b;

4: be—r;

5: end while

6: Return o

Theorem 4.8 (Fundamental Theorem of Arithmetic). Any natural
number n > 1 is either a prime number, or it can be factored as a product of
powers of prime numbers p;,

e C1. € e
n=pipy’ - pir

with e; € N, Vi € [1,r]. Furthermore, except for the order of the factors,
this factorization is unique.

Corollary 4.9. If n € N, then the number of positive divisors of n is (e +
1)(eg+1) - (ep +1).

Corollary 4.10. If p is a prime number, a, b € Z and plab then pla or p|b.

Notice that above result is not necessarily true if p is a composite number.
For example, 10|5 - 4 but 10 /5 and 10 j4.

Leta, be NC Z and a = sz , and b= HqJJ be their prime fac-
i=1 Jj=1
torization with 1 < ¢ < n, 1 < j < m. Let Ry, Rg,..., R, be the distinct

prlme numbers that are lncluded in both factorizations. Rewrltmg a and b as
8

HR“ b= HR;“ with ¢;, u; > 0 for 1 < i < s, we have,
i=1 i=1

gcd(a, b) H Rmm{t“u’

FExample 4.11.

2520 = 2%.32.51. 71
2700 = 22.3%.52. 70

then ged(2520,2700) = 22 - 32. 5! = 180.
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Definition 4.12. Let n € N. We define the Fuler function ¢(n), as the num-
ber of relatively prime numbers that n has in the interval [1, n).

In other words, ¢(n) = [{m € N : ged(m,n) =1 and 1 < m < n}|. Let p
be a prime number and m, n, r € N with » > 1, then

i ¢y =p" <1 - %) =p"~}(p—1), In particular ¢(p) =p — 1,
it. ¢(mn) = ¢(m)¢(n), if ged(m,n) = 1.

Therefore, we may compute the Euler function ¢ for a given number n by
obtaining first the integer factorization of n.

Example 4.18.
$(720) = $(21)p(3%)¢(5) = 2°-(2-1)-3'-(3-1)-(5-1) = 192
Theorem 4.14 (Fermat’s Little Theorem). If (a,p) = 1, then
a’"'=1modp, (a”=bmodp)

equivalently,
a®®) =1 mod p.

Corollary 4.15. If t =y mod (p — 1), then a® = a¥ mod p.

Theorem 4.16 (Euler Theorem). If a € Z and ged(m,a)=1 then
a®™ =1 mod m.

Corollary 4.17. If z =y mod ¢(m), then a® = a¥ mod m.

Definition 4.18 (Order of a number z). If  and m are relatively primes,
we say that the order of x modulo m is the smallest integer r such that

a” =1 mod m.

Definition 4.19 (Primitive Root). Let m be a prime number and g € Z,,
then we say that g is a primitive root of m, if and only if the order of g
modulo m is equal to the value of the Euler function ¢(m). According to Euler’s
theorem, there is always a primitive oot since, ¢g*™ =1 mod m.

Let g be a primitive root of a prime number p, then the following properties
hold,

i. If n is an integer, then g" = 1 mod p if and only if n =0 mod p— 1.
ii. If  and k are two integers, then ¢ = g* mod pif and only if j = k mod p—
1.
4it. If a is a primitive root, then a® is also a primitive root if and only if
ged(z,p—1)=1.
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iv. If g™ = 1 mod p then ni{(p — 1).

If p=1223, p—1=2-13-47, if a is not a primitive root, then either a?® or
a® or a®!! must be congruent 1 modulo 1223. a = 2, 3 are not primitive roots,
since 251! = 3% = 1 mod 1223. However, a = 5 is a primitive root since,

94

a®®, 0%, 4% £ 1 mod 1223.

Furthermore, using above properties we can see that 52 = 25 is not a primitive
root since ged(2,p — 1) # 1. On the other hand, the element 5% = 125 is a
primitive root given that ged(3,p — 1) = 1.

4.1.2 Modular Arithmetic

Definition 4.20 (Congruency). Givenm € Z , m > 1, we say that a,b € Z
are congruent modulo m if and only if m|(a — b). We write this relation as
a = bmod m. Where m is the modulus of the congruency. Notice that if m
divides a—0b, this implies that both, a and b have the same residue when divided
by m.

We define Z,,, as the set of all positive residues modulo m, which is com-
posed by the set, Z,,, = {0,1,2,...,m — 1}. Invoking the integer division the-
orem it is easy to see that for every integer a there exists a residue r that
belongs to Z,.

If m € N and a,b,¢,d € Z such that a = b mod m and ¢ = d mod m, then
the following properties hold,

e at+tc=b+dmodm
e a—~c=b—dmodm
e ag-c=b-dmodm

The relationship of congruency modulus m is a relationship of equiva-
lence for all m € Z. Let a,b, c € Z, then the congruence relation satisfies the
following properties,

1. Reflexive: a = a mod m.
2. Symmetric: If a = b mod m then b = @ mod m.
3. Transitivity: If ¢ = b mod m and b = ¢ mod m then a = ¢ mod m.

Modular Addition and subtraction If a,b € Z,, then we define the mod-
ular addition operator a + b mod m as an element within Z,,. For example,
17 +20 mod 22 = 15. The most important properties of the modular addition
are,

1. Tt is commutative, ¢ + b mod m = b + a mod m.
2. It is associative, (a +b) + ¢ mod m = a + (b + ¢) mod m.
3. It has a neutral element (0), such that a + 0 = a mod m.
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4. For every a and b in Z,, there exists a unique element z in Z,, such that
a +x = bmod m.

Using last property and b = 0, it can be seen that for every a in Z,, there
exists a unique element x in Z,, such that a + = 0 mod m.

Modular multiplication If a,b € Z,, then we define modular multiplica-
tion as, ¢ = a - b mod m, where ¢ is an element in Z,,. The most important
properties of modular multiplication are,

1. It is conmutative a - b mod m = b-a mod m.

2. It is associative (a-b) -cmod m=a- (b- ¢) mod m.

3. It has a neutral element (1), such that a-1=amodm

4. If ged(m,c)=1and a-c=b-cmod m, then a = b mod m. If m is a prime
number, this property always hold.

Using last property, we define the multiplicative inverse of a number a as
follows,

Definition 4.21 (Multiplicative Inverse). We say that an integer a has
an inverse modulo m if there exists an integer b such that 1 = ab mod m.
Then, the integer b is the inverse of a and it is written as a™'. The inverse
of a number a mod m exists if and only if there exist two integer numbers x,
y such that ax + my = 1 and these numbers ezist if and only if ged(a,m)=1.

In order to obtain the modular inverse of a number a we may use the extended
Euclidean algorithm [178], with which it is possible to find the two integer
numbers z, y that satisfy the equation?,

axr +my = 1.

Modular Division Using above definition we say that if a,b € Z, and p
is a prime number, we can accomplish the division of a by b by computing
a-b~! mod m, where b~ is the multiplicative inverse of b modulo p.

For example, we can compute é—g mod 23 , by performing 17 - (20)~! mod
23, where (20)~! mod 23 = 15. Thus,

—;%mod23=17~15m0d23=2.

Modular Exponentiation We define modular exponentiation, as the prob-
lem of computing the number b = a® mod m, with a,b € Z,,, and e € N. From
the observation that,

z -y mod m = [(x mod m) - y mod m} mod m,

! In §6.3 we present an efficient implementation of a variation of this algorithm:
the Binary Euclidean Algorithm (BEA).
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Algorithm 4.2 Extended Euclidean Algorithm as Reported in [228]

Require: Two positive integers a and b where a > b.
Ensure: d =gecd(a, b) and the two integers z,y that satisfy the equation az +by = d.
if b = 0 then
d=a;z=1;,,y=0
Return (d,z,y)
end if
z1=0;,z20=1;, y1 = 1;, y2 = 0;
: while b > 0 do
g =adiv b; r = a mod b;
T = T2 —4%T1; Y = Y2 — QY
9. a=2bb=r;z=2x1,
10 mi=z2=p,n=y
11: end while
12: d=ua, z = z2, y = y2;
13: Return (d,z,y)

PP W

it can be seen that the exponentiation problem, can be solved by multiplying
numbers that never exceed the modulus m.

Rather than computing the exponentiation by performing e — 1 modular
multiplications as,

e—1lmults.
b= a-a...a (modm),

we employ a much more efficient method that has complexity O(log(e)). For
example if we want to compute 1228(mod23), we can proceed as follows,

122 = 144 = 6 mod 23;

12 =62 = 36 = 13 mod 23;
128 =132 = 169 = 8 mod 23;
1216 =82 =64 = 18 mod 23.

Then,
1226 = 12(1648+2) _ 1916 198 . 192 _ 18.8.6 = 864 = 13 mod 23.

This algorithm is known as the binary exponentiation algorithm [178],
whose details will be discussed in §5.4.
Chinese Remainder Theorem(CRT) This theorem has a tremendous im-
portance in cryptography. It can be defined as follows,

Let p; for i =1,2,..., k be pairwise relatively prime integers, i.e.,

ged(pi, pj) = 1 for i # j.
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Given u; € [0,p; —1] for i =1,2,. .., k, the Chinese remainder theorem states
that there exists a unique integer v in the range [0, P—1] where P = p1ps - - - p
such that

u=1u; (mod p;).

4.2 Finite Fields

We start with some basic definitions and then arithmetic operations for the
finite fields are explained.

4.2.1 Rings

A ring R is a set whose objects can be added and multiplied, satisfying the
following conditions:

Under addition, R is an additive (Abelian) group.

For all z;y; 2 € R we have, z(y + z) = 2y + z2; (y + 2)z = yz + 2z :
For all z;y € R, we have (zy)z = z(yz).

There exists an element e € R such that ex = ze =z for all x € R.

The integer numbers, the rational numbers, the real numbers and the complex
numbers are all rings. An element z of a ring is said to be invertible if = has
a multiplicative inverse in R, that is, if there is a unique v € R such that:
zu = ux = 1. 1 is called the unit element of the ring.

4.2.2 Fields

A Field is a ring in which the multiplication is commutative and every element
except 0 has a multiplicative inverse. We can define a Field F with respect to
the addition and the multiplication if:

e T is a commutative group with respect to the addition.
e F\ {0} is a commutative group with respect to the multiplication.
e The distributive laws mentioned for rings hold.

4,2.3 Finite Fields

A finite field or Galois field denoted by GF(¢ = p™), is a field with char-
acteristic p, and a number g of elements. Such a finite field exists for every
prime p and positive integer m, and contains a subfield having p elements.
This subfield is called ground field of the original field. For every non-zero
element o € GF(g), the identity a7~ = 1 holds.

In cryptography the two most studied cases are: ¢ = p, with p a prime
and ¢ = 2™. The former case, GF(p), is denoted as prime field, whereas the
latter, GF(2™), is known as finite field of characteristic two or simply binary
extension field. A binary extension field is also denoted as Fam.
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4.2.4 Binary Finite Fields

A polynomial p in GF(q) is irreducible if p is not a unit element and if p = fg
then f or g must be a unit, that is, a constant polynomial.

Let P(z) be an irreducible polynomial over GF(2) of degree m, and let «
be a root of P(x), i.e., P(a) = 0. Then, we can use P(z) to construct a binary
finite field F = GF(2™) with exactly ¢ = 2™ elements, where « itself is one
of those elements. Furthermore, the set

{1,a,0%,...,0™ 1}

forms a basis for F’, and is called the polynomial (canonical) basis of the field
[221]. Any arbitrary element A € GF(2™) can be expressed in this basis as,

m-—1
A= E a;at.

1==0)

Notice that all the elements in F can be represented as (m — 1)-degree poly-
nomials.

The order of an element v € F' is defined as the smallest positive integer &
such that v = 1. Any finite field contains always at least one element, called
a primitive element, which has order ¢ — 1. We say that P(x) is a primitive
polynomial if any of its roots is a primitive element in F. If P(z) is primitive,
then all the g elements of F' can be expressed as the union of the zero element
and the set of the first ¢ — 1 powers of « {221, 379)

{0,a,0,0...,a" = 1}. (4.1)

Some special classes of irreducible polynomials are more convenient for
the implementation of efficient binary finite field arithmetic. Some important
examples are: trinomials, pentanomials, and equally-spaced polynomials. Tri-
nomials are polynomials with three non-zero coefficients of the form,

Plz) = zF +2™ +1 (4.2)
Whereas pentanomials have five non-zero coefficients:
P(z) = af 4+2™ + 2™ 4z 41 (4.3)

Finally, irreducible equally-spaced polynomials have the same space separa-
tion between two consecutive non-zero coefficients. They can be defined as

Pla)=am+ b Ddp gy gdy (4.4)

where m = kd. The ESP specializes to the all-one-polynomials (AOPs) when
d=1,ie, P(z) = g™ +2™ 1+ - -+z+1, and to the equally-spaced trinomials
whend = Z ie, P(z) =a™ +2% +1.
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In this Book we are mostly interested in a polynomial basis representation
of the elements of the binary finite fields. We represent each element as a
binary string (g, -1 . . . aza1a¢), which is equivalently considered a polynomial
of degree less than m,

CLm_l.Tmm1 + ... +a2m2+a1x+a0, (45)

The addition of two elements a,b € F is simply the addition of two poly-
nomials, where the coeflicients are added in GF(2), or equivalently, the bit-
wise XOR operation on the vectors a and b. Multiplication is defined as the
polynomial product of the two operands followed by a reduction modulo the
generating polynomial p(z). Finally, the inversion of an element a € F' is the
process to find an element ™! € F such that a- ¢! = mod P(x).

Addition is by far the less costly field operation. Thus, its computational
complexity is usually neglected (i.e., considered 0). Inversion, on the other
hand, is considered the most costly field operation.

Ezample 4.22. The sum of the two polynomials A and B, denoted in hexadec-
imal representation as 57 and 83, respectively, is the polynomial denoted by
D4, since:
@+zt+ri+z+ )o@ +z+1)
=z'+z8 4+t +2+(lolz+(1@1)
=z’ +2% + 2" +2?
In binary notation we have: 01010111 10000011 = 11010100. Clearly, the

addition can be implemented with the bitwise XOR instruction.

Ezample 4.28. Let us consider the irreducible pentanomial P(x)}, defined as,
Pz)y=z*+z* +2°+2+1 (4.6)

Since P(x) is irreducible over GF(2), we have constructed a representation for
the field GF(28). Hence we can say that byte chains can be considered as ele-
ments of GF(28). For example, consider the multiplication of the field elements
A = (57)16 and B = (83)16. The resulting field product, C = AB mod P(x),
is C = (C1)ys, since,

@+t +2l 4+ 1) x @ +z+1)
:(z13+x11+:v9+:r8+x7)®(m7+x5+w3+m2+m)
o+t 42242 +1)
=gB ol 12+ a8+ a8 + 2% + 2t + 2%+ 1
and
@B+ + 2+ 28 b+ 2+t 423 1)
=" +2%+1mod (2% +z* +23 +z+1)



4.3 Elliptic curves 73
4.3 Elliptic curves

The theory of elliptic curves has been studied extensively in number theory
and algebra for the past 150 years. It has been developed a rich and deep
theoretical background initially tailored for purely aesthetfc reasons. Elliptic
curve cryptosystems were proposed for the first time by N. Koblitz [180] and
V. Miller [236]. Since then a vast amount of literature has been accumulated
on this topic. Recently elliptic curve cryptosystems are widely accepted for
security applications like key generation, signature and verification.

Elliptic curves can be defined over real numbers, complex numbers and
any other field. In order to explain the geometric properties of elliptic curves
let us first examine elliptic curves defined over the real numbers R.

Nonetheless, we stress that elliptic curves over finite fields are the only
relevant ones from the cryptographic point of view. More specifically binary
representation of elliptic curves will be discussed here which is directly related
to the work to be presented in Chapter 10.

In the rest of this section, basic definitions and common operations of
elliptic curves will be explained.

4 : 1 s
. J
: a0+
10 i . 15
4 2 0 2 4 5 i} s

V=24 +9 Pi=23-9249 yP=2"+2246

% |

-8

Fig. 4.1. Elliptic Curve Equation 3? = z® + ax + b for Different a and b

4.3.1 Definition

Elliptic curves over real numbers are defined as the set of points (z,y) which
satisfy the elliptic curve equation of the form:

y=z°+ax+b (4.7)
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where a and b are real numbers. Each choice of a and b produces a different
elliptic curve as shown in Figure 4.1. The elliptic curve in Equation 4.7 forms
a group if 4a® + 27b% # 0. An elliptic curve group over real numbers consists
of the points on the corresponding elliptic curve, together with a special point
O called the point at infinity.

4.3.2 Elliptic Curve Operations

Elliptic curve groups are additive groups; that is, their basic function is ad-
dition. To visualize the addition of two points on the curve, a geometric rep-
resentation is preferred. We define the negative of a point P = (z,y) as its
reflection in the x-axis: the point —P is (x, —y). Also if the point P is on the
curve, the point — P is also on the curve.

In the rest of this subsection the addition operation for two distinct points
on the curve are explained. Some special cases for the addition of two points
on the curve are also described.

¢ Adding distinct P and @: Let P and @ be two distinct points on an
elliptic curve, and P # —Q. The addition law in an elliptic curve group
is P+ Q = R. For the addition of the points P and @, a line is drawn
through the two points that will intersect the curve at another point, call
—R. The point —R is reflected in the x-axis to get a point K which is the
required point. A geometrical representation of adding two distinct points
on the elliptic curve is shown in Figure 4.2.

10 T T 15
8 P

J 10 - Py
6 s

53 - 1 3 5 -5 0 5

Fig. 4.2. Adding two Distinct Points on an Elliptic curve (Q # —P)
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Fig. 4.3. Adding two Points P and @ when Q = —P

Adding P and —P: The method for adding two distinct points P and
(2 cannot be adopted for the addition of the points P and —P because
the line through P and —P is a vertical line which does not intersect the
elliptic curve at a third point as shown in Figure 4.3. This is the reason
why the elliptic curve group includes the point at infinity @. By definition,
P+(—P) = 0. As aresult of this equation, P+ = P in the elliptic curve
group. The point at-infinity O is called the additive identity of the elliptic
curve group. All well-defined elliptic curves have an additive identity.

3

2
yo=x -4 +9 g byt=d-sx+8 /
R=P+P R = P+P =2P

Fig. 4.4. Doubling a Point P on an Elliptic Curve
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e Doubling P(z,y) when y # 0:

4 2 0 2 4 6

Fig. 4.5. Doubling P(z,y) when y =0

The law for doubling a point on an elliptic curve group is defined by:
P+ P = 2P = R. To add a point P(z,y) to itself, a tangent line to the
curve is drawn at the point P. If y # 0, then the tangent line intersects
the elliptic curve at exactly one other point —R as shown in Figure 4.4.
The point — R is reflected in the x-axis to R which is the required point.
This operation is called doubling the point P.

¢ Doubling P(z,y) when y = 0: If for a point P(xz,y), y = 0, then it does
not intersect the elliptic curve at any other point because the tangent line
to the elliptic curve at P is vertical. By definition, 2P = O for such a point
P. If one wants to find 3P in this situation, one can add 2P + P. This
becomes P+ O = P. Thus 3P = P, 4P =0,5P =P, 6P =0, 7P = P,
ete.

4.3.3 Elliptic Curve Scalar Multiplication

There is no multiplication operation in elliptic curve groups. However, the
scalar product £P can be obtained by adding k£ copies of the same point
P, which can be accomplished using the addition and doubling operations
explained in the last Subsection. Thus the product kP = P + P+ ....P ob-
tained in this way is referred to elliptic curve scalar multiplication. Figure 4.6
shows the scalar multiplication process for obtaining 6 copies of the point P.
However for professional elliptic curve cryptosystem implementations, much
higher values of k are used. Typically, the bit-length of k is selected in the
range of 160-521 bits.
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Fig. 4.6. Elliptic Curve Scalar Multiplication kP, for £ = 6 and for the Elliptic
Curvey? =a® - 3243

4.4 Elliptic Curves over GF(2™)

Because of the chracteristic two, the equation for the elliptic curve with the
underlying field GF(2™) is slightly adjusted as shown in Equation 4.8. It is
formed by choosing the elements ¢ and b within GF(2™) with b # 0.

v +ay=23+az’+b (4.8)

The elliptic curve includes all points (z,y) which satisfy the elliptic curve
equation over GF(2™) (where z and y € GF(2™)). An elliptic curve group over
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GF(2™) consists of the points on the corresponding elliptic curve, together
with a point at infinity, O.

The points on an elliptic curve can be represented using either two or three
coordinates. In affine-coordinate representation, a finite point on E(GF(2™))
is specified by two coordinates z; y € GF(2™) satisfying Equation 4.8. The
point at infinity has no affine coordinates.

We can make use of the concept of a projective plane over the field
GF(2™) [228]. In this way, one can represent a point using three rather than
two coordinates. Then, given a point P with affine-coordinate representation
x; y; there exists a corresponding projective-coordinate representation X; Y
and Z such that,

Plz;y) = P(X;Y; Z)

The formulae for converting from affine coordinates to Jacobian projective
coordinates and vice versa are given as:

Affine-to-Projective: X = x; Y=y, Z=1
Projective-to-Affine: x = X/Z% y = Y/Z3

The algebraic formulae for the group law are different for affine and pro-
jective coordinates. In the next subsections the group law over GF(2™) is
explained using affine coordinates representation. The group laws for several
projective coordinates representations are studied in §4.5.

4.4.1 Point Addition

The negative of a point P = (z,y) is —P = (x,z +y). Assuming that P # Q,
then R(z3,ys) = P(z1,y1) + Q(z2, y2) where:
— (vatw1)
m=
x3=m24m-+x1+22+a (4.9)
ys = m(x1 + x3) + T3 + 11

As with elliptic curve groups over real numbers, P + (—P) = O, where O
the point at infinity. Furthermore, P + O = P for all points P in the elliptic
curve group.

4.4.2 Point Doubling

Let P(z1,y1) be a point on the curve. If z; = 0, then 2P = O. If z; # 0 then
R = 2P, and R(z3,y2) is given as:

2 b
Ty =21+ 7
2 1+ 32

2

4.10
y2:x1+(x1+}£-)x2+x2 ( )

Let us recall that a is one of the parameters chosen with the elliptic curve
and that m is the slope of the line through P and Q.
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4.4.3 Order of an Elliptic Curve

Notice that the elliptic curve E(F,), namely the collection of all the points
in Fg that satisfy Eq. (4.10) can only be finitely many. Even if every possible
pair (z,y) were on the curve, there would be only ¢? possibilities. As a matter
of fact, the curve E(F;) could have at most 2¢g+ 1 points because we have one
point at infinity and 2q pairs (z,y) (for each z we have two values of y).
The total number of points in the curve, including the point O, is called
the order of the curve. The order is written #E(F,). A celebrated result
discovered by Hasse gives the lower and the upper bounds for this number.

Theorem 4.24. [227] Let #FE(F,) be the number of points in E(F,). Then,

[#EF,) —(¢+1)| <24 (4.11)
The interval [g +1 —2,/G,q + 1 +2,/q] is called the Hasse interval.

As we did in the case of finite fields, we can also introduce the concept of the
order of an element in elliptic curves. The order of a point P on E(F,;) is the
smallest integer n such that nP = 0. The order of any point it is always
defined, and divides the order of the curve #E(F,). This guarantees that if r
and ! are integers, then 7P = [P if and only if r = (mod n).

4.4.4 Elliptic Curve Groups and the Discrete Logarithm Problem

Every cryptosystem is based on a hard mathematical problem that is compu-
tationally infeasible to solve. The discrete logarithm problem is the basis for
the security of many cryptosystems including Elliptic Curve Cryptosystems.
More specifically the security of elliptic curve cryptosystems relies on Elliptic
Curve Discrete Logarithmic Problem (ECDLP).

In the last Section we examined two elliptic curve operations: point ad-
dition and point doubling. Both point addition and doubling operations can
be used to compute any number of copies of a point (2P, 3P, kP, etc). The
determination of a point kP in this manner is referred to as Scalar Multipli-
cation of a point. In the rest of this Section we present a small example of
how to compute such elliptic curve operation.

4.4.5 An Example

Let F = GF(2*) be a binary finite field with defining primitive trinomial
p(z) given as,

plz) = =+ +1. (4.12)
Then, if o is a root of p(x), we have p(a) = 0, which implies,

pa) = a*+a+1=0 (4.13)
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For binary field arithmetic, addition is equivalent to subtraction. Hence, the
above equation can be rewritten as

ot = a+1. (4.14)

Using equation (4.14), one can now express each one of the 15 nonzero ele-
ments of F as is shown in Table 4.1. Notice that we can define any one of the

g = 2* elements of F using only four coordinates.
Element in GF(2™)|Polynomial Coordinates
0 0 (0000)
o a (0010)
o? a? (0100)
a® o® (1000)
at a+1 (0011)
a’ a’ +a (0110)
a® a® +a? (1100)
o’ | (1011)
ab a®+1 (0101)
o’ o +a (1010)
atl a*t+a+1 (0111)
alt +a*+a  |(1110)
al? a® +a® + o+ 1j(1111)
al® P +a?+1 (1101)
att o®+1 (1001)
als 1 (0001)

Table 4.1. Elements of the field F' = GF(2*), Defined Using the Primitive Trinomial
of Eq. ((4.12))

Notice that all the elements in F' can be described by any of the three rep-
resentations used in Table 4.1, namely, polynomial representation, coordinate
representation and powers of the primitive element a.

Let us now consider a non-supersingular elliptic curve defined as the set
of points (z,y) € F x F that satisfy

v +zy = 2%+ a¥2? +aof (4.15)

Notice that for the coefficients a and b of equation (4.8), we have selected the
values a!® and of, respectively. There exist a total of 14 solutions in such a
curve, including the point at infinite 0. Using table 4.1, we can see that, for
example, the point,
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P = (xpyyp) = (a3:a2) (416)

satisfies equation (4.15) over F3, since

2 +zy =23 +al%2? + of
(@22 +0%? = (a®)® +aB(a)? + af
at+af =a’+a!® +ab

=a’+ot+af (4.17)
(0011) + (0110) = (1010) + (0011) + (1100)
(0101) = (0101),

Where we have used the identity o> = 1. All the thirteen finite points which
satisfy equation (4.15) are shown in figure 4.7.

0 a & a@ a@ & & & @ a a° a af a® a' & x

Fig. 4.7. Elements in the Elliptic Curve of Equation (4.15)

Let us now use equation (4.10) to double the point P = (a®,a?). Using
once again table 4.1, we obtain,
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Lop = 2 + ;”g
— (@®)2 4 af - (a3)~?
=af+a® 0% = af+1 = ol®
Yop = 2 + :vp—l-z—% Top + Top (4.18)
=af+ (a®+a? a¥)a®® +al?
= a®+ (a® +a 1) ald 4 o
=aof+al+al2+ald = of

It can be verified from figure 4.7 that the result obtained above is indeed a
point in the elliptic curve of equation (4.15).

As we mentioned in §4.4.3, we can keep adding P to its scalar multiples,
but eventually, after n < #E(F,;) scalar multiplications, we will obtain the
point at infinite O as a result. Recall that the integer n is called the order of
the point P. For the case in hand, P happens to have a prime order & = 7.
Notice that as it was stated in §4.4.3, the order n of P divides the order of
the curve #FE(IF;). Table 4.2 lists all the six finite multiples of P.

P 2P lsP laP 5P lop |

[(aS,a2)l(a13,a6)|(am,ag)l(aM,a4)|(a13,a15)|(a3,a6)l

Table 4.2. Scalar Multiples of the Point P of Equation (4.16)

Obviously, in a true cryptographic application the parameter n should
be chosen large enough so that efficient generation of such a look-up table
approach, becomes unfeasible. In today’s practice, n > 2% has proved to be
sufficient.

4.5 Point Representation

In order to generate an Abelian group over elliptic curves, it was necessary
to define an elliptic curve group law. More specifically, we defined the point
addition and point doubling primitives of Equations (4.9) and (4.10). However,
the computational cost of those equations involves the calculation of a costly
field inverse operation plus several field multiplications.

Since the relation (I/M) defined as the computational cost of a field in-
version over the computational cost of a field multiplication is above 8 and
20 in hardware and software implementations, respectively, there is a strong
motivation for finding alternative point representations that allow the trading
of the costly field inversions by less expensive field multiplications.

As we have seen at the beginning in §4.4, elliptic point representation in
two coordinates is called affine representation, whereas the equivalent point
representation in three coordinates is called Projective representation.
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It can be shown that each affine point can be related one-to-one with a
unique equivalence class. Then, each elliptic point is represented by a triple
that satisfy the corresponding equivalence class. Notice that it results neces-
sary to redefine the addition and doubling operations in the projective repre-
sentation.

As it will be explained in the rest of this Section, the projective group law
can be implemented without utilizing field inversions at the price of increasing
the total number of field multiplications. As a matter of fact, field inversions
are only required when converting from projective representation to affine
representation?, which becomes valuable in situations where we are planning
to perform many point additions and doublings in a successive manner (such
as in elliptic curve scalar multiplication).

4.5.1 Projective Coordinates

Let ¢ and d be positive integers over the field K. It is possible to define an
equivalent class K3\ {(0,0,0)} as follows,

(X1,Y1,71) ~ (X2,Y2,ZQ)| If X1 = )Xy, Y] = XUY%, 77 = A Zs.
The equivalent class

(XY :Z2)={(D°X, Y, \Z): Ae K*}.

is called a projective point [129], and (X, Y, Z) a representative point of such
class, that is to say, any point within the class is a representative point.
Specifically, if Z # 0, (%, %;, 1) is a point representative of the equivalence
class (X : Y : Z).

Therefore, if we define the set of all projective points (equivalent classes)
for each possible A in the field K* as,

PK)Y={(X:Y:2):X,Y,Z€K,Z+#0},

we obtain a one-to-one correspondence between the point P(K)* and the set
of affine points,

AK)={(z,y: 2,y € K)}.

Each point in the affine coordinate system, corresponds to the set defined by
an equivalence class in particular. The set of point belonging to P(K)° =
{{(X:Y:2):X,Y,Z € K,Z =0} is called the line at infinity, because this
class does not correspond with any element in the set of affine points.

2 In §4.4 the explicit conversion equations from affine to Jacobian projective coor-
dinates and vice versa were stated.
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The Weierstrass equation for an elliptic curve E(K) can be defined in
projective coordinates by replacing x by % and y by %; The constant values
¢ and d will determine the characteristic of the elliptic curve arithmetic and
hence, the definition of the point addition algorithm in such representation.

4.5.2 Lépez-Dahab Coordinates

The most popular projective coordinate system are the standard where ¢ =1
and d = 1, Jacobians, with ¢ = 2 and d = 3 and Lépez-Dahab (LD) co-
ordinates, , with ¢ = 1 and d = 2. The latter system of coordinates offers
algorithms for computing the addition in mized coordinates, i.e., one point is
given in affine coordinates while the other is given in projective coordinates.
LD coordinates are highly attractive for hardware implementation because
they only employ 8 field multiplications for performing a point addition op-
eration.

In Ldpez-Dahab (LD) projective coordinates [210] the projective point (X:
Y: Z) with Z# 0 corresponds to the affine coordinates ¢ = X/Z and y =
Y/Z?. Therefore, the elliptic curve equation (4.8) mapped to LD projective
coordinates can be written as,

Y 4+ XYZ=X3Z +aX?2%+ 7¢ (4.19)

The point at infinity is represented now as O = (1 :0: 0). For any arbitrary
point P on the curve, it holds that P4+0O = O+P =P.Let P = (X, : Y, : Z})
and @ = (X : Y2 : 1) be two arbitrary points belonging to the curve 4.19.
Then the point —P = (X : X; + Y] : Z) is the addition inverse of the point
P. The point doubling primitive 2(X; : Y} : Z;) = (X3 : Y3 : Z3) can be
performed at a computational cost of 2 general field multiplications plus two
field multiplication by the elliptic curve constant b as [212],

Z3 = X% ' Z%v
X3 =X{+b- 2%, (4.20)
Y = 02,423 + X3 - (aZ3 + Y12 + bZ,)

Whereas if @ # —P, the point addition primitive (X7 : Y1 : Z1) + (X2 :
Y2) = (X3 :Ys: Z3) can be performed at a computational cost of 8 field
multiplications as,

AZYQ-Z¥+Y1', B =X, 2, + Xy;

C =2 B; D = B%.(C + aZ%);

Z3 = C% E=A.C, (4.21)
X3=A2+D+E', F=Xs+ X9 Zs;
G=X2+Y2) 22, Y3=(E+2Z;)- F+G
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4.6 Scalar Representation

The vast majority of algorithms reported for computing the scalar multiplica-
tion in an efficient manner are based in the Horner polynomial representation,

Anx"+an_12" . Fagr4ayztap = agt+(ai+(ax+(. . A (a1 +(anta)z) . Dz)T)T.

where the scalar k is represented using its binary expansion, namely, k =
bp2™ + bpq + ol 4+ 12 + by where b; € [0, 1].

4.6.1 Binary Representation

Algorithm 4.3 Basic Doubling & Add algorithm for Scalar Multiplication
Require: k = (km—-1,km—2..... vk1, ko2 with kn_1 =1, P(z,y,2) € E(Fam)

Ensure: Q = kP

tR=P

—

2: for i = m — 2 downto 0 do

3 Q@ = 2 - Q (point doubling) ;

4: if k; =1 then

5 Q = Q + P (point addition);
6: endif

7: end for

8: Return Q

The traditional method for computing the elliptic operation kP is based
in the binary representation of k. If k = Z;":_Ol b;27, where each b; € {0,1},
then kP can be computed as [227]:

m—1
kP =" b;2'P = 2(...2(2bm-1P + b2 P) + ...) + boP.
=0
This method requires m — 1 point doublings and wy — 1 point additions, where

wy, is the Hamming weight (total number of coefficients b; = 1) of the binary
representation of the scalar k.

4,6.2 Recoding Methods

It is possible to reduce the number of subsequent point additions using a
recoding of the the exponent [154, 239, 76, 176]. The recoding techniques use
the identity

2i+j—1 + 2i+j—~2 44 21. — 21+] _ 21

to collapse a block of 1s in order to obtain a sparse representation of the
exponent. Thus, a redundant signed-digit representation of the exponent using

the digits {0,1, —1} will be obtained. For example, (011110) can be recoded
as
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Algorithm 4.4 The Recoding Binary algorithm for Scalar Multiplication

Require: k = (km—1, km—2.-..- Jk1, ko)2 with k; € [-1,0,1], P(z,y,2) € E(Fam)
Ensure: Q@ = kP

1: Q= p

2: for i = m — 2 downto 0 do

3: @ =2:Q (point doubling)

4: if k; = 1 then

5: Q = Q + P (point addition);

6: else if k; = I then

i Q = Q — P (point subtraction);
8: end if

9: end for

10: Return Q

(011110) = 2% + 23 4 2% 4 2!
(100010) = 2% — 21,

The recoding binary method is given in the Algorithm 4.4. Note that even
though the number of bits of & is equal to m, the number of bits in the recoded
exponent k can be m + 1, for example, (111) is recoded as (1001). Thus, the
recoding binary algorithm starts from the bit position m in order to compute
kP by computing kP where k is the (k + 1)-bit recoded exponent such that
k=k.

Let us discuss an explicit toy example of scalar multiplication using the
recoding binary method. Let & = 119 = (1110111). The (nonrecoding) binary
method requires 6 point doublings plus 5 point additions in order to compute
119P. In the recoding binary method, we first obtain a sparse signed-digit
representation of 119. It is easy to verify the following:

Exponent: 119 = 01110111,
Recoded Exponent: 119 = 10001001.

The recoding binary method then computes 119P as follows:

[f:]Step 3 [Steps 4-8 ]
1P P

ola(Py=2P |2P

0[2(2P) = 4P |4P

0[2(4P) =8P |8P
1|2(8P) = 16P |16P — P = 15P
0|2(15P) = 30P |30P

0[2(30P) = 60P |60P

1 2(60P) = 120P|120P — P = 119P

Table 4.3. A Toy Example of the Recoding Algorithm

The number of point doublings plus additions is equal to 7 + 2 = 9 which
is 2 less group operations than that of the binary method. The number of
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point doubling operations required by the recoding binary method can be at
most 1 more than that of the binary method. The number of subsequent point
additions, on the other hand, can be significantly less. This is simply equal
to the number of nonzero digits of the recoded exponent. Thus, the number
of point addition operations can be reduced if we obtain a sparse signed-digit
representation of the scalar k.

4.6.3 w-NAF Representation

Algorithm 4.5 w-NAF Expansion Algorithm
Require: A positive integer k.
Ensure: U = wNAF(k)
for {i =0,k > 0;i+ +} do
if k is odd then
U; = k mods 2%
k=k-U;
else
Ui = 0;
end if
k=k/2;
end for
Return(U);

The recoding binary algorithm can be generalized for designing algorithms
even more efficient at the price of using memory for storing pre-computed
results. The basic window method w with w > 1 expand any positive integer
k using a Non-Adjacent Form (NAF) of width w expressed as,

-1
k= Z uz~2i
=0

Where,

e Each coefficient u; different than zero is odd and with magnitude less than
qw— 1 :

e Given two consecutive coefficients u;, at least one of them is nonzero;
¢ When using w = 2 we have the recoding binary algorithm explained above.

We write the wNAF as,
wNAF(k) = {ug-1, .. uwo}.

Algorithm 4.5 generates an wN AF expansion of a positive scalar k. Every
time that k is odd, the w most significant bits are scanned in order to determine
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the corresponding congruence class (mod 2¢) for k. The congruence class U;
is then subtracted from k, making the new coefficient k& — U; divisible by 2%.
This will guarantee a run of w — 1 zero coefficients in the next iterations.

In average, the Hamming weight of a wINAF expansion is (w + 1)~!. This
will directly impact the performance of the scalar multiplication algorithm
because of a saving on the point additions required for computing the scalar
multiplication. That saving is obtained at the price of storing multiples of the
base elliptic point. Notice, however, that the total number of point doublings
remains the same. Table 4.4 presents the main characteristics of the binary,
recoded binary an wNAF expansions of the scalar k, respectively.

Table 4.4. Comparing Different Representations of the Scalar k

Point Representation|Length{# PA|# PD|Pre-computation
G

Binary m z m -
recoded binary m T m 1 p—
wNAF m w41 |m + 1| Table of 2v-T.1

m-bit multiples.

4.7 Conclusions

In this Chapter we briefly reviewed some of the most important mathematical
concepts useful for understanding cryptographic algorithms. We explained the
most relevant definitions and theorems of the elementary theory of numbers
relevant to the subject of cryptography. Moreover, we defined the concept of
finite fields and related arithmetic operations. We gave a brief introduction to
elliptic curve cryptography, explaining the mathematical concepts of elliptic
curve group, group order, group law and point representation among others.

These concepts will be useful for understanding the material contained in
the Chapters to come.
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Prime Finite Field Arithmetic

The modular exponentiation operation is a common operation for scrambling;
it is used in several cryptosystems. For example, the Diffie-Hellman key ex-
change scheme requires modular exponentiation [64]. Furthermore, the ElGa-
mal signature scheme [80] and the Digital Signature Standard (DSS) of the
National Institute for Standards and Technology [90] also require the compu-
tation of modular exponentiation. However, we note that the exponentiation
process in a cryptosystem based on the discrete logarithm problem is slightly
different: The base (M) and the modulus (n) are known in advance. This al-
lows some precomputation since powers of the base can be precomputed and
saved [35]. In the exponentiation process for the RSA algorithm, we know the
exponent (¢) and the modulus (n) in advance but not the base (M); thus,
such optimizations are not likely to be applicable.

In the following sections we will review techniques for implementation
of the modular exponentiation operation in hardware. We will study tech-
niques for exponentiation, modular multiplication, modular addition, and ad-
dition operations. We intend to cover mathematical and algorithmic aspects of
the modular exponentiation operation, providing the necessary knowledge to
the hardware designer who is interested implementing modular algorithm on
hardware platforms. We draw our material from computer arithmetic books
[352, 138, 370, 187], collection of articles [75, 335], and journal and conference
articles on hardware structures for performing the modular multiplication and
exponentiations [288, 185, 322, 135, 34, 179, 180, 181, 365|.

Therefore, in the remainder of this Chapter we will study algorithms
for computing efficiently the most basic modular arithmetic operations. We
will assume that the underlying exponentiation heuristic is either the binary
method, or any of the advanced m-ary algorithm with the necessary register
space already made available. This assumption allows us to concentrate on de-
veloping time and area efficient algorithms for the basic modular arithmetic
operations, which is the current challenge because of the operand size.
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modular arithmetic operations, which is the current challenge because of the
operand size.

The literature is replete with residue arithmetic techniques applied to sig-
nal processing, see for example, the collection of papers in [337]. However,
in such applications, the size of operands are very small, usually around 5-
10 bits, allowing table lookup approaches. Besides the moduli are fixed and
known in advance, which is definitely not the case for our application. Thus,
entirely new set of approaches are needed to design time and area efficient
hardware structures for performing modular arithmetic operations to be used
in cryptographic applications.

5.1 Addition Operation

In this section, we study algorithms for computing the sum of two k-bit inte-
gers A and B. Let A; and B, for i =1,2,...,k — 1 represent the bits of the
integers A and B, respectively. We would like to compute the sum bits .S; for
1=1,2,...,k —1 and the final carry-out Cj as follows:

Ap1 Ag—2 -+ Ay Ay
+ Bg-1 Be—2 -+ By By
Ck Sk_l Sk—z Sl SO

We will study the following algorithms: the carry propagate adder (CPA), the
carry completion sensing adder (CCSA), the carry look-ahead adder (CLA),
the carry save adder (CSA), and the carry delayed adder (CDA) for computing
the sum and the final carry-out.

5.1.1 Full-Adder and Half-Adder Cells

The building blocks of these adders are the full-adder (FA) and half-adder
(HA) cells. Thus, we briefly introduce them here. A full-adder is a combi-
national circuit with 3 input and 2 outputs. The inputs A;, B;, C; and the
outputs S; and C;4; are boolean variables. It is assumed that A; and B; are
the ith bits of the integers A and B, respectively, and C; is the carry bit
received by the ith position. The FA cell computes the sum bit S; and the
carry-out bit C;4; which is to be received by the next cell. The truth table of
the FA cell is as follows:

A; B; G;|Cip1 S;
0 0 0[O0 O
0010 1
0100 1
0111 0O
1 0 0] 0 1
1 011 O
1101 O
11111 1
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The boolean functions of the output values are as

Ciyr = A B; + A;Cy + B Gy,
Si=A;¢ B &

Similarly, an half-adder is a combinational circuit with 2 inputs and 2 outputs.
The inputs A;, B; and the outputs S; and C;y; -are boolean variables. It is
assumed that A; and B; are the ith bits of the integers A and B, respectively.
The HA cell computes the sum bit S; and the carry-out bit Ci;;. Thus, an
half-adder is easily obtained by setting the third input bit C; to zero. The
truth table of the HA cell is as follows:

A B;iCip1 Sy
0 0] 0 O
0110 1
1 0] 0 1
1 1|1 0

The boolean functions of the output values are as C;y1 = A;B; and S; =
A; ® B;, which can be obtained by setting the carry bit input C; of the FA
cell to zero. Fig. 5.1 illustrates the FA and HA cells.

A, B, A B,
<+ FA |ea— -<+— HA
i1 C Ci+1
Si; s}i
Full-Adder Cell Half-Adder Cell

Fig. 5.1. Full-Adder and Half-Adder Cells

5.1.2 Carry Propagate Adder

The carry propagate adder is a linearly connected array of full-adder (FA)
cells. The topology of the CPA is illustrated below in Fig. 5.2 for k = 8.

The total delay of the carry propagate adder is k£ times the delay of a single
full-adder cell. This is because the ith cell needs to receive the correct value
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A5 BS A4 i“ A3 33 AZ 32 A! i‘ A(l io
FA [ FA [ FA [ FA | FA [« FA [+—
l Cs l 04 l CS cz l 01 l CD
C, S, S, S, lz S, S

Fig. 5.2, Carry Propagate Adder

of the carry-in bit C; in order to compute its correct outputs. Tracing back
to the Oth cell, we conclude that a total of k full-adder delays is needed to
compute the sum vector S and the final carry-out Ci. Furthermore, the total
area of the k-bit CPA is equal to k times a single full-adder cell area. The
CPA scales up very easily, by adding additional cells starting from the most
significant.

The subtraction operation can be performed on a carry propagate adder
by using 2’s complement arithmetic. Assuming we have a k-bit CPA avail-
able, we encode the positive numbers in the range [0, 257! — 1] as k-bit binary
vectors with the most significant bit being 0. A negative number is then rep-
resented with its most significant bit as 1. This is accomplished as follows: Let
z € [0,2571], then —z is represented by computing 2% — x. For example, for
k = 3, the positive numbers are 0, 1,2, 3 encoded as 000, 001, 010, 011, respec-
tively. The negative 1 is computed as 23 — 1 = 8 —1 = 7 = 111. Similarly, —2,
—3, and —4 are encoded as 110, 101, and 100, respectively. This encoding sys-
tem has two advantages which are relevant in performing modular arithmetic
operations:

e The sign detection is easy: the most significant bit gives the sign.
o The subtraction is easy: In order to compute z — y, we first represent —y
using 2’s complement encoding, and then add z to —y.

The CPA has several advantages but one clear disadvantage: the computation
time is too long for RSA computations, in which the operand size is in the
order of several hundreds, up to 2048 bits. Thus, we need to explore other
techniques with the hope of building circuits which require less time without
significantly increasing the area.

5.1.3 Carry Completion Sensing Adder

The carry completion sensing adder is an asynchronous circuit with area re-
quirement proportional to k. It is based on the observation that the average
time required for the carry propagation process to complete is much less than
the worst case which is k full-adder delays. For example, the addition of 15213
by 19989 produces the longest carry length as 5, as shown below in Fig. 5.3.
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A=0011101101101101
B=0100111000010101
—— ———
4 1 5 1

Fig. 5.8. Carry Completion Sensing Adder

A statistical analysis shows that the average longest carry sequence is
approximately 4.6 for a 40-bit adder [108]. In general, the average longest
carry produced by the addition of two k-bit integers is upper bounded by
log, k. Thus, we can design a circuit which detects the completion of all carry
propagation processes, and completes in log, k time in the average.

011101101101101
100111000010101

C=000000000000000 t=0
N=000000000000000

C=000101000000101 t=1
N=000 0001000%910

C=001111000001101

A
B

N=000000110000010 t=2
C=011111000011101 -
N=000000110000010
C=111111000111101
N=000000110000010
C=111111001111101 g

N=000000110000010

Fig. 5.4. Detecting Carry Completion

In order to accomplish this task, we introduce a new variable N in addition
to the carry variable C. The value of C' and N for ith position is computed
using the values of A and B for the ith position, and the previous C and N
values, as follows:
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(Ai, B;) = (0,0) = (C;, N;) = (0,1)
(Ai, Bi) = (1,1) = (C;, N;) = (1,0)
(A;, B;) = (0,1) = (Cy, N;) = (Ci—1, N;—1)
(A4;, Bi) = (1,0) = (C}, N;) = (C;-1, Ni_1)

Initially, the C and N vectors are set to zero. The cells which produce C and
N values start working as soon as the values of A and B are applied to them
in parallel. The output of a cell (C;, N;) settles when its inputs (Cij_1, Ni—1)
are settled. When all carry propagation processes are complete, we have either
(Cs, Ni) = (0,1) or (C;, N;) = (1,0) for all ¢ = 1,2,...,k. Thus, the end of
carry completion is detected when all X; =C;+ N; =1foralli=1,2,...,k,
which can be accomplished by using a k-input AND gate. The procedure
described above is illustrated in Fig. 5.4,

5.1.4 Carry Look-Ahead Adder

The carry look-ahead adder is based on computing the carry bits C; prior
to the summation. The carry look-ahead logic makes use of the relationship
between the carry bits C; and the input bits A; and B;. We define two variables
G; and P;, named as the generate and the propagate functions, as follows:

G; = A;B,
P, = A; + B;.

Then, we expand C} in terms of Gy and Py, and the input carry Cy as
C1 = ApBy + Cp(Ap + By) = Go + Co P
Similarly, C, is expanded in terms G, P;, and C} as
Co=G1+C1P.

When we substitute C) in the above equation with the value of Cj in the
preceding equation, we obtain Cy in terms Gg, G1, Py, P1, and Cj as

Co=G,+CPL=G1+ (Go + C()P())P] =G+ GoPy, + CoPy Py

Proceeding in this fashion, we can obtain C; as function of Cy and Gy, G4, ..., G;
and Py, P1,..., P;. The carry functions up to Cy are given below:
Cy =G+ Co Ry,

Cy=G1+GyP, + CoPo P,
Cy = Ga+ G 1Py + GoPr Py + CoPy P Py,
Ci=G3+GoPs + G PaPy + Gy PP, Ps + CoPy PP Ps.
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The carry look-ahead logic uses these functions in order to compute all C;s in
advance, and then feeds these values to an array of EXOR gates to compute
the sum vector S. The ith element of the sum vector is computed using

Si=A4;,® B; o C.
The carry look-ahead adder for k = 3 is illustrated in Fig. 5.5.

Is Bla Iz Bj 11 Bi ID Blo
Carry Look-Ahead Logic — G
Ca Cz C1 CO
c A, A, A, A,
¢ Yy ) 4 Y Y
O s 455 4
4 \J v \/

O <
w

Sz s1 SO

‘Fig. 5.5. Carry Look-Ahead Adder

The CLA does not scale up very easily. In order to deal with large operands,
we have basically two approaches:

e The block carry look-ahead adder: First we build small (4-bit or 8-bit)
carry look-ahead logic cells with section generate and propagate functions,
and then stack these to build larger carry look-ahead adders [138, 370, 187].

e The complete carry look-ahead adder: We build a complete carry look-
ahead logic for the given operand size. In order to accomplish this task,
the carry look-ahead functions are formulated in a way to allow the use of
the parallel prefix circuits [32, 188, 196].

The total delay of the carry look-ahead adder is O(log k) which can be signif-
icantly less than the carry propagate adder. There is a penalty paid for this
gain: The area increases. The block carry look-ahead adders require O(k log k)
area, while the complete carry look-ahead adders require O(k) area by making
use of efficient parallel prefix circuits [196, 197]. It seems that a carry look-
ahead adder larger than 256 bits is not cost effective, considering the fact
there are better alternatives, e.g., the carry save adders. Even by employing
block carry look-ahead approaches, a carry look-ahead adder with 1024 bits
seems not feasible or cost effective.
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5.1.5 Carry Save Adder

The carry save adder seems to be the most useful adder for our application. It
is simply a parallel ensemble of & full-adders without any horizontal connec-
tion. Its main function is to add three k-bit integers A, B, and C to produce
two integers C’ and S such that

C'+S=A+B+C.

As an example, let A = 40, B = 25, and C = 20, we compute S and C’ as
shown below:

A=40= 101000
B=25= 011001
C=20= 010100
§=37= 100101
C'=48=011000

The 4th bit of the sum S; and the (¢ + 1)st bit of the carry C},; is calculated
using the equations
Si=A4,0B:&C.
.{+1 = A;B; + A;C; + B;C;,

in other words, a carry save adder cell is just a full-adder cell. A carry save
adder, sometimes named a one-level CSA, is illustrated in Fig. 5.6 for k = 6.

WOuE W W oW
SR T B T R

Fig. 5.6. Carry Save Adder

Since the input vectors A, B, and C are applied in parallel, the total delay
of a carry save adder is equal to the total delay of a single FA cell. Thus, the
addition of three integers to compute two integers requires a single FA delay.
Furthermore, the CSA requires only & times the areas of FA cell, and scales
up very easily by adding more parallel cells. The subtraction operation can
also be performed by using 2’s complement encoding. There are basically two
disadvantages of the carry save adders:
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e It does not really solve our problem of adding two integers and producing
a single output. Instead, it adds three integers and produces two such that
sum of these two is equal to the sum of three inputs. This method may
not be suitable for application which only needs the regular addition.

e The sign detection is hard: When a number is represented as a carry-save
pair (C, S) such that its actual value is C' + S, we may not know the exact
sign of total sum C 4+ S. Unless the addition is performed in full length,
the correct sign may never be determined.

We will explore this sign detection problem in an upcoming section in more
detail. For now, it suffices to briefly mention the sign detection problem, and
introduce a method of sign detection. This method is based on adding a few of
the most significant bits of C and S in order to calculate (estimate) the sign.
As an example, let A = —18, B = 19, C = 6. After the carry save addition
process, we produce S = —5 and ¢’ = 12, as shown below. Since the total
sum C' + S =12 -5 = 7, its correct sign is 0. However, when we add the first
most significant bits, we estimate the sign incorrectly.

A=-18= 101110

B= 19= 010011

C= 6= 000110

S = 5= 111011

C'= 12=000110
1 (1 MSB)
11 (2 MSB)
000 (3 MSB)
0001 (4 MSB)
00011 (5MSB)

000111 (6 MSB)

The correct sign is computed only after adding the first three most significant
bits. In the worst case, up to a full length addition may be required to calculate
the correct sign.

5.1.6 Carry Delayed Adder

The carry delayed adder is a two-level carry save adder. As we will see in
§5.3.6, a certain property of the carry delayed adder can be used to reduce
the multiplication complexity. The carry delayed adder produced a pair of
integers (D, T), called a carry delayed number, using the following set of
equations:

Si=A;®B; &,

Cit1 = AiB; + AiC; + BiC;,
T, =8 &C,

D1 = 8,C;,
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where Dy = 0. Notice that C;y1 and S; are the outputs of a full-adder cell
with inputs A;, B;, and C;, while the values D;y1 and T; are the outputs of
an half-adder cell.

An important property of the carry delayed adder is that D;1T; = 0 for
alli=0,1,...,k — 1. This is easily verified as

DinT, = SiCi(S;©C;) = SiCi(SiCi + SiC;) = 0.

As an example, let A = 40, B = 25, and C' = 20. In the first level, we compute
the carry save pair (C, S) using the carry save equations. In the second level,
we compute the carry delayed pair (D, T) using the definitions D;1 = 5;C;
and T; = S; ® C; as

A=40= 101000
B=25= 011001
C=20= 010100
S=37= 100101
C=48=0110000
T=21= 010101
D=64=1000000

Thus, the carry delayed pair (64, 21) represents the total of A + B 4+ C = 85.
The property of the carry delayed pair that T;D;41 = 0forall¢ =0,1,...,k-1
also holds.

T=21= 010101
D=64=1000000
TiDigr= 000000

We will explore this property in § 5.3.6 to design an efficient modular mul-
tiplier which was introduced by Brickell {33]. Fig. 5.7 illustrates the carry
delayed adder for k = 6.

5.2 Modular Addition Operation

The modular addition problem is defined as the computation of S = A+ B
(mod n) given the integers A, B, and n. It is usually assumed that A and B
are positive integers with 0 < A, B < n, i.e., they are least positives residues.
The most common method of computing S is as follows:

1. First compute S’ = A + B.
2. Then compute S = S’ —n.
3. If 8 >0, then § = 9" else S = 5"

Thus, in addition to the availability of a regular adder, we need fast sign
detection which is easy for the CPA, but somewhat harder for the CSA. How-
ever, when a CSA is used, the first two steps of the above algorithm can be
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AsB,C, AB,C, AB,C, A,B,C, AB,C, A8, C,
I A TR T T AR T R I T
FA FA FA FA FA
Ve [s Csl ss 6] Is cf s ] Ts f;‘ s, G,
Y * y + Y ‘ r j y |
HA HA HA HA HA HA
SECRTET I

Fig. 5.7. Carry Delayed Adder

combined, in other words, S’ = A+ B and S$” = A+ B —n can be computed
at the same time. Then, we perform a sign detection to decide whether to
take S’ or S as the correct sum. We will review algorithms of this type when
we study modular multiplication algorithms.

5.2.1 Omura’s Method

An efficient method computing the modular addition, which especially useful
for multioperand modular addition was proposed by Omura in [260]. Let n <
2. This method allows a temporary value to grow larger than n, however, it
is always kept less than 2%, Whenever it exceeds 2%, the carry-out is ignored
and a correction is performed. The correction factor is m = 2% — n, which
is precomputed and saved in a register. Thus, Omura’s method performs the
following steps given the integers A4, B < 2% (but they can be larger than n).

1. First compute S’ = A + B.
2. If there is a carry-out (of the kth bit), then S = 5/ +m, else § = 5"

The correctness of Omura’s algorithm follows from the observations that

e If there is no carry-out, then $ = A + B is returned. The sum S is less
than 2%, but may be larger than n. In a future computation, it will be
brought below n if necessary.

e If there is a carry-out, then we ignore the carry-out, which means we
compute

§'=A+B-2F

The result, which needs to be reduced modulo n, is in effect reduced mod-
ulo 2*. We correct the result by adding m back to it, and thus, compute
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S=8+m
=A+B-24+m
=A+B-2k42% _n
=A+B-n

After all additions are completed, a final result is reduced modulo n by using
the standard technique. As an example, let assume n = 39. Thus, we have
m = 26 — 39 = 25 = (011001). The modular addition of A = 40 and B = 30
is performed using Omura’s method as follows:

A= 40 = (101000)
B=  30= (011110)
S’ = A+ B = 1(000110) Carry-out
m = (011001)
S =8 +m= (011111) Correction

Thus, we obtain the result as § = (011111) = 31 which is equal to 70 (mod 39)
as required. On the other hand, the addition of A = 23 by B = 26 is performed
as

A= 23= (010111)
B= 2= (011010)
S' = A+ B = 0(110001) No carry-out
S = §= (110001)

This leaves the result as S = (110001) = 49 which is larger than the modulus
39. It will be reduced in a further step of the multioperand modulo addition.
After all additions are completed, a final negative result can be corrected by
adding m to it. For example, we correct the above result S = (110001) as

follows:
(110001)

(011001)
S + m = 1(001010)
(001010)

The result obtained is S = (001010) = 10, which is equal to 49 modulo 39, as
required.

[ I

w3l v

5.3 Modular Multiplication Operation

The modular multiplication problem is defined as the computation of P = AB
(mod n) given the integers A, B, and n. It is usually assumed that A and B are
positive integers with 0 < A, B < n, i.e., they are the least positive residues.
There are basically four approaches for computing the product P.

¢ Multiply and then divide.
o The steps of the multiplication and reduction are interleaved.
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¢ Brickell’s method.
e Montgomery’s method.

The multiply-and-divide method first multiplies A and B to obtain the
2k-bit number
P’ = AB.

Then, the result P’ is divided (reduced) by n to obtain the k-bit number
P:=P" mod n.

The result P is a k-bit or s-word number.

The reduction is accomplished by dividing P’ by n, however, we are not in-
terested in the quotient; we only need the remainder. The steps of the division
algorithm can be somewhat simplified in order to speed up the process.

5.3.1 Standard Multiplication Algorithm

Let A and B be two s-digit (s-word) numbers expressed in radix W as:

s—1
A= (AsrAgog-r Ag) = Y AWY,
3=0

s—-1
B =(Bs-1By-a- Bo) = ) BiW?,
=0

where the digits of A and B are in the range [0, W — 1]. In general W can be
any positive number. For reconfigurable hardware implementations, we often
select W = 2% where w is the word-size or granularity of the device, e.g.,
w = 4. The standard (pencil-and-paper) algorithm for multiplying A and B
produces the partial products by multiplying a digit of the multiplier (B)
by the entire number A, and then summing these partial products to obtain
the final number 2s-word number P’. Let F/; denote the (Carry,Sum) pair
produced from the product A; - B;. For example, when W = 10, and A; = 7
and Bj = 8, then Pj; = (5,6). The Pj; pairs can be arranged in a table as

A3 Ag Al A()
X B3 Bz B1 Bo
Fos Pog Foy Poo
Piy Pjy Py Py
Py Py Py Py
+ P33 Py, Ps, P4y
Py P Pg P{ Py P; Pl Py
The last row denotes the total sum of the partial products, and represents the
product as an 2s-word number. The standard algorithm for multiplication
essentially performs the above digit-by-digit multiplications and additions. In
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order to save space, a single partial product variable P’ is being used. The
initial value of the partial product is equal to zero; we then take a digit of B
and multiply by the entire number A, and add it to the partial product P’.
The partial product variable P’ contains the final product A - B at the end of
the computation. Algorithm 5.1 shows the standard procedure for computing
the product A B.

Algorithm 5.1 The Standard Multiplication Algorithm
Require: A, B.

Ensure: P'= A B.

1: Initially P/:=0foralli=0,1,...,25 ~ 1.

2: fori=0to s—1do

3 C:=0

4 for j=0tos—1do

5 (C,8):=PL;+A; B:+C;
6: {H = S;

7 end for

8: s = C;

9. end for

10: Return(Py, 1P, o+ Fp)

In the following, we show the steps of the computation of A- B = 348857
using the standard algorithm.
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it j Step (C, S) Partial P’
00 P} + Agbg + C (0, %) 000000
0+8-7+0 (5,6) 000006

1P+ Aiby +C
0+4-7+5 (3,3) 000036

2 Pi+ Agby + C
0+3-7+3 (2,4) 000436
002436

)

*
3) 002436

10 P} + Agb1 +C (0

3+8:5+0 (4,

1P+ A1by + C

4+44-5+4 (2,8) 002836

2P+ Agby + C

2+3-5+2 (1,9) 009836
019836

20 Pj+ Agby + C (0,%)

8+8-84+0 (7,2) 019236

1P+ Aibs + C

9+4.-8+7 (4,8 018236

2P+ Agby + C

1+3-8+4 (2,9 098236
298236

In order to implement this algorithm, we need to be able to execute Step 5 of
Algorithm 5.1 as,
(C,S):= Pi/+j +A4; B+ C,

where the variables P +i» Aiy Bi, C, and S each hold a single-word, or a
W -bit number. This step is termed as an inner-product operation which is
common in many of the arithmetic and number-theoretic calculations. The
inner-product operation above requires that we multiply two W-bit numbers
and add this product to previous ‘carry’ which is also a W-bit number and
then add this result to the running partial product word P} ;- From these
three operations we obtain a 2W-bit number since the maximum value is

V1 @Y -nEY -1 42 —1 =22 1,

Also, since the inner-product step is within the innermost loop, it needs to run
as fast as possible. Of course, the best thing is to have a single microprocessor
instruction for this computation; unfortunately, none of the currently available
microprocessors and signal processors offers such a luxury. A brief inspection
of the steps of this algorithm reveals that the total number of inner-product
steps is equal to s%. Since s = k/w and w is a constant on a given computer,
the standard multiplication algorithm requires O(k?) bit operations in order
to multiply two k-bit numbers.
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5.3.2 Squaring is Easier

Squaring is an easier operation than multiplication since half of the single-
precision multiplications can be skipped. This is due to the fact that Pi’j =
A Ay =P

As A A A
X A3 Az A1 Ao
Pos Pz FPor Py

Ply P, Pi Py

+ Pig
P Ps Ps Py Py P, Pl F

Thus, we can modify the standard multiplication procedure as shown in Al-
gorithm 5.2 to take advantage of this property of the squaring operation.

Algorithm 5.2 The Standard Squaring Algorithm
Require: A.
Ensure: P' = A- A,

1: Initially P/ :=0 for all i =0,1,...,2s — 1.

2: fori=0to s—1do

3: (C,S) L= z‘/+i+Ai‘Ai

4 forj=i+1tos—1do

5 (C,8)=P,;+2 4; A+ C;
6: PlL; =8

7 end for

8 P, =0C

9: end for

10: Return(Ps,_1 Py o Pp)

However, we warn the reader that the carry-sum pair produced by opera-
tion
(C,8):=P;+2-A; - Ai+C
in Step 5 of Algorithm 5.2 may be 1 bit longer than a single-precision number
which requires w bits. Since

(2¥ —1) +2(2¥ —1)(2¥ — 1) + (2¥ — 1) = 22w+1 _guwt!

and
2211} —-1< 22w+1 _ 2w+1 < 22w+l _ 1’
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the carry-sum pair requires 2w+-1 bits instead of 2w bits for its representation.
Thus, we need to accommodate this ‘extra’ bit during the execution of the
operations in Steps 5, 6, and 7 of Algorithm 5.2. The resolution of this carry
may depend on the way the carry bits are handled by the particular processor’s
architecture. This issue, being rather implementation-dependent, will not be
discussed here.

5.3.3 Modular Reduction

The multiply-and-reduce modular multiplication algorithm first computes the
product A - B (or, A- A) using one of the multiplication algorithms given
above. The multiplication step is then followed by a division algorithm in
order to compute the remainder. However, as we have mentioned before, we
are not interested in the quotient; we only need the remainder. Therefore, the
steps of the division algorithm can somewhat be simplified in order to speed
up the process. The reduction step can be achieved by making one of the
well-known sequential division algorithms. In the rest of this subsection, we
describe the restoring and the nonrestoring division algorithms for computing
the remainder of P’ when divided by n, where n is a general modulus!.

Division is the most complex of the four basic arithmetic operations. First
of all, it has two results: the quotient and the remainder. Given a dividend
P’ and a divisor n, a quotient @ and a remainder R have to be calculated in
order to satisfy

P'=Q n+ Rwith R <n.

If P’ and n are positive, then the quotient @ and the remainder R will be
positive. The sequential division algorithm successively shifts and subtracts n
from P’ until a remainder R with the property 0 < R < n is found. However,
after a subtraction we may obtain a negative remainder. The restoring and
nonrestoring algorithms take different actions when a negative remainder is
obtained.

Restoring Division Algorithm

Let R; be the remainder obtained during the ith step of the division algorithm.
Since we are not interested in the quotient, we ignore the generation of the
bits of the quotient in the following algorithm. The procedure given below
first left-aligns the operands P’ and n. Since P’ is 2k-bit number and n is a
k-bit number, the left alignment implies that n is shifted k bits to the left,
i.e., we start with 2*n. Furthermore, the initial value of R is taken to be P/,
i.e., Ry = P’. We then subtract the shifted n from P’ to obtain Ry; if Ry is

! It is noted that Solinas proposed in [338] primes of special form for which the
reduction step can be accomplished with high efficiency. However the material
for Solinas special primes is not covered in this book. The interested reader may
consult [37].
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positive or zero, we continue to the next step. If it is negative the remainder
is restored to its previous value as is shown in Algorithm 5.3 below.

Algorithm 5.3 The Restoring Division Algorithm
Require: P’ n,
Ensure: R = P’ mod n.
. Ro =1t
n = 2kn;
. fori=1to k do
Ri = Ri~1’n;
if R; <0 then
R;:= Ri_q;
end if
ni=n/2
end for
- Return(Ry)

—

QDY XTD D

—

In Step 5 of Algorithm 5.3, we check the sign of the remainder; if it is
negative, the previous remainder is taken to be the new remainder, ie., a
restore operation is performed. If the remainder R; is positive, it remains as
the new remainder, i.e., we do not restore. The restoring division algorithm
performs k& subtractions in order to reduce the 2k-bit number ¢t modulo the
k-bit number n. Thus, it takes much longer than the standard multiplication
algorithm which requires s = k/w inner-product steps, where w is the word-
size of granularity being employed.

In the following, we give an example of the restoring division algorithm for
computing 3019 mod 53, where 3019 = (101111001011); and 53 = (110101),.
The result is 51 = (110011),.
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Rp 101111001011 ¢

n 110101 subtract
— 000110 negative remainder
Ry 101111 001011 restore
n/2 110101 shift and subtract
+ 101001 positive remainder

Rs 10100 101011 not restore

n/2 1101 01 shift and subtract
+ 011101 positive remainder

Rs 0111 011011 not restore

n/2 110101  shift and subtract
+ 000 110 positive remainder

Ry 000 110011 not restore

n/2 11 0101  shift

n/2 110101 shift

n/2 110101 shift and subtract
+ 000010 negative remainder

Rs 110011 restore

R 110011 final remainder

Also, before subtracting, we may check if the most significant bit of the re-
mainder is 1. In this case, we perform a subtraction. If it is zero, there is no
need to subtract since n > R;. We shift n until it is aligned with a nonzero
most significant bit of R;. This way we are able to skip several subtract/restore
cycles. In the average, k/2 subtractions are performed.

Nonrestoring Division Algorithm

The nonrestoring division algorithm allows a negative remainder. In order to
correct the remainder, a subtraction or an addition is performed during the
next cycle, depending on the whether the sign of the remainder is positive
or negative, respectively. This is based on the following observation: Suppose
R; = R;j_1 —n < 0, then the restoring algorithm assigns R; := R;_; and
performs a subtraction with the shifted n, obtaining

Ri+1 = Rl —n/2 = Ri—l had ’I’L/2

However, if R; = R;—1 —n < 0, then one can instead let R; remain negative
and add the shifted n in the following cycle. Thus, one obtains

Rivi=Ri+n/2=(Ri-y—n)+n/2=Ri_1 —n/2,

which would be the same value. The steps of the nonrestoring algorithm,
which implements this observation, are given in Algorithm 5.4.

Note that the nonrestoring division algorithm requires a final restoration
cycle in which a negative remainder is corrected by adding the last value of n
back to it.
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Algorithm 5.4 The Nonrestoring Division Algorithm
Require: P',n.
Ensure: R = P’ mod n.

1: Ro:=1t;

2: n = 2%n;

3 fori=1to kdo

4 if R;_; > 0 then
5 Ri:=Ri-1—m;
6: else

7 Ri:=Ri1+mn;
8: end if

9 n:=n/

10: if Rx <0 then
11: R:=R+mn;

12:  end if

13: end for

14: Return(Ry)

In the following we compute 51 = 3019 mod 53 using the nonrestoring
division algorithm. Since the remainder is allowed to stay negative, we use 2’s
complement coding to represent such numbers.

Ry 0101111001011 ¢

n 0110101 subtract

R, 1111010 negative remainder
n/2 0110101 add

Rz 0101001 positive remainder

n/2 0110101 subtract

Rs 0011101 positive remainder
n/2 0110101  subtract

Ry 0000 110 positive remainder
n/2 011 0101

n/2 01 10101

n/2 0 110101 subtract

Rs 1 111110 negative remainder
n 0110101 add (final restore)
R 0 110011 Final remainder

5.3.4 Interleaving Multiplication and Reduction

The interleaving algorithm has been known. The details of the method are
sketched in papers [27, 334]. Let A; and B; be the bits of the k-bit positive
integers A and B, respectively. The product P’ can be written as



5.3 Modular Multiplication Operation 109

k-1 k-1
PP=A-B=A Y B2 =) (A B)2
i=0 i=0

=2(--22(00+A-Bx_1)+ A-Bg_2)+--- )+ A-By

This formulation yields the shift-add multiplication algorithm. Notice that we
also reduce the partial product modulo n at each step of Algorithm 5.5.

Algorithm 5.5 The Interleaving Multiplication Algorithm
Require: A, B,n.
Ensure: P=A- Bmod n.

1. P:=0;
2: fori=0to k—-1do
3 P:=2P+ A  Br_1-s;
4: P:=Pmodn;
5
6

: end for
: Return(P)

Assuming that A, B, P < n, we have

P:=2P+A B
<2n—-1)+(n-1) = 3n—3.

Thus, the new P will be in the range 0 < P < 3n — 3, and at most 2 sub-
tractions are needed to reduce P to the range 0 < P < n. We can use the
following algorithm to bring P back to this range:

P':=P—~n;If PP>0then P= P’
P :=P—n;If PP>0then P= P’

The computation of P requires k steps, at each step we perform the following
operations:

A left shift: 2P

A partial product generation: 4 - By
An addition: P:=2P 4 A- B;

At most 2 subtractions:

P :=P—-n;IfP'>0then P= P
Pl:=P—-n;IfP >0then P= P’

The left shift operation is easily performed by wiring. The partial products,
on the other hand, are generated using an array of AND gates. The most
crucial operations are the addition and subtraction operations: they need to
be performed fast. We have the following avenues to explore:

e We can use the carry propagate adder, introducing O(k) delay per step.
However, Omura’s method can be used to avoid unnecessary subtractions:
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3a. P:=2P
3b. If carry-out then P:= P +m
3c. P:=P+A-Bj
3d. If carry-out then P := P +m

e We can use the carry save adder, introducing only O(1) delay per step.
However, recall that the sign information is not immediately available in
the CSA. We need to perform fast sign detection in order to determine
whether the partial product needs to be reduced modulo n.

5.3.5 Utilization of Carry Save Adders

In order to utilize the carry save adders in performing the modular multipli-
cation operations, we represent the numbers as the carry save pairs (C, S),
where the value of the number is the sum C'+ 5. The carry save adder method
of the interleaving algorithm is given in Algorithm 5.6.

Algorithm 5.6 The Carry-Save Interleaving Multiplication Algorithm
Require: A, B,n.
Ensure: P=A- B mod n.

1: (C,S) :=(0,0);

2: fori=0tok—1do

3: (C,8):=2C+25+ A Br-1-i;
4: (C',8):=C+ Sn;

5: if SIGN > 0 then

6: (C,8) = (C", 9

7:  end if

8: end for

9: Return(C, S)

The function SIGN gives the sign of the carry save number C’ + S’. Since
the exact sign is available only when a full addition is performed, we calculate
an estimated sign with the SIGN function. A sign estimation algorithm was
introduced in [185]. Here, we briefly review this algorithm, which is based on
the addition of the most significant ¢ bits of C and S to estimate the sign of
C + S. For example, let C' = (011110) and S = (001010), then the function
SIGN produces
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C = 011110
S = 001010

(t=1) SIGN =0

(t=2) SIGN =01

(t=3) SIGN = 100

(t =4) SIGN = 1001

(t =5) SIGN 10100

(t =6) SIGN = 101000.

In the worst case the exact sign is produced after adding all k£ bits. If the
exact sign of C' + S is computed, we can obtain the result of the multiplication
operation in the correct range [0,7n). If an estimation of the sign is used, then
we will prove that the range of the result becomes [0, n+ A), where A depends
on the precision of the estimation. Furthermore, since the sign is used to decide
whether some multiple of n should be subtracted from the partial product,
an error in the decision causes only an error of a multiple of n in the partial
product, which is corrected later. We define function 7'(X') on an n-bit integer
X as
T(X) = X — (X mod 2%),

where 0 < t < n — 1. In other words, T replaces the first least significant t
bits of X with ¢ zeros. This implies
T(X)< X <T(X)+2.

We reduce the pair (C, S) by performing the following operation @ times:

L. (¢,8):=C+S—-n.
J. IT(C)+T(S)>0thenset C:=C and §:= 8.

In Step J, the computation of the sign bit R of T(®) + T(9) involves n — t
most significant bits of C and S. The above procedure reduces a carry-sum
pair from the range

0<Co+So < (Q+1)n+2

to the range
0 < Cr+ Sg <n+2f,

where (Cp, Sp) and (Cg, Sgr) respectively denote the initial and the final carry-
sum pair. Since the function T always underestimates, the result is never
over-reduced, i.e.,

Cr+Sr>0.

If the estimated sign in Step J is positive for all @) iterations, then QN is
subtracted from the initial pair; therefore
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CR+SR=Co+SQ—QN<n+2t.

If the estimated sign becomes negative in an iteration, it stays negative there-
after to the last iteration. Thus, the condition

TC)+T(S) <0
in the last iteration of Step J implies that
T(C) +T(8) < —2¢,

since T'(X) is always a multiple of 2¢. Thus, we obtain the range of C and S
as
T+ T(3) < €+ 8§ < T(C) + T(S) + 2+,

It follows from the above equations that
C+S<attt 2t =2t

Since in Step I we perform (C,S) := C' + S — n and in the last iteration the
carry-sum pair is not reduced (because the estimated sign is negative), we
must have o

Cr+Spg=C+5+n,

which implies
Cr+Sr<n+2"

The modular reduction procedure described above subtracts n from (C, S) in
each of the @ iterations. The procedure can be improved in speed by sub-
tracting 25~7n during iteration j, where (Q +1) < 28 and j = 1,2,3,...,k.
For example, if Q = 3, then £ = 2 can be used. Instead of subtracting n
three times, we first subtract 2N and then n. This observation is utilized in
Algorithm 5.7.

The parameter t controls the precision of estimation; the accuracy of the
estimation and the total amount of logic required to implement it decreases
as t increases. After Step 7 of Algorithm 5.7, we have

CO 480 <42t

which implies that after the next shift-add step the range of CG+1) 4 §i+1)
will be [0,3N + 2tt1). Assuming Q = 3, we have

3N + 211 < (Q+ 1)n + 2t = 4N + 21,
which implies 2! < n, or t € n — 1. The range of C+1) 4 §G+1) becomes
0 < CUHD 4 gl < 3N 4 201 < 3N + 27 < 272

and after Step 4 of Algorithm 5.7, the range will be
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Algorithm 5.7 The Carry-Save Interleaving Multiplication Algorithm Re-
visited
Require: A, B, n.
Ensure: P = A B mod n.

1. Set $©@ =0 and C9 =0,

2: fori=1to k do

3 (€W, 8Wy = 200D 4 280G~ 4 4, B,

4 (C® 80y .= c® 4 86 _ op;
5 if T(CW) 4+ T(S®) > 0 then
6: C® = &% and §O .= §),
7. end if

8 (CW 50y .= 4 80 _p,
9: if T(CY) + T(8D) > 0 then
10: C® .= ¢® and $W = §9,
11:  end if

12: end for

13: Return(C®,5®)

—ontl <« 9N < CUFD 4 gUHD 4 9 < ont]

In order to contain the temporary results, we use (n -+ 3)-bit carry save adders
which can represent integers in the range [-2"12,2"+2). When t = n — 1,
the sign estimation technique checks 5 most significant bits of C® and §()
from the bit locations n» — 2 to n -+ 3. This algorithm produces a pair of
integers (C,S) = (C™, §) such that P = C' + S is in the range [0,2N).
The final result in the correct range [0,n) can be obtained by computing
P =C+ 8 and P = C+ S —n using carry propagate adders. If P < 0,
we have P = P +4n < n, and thus P is in the correct range. Otherwise, we
choose P because 0 < P =P —n < 2! < n implies P € [0,n). The steps of
the algorithm for computing 47 - 48 (mod 50), are illustrated in the following
figure. Here we have

k = |log,(50)] +1 = 6,
A =47 = (000101111),
B = 48 = (000110000},
n = 50 = (000110010),
M = —n = (111001110).

The algorithm computes the final result
(C, §) = (010111000, 110000000) = (184, —128)

in 3k = 18 clock cycles. The range of C + 5 = 184 — 128 = 56 is (0,2 - 50).
The final result is found by computing C +.5 = 56 and C + 5 — n = 6, and
selecting the latter since it is positive.
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c S c S T+ TB)R
7= 0] |000000000[000000000] - - - =
2a|000000000000110000] _ — - -
i = 1{25]000000000]0001 10000]000100000]110101700] 111000000 |1
3¢ |000000000(000110000[000000000(111111110] 111100000 |1
2a|000000000/001100000] =
i = 2{2b|000000000(001100000]000000000[111111100| 111100000
2¢|010000000[110101110|010000000[110101110| 000100000
2a|000100000[001101100] = -
i = 3[2b[001011000[111010000]001011000[111010000] 000000000
2¢|001011000|111010000|110110000/001000110] 111100000
2a|101100000]100100000] -
i = 4[2b]001000000(111011100[001000000[111011100] 000000000
2¢|001000000[111011100|110011000[001010010| 111000000
2a|101100000/100001000] - - =
4 = 5[2b|101100000]100001000]000010000[111110100] 111100000
2c|010010000[110100110[010010000]110100110| 000100000
2a|001000000/001011100] - - -
i = 625|010111000[110000000|0101 110001 10000000 000100000
3¢|010111000[110000000]100010000[011110110| 111100000

= ol | O]

=l Ol

ol o= !

5.3.6 Brickell’s Method

This method is based on the use of a carry delayed integer introduced in
§5.1.6. Let A be a carry delayed integer, then, it can be written as

=
—

A= (Ty + Dy) - 28,

i

Il
o

The product P = AB can be computed by summing the terms:

(T0B+DoB)20+
(I1-B+Dy-B)-2' +
(T2~B+D2-B)~22+

(Ty-1+- B+ D1 - B)- 2671

Since Dy = 0, we rearrange to obtain

20.7y-B+2'.D; B +
2.7y .B+2%.Dy- B +
22.7,.B+2%. D3 - B+

2k=2. T, o - B+251. Dy B+
2k-1.7._, B
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Also recall that either T; or D, is zero due to the property of the carry
delayed adder. Thus, each step requires a shift of B and addition of at most
2 carry delayed integers:

e Either: (Pd,Pt) = (Pd,Pt)+2szB

[ ] OI‘Z (Pd, Pt) = (Pd,Pt) + 21+1 g Di+1 - B

After k steps P = (Py, P;) is obtained. In order to compute P (mod n), we
perform reduction:

If P>2k"1.pthen P:=P-2k1.p

If P>22.nthen P:=P—2"2.p
If P>2k3.pthen P:=P—2k3.p

If P>nthen P:=P—-n
We can also reverse these steps to obtain:

P:=Ty - B 2!
P:=P4+Ty 5 - B-2"24 D, , . B.2k1!
P:=P+Ty3 B-2"34+ Dy -B-2°2

P:=P+T,-B-2'+Dy-B . 2°
P=P+Ty.-B-2°+D,.B.2}

Also, the multiplication steps can be interleaved with reduction steps. To per-
form the reduction, the sign of P — 2¢. n needs to be determined (estimated).
Brickell’s solution [33] is essentially a combination of the sign estimation tech-
nique and Omura’s method of correction. We allow enough bits for P, and
whenever P exceeds 2%, add m = 2% — n to correct the result. 11 steps after
the multiplication procedure started, the algorithm starts subtracting multi-
ples of n. In the following, P is a carry delayed integer of k£ + 11 bits, m is
a binary integer of k bits, and ¢y and tg control bits, whose initial values are
t1 =1ty =0.

1. Add the most significant 4 bits of P and m - 2%,

2. If overflow is detected, then t; = 1 else to = 0.

3. Add the most significant 4 bits of P and the most significant 3 bits of
m - 210,

4. If overflow is detected and ¢t3 = 0, then ¢t; = 1 else t; = 0.

The multiplication and reduction steps of Brickell’s algorithm are as follows:
B’ =T, B+2-Dyy, B
m =ty -m- -2 4ty -m. 210
P:=2(P+B'+m)
A= 2A.
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5.3.7 Montgomery’s Method

In 1985, P. L. Montgomery introduced an efficient algorithm [238] for comput-
ing R = A- B mod n where A, B, and n are k-bit binary numbers. The Mont-
gomery reduction algorithm computes the resulting k-bit number R without
performing a division by the modulus n. Via an ingenious representation of
the residue class modulo n, this algorithm replaces division by n operation
with division by a power of 2. This operation is easily accomplished on a
computer since the numbers are represented in binary form. Assuming the
modulus 7 is a k-bit number, ie., 2¢=! < n < 2% let » be 2%, The Mont-
gomery reduction algorithm requires that r and n be relatively prime, i.e.,
ged(r,n) = ged(2*,n) = 1. This requirement is satisfied if » is odd. In the
following we summarize the basic idea behind the Montgomery reduction al-
gorithm.
Given an integer A < n, we define its n-residue with respect to r as

A=A -rmodn.
It is straightforward to show that the set
{i-rmodn|0<i<n—1}

is a complete residue system, i.e., it contains all numbers between 0 and n—1.
Thus, there is a one-to-one correspondence between the numbers in the range
0 and n — 1 and the numbers in the above set. The Montgomery reduction
algorithm exploits this property by introducing a much faster multiplication
routine which computes the n-residue of the product of the two integers whose
n-residues are given. Given two n-residues A and B, the Montgomery product
is defined as the n-residue
R=A.-B-r"'modn
where 7! is the inverse of r modulo n, i.e., it is the number with the property
r~t.r =1modn.
The resulting number R is indeed the n-residue of the product
R=A -Bmodn
since
R=A-B.r"'modn
=A-r-B.-r-r"'modn
=A-B-rmodn.

In order to describe the Montgomery reduction algorithm, we need an addi-
tional quantity, n’, which is the integer with the property



5.3 Modular Multiplication Operation 117

rorlon.n/ =1

The integers r~! and n’ can both be computed by the extended Euclidean

algorithm [178]. The Montgomery product algorithm, which computes
u=A-B-r"! (modn)

given A and B, is given in Algorithm 5.8 below.

Algorithm 5.8 Montgomery Product
Require: 4, B,r,n.
Ensure: u=MonPro(4, B)=4- B r~! (mod n).
ct=A- B;
m:=t-n modr;
wi=(t+m-n)/r
if u > n then
Return(u — n)
else
Return(u)
: end if

e AN R

The most important feature of the Montgomery product algorithm is that
the operations involved are multiplications modulo r and divisions by 7, both
of which are intrinsically fast operations since r is a power 2. The MonPro
Algorithm 5.9 can be used to compute the product of A and B modulo 7,
provided that n is odd.

Algorithm 5.9 Montgomery Modular Multiplication: Version I
Require: A, B, an odd number n.

Ensure: z = A- B (mod n).

Compute n’ using the extended Euclidean algorithm.

A:=A rwmodn;

B:= B rmodn;

I := MonPro(4, B);

: z := MonPro(Z, 1);

: Return(z)

IS

A better algorithm can be given by observing the property
MonPro(A,B)=(A-r)-B-r"!=A-B (mod n),

which modifies Algorithm 5.9 as shown in Algorithm 5.10. However, the
preprocessing operations, especially the computation of n/, are rather time-
consuming.
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Algorithm 5.10 Montgomery Modular Multiplication: Version II
Require: A, B, an odd number n.

Ensure: z = A- B (mod n).

1: Compute n’ using the extended Euclidean algorithm.

2: A:= A -rmodn;

3. x := MonPro(4, B);

4: Return(z)

Nevertheless, there is an efficient algorithm for computing the single pre-
cision integer ny. The computation of n{ can be performed by a specialized
Euclidean algorithm instead of the general extended Euclidean algorithm.
Since r = 2% and

1

rorl—n.n=1,

we take modulo 2% of the both sides, and obtain
-n-n’=1 (mod 2¥),
or, in other words,
nh=—ny! (mod 2%),

where njy and ny ' are the least significant words (the least significant w bits)
of n’ and n~!, respectively. In order to compute —nj’ (mod 2%), we use
algorithm 5.11 given below which computes z=! (mod 2%) for a given odd z.

Algorithm 5.11 Specialized Modular Inverse
Require: an odd number z and w.

Ensure: y, =z~ (mod 2%).

1 =1,

2: for i =2 to w do

3: if 27 <@y (mod 2i) then

4 Yi=yior + 2070
5 else

6: Yi '= Yi-1;

7 end if

8: end for

9: Return(yy)

The correctness of the algorithm follows from the observation that, at every
step ¢, we have ,
z-yi=1 (mod 2.

This algorithm is very efficient, and uses single precision addition and multipli-
cations in order to compute z~!. As an example, we compute 237! (mod 64)
using the above algorithm. Here we have z = 23, w == 6. The steps of the
algorithm, the temporary values, and the final inverse are shown below:
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i 2*yi—1[2 - yi—1 (mod 24)[2°~1T Vi
2| 4 1 23-1=3 2] 1+2=3
3| 8 3 23.:3=5 4 3+4=7
416 7 23-7=1 8 7
5(321 7 23.-7=1 16 7
6|64 7 23-7=233 3217 +32=239

Thus, we compute 237! = 39 (mod 64). This is indeed the correct value since
23-39=14-64+1=1 (mod 64).

Also, at every step ¢, we have z - y; = 1 (mod 2t), as shown below:

ilz - y; mod 2¢
1123-1=1mod 2
2|23-3=1mod 4
3|23 7=1mod 8
4123-7=1mod 16
5123-7=1mod 32
6{23 -39 = 1 mod 64

Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular
multiplications with respect to the same modulus are needed. Such is the case
when one needs to compute a modular exponentiation, i.e., the computation
of M*® mod n. Using one of the addition chain algorithms given in §5.4, we
replace the exponentiation operation by a series of square and multiplication
operations modulo n. This is where the Montgomery product operation finds
its best use. In the following we summarize the modular exponentiation op-
eration which makes use of the Montgomery product function MonPro. The
exponentiation Algorithm 5.12 below uses the binary method.

Thus, we start with the ordinary residue M and obtain its n-residue M
using a division-like operation, which can be achieved, for example, by a series
of shift and subtract operations. Additionally, Steps 2 and 3 of Algorithm 5.12
require divisions. However, once the preprocessing has been completed, the
inner-loop of the binary exponentiation method uses the Montgomery product
operations which performs only multiplications modulo 2* and divisions by 2*.
When the binary method finishes, we obtain the n-residue Z of the quantity
2 = M*® mod n. The ordinary residue number is obtained from the n-residue
by executing the MonPro function with arguments Z and 1. This is easily
shown to be correct since

Z=z -rmodn

immediately implies that

z=%Z-r 'modn = Z-1-r"! modn := MonPro(%,1).
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Algorithm 5.12 Montgomery Modular Exponentiation

Require: A, B, and odd number n.

Ensure: z = M® (mod n).

1: Compute n’ using the extended Euclidean algorithm.

2: M:=M - r modn;
¢ Z:=1-r modn;
: for i =k —1down to 0 do
: Z = MonPro(Z, );

3

4

5

6 if e; = 1 then

7: # := MonPro(M, z);
8 end if

9: end for

0: = := MonPro(z, 1);

1: Return(z)

p—

The resulting algorithm is quite fast as was demonstrated by many researchers
and engineers who have implemented it, for example, see [72, 200]. However,
this algorithm can be refined and made more efficient, particularly when the
numbers involved are multi-precision integers. For example, Dussé and Kaliski
[72] gave improved algorithms, including a simple and efficient method for
computing n’. We will describe these methods below.

An Example of Exponentiation

Here we show how to compute z = 7'° mod 13 using the Montgomery expo-
nentiation algorithm.

e Since n = 13, we take r = 2% =16 > n.
Computation of n':
Using the extended Euclidean algorithm, we determine that 16-9—13-11 =
1, thus, 7! =9 and n’ = 11.
e Computation of M:
Since M =7, we have M := M -7 (mod n) = 7- 16 (mod 13) = 8.
e Computation of Z for z = 1:
We have Z:=z-r (mod n) =1-16 (mod 13) = 3.
e Steps 5 and 7 of the ModExp routine:

lei[Step 5 [Step 7

1|MonPro(3,3) = 3 {MonPro(8,3) =8

0{MonPro(8,8) = 4

1|MonPro(4,4) = 1 |MonPro(8,1)=7

0 [MonPro(7,7) = 12

o Computation of MonPro(3,3) = 3: o Computation of MonPro(8, 3) = 8&:
t:=3-3=9 t:=8-3=24
m:=9-11 (mod 16) = 3 m:=24-11 (mod 16) =8

=(9+3-13)/16 = 48/16 = 3 w:i= (24 +8-13)/16 = 128/16 = 8
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o Computation of MonPro(8, 8) = 4: o Computation of MonPro(4,4) = 1:

t:=4-4=16
m:=16-11 (mod 16) =0
wi= (16 +0-13)/16 = 16/16 = 1

t:=8 8=064
m:=64-11 (mod 16) =0
u:i= (64+0-13)/16 = 64/16 = 4

o Computation of MonPro(8,1) = 7: o Computation of MonPro(7,7) = 12:
t:=8-1=8 t:=7-7=49
m:=8-11 (mod 16) = 8 m =49 11 (mod 16) = 11
wi=(8+813)/16=112/16 =7  w:= (49+11-13)/16 = 192/16 = 12

o Step 7 of the ModExp routine: z = MonPro(12,1) =4
t:=12-1=12
m:=12-11 (mod 16) =4
wi= (12+4-13)/16 = 64/16 = 4

Thus, we obtain z = 4 as the result of the operation 7!° mod 13.

Hardware Implementation of the Montgomery Method

In the rest of this section, we introduce an efficient binary add-shift algorithm
for computing MonPro(A4, B), and then generalize it to the m-ary method.
We take © = 2*, and assume that the number of bits in A or B is less than
k. Let A = (Ag_1Ak—_2- -+ Ap) be the binary representation of A. The above
product can be written as

k-1
27F (Ag14p—z- - Ag) - B=2"F-)"4; 2" B (mod n).
=0

The product t = (Ag + A12 + - - - Ax-125"1) - B can be computed by starting
from the most significant bit, and then proceeding to the least significant, as
follows:

1. t:=0

2. fori=k—1t00
2a. t:=t+Ai'B
2b. t:=2-1

The shift factor 2% in 27% . A . B reverses the direction of summation. Since
278 (Ag+ A12+4 - Ap 128 = Ap_1271 + Apla272 - Ap27F,

we start processing the bits of A from the least significant, and obtain the
following binary add-shift algorithm to compute t = A - B - 2%, as shown in
Algorithm 5.13.

Procedure 5.13 computes the product t = 275 . A . B, however, we are
interested in computing v = 27% . A. B (mod n). This can be achieved by
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Algorithm 5.13 Add-and-Shift Montgomery Product
Require: A, B.
Ensure: t =A-B.27%,
t:=0
i fori=0tok —1do
t:=t+ A; B,
t:=1/2;
end for
: Return(t)

ISRl S

subtracting n during every add-shift step, but there is a simpler way: We add
n to u if u is odd, making new u an even number since n is always odd. If u is
even after the addition step, it is left untouched. Thus, u will always be even
before the shift step, and we can compute

wi=u-2"" (mod n)
by shifting the even number u to the right since v = 2v implies
w:=2v-2"1=v (mod n).

The binary add-shift algorithm computes the product u = A- B-27* (mod n)
as shown in Algorithm 5.14.

Algorithm 5.14 Binary Add-and-Shift Montgomery Product
Require: A, B, an odd number n.
Ensure: u = A- B-27% (mod n).

10 u:=0;
2: fori=0tok—1do
3 u:=u+ A B;
4 if u is odd then
5: U= u-+n;
6
7
8:
9:

end if

ui=u/2;
end for
Return(u)

We reserve a (k + 1)-bit register for u because if u has k bits at beginning
of an add-shift step, the addition of A; - B and n (both of which are k-bit
numbers) increases its length to k + 1 bits. The right shift operation then
brings it back to k bits. After k add-shift steps, we subtract n from u if it is
larger than n.

Also note that Steps 2a and 2b of the above algorithm can be combined:
We can compute the least significant bit up of u before actually computing
the sum in Step 2a. It is given as
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ug = up ® (A; Bo).

Thus, we decide whether u is odd prior to performing the full addition oper-
ation u := uw + A;B. This is the most important property of Montgomery’s
method. In contrast, the classical modular multiplication algorithms (e.g., the
interleaving method) computes the entire sum in order to decide whether a
reduction needs to be performed.

5.3.8 High-Radix Interleaving Method

Since the speed for radix 2 multipliers is approaching limits, the use of higher
radices is investigated. High-radix operations require fewer clock cycles, how-
ever, the cycle time and the required area increases. Let 2° be the radix.
The key operation in computing P = AB (mod n) is the computation of an
inner-product steps coupled with modular reduction, i.e., the computation of

P:=2"P+A-B,—Q-n,

where P is the partial product and B; is the ith digit of B in radix 2°.
The value of @ determines the number of times the modulus n is subtracted
from the partial product P in order to reduce it modulo n. We compute @
by dividing the current value of the partial product P by n, which is then
multiplied by n and subtracted from the partial product during the next
cycle. This implementation is illustrated in Fig. 5.8.

B (Multiplier) B (Multiplier) B (Multiplier)
ShiftLeft _ |
b bits
b bits
Vé
4
Shift Left X
b bits
b+1 bits

Accumulator

» Divide by n

Fig. 5.8. High-Radix Interleaving Method

For the radix 2, the partial product generation is performed using an array of
AND gates. The partial product generation is much more complex for higher
radices, e.g., Wallace trees and generalized counters need to be used. However,
the generation of the high-radix partial products does not greatly increase cy-
cle time since this computation can be easily pipelined. The most complicated
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step is the reduction step, which necessitates more complex routing, increasing
the chip area.

5.3.9 High-Radix Montgomery’s Method

The binary add-shift algorithm is generalized to higher radix (m-ary) algo-
rithm by proceeding word by word, where the wordsize is w bits, and k£ = sw.
The addition step is performed by multiplying one word of A by B and the
right shift is performed by shifting w bits to the right. In order to perform an
exact division of u by 2%, we add an integer multiple of n to u, so that the
least significant word of the new u will be zero. Thus, if v # 0 (mod 2"), we
find an integer m such that u + m -n = 0 (mod 2%). Let ug and ny be the
least significant words of u and n, respectively. We calculate m as

m=-ug-ng' (mod2¥).

The word-level (m-ary) add-shift Montgomery product algorithm is given in
Algorithm 5.15.

Algorithm 5.15 Word-Level Add-and-Shift Montgomery Product
Require: A, B, an odd number n, k = sw.
Ensure: u= A-B-27* (mod n).

1 u:i=0;

2. fori=0tos—1do

3: u:=u+ A; B;

4: m:i= ——uO'ngl mod 2%
5: ui=u+m-n,

6 u:i=u/2%

7. end for

8: Return(u)

This algorithm specializes to the binary case by taking w = 1. In this
case, when « is odd, the least significant bit ugy is nonzero, and thus, m =
—ug-nyt =1 (mod 2).

5.4 Modular Exponentiation Operation

Modular exponentiation can be defined in terms of field multiplication as
follows. Let x be a positive integer in [1, n]. Let also e be defined as an arbitrary
positive integer. Then, we define modular exponentiation as the problem of
finding the number y such that,

y=2z®modn (5.1)
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Taking advantage of the linearity property of the modular operation, (5.1)
can be evaluated by performing a reduction modulo n at each step of the
exponentiation thus guaranteeing that all the partial results will not grow
larger than twice the length of the modulus. In the rest of this Section we
will consider that every multiplication operation always includes a subsequent
reduction step.

In general one can follow two strategies in order to optimize the compu-
tation of (5.1). One approach is to implement field multiplication, the main
building block required for field exponentiation, as efficiently as possible. The
other is to reduce the total number of multiplications needed to compute
(5.1). In this Section we address the latter approach, assuming that arbitrary
choices of the base x are allowed but considering that the exponent e has been
previously fixed.

In this section, we include a brief review of the main deterministic heuristic
proposed in the literature for computing field exponentiation.

5.4.1 Binary Strategies

Let e be an arbitrary m-bit positive integer e, with a binary expansion repre-

) ) _ Lol
sentation given as, e = (lem—2...e1€g)2 = 2m~1 4 37" “2%e; Then,
y= x¢ = x2m~1+2§”;62 2%e; _ wzmnl . H x218i (52)
i=0

Binary strategies evaluate (5.2) by scanning the bits of the exponent e one
by one, either from left to right (MSB-first binary algorithm) or from right to
left (LSB-first binary algorithm) applying the so-called Horner’s rule 2. Both
strategies require a total of m — 1 iterations. At each iteration a squaring
operation is performed, and if the value of the scanned bit is one, a subsequent
field multiplication is performed. Therefore, the binary strategy requires a
total of m — 1 squarings and H(e) — 1 field multiplications, where H(e) is the
Hamming weight of the binary representation of e. The pseudo-code of the
MSB-first and the LSB-first binary algorithms are shown in Figures 5.16 and
5.17, respectively. The computational complexity of the algorithm in Figure
5.16 is given as,

Ple,m) = m+H(e)~2 = |logy(e)] + H{e) — 1 (6.3)

% Horner’s rule, named after W. G. Horner, ranks among the most efficient algo-
rithms for the computation of nth degree polynomials of the form,
p(2) = puz™ + pr-1z2” — 1+ - + P17 + uo,pn # 0, for fixed values of .
Horner’s rule solves this problem by evaluating p(z) as,
p(x)= (... (Pa% + Pn-1)z + )T + po.
This elegant algorithm was discovered independently by Isaac Newton 150 years
earlier than Horner and by the Chinese mathematician C. C. Chao in the 13th
century [178]
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An Example. Let us definee = 1903 = (11101101111),. Then m = 11
and H(e) = 9. According to (5.3) the computational complexity of the binary
algorithm is given as,

Ple) = m+H(e)—2 = 11+9—-2 = 18.

After evaluating the algorithm of Figure 5.16, the resulting binary sequence
is given as,

R N B S N, S ¢ SR BN B

N 11759 N xllB N 23236 N 1'237 N 1‘474 N 93475 _ 12950

N 1'951 N 1_1902 N z_1903.

58

We compare the MSB-first and the LSB-first binary algorithms in terms of
time and space requirements below:

¢ Both methods require m — 1 squarings and an average of 3(m — 1) multi-

plications.

The MSB-first binary method requires two registers: = and y.

The LSB-first binary method requires three registers: x, y, and P. However,
we note that P can be used in place of M, if the value of M is not needed
thereafter.

e The multiplication (Step 4) and squaring (Step 5) operations in the LSB-
first binary method are independent of one another, and thus these steps
can be parallelized. Provided that we have two multipliers (one multi-
plier and one squarer) available, the running time of the LSB-first binary
method is bounded by the total time required for computing h—1 squaring
operations on k-bit integers.

Algorithm 5.16 MSB-First Binary Exponentiation
Require: x,n,e = (em_1...€1€0),.
Ensure: y = x°® mod n.
y =z
. for i = m — 2 downto 0 do
y=y";
if e; == 1 then
Y=y x
end if
end for
: Return(y)

PR ND DL

5.4.2 Window Strategies

The binary method discussed in the preceding section can be generalized
by scanning more than one bit at a time. Hence, the window method (first
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Algorithm 5.17 LSB-First Binary Exponentiation
Require: x,n,e = (em_1...€1€0),.
Ensure: y = x°® mod n.
p=x;y=1
:fori=0tom-1do

if e, == 1 then

Y=y 'pm

end if

p=p%
end for
: Return(y)

IR S S o

described in [178]) scans k bits at a time. The window method is based on
a k-ary expansion of the exponent, where the bits of the exponent e are
divided into k-bit words or digits. The resulting words of e are then scanned
performing k consecutive squarings and a subsequent multiplication as needed.
In the following we describe the window method in a more formal way.

Algorithm 5.18 MSB-First 2%-ary Exponentiation
Require: x,n,e = (em—1...e1€0),, k divisor of m such that ¥ = m/k.
Ensure: y = x°® mod n. )

: Pre-compute and store 7 for all j

1 = 1,2,3,4,...,25 - 1.
2: Divide e into k-bit words W; for ¢ = 0,1,2,...,¥ — 1.
3y =W,
4: for ¢ = Wk— 2 downto 0 do

5 y=y*;

6: if Wi # 0 then
7 y=y-x";
8 end if
9: end for
0: Return(y)

—

Let e be an arbitrary m-bit positive integer e, with a binary expansion
representation given as,

e = (lem_a...e160)2 = 27 1 4 ZZiei.

Let k& be a small divisor of m. Then this binary expansion of e can be
partitioned into ¥ words of length k, such that k¥ = m. If k does not divide
m, then the exponent must be padded with at most k — 1 zeros. Let us define
W; € [0,2% — 1] as,
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k-1
Wi = (Ciky (k—1)Cikrt (k-2) - - Cik+1€ik)5 = D 2 €(ikty) (5.4)
ord

Then, we can equivalently represent e as, E‘f:_ol W; - 2%, Using the above
definition we have,

w1
¥ —1 nid id
y =x¢ = x2i=0 Wi = H xZ Wi (6.5)
=0

(5.5) is the basis of the window MSB-first procedure for exponentiation de-
scribed in the pseudo-code of Figure 5.18. The window method first pre-
computes the values of 27 for j = 1,2,3,...,2* — 1. Then, the exponent
e is scanned k bits at a time from the most significant word (Wy_1) to the
least significant word (Wp). At each iteration the current partial result y is
raised to the 2% power and multiplied with % where W; is the current
nonzero word being processed. Referring to Figure 5.18, it can be seen that,

e The first part of the algorithm consists on the pre-computation of the first
2% powers of x at a cost of 2* — 2 preprocessing multiplications.

e At each iteration of the main loop, the power yzlc can be computed by
performing k consecutive squarings. The total number of squarings is given
by (¥ -~ )k =m — k.

o At each iteration one multiplication is performed whenever the ¢-th word
W; is different than zero. Since all but one of the 2% different values of W;

are nonzero, the average number of required multiplications is given as,
@ -1)(1-27%) = (2 -1)01-27)

Thus, the average number of multiplications needed by the window method
in order to compute an m-bit field exponentiation is given as,

P(m,k) = (28 —2) + (m — k) + (-’;—L —1)(1 —27k). (5.6)

For k =1, 2,3, 4 the window method sketched at Figure 5.18 is called, respec-
tively, binary, quaternary, octary and hexa MSB-first exponentiation method.
In particular, note that by evaluating (5.6) for k = 1, the average number
of multiplications for the binary algorithm can be found as 2(m — 1) field
operations on average.

One obvious improvement of the strategy just outlined is that instead of
calculating and storing all the 2* first powers of z, one can just pre-compute
the windows needed for a given exponent e, thus saving some operations. This
last idea is illustrated in the examples below.

Example. Once again, let us consider the exponent ¢ = 1903 =
(11101101111), with m = 11. Then, the window method computational
complexity and resulting sequence using k = 2,3,4 can be found as,
Quaternary: ¢ = 1903 = (011101101111),
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P(m,k) = 2 Pre-comp mults + 10 Sqrs + 5 mults = 17.
Precomp. Sequence: 2! — z2 — 2°.

Main sequence:

fEl N 232 N .’E4 N (117 N 1'14 N 1‘28 _ 11729 — w58

- xllG _ wllB N .’1,'236 N .’L‘472 — CU475 — I950

N 1‘1900 N .'E1903.

Octal: e = 1903 = (011101 101111)2
P(m,k) = 4 Pre-comp mults + 9 Sqrs + 3 mults = 16.
Precomp. Sequence: z! — 22 — z3 — 2% — z7.
Main sequence:

xs——uns—»z”—+x24—>x29—>x58—»x“6—>x232

37__).1474_)1,948_)1:1896_}2:1903

Hexa: e = 1903 = (011101101111),
P(m, k) = 6 Pre-comp mults + 8 Sqgrs + 2 mults = 16.
Precomp. Sequence: ! — 2% — 23 - 2% — 27 — 214 — 215,

Main sequence:

w7—>x14—»:1:28—am56——>:vn2—>x“8—>33236—>z472

L, 944 _, ;1888 _ 1003
However, none of the above deterministic methods is able to find the short-
est addition chain? for e = 1903.

5.4.3 Adaptive Window Strategy

The adaptive or sliding window strategy is quite useful for exponentiations
with extremely large exponents (i.e. exponents with bit length greater than
128 bits) mainly because of its ability to adjust its method of computation
according to the specific form of the exponent at hand. This adjustment is done
by partitioning the input exponent into a series of variable-length zero and
nonzero words called windows. As opposed to the traditional window method
discussed in the previous section, the sliding window algorithm provides a
performance tradeoff in the sense that allows the processing of variable-length
zero and nonzero digits. The main goal pursued by this strategy is to try to
maximize the number and length of zero words, while using relatively large
values of k.

A sliding window exponentiation algorithm is typically divided into two
phases: exponent partitioning and the field exponentiation computation itself.

3 Addition chains are formally defined in §6.3.3.
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In the first phase, the exponent e is decomposed into zero and nonzero words
(windows) W; of length L(W;) by using some partitioning strategy. Although
in general it is not required that the window’s lengths L(W;) must all be
equal, all nonzero windows should have a length L(W;) smaller than a given
number k. Let Z be the number of zero windows and NZ be the number of
non-zero windows, so that their addition ¥ represents the total number of
windows generated by the partitioning phase, i.e.,

¥ = Z+NZ (5.7)

It is useful to force the least significant bit of a nonzero window W; to be
equal to 1. In this way, when comparing with the standard window method
discussed in the previous Section, the number of preprocessing multiplications
are at least nearly halved, since % must only be pre-computed for w odd.

less than q

consecutive
Zeros

scanned
bit zero

~_

q consecutive zeros
detected

Nonzero

Zero Window .
window

Fig. 5.9. Partitioning Algoritm

Several sliding window partitioning approaches have been proposed [116,
178, 191, 181, 30, 35). Proposed techniques differ in whether the length of a
nonzero window has to have a constant or a variable length. The partitioning
algorithm instrumented in this work scans the exponent from the most signif-
icant to the least significant bit according to the finite state machine shown
in Figure 5.9. Hence, at any moment the algorithm is either completing a zero
window or a nonzero window. Zero windows are allowed to have an arbitrary
length. However, the maximum length of any given nonzero window should
not exceed the value of k bits.

Starting from the Zero Window State (ZWS), the exponent bits are
checked one by one. As long as the value of the current scanned bit is zero, the
algorithm stays in ZWS accumulating as many consecutive zeros as possible.
If the incoming bit is one, the finite state machine switches to the Nonzero
Window State (NZWS). The automaton will stay there as long as q con-
secutive zeros had not been collected. If this condition occurs the automaton
switches to ZWS (usually g is chosen to be a small number, namely, ¢ € [2, 5]).



5.4 Modular Exponentiation Operation 131

Otherwise, if & bits can been collected, the partitioning algorithm stores the
new formed nonzero window and stays in NZWS in order to generate another
nonzero window.

Algorithm 5.19 Sliding Window Exponentiation
Require: x, n,e = (em—1...€1€0),-
Ensure: y = x°* mod n.
1: Pre-compute and store z? for at most all j = 1,2,3,4,.. L2k -1,
2: Divide e into zero and nonzero windows W; of length L(W;) for
=0,1,2,...,%~1.
y =a"¥-1;
for i = ¥ — 2 downto 0 do
2L (W)
y=Yy )
if W; # 0 then
y=y-x"
end if
end for
: Return(y)

=W

—
DL XIS

The pseudo-code for the sliding window exponentiation algorithm is shown
in Figure 5.19. From that figure it can be seen that,

e The first part of the algorithm consists on the pre-computation of at most
the first 2% odd powers of x at a cost of no more than 2~ —1 preprocessing
multiplications.

e At step 2, the exponent e is partitioned using the strategy described above
and depicted in Figure 5.9. As a consequence, a total of Z zero windows
and NZ nonzero windows will be produced.

e At step 3, y is initialized using the value of the Most Significant Window
asy = 2W¥-1, It is always assumed that Wy _; # 0.

e At each iteration of the main loop, the power yzL(W") can be computed by
performing L(W;) consecutive squarings. The total number of squarings is
given by m — L(Wy_1)

e At each iteration one multiplication is performed whenever the i-th word
Wi is different than zero. Recall that NZ represents the number of nonzero
windows. Therefore, the number of multiplications required at this step of
this algorithm is NZ — 1. Although the exact value of NZ will depend
on the partitioning strategy instrumented, our experiments show that an
approximate value for NZ using ¢ = 2,k = 5, is about 0.15m.

Thus, we find that the average number of multiplications needed to compute
a field exponentiation for an m-bit exponent e is given as,

Pim,k) = (2! —1)4+ (m - L(Wy_1)) + NZ -1 (5.8)
A 2671 14 1.15m — L(We-1).
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Due to the considerable high efficiency of the partitioning strategy for collect-
ing zero words, the sliding window method significantly outperforms the stan-
dard window method when sufficiently large exponents are computed [181].
However, notice that the value of the parameter k cannot be chosen too large
due to the exponentially increasing cost of pre-computing the first 2% odd
powers of x (step 1 of Figure 5.19). In practice and depending on the value of
m, k € [4, 8] is generally adopted.

After executing the above algorithm, it is found that the modular exponen-
tiation operation M® mod n with e = 1903, can be computed by performing 9
field squarings and 6 field multiplications, according with the sequence shown
below,

1_1 — 1,2 — .'133 N (EG N 1'12 _ 1‘24 N $25 — £E50 (59)

_ mlOO _ .’EZOO N .'E300 N 33600 N IQOO N £E1800

_ leOO _ 261903.

Each of the deterministic heuristics just described clearly sets an upper
bound on the number of field operations required for computing the modular
exponentiation operation. In particular, the theoretical cost of the binary
algorithm given in (5.3) implies that i(e) < m + H(e) — 1. A lower bound for
I(e) was found in [321] as, log, e + log, H(e) — 2.13. Therefore we can write,

log, e + logy H(e) —2.13 < l(e) < |loga(e)| + H(e) — 1 (5.10)

Let us suppose that we are interested in computing the modular exponen-
tiation for several exponents of a given fixed bit-length, say, m. Then, as it
was shown in [191], the minimum number of underlying field operations is a
function of the Hamming weight H (e). Indeed, one can expect that on average
{(e) will be smaller for both, H(e) closer to 0 and for H(e) closer to m. On the
contrary, when H (e) is close to m/2, i.e., for those m-bit exponents having a
balanced number of zeros and ones, {(e) happens to be maximal [191].

5.4.4 RSA Exponentiation and the Chinese Remainder Theorem

Let us recall from Chapter 2 that the RSA algorithm requires computation of
the modular exponentiation which is broken into a series of modular multi-
plications by the application of exponentiation heuristics. Before getting into
the details of these operations, we make the following definitions:

e The public modulus n is a k-bit positive integer, ranging from 512 to 2048
bits.

¢ The secret primes p and g are approximately k/2 bits.

e The public exponent e is an h-bit positive integer. The size of e is small,
usually not more than 32 bits. The smallest possible value of e is 3.
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e The secret exponent d is a large number; it may be as large as ¢(n) — 1.
We will assume that d is a k-bit positive integer.

After these definitions, we will study how the RSA modular exponentiation
can be greatly benefit by applying the Chinese Remainder Theorem to it.

The Chinese Remainder Theorem

The Chinese Remainder Theorem(CRT) has a tremendous importance in
cryptography. For instance, Quisquater and Couvreur proposed in [279] to
use it for speeding up the RSA decryption primitive. It can be defined as
follows.

Let p; for i = 1,2,.. .,k be pairwise relatively prime integers, i.e.,

ged(pi, pj) = 1 for i # j.

Given u; € [0,p; — 1] for i = 1,2,..., k, the Chinese remainder theorem states
that there exists a unique integer u in the range [0, P—1] where P = p1py - - - Dk
such that

u=u; (mod p;).

In the case of RSA decryption primitive, The Chinese remainder theorem tells
us that the computation of

M:=C? (modp q),
can be broken into two parts as

M :=C* (mod p),
My = C?% (mod gq),

after which the final value of M is computed (lifted) by the application of a
Chinese remainder algorithm. There are two algorithms for this computation:
The single-radix conversion (SRC) algorithm and the mixed-radix conversion
(MRQ) algorithm. Here, we briefly describe these algorithms, details of which
can be found in [105, 355, 178, 209]. Going back to the general example, we
observe that the SRC or the MRC algorithm computes u given w1, ue, ..., uk
and p1,p2,...,pr- The SRC algorithm computes « using the summation

k
U= Zuicil-"i (mod P),
i=1

where
P
Pi=pipa- - pic1Pig1 Pk = —,
pi
and ¢; is the multiplicative inverse of P; modulo p;, i.e.,
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¢iPi=1 (mod p;).

Thus, applying the SRC algorithm to the RSA decryption, we first compute
M = C% (mod p),
My :=C% (mod g),

However, applying Fermat’s theorem to the exponents, we only need to com-
pute

M :=C%  (mod p),

My :=C% (mod g),
where

dy := dmod (p - 1),

dy :=dmod (q —1).

This provides some savings since dq, ds < d; in fact, the sizes of d; and dj are
about half of the size of d. Proceeding with the SRC algorithm, we compute
M using the sum

M= Mlcl%q + M2021—)qg (mod n) = Miciq + Macop (mod n),

! (mod p) and ¢z = p~?! (mod g). This gives

where ¢; = ¢~
M = Mi(q™! mod p)g + Ma(p~ mod g)p (mod n).
In order to prove this, we simply show that

M (modp)=M;-1+0 = M,
M (modgq)=0+ Mz -1 = M,.

The MRC algorithm, on the other hand, computes the final number u by
first computing a triangular table of values:

Ui
Uy U22
U3l U32 U33

where the first column of the values u;; are the given values of u;, i.e., u;; = u;.
The values in the remaining columns are computed sequentially using the
values from the previous column according to the recursion

uij+1 = (ui; —ujj)e;i (mod py),
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where c;; is the multiplicative inverse of p; modulo p;, i.e.,

cjip; =1 (mod p;).
For example, usq is computed as
uzz = (uz1 —un)cis  (mod p3),
where c¢13 is the inverse of p; modulo ps. The final value of u is computed

using the summation

U = U1 + UgeP1 + uszp1P2 + - + UkkP1P2 Pr-1

which does not require a final modulo P reduction. Applying the MRC algo-
rithm to the RSA decryption, we first compute

My :=C% (mod p),
My :=C% (mod q),

where d; and d are the same as before. The triangular table in this case is
rather small, and consists of

M

Mz Moo

where M11 = My, M2y = Ms, and
Moy = (Mzy — My1)(p~™} mod q) (mod gq).
Therefore, M is computed using
M := M; + [(My — M) - (p~! mod ¢) mod q] - p.
This expression is correct since

M (modp)= M; +0 = M,
M (mod q)=M1+(M2—M1)~1 = M>.

The MRC algorithm is more advantageous than the SRC algorithm for two
reasons:

o It requires a single inverse computation: p~! mod gq.
o It does not require the final modulo n reduction.

The inverse value (p~! mod q) can be precomputed and saved. Here, we note

that the order of p and ¢ in the summation in the proposed public-key cryptog-
raphy standard PKCS # 1 is the reverse of our notation. The data structure
[194] holding the values of user’s private key has the variables:

exponent! INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
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Thus, it uses (¢! mod p) instead of (p~! mod q). Let M; and M; be defined
as before. By reversing p, ¢ and M, M3 in the summation, we obtain

M = My + [(M; — M) - (¢~ mod p) mod p] - g.
This summation is also correct since

M (mod ¢q) = Ma+0 = Mp,
M (modp):M2+(M1—Mg)-1 = M,

as required. Assuming p and ¢ are (k/2)-bit binary numbers, and d

is as large as n which is a k-bit integer, we now calculate the total number
of bit operations for the RSA decryption using the MRC algorithm. Assuming
dy, dz, (p~! mod q) are precomputed, and that the exponentiation algorithm
is the binary method, we calculate the required number of multiplications as

e Computation of My: 2(k/2) (k/2)-bit multiplications.

o Computation of Ms: 5(k/2) (k/2)-bit multiplications.

¢ Computation of M: One (k/2)-bit subtraction, two (k/2)-bit multiplica-
tions, and one k-bit addition.

Also assuming multiplications are of order k2, and subtractions are of order
k, we calculate the total number of bit operations as
3k k%4 3k

2%(k/2)2+2(k/2)2+(’€/2)+k - g + S

On the other hand, the algorithm without the CRT would compute M = C¢
(mod n) directly, using (3/2)k k-bit multiplications which require 3k3/2 bit
operations. Thus, considering the high-order terms, we conclude that the CRT
based algorithm will be approximately 4 times faster.

5.4.5 Recent Prime Finite Field Arithmetic Designs on FPGAs

In this Subsection, we show some of the most significant designs recently pub-
lished in the open literature for modular exponentiation. All designs included
in Table 5.1 were implemented either on VLSI or on reconfigurable hardware
platforms. Notice also that there is a strong correlation between design’s speed
and the date of publication ,i.e., fastest designs tend to be the ones which have
been more recently published.

Liu et al. presented in [210] a design based on the distributed module
cluster microarchitecture especially designed to reduce long datapaths. The
throughput achieved by their technique ranks as the fastest design published
to date. Amanor et al. presented in [6] several designs based on different
multiplier strategies. Their redundant interleaved multiplier can compute a
1024-bit RSA decryption exponentiation in just 6.1 mS. On the other hand,
authors in [6] also essayed designs based on a Montgomery multiplier block,
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Table 5.1. Modular Exponentiation Comparison Table

Work year |Platform| Cost |BRAMs, Freq.| 1024-bit {Mult. Block
18-bit M|MHz|time(mS)| Utilized
Liu et al.[210] 2005] 0,13um |221K| None | 714 1.47 DMC
CMOS | gates Mont. Mult.
Amanor et al.[6] [2005| Virtex | 4608 | None |69.4 6.1 Interleaved
CLBs (est.) Mult.
Kelley et al.[170] [2005(Virtex I1| 2847 | 5Kb, 32| 102 6.6 16-bit Scal
LUTs radix 2'°
Mukaida et al. [243]({2004| 0,11um | 61K - 250 7.3 64-bit Scal
CMOS | gates radix 24
Amanor et al.[6] [2005| Virtex | 8640 | None [42.1 9.7 CSA Mont.
CLBs (est.) Mult.
Blum et al. [29] {2001 Virtex | 6613 - 45 12 |Mont. Mult.
CLBs radix 2*
Harris et al.[134] [2005| Virtex | 5598 | 5Kb, - | 144 16 16-bit Scal
II Pro |LUTs radix 2
Kelley et al.[170] [2005| Virtex | 780 | 5Kb, 8 | 102 22 16-bit Scal
11 LUTs radix 2'¢
Todorov[361]  |2000] 0,5um | 28K - 64 46 16-bit Scal
CMOS | gates B radix 8
Tenca et al.[359] [2003| 0,5um | 28K - 80 88 8-bit Scal
CMOS |gates radix 2

but the timing performance obtained was somehow lesser than that of the
interleaved multiplier. Kelley et al. presented in [170] a 16-bit Montgomery
scalable multiplier of radix 2!6, the highest radix for a Montgomery multiplier
published to date. With that multiplier block, authors in [170] were able to
achieve a 1024-bit exponentiation in just 6.6 mS. It is noted though, that
the design by Kelley et al. utilized 32 embedded multipliers plus some 5K
bit RAMs. Blum et al. designed in 2001 a high-radix Montgomery multiplier
architecture able of achieving an exponentiation time of 12mS [29].

On the other side of the spectrum, designs by Todorov [361] and Tenca
et al. [359] rank among the most economical of all high performance designs
included in Table 5.1.

Due to the diversity of platforms and resources employed by the designs
featured in Table 5.1, it results rather difficult to establish reasonable criteria
for selecting the most efficient of all of them. Here, we say that a given de-
sign is efficient if it offers a great cost-benefit compromise. Nevertheless, the
design by Mukaida et al. reported in [243] seems to be our best bet for this cat-
egory. Utilizing a radix 16 multiplier implemented on ASIC at a clock speed
of 250MHz, authors in [243] produced a design able to compute a 1024-bit
exponentiation within 7.3mS at a hardware price of just 61K gates.
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A final word about the performance comparison presented here. 1024-bit
RSA exponentiation is one of the few major cryptographic primitives which
shows a moderate performance speedup when hardware implementations of
it are compared with its software counterparts. On this regard, Table 5.2
compares two RSA software designs against two of the fastest designs surveyed
here.

As it can be seen, the speedup attained by the design in [210] is of 25.17
and 15.03 when compared with an XScale and a Pentium IV implementations,
respectively.

Table 5.2. Modular Exponentiation: Software vs Hardware Comparison Table

Work year| Platform |Cost| Freq. | 1024-bit [Speedup
MHz |time(mS)
Liu et al.[210] 2005 0,13um [221K| 714 1.47 1
CMOS |gates
Amanor et al.[6] 2005{ Virtex [4608| 69.4 6.1 4.5

CLBs (est.)
- |400MHz 37 25.17

Martinez-Silva et al.[219]]2005{IPAQ H5550
Intel XScale
Lépez-Peza et al.[294] 12004 Intel - |24GHz| 22.10 15.03
Pentium IV

5.5 Conclusions

In this Chapter we reviewed several relevant algorithms for performing effi-
cient modular arithmetic on large integer numbers. Addition, modular addi-
tion, Reduction, modular multiplication and exponentiation were some of the
operations studied throughout the material contained in this Chapter. Strong
emphasis was placed on discussing the best strategies for implementing those
algorithms on hardware platforms, either in the domain of ASIC designs or
reconfigurable hardware platforms.

We intended to cover some of the most significant mathematical and algo-
rithmic aspects of the modular exponentiation operation, providing the neces-
sary knowledge to the hardware designer who is interested implementing the
RSA algorithm using the reconfigurable hardware technology.

The last Section of this Chapter contains a small survey of some of the
most representative designs published in the open literature for modular ex-
ponentiation computation.
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Binary Finite Field Arithmetic

In this Chapter we review some of the most relevant arithmetic algorithm
on binary extension flields GF(2™). The arithmetic over GF(2™) has many
important applications in the domains of theory of code theory and in cryp-
tography [221, 227, 380). Finite field’s arithmetic operations include: addition,
subtraction, multiplication, squaring, square root, multiplicative inverse, di-
vision and exponentiation.

Addition and subtraction are equivalent operations in GF(2™). Addition
in binary finite fields is defined as polynomial addition and can be imple-
mented simply as the XOR addition of the two m-bit operands.

That is why we begin this Section with a review of the main algorithms
reported in the open literature for perhaps the most important field arithmetic
operation: field multiplication.

6.1 Field Multiplication

Let A(x), B(z) and C'(z) € GF(2™) and P(z) be the irreducible polyno-
mial generating GF(2™). Multiplication in GF(2™) is defined as polynomial
multiplication modulo the irreducible polynomial P(x), namely,

C'(z) = A(z)B(x) mod P(z).

One important factor for designing multipliers in binary extension fields is
the way that field elements are represented, i.e, the sort of basis that is being
used. Indeed, field element representation has a crucial role in the design of
architectures for arithmetic operations.

Besides the polynomial or canonical basis, several other bases have been
proposed for the representation of elements in binary extension fields [221,
51, 390]. Among them, probably the most studied one is the Gaussian normal
basis [281, 285, 164, 89, 405].

! More details about field element representation can be found in §4.2.
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Even though efficient bit-parallel multipliers for both canonical and normal
basis representation have been regularly reported in the specialized literature,
in this Section we will mainly focus on polynomial basis multiplier schemes,
mostly because they are consistently more efficient than their counterparts in
other bases?.

Traditionally, the space complexity of bit parallel multipliers is expressed
in terms of the number of 2-input AND and XOR gates. For reconfigurable
hardware devices though, the total number of CLBs and/or LUTs utilized
by the design is preferred. Depending on their space complexity, bit parallel
multipliers are classified into two categories: quadratic and subquadratic space
complexity multipliers.

Several quadratic and subquadratic space complexity multipliers have been
reported in literature. Examples of quadratic multipliers can be found in [220,
182, 389, 390, 350, 129, 352, 315, 129, 282, 391, 112, 201, 292, 283, 284, 247, 90,
146]. On the other hand, some examples of sub-quadratic multipliers can be
found in [267, 268, 269, 270, 291, 86, 298, 117, 293, 349, 16, 106, 91, 377, 239].
This latter category offers low space complexity especially for large values of
n and therefore they are in principle attractive for cryptographic applications.

Among the several approaches for computing the product C/(z), we will
study the following strategies,

Two-Step multipliers
Interleaving Multiplication
Matrix-Vector Multipliers
Montgomery Multiplier

In the case of two-step multipliers, first the polynomial product C(xz) of
degree at most 2m — 2 is obtained as,

m—1 m—1
Clz) = Al2)B(z) = (D a:iz')(D_ biz') (6.1)
=0 =0

Then, in a second step, the reduction operation needs to be performed in
order to obtain the m — 1 degree polynomial C’(z), which is defined as

C'(z) = C(z) mod P(z) (6.2)

It is noticed that once the irreducible polynomial P(z) has been selected, the
reduction step can be accomplished by using XOR gates only.

In the rest of this section different implementation aspects and several effi-
cient methods for computing GF{(2™) finite field multiplication are extensively
studied. In § 6.1.1 the analysis of the school or classical method is presented.
Subsection § 6.1.2 analyzes a variation of the classical Karatsuba-Ofman algo-
rithm as one of the most efficient techniques to find the polynomial product of

2 Examples of efficient normal basis multiplier designs recently published in the
open literature can be found in {164, 89, 285, 281, 405, 352, 283].
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product of Equation 6.1. In subsection § 6.1.3 we describe an efficient method
to compute polynomial squaring in hardware, at a complexity cost of just
O(1). Subsections § 6.1.4 and § 6.1.5 explain an efficient hardware method-
ology that carries on the reduction step of Equation 6.2 considering three
separated cases, namely, reduction with irreducible trinomials, pentanomials
and arbitrary polynomials. Then in §6.1.6 a method that interleaves the steps
of multiplication and reduction is presented. Subsection §6.1.7 outlines field
multiplication methods that solve Equation 6.1 by reformulating it in terms of
matrix-vector operations. Then, in §6.1.8, the binary field version of the Mont-
gomery multiplier is discussed. Finally, §6.1.9 compares the most relevant bi-
nary field multiplier designs published up-to date. Designs are compared from
the perspective of three different metrics, namely, speed, compactness and
efficiency.

6.1.1 Classical Multipliers and their Analysis

Let A(z), B(z) be elements of GF(2™), and let P(x) be the degree m ir-
reducible polynomial generating GF(2™). Then, the field product C'(z) €
GF(2™) can be obtained by first computing the polynomial product C(z) as

m-—1 m-1
C(z) = A(z)B(z) = (Z a:v) <Z bz) : (6.3)
1=0 i=0

Followed by a reduction operation, performed in order to obtain the (m — 1)-
degree polynomial C'(z), which is defined as

C'(z) = C{x) mod P(z) . (6.4)

Once the irreducible polynomial P(z) is selected and fixed, the reduction
step can be accomplished using only XOR gates. The classical algorithm for-
mulates these two steps into a single matrix-vector product, and then reduces
the product matrix using the irreducible polynomial that generates the field.
The degree 2m — 2 polynomial C(z) in (6.3) can be written as,

[ cp ] fag O 0 0 -+ 0 0 1
Cy a) ap 0 0 0 0
Co as a agp 0 - 0 0 b
0
. b1
Cm—2 Am~2 Gm-3 Gm—4 Gpm—5 - ag 0O by
Cm-1| = |Qm-18m-20m-30mn-4''" Q&1 Go . (6.5)
Cm 0 Om-10m—2 Qp—3 "+ Az a1
Cm+1 0 0 Am-1Gm—2 "+ Q3 Q2 bm—2
: b
Com—3 0 0 0 0 vt Am-1 AGm-2
L C2m—2 | _0 0 0 0 -0 Am~1 |
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The computation of the field product C’'(z) in (6.4) can be accomplished
by first computing the above matrix-vector product to obtain the vector C
which has 2m — 1 elements. By taking into account the zero entries of the
matrix, we obtain the gate complexity of the computation of C(x) in Table
6.1.

Table 6.1. The Computation of C(z) Using Equation (6.5)

Coordinates AND Gates| XOR Gates (T4 Tx
cfor0<i<m-—1 i+ 1 i 1] logy[i-+1]
Cmpi for 0<i<m—2lm—(i+1)|m—(i+1)~1| 1 |log,[m —1—1]

Therefore, the total number of gates are found as

AND Gates: 1+2+--4+m+m—-1)+m—-2)+-+2+1=m?,
XOR Gates: 142+ +(m—1)+(m—-2)+--+2+1=(m-1)%.

The AND gates operate all in parallel, and require a single AND gate delay
T'4. On the other hand, the XOR gates are organized as a binary tree of depth
log,[#] in order to add j operands. The total time complexity is then found by
taking the largest number of terms, which is equal to m for the computation of
¢m-1. Therefore, the total complexity of computing the matrix-vector product

(6.5) so that the elements ¢; for ¢ = 0,1,...,2m — 2 are all found is given as,
AND Gates = m?
XOR Gates = (m — 1)? (6.6)

Total Delay = T4 + [logy m]Tx .

Notice that this computation must be followed by reduction modulo the
irreducible polynomial P(x). The reduction operation is discussed in Section
6.1.4.

6.1.2 Binary Karatsuba-Ofman Multipliers

Several architectures have been reported for multiplication in GF(2™). For
example, efficient bit-parallel multipliers for both canonical and normal basis
representation have been proposed in {136, 351, 241, 389, 20]. All these algo-
rithms exhibit a space complexity O(m?). However, there are some asymptot-
ically faster methods for finite field multiplications, such as the Karatsuba-
Ofman algorithm [168, 268]. Discovered in 1962, it was the first algorithm
to accomplish polynomial multiplication in under O(m?) operations [14].
Karatsuba-Ofman multipliers may result in fewer bit operations at the ex-
pense of some design restrictions, particularly in the selection of the degree of
the generating irreducible polynomial m.
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In [268], it was presented a Karatsuba-Ofman multiplier based on compos-
ite fields of the type GF((2")%) with m = sn, ¢ = 2¢, ¢ an integer. However,
for certain applications, quite particularly, elliptic curve cryptosystems, it is
important to consider finite fields GF(2™) where m is not necessarily a power
of two. In fact, for this specific application some sources [145] suggest that,
for security purposes, it is strongly recommended to choose degrees m primes
for finite fields in the range [160,512].

In the rest of this subsection we will briefly describe a variation of the
classic Karatsuba-Ofman Multiplier called binary Karatsuba-Ofman multipli-
ers that was first presented in [293]. Binary Karatsuba-Ofman multipliers can
be utilized arbitrarily, regardless the form of the required degree m.

Let the field GF'(2™) be constructed using the irreducible polynomial P(z)
of degree m = rn, with r = 2%, k an integer. Let A, B be two elements in
GF(2™). Both elements can be represented in the polynomial basis as,

m.

JL‘+Zaz

S

Il
M3
£

as.

i
ME

i=0 =1
o m_
m i i m
=72 ai+%m’+ a;xt = 7T AT + AL
i=0 i=0
and
m—1 m—1 z-1
B= bt = bixt + bzt
i=0 =% =0
z_ m_y
m m
=z? b1+m:£+ E bixr' = z% BY 4 BL,
1=0

Then, using last two equations, the polynomial product is given as
C = a™A"BY + (A¥BY + ALBH)2® 4+ AVBL. (6.7)

Karatsuba-Ofman algorithm is based on the idea that the product of last
equation can be equivalently written as,

C=zxmAHBH + ALBL4
(A" BH + ALBL + (AH + ALY(BL 4+ BH))z% (6.8)
=z™CH 4 CL,
Let us define
My = A7 4+ AL,
Mp = BL 4+ BH, (6.9)
M = MAMB.

Using Equation 6.8, and taking into account that the polynomial product C
has at most 2m — 1 coordinates, we can classify its coordinates as,
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CH = [com—2,Com-3, -+, Cmt1, Cm);
CL = [Cm_l,Cm-Q,...,Cl,CQ]. (610)
Although (6.8) seems to be more complicated than (6.7), it is easy to see that
Equation (6.8) can be used to compute the product at a cost of four polyno-
mial additions and three polynomial multiplications. In contrast, when using
equation (6.7), one needs to compute four polynomial multiplications and
three polynomial additions. Due to the fact that polynomial multiplications
are in general much more expensive operations than polynomial additions,
it is valid to conclude that (6.8) is computationally simpler than the classic
algorithm.

Algorithm 6.1 mul2¥(C, A, B): m = 2¥n-bit Karatsuba-Ofman Multiplier

Require: Two elements A, B € GF(2™) with m = rn = 2*n, where A, B can be
expressed as A =27 A¥ + AY B =2% B¥ 4 BE,

Ensure: A polynomial C = AB with up to 2m — 1 coordinates, where C' = z™C* +
c*r.

1: if r == 1 then

2 C = mul.n(A, B);

3. Return(C)

4: end if

5: for ¢ from 0 to § — 1 do

6.

7

8

r_
Ma; = Al + Al

: end for
9: mul2®(CF, AL, BY);
10: mul2*(M, M4, Mp);
11: mul2*(CH, A", BH),
12: for i from0tor —1do
13: Mi=Mi+CiL+CiH;
14: end for
15: for i from 0 tor — 1 do
16: C%+1 = C.g._H + My;
17: end for
18: Return(C).

Karatsuba-Ofman’s algorithm can be applied recursively to the three poly-
nomial multiplications in (6.8). Hence, we can postpone the computations of
the polynomial products A¥ B¥  A¥BL and M, and instead we can split again
each one of these three factors into three polynomial products. By applying
this strategy recursively, in each iteration each degree polynomial multiplica-
tion is transformed into three polynomial multiplications with their degrees
reduced to about half of its previous value.

Eventually, after no more than [log,(m)] iterations, all the polynomial
operands collapse into single coefficients. In the last iteration, the resulting bit
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multiplications can be directly computed. Although it is possible to implement
the Karatsuba-Ofman algorithm until the [log, m] iteration, it is usually more
practical to truncate the algorithm earlier. If the Karatsuba-Ofman algorithm
is truncated at a certain point, the remaining multiplications can be computed
by using alternative techniques?.

Let us consider the algorithm presented in Algorithm 6.1. If » = 1, then the
product is trivially found in lines 1-3 as the result of the single n-bit polynomial
multiplication C' = mul_n(A, B). Otherwise, in the first loop of the algorithm
(lines 4-6) the polynomials M4 and Mp of equation (6.9) are computed by a
direct polynomial addition of A¥ + AL and B¥ 4 B, respectively. In lines
7-9, C*,CH and M, are obtained via %-bit polynomial multiplication. After
completion of these polynomial multiplications, the final value of the lower half
of G¥ as well as the upper half of C¥ are found. To find the final values of the
upper half of the polynomial C* and the lower half of C¥, we need to combine
the results obtained from the multiplier blocks with the polynomials CH,CE
and M, as described in equations (6.8) and (6.9). This final computation is
implemented in lines 10 through 13 of figure 6.1.

Complexity Analysis

The space complexity of the Algorithm 6.1 can be estimated as follows. The
computation of the loop in lines 4-6 requires 2(§) = r additions. The execution
of lines 7-9, implies the cost of 3 -bit polynomial multipliers. Finally, lines
10-13 can be computed with a total of 3r additions. Notice that if n > 1 the
additions in Algorithm 6.1 need to be multi-bit operations. Noticing also that
m-bit multiplications in GF(2) can generate at most (2m — 1)-bit products,
we can have an extra saving of four bit-additions in lines 11 and 13. Hence,
the addition complexity per iteration of the m = 2*n-bits Karatsuba-Ofman
multiplier presented in Algorithm 6.1 is given as r + 3r = 4r n-bit additions
plus three times the number of additions needed in a § multiplier block, minus
four bit additions. Notice that for n-bit arithmetic, each one of these additions
can be implemented using n XOR gates.

Recall that m is a composite number that can be expressed as m = rn,
with 7 = 2%, k an integer. Then, one can successively invoke Z7-bit multiplier
blocks, 3* times each, for i = 1,2,...,log, r. After k = log, r iterations, all
the multiplier operations will involve polynomial multiplicands with degree n.
These multiplications can be then computed using an alternative technique,
like the classic algorithm. By applying iteratively the analysis given above,
one can see that the total XOR gate complexity of the m = 2*n-bit hybrid
Karatsuba-Ofman multiplier truncated at the n-bit operand level is given as

3 such as the classical algorithm studied in §6.1.1 or other techniques
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logy 7 8rn
XOR Gates = Mzar2"310gzr + Z 3 ! 91 4)
i=1
logy i log, 7

= Mmrzn315”+8rnz = —4231 1

log2 r 10g2 r

8 P4
= Mzor2"3l g27‘+ 'T'Tl Z 3 —_— Z 31

log2 r

= Mzor2n3loggr + 87,”(% _ 1) . 2(3log2r - 1)

= Mmor2"310g2T + ST‘n(Tlng % - 1) - 2(7‘1052 3 _ 1)
= Mayoranr'823 + 8n(r'®823 — 8r) — 2(r'°82% — 1)
= log2 (871 2+ Mzor2") ~8rn+2

log, 3
= (5)7 BT 2+ Maorsn) - 8m 42,
n T

Where Myoron represents the XOR gate complexity of the block selected to
implement the n-bit multipliers.

Similarly, notice that no AND gate is needed in Algorithm 6.1, except when
the block selected to implement the n-bit multiplier is called. Let Mgpgon
be the AND gate complexity of the block selected to implement the n-bit
multiplier. Then, since this block is called exactly 3'°82" times, we conclude
that the total number of AND gates needed to implement the algorithm in
6.1 is given as,

m
AND gates = 78230, jon = (—T?)lngsMandzn

We give the time complexity of Algorithm 6.1 as follows. The execution
of the first loop in lines 4-6 can be computed in parallel in a hardware im-
plementation. Therefore, the required time for this part of the algorithm is of
just 1 n-bit addition delay, which is equal to an XOR gate delay T'x. Lines
7-9, can also be implemented in parallel. Thus, the associated cost is of one
5-bit multiplier delay. Notice that we cannot implement this second part of
the algorithm in parallel with the first one because of the inherent dependen-
cies of the variables. Finally, lines 10-13 can be computed with a delay of just
3Tx. Hence, the associated time delay of the m = 2fn-bit Karatsuba-Ofman
multiplier of figure 6.1 is given as

logy T

Time Delay = Taetayar + Z 3 = Tgetayzn +4Tx log, 7.
i=1

In this case it has been assumed that the block selected to implement the
GF(2") arithmetic has a Tyelay2n gate delay associated with it.
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In summary, the space and time complexities of the m-bit Karatsuba-
Ofman multiplier are given as

XOR Gates < (2)'°%° (8 — 2 4+ My oron) — 8m + 2 ;
AND Gates < (’—7':—)l0g2 3Mandon ; (6.11)
Time Delay < Tyetayzn + 4T logy () .

As it has been mentioned above, the hybrid approach proposed here re-
quires the use of an efficient multiplier algorithm to perform the n-bit poly-
nomial multiplications. Let us recall that in §6.1.1 above, it was found that
the space and time complexities for the classic n-bit multiplier are given as

XOR Gates = (n —1)? ;
AND Gates = n? ; (6.12)
Time Delay < Tanp + Tx[logy 1] .

Combining the complexities given in equation (6.12), together with the
complexities of equation (6.11) we conclude that the space and time complex-
ities of the hybrid m-bit Karatsuba-Ofman multiplier truncated at the n-bit
multiplicand level are upper bounded by

XOR Gates < (2)'%° (8n— 2 + Myprgn) — 8m + 2

n

(%)logzs (n?+6n-1)—8m+2;

AND Gates < 319&T"M, 4on = (% log, 3 n?;
Time Delay < Tanp +Tx(logyn +4logyr) .

(6.13)

Let us consider now the cases where m is a power of two, m = rn = 2% k > 2,
Then, n = 4 is the most optimal selection for the hybrid Karatsuba-Ofman
algorithm. For this case using equation (6.13) we obtain

XOR Gates < (%)logzs(n2 +6n—1)—8m+2
ok log, 3 2 &
= (%) @+6-4-1)-8-26+2

(6.14)
AND Gates < mn—)logzsn? = (& 42 = 16-3+-2
Time Delay < Tanp + Tx (logyn + 4log, ) =

=Tanp + Tx(logy 4+ 4logy 267%) = Tanp + Tx(4k —6) .

Table 6.2 shows the space and time complexities for the hybrid Karatsuba-
Ofman multiplier using the results found in equation (6.14). The values of m
presented in Table 6.2 correspond to the first ten powers of two, i.e., m = 2%
fori=0,1,...,9. Notice that the multipliers for m = 1, 2,4 are assumed to be
implemented using the classical method only. As we will see, the complexities
of the hybrid Karatusba multiplier for degrees m = 2* happen to be crucial
to find the hybrid Karatsuba-Ofman complexities for arbitrary degrees of m.
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Table 6.2. Space and Time Complexities for Several m = 2*-bit Hybrid Karatsuba-
Ofman Multipliers

m |r |n|AND gates|XOR gates|Time delay|Area (in NAND units)
11 j1i1 0 Ta 1.26

2 |1 |2/4 1 Tx +Ta 7.24

4 1. |4)16 9 2Tx +Ta 39.96

8 (2 |4]48 55 6Tx +Ta 181.48
16 |4 [4(144 225 10Tx +Ta 676.44
32 (8 141432 799 14Tx +Ta 2302.12
64 116 |4]1296 2649 18Tx + Ta 7460.76
128{32 |4[3888 8455  |22Tx +Ta 23499.88
256164 (411664 26385 |261x +Ta 72743.64
512|128(4 34992 81199 |30Tx +Ta 222727.72

Binary Karatsuba-Ofman Multipliers

In order to generalize the Karatsuba-Ofman algorithm of Algorithm 6.1 for
arbitrary degrees m, particularly m primes, let us consider the multiplication
of two polynomials A, B € GF(2™), such that their degree is less or equal to
m—1, where m = 2F + d.

k41
2k+1_g AL
" -
A = 0,...,0,0,a2k+d,1,...,a2k+1,a2k,a2k_1,a2k_2,...,az,al,ao];
AH
H .
AL =[0,...,0,0,a5k 141, Qpk 4y, Q08 ];
A" = [agk_l,azk_z,...,ag,al,ao];

Fig. 6.1. Binary Karatsuba-Ofman Strategy

As a very first approach, we could pretend that both operands have 2++1
coordinates each, where their respective 2¥t! — d most significant bits are
all equal to zero. Figure 6.1 shows how the sub-polynomials A¥ and A% will
be redefined according with this approach. If we partition the operands A
and B as shown in Figure 6.1, then, in order to compute their polynomial
multiplication, we can use the regular Karatsuba-Ofman algorithm with m =
25+1 Although this approach is obviously valid, it clearly implies the waste
of several arithmetic operations, as some of the most significant bits of the
operands are zeroes. However, if we were able to identify the extra arithmetic
operations and remove them from the computation, we would then be able to
find a quasi-optimal solution for arbitrary degrees of m. To see how this can
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be done, consider the Algorithm 6.2, which has been adapted from Algorithm
6.1 previously studied.

Algorithm 6.2 mulgen_d(C, A, B): m-bit Binary Karatsuba-Ofman Multi-
plier
Require: Two elements A, B € GF(2™) with m an arbitrary number, and where
A, B can be expressed as A = T AY 4 AL B = z% B + BE,
Ensure: A polynomial C = AB with up to 2m — 1 coordinates, where C' = ™ CH +
C*k.
¢ k= [log, m};
d=m— 2’“;
if d == 0 then
C = Kmul2*(A, B);
return(C);
end if
: for ¢ from 0 tod -1 do
Ma, = AF + AT
9:  Mp,; = BF + BE;
10: end for
11: mul2®(C¥, A%, BY);
12: mul2®(M, Ma, Mp);
13: mulgen_d(C*, A¥, BH);
14: for i from 0 to 2% — 2 do
15:  Mi = M;+CL+Cly
16: end for
17: for ¢ from 0 to 2¥ — 2 do
18:  Ciyi = Crys + My
19: end for
20: Return(C).

e I S ol e

In lines 1-2 the values of the constants &, d such that m = 2* 4 d, are com-
puted. If d = 0, i.e, if m is a power of two, then the binary Karatsuba-Ofman
Algorithm 6.2 reverts to the specialized Algorithm 6.1 presented previously.
If that is not the case, Algorithm 6.2 uses the constants k and d to prevent us
to compute unnecessary arithmetic operations. In lines 6-8, the d least signifi-
cant bits of M4 and Mp of equation (6.9) are computed using the d non-zero
coordinates of A¥ and B¥. The remaining k& — d most significant bits of M4
and Mp are directly obtained from A* and B%, respectively. Notice that the
operands, A, BX, M4 and Mp are all 2%-bit polynomials. Because of that,
our algorithm invokes the multiplier of Algorithm 6.1 in lines 9 and 10. On
the other hand, both operands A and B¥ are d-bit polynomials, where d,
in general, is not a power of two. Consequently, in line 11, the algorithm calls
itself in a recursive manner. This recursive call is invoked using the operand’s
degree reduced to d. In each iteration the degree of the operands gets reduced,
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and eventually, after a total of h iterations (where h is the hamming weight
of the binary representation of the original degree m), the algorithm ends.

Concatenation

L) | (TN o
A127:0 ] A'BH127:0) n

MUL | A'B4255:0)
128 Loty
i A'B'265:128
B4127:0] ~ft 2 1285:128] 0[380:0]

AMB"[122:0)A'B4255:128)

A"[62:0] P> XOR | (A+aAY)

M[252:0]

A127:0) | 128 | [127:0) MUL (AM+AL)(BH4BY(255:0) );gg
128
B127:00 9 [XOR | @+8Y | 2 "
AY[62:0] ]
8"(62:0) —pm- | 128 [127:0] 16201 MUL A'g"

64
620 B 2 | 220 REDUCTION

Fig. 6.2. Karatsuba-Ofman Multiplier GF(2'%})

As a design example, consider the binary Karatsuba-Ofman multiplier
shown in Figure 6.2. That circuit computes the polynomial multiplication of
the elements A and B € GF(2!°!). Notice that for this casem = 191 = 2F+
d = 27+63. Since (191); = 10111111, the Hamming weight A of the binary
representation of m is h = 7. This implies that we would need a total of
seven iterations in order to compute the multiplication using the generalized
m-bit binary Karatsuba-Ofman multiplier.

However we can do much better by assuming that the d = 63 most
significant leftover bits are 64 (implying m = (192); = 11000000). Hence,
algorithm 6.2 can finish the computation in only two iterations, as shown in
Figure 6.2.

By using the complexity figures listed in Table 6.2, we can estimate the
space and time complexities of the generalized 191-bit binary Karatsuba-
Ofman multiplier as,

Number of CLBs = 2MULx(128) + MULx(64) + C
=2-33719+ 1171+ C
=7929+C
Delay = MULdelay(2L1°g2 mJ) +0
— MULdelay(2|‘log2 191]) +0
= MULdelay(27) +0

Where C and O represent the overhead in space and time, respectively, asso-
ciated with the extra circuitry shown in Figure 6.2.

The generalized 191-bit binary Karatsuba-Ofman multiplier was imple-
mented using Xilinx Foundation Series F4.1i software on Xilinx Virtex-E
FPGA device XCV2600e-8bg560. The design is coded using VHDL, using
library components and also by using Xilinx Coregenerator for design entry.
The implementation occupied a total of 8721 slices and 576 1/O Blocks. We
obtained a total path delay of 43 5Sec.

(6.15)
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Control Logic

GF(2K)
Memory Karatsuba
Multipter

XOR
Network

Fig. 6.3. Programmable Binary Karatsuba-Ofman Multiplier

Programmability

The schematic diagram shown in figure 6.2 illustrates two desirable charac-
teristics of the binary Karatsuba-Ofman multipliers. First, it is possible to
implement them using non-recursive architectures. In addition, since these
algorithms are highly modular, it is possible to design non-parallel scalable
implementations. By scalable implementations we mean configurations that
allow the user to select the size m of the multiplicands that he/she wants to
work with.

Consider the architecture shown in figure 6.3. We use a control logic block
that allows us to execute the algorithm of figure 6.2 in a sequential manner.
To do this, we also take advantage of the intrinsically modular nature of a 2*-
bit Karatsuba-Ofman multiplier, which can itself be programmed to compute
multiplications that involve operands of a size that is any power of two lower
than 2F,

The partial multiplications obtained using this approach, are stored in a
memory block as figure 6.3 shows. The control logic can then use these par-
tial results to compute the remaining operations so that the total polynomial
product can be obtained. Notice also, that the architecture shown in figure
6.3 can be programmed to implement multiplications with different operands’
sizes.

6.1.3 Squaring

In this section we investigate some efficient methods to compute polynomial
squaring, which is a special case of polynomial multiplication. Let us assume
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m-1
that we have an element A given as A = Z a;z'. Then the square of A is
i=0

given as
m—1 m—1 m~1

Cz) = A@)A(z) = A%z) = (Z aixi)(z a;x?) = a;z*. (6.16)
i=0 i=0 =0

The main implication of the above equation is that the first £ < m bits of A
completely determine the first 2k bits of A%, Notice also that half the bits of
A? (the odd ones) are zeroes. Taking advantage of this feature, the hardware
implementation shown in Figure 6.4 simply interleaves a zero value between
each one of the original bits of A yielding the required squaring computation
which must be followed by a reduction operation to be discussed in the next
Subsection.

SQUARE REDUCTION

] :D —»-ouT

Fig. 6.4. Squaring Circuit

6.1.4 Reduction

Let the field GF(2™) be constructed using the irreducible polynomial P(x)
and let A(z), B(z) € GF(2™). Assuming that we already have computed the
product polynomial C(x) of Equation (6.1), by using any one of the methods
described in the previous two subsections, we want to obtain the modular
product C' of Equation (6.2). Recall that the polynomial product C' and the
modular product ¢/, have 2m — 1 and m, coordinates, respectively, i.e.,

C = [cam—2,C2m—3,-- -, Cm41,Cm; - - -, C1, Ca);

C' = [Chne1)Chmzs - Ehr Ch)- (6.17)
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Once the generating polynomial P(x) has been selected, the reduction step
that obtains C’ from C can be computed by using XOR and shift operations
only.

Reduction with Trinomials and Pentanomials

Let the field GF(2™) be constructed using the irreducible trinomial P(z) =
™ + 2™ + 1 with a root & and 1 < n < 2. Let also A(z), B(x) be elements
in GF(2™). In order to obtain the modular product C'(z) of (6.1), we use the
property P(a) = 0, and write

It

am=14a";
a™tl = q +ontl
: (6.18)
a?m—3 = om-3 + amtn—3 :
a2m—2 — am—2 + am+n—-2 .

The above m — 1 set of identities suggests a method to obtain the m-
coordinates of the modular product C’' of Equation (6.2). We can partially
reduce the 2m — 1 coordinates of C by reducing its most significant m — 1 bits
into its first m + n — 1 bits, as indicated by (6.18). For instance, in order to
obtain the first partially reduced coordinate cj we just need to add the regular
product coordinate ¢, to the cg coordinate, yielding cf as ¢f = ¢o + ¢m.

Similarly the whole set of m + n — 2 partially reduced coordinates can be
found as,

ch = ¢ +Cm ;
i =0C + Cm+1 3
Cpe1l =Cn-1  + Cmin-1;
cl, =¢p + Cm+n + Cm ;
! .
Cn+1 = Cn+1 + Cmin+1 + Cm41 s
(6.19)
/ .
Cn—2 =Cm-2 +Cm-2 +Com-n-2;
C-’m_l = Cm-—-1 + Cem-n-1;
C;n = Cm + Coam-n ;
/ _ .
C'Im+n—3 = Cm+n-3 + Com-3
Cm+n—-2 = Cm+n—2 + Com-2 .

Notice that in the reduction process of (6.19), the constant coefficient of the
irreducible generating trinomial P(x) reflects its influence in the first m — 1
partially reduced bits. The middle term of P(x), on the other hand, affects
the partially reduced bits of (6.19) in the range [c],, ¢}, 4n_2]-



154 6. Binary Finite Field Arithmetic

We say that the coefficients in (6.19) have been partially reduced because
in general, if n > 1, we still need to reduce the n — 1 most significant reduced
coordinates of (6.19). However, this same idea can be used repeatedly until
the m — 1 modular coordinates of (6.17) are obtained. Each time that this
strategy is applied we reduce m — n coordinates.

r

: {m-1 bits) l (m blts) | h A
mm -1 i

2m-1 (m bits) : I‘/ w
. 2ma :

{m bits) | i . X
SR Y !

d (n) (m-n bits} Y
T i
| [

] (W ( ) z

Ml 0

C=W xor X xor Y xor Z [ (m-n blts)! ] [}

1

Fig. 6.5. Reduction Scheme

For hardware reconfigurable designs, we can implement above ideas as
follows. According to Eq. (6.1) the polynomial product C(z) = A(z)B(z),
can be represented as a 2m-coefficient vector as,

C(x) = [Chmo) Conan - Con1 Ciy 5 Copo1 Ch -+ €] ] (6.20)

When working with an irreducible trinomial of the form P(z) = 2™ +z™ +1,
it is convenient to consider the following four sub-vectors,

C’' = A- B mod P(x)
= C[IO,m—l] + C[/m,2m—1} + C[Im,2m—l—n]xn
+ (C[/2m—n,2m—~1] + C[/2m—n,2m—l]xn) (621)

Thus, the reduction step can be computed by the addition of four terms,

Z= C[l2m—n,2m-—1] + C[,2m—"r2m_1]xn

This procedure is shown schematically in Fig. 6.5. Notice that for those designs
implemented in hardware platforms, the modular reduction procedure just
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outlined can be instrumented by using XOR logic gates only. Nevertheless,
the exact computational complexity of this arithmetic operation depends on
the explicit form of m and the middle coefficient n in the trinomial P(z).

Although the strategy shown in Figure 6.5 has been designed for irre-
ducible trinomials, it can be easily extended to irreducible pentanomials. For
example, let us consider the finite field GF(2'%3)generated using the irre-
ducible pentanomial P(z) = z'6% 4 27 + 2% + 2% 4+ 1 4. The corresponding
reduction procedure for this pentanomial is depicted in Fig. 6.6.

Ciaz Co
&
[i:m Ciea
&
Caz Cias |3+t1|!_s’
. 006
&
D 6 bits
1—-——.¢=l
[45] 7 bits
6 bits k::m |cm I le cml Caz I
Cao Cias I'—*
0 I
@ 3 bit:
E 7 bits
D 7 bits Ic324|c323 | Caz | Caz |Cm |Cm I
Cs1a Cias
O
@ 3 bils'
[ ]—
® 6 bits
R e 3

Fig. 6.6. Pentanomial Reduction

4 This is a NIST recommended finite field for elliptic curve applications [253].
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6.1.5 Modular Reduction with General Polynomials

The algorithms studied in the previous section are highly efficient for irre-
ducible trinomials and/or pentanomials. However, when general irreducible
polynomials are selected, i.e., irreducible polynomials with an arbitrary num-
ber of nonzero coefficients, the algorithms presented in last section are not
efficient anymore. Because of that, we need to come out with alternative tech-
niques to handle the reduction step. In this section we present a standard
reduction method based in look-up tables specifically intended for general
irreducible polynomials.

Recall that assuming that the polynomial product C' with 2m — 1 coordi-
nates is given, we would like to compute

C'(z) = C(z) mod P(z).

Our methods are based on the observation that since we are interested
in the polynomial remainder of the above equation, we can safely add any
multiple of P(z) to C(z) without altering the desired result. This simple
observation suggests the following algorithm that can reduce & bits of the
polynomial product C at once. Assume that the m+1 and 2m — 1 coordinates
of P(x) and C(x), respectively, are distributed as follows:

C = [com—2,Cam—3, -+ ) Com=1—k) C2m—2—k; - - - » C1, €0); (6.22)
P = [pm:pm—b- v yplypo]'

Then, there always exists a k-bit constant scalar S, such that

PZ[ Pmy Pm-1, -y Pm—k+1; Pm—k) ---;plyPO]S

6.23
S-P= [CQTn—2>C2m—37 Ty C27ﬂ—1—k)plm—k7 )plllpé)]’ ( )

where 1 < &k < m — 1. Notice that all the most significant & bits of the scalar
multiplication S - P become identical to the corresponding ones of the number
C'. By left shifting the number S - P exactly Shift = 2m — 2 —k — 1 positions,
we can effectively reduce the number in C by k bits as shown in figure 6.7.

C [cam—2, C2m—3, + -+, C2m—1—k, C2m—2—ky + -+ Cn~2, Cm—3, + .., Co] +
Shift / ’
2 i (SP) [C2m—2» C2m—3, .+ .y C2m—1—k, Pm—ks Do, 0) vy O] =
U 7
[07 Oy ERRR} 07 Com—kr - s Cm—2, Cm~3, "'1COJ

Fig. 6.7. A Method to Reduce k Bits at Once

One can apply this strategy an appropriate number of times in order to
reduce all the most m — 1 significant coordinates of C.

In summary, the main design problems that we need to solve in order to
implement the reduction method discussed here are:
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e Given C and P asin (6.22), find the appropriate constant S that yields the
most significant k bits of the operation SP, identical to the corresponding
ones in C.

Compute the scalar multiplication S - P of (6.23).
Left shift the number S - P by Shift positions, so that the result of the
polynomial addition C + 25//t(S . P) ends up having k leading zeroes.

Both of the first two design problems, i.e., finding the constant S and com-
puting the scalar product S - P, can be solved efficiently by using a look-up
table approach, provided that a moderated value of k be selected. In practice,
we have found that a selection of k = 8 yields a reasonable memory/speed
trade-off in the performance of the algorithm.

For all the 2% different values that the k& most significant bits of C can
possibly take, we want to guarantee that the & most significant bits of the
operation SP are identical to those of C. Hence, once that £ has been fixed,
we need to find a set of 2% different scalars satisfying that requirement.

Algorithm 6.3 presents a method that, given the irreducible polynomial P
and its degree m and the selected value of k, constructs a table containing all
the 2% scalars needed to obtain the required result.

Algorithm 6.3 Constructing a Look-Up Table that Contains All the 2* Pos-
sible Scalars in Equation (6.23)

Require: The irreducible polynomial P; its degree m; and k, the number of bits to
be reduced at once.
Ensure: A table highdivtable with 2% scalars.
. highdivtable = 0;
N=2%_1;
PMSBk = PnPn-1... Pm_gy1;
: for i from 0 to N do
A = Dec2Bin(i);
for j from 0 to k-1 do
if Aj =1 then
A = A+ RightShift(PMSBE, j);
highdivtable[i] = highdivtable[d) + 25717,
10: end if
11:  end for
12: end for
13: Return (highdivtable)

DRI T RPN

The Algorithm 6.3 finds all the 2* scalars needed by reducing each one
of them using the k most significant bits of the irreducible polynomial P.
For convenience, these bits are stored in the variable PM SBk (see step 3 of
Algorithm 6.3). Steps 4-9 find the appropriate scalar S for each one of all the
2% possible values that the & MSB of C can take.
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In line 5 the value of C' to be processed is translated to its binary represen-
tation and stored in the temporary variable A. Then, in lines 6-9 each one of
the k bits of A is scanned and reduced, if necessary, by using an appropriate
shift version of PM S Bk. Finally, in line 9 the kK — 1 — j-th bit of the i-th entry
in table highdivtable is set. At the end of the inner loop in lines 6-9, the i-th
entry of highdivtable contains the scalar S that would obtain the result in
(6.23), if the k most significant bits of C' where equal to the number in A.

In order to compute the scalar multiplication S - P of (6.23), we use once
again a look-up table approach as shown in Algorithm 6.4.

Algorithm 6.4 Generating a Look-Up Table that Contains All the 2* Possible
Scalars Multiplications S - P
Require: The irreducible polynomial P; and k, the number of bits to be reduced
at once.
Ensure: A table Paddedtable, with all the 2% § . P possible products.
: for i from 0 to k-1 do
Pshift[i] = LeftShift(P, );
end for
N=2F_1;
: for i from 0 to N do
S = Dec2Bin(i);
for j from 0 to k-1 do
if §; =1 then
9: Paddedtable[i] = Paddedtable[i] + Pshift[k];
10: end if
11: end for
12: end for
13: Return (Paddedtable)

PIIOR L

The algorithm in 6.4 is quite similar to Algorithm 6.3. In order to obtain
all the 2 scalar products of the irreducible polynomial P, the above algorithm
finds first in lines 1-2 all the first 2/ multiples of P for j = 0,1,...,k—1. Then,
in lines 4-9 all the 2* scalars S are examined one by one and bit by bit, so that
the scalar product i - P is stored in the i-th entry of the table Paddedtable for
i=0,1,...,N = 2 — 1. Notice that each entry of Paddedtable has a size of
m + k bits, where m is the degree of the irreducible polynomial P.

Using the two look-up tables generated by Algorithms 6.3 and 6.4, we
can easily obtain the modular reduction of the polynomial C by repeatedly
implementing the operation C + 25//t(5 . p),

Consider now Algorithm 6.5, where it has been assumed that the tables
Highdivtable and Paddedtable have been previously computed and are avail-
able.

First, in line 1 given k£ and the degree m of the irreducible polynomial P,
the number of iterations is computed and stored in the variable N. In line 2 it
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Algorithm 6.5 Modular Reduction Using General Irreducible Polynomials

Require: The degree m of the irreducible polynomial; the operand C' to be reduced;
and k the number of bits that can be reduced at once.

Ensure: The field polynomial defined as C = C mod P, with a length of m bits.

Nk _ |'mk~1 ];

shift=2m -2~k ~1;

. for ¢ from 0 to N do

A= CnkiClnpiy-1- - Cla—kiy—k+1;
S = Highdivtable[A];
Pshifted = LeftShift(Paddedtable{S)], shift);
C = C + Pshifted,;
shift = shift — k;
end for
. Return C

DL PTG

—

is computed the amount of shift needed to apply properly the method outlined
in figure 6.7. Then, in each iteration of the loop in lines 3-9, k bits of C are
reduced. In line 4 the k& bits of C to be reduced are obtained. This information
is used in line 5 to compute the appropriate scalar S needed to obtain the
result of equation (6.23). In line 6 the S-th entry of the table Paddedtable is
left shifted shift positions so that in line 7 the operation C 4 25//*(S. P) can
be finally computed allowing the effective reduction of k bits at once. Then, in
line 8 the variable shi ft is updated in order to continue the reduction process.

Algorithm 6.5 performs a total of Ny = [-"—‘,—c‘—l] iterations. At each itera-
tion of the algorithm the look-up tables Highdivtable and Paddedtable are
accessed once each. In line 7, and XOR addition is executed, implying that
the complexity cost of the general reduction method discussed in this section
is given as,

Additions = 2Ny, (6.24)
Look-up table size (in bits) = 25(m + 2k) . )

6.1.6 Interleaving Multiplication

In this Subsection we discuss one of the simplest and most economical binary
field multiplier schemes: the serial interleaving multiplication algorithm.

Multiplication by a Primitive Element

Let P(z) = po+p1x+012* +.. .4+ Pr—12™ L + 2™ be an m-degree irreducible

polynomial over GF(2). Let also a be a root of p(z), i.e., p(a) = 0. Then, the

set {1,,0?,...,0™ 1} is a basis for GF(2™), commonly called the polyno-

mial (canonical) basis of the field [221]. An element A € GF(2™) is expressed
m-1

in this basis as A = Z a;a’. Let A(a) be an arbitrary element of GF(2™).
=0



160 6. Binary Finite Field Arithmetic
Then, the product C = - A(«a) can be expressed as,

C=a(ao+a1a+...+am_1am_1) = goa+a10?+...+am_10™. (6.25)

Po P P2 Prme1

a0 a az - am-1

Fig. 6.8. o - A(«) Multiplication

Using the fact that « is a primitive root of the irreducible polynomial, we
can write,
o™ =po+pra+t... +ppora™ (6.26)

Substituting Eq. (6.26) into Eq. (6.25) we obtain,

-1
C=cy+cia+...+cpm10™ ",

where, ¢y = am-1po and
d; = a1 + Qm-1pi,

for ¢ = 1,...,m — 1. A realization of the above operation is shown in
Fig. 6.8. The main building block is an m-tap LFSR register. That regis-
ter is initially loaded with the m coordinates of the field element A, namely,
(ag,a1,az2,...,am —1). The signals p; represent the coefficients of the irre-
ducible polynomial. Notice that whenever a given polynomial coefficient is
on, i.e., p; = 1, then the corresponding branch of the circuit will be a short
circuit. Otherwise, if p; = 0 the branch acts as an open circuit. After m clock
cycles, the new register content will be the value of the field element C.

Serial Multiplication

Using the multiplication procedure outlined above, the multiplication of two
arbitrary field elements can be accomplished by using a procedure inspired in
the well-know Horner’s scheme.

Let us consider two arbitrary field elements A and B expressed in polyno-
mial basis as,

m~1 ] m—1 ‘
Ala) = Z a;a", B(a) = Z biat
i=0 i=0
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Then, the product of A- B can be expressed as,
C(@) = A(a)B(a) mod P(a)

= Aw) (7”2' biai> mod P(«)
i=0
m-1
= (Z biA(a)ai> mod P(«)
i=0

Therefore,
Cla) = (boA(a) + biA(a)a + by A(@)a® + ... + by—1A(2)™ ) mod P(a).

Algorithm 6.6 shows the standard procedure for computing above equation
using Horner’s rule.

Algorithm 6.6 LSB-First Serial/Parallel Multiplier

Require: An irreducible polynomial P(«) of degree m, two elements A, B €
GF2™).
Ensure: C{a) = A(a)B(a) mod P(a).
C = 0
s fori=0tom—1do
C=bA+C,
A = Aa' mod P(a);
end for
: Return(C).

SRR

The multiplier realization of Algorithm 6.6 is shown in Fig. 6.9. The archi-
tecture shown in Fig. 6.9 consists of two LFSR Register plus extra circuitry.
As it was mentioned previously, the signals p; in the first LFSR block represent
the coefficients of the irreducible polynomial, and their values (either ones or
zeroes) determine the LFSR structure. Furthermore, a gate array is included
in order to compute the multiplication operation as is explained below. Ini-
tially the register C is set to zero, whereas the register in the upper part of
Fig. 6.9 is loaded with the m coefficients of the field element A. Thereafter,
when the clock signal is applied to the registers, the value of A« is generated.
Then, B coefficients, namely, by, b1, b, . .., byy—1 are serially introduced in that
order, thus generating the values b;Aa?, for i = 0,1,...,m — 1, which are ac-
cumulated ir register C until all the m product coefficients cg, ¢, €2, ..., €m-1
are collected.

6.1.7 Matrix-Vector Multipliers

The GF(2™) multiplication given by (6.1) can be described in terms of matrix-
vector operations. There are mainly two different approaches based on matrix
vector operations to compute a field product:
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Po Pt P2

a

€
g

Fig. 6.9. LSB-First Serial/Parallel Multiplier

1. The polynomial multiplication part is performed by any method. Then,
the resulting product is reduced by using a reduction matrix.

2. The polynomial multiplication and modular reduction parts are performed
in a single step by using the so-called Mastrovito matrix.

Let a(z) and b(z) denote two degree m polynomials representing the ele-
ments in GF(2™). Let ¢(z) = a(z)b{xz) mod P(z) denote their field product.
The coefficient vectors of these polynomials are given by

a=[ag,a1,  ,am-1)7
b = [bo, b1, ,bm-1]T
c=[co,c1,+ ,em-1]7.
Also, let us define the polynomials
d(z) = a{z)b(z) = do + d1x + + - - + dom—oz?™"? |
dB)z) =do + driz + - + dmorz™ !, (6.27)
dti) (%) = dm + dmp1Z + -+ + dam—oz™ 2 .
The coefficient vectors representing these polynomials are
d=[do,d1, - ,dam-2]T,
d® = [dg,dy, -+ ,dm-1]T ,
df) = [dmy dmt1, > dom—2]T

The work in [284] reduces the polynomial multiplication d(z) using an
(m x m — 1) reduction matrix Q to obtain the field product c(z) as below:
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c=dP +qQ.d | (6.28)

Mastrovito Multiplier

The so-called Mastrovito matrix is constructed from the coefficients of the
first multiplicand and the irreducible polynomial defining the field. Then, the
polynomial multiplication and modulo reduction steps are performed together
using this matrix. The papers [351, 128, 401] follow the Mastrovito multipli-
cation scheme outlined below,

c=M-b, (6.29)

where M is the (m x m) Mastrovito matrix whose entries are the function of
the coefficients of a(z) and P(z). The Mastrovito matrix M is related to the
reduction matrix Q by

M=L+Q U, (6.30)
where L and U are the following (m x m) and (m — 1 x m) matrices:
Qo 0 0 - 00
a  a O - 00
az a1 ap -0 0
L= . ,
Om—2 Q-3 Qm-4 -+ ag O
Am-10m-2 Am-3 *** Q1 Go (6.31)
0am-1m_2--- a2 ay
0 0 am-r-+ a3 a2
U= |:@ :
0 0 0 - am-1am-2
0 0 0 -+ 0 am-1

This is because d(z) = a(z)b(z) can be given in the vector notation by

d® Lb
1= lam] - [55]
Then,c=d® + Q. d#) =L - b+ Q- U.b=(L+Q-U)-b=M-b.
The Mastrovito and the reduction matrices are studied thoroughly in
(284, 401] for various types of irreducible polynomials. In [351] a compre-
hensive study of the Mastrovito multiplier for irreducible trinomials was pre-
sented. Authors in [401] proposed a practical and systematic design approach
for a general Mastrovito multiplier. In [388] it was shown that non-Mastrovito
multipliers using direct modular reduction also provide competitive perfor-

mance. Moreover, efficient non-Mastrovito multipliers for irreducible trinomi-
als were also proposed.
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6.1.8 Montgomery Multiplier

In this section we explain the Montgomery multiplication method in GF(2™).
Once again, let P(z) be an irreducible polynomial over GF(2) that defines the
field GF(2™). Rather than computing Eq.(6.1), the Montgomery multiplica-
tion calculates

C(z) = A(z)B(z)R™}(z) mod P(z) (6.32)

where R(z) is a fixed element and ged(R(z), P(x)) =1.
Because of Bezout’s identity®, one can find two polynomials R~!(z) and
P’(z) such that
R@)R™'(z) + P(@)P' (z) =1 (6.33)

where R™!(z) is the inverse of R(z) modulo P(z). These two polynomi-
als can be calculated with the extended Euclidean algorithm. Kog¢ and Acar
[182, 388] selected R(z) = ™ for high performance modular reduction in the
Montgomery multiplication algorithm, which can be given as follows:

Algorithm 6.7 Montgomery Modular Multiplication Algorithm

Require: A(z), B(z), R(z), P (z)

Ensure: C(z) = A(z)B(z)R™(z) mod P(z)
1: T(z) = A(z) B(z);

2: U(z) =T(z) P (z) mod R(z);

3: C(z) = [T(z) + U(z) P(e)]/ R(=);

4: Return C

To prove the correctness of this algorithm we note that Step 2 implies that
there exists a polynomial

U(z) = T(z) P (z) + H(z)R(z) . (6.34)
We write C(z) in Step 3 by using (6.34) as follows:
C(z) = 75 T(z) + T(z) P'(z) P(z) + H(z)R(z) P(z)]
= E};;[T(z)(l + P'(z) P(z)) + H(z)R(z) P(z)] .
From (6.33), we can write 1 + P(x)P'(z) = R(z)R™'(z) and substitute it
into our last expression
C(z) = gz [T (2)R()R™}(z) + H(z)R(z) P(z)]
=T(z)R™(z) + H(z) P(x)
= A(z)B(z)R™! mod P(z).

5 For more details on Bezout's identity the reader is refer to §6.3.1.
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The degree of C(z) can be verified from Step 3 as follows:
deg|C(x)] < maz{deg[T(x)), degU ()] + deg[P(x)]} — deg[R(x)]
< maz{2m — 2,deg[R(x)] — 1 + m} — deg[R(z)]
< maz{2m — 2 — deg[R(z)},m — 1} .
Then, it can be concluded that deg[C(z)] < m — 1, if deg[R(z)] > m — 1. If
we choose R{z) = «™, the result C(x) will be of degree m — 1 at most.
It can be shown [182] that Algorithm 6.7 has an associated computational
cost of 2m? coefficient multiplications (ANDs) and 2m? — 3m — 1 coefficient

additions (XORs), whereas the total time complexity is 3T4 -+ (2[log, m] +
[logy(m — 1)])Tx.

6.1.9 A Comparison of Field Multiplier Designs

Table 6.3. Fastest Reconfigurable Hardware GF(2™) Multipliers

[ Work IPlatforml Field I Cost lecles|timings| %%:m_mﬁ
KOM variant by [47], | Virtex 2[GF(27°%)] 5307 | 1 [12.56nS] 2.445M
implemented by [326] CLBs
KOM variant by [85], | Virtex 2|GF(2™)| 5409 | 1 [13.379S]  2.254M
implemented by [326] CLBs
KOM variant by [293],| Virtex 2|GF(2™°)[ 5840 1 [14.731S 1.895M
implemented by [326] CLBs

KOM [106] Virtex 2| 240 bits | 1480 | 30 | 378nS 0.429M
CLBs

Recursive Virtex 2| 240 bits | 1582 | 56 | 5231S 0.290M
Classical {106] CLBs

KOM [117} Virtex 2| 240 bits | 1660 | 54 65573 0.221M
CLBs

Massey-Omura Virtex 2| 240 bits [36857| 50 | 800nS ]0.0336M (est.)

[118] LUTs

In this Subsection we compare some of the most representative designs
of GF(2™) multipliers considering three metrics: speed, compactness and effi-
ciency. Table 6.3 shows the fastest designs reported to date for GF(2™) field
multiplication. It can be observed that Karatsuba-ofman Multipliers (KOM)
are much faster than other schemes such as recursive classical multiplier or
Massey-Omura scheme. This can be explained from the theoretical point of
view from the fact that KOM algorithms enjoy of a sub-quadratic complexity.

In Table 6.4 we show a selection of some of the most compact reconfigurable
hardware multiplier designs. It is noted that this category is dominated by
the interleaved and Montgomery multiplier schemes.
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Table 6.4. Most Compact Reconfigurable Hardware GF(2™) Multipliers

Work Platform| Field Cost  [Cycles|timings| grmome—o

Interleaved | Virtex |GF(2°9)] 359 239 | 3.1uS 0.215M
[104] CLBs

Montgomery | Virtex |GF(2%7) 425 466 | 2.81uS 0.195M
[97] CLBs (est)

Class.+ Montg | Virtex |GF(270)| 1049 80 |L11xS| 0.137M
[18] CLBs

Montgomery | Virtex |GF(27°0)] 1427 160 | 1.66uS | 0.0675M
[18] CLBs

Interleaved | Virtex |GF(2°™°)] 420 210 [12.3uS| 0.042M
[266] CLBs (est)

We measure efficiency by taking the ratio of number of bits processed over
slices multiplied by the time delay achieved by the design, namely,

bits
Slices x timings

For instance, consider the KOM variant design proposed by [47] and imple-
mented by [326]. As is shown in Table 6.3, working over GF(263), that design
achieved a time delay of just 12.567S at a cost of 5307 slices. Therefore its
efficiency is calculated as,

bits 163

= =24
Slices x timings 5307 x 12.567 2445M

When comparing the designs featured in Tables 6.3 and 6.4, it is noticed
that the most efficient multiplier designs are the Karatsuba-Ofman multipli-
ers variants as they were reported in [47, 85, 293]. This is a quite remarkable
feature, which implies that the Karatsuba-Ofman multipliers represent both,
the fastest and the most efficient of all multiplier designs studied in this Chap-
ter.

6.2 Field Squaring and Field Square Root for Irreducible
Trinomials

Let us consider binary extension fields constructed using irreducible trinomials
of the form P(z) = 2™ + 2" + 1, with m > 2. It is convenient to consider,
without loss of generality, the additional restriction 1 <n < | 2] 6.

6 It is known that if P(z) = 2™ + 2" + 1 is irreducible over GF(2), so is P(z) =
z™ + ™™™ + 1[228]. Hence, provided that at least one irreducible trinomial of
degree m exists, it is always possible to find another irreducible trinomial such
that its middle coefficient n satisfies the restriction 1 <n < |2},
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The rest of this Section is organized as follows. First, in Subsection 6.2.1,
we give the corresponding formulae needed for computing the field squaring
operation when considering arbitrary irreducible trinomials. Those equations
are then used in Subsection 6.2.2 to find the corresponding ones for the field
square root operator.

6.2.1 Field Squaring Computation

Let A = 2;1—01 a;xt be an arbitrary element of GF(2™). Then, according to
Eq. (6.16) its square, A2, can be represented by the 2m-coefficient vector,

Az(m) = [0 Am—1 0 Adm—-2 ... 0 a3 0 ao]
— /

= (A1 Gpyg - Ay Gl 5 Ghy_q G5 ... a7 ag]  (6.35)

where a} = 0 for i odd. Hence, the upper half of A? (i.e., the m most signifi-
cant bits) in Eq. (6.35) is mapped into the first m coordinates by performing
addition and shift operations only.

In order to investigate the exact cost of the field squaring operation, we
categorize all the irreducible trinomials over GF(2) into four different types.
For all four types considered and by means of Eqgs. (6.35) and (6.21), the
following explicit formulae for the field squaring operation were found,

Type I Computing C = A? mod P(z), with P(z) = z™ +z" + 1, m even, n
odd and n < 7,

Qi + Gmts i even, i <mnori>2n,
3 T
i +Amiyi + Qi teven, n<i<2n
¢ = 37 0EE T Smondg BETER ' (6.36)
Qg1 nti todd, i < n,
Amon i 0dd, i > n,

fori=0,1, .- ,m— 1.1t can be verified that Eq. (6.36) has an associated
cost of Z2=1 XOR gates and 2T}, delays.
Type II: Computing C = A% mod P(z), with P(z) = 2™ + 2™ 4 1, m even,

nodd and n =,

wfe.

2

ai +am+i teven, t<n,
ag ieven, i > n,

e,

C; =

6.37
Q1 mfd 10dd, ¢ < n, ( )

Gnti iodd, i > n,
2

fori=0,1,--- ,m—1. It can be verified that Eq. (6.37) has an associated
cost of —m{—2 XOR gates and one T, delay.
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Type HI: Computing C = A% mod P(z), with P(z) = ™ +z™ + 1, m, n odd
numbers and n < m_2il7

a i even, 1 < n,

i
2

Ay + @i mon + @i (man) ieven, n <i<2n,
X

ci=q0s+ai mon i even, i > 2n, (6.38)
2 2
Gmti + Qmti | m—n iodd, ¢ <n,
b 2 T3
amzii % Odd, 1 Z n,

fori=0,1,--+ ,m~—1. It can be verified that Eq. (6.38) has an associated
cost of 1 XOR gates and 27 delays.

Type IV: Computing C = A% mod P(z), with P(z) = 2™ + 2" + 1, m odd,
n even and n < —T%tl,

a%+a%+m_% i even, { < n,
ap +@im g ieven, n <1< 2n,

= ag i even, 1 > 2n, (6.39)
Amti io0dd, i <n,

Qm+ii + Qm+s io0dd, i >mn,
2 2

-0
2

for i =0,1, -+ ,m—1. It can be verified that Eq. (6.39) has an associated
cost of 2=l XOR gates and one T; delay.

The complexity costs found on Equations (6.36) through (6.39) are in conso-
nance with the ones analytically derived in [386, 387].

6.2.2 Field Square Root Computation

In the following, we keep the assumption that the middle coeflicient n of the
generating trinomial P(z) = z™ 42" 41 satisfies the restriction 1 <n < 3.
Clearly, Eqs. (6.36)-(6.39) are a consequence of the fact that in binary
extension fields, squaring is a linear operation. The linear nature of binary
extension field squaring, allow us to describe this operator in terms of an

(m x m)-matrix as,
C=A>=MA (6.40)

Furthermore, based on Eq. (6.40), it follows that computing the square
root of an arbitrary field element A means finding a field element D = v/A
such that D? = M D = A. Hence,

D=M"1A (6.41)

Eq. (6.41) is especially attractive for fields GF(2™) with order sufficiently
large, i.e., m >> 2, where the matrixes M corresponding to Egs. (6.36)-(6.39)
are all highly spare (each row has at most three nonzero values).
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Hence, for the trinomial types I, II, III and IV as described above, the
element D = v/A given by Eq. (6.41) can be found by the computation of the
inverse of the corresponding matrix M. Then using VA = D = M~ 1A, we
can determine the m coordinates of the field element as described bellow.

Type I: Computing D such that D? = A mod P(x), with P(z) = 2™ +z"+1,
m even, n odd, and n < :

a2; + A2i4n i< 3,

dy = %% + 02i4n) modm + azi-n |3] <i<n, (6.42)
a2i + @(2i+n) mod m n<i<y,
A(2i4n) mod m % si<m

fori=0,1,--- ,m—1. It can be verified that Eq. (6.42) has an associated
cost of 2£2=1 XOR gates and 2T delays.
Type 1I: Computing D such that D? = A mod P(z), with P(z) = 2™ +z" +1,
m even, n odd and n =
Q2i + G2ip i< mE2
di = q ap; 2 << B (6.43)

Q(2i+2) mod m '%1 <i<m

fori=0,1,---,m—1. It can be verified that Eq. (6.43) has an associated
cost of k2 XOR gates and one T} delay.

Type III: Computing D such that D? = A mod P(x), with P(z) = 2™ +2"+
1, m, n odd numbers and n < %1,

ag; i< ﬂ%—l,

d; = { 92 ¥ 02in s si< g, (6.44)
Qimn + G2im T <0 < IR
a2i—m Ln__ziﬂ S i< m

fori=0,1,.-- ,m—1. It can be verified that Eq. (6.44) has an associated
cost of 51 XOR gates and one Ty,
delay.

Type IV: Computing D such that D? = A mod P(z), with P(z) = 2™ 42" +
1,m, odd, neven and [l <n < [2FL)
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i< dn—(m-1)

a2i + A2i+(m-n) T 2i+(m—2n) T 02i4+(m—3n) ) )
a2; + Q2i4 (m-n) T 82i+(m—2n) T 2i+(m—3n)

+Q2i+(m~4n)

4n—;n—l Si<%7
%SZ<_5_"_:£;"__12

G2i + 02i+(m—2n) + 02+ (m-3n) T C2%+(m-4n) )

Q2i + A2i4(m~2n) T Q2i+(m—-3n) T A2i+(m—4n)

— 5n—(m-~1) .
di = { +02i1 (m-5n) gt i<,
az; n<ig 2
a2 —m mAL < § < Il

41 o 5 2ntmitl
A2i-m + G2i—(m+n) REREL < g < 247

02i—m + 02— (m+n) T 02~ (m+2n)
L82i—m + @2i—(m+n) T 32i—(m+2n) T 02— (m+3n)

2n+m+1 : 3In+m+1

R g 1 < e

dnimil < j<m
(6.45)

for ¢ = 0,1,--+,m — 1. At first glance, Eq. (6.45) can be implemented
with an XOR gate cost of,

3'4n—(m—1)+4.m—3n—1+3‘4n—(m—1)+

2 2 2
m-3n—1 n n m-—3n-—1 m—-n—1 n
4~-——-§—+§+2--2—+3- 5 =5 5 -3

However, taking advantage of the high redundancy of the terms involved in
Eq. (6.45), it can be shown (after a tedious long derivation) that actually
min=1 XOR gates are sufficient to implement it with a 2T} gate delays.

Table 6.5. Summary of Complexity Results

Type|[Trinomial P(z) = ¢™ + z" + 1] Operation | XOR gates [Time delay|

1 m even, n odd Squaring |[(m +n —1)/2 27

11 m even, n = m/2 Squaring (m +2)/4 Tx
I m odd, n odd Squaring | (m —1)/2 2T,

v m odd, n even Squaring |{(m +n —1)/2 Tz

I m even, n odd Square root|(m +n —1)/2 2Ty

11 m even, n = m/2 Square root{ (m+2)/4 Ty
I11 m odd, n odd Square root] (m —1)/2 T:

v m odd, n even Square root|(m +n — 1)/2 2T,

Table 6.5 summarizes the area and time complexities just derived for the
cases considered. Furthermore, in Table 6.6 we list all preferred irreducible
trinomials P(z) = z™+z"+1 of degree m € (160, 571] with m a prime number.
In all the instances considered the computational complexity of computing the
square root operator is comparable or better than that of the field squaring.
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6.2.3 Illustrative Examples

In order to illustrate the approach just outlined, we include in this Section
several examples using first the artificially small finite field GF(2'®) and then
more realistic fields, in terms of practical cryptographic applications.

Example 6.1. Field Square Root Computation over GF(2!%)

Let us consider GF(2'%) generated with the irreducible Type III trinomial
P(z) = z'® + 2" + 1. As it was discussed before, one can find the square root
of any arbitrary field element A € GF(2'%) by applying Eq. (6.41). In order
to follow this approach, based on Eq. (6.38), we first determine the matrix M
of Eq. (6.40) as shown in Table 6.7. Then, the inverse matrix of M modulus
two, M ™!, is obtained as shown in Table 6.8. Afterwards, the polynomial
coefficients, in terms of the coefficients of A, corresponding to the field square
C = A? and the field square root D = /A elements can be found from Egs.
(6.40) and (6.41) as shown in Table 6.9.

As predicted by Eq. (6.38), field squaring can be computed at a cost of
(m—1)/2 = (15—~ 1)/2 = 7 XOR gates and one T, delay. In the same way,
the square root operation can be computed at a cost of ng_lz = ﬁ%l =7
XOR gates with an incurred delay time of one T}, which matches Eq. (6.44)
prediction. It is noticed that in this binary extension field, computing a field
square root requires the same computational effort than the one associated to
field squaring.

Ezample 6.2. Field Square Root Computation over GF(2152)
Let us consider GF(2162) generated using the irreducible Type II trinomial,

P(z) = 2192+ 28! + 1. Using the same approach as for the precedent example,

Table 6.6. Irreducible Trinomials P(z) = ™ + z" + 1 of Degree m € {160, 571]
Encoded as m(n), with m a Prime Number

m(n) |Type| m(n) |Type] m(n) |Type
167(35) 111 | 281(93) | 111 | 439(49) | 111
191(9) | TIT | 313(79) | 111 |449(167)| 111

193(15)[ TIT | 337(55) | 111 | 457(61) | 111
199(67)| 11T | 353(69) | 111 | 463(93) | 111
223(33)| 111 |359(117)] 111 [479(105)] 11T
233(74)| 1V | 367(21) | 111 |487(127)| 111
239(81)| 11T |383(135)| 111 | 503(3) | III

241(70)| 1V _|401(152)] 1V |521(158)] 1V
257(41)| 111 | 409(87) | 11T | 569(77) | 111
263(93)| 111 |431(120)] IV
271(70)| IV | 433(33) | I
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we can obtain the square root polynomial coefficients of an arbitrary element
A from the field GF(2'6?) as,

a2i + a2i481 i< 41,
di = § a9; 41 <i< 81 (6.46)

a(2i481) mod 162 81 <@

fori=0,1,---,161. As predicted by Eq. (6.43) the associated cost of the field
square root computation for this field is given as, Km—zr?—) = (16#2 =41 XOR
gates with an incurred delay time of one 7).

Ezample 6.8. Field Square Root Computation over GF(223%)

Let GF(2%33) be a field generated with the Type III irreducible trinomial?,
P(z) = 2238 4+ 2™ + 1. The square root of any arbitrary field element A is
given as,

Table 6.7. Squaring matrix M of Eq. (6.40)

[10000000000000 0]
000000001000100
010000000000000
000000000100010
001000000000000
000000000010001
000100000000000
M=1000000000001000
000010001000100
0000000000001 00
000001000100010
000000000000010
000000100010001
000000000000001
1000000010001000]

" This is a NIST recommended finite field for elliptic curve applications [253].
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a2i + 234159 + G2it85 + A2i411 i< 32,
G2i + 0244159 + G2i485 + Q4411 + Q263 32 <1< 37,
Qg + G485 + Q21411 + G2i-63 37 <1< 69,
az; + a2itss + a2i+11 + a2i—63 + a2i—137 69 <1 <74,
di = { ayi 74<i<116,  (6.47)
Q2i—233 116 < i < 154,
(2i—233 + Q23307 154 <i < 191
02233 + A2i-307 + G2:-381 191 <4< 228
| @2i—233 + agi—307 + Q2i—381 + G2i—455 228 <4< 233

fori=0,1,--,232. Eq. (6.47) can be implemented with an XOR gate cost of
min=l — 153 XOR gates with a 4T gate delay, which agrees with the value
predicted by Eq. (6.45).

6.3 Multiplicative Inverse

Among customary finite field arithmetic operations, namely, addition, sub-
traction, multiplication and inversion of nonzero elements, the computation
of the later is the most time-consuming one. Multiplicative inversion compu-
tation of a nonzero element a € GF(2™) is defined as the process of finding
the unique element a=! € GF(2™) such that a-a™! = 1.

Several algorithms for computing the multiplicative inverse in GF(2™)
have been proposed in literature [153, 93, 356, 135, 399, 127, 296, 122]. In
[135], multiplicative inverse is computed using an improved modification of

Table 6.8. Square Root Matrix M~ of Eq. (6.41)

[100000000000000]
001000000000000
000010000000000
00o0000100000000
010000001000000
000100000010000
000001000000100
M™'=1000000010000001
010000000100000
000100000001000
000001000000010
000000010000000
000000000100000
000000000001000
0000000000000 10]
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the extended Euclidean algorithm called almost inverse algorithm. That it-
erative algorithm can compute the multiplicative inverse in approximately
2m clock cycles {135]. In [127] an architecture able to compute the Mont-
gomery multiplicative inverse for both, GF(p), for a prime p, and GF(2™) on
a unified-field hardware platform was proposed.

Based on Fermat’s Little Theorem (FLT) and using an ingenious re-
arrangement of the required field operations, the Itoh-Tsujii Multiplicative
Inverse Algorithm (ITMIA) was presented in [153]. Originally, ITMIA was
proposed to be applied over binary extension fields with normal basis field
element representation. Since its publication however, several improvements
and variations of it have been reported [93, 356, 399, 122, 296, showing that
it can be used with other field element representations too.

Unfortunately enough, cryptographic designers have historically shown
some resistance to use FLT-related techniques for computing multiplicative in-
verses when using polynomial basis representation. This phenomenon is prob-
ably due to three frequent misconceptions:

1. Computing multiplicative inverses by using FLT-related techniques is in-
efficient as those methods require many field multiplication and squaring
operations;

2. ITMIA is a competitive design option only when using normal basis rep-
resentation and;

3. The recursive nature of the ITMIA algorithm makes the parallelization of
that algorithm rather difficult if not impossible, forcing the implementa-
tion of the ITMIA procedure in a sequential manner.

In the rest of this Section we describe efficient implementations of the bi-
nary Euclidean algorithm and the Itoh-Tsujii multiplicative inverse algorithm.

Table 6.9. Square and Square Root Coefficient Vectors

- - - -

ao ag
as + aiz az
ay a4
ag + a3 ae
%3 a1 +as
10 + Q14 a3 + a0
as as + a1z
C= an , D= lar+auq
a4 +as + a12 a1 + ag
a2 a3z + a1
as +ag + a3 as + a3
a3 ar
as + a10 + a1 ag
a4 a1
ar + an L aiz |
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In §6.3.1 main implementation details of the binary Euclidean algorithm are
explained. Then, 86.3.2 describes how the Itoh-Tsuii algorithm can be utilized
for the efficient computation of multiplicative inverses.

6.3.1 Inversion Based on the Extended Euclidean Algorithm

Given two polynomials A and B, not both 0, we say that the greatest common
divisor of A and B, is the highest polynomial D = ged(A, B) that divides
both A and B. Based on the property ged = (A, B) = ged(B 4 CA, A), the
revered Extended Fuclidean Algorithhm (EEA)® is able to find the unique
polynomials G and H that satisfies Bezout’s celebrated formula,

A-G+B-H=D,

where D = ged(A, B).

Several variations of the EEA have been proposed in the open literature
[96, 127, 127, 10]. EEA variants include: the almost inverse algorithm, first
proposed in [323], the Binary Euclidean Algorithm (BEA), the Montgomery
inverse algorithm, etc. All those algorithms show a computational complexity
proportional to the maximum of A and B polynomial degrees.

Algorithm 6.8 shows the binary algorithm as it was reported in [96]. That
algorithm takes as inputs the irreducible polynomial P of degree m and the
field element A of degree at most m — 1. It gives as output the field element
A~1 such that

A-A'=1mod P.

In steps 4 and 10, the operands U and V are divided by « as many times
as possible, respectively. Furthermore, the variables G and H are also divided
by z in steps 5-8 and 11-14, respectively. Notice that in case that either G or
H are not divisible by z, then an addition with the irreducible polynomial P
must be performed first. Eventually, after approximately m iterations, either
U or V are equal to 1, which is the condition for exiting the main loop. Either
G or H will contain the required multiplicative inverse.

The number of iterations required by Algorithm 6.8 depends on several fac-
tors such as design’s architecture, target platform and even the exact structure
of the irreducible polynomial P(z). Roughly speaking, the number of itera-
tions N can be estimated as N = m, where m is the size of the finite field.

8 Buclid’s algorithm is proposed in his book Elements published 300 B.C. Never-
theless, some scholars are convinced that it was previously known by Aristotle
and Eudoxus, some 100 years earlier than Euclid’s times. According to Knuth,
it can be considered the oldest nontrivial algorithm that has survived to modern
era [178].
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Algorithm 6.8 Binary Euclidean Algorithm
Require: An irreducible polynomial P(X) of degree m, A polynomial A € GF(2™).
Ensure: A™' mod P(z).

1L U=AV=P, G=1H=0

2: while (u # 1 AND v # 1) do

3;  while z divides U do
4: U= %;

5: if z divides G then
6: G= g;

7 else

8: _ G-;P,

9: end if

10:  end while

11:  while z divides V do
12: V=2

13: if z divides G5 then
14: H= %;

15: else

16: H = 2&E,

17: end if

18:  end while
19:  if (deg(U)>deg(V)) then

20: U=U+V;G=G+ H;
21:  else

22: V=V+U;H=H+G;
23:  end if

24: end while

25: if U=1 then
26: Return(G);
27. else

28: Return(H);
29: end if

6.3.2 The IToh-Tsujii Algorithm

In this Section we describe the Itoh-Tsujii Multiplicative Inversion Algorithm
(ITMIA). We start deriving a recursive sequence useful for finding multiplica-
tive inverses. Then, we briefly discuss the concept of addition chains, which
together with the aforementioned recursive sequence yield an efficient version
of the original ITMIA procedure.

Since the multiplicative group of the Galois field GF(2™) is cyclic of order
2™ — 1, for any nonzero element a € GF(2™) we have a~! = a®" =2, Clearly,

-1
Z 27,

m—2 )
am—2=202m - 1)=2) ¥=
=0 j=1

m
J
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The right-most component of above equalities allow us to express the multi-
plicative inverse of a in two ways:

et 2 m-—1 ;
[a2 ‘1] —a' =[] o (6.48)
j=

—

Let us consider the sequence (ﬁk(a) = a2k‘1>k N Then, for instance,
€

Bola) =1 , pi(a) =g,

and from the first equality at (6.48), [Bm-1(a)]” = a™ .
It is easy to see that for any two integers k,j > 0,

Brti(a) = Br(@)? B;(a)- (6.49)
Namely,

kN 2 s )
a? a? #-1\? 21
= — —_— =1 a a
a a

= fi(a)” Bs(a)
In particular, for j = &,
Box(a) = (@) Br(a) = Bi(@)*" . (6.50)
Furthermore, we observe that this sequence is periodic of period m:
ke = ki modm = Oy, (a) = B, (a).
To see this, consider k; = k1 + nm. Then, by eq. (6.49) and FLT,
Bia (@) = B ()" Bum(a) = B (@)*"" - 1 = By (a).

Therefore, the sequence (8x(a)), is completely determined by its values cor-
responding to the indexes k=0,...,m — 1.
As a final remark, notice that for any two integers k, j, by eq. (6.49):

Bi(@) = Bk (mei)y+ im—3) (@) = Brajmm (@) B (a).

Since the sequence of §’s is periodic, and the rising to the power 2™ coincides
with the identity in GF(2™), we have

Bi(a) = Brtj (@) B (a). (6.51)

Eq. (6.49) allows the calculation of a “current” ¢(= k+j)-th term as a recursive
function of two previous terms, the k-th and the j-th in the sequence.
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6.3.3 Addition Chains

Let us say that an addition chain for an integer m — 1 consists of a finite
sequence of integers U = (ug,u1,...,ut), and a sequence of integer pairs
V = ((k1,71),- .-, (kt,jt)) such that o = 1, ux = m — 1, and whenever
1 _<_7:§t, uiZUki-{-u]'i.

Ezample 6.4. Consider the casee = m—1 = 193—1 = 192 = (11000000),.
Then, a binary addition chain with length ¢ = 8 for that e is,

U=(1 2 4, 8 16 32, 64, 128 192)
V = ( (070)) (17 1)! (2) 2)’ (31 3)7 (47 4)7 (5) 5)7 (6’ 6)? (6)7))

i.e. the associated sequence is governed by the rule, u; = ;14U = 2u;
for all but the final value which is obtained using w; = w;—1 + us—».
Another addition chain, also with length ¢ = 8, is

U=(1, 2 3 6 12, 24, 48 96, 192)
Vo= ( (0,0)(0,1),(2,2), (3,3), (4,4), (55), (6,6), (7, 7))

i.e. for all ¢ # 2 the combinatorial rule is u; = wu;—1 +u;—1 = 2u;_1, while
Uy = Up + Uj. O

The concept of addition chains leads us to a natural way to generalize the Itoh-
Tsujii Algorithm, by using an addition chain for m — 1 and relations (6.48)
and (6.49) to compute a=! = [B_1(a)]>.

6.3.4 ITMIA Algorithm

Let a be any arbitrary nonzero element in the field GF(2™). Let us consider
an addition chain U of length t for m — 1 and its associated sequence V. Then
the multiplicative inverse a=! € GF(2™) of a can be found by repeatedly
applying eq’s. (6.49) and/or (6.50). Hence, given 8,,(a) = a2 ~! = q, for
each u;,1 <{ < t, compute

B, (@] Buiy (@) = Bug, 4us, (@) = Bugla) = a2~

A final squaring step yields the required result since,

e I

Fig. 6.9 shows an algorithm that iteratively computes all the Gy, (a) coefficients

in the exact order stipulated by the addition chain U as discussed above.
We assess the computational complexity of the algorithm shown in Fig. 6.9

as follows. The algorithm performs ¢ iterations (where ¢ is the length of the
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addition chain U) and one field multiplication per iteration. Thus, we con-
clude that a total of ¢ field multiplication computations are required. On the
other hand, notice that at each iteration ¢, a total of 2% field squarings are
performed. Notice also that by definition, the addition chain guarantees that
for each w;,1 <4 < t, the relation w;, = wu; — u;, holds. Hence, one
can show by induction that the total number of field squaring operations per-
formed right after the execution of the i-th iteration is u; — 1. Therefore, at
the end of the final iteration ¢, a total of u; —1 = m — 2 squaring operations
have been performed. This, together with the final squaring operation, yield
a total of m — 1 field squaring computations.

Summarizing, the algorithm of Fig. 6.9 can find the multiplicative inverse
of any nonzero element of the field using exactly,

# Multiplications = t;
#Squarings =m — 1. (6.52)

Algorithm 6.9 Itoh-Tsujii Multiplicative Inversion Addition-Chain Algo-
rithm
Require: An irreducible polynomial P(X) of degree m, An element a € GF(2™),
an addition chain U of length ¢t for m — 1 and its associated sequence V.
Ensure: o~ ! € GF(2™).
D Bug(a) = o

1
2: for i from 1 to ¢t do .

27t
3 Bule) = [Buy (@] Buy, (@) mod P(X);
4
5

. end for
: Return(8Z, (a) mod P(X)).

Example 6.5. Let us consider the binary field GF(219%) using the irreducible
trinomial P(X) = X34+ X141, Let a € GF(2'%) be an arbitrary nonzero
field element. Then, using the addition chain of Example 6.4, the algorithm
of Fig. 6.9 would compute the sequence of G,,(a) coefficients as shown in
Table 6.3.4. Once again, notice that after having computed the coefficient
Bug (a), the only remaining step is to obtain a~! which can be achieved as
a”l = fZ (a). O

6.3.5 Square Root ITMIA

Let a be any arbitrary nonzero element in the field GF(2™). Let us consider

an addition chain U of length t for m — 1 and its associated sequence V. Then

the multiplicative inverse of a, a=! € GF(2™), can be found as follows [295].
Given 1y, (a) = a'~27" = /g, for each u;,1 < < t, compute
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Table 6.10. 3;(a) Coeflicient Generation for m-1=192

ifu) e[, @], @uta) =
o] 1 - ~|Bup(@) = a1
1|2l 2w [Bu@P  Bu(@)|Bu(a) = o
2| Bluiettuica|  [Bu (@ Bup(0)|Bus(a) = a®
3 6 2uii|  [Bu(@)] - Bus(@)|Bus(a) = o¥
4l 12l 2uia|  [Bu(@)*  Bug(@)|Bus(a) = a? 7
524 2uia|  [Bug(@) Bus(0)|Bus(a) = o
6| 48] 2uia|  [Bus(@)  Bus(a)|Bus(a) = o*
7| 96 2| [Bus(@)]”° + Bug(a)|Bur(a) = a*"
8/192)  2ui1|  [Bur (@) Bur(@)|Bus(a) = a7

27 "i2 —uy
[’Yuil(a)] Yy (a) = 7ui2+uil(a) = ’Yuz(a) = a'"?

Where Y{y,=m-1} = al=2"" " = g~ gives the required result.

Fig. 6.10 shows an algorithm that iteratively computes all the 7,,(a) co-
efficients in the exact order stipulated by the addition chain U as discussed
above. We assess the computational complexity of the algorithm shown in
Fig. 6.10 as follows. The algorithm performs one field multiplication in each
of algorithm’s t iterations, yielding a total of ¢ field multiplication computa-
tions required. Furthermore, at each iteration i, a total of 2% field square
roots are performed. Since by definition, the addition chain guarantees that
for each u;,1 <4 < t, the relation u;, = wu; —u;, holds, one can show that
the total number of field square root operations performed right after the exe-
cution of the i-th iteration is u; — 1. Therefore, a total of u;—1 = m—2 square
root operations must be performed. This, together with the initial square root
operation, yield a total of m — 1 field square root computations.

Summarizing, the algorithm of Fig. 6.10 can find the inverse of any nonzero
element of the field using exactly,

# Multiplications = t;
#Square root = m—1. (6.53)

Ezample 6.6. Following with our running example, let us consider the binary
field GF(2'%9%) generated using the irreducible trinomial P(X) = X! 4
X1 4+ 1. Let @ € GF(2'%) be an arbitrary nonzero field element. Then, the
algorithm of Fig. 6.10 would compute the sequence of -y, (a) coefficients as
shown in Table 6.3.5. The multiplicative inverse is given as v, = a~!. O
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Algorithm 6.10 Square Root Itoh-Tsujii Multiplicative Inversion Algorithm

Require: An irreducible polynomial P(X) of degree m, An element a € GF(2™),
an addition chain U of length t for m — 1 and its associated sequence V.
Ensure: a~' € GF(2™). Procedure SquareRoot ITMIA(P(X),a, {U,V}) {
-1
(@) =a'*" = Vo

for 7 from 1 to ¢ do

0@ = [ren @] e, (@) mod P(X);
end for
Return(yy, (a) mod P(X))

SN

Table 6.11. ;(a) Coefficient Generation for m-1=192

—;

27 %2 oy
7| ug rule ['Yui, (a)] * Yuiy (a) 7“1(0') = g™
o] 1 - Ve (@) = al'rl
1y 2 it [uo@) " (@) (@) = a2
2| Bluict tuical P (@ qup(@) s (a) = '
3l 6 it e (@) Yuel@) s (a) = @72
4| 12 2uit|  Prus (@] s (@) |yus(a) = a7
5| 24 2uic] (@ (@) s (@) = a7
6| 48 2uict| s (@) - s (@) g () = a2
7| 96 2wy [re(@)® " Yug(@) | ur(a) = a2
81920  2uia|  Prr(@F 7 (@) us(a) = ot

6.3.6 Extended Euclidean Algorithm versus Itoh-Tsujii Algorithm

In order to assess the performance differences between multiplicative inverse
computation via the Extended Euclidean Algorithm and the Itoh-Tsujii Al-
gorithm, we performed the following experiment.

Using a Virtex 2 xc2v4000-6bf957 as a target device, we implemented Al-
gorithms 6.8 and 6.9 for computing multiplicative inverses in the field GF(2™)
generated using the irreducible trinomial P(z) = £19% 4 z1% + 1. Algorithm
6.8 was implemented according to the finite-state machine shown in Fig. 6.10,
whereas the Itoh-Tsujii Algorithm was implemented using the architecture
shown in Fig. 6.11. The implementation statistics obtained for each algorithm
are summarized in Table 6.12.

According to Table 6.12, it can be observed that the BEA scheme repre-
sents a cheaper solution in terms of hardware resource requirements. Indeed,
the BEA scheme utilizes just 12.02% of the area required by the ITMIA de-
sign. On the contrary, the ITMIA scheme outperforms the BEA scheme in
timing performance, with a speedup of about 3.3 times. Therefore, consider-
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Table 6.12. BEA Versus ITMIA; A Performance Comparison

Design CostICyclele‘req (MHz) |timings m
BEA 1195| 191 76.10 250915 333.53
ITMIA 9945, 40 55.25 724nS 138.89
ITMIA without|2345] 40 55.25 724nS 589.00
KOM Block

ing our customary efficiency figure of merit of m we can see that
the BEA solution is about 2.40 times more efficient than the ITMIA design.

Nevertheless, since for all practical cryptographic and code applications
a binary extension field multiplier is a mandatory operator, we included the
performance statistics of both, the ITMIA design considering the costs of the
expensive Karatsuba-Ofman Multiplier (KOM) block and without considering
it. In the case that the KOM block cost is taken out of the ITMIA statistics,
Table 6.12 shows that the ITMIA solution becomes the most efficient option,
providing An efficiency improvement of nearly 1.77 times with respect to the
BEA design.

6.3.7 Multiplicative Inverse FPGA Designs

Table 6.13 shows the computational cost of several reported designs for the
computation of multiplicative inversion over GF(2™) in hardware platforms.
The standard Itoh-Tsujii algorithm using the architecture described here re-
quires 28 clock cycles in the design reported in [295], thus computing the
multiplicative inverse in about 1.32uS.

6.4 Other Arithmetic Operations
In this Section we briefly describe some important binary finite field arith-
metic operations such as, the computation of the trace function, the half trace

function and binary exponentiation. The first two operations are key building
blocks for halving an elliptic curve point, which will be studied in §10.7.

6.4.1 Trace function

Given C € GF(2™), the trace function can be defined as:

Tr(C)=C+C*+C% +...+ O™ (6.54)

Due to its linearity, the trace function can be implemented such that the
execution time is O(1) as [133],
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Table 6.13. Design Comparison for Multiplicative Inversion in GF(2™)

Work Platform [ Field I Cost |Cycles|Freq (MHz)| timings
BEA 0.18um CMOS[GF(2™%)[ 1.658 198 400 0.495uS
divisor [403] mm?
BEA  |0.185m CMOS|GF(2™)| 1.192 | 326 460 0.70948
divisor [77] “mm?
TTMIA [248] |Xilinx Virtex 2| GF(2™%)| 9945 | 40 55.25 072448
Parallel  [Xilinx Virtex 2|GF(2"%%)] 12021 | 20 21.2 0.943u8
ITMIA [295] CLBs
TTMIA [295] |Xilinx Virtex 2|GF(2™°°)| 11081 | 28 21.2 1.32u8
CLBs
BEA Xilinx Virtex 2{GF(27%)] 1195 | 191 76.1 2.509u8
[248] CLBs
Montgomery [0.18um CMOS| 160-bit | 144K | 1516 227.3 2.509u8
Inversion [314] NANDs
ITMIA 20] | Xilinx Virtex |{GF(27T)] - 390 50 7.8uS (est.)
ITMIA [216] | Xilinx Virtex |GF(2™) 711 66 10.7u8
BEA [114] |0.25um CMOS|GF(2Z%)| - | 844 50  |16.884S (est.)
m—1 m—1
Tr(C) = T?"(Z cixt) = Z e Tr(xt) (6.55)
i=0 i=0

As an example, consider the field defined by GF(2'%3) with the reduction
polynomial p(z) = z% 4 27 + 2% + 23 + 1. Then, Tr(z?) = 1 if and only
if ¢ € {0,157}. The implementation of the trace function in reconfigurable
hardware only needs one XOR gate to add the bits 0 and 157 from the input
polynomial.

6.4.2 Solving a Quadratic Equation over GF(2™)

In order to solve a quadratic Equation (10.26), we may use the half-trace
function. Let C' € GF(2™) be defined as C(z) = Z?;?)l cizt € GF(2™) with
Tr(C) = 0 and m an odd integer, the half-trace function can be defined as:

m~-1 m—1
HC)=H() ca')= ) ¢H(') (6.56)
=0 i=0
Therefore, by using the definition of the half trace equation 6.56. We can
precompute the m half-traces of the field elements z* for i = 0,1,...,m — 1;
and by arranging these Equations in a m X m matrix B, we may obtain the
half-trace of an arbitrary element C € GF(2™) by computing H(C) = CB.
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6.4.3 Exponentiation over Binary Finite Fields

Exponentiation over binary finite fields is used for inverse computation via
Fermat Little theorem [295] and key agreement schemes such as the Diffie-
Hellman protocol, among other applications.

For binary extension fields GF(2™), generated using the m-degree irre-
ducible polynomial P(z), irreducible over GF(2). Let e be an arbitrary m-bit
positive integer e, with a binary expansion representation given as,

m~2
e = (lep_z2...€180)2 = gm-1 4 E 2'e;.
i=0
Then,
b=a¢ =2 tTio 2 (6.57)
m—2 )
_ a2m—1 ) a2m‘26’"“2 o (12181 ] azon _ azm—l . H aztei

=0

Algorithm 6.11 MSB-first Binary Exponentiation

Require: The irreducible polynomial P(z), a € GF(2™), e = (em-1...€1€0),
Ensure: b= a® mod P(z)

l: b=a;

2: for i = m — 2 downto 0 do
3 b=1b?;

4: if e, == 1 then

5: b=b-amod P(z);

6: end if

7. end for

8: Return b

Binary strategies evaluate (6.57) by scanning the bits of the exponent e
one by one, either from left to right (MSB-first binary algorithm) or from
right to left (LSB-first binary algorithm) applying the so-called Horner’s rule.
Both strategies require a total of m —1 iterations. At each iteration a squaring
operation is performed, and if the value of the scanned bit is one, a subsequent
field multiplication is performed. Therefore, the binary strategy requires a
total of m — 1 squarings and H(e) — 1 field multiplications, where H(e) is the
Hamming weight of the binary representation of e. The pseudo-code of the
MSB-first binary algorithm is shown in Algorithm 6.11.

On the other hand, it is known from Fermat Little Theorem that for any
nonzero a € GF(2™), we have " ~! = 1 which implies " = a and by taking
square root in both sides of the last relation we get a?" 7 = Vva = e’ In
general, the i-th square-root of a, with ¢ > 1 can be written as,
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Hence, Eq. (6.57) can be reformulated in terms of the square root operator
as,

m—2
m—1 i me—1 m—2 1 0
a = a2 . H aQ e _ (12 . (L2 em—2 , ..., a2 €, 0,2 eo (658)
=0
m-—1
91 27 2%e,_2 2=(m-1)g, 20¢q am—tg, eo
=q® .g° °m?.....q ‘a :\/E-Ha t.g
=2

Algorithm 6.12 Square root LSB-first Binary Exponentiation
Require: The irreducible polynomial P(z), a € GF(2™), e = (em-1...€1€0),y
Ensure: b= a® mod P(z)

=a;

1

2. em=e€o;

3. fori=1to mdo
4 b=vb;

5: if e, == 1 then
6 b="b- amod P(z);
7 end if

8: end for

9: Return b

Therefore, the novel square root LSB-first binary strategy requires a to-
tal of m — 1 square root computations and H(e) — 1 field multiplications,
where H(e) is the Hamming weight of the binary representation of e. The
pseudo-code of the square root LSB-first binary algorithm is shown in Al-
gorithm 6.12. Algorithms 6.11 and 6.12 suggest a parallel version that can
combine both ideas. This parallel version is especially attractive for hardware
platforms implementations. Algorithm 6.13 shows this suggesting algorithm.
Notice that both loop computations can be performed in parallel provided
that the architecture has two independent field multiplier units. The compu-
tational time speedup can be estimated in about 50% when compared with
Algorithms 6.11 and 6.12.

6.5 Conclusions

In this chapter, we addressed the problem of how to implement efficiently finite
field arithmetic algorithms for reconfigurable hardware platforms. We included
detailed analysis of complexities for binary field operations such as: multiplica-
tion, squaring, square root, multiplicative inverse computation, among others.
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Algorithm 6.13 Squaring and Square Root Parallel Exponentiation
Require: The irreducible polynomial P(z), a € GF(2™), e = (em—-1...€1€0),
Ensure: b = a® mod P(z)
lib=c=1;
2. em =0
3 N=1[2);
4

2
. for i = N downto 0 do for j=N+1tomdo

b=0b%; =5
if e; ==1 then if e; == 1 then
b=1"bq; c=c-a;

: end for
b=b-¢
: Return b

In §6.1, field multipliers algorithms were studied covering the whole spec-
trum of state-of-the-art strategies for computing that crucial arithmetic oper-
ation as efficiently as possible. That spectrum goes from the mighty fully bit-
parallel Karatsuba-Ofman multiplier to the ultra compact interleaving multi-
plier which can be quite useful for constrained environments.

The most attractive feature of the Karatsuba-Ofman algorithm variation
analyzed in §6.1.2, is that the degree m of the generating irreducible polyno-
mial can be arbitrarily selected by the designer, allowing the usage of prime
degrees. In addition, the new field multiplier leads to architectures which show
a considerably improved space complexity when compared to traditional ap-
proaches. Moreover, the binary Karatsuba-Ofman multiplier leads to highly
modular architectures that are well suited for both, VLSI and reconfigurable
hardware implementations.

We studied in §6.1.4 a method able to perform the reduction step of field
multipliers when an irreducible trinomial or pentanomial is used to generate
the field. Moreover, we also presented a general method for accomplishing
reduction when dealing with arbitrary irreducible polynomials.

In §6.2 a low-complexity bit-parallel algorithm for computing square roots
over binary extension fields was studied. Although the method presented can
be applied for any type of irreducible polynomials, we were particularly inter-
ested in studying the case of irreducible trinomials. Hence, in order to inves-
tigate the exact cost of the square root operator, we categorized irreducible
trinomials over GF(2) into four different types. For all four types considered,
explicit area and time complexity formulae were found for both, field squaring
and field square root operators. It was shown that for the important practi-
cal case of finite fields generated using irreducible trinomials, the square root
operation can be performed with no more computational cost than the one
associated to the field squaring operation.

In §6.3 we presented a performance comparison of two of the most pop-
ular algorithms for computing the field multiplicative inverse operation: the
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Binary Euclidean Algorithm (BEA) and the Itoh-Tsujii Multiplicative Inverse
Algorithm (ITMIA). It was shown that the Itoh-Tsujii strategy offers a com-
petitive performance when implemented in hardware platforms. Furthermore,
we combined the standard Itoh-Tsuii algorithm with the concept of addition
chains. Then, we showed that for this version of the Itoh-Tsuii algorithm the
multiplicative inverse of an arbitrary nonzero field element in GF(2™) can be
computed by performing exactly m — 1 field squarings and t multiplications,
where t is the step-length of the optimal addition-chain for m-1. One of the
main conclusions of this Section is that according to Table 6.12 there is not a
clear winner when comparing the BEA and the ITMIA methods.

Finally, in §6.4 some less popular fleld arithmetic operations were studied,
such as, the computation of the trace function, the half trace function and
binary field exponentiation. The first two operations are key building blocks
for halving an elliptic curve point, which will be studied in §10.7.



7

Reconfigurable Hardware Implementation of
Hash Functions

This Chapter has two main purposes. The first purpose is to introduce readers
to how hash functions work. The second purpose is to study key aspects
of hardware implementations of hash functions. To achieve those goals, we
selected MD5 as the most studied and widely used hash algorithm. A step-
by-step description of MD5 has been provided which we hope will be useful
for understanding the mathematical and logical operations involved in it. The
study and analysis of MD5 will be utilized as a base for explaining the most
recent SHA2 family of hash algorithms.

We start this Chapter given a brief introduction to hash algorithms in
Section 7.1. A survey of some famous hash algorithms is presented in Sec-
tion 7.2. Then we provide a detailed discussion of the MD5 algorithm in
Sec. 7.3. All MD5 steps are explained by means of an illustrative example
which is explained at a bit level. In Section 7.4, we describe the SHA2 family
of hash algorithms and some tips are provided with respect to their hardware
implementation. In Section 7.5 design strategies to achieve efficient hash algo-
rithms when implemented on reconfigurable devices are discussed. Section 7.6
presents a review of recent hash function hardware implementations. Finally,
in Section 7.7 concluding remarks are drawn.

7.1 Introduction

As it was explained in Chapter 2, a Hash function H is a computationally
efficient function that maps fixed binary chains of arbitrary length {0,1}* to
bit sequences H(B) of fixed length. H(M) is the hash value, hash code or
digest of M [110].

In words, let M be a message of an arbitrary length. A hash function
operates on M and returns a fixed-length value, A, as shown in Fig. 7.1. The
value h is commonly called hash code. It is also referred to as a message
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digest or hash value. The main application of hash functions lies on producing
fingerprint of a file, message or other blocks of data.

h = H(M)

Fig. 7.1. Hash Function

Hash functions do not use a particular key, but instead, it is a highly non
linear function of all message bits. The code changes with the change of any bit
or bits in the input message and thus it provides error detection capabilities.

In practice, modern hash functions are specifically designed for having a
short bit-length hash code i (usually from around 128 bits up to 512 bits).
This characteristic is especially attractive for the application of hash functions
in virtually every digital signature algorithm. Therefore, rather than attempt-
ing to sign the whole message (which by definition has arbitrary length), it
becomes more practical to sign the hash code of the message as it was depicted
in the basic digital signature/verification scheme shown in Figure 2.6.

As a way of illustration, let us suppose that Ana received $500 from Bill,
and that afterwards, she proceeded signing the hash code hl of the message
M1 as shown below,

M1 = Ana received $500 from Bill

hl = H(M1) = 89CB0C238A3C7A78D0ODD7063C4153B65

Bill can never claim that Ana received $5000 as the hash code h2 of mes-
sage M2 using the same hash function vastly differs,

M2 = Ana received $5000 from Bob.

h2=H(M2)=CCD40B907C543D96FDB7203979E55E8B

Alternatively, Bill may try to find another message M3 whose hash value
corresponds to the hash value of message M1, and then claim that Ana actually
signed message M3, not M1.

If we can find any two messages producing the same message digest, we say
that we have found a collision. Collision is a not desired characteristic of hash
functions but at the same time is unavoidable. All that one can hope is that no
matter how determined an adversary may be, it should result computational
unfeasible for him/her to find collisions. Therefore, a hash function H is said to
be strong enough against collision and thus useful for message authentication,
if it has the following properties [342, 246},
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H applies to any block of data.

H returns a fixed-length output.

For any given value z, H(z) is relatively easy to compute. That feature
makes hash function implementations more practical in both software and
hardware platforms (Fig. 7.2a).

M h M1 M2
J
h M hi1 h2
(a) (b)

(c)

Fig. 7.2. Requirements of a Hash Function

¢ Given x, it is easy to compute H(z). Given h, it is computationally infea-
sible to find z such that H(z) = h. That is sometimes referred to as one
way property of hash functions (Fig. 7.2b).

e For any given block z, it is computationally infeasible to find y (y #
z), with H(y) = H(z). This is sometimes referred to as weak collision
resistance.

e To find a pair (z,y) such that H(z) = H(y), is computationally infeasible.
This is sometimes referred to as strong collision resistance (Fig. 7.2¢).

7.2 Some Famous Hash Functions

The overall structure of a typical hash function is shown in Fig. 7.3.

$B,

$B, $B;
by m.ﬁzw_.,,,_'!.z o M,, B

Fig. 7.3. Basic Structure of a Hash Function

The structure was first proposed by Merkle [233, 234] and then followed by
most hash function designs in use today including MD5, SHA-1 and RIPEMD-
160 [342].

It is apparent from Fig. 7.3 that a typical hash function is iterative in
nature. That is, it partitions (hashes) a given input message to L sub blocks
S Bs of some fixed length m bits and operates sequentially on each SB. Those
message blocks shorter in length than m are padded as necessary with zeroes.



192 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.1. Some Known Hash Functions

Name Author(s) Year|Block Size] Digest Size
AR 1SO [151] 1992
Boognish Daemen(58] 1992 32 up to 160
Cellhash Daemen, Govaerts, 1991 32 up to 256
Vandewalle [59]
FFT-Hash [ [Schnorr [318] 1991 128 128
GOST R Government Committee of 1990 256 256
34.11-94 Russia for Standards [257]
FFT-Hash II {Schnorr [319) 1992| 128 128
HAVAL Zheng, Pieprzyk, Seberry [402][1994] 1024 [128, 160, 192,
224, 256
MAA 1SO [150] 1088 32 32
MD2 Rivest [162 1989 512 128
MD4 Rivest [288 1990 512 128
MD5 Rivest {289 1992 512 128
N-Hash Miyaguchi, Ohta, Iwata [237] [1990 128 128
PANAMA Daemen, Clapp [56] 1998 256 unlimited
Parallel Schnorr, Vaudenay [320] 1993 128 128
FFT-Hash
RIPEMD The RIPE Consortium [287] 1990 512 128
RIPEMD-128|Dobbertin, Bosselaers, 1996 512 128
Preneel {70]
RIPEMD-160{Dobbertin, Bosselaers, 1996 512 160
Preneel {70]
SHA-0 NIST/NSA [61] 1991 512 160
SHA-1 NIST/NSA [255 1993 512 160
SHA-224 NIST/NSA [255 2004 512 224
SHA-256 NIST/NSA [255 2000 512 256
SHA-384 NIST/NSA [255 2000 1024 384
SHA-512 NIST/NSA [255 2000 1024 512
SMASH Knudsen [177] 2005 256 256
Snefru Merkle [235 1990 512-m |m = 128, 256
StepRightUp [Daemen [55 1995 256 256
Subhash Daemen [57 1992 32 up to 256
Tiger Anderson, Biham 8] 1996 512 192
Whirlpool  |Barreto, Rijmen [286] 2000 512 512

The heart of a hash algorithm is the so-called compression function F. A
repeated use of function F is made by the hash algorithm. F takes two inputs:
an m-bit input block message and; an n-bit input from previous step, called
hash h of that message block. The output is an n-bit hash A, namely [317],

h; = F(Sbj, hj-1) (7.1)
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For j=1,2,..., L, where L is the total number of SB message blocks. For
j =1, the function F takes the first sub block SB; and hg, where hy is a fixed
value provided by the algorithm. For h,, (i.e. j = n), the two inputs are SB,
and hp—1, hy is the hash value of the entire message.

The term compression comes from the fact that the hash output has a much
shorter bit-length n than the original input message bit-length m. Although
it has not been formally proved, some authors consider that the security of
a hash function strongly depends upon the security of its compression func-
tion [234, 62, 245]. Indeed, if the compression function is strongly collision
resistant, then hashing a message using that method is also secure. Modern
hash functions strive for improving the internal logic of their compression
functions. At the same time, extensive research has been carried out on the
issue of how many repetitions of the compression function are essential for ob-
taining an acceptable security and how those repetitions could be sequenced.

Table 7.1 features a list of known hash functions prepared by [17]. Detailed
discussions about the design of most of those hash functions can be found
in {165, 275, 234, 19, 276, 277, 276, 278, 347, 348, 360, 28, 119, 119, 138].

Message =M
MP =448 mod 612

Message Padding

Append Message Length APL= MP + message length in 64-bit

(512 bits)

Mo 1Y 1y My 1 Mg g Ty Mg Mg My My Ty, M3 1y T s

T
! i ‘ |
¥ kd ¥ ¥

4 ROUND 1 a ROUND 3 ROUND 4 a,
A3 a FF FF FF FF b HH HH HH HH -
B L A HH HH HH HH |7 =
Gt B FF FFFFFF L. HH HH HH HE | S -
o gl R o) #w e | d
Fig. 7.4. MD5§
7.3 MD5

The series of Message Digest (MD) hash algorithms is due to Rivest[289]. The
original message digest algorithm was simply called MD. MD was quickly fol-
lowed by MD2 [162]. Nevertheless, MD2 was soon found to be quite weak.
Rivest then started working on MD3, which however was never released.
MD4 [288] was the next family member. Soon MD4 was also found to be
imperfect, but it provided the theoretical foundations for its successors MD5
(designed in 1992) and also for SHA-0 [61] and RIPEMD [287], from other
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authors. Then, in 2004, the never ending battle between hash function design-
ers and crypto analysts had yet another episode, when several advances for
finding collisions on MD5 were announced in [24, 159].

Short after that, Wang et al. without revealing their method, presented on
the rump session of [98] evidence of MD5 colliding messages [370]. Wang et
al. method was later published in [372]. Before that happened though, several
experimental results were presented in [174], showing for the first time how
MD5 could be break. Recently, it has been proved that collisions on MD5 can
be found {under certain conditions) within a minute using a standard laptop
[175].

Operating on 512-bit input blocks, MD5 produces 128-bit message digests
from input messages of arbitrary length. For longer messages, a partition
into sub blocks is performed. The algorithm then operates iteratively on all
message sub-blocks as shown in Fig. 7.4. In the following Subsection, MD5
steps for hashing a message are described in detail.

7.3.1 Message Preprocessing

First, original message is preprocessed. The message is padded such that its
length (in bits) is congruent to 448 mod 512. Messages shorter than 448 bits
are padded with the first bit set to ‘1’ and all the rest set to zero. The re-
maining 64 bits for completing a block of 512 bits are reserved for appending
message length. For instance, a message with 200-bit length would require a
padding of 228 bits. The padding would comprise a single ‘1’ at the most sig-
nificant position followed by 227 zeroes. The last 64 bits are all zeroes except
for the last byte which is “11001000” denoting message length of 200. As a
way of illustration, we show below how a sub block of 512-bit is obtained from
an input message. Let our input message M be,

“MD5 was proposed by Ron Rivest in 1992.”

The ASCII representation of the message M (39 characters) is shown in
Table 7.2.

Table 7.2. Bit Representation of the Message M

01001101 01000100 00110101 00100000 01110111 01100001 01110011 00100000
01110000 01110010 01101111 01110000 01101111 01110011 01100101 01100100
00100000 01100010 01111001 00100000 01010010 01101001 01110110 01100101
01110011 01110100 00100000 01101001 01101110 00100000 00110001 00111001
00111001 00110010 00101110

The first step consists on padding the Message M in order to complete a
block of 512 bits as shown in Table 7.3. Notice the location of the padding
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start bit (i.e. bit ‘1’) and the message length (given in a 64-bit representa-
tion) appended into the last 64 bits (shaded). As it was explained above, the
padding process assures that the block message length will always be an exact
multiple of 512. Thereafter the main loop starts. A message parsing is required
for this loop. This is accomplished by dividing the 512-bit input message block
into sixteen 32 bit words.

Table 7.3. Padded Message (M)

01001101 01000100 00110101 00100000 01110111 01100001 01110011 00100000
01110000 01110010 01101111 01110000 01101111 01110011 01100101 01100100
00100000 01100010 01111001 00100000 01010010 01101001 01110110 01100101
01110011 01110100 00100000 01101001 01101110 00100000 00110001 00111001
00111001 00110010 00101110 10000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 0000000G 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000001 00011000

In the case of hardware implementations, designers can use various options
for message preprocessing. One of the possible approaches is to use sixteen
32 bit shift registers which are initialized with zeroes except for the first one
which has its first bit set to ‘1’. All the 16 registers are cascaded in such a
way that the output of one is placed as the input of the next register.

Thus, whenever a message is read, all message bits are sequentially trans-
ferred to shift registers. The start bit ‘1’ of the first shift register is now the
end bit of the message as shown in Fig. 7.5. Since there is no need to cascade
final register (SR15) with the other registers it can be reserved for appending
the message length. That register arrangement also completes message parsing
as all 16 registers contain 32-bit words.

SRO SR1 SR9 SR15
1 0...00000000 I"I 00...00000000 H 00...00000000 H 00...00000000
(32 - bit) (32 - bit) (32 - bit) (32 - bit)

Message —L Length Counter
SRO SR1 SR9 SR15
00...00000000 H 00...00000000 H 00... 17 0000000 I"L 0...100011000
~
Message(280 bits) Message Length

Fig. 7.5. Message Block = 32 x 16 =512 Bits
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Rivest selected a little-endian architecture for interpreting a message as a
sequence of 32-bit words. A little endian architecture stores the least signif-
icant byte of a word into the lowest byte address. This design decision was
taken due to Rivest observation that several processor architectures with little
endian format offer faster processing [342]. This way, the first block message
is converted into sixteen 32-bit words, which are then written into hex little
endian format as shown in Table 7.4.

Table 7.4. Message in Little Endian Format

Message in Hex Message little endian format
0x4d443520 0x2035444d
0x77617320 0x20736177
0x70726£70 0x706£7270
0x6£736564 0x6465736f
0x20967920 0x20796220
0x526{6e20 0x206e6£52
0x52697665 0x65766952
0x69207473 0x69207473
0x6e203139 0x3931206e
0x39322¢80 0x802e3239
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

0x00000000,0x00000138 0x00000138,0x00000000

Appending bits to message blocks according to the Little endian format is
intended for 32-bit word rather than one byte words. Therefore, the 64 bits
that are reserved for keeping the message length are divided into two 32-bit
words. By applying said convention, the lower order 32-bit word is appended
first as shown in Table 7.4 (observe the last two 32-bit words).

7.3.2 MD Buffer Initialization

As it has been already mentioned, internally MD5 operates on two inputs:
the input message block and the output hash from the previous step. In the
first step, the initial hash values are constants provided by the algorithm. The
initial values for MD5 are provided into four 32-bit words. A four-word buffer
(a,b,c,d) is used to store those values which are then replaced by the output
hash values after each step. MD5 a, b, ¢, d four words, are also referred to as
chain variables. The initial values for the MD5 chain variables are shown in
Table 7.5.
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Table 7.5. Initial Hash Values in Little Endian Format

Normal Values Little endian format

a = 0x01234567 a = 0x67452301
b = 0x8%bcdef b = Oxefcdab89
¢ = Oxfedcha98 ¢ = 0x98badcfe

d = 0x76543210 d = 0x10325476

7.3.3 Main Loop

The Main loop is composed of four rounds. Each round has as a 512-bit mes-
sage block as an input. As it was mentioned, message blocks are grouped into
sixteen 32-bit words. The second input comes in the form of chain variables
which are also grouped as four words of 32-bit each (totaling 128 bits). All
the four rounds use an auxiliary function, which takes three 32-bit inputs pro-
ducing a single 32-bit output. Table 7.6 presents the four non-linear functions
F, G, H, and I, that are utilized in rounds 1 to 4.

Table 7.6. Auxiliary Functions for Four MD5 Rounds

F(A,B,C) = (A AND B) OR ((NOT A) AND C)
G(A,B,C) = (A AND C) OR ( B AND (NOT C))
H(A,B,C) = (A XOR B XOR C)

I(A,B,C) = (B XOR ( A OR (NOT C )))

All the four non-linear functions are simple and can be easily constructed
in reconfigurable hardware. The architecture of those four functions maps
well to those reconfigurable devices having a 4-bit input/1-bit output Look
Up Tables (LUTs) as a basic unit. On such devices, all the four functions

occupy a single LUT, thus using a total of 4 LUTSs for one bit manipulation
as shown in Fig, 7.6.

e LT 1LUT e T
Y- & VUL e
% ¢ X!th : [ : ] |
X " F Z1. FD}, G Yg:"" H Z - 4
z ) i : z: XL

Fig. 7.6. Auxiliary Functions in Reconfigurable Hardware (a) F(X,Y,Z) (b)
G(X,Y,Z) (c) H(X,Y,Z) (d) I(X,Y,Z)
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Let <« S denote a left circular shift by S bits and let m; represent the
ith sub-block (0 to 15) of the message. Provided that there is a constant K
for the jth state of a round, the four operations corresponding to four MD5
rounds are shown in Table 7.7.

Table 7.7. Four Operations Associated to Four MD5 Rounds

FF(a,b,c,d, m;, S, K;) = a=b + ((a + F(b,c,d) + m; + K;)< S)
GG(ab,c,d, m;, S, K;) = a=b + ((a + G(b,ed) + m; + K;) < S)
HH(a,b,c,d, m;, S, K;) = a =b + ((a + H(b,e,d) + m; + K;) € S)

II(a,b,c,d, my, S, K;) = a=0>b + ((a + I{(b,cd) + m; + K;) € 8)

The architecture of a single MD5 operation can be optimized for reconfig-
urable devices by re-ordering some steps as shown in Fig. 7.7.

2LUTs
a

Mip{ <<<8 |
b
¢c LA |ForGor + >{<<<S}—>+_

Horl L3

o K5}

Fig. 7.7. One MD5 Operation

Two changes are introduced. First, summation of word a is appended
with the manipulation of the non-linear function, this occupies a single LUT.
Similarly, instead of a single shift operation by S bits, a total of three shift
operations have been introduced. That does not cost other logic resources but
only the routing resources of the target reconfigurable device.

There are a total of 64 steps in the four MD5 rounds. The output of each
round for our example message is presented in Table 7.8, Table 7.9, Table 7.10,
and Table 7.11 for round 1, round 2, round3, and round 4, respectively. The
constant values K; can be computed by taking the integer part of 23? x
abs(sin(z)), where ¢ is in radians.

7.3.4 Final Transformation

The last step consists on adding the initial and final hash values. Here addition
is a simple integer addition modulo 2%2 and not an ‘XOR’ operation. The



FF (a, b, ¢, d,
FF (d, a, b, c,
FF (¢,d,a, b
F (b, ¢, d, a,
FF (a, b, ¢, d,
FF (d, a, b, c,
FF (¢, 4, a, b,
FF (b, ¢, d, a,
FF (a, b, ¢, d,
FF (d, a, b, c,
(C d a7 )
F (b, ¢, d, a,
F (a, b, ¢, d,
FF (d, a, b, ¢,
FF (c, d, a, b,
FF (b, ¢, d, a,

GG (a, b, c, d,
GG (d, a, b, ¢,
GG (¢, d, a, b,
GG (b, ¢, d, a,
GG (a, b, ¢, d,
GG (d, a, b, ¢,
GG (c, d, a, b,
GG (b, ¢, d, a,
GG (a, b, ¢, d,
GG (d, a, b, ¢,
GG (c, d, a, b,
GG (b, ¢, d, a,
GG (a, b, ¢, d,
GG (d, a, b, ¢,
GG (c, d, a, b,
GG (b, c, d, a,

Table 7.8. Round 1

Function

mp, 7, 0xd76aad78)
my, 12, 0xe8c7b756)
, ma, 17, 0x242070db)
m3a, 22, Oxclbdceee)
m4, 7, O0x{57cOfaf)
ms, 12, 0x4787c62a)
me, 17, 0xa8304613)
m7, 22, 0xfd469501)
ms, 7, 0x698098d8)
mo, 12, 0x8b44f7af)
mig, 17, Oxfif5bb1)
mi1, 22, 0x895¢cd7be)
miz2, 7, 0x6b901122)
my3, 12, 0xfd987193)
miq, 17, 0xa679438¢)
mys, 22, 0x49b40821)

Table 7.9. Round 2

Function
m, 5,
meg, 97
mi, 14,
mg, 20,
ms, 57
mio, 9,
mys, 14,
my, 20,
mg, 5,
my, 9,
mg3, 14,
msg, 20,
mi3, 5,
me, 91
mrz, 14,
miz, 20,

0xf61e2562)
0xc040b340)
0x265e5a51)
0xe9b6c7aa)
0x0d62f105d)
0x02441453)
0xd8ale681)
0Oxe7d3fbc8)
0x21elcde6)
0xc33707d6)
0xf4d50d87)
0x455alded)
0xa9¢3¢905)
Oxfcefa3f8)
0x676102d9)
0x8d2a4c8a)

7.3 MD5§

OQOutput

a = 0xbfc20e04

d = 0x2445ea9a
¢ = Oxbada24bf
b = 0xdae8f105
a = Oxd3e2a4f

d = 0x618adecl
¢ = 0x605da696
b = 0xb10d4538
a = 0xf0ce7848

d = Oxadc2eal9
¢ = 0x8callc71
b = 0xd06eda96
a = Oxcfc79cla

d = 0xef0992d6
¢ = 0x419bb7da
b = 0xa41613f9

Qutput

a = 0x01816d6a
d = 0x8d2bl4de
¢ = 0xf0ec903d

b = 0xfbb03b00
a = 0x3clfe25e

d = 0x53c87df3
¢ = Oxefcf863a

b = 0x7a06c30d
a = 0x00fb73e8
d = 0x968fd037
¢ = 0x14952739
b = 0Oxcf0e19b2
a = Oxeec09e98
d = 0xelcb123e
¢ = 0Oxadfb03bh9
b = 0x3d9b93ef

199
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HH (a, b, ¢, d,
HH (d, a, b, c

HH b, cd a,
a, b, c, d,
d, a, b, c,
¢, d, a, b,
b, ¢, d, a,
a, b, c d,
d:
a

C,

)

b
d, b c,
c,

H (c,
(
H(
H (
H (
H (
H(
H (
H (
H (
H (
H (
H (
H (b,

a,
d
C,
) b )
a,
d, a
C,

11
II

1I (b, ¢, d, a, ms, 21,

II (a, b, c, d

II (d, a, b, ¢, ma, 10,
II (c, d, a, b, mig, 15,
II (b, c, d, a,
Il (a, b, ¢, d,
II (d, a, b, c, mys, 10,

(e,
II (b, c, d a, mi3, 21,
II (a, b, ¢, d, ma4, 6,
(d a, b C, mi1, 10
(
(

c,d,a b

(a, b, ¢, d, mg, 6,
(d, a, b, ¢, m7, 10,
1I (¢, d, a, b, my4, 15,
(
(
(

Table 7.10. Round 3

Function

ms, 4, 0xfffa3942)
mg, 11, 0x8771681)
, mi1, 16, 0x6d9d6122)
mg, 23, 0xfde5380c¢)
mi, 4, Oxadbeeadd)
my, 11, Ox4bdecfa9)
my, 6, 0xf6bb4b60)
mio, 23, Oxbebfbc70)
miz, 4, 0x289b7ec6)
mp, 11, Oxeaal27fa)
ms, 16, 0xd4ef3085)
, mg, 23, 0x4881d05)
mo, 4, 0xd9d4d039)
miz, 11, 0xe6db99e5)
, mys, 16, 0x1fa27cf8)
mo, 23, Oxc4ac5665)

Table 7.11. Round 4

Function
0x£4292244)
0x432af197)
0xab9423a7)
0xfc93a039)
0x655b59¢3)
0x8f0ccc92)
Oxffeff47d)
0x85845dd1)
0x6fa87edf)
Oxfe2ce6e0)
0xa3014314)
0x4e0811al)
0xf7537e82)
0xbd3af235)
, mg, 15, 0x2ad7d2bb)

, mi2, 6,

mji, 21,
msg, 61

, ng, 15,

b, ¢, d, a, mg, 21, 0xeb86d391)

Output
a = 0x3ae82d36
d = 0xf21¢9795
¢ = 0x8043a89c¢

b = 0x3985c48b
a = 0xf8dd0bbf
d = 0x7a6540bb
¢ = 0x7263dcl7
b = 0x79d86cald
a = 0xaf5015ec

d = 0xe9e2e73d
¢ = 0x860d260

b = Oxddfa26e9
a = Ox3aace80d
d = 0xdf9alelc
¢ = Oxffda7edc

b = 0x4d718018

OQutput

Oxbc2cf190
0xc43bf785
0x9d557285
0xbf063e88
0xchec3319
0x20d2175b
0xc6863889
0xf70eal06
0x12f76270
0xd40a121f
0xe4c960a4
0x2fb93bi8
Oxadf1d7b5
0xfd93443b
0x52402¢56
0x9f2895¢cb

[ T T

([}

[ [ T A

IS T

TTO QA TO QT oo o0
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resultant four words a, b, ¢, and d would be in little-endian format. They need
to be converted back to its original format. Finally, four words a,b, ¢, and d
are concatenated to give the 128-bit hash of the given message as shown in
Table 7.12.

Table 7.12. Final Transformation

Initial Round Final Conversion from
Hash Values Output Transformation  Little Endian
a = 0x67452301 b = Oxefcdab89 c¢ = 0x98badcfe d = 0x10325476
a = Oxadfld7b5 b = 0x9f2895cbh ¢ = 0x5a402¢56 d = 0xfd93443b
a = 0x1536fab6 b = 0x8ef64154 ¢ = 0xf2fb0954 d = 0x0d508¢19
a = 0xb6fa3615 b = 0x5441f68e c = 0x5409fbf2 d = 0xb198c50d

Final Hash = b6fa36155441£68e¢5409fbf2b198¢50d

7.4 SHA-1, SHA-256, SHA-384 and SHA-512

The FIPS 180-2 [255] supersedes FIPS 180-1 [95]. It includes four secure hash
algorithms SHA-1, SHA-224, SHA-384 and SHA-512. SHA-1 is identical to
SHA-1 specified in FIPS 180-1%.

Some notational changes have been introduced to make it consistent with
the other three algorithms. All four algorithms are one way iterative hash
functions. They differ in terms of block and word size. They also differ in
the size of the message digest, which redounds in different levels of security.
Table 7.13 compares basic specifications of the four secure hash algorithms.

Table 7.13. Comparing Specifications for Four Hash Algorithms

Algorithm Message Size Block Size Word Size Message Digest Security

(bits) (bits) (bits) (bits) (bits)
SHA-1 < 284 512 32 160 80
SHA-256 < 284 512 32 256 128
SHA-384 < 2128 1024 64 384 192
SHA-512 < 2128 1024 64 512 256

! Just as it happened with MD5, the SHA family of hash algorithms has been
successfully attacked in several recent papers [371, 107].
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7.4.1 Message Preprocessing

Preprocessing is always done before hash computation begins. Preprocessing
comprises three main steps,

Step 1: Padding the message
Step 2: Parsing the padded message
Step 3: Setting the initial hash values

The hash computation for SHA-1 and SHA-256 requires 512-bit block. A
1024-bit input block is processed by SHA-384 and SHA-512 hash computation.
Preprocessing for both categories is discussed separately.

SHA-1 and SHA-256
Step 1: Padding the Message

Let [ be the length of the message M in bits. Append bit ‘1’ to
the end of the message followed by k zeroes such that the length of the
resulting block is 64 bits short of 512 bits, i.e.,

Result = M + 1 + k = 448 mod 512.

The remaining 64 bits are reserved for adding the message length [ in
its binary representation. As an example, the message ‘try’ has an ASCII
representation of 24 bits (8 x 3). Therefore, it requires 423 more bits to be
padded at the end of the message in addition to the leading bit ‘1’ in order to
complete a block of 448 bits. The message length [ = 24 in its 64-bit Boolean
representation is appended at the end, as shown in Fig. 7.8.

423 64

— | ——

01110100 01110010 01111001 1 00....00 00...011000

_— Y Y —
t r y | =24

Fig. 7.8. Padding Message in SHA-1 and SHA-256

Padding is always made even if the message block is of 448 bits. For a 448-
bit message, a single bit ‘1’ is appended at the end followed by 447 zeroes.
Thus, in that case, an apparent single block message would be treated as two
separated blocks.

Step 2 : Parsing the message

A padded message is parsed to N 512-bit blocks, namely, Mg, Mi,..., My.
Where each M; block is organized into sixteen 32-bit blocks, namely, M, M},
..., M}®. Therefore, the first sixteen 32-bit blocks are: MJ, Mg,..., M}S.
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Step 3: Setting the initial hash values

Before beginning the actual hash function computation, initial values must be
set. Those values are provided by the algorithm. Table 7.14 and Table 7.15
show in hex format five 32-bit words for SHA-1 and eight 32-bit words for
SHA-256, respectively.

Table 7.14. Initial Hash Values for SHA-1

a = 0x67452301
b = Oxefcdab89
¢ = 0x98badcfe
d = 0x10325476
e = Oxc3d2elf0

Table 7.15. Initial Hash Values for SHA-256

a = 0x6a09e667
b = 0xbb67ae85
b = 0x3c6ef372

¢ = Oxab4ff53a

d = 0x510e527f
e = 0x9b05688c
f = 0x1f83d9%ab
g = 0x5belcd19

SHA-384 and SHA-512
Step 1: Padding the message

Padding procedure for SHA-384 and SHA-512 is similar to those of SHA-1 and
SHA-256. However, let us recall that both SHA-384 and SHA-512 operate on
1024-bit message blocks, which consequently causes a change in other lengths.
Let ! be the length of the message M in bits. In this case, after appending
a single bit ‘1’ to the end of the message, k zeroes are added such that the
length of the resulting block is 120 bits short of 1024 bits,

Result =M + 1 + k = 896 mod 1024

The remaining 120 bits are reserved for appending the message length [
in its binary representation. Once again, let us consider the same example
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message “try” (24 bits). In this case, 871 more bits are required to be padded
at the end of the message in addition to the mandatory leading bit ‘1’ to
complete a block of 896 bits. The remaining 120 bits represent the message
length as shown in Fig.7.9.

423 64
P
01110100 01110010 01111001 1 00....00 00...011000
S—— Y Y N aand
t r y 1=24

Fig. 7.9. Padding Message in SHA-384 and SHA-512

Step 2 : Parsing the message

Padded messages are parsed to N 1024-bit blocks: My, My,..., My. Where
each M; comprises thirty-two 32-bit blocks, namely, M?, M}, ... M3 The
first thirty-two 32 blocks are M3, MZ,..., M3!, and so on.

Step 3: Setting the initial hash values

The initial values SHA-384 and SHA-512 comprises two sets of eight 64-bit
words as shown in Table 7.16 and Table 7.17.

Table 7.16. Initial Hash Values for SHA-384

Oxcbbb9d5dc1059ed8
0x629a292a367cd507
= 0x9159015a3070dd17
d = 0x152fecd8f70e5939
e = 0x67332667ffc00b31
f = 0x8eb44a8768581511
g = 0xdb0c2e0d64f98fa7
h = 0x47b5481dbefadfad

(I

a
b
c

7.4.2 Functions

The auxiliary functions used in SHA-1 differ to those functions used in SHA-
256, SHA-384 and SHA-512. Functions used in SHA-256, SHA-384 and SHA-
512 are identical but they operate on different word sizes.
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Table 7.17. Initial Hash Values for SHA-512

a = 0x6a09e667f3bcc908
b = O0xbb67ae8584caa73b
¢ = 0x3c6ef372fe9482b

d = 0xab4ff53a5{1d36f1

d = 0x510e527fade682d1
e = 0x9b05688c2b3ebclf
f = 0x1f83d%abfb41bd6b
g = 0xbbe0cd19137e2179

7.4.3 SHA-1

The function F; in SHA-1 takes three 32-bit words X, Y, and Z, producing
a single 32-bit word output, where the variable ¢ ranges from 0 to 79. It is
defined as indicated below.

Ch(X,Y,Z) = (XORY)® ((NOT X)OR %) 0<t<19
Foo ) PatyXY,2)=XeYaZz 20 <t <39
v 7T Maj(X,Y,Z) =(XORY)®(X ORZ)® (Y OR Z) 40 <t <59

Parity(X,Y,Z) = X @Y @ Z 60 <t <79

A reconfigurable hardware architecture for the F; is illustrated in Fig. 7.10.
It is noted that all three, Ch, Parity, and Maj, occupy a single LUT when
1-bit operand is processed.

1LUT 1Tt gl
X X
Y D4> Chixy.2) y y
R 2 D‘DParity(x, y.z) D—\
Z r4
@ o) — >
{c}

Fig. 7.10. Implementing SHA-1 Auxiliary Functions in Reconfigurable Hardware

Maij(x.y,z)

SHA-256, SHA-384 and SHA-512

All three, SHA-256, SHA-384 and SHA-512, use six logical functions. Each
function operates on three words X, Y, and Z producing a new word of
the same size as output. SHA-256 operates on 32-bit long words X, Y and
Z. However, both SHA-384 and SHA-512 operates on 64-bit words. The six
functions are,
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Ch(X,Y,Z) = (X ORY)® ((NOT X) OR Z)
Maj(X,Y,Z) = (X ORY)® (X OR Z)® (Y OR Z)
Zo(X) = ROTRY(X) ® ROTRY¥(X) & ROTR*(X)
$1(X) = ROTR®(X) @ ROTR(X) ® ROTR?(X)
00(X) = ROTR'(X) ® ROTR'®(X) ® ROTR3(X)
o1(X) = ROTRY(X) ® ROTRY(X) ® ROTR(X)

The architectures for Ch(X,Y, Z) and Maj(X,Y, Z) are identical to the
architectures presented in Fig. 7.10. The architectures for Xy, Xy, 09, and o4,
are also simple. Since the rotation operation can be implemented in reconfig-
urable hardware by only using routing resources, each of the aforementioned
functions can be accommodated into a single LUT as shown in Fig. 7.11.

USE ROUTING RESOURCES 1 LUT USE ROUTING RESOURCES 1 LUT

I
_3D>SO(X)
G
(a) (c)

USE ROUTING RESOURCES 1 LUT USE ROUTING RESOURCES 1 LUT

£>70(x) X0

T>74(x) > s4(x)

(b)

Fig. 7.11. Xy, X1, 00, and o1 in Reconfigurable Hardware

7.4.4 Constants

Constants for SHA-1 and SHA-256 differ. On the other hand, SHA-384 and
SHA-512, share the same constant values.

SHA-1

SHA-1 uses eighty 32-bit constant words Ky,K1,, K79 which are given below,
in hex format.

0z5a827999 0<t<19
0250827999 20<t<39
0z8 f1bbedc 40<t<5H9
Ozcab2cld6 60<t<79

Ky
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SHA-256

SHA-256 uses sixty four 32-bit different constant words, Ko, K1,..., Kes.
Those constants are extracted from the first 32 bits of the fractional parts
of the first 64 prime numbers’ cube roots. They are shown in hexadecimal
format in Table 7.18.

Table 7.18. SHA-256 Constants

428a2f98 71374491 b5cOfbef e9b5Sdbab 3956¢25b 5911111 923f82a4 ablcSed5
d8072a98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 c19bfl74
e49b69c] efbed4786 0fc19dc6 240calcc 2de92¢6f 4a7484aa 5cbla9dc 76f988da
983e5152 a831c66d b00327c8 bfs97fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722¢85
a2bfe8al a8la664b c24b8b70 c76cH51a3 d192e819 d6990624 f40e3585 10622070
19a4c¢116 1e376¢08 2748774c 34b0bcb5 391c0cb3 4ed8aada 5b9ccadf 682e6ff3
748f82¢e 78a5636f 84c87814 8cc70208 90befffa a4506ceb befdalf7 c67178f2

SHA-384 & SHA-512

SHA-384 and SHA-512 use eighty 64-bit different constant words Ky, K1, ..., K7g.
Those constants are extracted from the first 64 bits of the fractional parts of

the first 80 prime numbers’ cube roots. They are shown in hexadecimal format
in Table 7.19.

7.4.5 Hash Computation

The main procedure for hash calculation in SHA-256, SHA-384, and SHA-
512 is similar, only the word size varies. SHA-1 hash computation is however
different. We can classify the hash calculation procedure of the SHA algorithm
family into 3 major steps.

1. Define Word
2. Repeat Operation
3. Final Transformation

SHA-1

o Define Word: After performing message preprocessing for SHA-1, an 5**

block message M: (0 < n < 15), is used to get 80 words for next steps as
follows:

W, = M} 0<t<19
¢t T\ ROTLY (W3 & Wi_g @ Wy_16) 16 <t < 79



208 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.19. SHA-384 & SHA-512 Constants

428a2f98d728ae22 T137449123ef65cd bhHcOfbefecdd3b2f e9b5dba58189dbbe
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ablcSed5da6d8118
d8072a98a3030242 12835b0145706fbe 243185bedeedb28c 550cTdc3d5ffbde2
T2beb5d74f27h896f 80deblfe3b1696b1 9bdc06a725¢71235 c¢19bf174cf692694
e49b69c19efldad2 efbed786384f25e3 0fc19dc68b8cd5bs 240calccTTac9ch5
2de92c6f592b0275 4aT484aabeabed83 Schb0a9dcbd41fbdd4 T6f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf59TfcTbeefleed
c6e00bf33das8fc2 db5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c¢26c926 4d2c6dfcSacd2aed 53380d139d95b3df
650a73548baf63de T66a0abb3c77b2a8 81c2c92edTedaecet 92722c851482353b
a2bfe8aldcfl0364 a81a664bbecd23001 ¢24b8b70d0f89791 c76c51a30654be30
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8
391c0cb3cbc95a63 dedBaadaedd18ach 5b9ccadfi763e373 682e6ff3d6b2bBa3
T748f82ee5defb2fc 78a5636f43172f60 84c87814alf0ab72 8cc702081a6439%c
90befffa23631e28 ad506cebde82bded befda3f7b2c67915 c67178f2e372532b
ca273eceea26619¢ d186b8c721c0c207 eadaT7ddbedeleble f57d4f7feebed178
06f067aa72176fba 0a637dcha2c898a6 113f9804bef90dae 1b710b35131cd71b
28db77f523047d84 32caab7b40c¢72493 3c9ebelalicIbebe 431d67c49¢100d4c
4ec5d4bech3ed2b6 597f299cfc657e2a  Sfcb6fab3ad6faec 6c44198c4a475817

e Repeat Operation: A single operation for SHA-1 is shown in Fig. 7.12
which must be repeated 80 times. Let us recall that for the first sub block
message, initial values for words a, b,c,d, and e are provided by the algo-
rithm, For the next message sub-blocks, the output hash value of an "

message block serves as initial vector for the hash computation process of

the next sub block message. The symbol K represents SHA-1 constant

values.
SB; SB; SB,
A 4
ho n by T T » h,

Fig. 7.12. Single Operation for SHA-1

¢ Final Transformation: Final transformation is simply the addition (modulo
232) of the initial hash value with the final output hash value of the N*"
sub block message. A 160-bit hash of the message is then obtained by
concatenating five 32-bit words, namely,
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alfblclldle

SHA-256

Define Word: After performing message preprocessing for SHA-256, an **
block message M (0 < n < 15), is used to get 64 words for next steps as
follows?:

e M 0<t
£ Ul(Wt 2) + Wiz + 0o(Wi_15) 16 <

19

t <63

Repeat Operation: A single operation for SHA-256 is shown in Fig. 7.13
which is repeated for 60 times. Similarly as in SHA-1, for the first sub block
message, initial values for 8 words a, b,c,d,e, f,g, and h are provided by the
algorithm. For next message blocks, output hash values for an i** block
message serve as initial vectors for hash calculating process on next sub
block message. The symbol K represents constant values for SHA-256.

{ Zya) L_t_ll Lt

b L

Maj(a,b, }_"‘
c aj(a,b,c, c
d d
e e) D+ e

Kt Wt

f | f

Ch(e,fg) + + + +
g9 g
h h

Fig. 7.13. Single Operation for SHA-256

Final Transformation: Final transformation is simply the addition (modulo
232) of the initial hash values with the final output hash values of N*t
message sub block. A 256-bit hash of the message is then obtained by
concatenating eight 32-bit words, namely,

alfofleldllel flighh

2 The operations @ and + , must not be mixed.
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SHA-384

e Define Word: After performing message preprocessing for SHA-384, an "
block message M} (0 < n < 15), is used to get 80 words for the next steps
as follows?,

W, = M} 0<t<19
¢ Gl(Wt_Q) + Wir + Jo(Wt_lg,) 16 <t <63

Here addition is performed modulo 254,

e Repeat Operation: A single operation for SHA-384 is similar to that of
SHA-256 as shown in Fig. 7.13. The difference lies in the number of repe-
titions which are 80, instead of the 60 repetitions of SHA-256.

e Final Transformation: Final transformation consists on the addition (mod-
ulo 2%%) of the initial hash values with the final output hash values of N**
sub block message. A 384-bit message digest is then obtained by truncating
the last 2 words. The first six 64-bit words are concatenated as follows.

altblieldlel s

SHA-512

The process of hash computation for SHA-512 is quite similar to that of SHA-
384. There are only two exceptions. The first one is due to loading the initial
values for the 8 words «, b,c,de,f,g, and h, which are different for both SHA-
384 and SHA-512. The second difference is that a 512-bit message digest is
obtained by concatenating all 8 words. Last 2 words are not truncated as it
is in the case of SHA-384.

alfblicltdllell fllghh

7.5 Hardware Architectures

The main moral of the preceding Sections is that hash function computation is
iterative in nature. To calculate hash values, several rounds must be performed
where each round comprises a certain number of steps. The output of a step
serves as input to the next step and the output of a round serves as the input
of the next round.

That characteristic does not prevent us from designing a fully pipeline or
sub pipeline architecture for hash functions. Let us recall that the input mes-
sage M is divided into N blocks. Hash computation of a new block cannot
start until the hash computation of the previous block has been fully com-
pleted. The hash values (output) of the first block are now the initial values

3 It is noticed that the word size for SHA-384 is 64-bit as compared to SHA-256
which is 32-bit long.
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for the hash computation of the second block message. That restricts us from
start processing the second block although only a single stage is active and
all others are idle during hash computation.

However, different strategies have been proposed by designers in order to
improve the data flow at different stages of the design so that high speed gains
can be obtained. The different design strategies are discussed in the rest of
this Section.

7.5.1 Iterative Design

An iterative design is a natural approach for the implementation of hash
functions on hardware platforms. Fig. 7.14 presents an iterative approach for
implementing hash algorithms in hardware.

Appending M
Message essage ROM RAM
IN-® | Padding | ";ZZZ?S: > | scheduler
K

V; d CVin1
A A 4 A

Hash Iterative Core CV,
Message Digest

Fig. 7.14. Iterative Approach for Hash Function Implementation

A

Hash Finite

CLK State Machine

The input message is formatted according to the algorithm requirements
in two steps. Those are message padding, and then appending the message
length on it. Message scheduler shall provide a sub block or a word derived
from some sub blocks for any given algorithm step. Constants provided by the
algorithm can be stored in a memory block (ROM). The initial hash values
are required till the end of one iteration of the algorithm. This is in order
to perform the final transformation (simple XOR with the final output of
the iteration). Hence, at the end of a given iteration, partial results must
update the input parameters for the next iteration. BRAMs can be used for
accomplishing this operation.

The block labeled: “Hash Iterative Core” in Fig. 7.14, includes all log-
ical steps needed for accomplishing a particular compression function com-
putation. The exact sequence of those logical steps (i.e., when should they
be executed and with which parameters), is synchronized by the module la-
beled “Hash Finite State Machine” block. Clearly, the main building blocks
of Fig. 7.14 can be altered/combined/modified using different techniques ac-
cording to the characteristics of the target device and the hash algorithm in
hand.
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7.5.2 Pipelined Design

In pipeline architectures, registers are provided at different stages of the algo-
rithm. At each clock cycle, the output of a stage is shifted to the next stage.
Thus, at the first clock cycle, one input block should be loaded. At the next
clock cycle, a second block must be loaded and so on. Once the pipeline is
filled, i.e., the final stage outputs a data, then an output value will be ready
at each clock cycle.

Pipeline is a fast approach but cost has to be paid in terms of hardware
resources. Unfortunately, that approach cannot be fully utilized for hash func-
tion computation due to the inherent dependencies. As it was explained, the
second iteration cannot be started until the computations for first iteration
have been completed. However a sort of pipelining can be achieved for different
operations of the similar stage.

7.5.3 Unrolled Design

Unrolled design approach is a useful technique used on the implementation
of hash algorithms in order to improve their performance on time. In this
approach, all or part of the stages of a hash algorithm are unrolled as is
shown in Fig. 7.15a. That however produces long critical paths which causes
undesirable long path delays in the circuit. Most designers therefore prefer to
unroll some k stages and then to cascade them for the implementation of the
whole algorithm as is shown in Fig. 7.15b.
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(a) Hash function computation
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1 3 n-1
T T - Hash
Vi Stage Stage Stage
2 4 n

(b) On combining K stages

Fig. 7.15. Hash Function Implementation (a) Unrolled Design (b) Combining k
Stages
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7.5.4 A Mixed Approach

Designing circuits with long critical paths is not useful especially if the target
devices are FPGAs. The propagation of long time delays usually implies a
performance diminishing. However some registers can be provided as interface
buffers between neighbor stages of the hash algorithm. That can be also helpful
for producing a more compact design, which will help the mapping synthesis
tool. Another enhancement can be made by combining an unrolled design
structure with the provision of registers between different stages as shown in
Fig. 7.16.
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Fig. 7.16. A Mixed Approach for Hash Function Implementation

7.6 Recent Hardware Implementations of Hash
Functions

Various hardware implementations of hash algorithms have been reported in
literature. Some of them focus on speed optimization while others concen-
trate on saving hardware resources. Some authors have also tried to exploit
parallelism in operations whenever this can be done. Some designs present
a tradeoff between time and hardware resources. It has been shown that by
adding few registers or few memory units, considerable timing improvements
can be obtained.

In the rest of this Section we review some of the most representative hash
function hardware designs recently reported. In total, we review six hash
function algorithms, namely, MD4, MD5, SHA-1, RIPEMD-160, SHA-2 and
Whirpool.
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MD4

A single MD4 FPGA architecture has been reported in the open literature
[328]. The distinct feature of this design is to try to exploit as much par-
allelism and pipelining for the MD4 hash algorithm as possible. That design
implements arithmetic, logic and circular shift operation using a pipelined par-
allel processor. It takes 94.07 uS to compute the message digest of a 512-bit
input message block at 6.67 MHz frequency consuming only 252 CLB slices.

Table 7.20. MD5 Hardware Implementations

Author(s) Target Cost Freq.|Cycles] T' | T/S
Device MHz Mbps
Fastest ASIC MD§ Cores

Satoh et al. [312] 0.13um 17.7K 277.8) 68 |2091]0.117
ASIC gates
Compact ASIC MD5 Cores

Satoh et al. [312] 0.13um 10.3K 133.3] 68 |1004 [ 0.097
ASIC gates

Helicon [358] 0.18um 16K 145 | 65 |1140(0.072
ASIC gates

Sandra 71} 0.6pum 10.9K 59 | 206 | 146 | 0.013

ASIC gates + RAM
Fastest FPGA MD5 Cores
Jarvinen et al. [156]{ Virtex-II 11.5K(10) |[75.5| 66 |5857]0.509
1 XC2V4000-6 | slices(RAM)
Compact FPGA MDS5 Cores

Helicon [358] Virtex-I1 613(1) 96 66 | 744 | 1.213
slices(RAM)
Other FPGA MDS5 Cores
Jarvinen et al. [156]| Virtex-II 5.7K(0) 80.7] 66 {23950.417

647(2) |755| 66 | 586 |0.905
XC2V4000-6 | slices(RAM)

Helicon [358] Spartan3 630(1) 63 | 66 | 488 |0.774
slices(RAM)
Sandra (71} Virtex 2008 42.9| 206 | 107 | 0.083
XCV300E slices
Kang et al. [166] Apex 10.5K 18 65 142 10.0134
EP20K1000E| logic cells
Deepak. et al. [65] Virtex 880(2) 21 | 65 | 165 [0.187

XCV1000-6 | slices(RAM)

t Throughput
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MD5

A considerable number of MD5 hardware implementations have been reported
in the open literature. Table 7.20 presents some selected designs. However,
due to the availability of a large number of FPGA devices by different man-
ufacturers, with different logic complexity within the basic building block, a
comparison of different hash cores becomes complicated.

The ASIC MD5 design in [312] is the fastest one in its category, with a
throughput of 2.09 Gbps at a cost of 17,764 gates on a 0.13um chip.

The authors in [156] designed several MD5 architectures by unrolling a
variable number of MD5 stages. A fully unrolled MD§ architecture is their
fastest design, achieving a throughput of 5.8 Gbps by occupying 11498 slices
plus 10 BRAMs on a Xilinx Virtex-II XC2V4000-6.

A commercially available MD5 core designed by [358] is a compact design
that occupies only 630 slices plus 1 BRAM and reports a throughput of 744
Mbps on a Xilinx Virtex-II device. The throughput over area factor (our figure
of merit for measuring efficiency) achieved in [358] is the best one of all designs
considered in Table 7.20.

Other MDJ5 architectures on different FPGA chips using different design
approaches are also reported in Table 7.20.

SHA-1

Numerous SHA-1 FPGA implementations have been reported in the litera-
ture. A representative group of them are shown in Table 7.21.

The authors in [312] presented two SHA-1 architectures in ASIC hardware,
one of them is the fastest architecture reported in the literature, achieving a
throughput of 2 Gbps by utilizing 9859 gates in a 0.13um chip.

In the reconfigurable hardware category, the fastest design, reported in
[67] achieves a throughput of 899.8 Mbps. That is also a compact design with
the best throughput over area performance.

A SHA-1 architecture in {120] is the 2™ fastest FPGA core. It utilizes carry
save adders to speed up multi-operand additions and to minimize delays with
carry propagation. This design reduces the number of operands in a round by
pre-computing addition of Constants (K) and Words(W) (K; + W;) and also
it eliminates the final round which is incorporated as a conditional addition
within a round. The throughput for this design is reported as 462 Mbps when
operating at a 75.8 MHz clock frequency.

The most compact design for SHA-1 was presented in [71] using as a
target device a Xilinx V300E. It proposes a pipelined parallel structure by
implementing two arithmetic logic units for SHA-1, achieving a throughput
of 119 Mbps at a 59 MHz clock frequency.

The design in [404] utilizes 1622 slices on an Altera EPIK100QC208-1
achieving a throughput of 268.99 Mbps. That is another compact hardware
SHA-1 core on Altera devices.
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Table 7.21. Representative SHA-1 hardware Implementations

Author(s) Target Hardware |Freq.|Cycles] TT |T/S
Device MHz Mbps
Fastest ASIC SHA-1 Cores
Satoh et al [312] 0.13um 9.9K 333.3| 85 | 2006 {0.203
ASIC gates
Compact ASIC SHA-1 Cores
Satoh et al [312] 0.13um 79K 154.3] 85 929 |0.116
ASIC gates
Helicon [358] 0.18um 20K 166 | 81 | 1000 |0.050
ASIC gates
Sandra [71] 0.6um |10.9K + RAM| 59 | 255 | 119 |0.011
ASIC gates
Compact & Fastest FPGA SHA-1 Cores
Diez et al 67} Virtex-1I 1.55K 38.6 22 |899.810.580
XC2V3000 slices
Grembowski et al [120]] Virtex 2.2K 75.76| 84 462 (0.210
XCV1000-6 slices
Other FPGA SHA-1 Cores
Sandra [71] Virtex 2.0K 42.9( 255 86 |0.042
V300E slices
Zibin et al [404] Apex 1.6K 43.08| 82 ]268.99/0.165
EPIK100Q | logic cells
Kang et al [166] Apex 10.5K 18 | 81 114 |0.011
EP20K1000| logic cells
Sklavos {332] Virtex 2.6K 37 233 (0.089
XCV300 slices

t Throughput

Additionally, there exist other SHA-1 cores [67, 404, 166, 332] which pro-
pose some effective techniques to save hardware resources and to increase time
factor. In [166], a significant saving of resources was achieved. This design im-
plements a switching matrix by using multiplexers for an appropriate word
(W) selection. It can operate at 18 MHz and achieves a throughput of 114
Mbps.

The SHA-1 implementation in [332] was used as a pseudo-random number
generator. It is actually a VLSI architecture which was first captured in VHDL
and synthesized on FPGAs. That design allows a system frequency of 37 MHz
and can run at the rate of 233 Mbps.

Finally, the SHA-1 core in [404] explores three Altera FPGA grades for
the same SHA-1 code.
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RIPEMD-160

Table 7.22 presents two FPGA architectures for RIPEMD-160, which were
implemented on devices made by different manufacturers. The design in [249)
is a unified architecture in Altera EPF10K50SBC356-1 for two different hash
algorithms:RIPEMD-160 and MD5. That design achieves a throughput over
200 Mbps for MD5 and 84 Mbps for RIPEMD-160 when operating at 26.66
MHz and it stands as the compact and the fastest RIPMD architecture in
FPGAs. In [71], a RIPEMD-160 FPGA implementation on Xilinx V300E
can run at a 42.9 MHz frequency and achieves a data rate of 89 Mbps.

In ASIC hardware, the fastest RIPEMD architecture is due to [312]. That
design can run at 1.442 Gbps by occupying 24755 gates on a 0.13um chip.

Table 7.22. Representative RIPEMD-160 FPGA Implementations

Author(s) Target Hardware Freq.[Cycles| T' | T/S
Device MHz Mbps
Fastest ASIC RIPEMD Cores

Satoh et al [312][0.13um ASIC 24775 gates 270.3] 96 | 1442 (0.058
17446 gates 142.9| 96 762 10.044

Sandra [71] 0.6um ASIC [10,900 gates + RAM| 59 | 337 | 89 [0.008
Compact & Fastest FPGA RIPEMD Cores
Ng et al {249) Apex 1964 logic elements |26.66| 162 | 84 |0.042
EPF10K508-1
Sandra [71] Virtex 2008 slices 42.9| 337 | 65 |0.032
V300E

1 Throughput

SHA-2

Table 7.23 shows several representative SHA-2 hardware cores reported in the
open literature.

Authors in [312] reported four ASIC architectures for SHA-224, SHA-256,
SHA-384, and SHA-512 implemented on a 0.13um chip. The fastest among
them is the SHA-512 architecture that achieves a throughput of 2.9 Gbps by
using 27297 gates. That is also the fastest ASIC hardware architecture of any
SHA-2 family of hash algorithms.

The fastest FPGA SHA-2 architectures have been proposed in [222]. It
achieves a throughput of 1466 Mbps on a Xilinx Virtex-II device. The archi-
tecture employed for that SHA-2 (512-bit) design consisted on a two-step (2x)
unrolled implementation. Authors in [222] essayed six variants of the same de-
sign which are named as SHA2 (256) basic, SHA2 (256) 2x-unrolled, SHA2
(256) 4x-unrolled, SHA2 (512) basic, SHA2 (512) 2x-unrolled and SHA2 (512)
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Table 7.23. Representative SHA-2 FPGA Implementations

Author(s) Target Hardware | Freq. |Cycles] TT [T/S
Device MHz Mbps
ASIC SHA-2 Cores
Satoh et al [312]
SHA-224 0.13um ASIC| 11484 gates | 154.1 | 72 {1096 |0.095
SHA-256 0.13um ASIC| 15329 gates | 333.3 | 72 |[2370(0.154
SHA-384 0.13um ASIC| 23146 gates | 125.0 | 88 | 1455 (0.062
SHA-512 0.13um ASIC| 27297 gates | 250.0 | 88 |2909 |0.106
Helicon [358]
SHA-256 0.18um ASIC| 22K gates | 200 65 |1575(0.072
Fastest FPGA SHA-2 Cores
McEvoy [222] Virtex-II | 4107 slices |65.893| 46 {1466 [0.357
SHA-2(512) XC2V2000
Compact FPGA SHA-2 Cores
Sklavos et al [333] Virtex 1060 slices | 83 326 10.307
SHA-2(256) XCV200-6
Other FPGA SHA-2 Cores
Sklavos et al [333] Virtex 1966 slices | 74 350 [0.178
SHA-2(384) XCV200-6
Sklavos et al [333] Virtex 2237 slices | 75 480 10.214
SHA-2(512) XCV200-6
McLoone et al [224] Virtex 2914 slices +| 38 80 | 479 (0.164
SHA-2(384) XCV600E-8 | 2 BRAMs
McLoone et al [224]|  Virtex 2914 slices | 38 80 | 479 0.164
SHA-2(512) XCV600E-8 | 2 BRAMs
McEvoy {222]
SHA-2(256)
(Basic) Virtex-1I 1373 slices |133.06] 68 |[1009]0.734
XC2V2000
(2x-unrolled) Virtex-11 2032 slices |73.975| 38 [996.7]0.490
XC2V2000
(4x-unrolled) Virtex-1I 2898 slices |40.833] 23 [908.9(0.313
XC2V2000
McEvoy [222]
SHA-2(512)
(Basic) Virtex-I1 2726 slices {109.03] 84 |1329(0.487
XC2V2000
(4x-unrolled) Virtex-II 5807 slices {35.971f 27 {1364 (0.234
XC2V2000

t Throughput
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4x-unrolled. Those architectures optimize time performances by combining
pipelining and unrolling techniques.

In {333], a common architecture is customized for three SHA2 algorithms:
SHA2 (256), SHA2 (384) and SHA2 (512). The design compares three im-
plementations in terms of operating frequency, throughput and area-delay
product. Among them, SHA2 (256) FPGA implementation consumes least
hardware resources in the literature, achieving a throughput of 326 Mbps on
a Xilinx V200PQ240-6.

In [224], a single chip FPGA implementation is also presented for SHA2
(384) and SHA2 (512). That architecture optimizes time factor and hardware
area by using shift registers for message scheduler and compression block.
Similarly, block select RAMs (BRAMs) are used to store the compression
function constants.

Table 7.24. Representative Whirlpool FPGA Implementations

Author(s) Target | Hardware |Freq.[Cycles| TF [T/S
Device MHz Mbps
Fastest FPGA Whirlpool Cores
McLoone et al [226] Virtex-4 |13210 slices| 47.8 4896 10.370
2xunrolled X4VLX100
Kitsos et al {173] Virtex | 5585 slices | 87.5| 10 |4480 |0.802
LUT based XCV1000E

Time optimized

Compact FPGA Whirlpool Cores

Pramstaller et al [274] Virtex-2P | 1456 slices | 131 382 10.262

XC2VP40

Other FPGA Whirlpool Cores

Kitsos et al [173] VirtexE | 3815 slices | 75 | 20 ]1920]0.503
Boolean expression based|XCV1000E
Kitsos et al [173] VirtexE | 3751 slices | 93 20 [2380(0.634
LUT based XCV1000E
Kitsos et al {173} VirtexE | 5713 slices | 72 10 | 3686 (0.645

Boolean expression based | XCV1000E
Time optimized
McLoone [226] Virtex-4 | 4956 slices [93.56 4790 [0.966
X4VLX100

t Throughput

Whirlpool

Table 7.24 lists various Whirlpool FPGA-based architectures. The fastest
Whirlpool core has been reported in [226]. That is a 2 stages (2x) unrolled
Whirlpool architecture implemented on a Xilinx Virtex-4 which achieves a
throughput of 4896 Mbps by consuming 13210 CLB slices.
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Another Whirlpool core showing similar throughput to the design in [226]
is due to [173] which reports a throughput of 4480 Mbps on a Xilinx XCV1000
by occupying 5585 CLB slices and also some dedicated memory modules.
Three more variants of that design are also presented. Those architectures
implement Whirlpool mini boxes by using Boolean expressions, referred to as
BB (Boolean expressions Based) and by using FPGA LUTs, referred to as LB
(LUT Based) respectively. Let us call them as Whirlpool BB and Whirlpool
LB. Both Whirlpool BB and Whirlpool LB can operate at rates of 1920 Mbps
and 2380 Mbps. Both architectures are further optimized for time, increasing
throughputs to 3686 Mbps and 4480 Mbps.

In contrast to the aforementioned architectures, a compact FPGA imple-
mentation of Whirlpool hash function was reported in [274]. That architecture
focuses on saving considerable hardware resources by using LUT-based RAM
for Whirlpool state. Authors report a hardware cost of just 1456 CLB slices
achieving a data rate of 382 Mbps.

7.7 Conclusions

In this chapter, various popular hash algorithms were described. The main em-
phasis on that description was made on evaluating hardware implementation
aspects of hash algorithms.

MD5 description included in this Chapter can be regarded as a step by
step example of how intermediate values are being updated during algorithm
execution. We have mentioned that MD5 design methodology has a strong
influence in almost all modern hash functions. The explanation provided for
SHA family of hash algorithms can be regarded as an evidence that the struc-
ture of current hash algorithms borrows basic rules and principles from their
predecessors.

A fair number of hash function implementations in reconfigurable Hard-
ware have been reported so far. Those architectures do not pretend to be a
universal solution for all the universe of hash applications such as, secure web
traffic (https /SSL), encrypted e-mail(PGP, S/MIME), digital certificates,
cryptographic document authenticity, secure remote access (ssh/sftp), etc.

However, the usage of reconfigurable hardware for hash function implan-
tations can provide a unique benefit of reconfiguring customized hardware
architecture according to the specifications of end users. Furthermore, given
the fact that most hash functions are enduring difficult times, where several
emblematic hash functions have been critically attacked, new security patches
could be easily incorporated.
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General Guidelines for Implementing Block
Ciphers in FPGAs

This chapter pretends to provide general guidelines for the efficient imple-
mentation of block ciphers in reconfigurable hardware platforms. The general
structure and design principles for block ciphers are discussed. Basic primi-
tives in block ciphers are identified and useful design techniques are studied
and analyzed in order to obtain efficient implementations of them on recon-
figurable devices. As a case of study, those techniques are applied to the Data
Encryption Standard (DES), thus producing a compact DES core.

8.1 Introduction

Block ciphers are based on well-understood mathematical problems. They
make extensive use of non-linear functions and linear modular algebra [227].
Most block ciphers exhibit a highly regular structure: same building blocks are
applied a predetermined number of times. Generally speaking, block ciphers
are symmetric in nature. Sometimes encryption and decryption only differ in
the order that sub-keys are used (either ascending or descending order). Thus,
quite often pretty much the same machinery can be used for both processes.
Implementation of block ciphers mainly use bit-level operations and ta-
ble look-ups. The bit-level operations include standard combinational logic
operations (such as XORs, AND, OR, etc.), substitutions, logical shifts and
permutations, etc. Those operations can be nicely mapped to the structure of
FPGA devices. In addition, there are built-in dedicated resources like mem-
ory modules which can be used as a Look Up Tables (LUTSs) to speedup the
substitution operation, which is one of the key transformations of modern
block ciphers. Furthermore, contemporary FPGAs are capable of accommo-
dating big circuits making possible to generate highly parallel crypto cores.
All these features combine together for providing spectacular speedups on the
implementation of crypto algorithms in reconfigurable devices.
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In this chapter, we analyze key block ciphers characteristics. We explore
general strategies for implementing them on FPGA devices. We search for
the most frequent operations involved in their transformations and develop
strategies for their implementations in reconfigurable devices. It has been al-
ready pointed out how bit level parallelism can be greatly exploited in FPGAs.
As we will see, this fact is especially true for block ciphers. As a way of il-
lustration, we test our methodology in one specific case of study: the Data
Encryption Standard (DES). Furthermore, in the next Chapter our strategies
are also applied to the Advanced Encryption Standard (AES).

DES is the most popular, widely studied and heavily used block cipher. It
has been around for quite a long time, more than thirty years now [64, 92]. It
was developed by IBM in the mid-seventies. The DES algorithm is organized
in repetitive rounds composed of several bit-level operations such as logical
operations, permutations, substitutions, shift operations, etc. Although those
features are naturally suited for efficient implementations on reconfigurable
devices, DES implementations can be found on all platforms: software [64,
92, 169, 25, 23], VLSI [78, 76, 381] and reconfigurable hardware using FPGA
devices [204, 384, 167, 99, 225, 381, 271]. In this Chapter, we present an
efficient and compact DES architecture especially designed for reconfigurable
hardware platforms.

The rest of this Chapter is organized as follows. Section 8.2 describes
the general structure and design principles behind block ciphers. Emphasis is
given on useful properties for the implementation of block ciphers in FPGAs.
An introduction to DES is presented in Section 8.3. In Section 8.4, design
techniques for obtaining an efficient implementation of DES are explained. In
Section 8.5 a survey of recently reported DES cores is given. Finally, conclud-
ing remarks are drawn in Section 8.6.

8.2 Block Ciphers

In cryptography, a block cipher is a type of symmetric key cipher which op-
erates on groups of bits of some fixed length, called blocks. The block size is
typically of 64 or 128 bits, though some ciphers support variable block lengths.
DES is a typical example of a block cipher, which operates on 64-bit plaintext
block. Modern symmetric ciphers operate with a block length of 128 bits or
more. Rijndael (selected in October, 2000 as the new Advanced Encryption
Standard), for instance, allows block lengths of 128, 192, or 256 bits.

A block cipher makes use of a key for both encryption and decryption. Not
always the key length matches the block size of the input data. For example,
in triple DES or 3DES for short (a variant of DES), a 64-bit block is processed
using a 168-bit key (three 56-bit keys) for encryption and decryption. Rijndael
allows various combinations of 128, 192, and 256 bits for key and input data
blocks.
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As it was already mentioned in §2.7 Some of the major factors that deter-
mine the security strength of a given symmetric block cipher algorithm include,
the quality of the algorithm itself, the key size used and the block size handled
by the algorithm. Block lengths of less than 80 bits are not recommended for
current security applications [253).

In the rest of this Section, general structure and design principles of the
block ciphers are discussed. We explain several primitives which commonly
form part of the repertory of block cipher transformations. Finally, we give
some comments about their hardware implementation, specifically on recon-
figurable type of hardware.

8.2.1 General Structure of a Block Cipher

As is shown in Figure 8.1, there are three main processes in block ciphers:
encryption, decryption and key schedule. For the encryption process, the input
is plaintext and the output is ciphertezt. For the decryption process, ciphertext
becomes the input and the resultant output is the original plaintext. A number
of rounds are performed for encryption/decryption on a single block. Each
round uses a round key which is derived from the cipher key through a process
called key scheduling. Those three processes are further discussed below.

Plaintext Ciphertext

EEEL:_EDZI

Block Cipher
Decryption

\ \/
Ciphertext Plaintext

Round transformation
l round 1 l roundZ[ ......................................... l roundnl

v

Block Cipher
Encryption

Key Schedule >

Fig. 8.1. General Structure of a Block Cipher

Block Cipher Encryption

Many modern block ciphers are Fiestel ciphers [342]. Fiestel ciphers divide
input block into two halves. Those two halves are processed through n number
of rounds. In the final round, the two output halves are combined to produce
a single ciphertext block. All rounds have similar structure. Each round uses



224 8. General Guidelines for Implementing Block Ciphers in FPGAs

a round key, which is derived from the previous round key. The round key for
the first round is derived from the user’s master key. In general all the round
keys are different from each other and from the cipher key.

Many modern block ciphers partially or completely employ a similar Fies-
tel structure. DES is considered a perfect Fiestel cipher. Modern block ciphers
also repeat n rounds of the algorithm but they do not necessarily divide the
input block into two halves. All the rounds of the algorithm are generally sim-
ilar if not identical. Round operations normally include some non-linear trans-
formations like substitution and permutation making the algorithm stronger
against cryptanalytic attacks.

Block Cipher Decryption

As it was explained, one of the main characteristics of a Fiestel cipher is
the usage of a similar structure for encryption and decryption processes. The
difference lies on the order that the round keys are applied. For decryption,
round keys are used in reverse order as that of encryption. Modern block
ciphers also use round keys following a similar style, however, encryption and
decryption processes for some of them may not be the same. In any case, they
preserve the symmetric nature of the algorithm by guaranteeing that each
transformation will always have its corresponding inverse. As a result both,
the encryption and decryption processes tend to appear similar in structure.

Key Schedule

The round keys are derived from the user key through a process called key
scheduling. Block ciphers define several transformations for deriving the round
keys to be utilized during the encryption and decryption processes. For some
of them, round keys for decryption are derived using reverse transformations.
Alternatively, keys derived for encryption can be simply used during the de-
cryption process in reverse order.

8.2.2 Design Principles for a Block Cipher

During the last two decades both, theoretical new findings as well as innova-
tive and ingenious practical attacks have significantly increase the vulnerabil-
ity of security services. Every day, more effective attacks are launched against
cryptographic algorithms. We also have seen a tremendous boost in computa-
tional power. Successful exhaustive key search engines have been developed in
software as well as in hardware platforms. As a consequence of this, old cryp-
tographic standards were revised and new design principles were suggested to
improve current security features. In this subsection, we analyze some of the
key features that directly impact the design of a block cipher.
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Key Size

If a block cipher is said to be highly resistant against brute force attack, then
its strength is determined by its key length: the longer the key, the longer it
takes before a brute force search can succeed. This is one of the reasons why,
modern block ciphers employ key lengths of 128 bits or more.

Variable Key Length

On the one hand, longer keys provide more security against brute force at-
tacks. On the other hand, a large key length may slow down data transmission
due to low encryption speed. Modern block ciphers therefore offer variable
key lengths in order to support different security and encryption speed com-
promises. All the five finalists of the 2000 competition for selecting the new
advance encryption standard, namely, RC6, Twofish, Serpent, MARS and Ri-
jndael, provide variable key lengths.

Mixed Operations

In order to make the job of a cryptanalyst more complex, it is considered useful
to apply more than one arithmetic and/or Boolean operators into a block
cipher. This approach adds more non-linearity producing complex functions
as an alternative to S-boxes (substitution boxes). Mixed operations are also
used in the construction of S-boxes to add non-linearity thus making them
produce more unpredictable results.

Variable Number of Rounds

Round functions in crypto algorithms add a great deal of complexity, which
implies that the crypto-analysis process becomes significantly less amenable.
By increasing the number of rounds larger safety margins are provided. On
the contrary, a large number of rounds slows cipher encryption speed. Mod-
ern block ciphers provide variable number of rounds allowing users to trade
security by time. It should be noticed that the strength of a given crypto
algorithm is also linked with the other design parameters. For example, AES
with 10 rounds provides higher security as compared to DES with 16 rounds.

Variable Block Length

The security of a block cipher against brute force attacks is dependent upon
key and block lengths. Longer keys and block lengths obviously imply a bigger
search space, which tend to give more security to a cipher algorithm. As
it has been said, modern ciphers support variable key and block lengths,
thus assuring that the algorithm becomes more flexible according to different
security requirement scenarios.
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Fast Key Setup

Blowfish uses a lengthy key schedule. Therefore, the process of generating
round keys for encrypting/decrypting a single data block may take a signifi-
cant amount of time. On the other hand, this characteristic also adds security
to Blowfish in the sense that it greatly magnifies the time to search all possibil-
ities for round keys. However for those applications where the cipher key must
be changed frequently, a fast key setup is needed. For example, overheads due
to key setup during the encryption of the security Internet protocol (IPSec)
packets are quite considerable. That is why most modern block ciphers offer
simple and fast key schedule algorithms. Rijndael Key schedule algorithm is
a good example of an efficient process for round key generation.

Software/Hardware Implementations

It was the time when crypto algorithms were designed to get an efficient im-
plementation on 8-bit processors. Most of their arithmetic/logical functions
were designed to operate on byte level. Perhaps, encryption speed was not a
must have issue as it is now. Those times has gone for good. There are applica-
tions which require high encryption speeds either for software or for hardware
platforms. This is why cryptographers started to include those functions in
crypto algorithms which can be efficiently executed in both software and hard-
ware platforms. For example, the XOR operation can be found in virtually
all modern block ciphers, among other reasons, because of its efficiency when
implemented in software as well as in hardware platforms.

Simple Arithmetic/Logical Operations

A complex crypto algorithm might not be strong enough cryptographically.
The attribute of simplicity can be seen in most of the strong block ciphers used
nowadays. They mainly include easily understandable bit-wise operations.

Table 8.1 describes key features for some famous block ciphers including
the five finalists (AES, MARS, RC6, Serpent, Twofish) of the NIST-organized
contest for selecting the new Advanced Encryption Standard. It can be seen
that modern block ciphers use high block lengths of 128 bits or more. Similarly
they provide high key lengths up till 448 bits. Both block and key lengths in
block ciphers are often variable to trade the security and speed for the chosen
algorithm. Number of rounds ranges from 8 to 32. For some block ciphers the
number of round is fixed but for some others that number can vary depending
on the chosen block and key lengths.

It is noticed that most block ciphers can be efficiently implemented in
software and hardware platforms. All block ciphers generally include bit-wise
(XOR, AND) and shift or rotate operations. Excluding a small minority of
block ciphers, most algorithms use the so-called S-bozes for substitution. Fast
key set-up is an important feature among modern block ciphers. They are
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Table 8.1. Key Features for Some Famous Block Ciphers

DES|Blowfish(IDEA|AES MARS |RC6 Serpent|T'woFish
Properties
Block length (64 |64 64 128-256(128 128 128 128
Key length 64 |32-448 128 |128-256}128-448|128-256|256 128-192
No. of rounds {16 |16 8 10-14 |32 20 32 16
Software v_ IV v__ |V v i v v
Hardware |V |/ vV v v V. i
Symmetric v W Vv X X X X Vv
Bit-operations |/ [/ Vv Vv N N v N
Permutation [/ [x X X X X N/ v
S-Box v_ IV x IV v X v v
Shift /rotate |/ |x v N N Vv v Vv
Fast key setup|y/ |X Vv Vv Vv N v N

not always symmetric, that is, same building blocks used for encryption not
necessarily can be used for decryption.

8.2.3 Useful Properties for Implementing Block Ciphers in FPGAs

Hardware implementations are intrinsically more physically secure: key ac-
cess and algorithm modification is considerably harder. In this subsection we
identify some useful properties in symmetric ciphers that have the potential
of being nicely mapped to the structure of reconfigurable hardware devices.

Bit-Wise Operations

Most of the block ciphers include bit-level operations like AND, XOR and
OR. which can be efficiently implemented and executed in FPGAs. Indeed,
those operations utilize a relatively modest amount of hardware resources.
The primitive logic units in most of the FPGAs are based on 4-input/1-ouput
configuration. This useful feature of FPGAs allow to build 2, 3, or 4 input
Boolean function using the same hardware resources as shown in Figure 8.2.

Substitution

Substitution is the most common operation in symmetric block ciphers which
adds maximum non-linearity to the algorithm. It is usually constructed as a
look-up table referred to as substitution box (S-Box). The strength of DES
heavily depends on the security robustness of its S-boxes. AES S-box is used
in both encryption and decryption processes and also in its key schedule al-
gorithm.
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Fig. 8.2. Same Resources for 2,3,4-in/1-out Boolean Logic in FPGAs

Formally, an S-box can be defined as a mapping of n input to m output bits,

ie., F: 2} — Z7'. When n = m the mapping is reversible and therefore it is
said to be bijective. AES has only one S-Box, which happens to be reversible,
but all eight DES S-boxes are not!.

FPGA devices offer various solutions for the implementation of substitu-

tion operation as shown in Figure 8.3.

The primitive logic unit in FPGAs can be configured into memory mode.
A 4-in/1-out LUT provides 16 x 1 memory. A large number of LUTs can
be combined into a big memory. This might be seen as a fast approach
because the S-Box pre-computed values can be stored, thus saving valuable
computational time for S-Box manipulation.

The values for S-boxes in some block ciphers can also be calculated. In
this case, if the target device does not contain enough memory, then one
can use combinational logic to implement S-boxes. That could be rather
slow due to large routing overheads in FPGAs.

Some FPGA devices contain built-in memory modules. Those are fast
access memories which do not make use of primitive logic units but they
are integrated within FPGAs. The pre-computed values for S-boxes can
be stored in those dedicated modules. That could be faster as compared to
store S-box values in primitive logic units configured into memory mode.
As it was described in Chapter 3, many FPGA devices from different
manufacturers contain those memory blocks, frequently called BRAMs.

Permutation

Permutation is a common block cipher primitive. Fortunately, there is no
cost associated with this operation since it does not make use of FPGA logic

! 1t is noticed that the number of candidate Boolean functions for building an n

bit input/m bit output S-box is given as 22" 1t follows that even for moderated
values of n and m, the size of the search space becomes huge. However, not all
Boolean functions are suitable for building robust S-Boxes. Some of the desired
cryptographic properties that good candidate Boolean functions must have are:
High non-linearity, high algebraic degree and low auto-correlation, among others.
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Fig. 8.8. Three Approaches for the Implementation of S-Box in FPGAs

resources. It is just rewiring and the bits are rearranged {concatenated) in
the required order. Figure 8.4 demonstrates a simple example of permuting 6
bits only. That strategy can be extended for the permutation operation over
longer blocks.

IN ouT

S U A WN -
A N WaHr O

Permutation for 6 bits

Fig. 8.4. Permutation Operation in FPGAs

Shift & Rotate

Shift is simpler than the permutation operation. Shift operation is normally
performed by extracting some particular bit/byte values from a larger register.
One practical example of this situation is: retrieving a 6-bit sub-vector from a
48-bit state register for their further substitution in DES. This operation can
be implemented using wide data buses, which are then divided into small buses
carrying the required bit/byte values. A typical byte-level shift operation is
shown in Figure 8.5a.
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In some cases, the input data is shifted n bits and n zeroes are added, a
process known as zero padding. In FPGAs, zero padding for n bits is achieved
by simply connecting n bits to the ground as shown in Figure 8.5b.

Most block ciphers (such as AES, RC6, DEAL, etc.) use the rotation op-
eration. It is similar to shift operation but with no zero padding. Instead, bit
wires are re-grouped according to a defined setup. For example, for a 4-bit
buffer, shifting left agaiazas by 1-bit becomes ajasa30, whereas rotating left
by 1-bit produces ajaqzasag.

Fixed rotation is trivial and there is no cost associated with it. Variable
rotation is also used by some cryptographic algorithms (RC5, RC6, CAST)
however this is not a trivial operation anymore.

A= IN[31:24] i TBITS
B = IN[16:8]
IN[31:0)
OUT(31:0)
C =IN[23:17)
D = IN[7:0] IN[24:0]

(a) Address required

y (b) Connectto ground
bits only

Fig. 8.5. Shift Operation in FPGAs

Iterative Design Strategy

Block ciphers are naturally iterative, that is, n iterations of the same transfor-
mations, normally called rounds, are made for a single encryption/decryption.
An iterative design strategy is a simple approach which implements the cipher
algorithm by executing n iterations of its rounds. Therefore, n clock cycles are
consumed for encrypting/decrypting a single block, as shown in Figure 8.6.
Obviously, this is an economical approach in terms of required hardware area.
But it slows cipher speed which is n times slower for a single encryption. Such
architectures would be useful for those applications where available hardware
resources are limited and speed is not a critical factor.

Pipeline Design Strategy

In a pipeline design, all the n rounds of the algorithm are unrolled and registers
are provided between two consecutive rounds as shown in Figure 8.7. All the
intermediate registers are triggered at the same clock by shifting data to the
next stage at the rising/falling edge of the clock. Once all the pipeline stages
are filled, the output blocks starts appearing at each successive clock cycle.
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Fig. 8.6. Iterative Design Strategy

This is a fast solution which increases the hardware cost to approximately n
times as compared to an iterative design.

15( 2nd nlh
IN- Round ] Latch H Round Latch | e — Round ] Latch b»Out
7 r 7 .
CE CLK CE CLK CE CLK

Fig. 8.7. Pipeline Design Strategy

Sub-pipelining Design Strategy

Figure 8.8 represents a sub-pipeline design strategy. As shown in Figure 8.8,
Sub-pipelining is implemented by placing the registers between different stages
of a single round for a pipeline architecture. That improves performance of
the pipeline architecture as those internal registers shift the results within the
round when outputs of a round are being transferred to the next round. It has
been experimentally demonstrated that careful placement of those registers
within a round may produce a significant increase in the design performance.

151 2nd nlh
Round Round Round
IN-{ [Lateh | Latch [H[Tatoh] | Latch | e —{[Taich] [ Latch fa-Out
F T f T F
CE CLK1 CE CLK1 CE CLK1
CLK2

Fig. 8.8. Sub-pipeline Design Strategy
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Managing Block Size

Modern block ciphers operate on data blocks of 128 bits or more. Unlike
software implementations on general-purpose microprocessors, FPGAs allow
parallel execution of the whole data block provided that there is no data de-
pendency in the algorithm. Therefore, it is always useful to dissection the
cipher algorithm looking for possible parallelization versions of it. Furhter-
more, FPGAs offer more than 1000 external pins to be programmable for
inputs or outputs. This is advantageous when the communication is needed
with several peripheral devices on the same board simultaneously.

Key Scheduling

Fast key setup is one of the characteristics in modern block ciphers. The
keys are required to be changed rapidly in some cryptographic applications.
It is possible to reconfigure FPGA device for the key schedule module only
whenever a change in the key is desired

Key Storage

It is recommendable for cryptographic applications to make use of different
secret keys for different sessions. FPGAs provide enough memory resources
to store various session keys. As the keys are stored inside an FPGA, it is

therefore valid to say that FPGA implementations are physical secure?.

8.3 The Data Encryption Standard

On August, 1974, IBM submitted a candidate (under the name LUCIFER)
for cryptographic algorithm in response to the 2nd call from National Bureau
of Standards (NBS), now the National Institute of Standards & Technology
(NIST){253], to protect data during transmission and storage.

NBS launched an evaluation process with the help of National Security
Agency (NSA) and finally adopted on July 15, 1977, a modification of LU-
CIFER algorithm as the new Data Encryption Standard (DES). The Data
Encryption Standard [392], known as Data Encryption Algorithm (DEA) by
the ANSI [392] and the DEA-1 by the ISO [152] remained a worldwide stan-
dard for a long time until it was replaced by the new Advanced Encryption
Standard (AES) on October 2000.

DES and TripleDES provide a basis for comparison of new algorithms. DES
is still used in IPSec protocols, ATM encryption, and the secure socket layer
(SSL) protocol. It is expected that DES will remain in the public domain

% See §3.7 for more details on the security offered by contemporary reconfigurable
hardware devices.
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for a number of years. DES expired as a federal standard in 1998 and it
can only be used in legacy systems. Nevertheless, DES continues to be the
most widely deployed symmetric-key algorithm. Its variant, Triple-DES, which
consists on applying three consecutive DES without initial (direct and inverse)
permutations between the second and the third DES, coexists as a federal
standard along with AES.

A detail description of the DES algorithm can be seen in [317, 228, 362].
The description of DES in this chapter it closely follows that of [317].

Description

DES uses a 64-bit long key. The eight bits of that key are used for odd parity
and therefore they are not counted in the key length. The effective key length
is therefore 56 bits, providing 2%¢ possible keys. DES is a block cipher: It
encrypts/decrypts data in 64-bit blocks using a 56-bit key. DES is a symmet-
ric algorithm: the same algorithm and the key are used for both encryption
and decryption. DES is an iterative cipher: the basic building block (a sub-
stitution followed by a permutation) called a round is repeated 16 times. For
each DES round, a sub-key is derived from the original key through the pro-
cess of key scheduling. Although the key scheduling algorithm for encryption
and decryption is exactly the same, produced round keys for decryption are
used in reverse order. Figure 8.9 shows the basic algorithm flow for both the
encryption and key schedule processes.

Encryption begins with an nitial permutation (IP), which scrambles the
64-bit plain-text in a fixed pattern. The result of the initial permutation is
sent to two 32-bit registers, called the right half register, Ry and left half
register, Lg. Those registers hold the two halves of the intermediate results
through successive 16 applications of the function fy which is given by (n =
0 to 15):

Ly, = Rp.
Rn = Ln—l + f(Rn—lyKn)

After 16 iterations, the contents of the right and left half registers are
passed through the final permutation IP~!, which is the inverse of the initial
permutation. The output of IP~! is the 64-bit ciphertext.

A detailed explanation of those three operations is provided in the rest of
this Subsection. The key sechedule algorithm of DES is explained at the end.

(8.1)

3.3.1 The Initial Permutation (IP™1)

The initial permutation is the first operation applied to the input 64-bit block
before the main iterations of the algorithm start. It transposes the input block
as described in Table 8.2. For example, the initial permutation moves bit 58
to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and so forth.
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PC-1
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Fig. 8.9. DES Algorithm

Kis

The initial permutation has no cryptographic relevance on DES security.
Its primary purpose is to make it easier for an application to load plain-text
into a DES chip in byte-sized pieces. Initial permutation implementation in
hardware is trivial but cumbersome in software.

8.3.2 Structure of the Function fj

The 64-bit output from the initial permutation is divided into two halves Lg
and Ry of 32 bits each as shown in Figure 8.9. Both halves go through the 16
iterations of the function f; (Eq. 8.1) which is described below.

For the first iteration, Ry and 48-bit round key are the two inputs. We
first expand Ry from 32 bits to 48 bits by using the expansion permutation
(Permutation E).
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Table 8.2. Initial Permutation for 64-bit Input Block

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
574941332517 9 1
595143352719113
61 5345372921135
63 5547393123157

The Expansion Permutation (Permutation E)

This operation expands 32-bit right half R; to 48 bits. Some bits are therefore
repeated and the order of the bits is also changed as shown in Table 8.3.

Table 8.3. E-bit Selection

32|11 2 3 4|5 4(5 6 7 8|9
819 10 1112(13 12|13 14 15 16|]17
16|17 18 19 20|21 20(21 22 23 24(25
24|25 26 27 28|29 28{29 30 31 32| 1

Table 8.3 shows the position of input bits after applying the permutation
E. For example, the bit in position 3 of input block moves to position 4, bit
21 moves to position 30 and 32 of the output block. The redundant bits and
their positions in the output block can be easily seen as they are outside the
squares in boldface letter as shown in Table 8.3.

This operation has two purposes. First, it makes the size of right half
register equal to the size of the key to perform XOR operation. Second, the
48-bit expanded register can be compressed during the substitution operation.

The output 48-bit is XORed with the 48-bit round key which is then
divided into 6-bit long eight groups. The eight groups each of six bits are
replaced to eight groups of four bits each by applying the substitution boxes
(S-Boxes) whose values are provided by the algorithm.

The S-Box Substitution

DES S-box is a 64-entry table arranged into four rows and sixteen columns.
The input is a 6-bit- address and the output is 4-bit long. The first and last
bits apas of 6-bit address agajagazasas represent the row number while the
middle four bits ajazazas denote the column number. Thus the S-box will
substitute 101011 with the entry at row 4th (11) and column 6th (0101). To
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Table 8.4. DES S-boxes

Column
Row|0]1[2[3[4]5]6[7]8]9 I0[11[12[13[14[15]|S-Box
0 ||14;4 13/ 1|2 |15{11|8 |3 |10|6(1215|9 |07
1 015/ 7(41{14| 213|110/ 6{12{11/9|5|3|8 Sy
2 ||4}11(14|8 (13|62 (11|15]12/9|7|31]10{5]0
3 ||15|12{8]2 (49|17 |5111|3|14{10{0|6 |13
0 ([15/18|14|6|11{3]4|9|7 |2 |13]12|0]5 |10
1 ||31(13]4715/2(8(14({12{0}1{10{6]|9|11{5| S2
2 |0 (14| 7|11{10{4(13{1i5|8|12|6|9|3|2 |15
3 [|13]8110{ 1|3 |15/4|2{11]6|7{12{0|5}|14|9
0 [j10/0]|9|14|6|3{15{5|1|13|12|7|11|4[2|8
1 ([13]7107913|4]|6|10{2 |85 (14|12|11}15] 1| Ss
2 1(13|61{4|9|8|15|3 (0|11 1{2|12|5 |10({14|7
3 )[1(10|13|0]16[{9[8|74}15(14|3|11|5|2 |12
0 |[7(13|14]3]|0|6]910/1]|2|8|5|11]12]4 |15
1 ({138 |11{5|6(15/013{4}7{2[12|1[10{14}9 S
2 11016 (9|0 (12|11 7 {13|15]1 |3 14|52 |84
3 |[3({15/0]6|10{1(13|8|9|4|5|11{12|7|2|14
0 [212/4{1|7]10(/11{6|8 |5 |3 (1513} 0 [14[9
1 |(|14(11{21]12{4|7|13|1|5|0(15{10/3|9}8|6]| Ss
2 ||412(11]11{10|13|718|15/9|12{5!6|3 |0 (14
3 ||11) 8112711114/ 2|13|6|15/0(9(10[{4]151]3
0 |[12|1}10{15|9(2|6(8(0}13|3|4(14]7|5 |11
1 [i10|15(4|2|7]12{9{5|6]|1)13[14]0 (11| 3|8} Se
2 l19l14f150512|8(12(3|7|0(4]10]|1|13|11|6
3 |[413]|2]12]9(5{15{10(11|14|1|7|6|0|8 |13
0 [ 411}2]14{15/0|8(13{3]12|9(7(5|10]6 |1
1 (|13]0f11{7|4]9|1]10{14[3|5([12[2|15|{8 |6 S~
2 1[4(11(13(12} 3|7 ({14|10{15/6 (8 |0{5(9{2
3 6(11{13/8|1]4110{719]|5]0(15(14|2|3 |12
0 {|13/2]|8|4]|6{15/11]1}10{9|3|14|5|0]12|7
1 115|138 |10{3 7|4 (12| 51611 0|14|9 |2 Ss
2 [[7111j4(1|9|12(14{2|0|6|10[13({15{3 |58
3 §2|1(14]1714(10{813]15{12/910}3|5]|6 |11

substitute a 48-bit word, DES uses eight S-boxes each of size 64 x 4 = 256
bits occupying a total of 2 Kbits memory as shown in Table 8.4

The 32-bit S-Box output undergoes through another permutation, which
is called P-Box Permutation.

The P-Box Permutation

In this step, the input 32-bit (output of the S-box) is permuted to get the
32-bit output. The bit position for P-Box permutation is shown in Table 8.5.
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As shown in Table 8.5, bit 21 moves to bit 4, bit 4 moves to bit 31 and so on.
There is no repetition in bits and none of them is ignored.

Table 8.5. Permutation P

16 7202129122817 1 152326 5 183110
2 824143227 3 9191330 6 2211 4 25

The 32-bit output after P-Box permutation is XORed with Lg. In the next
iteration, we will have Ly = R;, which is the block we just calculated and then
we must calculate Rq, repeating the same procedure as it was used for R;. At
the end of the 16" iteration we have the blocks Lig and Rig. The order of
these blocks is reversed and two blocks are concatenated into a 64-bit block
Ri6L16. The final permutation TP~ is then applied.

The Final Permutation IP~!

Table 8.6 provides the bit positions for the final permutation which oper-
ates on 64-bit input block producing 64-bit output block. This completes the
encryption process for a single block.

Table 8.6. Inverse Permutation

40 8 48 16 56 24 64 32
39 747 15 55 23 63 31
38 6 46 14 54 22 62 30
37 545 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33141 9 4917 57 25

Decryption is simply the inverse of encryption which is carried out by
repeating the same steps as they were explained above. Only the round keys
are applied in the reverse order.

8.3.3 Key Schedule

The round keys for all the 16 rounds are derived from the original key as shown
in Figure 8.9. First the 64-bit DES key is reduced to 56 bits by ignoring every
8t bit governed by the Table 8.7. This is referred to as Permuted Choice One
(PC-1). The 48-bit round keys are then derived as follows.
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Table 8.7. Permuted Choice one PC-1

574941332517 9 1 5850 42 34 26 18
10 2 595143352719 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61534537292113 5 282012 4

The 56-bit output after PC-1 is divided into two halves Cy and Dg. In
each round, the two halves undergo a circular left shift or rotation by either
one or two bits, depending on the round as shown in Table 8.8.

Table 8.8, Number of Key Bits Shifted per Round

Round No. |1234567891011121314 1516
Bits shifted|112222221 2 2 2 2 2 2 1

After the shift operation, the two halves are concatenated and serve as
input to Permuted Choice Two (PC-2) as given in Table 8.9. The resulting
48-bit block is the required round key. Both halves before permutation PC-2
are also used as the two inputs to generate round keys for the next round as
is shown in Figure 8.9.

Table 8.9. Permuted Choice two (PC-2)

14171124 1 5 3 2815 6 2110
231912 4 26 8 16 7 272013 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

8.4 FPGA Implementation of DES Algorithm

In this section DES implementation is described on reconfigurable hardware
platform. The design steps for the development of FPGA architecture are
explained along with some useful design techniques for the improvement of
design performance. Performance results and comparison with the previous
FPGA implementations of DES are presented at the end of this Section.

8.4.1 DES Implementation on FPGAs

Figure 8.10 is a block diagram representation of DES implementation in FP-
GAs. As it has been mentioned before, permutation operations do not occupy
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logical resources of the device and it can be implemented by rearranging bit
positions for the outgoing bu; (change of wires), hence it is free of cost. DES
includes several permutations (initial, final, permutation E, permutation P).
The building blocks for those operations in Figure 8.10 are therefore symbolic
representations having no logic inside.

Each DES S-Box occupies 64 x 4=256-bit memory. Hence, a total of 2K
(2048 bits) memory is required for the construction of eight S-Boxes. If it
is not intended to use dedicated memory resources, only 32 CLB slices are
needed for an S-Box on Xilinx VirtexE devices. Some other fabric resources of
the device were occupied for the implementation of latches (Slice Flip Flops)
and logic blocks for XOR operation.

RIN S1
2] | [REG |42 sz
A | | Dwrss
N LEFT S4
7 IP 64
6 . RIGHT | 1P B»ouT 2:
LIN S7
32 REG S8
A\
> B 32 32 S-Boxes:
[ 32 { permutation P l<———3-2——-—-—

Fig. 8.10. DES Implementation on FPGA

DES chip consists of four I/O pins: three inputs and one output. The
three input pins are Chip Enable (CE), Clock (CLK), and input data (IN).
The single output pin is named as OUT. The CE signal activates the DES
chip, whereas the CLK is the only master clock in charge of driving the whole
circuitry. It is used to generate all control signals needed for the synchroniza-
tion of the data flow.

When the CE signal is in low, it enables the circuit. As a consequence,
the input 64-bit block after passing through initial permutation (bit wires
rearranged) is partitioned into two halves RIN and LIN. At the first rising
edge of CLK, both RIN and LIN are transferred to the output of the two
registers REGA and REGB. The REGA output (RIN) goes through a number
of operations: Permutation E, addition with sub-key, substitution (through
S-Boxes), Permutation P, and then finally addition with the initial REGB
output (LIN). On the next clock, the old right half (RIGHT) is the input of
register REGB and the new left half (LEFT) is the input of register REGA.

In the 16 clock cycle the two RIGHT and LEFT halves are concatenated
(two buses joined together) and they are pass through the inverse permutation
(IP~1) producing a valid 64-bit DES ciphertext at QUT pin.
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It is to be noted that the parallel structure for the eight DES S-Boxes
contributes with a significant reduction of the critical path for encryp-
tion/decryption.

8.4.2 Design Testing and Verification

DES implementation was made on XCV400e-8-bg560 VirtexE device using
Xilinx Foundation Series F4.1i. The design tool provides two options for de-
sign testing and verification: functional simulation and timing verification.
Functional verification tests the logical correctness of the design. It is per-
formed after the design entry has been completed using VHDL or using library
components of the target devices. It detects logical errors without considering
circuit overheads like path delays, synchronization, etc. A netlist of the logic
components in the design is created by the design tool, which is then mapped
to the available resources of the actual target device. Timing verifications are
made at this stage.

Both functional and timing verifications must be performed for a success-
ful design implementation. For both cases, test vectors are used for result

verification and testing. Table 8.10 shows a simple test vector used to verify
DES chip.

Table 8.10. Test Vectors

[Input Block [First Permutation [f(R.K) [Second permutation |

LIN=0XxFFFF0000 LFOUT=0x06060606 |[LEFT=0x49DE9DF2 [LOUT=0x17F77A33
RIN=0xAAAAAAAA|RFOUT=0xE7E7ETE7[RIGHT=0x CTEEC966|[ROUT=0x7B7ABT72A

Figure 8.11 and Figure 8.12 show the results for the functional simulation
and the timing verification for DES implementation in FPGA. Notice that
the difference between Figure 8.11 and 8.12. Time delays in Figure 8.12 are
clearer.

8.4.3 Performance Results

FPGA implementation of DES algorithm was accomplished on a VirtexE de-
vice XCV400e-8-bg560 using Xilinx Foundation Series F4.1i as synthesis tool.
The design was coded using VHDL language. It occupied 165 (3%) CLB slices,
117 (1%) slice Flip Flops and 129 (41%) I/Os. The design achieves a frequency
of 68.05 MHz (14.7 nS). It takes 16 clock cycles to encrypt one data block
(64-bits). Therefore, the achieved throughput is (68.05 x 64)/16=274 Mbits/s.

8.5 Other DES Designs

Several FPGA implementations of DES have been reported in the literature
achieving throughput ranges from 26 Mbps to 21.3 Gbps. In Table 8.11 we
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Fig. 8.11. Functional Simulation

Fig. 8.12. Timing Verification

review the fastest designs reported in the literature. They are sorted in de-
scending order. The design reported in [299] by Rouvrou et al achieves a
throughput of 21.3 Gbps and it is the fastest design reported up to this book
publication’s date. It consist on a pipeline architecture with a pipeline depth
of 37 stages. The 37 stages for that design were developed by introducing a dif-
ferent formulation of DES in which a new mathematical expression especially
tailored for FPGA devices is proposed. In the same paper, authors proposed
a different grouping of the stages resulting in a pipeline architecture of 21
stages. The throughput for the second architecture is reported as 14.5 Gbps.
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Table 8.11. DES Comparison: Fastest Designs

Author Device Design Area | Freq. [Throughput|T/A
Strategy Slices |{(Mhz)| (Mbps)

Rouvroy XC2V1000-6 Pipeline 2965 333 21300 7.18

et al.[301] 37 cycles

Xilinx [148] Pip. 48 stages [ 3900 237 15100 3.87

Rouvroy [XC2V1000-6| Pipeline |3775 LUT| 227 14500 N.D.

et al.[301] 21 cycles 2904 FF

Trimberger | XCV300 E8| Pip. 48 stages {4216 LUT| 188.7 12000 N.D.

et al.[363] (3DES) 5573 FF

Patterson | XCV150-6 |Jbits and RTR| 1584 168 10752 6.75

et al.[271]

Swankoski | Virtex-II 17 parallel 5544 140.6 9000 1.65

et al.[353] Pro DES blocks

Trimberger | XCV300 E8 [ Pip. 16 stages [4216 LUT| 132 8400 N.D.

et al.[363] 1943 FF

McLoone XCV1000 Pipeline 6446 59.5 3808 0.59

et al.[225] 16 stages

FreelP- XCV400-6 Pipeline 2528 47.7 3100 1.22

Proy [99] | XCV400-6 16 stages

The first architecture is also the most efficient architecture with a throughput
over area ratio of 7.18.

Trimberger et al [363, 148] presented three of the fastest DES designs ever
reported. They are pipelined designs with 48 and 16 stages. A Java-based
{(Jbits) DES implementation in [271] achieves the encryption rate of 10752
Mbps. It implements all DES primitives in FPGA while the key schedule
is processed in software. The communication between the two operations is
made through a Java-based Application Programming Interface (API) which
is intended for runtime creation and modification of the bit-stream.

Initial high-performance designs were reported by McLoone et al [225] and
the free IP project [99]. Both are 16-stage pipeline architectures that report
throughputs around 3 Gbps. The architecture reported by Swankoski et al in
[353] consists of several independent DES blocks (17).

In Table 8.12 we review the most compact designs reported in the liter-
ature. They are sorted in ascending order. In general, a throughput greater
than 1 Gbps is well beyond reach of compact designs which, otherwise, is
not the main goal of such designs. On the contrary hardware area is the ma-
jor concern for such type of architectures. Most of them implement one DES
round and iteratively process a block to perform encryption/decryption.

Most recent reported designs [309], [300] and [353] implement both, ci-
phering and key scheduling. The most compact design was reported by Nazar
et al [309] with a design that occupies just 167 slices. The next one, reported
by Rouvroy et al [300], occupies 189 CLB slices attaining better performance
results. Some other designs implement more than one round in order to in-
crease performance [167]. FPGA implementation of DES in [167] implement
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Table 8.12. DES Comparison: Compact Designs
Author Device Design [ Areal Freq. Throughput'T/A’
I Strategy |Slices|(Mhz)| (Mbps)

Nazar et al.[309]] XCV400E one round | 167 [ 68.5 274 1.64
Rouvroy XC2VI000-5 | one round | 189 274 974 5.15
et al.[300]
CAST [147] Virtex-II'5 | one round | 238 | N.A. 816 3.43
Kaps et al.[167] | XCV4013 E3 | one round | 262 | 23.9 91.2 0.35
Swankoski Virtex-11 one round | 343 | 203.3 765.7 223
et al.[353] Pro
Wong et al.[384]] XCV4020E | one round | 438 10 26.7 0.06
Kaps et al.[167] |[XCV4013 EX3|2 stage pipe| 433 | 23.0 183.8 0.42
Leonard XCV4025-4 | key spec. | 640 6.0 24 0.04
et al.[204]
Kaps et al.JI67] [XCV4013 EX3[4 stage pipe| 741 | 25.2 402.7 0.54

both 2-stage and 4-stage pipeline approaches obtaining throughput of 183.8
Mbps and 402.7 Mbps, respectively. The design in [384] is a one round DES
implementation on a single-chip FPGA. A fair comparison is not possible with
this design and the one reported in [204], because they did not consider key
scheduling.

In Table 8.13 we select those designs presented in Tables 8.11 and 8.12
showing a throughput over area ratio greater than one. In this sense, the
most efficient designs are also high-performance designs.

Table 8.13. DES Comparison: Efficient Designs

Author Device Design Areal Freq. [Throughput|T/A
Strategy |Slices|(Mhz)| (Mbps)

Rouvroy XC2VT000-6] Pip. 37 cycles [ 2965 T 333 21300 7.18

et al.[301]

Patterson XCV150-6 [Jbits'and RTR| 1584 168 10752 6.75

et al.[271)

Rouvroy XC2V1000-5] one round 189 274 974 5.15

et al.[300]

Xilinx [148] Pip. 48 stages | 3900 | 237 15100 3.87

CAST [147]] Virtex-IT5 | one round 238 | N.A. 816 3.43

Swankoski | Virtex-II one round 343 12033 765.7 2.23

et al.[353] Pro

Swankosk1 Virtex-IT I7 parallel | 5544 | 140.6 9000 1.65

et al.[353] Pro DES blocks

Nazar XCV400E one round 167 | 68.5 274 1.64

et al.[309]

FreelP- XCV400-6 |Pip. 16 stages | 2528 | 47.7 3100 1.22

Proy [99)

Finaly, in Table 8.14 we show some other designs for TripleDES. They
are sorted in descending order with respect to performance. Pipeline strategy
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Table 8.14. TripleDES Designs
lAuthor Device Design Area] Freq. ThroughputlT/A’
Strategy |[Slices|(Mhz)| (Mbps)
Panu Virtex V800 Pip. 3DES T 6689 | 45.55 2912 0.43
et al.[131] | FG 676-6 16 round
Rouvroy T XC2VI000-5 It. SDES 604 258 917 1.51
et al.[300]
Swankoski| Virtex-IT Tt. 3 Blocks | 819 [ I95.1 734.9 0.089
et al.[353] Pro 3DES Parallel
Panu Virtex V800 3DES 1257 1725.09 59.44 0.04
et al.[131] | FG 676-6 two round
Panu Virtex V800 3DES 1107 | 43.90 55.12 0.04
et al.[131] | FG 676-6 | wireless app.
Leitold VLSI 3DES CBC | NAT[ 275 155 NA
et al.[202] |0.6 um CMOS| QoS apps.

is applied by Panu et ol in order to develop a TripleDES Core specifically
targeting wireless communications. The design reported by Leitold et al [202]
is not an FPGA design, but rather, it is a VLSI design specifically targeted
to ATM communications.

8.6 Conclusions

This chapter provides a general guideline for the implementation of block ci-
phers in reconfigurable logic platform. The general structure of block ciphers
was discussed. Most frequent operations in block ciphers were presented, and
at the same time, several useful properties for implementing block ciphers in
FPGAs were discussed. We described the design steps and some design tech-
niques for obtaining fast and/or compact and/or efficient FPGA implemen-
tations. A general guideline, was therefore developed for the implementation
of block ciphers in reconfigurable devices. Our methodology was then applied
for DES implementation resulting on an efficient and compact DES core on
reconfigurable hardware platform.

We also showed a very compact DES architecture which can be ade-
quate for embedded and mobile systems. We presented a review of several
DES designs reported in the technical literature. We walked through high-
performance designs to compact ones. We also reviewed efficient DES designs
as well as several TripleDES designs, which were classified according to their
performance metrics.
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Architectural Designs For the Advanced
Encryption Standard

In this chapter we present some of the most common architectural alterna-
tives to implement Advanced Encryption Standard (AES) in reconfigurable
hardware. The first factor to be considered on implementing AES is the appli-
cation. There are high speed applications like High Definition TV (HDTV) and
video conferencing where high performance is required. The target through-
put, expressed in gigabits per second (Gbps), must be specified, and to achieve
such a high performance we can replicate several functional units to increase
parallelism. That would however imply higher power and hardware area re-
quirements.

On the other hand, high speed designs are not always desired solutions. In
some applications, such as mobile computing and wireless communications,
smaller throughput is demanded. Then a good balance between hardware
area and design performance should be achieved. In addition, since there are
trends to incorporate secure electronic data exchange into low-end consumer
products, inexpensive AES implementations are needed for PDAs (personal
digital assistant), wireless devices and many other embedded applications.
Furthermore, it has been suggested that applications in the domain of ra-
dio frequency identifiers (RFID), low-power AES chip may be needed, thus
demanding extremely compact AES implementations.

9.1 Introduction

Two main factors impact an AES implementation for a given application:
hardware area and timing performance. Quite frequently, both factors have
an opposite effect: Although compact designs tend to occupy a small amount
of hardware resources, they generally show low performances. On the con-
trary, achieving high speed gains requires that many modules should work
simultaneously, thus demanding greater hardware area requirements.
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Another important feature to be considered when choosing an architec-
tural alternative for AES is related to its mode of use. Many applications use
AES in the Electronic Code Book (ECB) mode in which a complete block is
ciphered independently of all other blocks. Then, several blocks can be pro-
cessed in parallel or pipeline strategies can be applied to increase performance.
Nevertheless, it is noticed that ciphering is only a part of a secure application
and that there exist applications for which ciphering is accomplished with
authentication [214]. For those scenarios, a feedback mode is required. For
example, in Cipher Block Chaining (CBC), a previous ciphered block is used
to encrypt the present block. That however, prevents us from using pipeline
architectures. Therefore, an iterative architecture with some authentication
logic could be a solution.

From its evaluation process to post selection period, the Advanced En-
cryption Standard (AES) has been implemented on all kind of hardware and
software platforms. Gladman [109] and Bertoni et al. {21], reported software
implementations in which AES specification is manipulated to increase per-
formance. AES software implementations have a throughput that ranges from
300 to 800 Mbps depending on the specific architecture and platform selected
by the developers. Some efficient AES encryptor/decryptor core VLSI imple-
mentations have been also reported in [143, 376, 215, 303]. Performance of
VLSI implementations ranges from 2 to 7.5 Gbps.

Similarly, various AES FPGA implementations have been reported in
{102, 63, 83, 223]. Those are one round (iterative) or n rounds (pipeline)
FPGA implementations optimized for encryption or encryption/decryption
processes. Since published works have utilized an ample variety of FPGA
devices, reported performance results are broadly variable ranging from 300
Mbps to up to 25 Gbps.

Clearly, modern FPGA technology has a great impact in implementation
performances. Nonetheless, there are algorithmic and architectural strategies
for different target applications that also influence the final performance. The
asymmetric characteristics of AES encryption and decryption processes limit
the implementation of high-performance AES cores. Each step for AES en-
cryption has its inverse counterpart for decryption. Designing separated archi-
tectures for encryption and decryption processes would imply the allocation
of a large amount of FPGA resources and the area requirements of such de-
sign might be difficult or even impossible to meet in several FPGA families
of devices.

Published work about AES FPGA implementation covers a wide spectrum.
Some designs [102, 63, 83] have considered only the encryption part of AES.
For example, in [102, 63] an iterative design implementing one round is re-
ported. In [63] key scheduling is also considered, however, in [102] key schedul-
ing was ignored. The design in [83] implements all AES rounds with a pipeline
organization but without key scheduling, whereas the design in [223] reported
an FPGA implementation of a fully pipeline AES encryptor/decryptor core.
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In this Chapter, various FPGA architectures of AES are presented. Those
implementations cover all three basic processes: key scheduling, encryption
and decryption. All are single-chip FPGA implementation. Different design
architectures are considered by implementing AES encryptor, decryptor and
encryptor/decryptor cores separately. Both iterative and pipeline techniques
are applied showing diverse time-area tradeoffs. All AES implementations
were optimized for low cost, high efficiency and/or high portability.

The rest of this Chapter is organized as follows. An introduction to AES
algorithm is presented in Section 9.2. The basic transformations of the al-
gorithm and their effects on the algorithm cryptographic strength are also
explained in this Section. Section 9.3 gives a brief explaination of the AES
modes of use. Section 9.4 describes various algorithmic optimization for im-
plementing AES basic transformations on FPGAs. Those techniques help to
improve overall algorithm performance by modifying the most costly opera-
tions of the algorithm. Section 9.5 deals with general architectures for AES
implementation on FPGAs. Then, the algorithmic optimizations are mixed
with architectural alternatives to obtain several different AES designs. Sec-
tion 9.6 presents performance results for each design and compare them with
published works. Finally, in Section 9.6.1 some recent trends on AES cores
are reviewed providing a classification of several relevant designs. Concluding
remarks are drawn in Section 9.7.

9.2 The Rijndael Algorithm

On October 2000, Rijndael was selected as a new Advanced Encryption Stan-
dard (AES) by NIST [253] replacing Data Encryption Standard (DES). The
name ‘Rijndael’ is a rearrangement of the names of its two inventors Rijmen
and Daemen [60].

Rijndael is a symmetric block cipher which takes two inputs, namely, the
plaintext block to be encrypted and the secret key. It applies an iterative
procedure at the end of which an output ciphertext block is produced. During
a single iteration, a set of transformations, called a round, are applied to the
state data block. For each round, a round key is generated through a process
called key scheduling.

In this Section we give a short explanation of the algorithm behavior. We
start explaining the difference between AES and Rijndael. Then, we describe
AES basic structure and building blocks. Thereafter, the round transformation
of the algorithm is specified. Finally, the process of key generation is described.

9.2.1 Difference Between AES and Rijndael

AES fixes the block sizes and key lengths from the range supported by Rijn-
dael. Rijndael can process variable block and key lengths of 128, 192, and 256
bits. Moreover, Rijndael supports all possible combinations of those sizes for
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block and key lengths. The number of rounds depends upon the combination
of the selected block and key lengths as shown in Table 9.1. It can be seen
that the number of rounds ranges from 10 to 14.

key length (bits)|Block length (bits)
128]192] ~ 256
128 1012 14
192 1212 14
256 14|14 14

Table 9.1. Selection of Rijndael Rounds

On the other hand, AES fixes the block length to 128 bits and supports
key lengths of 128, 192 or 256 bits only. The most frequent AES case of use is
with block and key lengths of 128 bits. In the rest of this chapter whenever we
use the word AES, it means block and key lengths of 128 bits and therefore
with the number of rounds equal to 10. Moreover, In the rest of this Chapter
the names AES and Rijndael are used indistinctly.

9.2.2 Structure of the AES Algorithm

The basic structure of AES algorithm is shown in Figure 9.1.

Input

128

AES Encryptor/Decryptor

Fig. 9.1. Basic Structure of Rijndael Algorithm

For encryption, the input is a plaintext block and a key, and the output is
a ciphertext block. For decryption, the input is a ciphertext block and a key
(the same key used for encryption), and the output is the original plaintext.
The basic algorithm flow for encrypting a single block of data is shown in
Figure 9.2.

The AES cipher treats the input 128 bit block as a group of 16 bytes orga-
nized in a 4 x 4 matrix called State matrix. The algorithm consists of an initial
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Fig. 9.2. Basic Algorithm Flow

transformation, followed by a main loop where nine iterations, called rounds,
are executed. Each round transformation is composed of a sequence of four
transformations: ByteSubstitution (BS), ShiftRows (SR), MixColumns (MC)
and AddRoundKey (ARK). For each round of the main loop, a round key is
derived from the original key through a process called Key Scheduling. At the
last round MC step is skipped and consequently just three transformations,
namely, BS, SR and ARK, are executed.

AES decryption can be performed by using same algorithm flow. However
all four steps in the round transformation are replaced with their own inverses
and the round keys for encryptions are used in the reverse order.

9.2.3 The Round Transformation

The round transformation is a sequence of four transformations BS, SR, MC
and ARK. All four transformations contribute in AES strength by inducing
confusion and diffusion, which are arguably the two most important proper-
ties that a strong symmetric cipher must have. Confusion makes the output
dependent on the key. Ideally, every key bit influences every output bit. Diffu-
sion makes the output dependent on previous input (plain/ciphertext). Ideally,
each output bit is influenced by every (previous) input bit. Roughly speaking,
those characteristics correspond to cipher’s substitution and permutation.

Symmetric ciphers need to be complex, so they could not be analyzed
easily. Also, their transformations need to be simple enough to be implemented
efficiently in hardware or software. For AES, the general criteria for round
transformation was inverse function and simplicity besides the step-specific
criteria.

9.2.4 ByteSubstitution (BS)

It is a non-linear transformation where each input byte of the State matrix is
independently replaced by another byte. BS can be seen as a highly non-linear
function. There are a great finite number of possible BS functions, however
some of them are more appropriate than others. In [60] some important prop-
erties about designing a BS function are discussed. Non-linearity and algebraic
complezity being the most important of them.

The BS transformation of an input byte (8-bit vector) a is defined by two
substeps:
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1. Inverse: Let x = g™!, the multiplicative inverse in GF(2%) (except if
a =0 then z = 0).

2. Affine Transformation: Then the output is y = M x « @ b, with the
constant bit matrix M and byte b shown below:

- - - - - ~ - -

yr 11111000] [ar 0
" 01111100| | 1
Ys 00111110 s 1
i 00011111 4 0
ws| = (10001111 % 25| ® |0 (9.1)
vo 11000111 2 0
" 11100011 2 1
w] (11110001 |z0f |[1]

All bit operations are performed modulo 2.

BS is decomposed into two transformations. First each input byte is re-
placed with its multiplicative inverse (MI) in GF(2%) with the element {00}
being mapped to itself and then the affine transformation is applied as shown
in Equation 9.1.

From the implementation point of view, BS can be considered as a look-up
table, called §-Boz, in which the input byte is considered as the address of the
table where its substitution is found. Then an S-Box can be seen as a 256 x 8
look up table as shown in Figure 9.3. This is the easiest way to implement BS
and for many applications it is enough to consider this way of implementing
it!.

g0 Qo1 a2 a3 bo.o bo.1 0.2 bo.a
aro a a2 ang bio b1 D2 bis
azo a2 azz2 dz3 bz,o b2,1 b2.2 bz‘a
aso asq a2 ass D30 b3 bs2 b3s

Fig. 9.3. BS Operates at Each Individual Byte of the State Matrix

If we look for a very compact or a high efficient design, we need to look for
the calculation of BS. Multiplicative inverse can be found using the extended
Euclidean algorithm [228]2. Let z be the input byte and let us assume that we

! It has been proposed that also the multiplications associated to the MixColumn
transformation can be implemented using the Look-up Table methodology [81].

2 Formal definition of field multiplicative inverse and the extended Euclidean algo-
rithm can be found in §4.1.2. Efficient computations of the multiplicative inverse
were discussed in §6.3.
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look for the inverse of the polynomial a(z). The extended Euclidean algorithm
can be used to find two polynomials b(x) and c(x) such that:

a(z) x b(x) + m(x) x ¢(x) = ged(a(z), m(x)) (9.2)

where ged(a(z), m(z)) represents the greatest common divisor of the poly-
nomials a(z) and m(z). If m(z) is irreducible then we know for sure that
ged(a(z), m(z)) = 1. Applying modular reduction to Equation 9.2 we get,

a(z) x b(z) = 1 mod m(x) (9.3)

which means that b(x) is the inverse element of a(z). The non-linearity of the
AES S-box is introduced by applying the multiplicative inverse in GF(28). The
affine transformation has no impact on the non-linearity but it contributes in
increasing the algebraic complexity.

Inverse Operation (IBS)

The inverse BS is obtained by applying inverse affine transformations followed
by the multiplicative inverse in GF(28). Therefore, the inverse of the affine
transformation in Eqgn. 9.1 is defined as follows.

r=M"1txy®dd

rzr] [01010010] [w] [0]
26 00101001 e 0
ws 10010100 ys 0
%4 01001010 ya 0
es| T loo100101| X || ®|o (9-4)
2 10010010 o 1
1 01001001 n 0
lzo] [10100100] |wo] [1]

For both affine and inverse affine transformations, multiplicative inverse is
taken in GF(2%) with irreducible polynomial m(z) = 2% + 2% 4+ 2% + z + 1.

9.2.5 ShiftRows (SR)

It is a cyclic shift operation where each row is rotated cyclically to the left
using 0,1,2 and 3-byte offset for encryption as shown in Figure 9.4. Diffusion
optimality is the design criteria for selecting the offsets which requires the
four offsets to be different.

Inverse Operation (ISR)

The inverse operation of ShiftRows is called Inverse ShiftRows (ISR). It is a
cyclic shift operation used for decryption where each row is rotated cyclically
to the right using 0,1,2 and 3-byte offset.



252 9. Architectural Designs For the Advanced Encryption Standard
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Fig. 9.4. ShiftRows Operates at Rows of the State Matrix

9.2.6 MixColumns (MC)

In this transformation, each column of the State matrix is considered a poly-
nomial over GF(2%) and is multiplied by a fixed polynomial ¢(z) modulo z*
+ 1. The polynomial ¢(x) is given by:

c(x) = 03.2% + 01.22 + 01.z + 02 (9.5)

Let b(z) = ¢(z) - a(z) mod z* + 1, then the modular multiplication with a
fixed polynomial can be written as shown in Equation 9.6.

by 02 03 01 01 ao
by 101020301 ay
bo| | 01010203 |a (9:6)
b3 03010102 |as

MixColumns operates on the columns of the state matrix as shown in Fig-
ure 9.5.

2311

12 31

112 3

3112
ago a0, a2 ag3 bo,o bo.1 bo,2 bos
ag a1 a2 a3 b1o by b2 b1
az0 a1 a2 a3 b0 b2.4 bz2 b3
a30 a3 832 as3 b3 b3.1 b3z baa

Fig. 9.5. MixColumns Operates at Columns of the State Matrix

'The design criteria for MixColumns step includes dimensions, linearity, diffu-
sion and performance on 8-bit processor platforme. The Dimension criterion
it is achieved in the transformation operation on 4-byte columns.
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Inverse Operation IMC

The inverse of MixColumns is called (IMC). The constant polynomial ¢(z)
given in Eqn. 9.5 is co-prime to z? + 1 and therefore invertible. Let d(z) be
the inverse of ¢(x) and written as follows.

(03.2% + 01.2% 4 01.z + 02).d(z) = 01 (mod z* + 1) (9.7)
From Eqn. 9.7, it can be seen that d(z) is given by:
d(z) = 0B.2® + 0D.z% + 09.z + OF (9.8)

Similarly to MC, in IMC each column of the state matrix is transformed by
multiplying with constant polynomial d(z) written as a matrix multiplication
as shown in Equation 9.9.

ao OF 0B 0D 09 bo

ar| _ |09 0E0BOD | b (9.9)
as 0D 09 OE 0B | | by '
as 0B 0D 09 0F | | bs

9.2.7 AddRoundKey (ARK)

In the last step, the output of MC is XOR-ed with the corresponding round
key. This step is denoted as ARK. Figure 9.6 illustrates the effect of key
addition on the state matrix.

A0 | @01 | Aoz | Bos koo | koa | kez | kos boo | boa | Doz | bos
a0 | @ | @, | @3 kio | kit | kiz | kis _ bio | P14 | b1z | bia
a0 az1 322 azs @ kzo | ka1 ka2 k23 - b2o | b2s b2z | bzs
a0 az. sz aza Kapo [3%) Ka2 Kz bao [ %) b33 baa

Fig. 9.6. ARK Operates at Bits of the State Matrix

Inverse Operation IARK

Inverse of ARK, called TARK, is essentially the same for encryption and de-
cryption3. The only important thing to remember is that keys are applied for
decryption in reverse order as in encryption.

3 However, as is explained in §9.5.2, efficient implementations of AES encryp-
tor/decryptor cores, require to append the IMC step to the generation of round
keys for decryption.
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9.2.8 Key Schedule

Both, encryption and decryption require the generation of round keys. Round
keys are obtained through the expansion of secret user key by attaching each
J — th round a 4-byte word k; = (ko,j, k1,5, k2,5, k3,5) to the user key. The
original user key, consisting of 128 bits, is arranged as a 4 x 4 matrix of bytes.

Let w([0], w(1], w[2], and w[3] be the four columns of the original key. Then,
these four columns are recursively expanded to obtain 40 more columns. Let
us assume we have computed columns up to w[i — 1]. Then, we can compute
the ¢ — th column, Wi}, as follows,

w[.]:{w[i—4]®w[i—1] if imod4 #0

wli — 4] & T(wli — 1)) otherwise (9.10)

where T'(w[¢—1]) is a non-linear transformation of w[i—1] calculated as follows:

Let w, z, y, and z be the elements of column w[i — 1] then,

1. Shift cyclically the elements to obtain z, w, z, and y.

2. Replace each of the byte with the byte from BS S(z), S(w), S(z) and
S(y).

3. Compute the round constant (i) = 020-4/4 in GF(28).

Then, T(w(i — 1}) is the column vector, (5(z) ® r(3), S(w), $(x), S(y)). In
this way, columns from w(4] to w[43] are generated from the first four columns.
The 16-byte round key for the j — th round consists of the columns

(w[4j], w47 + 1], wldj + 2], w47 + 3])

Sometimes it results convenient to pre-compute the round keys once and
for all and then store them. A similar process is utilized for generating round

keys for the decryption process, although they should be used in the reverse
order.

After the explanation of all four AES transformations and key schedule, we
can write the sequence of those transformations when performing encryption
and decryption as follows,

Encryption: MI—- AF— SR— MC— ARK
Decryption: IARK— IMC— ISR— IAF— MI

9.3 AES in Different Modes

Most of the published work on AES implementation considers AES in Elec-
tronic Book Mode (ECB). In ECB mode, an individual plaintext block is
converted to ciphertext block. Thus by collecting several plaintext and their
ciphertext blocks, one can produce some pattern information which could
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be helpful in recovering the original plaintext. ECB mode in some cases, is
therefore not considered secure. The Cipher Block Chaining mode (CBC), the
Cipher Feedback mode (CFB), and the Output Feedback mode (OFB) offer
better security than ECB, but encryption of the block depends on the feed-
back of its previous block encipherment [253]. This property prevents using
pipelining in which many different blocks are encrypted simultaneously. The
encryption speed in CBC, CFB, and OFB modes is much slower as in ECB.
Fortunately, there exists another mode, called Counter mode (CTR) which in-
creases the security of ECB and has not dependencies among different blocks,
thus allowing all operations to be fully pipelined to achieve high performance.

9.3.1 CTR Mode

In [100] a CTR mode implementation of AES is reported. In CTR mode, a
plaintext is processed by encrypting a counter value with key ‘K’ and then
by XORing the output with the plaintext to get the ciphertext. Figure 9.7
presents the counter mode. Decryption procedure takes the same process to
recover the plaintext from the ciphertext. The counter value has no dependen-
cies with previous output, thus pipelining can be fully used. Counter mode
has no padding overhead which is required for ECB, CBC, and CFB modes
when the data is not a multiple of block length. Counter mode does not prop-
agates error and restrict the error to the specific block as compared to CBC
and CFB modes which pass the error to the subsequent blocks.

Cipher K

Clock

Plaintext

LoadKey -
48-bit
Counter
40-bit

40-bit
Counter
Cipher

Block
Counter

Key Counter Counter
Counter 1 l

Ciphertext 1

Cipher K Cipher K
Ciphertext 1 Plaintext ( : )
Plaintext Ciphertext
a) b)

Fig. 9.7. Counter Mode Operations
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Figure 9.7b, presents different counter blocks for obtaining cipher key ‘K°.
A three stage counter, 40-bit cipher identification, 48-bit key counter and 40-
bit block counter, are used for each plaintext block. For each cipher artifact,
there is a pre-assigned cipher ID. The key counter increases whenever a new
key has been updated. Block counter increases for each block. The search
space for each part is, although finite, large enough. If the block counter is
exhausted, the key counter will be increased to avoid the use of the same key
with the same counter value. Then, we guarantee that produced keys are all
distinct. The counter value pairs can be used more than once.

The special requirement for CTR mode is that the same counter value
and key should not be used to encrypt more than one block of data. If this
happens, the plaintext would be recovered by XORing the two ciphertext,
which in fact, equals to XORing the two plaintext. Especially when one of the
plaintext is already known, the other one can be easily recovered by XORing
the known plaintext with the output ciphertext after XOR.

9.3.2 CCM Mode

For applications in which more robustness is required, there is no choice and
a feedback mode is mandatory. For example, the Wired Equivalent Privacy
(WEP) protocol has been the most widely security tool used for protecting
information in wireless environments. However, this protocol was broken in
2001 by Fluhrer et al. [1]. Based on that attack, nowadays there exist a va-
riety of programs that can be downloaded from Internet to break the WEP
Protocol in few seconds and with almost no effort. This situation has led to a
search for new security mechanisms for guaranteeing reliable ways of protect-
ing information in wireless mobile environments.

AES in CCM (Counter with CBC-MAC) proposed by Whiting et. al. in
[378], has become one of the most promising solutions for achieving security in
wireless networks. This mode simultaneously offers two key security services,
namely, data Authentication and Encryption [214]. CCM means that two
different modes are combined into one, namely, the CTR mode and the CBC-
MAC. CCM is a generic authenticate-and-encrypt block cipher scheme that
has been specifically designed for being use in combination with a 128-bit
block cipher, such as AES. Currently, CCM mode has become part of the new
802.11i IEEE standard.

CCM Primitives

Before sending a message, a sender must provide the following information
[378]:

1. A suitable encryption key K for the block cipher to be used.

2. A nonce N of 15 — L bytes. Nonce value must be unique, meaning that
the set of nonce values used with any given key shall not contain duplicate
values.
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3. The message m, consisting of a string of /(m) bytes where 0 < [(m) < 28F,

4. Additional authenticated data a, consisting of a string of [(a) bytes where
0 < I(a) < 2%%. This additional data is authenticated but not encrypted,
and is not included in the output of this mode.

Figure 9.8 shows CCM authentication and verification processes dataflow.
Notice that because of the CBC feedback nature of the CCM mode a pipeline
approach for implementing AES is not possible, therefore there is no option
but to implement AES encryption core in an iterative fashion.

CCM Authentication consists on defining a sequence of blocks By, By, -+, By,
and thereafter CBC-MAC is applied to those blocks so that the authentication
field T' can be obtained. Blocks B;s are defined as explained below.

First, the authentication data a is formatted by concatenating the string
that encodes {(a) with a itself, followed by organizing the resulting string in
chunks of 16-byte blocks. The blocks constructed in this way are appended to
the first configuration block By {375]. Then, message blocks are added right
after the (optional) authentication blocks a. Message blocks are formatted by
splitting the message m into 16-byte blocks which will be the main part of
the sequence of blocks

Bo, By, ..., Bn

needed by the authentication mode. Finally, the CBC-MAC is computed as,

X1 = AESE(K,BQ) (9.11)
Xigp1 = AESE(K, X;® B-L) fori=1,..,n
T := firstMbytes(Xn+1)
Where AESE is the AES block cipher selected for encryption, and T is the

MAC value defined as above. If it is needed, the ciphertext would be truncated
in order to obtain 7.

MIC
1EEE 802.11 MAC Header Framebody ®
bytes)
.
NONCE AAD 1 AAD 2 1stblock | 2ndblock Zero padded
(16bytes) | (16bytes) | (16byles) | (16bytes) | (16 bytes) (16 bytesy

L~

L{sg Je, Je, | e | & B
K —Lﬁ K K K K
AES ‘R AES AES 5} r

)
aes - aes Ll aes bl DVp cceeeeee — P AES AES
i %

Xa Koy
Fig. 9.8. Authentication and Verification Process for the CCM Mode

\

Figure 9.9 shows the CCM encryption/decryption process dataflow. CCM
encryption is achieved by means of Counter (CTR) mode as,
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MiC
Framebody [t]
bytes)
1st block 2nd block Zfa':"ijg‘c’fd Ze’m’?"“
(16bytes) | (16 bytes) (16 bytes) | (16 bytes)
Bo B4 B, i
Ao A Aa "1 And
P s, Y o 4
s |35 [ s [ 5 5
Truncation
runcation
K , K K K
. . Last .
Cipherblock | Cipherblock Cipherblock Cipher MIC
(18 bytes) | {16 bytes) (16 bytes) | (18bYtes)
Co Cy o Cnn

Fig. 9.9. Encryption and Decryption Processes for the CCM Mode

Si = AESE(K, A-L) for i = 0, 1,2, ey (912)
C;:=8;®B;

where A; stands for counters. See [378, 100] for more technical details about
how to build the counters.

Plaintext m is encrypted by XORing each of its bytes with the first
[(m) bytes of the sequence resulting from concatenating the cipher blocks
51, 52, Ss, ..., produced by Eq. 9.12. The authentication value is computed by
encrypting T" with the key stream block Sy truncated to the desired length
as,

U.=T@® firstMbytes(So) (9.13)

The final result ¢ consists of the encrypted message m, followed by the
encrypted authentication value U.

At the receiver side, the decryption process starts by recomputing the key
stream to recover the message m and the MAC value T'. Figure 9.9 shows how
the decryption process is accomplished in CCM Mode.

Message and additional authentication data is then used to recompute the
CBC-MAC value and check T'. If the T value is not correct, the receiver should
not reveal the decrypted message, the value T, or any other information.
Figure 9.8 describes how the verification process is accomplished.

It is important to notice that the AES encryption process is used in en-
cryption as well as in decryption. Therefore, AES decryption functionality is
not necessary in CCM-mode, which leads to save valuable hardware resources.
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9.4 Implementing AES Round Basic Transformations on
FPGAs

Strategies for efficient hardware implementation of AES on FPGA devices
can be classified into two types: algorithmic and architectural optimizations.
Algorithmic optimizations try to obtain some mathematical expressions to
take advantage of FPGA structure. Architectural optimizations exploit design
techniques such as iterative, pipelining and sub-pipelining. In addition, AES
hardware implementation poses a challenge since encryption and decryption
processes are not completely symmetrical which forces to have some additional
observations while implementing a single encryptor/decryptor core.

In Subsection 9.2.3 it was described the basic round transformations, BS,
SR, MC, and ARK, and their corresponding inverse transformations IBS, ISR,
IMC, and TARK. That Subsection also describes the key schedule process to
generate the necessary subkeys during an encryption or decryption process.

But before start discussing how to implement a full encryption or decryp-
tion core, let us analyze, from the algorithmic optimization point of view,
some important implementation properties shown by the basic round trans-
formations.

The most important operations for the basic transformations include poly-
nomial multiplication in GF(28) for BS/IBS, fixed-rotation for SR/ISR, con-
stant polynomial multiplication in GF(2®) for MC/IMC, and simple addition
(XOR) for ARK/TARK. Fixed-rotation is hardwired and does not consume
FPGA's logic resources. The addition used in ARK/IARK is a simple XOR
operation. Hence, BS/IBS and MC/IMC are the two key functional units
in AES implementations. It has been estimated that BS/IBS and MC/IMC
take more than 65% of the total area in the entire AES encryptor/decryptor
implementation.

Perhaps, the most costly operation for BS/IBS is polynomial multiplica-
tion in GF(28). We also need to perform a polynomial multiplication in GF(28)
for MC/IMC but we can take advantage from the fact that is a constant multi-
plication. Even though the latter transformation is relatively less costly than
the former still it occupies considerable FPGA’s resources. Therefore, both
BS/IBS and MC/IMC are good candidates for improving overall performance
of the round transformation.

In the rest of this Section, we present various approaches for implementing
BS/IBS and MC/IMC.

Regarding BS/IBS two alternatives are considered. In the first approach
pre-computed values are simply stored on the FPGA’s built-in memory mod-
ules. This might be seen as an expensive solution but it helps to save valu-
able computational time. The second approach provides an alternative for
constrained memory requirements and it is based on an on-fly computation
strategy.

Similarly, two approaches for MC/IMC implementations are presented.
First approach, that we have called standard approach, deals with the struc-
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tural organization of MC/IMC transformations. The second approach called
modified approach introduces a small modification before MC to perform IMC
step. Finally, some structural changes are proposed in key schedule algorithm
which can improve hardware performance by cutting path delays.

9.4.1 S-Box/Inverse S-Box Implementations on FPGAs

The straightforward approach for implementing BS is by using a look-up table
in which pre-computed values are stored in memories. That requires memory
modules with fast access. In FPGAs, there are two ways to organize memory:
by using flip-flops and CLBs (i.e., FPGA fabrics), or by using FPGAs built-in
memory modules called BRAMs (BlockRAMs).

Implementing BS/IBS by look-up tables is simple, fast and in many cases
desirable. A single BS/IBS table would require 8-bit wide 256 entries. We
can make some few observations about implementing BS/IBS using look-up
tables.

Firstly, for the implementation of both encryption and decryption on a sin-
gle chip two different separated look-up tables are required, thus duplicating
memory requirements.

Secondly, if we want to increase performance, BS/IBS can be performed
in parallel for the sixteen bytes of the state matrix. The fully parallelization
of BS/IBS would therefore require 16 copies of the same look-up table, one
per state matrix element. Finally, if high performance is required, unfolding
the 10 rounds of AES to construct a pipeline architecture, would require 160
copies of the same look-up table.

In the following, we discuss some other alternatives to implement BS/IBS
in FPGAs.

I. S-Box and Inverse S-Box Implementation

To avoid utilization of a considerable amount of FPGA resources, BS/IBS can
be implemented using a look-up table. The look up table would be used for
MI by implementation affine (AF) and inverse affine (IAF) transformations
using some logic gates for BS and IBS respectively. The combination MI +
AT implements BS for encryption and the combination IAF + MI gives IBS
for decryption. For constructing an encryptor/decryptor core, two separated
designs for encryption and decryption would result in high area requirements.
From Section 9.2.4, we know that only one MI transformation in addition
to AF and IAF transformations is required for both encryption and decryp-
tion. Therefore, a multiplexer can be used to switch the data path for either
encryption or decryption as shown in Figure 9.10

II. S-Box and Inverse S-Box Based on Composite Field Techniques

BS/IBS implementations can be made using composite field techniques e.g. BS
can be manipulated in GF((24)2) and even GF(((22)2)2) instead of GF(28).
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] a S-Box & $-Box
! I
[AF ] M Jp v [aF ] o

Fig. 9.10. S-Box and Inv. S-Box Using Same Look-Up Table

That would reduce memory requirements to 16 x 4 bits in GF(2*) as compared
to 256 x 8 bits in GF(28) for a single LUT. More hardware resources would be
however used to implement the required logic in GF(2%). Several authors [267,
242, 303] have designed AES S-Box based on the composite field techniques
reported first in [267]. Those techniques use a three-stage strategy:

1. Map the element A € GF(2%) to a smaller composite field F' by using an
isomorphism function 4.

2. Compute the multiplicative inverse over the field F.

3. Finally, map the computations back to the original field.

In [242], an efficient method to compute the inverse multiplicative based on
Fermat’s little theorem was outlined. That method is useful because it allows
us to compute the multiplicative inverse over a composite filed GF(2™)" as
a combination of operations over the ground field GF(2™). It is based on the
following theorem:

Theorem 1 [267, 121] The multiplicative inverse of an element A of the
composite field GF(2™)", A # 0, can be computed by,

A7l = (A")'A"" ! mod P(z) (9.14)

2mm 1

where AT e GF(2”) & Y= '27;—1

An important observation of the above theorem is that the element A” belongs
to the ground field GF(2™). This remarkable characteristic can be exploited
to obtain an efficient implementation of the inverse multiplicative over the
composite field. By selecting m = 4 and n = 2 in the above theorem, we
obtain ¥ = 17 and,

ATH = (A7)TIAT = (A1) 1418 (9.15)

In case of AES, it is possible to construct a suitable composite field F, by using
two degree-two extensions based on the following irreducible polynomials.

Fy = GF(2?) Px)=2+z+1
F, = GF((22)? Pl( )=y +y+¢ (9.16)
F3=GF(((22)?)? P(2) =22+ 24 A
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where ¢ = {10}9, A = {1100}

The inverse multiplicative over the composite field F; defined in the Equa-
tion 9.15, can be found as follows.

Let A € Fy = GF(2?)? be defined in polynomial basis as A = Agy + Ay,
and let the Galois Fields Fy, Fy, and F3 be defined as shown in Equation 9.16,
then it can be shown that,

A = Ay + (An + AL)
AT = A A = 0y + (M(AR)® Ay + (AL)°Ap)
= MAn)® + (AL)"°AL (9.17)

First M | 3 Second &l
Manipulation Transformation

GF(2%) GF(2%Y & GF(2')? GF(2%)

Fig. 9.11. Block Diagram for 3-Stage MI Manipulation

Figures 9.11 and 9.12 depict block diagram to three-stage inverse multiplier
represented by Equations 9.15 and 9.17.

Ay Af M 417 = g6 4

4 4
LY
A7 A GF(2Y) | 8
X1 to A
4 GF(28) | 41
74_
AtA,

Fig. 9.12, Three-Stage Approach to Compute Multiplicative Inverse in Composite
Fields

As it was explained before, in order to obtain the multiplicative inverse of
the element A € F =GF(2®), we first map A to its equivalent representation
(Am,AL) in the isomorphic field F» = GF ((22)%) using the isomorphism &
(and its corresponding inverse 6!). In order to map a given element A from
the finite field F to its isomorphic composite field F; and vice versa, we only
need to compute the matrix multiplication of A, by the isomorphic functions
shown in Equation 9.18 given by [242]:
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(101000007 (111000107
11011110 01000100
10101100 01100010
10101110 ., 01110110
0=111000110|% =loo111110 (9.18)
10011110 00110000
01010010 01000011
101000011 | 101110101}

The isomorphism function § and §~! can be constructed as follows:

Let a and 3 be roots of a same primitive irreducible polynomial (m(z) =
2% + 2% + 2° + 2% + 1 can be used). First search for primitive element « in
the field A and then search for 8 in the field B. Once § and §~! are founded,
the matrix representation can be obtained, where o is mapped to 8* or vice
versa. Note that there could be more than one eligible isomorphism.

Also by taking advantage of the fact that A'” is an element of F;, the final
operation (A'7)71 A6 of Equation 9.15 can be easily computed with further
gate reduction. Last stage of algorithm consists of mapping computed value
in the composite field, back to the field GF(28).

To further increase the depth of a pipeline architecture, MI can be calcu-
lated by a composite field approach dealing MI manipulation in GF(2?) and
GF(2%) instead of GF(28).

In [113], BS has been computed rather than using a look-up table. The
main goal of using this formulation is to get a high-performance AES encryptor
core without depending on look-up tables.

Using the composite field technique, BS arithmetic in GF(28) is performed
via several arithmetic blocks in GF(24). This effectively reduces an 8-bit cal-
culation to a 4-bit one, resulting on several stages of computation with lower
delays. That allows obtaining a sort of sub-pipelining architecture in which,
instead of having 11 unfolded stages (each stage corresponding to a single
round), each single round is further unfolded into several stages. Thus, BS
is (sub)divided into four pipeline stages where the first round takes only one
stage, each middle round takes seven stages, and the final round, in which
MC is not required, takes six stages.

In order to keep all stages balanced, i.e., propagating similar delays, a
pipeline architecture with a depth of 70 stages was proposed in [113]. After 70
clock cycles when the pipeline is full, each clock cycle will deliver a ciphered
block. This technique achieves a throughput of 25.107 Gbps, the fastest one
reported up to date of this book publication.

The idea of dividing computations in sub fields is further exploited to its
extreme in [42], where 4-bit calculations are broken into several 2-bit ones.
Authors in [42] explored as many as 432 different isomorphisms. Polynomial
as well as normal basis were considered and using an exhaustive tree- search
algorithm [153], those isomorphisms requiring the minimum number of gates
were selected. Logic optimizations both at the hierarchical level of the Galois
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Field arithmetic and at the low level of individual logic gates were performed.
The authors also reused common expressions to save space and noticing that
NAND gates take less space than other ones, they rewrite all expressions
in terms of such gates. Authors reported results exploring a family of 432
implementations depending on the selected basis ranking from 138 to 195
gates. Such compact S—box implementations can be used in security for low-
end customer products, such as PDAs, wireless devices and other embedded
applications.

9.4.2 MC/IMC Implementations on FPGA

The MC/IMC transformations are essentially the inner-product operations
on GF(28) expressed in equations 9.6 and 9.9. They can be realized using
byte-level or bit-level substructure sharing methods [140].

For an encryptor/decryptor core MC/IMC steps are implemented sep-
arately and they can be realized in a small series of instructions. In case
of FPGAs, these instructions can be realized by keeping in mind the basic
CLB structure (4 input/1 output) in order to limit path delays and to save
space. Let us call this approach the MC/IMC standard approach. Fortunately,
there exists another approach for which the implementation of IMC is made
by introducing small modification before MC. The first approach is efficient
but needs separate implementation for MC and IMC. The MC/IMC modi-
fied approach reuses some modules which eliminates the need for separated
implementation of MC/IMC.

MC and IMC Transformation: Standard Approach

Observing that constant terms in equations 9.6 and 9.9 are the same, it is
possible to consider only the inner product that generates one output byte, Z
in MC and Z;n, in IMC, for an input column [ABCD]T:

Z ={01}A® {01}B ® {02} D & {03} E (9.19)
Using the property of {02}D = {02} D & 0 = {02}D & D & D, we can
rewrite equation 9.19 in the following manner:

Z=(A9oBeDaoE)s{02}(D& E)® D) (9.20)

We can use an efficient implementation of constant multiplication by 02
in GF(28) calculated by the functional block ztime(v) and extracting the
common factor in all columns ¢t = (A @ B & D & E), then equation 9.19 can
be rewritten as:

Z=t@atime(DDE)d D) (9.21)

Therefore, full MC transformation can be efficiently computed by using only
3 steps [21, 60]: an addition step, a doubling step and a final addition step.
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Let us consider a complete output row of MC transformation. Consider
now the element of State matrix’s column one a[0], a[1], a[2], and a[3], then the
transformed MC column a'{0], a’[1], a’[2], and a’[3] can be efficiently obtained
as shown in Equation 9.22.

t =al0] @ a[l] ® a[2] ® a[3];
v = af0] @ a[1]; v = xtime(v); o'[0] = a[0] DV B t;

v = afl] ® a[2]; v = atime(v); '] = a[l]Dv & ¢; (9.22)
v = al2] ® a[3]; v = ztime(v); ¢'[2) = a2 BV BT
v =a[3] ®al0]; v = atime(v); a'[3] =a[3]|Dv B L;

Observe that ¢ is a common expression for the four outputs and it needs
to be calculated just once. Next four rows are calculated in parallel and the
circuit is the same except for some input data. Finally, the sum of three
terms requires only eight CLBs, one per bit. Given that CLBs can compute
4-input/l-output functions, it is possible to embed the ARK transformation,
which is just a sum, to the final expression. This does not require additional
CLBs and improves performance since MC and ARK are computed at the
same stage. This is expressed in the following manner:

Stepl Step2
v=aqa[l]®al2] ®al3]; xto= ztime(al0]);
v=aqa[0]®af2] Dal3]; zt; = atime(all]);
v=al0] ®all]®al3]; =ty = aztime(al2]);
v=al0]®a[ll®al2]; =tz = xtime(a[3]);

Step3
a'[0) = k[0] @ v @ xzto & xty;
a[1) = k1] ® v @ xty ® to; (9.23)

a'[2] = k[2) & v & xt2 B xts;
a'(3] = k(3] @ v @ xt3 @ xto;

The same strategy applied above for MC can be used to compute IMC. Con-
sidering again an input column [ABCD]7, we can expressed Zin, as:

Ziny = {0d}A & {09} B & {0e} D & {0b}E (9.24)

Using the same property for constant multiplication by {02}, we can
rewrite Equation 9.24 in the following manner:

Ziny =D & N @ ztime(M & N) ® atime(D & E) (9.25)

where:
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=A®GB®DOE
T, = To & xtime(atime(Ty))
N =T @ xtime(ztime(B & E))
M =T, @ ztime(xtime(A & D))

Full IMC transformation can be computed by using seven steps: four sum steps
and three doubling steps. The difference is due to the fact that coefficients in
Equation 9.9 have a higher Hamming weight than the ones in Equation 9.6.
To overcome this drawback, we use the strategy depicted in Equation 9.25
where IMC manipulation is restructured and seven steps are cut to five steps.
Moreover, as explained above, IARK is embedded into IMC resulting in six
total steps. For final round (Round 10), MC/IMC steps are not executed;
therefore a separated implementation of ARK can be made. Let us consider
now a complete output row of IMC transformation embedded with and JARK
transformation, where a, and a’ stand as before.

Step 1 Step 2 Step 3
t = al0] ® afl] ® a[3] u =8y ® ) Dy D sy,
so = xtime(a[0}); s = xtime(sp); v =80 51D sy D s
81 = atime(a[l]); sy = xtime(s1); V=281 DS & ) B sk
s2 = xtime(a[2]); 3/2 = xtime(sy); v =82 ® 53D sy D sh;
s3 = xtime(al3]); st = xtime(ss); v =83 D S0 D ) B sh;
Step 4 Step 5 Step 6

u = xtime(u); t=t®u; a'l0] = al0) & ¢’ & v & k[0];
ad[l] =al]®t' ©v@k[l]; (9.26)
a[2) = a2 @t ® v ® k[2];
a'[3] = al3] @&t ®vdk3];

MC and IMC Transformation: Modified Approach

The strategy utilized above for MC and IMC yields up to three and six compu-
tational steps for encryption and decryption respectively. In order to minimize
difference in number of steps, the following strategy can be used.

Observe that it should exist a 4 x 4 byte matrix D(z) in GF(28) such that
the constant MC matrix of Equation 9.6 can be related to the constant matrix
of Equation 9.9 as,

0E 0B 0D 09 02 03 01 01
09 0E 0B 0D 01 02 03 01
0D 09 0E 0B | = | 01010203 | P (9.27)

0B 0D 09 OF 03 01 01 02
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Using the fact that both constant matrices in Equation 9.27 are the inverse of
each other in the finite field FF = GF(28), equation 9.27 can be solved using
the AES irreducible pentanomial m(z) = z® + z* + 2% + z + 1 [60] for the first
column of D(z) as shown in Equation 9.28.

doyo 0E 0B 0D 097 [0E
dio| |09 0E0BOD]| | 09
dao |~ |0D 09 0E OB | | 0D (9.28)
dayo 0B 0D 09 0E | | 0B

where d; 0, ¢ = 0,1, 2,3 represent the four coefficients of the first column of
D(z). It follows that Equation 9.28 has a unique solution in the finite field F
as given in Equation 9.29,

d()’() =5 dl‘() =0 d2y0 =4 d3,0 =0 (929)

Hence, Equation 9.27 can be re-written as shown in Eq. 9.30.

0F 0B 0D 09 02030101 05 00 04 00

09 OF 0B 0D _ |01020301 00 05 00 04 (9.30)
0D 09 OF 0B 01010203 04 00 05 00 '
0B 0D 09 OF 03 01 01 02 00 04 00 05

Equation 9.30 suggests an efficient way to compute IMC by re-using the MC
transformation to obtain IMC constant matrix. This is useful since constant
elements of second matrix in the right side of Equation 9.30 have a less Ham-
ming weight as compared to the constants of the original matrix for IMC.

9.4.3 Key Schedule Optimization

Let w(0], w(1], w[2], and w[3] be the four columns of the original key arranged
into 4 x 4 matrix of bytes. Then, those four columns are recursively expanded
to obtain 40 more columns as follows. Let the columns up to w{i — 1] have
been determined then,

wli] = {w[i-4]63w[i—1] ifimod4 #0 (9.31)

wli — 4] & T(w[i — 1]) otherwise

Where T(w[i — 1]} a is non-linear transformation based on the application
of the S-Box to the four bytes of the column. It involves also an additional
cyclic rotation of the bytes within the column and the addition of a round
constant (rcon) for symmetric elimination [60]. Let w[0}], w[1], w[2], and w][3]
be represented as:
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[ ko ] [k ]
k k
w[O] = k: w[l] = k?ss)
k12 _kl3
i ]Cz i I k3 1
k)a k?
9] = 3] = 9.32
wigl= | wid = |k (9.32)
k‘14 _k'15

Then according to the above expressions, the new columns

w'[0], w'[1], w'[2], and w'[3] of the next round key can be calculated as
shown in Equation 9.33.

Step 1 Step 2
kf = ko ® SBox(ki3) ® rcon; ki = kq @ ky;
]Ci = ko@SBOZ(km); k‘é = ks@k‘ll;
k)lz =ko® SBox(k15); k‘é = k¢ ® ké,
ké = ko D SBO:II(klz); k'lr =k @ I{ié,
Step 8 Step 4
kg = ks®ky;  Kip = ko @ kg;
Ky = ko @kl Ky = ks @ kb; (9.33)

kg = ko ® kg kig = k1a ® kyg;
ki =ku @k ks = kis © kig;

But it was mentioned before that in a typical FPGA device, a 4 input
look-up table can be configured indistinctly to handle 2, 3, or 4 input logic
gates. Hence, we can save some time by parallelizing the above computation
using only two steps. By applying redundant computations, Equation 9.33
can be rewritten as it is shown in Equation 9.34 for the first row. Parallel
computations are applied to obtain kj, k%, and kj,.

Stepl Step2
Ky = ks @ kj;
k = ko ® SBox(kiz) ® rcon;  k§ = ka @ ks @ ky; (9.34)

ko = ks ® ks @ k1o @ k;

9.5 AES Implementations on FPGAs

The basic organization of the hardware implementation of the AES algorithm
is shown in Figure 9.13 which represents three blocks: encryptor/decryptor
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Input User-key
AES Encryptor/Decryptor Key Schedule
Output Control unit

Fig. 9.13. Basic Organization of a Block Cipher

unit, key scheduling unit, and a control unit for synchronizing the flow of
data between them.
Three main processes participate in AES:

o Key Schedule
e Encryption
e Decryption

The above three processes can be implemented using different design
strategies showing distinct time-area tradeoffs. Depending on the application
specification, the AES implementation can be carried out for just encryption,
encryption/decryption on the same chip, separate encryption and decryption
cores, or simply decryption. A separate implementation of AES encryptor or
decryptor core would be less complex and efficient. Implementing AES encryp-
tor/decryptor core on a single chip FPGA by mixing their common blocks,
will give out an area efficient solution but one of them, either encryption or
decryption could be performed at a time. To develop a full duplex operation
having a capability to perform both encryption and decryption simultaneously
would require relatively high hardware resources and consequently would be-
come a bit slow.

For AES, key schedule implementations are different for an encryptor, de-
cryptor or encryptor/decryptor cores. The usage of internal memory resources
of an FPGA for storing pre-computed round-keys would be a simple approach.
For encryption/decryption processes however it is recommendable not to use
the same key for long time. A key schedule implementation will therefore pro-
vide a user the added flexibility of selecting encryption/decryption key of his
own choice at any given time.

9.5.1 Architectural Alternatives for Implementing AES

Several approaches can be followed to implement AES on hardware achieving
variable performance results [218].

Iterative architectures implement a reduced number of rounds (typically
one) in an independent fashion. This kind of architectures occupy small area



270 9. Architectural Designs For the Advanced Encryption Standard

of circuits but at the expense of low throughput. Unrolled architectures have
a large number of rounds that are independently implemented in hardware.
Pipelining allows to process multiples blocks of data at the same time at
different stages to have higher throughput. Pipelining is achieved by putting
rows of registers among different stages. Sub-pipelining inserts registers inside
the round transformation to create sub-stages.
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Fig. 9.14. Iterative Design Strategy

Block ciphers are of iterative nature, that is, n iterations of the same
algorithm are made for a single encryption/decryption. An iterative design
strategy would be a straightforward approach to implement the algorithm
which executes n iterations of it by consuming n clock cycles for a single
encryption/decryption as shown in Figure 9.14. The first round only considers
ARK, the next nine rounds implement the four basic transformation, BS, SR,
MC and ARK. The last round implements all but MC transformation. Clearly,
it is an economical approach with respect to the hardware area and the cost
has to be paid in terms of design speed which gets reduced with a factor of
n. Such architectures would be useful for applications where hardware area is
limited and speed is not more critical.

If reconfigurable platform is the choice for the implementation of a block
cipher, a high speed architecture would result by implementing n rounds of
the algorithm as modern FPGAs have enough logic density to accommodate
massive circuits. The simplest way to improve performance is to use loop un-
rolling that expand the iterative structure by replicating rounds and conecting
the output to the input of two consecutive rounds. This architecture is shown
in Figure 9.15. By eliminating switches (multiplexers) and registers the accu-
mulated delay can be reduced, but the duplication of multiple rounds incurs
in large critical paths, which implies lower clock frequencies.

By putting registers between two consecutive rounds, which operate at
the same clock cycle, we can achieve a pipeline architecture as shown in Fig-
ure 9.16.
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Fig. 9.15. Loop Unrolling Design Strategy
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Fig. 9.16. Pipeline Design Strategy

Each round forms a pipeline stage of the data flow. The critical path is cut
into stages although it is not diminished. The main advantage is that several
different blocks can be processed at the same time but in different rounds
of the encryption/decryption process. Once the pipeline is filled, the output
blocks appear at each successive clock cycle. This allows to increase perfor-
mance multiplied by the number of rounds or stages in the pipeline (typically
eleven). This architecture increases throughput but it becomes costly in terms
of hardware area.

FPGAs provide large number of flip-flops, which can be used to put sev-
eral registers inside the different steps of a single round for a pipeline design
strategy. This improves the performance of a pipeline architecture as those
registers shift the internal results of a round while the final results are being
transferred to the next round. It has been observed that careful use of those
registers inside a round causes a significant increase in design performance.
Figure 9.17 represents a sub-pipeline design strategy. This approach increases
the depth of the pipeline up to 40 stages.

Although one can think that the increase in performance is folded as many
times as the number of stages this is not completely exact. The problem is
that all stages must have similar delays which is not true for AES. According
to the formulation of BS, it is clear that its implementation takes longer delays
than other basic transformations.

To keep balanced stages and at the same time to increase the depth of
pipeline, we can break BS calculation by a four-stage composite field approach
as it was explained in Section 9.4.1 and it is shown in Figure 9.18. Each middle



272 9. Architectural Designs For the Advanced Encryption Standard

Input Block
AddRoundKey
SubBytes
ShiftRows
MixColumns
AddRoundKey
SubBytes
ShiftRows
AddRoundKey

Fig. 9.17. Sub-pipeline Design Strategy

round is decomposed into seven stages, four from BS and one for SR, MC
and ARK, each. That gives a 70 stages pipeline approach which reports high
performance at the expense of great area requirements.
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Fig. 9.18. Sub-pipeline Design Strategy with Balanced Stages

Pipelining and sub-pipelining are useful only when the cipher block is
used in the ECB mode (electronic code book). As it was mentioned in Section
9.3, in the Output Feedback Mode (OFB) and in the CCM mode (Counter
with CBC-MAC), pipelining looses its potential since a cipherblock is used to
encrypt the next block. The only acceptable architecture for feed back modes
is the iterative one, also called loop architecture.

In the rest of this section we disccuss some alternatives for implementing
AES. All of them are intended to be implemented on a single-chip FPGA.
There exists multi-chip implementations but as FPGA density is increasing,
those implementations would be less meaningful in the future.

Varieties for AES implementation include encryptor, decryptor, and en-
cryptor/decryptor cores using iterative or pipeline approaches. Each AES im-
plementation targets specific criteria composed of factors like efficiency, cost,
effectiveness and portability. Table 9.2 provides a roadmap to all implemented
AES designs. It consideres four parameters: design (Sec.9.5), based on Sec-
tion (Sec. 9.4), E/D/K module (encryption/decryption/key schedule} and ar-
chitecture (encryptor, decryptor or encryptor/decryptor core). Key schedule
implementations for encryptor, decryptor and encryptor/decryptor cores are
also presented.
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Table 9.2. A Roadmap to Implemented AES Designs

Design Based on E/D/K Module Architecture
the Section
Sec. 9.5.2[ Sec. 9.4.3 (Key schedule) For iterative & pipeline
encryptor cores only
Sec. 9.5.2| Sec. 9.4.3 (Key schedule) For Pipeline
encryptor /decryptor cores
Sec. 9.5.3| Sec. 9.4.1 | S-box Look-up table Encryptor core
Sec. 9.4.2 MC classic (Iterative)
Sec. 9.5.3| Sec. 9.4.1 | S-box Look-up table Encryptor core
Sec. 9.4.2 MC classic (Pipeline)
Sec. 9.5.4{ Sec. 9.4.1 | S-box Look-up table Encryptor/decryptor
Sec. 9.4.2 MC classic core (Pipeline)
Sec. 9.5.4| Sec. 9.4.1 [S-box Composite field| Encryptor/decryptor
Sec. 9.4.2 MC classic core (Pipeline)
Sec. 9.5.5| Sec. 9.4.1 | S-box Look-up table | Encryptor/decryptor
Sec. 9.4.2 | Modified MC/IMC core (Pipeline)
Sec. 9.5.5| Sec. 9.4.1 | S-box Look-up table Encryptor core
Sec. 9.4.2 MC classic (Pipeline)
Sec. 9.5.5| Sec. 9.4.1 | S-box Look-up table Decryptor core
Sec. 9.4.2 Modified IMC (Pipeline)

All designs presented in this section were completely synthesized and suc-
cesfully implement using Xilinx Foundation Tool F4.1i. All designs are either
coded in VHDL or by using libraries of the target devices. CoreGenerator is
another tool used for design entry.

9.5.2 Key Schedule Algorithm Implementations
Let the user key consisting of 16 bytes be arranged as:

ko kg kg ki2
k1 ks kg ki3
ka2 ke k10 K14
k3 k7 k11 Kis

The process of generating next round key is optimized as discussed in
Section 9.4.3 and is shown in Figure 9.19. The KGEN block consists of four
similar units where each unit contains an S-Box and four XORs. The first
block is slightly different as a constant predefined value (rcon) is XOR-ed in
each round. As shown in Figure 9.19, last four bytes k12, k13, k14, k15, of each
round key are substituted with the bytes from S-Box and then various XOR
operations are performed to get the next round key.

The KGEN block is the basic building block used to generate round Keys
for all AES implementations. However, the key management for producing

(9.35)
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Fig. 9.19. KGEN Architecture

round keys differs depending on the particular implementation’s strategy be-
ing used. For an encryptor core in iterative mode, round keys are also gener-
ated in iterative mode. For fully pipeline encryptor core, all round keys must
be available before the encryption process starts. In a fully pipeline encryp-
tor/decryptor core, the round keys for decryption are stored in reverse order
as that of encryption.

Key Schedule for Iterative and Pipeline Encryptor Cores

For an encryptor core in iterative mode, a single round key is generated. The
round key is fed to perform ARK step and also latched to feed back to KGEN
block in order to get prepared for processing the next round key as shown in
Figure 9.20. A multiplexer is used to switch the user-key first time and then
for all rounds, each round key is used to generate the next round key.

CLK — R
e
9
Key i o
Generator s > Round-Key
User-Key —— é
Select CE — r

Fig. 9.20. Key Schedule for an Encryptor Core in Iterative Mode
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For a fully pipelined encryptor core, the round keys must be available
for each round permanently. The key generation process for a fully pipeline
encryptor core is shown in Figure 9.21. The internal structure of each block is
the same as shown in Figure 9.20, however, same block is replicated n (number
of rounds) times. Once the round keys are generated, there is no need to repeat
this process again and again. The same round keys serve for the whole session.
For a fully pipeline encryptor core, the encryption process can be started in
a parallel way, and there is no need to wait for the completion of all round
keys.

Key 1 Key 2 Key 9 Key 10
R R R T R
e e e e
9 9 9 9
i Key ! Key 1 Key ! Key
s Generator T Generator T Generator T Generator
t
e e e e
ClK— ' cik— " clk—| ck— "

Fig. 9.21. Key Schedule for a Fully Pipeline Encryptor Core

Key Schedule for Encryptor/Decryptor Cores

For an encryptor/decryptor core on a single-chip FPGA, all the round keys
must be generated and latched before the encryption/decryption processes
start. The reason why round keys cannot be generated in a parallel way is
because they are required in reverse order for decryption. The process of key
generation is the same as explained above, however, round keys are stored in
the registers for encryption and decryption in ascending or descending order
respectively as shown in Figure 9.22. Besides this difference, the same blocks
can be used for encryption and decryption processes.

As shown in Figure 9.22, round keys are generated by KGEN block as
it was explained above by introducing two modifications. The first one deals
with the generation of select signals (s;) through an up/down counter. The
main purpose of having those select signals is to choose the correct order for
round keys either for the encryption or for the decryption process.

The second modification is the addition of IMC step which is required for
generating round keys for decryption. It is applied through a multiplexer that
allows passing round keys directly for encryption and switches the other line
for applying IMC operation for the decryption round keys. IMC operation is
performed before all the round keys are latched in their registers. Obeying
algorithm description of the AES decryption process, this modification is not
applied to first and last round keys.
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Fig. 9.22. Key Schedule for a Fully Pipeline Encryptor/Decryptor Core

IMC modifications discussed in Section 9.4.2 are applied in the IMC step
for key scheduling as shown in Figure 9.23. This module is part of the second
AES encryptor/decryptor core to be explained in the next Section.

E/D

A EE
s|[s|1s| (3] (3] 5] 3| 5| [5] |3

LATCH

USER-KEY

? KGEN l

Fig. 9.23. Key Schedule for a Fully Pipeline Encryptor/Decryptor Core with Mod-
ified IMC

9.5.3 AES Encryptor Cores - Iterative and Pipeline Approaches
FPGAs implementations of AES encryptor cores are carried out using two
strategies: iterative and pipeline.

AES Encryptor Core Using an Iterative Approach

For an iterative approach, instead of implementing n iterations of the algo-
rithm, one iteration is implemented and n clock cycles are consumed to achieve
final output. An AES iterative approach is shown in Figure 9.24.
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Fig. 9.24. Iterative Approach for AES Encryptor Core

The encryption process is presented in Figure 9.24, where RNDO is a simple
ARK step: the user-key and plain-text are added. The RND1-9 block includes
the four AES steps, namely, BS,SR,MC,ARK. Round keys are generated for
all iterations of the algorithm. A multiplexer selects RNDO output at the
first cycle and then selects the latch output for RND1-9 during the next nine
cycles. RND10 is implemented separately without including the MC step.

The latch output is connected to the RND10 block and it is also fed-back
to the multiplexer. All latch outputs passes through RND10 block but only
during the tenth cycle its output is collected giving the final result. No clock
cycle is therefore consumed to perform RND10.

Sixteen ROMs (256 x 8) are configured by using CLB in memory mode for
performing the BS step of RND1-9. Since RND10 also includes the BS step,
sixteen more ROMs are required for this step. The key scheduling algorithm
also includes the BS step for the last four bytes of each round key (See Section
9.5.2) as shown in Figure 9.19, occupying four extra ROM blocks. A total of 36
ROM blocks are used for encryption part only. The SR step is combined with
BS step. The MC and ARK steps are combined to reduce area requirements
as discussed in Section 9.4.2.

The design was implemented on Xilinx VirtexE FPGA devices (XCV812BEG).
It utilizes 36 ROMs, 385 1/0 Blocks (95%) and 2744 slices (28%) to achieve a
throughput of 258.5 Mbits/sec at 20.192 MHz. An encryption is completed in
10 clock cycles. That design does not make use of FPGA dedicated resources
(BRAMS, etc.), hence it has a high portability and can be implemented vir-
tually in every commercial FPGA device.

Fully Pipeline AES Encryptor Core

For a pipeline architecture, all AES rounds are unrolled. That is achieved by
repeating one AES round 11 times as shown in Figure 9.25.

Similar to the iterative architecture, RNDO is just ARK step. The RND1-
9 block includes all four steps BS, SR, MC, and ARK. The RND10 includes
three steps BS, SR, ARK excluding MC step. 160 ROMs are required for 10
AES rounds instead of 16 ROMs occupied by the iterative architecture to
perform BS step. Typically, the critical data path in pipeline architecture is
longer, which implies that the design can run at lower speeds. However, by
using dedicated memory modules BRAMs, as explained in the introduction
Section, it is possible to reduce critical path delays.
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Fig. 9.25. Fully Pipeline AES Encryptor Core

The Virtex and VirtexEE FPGA devices [397, 396} contain more than 280
BRAMs each of 4K. Each dual port BRAM can be configured as two single
port BRAMs which reduces half of the memory requirements. A total of 80
BRAMSs are therefore used to perform BS step. The same approach is used for
key schedule implementation by occupying 20 BRAMs instead of 40 ROMs.

The design is targeted to Xilinx VirtexE FPGA devices (XCV812BEG)
and occupies 2136 CLB slices (22%), 385 I/0 Blocks (95%) and 100 BRAMs
(35%). It uses a system clock of 22.41 MHz and data is processed at a rate
of 2868 Mbits/sec. For a fully pipeline encryptor core, encryption starts from
first clock cycle without initial delay. The round keys are generated in parallel.
It takes 11 clock cycles to fill the pipeline first and then encrypted blocks start
appearing at each consecutive clock cycle.

At first look, a comparison of the iterative and pipeline architectures sug-
gests that the number of CLB slices occupied by the pipeline architecture
seems to be less as compared to an iterative architecture. But this is ac-
complished at the price of occupying extra memory (100 BRAMs) needed to
achieve desired fully pipeline architecture. The usage of dedicated memory
resources (BRAMs) makes the pipeline design importable as it can only be
targeted to those FPGA devices equipped with embedded memory function-
ality.

9.5.4 AES Encryptor/Decryptor Cores- Using Look-Up Table and
Composite Field Approaches for S-Box

For an encryptor/decryptor core, each encryption step (BS, SR, MC, ARK)
has its own inverse (IBS, ISR, IMC, IARK) which has to be implemented
separately. The implementation of BS and IBS on a single chip is the most
costly operation for AES implementation on FPGAs. In this design, two ar-
chitectures are proposed for the BS/IBS implementation on FPGAs. First
architecture proposes high performance implementations of BS/IBS step and
second architecture is based on on-fly architecture scheme which tries to re-
duce memory requirements. The implementation of the remaining three steps
SR, MC, and ARK is the same as the one described in Section 9.5.3. In the
following, BS/IBS implementation strategies are discussed.

For encryption, BS implementation can be made by computing the Mul-
tiplicative Inverse (MI) of the input byte in GF(2%) followed by the affine
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transformation (AF). For decryption, inverse affine transformation (IAF) is
applied first followed by MI step. Implementing MI as look-up table requires
memory modules, therefore, a separated implementation of BS/IBS causes the
allocation of high memory requirements especially for a fully pipelined archi-
tecture. We can reduce such requirements by developing a single data path
which uses one MI block for encryption and decryption. Figure 9.26 shows the
BS/IBS implementation using single block for MI.

There are two design approaches for implementing MI: look-up table
method and composite field calculation.

MI Using Look-Up Table Method

MI can be implemented using memory modules (BRAMs) of FPGAs by stor-
ing pre-computed values of MI. By configuring a dual port BRAM into two
single port BRAMs, 8 BRAMs are required for one stage of a pipeline ar-
chitecture, hence a total of 80 BRAMs are used for 10 stages. A separated
implementation of AF and IAF is made. Data path selection for encryption
and decryption is performed by using two multiplexers which are switched de-
pending on the E/D signal. A complete description of this approach is shown
in Figure 9.27

The data path for both encryption and decryption is, therefore, as follows:

Encryption: MI— AF— SR— MC— ARK
Decryption: ISR— IAF— MI- IMC—IARK

The design targets Xilinx VirtexE FPGA devices (XCV2600) and occupies
80 BRAMs (43%), 386 1/0 blocks (48%), and 5677 CLB slices (22.3%). It runs
at 30 MHz and data is processed at 3840 Mbits/s.
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ED AF mc ED
SR ARK
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ISR MI using IMC
look-up tables
1AF JARK

Fig. 9.27. Data Path for Encryption/Decryption

The data blocks are accepted at each clock cycle and then after 11 cy-
cles, output encrypted/decrypted blocks appear at the output at consecutive
clock cycles. It is an efficient fully pipeline encryptor/decryptor core for those
cryptographic applications where time factor really matters.

MI with Composite Field Calculation
This is composite field approach that deals with MI manipulation in GF(22)

and GF(2%) instead of GF(2%) as it was explained in Section 9.4.1. It is a
3-stage strategy as shown in Figure 9.28.

First M Second B
‘Manipulation ’ I Transformation

GF(2% GF(2%? & GF(2*) GF(2%)

Fig. 9.28. Block Diagram for 3-Stage MI Manipulation

First and last stages transform data from GF(2%) to GF(2*) and vice versa.
The middle stage manipulates inverse MI in GF(2%). The implementation of
the middle stage with two initial and final transformations is represented in
Figure 9.29 which depicts a block diagram of the three-stage inverse multiplier
represented by Equations 9.15 and 9.17. It is noted that the Data path for
encryption/decryption for this approach remains the same as the change in
this approach is introduced in the MI manipulation.

Ay A4 M 7= 464

4
§ | GF(25) ar — 27! GF(2) | 8
mvasE'y A Xt o A
A4 |GF@Y) . 4l GF(8) | A
+
A A4,

Fig. 9.29. Three-stage to Compute Multiplicative Inverse in Composite Fields
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The circuit shown in Figure 9.30 and Figure 9.31 present a gate level
implementation of the aforementioned strategy.

GFQ? Jnuttiplier GF (2 Ymultiptier

Fig. 9.30. GF(2%)? and GF(2?) Multipliers

Fig. 9.31. Gate Level Implementation for 22 and Az

The architecture is implemented on Xilinx VirtexE FPGA devices (XCV2600BEG)
and occupies 12,270 CLB slices (48%), 386 1/0O blocks (48%). It runs at 24.5
MHz and throughput achieved is 3136 Mbits/s. The increment on CLB slices
utilized for this design is due to the manipulation for MI instead of using
BRAMs. The increased design complexity causes the throughput to decrease
when compared against the first design.

9.5.5 AES Encryptor/Decryptor, Encryptor, and Decryptor Cores
Based on Modified MC/IMC

Three AES cores are presented in this Section. First design is an encryp-
tor/decryptor core based on the ideas discussed in Section 9.4.2 for MC/IMC
implementations. The second and third designs implement encryption and de-
cryption paths separately for that design. There are two main reasons for the
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separate implementation of encryption and decryption paths. First, to real-
ize the effects of the modifications introduced in MC/IMC transformations.
Second, most of reported AES implementations are either encryptor cores or
encryptor/decryptor cores and few attention has been put to decryptor only
cores.

Encryptor/Decryptor Core

This architecture reduces the large difference between the encryption/decryption
time by exploiting the ideas explained in Section 9.4.2 for MC/IMC transfor-
mations. For this design, BS/IBS implementations are made by storing pre-
computed MI values in FPGA’s memory modules (BRAMs) with separate
implementation of AF/IAF as explained in Section 9.5.4. The MC and ARK
are combined together for encryption and a small modification ModM is ap-
plied before MC+ARK to get IMC operation as shown in Figure 9.32. Two
multiplexers are used to switch the data path for encryption and decryption.

ouTt

Fig. 9.32. AES Algorithm Encryptor/Decryptor Implementation

The data path for both encryption and decryption is, therefore, as follows:

Encryption: MI-» AF— SR— MC— ARK
Decryption: ISR— IAF— MI—» ModM— MC— ARK

This AES encryptor/decryptor core occupies 80 BRAMs (43%), 386 1/O
Blocks (48%) and 5677 slices (22.3%) by implementing on Xilinx VirtexE
FPGA devices (XCV812BEG). It uses a system clock of 34.2 MHz and the
data is processed at the rate of 4121 Mbits/sec. This is a fully pipeline archi-
tecture optimized for both time and space that performs at high speed and
consumes less space.

Encryptor Core

It is a fully pipeline AES encryptor core. As it was already mentioned, the
encryptor core implements the encryption path for AES encryptor/decryptor
core explained in the last Section. The critical path for one encryption round
is shown in Figure 9.33.

For BS step, pre-computed values of the S-Box are directly stored in the
memories (BRAMs), therefore, AF transformation is embedded into BS. For
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PLANTEXT-p»| BS | SR |—— wmc | ARK HecIPHER-TEXT

Fig. 9.33. The Data Path for Encryptor Core Implementation

the sake of symmetry, BS and SR steps are combined together. Similarly MC
and ARK steps are merged to use 4-input/1l-output CLB configuration which
helps to decrement circuit time delays. The encryption process starts from
the first clock cycle as the round-keys are generated in parallel as described
in Section 9.5.2. Encrypted blocks appear at the output 11 clock cycles after,
when the pipeline got filled. Once the pipeline is filled, the output is available
at each consecutive clock cycle.

The encryptor core structure occupies 2136 CLB slices(22%), 100 BRAMs
(35%) and 386 I/0 blocks (95%) on targeting Xilinx VirtexE FPGA devices
(XCV812BEG). It achieves a throughput of 5.2 Gbits/s at the rate of 40.575
MHz. A separated realization of this encryptor core provide a measure of tim-
ings for encryption process only. The results shows huge boost in throughput
by implementing the encryptor core separately.

Decryptor Core

It is a fully pipeline decryptor core which implements the separate critical
path for the AES encryptor/decryptor core explained before. The critical path
for this decryptor core is taken from Figure 9.32 and then modified for IBS
implementations. The resulting structure is shown in Figure 9.34.

IMC
——t—

CIPHER-TEXT- ISR [ 1BS |—[ ModM [— MC [ ARK [ PLAIN-TEXT

Fig. 9.34. The Data Path for Decryptor Core Implementation

The computations for IBS step are made by using look-up tables and pre-
computed values of inverse S-Box are directly stored into the memories
(BRAMs). The IAF step is embedded into IBS step for symmetric reasons
which is obtained by merely rewiring the register contains. The IMC step
implementation is a major change in this design, which is implemented by
performing a small modification ModM before MC step as discussed in Sec-
tion 9.4.2. The MC and ARK steps are once again merged into a single module.

The decryption process requires 11 cycles to generate the entire round
keys, then 11 cycles are consumed to fill up the pipeline. Once the pipeline is
filled, decrypted plaintexts appear at the output after each consecutive clock
cycle. This decryptor core achieves a throughput of 4.95 Gbits/s at the rate of
38.67 MHz by consuming 3216 CLB slices(34%), 100 BRAMs (35%) and 385
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1/0s (95%). The implementation of decryptor core is made on Xilinx VirtexE
FPGA devices (XCV812BEG).

A comparison between the encryptor and decryptor cores reveals that there
is no big difference in the number of CLB slices occupied by these two de-
signs. Moreover, the throughput achieved for both designs is quite similar. The
decryptor core seems to be profited from the modified IMC transformation
which resulted in a reduced data path. On the other hand, there is a signifi-
cant performance difference between separated implementations of encryptor
and decryptor cores against the combination of a single encryptor/decryptor
implementation.

We conclude that separated cores for encryption and decryption provide
another option to the end-user. He/she can either select a large FPGA de-
vice for combined implementation or prefer to use two small FPGA chips
for separated implementations of encryptor and decryptor cores, which can
accomplish higher gains in throughput.

Table 9.3. Specifications of AES FPGA implementations

Core|Type|Device[BRAMs|CLB(S) | Throughput|T/S
(XCV) Slices |Mbits/s (T)

Sec. 9.5.4 [308]{E/D| P |2600E 80 6676 3840 0.58
Sec. 9.5.4 [308]|E/D| P |[2600E 13416 3136 0.24
Sec. 9.5.5 [297]|E/D{ P {2600E| 100 5677 4121 1.73
Sec. 9.5.3 [311}]| E | IL | 812E 2744 258.5 0.09
Sec. 9.5.3 [311]| E P | 812E 100 2136 5193 2.43
Sec. 9.5.5 [307]} E P | 812E 100 2136 5193 2.43
Sec. 9.5.5 [306]| D P | 812E 100 3216 4949 1.54

9.5.6 Review of This Chapter Designs

The performance results obtained from the designs presented throughout this
chapter are summarized in Table 9.3.

In Section 9.5.4 we presented two encryptor/decryptor cores. The first
one utilized a Look-Up Table approach for performing the BS/IBS transfor-
mations. On the contrary, the second encryptor/decrpytor core computed the
BS/IBS transformations based on an on-fly architecture scheme in GF(2%) and
GF(2%)? and does not occupy BRAMs. The penalty paid was on an increment
in CLB slices.

The encryptor/decryptor core discussed in Section 9.5.5 exhibits a good
performance which is obtained by reducing delay in the data paths for
MC/IMC transformations, by using highly efficient memories BRAMs for
BS/IBS computations, and by optimizing the circuit for long delays.

The encryptor core design of Section 9.5.3 was optimized for both area/time
parameters and includes a complete set-up for encryption process. The user-
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key is accepted and round-keys are subsequently generated. The results of
each round are latched for next rounds and a final output appears at the
output after 10 rounds. This increases the design complexity which causes
a decrement in the throughput attained. However this design occupies 2744
CLB slices, which is acceptable for many applications.

Due to the optimization work for reducing design area, the fully pipeline
architecture presented in Sections 9.5.3 and 9.5.5 consumes only 2136 CLB
slices plus 100 BRAMs. The throughput obtained was of 5.2 Gbits/s. Finally,
the decryptor core of (Sec. 9.5.5) achieves a throughput of 4.9 Gbits/s at the
cost of 3216 CLB slices.

9.6 Performance

Since the selection of new advanced encryption standard was finalized on Oc-
tober, 2000, the literature is replete with reports of AES implementations on

FPGAs. Three main features can be observed in most AES implementations
on FPGAs.

1. Algorithm’s selection: Not all reported AES architectures implement
the whole process, i.e., encryption, decryption and key schedule algo-
rithms. Most of them implement the encryption part only. The key sched-
ule algorithm is often ignored as it is assumed that keys are stored in the
internal memory of FPGAs or that they can be provided through an exter-
nal interface. The FPGA’s implementations at [102, 83, 63] are encryptor
cores and the key schedule algorithm is only implemented in [63]. On the
other hand the AES cores at [223, 366, 357] implement both encryption
and decryption with key schedule algorithm.

2. Design’s strategy: This is an important factor that is usually taken
based on area/time tradeoffs. Several reported AES cores adopted various
implementation’s strategies. Some of them are iterative looping (IL) [102],
sub-pipeline (SP) [83], one-round implementation [63]. Some fully pipeline
(PP) architectures have been also reported in {223, 366, 357].

3. Selection of FPGA: The selection of FPGAs is another factor that in-
fluences the performance of AES cores. High performance FPGAs can be
efficiently used to achieve high gains in throughput. Most of the reported
AES cores utilized Virtex series devices (XCV812, XCV1000, XCV3200).
Those are single chip FPGA implementations. Some AES cores achieved
extremely high throughput but at the cost of multi-chip FPGA architec-
tures [366, 357].

9.6.1 Other Designs

Comparing FPGA’s implementations is not a simple task. It would be a fair
comparison if all designs were tested under the same environment for all im-
plementations. Ideally, performances of different encryptor cores should be
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compared using the same FPGA, same design’s strategies and same design
specifications.

In this Section a summary of the most representative designs for AES
in FPGAs is presented. We have grouped them into four categories: speed,
compactness, efficiency, and other designs.

Table 9.4. AES Comparison: High Performance Designs

Author Core|Type Device Mode| Slices T lT/ Al
(BRAMs)|(Mbps)
XC352000-5 [ECB] 17425(0) [ 25107 [1.44
XCV2000e-8 |ECB|16693(0) [ 23654 [1.41
XC2V4000 [ECB][16938(0) | 23570 [1.39
XCVE2000-8 [ECB [5819(100)[ 20,300 ]1.09
VIRTEX3200E]ECB| 15112(0) | 18560 [1.22
XCV1000e-8 [ECB[11719(0) [ 16500 [1.40

Good et al.[113 E/D
Good et al.[113 E/D
Zambreno et al.[400]] E
Saggese et al.[305]
Standaert et al.[346]
Jarvinen et al.[157]

= = =
jae/hee lavihav Rav/ige)

*Throughput

In the first group, shown in Table 9.4, we present the fastest cores re-
ported up to date. Throughput for those designs goes from 16.5 Gbps to 25.1
Gbits/s. To achieve such performances designers are forced to utilize pipelined
architectures and, clearly, they need large amounts of hardware resources.

Up to this book’s publication date, the fastest reported design achieved
a throughput of 25.1 Gbits/s. It was reported in {113} and it applies a sub-
pipelining strategy. The design divides BS transformation in four steps by
using composite field computation. BS is expressed in computational form
rather than as a look-up table. By expressing BS with composite field arith-
metic, logic functions required to perform GF(2%) arithmetic are expressed
in several blocks of GF(2*) arithmetic. That allows obtaining a sort of sub-
pipelining architecture in which each single round is further unfolded into
several stages with lower delays. This way, BS is divided into four subpipeline
stages. As a result, there is a single stage in the first round, each middle
round is composed of seven stages, while the final round, in which MC is
not required, takes six stages. To keep balanced stages with similar delays, a
pipeline architecture with a depth of 70 stages was developed. After 70 clock
cycles once that the pipeline is full, each clock cycle delivers a ciphered block.

In the second group shown in Table 9.5 compact designs are shown. The
bigger one in [297) takes 2744 slices without using BRAMs. The most compact
design reported in [113] needs only 264 slices plus 2 BRAMS and it has a 2.2
Mbps throughput. In order to have a compact design it is necessary to have
an iterative (loop) design. Since the main goal of these designs is to reduce
hardware area, throughputs tend to be low. Thus, we can see that in general,
the more compact a design is the lower its throughput.
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Table 9.5. AES Comparison: Compact Designs
Author ]Core

=
(Mbps)

Type] Device [Mode|[ Slices
(BRAMs)

T/A|

Good et al.[113] E | IL [XCS2515.6|ECB| 264(2) | 2.2 [.008
Amphion CS5220 [7]] E | IL | XVE-8 |ECB| 421(4) | 290 [0.69
Weaver et al.[375 E IL [XVE600-8 [ECB][ 460(10) 690 | 1.5
Chodowick et al.[52][ E | IL [ XC2530-6 [ECB| 522(3) 166 10.74
Chodowick et al.[52]| E | TIL [ XC2530-5 [ECB[ 522(3) 139 10.62
Rouvry et al.[302] E 1L [ XC3S50-4 [ECBT 1231(2) 87 0.07
Saqib [297] E | IL [XCVBI2E [ECB| 2744 258.5 [0.09
*Throughput

Since BS is the most expensive transformation in terms of area, the idea of
dividing computations in composite fields is further exploited in [113] to break
4-bit calculations into several 2-bit calculations. It is therefore a three stage
strategy: mapping the elements to subfields, manipulation of the substituted
value in the subfield and mapping of the elements back to the original field.
Authors in [113] explored as many as 432 choices of representation both, in
polynomial as well as normal basis representation of the field elements.

In the third group, a list of several designs is presented. We sorted the
designs included according to the throughput over area ratio as is shown in
Table 9.6%. That ratio provides a measure of efficiency of how much hardware
area is occupied to achieve speed gains. In this group we can find iterative as
well as pipelined designs. Among all designs considered, the design in [297]
only included the encryption phase and the most efficient design in [223]
reporting a throughput of 6.9 Gbps by occupying some 2222 CLB slices plus
100 BRAMs for BS transformation. We stress that we have ignored the usage
of BRAMSs in our estimations. If BRAMs are taken into consideration, then
the design in [346] is clearly more efficient than the one in [223].

The designs in the first three categories implement ECB mode only. The
fourth one, which is the shortest, reports designs with CTR and CBC feed-
back modes as shown in Table 9.7. Let us recall that a feedback mode requires
an iterative architecture. The design reported in [214] has a good through-
put/area tradeoff, since it takes only 731 slices plus 53 BRAMs, achieving a
throughput of 1.06 Gbps.

As we have seen, most authors have focused on encryptor cores, imple-
menting ECB mode only. There are few encryptor/decryptor designs reported.
However, from the first three categories considered, we classified AES cores ac-
cording to three different design criteria: a high throughput design, a compact
design or an efficient design.

4 In this figure of merit, we did not take into account the usage of specialized FPGA
functionality, such as BRAMs.
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Table 9.6. AES Comparison: Efficient Designs

Author CorelType Device Mode] Slices TF

| | %] R A | (M)
P XCVS12E ECB[2222(100)] 6956 [3.10
P | VIRTEX2300E [ECB ] 542(10) 1450 [2.60
P XCV3812E ECB [2136(100)] 5193 [2.43
1T XCVE2000-8 [ECB| 446(10) | 1000 [2.30
P XVE-8 ECB| 573(10) | 1060 [1.90
XCV2600E ECB [5677(100)] 4121 [1.73
1L [Spartan 3 354000 ECB| 633(53) | 1067 [1.68
1L XCV600E-8 |ECB| 496(10) 743 [1.49
IL XCV-100-4 ECB| 496(10) | 417 {0.84
IL | Altera EPF1I0K |[ECB| 1584 [637.2410.40
IL XCV1000-4 [ECB| 2151(4) | 390 [0.18
1L XCV1000 ECB| 2902 331.5 10.11

T/Al

McLoone et al. [223]
Standaert et al.[346]
Saqib et al. [307]
Saggese et al.[305]
Amphion CS5230 7]
Rodriguez et al. [297]
Lépez et al [214]
Segredo et al. [325
Segredo et al. [325
Calder et al. [4
Labbé et al.J193
Gaj et al]102]

—

=
mmmmmmEmmmmm
jgv)

*Throughput

Table 9.7. AES Comparison: Designs with Other Modes of Operation

Author Core Slices T [T/A

‘ (BRAMs) |(Mbps)
1L XCV2V1000 [CTR][2415 (NA)] 1490 [0.68
iL Altera APEX [CTR N/A 512 [N/A
IL [Spartan 3 3s4000{ CBC| 1031(53) | 1067 [1.03
IL |Spartan 3 3s4000] CTR| 731(53) | 1067 [1.45
I | Altera Stratix |CCM|5605(LC) | 285 |NA

Type Device ‘Mode

Fu et al [100]

Charot et al.[49]
Loépez et al [214
Lépez et al [214
Bae et al [15]

Blolololeo

*Throughput

After having analyzed the designs included in this Section, we conclude
that there is still room for further improvements in designing AES cores for
the feedback modes.

9.7 Conclusions

A variety of different encryptor, decryptor and encryptor/decryptor AES cores
were presented in this Chapter. The encryptor cores were implemented both
in iterative and pipeline modes. Some useful techniques were presented for the
implementations of encryptor/decryptor cores, including: composite field ap-
proach for BS/IBS, look-up table method for BS/IBS, and modified MC/IMC
approach.

All the architectures described produce optimized AES designs with dif-
ferent time and area tradeoffs. Three main factors were taking into account
for implementing diverse AES cores.
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High performance: High performances can be obtained through the effi-
cient usage of fast FPGA’s resources. Similarly, efficient algorithmic tech-
niques enhance design performance.

Low cost solution; It refers to iterative architectures which occupy less
hardware area at the cost of speed. Such architectures accommodate in
smaller areas and consequently in cheaper FPGA devices.

Portable architecture: A portable architecture can be migrated to most
FPGA devices by introducing minor modifications in the design. It pro-
vides an option to the end-user to choose FPGA of his own choice. Porta-
bility can be achieved when a design is implemented by using the standard
resources available in FPGA devices, i.e., the FPGA CLB fabric. A general
methodology for achieving a portable architecture, in some cases, implies
lesser performance in time.

For AES encryptor cores, both iterative and fully pipeline architectures

were implemented. The AES encryptor/decryptor cores accomplished the
BS/IBS implementation using two techniques: look-up table method and;
composite fields. The latter is a portable and low cost solution.

The AES encryptor/decryptor core based on the modified MC/IMC is

a good example of how to achieve high performance by using both efficient

design and algorithmic techniques. It is a single-chip FPGA implementation
that exhibits high performance with relatively low area consumption.

In short, time/area tradeoffs are always present, however by using efficient

techniques at both, design and algorithm level, the always present compromise

between area and time can be significantly optimized.
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Elliptic Curve Cryptography

In this chapter we discuss several algorithms and their corresponding hard-
ware architecture for performing the scalar multiplication operation on ellip-
tic curves defined over binary extension fields GF(2™). By applying parallel
strategies at every stage of the design, we are able to obtain high speed im-
plementations at the price of increasing the hardware resource requirements.
Specifically, we study the following four different schemes for performing el-
liptic curve scalar multiplications,

Scalar multiplication applied on Hessian elliptic curves.

Montgomery Scalar Multiplication applied on Weierstrass elliptic curves.
Scalar multiplication applied on Koblitz elliptic curves.

Scalar multiplication using the Half-and-Add Algorithm.

10.1 Introduction

Since its proposal in 1985 by [179, 236], many mathematical evidences have
consistently shown that, bit by bit, Elliptic Curve Cryptography (ECC) offers
more security than any other major public key cryptosystem.

From the perspective of elliptic curve cryptosystems, the most crucial
mathematical operation is the elliptic curve scalar multiplication, which can
be informally stated as follows. Let k be a positive integer and P a point
on an elliptic curve. Then we define elliptic curve scalar mutiplication as the
operation that computes the multiple Q@ = kP, defined as the point resulting
of adding P + P + ...+ P, k times. Algorithm 10.1 shows one of the most
basic methods used for computing a scalar multiplication, which is based on a
double-and-add algorithm isomorphic to the Horner’s rule. As its name sug-
gests, the two most prominent building blocks of this method are the point
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doubling and point addition primitives. It can be verified that the computa-
tional cost of Algorithm 10.1 is given as m — 1 point doublings plus an average
of 1”—2_—1 point additions.

The security of elliptic curve cryptosystems is based on the intractability
of the Elliptic Curve Discrete Logarithm Problem (ECDLP) that can be for-
mulated as follows. Given an elliptic curve E defined over a finite field GF(p™)
and two points @ and P that belong to the curve, where P has order r, find a
positive scalar k € [1,7 — 1] such that the equation @ = kP holds. Solving the
discrete logarithm problem over elliptic curves is believed to be an extremely
hard mathematical problem, much harder than its analogous one defined over
finite fields of the same size.

Scalar multiplication is the main building block used in all the three funda-
mental ECC primitives: Key Generation, Signature and Verification schemes!.

Although elliptic curve cryptosystems can be defined over prime fields,
for hardware and reconfigurable hardware platform implementations, binary
extension finite fields are preferred. This is largely due to the carry-free bi-
nary nature exhibit by this type of fields, which is a valuable characteristic
for hardware systems leading to both, higher performance and lesser area
consumption.

Many implementations have been reported so far [128, 334, 261, 333, 20,
311, 327, 46], and most of them utilize a six-layer hierarchical scheme such as
the one depicted in Figure 10.1. As a consequence, high performance imple-
mentations of elliptic curve cryptography directly depend on the efficiency in
the computation of the three underlying layers of the model.

The main idea discussed throughout this chapter is that each one of the
three bottom layers shown in Figure 10.1 can be implemented using parallel
strategies. Parallel architectures offer an interesting potential for obtaining a
high timing performance at the price of area, implementations in 333, 20, 339,
9] have explicitly attempted a parallel strategy for computing elliptic curve
scalar multiplication. Furthermore, for the first time a pipeline strategy was
essayed for computing scalar multiplication on a GF(P) elliptic curve in [122].

In this Chapter we present the design of a generic parallel architecture
especially tailored for obtaining fast computation of the elliptic curves scalar
multiplication operation. The architecture presented here exploits the inherent
parallelism of two elliptic curves forms defined over GF(2™): The Hessian form
and the Weierstrass non-supersingular form. In the case of the Weierstrass
form we study three different methods, namely,

e Montgomery point multiplication algorithm;
e The 7 operator applied on Koblitz elliptic curves and;
¢ Point multiplication using halving

! Elliptic curve cryptosystem primitives, namely, Key generation, Digital Signature
and Verification were studied in §2.5
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Fig. 10.1. Hierarchical Model for Elliptic Curve Cryptography

The rest of this Chapter is organized as follows. Section 10.2 briefly de-
scribe the Hessian form of an elliptic curve together with its corresponding
group law. Then, in Section 10.3 we describe Weierstrass elliptic curve in-
cluding a description of the Montgomery point multiplication algorithm. In
Section 10.4 we present an analysis of how the ability of having more than
one field multiplier unit can be exploited by designers for obtaining a high
parallelism on the elliptic curve computations. Then, In Section 10.5 we de-
scribe the generic parallel architecture for elliptic curve scalar multiplication.
Section 10.6 discusses some novels parallel formulations for the scalar mul-
tiplication on Koblitz curves. In Section 10.7 we give design details of a re-
configurable hardware architecture able to compute the scalar multiplication
algorithm using halving. Section 10.8 includes a performance comparison of
the design presented in this Chapter with other similar implementations pre-

viously reported. Finally, in Section 10.9 some concluding remarks are high-
lighted.



294 10. Elliptic Curve Cryptography
10.2 Hessian Form

Chudnvosky et al. presented in [53] a comprehensive study of formal group
laws for reduced elliptic curves and Abelian varieties. In this section we discuss
the Hessian form of elliptic curves and its corresponding group law followed
by the Weierstrass elliptic curve form.

The original form for the law of addition on the general cubic was first
developed by Cauchy and was later simplified by Sylvester-Desboves (316, 66].
Chudnovsky considered this particular elliptic curve form: “By far the best and
the prettiest” [53]. In modern era, the Hessian form of Elliptic curves has been
studied by Smart and Quisquater [335, 160].

Let P(z) be a degree-m polynomial, irreducible over GF(2). Then P(z)
generates the finite field F, = GF(2™) of characteristic two. A Hessian
elliptic curve E(F,) is defined to be the set of points (z,y,z) € GF(2™) x
GF(2™) that satisfy the canonical homogeneous equation,

23+ 43 + 23 = Dryz (10.1)

Together with the point at infinity denoted by O and given by (1,0, —1).

Let P = (z1,y1,71) and Q@ = (z2,ys2,22) be two points that belong to
the plane cubic curve of Eq. 10.1. Then we define —P = (y;,z1,2:1) and
P+ Q = (1‘3,y3723) Where,

g 2 2
T3 = Y17 Tozy — Y27 T121
2 2
Y3 = T1°Y222 — X271 21 (10.2)
_ .2 2
23 = 217Y2Z2 — 22°Y1%1

Provided that P # Q. The addition formulae of Eq. (10.2) might be paral-
lelized using 12 field multiplications as follows [335)],

Al=1Y1T2 A2 =T1Y2 A3 = T12

M=21Z3 As =212  Ae = 22U1

Sp = )\1)\6 8o = /\2/\3 83 = )\5)\4 (10.3)
ty = }\2)\5 to = A Aq t3 = )\(3)\3

T3 =81~ 11 Ys = 82—tz 23 =83 — 13

Whereas the formulae for point doubling are giving by

- 3 3\ .
wa—yl(zl — 1),

ys =21 (11° — 213); (10.4)
23 = 21 (ﬂﬂl3 -y).

Where 2P = (23,¥s,23). The doubling formulae of Eq. (10.4) can be also

parallelized requiring 6 field multiplications plus three field squarings for their
computation. The resulting arrangement can be rewritten as [335],

A =2 Az =y, ? As = 2%
M=xA ds=ydz A = 2103,
A7 = X5 = Ag Ag = Ag — Ag Ag = Ag — As;
Ty =1y1As Y2 = T1A7 22 = Z1Ag;

(10.5)



10.2 Hessian Form 295

Algorithm 10.1 Doubling & Add algorithm for Scalar Multiplication: MSB-
First
Require: &k = (knm—1,km—2....., k1, ko)2 with kn_1 = 1, P(z,y,2) € E(GF(2™))
Ensure: Q = kP
. Q= P;
. for i = m — 2 downto 0 do

Q = 2-Q; /*point doubling*/

if k; = 1 then

Q = Q + P; /*point addition*/

end if
end for
. Return @

PN DT W

By implementing Egs. (10.3) and (10.5), one can obtain the two building
blocks needed for the implementation of the second layer shown in Figure 10.1.
Hence, provided that those two blocks are available, one can compute the third
layer of Figure 10.1 by using the well-known doubling and add Algorithm 10.1.
That sequential algorithm needs an average of m{—l point additions plus m
point doublings in order to complete one scalar multiplication computation.

Alternatively, we can use the algorithm of Figure 10.2 that can poten-
tially be implemented in parallel since in this case the point addition and
doubling operations do not show any dependencies between them. Therefore,
if we assume that the algorithm of Figure 10.2 is implemented in parallel, its
execution time in average will be of that of approximately 7 point additions
plus 2 point doublings?.

In Subsection 10.4 we discuss how to obtain an efficient parallel-sequential
implementation of the second and third layers of the model of Figure 10.1.

Algorithm 10.2 Doubling & Add algorithm for Scalar Multiplication: LSB-
First
Require: k = (km—1,km—2.....,k1,ko)2 with kn_1 = 1, P(z,y,2) € E(GF(2™))
Ensure: Q = kP
Q=1 R=P;
fori=0tom—1do

if ki = 1 then

Q = Q + R; [*point addition*/

end if

R =2- R; /*point doubling*/
end for
. Return @

e B

2 Because of the inherent parallelism of this algorithm, % point doublings compu-
tations can be overlapped with the execution of about % point additions.
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10.3 Weierstrass Non-Singular Form

As it was already studied in Section 4.3, a Weierstrass non-supersingular ellip-
tic curve E(Fy) is defined to be the set of points (z,y) € GF(2™)x GF(2™)
that satisfy the affine equation,

v+ a2y = 25 +a2? +b, (10.6)

Where a and b € Fy,b # 0, together with the point at infinity denoted by
O. The Weierstrass elliptic curve group law for affine coordinates is given as
follows.

Let P = (z1,y1) and @ = (x2,y2) be two points that belong to the curve
10.6 then —P = (z1,%1 + y1). For all P onthe carve P+ O =0 +P =P. If
Q # —P, then P + Q = (z3,y3), where

Y1ty nty
x3 = (mierzyb)z + zi+w22 +r+ T2 ta P # Q (10.7)
Ys x%+(x1+£—i)z3+x3 P=Q '

From Eqns. (10.7) and (10.8) it can be seen that for both of them, point
addition (when P # —@Q) and point doubling (when P = @), the computations
for (x3,%3) require one field inversion and two field multiplications3.

Notice also (a clever observation first made by Montgomery) that the 2-

coordinate of 2P does not involve the y-coordinate of P.

10.3.1 Projective Coordinates

Compared with field multiplication in affine coordinates, inversion is by far
the most expensive basic arithmetic operation in GF(2™). Inversion can be
avoided by means of projective coordinate representation. A point P in pro-
jective coordinates is represented using three coordinates X,Y, and Z. This
representation greatly helps to reduce internal computational operations®. It
is customary to convert the point P back from projective to affine coordinates
in the final step. This is due to the fact that affine coordinate representation
involves the usage of only two coordinates and therefore is more useful for
external communication saving some valuable bandwidth.

In standard projective coordinates the projective point (X:Y:Z) with Z# 0
corresponds to the affine coordinates z = X/Z and y = Y/Z. The projective
equation of the elliptic curve is given as:

Y2Z+XYZ = X%+ aX?Z +b2Z° (10.9)

3 The computational costs of field additions and squarings are usually neglected.
4 Projective Coordinates were studied in more detail in §4.5
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10.3.2 The Montgomery Method
Let P = (z1,y1) and @ = (22, y2) be two points that belong to the curve of

Equation 10.6. Then P + @ = (z3,y3) and P — Q = (x4,y4), also belong to
the curve and it can be shown that z3 is given as {128],

2

z z

T3 = T4+ LI ! ; (10.10)
X1 + o T+ 22

Hence we only need the = coordinates of P, Q and P— @ to exactly determine
the value of the z-coordinate of the point P + @. Let the x coordinate of P
be represented by X/Z. Then, when the point 2P = (X5, —, Z5) is converted
to projective coordinate representation, it becomes [211],

Xy = X44b. Z4;
Zy = X2. 22 (10.11)

The computation of Eq. 10.11 requires one general multiplication, one
multiplication by the constant b, five squarings and one addition. Fig. 10.3
is the sequence of instructions needed to compute a single point doubling
operation Mdouble(X1, Z,) at a cost of two field multiplications.

Algorithm 10.3 Montgomery Point Doubling

Require: P = (X1,~,71) € E(GF(2™)), ¢ such that ¢ = b
Ensure: P = 2. P /* Mdouble(X1, Z1)*/

1. T=X%

2 M=c-Z%

3 Zo =T Z%

4: M = M?,

5 T =T%

6: Xo=T+ M;

7: Return (X3, Z3)

In a similar way, the coordinates of P + @ in projective coordinates can
be computed as the fraction X3/Z3 and are given as:

Zy = (X1 Za+ Xa 21)°; (10.12)
Xs=2x-Zs+ (X1 Zo) (X2 Z1);

The required field operations for point addition of Eq. 10.12 are three gen-
eral multiplications, one multiplication by z, one squaring and two additions.
This operation can be efficiently implemented as shown in Fig. 10.4.
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Algorithm 10.4 Montgomery Point Addition
Require: P = (X1, - Zl),Q = (Xz, -, ZQ) S E(GFQm)
Ensure: P = P+ Q /* Madd(X1, Z1, X2, Z2)*/

1 M= (X1 Z2)+ (21 Xa);
2 Za= M?

3 N=(X1-22) (Z1 X2);
4. M=xa-Zs;

5. Xa=M+ N,

6: Return (X3, Z3)

Montgomery Point Multiplication

A method based on the formulas for doubling (from Eq. 10.11) and for addi-
tion (from Eq. 10.12) is shown in Fig. 10.5 [211]. Notice that steps 2.2 and
2.3 are formulae for point doubling (Mdouble) and point addition (Madd)
from Figs. 10.3 and 10.4 respectively. In fact both Mdouble and Madd opera-
tions are executed in each iteration of the algorithm. If the test bit k; is ‘17,
the manipulations are made for Madd(X1, Z1, X2, Z2) and Mdouble(Xs, Z3)
(steps 5-6) else Madd(Xs, Zy, X1,21) and Mdouble(Xy, Z1), i.e., Mdouble
and Madd with reversed arguments (step 8-9).

The approximate running time of the algorithm shown in Fig. 10.5 is 6mM
+ (11 + 10M) where M represents a field multiplication operation, m stands
for the number of bits and I corresponds to inversion. It is to be noted that the
factor (17 + 10M) represents time needed to convert from standard projective
to affine coordinates. In the next Subsection we explain the conversion from
SP to affine coordinates and then in Subsection 10.4, we discuss how to obtain
an efficient parallel implementation of the above algorithm.

Conversion from Standard Projective (SP) to Affine Coordinates

Both, point addition and point doubling algorithms are presented in standard
projective coordinates. A conversion process is therefore needed from SP to
affine coordinates. Referring to the algorithm of Fig. 10.5, the corresponding
affine z-coordinate is obtained in step 3:

xr3 = Xl/Zl.
Whereas the affine representation for the y-coordinate is computed by step 4:
yz = (x + Xl/Zl)[(X1 +220)(Xo+2xZ3) + (.’E2 + y)(ZlZ2)](wZ1Z2)_1 +y.

Notice also that both expressions for z3 and y; in affine coordinates include
one inversion operation. Although this conversion procedure must be per-
formed only once in the final step, still it would be useful to minimize the
number of inversion operations as much as possible. Fortunately it is possi-
ble to reduce one inversion operation by using the common operations from
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Algorithm 10.5 Montgomery Point Multiplication

Require: k = (kn_1,kn—_2....., k1, ko)2 with kn—1 = 1, P(z,y, z) € E(GF2™)
Ensure: Q = kP

._.
=

XD TR W e

o
—

—
(S

—
(]

—
=N

Xi=uwa; Z1 =1,

Xz =z + by, Z2 = 2%
for ¢ = n — 2 downto 0 do

if k; = 1 then

Madd(Xy, Z1, X2, Z2);
Mdouble(Xa, Z2);

else

Madd(X2, Za, X1, Z1);
Mdouble(X1, Z1);

end if

: end for

cz3 = X1/2y;
Sy = (x4 X /2D (X0 + 220)(Xe +2Z2)+ (2% + ) (21 Z2)) (221 Z2) T +
: Return (z3,y3)

the conversion formulae for both z and y-coordinates. A possible sequence of
the instructions from SP to affine coordinates is given by the algorithm in
Fig. 10.6.

Algorithm 10.6 Standard Projective to Affine Coordinates

Require: P = (X1, 71), Q = (X2, Z2), P(z,y) € E(GF2™)
Ensure: (z3,ys) /* affine coordinates */

— e et ek e e el
0 NDUDA W= OP®

I RS S

)\1=Z1><Zg;
Ao =271 X x;
Az = A2 + X,
A= Za Xz
As = A + Xi;
Ae = A4 + Xa;
A7 = A3 X Ag;

D As =% 4y

: )\9=/\1><)\8;
DA = A+ Ag;

H /\11 =T X /\1;

¢ Az = tnverse(An);
© A1z = A2 X Ago;

D T3 = A1a = Ap X A1z

D A5 = Aug +
D A16 = A15 X A13;
DYz = Ae + ¥

: Return (zs3, y3)
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The coordinate conversion process makes use of 10 multiplications and
only 1 inversion ignoring addition and squaring operations.

The algorithm in Fig. 10.6 includes one inversion operation which can be
performed using Extended Euclidean Algorithm or Fermat’s Little Theorem
(FLT)S.

10.4 Parallel Strategies for Scalar Point Multiplication

As it was mentioned in the introduction Section, parallel implementations
of the three underlying layers depicted in Figure 10.1 constitutes the main
interest of this Chapter. Several parallel techniques for performing field arith-
metic, i.e. the first Layer of the model, were discussed in Chapter 5. However,
hardware resource limitations restrict us from attempting a fully parallel im-
plementation of second and third layers. Thus, a compromising strategy must
be adopted to exploit parallelism at second and third layers.

Let us suppose that our hardware resources allow us to accommodate up
to two field multiplier blocks. Under this scenario, the Hessian form point
addition primitive (z3 : y3 : 23) = (21 : y1 : 21) + (22 : y2 : 22) studied in

Section 10.2 can be accomplished in just six clock cycles as®,

Cycle 1: X\ =1y -z A2 = T1 - Yo
Cycle 2: )3 =x; - 23; Ay =21 T;
Cycle 3: A5 = z1 - yo; As = 22 Y1;
Cycle 4: ;=M\ )g; 82 = A2+ Ag;
Cycle 5: 53 = A5 Ay; t1 = A2+ Xs;
Cycle 6: to =)\ Ay 3 = Ag * A3;

Cycle 6.a: 23 =81 —t1; Yz = 82— ta; 23 = S3 — t3;

Similarly, the Hessian point doubling primitive, namely, 2(zy : y1 : 21) =

(22 : y2 : 22) can be performed in just 3 cycles as’,

CyCle 1: Al = (1:12; )\2 — y12; As — 212.

Cycle Laa: Ay =21 Ay As = Y1 Ag;
Cycle 2: Jg =21 A3; zo =21 (A — As);
Cycle 2.31/\7':/\5—)\6; /\8 =)\5—)\4;
Cycle 3: =z =1y;-Ag; Y2 = T1 - Ar;

The same analysis can be carried out for the Montgomery point multipli-
cation primitives. The Montgomery point doubling primitive 2(X; : —: Z;) =

% Efficient multiplicative inverse algorithms were studied in §6.3.

© Because of their simplicity, the arithmetic operations of Cycle 6.a can be com-
puted during the execution of Cycle 6.

" Due to the simplicity of the arithmetic operations included in cycles 1 and 2.a
above, those operations can be merged with the operations performed in cycles
1.a and 2, respectively.
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(X2 : — : Z3) when using two multiplier blocks can be accomplished in just
one clock cycle as,

Cycle 1: T = X% M=c 2% Z,=T 2% (10.13)
Cycle l.a: Xy = T? + M?; '
Whereas, the Montgomery point addition primitive (X1 : —: Z1) = (X7 : —:
Z1) + (Xq . —: Z2) when using two multiplier blocks can be accomplished in
just two clock cycles as,

Cycle 1: tl = (X1 . ZQ); tg - (Z1 . Xg);
Cycle Laa: M =t +ty; Z1= M?
Cycle 2: N =1t1 -ty M=z Zy;
Cycle 2.a; X, = M + N,

(10.14)

If two multiplier blocks are available, we can choose whether we want to
parallelize the second or the third Layer of the model shown in Fig.10.1.

Algorithm 10.5, i.e. the third Layer of Fig. 10.1, can be executed in paral-
lel by assigning one of our two multiplier blocks to compute the Montgomery
point addition of Algorithm 10.4, and the other to perform the Montgomery
point doubling of Algorithm 10.3. Then, the corresponding computational cost
of point addition and point doubling primitives become of four and two field
multiplications, respectively. In exchange, steps 5-6 and 8-9 of Algorithm 10.5
can be performed in parallel. Since those steps can be performed concurrently
their associated execution time reduces to about 4 field multiplications. There-
fore, the execution time associated to Algorithm 10.5 would be equivalent to
4m field multiplications®.

Alternatively, the second layer can be executed in parallel by using our two
multiplier blocks for computing point addition and point doubling in just 2
and 1 cycles, as it was shown in Eqgs.(10.14) and (10.13), respectively. However,
this decision will force us to implement Algorithm 10.5 (corresponding to the
third layer of Fig.10.1) in a sequential manner. Therefore, the execution time
associated to Algorithm 10.5 would be equivalent to 3m field multiplications.

If our hardware resources allow us to implement up to four field multiplier
blocks, then we can execute both, the second and third Layers of Fig.10.1 in
parallel. In that case the execution time of Algorithm10.5 reduces to just 2m
field multiplications.

It is noticed that this high parallelism achieved by the Montgomery point
multiplication method cannot be achieved by the Hessian form of the Elliptic
curve.

Table 10.1 presents four of the many options that we can follow in order to
parallelize the computation of scalar point multiplication. The computational
costs shown in Table 10.1 are normalized with respect to the required number

8 Since we can execute concurrently the procedures Mdouble and Madd the exe-
cution time of the former is completely overlapped by the latter.
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Table 10.1. GF(2™) Elliptic Curve Point Multiplication Computational Costs

Strategy Req. No.|EC Operation Cost|{Equivalent] EC Operation Cost [Equivalent
2nd 3rd of Field Hessian Form Time Montgomery Algorithm Time
Layer Layer Mults. |Doubling| Addition| Costs |Doubling| Addition Costs
Sequential{Sequential 1 6 M 12M 12mM 2M 4M emM
Sequential{Parallel 2 6M 12M I9mM 2M aM 4mM
Parallel [Sequential 2 3M 6M 6mM 1M 2M 3mM
Parallel [Parallel 4 3M 6M TmM M 2M 2mM

of field multiplication operations (since the computation time of squaring
operations is usually neglected in arithmetic over GF(2™)).

Notice that the computation times of the Hessian form has been estimated
assuming that the scalar multiplication has been accomplished by executing
Algorithm 10.2. For instance, the execution time of the Hessian form in the
fourth row of Table 10.1 has been estimated as follows,

m m 3m 6m Im
Ti = —P — = — —M=—M.
ime Cost 2 D+2PA 2M+ 2M 5

Due to area restrictions we can afford to accommodate up to two fully par-
allel field multipliers in our design. Thus, we can afford both, second and third
options of Table 10.1. However, third option is definitely more attractive as
it demonstrates better timing performance at the same area cost. Therefore,
and as it is indicated in the third row of Table 10.1, the estimated computa-
tional cost of our elliptic curve Point multiplication implementation will be of
6m field multiplications in Hessian form. It costs only 3m field multiplications
using the Montgomery algorithm for the Weierstrass form.

In the next Section we discuss how this approach can be carried out on
hardware platforms.

10.5 Implementing scalar multiplication on
Reconfigurable Hardware

Figure 10.2 shows a generic structure for the implementation of elliptic curve
scalar multiplication on hardware platforms. That structure is able to imple-
ment the parallel-sequential approach listed in the third row of Table 10.1,
assuming the availability of two GF(2™) multiplier blocks.

In the rest of this Section, it is presupposed that two fully-parallel GF(2!°!)
Karatsuba-Ofman field multipliers can be accommodated on the target FPGA
device.

The architecture in Figure 10.2 is comprised of four classes of blocks:
field multipliers, Combinational logic blocks and/or finite field arithmetic (i.e.
squaring, etc.), Blocks for intermediate results storage and selection (i.e. reg-
isters, multiplexers, etc.), and a Control unit (CU).
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MUL
GF(
*C.L. = Combinational Logic m

i
Control Unit

Fig. 10.2. Basic Organization of Elliptic Curve Scalar Implementation

A Control Unit is present in virtually every hardware design. Its main
responsibility is to control the dataflow among the different design’s modules.
Design’s main architecture, on the other hand, is responsible of computing all
required arithmetic/logic operations. It is frequently called Arithmetic-Logic
Unit (ALU).

10.5.1 Arithmetic-Logic Unit for Scalar Multiplication

Figure 10.3 shows the arithmetic-logic unit designed for computing the scalar
multiplication algorithms discussed in the preceding Sections. It is a generic
FPGA architecture based on the parallel-sequential approach for kP compu-
tations discussed before.

In order to implement the memory blocks of Figure 10.2, fast access
FPGA’s read/write memories BlockRAMs (BRAMs) were used. As it was
studied in Chapter 3, a dual port BRAM can be configured as a two sin-
gle port BRAMs with independent data access. This special feature allows
us to save a considerable number of multiplexer operations as the required
data is independently accessible from any of the two available input ports.
Hence, two similar BRAMs blocks (each one composed by 12 BRAMs) pro-
vide four operands to the two multiplier blocks simultaneously. Since each
BRAM contains 4k memory cells, two BRAM blocks are sufficient. The com-
bination of 12 BRAMs provides access to a 191-bit bus length. All control
signals (read/write, address signals to the BRAMs and multiplexer enable
signals) are generated by the control unit (CU). A master clock is directly fed
to the BRAM block which is afterwards divided by two, serving as a master
clock for the rest of the circuitry. The external multiplexers apply pre and post
computations (squaring, XOR, etc.) on the inputs of the multipliers whenever
they are required.
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Fig. 10.3. Arithmetic-Logic Unit for Scalar Multiplication on FPGA Platforms

Let us recall that we need to perform an inversion operation in order to
convert from standard projective coordinates to affine coordinates 9. A squarer
block “SqrInv” is especially included for the sole purpose of performing that
inversion. As it was explained in Section 6.3.2, the Itoh-Tsujii multiplicative
inverse algorithm requires the computation of m field squarings. This can
be accomplished by cascading several squarer blocks so that several squaring
operations can be executed within a single clock cycle (See Fig. 6.11 for more
details).

In the next Subsection we discuss how the arithmetic logic unit of Figure
10.2 can be utilized for computing a Hessian scalar multiplication.

10.5.2 Scalar multiplication in Hessian Form

According to Eq. (10.3) of Section 10.2 we know that the addition of two points
in Hessian form consists of 12 multiplications, 3 squarings and 3 addition
operations. Implementing squaring over GF(2™) is simple, so we can neglect
it. Using the parallel architecture proposed in Figure 10.3, point addition can
be performed in 6 clock cycles using two GF(2!%!) multiplier blocks. The
Hessian curve point addition sequence using two multiplier units is specified
in Eq. (10.13). Table 10.2 shows that sequence in terms of read/write cycles.

® This conversion is required when executing a Montgomery point multiplication
in Standard Projective coordinates
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Referring to the architecture of Figure 10.3, M1 and M2 are two memory
(BRAMSs) blocks, each one composed of two independent ports PT'1 and PT2.
It is noticed that the inputs/outputs of the multipliers are different from
those read/write values at the memory blocks. This is due to pre or post
computations required during the next clock cycle. Table 10.2 lists computed
values during/after multiplications for both, the read and write cycles.

Table 10.2. Point addition in Hessian Form

Cycle Read Write
M1 M2 M1/M2
PT1|PT2 PT1|PT?2 PTl]PT?
Yi | X1 Xe| Yo | M| A2
Xy | Z1 1 Z2 | X2 As | A4
Zl Z2 Yz Yl )\5 )\6
)\1 )\2 )\6 )\5 3 _
A2l M A3 | Al ws -
As | A6 [ A | As | 23 | =

O] Gt =] O D] =

Similarly, Hessian point doubling implementation of Eq. (10.13) consists
of 6 multiplications, 3 squarings and 3 additions. Table 10.3 describes the
algorithm flow implemented using the same architecture ( Figure 10.3).

Table 10.3. Point doubling in Hessian Form

Cycle Read Write
M1 M2 M1/M2
PT1[PT2|PT1[PT2|PT1[PT2
1 | Xh X Y| Al e
Ao A Zy Z z2 As
3 MMl |V | Xz v

[

Let m represents the number of bits and M denotes a single finite field
multiplication. Then the number of multiplications for one point addition
and point doubling are 6 M and 3M, respectively. Referring to the algorithm
in Figure 10.1, average of (%#)6M and 3mM multiplications are needed for
computing all m bits of the vector k. Thus, 6mM are the total multiplication
operations required for computing kP scalar multiplication.

In the case of m = 191 bits, the total number of field multiplications re-
quired by the algorithm are 1146. Let T be the minimum clock period allowed
by the synthesis tool. Then, 1146 x T" is the total time required for completing
one Hessian elliptic curve scalar multiplication.
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10.5.3 Montgomery Point Multiplication

Let us consider now Algorithm 10.5, where each bit of the scalar £ are scanned
from left to right (i.e., MSB-First).

At every iteration (regardless if the bit scanned is zero or one), both
point addition (Madd) and point doubling (Mdouble) operations must be
performed. However, notice that the order of the arguments is reversed: if the
tested bit is ‘1’, Mdouble(Xa, Z3), Madd(X,, Zy, X2, Z3) are computed and
Mdouble(Xy, Z1), Madd(X2, Zo, X1, Z1) otherwise. Algorithms 10.4 and 10.3
describe the sequence of instructions for Madd and Mdouble operations, re-
spectively, whereas Eqgs. (10.14) and (10.13) specify how those primitives can
be accomplished in 2 and 1 cycles, respectively!®.

Tables 10.4 and 10.5 describe the multiplications performed for both point
addition and point doubling operations in three normal clock cycles when the
scanned bit is 1’ or 0’ respectively. We kept the same notations used in al-
gorithms 10.4 and 10.3 for point addition and point doubling, respectively.
M1 and M2 represent two memory blocks (BRAMs) each one with two inde-
pendent ports P71 and PT2. Some required arithmetic operations (squaring
etc.) need to be performed during read/write cycles at the memories before
and after the multiplication operations.

Table 10.4. kP Computation, if Test-Bit is ‘1’

Cycle Read Write
M1 M2 M1/M2
PT1|PT2|PT1[PT2| PT1 | PT2
1 (X1 | Z2| Z1 | X2 P Q
2 X2 22 Z2 T] Z2=Z3 X2:X3
3 P Q Q| T [ Xu=X'|21=2"

The resulting vectors X1,21,X2,42, are updated at the memories after the
completion of point addition and doubling operations using 3 clock cycles per
each bit. Therefore, the total time for the whole 191-bit scalar is 191 x 3 x T,
where T represents design’s maximum allowed frequency.

10.5.4 Implementation Summary

All finite field arithmetic blocks and then the kP computational architecture
were implemented on a VirtexE XCV3200e-8bg560 device by using Xilinx
Foundation Tool F4.1i for design entry, synthesis, testing, implementation
and verification of results. Table 10.6 lists timing performances and occupied
resources by the said architectures.

10 provided that two multiplier units are available.
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Table 10.5. kP Computation, If Test-Bit is ‘0’

Cycle Read Write
M1 M2 M1/M2
PT1[PT2[PT1|PT2| PT1 | PT2
1 X2 Zl Zg X1 P Q
2 X1 Z1 1 T Z1=Z3 X1:X3
3 Pl Q| QT |Xe=X'|Z2=2"

Elliptic curve point addition and point doubling do not participate directly
as a single computational unit in this design; however parallel computations
for both point addition and point doubling are designed together as it was
shown in Algorithm 10.1.

Both point addition and point doubling occupy 18300 (56.39 %) CLB slices
and it takes 100.1ns (at a clock speed of 9.99 MHz) to complete one execution
cycle. As it was mentioned in Section 10.2, when using two field multiplier
units, six and three clock cycles are needed for computing point addition and
point doubling in Hessian form, respectively.

The total consumed time for computing each iteration of the algorithm of
Figure 10.1 is 900.97 if the corresponding bit is one and 300.3ns otherwise.
Therefore, scalar point multiplication in Hessian form is the time needed to
complete m/2 point additions (in average) and m point doublings. For our
case m=191, the total time is therefore (191/2) - (600.67n) + 191 - (300.3n) =
114.71ustt,

Similarly, two and one clock cycles are needed to perform Montgomery
point addition and point doubling, respectively. The associated executing time
is thus, 200.1ns and 100.2ns for point addition and point doubling respectively.
Each iteration of the algorithm thus consumes 300.37s for 3 clock cycles. In the
case of m = 191, the total time needed for computing a scalar multiplication
is 191(300.3) = 57us.

Inversion is performed at the end of the main loop of Algorithm 10.5. It
takes 28 clock cycles to perform one inversion in GF(2'°!) occupying 1312
CLB slices. The CLB slices for inversion in fact are the FPGA resources oc-
cupied for squaring operations only and the multiplier blocks are the same
used for point addition and point doubling. The total conversion time (See
Algorithm 10.6) is therefore 28 - 100.17 + 10 - 100.1y = 3.8us. Therefore, the
execution time for algorithm 10.5 is given as the sum of the time for comput-
ing the scalar multiplication and the time to perform coordinate conversion
namely,

57.36 4+ 3.8 = 61.16us.

' 1t is noted that we did not include a conversion from projective to affine coordi-
nates in the case of the Hessian form.
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The architecture for elliptic curve scalar multiplication in both cases (Hes-
sian form & Montgomery point multiplication) occupies 19626 (60 %) CLB
slices, 24 (11%) BRAMSs and performs at the rate of 100.1ns (9.99 MHz).
The design for GF(2!°!) Karatsuba-Ofman Multiplier occupies 8721 (26.87%)
CLB slices, where one field multiplication is performed in 43.17ns. Table 10.6
summarizes the design statistics.

Table 10.6. Design Implementation Summary

Design Device] CLB Timings
(XCV)| slices

Inversion in GF(2°) 3200E| 1312 2.8ns

Binary Karatsuba Multiplier 3200E 8721 43.1ns

1 Field Multiplication 100.19s

Point addition + Point 3200E| 18300 [300.3ns (if bit = ‘0")

doubling in Hessian Form 900.97s (if bit = ‘1’)

Point Multiplication 3200E | 19626 & 114.71pus

in Hessian form 24 BRAMs

Point addition + Point doubling 3200E 18300 300.37s

(Montgomery Point Multiplication) (3 Multiplications)

Point Multiplication 3200E | 19626 & 61.16us

(Montgomery Point Multiplication) 24 BRAMs

10.6 Koblitz Curves

First proposed in 1991 by N. Koblitz [180], Koblitz Elliptic Curves have been
object of analysis and study since then, due to their superb usage of endomor-
phism via the Frobenius map for increasing the elliptic curve arithmetic com-
putational performance [180, 133]. Across the years, several efforts for speed-
ing up elliptic curve scalar multiplication on Koblitz curves have been reported
both, in hardware and software platforms [13, 384, 216, 133, 132, 339, 340].

Let P(z) be a degree-m polynomial, irreducible over GF(2). Then P(z)
generates the finite fleld F, = GF(2™) of characteristic two. A Koblitz elliptic
curve E,(F;), also known as Anomalous Binary Curve (ABC) [180], is de-
fined as the set of points (z,y) € GF(2™) x GF(2™), that satisfy the Koblitz
equation,

E,: v +ay = 28 +az? 41, (10.15)

together with the point at infinity denoted by O. It is customary to use the
notation E, where a € {0,1}. It is known that E, forms an addition Abelian
group with respect to the elliptic point addition operation!?.

12 Notice that since Eq. (10.15) assumes a € {0,1}, then Koblitz curves are also
defined over GF(2).
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So far, most works have strived for reducing the cost associated to the
double-and-add method by following two main strategies: Reducing the com-
putational complexity of both, point addition and point doubling primitives
and; reducing the number of times that the point addition primitive is invoked
during the algorithm execution. Recently, the idea of representing the scalar &
in mixed base rather than the traditional binary form has been proposed. This
way, point doublings can be partially substituted with advantage by tripling,
quadrupling and even halving a point [171, 69, 12, 13, 385, 176].

In this Section we discuss yet another approach for speeding up the com-
putational cost of scalar multiplication on Koblitz curves: the usage of parallel
strategies. In concrete, we show that the usage of the 7=! Frobenius operator
can be successfully applied in the domain of Koblitz elliptic curves giving an
extra flexibility and potential speedup to known elliptic curve scalar multipli-
cation procedures.

The rest of this Section is organized as follows. In Subsection 10.6.1
some relevant mathematical concepts are briefly outlined. Then, in Subsec-
tion 10.6.2 several parallel formulations of the scalar multiplication on Koblitz
curves are presented. Subsection 10.6.3 discusses relevant implementation as
pects of the proposed parallel algorithms for hardware platforms.

10.6.1 The 7 and 7! Frobenius Operators

In a field of characteristic two, the map between an element z and its square
22 is called the Frobenius map. It can be defined on elliptic points as:

T((L‘, y) = (zzv y2)_
Similarly, we can define the 7=! Frobenius operator as,

T_l(x> y) = (\/57 \/g)

In binary extension fields, the Lagrange theorem?? dictates that A2™ = A for
any arbitrary element A € GF(2™), which in turn implies that for any i € Z,
A% = A?'™™ Notice also that by applying the square root operator in both
sides of Fermat little theorem identity, we obtain, VA = A27 = A2"7",
which can be generalized as, A2~ = A" fori=0,1,...,m.

Using above identities, it is easy to show that the Frobenius operator
satisfies the properties enumerated in the next theorem.

Theorem 10.6.1 The Frobenius operator satisfies the following properties,

L l=rlr=1

2 tt=rqimedm foric

8 77 =77 fori=1,2,--  ,m—1
4o Ti=rm) fori=12... m—1
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Fig. 10.4. An illustration of the 7 and 77! Abelian Groups (with m an Even
Number)

In other words, the 7 and the 77! operators generate an Abelian group
of order m as is depicted in Fig. 10.4. Considering an arbitrary element
A € GF(2™), with m even, Fig. 10.4 illustrates, in the clockwise direction, all
the m elliptic curve points that can be generated by repeatedly computing the
7 operator, i.e., 7' P for i = 0,1,--- ,m—1. On the other hand, in the counter-
clockwise direction, Fig. 10.4 illustrates all the m points that can be generated
by repeatedly computing the 7~! operator, i.e., 77P for i = 0,1, --- ,m — 1.

Frobenius Operator Applied on Koblitz Curves

Koblitz curves exhibit the property that, if P = (z,y) is a point in F, then
so is the point (x2,y?) [338]. Moreover, it has been shown that, (z*,y*) +
2(x,y) = p(z?, y?) for every (z,y) on E,, where p = (—1)1~¢. Therefore,
using the Frobenius notation, we can write the relation,

T(TP)+2P = (1> +2)P = urP. (10.16)

Notice that last equation implies that a point doubling can be computed
by applying twice the 7 Frobenius operator to the point P followed by a point

'3 Lagrange theorem can be used to prove the Fermat’s little theorem and its gen-
eralization Euler’s theorem studied in Chapter 4
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addition of the points u7P and 72 P, Let us recall that the Frobenius operator
is an inexpensive operation since field squaring is a linear operation in binary
extension fields.

By solving the quadratic Eq. 10.16 for 7, we can find an equivalence be-
tween a squaring map and the scalar multiplication with the complex number
T = :1—125 It can be shown that any positive integer k can be reduced
modulo 7™ — 1. Hence, a 7-adic non-adjacent form (7NAF) of the scalar k

can be produced as,
-1
k= E UiTI,
i=0

where each u; € {0,£1} and [ is the expansion’s length. The scalar multiplica-
tion kP can then be computed with an equivalent non-adjacent form (NAF)
addition-subtraction method.

Standard (NAF) addition-subtraction method computes a scalar multi-
plication in about m doubles and m/3 additions [129]. Likewise, the TNAF
method implies the computation of { 7 mappings (field squarings) and (/3
additions.

On the other hand, it is possible to process w digits of the scalar k at
a time. Let w > 2 be a positive integer. Let us define «; = ¢ mod ¥ for
i€ [1,3,5...,2¢71 —1]. A width-w 7NAF of a nonzero element k is an
expression k = Zi;o u;T where each u; € [0, £a;, a3, ..., fag-1_;] and
ui—1 # 0. It is also guaranteed that at most one of any consecutive w coeffi-
cients is nonzero. Therefore, the wTNAF expansion of &k represents an equiv-
alence relation between the scalar multiplication kP and the expression,

P + Tu1 P+ 12ugP + ...+ 77ty P (10.17)

In [338, 337, 26] it was proved that for a Koblitz elliptic curve E,[GF(2™)],
the length { of a TNAF expansion, is always less or equal than m + a + 3,

Iyar<m+a-+3

Using the properties enounced in Theorem 10.6.1, Equation (10.17) can be
reduced even further whenever [ > m.

Indeed, given the fact that 7™+ = 7% for i = 0,1, --,m — 1, we can
reduce all the expansion coefficients u; greater than m as follows,

m+a+2 m+a+2 a+2

Z wu T —Zun‘-{- Z u; T —Z ul+um+1T + Z U T

i=a+3
(10.18)
Furthermore, using property 4 of Theorem 10.6.1, it is always possible to
express a length m wrNAF expansion in terms of the 77! operator as follows,
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k

m—1
3wt = (up +uart Fuat A U 7™ (10.19)
=0

m-—1

= (uo FugrT ) =My um_lT_l) =Y ur M
=0

Summarizing, Koblitz elliptic curve scalar multiplication can be accom-
plished by processing elliptic point additions and 7 and/or 7~! mappings.
Hence, a Koblitz multiplication algorithm is usually divided into two main
phases: a w-TNAF expansion of the scalar k; and the scalar multiplication
itself based on the 7 Frobenius operator and elliptic curve addition sequences.

10.6.2 wTNAF Scalar Multiplication in Two Phases

Algorithm 10.7 wTNAF Expansion[133, 132]

Require: Curve Parameters; representative elements: a, = Sy + yur for
u = 1,3,...,2% " — 1,6; Scalar k.

Ensure: wrNAF(k)

1: Compute (r¢,7r1) < & mod §;

2: for { =0; (rg #0) OR (r1 #0); i =i+ 1} do
3:  if 7o is odd then

4: u — 7o + 1ty mods 2V;

5: if v > 0 then

6: 1,

7 else

8: E— -1 ue— -y

9: end if
10: To ¢ 10 — £Bu; 11— 1 — Evu; Ui — Lo
11: else
12: u; — 0
13: end if
14: (ro,r1) « (r1 + 2, =10,
15: end for
16: I =1,
17: Return [, (w1, ui—2, - ,u1,u0);

Algorithms 10.7 and 10.8 show the adaptations of Solinas procedures as
they were reported in [132, 133].

It should be noticed that Algorithm 10.7 produces the wrNAF expansion
coefficients from right to left, i.e., the least significant coefficient ug is first
produced, then u; and so on, until the most significant coefficient, namely,
uy—1, is obtained. Algorithm 10.8 on the contrary, computes the expression
10.17 from left to right, i.e., it starts processing u;—; first, then u;_o until it
ends with the coeflicient ug.
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Algorithm 10.8 wTNAF Scalar Multiplication [133, 132]
Require: wrNAF(k) = Zi;é wTt, P € By(Fam).
Ensure: kP

1: Precompute P, = o, P, for u € {1,3,5, ey 29T 1} where a; = 1 mod 7% for
i€ {1,3,..,2" " ~1};

2: Q— O,

3: for i from [ — 1 downto 0 do
4 Q7@

5 if u; # 0 then

6: Find u such that o, = fu;
7 if u > 0 then

8: Q—Q+ Py

9: else

10: Q—Q— P_y;

11: end if

12:  end if

13: end for

14: Return Q)

The combination of those two characteristics is unfortunate as it forces
us to work in a strictly sequential manner: First Algorithm 10.7 must be
executed and only when it finishes, Algorithm 10.8 can start the computation
of the Koblitz curve scalar multiplication operation. However, invoking Eq.
(10.19), we can formulate a parallel version of Algorithm 10.8 as is shown
in Algorithm 10.9. If two separated point addition units are available, the
expected computational speedup of the parallel version in Algorithm 10.9 is
of about 50 % when compared with its sequential version.

10.6.3 Hardware Implementation Considerations

In an effort to minimize the number of clock cycles required by Algorithm 10.8
when implemented in a hardware platform, we first proceed to pre-process the
width-wTNAF expansion of coefficient & as described below.

Firstly, without loss of generality we will assume that the length of the
expansion is m!4. Secondly, let us recall that it is guaranteed that at most
one of any consecutive w coefficients of an wrNAF expansion is nonzero. Let
w; € [1,3,5,...,2%"! — 1] denote each one of the up to Ny, = [ 25 | nonzero
wT N AF expansion coefficients. Then, the expansion would have the following
structure:

we,0...0,w1,0...0,wy,0,...,0,w;—1,0...0,wn, -1

Above runs of up to 2w — 2 consecutive zeroes [340], can be counted and
stored. Let 2; € [w — 1,2w — 2] denote the length of each of the at most

1 Otherwise, if | > m, we can use Eq. (10.18) in order to reduce the expansion
length back to m.
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Algorithm 10.9 w7NAF Scalar Multiplication: Parallel Version
Require: wrNAF(k) = S urt, P € Eo(Fom).
Ensure: kP
1: PreCompute P, = a, P, for u € {1, 3,5,..,2% 7 — 1} where a; = ¢ mod 7 for
ie{1,3,.,2"7! -1},

2: Q=R=0;

3 N=Z];un=0;

4: for ¢ from N downto 0 do for j =N +1tomdo
5 Qe TQ; R« 77R;

6:  if u; #0 then if u; # 0 then

7 Find w such that a4+, = tuy; Find u such that a4y = *uy;
8: if w > 0 then if u > 0 then

9: Q — Q+ Py; Re R+ Py,
10: else else

11: Q—Q—P_y R~ R—-P_y;
12: end if end if

13:  end if end if

14: end for end for

15 Q — Q + R;

16: Return @Q;

Algorithm 10.10 wTNAF Scalar Multiplication: Hardware Version
Require: TNAF, (k) in the format: wo, 21, w2, 23,...,2Ny—2, WNy—1, Nuw =
2[725). Where w; € [1,3,5,...,2%"" = 1] and 2z € [w — 1,2w — 2
Ensure: kP
1: Precompute Py = o, P, for u € {1,3, 5,0, 2970 1} where a; = 7 mod 7% for
i€ {1,8,..,2v7 ' —1};

2. Q—0

3: for i from N — 1 downto 0 do

4:  if ¢ is odd then {/*processing a zero coefficient z;*/}
5: Q «— Tv71Q

6: zi — 2z — (w—1)

T if z; # 0 then

8: Q—75Q

9: end if

10:  else {/*processing a nonzero coefficient w;*/}
11: Find u such that a, = +w;;

12: if u > 0 then

13 Q—Q+ Py

14: else

15: Q — Q — P_y;
16: end if

17 end if
18: end for

19: Return @Q;
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Ny = [‘%1 zero runs. Then, the proposed compact version of the expansion
has the following form,

WO, 20, W1, 22y -+ 5 ZNyy—1, WN,, ~1 (10.20)

In this new format we just need to store in memory at most 2[—5’%] expansion
coefficients. Algorithm 10.10 shows how to take advantage of the compact rep-
resentation just described. Given the relatively cheap cost of the field squaring
operation, steps 5-8 of Algorithm 10.10 can compute up to w—1 applications of
the 7 Frobenius operator!'®. This will render a valuable saving of system clock
cycles. Moreover, using the same idea already employed in Algorithm 10.9, we
can parallelize Algorithm 10.10 using the 7 and 77! operators concurrently.
The resulting procedure is shown in Algorithm 10.11.

Algorithm 10.11 w7NAF Scalar Multiplication: Parallel HW Version
Require: 7TNAF, (k) in the format: wo,z1,ws,23,...,2N,~2, WNy—1, Ny =
2[ 5. Where w; € [1,3,5,. .. , 271 — 1] and 2 € [w— 1,2w — 2]
Ensure: kP
1: PreCompute P, = oy P, for u € {1,3,5, ey 2w 1} where a; = ¢ mod 7% for
ie{1,3,.,2" ' ~1}

2. Q=R=0;
3 N=|%e];
4: for ¢ from N downto 0 do for j = N+1tomdo
5. if 7 is odd then if ¢ is odd then
6 Q — 7Q: RHTh(w_l)R;
7 zi — 2z — (w—1); zj — zj — (w~1);
8 if z; # 0 then if z; # 0 then
9: Q — 77Q; R — 1% R;
10: end if end if
11:  else else
12: Find u such that at. = tu;; Find u such that oty = *uy;
13: if v > 0 then if u > 0 then
14: Q — Q+ Py R— R+ Py
15: else else
16: Q—Q—-P_y R— R - P_y;
17: end if end if
18: end if end if
19: end for end for
200 Q —Q+ R
21: Return @;

15 Let us recall that applying ¢ times the 7 Frobenius operator over an elliptic point
@ consists of squaring each coordinate of @ ¢ times. See §6.2 for details about
how to compute efficiently squaring and other field arithmetic operations
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Fig. 10.5. A Hardware Architecture for Scalar Multiplication on the NIST Koblitz
Curve K-233

Proposed Hardware Architecture

According to Algorithm 10.11, one can accomplish a scalar multiplication
operation by computing two sequences, namely, T operator-then-add and; 7!
operator-then-add. Both sequences are independent and therefore, they can
be processed concurrently provided that hardware resources meet up design
requirements. An aggressive approach would be to use two point addition
units with 7 and 77! blocks operating separately. That, however, could be
unaffordable as the point addition block consumes a vast amount of hardware
resources. A more conservative approach consisting of a single point addition
unit is shown in Fig. 10.5. The main idea used there is to keep the 7 and
771 computations in parallel while a multiplexer block allows the control
unit to decide which result will be processed next by the point addition unit.
Intermediate results required for next stages of the algorithm are read/written
in a Block select RAM (BRAM).

The inputs/output of the point addition unit read/write data from/to the
BRAM block according to an address scheme orchestrated by the control unit.
Data paths for the 7 and 77! operators and then point addition are adjusted
by providing selection bits for the three multiplexers MUX1, MUX2, and
MUX3. Notice that all three multiplexers handle three 233-bit inputs/outputs.
This is the required size for a three-coordinate LD projective point as it was
described in Subsection 4.5.2. The 7 and 7! operators were designed using the
formulae described in §6.2. The Point Addition Unit (PAU) performs the point
addition operation using the LD-affine mixed coordinates algorithm to be
explained in the next Section. PAU has two inputs. One input comes from (via
MUX3) the output of either 7 or 7~ blocks in the form of a three-coordinate
LD projective point. The other input comes directly from the BRAM block
and corresponds to one of the pre-computed multiples of P, namely, P,, =
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oy, P. Those multiples have been pre-computed in affine coordinates. A 4- bit
counter and a ROM constitute the control unit block. The ROM block is filled
with control words, which are used at each clock cycle for the orchestration
and synchronization of algorithm’s dataflow. The ROM block address bits are
timely incremented by a 4-bit counter. A total of 11 bits (8 bits for each port
of the BRAM, 1 bit for MUX1, 1 bit for MUX2 and 1 bit for MUX3) are used
for controlling and synchronizing the whole circuitry. The 11-bit control word
for each clock cycle is filled in the BRAM block, and then they are extracted
at the rising edge of each clock cycle.

The expected performance of the architecture shown in Fig. 10.5 can be
estimated as follows. As it has been mentioned, in a wr NAF expansion there
exists a total of Ny, = [ 3] nonzero coefficients. Let § be the number of cycles
required for computing an elliptic point addition operation. Knowing that the
Frobenius operators depicted in Fig. 10.5 are each able to compute w —1 7
or 77! operators in one cycle, it seems fair to say that our architecture can
process a coefficient zero in ﬁ cycles. Therefore, the total number of system
clock cycles required by Algorithm 10.10 for computing a scalar multiplication
can be estimated as,

m + 1 wm
w+1l w—-lw+1
In the case of Algorithm 10.11 since the 7 and 7! operations are computed

at the same time that the point addition processing is taking place, the total
number of clock cycles can be estimated as just,

#Number of Clock Cycles = £

(10.21)

m
w+l
As a way of illustration, let us assume that the architecture shown in
Fig. 10.5 has been implemented using the arithmetic building blocks for the
NIST recommended K-233 Koblitz curve. Then using m = 233 and £ = 8 and
equations (10.21) and (10.22), a saving of 14.28%,13.51% and 13.04% can be
obtained when using w = 4, 5, 6, respectively.

#Number of Clock Cycles = £ (10.22)

10.7 Half-and-Add Algorithm for Scalar Multiplication

Schroeppel [322] and Knudsen [176] independently proposed in 1999 a method
to speedup scalar multiplication on elliptic curves defined over binary exten-
sion fields. Their method is based on a novel elliptic curve primitive called
point halving, which can be defined as follows.

Given a point Q of odd order, compute P such that @ = 2P. The point
P is denoted as %Q. Since theoretically, point halving is up to three times as
fast as point doubling, it is possible to improve the performance of scalar mul-
tiplication computation @ = nP by replacing the double-and-add algorithm
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with a half-and-add method based on an expansion of the scalar n in terms
of negative powers of 2.

As it was discussed in Chapter 2, the efficiency of ECDSA depends on the
arithmetic involving the points of the curve. For this reason it becomes nec-
essary to implement efficient curve operations in order to obtain high perfor-
mances. In this Section we describe an architecture that employs a parallelized
version of the half-and-add method and its associated building blocks.

The rest of this Section is organized as follows. Subsection 10.7.1, describes
the algorithms utilized for implementing elliptic curve arithmetic. In Subsec-
tion 10.7.2, the proposed hardware architecture is explained in detail.

10.7.1 Efficient Elliptic Curve Arithmetic

With the help of the arithmetic operators described in Chapter 6, we can
efficiently construct the three main elliptic curve operations, namely, point
addition, point doubling and point halving,.

As a means of avoiding the expensive field inversion operation, it results
convenient to work with Ldpez-Dahab (LD) projective coordinates'®. For con-
venience, here we will repeat some of the main characteristics of those coor-
dinates.

In LD projective coordinates, the projective point (X:Y:Z) with Z+#£ 0
corresponds to the affine coordinates z = X/Z and y = Y/Z2. The elliptic
curve Equation (10.6) mapped to LD projective coordinates is given as,

Y? 4+ XYZ=X3Z+aX?2? + b2 (10.23)

The point at infinity is represented as O = (1:0:0). Let P = (X, : Yy :
Zy) and @ = (X3 : Yz : 1) be an arbitrary point belonging to the curve 4.19.
Then the point —P = (X, : X; + Y7 : Z) is the addition inverse of the point
P.

Point Doubling

The point doubling primitive 2(X; : Y1 : Z1) = (X5 : Y3 : Z3) can be
performed as,

Zy=X" 2% Xy = XM+ b 2y

Ys =bZ1"Zs + X3 - (aZ3 + Y12 + 021%)

Assuming that only one field multiplier block is available, it is possible to
compute above Equations in just three clock cycles as shown in Table 10.7.

(10.24)

18 LD projective coordinates were already studied in Section 4.5.
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Table 10.7. Parallel Lépez-Dahab Point Doubling Algorithm

A Parallel approach of point doubling, LD-affine coordinates.
Input: P = (X3 : Y1 : Z1) in LD coordinates

on E/K : y* + 2y = 2% + az® + b,a € {0, 1}.

Output: 2P = (X3 : Y3 : Z3) in LD coordinates

# cycle |Co | o}

1. cycle:|Zs = X7 - Z3 Ty=b 27
2. cycle:|Te = (X 4+ T) (Zs + Y2+ )| Xs = X+ Th
3: cycle: Ys=T1 - Zs+1>

Point Addition

If Q@ # —P, the point addition primitive (X; : Yy : Z1) + (X2 : Y2) = (X5
Y3 : Z3) can be performed at a computational cost of 8 field multiplications
as?

A=Y2~Zl2+yl; BZXQ'Z1+X1;

C =127 B; D = B?.(C+aZ}),

Zy = C%; E=A-C, (10.25)
X3 =A2+ D+ E; F=Xs+ Xy Zs;
G=(X2+Y2)'Z§;Y3=(E+Z3)~F+G

Table 10.8. Parallel Lépez-Dahab Point Addition Algorithm

A parallel approach of point addition, LD-affine coordinates.
Input: P = (X; : Y1 : Z1) in LD coordinates,

Q = (x2,y2) in affine coordinates

on E/K :y? + zy = 2% 4 az® +b.

Output: P+ Q = (X3 : Y3 : Z3) in LD coordinates

# cycle Co Ch
lLeyce:| Ys=y Zi4+Y:
.eycle| Xs=uz2-Z1+ X,
. cycle: T1 = X3 . Z1

cycle:!| Xs = X2 - (a - Z+T1)| Zs=T%

.cycle: X3=Y:3~T1+X3+Y32 Ty =Y;-T1
ccycle:| Ty ==zp Z3+ X3
. ¢cycle: Y; = ($2 + yz) . Z§ Ty =1Tj
ceycle)|Ya = (To+ Z3) - Ty + Y3

0O C A WN

Once again, we point out that field multiplication is by far the most time

consuming arithmetic operation. Field addition can be time neglected in a
hardware implementation.
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Therefore we can parallelize some operations in such a way that we can
perform two operations at a time. As it is shown in Table 10.8, by rearranging
the set of Equations 10.25 we can manage for computing a point addition
operation in LD projective coordinates in just eight clock cycles.

Point Halving

Point halving can be seen as the reverse operation of point doubling {96]. We
can define the elliptic curve point halving as follows. Let @ = (z2,y2) be
an arbitrary point that belongs to the curve of Eq. (10.6). Our problem in
hand is to find a second point P = (xy,y1), such that @ = 2P: This can be
accomplished by solving the following set of equations,

MNi+r=x4a

1 = VY2 +.’L‘2()\ + 1)

Y1 = AT1 +zf

Algorithm 10.12 Point Halving Algorithm
Require: 2P = (z2,y2)
Ensure: P = (z1,y1)
Solve A% + A =2 +a for A
t=y2+x2- N
if Tr(t) = 0 then
T1 =Vt + 225
else
A=XA+1;21 =8
end if
yi=X-z1 +ai;
Return (z1,11)

R R o

Algorithm 10.12 was proposed in [96] for computing an elliptic point halving.
However, it results more convenient in practice to define the A-representation
of a point as follows. Given Q = (z,y) € E(GF(2™)), let us define (z, \g),
where v
Ag = =
Q=+ z

Given the A-representation of @, we may compute a point halving without
converting back to affine coordinates. In this way, repeated halvings can be
performed directly on A-representation.

Half-and-Add Scalar Multiplication Algorithm

In Chapter 6 several algorithms addressing the problem of how to perform effi-
cient finite field arithmetic were studied. Notice that Algorithm 10.12 requires
the following GF(2™) arithmetic main building blocks,
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1. Computing field square root (studied in §6.2).
2. Computing the trace (studied in §6.4.1).
3. Solving quadratic equations (studied in §6.4.2).

Above operations constitute the building blocks for performing elliptic
curve scalar multiplication using the half-and-add method shown in Algo-
rithms 10.12 and 10.13.

Algorithm 10.13 Half-and-Add LSB-First Point Multiplication Algorithm
Require: P € E(GF(2™)), k = k§/2™ " + -+ + kj_1 + 2k}, mod n, with k; €
{-1,0,1} for ¢ =,1,...,m.
Ensure: kP
Q=0
if k;, = 1 then
Q=2p;
end if
for ¢ from m — 1 downto 0 do
if ki > 0 then
Q=Q+P;
else if k{ < 0 then
RQ=Q-P;
end if
P =P/2;
: end for
: Return (Q)

N A A

_ = = =
GHED®

10.7.2 Implementation

The proposed architecture for achieving elliptic curve scalar multiplication is
shown in Figure 10.6. The architecture consists of two main units, namely, an
Arithmetic Logic Unit (ALU) block (responsible of performing field arithmetic
and elliptic curve arithmetic), and a control unit (that manages and controls
the dataflow of the whole circuit).

Control Unit

Table 10.9 shows the operations that can be performed by the circuit per
clock cycle. In the first column the operations that the ALU can perform
are listed. The first eight rows specify the sequence of operations needed for
computing an elliptic curve point addition. The next three rows specify the
operations needed for computing a point doubling primitive. The last three
rows show the necessary operations for computing a point halving (either in
A-representation or in affine coordinates).



322 10. Elliptic Curve Cryptography

x|y

v

X ALV

Control T r

Unit 1= 11—~~~
]

clock
reset \/f

load

n
3

enable

v

N
v

Fig. 10.6. Point Halving Scalar Multiplication Architecture

The second column represents the inputs given to the ALU circuit, whereas
the fourth column shows the ALU circuit output being written to memory.
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Finally, the third column includes a twenty-six bit control word that stipulates

which parts of the Arithmetic Logic Unit must be activated by the Control
Unit. The control word format is explained below.

Table 10.9. Operations Supported by the ALU Module

operation input control word output
0010203 825" 80 coc1
Yi=y2- ZES4 y2Z1Y1— | 1xx01000xx11010000110xxx1x | Y1z
X1=x29-Z1+ X1 z971 X1~ | 110xxxx0xx00010010110xxx1x| X1z
"h=X12 X171 — — |10xxxxx0x0xx01001xx00xxx1x| Tiz
X1=X? (Z+T) X127y — T1|00xxxxx010xx00100xx0000111{ X1 Z;
X1 = Yl . T1 + X1 + Y12 nglYl— 0xx01000xx11010000110xxx1x T1X1
Ty =071 + X1 2221 X1 — | 110xxxx0xx00010010110xxx1x | Thz
Yi = (z2 +y2) - 2% r2Z1y2— [01xxx010xx0111000xx00xxx1x| Yiz
Vi=(T1+2Z) T+ Y11 Y1127y |0xx0010x1011100110010xxx1x | Y1z
7= X: 7% X171 — — | 00xxxxx0x0xx00000xx0000011 | Z,7>
X1 = (X? +T1) - (Y2 + Zy + TD| Y1 Z1 X171 |0x010xxxx10xxxxxxxx0101011| T3 X,
Yi=2Th+T: ToZ1 — T |00xxx101xx01010010110xxx1x| Yiz
Point Halving (affines) 22 — y2— | 101xxx01xx01011010110xxx00 | x2y2
Point Halving (A-representation) | z» — y2— [101xxx01xx0101110xx00xxx00| x2A
Y2 = Axa + a2 z2 —y2— |101xxx01xx01010011010xxx1x| —y2

Each control word consists of a string of 26 bits organized as follows:

X X0010101100 100110010 X X X1X
dir;crtion MUX ALU

The first eight bits designate the addresses to be read by the memory block,
the next four bits designate which operand will be loaded to the ALU unit,
and finally the last fourteen bits designate which operations will be performed
by the ALU unit according to the list of supported operations shown in Table
10.9.

As an example, consider point halving computation in affine coordinates of
Algorithm 10.12. The datapath for this computation is illustrated in Fig. 10.8.
First, it is necessary to load 2, y2 into the input registers Ay, A2, respectively.
Additionally, a copy of x5 is stored in A;. Then, the operations for loading
HT(Ap + 1) and A; on the finite field multiplier are commanded by the
Control Unit. Next, we multiply A; - HT(Ap + 1) and immediately after A; is
added to that product obtaining As + Ay - HT(Ap + 1). Thereafter, the result
obtained by the multiplication operation is computed into the trace unit, in
order to choose the appropriate operand for the square-root unit, and to send
the corresponding outputs Cp, Cy. The dataflow just described is highlighted
in Figure 10.8.

As mentioned previously, our architecture allows us to perform three main
elliptic curve operations, namely, point addition, point doubling and point
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Fig. 10.8. Point Halving Execution

halving, Table 10.10 lists the number of cycles required in order to perform
such operations. Furthermore, Figures 10.9 and 10.10 show the time diagram
corresponding to the execution of the point addition and point doubling prim-
itives, respectively.

Table 10.10. Cycles per Operation

Elliptic curve operations # cycles
Point Halving (affine coordinates) 1
Point Halving (A-representation) 2
Point Doubling 3
Point Addition 8

10.7.3 Performance Estimation

We estimate the running time of the circuit of Fig. 10.6 as follows. We need
eight cycles and one cycle for performing a Point Addition (PA) in mixed LD
coordinates and a Point Halving (PH) operation, respectively. On the other
hand, the computational cost of Algorithm 10.13 is approximately,

%PA +mPH.



10.7. Half-and-Add Algorithm for Scalar Multiplication 325
| I |
pol v Vo boxe boxo Ly, * %2 T
| I | | | I |
A1 2z |z bz ) Z I [ 2, | Y1
ot | [ | [ I | [
A2 Y1 | X1 i ) ] X1 : Xy | Y2 | Ty
I | | T | T ) | z
a3l 1 . \
I | | | | | |
| | | | | | |
’ . | | | P ! } : |
Operation 1 Z, [ Xg*Zy I X102y I X I YT, | X2°Zy [ Zy | Ti+Zy
Operation 2 | YpZ |x;-Z.+X|: : 2547y : Y 24X, :Xz'Z|+X1| Xz*Y2 : T (Ti+24)
Operation 3 [Y2Z%+Y,) | | XPHZET) | YT, | ) (Ra¥y2)+Z3¥ | T (T Zo)+Ys
| [ I I | I [
| | | | | | |
| | | | | | |
Yy Xy T Xy T T Y L
Wiite ! | | | |
1 ] | oz | X | [ A
I | ] | ! ] |
Cycle 1 ! Cycle 2 | Cycle 3 ! Cycle 4 | Cycle 5 I Cycle 6 ! Cycle7 Cycle8
Fig. 10.9. Point Addition Execution
AD Y2 ! Yz ! T. !
| I o
Load Atz : z, : z, :
Inputs
(Inputs) A2 X1 | X4 | |
| | |
A3 T2
| | |
| | [
Operation 1 X4 | X T, | zpTy |
| | |
Operation2|  z# 4 YHTZe | 2T Ty |
Operation 3 | Xi*+2¢* : X|‘+T|'(Y"+T1Z1): :
| | 1
| | |
co Zy | T2 | Y |
Write 1 | I
c1 T, X
' ' ! ]
| | |
Cycle 1| Cycle 2 I Cycle3 | >
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Translating above equation to clock cycles, we get,

3

' ®) + mPH(1)

%m Clock Cycles.

In other words, the architecture presented in this Section (see Figures 10.6
and 10.7) needs approximately %m clock cycles for performing an elliptic
curve point multiplication using the Half-and-Add Algorithm 10.13.
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Table 10.11. Fastest Elliptic Curve Scalar Multiplication Hardware Designs

Author year platform m |clock| time| Cost FLOT
MHz| (uS)| LUTs
Cruz-A. et al.[54] 2006 Virtex 11 233]27.58(17.64| 39762(11) |332.19
Hernandez-R et al.[137]|2005] Virtex II 163}23.94| 25.0 22665 |287.67
Cheung et al. [50] |2005 Virtex 4 113| 65 | 30 [13922 (est)|270.55
Shu et al.[329] 2005| Virtex II 163| 68.9 | 48 25763 [131.81
Saqib et al.[310] 2006 Virtex II 1911 9.99 |61.16| 39252(24) | 79.56
Lutz [216] 2004| Virtex II 163} 66.0 | 75 10017 |216.95
Jarvinen et al.[155) |2004|  Virtex 11 |163] 90.2 | 106 | 36158(est) | 42.53
Gura et al. [125] 2002| Virtex II 163| 66.4 | 143 22665 36.14
Satoh et al. [313] 2003}0.13pm CMOS|160}510.2 190 - -
Orlando et al.[261 2000 Virtex 167] 76.7 | 210 3002 |265.03
Bednara et al. {20] 2002 Virtex 191| 50 | 270 - -
Sozzani et al. [341] ]2005(0.13um CMOS|163} 417 | 270 - -
Ernst et al. [313] {2002 Atmel 113} 12 |1400 - -
Schroeppel et al. [322] [2003]0.13um CMOS|178| 227 |4400 [143K gates| -

10.8 Performance Comparison

In this Section we compare some of the most representative elliptic curve
designs reported during this decade. In our survey we considered three metrics:
speed, compactness and efficiency. Our study tries to sum up the state-of-the-
art of scalar multiplication hardware implementations.

Table 10.11 shows the fastest designs reported to date for elliptic scalar

multiplication over GF(2™)7. It can be observed that the design of {54] which
features a specialized design on Koblitz curves shows the highest speed of all
designs considered.

Table 10.12. Most Compact Elliptic Curve Scalar Multiplication Hardware Designs

Author year platform m clock| time Cost  rerorr
MHz| (mS)
Kim et al. [172]]2002{0.35um CMOS{192 binary| 10 |36.2 (est){16.84K gates| 0.315
Oztiirk 2004(0.13pm CMOS| 167 prime| 20 31.9 | 30.3K gates | 0.1727
et al. [265] 167 prime | 200 3.1 34.4K gates | 1.56
Aigner et al. [2]{2004]0.13um CMOS|191 binary| 10 46.9 |25K NANDs| 0.163
Schroeppel  {2003]0.13um CMOS|178 binary| 227 44 143K gates | 0.283
et al. [322]
Shuhua 2005, Virtex II 192 prime| 50 6 4729 LUTs -
et al. [330]

7 Whenever the number of LUTs utilized by the design is not available, an esti-
mation based on the reported number of CLBs has been made. The number in
parenthesis in the seventh column represents the total number of BRAMs.
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In Table 6.4 we show a selection of some of the most compact reconfigurable
hardware elliptic curve designs reported to date. It is noted that this category
is dominated by those designs implemented in VLSI working with elliptic
curves defined over GF(2™). Indeed, the most compact GF(P) elliptic curve
design in [265] has a hardware cost 1.8 times greater than that of the smallest
GF(2™) elliptic curve design in {172].

We measure efficiency by taking the ratio of number of bits processed over
slices multiplied by the time delay achieved by the design, namely,

bits
Slices x timings

For instance, consider the Koblitz design presented in [54]. As is shown in
Table 10.11, working over GF(223%), that design achieved a time delay of just
17.64uS at a cost of 39762 Look Up Tables (LUTs) and 11 Block RAMs.
Therefore its efficiency is calculated as,

bits 233

= = 332.1
Slices x timings 39762 x 17.64u 32.19

When comparing the designs featured in Tables 10.11 and 10.13, it is noticed
that the fastest and most efficient multiplier designs are the Koblitz elliptic
curve designs as well as the half-and-add scalar multiplication design studied
in this Chapter.

Table 10.13. Most Efficient Elliptic Curve Scalar Multiplication Hardware Designs

Author year |platform | m |clock| time Cost
MHz| (uS) LUTs
Cruz-A. et al.[54] 2006(Virtex 11{233(27.58| 17.64 | 39762(11) {332.19
Herndndez-R et al.[137]|2005|Virtex 11{163|23.94| 25.0 22665 287.67
Cheung et al. [50] 2005 Virtex 4 [113| 65 30 [13922 (est)|270.55
163 35 50 (20047 (est)|162.61
Orlando et al.[261] [2000| Virtex [167(76.7 | 210 3002 265.03
Lutz [216] 2004 Virtex 111163| 66.0 | 75 10017 [216.95
Shu et al.[329] 2005|Virtex 11j163] 68.9 | 48 25763 131.81
233/ 679! 89 35800 73.13
Saqib et al.[310] 2006|Virtex 11{191| 9.99 | 61.16 | 39252(24) | 79.56
1911 9.99 |114.71] 39252(24) | 42.41
Jarvinen et al.[155] [2004{Virtex II|163| 90.2 | 106 |36158(est) | 42.53
193{90.2 | 139 |38500(est) | 36.06
233| 73.6 | 227 |46040(est) | 22.29
Gura et al. [125] 2002(Virtex I1{163| 66.4 | 143 22665 36.14
Leung et al. [205] 2002} Virtex |113| 31 750 17506 8.61

.
T-LUT
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10.9 Conclusions

Two major factors contribute for achieving high performances in the architec-
tures presented throughout this chapter. Firstly, the usage of parallel strate-
gies applied at every stage of the design. Secondly, efficient elliptic curve algo-
rithms such as the Montgomery point multiplication, scalar multiplication on
Koblitz curves, the half-and-add method, etc, along with their efficient imple-
mentations on reconfigurable hardware. Furthermore, it resulted also crucial
to take advantage of the lower-grained characteristic of reconfigurable hard-
ware devices and their associated functionality (in the form of BRAMs and
other resources).

In §10.5 we studied a generic architecture able to compute the scalar mul-
tiplication in Hessian form as well as the Montgomery point multiplication
algorithm. It is noticed that theoretically (see Table 10.1), the Weierstrass
form utilizing the Montgomery point multiplication formulation can be com-
puted in about half the execution time consumed by the Hessian form. This
prediction was confirmed in practice in {310} for elliptic curves defined over
GF(2'%1), as is shown in Table 10.13.

Then, we presented in §10.6 parallel formulations of the scalar multipli-
cation operation on Koblitz curves. The main idea proposed in that Section
consisted on the concurrent usage of the 7 and 7! Frobenius operators, which
allowed us to parallelize the computation of scalar multiplication on elliptic
curves. On the other hand, we described a compact format of the wTNAF ex-
pansion which was especially tailored for hardware implementations. In this
new format at most 2[%] expansion coefficients need to be stored and pro-
cessed, provided that the arithmetic unit can compute up to w — 1 subsequent
applications of the 7 Frobenius operator in one single clock cycle. Further-
more, it was shown that by using as building blocks the 7 and 7~! Frobenius
operators along with a single point addition unit, a parallel version of the clas-
sical double-and-add scalar multiplication algorithm can be obtained, with an
estimated speedup of up to 14% percent when compared with the traditional
sequential version.

In §10.7 we presented an architecture that is able to compute the elliptic
curve scalar multiplication using the half-and-add method. Additionally, we
presented optimizations strategies for computing a point addition and a point
doubling using LD projective coordinates in just eight and three clock cycles,
respectively.

Finally, in §10.8 we compared some of the most representative elliptic
curve designs reported during this decade. In our survey we considered three
metrics: speed, compactness and efficiency. Our study tries to sum up the
state-of-the-art of scalar multiplication hardware implementations.
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Glossary

Adittion Chains An addition chain for an integer m — 1 consists of a finite
sequence of integers U = (ug,uy,...,u:), and a sequence of integer pairs
V = ((k1,71),- .-, (kt,7¢)) such that ug = 1, v, = m — 1, and whenever
1 <1< t, uy = ug, + uj,. Addition chains are particularly useful for
performing field exponentiation.

Area (hardware) Hardware resources occupied by the design. In terms of
FPGAs, hardware area includes number of CLBs, memory blocks, IOBs,
etc.

Authentication It is a security service related to identification. This func-
tion applies to both entities and information itself.

Block cipher A type of symmetric key cipher which operates on groups of
bits of a fixed length, termed blocks.

BlockRAMs Built-in memory modules in FPGAs.

Brute force attack A brute force attack is brute force search for key space:
trying all possible keys to recover plaintext from ciphertext.

Cipher A cipher is an algorithm for performing encryption and decryption.

Ciphertext An encrypted message is called ciphertext.

CLB Configurable logic block (CLB) is a programmable unit in FPGAs. A
CLB can be reconfigured by the designer resulting a functionally new
digital circuit.

Confidentiality It guarantees that sensitive information can only be ac-
cessed by those users/entities authorized to unveil it.

Configurable Soc (CSoC) CSoc integrates reconfigurable hardware, one
or more processor and memory blocks on a single chip.

Confusion Confusion makes the output dependent on the key. Ideally every
key bit influences every output bit.

Cryptographic Security Strength the Security strength of a given
cryptographic algorithm is determined by the quality of the algorithm
itself, the key size used and the block size handled by the algorithm.
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Data Integrity It is a service which addresses the unauthorized alteration of
data. This property refers to data that has not been changed, destroyed,
or lost in a malicious or accidental manner.

Decryption The process of retrieving plaintext from ciphertext is called de-
cryption.

Diffie-Hellman Key Exchange Protocol Invented in 1976 by Whitfield
Diffie, Martin Hellman and Ralph Merkle, the Diffie-Hellman key exchange
protocol was the first practical method for establishing a shared secret over
an unprotected communication channel.

Difussion Diffusion makes the output dependent on the previous input
(plaintext/ciphertext). Ideally each output bit is influenced by every input
bit.

Discrete Logarithm Problem Given a number p, a generator g € Z,,* and
an arbitrary element a € Z,*, find the unique number i, 0 < ¢ < p — 1,
such that a = g*(modp).

Downstream It defines the transmission from line terminal to network ter-
minal (from customer to network premise).

Elliptic curve In mathematics, elliptic curves are defined by certain cubic
(third degree) equations. They find applications in cryptography.

Elliptic curve cryptography Elliptic curve cryptography (ECC) is an ap-
proach to public-key cryptography based on the mathematics of elliptic
curves.

Elliptic Curve Discrete logarithmic problem Let Er, be an elliptic curve
defined over the finite field Fyand let P be a point P € Ep, with primer
order n. Consider the k-multiple of the point P, @ = kP defined as the
elliptic curve point resulting of adding P, k—1 times with itself, where k is
a positive scalar in [1, n—1]. The elliptic curve discrete logarithm problem
consists on finding the scalar k that satisfies the equation Q = kP.

Elliptic curve scalar multiplication Let P be a point on Elliptic curve
then the scalar product nP can be obtained by adding n copies of the
same point P. The product nP =P + P+........ + P obtained in this way
is referred as elliptic curve scalar multiplication.

Encryption Encoding the contents of the message in such a way that it hides
its contents from outsiders is called Encryption.

Extended Euclidean Algorithm In order to obtain the modular inverse
of a number a we may use the extended Euclidean algorithm, with which
it is possible to find the two unique integer numbers x, y that satisfy the
equation, az + my = 1.

FPGA A field-programmable gate array or FPGA is a gate array that can
be reprogrammed, after it is manufactured.

Full Adder A full-adder is a combinational circuit with 3 input and 2 out-
puts. The inputs A4;, B;, C; and the outputs S; and Cj;; are boolean
variables. It is assumed that A; and B; are the ith bits of the integers A
and B, respectively, and C; is the carry bit received by the ith position.
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The FA cell computes the sum bit S; and the carry-out bit C;4, which is
to be received by the next cell.

Fundamental Theorem of Arithmetic Any natural number n > 1 is ei-
ther a prime number, or it can be factored as a product of powers of
prime numbers p;. Furthermore, except for the order of the factors, this
factorization is unique.

Granularity Granularity of the reconfigurable logic is defined as the size of
the smallest functional unit that can be addressed by device programming
tools.

Greatest common divisor Given two integers a and b different than 0, we
say that the integer d > 1 is the greatest common divisor, or ged, of a and
b if d|a, d|b and for any other integer ¢ such that c|a and ¢|b then ¢|d. In
other words, d is the greatest positive number that divides both, a and b.

HDIL Hardware Description Languages (HDLs) are used for formal descrip-
tion of electronic circuits. They describe circuit’s operation, its design,
and tests to verify its operation by means of simulation. Typical HDL
compilers tools, verify, compile and synthesize an HDL code, providing
a list of electronic components that represent the circuit and also giving
details of how they are connected.

Integer Factorization Problem Given an integer number n, obtain its
prime factorization, i.e., find n = P11 pa®2p3° - . pi®k where p; is a prime
number and ¢; > 1.

Iterative Looping It implements only one round and n iterations of the
algorithm are carried out by feeding back previous round results.

JTAG The Joint Test Action Group (JTAG) is the common name for the
IEEE 1149.1 standard that defines the interface protocol between pro-
grammable devices and high-end computers.

Key schedule In cryptography, the algorithm for computing the sub-keys
for each round in a block cipher from the encryption (or decryption) key
is called the key schedule.”

Logic Cell A logic cell is a very basic unit in FPGA which includes a 4-input
function generator, carry logic, and a storage element (flip-flop).

Look Up Table A function generator in a logic cell is implemented as a
look-up table which can be programmed to a desired Boolean logic, in
addition, each look up table acts as a memory unit.

Loop unrolling It implements » rounds of the algorithm, thus after an ini-
tial delay, output appears at each clock cycle.

Message Digest A cryptograph hash function takes a message of an ar-
bitrary length and outputs a fixed length string, referred to as message
digest or hash of that message. The purpose of message digest is to provide
fingerprint of that message.

Montgomery Multiplier In 1985, P. L. Montgomery introduced an effi-
cient algorithm for computing R = A - B mod n where A, B, and n are
k-bit binary numbers. The Montgomery reduction algorithm computes
the resulting &-bit number R without performing a division by the modu-



358 References

lus n. Via an ingenious representation of the residue class modulo n, this
algorithm replaces division by n operation with division by a power of 2.

Non-Repudiation It is a security service which prevents an entity from
denying previous commitments or actions.

One Way Function Is an injective function f(z), such that f(z) can be
computed efficiently, but the computation of f~!(y) is computational in-
tractable, even when using the most advanced algorithms along with the
most sophisticated computer systems.

One-way Trapdoor Function We say that a one-way function is a One-
way trapdoor function if is feasible to compute f~1(y) if and only if a
supplementary information (usually the secret key) is provided.

Permutation Permutation refers to the rearrangement of an element. In
cryptography, elements (bit strings) are generally permuted in according
to some fixed permutation tables provided by the algorithm.

Plaintext In cryptographic terminology, message is called plaintext.

Portable Digital Assistants(PDAs) PDAs are handheld small computers
that were originally designed as personal organizers. PDAs usually contain
note pad, address book, task list, clock and calculator, etc. Modern PDAs
are even more versatile. Most of them are equipped with an Intel XScale
p#Processor running at 400 MHz with up to 128MB of RAM memory.

Reconfigurable computing Denotes the use of reconfigurable hardware,
also called custom computing.

Reconfigurable hardware Hardware devices in which the functionality of
the logic gates is customizable at run-time. FPGAs is a type of reconfig-
urable hardware.

Stream cipher Stream ciphers encrypt each bit of the plaintext individually
before moving on to the next.

Substitution Substitution refers to the replacement of an element with a
new element. In cryptography, substitution operation is mainly used in
block ciphers where an element is replaced with the elements from the
substitution boxes called as S-boxes. The substituted values in some block
ciphers can also be calculated.

System-on-Chip (SoC) SoC is a programmable platform which integrates
many functions into a single chip. It may include analog as well digital
components. A typical SoC includes one or more processing element (mi-
crocontroller /microprocessor or DSP), memory blocks, oscillators, ana-
log to digital or digital to analog or both and other peripherals (counter
timers, USB, Ethernet, power supply).

Throughput It is a measure for timing performance of a design and is calcu-
lated as: Throughput= (Allowed Frequency x Number of bits )/ Number
of rounds (bits/s).

Upstream It defines the transmission from network terminal to line terminal
(from network to customer premise).
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