

Springer Series on
SIGNALS AND COMMUNICATION TECHNOLOGY

S I G N A L S A N D C O M M U N I C A T I O N T E C H N O L O G Y

Multimedia Database Retrieval
A Human-Ceniered Approach
P. Muneesawang and L. Guan
ISBN 0-387-25627-X

Broadband Fixed Wireless Access
A System Perspective
M. En gels and F. Petre
ISBN 0-387-33956-6

Distributed Cooperative Laboratories
Networking, Instrumentation, and Measurements
F. Davoli, S. Palazzo and S. Zappatore (Eds.)
ISBN 0-387-29811-8

The Variational Bayes Method
in Signal Processing
V. Smidl and A. Quinn
ISBN 3-540-28819-8

Topics in Acoustic Echo and Noise Control
Selected Methods for the Cancellation of
Acoustical Echoes, the Reduction of
Background Noise, and Speech Processing
E. Hansler and G. Schmidt (Eds.)
ISBN 3-540-33212-x

EM Modeling of Antennas and RF
Components for Wireless Communication
Systems
F. Gustrau, D. Manteuffel
ISBN 3-540-28614-4

Interactive Video
Methods and Applications
R. I Hammond (Ed.)
ISBN 3-540-33214-6

ContinuousTime Signals
Y. Shmaliy
ISBN 1-4020-4817-3

Voice and Speech Quality Perception
Assessment and Evaluation
U. Jekosch
ISBN 3-540-24095-0

Advanced ManMachine Interaction
Fundamentals and Implementation
K.-F. Kraiss
ISBN 3-540-30618-8

Orthogonal Frequency Division Multiplexing
for Wireless Communications
Y. (Geoffrey) Li and G.L. Stuber (Eds.)
ISBN 0-387-29095-8

Circuits and Systems
Based on Delta Modulation
Linear, Nonlinear and Mixed Mode Processing
D.G. Zrilic ISBN 3-540-23751 -8

Functional Structures in Networks
AMLn—A Language for Model Driven
Development of Telecom Systems
T. Muth ISBN 3-540-22545-5

Radio Wave Propagation
for Telecommunication Applications
H. Sizun ISBN 3-540-40758-8

Electronic Noise and Interfering Signals
Principles and Applications
G. Vasilescu ISBN 3-540-40741-3

DVB
The Family of International Standards
for Digital Video Broadcasting, 2nd ed.
U. Reimers ISBN 3-540-43545-X

Digital Interactive TV and Metadata
Future Broadcast Multimedia
A. Lugmayr, S. Niiranen, and S. Kalli
ISBN 3-387-20843-7

Adaptive Antenna Arrays
Trends and Applications
S. Chandran (Ed.) ISBN 3-540-20199-8

Digital Signal Processing
with Field Programmable Gate Arrays
U. Meyer-Baese ISBN 3-540-21119-5

Neuro-Fuzzy and Fuzzy Neural Applications
in Telecommunications
P. Stavroulakis (Ed.) ISBN 3-540-40759-6

SDMA for Multipath Wireless Channels
Limiting Characteristics
and Stochastic Models
LP. Kovalyov ISBN 3-540-40225-X

Digital Television
A Practical Guide for Engineers
W. Fischer ISBN 3-540-01155-2

Speech Enhancement
J. Benesty (Ed.)
ISBN 3-540-24039-X

Multimedia Communication Technology
Representation, Transmission
and Identification of Multimedia Signals
J.R. Ohm ISBN 3-540-01249-4

continued after index

Francisco Rodriguez-Henriquez
N.A. Saqib
A. Diaz-Perez
^etin Kaya K09

Cryptographic Algorithms
on Reconfigurable
Hardware

^ Springer

Francisco Rodriguez-Henriquez
Arturo Diaz Perez

Departamento de Computacion
Centra de Investigacion y de Estudios Avanzados del IPJS
Av. Instituto Politecnico Nacional No. 2508
Col. San Pedro Zacatenco. CP 07300
Mexico, D.F.
MEXICO

Nazar Abbas Saqib
Centre for Cyber Technology and Spectrum Management
(CCT & SM)

National University of Sciences and Technology (NUST)
n95, Street 35, F-11/3, Islamabad-44000
Pakistan

(^etin Kay a Kog
Oregon State University
Corvallis, OR 97331, USA
&
Istanbul Commerce University
Eminonii, Istanbul 34112, Turkey

Cryptographic Algorithms on Reconfigurable Hardware

Library of Congress Control Number: 2006929210

ISBN 0-387-33883-7 e-ISBN 0-387-36682-2

ISBN 978-0-387-33883-5

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science-J-Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Dedication

A mi esposa Nareli y mi hija Ana Iremi, por su amor y estoica paciencia;
A mis padres y hermanos, por compartir las mismas esperanzas.
Francisco Rodriguez-Henriquez

To Afshan (wife),Fizza (daughter), Ahmer (son) and Aashir (son), I love you
all.
Nazar A. Saqib

To Mary, Maricarmen and Liliana, my wife and daughters, my love will keep
alive for you all.
Arturo Diaz-Perez

With my love to Laurie, Murat, and Cemre.
getin K. Kog

Contents

List of Figures XIII

List of Tables XIX

List of Algorithms XX

Acronyms XXIII

Preface XXV

1 Introduction 1

1.1 Main goals 1
1.2 Monograph Organization 3
1.3 Acknowledgments 4

2 A Brief Introduction to Modern Cryptography 7
2.1 Introduction 8
2.2 Secret Key Cryptography 9
2.3 Hash Functions 11
2.4 Public Key Cryptography 12
2.5 Digital Signature Schemes 15

2.5.1 RSA Digital Signature 16
2.5.2 RSA Standards 17
2.5.3 DSA Digital Signature 18
2.5.4 Digital Signature with Elhptic Curves 19
2.5.5 Key Exchange 23

2.6 A Comparison of Public Key Cryptosystems 24
2.7 Cryptographic Security Strength 26
2.8 Potential Cryptographic Applications 27
2.9 Fundamental Operations for Cryptographic Algorithms 29

VIII Contents

2.10 Design Alternatives for Implementing Cryptographic
Algorithms 31

2.11 Conclusions 32

3 Reconfigurable Hardware Technology 35
3.1 Antecedents 36
3.2 Field Programmable Gate Arrays 38

3.2.1 Case of Study I: Xihnx FPGAs 39
3.2.2 Case of Study II: Altera FPGAs 44

3.3 FPGA Platforms versus ASIC and General-Purpose
Processor Platforms 48
3.3.1 FPGAs versus ASICs 48
3.3.2 FPGAs versus General-Purpose Processors 49

3.4 Reconfigurable Computing Paradigm 50
3.4.1 FPGA Programming 52
3.4.2 VHSIC Hardware Description Language (VHDL) 52
3.4.3 Other Programming Models for FPGAs 53

3.5 Implementation Aspects for Reconfigurable Hardware Designs 53
3.5.1 Design Flow 53
3.5.2 Design Techniques 55
3.5.3 Strategies for Exploiting FPGA Parallelism 58

3.6 FPGA Architecture Statistics 59
3.7 Security in Reconfigurable Hardware Devices 61
3.8 Conclusions 62

4 Mathematical Background 63
4.1 Basic Concepts of the Elementary Theory of Numbers 63

4.1.1 Basic Notions 64
4.1.2 Modular Arithmetic 67

4.2 Finite Fields 70
4.2.1 Rings 70
4.2.2 Fields 70
4.2.3 Finite Fields 70
4.2.4 Binary Finite Fields 71

4.3 Elhptic curves 73
4.3.1 Definition 73
4.3.2 EUiptic Curve Operations 74
4.3.3 Elhptic Curve Scalar Multiplication 76

4.4 Elliptic Curves over GF{2'^) 77
4.4.1 Point Addition 78
4.4.2 Point Doubhng 78
4.4.3 Order of an Elliptic Curve 79
4.4.4 Elliptic Curve Groups and the Discrete Logarithm

Problem 79
4.4.5 An Example 79

Contents IX

4.5 Point Representation 82
4.5.1 Projective Coordinates 83
4.5.2 Lopez-Dahab Coordinates 84

4.6 Scalar Representation 85
4.6.1 Binary Representation 85
4.6.2 Receding Methods 85
4.6.3 u;-NAF Representation 87

4.7 Conclusions 88

5 Prime Finite Field Arithmetic 89
5.1 Addition Operation 90

5.1.1 Full-Adder and Half-Adder Cells 90
5.1.2 Carry Propagate Adder 91
5.1.3 Carry Completion Sensing Adder 92
5.1.4 Carry Look-Ahead Adder 94
5.1.5 Carry Save Adder 96
5.1.6 Carry Delayed Adder 97

5.2 Modular Addition Operation 98
5.2.1 Omura's Method 99

5.3 Modular MultipHcation Operation 100
5.3.1 Standard MultipHcation Algorithm 101
5.3.2 Squaring is Easier 104
5.3.3 Modular Reduction 105
5.3.4 Interleaving Multiplication and Reduction 108
5.3.5 Utilization of Carry Save Adders 110
5.3.6 Brickell's Method 114
5.3.7 Montgomery's Method 116
5.3.8 High-Radix Interleaving Method 123
5.3.9 High-Radix Montgomery's Method 124

5.4 Modular Exponentiation Operation 124
5.4.1 Binary Strategies 125
5.4.2 Window Strategies 126
5.4.3 Adaptive Window Strategy 129
5.4.4 RSA Exponentiation and the Chinese Remainder

Theorem 132
5.4.5 Recent Prime Finite Field Arithmetic Designs on

FPGAs 136
5.5 Conclusions 138

6 Binary Finite Field Arithmetic 139
6.1 Field MultipHcation 139

6.1.1 Classical Multipliers and their Analysis 141
6.1.2 Binary Karatsuba-Ofman Multipliers 142
6.1.3 Squaring 151
6.1.4 Reduction 152

Contents

6.1.5 Modular Reduction with General Polynomials 156
6.1.6 Interleaving Multiplication 159
6.1.7 Matrix-Vector Multipliers 161
6.1.8 Montgomery Multiplier 164
6.1.9 A Comparison of Field Multiplier Designs 165

6.2 Field Squaring and Field Square Root for Irreducible Trinomials 166
6.2.1 Field Squaring Computation 167
6.2.2 Field Square Root Computation 168
6.2.3 Illustrative Examples 171

6.3 Multiplicative Inverse 173
6.3.1 Inversion Based on the Extended Euclidean Algorithm . 175
6.3.2 The IToh-Tsujii Algorithm 176
6.3.3 Addition Chains 178
6.3.4 ITMIA Algorithm 178
6.3.5 Square Root ITMIA 179
6.3.6 Extended Euchdean Algorithm versus Itoh-Tsujii

Algorithm 181
6.3.7 Multiplicative Inverse FPGA Designs 183

6.4 Other Arithmetic Operations 183
6.4.1 Trace function 183
6.4.2 Solving a Quadratic Equation over GF{2'^) 184
6.4.3 Exponentiation over Binary Finite Fields 185

6.5 Conclusions 186

Reconfigurable Hardware Implementation of Hash
Functions 189
7.1 Introduction 189
7.2 Some Famous Hash Functions 191
7.3 MD5 193

7.3.1 Message Preprocessing 194
7.3.2 MD Buffer Initiahzation 196
7.3.3 Main Loop 197
7.3.4 Final Transformation 198

7.4 SHA-1, SHA-256, SHA-384 and SHA-512 201
7.4.1 Message Preprocessing 202
7.4.2 Functions 204
7.4.3 SHA-1 205
7.4.4 Constants 206
7.4.5 Hash Computation 207

7.5 Hardware Architectures 210
7.5.1 Iterative Design 211
7.5.2 Pipehned Design 212
7.5.3 Unrolled Design 212
7.5.4 A Mixed Approach 213

7.6 Recent Hardware Implementations of Hash Functions 213

Contents XI

7.7 Conclusions 220

General Guidelines for Implementing Block Ciphers in
FPGAs 221
8.1 Introduction 221
8.2 Block Ciphers 222

8.2.1 General Structure of a Block Cipher 223
8.2.2 Design Principles for a Block Cipher 224
8.2.3 Useful Properties for Implementing Block Ciphers in

FPGAs 227
8.3 The Data Encryption Standard 232

8.3.1 The Initial Permutation (IP"^) 233
8.3.2 Structure of the Function fk 234
8.3.3 Key Schedule 237

8.4 FPGA Implementation of DBS Algorithm 238
8.4.1 DBS Implementation on FPGAs 238
8.4.2 Design Testing and Verification 240
8.4.3 Performance Results 240

8.5 Other DBS Designs 240
8.6 Conclusions 244

Architectural Designs For the Advanced Encryption
Standard 245
9.1 Introduction 245
9.2 The Rijndael Algorithm 247

9.2.1 Difference Between ABS and Rijndael 247
9.2.2 Structure of the ABS Algorithm 248
9.2.3 The Round Transformation 249
9.2.4 ByteSubstitution (BS) 249
9.2.5 ShiftRows (SR) 251
9.2.6 MixColumns (MC) 252
9.2.7 AddRoundKey (ARK) 253
9.2.8 Key Schedule 254

9.3 ABS in Different Modes 254
9.3.1 CTR Mode 255
9.3.2 CCM Mode 256

9.4 Implementing ABS Round Basic Transformations on FPGAs . . 259
9.4.1 S-Box/Inverse S-Box Implementations on FPGAs 260
9.4.2 MC/IMC Implementations on FPGA 264
9.4.3 Key Schedule Optimization 267

9.5 ABS Implementations on FPGAs 268
9.5.1 Architectural Alternatives for Implementing ABS 269
9.5.2 Key Schedule Algorithm Implementations 273
9.5.3 ABS Bncryptor Cores - Iterative and Pipehne

Approaches 276

XII Contents

9.5.4 AES Encryptor/Decryptor Cores- Using Look-Up
Table and Composite Field Approaches for S-Box 278

9.5.5 AES Encryptor/Decryptor, Encryptor, and Decryptor
Cores Based on Modified MC/IMC 281

9.5.6 Review of This Chapter Designs 284
9.6 Performance 285

9.6.1 Other Designs 285
9.7 Conclusions 288

10 Elliptic Curve Cryptography 291
10.1 Introduction 291
10.2 Hessian Form 294
10.3 Weierstrass Non-Singular Form 296

10.3.1 Projective Coordinates 296
10.3.2 The Montgomery Method 297

10.4 Parallel Strategies for Scalar Point Multiplication 300
10.5 Implementing scalar multiphcation on Reconfigurable Hardware302

10.5.1 Arithmetic-Logic Unit for Scalar Multiphcation 303
10.5.2 Scalar multiplication in Hessian Form 304
10.5.3 Montgomery Point Multiphcation 306
10.5.4 Implementation Summary 306

10.6 Kobhtz Curves 308
10.6.1 The T and T~^ Frobenius Operators 309
10.6.2 CJTNAF Scalar Multiplication in Two Phases 312
10.6.3 Hardware Implementation Considerations 313

10.7 Half-and-Add Algorithm for Scalar Multiplication 317
10.7.1 Efficient Elliptic Curve Arithmetic 318
10.7.2 Implementation 321
10.7.3 Performance Estimation 324

10.8 Performance Comparison 326
10.9 Conclusions 328

References 329

Index 359

List of Figures

2.1 A Hierarchical Six-Layer Model for Information Security
Applications 8

2.2 Secret Key Cryptography 10
2.3 Recovering Initiator's Private Key 11
2.4 Generating a Pseudorandom Sequence 12
2.5 Pubhc Key Cryptography 12
2.6 Basic Digital Signature/Verification Scheme 13
2.7 Public key cryptography Main Primitives 14
2.8 Diflae-Hellman Key Exchange Protocol 24
2.9 Elliptic Curve Variant of the Diffie-Hellman Protocol 25

3.1 A Taxonomy of Programmable Logic Devices 38
3.2 Xilinx Virtex II Architecture 40
3.3 Xilinx CLB 41
3.4 Shce Structure 42
3.5 VirtexE Logic Cell (LC) 42
3.6 CLB Configuration Modes 42
3.7 Stratix Block Diagram 45
3.8 Stratix LE 46
3.9 Design flow 54
3.10 Hardware Design Methodology 56
3.11 2-bit Multiplixer Using (a) Tristate Buffer, (b) LUT 57
3.12 Basic Architectures for (a) Iterative Looping (b) Loop Unrolling 58
3.13 Round-pipelining for (a) One Round (b) n Rounds 59

4.1 Elhptic Curve Equation y^ = x^ -i- ax -h b for Different a and b . 73
4.2 Adding two Distinct Points on an Elhptic curve {Q ^ —P) 74
4.3 Adding two Points P and Q when Q = -P 75
4.4 Doubhng a Point P on an Elliptic Curve 75
4.5 Doubhng P(x, y) when y = 0 76

XIV List of Figures

4.6 Elliptic Curve Scalar Multiplication /cP, for /c = 6 and for the
Elliptic Curve y'^ =^ x^ - Zx-\-Z 77

4.7 Elements in the Elhptic Curve of Equation (4.15) 81

5.1 Full-Adder and Half-Adder Cells 91
5.2 Carry Propagate Adder 92
5.3 Carry Completion Sensing Adder 93
5.4 Detecting Carry Completion 93
5.5 Carry Look-Ahead Adder 95
5.6 Carry Save Adder 96
5.7 Carry Delayed Adder 99
5.8 High-Radix Interleaving Method 123
5.9 Partitioning Algoritm 130

6.1 Binary Karatsuba-Ofman Strategy 148
6.2 Karatsuba-Ofman Multiplier GF{2^^^) 150
6.3 Programmable Binary Karatsuba-Ofman Multipher 151
6.4 Squaring Circuit 152
6.5 Reduction Scheme 154
6.6 Pentanomial Reduction 155
6.7 A Method to Reduce k Bits at Once 156
6.8 a ' A{a) Multiphcation 160
6.9 LSB-First Serial/Parallel Multiplier 162
6.10 Finite State Machine for the Binary Euchdean Algorithm 182
6.11 Architecture of the Itoh-Tsujii Algorithm 182

7.1 Hash Function 190
7.2 Requirements of a Hash Function 191
7.3 Basic Structure of a Hash Function 191
7.4 MD5 193
7.5 Message Block = 32 x 16 =512 Bits 195
7.6 Auxihary Functions in Reconfigurable Hardware (a) F(X,Y,Z)

(b) G(X,Y,Z) (c) H(X,Y,Z) (d) I(X,Y,Z) 197
7.7 One MD5 Operation 198
7.8 Padding Message in SHA-1 and SHA-256 202
7.9 Padding Message in SHA-384 and SHA-512 204
7.10 Implementing SHA-1 Auxiliary Functions in Reconfigurable

Hardware 205
7.11 i7o, Z*!, CTQ, and ai in Reconfigurable Hardware 206
7.12 Single Operation for SHA-1 208
7.13 Single Operation for SHA-256 209
7.14 Iterative Approach for Hash Function Implementation 211
7.15 Hash Function Implementation (a) Unrolled Design (b)

Combining A; Stages 212
7.16 A Mixed Approach for Hash Function Implementation 213

List of Figures XV

8.1 General Structure of a Block Cipher 223
8.2 Same Resources for 2,3,4-in/l-out Boolean Logic in FPGAs 228
8.3 Three Approaches for the Implementation of S-Box in FPGAs . 229
8.4 Permutation Operation in FPGAs 229
8.5 Shift Operation in FPGAs 230
8.6 Iterative Design Strategy 231
8.7 Pipehne Design Strategy 231
8.8 Sub-pipeHne Design Strategy 231
8.9 DBS Algorithm 234
8.10 DBS Implementation on FPGA 239
8.11 Functional Simulation 241
8.12 Timing Verification 241

9.1 Basic Structure of Rijndael Algorithm 248
9.2 Basic Algorithm Flow 249
9.3 BS Operates at Bach Individual Byte of the State Matrix 25C
9.4 ShiftRows Operates at Rows of the State Matrix 252
9.5 MixColumns Operates at Columns of the State Matrix 252
9.6 ARK Operates at Bits of the State Matrix 253
9.7 Counter Mode Operations 255
9.8 Authentication and Verification Process for the CCM Mode. . . . 257
9.9 Encryption and Decryption Processes for the CCM Mode 25^
9.10 S-Box and Inv. S-Box Using Same Look-Up Table 261
9.11 Block Diagram for 3-Stage MI Manipulation 262
9.12 Three-Stage Approach to Compute Multiplicative Inverse in

Composite Fields 262
9.13 Basic Organization of a Block Cipher 269
9.14 Iterative Design Strategy 270
9.15 Loop Unrolling Design Strategy 271
9.16 Pipehne Design Strategy 271
9.17 Sub-pipeline Design Strategy 272
9.18 Sub-pipehne Design Strategy with Balanced Stages 272
9.19 KGBN Architecture 274
9.20 Key Schedule for an Bncryptor Core in Iterative Mode 274
9.21 Key Schedule for a Fully Pipeline Bncryptor Core 275
9.22 Key Schedule for a Fully Pipeline Encryptor/Decryptor Core . . 276
9.23 Key Schedule for a Fully Pipehne Bncryptor/Decryptor Core

with Modified IMC 276
9.24 Iterative Approach for ABS Bncryptor Core 277
9.25 Fully Pipeline ABS Bncryptor Core 278
9.26 S-Box and Inv S-Box Using (a) Different MI (b) Same MI 279
9.27 Data Path for Encryption/Decryption 280
9.28 Block Diagram for 3-Stage MI Manipulation 280
9.29 Three-stage to Compute Multiphcative Inverse in Composite

Fields 280

XVI List of Figures

9.30 G'F(22)2 ^^^ GF{2^) Multipliers 281
9.31 Gate Level Implementation for x^ and Xx 281
9.32 AES Algorithm Encryptor/Decryptor Implementation 282
9.33 The Data Path for Encryptor Core Implementation 283
9.34 The Data Path for Decryptor Core Implementation 283

10.1 Hierarchical Model for Elliptic Curve Cryptography 293
10.2 Basic Organization of EHiptic Curve Scalar Implementation.. . . 303
10.3 Arithmetic-Logic Unit for Scalar Multiplication on FPGA

Platforms 304
10.4 An illustration of the r and r~^ Abehan Groups (with m an

Even Number) 310
10.5 A Hardware Architecture for Scalar Multiplication on the

NIST Koblitz Curve K-233 316
10.6 Point Halving Scalar Multiplication Architecture 322
10.7 Point Halving Arithmetic Logic Unit 322
10.8 Point Halving Execution 324
10.9 Point Addition Execution 325
lO.lOPoint Doubhng Execution 325

List of Tables

2.1 A Comparison of Security Strengths (Source: [258]) 27
2.2 A Few Potential Cryptographic Apphcations 29
2.3 Primitives of Cryptographic Algorithms (Symmetric Ciphers) . . 30
2.4 Comparison between Software, VLSI, and FPGA Platforms 31

3.1 FPGA Manufacturers and Their Devices 39
3.2 Xilinx FPGA Families Virtex-5, Virtex-4, Virtex II Pro and

Spartan 3E 40
3.3 Dual-Port BRAM Configurations 43
3.4 Altera Stratix Devices 45
3.5 Comparing Cryptographic Algorithm Realizations on different

Platforms 48
3.6 High Level FPGA Programming Software 53

4.1 Elements of the field F = GF(2^), Defined Using the Primitive
Trinomial of Eq. ((4.12)) 80

4.2 Scalar Multiples of the Point P of Equation (4.16) 82
4.3 A Toy Example of the Recoding Algorithm 86
4.4 Comparing Diff'erent Representations of the Scalar k 88

5.1 Modular Exponentiation Comparison Table 137
5.2 Modular Exponentiation: Software vs Hardware Comparison

Table 138

6.1 The Computation of C{x) Using Equation (6.5) 142
6.2 Space and Time Complexities for Several m = 2^-bit Hybrid

Karatsuba-Ofman Multiphers 148
6.3 Fastest Reconfigurable Hardware GF{2'^) Multipliers 165
6.4 Most Compact Reconfigurable Hardware GF{2'^) Multipliers . . 166
6.5 Summary of Complexity Results 170

XVIII List of Tables

6.6 Irreducible Trinomials P{x) = x^ 4- a:̂ + 1 of Degree
m G [160, 571] Encoded as m{n), with m a Prime Number 171

6.7 Squaring matrix M of Eq. (6.40) 172
6.8 Square Root Matrix Af-^ of Eq. (6.41) 173
6.9 Square and Square Root Coefficient Vectors 174
6.10 /3i{a) Coefficient Generation for m-l=192 180
6.11 7i(a) Coefficient Generation for m-l=192 181
6.12 BEA Versus ITMIA: A Performance Comparison 183
6.13 Design Comparison for Multiplicative Inversion in GF{T^) 184

7.1 Some Known Hash Functions 192
7.2 Bit Representation of the Message M 194
7.3 Padded Message (M) 195
7.4 Message in Little Endian Format 196
7.5 Initial Hash Values in Little Endian Format 197
7.6 Auxihary Functions for Four MD5 Rounds 197
7.7 Four Operations Associated to Four MD5 Rounds 198
7.8 Round 1 199
7.9 Round 2 199
7.10 Round 3 200
7.11 Round 4 200
7.12 Final Transformation 201
7.13 Comparing Specifications for Four Hash Algorithms 201
7.14 Initial Hash Values for SHA-1 203
7.15 Initial Hash Values for SHA-256 203
7.16 Initial Hash Values for SHA-384 204
7.17 Initial Hash Values for SHA-512 205
7.18 SHA-256 Constants 207
7.19 SHA-384 & SHA-512 Constants 208
7.20 MD5 Hardware Implementations 214
7.21 Representative SHA-1 hardware Implementations 216
7.22 Representative RIPEMD-160 FPGA Implementations 217
7.23 Representative SHA-2 FPGA Implementations 218
7.24 Representative Whirlpool FPGA Implementations 219

8.1 Key Features for Some Famous Block Ciphers 227
8.2 Initial Permutation for 64-bit Input Block 235
8.3 E-bit Selection 235
8.4 DES S-boxes 236
8.5 Permutation P 237
8.6 Inverse Permutation 237
8.7 Permuted Choice one PC-1 238
8.8 Number of Key Bits Shifted per Round 238
8.9 Permuted Choice two (PC-2) 238
8.10 Test Vectors 240

List of Tables XIX

8.11 DES Comparison: Fastest Designs 242
8.12 DES Comparison: Compact Designs 243
8.13 DES Comparison: Efficient Designs 243
8.14 TripleDES Designs 244

9.1 Selection of Rijndael Rounds 248
9.2 A Roadmap to Implemented AES Designs 273
9.3 Specifications of AES FPGA implementations 284
9.4 AES Comparison: High Performance Designs 286
9.5 AES Comparison: Compact Designs 287
9.6 AES Comparison: Efficient Designs 288
9.7 AES Comparison: Designs with Other Modes of Operation 288

10.1 GF{2'^) Elhptic Curve Point Multiplication Computational
Costs 302

10.2 Point addition in Hessian Form 305
10.3 Point doubhng in Hessian Form 305
10.4 kP Computation, if Test-Bit is ' 1 ' 306
10.5 kP Computation, If Test-Bit is '0' 307
10.6 Design Implementation Summary 308
10.7 Parallel Lopez-Dahab Point Doubling Algorithm 319
10.8 Parallel Lopez-Dahab Point Addition Algorithm 319
10.9 Operations Supported by the ALU Module 323
lO.lOCycles per Operation 324
lO.llFastest Elliptic Curve Scalar Multiplication Hardware Designs . 326
10.12Most Compact Elliptic Curve Scalar Multiplication Hardware

Designs 326
10.13Most Efficient Elliptic Curve Scalar Multiplication Hardware

Designs 327

List of Algorithms

2.1 RSA Key Generation 17
2.2 RSA Digital Signature 17
2.3 RSA Signature Verification 18
2.4 DSA Domain Parameter Generation 19
2.5 DSA Key Generation 19
2.6 DSA Signature Generation 20
2.7 DSA Signature Verification 20
2.8 ECDSA Key Generation 21
2.9 ECDSA Digital Signature Generation 22
2.10 ECDSA Signature Verification 23
4.1 Eucfidean Algorithm (Computes the Greatest Common Divisor) 65
4.2 Extended Euclidean Algorithm as Reported in [228] 69
4.3 Basic Doubling h Add algorithm for Scalar Multiphcation 85
4.4 The Recoding Binary algorithm for Scalar Multiplication 86
4.5 cj-NAF Expansion Algorithm 87
5.1 The Standard Multiphcation Algorithm 102
5.2 The Standard Squaring Algorithm 104
5.3 The Restoring Division Algorithm 106
5.4 The Nonrestoring Division Algorithm 108
5.5 The Interleaving Multiplication Algorithm 109
5.6 The Carry-Save Interleaving Multiplication Algorithm 110
5.7 The Carry-Save Interleaving Multiphcation Algorithm Revisited 113
5.8 Montgomery Product 117
5.9 Montgomery Modular Multiphcation: Version 1 117
5.10 Montgomery Modular Multiphcation: Version II 118
5.11 Specialized Modular Inverse 118
5.12 Montgomery Modular Exponentiation 120
5.13 Add-and-Shift Montgomery Product 122
5.14 Binary Add-and-Shift Montgomery Product 122
5.15 Word-Level Add-and-Shift Montgomery Product 124
5.16 MSB-First Binary Exponentiation 126

XXII LIST OF ALGORITHMS

5.17 LSB-First Binary Exponentiation 127
5.18 MSB-First 2^-ary Exponentiation 127
5.19 Sliding Window Exponentiation 131
6.1 mul2^{C, A, B)\ m = 2^n-bit Karatsuba-Ofman Multiplier 144
6.2 mulgenjd{C^ A^ B): m-bit Binary Karatsuba-Ofman Multiplier . 149
6.3 Constructing a Look-Up Table that Contains All the 2^

Possible Scalars in Equation (6.23) 157
6.4 Generating a Look-Up Table that Contains All the 2^ Possible

Scalars Multiphcations S • P 158
6.5 Modular Reduction Using General Irreducible Polynomials 159
6.6 LSB-First Serial/Parallel Multipher 161
6.7 Montgomery Modular Multiplication Algorithm 164
6.8 Binary Euchdean Algorithm 176
6.9 Itoh-Tsujii Multiphcative Inversion Addition-Chain Algorithm . 179
6.10 Square Root Itoh-Tsujii Multiplicative Inversion Algorithm 181
6.11 MSB-first Binary Exponentiation 185
6.12 Square root LSB-first Binary Exponentiation 186
6.13 Squaring and Square Root Parallel Exponentiation 187
10.1 Doubhng & Add algorithm for Scalar MultipHcation: MSB-First 295
10.2 Doubhng & Add algorithm for Scalar MultipHcation: LSB-First 295
10.3 Montgomery Point Doubhng 297
10.4 Montgomery Point Addition 298
10.5 Montgomery Point Multiplication 299
10.6 Standard Projective to Affine Coordinates 299
10.7 CJTNAF Expansion[133, 132] 312
10.8 CJTNAF Scalar MultipHcation [133, 132] 313
10.9 cjrNAF Scalar Multiplication: Parallel Version 314
lO.lOcjrNAF Scalar Multiplication: Hardware Version 314
lO.llcjrNAF Scalar MultipHcation: Parallel HW Version 315
10.12Point Halving Algorithm 320
10.13Half-and-Add LSB-First Point MultipHcation Algorithm 321

Acronyms

AES Advanced Encryption Standard
AF Affine Transformation
ANSI American National Standard Institute
API Application Programming Interface
ARK Add Round Key
ASIC Application Specific Integrated Circuit
ATM Automated Teller Machine
BEA Binary Euclidean Algorithm
BRAMs Block RAMs
BS Byte Substitution
CBC Cipher Block Chaining
CCM Counter with CBC-MAC
CCSA Carry Completion Sensing Adder
CDA Carry Delayed Adder
CFB Cipher Feedback mode
CLB Configurable Logic Block
CPA Carry Propagate Adder
CPLDs Complex PLDs
CRT Chinese Remainder Theorem
CSA Carry Save Adder
CTR Counter mode
DCM Digital Clock Managers
DEA Data Encryption Algorithm
DES Data Encryption Standard
DSA Digital Signature Algorithm
DSS Digital Signature Standard
ECB Electronic Code Book
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithmic Problem
ECDSA Elliptic Curve Digital Signature Algorithm
ETSI European Telecommunications Standards Institute
FIPS Federal Information Processing Standards
FLT Fermat's Little Theorem
FPGAs Field Programmable Gate Arrays

XXIV

GAL Generic Array Logic
GSM Global System for Mobile Communications
HDLs Hardware Description Languages
lAF Inverse Affine Transformation
lARK Inverse Add Round Key
IBS Inverse Byte Substitution
IEEE Institute of Electrical and Electronics Engineers
IL Iterative Looping
IMC Inverse Mix Column
lOBs Input/Output Blocks
lOEs Input/Output Elements
IPSec Internet Protocol Security
ISE Xilinx Integrated Software Environment
ISO International Organization for Standardization
ISR Inverse ShiftRow
ITMIA Itoh-Tsujii Multiplicative Inverse Algorithm
ITU International Telecommunication Union
JTAG Joint Test Action Group
KOM Karatsuba-Ofman Multiplier
LABs Logic Array Blocks
LC Logic Cell
LEs Logic Elements
MAC Message Authentication Code
MRC Mixed-Radix Conversion
NAF Non-Adjacent Form
NFS Number Field Sieve
NIST National Institute of Standards and Technology
NZWS Nonzero Window State
OFB Output Feedback mode
PAL Programmable Array Logic
PC-1 Permuted Choice One
PC-2 Permutated Choice Two
PDAs Portable Digital Assistants
PKCS Pubhc Key Cryptography Standard
PLA Programmable Logic Array
PLDs Programmable Logic Devices
SRC Single-Radix Conversion
SSL Secure Socket Layer
TDEA Triple DEA
TNAF T-adic NAF
VHDL Very-High-Speed Integrated Circuit Hardware Description Language
VLSI Very Large Scale Integration
WEP Wired Equivalent Privacy
ZWS Zero Window State

Preface

Cryptography provides techniques, mechanisms, and tools for private and
authenticated communication, and for performing secure and authenticated
transactions over the Internet £ts well as other open networks. It is highly
probable that each bit of information flowing through our networks will have
to be either encrypted and decrypted or signed and authenticated in a few
years from now. This infrastructure is needed to carry over the legal and con­
tractual certainty from our paper-based offices to our virtual offices existing in
the cyberspace. In such an environment, server and client computers as well as
handheld, portable, and wireless devices will have to be capable of encrypting
or decrypting and signing or verifying messages. That is to say, without ex­
ception, all networked computers and devices must have cryptographic layers
implemented, and must be able to access to cryptographic functions in order
to provide security features. In this context, efficient (in terms of time, area,
and power consumption) hardware structures will have to be designed, imple­
mented, and deployed. Furthermore, general-purpose (platform-independent)
as well £18 special-purpose software implementing cryptographic functions on
embedded devices are needed. An additional challenge is that these implemen­
tations should be done in such a way to resist cryptanalytic attacks launched
against them by adversaries having access to primary (communication) and
secondary (power, electromagnetic, acoustic) channels.

This book, among only a few on the subject, is a fruit of an international
collaboration to design and implement cryptographic functions. The authors,
who now seem to be scattered over the globe, were once together as students
and professors in North America. In Oregon and Mexico City, we worked on
subjects of mutual interest, designing efficient reahzations of cryptographic
functions in hardware and software.

Cryptographic reahzations in software platforms can be used for those
security applications where the data traffic is not too large and thus low en­
cryption rate is acceptable. On the other hand, hardware methods offer high
speed and bandwidth, providing real-time encryption if needed. VLSI (also
known as ASIC) and FPGAs are two distinct alternatives for implementing

XXVI

cryptographic algorithms in hardware. FPGAs offer several benefits for cryp­
tographic algorithm implementations over VLSI, as they offer flexibility and
fast time-to-market. Because they are reconfigurable, internal architectures,
system parameters, lookup tables, and keys can be changed in FPGAs with­
out much effort. Moreover, these features come with low cost and without
sacrificing efficiency.

This book covers computational methods, computer arithmetic algorithms,
and design improvement techniques needed to obtain efficient implementations
of cryptographic algorithms in FPGA reconfigurable hardware platforms. The
concepts and techniques introduced in this book pay special attention to the
practical aspects of reconfigurable hardware design, explain the fundamental
mathematics behind the algorithms, and give comprehensive descriptions of
the state-of-the-art implementation techniques. The main goal pursued in this
book is to show how one can obtain high-speed cryptographic implementations
on reconfigurable hardware devices without requiring prohibitive amount of
hardware resources.

Every book attempts to take a still picture of a moving subject and will
soon need to be updated, nevertheless, it is our hope that engineers, scien­
tists, and students will appreciate our efforts to give a glimpse of this deep
and exciting world of cryptographic engineering. Thanks for reading our book.

May 2006

F. Rodriguez-Henriquez, Nazar A. Saqib, A. Diaz-Perez, and Qetin K. Kog

Introduction

This chapter presents a complete outhne for this Book. It explains the main
goals pursued, the strategies chosen to achieve those goals, and a summary of
the material to be covered throughout this Book.

1.1 Main goals

The choice of reconfigurable logic as a target platform for cryptographic algo­
rithm implementations appears to be a practical solution for embedded sys­
tems and high-speed applications. It was therefore planned to conduct a study
of high-speed cryptographic solutions on reconfigurable hardware platforms.

Both efficient and cost effective solutions of cryptographic algorithms are
desired on reconfigurable logic platform. The term "efficient" normally refers
to "high speed" solutions. In this Book, we do not only look for high speed
but also for low area (in terms of hardware resources) solutions.

Our main objective is therefore to find high speed and low area implemen­
tations of cryptographic algorithms using reconfigurable logic devices. That
imphes careful considerations of cryptographic algorithm formulations, which
often will lead to modify the traditional specifications of those algorithms.
That also imphes knowledge of the target device: device structure, device re­
sources, and device suitability to the given task. The design techniques and
the understanding of the design tools are also included in the implications
imposed by efficient solutions. An optimized cryptographic solution will be
the one for which every step; starting from its high-level specification down
to the physical prototype realization is carefully examined.

It is known that the final performance of cryptographic algorithms heavily
depends on the efficiency of their underlying field arithmetic. Consequently,
we begin our investigation by first studying the algorithms, solutions and cor­
responding architectures for obtaining state-of-the-art finite field arithmetic

2 1. Introduction

realizations. Our study was carried out for both, prime and binary extension
finite fields. We investigated field arithmetic algorithms for the operations of
field addition, multiplication, squaring, square root, multiplicative inverse and
exponentiation among others.

Thereafter, we selected a set of three of the most important cryptographic
building blocks, for their implementation on reconfigurable logic devices: hash
functions, symmetric block ciphers and pubhc key cryptosystems in the form
of elliptic curve cryptography.

We described first the basic principles for attaining efficient hardware im­
plementation of hash functions. In the subject of symmetric ciphers, we study
the two most emblematic algorithms, namely, the Data Encryption Standard
(DES) and the Advance Encryption Standard (AES). In the case of asym­
metric cryptosystems we analyze fast implementations of Elliptic Curve op­
erations defined over binary extension fields.

Several considerations were made to achieve high speed and economical
implementations of those algorithms on reconfigurable logic platforms. One
of them was to exploit high bit-level parallelism where and whenever it was
possible. Similarly, we employed design techniques especially tailored for ex­
ploiting the structure of the target devices.

A variety of hash function algorithms were studied first. Emphasis was
made on MD5, by providing a step-by-step analysis of its algorithm flow. An
explanation of the SHA-2 family was also included. In our descriptions we
pondered hardware implementation aspects of the hash algorithms.

DES was the second cryptographic building block studied in this Mono­
graph. The basic primitives involved in block ciphers specifically for DES
were analyzed for their implementations on reconfigurable logic platform. A
compact one round FPGA implementation of DES was carried out exploiting
high bit-level parallelism. Experiments were made for optimizing the proposed
FPGA architecture with respect to hardware area.

A more detailed study was planned regarding AES due to its importance
for the current security needs in the IT sector. Each step of the algorithm was
investigated looking for improvements in the standard transformations of the
algorithm and for an optimal mapping to the target device. Both, iterative
and pipeline approaches for encryption were used for AES FPGA implemen­
tation. We attempted to reduce the critical paths for encryption/decryption
by sharing common resources or optimizing the standard transformations of
the algorithm.

In the case of Elhptic Curve Cryptography (ECC), we utihzed a hierar­
chical six-layer model, but only the lower three layers were addressed in this
Book. The first layer of the model deals with the efficient implementation of
finite field arithmetic. The Second layer makes use of the underlying arith­
metic for implement elliptic curve arithmetic main primitives: point addition
and point doubling. The third layer implements elliptic curve scalar multipli­
cation which is achieved by adding n copies of the same point P on the curve.
Both the point addition and doubling operations from the second layer serve

1.2 Monograph Organization 3

as building blocks for the third layer. We strived for using parallel techniques
for all the three layers. This way, a generic architecture for the elliptic curve
scalar multiplication was proposed and implemented on the FPGA platform.
We also presented parallel formulations of the scalar multiphcation operation
on Koblitz curves an architecture that is able to compute the elliptic curve
scalar multiplication using the half-and-add method. Additionally, we pre­
sented optimizations strategies for computing a point addition and a point
doubling using LD projective coordinates in just eight and three clock cycles,
respectively.

1,2 Monograph Organization

Next chapters present a short introduction to the cryptographic algorithms
chosen to illustrate the design strategies discussed previously as well as the
mathematical background required for the correct understanding of the mate­
rial to be presented. Design comparisons and conclusion remarks are presented
at the end of each Chapter. A short summary of each chapter is given below.

In Chapter 2, a brief review of modern cryptographic algorithms is given.
Topics addressed include: Secret-key and public-key cryptography, hash func­
tions, digital signatures, an so forth. Furthermore, we also discuss in this
Chapter potential real-world cryptographic applications and the suitability of
reconfigurable hardware devices for accommodate them.

In Chapter 3 a brief introduction to reconfigurable hardware technology is
given. We explain the historical development of FPGA devices and include a
detailed description of the FPGA families of two major manufacturers: Xilinx
and Altera. We also cover reconfigurable hardware design issues, metrics and
security.

In Chapter 4, some important mathematical concepts are presented. Those
concepts are particularly helpful for the understanding of cryptographic oper­
ations for AES and elliptic curve cryptosystems. Key mathematical concepts
for a class of eUiptic curves are also described at the end of this Chapter.

In Chapter 5, we discuss state-of-the-art arithmetic algorithms for prime
fields. We present efficient hardware design alternatives for operations such
as adders, modular adders, modular multipliers and exponentiation among
others. We give at the end of each Section a comparison analysis with some
of the most significant works reported in this topic.

In Chapter 6, state-of-the-art algorithms for binary extension fields are
studied. We discuss relevant algorithms for performing efficiently field mul­
tiplication, squaring, square root, inversion and reduction among others. We
give at the end of each Section a comparison analysis with some of the most
significant works reported in this topic.

4 1. Introduction

In Chapter 7, we study efficient reconfigurable hardware implementations
of hash functions. Specifically, we carefully analyze MD5, arguably the most
studied hash function ever. We give at the end of each Section a comparison
analysis with some of the most significant works reported in this topic.

In Chapter 8, a general guideline for implementing symmetric block ci­
phers is described. Basic primitives involved in block ciphers are listed and
design tips are provided for their efficient implementations on reconfigurable
platform. DES is presented as a case of study. A compact and fast DES im­
plementation on reconfigurable platform is explained. We give at the end of
this Chapter a comparison analysis with some of the most significant works
reported in this topic.

In Chapter 9, we explore multiple architectures for AES. Several efficient
techniques for AES implementation are described. Several efficient AES en-
cryptor and encryptor/decryptor cores based on those techniques are pre­
sented on reconfigurable platforms. The benefits/drawbacks of all AES cores
are examined. We give at the end of this Chapter a comparison analysis with
some of the most significant works reported in this topic.

In Chapter 10 we discuss several algorithms and their corresponding hard­
ware architecture for performing the scalar multiphcation operation on ellip­
tic curves defined over binary extension fields GF{2'^). By applying parallel
strategies at every stage of the design, we are able to obtain high speed im­
plementations at the price of increasing the hardware resource requirements.
Specifically, we study the following four different schemes for performing el­
liptic curve scalar multiplications,

• Scalar multiplication applied on Hessian elliptic curves.
• Montgomery Scalar Multiplication applied on Weierstrass elliptic curves.
• Scalar multiplication applied on Koblitz elliptic curves.
• Scalar multiplication using the Half-and-Add Algorithm.

1.3 Acknowledgments

We would like to thank to all the long list of people who contribute to the ma­
terial presented in this Book, needless to say that all of them are worthy to be
mentioned. We gratefully thank our former Master's students: Juan Manuel
Cruz-Alcaraz, Sabel Mercurio Hernandez-Rodriguez and Emmanuel Lopez-
Trejo who contribute with their hard work and talent to the design and test­
ing of several architectures presented in Chapters 6, 9 and 10. We would also
like to thank our colleagues Guillermo Morales-Luna, Julio Lopez-Hernandez,
NareH Cruz-Cortes, Tariq Saleem, Shamim Baig, Habeel Ahmed, Erkay Savas,
Tugrul Yanik, Luis Gerardo De-La-Fraga and Carlos Coello Coello who pro­
vided priceless comments and advice which greatly helped us to improve the

1.3 Acknowledgments 5

contents of this Book. We also acknowledge valuable contributions from Karla
Gomez-Avila, Marco Negrete-Cervantes, Victor Serrano-Hernandez, Alejan­
dro Areneis-Mendoza, Guillermo Martmez-Silva and Carlos Lopez-Peza. We
gratefully acknowledge our Springer editor, Jason Ward, for his diligent efforts
and support towards the publication of this Work.

Last but not least, the first and third authors acknowledge support from
CONACyT through the NSF-CONACyT project number 45306. The second
author acknowledge support from the faculty and staff members of the Centre
Jor Cyber Technology and Spectrum Management (CCT &; SM), National
University of Sciences and Technology (NUST), Islamabad-Pakistan.

A Brief Introduction to Modern Cryptography

In our Information Age, the need for protecting information is more pro­
nounced than ever. Secure communication for the sensitive information is not
only compelhng for miHtary or government institutions but also for the busi­
ness sector and private individuals. The exchange of sensitive information over
wired and/or wireless Internet, such as bank transactions, credit card numbers
and telecommunication services are already common practices. As the world
becomes more connected, the dependency on electronic services has become
more pronounced. In order to protect valuable data in computer and com­
munication systems from unauthorized disclosure and modification, reliable
non-interceptable means for data storage and transmission must be adopted.

Figure 2.1 shows a hierarchical six-layer model for information security
applications. Let us analyze that figure from a top-down point of view. On
layer 6, several popular security applications have been listed such as: secure
e-mail, digital cash, e-commerce, etc. Those applications depend on the imple­
mentation in layer 5 of secure authentication protocols like SSL/TLS, IPSec,
IEEE 802.11, etc. However, those protocols cannot be put in place without
implementing layer 4, which consists on customary security services such as:
authentication, integrity, non-repudiation and confidentiahty. The underlying
infrastructure for such security services is supported by the two pair of cryp­
tographic primitives depicted in layer 3, namely, encryption/decryption and
digital signature/verification. Both pair of cryptographic primitives can be
implemented by the combination of public-key and private key cryptographic
algorithms, such as the ones listed in layer 2. Finally, in order to obtain a high
performance from the cryptographic algorithms of layer 1, it is indispensable
to have an eflftcient implementation of arithmetic operations such as, addition,
subtraction, multiplication, exponentiation, etc.

In the rest of this Chapter we give a short introduction to the algorithms
and security services listed in layers 2-4. Hence, the basic concepts of cryp­
tography, fundamental operations in cryptographic algorithms and some im-

2.A Brief Introduction to Modern Cryptography

Appl icat ions: secure email, digital cash,
e-commerce, firewalls, etc.

Authentication Protocols: SSUTLS/WTLS/, IPSEC, IEEE
802.11, etc.

Security Services: Confidentiality, Integrity,
Authentication; Non-repudiation

Cryptographic Primitives: Encryption/Decryption,
SignatureA/erificatlon

Public-Key Cryptography: RSA, DSA, ECC
Private-Key Cryptography: AES, DES, RC4, etc.

Computer Ari thmetic: Addi t ion, Substraction, Squaring,
Multipl ication, Division, Exponentiation, Square Root

Computation

Fig. 2.1. A Hierarchical Six-Layer Model for Information Security Applications

portant cryptographic applications in the industry are studied and analyzed.
Furthermore, alternatives for the implementation of cryptographic algorithms
on various software and hardware platforms are also discussed.

2.1 Introduction

A cryptographic cipher system can hide the actual contents of every message
by transforming (enciphering) it before transmission or storage. The tech­
niques needed to protect data belong to the field of cryptography, which can
be defined as follows.

Definition 2.1. We define Cryptography as the discipline that studies the
mathematical techniques related to Information security such as providing the
security services of confidentiality, data integrity, authentication and non-
repudiation.

In the wide sense, cryptography addresses any situation in which one wishes
to limit the effects of dishonest users [110]. Security services, which include
confidentiality, data integrity, entity authentication, and data origin authen­
tication [228], are defined below.

2.2 Secret Key Cryptography 9

• Confidentiality: It guarantees that the sensitive information can only be
accessed by those users/entities authorized to unveil it. When two or more
parties are involved in a communication, the purpose of confidentiality is to
guarantee that only those two parties can understand the data exchanged.
Confidentiality is enforced by encryption.

• Data integrity: It is a service which addresses the unauthorized alter­
ation of data. This property refers to data that has not been changed,
destroyed, or lost in a malicious or accidental manner.

• Authentication: It is a service related to identification. This function
applies to both entities and information itself. Two parties entering into
a communication should identify each other. Information delivered over a
channel should be authenticated as to origin, date of origin, data content,
time sent, etc. For these reasons this aspect of cryptography is usually sub­
divided into two major classes: entity authentication and data origin au­
thentication. Data origin authentication implicitly provides data integrity.

• Non-repudiation: It is a service which prevents an entity from denying
previous commitments or actions. For example, one entity may authorize
the purchase of property by another entity and later deny such authoriza­
tion was granted. A procedure involving a trusted third party is needed to
resolve the dispute.

In cryptographic terminology, the message is called plaintext. Encoding the
contents of the message in such a way that its contents cannot be unveiled by
outsiders is called encryption. The encrypted message is called the ciphertext.
The process of retrieving the plaintext from the ciphertext is called decryp­
tion. Encryption and decryption usually make use of a key^ and the coding
method use this key for both encryption and decryption. Once the plaintext is
coded using that key then the decryption can be performed only by knowing
the proper key.

Cryptography falls into two important categories: secret and public key
cryptography. Both categories play their vital role in modern cryptographic
applications. For several crucial applications, a combination of both secret
and public key methods is indispensable.

2.2 Secret Key Cryptography

Definition 2.2. Matematically, a symmetric key cryptosystem can be
defined as the tuple (P,C,/C, ^,X>), where [110]:

V represents the set of finitely many possible plain-texts.
C represents the set of finitely many possible cipher-texts.
JC represents the key space, i.e, the set of finitely many possible keys,
y K e JC 3EK G S (encryption rule), 3DK G V (decryption rule).
Each EK '. V -^ C and DK : C -^ V are well-defined functions such that

yxer,DK{EK{x)) = X.

10 2.A Brief Introduction to Modern Cryptography

Secret-Key

^^M 0 ^

. i ^

Encryption Decryption

Fig. 2.2. Secret Key Cryptography

Both encryption and decryption keys (which sometimes are the same keys)
are kept secret and must be known at both ends to perform encryption or
decryption as is shown in Fig. 2.2. Symmetric algorithms are fast and are
used for encrypting/decrypting high volume data. It is customary to classify
symmetric algorithms into two types: stream ciphers and block ciphers.

• Stream ciphers: A stream cipher is a type of symmetric encryption algo­
rithms in which the input data is encrypted one bit (sometimes one byte)
at a time. They are sometimes called state ciphers since the encryption of
a bit is dependent on the current state. Some examples of stream ciphers
are SEAL, TWOPRIME, WAKE, RC4, A5, etc.

• Block ciphers: A block cipher takes as an input a fixed-length block
(plaintext) and transform it into another block of the same length (ci-
phertext) under the action of a user-provided secret key. Decryption is
performed by applying the reverse transformation to the ciphertext block
using the same secret key. Modern block ciphers typically use a block
length of 128 bits. Some famous block ciphers are DES, AES, Serpent,
RC6, MARS, IDEA, Twofish, etc.

The most popular block cipher algorithm used in practice is DEA {Data En­
cryption Algorithm) defined in the standard DES [251]. The secret key used in
DEA has a bit-length of 56 bits. Even though that key length was considered
safe back in the middle 70's, nowadays technology can break DEA in some
few hours by launching a brute-force attack. That is why DEA is widely used
as Triple DEA (TDEA) which may offer a security equivalent to 112 bits.
TDEA uses three 56-bit keys (namely, iiTi, K2 and K3). If each of these keys
is independently generated, then this is called the three key TDEA (3TDEA).
However, if Ki and K2 are independently generated, and K^ is set equal to
Ki, then this is called the two key TDEA (2TDEA) [258].

On October 2000, a new symmetric cryptographic algorithm "Rijndael"
was chosen as the new Advanced Encryption Standard (AES) [60] by NIST
(National Institute of Standards and Technology) [253]. Due to its enhanced

2.3 Hash Functions 11

security level, it is replacing DEA and triple DEA (TDEA) in a wide range
of applications.

Although all aforementioned secret key ciphers offer a high security and
computational efficiency, they also exhibit several drawbacks:

• Key distribution and key exchange The master key used in this kind
of cryptosystems must be known by the sender and receiver only. Hence,
both parties should prevent that this key can get compromised by unau­
thorized entities^

• Key management Those system having many users, must generate/manage
many keys. For security reasons, a given key should be changed frequently,
even in every session.

• Incompleteness It is impossible to implement some of the security ser­
vices mentioned before. In particular, Authentication and non-repudiation
cannot be fully implemented by only using secret key cryptography [317].

2.3 Hash Functions

Definition 2.3. A Hash function H is a computationally efficient function
that maps fixed binary chains of arbitrary length {0,1}* to bit sequences H{B)
of fixed length. H{B) is the hash value or digest of B.

Encrypted
private key

AESkey(128 bits)
passphrase — M MD5

1
AES

(decryptor
Decrypted

private
key

Fig. 2.3. Recovering Initiator's Private Key

In words, a hash function h maps bit-strings of arbitrary finite length to
strings of fixed length, say n bits. MD5 and SHA-1 are two examples of hash
functions. MD5 produces 128-bit hash values while SHA-1 produces 160-bit
hash values.

Hash functions can be used for protecting user's secret key as depicted in
Fig. 2.3. Fig. 2.3 shows the customary procedure used for accomplishing that

This implies that in a community of n users a total of ^̂ ^̂ secret keys must
be created so that all users can communicate with each other in a confidential

12 2.A Brief Introduction to Modern Cryptography

Pseudo - random
sequence

Fig. 2.4. Generating a Pseudorandom Sequence

goal. It is noticed that the AES secret key is generated by means of the hash
value corresponding to the pass-phrase given by the user. Another typical
application of Hash functions is in the domain of pseudorandom sequences as
shown in Fig. 2.4.

Nevertheless, the main application of hash function is as a key building
block for generating digital signatures as it is explained in the next Section.

2.4 Public Key Cryptography

A breakthrough in Cryptography occurred in 1976 with the invention of pub­
lic key cryptography by Diffie and Hellman^ [68]. This invention not only
solved the key distribution and management problem but also it provided the
necessary tool for implementing authentication and non-repudiation security
services effectively.

Private-Key

^
A

^

Encryption Decryption

Fig. 2.5. Public Key Cryptography

^ Although Diffie and Hellman were the first in publishing the concepts of public
key cryptography in the open literature, we know now that they were not the first
inventors. In 1997, a British Security agency (CESG, National Technical Authority
for Information Assurance) published documents showing that in fact James Ellis
and Clifford Cocks came out with the mechanisms needed for performing RSA-
like public key cryptography in 1973. Short after that, M. Williamson discovered
what is now known as Diffie-Hellman key exchange [374, 317, 206].

2.4 Public Key Cryptography 13

Asymmetric algorithms use a different key for encryption and decryption,
and the decryption key cannot be easily derived from the encryption key.
Asymmetric algorithms use two keys known as public and private keys as
shown in Fig. 2.5.

The public key is available to everyone at the sending end. However a
private or secret key is known only to the recipient of the message. An im­
portant characteristic of any public key system is that the public and private
keys are related in such a way that only the public key can be used to encrypt
(decrypt) messages and only the corresponding private key can be used to
decrypt (encrypt) them.

M
E
S
S
A
G
E

N. Iniciator rv

M
E
S
S
A
G
E

Fig. 2.6. Basic Digital Signature/Verification Scheme

Public key cryptosystems can be used for generating digital signatures^
which cannot be repudiated. The concept of digital signature is analog to the
real-world autograph signature, but it is more powerful as it also protects
against malicious data modifications. A digital signature scheme is based in
two algorithms: signature and verification as explained below.

• A encrypts the message m using its private key ci := EI^^^.^(^A){'^)
• A encrypts the result ci using B's public key and send the result to B,

• B recovers m by performing.

Since B is able to recover m using ^ ' s public key, B can verify whether A
really sign the message using its private key. Moreover, since the signature
depends on the message contents, theoretically nobody else can reuse the
same signature in any other message.

14 2.A Brief Introduction to Modern Cryptography

In practice, as is shown in Fig.2.6, a digital signature is applied not to the
document to be signed itself, but to its hash value. This is due to efficiency
reasons as public key cryptosystems tend to be computationally intensive. A
hash function H is applied to the message to append its hash value h — H{M),
to the document itself. Thereafter, h is signed by "encrypting" it with the
private key of the sender. This becomes the signature part of the message.

Public Key Crypto-scheme

Signature/Decryption
(Private Operation)

Verification/Encryption
(Public Operation)

Fig. 2.7. Public key cryptography Main Primitives

As shown in Fig. 2.7 Public key cryptosystems' main primitives are:

1. Domain Parameter Generation. This primitive creates the mathemat­
ical infrastructure required by the particular cryptosystem to be used.

2. Key Generation. This primitive create users' pubhc/private key.
3. Public Operation. This primitive is used for encrypting and/or verifying

messages.
4. Private Operation. This primitive is used for decrypting and/or signing

messages.

Theoretically, a public key cryptosystem can be constructed by means of
specialized mathematical functions called "trapdoor one-way functions" which
can be formally defined as follows.

Definition 2.4. A One-way Function [110] is an injective function f{x)

/ : { 0 , 1 } - - { 0 , 1 } * ,

such that f{x) can be computed efficiently, but the computation of f~^{y)
is computational intractable, even when using the most advanced algorithms
along with the most sophisticated computer systems. We say that a one-way
function is a One-way trapdoor function if is feasible to compute f~^{y) if
and only if a supplementary information (usually the secret key) is provided.

In words, a one-way function / is easy to compute for any domain value
X, but the computation of f~^{x) should be computationally intractable. A
trapdoor one-way function is a one-way function such that the computation
f~^{x) is easy, provided that certain special additional information is known.
The following three problems are considered among the most common for
creating trapdoor one-way functions.

2.5 Digital Signature Schemes 15

Integer Factorization problem: Given an integer number n, obtain its
prime factorization, i.e., find n = Pi^^P2^^P3^^ ' • 'Pk^'', where pi is a prime
number and ê > 1.
It is noticed that finding large prime numbers^ is a relatively easy task,
but solving the problem of factorizing the product of prime numbers is
considered computationally intractable if the prime numbers are chosen
carefully and with a sufficient large bit-length [196].
Discrete Logarithm problem: Given a number p, a generator g E Zp*
and an arbitrary element a G Zp*, find the unique number z, 0 < z < p— 1,
such that a = g^{modp).
This problem is useful in cryptography due to the fact that finding dis­
crete logarithms is difficult. The brute-force method for finding g^{modp)
for 1 < j < p — 1 is computationally unfeasible for sufficiently large prime
values. However, the field exponentiation operation can be computed ef­
ficiently. Hence, g'^(modp) can be seen as a trapdoor one-way function
function for certain values of p.
Elliptic curve discrete Logarithm problem: Let E]^^ be an elliptic
curve defined over the finite field F^and let P be a point P G Ew^ with
primer order n. Consider the /c-multiple of the point P, Q = kP defined as
the elliptic curve point resulting of adding P, /c — 1 times with itself, where
/c is a positive scalar in | l , n — 1]. The elliptic curve discrete logarithm
problem consists on finding the scalar k that satisfies the equation Q =^ kP.
This problem is considered a strong one-way trapdoor function due to the
fact that computing k given Q and P is a difficult computational problem.
However, given k is relatively easy to obtain the k-th multiple of P , namely,
Q=-kP.

2.5 Digital Signature Schemes

• A4 represents the set of all finitely many messages that can be signed
• S represents the set of all finitely many signatures (usually the signatures

are fixed-length binary chains).
• JCs represents the set of private keys.
• /Cy represents the set of public keys.
• Se'. M —> S represents the transformation rule for an entity S.
• Vs: M X S —> {true^ false} represents the verification transformation

for signatures produced by £̂ . It is used for other entities in order to verify
signatures produced by <f.

Se y Ve define a digital signature scheme for S.

Definition 2.5. A Digital signature scheme is the triple {Gen,Sig,Ver) of
algorithms such that,

^ In the cryptography domain a large prime number has a bit-length of at least 512
bits.

16 2.A Brief Introduction to Modern Cryptography

i. Gen is a Key generation algorithm, with input s; known as the security
parameter; and possibly another extra information I, which gives as an
ouptut (k^jky) G JCs X /Cv corresponding to private key, and public key,
respectively.

ii. Sig is a Signature algorithm, with input (m,k^) e M x JCs, which gives
as an output an element a ^ S, called Signature (of the message m with
the private key ks).

iii.Ver is a Verification algorithm, with input (m, a, ky) £ M x S x JCy,
which gives as an output the set {true, false} and

Ver{in, Sig{m,ks),ky) = true

V valid (k^, ky) obtained from Gen and for all m e M.

Undoubtedly, the most popular public-key algorithms are RSA (based on
factoring large numbers), DSA and ElGamal (batsed on discrete log problem)
and Elliptic Curve Cryptosystems. Elliptic curve cryptography is now popu­
lar due to the fact that it offers the same security level as offered by other
contemporary algorithms at a shorter key length. It is based on elliptic curve
addition operation.

2.5.1 RSA Digital Signature

The most popular algorithm for commercial applications is RSA'^. RSA algo­
rithm is symmetric in the sense that both, the public key and the private key
can be utilized for encrypting a message.

RSA Key Generation

Algorithm 2.1 shows RSA key generation procedure. The public key is com­
posed by the two integers (n,e), where n is called the RSA modulus and is
defined as the product of two prime numbers p,q, of approximately the same
bit-length. Both, p, q should be generated randomly and must be kept secret.
The number e is called the public exponent. It must satisfy: 1 < e < 0 and
gcd(e, 0) = 1 where (j) = (p — l)(g - 1). The private key d is called the private
exponent and it must satisfy: 1 < d < (j) and ed = l(mod 0). It is noticed
that the problem of determining the key d given the public key (n, e) has
a computacional difficulty equivalent to the integer factorization problem of
finding p OT q given n.

^ RSA stands for the first letter in each of its inventors' last names: Rivest, Shamir
and Addleman. These three distinguished professors were declared the 2002 A.M
Turin award winners. At that time, Professor Shamir consider it "the ultimate
seal of approval" for Cryptography os a Computer Science discipline [325].

2.5 Digital Signature Schemes 17

Algorithm 2.1 RSA Key Generation
Require: bit-length /c, a public exponent e, where e is a small prime number.
Ensure: RSA public key (n, e) and private key d.

1: Randomly find two primes | -b i t numbers p and q.
2: n == pq;
3: cf^{n) = {p-l){q-iy,
4: if gcd(e,0(n)) y^ 1 then
5: Go to Step 1.
6: end if
7: Find d such that d = e~^ mod (/)(n).
8: Return (n, e,(i).

RSA Digital Signature

RSA encryption/decryption and Signature/verification are based in the Euler
theorem identity, which establishes that,

m^^ = m (mod n) (2.1)

for any arbitrary integer m. Signature and verification processes are shown in
Algorithms 2.2 and 2.3. The author A of the message m computes the hash
value h = H(m), Then, A computes the signature s — h^. Then A can send
the message m along with the signature s to a verifying entity, say B. B can
verify v4's signature as follows. It recovers the hash value from s by computing
h = s^. Thereafter, B computes once again the hash value, say, h = H{m). If
h -• h, then the signature is accepted otherwise, it is rejected.

Algorithm 2.2 RSA Digital Signature
Require: Sender's public key (n,e), Sender's private key d, message m.
Ensure: digital signature s.

1: h = H{m);
2: s = h^ mod n.
3: Return s.

2.5.2 RSA Standards

RSA is specified in [193, 253, 255]. Additionally, there exist a number of
standards where the digital signature algorithm RSA just described is utilized.
The Public Key Cryptography Standard (PKCS), is a set of standards that
include among others, PKCS#1^ PKCS#36 and PKCS#12'^. PKCS series

^ RSA Cryptography Standard
^ Diffie-Hellman key agreement Standard
^ Personal Information Exchange Syntax Standard

18 2.A Brief Introduction to Modern Cryptography

Algorithm 2.3 RSA Signature Verification
Require: Sender's public key (n, e), message m, digital signature s.
Ensure: Accept/Reject.
I: h = H{m);
2: h =• s^ mod n;
3: \{ h — h then
4: Return(Accept);
5: else
6: Ret urn (Reject);
7: end if

have become part of many formal and de facto standards, including ANSI X9
documents, PKIX, SET, S/MIME, and SSL [193].

2.5.3 DSA Digital Signature

The Digital Signature Algorithm (DSA) is based in the crypto-scheme pro­
poned by ElGamal in 1984, which in turn is based on the discrete logarithm
problem. Many versions of the original ElGamal procedure has been proposed.
In 1991, the ElGamal procedure was adopted by the U.S. National Institute of
Standards and Technology and registered under the name of Digital Signature
Standard (DSS).

DSA Key Generation

The prime numbers p and q and the generator g are public domain parameters.
They define a multiplicative Abelian group modulus p. The parameter g G
[2,p — 1] specifies a generator of the multiphcative cyclic subgroup (g) of
order q. This mathematically implies that q\{p — 1) and no other smaller
positive integer is a prime divisor of p — 1 satisfying g^ = I. The private
key X is randomly selected among the subgroup elements, i.e., x e [l,g — 1],
whereas the corresponding public key is generated by computing y ~ g^ mod
p, as is shown in Algorithm 2.5. The problem of finding x given the domain
parameters {p,q^g) and the public key y is known as the discrete logarithm
problem.

DSA Digital Signature Algorithm

Once that the public/private key pair has been generated, a given entity A can
generate the DSA signature S = (r, s) of a message m by proceeding as follows
(see Algorithm 2.6). First, A must select a random number k G [1,^ — 1], which
must be secret and should be destroyed after the DSA has been generated.
Then, A must compute T = g^ mod p, and r — T mod q. Thereafter, the
message m is processed using a secure hash algorithm H so that h = H{m) is

2.5 Digital Signature Schemes 19

Algorithm 2.4 DSA Domain Parameter Generation
Require: Security parameters I and t.
Ensure: Domain parameters {p,q,g).
1: Select a prime number q of t bits and another prime number p of / bits such

that q\ip- 1).
Find an element g of order q.
repeat

p - i
randomly select a number he [l,p — 1] and compute g — h "i mod p.

until {g ^ 1}
Return {p^q^g).

Algorithm 2.5 DSA Key Generation
Require: Domain parameters p,q,g.
Ensure: Private key x and public key y.
1: Randomly select x £ [l,q — I].
2: y = g"" mod p;
3: Return {y,x).

computed. Then, the other component of the DSA signature can be computed
as,

s = k~^(h + xr) mod q (2.2)

DSA signature is composed by the pair (s, r). The verifying entity B can check
the correctness of the DSA based on the following observation,

k = 5"^(/z + xr) mod q. (2.3)

Which imphes,
gk = gS-'hg^S-^r ^^^ p (2.4)

Finally, knowing that T — g^ mod p and y = g^ mod p, we have,

T = g^'~'y'''~' modp (2.5)

Lats equation corresponds to the computation accomplished by the verifier
at line 8 of Algorithm 2.7. Therefore, the verifier entity B can assess the
correctness of a DSA signature by verifying that the equality r = T mod q
holds. This can be done by knowing the domain parameters (p, q, g), the public
key y and the DSA signature (r, s). DSA signature generation and verification
are shown in Algorithms 2.6 and 2.7, respectively.

2.5.4 Digital Signature with Elliptic Curves

Elliptic curves over real numbers are defined as the set of points (x, y) which
satisfy the elliptic curve equation of the form:

y'^ = x^ -^ax-\-b (2.6)

20 2.A Brief Introduction to Modern Cryptography

Algorithm 2.6 DSA Signature Generation
Require: domain parameters {p,q,g), Sender's private key x, message m.
Ensure: Signature (r, s).
1: randomly select fc G [1, g — 1].
2: T = g^ mod p;
3: r = T mod q;
4: if r = 0 then
5: Go to Step 1;
6: end if
7: h = H{m)]
S: s — k~^{h + xr) mod g;
9: if s = 0 then

10: Go to Step 1;
11: end if
12: Return (r,s).

Algorithm 2.7 DSA Signature Verification
Require: Domain parameters {p,q,g), Sender's public key t/, message m and sig­

nature (r, s).
Ensure: Accept/Reject.
1: if r, s are not in the interval [1, ̂ — 1] then
2: Ret urn ("Reject")
3: end if
4: h^H{m)\
b: w = s~^ mod q;
6: ui = hw mod q;
7: U2 = rw mod g;
8: T = g'''y''^ mod p;
9: r = T mod qf;

10: if r = r then
11: Return(Accept);
12: else
13: Return(Reject);
14: end if

y"^ = x'^ -\-ax-\-b (2.6)

where a and b are real numbers. Each choice of a and b produces a different
elliptic curve as shown in Figure 4.1. The elliptic curve in Equation 2.6 forms
a group if 4a^ 4- 276^ ^ 0. An elliptic curve group over real numbers consists
of the points on the corresponding elliptic curve, together with a special point
O called the point at infinity. Elliptic curve groups are additive groups; that
is, their basic function is addition. The negative of a point P = (x, y) is its
reflection in the x-axis: the point — P is (x, —y). If the point P is on the curve,
the point — P is also on the curve.

2.5 Digital Signature Schemes 21

In elliptic curve cryptography we are only interested in elliptic curves
defined over finite fields. This means tha t the coordinates of the points in the
elliptic curve can only take values t ha t belong to the finite field over which,
the elliptic curve has been defined. In part icular we define elliptic curves over
binary extension fields GF{2^), using the following adjusted curve equation,

y"^ ^xy = x^ -\- ax^ + h (2.7)

where a ,6 G GF{T^) and 6 7̂ 0. Once again, the elliptic curve includes all
the points {x^y) t ha t satisfy above equation in GF(T^) ar i thmetic , plus the
point at infinity O. The set of point t ha t belong to the curve E is denoted as

El l ip t i c C u r v e D o m a i n P a r a m e t e r s

The domain parameters needed for obtaining a public key cryptosystem based
on the elliptic curve discrete logari thm problem over F^ are the following [133],

1. T h e number of field elements (finite field order) q.
2. T h e coeffcients a ,6 G Fg tha t define the eUiptic equation E over Fg.
3. A base point P = (xp, yp) e¥q t ha t belongs to the curve E. P must have

a prime order.
4. The order n of P.
5. T h e cofactor h - #E{¥q)/n.

E C D S A K e y G e n e r a t i o n

Let P e E{¥q) with order n, where E is an elliptic curve as defined above. We
consider the field order q, the elliptic curve equation E and the base point P
as public domain parameters . The private key d is a. randomly chosen integer
in the range [l , n — 1] and the corresponding public key is the point Q = dP
as computed in Algori thm 2.8 below. T h e problem of defining d given P and
Q is known as the elliptic curve discrete logarithm problem.

A l g o r i t h m 2.8 ECDSA Key Generat ion

Require: Elliptic curve public domain parameters {q, E, P, n)
Ensure: public/private key pair Q = {xQ.yq) and d.

Randomly choose d in the range [1, n -
0 = dP;
Return {Q,d).

^ Elliptic curve theory is covered in Chapter 4. Reconfigurable hardware implemen­
tations of elliptic curve cryptosystems are studied in Chapter 10.

22 2.A Brief Introduction to Modern Cryptography

E C D S A D i g i t a l S i g n a t u r e

Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve ana­
logue of the Digital Signature Algorithm (DSA) [141]. It was accepted in 1999
as an ANSI s tandard , and in 2000 it was accepted as I E E E and NIST stan­
dards. Unlike the ordinary discrete logari thm problem and the integer factor­
ization problem, no subexponential- t ime algorithm is known for the elliptic
curve discrete logari thm problem. For this reason, the strength-per-key-bit is
substantial ly greater in an algorithm tha t uses elliptic curves.

A l g o r i t h m 2.9 ECDSA Digital Signature Generat ion

Require: Domain parameters: (g, a,6, P, n, / i) , Sender's private key d, message m.
Ensure: Signature {r,s).

1: Randomly Select k in the interval [l ,n — 1]
2: kP = {xi,yi)] and convert xi into an integer xi.
3: Compute r = xi mod n.
4: if r = 0 then
5: goto step 1;
6: end if
7: e = H{m)]
8: s = k~^{e + dr) mod n.
9: if 5 = 0 then

10: goto step 1;
11: end if
12: R e t u r n (r , s).

The ECDSA digital s ignature algorithm is shown in Fig. 2.9. The signature
for this message is the pair (r, s). It is to be noted t ha t the s ignature depends
on the private key and the message. This implies tha t , at least in theory, no
one can subst i tu te a different message for the same signature. Note t ha t if a
message m has a valid digital signature (r, s) then,

s = k~^{e -h dr) mod n.

which implies,

k = s~^{e -f dr) = s~^e + s~^dr = we -{- wdr = ui -^ U2 • d mod n.

Thus , X = U1P + U2Q = {ui +U2d)P — kP, and consequently we validate the
signature \f[v = r. Above verification process is carried out by the procedure
shown in Algori thm 2.10. Notice tha t in line 8 of t ha t procedure, the elliptic
curve point X = ui • P -\- U2 - Q, is computed. As explained above, if the
signature to be verified is a valid one then the equality v = xi mod n = r
should hold.

2.5 Digital Signature Schemes 23

Algorithm 2.10 ECDSA Signature Verification
Require: Domain parameters: {q,a,b,P,n,h), signature {r,s), Sender's public key

Q, message m.
Ensure: Reject/Accept.
1: if r, s are not in the interval [1, n — 1] then
2: Ret urn ("Reject")
3: end if
4: e = /f(m);
5: w = s~^ mod n;
6: ui = ew mod n;
7: U2 = rw mod n;
8: X = iii -P-f W2 -Q;
9: if X=0 then

10: Return "Rejected".
11: end if
12: Convert the x coordinate of X to an integer xi.
13: V = xi mod n;
14: if V = r then
15: Return(Accept);
16: else
17: Return(Reject);
18: end if

2.5.5 Key Exchange

In secret key cryptography, it is necessary that both parties at the sending and
receiving ends agree on a secret key for transferring data in a secure way. Thus,
several key agreement protocols have been proposed in order to establish a
shared secret. The first such protocol is the DifRe-Hellman protocol, which
provides the key establishment of a key with two message transfers. In the
following, we will describe the basic Diffie-Hellman exchange protocol followed
by its elliptic curve version.

Diffie-Hellman Key Exchange Protocol

Difhe-Hellman key exchange was invented in 1976 by Whitfield Difhe, Martin
Hellman and Ralph Merkle. It was the first practical method for establishing
a shared secret over an unprotected communication channel. Let us suppose
that A and B have already agreed on working with a group G (for example,
let us say the group of integers modulo p) and a generator element g in G.
Then, the protocol dataflow is as follows (Figure 2.8):

• A picks a random natural number a and sends g°' io B.
• B picks a random number h and sends g^ to A.
• A computes K=:(^^)".
• B computes K=(^"

24 2.A Brief Introduction to Modern Cryptography

In the Diffie-Hellman protocol, g and p are the domain parameters and K is
the private key for the session which can be used as a shared secret for secure
communication between A and B via symmetric cryptography.

Diffie-Hellman protocol is considered secure if G and g are chosen properly,
i.e., the eavesdropper has an enormous difficulty to compute the element g""^,
because he/she needs to solve the discrete logarithm problem over the group
G.

t known Diffie-Hellman B (g, G)
I I known
? geG b
I G is a group of prime order p . '

g^ mod p g mod p

K={Q'rmodp K=(g^f mod p

Fig. 2.8. Diffie-Hellman Key Exchange Protocol

Elliptic Curve DifRe-Hellman Key Exchange Protocol

Let A and B agree on an elliptic curve E over a large finite field F and a point
P on that curve. Then the necessary steps for exchanging a secret key by using
elliptic curve discrete logarithmic algorithm are as shown in Figure 2.9.

• A and B each privately choose large random integers, denoted ri and r2.
• Using elliptic curve point-addition, A computes riP on E and sends it to

B. B computes r2P on E and sends it to A.
• Both A and B can now compute the point r\r2P by performing the eUiptic

curve scalar multiplication of the received value of r2P, viP by his/her
secret number r i , r2, respectively.

A and B agree that the x coordinate of this point will be their shared
secret value.

2.6 A Comparison of Public Key Cryptosystems

Due to the high difficulty of computing the elliptic curve discrete logarithm
problem, one can obtain the same security provided by other existing public-
key cryptosystems, but at the price of much smaller fields, which automati­
cally implies shorter key lengths. Having shorter key lengths means smaller

2.6 A Comparison of Public Key Cryptosystems 25

A EC Diffie-Hellman B
I I
ri P e E(Fq): / + xy = x^ + ax^ + b ^2
' P is a point on the curve of prime order n '

Q/\= riP QB^ r2P

1' H
Q-nQ, °'"°'

Fig. 2.9. Elliptic Curve Variant of the DifRe-Hellman Protocol

bandwidth and memory requirements. These characteristics are especially im­
portant in most embedded system applications, where both memory and pro­
cessing power are constrained.

High performance implementations of elliptic curve cryptography depend
heavily on the efficiency in the computation of the finite field arithmetic op­
erations needed for the elliptic curve operations. On the other hand, the level
of security offered by protocols such as the Diffie-Hellman key exchange al­
gorithm relies on exponentiation in a large group. Typically, the implementa­
tion of this protocol requires a large number of exponentiation computations
in relatively big fields. Therefore, hardware/software implementations of the
group operations are, for all the practical sizes of the group, computationally
intensive.

Nowadays, there exist algorithms able to solve the factorization problem
as well as the discrete logarithm problems in a sub-exponential time. For
instance, the Number Field Sieve (NFS) [203] is the best option for solving
the integer factorization problem. The Number Field Sieve (NFS) [115] and
the Pollard's rho algorithm [273] can solve the discrete logarithm problem.

In the case of RSA, the largest RSA modulus factored is a 640-bit (193-
digit) integer in November, 2005 [195]. In the case of ECDSA, the largest
known example was solved using the Pollard's rho method for both, prime
and binary finite fields. The elliptic curve discrete logarithm problem for an
elliptic curve over a 109-bit prime field was broken on November 2002 [44],
whereas another elliptic curve defined over a 109-bit binary field was broken
in April, 2004. The effort required 2600 computers and took 17 months [45].

26 2.A Brief Introduction to Modern Cryptography

2.7 Cryptographic Security Strength

Some of the major factors that determine the security strength of a given
symmetric block cipher algorithm include, the quality of the algorithm itself,
the key size used and the block size handled by the algorithm^.

The security strength of an n-bit key symmetric block cipher algorithm,
which has no known security flaws, is measured in terms of the amount of
work it takes to try all possible keys, an attack traditionally known as the
brute-force attack.

A generic cryptographic algorithm that has an m-bit key, but whose
strength is comparable to an n-bit key of a strong symmetric block cipher
algorithm is said to have an equivalent n-bit security strength. In general,
however, the equivalent n-bit security strength of a given algorithm is less
than m due to the possibility that certain specific attack to that algorithm
may provide computational advantages compared with the brute-force attack
[257].

Determining the security strength of an algorithm is not trivial. For ex­
ample, one might expect that 3TDEA would provide 56 * 3 •= 168 bits of
strength. However, the so-called birthday and meet-in-the-middle attacks on
3TDEA [227, 315] reduces the strength of 3TDEA to merely 112-bit equiv­
alent security strength. In the case of 2TDEA, provided that the attacker
can manage to gather approximately 2̂ °̂ plaintext-cipher pairs, then 2TDEA
would have a strength comparable to an 80-bit algorithm [257].

On the other hand and due to performance, functionality or compatibiHty
reasons, algorithms of different strengths and key sizes are frequently com­
bined in the same application. In general, the weakest algorithm and key size
used for cryptographic protection determines the strength of the protection
provided to the system. As an example, if SHA-512 is used with 1024-bit RSA,
only 80-bit of security strength will be provided to data application. If the
application requires 128 bits of security, then 3072-bit RSA key must be used.
Alternatively, 256-bit ECC can be used to substitute RSA as a public key
cryptographic engine.

Table 2.1 compares the security strengths of a set of algorithms divided
into three categories: Symmetric block cipher algorithms, pubhc key crypto-
systems and hash functions. Notice, however, that novel or improved attacks
and/or technologies may be developed in the future, leaving some of the al­
gorithms included in Table 2.1 partially or completely broken. In particular,
all hash functions listed in Table 2.1 have recently been subject of successful
attacks, thus casting doubts on their security [368, 369, 103].

The block size is also a factor that should be considered, since if a collision-attack
is launched, collisions become probable after 2 2 blocks have been encrypted with
the same key for certain block ciphers' modes of operation [71, 70, 69].

2.8 Potential Cryptographic Applications

Table 2.1. A Comparison of Security Strengths (Source: [258])

27

Private key Algorithm
Two-key triple DES
Triple-key triple DES
128-bit AES
192-bit AES
256-bit AES

Public key Algori thm

DSA (p = 1024,9= 160)
DSA (p = 2048, 9 = 224)
p S A (p = 3072, 9 = 256)
DSA (p = 7680,9 = 384)
DSA (p = 15360,9 = 512)
1024-bit RSA
2048-bit RSA
3072-bit RSA
7680-bit RSA
15360-bit RSA
{160-223}-bit ECC
{224-255}-bit ECC
{256-383}-bit ECC
{384-511}-bit ECC

[{512-}-bit ECC

[Hash functions

SHA-1
SHA-224
SHA-256,
SHA-384
SHA-512

bit security
80
112
128
192
256

bit security

80
112
128
192
256
80
112
128
192
256
80
112
128
192
256

bit security

80
112
128
192
256

Expected Security lifetime
through 2010
through 2030
beyond 2030
beyond 2030
beyond 2030

Expected Security lifetime

through 2010
through 2030
beyond 2030
beyond 2030
beyond 2030
through 2010
through 2030
beyond 2030
beyond 2030
beyond 2030
through 2010
through 2030
beyond 2030
beyond 2030
beyond 2030

Expected Security lifetime

through 2010
through 2030
beyond 2030
beyond 2030
beyond 2030

2.8 Potential Cryptographic Applications

During the last few years we have seen formidable advances in digital and
mobile communication technologies such as cordless and cellular telephones,
personal communication systems, Internet connection expansion, etc. The vast
majority of digital information used in all these applications is stored and also
processed within a computer system, and then transferred between computers
via fiber optic, satellite systems, and/or Internet. In all those new scenarios,
secure information transmission and storage has a paramount importance in
the international information infrastructure, especially, for supporting elec­
tronic commerce and other security related services.

Under such a dynamic scenario, some of the most popular applications in
the domain of information security include.

28 2.A Brief Introduction to Modern Cryptography

• Secure e-mail
• World Wide Web
• Client-Server transactions
• Virtual Private Networks
• E-cash
• Electronic Financial transactions
• Grid Computing

Many multinational firms now sell security products using cryptographic
algorithms. Those products are in use by military or government organizations
and they play a vital role in secure communications between individuals, small
and large business groups.

Various international organizations have been working in developing stan­
dards for determining security and speed of products such as cellular phones,
video conferencing equipment, secure telephone, etc. Examples include stan­
dards for video conferencing: H310, H323, H324 by ITU [154], for mobile
communications: GSM by ETSI [87], for wireless LANs: 802.11a, 802.11b by
IEEE LAN/MAN Committee [144], etc.

Numerous useful activities for increasing the security of cryptographic
algorithms have happened in the few last years. The selection of the new
Advance Encryption Standard (AES) 'Rijndael' and the inclusion of Elliptic
curve cryptography (ECC) in international standards provide such examples.

Promising applications for cryptographic algorithms may be classified into
two categories [250].

1. Processing of large amount of data at real time potentially in a high
speed network. Examples include telephone conversation, telemetry data,
video conferencing, streaming audio or encoded video transmissions and
so forth.

2. Processing of very small amount of data at real time in a moder­
ately high-speed network transmitted unpredictably. Examples include e-
commerce or m-commerce transactions, credit card number transmission,
order placement with signature, bank account information extraction, e-
payments, and micro-browser-based (WAP-style) HTML page browsing
and so forth.

A short list of the candidate applications corresponding to category 1 are
presented in Table 2.2. Those applications belong to the "highly efficient"
category of appfications, thus requiring high data rates.

Table 2.2 presents both the downstream and upstream data transfer ranges
on VDSL (Very high speed Digital Subscriber Line) [88, 252]. The downstream
defines transmission of line terminal toward network terminal (from customer
to network premise) and upstream in the reverse direction, that is, from net­
work terminal to line terminal (from network to customer premise).

Table 2.2 can help to mark a line between high speed (highly efficient)
and low speed (slow or relatively less speed) applications. The data rates for

2.9 Fundamental Operations for Cryptographic Algorithms 29

Table 2.2. A Few Potential Cryptographic Applications

Application

Distance learning
Telecommuting
Multiple digital TV
Internet Access
Web hosting
Video conferencing
Video on demand
Interactive video
Telemedicine
High-definition TV

Upstream

384Kbps-l.5Mbps
1.5Mbps-3.0Mbps
6.0Mbps-24.0Mbps
400Kbps-1.4Mbps
400Kbps-1.5Mbps
384Kbps-1.5Mbps
6.0Mbps-18Mbps
1.5Mbps-6.0Mbps
6.0Mbps
16Mbps

Downstream

384Kbps-l.5Mbps
1.5Mbps-3Mbps
64Kbps-640Kbps
128Kbps-640Kbps
400Kbps-1.5Mbps
384Kbps-l.5Mbps
64Kbps-128Kbps
128Kbps-1.5Mbps
384Kbps-1.5Mbps
64Kbps

highly efficient applications ranges from 384Kbps to 24Mbits for upstream
and 64Kbps to 3Mbps for the downstream traffic. Prom Table 2.2, the appli­
cations requiring a speed factor of less than 400Kbps can be grouped as low
speed apphcations. Those applications require either stand-alone software im­
plementations of cryptographic algorithms or the usage of software methods
on embedded processors. High speed or highly efficient applications therefore
reside in the range from 400Kbps onward.

Software methods on general-purpose processors cannot achieve such a
high frequency gains for cryptographic algorithms. On the other hand, high
speeds above 400Kbps can easily be achieved on both hardware platforms,
the traditional (ASICs) and the reconfigurable hardware FPGA devices.

2.9 Fundamental Operations for Cryptographic
Algorithms

Symmetric or secret key cryptographic algorithms are based on well-understood
mathematical and cryptographic principles. The most common primitives en­
countered in various cryptographic algorithms are permutation, substitution,
rotation, bit-wise XOR, circular shift, etc. This is one of the reasons for their
fast encryption speed. On the other hand, asymmetric or pubUc key crypto­
graphic algorithms are based on mathematical problems difficult to solve. The
most common primitives in various such types of algorithms include modular
addition/subtraction, modular multiplication, variable length rotations, etc.
Those primitives give algorithmic strength but they are hard to implement:
occupy more space and consume more time.

Therefore those algorithms are not used for encrypting large data files,
but rather, they are applied to other important cryptographic applications
like key exchange, signature, verification, etc.

30 2.A Brief Introduction to Modern Cryptography

A detail survey conducted in [44], identifies the basic operations involved
in several cryptographic algorithms. That survey has been slightly updated
as shown in Table 2.3.

Table 2.3. Primitives of Cryptographic Algorithms (Symmetric Ciphers)

Modular addition or
subtraction

Bitwise XOR

Bitwise AND/OR
Variable-length rotations
Fixed-length rotations

Modular multiplication
Substitution

Permutation
Non-circular shifts

Blowfish, CAST, FEAL,GOST, IDEA, WAKE
RC5, RC6, TEA, SAFER K-64, Twofish, RC4
SEAL, TWOPRIME
Blowfish, CAST, DEAL, TWOPRIME, FEAL, A5
IDEA, COST, RC4, RC5, SAFER, SEAL, Twofish
DES, WAKE, LOKI97, L0KI91, Rijndael, MISTY
TEA, MMB, RC6, K-64
MISTY
CAST, Madryga, RC5, RC6
DEAL, DES, CAST, FEAL, COST, Serpent, RC6
Twofish
CAST, IDEA, RC6, MMB, Rijndael,
Blowfish, DEAL, DES, L0KI91, LOKI97, Twofish
Rijndael
DEAL, DES, ICE, L0KI91, LOKI97
Serpent, TEA

Prom Table 2.3, it is clear that most cryptographic algorithms include bit­
wise operations such as XOR, AND/OR, etc. Those operations can be nicely
implemented on hardware platforms. Long word length is another peculiarity
of cryptographic algorithms, which is recommended by various international
standards in order to attain sufficient security against brute force attacks.

The long key/word length of cryptographic algorithms is an obstacle for
parallel dataflow on 8, 16, 32-bit general-purpose processors resulting on
high time delays for the execution of crypto algorithms. This is not the case
for hardware implementations. For example, in FPGAs, more than 1000 in­
put/output pins are available for their use as either input or output buflFers
allowing high parallefism of data [392, 394].

In order to confuse the relationship between input and output, crypto­
graphic algorithms perform a number of iterations on the same input data
block for one encryption. DES performs 16 iterations or rounds and AES sup­
port 10, 12, and 14 rounds depending on the word length. In software, all
iterations are performed sequentially while in hardware, all rounds can be
implemented in parallel, thus ensuing significant improvements in timings.

2.10 Design Alternatives for Implementing Cryptographic Algorithms 31

2.10 Design Alternatives for Implementing
Cryptographic Algorithms

The implementation approaches for cryptographic algorithms are based on
the question: what needs to be secured?

High-speed network where large amount of data traffic must be processed
in unpredictable and in real time are not supposed to be a good candidate
for software implementations as data is coming at significant high speeds and
must be treated in real time. Examples of such situation include telephone
conversation, video conferencing, and so forth.

Hardware solutions on VLSI can accommodate high data rates but they
take long development cycle for the application. Any change or modification
in the design is a difficult or even impossible task.

A hardware solution that overcomes the difficulties of VLSI designs, while
still allowing high dataflow, is reconfigurable hardware platforms. Indeed, Re-
configurable hardware devices such as FPGAs (Field Programmable Gate
Arrays) provide fast solutions in short time with a high degree of flexibility.

Table 2.4 presents a quick comparison of reconfigurable logic against soft­
ware and VLSI based solutions.

Table 2.4. Comparison between Software, VLSI, and FPGA Platforms

Size
Cost
Speed
Memory
Flexibility
Time-to-market
Power consumption
Testing/Verification
Run-time configuration

1 Software

|small (depends)
|low
|low
|fine
1 highly flexible
1 short
[depends
|easy
|none

VLSI

big
high cost
Very high
fine
no flexibility
very high
low
difficult
none

FPGAs

small
low cost
high
fine
highly flexible
short
high
easy
yes

Software implementations are low cost, easy to debug, take short time
cycle but are slow. VLSI implementations are very fast but their application
development cycle is too large and also they are not flexible. Reconfigurable
devices are fast, highly flexible, easy to debug and take small developing cycle
offering cost effective solutions.

In summary, using reconfigurable hardware for cryptographic algorithms
is beneficial in several ways:

• Most cryptographic algorithms, especially symmetric ciphers, contain bit­
wise logic operations whose implementation fits very well on the FPGA
CLB structure.

32 2.A Brief Introduction to Modern Cryptography

• In Section 2.9, it was mentioned the iterative nature of most cryptographic
algorithms. An iterative looping design (IL) implements only one round.
Hence, n iterations of the algorithm are carried out by feeding back pre­
vious round results. For a high speed network, instead of implementing
one round, n rounds of the algorithm can be replicated and registers are
provided between the rounds to control the flow of data. Reconfigurable
FPGA logic results useful for both design strategies due to its high speed
and high-density features.

• Substitution is the fundamental operation in most block ciphers like DBS
or Rijndael which implies the usage of lot of memory resources. The usage
of pipeline design strategies, tend to provoke significant memory require­
ments. Fortunately modern FPGA families like Xilinx Virtex series device
are equipped with more than 280 built-in memory blocks 4K each, called
BlockRAMs (BRAM).

• At the same time, in several contexts, designers may use reconfigurable
FPGA logic to implement in the same hardware both the public key al­
gorithm for the generation and secure exchange of key and the private
key algorithm traditionally used in the bulk encryption of the underlying
traffic.

• The usage of different cryptographic algorithms for various applications
faces several compatibility issues. A dynamic configuration for any cryp­
tographic algorithm on FPGA might be a good compromise solution to
this problem.

• FPGA devices are ideal for debugging and fast prototyping, especially if
the synthesized hardware description can be mapped by the design team
from FPGA domain to ASIC.

• The flexibihty for integration into larger platform together with straight­
forward architecture modifications are significant pluses for FPGA plat­
form implementations.

2.11 Conclusions

In this Chapter we gave a short introduction to the algorithms and security
services corresponding to layers 2-4 of Fig. 2.1. This way, basic concepts of
cryptography along with a description of the main building blocks necessary
for constructing security applications was given. We described the basic op­
eration of symmetric block ciphers, hash functions, three major public key
cryptosystems and the celebrated Diffie-Hellman key-exchange protocol. We
also gave some comments on the security provided by the main cryptographic
schemes and their equivalent security strength. Furthermore, alternatives for
the implementation of cryptographic algorithms on various software and hard­
ware platforms were also analyzed and discussed.

As a conclusion, we believe that Reconfigurable logic offers numerous use­
ful advantages, however its usage in inexpensive consumer-oriented devices

2.11 Conclusions 33

such as electronic gadgets, wireless PDAs and handsets seems to be impossi­
ble at present time.

On the contrary, FPGA devices can be contemplated on embedded sys­
tems, large wireless equipments, electronic transmitters and receivers, re­
peaters, spectrum scanning devices, and intelligent equipment.

Reconfigurable Hardware Technology

An FPGA is an integrated circuit that belongs to a family of programmable
devices called Programmable Logic Devices (PLDs). An FPGA contains
tenths of thousands of building blocks, known as Configuration Logic Blocks
(CLB) connected through programmable interconnections. Those CLBs can
be reconfigured by the designers themselves resulting in a functionally new
digital circuit, this way, virtually any kind of digital circuit can be imple­
mented using FPGAs [11, 272, 304, 244].

At first, FPGA devices were mainly applied for logic design, and as a
consequence of that, numerous tools were designed for synthesizing logic de­
signs on them. Among those tools, Hardware Description Languages (HDL)
and schematic diagram editors have been traditionally used as a starting point
for such a synthesis process. Among the many hardware description languages
available today, Verilog, and especially, VHDL, are the two most widely spread
hardware languages.

In recent years, FPGAs have been used for reconfigurable computing when
the main goal is to obtain high performance at a reasonable cost out of hard­
ware implemented algorithms. The main advantage of FPGAs is their recon-
figurability, i.e., they can be used for different purposes at different stages of a
computation and they can be, at least partially, reprogrammed on run-time.
The two most popular FPGA manufacturers are Xilinx [396] and Altera [4].
Those two makers have over 70% of the FPGA market share.

Besides Cryptography, applications of FPGAs can be found in the domains
of evolvable and biologically-inspired hardware, network processors, real-time
systems, rapid ASIC prototyping, digital signal processing, interactive multi­
media, machine vision, computer graphics, robotics, embedded applications,
and so forth. In general, FPGAs tend to be an excellent choice when deal­
ing with algorithms that can benefit from the high parallelism offered by the
FPGA fine-grained architecture.

36 3. Reconfigurable Hardware Technology

In this chapter we present the generahties of FPGA technology. We stress
that the material of this Chapter is mainly intended for those readers non-
familiar with this technology.

We begin in Section 3.1 by reviewing some historical milestones of FPGA
development and then we review in Section 3.2 the two most currently used
FPGA technologies, namely, Xilinx and Altera. Then we compare in Sec­
tion 3.3 the performance of FPGA realizations against the ones on ASICs and
general-purpose processor platforms. We continue in Section 3.4 by briefly
introducing the reconfigurable computing paradigm main concepts. In Sec­
tion 3.5 we review several key strategies to achieve good designs for crypto­
graphic applications. Then, we define in Section 3.6 several metrics and figures
of merit needed to evaluate design performance for reconfigurable computing
as well as several security concerns related to FPGA technology. In Section 3.7
we give a brief overview of some of the security concerns and attacks on FPGA
technology. Finally, in Section 3.8 concluding remarks are given.

More experimented readers might be interested in reviewing more ad­
vanced material. For them, we recommend excellent sources such as the ones
found in [124, 365, 217, 199, 192]. Those readers having more technology ori­
ented interests may profit from consulting [259, 244] as well.

3.1 Antecedents

The concept of reconfigurable computing was first introduced by G. Estrin in
1960 [101]. His invention consisted of a hybrid machine composed by a general
purpose microprocessor interconnected with programmable logic devices. The
programmable logic could be configured for accomplishing a specific function
with the characteristic efficiency of hardware designs. Once the function was
completed, another task could be performed by manually reconfiguring the
hardware. This resulted in a hybrid computer structure combining the best
features of software (flexibility) and hardware (speed) platforms. It is nothing
but remarkable how Estrin's concept come close to what is oflFered by nowadays
modern reconfigurable devices [217].

In the mid 1970s, Programmable Logic Devices (PLDs) were introduced by
companies such as IBM, Monohthic Memories, Inc (MMI) and AMD. The first
PLDs were called PAL (Programmable Array Logic) or PLA (Programmable
Logic Array) depending on the programming scheme utilized [272]. Earlier
PLDs consisted of logic gate arrays with no clocked memory components.
However, registered PLDs including one flip-flop at each output of the circuit,
were soon available. Register PLDs allowed for the first time the design of
simple reprogrammable sequential circuits.

An innovation of PAL devices was the Generic Array Logic (GAL) device,
which had the same logical properties as the PAL but the functionahty could
be erased and reprogrammed. From the point of view of today's standards.

3.1 Antecedents 37

PALs and GALs devices are small devices having an equivalent computational
power of just some few hundred logic gates.

As a consequence of Moore's law, the semiconductor technology has expe­
rienced an unrelenting improvement over the last three decades. That allowed
the integration in the mid 1980s of several either GAL or PAL devices on the
same chip, thus given birth to the CPLD (Complex PLD) devices. CPLDs
can emulate the computational power of hundreds of thousands of logic gates
and they are still very popular due to their outstanding cost-benefit compro­
mise (some CPLD devices can be bought for less than a dollar). A typical
modern CPLD device has a structure consisting of several GAL blocks whose
outputs are connected to a switch matrix used for programming the intercon­
nections as well as the Input/Output pins. Each GAL block consists of one
or more programmable sum-of-products logic arrays ended with a relatively
small number of registers. CPLDs are usually programmed via a serial data
port that can be connected to a personal computer. Internally, the CPLD con­
tains a decoding module that interprets the data stream in order to perform a
specific logic function. The preferred standard for this programming method is
the IEEE 1149.1 standard usually known as Joint Test Action Group (JTAG)
interface [272]. As of 2006, most CPLDs are non-volatile electrically-erasable
programmable devices.

Field Programmable Gate Array (FPGA) devices were introduced by Xil-
inx in the mid 1980s. Roughly speaking, FPGA devices are built using a
grid of logic gates. They differ from CPLDs in several key aspects. FPGA
architectures consists of a matrix of Configurable Logic Blocks (CLBs) inter­
connected by an intricate array of switch matrices. This architecture provides
great flexibihty to hardware designers but it also implies much more sophis­
ticated routing technologies [123]. The fact that most modern FPGAs have
higher-level embedded modules such as built-in multipliers, distributed RAM
blocks and so on is another important difference with CPLD devices. More­
over, in contrast to CPLD devices, most modern FPGAs support (at least
partially) in-system reconfiguration, thus allowing designs to be changed dy­
namically "on run-time". This feature can be particularly useful for system
updates.

Significant technical advances have led to architectures that combine
FPGA's logic blocks and interconnect matrices, with one or more micropro­
cessors and memory blocks integrated on a single chip. This hybrid technology
is called Configurable System-on-Chip (CSoC). Examples of the CSoC tech­
nology are the Xihnx Virtex-II PRO, and the Virtex-4 and Virtex-5 FPGA
families, which include one or more hard-core PowerPC processors embedded
along with the FPGA's logic fabric [398, 396, 397].

Alternatively, soft processor cores that are implemented using part of the
FPGA logic fabric are also available. This approach is more flexible and less
costly than the CSoC technology [217]. Many soft processor cores are now
available in commercial products. Some of the most notorious examples are:
Xihnx 32-bit MicroBlaze and PicoBlaze, and the Altera Nios and the 32-bit

38 3. Reconfigurable Hardware Technology

Nios II processor [394, 5]. These soft processor cores are configurable in the
sense that the designer can introduce new custom instructions or processor
data paths. Furthermore, unlike the hard-core processors included in the CSoC
technology, designers can add as many soft processor cores as they may need
(some designs could include 64 such processors or even more [130, 217]).

Programmable
Logic Devices

(PLDs)

GALs

CPLDs

F-PGAs

CSoC f

Fig. 3.1. A Taxonomy of Programmable Logic Devices

Fig. 3.1 shows the taxonomy of the programmable logic devices just dis­
cussed. In the next Section, more specific details of the FPGA device internal
architecture are given.

3.2 Field Programmable Gate Arrays

In a very rough way, an FPGA can be seen as a matrix of Configurable Logic
Blocks (CLBs), where not only the logic but also the connection is user pro­
grammable. The specific design of the CLE blocks varies from manufacturer
to manufacturer and even, from device to device. A CLE can be a^ simple as
just one four-input Look Up table (LUT) or as complex as a 4-input Arith­
metic Logic Unit (ALU), or a 6-input Look Up Table [398]. It is customary
to define the granularity of the reconfigurable logic as the size of the smallest
functional unit that can be addressed by the programming tools.

Architectures having finer granularity tend to be more useful for data ma­
nipulation at bit level and, in general, for combinatorial circuits. On the other
hand, blocks with a coarse grain granularity are better suited for higher levels
of data manipulation, for example, for developing circuits at register-transfer
level. The level of granularity has a great impact in the device configuration
time. Indeed, a device with low granularity (also known as fine-grained de­
vices) requires many configuration points producing a bigger vector data for
reconfiguration. That extra routing has an unavoidable cost on power and
area.

On the other hand, a coarse grained architecture tends to decrease its per­
formance when dealing with computations smaller than what its granularity

3.2 Field Programmable Gate Arrays 39

is. For example, if for a specific application, bit-level operations are required
and the smallest functional unit is four-bit wide, then a waste of three bits
would occur.

FPGA interconnection has a major role in the performance of an FPGA
device due to the need of fast and efficient communication highways among
the different logic blocks which are organized by rows and columns. Xilinx
devices^ are equipped with four kinds of interconnects: long lines, hex fines,
double fines and direct lines. Direct connect fines are intended for connecting
neighbor components (for example, carry circuitry). Hex and double lines are
medium length interconnects aimed for connecting many CLBs. Finally long
lines interconnects are implemented along the whole chip and are normally
utilized for global system signals.

In recent years, huge technological developments have had a great impact
on FPGA industry. The most advanced FPGA devices operate up to 550
MHz internal clock with a gate complexity of over 10 Milfion gates on a single
Virtex-5 FPGA chip using a technology of just 65 rjm operating at l.OV [395].
The improvements in technology are not only limited to an ever growing
internal number of logic gates but also to the addition of many functional
blocks like fast access memories, multipliers or even microprocessors integrated
within the same chip.

There are quite a few FPGA commercial manufacturers, and usually each
one of them has developed one or more device families. Table 3.1 shows some
of the most popular manufacturer families.

Table 3.1. FPGA Manufacturers and Their Devices

Manufacturer
Xilinx

Altera
Lattice
Actel

Quick Logic
Atmel

Achronix

F P G A Family
Virtex-5, Virtex-4,

VirtexII, Spartan HI
Stratix, Stratix II, Cyclone

LatticeXP
Fusion, MTFusion

Eclipse II
AT40KAL

Achronix-ULTRA

Feature
FPGA market leader

6577m technology
9077m technology

first non-volatile FPGA
first mixed-signal FPGA

programmable-only-once FPGA
fine-grained reconfigurable

1.6GHz - 2.2GHz speed

3.2.1 Case of Study I: Xilinx FPGAs

Table 3.2 shows the main features that are included in the Xifinx FPGA
families: Virtex-5, Virtex-4, Virtex II Pro and Spartan 3E. The architecture of
those Xilinx FPGA families consists of five fundamental functional elements.

^ At the time that this book was being written, Xilinx released the Virtex-5 family
which has a radically different CLB interconnection pattern [395].

40 3. Reconfigurable Hardware Technology

BRAM Blocks

embed ded
multipliers

I/O Blocks (10Bs)

M B B Programmable
l lHlBI interconnect

Configurable
Logic Blocks
(CLBs)

Digital Clock
Management (DCMs)

Fig. 3.2. Xilinx Virtex II Architecture

Table 3.2. Xihnx FPGA FamiUes Virtex-5, Virtex-4, Virtex II Pro and Spartan 3E

Feature/family

Logic Cells
BRAM

(ISKbits each)
Multipliers

DCM
lOBs

DSP Slices
PowerPC Blocks

Max. freq.
Technology

Price

Virtex-5

up to 330K
576

32 - 192'
up to 18

up to 1200
32-192
N/A

550MHz
l.OV, 65?7m

copper CMOS
N/A

Virtex-4

12K-200K
36-512

32-512
4-20

240-960
32-192

0-2
500MHz

1.2V, 90r)m,
triple-oxide process

From $345

Virtex II Pro

3K-99K
12-444

12-444
4-12

204-1164

—
0-2

547 MHz
1.5V, 130r7m,

9-layer CMOS
From $139

Spartan 3 & 3E |

1.7K-74K
4-104

4-104
2-18

63-633

-
-

up to 300MHz
1.2V, 90r/m,

triple-oxide process
From $2 up to $85

'25 X 18 embedded multipliers

• Configurable Logic Block (CLB) and Slice architecture;
• Input/Output Blocks (lOBs);
• Block RAM;
• Dedicated Multipliers and;
• Digital Clock Managers (DCMs).

Those components are physically organized in a regular array as shown in
Fig. 3.2. In the following we explain each one of those five elements^.

^ Virtex-5 devices can be considered second generation FPGA devices. In particu­
lar, a Virtex-5 slice contains four true 6-input Look Up Tables (LUTs).

3.2 Field Programmable Gate Arrays

SLICEM SLICEM

41

Swtdi
Matrix

COUT

A 1

^~—

SHIFT tN

\

/*—— Ŝ

SHIF

T

Silice
X0Y1

Silice
XOYC

i I
TOUT 1.

COUT

Silice
X1Y1

Silice
X1Y0

GIN

* -m\

Fig. 3.3. Xilinx CLB

Configuration Logic Blocks (CLBs)

The Configurable Logic Blocs (CLBs) are the most important and abundant
hardware resource of an FPGA. They are typically utilized for both, combi­
natorial and synchronous logic design. Each CLB is composed of four slices^ ̂
which are interconnected as shown in Fig. 3.3. The slices are grouped by pairs
and each pair is organized by a column with independent carry chain [395].

All four slices have the following common elements: two Look-Up Tables
(LUTs), two type D fiip-flops, multiplexers, logic circuits for carry handling
and arithmetic logic gates. Both, the left and right pair of shces utihze those
elements for providing logic functions, arithmetic and ROM. Besides that, the
left pair supports two additional functions: data storage using a distributed
RAM and 16-bit shift register functionahty. Fig.3.4 shows the internal struc­
ture of a CLB. The atomic building block of a Virtex CLB is the logic cell
(LC). An LC includes the Look-Up Table block, carry logic, and a storage
element (flip-flop) as shown in Figure 3.5.

As it was mentioned, a CLB can be configured to work into two modes:
logic) mode and memory mode. As shown in Fig. 3.6, in logic mode, each CLB
Look Up Table behaves as a combinational logic block and a one bit register.
In the case of Xihnx devices those Look Up Tables can be reprogrammed
to any arbitrary combinational logic function of four inputs/one output. In
memory mode. Look Up Table blocks behave as two small pieces of memory
blocks.

^ Slice is a term introduced by Xilinx. It specifies a basic processing unit in a Xilinx
FPGA.

42 3. Reconfigurable Hardware Technology

Fig. 3.4. Slice Structure

Logic Cell (LC)

B •
C •
D •

By Pass

Function
Generator

Carry Logic

i

Flip-Flop — ^ Y Q

Fig. 3.5. VirtexE Logic Cell (LC)

^

^

Combinational
Logic

Combinational
Logic

Kj
ind

1-bit
Reg

1-bit
Reg

16x1 RAM

16x1 RAM

1
[1 1-bit 1

1 Reg 1

1 T M 1
1 1 Reg 1

Fig. 3.6. CLB Configuration Modes

Input/Output Blocks

Input/output Blocks (lOB) provide a bidirectional programmable interface
between the outside world and the internal logic structure of the FPGA device.

3.2 Field Programmable Gate Arrays 43

There exist three types of routing possibilities for an lOB: output signal, input
signal and third state (high impedance) signal. Each one of those signals has
their own pair of storage elements that can behave as registers or as latches
[395].

Block R A M

Virtex devices include built-in 18K-bit RAM memory, called BRAM. BRAMs
can be configured in a synchronous manner. BRAMs are intended for storing
big amounts of data, while the distributed RAM is more useful for storing
small amounts of data.

BRAMs are polymorphic blocks in the sense that its width and depth
can be configured. Even multiple blocks can be connected in a back-to-back
configuration in order to create wider and/or deeper memory blocks. A BRAM
block supports several configuration modes, including single or double port
RAM and several possible combination of data/address sizes as is shown in
Table 3.3.

Table 3.3. Dual-Port BRAM Configurations

Configuration

16K X 1 bit
8K X 2 bit
4K X 4 bit
2K X 9 bit
IK X 18 bit
512 X 36 bit

Depth

16Kb
8Kb
4Kb
2Kb
1Kb
512

Data bits

1
2
4
8
16
32

Parity bits

0
0
0
1
2
4

18x18 Bit Multiplier

Xilinx FPGAs have several dedicated multiplier blocks. Those multipliers ac­
cept two 18-bit operands in two's complement form computing their product
also in two's complement form. Such multipliers blocks have been optimized
for performing at a high speed while their power consumption is kept low when
compared with multipliers directly implemented using the CLB resources. The
total number of multipliers varies from device to device as is shown in Table
3.2.

Digital Clock Managers

Digital Clock Managers (DCMs) provide a flexible control over clock fre­
quency, phase shift and skew. The three most important functions of DCMs
are: To mitigate clock skew due to different arrival times of the clock signal,

44 3. Reconfigurable Hardware Technology

to generate an ample range of clock frequencies derived from the master clock
signal and, to shift the signal of all its output clock signals with respect to
the input clock signal.

3.2.2 Case of Study II: Altera FPGAs

Altera offers a wide variety of programmable hardware devices which are
grouped into four categories [4].

• Complex Programmable Logic Devices(CPLDs)
• Low-Cost FPGAs
• High-density FPGAs
• Structured ASICs

CPLDs

Altera's CPLDs include MAX (EPM3032A, EPM3512A) and MAX-H (EPM
240/G, EPM 2210/G) family of devices. They are low complexity, low density
and easy to use CPLD family for which software tools can be downloaded
from Internet and they are free of cost.

Low-Cost FPGAs

Cyclone (EP1C3,EP1C20) and Cyclone-II (EP2C5, EP2C7) family of devices
are considered low cost FPGAs. Their main features include embedded DSP
blocks, on chip memory modules and support for embedded processor (NIGS).

High-Density FPGAs

The category of high density FPGAs from Altera comprises Stratix-II (EP2S15,
EP2S180), Stratix (EPISIO, EP1S80), Stratix^x-H (EP2SGX30C/D, EP2SG-
X130G) and Stratix^x (EPISGXIOC, EP1SGX40G) family of devices. Stratix
and Stratix-II families are general purpose FPGAs with fast performance,
large on-chip memory modules, and DSP blocks. StratixGx and StratixGx-H
families, in addition, include integrated transceivers.

Structured ASICs

Structured ASICs comprise Hardcopy (HC1S25, HC240) and Hardcopy-II
(HC210W, HC240) solutions. They have similar design flow as that of Stratix
and Stratix-II respectively. They are low cost structured ASIC solutions with
sufficient number of gates supported by all major EDA vendors.

To provide an idea of what kinds of resources are present in Altera FPGA
devices, let us discuss the structure of the Stratix family of devices. Detailed

3.2 Field Programmable Gate Arrays 45

data sheets of Stratix £ts well as all other Altera devices can be consulted
in [4, 207, 208]. The quantitative information presented in this subsection
has been extracted from [4]. Table 3.4 provides a quantitative measure of
Stratix major resources, while Fig. 3.7 shows the physical distribution of those
resources.

Feature

Logic
Elements
M512 RAM
Blocks
M4K RAM
Blocks
M-RAM
Blocks
Total
RAM bits
DSP Blocks
Embedded

1 Multipliers
PLLs

1 Maximum
| l / 0 Pins

Table 3.4 . Altera Stratix Devices

Device \
EPISIO
10,570

94

60

1

0.9205M

6
48

6
426

EP1S20
18,460

194

82

2

1.669M

10
80

6
586

EP1S25
25,660

224

138

2

1.945M

10
80

6
706

EP1S30
32,470

295

171

4

3.317M

12
96

10
726

EP1S40
41,250

384

183

4

3.423M

14
112

12
822

EP1S60
57,120

574

292

6

5.215M

18
144

12
1022

EP1S80
79,040

767

364

9

7.427M

22
176

12
1203

Logic Array
Blocks

Phasa-Lock«d ji
Loops X—

•

M512 RAM '
Blocks

DSP Blocks

Fig. 3.7. Stratix Block Diagram

As shown in Fig. 3.7, the main building blocks in Stratix devices are the
following:

• Logic Array Blocks (LABs)

46 3. Reconfigurable Hardware Technology

• Memory Blocks
• Digital Signal Processing (DSP) Blocks
• Input/Output Elements (lOEs)
• Interconnects

Logic Array Blocks (LABs)

LABs are arranged in rows and columns across the device. Each LAB consists
of 10 Logic Elements (LE). An LE is the smallest unit in Stratix architecture.
It contains four input LUT, carry chain with carry select capabihty and a
programmable register as shown in Fig. 3.8. The LUT serves as a function
generator which can be programmed to any function with four variables. By
using LAB-wide control signal, a dynamic addition or subtraction mode can
also be selected. It is to be noted that number of resources are not fixed for
an LAB in all kind of Altera devices. As an example, a LAB in Stratix-II
architecture comprises 8 Adoptive Logic Modules (ALM) where each ALM
contains a variety of LUT-based resources.

Carry jn 0

Register chain routing

from previous LE

LAB Carry-in

Carry jn 1

62
d3 lb

^ Look-Up
^ Table

(LUT)

Carry
Chain

syn. load
LAB-wide_
syn. clear

LAB-wide aload'

LAB-wide enable —'
- Carry_out 0 LAB-wide elk

'ZL
Programmable

Flip Flop

—J
LAB-wide aclr

routing to next
LE

Row.Col,
and direct link

routing

Row.Col,
and direct link

routing

Local routing

Register chain
output

Fig. 3.8. Stratix LE

The Stratix LE can be configured into two modes:

• Normal mode
• Dynamic arithmetic mode

In normal mode, a four input LUT can be used to implement any function.
The normal mode is therefore useful for implementing combinational logic and
general logic functions. In dynamic arithmetic mode, an LE utihzes four 2-
input LUTs which can be mapped to a dynamic adder/subtractor. First two
LUTs perform two summations with possible carry-in and the other two LUTs
compute carry outputs to drive two chains of the carry select circuitry. The

3.2 Field Programmable Gate Arrays 47

arithmetic mode is therefore useful for wide range of applications like adders,
accumulators, wide parity functions, etc.

Memory Blocks

Three types of memory blocks are present in Stratix devices as shown in
Fig. 3.7. Those are referred to as M512 RAM, M4K RAM and M-RAM
(MegaRAM) blocks. M512 RAM is a simple dual port memory with sizes
of 512 bits plus parity (576 bits). It can be configured as a maximum 18-bit
wide single or dual port memory at up to 318 MHz. M4K is a true dual port
memory with 4K bits plus parity. It can be configured as a maximum 36-bit
wide dedicated dual port, simple dual or single port memory at 291 MHz.
Several M-RAM blocks can also be located individually in logic arrays across
the device. It is a true dual port memory with 512K bits plus parity (589,824
bits). A single M-RAM can be configured as a maximum 144-bit wide dedi­
cated dual port, simple dual or single port memory which can operate at 269
MHz.

DSP Blocks

Those are dedicated Stratix resources which are vertically arranged into two
columns in each device. DSP blocks can be configured into either eight 9 x 9 -
bit multiplier, four 18 x 18-bit multiplier or one full 36 x 36 multipher. In
addition, DSP blocks also contain 18 x 18-bit shift registers, Finite Impulse
Response (FIR) and Infinite Impulse Response (HR) filters.

Input/Output Elements (lOEs)

Large number of lOEs can be located at the end of LAB row or column
around the periphery of a Stratix device as shown in Fig. 3.7. Each I/O
element comprises a bi-directional I/O buff"er and six registers for buff'ering
input, output and output-enable signals. Each Stratix I/O pin is fed by an
I/O element and support several single-ended and differential I /O standards.

Interconnects

All LEs within the same LAB, or all LABs within the same device or Memory
blocks or DSP blocks can be interconnected. A single LE can drive 30 other
LEs through locally available fast and direct link interconnects. A direct link
is also used by adjacent LABs, memory and DSP block to drive LABs local
interconnects. The availability of direct hnks helps in reducing row and column
interconnects resulting on higher performance and flexibility.

3. Reconfigurable Hardware Technology

Table 3.5. Comparing Cryptographic Algorithm Realizations on different Platforms

Algorithm FPGA
Throughput | year

ASIC
Throughput I year

/^Processor
Throughput year

MD5 5.86 Gbps [156] 2005 2.09 Gbps [312] 2005 1.27Gbps (est)* [31] 1996
SHA-1 0.9 Gbps 67] 2002 2.006 Gbps [312] 2005 0.678Gbps (est)* [31] 1996
DBS 21.3 Gbps 301] 2003 lOGbps [381] 1999 0.127Gbps [22] 1997
AES 25.1Gbps 113] 2005 7.5Gbps [303] 2001 0.8Gbps[109] 2004

1024-bit RSA 6.1 mS 6] 2005 1.47mS [210] 2005 22.1mS [294] 2004
ECC (binary) 17.64/iS [54] 2006 190/^8 [313] 2003 475/zS [133]

20011 190MS[313] | 2 0 0 3 | 325/XS [133]"

from the clock cycle count given in [31]

2004
ECC (prime) 3600AiS [262] 2004
* Estimated for a 2GHz Pentium IV

3.3 FPGA Platforms versus ASIC and General-Purpose
Processor Platforms

Table 3.5 presents a quick performance comparison of several relevant crypto­
graphic algorithms implemented in three different platforms: Reconfigurable
hardware devices, ASIC and general purpose processors. We included imple­
mentat ions for hash functions (MD5 and SHA-1), block ciphers (DES and
AES) and pubHc key cryptography (RSA and ECC) . All those algorithms will
be studied in the next Chapters .

Referring to Table 3.5, it is noticed t ha t software implementat ions are al­
ways slower t han either, ASIC or F P G A implementat ions. The performance
gap of software implementat ions is more noticeable for block ciphers and for
the binary elliptic curve cryptosystem. On the contrary, the best reported
prime elliptic curve cryptosystem is faster than the fastest F P G A design re­
por ted in [262].

We stress t h a t the information included in Table 3.5 is intended for a first
order comparison. As it has been already mentioned, it is extremely difficult
to make fair performance comparisons among designs implemented in differ­
ent platforms using the different technologies available at the t ime of their
publications. In the rest of this Section we give some more insights about the
advantages/disadvantages of implementing a design on reconfigurable hard­
ware compared with other platform options.

3 .3 .1 F P G A s v e r s u s A S I C s

Traditionally, in the design of embedded systems, the Apphcation-Specific In­
tegrated Circuit (ASIC) technology has played a major role for providing high
performance a n d / o r low cost building blocks necessary for the vast majori ty
of systems during the (usually) large and sinuous design cycle. In 1980 the
usage of reprogrammable components was introduced, and short after t ha t
the first F P G A device was developed by Xilinx. F P G A devices offer shorter

3.3 FPGA Platforms versus ASIC and General-Purpose Processor Platforms 49

design cycle because of its ability of providing fast and accurate functionality
testing.

However, the relatively high size and power consumption shown by FPGA
devices has been the most important drawback of that technology towards an
eventual substitution of the virtually ubiquitous ASIC technology. Therefore,
historically FPGAs have been utilized primarily for prototyping development.

In recent years, however, FPGA manufacturers have significantly reduced
the gap that still exist between FPGA and ASIC technology, paving the
way for the utilization of FPGA not only as prototype tools but also as
key components of embedded systems or even, becoming the system itself
[364, 149, 331, 199].

However, the exact size of the performance gap between FPGAs and ASICs
is currently subject of intense analysis and debate. Recently, several experi­
mental results reported in [192], seems to suggest that for circuits designed
utihzing the FPGA fabric only (i.e., LUTs and flip flops), an FPGA design is
on average 40 times larger, consumes 12 times more dynamic power and it is
3.2 times slower than a standard ASIC implementation. On the other hand, in
[364] it was developed a low-power FPGA core which was specially tailored for
battery-powered applications such as those found in the automotive industry.
The experimental results show that this solution is competitive with similar
ASIC solutions.

Undoubtedly, new technological challenges must be faced for both, FPGA
and ASIC platforms when the 45 rjm and 32 r]m technologies come to place.
Under this scenario, it is not certain how FPGA new architectures will deal
with the power consumption issue. It might be the case that manufacturers
would need to trade device performance for a more flexible/predictable device
power-consumption [141].

3.3.2 F P G A s versus General-Purpose Processors

The speedup that one can expect by implementing an algorithm on an FPGA
device rather than using a general purpose processor (i.e. the traditional CPU)
has been well documented in the Hterature [365, 124]. In [124], speedups of
one to two orders of magnitude were measured when executing benchmarks
applications in the domains of video and image processing. Roughly speaking,
the same range of speedups has been confirmed in cryptographic algorithms.

From the quahtative point of view, it is interesting to study the main
factors that produce this phenomenon. On the one hand, the typical maximum
clock frequency achieved by FPGA designs fall in the range of 20MHz to
lOOMHz, while embedded microprocessors have frequencies ranging from 300
to 600 MHz and high-end workstation-class processors have frequencies of up
to 3.2GHz. Hence, the clock frequency of general-purpose processors is 10-100
times faster than the typical clock frequency found in FPGA designs. On the
other hand, there are two factors that help to compensate and even overcome
that component, namely,

50 3. Reconfigurable Hardware Technology

1. FPGA Iteration-lev el parallelism^ obtained by, among others, loop-unroUing,
pipeline and sub-pipeline techniques, and;

2. FPGA Instruction efficiency, obtained by carefully designed datapaths,
the insertion of distributed memory blocks as needed and, taking advan­
tage of the FPGA low granularity, the elimination of several instructions.

Those two factors combine together for obtaining a notable reduction in
the total number of clock cycles required by an FPGA implementation. That
reduction impHes that CPU implementations may require up to 2500 times
more clock cycles than that of FPGA implementations [124]. In other words,
even though CPU platforms enjoy a much higher operating clock frequency,
this factor is not enough for compensating the enormous clock cycle reduction
that can potentially be obtained in FPGA platforms.

In the context of Moore's Law, an examination of peak floating-point per­
formance trends for FPGA and CPU platforms is presented in [365]. The
author concludes that although CPUs' performance obeys Moore's law (i.e.,
it doubles every 18 months), FPGA performance is growing at a rate of four
times every two years. For applications using the FPGA new functionality
(embedded multipliers, RAM blocks, etc.) the performance increase rate may
be as high as five times every two years.

3.4 Reconfigurable Computing Paradigm

Reconfigurable computing may be defined as computer processing with highly
flexible computing fabric. The main idea of reconfigurable computing is to
take advantage of the best of two scenarios: flexibility from general purpose
computing and speed from reconfigurable logic.

Some of the reconfigurable computing distinguished features when com­
pared to general purpose microprocessors are [123]:

• Due to the inherent fine-grained granularity the parallelism tends to be
very high.

• Registers, latches and even distributed RAM blocks can be created and
distributed wherever needed by the data path. This characteristic has a
tremendous impact on the device performance because reduces unneces­
sary re-computations and/or memory accesses.

• The amorphous nature (lack of a fixed architecture) of reconfigurable com­
puting devices, allows the designers to tailor design's data path and control
flow arbitrarily.

FPGAs can be properly used for rapid prototyping algorithms at hard­
ware level. Considering the restrictions of FPGA devices, desirable FPGA
appHcations should belong to one or more of the categories fisted below.

1. Applications that employ only integer arithmetic or at most low precision
fixed point arithmetic.

3.4 Reconfigurable Computing Paradigm 51

2. Applications that rely on logical operations to make decisions. Compara­
tors, selectors and multiplexers are good examples of that.

3. Applications amenable for being decomposed in independent and pipelined

4. Applications that show regularity in the way they apply a processing.
5. Applications with locality in the interconnection network they require.

That means that the apphcation modules should only have interconnec­
tions with their neighbors.

Considering FPGA capabilities and limitations some potential applications
for FPGAs are:

1. Image processing algorithms such as point type operations (grey scale
transformation, histogram equalization, requantization, etc.) and filtering
(template matching, window techniques, convolution/correlation, median
filtering, etc.) seem to be good candidates for FPGA implementation.

2. Dynamic programming algorithms requiring only integer arithmetic. Dy­
namic programming is in essence a bottom up procedure in which solutions
to all subproblems are first calculated and then these results are used to
solve the whole problem. A good example of this approach is the Floyd's
shortest path algorithm.

3. Relaxation techniques requiring fixed point arithmetic. The relaxation
technique is an iterative approach useful to many problems, which updates
in parallel at each point and in each iteration based on the data available
in the most recent updating or in the immediate preceding iteration.

4. Associative retrieval operations. Filling and retrieving data by associa­
tion appears to be a powerful solution to many high volume information
processing elements. An associative processing system is very adequate at
recognition and recall from partial information and has remarkable error
correcting capabilities. The major advantage of associative memory over
RAM is its capability of performing parallel search and parallel compar­
ison operations. Th6?e are many examples of that kind of applications:
pattern matching, artificial inteUigence, computer vision, data encoding,
compression, and every application maintaining a dictionary data struc­
ture.

5. Highly regular and iterative applications with non-standard word lengths.
Cryptography is a meaningful example of this kind of applications since it
applies basic transformations mostly based on bit-level operations. Those
basic operations are performed in long wordlengths starting from 128 bits
to up 4096 bits or even in wordlengths non-standard, such as 163 and
233 bits (in the case of public-key cryptography). The basic transforma­
tions are repeated iteratively a number of times to process information in
stages. In the following chapters we will explain how to take advantage of
cryptographic algorithm features for reconfigurable computing.

52 3. Reconfigurable Hardware Technology

3.4.1 F P G A Programming

The design cycle for programming FPGAs starts with a behavioral descrip­
tion of the design, using either hardware description languages (HDLs) such
as VHDL or Verilog or a schematic design entry. Thereafter, the HDL code
is compiled in order to produce a netlist which represents the mapping of the
HDL code to the actual target device hardware resources. After the first com­
piling step, the netlist is reprocessed in order to perform the place-and-route
process whose main goal is to establish how the different design's modules
are going to be physically allocated and connected. This will create a binary
file which is used for programming or reprogramming the FPGA device. Most
designs included in this book have been compiled using the Xilinx Integrated
Software Environment (ISE) version 8.1i software [393].

Hardware Description Languages (HDLs) are analogous to other high level
languages (C, C+-f, etc.) with some significant differences. Both types are
processed by a compiler, and both of them are function-oriented languages.
However they differ in the way that the compiled code is executed. HDL
languages are used for formal description of electronic circuits. They describe
circuit's operation, its design, and tests to verify its operation by means of
simulation. Typical HDL compilers tools [393], verify, compile and synthesize
an HDL code, providing a list of electronic components that represent the
circuit and also giving details of how they are connected.

3.4.2 VHSIC Hardware Description Language (VHDL)

The Very-High-Speed Integrated Circuit Hardware Description Language
(VHDL) was created by the US Department of Defense in the early 1980s. In
December of 1987, VHDL was adopted as an IEEE Standard [272]. VHDL is
a functional language that borrows much of its structure from the program­
ming language Ada along with a set of constructs for supporting the inherent
parallelism of hardware designs.

The original version of VHDL, included a wide range of data types such
as, logical (bit and boolean), numerical, character and time, plus bit and
character. In later versions, the stdJogic data type was introduced, along
with signed and unsigned types to facilitate arithmetical operations, analog
and mixed-signal circuit design extensions [367].

Furthermore, the designer can know how his/her HDL instruction was
mapped to FPGA components (such as slices, flip-flops, tri-state buffers, etc.).
For example, an if statement in HDL describes a multiplexer or a flip-flop. It
can occur that the frequent use of this statement would insert large number of
multiplexers or flip-flops in a circuit, which is functionally correct but may or
may not be efficient. As a matter of fact, HDL languages have been designed
favoring a hardware designer perspective, in the sense that first the specific
hardware architecture should be envisioned, and then an HDL piece of code
representing it should be written. If for instance a programmer requires a

3.5 Implementation Aspects for Reconfigurable Hardware Designs 53

flip-flop functionality then he/she should select a suitable flip flop for the
design and then he/she can write a code for it. That would generate a list of
components for an electronic circuit prior to its implementation providing a
designer complete control over available/used FPGA resources.

3.4.3 Other Programming Models for FPGAs

Several voices, both from the Academia and Industry sectors, have stated
that the main obstacle towards a massive use of reconfigurable computing
lies in the difficulty of programming FPGA devices. After all, HDLs were de­
signed primarily from the perspective of designers trying to describe hardware
structures, which quite often implies that an FPGA programmer should be
primarily a hardware designer.

Considering that, it has been proposed as an alternative to HDLs as design
entry tool to combine high level languages (such as C or C-f-f) with concur­
rency primitives, thus allowing even faster design cycles for FPGAs than what
is now possible using traditional HDLs [119, 189, 39, 229].

Table 3.6 shows some of the commercial software tools currently available
in the market.

Table 3.6. High Level FPGA Programming Software

Vendor
Celoxica

Mentor Graphics
Impulse Accelerated Tech.
Annapolis Microsystems

Open System C
Initiative (OSCI)

Product
Agility Compiler

Catapult C
Impulse C

Core Fire Design Suite
SystemC

Base Language
Handel-C

C
C

GUI Design Entry
C-f+,

IEEE standard 1666

In other order of ideas, designing a complex system in FPGAs can be
greatly alleviated by using existing pre-designed libraries. Those libraries, fre­
quently called IP (Intellectual Property) cores, have been fully tested and
optimized for performing commonly used building blocks, such as large mul­
tiplexers, counters, divisors, digital filters and so forth.

3.5 Implementation Aspects for Reconfigurable
Hardware Designs

3.5.1 Design Flow

In general, most FPGA design tools consist of six basic steps [390] as shown
in Fig. 3.9. Those steps must not be executed in a specific order but they can

54 3. Reconfigurable Hardware Technology

Design Entry

FPGA Synthesis

FPGA Place & Route

o
Functional Simulation

Circuit Analysis

FPGA Programming

Fig. 3.9. Design flow

be repeated to improve design's performance. A short description of each step
is provided below.

1. Design Entry : There are two standard ways to specify an FPGA design,
namely,

• Design Entry through HDLs (Hardware Description Languages): A de­
signer can describe an FPGA design in high-level abstract language
like VHDL (Very high speed integrated circuit Hardware Description
Language) or Verilog. Those languages are ideal to build state ma­
chines, combinational logic, complex and large designs. Most software
tools have sophisticated compilers that can efficiently translate HDL
specifications to FPGA hardware resources.

• Design Entry through Schematic: An FPGA design can also be de­
scribed by using library components of the devices through a graphi­
cal interface. It is easy to optimize a circuit for speed/area and conse­
quently it saves time and efforts of the design tool in hardware map­
ping, placement and routing, etc. However, it is hard to debug and
modifications to the design are not straightforward as compared to
design entry through HDLs.

2. Functional verification and simulation: In this step, the logical cor­
rectness of an FPGA design is validated. Once that the design has been
specified, either by using HDLs or schematic design entry, it is necessary
to verify if such description meets the design specifications.

3. F P G A synthesis: Synthesis converts a design entry specification into
gates/blocks of an FPGA device. A netlist of basic gates is prepared from
HDL/schematic design entry, which is further optimized at gate level.
The next step is to map that netlist into IPPGA real resources. This is an
important step based on design entry. When writing HDL code or using

3.5 Implementation Aspects for Reconfigurable Hardware Designs 55

schematic device's libraries, an FPGA designer should always take into
account the basic structure of the target device.

4. F P G A place and route: Place and route selects the optimal physi­
cal positioning of elementary design blocks and minimal interconnection
distance among them. Place and route tools normally use device vendor
specifications. Usually they provide hand-placement and also automatic
features for optimizing critical paths either for speed or for area.

5. Circuit analysis: Circuit analysis evaluates different design performance
metrics. Timing verification is made which may differ from functional
simulation as it provides logical correctness taking into account all circuit
delays occurring in the real device. Similarly, a power analysis evaluation
provides an estimation of the design power consumption.

6. Programming FPGA device: Programming FPGA implies download­
ing bit stream codes from the last design steps onto the target FPGA
device. Universal programming tools work with FPGAs from different
vendors. However there are dedicated programming tools bounded only
with a single family of FPGA devices.

3.5.2 Design Techniques

It has been observed that better design techniques for both design entry and
design implementation play a crucial role for optimizing circuit's performance.
A short description of some of those optimizing techniques is given below.

Design Strategy

Design strategy is application dependent. For some time critical applications,
timing performance is the most important requirement regardless other factors
such as hardware resources or device cost. On the contrary, other applications
may require a design architecture as compact as possible or with a certain
functionality.

Block cipher cryptographic algorithms have an iterative nature, where n
iterations (or rounds) having the same functionality must be executed. It is
therefore possible to implement either just one round and consume n cycles
(iterative looping), or n rounds of the algorithm (using a pipeline structure) in
order to achieve high timing performances. The designer choice will be made
depending on design's minimum requirements in terms of speed and area.

Fig. 3.10 shows a basic methodology usually followed when implementing
an FPGA design.

Choice of Target Device

Choosing the target device (FPGA) depends on the design strategy. As it
is shown in Table 3.1, an ample spectrum of FPGA devices are available in

56 3. Reconfigurable Hardware Technology

Fig. 3.10. Hardware Design Methodology

the market from various manufacturers. The basic structure of all FPGAs is
similar, however some models offer additional features like built-in-memories,
built-in-arithmetic functions, etc. As it is shown in Table 3.2 for Xilinx de­
vices, different functionality and sizes are available depending on the device's
cost.

For example, in the case of block cipher designs it may be useful to select
an FPGA device that has embedded Block RAMs (BRAMs) on it. As it was
explained above, BRAMs are fast access memories and might be excellent
choices for a straightforward implementation of the characteristic S-box blocks
of symmetric ciphers. Alternatively, S-Boxes can be implemented using the
FPGA CLB fabric configured in memory mode.

In short, the selection of an FPGA depends upon the design size and design
requirements.

Design Analysis

Design/algorithm analysis helps reducing the design's size and critical path
delays. It might not be a good idea to directly implement a fast software code
in hardware. Software codes are often optimized for high granularity proces­
sors, for example, 8, 16 or 32 bit general-purpose microprocessors. Due to
its inherent low granularity, hardware implementations quite often can bene­
fit from a bit-level parallelism only limited by data dependencies or resource
limitations. For instance, let us consider an instruction from a software code
optimized for a 32-bit word-size general-purpose microprocessor:

work - [((left > 16) | right) & Ox OOOOFFFF];

That requires 16 right shifts, one logical XOR and then one logical AND
with Ox OOOOFFFF. In software platforms, we have no option but to execute
an XOR operation for the 16 most significant bits of 32-bit 'left' and 'right'
registers.

On the contrary, in hardware description languages, the same instruction
can be implemented almost for free, just caring for language notations. One

3.5 Implementation Aspects for Reconfigurable Hardware Designs 57

of the best options is to eliminate the AND operation and 16 logical Shifts by
executing instead an XOR operation directly applied to the 16 most significant
bits of left and right registers, that is,

work = left[31:16] 0 right[31:16]

Selecting F P G A Resources

An FPGA designer can pick multiple options for performing a function. For
example, two choices for implementing a 2-bit multiplexer are shown in Fig­
ure 3.11.

SELECT^

A>^

B>+- ^

-OUT

SELECT

'OUT

(a) (b)

Fig. 3.11. 2-bit Multiplixer Using (a) Tristate Buffer, (b) LUT

Figure 3.11.a shows usage of tri-state buffers for a multiplexer. A large
number of tri-state buffers are available in FPGAs and it seems logical to make
use of them. However, experience shows that, using large number of tri-state
buffers slows down the circuit. This tends to require the physical distribution
of tri-state buffers all around FPGA, which requires long routing paths. A
multiplexer can also be implemented using LUTs as shown in Figure 3.11.b.
Using adjacent LUTs for an n to 1 multiplexer would be useful when a circuit
must be optimized for speed.

Similarly, some FPGA devices contain built-in memory modules. It would
be useful to utilize those memories as they provide faster access to the data as
compared to distributed memories in FPGAs which are formed using several
LUTs.

Hardware Approach

A careful selection and usage of the design tools results useful in our method­
ology for obtaining better performances. The design tools by Xilinx [390],
Altera [3], Synopsis Galaxy Design Platform [351], LeonardoSpectrum and
ModelSim by Mentor Graphics [231, 230], etc. provide several useful features
for getting design improvements. Better placement of the components or bet­
ter routing of the architecture modules can be helpful in cutting critical path
delays in the circuit.

58 3. Reconfigurable Hardware Technology

3.5.3 Strategies for Exploiting FPGA Parallelism

Achieving high-speed implementations for cryptographic algorithms is an ex­
citing task requiring deep considerations at every stage of the design. De­
sign strategies should therefore not only be based on the best implementing
techniques on reconfigurable platforms but also on trying to innovate in the
theoretical side by improving the standard transformations of cryptographic
algorithms. In this sense, the designs included in this book try to take as
much advantage as possible of the hardware inherent parallelism while keep­
ing as low as possible the hardware resource requirements. In the following
we discuss various strategies used by designers to implement cryptographic
algorithms.

Iterative Looping (IL)

An iterative looping design (IL), implements only one round and n iterations
of the algorithm are carried out by feeding back previous round results as
shown in Figure 3.12a. It utiUzes less area but consumes more clock cycles
resulting on a relatively low speed encryption.

Loop Unrolling

Architecture with loop unrolling is shown in Figure 3.12b. In a loop unrolling
or pipeline design (PP), rounds are replicated and registers are provided be­
tween the rounds to control the flow of data. The design offers high speed but
area requirements tend to be too high.

multiplexer

register

one f
round i

Combinational
logic

register

n
round

multiplexer

round 1
round 2

round n

(a) (b)

Fig. 3.12. Basic Architectures for (a) Iterative Looping (b) Loop Unrolling

3.6 FPGA Architecture Statistics 59

Inner-Round Pipelining

Figure 3.13a shows an inner-round pipehning architecture where extra reg­
isters are provided at different stages of the same round in such a way that
several blocks of data can be processed by the circuit at the same time. This
approach produces high speed circuits at the cost of more hardware resources
in the form of registers.

Outer-Round Pipelining

Outer-round pipelining is created through loop unrolling by adding extra reg­
isters at different stages of the same round as shown in Figure 3.13b. This
approach directly trades circuit speed with circuit area.

register

one
round

multiplexer

pipeline stage 1

pipeline stage 2

pipeline stage k

register
i

n
rounds!

multiplexer
I

pipeline stage 1=round 1

pipeline stage 2=round 2

pipeline stage n=round n

(a) (b)

Fig. 3.13. Round-pipelining for (a) One Round (b) n Rounds

Both the iterative and pipeline architectures would be optimized for the
implementation of secret-key ciphers. Pubhc key algorithms exhibit different
nature. They do not have rounds however they maintain a hierarchical struc­
ture that can be further exploited.

3.6 FPGA Architecture Statistics

Just as it occurs with software platform comparisons, comparing FPGA de­
signs is a difficult and a bit ambiguous task. The two single most important
performance metrics usually considered are the time complexity^ sometime
called design throughput and the area complexity.

For combinatorial designs (such as adders, squarers, fully-parallel multipH-
ers, etc), time complexity is determined from the Maximum Clock Frequency

60 3. Reconfigurable Hardware Technology

(MCF), which in turns is proportional to the maximum combinational path
delay. In the case of sequential designs (such as block ciphers, sequential mul­
tipliers, etc.), time complexity must also consider the total number of clock
cycles required before the result is ready. In the case of block cipher designs, it
is customary to consider also how many bits are processed at the same time.
In this work we define the throughput of a given design as follows,

Throughput

Throughput is an important factor to measure timing performances of the
design [82, 103, 382]. Throughput of the design is obtained by multiplying the
allowed frequency for the design with the number of bits processed per cycle.
For cryptographic algorithms, throughput is defined as:

Throughput = ^ " " " - ^ a ^ y o f c y T e ^ " ^ " " ^ (b**^^)

The higher the throughput of a design is the better its efficiency.

Area

Design statistics provided by the design software expresses hardware area
occupied by the design. Unfortunately, there is no universal metric to measure
the hardware costs associated with an FPGA based design. After mapping a
design to a particular FPGA device, FPGA compiler provides FPGA resources
utilized by that design.

Following are some common FPGA resources listed by the mapping tool:

• Number of slices
• Number of Slice FHp Flops
• Number of 4-input Look Up Tables (LUTs)
• Number of Input/Output Blocks
• Number of Clocks
• Maximum combinational path delay
• Maximum output required time after clock
• Maximum Clock Frequency (MCF)
• BlockSelect RAMs (BRAMs)

A designer, however, can report hardware area in terms of LUTs as well as
CLB slices. An ideal comparison would be therefore comparing all resources
on the similar FPGA device. A design using dedicated resources of the device
will show less logic resources as compared to other design which implements
the whole logic without using any dedicated unit of the device. It also affects
the throughput statistic. It has been experimentally observed that the imple­
mentation of even the same code on different grades of the same family of
devices influence the final design's throughput. That situation becomes more

3.7 Security in Reconfigurable Hardware Devices 61

crucial when the same design targets two different devices by two different
manufactures. In such cases, for the purpose of classifying an FPGA design,
we can ignore some of those factors.

It can be said, as a first approximation, that the fastest design is the one
which achieves fastest speed no matter what type of device has been targeted
for design implementation. However, when considering a compact design (a
design optimized for hardware area), this criterion cannot be applied. The
comparison of two compact designs can be only justified if it is made between
similar devices.

Both area and throughput factors provide a measure for comparing dif­
ferent designs. Additionally, in order to decide how efficient a design is, we
utilize the following figure of merit.

Throughput/Area

It is the ratio of the above two figures of merits and shows how efficient the
design is with respect to both area and throughput. The ratio is higher in case
of high throughput and less space.

3.7 Security in Reconfigurable Hardware Devices

The selection of an implementation platform in a digital system depends on
many design criteria. Besides the design performance figures such as, system
speed and area costs, there exist other performance and security factors that
should be taken into account such as: physical security (for instance, against
key recovery and algorithm manipulation), flexibility, power consumption and
other secondary factors, that may as well affect the design selections.

Even though there exist a fair amount of papers reporting cryptographic
implementations on FPGA devices, there are not that many papers reporting
the convenience (or not) of utilizing FPGA as a target device for security
applications from a system point of view. In particular, few works report the
resilience of FPGA against physical or system attacks, which are potentially
more dangerous than algorithm attacks [379, 342, 343].

In [380, 379] a comprehensive analysis of FPGA security aspects is given.
Authors conclude that FPGA technology can provide a reasonable level of
security when used properly.

The fourth generation design security of Xilinx Virtex-4 family is equipped
with bit-stream encryption/decryption technology based on 256-bit AES. The
user generates the encryption key and encrypted bit-stream using Xilinx ISE
software. In a second step, during configuration, the Virtex-4 device decrypts
the incoming bit-stream using a decryption logic module with dedicated mem­
ory for storing the 256-bit encryption key [393].

62 3. Reconfigurable Hardware Technology

For the cryptographic apphcations, the most important threat is unautho­
rized access to a confidential cryptographic key, either a symmetric key or the
private key of an asymmetric algorithm^.

FPGA implementations are also vulnerable to side-channel attacks. A side
channel attack is based on information gained directly from the physical im­
plementation. Examples for side channels include: power consumption, timing
behavior, and electromagnetic radiation. Most relevant papers on side-channel
attacks and related defenses have been published in [183, 184, 182, 159, 366,
157, 278).

Power analysis attacks were introduced in 1998 by Kocher et al. [186].
The main idea behind this attack is to measure the power consumption of the
FPGA device during the execution of a cryptographic operation. Thereafter,
that power consumption can be analyzed in an effort for finding regions in
the power consumption trace of a device that are correlated with algorithm's
secret key.

In [262], the first experimental results of power analysis attack on an FPGA
implementation of elliptic curve cryptosystem were presented. RSA, AES and
DES FPGA implementations have also been subjects of attacks in [341, 342,
343].

3.8 Conclusions

In this chapter we presented some of the most relevant aspects related to
FPGA devices considering both, technological and reconfigurable program­
ming aspects.

The material covered in this Chapter includes a brief review of the tech­
nological antecedents that gave birth to FPGA devices. We also studied the
structure of several emblematic FPGA families from the two market lead­
ers, Xilinx and Altera. We compare the performance of FPGA realizations
against the ones on ASICs and general-purpose processor platforms and we
briefly introduced the main concepts related to the reconfigurable computing
paradigm.

Furthermore, we reviewed several key strategies to achieve good designs
when working with cryptographic applications. As a way to measure area and
time performances for a given design, we defined several metrics and figures
of merit. Finally, several security concerns related to FPGA technology were
outhned.

As it was described in the precedent chapter, most cryptographic algorithms have
been standardized and therefore, they are publicly known.

Mathematical Background

The material presented in this Chapter, discusses several relevant mathemat­
ical concepts, fundamental for the understanding of elliptic curve public-key
cryptosystems, the RSA algorithm, etc.. This material is also useful for a
better understanding of the basic operations involved in the specifications of
Rijndael algorithm (new Advanced Encryption Standard (AES)).

For a more detailed treatment of these aspects, the reader is referred to
Number theory books like [376, 220, 47, 297], and to excellent cryptography
books such as [226, 176, 129, 227, 106, 107]. The material presented in this
chapter was written based on [56, 42, 289].

The rest of this Chapter is organized as follows. In Section 4.1 we give
several basic definitions and theorems of the elementary theory of numbers.
Then, in Section 4.2 we explain the concept of finite field, defining the as­
sociated arithmetic operations. Elliptic curves defined over R are described
in Section 4.3. Thereafter, in Section 4.4, elhptic curves defined over binary
extension fields are discussed in more detail. Several coordinate systems for
representing elliptic curve points are presented in Section 4.5. Then diff"er-
ent schemes for scalar representation are discussed in Section 4.6. Concluding
remarks are given in Section 4.7.

4.1 Basic Concepts of the Elementary Theory of
Numbers

Elementary theory of numbers is perhaps the single most important tool for
developing cryptographic algorithms. Therefore, we start this chapter given
some important definitions, theorems and results relevant to the subject of
cryptography.

64 4. Mathematical Background

4.1.1 Basic Notions

Definition 4.1 (Integer Numbers). Integer numbers are defined as the set
of numbers Z — {..., —2, —1,0,1, 2, 3,.. .}. Within this set we have the subset of
the natural numbers, N ={1,2,3,4, . . .}; i.e., the subset of all positive numbers
(greater than zero)

Definition 4.2 (Divisibility). Let a and b be two integers with a ^ 0. We
say that a divides b, that a is a divisor or factor of b, that b is a multiple of a
or that b is divisible by a, if there exists an integer k such that b — ak. This
is written as a\b. If a does not divide b we write it as a J(b.

Let a, b^ c e Z, some important divisibility properties are,

i. For all a ^ 0, a\a. At the same time 1|6 for all 6,
ii. If a\b then a\bc,
Hi. If a\b and 6| c then a|c,
iv. If a\b and a\c then a\{b ± c),
V. If a\b and a J(c then a /(6 ± c),
vi. If a\b and a\c then a\{sb H- tc) for any arbitrary integers s and t.

Theorem 4.3 (Integer division theorem). Let a G Z and b e N. Then
there exist q, r e Z with 0 < r < b such that a = m,q + r. Additionally, q and
r are unique.

Definition 4.4 (Greatest common divisor). Given two integers a and b
different than 0, we say that the integer d > 1 is the greatest common divisor,
or gad, of a and b if d\a, d\b and for any other integer c such that c\a and c\b
then c\d. In other words, d is the greatest positive number that divides both, a
and b.

Some of the properties of the greatest common divisor are,

• gcd{a,b) = gcd{\a\,\b\)
• gcd(ka,kb) =k gcd{a,b)
• gcd{a,b) — d <=^ d\a,d\b and gcd{aldfi/d)—l

It is possible to compute the greatest common divisor by means of the
Euchdian algorithm shown in Algorithm 4.1.

Definition 4.5 (Prime numbers). We say that a positive integer p > \ is
a prime number if its only positive divisors are 1 and p.

Definition 4.6 (Relative Primes). We say that two integers a and b are
relatively primes if gcd(a,b)=l.

Definition 4.7 (Composite Numbers). / / an integer number q > 1 is not
a prime, then it is a composite number. Therefore, an integer q is a composite
number if and only if there exist a,b positive integers (less than q) such that
q = ab.

4.1 Basic Concepts of the Elementary Theory of Numbers 65

Algorithm 4.1 Euclidean Algorithm (Computes the Greatest Common Di­
visor)
Require: two positive integers a and 6 where a > b.
Ensure: the greatest common divisor of a and b, namely d — gcd{a,b).
1: while 6 7̂ 0 do
2: r ^— a mod 6;
3: a <- 6;
4: 6 <— r;
5: end while
6: Return a

Theorem 4.8 (Fundamental Theorem of Arithmetic). Any natural
number n > 1 is either a prime number, or it can be factored as a product of
powers of prime numbers pi,

with Ci G N, V i G [l,/-]. Furthermore, except for the order of the factors,
this factorization is unique.

Corollary 4.9. / / n G N, then the number of positive divisors of n is (ei +
I)(e2 + l) - - - (e r 4 - l) .

Corollfiry 4.10. If p is a prime number, a, b e Z and p\ab then p\a or p\b.

Notice that above result is not necessarily true if p is a composite number.
For example, 10|5 • 4 but 10 /5 and 10 /4.

n m

Let a, 6 G N C Z and a — TTpiS and ^ — TT 9j ? be their prime fac-
i = l 3=1

torization with I < i < n, 1 < j < m. Let Ri, R2,... ,Rs be the distinct
prime numbers that are included in both factorizations. Rewriting a and b as

s s

a = jQ J?*% 6 = J l R'!^' with ti, î i > 0 for 1 < z < 5, we have,

s

gcd{a,)̂ -= n ^"i"
^mm{ti,Ui}

Example 4'ii-

2520 - 2^ • 3^ • 5^ • 7̂

2700 = 2^ • 3^ • 5^ • 7°

then gcd{2520, 2700) :== 2^ • 3^ • 5^ = 180.

66 4. Mathematical Background

Definition 4.12. Let n G N. We define the Euler function (j){n), as the num­
ber of relatively prime numbers that n has in the interval [I, n).

In other words, 0(n) = \{m G N : gcd{m, n) = 1 and 1 < TTI < n} | . Let p
be a prime number and m, n, r G N with r > 1, then

i. (fiip^) = p^ (1 — ^ j — p^~^{p — 1), In particular (/)(p) = p — 1,

ii. (j){mn) = (f){m)(j){n)^ if gcd{m,n) = 1.

Therefore, we may compute the Euler function 0 for a given number n by
obtaining first the integer factorization of n.

Example 4-^3.

0(720) = 0(2^)0(3^)0(5) - 2 ^ . (2 - l) - 3 ^ • (3 - l) - (5 - l) = 192.

Theorem 4.14 (Fermat's Little Theorem). If{a,p) = 1, then

^p-i ^ 2 mod p, (a^ = b mod p)

a</>(p) ^ 1 mod p.

Corollary 4.15. If x = y mod (p — 1), ^/len a^ = a^ mod p.

Theorem 4.16 (Euler Theorem). If a e Z and gcd(m,a)=l then

Corollary 4.17. If x = y mod 0(m), ^/len â = a^ mod m.

Definition 4.18 (Order of a number x). If x andm are relatively primes,
we say that the order of x modulo m is the smallest integer r such that

a^ = 1 mod m.

Definition 4.19 (Primitive Root) . Let m be a prime number and g G Zm,
then we say that g is a primitive root of m, if and only if the order of g
modulo m is equal to the value of the Euler function 0(m). According to Euler^s
theorem, there is always a primitive root since, g^^"^^ = 1 mod m.

Let gbea, primitive root of a prime number p, then the following properties
hold,

i. If n is an integer, then g'^ = 1 mod p if and only if n = 0 mod p — 1.
ii. If j and k are two integers, then g^ = g^ mod p if and only if j = /c mod p—

1.
Hi. If a is a primitive root, then a^ is also a primitive root if and only if

gcd{x,p- 1) = 1.

4.1 Basic Concepts of the Elementary Theory of Numbers 67

iv. If ^"' = 1 mod p then n\{p — 1).

If p = 1223, p — 1 = 2 • 13 • 47, if a is not a primitive root, then either a^^ or
â ^ or a^^^ must be congruent 1 modulo 1223. o — 2, 3 are not primitive roots,
since 2^^^ = 3 '̂̂ = 1 mod 1223. However, a = 5 is a primitive root since,

a^e, a^\a^^^ ^ 1 mod 1223.

Furthermore, using above properties we can see that 5^ = 25 is not a primitive
root since gcd(2,p — 1) ^ 1. On the other hand, the element 5"̂ = 125 is a
primitive root given that gcd{3,p — 1) — 1.

4.1.2 Modular Arithmetic

Definition 4.20 (Congruency). Given m € Z , m > 1, we say that a, 6 G Z
are congruent modulo m if and only if m\{a — b). We write this relation as
a = b mod m. Where m is the modulus of the congruency. Notice that if m
divides a — b, this implies that both, a andb have the same residue when divided
by m.

We define Z ^ as the set of all positive residues modulo m, which is com­
posed by the set, Z ^ == {0,1, 2,..., m — 1}. Invoking the integer division the­
orem it is easy to see that for every integer a there exists a residue r that
belongs to Z^..

If m G N and a,b,c,d e Z such that a = b mod m and c = d mod m, then
the following properties hold,

• a-{- c = b -\- d mod m
• a — c = b — d mod m
• a ' c = b ' d mod m

The relationship of congruency modulus m is a relationship of equiva­
lence for all m G Z. Let a,b,c e Z, then the congruence relation satisfies the
following properties,

1. Reflexive: a = a mod m.
2. Symmetric: If a = 6 mod m then b = a mod m.
3. Transitivity: If a = 6 mod m and b = c mod m then a = c mod m.

Modular Addition and subtraction If tt, 6 G Zfji then we define the mod­
ular addition operator a -f- 6 mod m as an element within Z ^ . For example,
17 + 20 mod 22 — 15. The most important properties of the modular addition
are,

1. It is commutative, a -\-b mod m = b-{- a mod m.
2. It is associative, (a 4- 6) + c mod m = a + {b-\- c) mod m.
3. It has a neutral element (0), such that a + 0 = a mod m.

68 4. Mathematical Background

4. For every a and b in Z ^ there exists a unique element x in Z ^ such that
a -\- X = b mod m.

Using last property and 6 = 0, it can be seen that for every a in Zm there
exists a unique element X in Ẑ Tj, such that ci -f- x = 0 mod ui.

Modular multiplication If a,b G Z ^ then we define modular multiplica­
tion as, c = a • 6 mod m, where c is an element in Z ^ . The most important
properties of modular multiplication are,

1. It is conmutative a • b mod m = b - a mod m.
2. It is associative (a • 6) • c mod m — a • (6 • c) mod m.
3. It has a neutral element (1), such that a • 1 = a mod m
4. If gcd{m^ c)=l and a • c = 6 • c mod m, then a~b mod m. If m is a prime

number, this property always hold.

Using last property, we define the multiplicative inverse of a number a as
follows.

Definition 4.21 (Multiplicative Inverse). We say that an integer a has
an inverse modulo m if there exists an integer b such that I = ab mod m.
Then, the integer b is the inverse of a and it is written as a~^. The inverse
of a number a mod m exists if and only if there exist two integer numbers x,
y such that ax -f my = 1 and these numbers exist if and only if gcd(a,m)=\.

In order to obtain the modular inverse of a number a we may use the extended
EucHdean algorithm [178], with which it is possible to find the two integer
numbers x, y that satisfy the equation^,

ax -f my = 1.

Modular Division Using above definition we say that if a, 6 G Zp and p
is a prime number, we can accomplish the division of a by 6 by computing
a ' b~^ mod m, where b~^ is the multiplicative inverse of 6 modulo p.

For example, we can compute ^ mod 23 , by performing 17 • (20)"^ mod
23, where (20)"^ mod 23 = 15. Thus,

]- mod 23 - 17 • 15 mod 23 = 2.
20

Modular Exponentiation We define modular exponentiation, as the prob­
lem of computing the number 6 = a^ mod m, with a,b e Z ^ , and e G N. From
the observation that,

X ' y mod m = [{x mod m) • y mod m] mod m.

^ In §6.3 we present an efficient implementation of a variation of this algorithm:
the Binary Euclidean Algorithm (BEA).

4.1 Basic Concepts of the Elementary Theory of Numbers 69

A l g o r i t h m 4 .2 Extended Euclidean Algorithm as Repor ted in [228]

Require: Two positive integers a and b where a > b.
Ensure: d =gcd(a, 6) and the two integers x^y that satisfy the equation ax + by = d.

1: if 6 = 0 then
2: d = a;, X — 1;, y = 0]
3: Return {d,x,y)
4: end if
5: xi = 0;, X2 = 1;, yi = 1;, 2/2 = 0;
6: while 6 > 0 do
7: q = a div b; r = a mod 6;
8: x = X2- qxi; y = 2/2 - qyi]
9: a = 6; 6 = r; X2 = a;i;

10: a:i = a;; 2/2 = 2/i; 2/i = y\
11: end while
12: d = a, X = X2, y = 2/2;
13: Heturn {d,x,y)

it can be seen t h a t the exponentiat ion problem, can be solved by multiplying
numbers t h a t never exceed the modulus m.

Rather t han computing the exponentiat ion by performing e — 1 modular
multiplications as,

e—lmults.

b = a • a.. .a (mod m) ,

we employ a much more efficient method tha t has complexity 0{log{e)). For
example if we want to compute 12^^(mod23), we can proceed as follows,

12^ =:. 144 = 6 mod 23;

12^ = 6 2 = 36 = 13 mod 23;

12^ = 132 = 169 = 8 mod 23;

12^^ = 8 2 = 64 = 18 mod 23.

Then,

12^6 = 12(16+8+2) ^ ^2^^ • 12® . 12^ = 18 • 8 . 6 = 864 = 13 mod 23.

This algori thm is known as the binary exponentiat ion algori thm [178],
whose details will be discussed in §5.4.
C h i n e s e R e m a i n d e r T h e o r e m (C R T) This theorem hats a t remendous im­
por tance in cryptography. It can be defined as follows,

Let Pi for i = 1 , 2 , . . . , /c be pairwise relatively prime integers, i.e..

gcd{pi,pj) = 1 for z^^ j .

70 4. Mathematical Background

Given Ui G [0,Pi — 1] for z = 1, 2 , . . . , /c, the Chinese remainder theorem states
that there exists a unique integer u in the range [0, P—l] where P = p\P2 ' "Pk
such that

u = Ui (mod Pi).

4.2 Finite Fields

We start with some basic definitions and then arithmetic operations for the
finite fields are explained.

4.2.1 Rings

A ring R is a set whose objects can be added and multiphed, satisfying the
following conditions:

• Under addition, M is an additive (AbeHan) group.
• For all x; y; z E R we have, x{y -\- z) = xy -{- xz\ {y -h z)x — yx -\- zx \
• For all a:; y G R, we have {xy)z — x{yz).
• There exists an element e G R such that ex = xe = x for all a: G R.

The integer numbers, the rational numbers, the real numbers and the complex
numbers are all rings. An element a: of a ring is said to be invertible if x has
a multiplicative inverse in R, that is, if there is a unique ii G R such that:
xu=^ ux = \. \ \s called the unit element of the ring.

4.2.2 Fields

A Field is a ring in which the multiplication is commutative and every element
except 0 has a multiplicative inverse. We can define a Field F with respect to
the addition and the multiplication if:

• F is a commutative group with respect to the addition.
• F \ {0} is a commutative group with respect to the multiplication.
• The distributive laws mentioned for rings hold.

4.2.3 Finite Fields

A finite field or Galois field denoted by GF(g = p^), is a field with char­
acteristic p, and a number q of elements. Such a finite field exists for every
prime p and positive integer m, and contains a subfield having p elements.
This subfield is called ground field of the original field. For every non-zero
element a G GF(g), the identity a^~^ = 1 holds.

In cryptography the two most studied cases are: q = p, with p a prime
and q = 2'^. The former case, GF(p), is denoted as prime field, whereas the
latter, GF(2"^), is known as finite field of characteristic two or simply binary
extension field. A binary extension field is also denoted as F2m.

4.2 Finite Fields 71

4.2.4 Binary Finite Fields

A polynomial p in GF{q) is irreducible if p is not a unit element and \ip — fg
then f ox g must be a unit, that is, a constant polynomial.

Let P{x) be an irreducible polynomial over GF{2) of degree m, and let a
be a root of P(x), i.e., P{OL) = 0. Then, we can use P{x) to construct a binary
finite field F = GF(2^) with exactly g = 2^ elements, where a itself is one
of those elements. Furthermore, the set

forms a basis for F , and is called the polynomial (canonical) basis of the field
[221]. Any arbitrary element A e GF{2^) can be expressed in this basis as.

A = ^ aia\
i=0

Notice that all the elements in F can be represented as (m — l)-degree poly­
nomials.

The order of an element 7 € F is defined as the smallest positive integer k
such that 7^ = 1. Any finite field contains always at least one element, called
a primitive element, which has order g — 1. We say that P{x) is a primitive
polynomial if any of its roots is a primitive element in F . If P{x) is primitive,
then all the q elements of F can be expressed as the union of the zero element
and the set of the first g — 1 powers of a [221, 379]

{ 0 , a , a 2 , a 3 , . . . , a ' - i = l } . (4.1)

Some special classes of irreducible polynomials are more convenient for
the implementation of efficient binary finite field arithmetic. Some important
examples are: trinomials, pentanomials, and equally-spaced polynomials. Tri­
nomials are polynomials with three non-zero coefficients of the form,

P{x) = x ^ + x ^ - f l (4.2)

Whereas pentanomials have five non-zero coefficients:

P{x) = x^ + x^2 4- x""' -f- x'̂ ^ -f 1 (4.3)

Finally, irreducible equally-spaced polynomials have the same space separa­
tion between two consecutive non-zero coefficients. They can be defined as

P{x) - o;^ + x(^-^)^ -f • • • + a;2̂ 4- x^ + 1 , (4.4)

where m = kd. The ESP specializes to the all-one-polynomials (AOPs) when
d=^ I, i.e., P{x) = x^-\-x'^~^-\ hx-fl, and to the equally-spaced trinomials
when d == f, i.e., P{x) = a:"̂ -I- x ^ -h 1.

72 4. Mathematical Background

In this Book we are mostly interested in a polynomial basis representation
of the elements of the binary finite fields. We represent each element as a
binary string {am-i • • • a2<^i«o), which is equivalently considered a polynomial
of degree less than m,

am-ix'^~^-^ • • •-^ ci2x'^ + aix-{-QQ, (4.5)

The addition of two elements a,b e F is simply the addition of two poly­
nomials, where the coefficients are added in GF{2), or equivalently, the bit­
wise XOR operation on the vectors a and b. Multiplication is defined as the
polynomial product of the two operands followed by a reduction modulo the
generating polynomial p{x). Finally, the inversion of an element a e F is the
process to find an element a~^ e F such that a - a~^ = mod P{x).

Addition is by far the less costly field operation. Thus, its computational
complexity is usually neglected (i.e., considered 0). Inversion, on the other
hand, is considered the most costly field operation.

Example 4-22. The sum of the two polynomials A and J5, denoted in hexadec­
imal representation as 57 and 83, respectively, is the polynomial denoted by
D4, since:

(a;̂ 4- a:̂ 4- x^ + x + 1) © (a;̂ + a; + 1)

-: a;'̂ -f x^ + o;̂ -f x^ + (1 0 l)a; -f (1 0 1)

= a:'̂ 4- a;̂ + a;'̂ 4- a;̂

In binary notation we have: 01010111010000011 =- 11010100. Clearly, the
addition can be implemented with the bitwise XOR instruction.

Example 4-23. Let us consider the irreducible pentanomial P(x), defined as,

P{x) == a;̂ 4- x'̂ 4- a;̂ 4- a; 4- 1 (4.6)

Since P(x) is irreducible over GF{2), we have constructed a representation for
the field GF(2^). Hence we can say that byte chains can be considered as ele­
ments of GF(2^). For example, consider the multipfication of the field elements
A = (57)i6 and B = (83)i6. The resulting field product, C =^ AB mod P{x),
is C — (Cl)i6, since,

{x^ -\-x'^ -{-x'^ -{-x-\-l) X {x'^ -^x-\-1)

= {x^^ -h x^^ 4- a;̂ 4- a;̂ 4- x'^) 0 {x'^ 4- a;̂ + a;̂ + x^ + a:)

0(a;^ -l-x^ -ha;2 4-a:-hl)

and

= x^^ 4- x^^ + x^ 4- x^ 4- x^ 4- x^ 4- x'̂ 4- x^ 4-1

{x^^ 4- x^^ 4- x^ 4- x^ 4- x^ 4- x^ 4- x^ 4- x^ 4-1)

= x"̂ 4- x^ -f 1 mod (x^ -h x^ 4- x^ 4- X + 1)

4.3 Elliptic curves 73

4.3 Elliptic curves

The theory of elliptic curves has been studied extensively in number theory
and algebra for the past 150 years. It has been developed a rich and deep
theoretical background initially tailored for purely aesthet/c reasons. Elliptic
curve cryptosystems were proposed for the first time by N. Koblitz [180] and
V. Miller [236]. Since then a vast amount of literature has been accumulated
on this topic. Recently elliptic curve cryptosystems are widely accepted for
security applications hke key generation, signature and verification.

Elliptic curves can be defined over real numbers, complex numbers and
any other field. In order to explain the geometric properties of elliptic curves
let us first examine elliptic curves defined over the real numbers E.

Nonetheless, we stress that elhptic curves over finite fields are the only
relevant ones from the cryptographic point of view. More specifically binary
representation of elliptic curves will be discussed here which is directly related
to the work to be presented in Chapter 10.

In the rest of this section, basic definitions and common operations of
elliptic curves will be explained.

2/̂ = x^ + X + 9 2/̂ = rĉ - 9a; -f- 9 y"^ = x^ -h 2x-\-6

Fig. 4.1. Elliptic Curve Equation y^ = x'^ -\- ax -\-b for Different a and b

4,3.1 Definition

Elliptic curves over real numbers are defined as the set of points (x, y) which
satisfy the elliptic curve equation of the form:

— X -{• ax -^b (4.7)

74 4. Mathematical Background

where a and 6 are real numbers. Each choice of a and b produces a different
elHptic curve as shown in Figure 4.1. The elhptic curve in Equation 4.7 forms
a group if 4a^ H- 276^ ^ 0. An elliptic curve group over real numbers consists
of the points on the corresponding elliptic curve, together with a special point
O called the point at infinity.

4,3.2 Elliptic Curve Operations

Elliptic curve groups are additive groups; that is, their basic function is ad­
dition. To visualize the addition of two points on the curve, a geometric rep­
resentation is preferred. We define the negative of a point P = (x, y) as its
reflection in the x-axis: the point — P is [x, —y). Also if the point P is on the
curve, the point — P is also on the curve.

In the rest of this subsection the addition operation for two distinct points
on the curve are explained. Some special cases for the addition of two points
on the curve are also described.

• Adding distinct P and Q: Let P and Q be two distinct points on an
elliptic curve, and P ^ —Q. The addition law in an elliptic curve group
is P 4- Q — P. For the addition of the points P and Q, a line is drawn
through the two points that will intersect the curve at another point, call
—R. The point — P is reflected in the x-axis to get a point R which is the
required point. A geometrical representation of adding two distinct points
on the elhptic curve is shown in Figure 4.2.

^ X J

- 5 - 3 - 1 1 3 5

Fig. 4.2. Adding two Distinct Points on an Elliptic curve (Q ^ —P)

4.3 Elliptic curves 75

- 5 - 3 - 1 1 3 5

Fig. 4.3. Adding two Points P and Q when Q = -P

• Adding P and —P: The method for adding two distinct points P and
Q cannot be adopted for the addition of the points P and —P because
the line through P and — P is a vertical line which does not intersect the
eUiptic curve at a third point as shown in Figure 4.3. This is the reason
why the elliptic curve group includes the point at infinity O. By definition,
P-\- {—P) — O. As a result of this equation, P-hO == P in the eUiptic curve
group. The point at infinity O is called the additive identity of the elliptic
curve group. All well-defined elliptic curves have an additive identity.

- 4 - 2 0 2 4 6

Fig. 4.4. Doubling a Point P on an Elliptic Curve

76 4. Mathematical Background

• Doubling P(x, y) when y / 0:

- 4 - 2 0 2 4 6

Fig. 4.5. Doubling P{x,y) when y = 0

The law for doubling a point on an elliptic curve group is defined by:
P -\- P = 2P = R. To add a point P(x, y) to itself, a tangent line to the
curve is drawn at the point P. U y ^ 0, then the tangent line intersects
the elliptic curve at exactly one other point —R as shown in Figure 4.4.
The point —R is reflected in the x-axis to R which is the required point.
This operation is called doubling the point P.
Doubling P{x^y) when y = 0: If for a point P{x,y), y — 0, then it does
not intersect the elliptic curve at any other point because the tangent line
to the elliptic curve at P is vertical. By definition, 2P = O for such a point
P. If one wants to find 3P in this situation, one can add 2P + P . This
becomes P -f O - P . Thus 3P - P , 4P = O, 5P =. p^ 6P-=^ O, 7P = P ,
etc.

4.3.3 Elliptic Curve Scalar Multiplication

There is no multiplication operation in elliptic curve groups. However, the
scalar product kP can be obtained by adding k copies of the same point
P , which can be accompHshed using the addition and doubling operations
explained in the last Subsection. Thus the product kP = P -{- P -\- P ob­
tained in this way is referred to elliptic curve scalar multiplication. Figure 4.6
shows the scalar multiplication process for obtaining 6 copies of the point P .
However for professional elliptic curve cryptosystem implementations, much
higher values of k are used. Typically, the bit-length of k is selected in the
range of 160-521 bits.

4.4 Elliptic Curves over GF[2'^) 77

)P \.

5 0

(d)4P

5 -5 0

(e) 5 P

5 -5 0

(f) 6 P

5

Fig. 4.6. Elliptic Curve Scalar Multiplication /cP, for /c = 6 and for the Elliptic
Curve 2/̂ = a:̂ - 3a; + 3

4.4 Elliptic Curves over GF(2^)

Because of the chracteristic two, the equation for the elliptic curve with the
underlying field GF{2^) is slightly adjusted as shown in Equation 4.8. It is
formed by choosing the elements a and b within GF(2^) with 6 7̂ 0.

The elliptic curve includes all points (x, y) which satisfy the elliptic curve
equation over GF{2'^) (where x and y G GF{2^)). An elliptic curve group over

78 4. Mathematical Background

GF{2'^) consists of the points on the corresponding elHptic curve, together
with a point at infinity, O.

The points on an elhptic curve can be represented using either two or three
coordinates. In affine-coordinate representation, a finite point on E{GF{2'^))
is specified by two coordinates x\ y ^ GF{2'^) satisfying Equation 4.8. The
point at infinity has no affine coordinates.

We can make use of the concept of a projective plane over the field
GF{2'^) [228]. In this way, one can represent a point using three rather than
two coordinates. Then, given a point P with affine-coordinate representation
x; y\ there exists a corresponding projective-coordinate representation X\ Y
and Z such that,

P(x;y) = P{X;Y;Z)

The formulae for converting from affine coordinates to Jacobian projective
coordinates and vice versa are given as:

Affine-to-Projective: X = x; Y = y; Z=l
Projective-to-Affine: x = X/Z^; y = Y/Z^

The algebraic formulae for the group law are different for affine and pro­
jective coordinates. In the next subsections the group law over GF{2^) is
explained using aflftne coordinates representation. The group laws for several
projective coordinates representations are studied in §4.5.

4.4.1 Point Addition

The negative of a point P — {x^ y) is —P = (x, x 4- y). Assuming that P ^ Q,
then R{x3,y3) = P{xi,yi) + Q{x2,y2) where:

{y2+yi

' (4.9)
m =
X3 -

2/3 =

(x2+x:

= m^ 4-
= m{xi

it
m -\- xi + X2 -\- a
-i-xs) -\-x3-hy1

As with elliptic curve groups over real numbers, P 4- (—P) = O, where O
the point at infinity. Furthermore, P H- O = P for all points P in the elliptic
curve group.

4.4.2 Point Doubling

Let P(xi,yi) be a point on the curve. If xi = 0, then 2P = O. If xi y^ 0 then
R = 2P, and R{x2,y2) is given as:

Xo ^^ X i -f- —y

y2 = x\ ^-[xi + f-^)x2 + X2

Let us recall that a is one of the parameters chosen with the elliptic curve
and that m is the slope of the line through P and Q.

4.4 Elliptic Curves over GF(2^) 79

4.4.3 Order of an Elliptic Curve

Notice that the elliptic curve E{¥q)^ namely the collection of all the points
in ¥q that satisfy Eq. (4.10) can only be finitely many. Even if every possible
pair (x, y) were on the curve, there would be only q'^ possibilities. As a matter
of fact, the curve E{¥q) could have at most 2q-\-l points because we have one
point at infinity and 2q pairs (x,y) (for each x we have two values of y).

The total number of points in the curve, including the point (9, is called
the order of the curve. The order is written #E{¥q), A celebrated result
discovered by Hasse gives the lower and the upper bounds for this number.

Theorem 4.24. [227] Let #E{¥q) he the number of points in E{¥q). Then,

\#Ei¥q)-{q + l)\<2^ (4.11)

The interval [̂ -f 1 — 2y/g, q -\-l -\- 2y/q] is called the Hasse interval.

As we did in the case of finite fields, we can also introduce the concept of the
order of an element in elHptic curves. The order of a point P on E{¥q) is the
smallest integer n such that nP = 0. The order of any point it is always
defined, and divides the order of the curve #E(¥q). This guarantees that if r
and / are integers, then rP = IP if and only if r = / (mod n).

AAA Elliptic Curve Groups and the Discrete Logarithm Problem

Every cryptosystem is based on a hard mathematical problem that is compu­
tationally infeasible to solve. The discrete logarithm problem is the basis for
the security of many cryptosystems including Elliptic Curve Cryptosystems.
More specifically the security of elliptic curve cryptosystems relies on Elliptic
Curve Discrete Logarithmic Problem (ECDLP).

In the last Section we examined two elliptic curve operations: point ad­
dition and point doubling. Both point addition and doubling operations can
be used to compute any number of copies of a point (2P, 3P, kP^ etc). The
determination of a point kP in this manner is referred to as Scalar Multipli­
cation of a point. In the rest of this Section we present a small example of
how to compute such elliptic curve operation.

4.4.5 An Examiple

Let F = GF{2'^) be a binary finite field with defining primitive trinomial
p{x) given as,

p{x) = x ^ - f x - h l . (4.12)

Then, if a is a root of p(a;), we have p{a) = 0, which impHes,

p{a) = a ^ - f a + 1 = 0. (4.13)

80 4. Mathematical Background

For binary field arithmetic, addition is equivalent to subtraction. Hence, the
above equation can be rewritten as

a^ = a + 1 . (4.14)

Using equation (4.14), one can now express each one of the 15 nonzero ele­
ments of F as is shown in Table 4.1. Notice that we can define any one of the
q = 2^ elements of F using only four coordinates.

Element in GF(2^)

0

a

a^

a^

a'

a'

a«

a'

a«

«»

a'"

a "

a'^

a'^

a "

a'=

Polynomial

0

a

a^

a'

a + 1

a^ -f- a

a^ + a^

a^ + a + 1

a^ + l

a^ + a

a^ -1- a + 1

a^ + a^ + a

a^ + a^ + a + 1

a^ 4- a^ + 1

a^ + 1

1

Coordinates

(0000)

(0010)

(0100)

(1000)

(0011)

(0110)

(1100)

(1011)

(0101)

(1010)

(0111)

(1110)

(1111)

(1101)

(1001)

(0001)

Table 4.1. Elements of the field F = GF(2^), Defined Using the Primitive Trinomial
of Eq. ((4.12))

Notice that all the elements in F can be described by any of the three rep­
resentations used in Table 4.1, namely, polynomial representation, coordinate
representation and powers of the primitive element a.

Let us now consider a non-supersingular elliptic curve defined as the set
of points {x,y) e F X F that satisfy

y^ •\-xy = x^ -f a^^x'^ + a^ (4.15)

Notice that for the coefficients a and b of equation (4.8), we have selected the
values a^^ and a^, respectively. There exist a total of 14 solutions in such a
curve, including the point at infinite O. Using table 4.1, we can see that, for
example, the point.

4.4 Elliptic Curves over ^^(2"^) 81

satisfies equation (4.15) over F2, since

(4.16)

- (a 3) 3 + ai3(a3)2-f.a'

(4.17)

(0011) 4- (0110) - (1010) + (0011) + (1100)
(0101) = (0101),

Where we have used the identity a^^ = 1. All the thirteen finite points which
satisfy equation (4.15) are shown in figure 4.7.

a''

â

d
a«
n7
d
a«

â
ar

a=̂̂

a

! ! ! ! ! 1 ! ! ! 1 1

i i i i i i i i i i

1 1 • ! 1

X, \

A

1 i i
a di 3^ â a® â ? a^ a11 0 I2 Q 1 3 O 1 4

Fig. 4.7. Elements in the Elliptic Curve of Equation (4.15)

Let us now use equation (4.10) to double the point P = (a^^a^). Using
once again table 4.1, we obtain,

82 4. Mathematical Background

r.2 I A X2p

y2p
- ^2 . (4.18)

- a ^ + a i 4-a^2 + ai3 = a^

It can be verified from figure 4.7 that the result obtained above is indeed a
point in the elliptic curve of equation (4.15).

As we mentioned in §4.4.3, we can keep adding P to its scalar multiples,
but eventually, after n < #E{¥q) scalar multiplications, we will obtain the
point at infinite O as a result. Recall that the integer n is called the order of
the point P. For the case in hand, P happens to have a prime order k = 7.
Notice that as it was stated in §4.4.3, the order n of P divides the order of
the curve #E{¥q). Table 4.2 lists all the six finite multiples of P.

P 2P W AP 5P 6P

{a\a^)\{a'',a')\{a'\a')\{a'\a%a'\a'')\{a\a')

Table 4.2. Scalar Multiples of the Point P of Equation (4.16)

Obviously, in a true cryptographic application the parameter n should
be chosen large enough so that efficient generation of such a look-up table
approach, becomes unfeasible. In today's practice, n > 2^^^ has proved to be
sufficient.

4.5 Point Representation

In order to generate an Abelian group over elliptic curves, it was necessary
to define an elliptic curve group law. More specifically, we defined the point
addition and point doubling primitives of Equations (4.9) and (4.10). However,
the computational cost of those equations involves the calculation of a costly
field inverse operation plus several field multiplications.

Since the relation (I/M) defined as the computational cost of a field in­
version over the computational cost of a field multiplication is above 8 and
20 in hardware and software implementations, respectively, there is a strong
motivation for finding alternative point representations that allow the trading
of the costly field inversions by less expensive field multiplications.

As we have seen at the beginning in §4.4, elliptic point representation in
two coordinates is called affine representation^ whereas the equivalent point
representation in three coordinates is called Projective representation.

4.5 Point Representation 83

It can be shown that each affine point can be related one-to-one with a
unique equivalence class. Then, each elliptic point is represented by a triple
that satisfy the corresponding equivalence class. Notice that it results neces­
sary to redefine the addition and doubling operations in the projective repre­
sentation.

As it will be explained in the rest of this Section, the projective group law
can be implemented without utilizing field inversions at the price of increasing
the total number of field multiplications. As a matter of fact, field inversions
are only required when converting from projective representation to affine
representation^, which becomes valuable in situations where we are planning
to perform many point additions and doublings in a successive manner (such
as in elhptic curve scalar multiphcation).

4.5.1 Projective Coordinates

Let c and d be positive integers over the field K. It is possible to define an
equivalent class K^ \ {(0,0,0)} as follows.

(XuYuZi) - (X2,y2,Z2) | If Xi = A^Xs,^! - A^y2,Zi = XZ^.

The equivalent class

{X'.Y :Z) = {(A"X, A^y, AZ) : A G K*} .

is called a projective point [129], and (X, y, Z) a representative point of such
class, that is to say, any point within the class is a representative point.
Specifically, if Z ŷ 0, (^ , J^, 1) is a point representative of the equivalence
class (X : y : Z).

Therefore, if we define the set of all projective points (equivalent cletsses)
for each possible A in the field K* as,

P[KY - {(X : y : Z) : X, y, Z G i^, Z 7̂ 0} ,

we obtain a one-to-one correspondence between the point P{Ky and the set
of afl[ine points,

A(K) = {{x,y:x,yeK)}.

Each point in the affine coordinate system^ corresponds to the set defined by
an equivalence class in particular. The set of point belonging to P{K)^ —
{{X : Y : Z) : X,Y, Z e K, Z = 0} is called the line at infinity, because this
class does not correspond with any element in the set of aflfine points.

^ In §4.4 the explicit conversion equations from affine to Jacobian projective coor­
dinates and vice versa were stated.

84 4. Mathematical Background

The Weierstrass equation for an eUiptic curve E{K) can be defined in
projective coordinates by replacing a; by -^ and yhy-^. The constant values
c and d will determine the characteristic of the elliptic curve arithmetic and
hence, the definition of the point addition algorithm in such representation.

4.5.2 Lopez-Dahab Coordinates

The most popular projective coordinate system are the standard where c= I
and d = 1^ Jacobians, with c = 2 and d = 3 and Lopez-Dahab (LD) co­
ordinates, , with c = 1 and d — 2. The latter system of coordinates offers
algorithms for computing the addition in mixed coordinates, i.e., one point is
given in affine coordinates while the other is given in projective coordinates.
LD coordinates are highly attractive for hardware implementation because
they only employ 8 field multiplications for performing a point addition op­
eration.

In Lopez-Dahab (LD) projective coordinates [210] the projective point (X:
Y: Z) with Z^ 0 corresponds to the affine coordinates x = X/Z and y =
Y/Z'^. Therefore, the elliptic curve equation (4.8) mapped to LD projective
coordinates can be written as,

y2 -f XYZ = X^Z -}- aX'^Z^ 4- Z"^ (4.19)

The point at infinity is represented now as O = (1 : 0 : 0). For any arbitrary
point P on the curve, it holds that P-fO = O-^V = V. Let P -= {Xi : Yi : Zi)
and Q — {X2 : Y2 : I) he two arbitrary points belonging to the curve 4.19.
Then the point —P = {Xi : Xi -\-Yi : Z) is the addition inverse of the point
P. The point doubling primitive 2(Xi \ Y\ \ Z\) = (J^a : Y^ : Z^) can be
performed at a computational cost of 2 general field multiplications plus two
field multiplication by the elliptic curve constant b as [212],

Xs = Xt-^b'Zt, (4.20)

Ys = bZi^'Zs + X3 • {aZs + Yi^ -f bZi"^)

Whereas if Q ^ — P , the point addition primitive {Xi : Yi : Zi) + {X2 :
I2) = (^3 ' ys ' Z3) can be performed at a computational cost of 8 field
multiplications as,

A = Y2-Zf-\- Yi; B = X2'Zi+ Xi;
C = ZiB] D = B^'{C-^aZl)\

Z3 = C'^] E = AC] (4.21)
Xs^A^-^-D-^E] F = X3 4- X2 • Z3;

G = (X2 + Y2)' Zl; Ys = {E + Z3)'F + G

4.6 Scalar Representation 85

4.6 Scalar Representation

The vast majority of algorithms reported for computing the scalar multipHca-
tion in an efficient manner are based in the Horner polynomial representation,

anx''-i-an-ix''~^-i-. • .+a2x'^-}-aix-\-ao = ao+(ai-|-(a24-(.. .4-(an-i4-(an+a:)x).. .)x)x)x.

where the scalar k is represented using its binary expansion, namely, k =
6^2^ + bn-i + 2^-1 4 - . . . + 6i2 + 6o where bi G [0,1].

4.6.1 Binary Representation

Algorithm 4.3 Basic DoubUng & Add algorithm for Scalar Multiplication
Require: A; = {km-i, fcm-2 ,ki, fco)2 with kn-i - 1, Pix, y, z) 6 E{¥2m)
Ensure: Q = kP

P\
for i = m — 2 downto 0 do

Q = 2 • Q (point doubling) ;
if ki = 1 then

Q = Q -\- P (point addition);
end if

end for
Return Q

The traditional method for computing the elliptic operation kP is based
in the binary representation of k. U k = S j = ^ bj2^, where each bj G {0,1},
then kP can be computed as [227]:

TTl — 1

kP=^Yl ^3^'^ == 2{...2{2bm-lP 4- bm-2P) + .-.) + ^O^-

This method requires m — 1 point doublings and ic/c — 1 point additions, where
Wk is the Hamming weight (total number of coefficients bj — I) of the binary
representation of the scalar k.

4.6.2 Recoding Methods

It is possible to reduce the number of subsequent point additions using a
recoding of the the exponent [154, 239, 76, 176]. The recoding techniques use
the identity

2iH-i 4. 2^+J"-2 ^... ^2' = 2'+-̂ " - 2'

to collapse a block of Is in order to obtain a sparse representation of the
exponent. Thus, a redundant signed-digit representation of the exponent using
the digits {0,1, —1} will be obtained. For example, (011110) can be recoded

86 4. Mathematical Background

Algorithm 4.4 The Recoding Binary algorithm for Scalar Multiplication
Require: k = {km
Ensure: Q = kP

Ukrr ,ki,ko)2 w i th ki G [[- 1 , 0 , 1]), P{x,y,z) G E{¥2m)

Q = P\
for i = m — 2 do-wnto 0 do

Q = 2 • Q (point doubling) ;
if ki = 1 then

Q = Q -\- P (point addition);
else if fci = 1 then

Q = Q — P (point subtraction);
end if

end for
Return Q

(011110)-2^ + 2^4-2^ + 2^

(lOOOiO) - 2 ^ - 2 \

The recoding binary method is given in the Algorithm 4.4. Note that even
though the number of bits of k is equal to m, the number of bits in the recoded
exponent k can be m + 1, for example, (111) is recoded as (1001). Thus, the
recoding binary algorithm starts from the bit position m in order to compute
kP by computing kP where k is the (A; + l)-bit recoded exponent such that
k = k.

Let us discuss an expHcit toy example of scalar multiplication using the
recoding binary method. Let /c == 119 = (1110111). The (nonrecoding) binary
method requires 6 point doublings plus 5 point additions in order to compute
119P. In the recoding binary method, we first obtain a sparse signed-digit
representation of 119. It is easy to verify the following:

Exponent: 119 = 01110111,
Recoded Exponent: 119 = lOOOlOOL

The recoding binary method then computes 119P as follows:

fi
1
0
0
0
1
0
0
1

Step 3
P
2(P) = 2P
2(2P) = 4P
2(4P) = 8P
2(8P) = 16P
2(15P) = SOP
2(30P) = 60P
2(60P) = 120P

Steps 4-8
P
2P
4 P
8 P
16P - P = 15P
30P
60P
1 2 0 P - P = 119P

Table 4.3. A Toy Example of the Recoding Algorithm

The number of point doublings plus additions is equal to 7 + 2 = 9 which
is 2 less group operations than that of the binary method. The number of

4.6 Scalar Representation 87

point doubling operations required by the recoding binary method can be at
most 1 more than that of the binary method. The number of subsequent point
additions, on the other hand, can be significantly less. This is simply equal
to the number of nonzero digits of the recoded exponent. Thus, the number
of point addition operations can be reduced if we obtain a sparse signed-digit
representation of the scalar k.

4.6.3 cj-NAF Representation

Algorithm 4.5 a;-NAF Expansion Algorithm
Require: A positive integer k.
Ensure: U = uNAF{k)

for {i = 0; A; > 0; z + +} do
if k is odd then

Ui = k mods 2^
k = k-Ui\

else

end if
k = /c/2;

end for
Return(U);

The recoding binary algorithm can be generalized for designing algorithms
even more efficient at the price of using memory for storing pre-computed
results. The basic window method u with uj > I expand any positive integer
k using a Non-Adjacent Form (NAF) of width u expressed as,

i-\

k = Y,Ui2'
1=0

Where,

• Each coefficient ui different than zero is odd and with magnitude less than

• Given two consecutive coefficients Ui, at least one of them is nonzero;
• When using (j = 2 we have the recoding binary algorithm explained above.

We write the uNAF as,

uNAF{k) = {ui-i,...uo}.

Algorithm 4.5 generates an uNAF expansion of a positive scalar k. Every
time that k is odd, the u most significant bits are scanned in order to determine

88 4. Mathematical Background

the corresponding congruence class (mod 2^) for k. The congruence class Ui
is then subtracted from A;, making the new coefficient k — Ui divisible by 2^.
This will guarantee a run of it; — 1 zero coefficients in the next iterations.

In average, the Hamming weight of a UJNAF expansion is {w -\-l)~^. This
will directly impact the performance of the scalar multiplication algorithm
because of a saving on the point additions required for computing the scalar
multiplication. That saving is obtained at the price of storing multiples of the
base elliptic point. Notice, however, that the total number of point doublings
remains the same. Table 4.4 presents the main characteristics of the binary,
recoded binary an CJNAF expansions of the scalar /c, respectively.

Table 4.4. Comparing Different Representations of the Scalar k

Point Represen ta t ion
Binary
recoded b inary
a;NAF

Length
m
m

m

P A

T
T

TJ+T

P D
m

m + 1
m + 1

P r e - c o m p u t a t i o n

—
—

Table of2''^-^ - 1
m-bit multiples.

4.7 Conclusions

In this Chapter we briefly reviewed some of the most important mathematical
concepts useful for understanding cryptographic algorithms. We explained the
most relevant definitions and theorems of the elementary theory of numbers
relevant to the subject of cryptography. Moreover, we defined the concept of
finite fields and related arithmetic operations. We gave a brief introduction to
elliptic curve cryptography, explaining the mathematical concepts of elliptic
curve group, group order, group law and point representation among others.

These concepts will be useful for understanding the material contained in
the Chapters to come.

Prime Finite Field Arithmetic

The modular exponentiation operation is a common operation for scrambling;
it is used in several cryptosystems. For example, the Diffie-Hellman key ex­
change scheme requires modular exponentiation [64]. Furthermore, the ElGa-
mal signature scheme [80] and the Digital Signature Standard (DSS) of the
National Institute for Standards and Technology [90] also require the compu­
tation of modular exponentiation. However, we note that the exponentiation
process in a cryptosystem based on the discrete logarithm problem is slightly
different: The base (M) and the modulus (n) are known in advance. This al­
lows some precomputation since powers of the base can be precomputed and
saved [35]. In the exponentiation process for the RSA algorithm, we know the
exponent (e) and the modulus (n) in advance but not the base (M); thus,
such optimizations are not likely to be applicable.

In the following sections we will review techniques for implementation
of the modular exponentiation operation in hardware. We will study tech­
niques for exponentiation, modular multiplication, modular addition, and ad­
dition operations. We intend to cover mathematical and algorithmic aspects of
the modular exponentiation operation, providing the necessary knowledge to
the hardware designer who is interested implementing modular algorithm on
hardware platforms. We draw our material from computer arithmetic books
[352, 138, 370, 187], collection of articles [75, 335], and journal and conference
articles on hardware structures for performing the modular multiplication and
exponentiations [288, 185, 322, 135, 34, 179, 180, 181, 365].

Therefore, in the remainder of this Chapter we will study algorithms
for computing efficiently the most basic modular arithmetic operations. We
will assume that the underlying exponentiation heuristic is either the binary
method, or any of the advanced m-ary algorithm with the necessary register
space already made available. This assumption allows us to concentrate on de­
veloping time and area efficient algorithms for the basic modular arithmetic
operations, which is the current challenge because of the operand size.

90 5. Prime Finite Field Arithmetic

modular arithmetic operations, which is the current challenge because of the
operand size.

The literature is replete with residue arithmetic techniques applied to sig­
nal processing, see for example, the collection of papers in [337]. However,
in such applications, the size of operands are very small, usually around 5-
10 bits, allowing table lookup approaches. Besides the moduh are fixed and
known in advance, which is definitely not the case for our application. Thus,
entirely new set of approaches are needed to design time and area efficient
hardware structures for performing modular arithmetic operations to be used
in cryptographic applications.

5.1 Addition Operation

In this section, we study algorithms for computing the sum of two /c-bit inte­
gers A and B. Let Ai and J5̂ for i = 1, 2 , . . . , /c - 1 represent the bits of the
integers A and B^ respectively. We would like to compute the sum bits Si for
z = l ,2 , . . . , /c — 1 and the final carry-out Ck as follows:

Ak-i Ak-2 ••• Ai AQ

+ Bk-i Bk-2 • • • Bi BQ

Ck Sk-i Sk-2 • •' Si So

We will study the following algorithms: the carry propagate adder (CPA), the
carry completion sensing adder (CCSA), the carry look-ahead adder (CLA),
the carry save adder (CSA), and the carry delayed adder (CDA) for computing
the sum and the final carry-out.

5.1.1 Full-Adder and Half-Adder Cells

The building blocks of these adders are the full-adder (FA) and half-adder
(HA) cells. Thus, we briefiy introduce them here. A full-adder is a combi­
national circuit with 3 input and 2 outputs. The inputs Ai, Bi, Ci and the
outputs Si and Ci^i are boolean variables. It is assumed that Ai and Bi are
the zth bits of the integers A and J5, respectively, and Ci is the carry bit
received by the ith. position. The FA cell computes the sum bit Si and the
carry-out bit Ci+i which is to be received by the next cell. The truth table of
the FA cell is as follows:

Ai Bi Gj
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

C'i-j-1 Si
0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

5.1 Addition Operation 91

The boolean functions of the output values are as

Ci-i-i = AiBi -f- AiCi + BiCi,

Similarly, an half-adder is a combinational circuit witja 2 inputs and 2 outputs.
The inputs Ai, Bi and the outputs Si and Ci^i are boolean variables. It is
assumed that Ai and Bi are the zth bits of the integers A and J5, respectively.
The HA cell computes the sum bit Si and the carry-out bit Q-fi. Thus, an
half-adder is easily obtained by setting the third input bit Ci to zero. The
truth table of the HA cell is as follows:

AiBi
0 0
0 1
1 0
1 1

Ci-\-\ Si
0 0
0 1
0 1
1 0

The boolean functions of the output values are as Ci+i = AiBi and Si —
Ai ® Bi^ which can be obtained by setting the carry bit input Ci of the FA
cell to zero. Fig. 5.1 illustrates the FA and HA cells.

Full-Adder Cell Half-Adder Cell

Fig. 5.1. Full-Adder and Half-Adder Cells

5.1.2 Carry Propagate Adder

The carry propagate adder is a linearly connected array of full-adder (FA)
cells. The topology of the CPA is illustrated below in Fig. 5.2 for /c = 8.
The total delay of the carry propagate adder is k times the delay of a single
full-adder cell. This is because the iih. cell needs to receive the correct value

92 5. Prime Finite Field Arithmetic

A, B, A. B, A, B, A, B, A3 B3

j_L l i j_i j_i 1 1 j a
F A

^ r
3.

C5

F A

S4

c.
F A

1
S3

C3

F A

1
4

Ca

F A

1
Si

Ci

F A

So

Fig. 5.2. Carry Propagate Adder

of the carry-in bit Ci in order to compute its correct outputs. Tracing back
to the 0th cell, we conclude that a total of k full-adder delays is needed to
compute the sum vector S and the final carry-out Ck- Furthermore, the total
area of the /c-bit CPA is equal to k times a single full-adder cell area. The
CPA scales up very easily, by adding additional cells starting from the most
significant.

The subtraction operation can be performed on a carry propagate adder
by using 2's complement arithmetic. Assuming we have a /c-bit CPA avail­
able, we encode the positive numbers in the range [0, 2^~^ — 1] as /c-bit binary
vectors with the most significant bit being 0. A negative number is then rep­
resented with its most significant bit as 1. This is accomplished as follows: Let
X G [0,2^"-^], then —x is represented by computing 2^ — x. For example, for
/c = 3, the positive numbers are 0,1,2, 3 encoded as 000,001,010, Oil, respec­
tively. The negative 1 is computed as 2 ^ - 1 = 8 - 1 — 7 = 1 1 1 . Similarly, - 2 ,
—3, and —4 are encoded as 110, 101, and 100, respectively. This encoding sys­
tem has two advantages which are relevant in performing modular arithmetic
operations:

• The sign detection is easy: the most significant bit gives the sign.
• The subtraction is easy: In order to compute x — y, we first represent —y

using 2's complement encoding, and then add x to —y.

The CPA has several advantages but one clear disadvantage: the computation
time is too long for RSA computations, in which the operand size is in the
order of several hundreds, up to 2048 bits. Thus, we need to explore other
techniques with the hope of building circuits which require less time without
significantly increasing the area.

5.1.3 Carry Completion Sensing Adder

The carry completion sensing adder is an asynchronous circuit with area re­
quirement proportional to k. It is based on the observation that the average
time required for the carry propagation process to complete is much less than
the worst case which is k full-adder delays. For example, the addition of 15213
by 19989 produces the longest carry length as 5, as shown below in Fig. 5.3.

5.1 Addition Operation 93

A = 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1
6 = 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

4 1 5 1

Fig. 5.3. Carry Completion Sensing Adder

A statistical analysis shows that the average longest carry sequence is
approximately 4.6 for a 40-bit adder [108]. In general, the average longest
carry produced by the addition of two k-hit integers is upper bounded by
log2 k. Thus, we can design a circuit which detects the completion of all carry
propagation processes, and completes in log2 k time in the average.

A = 01 1 1 0 1 1 0 1 1 0 1 1 0 1
B=1 001 1 1 0 0 0 0 1 0 1 0 1

0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C = 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1
N = 0 0 0^ 0^ 0̂ 1 0 0 0 0̂ 0 1 0

C = 00111 1 0 0 0 0 0 1 1 0 1
N = 0000001 1 0 0 0 0 0 1 0

ie ie
C = 01 1 1 1 1 00001 1101
N = 0000001 1 0 0 0 0 0 1 0

-0 r-C = 1 1 1 1 1 1 0001 11101
N = 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 = 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1
N = 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

Fig. 5.4. Detecting Carry Completion

t=0

t=1

t=2

t=3

t=4

t=5

In order to accomplish this task, we introduce a new variable N in addition
to the carry variable C. The value of C and N for ith. position is computed
using the values of A and B for the zth position, and the previous C and N
values, as follows:

94 5. Prime Finite Field Arithmetic

(AuBi) = (0,0) =^ (CuNi) = (0,1)

(AuBi) = {1,1) =^ id,Ni) = (1,0)

(AuBi) = (0,1) =^ (CuNi) = {Ci-.i,Ni.i)

(AuBi) = (1,0) =^ (CuNi) = id-uNi-i)

Initially, the C and Â vectors are set to zero. The cells which produce C and
N values start working as soon as the values of A and B are applied to them
in parallel. The output of a cell {Ci^Ni) settles when its inputs (C^-i, Ni-i)
are settled. When all carry propagation processes are complete, we have either
(Ci, Ni) = (0,1) or {Ci,Ni) = (1,0) for alH = 1,2,.. . , /c. Thus, the end of
carry completion is detected when all Xj = Ci-¥ Ni = 1 for alH = 1,2,. . . , A;,
which can be accompHshed by using a /c-input AND gate. The procedure
described above is illustrated in Fig. 5.4.

5.1.4 Carry Look-Ahead Adder

The carry look-ahead adder is based on computing the carry bits Ci prior
to the summation. The carry look-ahead logic makes use of the relationship
between the carry bits Q and the input bits Ai and Bi. We define two variables
Gi and Pj, named as the generate and the propagate functions, as follows:

Pi = Ai + Bi.

Then, we expand Ci in terms of GQ and PQ, and the input carry CQ as

Ci = ^0^0 4- Co{Ao -h Bo) - Co 4- CQPQ,

Similarly, C2 is expanded in terms Gi, Pi , and Ci as

C2 = G i -hC iP i .

When we substitute Ci in the above equation with the value of CQ in the
preceding equation, we obtain C2 in terms GQ^ G î, Po, Pi, and CQ as

C2 - Gi + CiPi =Gi-\- {GQ + CQPQ)PI =Gi+ GQPI -h CQPQPL

Proceeding in this fashion, we can obtain d as function of CQ and Go, G i , . . . , Ci
and Po, P i , . . . , Pi. The carry functions up to C4 are given below:

Ci = GQ -i- CQPQ,

C a - C i - f - G o P i + C o P o P i ,

C3 = G2 + G1P2 H- GQPIP2 + C0P0P1P2,

C4 - Ca + G2P3 + G1P2P3 + GQP1P2P3 + C0P0P1P2P3.

5.1 Addition Operation 95

The carry look-ahead logic uses these functions in order to compute all CiS in
advance, and then feeds these values to an array of EXOR gates to compute
the sum vector S. The zth element of the sum vector is computed using

The carry look-ahead adder for /c = 3 is illustrated in Fig. 5.5.

B2 Bi Bo

C4f

^ r ^ r ^ r f f f T f

Carry Look-Ahead Logic

C3

'

^

y

C,

A3

J*B, t
r ^

Ci

A3

J B, (̂
r ^

Co

<
J^B,
r

c ̂

A3

J*B„
'

S3 S2 Si $0

•Fig. 5.5. Carry Look-Ahead Adder

The CLA does not scale up very easily. In order to deal with large operands,
we have basically two approaches:

• The block carry look-ahead adder: First we build small (4-bit or 8-bit)
carry look-ahead logic cells with section generate and propagate functions,
and then stack these to build larger carry look-ahead adders [138, 370, 187].

• The complete carry look-ahead adder: We build a complete carry look-
ahead logic for the given operand size. In order to accomphsh this task,
the carry look-ahead functions are formulated in a way to allow the use of
the parallel prefix circuits [32, 188, 196].

The total delay of the carry look-ahead adder is 0(log k) which can be signif­
icantly less than the carry propagate adder. There is a penalty paid for this
gain: The area increases. The block carry look-ahead adders require 0{k log k)
area, while the complete carry look-ahead adders require 0(k) area by making
use of efficient parallel prefix circuits [196, 197]. It seems that a carry look-
ahead adder larger than 256 bits is not cost effective, considering the fact
there are better alternatives, e.g., the carry save adders. Even by employing
block carry look-ahead approaches, a carry look-ahead adder with 1024 bits
seems not feasible or cost eflfective.

96 5. Prime Finite Field Arithmetic

5.1.5 Carry Save Adder

The carry save adder seems to be the most useful adder for our application. It
is simply a parallel ensemble of k full-adders without any horizontal connec­
tion. Its main function is to add three k-hit integers A^ J5, and C to produce
two integers C and S such that

C' -{-S = A-{-B + C.

As an example, let A = 40^ B = 25, and C = 20, we compute S and C as
shown below:

A = A^= 101000
B = 2b= 011001
C = 20- 010100
5 = 37 = 10 0 10 1
C' - 48 = 0 1 1 0 0 0

The ith bit of the sum Si and the (i -h l)st bit of the carry C[j^i is calculated
using the equations

ui '^=^ Ji-i xj^ iDi q7 O^.

^i-\.\ ^^ AiJDi -\- AiUi -\- JDiC/ij

in other words, a carry save adder cell is just a full-adder cell. A carry save
adder, sometimes named a one-level CSA, is illustrated in Fig. 5.6 for /c — 6.

iii
FA

c; s,

A4B,C, A3B3C3 A . B i C , A , B , C ,

lit ill ill ill
FA FA FA FA

c; S4 c; S3 ĉ sz c; s,

Fig. 5.6. Carry Save Adder

• u — u -

111
FA

rr TT TT TT TT TT
Co So

Since the input vectors A, B, and C are applied in parallel, the total delay
of a carry save adder is equal to the total delay of a single FA cell. Thus, the
addition of three integers to compute two integers requires a single FA delay
Furthermore, the CSA requires only k times the areas of FA cell, and scales
up very easily by adding more parallel cells. The subtraction operation can
also be performed by using 2's complement encoding. There are basically two
disadvantages of the carry save adders:

5.1 Addition Operation 97

• It does not really solve our problem of adding two integers and producing
a single output. Instead, it adds three integers and produces two such that
sum of these two is equal to the sum of three inputs. This method may
not be suitable for application which only needs the regular addition.

• The sign detection is hard: When a number is represented as a carry-save
pair (C, 5) such that its actual value is C 4- 5, we may not know the exact
sign of total sum C -\- S. Unless the addition is performed in full length,
the correct sign may never be determined.

We will explore this sign detection problem in an upcoming section in more
detail. For now, it suffices to briefly mention the sign detection problem, and
introduce a method of sign detection. This method is based on adding a few of
the most significant bits of C and S in order to calculate (estimate) the sign.
As an example, l e t ^ = —18, B = 19, C = 6. After the carry save addition
process, we produce S = —5 and C — 12, as shown below. Since the total
sum C" + 5 = 12 — 5 = 7, its correct sign is 0. However, when we add the first
most significant bits, we estimate the sign incorrectly.

A =•

B =
C =
S =

a =

-18 =
19 =
6 =

-5 =
12 =

101110
0 10011
000110
111011

000110
1 (1 MSB)
1 1 (2 MSB)
0 0 0 (3 MSB)
0 0 0 1 (4 MSB)
0 0 0 11 (5 MSB)
0 0 0 1 1 1 (6 MSB)

The correct sign is computed only after adding the first three most significant
bits. In the worst case, up to a full length addition may be required to calculate
the correct sign.

5.1.6 Carry Delayed Adder

The carry delayed adder is a two-level carry save adder. As we will see in
§5.3.6, a certain property of the carry delayed adder can be used to reduce
the multiplication complexity. The carry delayed adder produced a pair of
integers {D,T), called a carry delayed number, using the following set of
equations:

Di = J\i © Ui ® Oj ,

Ci^i = AiBi -j- AiCi + BiCi,

i i = ui ® O ,̂

Di^i = SiCij

98 5. Prime Finite Field Arithmetic

where DQ =^ 0. Notice that C^+i and Si are the outputs of a full-adder cell
with inputs Ai, Bi, and Q , while the values A + i and Ti are the outputs of
an half-adder cell.

An important property of the carry delayed adder is that Di-^iTi = 0 for
alH — 0 , 1 , . . . , /c — 1. This is easily verified as

Di^\Ti — SiCi{Si®Ci) — SiCi{SiCi-\-SiCi) = 0.

As an example, let A = 40, B = 2b, and C = 20. In the first level, we compute
the carry save pair (C, S) using the carry save equations. In the second level,
we compute the carry delayed pair {D,T) using the definitions A + i — ^iCi
and Ti- Si® Ci as

A = 40= 101000
B = 25= 011001
C = 20= 010100
5 = 37 - 10 0 10 1
C^48:^0110000
T = 21= 010101
^^64:^1000000

Thus, the carry delayed pair (64, 21) represents the total of A-i- B -\- C = Sb.
The property of the carry delayed pair that TiDi^i = 0 for alH — 0 , 1 , . . . , /c—1
also holds.

T = 21 - 0 1 0 1 0 1
i:):::r 64 ^ 1 0 0 0 0 0 0
T̂ A + i ^ 0 0 0 0 0 0

We will explore this property in § 5.3.6 to design an efficient modular mul­
tiplier which was introduced by Brickell [33]. Fig. 5.7 illustrates the carry
delayed adder for k = 6.

5.2 Modular Addition Operation

The modular addition problem is defined as the computation of S = A -^ B
(mod n) given the integers A, B, and n. It is usually assumed that A and B
are positive integers with 0 < A,B < n, i.e., they are least positives residues.
The most common method of computing S is as follows:

1. First compute S' = A-h B.
2. Then compute S" = S' - n,
3. If S'^ > 0, then S = S' else S = S".

Thus, in addition to the availability of a regular adder, we need fast sign
detection which is easy for the CPA, but somewhat harder for the CSA. How­
ever, when a CSA is used, the first two steps of the above algorithm can be

5.2 Modular Addition Operation 99

A^B.C^ A,B,C, A3B3C3 A2B2C2 A,B,C, AoB^Co

iii iit iil ill iU iil
FA

^ ^ e 1 S5 (

HA

FA

"5
s.

HA

FA

^4 S3

FA

C3

HA

s,

FA

C.

HA

FA

Si C,

HA

J
So

f
HA

Co

n r~i n n n rr .̂
Fig. 5.7. Carry Delayed Adder

combined, in other words, S' = A-\- B and S" = A-{- B -n can be computed
at the same time. Then, we perform a sign detection to decide whether to
take S' or S" as the correct sum. We will review algorithms of this type when
we study modular multiplication algorithms.

5.2.1 Omura's Method

An efficient method computing the modular addition, which especially useful
for multioperand modular addition was proposed by Omura in [260]. Let n <
2^. This method allows a temporary value to grow larger than n, however, it
is always kept less than 2^. Whenever it exceeds 2^, the carry-out is ignored
and a correction is performed. The correction factor is m = 2̂ ^ — n, which
is precomputed and saved in a register. Thus, Omura's method performs the
following steps given the integers A,B<2'^ (but they can be larger than n).

1. First compute S' = A-\- B.
2. If there is a carry-out (of the /cth bit), then 5 = 5 ' + m, else S — S'.

The correctness of Omura's algorithm follows from the observations that

• If there is no carry-out, then 5 = .4 4- -B is returned. The sum S is less
than 2^, but may be larger than n. In a future computation, it will be
brought below n if necessary.

• If there is a carry-out, then we ignore the carry-out, which means we
compute

S' = A-hB-2''.

The result, which needs to be reduced modulo n, is in effect reduced mod­
ulo 2̂ .̂ We correct the result by adding m back to it, and thus, compute

100 5. Prime Finite Field Arithmetic

= A-{-B-2^^2^-n

= A-hB -n.

After all additions are completed, a final result is reduced modulo n by using
the standard technique. As an example, let assume n = 39. Thus, we have
m = 2^ - 39 = 25 = (011001). The modular addition of A - 40 and 5 - 3 0
is performed using Omura's method as follows:

A = 40 - (101000)
B = 3 0 = (011110)
S' = >l -f- B = 1(000110) Carry-out
m = (011001)
S = S' + m= (011111) Correction

Thus, we obtain the result as 5 = (011111) = 31 which is equal to 70 (mod 39)
as required. On the other hand, the addition of A = 23 by B = 26 is performed
as

A = 23= (010111)
B = 2 6 = (011010)
S' = A + B = 0(110001) No carry-out
S = S' = (110001)

This leaves the result as 5 = (110001) = 49 which is larger than the modulus
39. It will be reduced in a further step of the multioperand modulo addition.
After all additions are completed, a final negative result can be corrected by
adding m to it. For example, we correct the above result S = (110001) as
follows:

S = (110001)
m = (011001)
S = S-\-m = 1(001010)
S = (001010)

The result obtained is 5 = (001010) = 10, which is equal to 49 modulo 39, as
required.

5.3 Modular Multiplication Operation

The modular multiplication problem is defined as the computation of P = AB
(mod n) given the integers A, B, and n. It is usually assumed that A and B are
positive integers with 0 < A^B < n, i.e., they are the least positive residues.
There are basically four approaches for computing the product P.

• Multiply and then divide.
• The steps of the multiplication and reduction are interleaved.

5.3 Modular Multiplication Operation 101

• Brickell's method.
• Montgomery's method.

The multiply-and-divide method first multiplies A and B to obtain the
2/c-bit number

P ' : - AB.

Then, the result P' is divided (reduced) by n to obtain the /c-bit number

P:=P' mod n.

The result P is a /c-bit or 5-word number.
The reduction is accomplished by dividing P' by n, however, we are not in­

terested in the quotient; we only need the remainder. The steps of the division
algorithm can be somewhat simplified in order to speed up the process.

5.3.1 Standard Multiplication Algorithm

Let A and B be two 5-digit (s-word) numbers expressed in radix W as:

s - l

A = {As-iAs-2---Ao) = Y^AiW\

s-l

B = {Bs-iBs-2"'Bo) = Yl^'^'^
j=0

where the digits of A and B are in the range [0, VF — 1]. In general W can be
any positive number. For reconfigurable hardware implementations, we often
select W = 2'^ where w is the word-size or granularity of the device, e.g.,
w = 4. The standard (pencil-and-paper) algorithm for multiplying A and B
produces the partial products by multiplying a digit of the multiplier (B)
by the entire number A, and then summing these partial products to obtain
the final number 2s-word number P'. Let P-j denote the (Carry,Sum) pair
produced from the product Ai • Bj. For example, when W = 10, and Ai = 7
and Bj = 8, then P^ = (5,6). The Plj pairs can be arranged in a table as

X

+ ^^3

P'
P' •^32

P' ^ 1 3
P' •^22
P'

^ 3

^ 3

M)3
P'
^ 1 2 P' ^ 2 1
P'
^ 3 0

^ 2

P2
P'
^ 0 2
Pii
P'
-^20

^ 1

P i
P'
M) l P'

^Q

Bo
p'
M)0

pt p / pf pi pi pi pi pi
^7 ^6 -^5 -M ^3 ^2 ^l M)

The last row denotes the total sum of the partial products, and represents the
product as an 2s-word number. The standard algorithm for multiplication
essentially performs the above digit-by-digit multiplications and additions. In

102 5. Prime Finite Field Arithmetic

order to save space, a single partial product variable P' is being used. The
initial value of the partial product is equal to zero; we then take a digit of B
and multiply by the entire number A, and add it to the partial product P'.
The partial product variable P' contains the final product A- B dX the end of
the computation. Algorithm 5.1 shows the standard procedure for computing
the product A- B.

Algorithm 5.1 The Standard Multiplication Algorithm
Require: A^B.
Ensure: P' = A-

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

Initially P[:=
for i = 0 to s

C : = 0 ;

B.
0 for all i -
- 1 do

for ji = 0 to s —
(C,5):=:
Pi^j := S

end for
Pi+3 '•— C]

end for
Return(P2s-

P'

1P23-

1 do
+ Aj

= 0,

Bi

-2---Po)

l , . . . , 2 s

+ C;

In the following, we show the steps of the computation of A- B = 348 • 857
using the standard algorithm.

5.3 Modular Multiplication Operation 103

j Step (C, S) Partial P '
0 0 P(5 4- Aobo -f C (0, *) 000000

0 + 8-7 + 0 (5,6) 000006
1 P{ + Aibo + C

0 + 4 -7 + 5 (3,3) 000036
2 P^ + A260 + C

0 + 3-7 + 3 (2,4) 000436
002436

1 0 Pi' + Aobi + C (0, *)
3 + 8-5 + 0 (4,3) 002436

1 Pi + Aibi + C
4 + 4 . 5 + 4 (2,8) 002836

2 P;̂ + A2bi + C
2 + 3-5 + 2 (1,9) 009836

019836
2 0 P^ + A062 + C (0, *)

8 + 8-8 + 0 (7,2) 019236
1 P3' + Aib2 + C

9 + 4 -8 + 7 (4,8) 018236
2 P^ + A2b2 + C

1 + 3 - 8 + 4 (2,9) 098236
298236

In order to implement this algorithm, we need to be able to execute Step 5 of
Algorithm 5.1 as,

{C,S)~Pi+j+Aj-Bi + C,

where the variables P/+j, Aj^ Bi, C, and S each hold a single-word, or a
W-bit number. This step is termed as an inner-product operation which is
common in many of the arithmetic and number-theoretic calculations. The
inner-product operation above requires that we multiply two VK-bit numbers
and add this product to previous 'carry' which is also a VK-bit number and
then add this result to the running partial product word P/^-j- From these
three operations we obtain a 2V^-bit number since the maximum value is

->vr ^w w -)2Vr 1 + (2'^ - 1)(2^ _ 1) -f 2 ^ - 1 - 2^^ - 1.

Also, since the inner-product step is within the innermost loop, it needs to run
as fast as possible. Of course, the best thing is to have a single microprocessor
instruction for this computation; unfortunately, none of the currently available
microprocessors and signal processors offers such a luxury. A brief inspection
of the steps of this algorithm reveals that the total number of inner-product
steps is equal to 5^. Since s = k/w and it; is a constant on a given computer,
the standard multiphcation algorithm requires 0{k'^) bit operations in order
to multiply two k-hit numbers.

104 5. Prime Finite Field Arithmetic

5.3.2 Squaring is Easier

Squaring is an easier operation than multipHcation since half of the single-
precision multiplications can be skipped. This is due to the fact that P/.- =
Ai' Aj = P-^.

X

4-

-f

P^

P'

P' ^33
P'

P'
V23 P' V23

2-^23

Pi

P' ^13
P' -^22

P[z

2Pl'3
p'
V22

P'

^ 3

^ 3

P'
P'
^12 P' ^12
P'
^03

2-^03
2P{2

^ 3 '

^2

A2
P'
P'
P'

2^02
^ 1 1

V 2

^ 1

Al
P'
M)l
î l̂

2P^i

A'

^ 0

Ao
P'
M)0

P '

n
Thus, we can modify the standard multiplication procedure as shown in Al­
gorithm 5.2 to take advantage of this property of the squaring operation.

Algorithm 5.2 The Standard Squaring Algorithm
Require: A.
Ensure: P' — A- A.
1: Initially Pi := 0 for alH = 0 , 1 , . . . , 2s - 1.
2: for i = 0 to s - 1 do
3: {C,S)-PU,^-Ai-Ai
4: for j = z -I- 1 to s - 1 do
5: {C,S):=PU,-Y2'ArAi-\-C-
6: PUj := 5;
7: end for
8: Pi^s '•— C\
9: end for

10: Return(P^,_iP^,_2 • • • Po)

However, we warn the reader that the carry-sum pair produced by opera­
tion

{C,S)-Pl^^^2-Aj-Ai-^C

in Step 5 of Algorithm 5.2 may be 1 bit longer than a single-precision number
which requires w bits. Since

(2^ - 1) + 2(2^ - 1)(2^ - 1) -f (2^ - 1) = 22^^-^ - 2^+^

and
I ^ Q^if+i _ 2^"^^ <' o'^'^'^^ _ 1

5.3 Modular Multiplication Operation 105

the carry-sum pair requires 2w-\-l bits instead of 2w bits for its representation.
Thus, we need to accommodate this 'extra' bit during the execution of the
operations in Steps 5, 6, and 7 of Algorithm 5.2. The resolution of this carry
may depend on the way the carry bits are handled by the particular processor's
architecture. This issue, being rather implementation-dependent, will not be
discussed here.

5.3.3 Modular Reduction

The multiply-and-reduce modular multiplication algorithm first computes the
product A ' B (or, A - A) using one of the multiplication algorithms given
above. The multiplication step is then followed by a division algorithm in
order to compute the remainder. However, as we have mentioned before, we
are not interested in the quotient; we only need the remainder. Therefore, the
steps of the division algorithm can somewhat be simphfied in order to speed
up the process. The reduction step can be achieved by making one of the
well-known sequential division algorithms. In the rest of this subsection, we
describe the restoring and the nonrestoring division algorithms for computing
the remainder of P' when divided by n, where n is a general modulus^

Division is the most complex of the four basic arithmetic operations. First
of all, it has two results: the quotient and the remainder. Given a dividend
P' and a divisor n, a quotient Q and a remainder R have to be calculated in
order to satisfy

P' = Q'n-\-R with R < n.

If P' and n are positive, then the quotient Q and the remainder R will be
positive. The sequential division algorithm successively shifts and subtracts n
from P' until a remainder R with the property 0 < -R < n is found. However,
after a subtraction we may obtain a negative remainder. The restoring and
nonrestoring algorithms take different actions when a negative remainder is
obtained.

Restoring Division Algorithm

Let Ri be the remainder obtained during the zth step of the division algorithm.
Since we are not interested in the quotient, we ignore the generation of the
bits of the quotient in the following algorithm. The procedure given below
first left-aligns the operands P' and n. Since P' is 2/i;-bit number and n is a
k-h\t number, the left ahgnment implies that n is shifted k bits to the left,
i.e., we start with 2^n. Furthermore, the initial value of R is taken to be P',
i.e., RQ = P', We then subtract the shifted n from P' to obtain R\\ if Ri is

^ It is noted that Solinas proposed in [338] primes of special form for which the
reduction step can be accomplished with high efficiency. However the material
for Solinas special primes is not covered in this book. The interested reader may
consult [37].

106 5. Prime Finite Field Arithmetic

positive or zero, we continue to the next step. If it is negative the remainder
is restored to its previous value as is shown in Algorithm 5.3 below.

Algorithm 5.3 The Restoring Division Algorithm
Require: P\n,
Ensure: R = P' mod n.
1: RQ := t;
2: n := 2^n\
3: for 2 = 1 to /c do
4: Ri := Ri-m;
5: if Ri <0 then
6: Ri := Ri-i',
7: end if
8: n := n/2
9: end for

10: Return(i?/e)

In Step 5 of Algorithm 5.3, we check the sign of the remainder; if it is
negative, the previous remainder is taken to be the new remainder, i.e., a
restore operation is performed. If the remainder Ri is positive, it remains as
the new remainder, i.e., we do not restore. The restoring division algorithm
performs k subtractions in order to reduce the 2/c-bit number t modulo the
/c-bit number n. Thus, it takes much longer than the standard multiplication
algorithm which requires s = k/w inner-product steps, where w is the word-
size of granularity being employed.

In the following, we give an example of the restoring division algorithm for
computing 3019 mod 53, where 3019 = (101111001011)2 and 53 - (110101)2-
The result is 51 = (110011)2.

5.3 Modular Multiplication Operation 107

RQ

n
-

Ri
n/2

+
R2
n/2

4-
Rs
n/2

+
R4
n/2
n/2
n/2

4-
R5

101111 OOIOIU
110101 subtract
000110 negative remainder
101111 001011 restore

11010 1 shift and subtract
10100 1 positive remainder
10100 101011 not restore
1101 01 shift and subtract
0111 01 positive remainder
0111 011011 not restore

110 101 shift and subtract
000 110 positive remainder
000 110011 not restore

11 0101 shift
1 10101 shift

110101 shift and subtract
000010 negative remainder
n o o n restore

R n o o n final remainder

Also, before subtracting, we may check if the most significant bit of the re­
mainder is 1. In this case, we perform a subtraction. If it is zero, there is no
need to subtract since n > Ri. We shift n until it is aligned with a nonzero
most significant bit oiRi. This way we are able to skip several subtract/restore
cycles. In the average, k/2 subtractions are performed.

Nonrestoring Division Algorithm

The nonrestoring division algorithm allows a negative remainder. In order to
correct the remainder, a subtraction or an addition is performed during the
next cycle, depending on the whether the sign of the remainder is positive
or negative, respectively. This is based on the following observation: Suppose
Ri — Ri-\ — n < 0, then the restoring algorithm assigns Ri \= Ri-i and
performs a subtraction with the shifted n, obtaining

Ri^i ==Ri- n/2 = Ri-i - n/2.

However, if Ri = Ri-i — n < 0, then one can instead let Ri remain negative
and add the shifted n in the following cycle. Thus, one obtains

Ri^i = Ri-^ n/2 ^ {Ri-i - n) 4- n/2 = Ri-i - n/2,

which would be the same value. The steps of the nonrestoring algorithm,
which implements this observation, are given in Algorithm 5.4.

Note that the nonrestoring division algorithm requires a final restoration
cycle in which a negative remainder is corrected by adding the last value of n
back to it.

108 5. Prime Finite Field Arithmetic

Algorithm 5.4 The Nonrestoring Division Algorithm
Require: P',n.
Ensure: R = P' mod n.

Ro '•= t\
n := 2'̂ n;
for i = 1 to /c do

if Ri-i > 0 then
Ri := Ri-i — n;

else
Ri := Ri-i + n;

end if
n := n/2;
if î fc < 0 then

i?:= /?-f n;
end if

end for
Return(J^fc)

In the following we compute 51 — 3019 mod 53 using the nonrestoring
division algorithm. Since the remainder is allowed to stay negative, we use 2's
complement coding to represent such numbers.

Ro 0101111 001011 i
n 0110101 subtract

Ri 1111010 negative remainder
n/2 011010 1 add
R2 010100 1 positive remainder
n/2 01101 01 subtract
Ĵ 3 00111 01 positive remainder
n/2 0110 101 subtract
R4 0000 110 positive remainder
n/2 Oil 0101
n/2 01 10101
n/2 0 110101 subtract
Rs 1 111110 negative remainder

_ji 0 110101 add (final restore)
R 0 n o o n Final remainder

5.3.4 Interleaving Multiplication and Reduction

The interleaving algorithm has been known. The details of the method are
sketched in papers [27, 334]. Let Ai and Bi be the bits of the k-hit positive
integers A and JB, respectively. The product P' can be written as

5.3 Modular Multiplication Operation 109

fc-i fc-i

P' =: A'B^A'Y^ Bi2' = Y^{A • Bi)2'
i=0 i=0

= 2("' 2(2(0 -f A . Bk-i) + A . Bk-2) -\-'--)-{-A - BQ

This formulation yields the shift-add multiphcation algorithm. Notice that we
also reduce the partial product modulo n at each step of Algorithm 5.5.

Algorithm 5.5 The Interleaving Multiplication Algorithm
Require: A,B,n.
Ensure: P = A - B mod n.
1: P : = 0 ;
2: for i = 0 to A; - 1 do
3: P := 2P-{-A • Bk-i-i',
4: P := P mod n;
5: end for
6: Return(P)

Assuming that A, B^P < n, we have

P :=2P + A' Bj

< 2 (n - l) - f (n - 1) = 3 n - 3 .

Thus, the new P will be in the range 0 < P < 3n — 3, and at most 2 sub­
tractions are needed to reduce P to the range 0 < P < n. We can use the
following algorithm to bring P back to this range:

P ' := P - n ; If P ' > 0 then P = P'
P ' := P - n ; If P ' > 0 then P = P'

The computation of P requires k steps, at each step we perform the following
operations:

• A left shift: 2P
• A partial product generation: A - Bj
• An addition: P := 2P -h A • Bj
• At most 2 subtractions:

P ' := P - n ; If P ' > 0 then P =^ P'
P ' := P - n ; If P ' > 0 then P =^ P'

The left shift operation is easily performed by wiring. The partial products,
on the other hand, are generated using an array of AND gates. The most
crucial operations are the addition and subtraction operations: they need to
be performed fast. We have the following avenues to explore:

• We can use the carry propagate adder, introducing 0{k) delay per step.
However, Omura's method can be used to avoid unnecessary subtractions:

110 5. Prime Finite Field Arithmetic

3a. P := 2P
3b. If carry-out then P := P -{- m
3c. P \= P-\- A' Bj
3d. If carry-out then P := P -h m

• We can use the carry save adder, introducing only 0(1) delay per step.
However, recall that the sign information is not immediately available in
the CSA. We need to perform fast sign detection in order to determine
whether the partial product needs to be reduced modulo n.

5.3.5 Utilization of Carry Save Adders

In order to utilize the carry save adders in performing the modular multipli­
cation operations, we represent the numbers as the carry save pairs (C^S),
where the value of the number is the sum C-f 5. The carry save adder method
of the interleaving algorithm is given in Algorithm 5.6.

Algorithm 5.6 The Carry-Save Interleaving Multiphcation Algorithm
Require: A,B,n.
Ensure: P = A • B mod n.
1: (C,5):=(0,0);
2: for i = 0 to fc - 1 do
3: (C, S):=2C-\-2S + A- Bk-i-i]
4: (C\S'):=C-\-Sn',
5: if SIGN > 0 then
6: (C,5) :=(C^50;
7: end if
8: end for
9: Return(C,5)

The function SIGN gives the sign of the carry save number C -\- S', Since
the exact sign is available only when a full addition is performed, we calculate
an estimated sign with the SIGN function. A sign estimation algorithm was
introduced in [185]. Here, we briefly review this algorithm, which is based on
the addition of the most significant t bits of C and S to estimate the sign of
C 4- 5. For example, let C = (011110) and S = (001010), then the function
SIGN produces

5.3 Modular Multiplication Operation 111

C - 0 1 1 1 1 0

S = 001010

{t = 1) SIGN = 0

(t = 2) SIGN = 01

(t = 3) SIGN = 100

(̂ = 4) SIGN = 1001

(t = 5) SIGN = 10100

(t = 6) SIGN = 101000.

In the worst case the exact sign is produced after adding all k bits. If the
exact sign of C + 5 is computed, we can obtain the result of the multiplication
operation in the correct range [0, n). If an estimation of the sign is used, then
we will prove that the range of the result becomes [0, n + Zl), where A depends
on the precision of the estimation. Furthermore, since the sign is used to decide
whether some multiple of n should be subtracted from the partial product,
an error in the decision causes only an error of a multiple of n in the partial
product, which is corrected later. We define function T{X) on an n-bit integer
X as

T{X) = X-{X mod 2*),

where 0 < t < n — 1. In other words, T replaces the first least significant t
bits of X with t zeros. This implies

T{X)<X <T{X)-^2K

We reduce the pair (C, S) by performing the following operation Q times:

I. {C,S):=C + S-n.
J . If T(C) + T(S) > 0 then set C := C and S := 5.

In Step J, the computation of the sign bit R of T{C) + T{S) involves n — t
most significant bits of C and S. The above procedure reduces a carry-sum
pair from the range

0 < C o + 5 o < (Q + l)n + 2*

to the range
0 < CK 4-5i? < n + 2*,

where (CQ,SO) and {CR,SR) respectively denote the initial and the final carry-
sum pair. Since the function T always underestimates, the result is never
over-reduced, i.e.,

CR-hSR> 0.

If the estimated sign in Step J is positive for all Q iterations, then QN is
subtracted from the initial pair; therefore

112 5. Prime Finite Field Arithmetic

CR-^SR^CO + SO-QN <n-{- 2^

If the estimated sign becomes negative in an iteration, it stays negative there­
after to the last iteration. Thus, the condition

T{C) 4- T{S) < 0

in the last iteration of Step J implies that

T(C)-f T(5) < -2\

since T{X) is always a multiple of 2^ Thus, we obtain the range of C and S
as

T(C) + T(S) <C + S< T(C) + T{S) + 2*+\

It follows from the above equations that

C 4-5 < 2*+^ - 2̂ = 2^

Since in Step I we perform (C, S) := C -\- S ~ n and in the last iteration the
carry-sum pair is not reduced (because the estimated sign is negative), we
must have

CR-\-SR=^C^-S + n,

which implies
CR^SR<n-\-2K

The modular reduction procedure described above subtracts n from (C, S) in
each of the Q iterations. The procedure can be improved in speed by sub­
tracting 2^~^n during iteration j , where (Q -f 1) < 2^ and j = 1, 2 , 3 , . . . , /c.
For example, if Q = 3, then k = 2 can be used. Instead of subtracting n
three times, we first subtract 2N and then n. This observation is utilized in
Algorithm 5.7.

The parameter t controls the precision of estimation; the accuracy of the
estimation and the total amount of logic required to implement it decreases
as t increases. After Step 7 of Algorithm 5.7, we have

CW+^CO < n - h 2 S

which implies that after the next shift-add step the range of Ĉ *"̂ ^̂ + S^'^'^^^
will be [0,3N -f 2*+^). Assuming Q = 3, we have

3iV + 2*+^ < (Q + l)n + 2* = 4iV + 2\

which implies 2* < n, or t < n - 1. The range of Ĉ *"̂ ^̂ 4- Ŝ *"*"̂ ^ becomes

0 < C^^+i) -f. 5(^+1) < 3A^ 4- 2*-̂ ^ < 3A^ 4- 2^ < 2^-^^

and after Step 4 of Algorithm 5.7, the range will be

5.3 Modular Multiplication Operation 113

Algorithm 5.7 The Carry-Save Interleaving Multiplication Algorithm Re­
visited
Require: A, B, n.
Ensure: P — A • B mod n.
1
2
3
4
5
6
7
8
9

10
11
12
13

Set 5^°^ := 0 and C °̂> := 0.
for i = 1 to /c do

{C'<'\S^'^) := 2C(^-^) + 25^^-^^ + An-iB
{C^'\S^'^) := C^^)-f-5^^) - 2 n ;
if T{C^'^)+T(S^''>) > O t h e n

C(̂) :=C(^> and5(^^ := S^'\
end if
(C(^\5(^>) := C^̂ -̂f-5̂ ^̂ - n ;
if T(C'(^))+T(5(^)) > O t h e n

Ĉ)̂ :=C(^) and5(^) :=5(^);
end if

: end for
: Return(C(^\5^^^)

_2n+i < _2jv < C^^+i) + 5̂ +̂̂ ^ < n 4- 2^ < 2"^+^

In order to contain the temporary results, we use (n-f-3)-bit carry save adders
which can represent integers in the range [—2"""̂ ,̂ 2""^^). When t = n — 1,
the sign estimation technique checks 5 most significant bits of C^^^ and S^^^
from the bit locations n — 2 to n 4- 3. This algorithm produces a pair of
integers (C, 5) = (C(^),5(^)) such that P = C + 5 is in the range [0,2N).
The final result in the correct range [0, n) can be obtained by computing
P — C -{• S and P = C -{• S — n using carry propagate adders. If P < 0,
we have P = P -\- n < n^ and thus P is in the correct range. Otherwise, we
choose P because 0<P = P — n<2^<n implies P € [0, n). The steps of
the algorithm for computing 47 • 48 (mod 50), are illustrated in the following
figure. Here we have

/c=[log2(50)J + l = 6,

A = 4 7 = (000101111),

B = 4S = (000110000),

n = 5 0 = (000110010),

M = -n = (111001110).

The algorithm computes the final result

(C, S) = (010111000,110000000) = (184, -128)

in 3k = 18 clock cycles. The range of C -f- 5" = 184 - 128 = 56 is [0, 2 • 50).
The final result is found by computing C H- 5 = 56 and C -\- S — n = 6^ and
selecting the latter since it is positive.

114 5. Prime Finite Field Arithmetic

7-0

Z = 1

\i = 2

i-3

z-4

z-5

z-6

2a
2b
2c

2a

2b

2c

2a

2b

2c

2a

2b

2c

2a

2b

2c

2a

2b

2c

C

000000000

000000000
000000000
000000000

000000000

000000000

010000000

000100000

001011000

001011000

101100000

001000000

001000000

101100000

101100000

010010000

001000000

010111000

010111000

s
000000000

000110000
000110000

000110000

001100000

001100000

110101110

001101100

111010000

111010000

100100000

111011100

111011100

100001000

100001000

110100110

001011100

110000000

110000000

c
-

-
000100000
000000000

-

000000000

010000000

-

001011000

110110000

-

001000000

110011000

-

000010000

010010000

-

010111000

100010000

s
-
-

110101100
111111110

-

111111100

110101110

-

111010000

001000110

-

111011100

001010010

-

111110100

110100110

-

110000000

011110110

T{C)-i-T{S)

-
-

111000000
111100000

-

111100000

000100000

-

000000000

111100000

-

000000000

111000000

-

111100000

000100000

-

000100000

111100000

R\
-

-
1
1

-

1

0

-

0

1

-

0

1

-

1

0

-

0
1

5.3.6 Brickell's Method

This method is based on the use of a carry delayed integer introduced in
§5.1.6. Let A be a carry delayed integer, then, it can be written as

fc-i

i=0

The product P = AB can be computed by summing the terms:

{To-B + Do'B)-2^ -{-

{Ti'B-{-Di'B)-2^ ^

(T2 • B + D2 • 5) . 22 4-

{n-i-B^Dk-i-B)-2^-'

Since DQ = 0, we rearrange to obtain

2^-To-B + 2^ 'Di'B -{-
2^'Ti'B-\'2'^'D2'B +
2'^'T2'B-^2^-D3'B +

rik-2 Tk-2 • B + 1^-^ • Dk-i
2'=-! • Tk-i • B

B +

5.3 Modular Multiplication Operation 115

Also recall that either Ti or Di^i is zero due to the property of the carry
delayed adder. Thus, each step requires a shift of B and addition of at most
2 carry delayed integers:

Either. {Pd,Pt):={Pd, Pt)-\-2'-Ti-B
. Or: {Pd^Pt):={Pd, Pt)-\-2'^''Di^,-B

After k steps P — {Pd,Pt) is obtained. In order to compute P (mod n), we
perform reduction:

If P > 2^-1-n then P :
If P > 2^-2 . n then P :
If P > 2^ -̂̂ . n then P :

= p -
- p -
= p -

2fc-
2/e-

2/e-

-1

-2

-3

n
n
n

If P > n then P := P - n

We can also reverse these steps to obtain:

^k-l ^Tk-i'B'2^

= P + Tk-2'B'2''-^-i-Dk-i'B'2''

= P-\-Tk-3-B-2^ Dk-2 •B'2^

p — p-I-Ti • P . 2^ + Ĵ 2 • 5 • 2^

P — P- f To • P • 2° + A • P • 2^

Also, the multiplication steps can be interleaved with reduction steps. To per­
form the reduction, the sign of P — 2* • n needs to be determined (estimated).
Brickell's solution [33] is essentially a combination of the sign estimation tech­
nique and Omura's method of correction. We allow enough bits for P , and
whenever P exceeds 2̂ ,̂ add m = 2^ — n to correct the result. 11 steps after
the multiplication procedure started, the algorithm starts subtracting multi­
ples of n. In the following, P is a carry delayed integer of /c 4- 11 bits, m is
a binary integer of k bits, and t\ and 2̂ control bits, whose initial values are
ti-=^t2 = 0.

1. Add the most significant 4 bits of P and m • 2^^
2. If overflow is detected, then t2 = I else 2̂ — 0.
3. Add the most significant 4 bits of P and the most significant 3 bits of

m.2 io .
4. If overflow is detected and 2̂ = 0, then ^i = 1 else ti = 0.

The multiplication and reduction steps of Brickell's algorithm are as follows:

B' :=Ti-B + 2' A + i • B

m' :=t2'm'2^^ -\-ti • m • 2^°

P := 2(P + P ' - f mO

A := 2A.

116 5. Prime Finite Field Arithmetic

5.3.7 Montgomery's Method

In 1985, P. L. Montgomery introduced an efficient algorithm [238] for comput­
ing R = A- B mod n where A, B, and n are k-hit binary numbers. The Mont­
gomery reduction algorithm computes the resulting /c-bit number R without
performing a division by the modulus n. Via an ingenious representation of
the residue class modulo n, this algorithm replaces division by n operation
with division by a power of 2. This operation is easily accomplished on a
computer since the numbers are represented in binary form. Assuming the
modulus n is a /c-bit number, i.e., 2^~^ < n < 2^, let r be 2^. The Mont­
gomery reduction algorithm requires that r and n be relatively prime, i.e.,
gcd(r, n) = gcd(2'^,n) = 1. This requirement is satisfied if n is odd. In the
following we summarize the basic idea behind the Montgomery reduction al­
gorithm.

Given an integer 4̂ < n, we define its n-residue with respect to r as

A== A ' r mod n.

It is straightforward to show that the set

{ i' r mod n\0<i<n — 1}

is a complete residue system, i.e., it contains all numbers between 0 and n— 1.
Thus, there is a one-to-one correspondence between the numbers in the range
0 and n — 1 and the numbers in the above set. The Montgomery reduction
algorithm exploits this property by introducing a much faster multiplication
routine which computes the n-residue of the product of the two integers whose
n-residues are given. Given two n-residues A and B, the Montgomery product
is defined as the n-residue

R=: A- B ' r~^ mod n

where r~"̂ is the inverse of r modulo n, i.e., it is the number with the property

The resulting number R is indeed the n-residue of the product

R = A' B mod n

since

R== A- B ' r~^ mod n

= A • r ' B ' r ' r~^ mod n

= A ' B ' r mod n.

In order to describe the Montgomery reduction algorithm, we need an addi­
tional quantity, n', which is the integer with the property

5.3 Modular Multiplication Operation 117

r ' r~^ — n- n' = I.

The integers r~^ and n' can both be computed by the extended Euclidean
algorithm [178]. The Montgomery product algorithm, which computes

u==^ A' B • r~^ (mod n)

given A and 5 , is given in Algorithm 5.8 below.

Algor i thm 5.8 Montgomery Product
Require: A,B,r,n.
Ensure: ti=MonPro(^, B)=A • B • r~^ (mod n).

t:=AB;
m '.•= t' n' mod r;
u \= {t •]- in ' n)/r\
if u > n then

Return(u — n)
else

Return(u)
end if

The most important feature of the Montgomery product algorithm is that
the operations involved are multiplications modulo r and divisions by r, both
of which are intrinsically fast operations since r is a power 2. The MonPro
Algorithm 5.9 can be used to compute the product of A and B modulo n,
provided that n is odd.

Algor i thm 5.9 Montgomery Modular Multiplication: Version I
Require: A, B, an odd number n.
Ensure: x = A • B (mod n).
1: Compute n' using the extended Euclidean algorithm.
2: A := A ' r mod n;
3: B '.— B ' r mod n;
4: X := MonPro(i, 5);
5: X := MonPro(x, 1);
6: Return(a;)

A better algorithm can be given by observing the property

MonPro(A, B) = (A • r) • B - r''^ = A - B (mod n),

which modifies Algorithm 5.9 as shown in Algorithm 5.10. However, the
preprocessing operations, especially the computation of n', are rather time-
consuming.

118 5. Prime Finite Field Arithmetic

Algorithm 5.10 Montgomery Modular Multiplication: Version II
R e q u i r e : A,B, an odd number n.
E n s u r e : x = A • B (mod n).

1: Compute n ' using the extended Euclidean algorithm.
2: A := A • r mod n;
3: X := MonPro(i , B);
4: Re turn(a ;)

Nevertheless, there is an efficient algorithm for computing the single pre­
cision integer UQ. The computation of no can be performed by a specialized
Euclidean algorithm instead of the general extended Euclidean algorithm.
Since r = 2^^ and

r ' r~^ — n- n' = I,

we take modulo 2^ of the both sides, and obtain

- n - n ' - l (mod 2^),

or, in other words,
U'Q == -n^^ (mod 2^),

where UQ and n^^ are the least significant words (the least significant w bits)
of n' and n ~ \ respectively. In order to compute —UQ^ (mod 2^), we use
algorithm 5.11 given below which computes x~^ (mod 2^) for a given odd x.

Algorithm 5.11 Specialized Modular Inverse
R e qu i re : an odd number x and
E n s u r e : yuj = x~

1:
2:
3:
4:
5:
6:
7:
8:
9:

y\ •= 1;
for i — 2 to w

if 2'-^ < X '
Vi := Vi-i

else
Vi -.= Vi-i

end if
e n d for
Return(?/ty)

' (mod 2^).

do
yi-i (mod 2')
+ 2^-^

J

w.

t h e n

The correctness of the algorithm follows from the observation that, at every
step z, we have

X • yi = I (mod 2^).

This algorithm is very eflftcient, and uses single precision addition and multipli­
cations in order to compute x~^. As an example, we compute 23"^ (mod 64)
using the above algorithm. Here we have a; = 23, ii; = 6. The steps of the
algorithm, the temporary values, and the final inverse are shown below:

5.3 Modular Multiplication Operation 119

i

2
3
4
5
6

2'

4
8
16
32
64

Vi-i

1
3
7
7
7

X ' yi-i (mod 2̂)

23 • 1 = 3
23 • 3 = 5
23 • 7 = 1
23-7-1
23 • 7 = 33

22-1

2
4
8
16
32

2/i
1 + 2 = 3
34-4 = 7

7
7

7 + 32 = 39

Thus, we compute 23 ^ = 39 (mod 64). This is indeed the correct value since

23 • 39 = 14 • 64 -h 1 = 1 (mod 64).

Also, at every step z, we have x - yi = 1 (mod 2*), as shown below:

X • yi mod 2*

23 • 1 = 1 mod 2
23 • 3 = 1 mod 4
23 • 7 = 1 mod 8
23 • 7 = 1 mod 16
23 • 7 = 1 mod 32
23 • 39 = 1 mod 64

Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular
multiplications with respect to the same modulus are needed. Such is the case
when one needs to compute a modular exponentiation, i.e., the computation
of M^ mod n. Using one of the addition chain algorithms given in §5.4, we
replace the exponentiation operation by a series of square and multiplication
operations modulo n. This is where the Montgomery product operation finds
its best use. In the following we summarize the modular exponentiation op­
eration which makes use of the Montgomery product function MonPro. The
exponentiation Algorithm 5.12 below uses the binary method.

Thus, we start with the ordinary residue M and obtain its n-residue M
using a division-like operation, which can be achieved, for example, by a series
of shift and subtract operations. Additionally, Steps 2 and 3 of Algorithm 5.12
require divisions. However, once the preprocessing has been completed, the
inner-loop of the binary exponentiation method uses the Montgomery product
operations which performs only multiplications modulo 2^ and divisions by 2^,
When the binary method finishes, we obtain the n-residue x of the quantity
X = M^ mod n. The ordinary residue number is obtained from the n-residue
by executing the MonPro function with arguments x and 1. This is easily
shown to be correct since

X = X ' r mod n

immediately impHes that

x = X'r~^modn — x - l - r ~ ^ m o d n := MonPro(x,l).

120 5. Prime Finite Field Arithmetic

Algorithm 5.12 Montgomery Modular Exponentiation
Require: A, B, and odd number n.
Ensure: x = M^ (mod n).
1: Compute n' using the extended Euclidean algorithm.
2: M := M • r mod n;
3: X \= I • r mod n;
4: for i == k — 1 down to 0 do
5: X := MonPro(x,x);
6: if Ci = 1 then
7: X := MonPro(M,x);
8: end if
9: end for

10: X :— MonPro(x, 1);
11: Return(x)

The resulting algorithm is quite fast as was demonstrated by many researchers
and engineers who have implemented it, for example, see [72, 200]. However,
this algorithm can be refined and made more efficient, particularly when the
numbers involved are multi-precision integers. For example, Dusse and Kaliski
[72] gave improved algorithms, including a simple and efficient method for
computing n'. We will describe these methods below.

An Example of Exponentiation

Here we show how to compute x = 7^° mod 13 using the Montgomery expo­
nentiation algorithm.

• Since n = 13, we take r == 2^ == 16 > n.
• Computation of n'\

Using the extended EucHdean algorithm, we determine that 16-9 —13-11 =
1, thus, r~^ = 9 and n' = 11.

• Computation of M:
Since M = 7, we have M := M • r (mod n) = 7 • 16 (mod 13) = 8.

• Computation of x for a; = 1:
We have x := x • r (mod n) = 1 • 16 (mod 13) = 3.

• Steps 5 and 7 of the ModExp routine:
ei

1
0
1
0

Step 5

MonPro(3,3) = 3
MonPro(8,8) = 4
MonPro(4,4) = 1
MonPro(7,7) = 12

Step 7

MonPro(8,3) = 8

MonPro(8,l) = 7

o Computation of MonPro(3,3) = 3: o Computation of MonPro(8,3) = 8:
t := 3 • 3 = 9 t := 8 • 3 = 24
m := 9 • 11 (mod 16) = 3 m := 24 • 11 (mod 16) = 8
^ := (9 -f 3 .13)/16 = 48/16 = 3 u := (24 -|- 8 • 13)/16 = 128/16 = 8

5.3 Modular Multiplication Operation 121

o Computation of MonPro(8,8) = 4: ^ Computation of MonPro(4,4) = 1;

t - = 8 8 = 64 i : = 4 - 4 = 16

m := 64 . 11 (mod 16) = 0 '^ •= .] l ' ' ("1°^/,^) = » , ,
M := (64 + 0 • 13)/16 = 64/16 = 4 « ^= (16 + 0 • 13)/16 = 16/16 = 1

o Computation of MonPro(8,1) == 7: o Computation of MonPro(7, 7) = 12:
t:=S'l = S t:=7'7 = 49
m := 8 • 11 (mod 16) - 8 m : - 49 • 11 (mod 16) = 11
u:= (84-8-13) /16= 1 1 2 / 1 6 - 7 u := (49+1M3) /16 - 192/16 = 12

• Step 7 of the ModExp routine: x = MonPro(12,1) = 4
i — 1 2 - 1 = 12
m : = 12-11 (mod 16) = 4
u:={12 + 4' 13)/16 = 64/16 - 4

Thus, we obtain x = 4 as the result of the operation 7^° mod 13.

Hardware Implementation of the Montgomery Method

In the rest of this section, we introduce an efficient binary add-shift algorithm
for computing MonPro(yl, J9), and then generahze it to the m-ary method.
We take r = 2^, and assume that the number of bits in 4̂ or B is less than
k. Let A = {Ak-iAk-2 - • • AQ) be the binary representation of A. The above
product can be written as

k-l

2-^ • {Ak-iAk-2 "'Ao)'B = 2-''-Y^Ai'2''B (mod n).
i=0

The product t = (^o 4- Ai2 H Ak-i2^~'^) • B can be computed by starting
from the most significant bit, and then proceeding to the least significant, as
follows:

1. t:=0
2. for z = /c - 1 to 0
2a. t:=t-\-Ai-B
2b. t\=2't

The shift factor 2~^ \n 2~^ - A - B reverses the direction of summation. Since

2-^'{A^-{-Ax2-{-"'Ak-i2^-^) = Aifc_l2-l+Afc_22-2...Ao2-^

we start processing the bits of A from the least significant, and obtain the
following binary add-shift algorithm to compute t = A - B - 2'^^, as shown in
Algorithm 5.13.

Procedure 5.13 computes the product t ~ 2~^ - A ' By however, we are
interested in computing u = 2~^ - A- B (mod n). This can be achieved by

122 5. Prime Finite Field Arithmetic

Algorithm 5.13 Add-and-Shift Montgomery Product
Require: A,B.
Ensure: t = A-B-2~''.
1: t :=0;
2: for i = 0 to fc - 1 do
3: t:=t + Ai-B;
4: t := t/2]
5: end for
6: Return(t)

subtracting n during every add-shift step, but there is a simpler way: We add
n to n if li is odd, making new u an even number since n is always odd. If u is
even after the addition step, it is left untouched. Thus, u will always be even
before the shift step, and we can compute

u := u- 2~^ (mod n)

by shifting the even number u to the right since u = 2v implies

u :— 2v • 2~^ = V (mod n).

The binary add-shift algorithm computes the product u~ A'B-2~^ (mod n)
as shown in Algorithm 5.14.

Algorithm 5.14 Binary Add-and-Shift Montgomery Product
Require: A, B, an odd number n.

(mod n). Ensure:
1:
2:
3:
4:
5:
6:
7:
8:
9:

u :=
for i

u
if

u = A- B
0;
= 0 to A; -

•.= u-{- Ai •

.2-'

1 do
B;

u is odd then
u := li + n;

end if
u - «/2;

end for
Reti arn(u)

We reserve a {k + l)-bit register for u because if u has k bits at beginning
of an add-shift step, the addition oi Ai - B and n (both of which are /c-bit
numbers) increases its length to A; + 1 bits. The right shift operation then
brings it back to k bits. After k add-shift steps, we subtract n from u if it is
larger than n.

Also note that Steps 2a and 2b of the above algorithm can be combined:
We can compute the least significant bit î o of u before actually computing
the sum in Step 2a. It is given as

5.3 Modular Multiplication Operation 123

Thus, we decide whether u is odd prior to performing the full addition oper­
ation u := u -\- AiB. This is the most important property of Montgomery's
method. In contrast, the claissical modular multiplication algorithms (e.g., the
interleaving method) computes the entire sum in order to decide whether a
reduction needs to be performed.

5.3.8 High-Radix Interleaving Method

Since the speed for radix 2 multipliers is approaching limits, the use of higher
radices is investigated. High-radix operations require fewer clock cycles, how­
ever, the cycle time and the required area increases. Let 2^ be the radix.
The key operation in computing P = AB (mod n) is the computation of an
inner-product steps coupled with modular reduction, i.e., the computation of

P:=2^ 'P-\-A'Bi-Q'n,

where P is the partial product and Bi is the ith digit of B in radix 2^.
The value of Q determines the number of times the modulus n is subtracted
from the partial product P in order to reduce it modulo n. We compute Q
by dividing the current value of the partial product P by n, which is then
multiplied by n and subtracted from the partial product during the next
cycle. This implementation is illustrated in Fig. 5.8.

B (Multiplier)

Shift Left
bbits

Shift Left
bbits

bbits

Accumulator

B (Multiplier) B (Multiplier)

<8)
t t

-€)
^^27 k b+1 bits

Divide by n H

Fig. 5.8. High-Radix Interleaving Method

For the radix 2, the partial product generation is performed using an array of
AND gates. The partial product generation is much more complex for higher
radices, e.g., Wallace trees and generalized counters need to be used. However,
the generation of the high-radix partial products does not greatly increase cy­
cle time since this computation can be easily pipeHned. The most complicated

124 5. Prime Finite Field Arithmetic

step is the reduction step, which necessitates more complex routing, increasing
the chip area.

5.3.9 High-Radix Montgomery's Method

The binary add-shift algorithm is generalized to higher radix (m-ary) algo­
rithm by proceeding word by word, where the wordsize is w bits, and k = sw.
The addition step is performed by multiplying one word of A by B and the
right shift is performed by shifting w bits to the right. In order to perform an
exact division of -u by 2^, we add an integer multiple of n to ii, so that the
least significant word of the new u will be zero. Thus, if u j^ 0 (mod 2^), we
find an integer m such that u -h m • n = 0 (mod 2^). Let UQ and no be the
least significant words of u and n, respectively. We calculate m as

m = —UQ'nQ^ (mod 2^).

The word-level (m-ary) add-shift Montgomery product algorithm is given in
Algorithm 5.15.

Algorithm 5.15 Word-Level Add-and-Shift Montgomery Product
Require: A, B, an odd number n, k — sw.
Ensure: u = A- B • 2~^ (mod n).
1
2
3
4
5
6
7;

u := 0;
for i = 0 to s — 1 do

u := u -\- Ai ' B;
m := —uo ' UQ^ mod 2"
u := u + m • n;
u:=i t /2^ ;

end for
Return(tx)

This algorithm specializes to the binary case by taking w = 1. In this
case, when u is odd, the least significant bit UQ is nonzero, and thus, m =
—UQ ' UQ^ = 1 (mod 2).

5.4 Modular Exponentiation Operation

Modular exponentiation can be defined in terms of field multiplication as
follows. Let a: be a positive integer in [1, n]. Let also e be defined as an arbitrary
positive integer. Then, we define modular exponentiation as the problem of
finding the number y such that,

y= x^ mod n (5.1)

5.4 Modular Exponentiation Operation 125

Taking advantage of the linearity property of the modular operation, (5.1)
can be evaluated by performing a reduction modulo n at each step of the
exponentiation thus guaranteeing that all the partial results will not grow
larger than twice the length of the modulus. In the rest of this Section we
will consider that every multiplication operation always includes a subsequent
reduction step.

In general one can follow two strategies in order to optimize the compu­
tation of (5.1). One approach is to implement field multiphcation, the main
building block required for field exponentiation, as efficiently as possible. The
other is to reduce the total number of multiplications needed to compute
(5.1). In this Section we address the latter approach, assuming that arbitrary
choices of the base x are allowed but considering that the exponent e has been
previously fixed.

In this section, we include a brief review of the main deterministic heuristic
proposed in the literature for computing field exponentiation.

5.4.1 Binary Strategies

Let e be an arbitrary m-bit positive integer e, with a binary expansion repre­
sentation given as, e — (lem-2 • • • 6160)2 — 2^~^ -h X]^o^ 2*ei. Then,

m - 2

i=0

Binary strategies evaluate (5.2) by scanning the bits of the exponent e one
by one, either from left to right (MSB-first binary algorithm) or from right to
left (LSB-first binary algorithm) applying the so-called Horner's rule ^. Both
strategies require a total of m - 1 iterations. At each iteration a squaring
operation is performed, and if the value of the scanned bit is one, a subsequent
field multiplication is performed. Therefore, the binary strategy requires a
total of m — 1 squarings and H{e) — 1 field multiphcations, where H{e) is the
Hamming weight of the binary representation of e. The pseudo-code of the
MSB-first and the LSB-first binary algorithms are shown in Figures 5.16 and
5.17, respectively. The computational complexity of the algorithm in Figure
5.16 is given as,

P{e,m) = m-hH{e)-2 = [log2(e)J-f i/(e) - 1 (5.3)

2 Horner's rule, named after W. G. Horner, ranks among the most efficient algo­
rithms for the computation of nth degree polynomials of the form,
p{x) — pnx^ -h pn-ix^ - 1 H h pix + uo,pn 7̂ 0, for fixed values of x.
Horner's rule solves this problem by evaluating p{x) as,
p{x) = (. . . {pnX •i-pn-l)x + '-')x-j- po-

This elegant algorithm was discovered independently by Isaac Newton 150 years
earlier than Horner and by the Chinese mathematician C. C. Chao in the 13th
century [178]

126 5. Prime Finite Field Arithmetic

An Example. Let us define e = 1903 = (11101101111)2. Then m = 11
and H{e) = 9. According to (5.3) the computational complexity of the binary
algorithm is given as,

P(e) = m - f / / (e) - 2 = 1 1 + 9 - 2 = 18.
After evaluating the algorithm of Figure 5.16, the resulting binary sequence

is given as.

x'
-*
^

^x'^^x'^
^59 ^ ^118 ^

^951 ^ ^1902 .

x^^a;
x 2 3 6 ^

-. x''°'

7 _^

X^''

x'"
-»

—» X

x''^

28

—>
^x^^ - * x ^ «
x"'^ - . x«50

We compare the MSB-first and the LSB-first binary algorithms in terms of
time and space requirements below:

• Both methods require m — \ squarings and an average of | (m — 1) multi-
pUcations.

• The MSB-first binary method requires two registers: x and y.
• The LSB-first binary method requires three registers: x, y, and P. However,

we note that P can be used in place of M, if the value of M is not needed
thereafter.

• The multiplication (Step 4) and squaring (Step 5) operations in the LSB-
first binary method are independent of one another, and thus these steps
can be parallelized. Provided that we have two multipliers (one multi-
pher and one squarer) available, the running time of the LSB-first binary
method is bounded by the total time required for computing h—\ squaring
operations on /c-bit integers.

Algorithm 5.16 MSB-First Binary Exponentiation
Require: x, n, e = (em-i . . . ei
Ensure: y == x^ mod n.

1
2
3
4
5
6
7
8

y = 0;;
for i — m — 2 downto 0 do

y = y^ ;
if Ci —— 1 then

y = y - x ;
end if

end for
Return(y)

5.4.2 Window Strategies

The binary method discussed in the preceding section can be generahzed
by scanning more than one bit at a time. Hence, the window method (first

5.4 Modular Exponentiation Operation 127

Algorithm 5.17 LSB-First Binary Exponentiation
Require: x, n, e = (cm-i
Ensure: y = x^ mod n.

1
2
3
4
5
6
7
8

p = X ; y = 1;
for i = 0 to m — 1 do

if d = = 1 then
y = y p;

end if

end for
Return(y)

.6160)2

described in [178]) scans k bits at a time. The window method is based on
a /c-ary expansion of the exponent, where the bits of the exponent e are
divided into /c-bit words or digits. The resulting words of e are then scanned
performing k consecutive squarings and a subsequent multiplication as needed.
In the following we describe the window method in a more formal way.

Algorithm 5.18 MSB-First 2'^-ary Exponentiation
Require: x, n, e = (em-i •.. 6160)2? k divisor of m such that ^ = m/k.
Ensure: y = x^ mod n.

1: Pre-compute and store x^ for all j = 1, 2, 3 , 4 , . . . , 2̂ ^ — 1.
2: Divide e into k-hii words Wi for i = 0 ,1 , 2 , . . . , 1̂ - 1.
3:
4:
5:
6:
7:
8:
9:

10:

y^^W^-l.

for z = ?̂ — 2 downto 0 do
2/c

y = y ;
if H î ^ 0 then

y = y • x*^*;
end if

end for
Return(y)

Let e be an arbitrary m-bit positive integer e, with a binary expansion
representation given as,

m-2

e = (le^-2 . . .e ieo)2 = 2 ^ - 1 + ^ 2 ^ 6 ^ .

Let A: be a small divisor of m. Then this binary expansion of e can be
partitioned into ^ words of length /c, such that k^ = m.lf k does not divide
m, then the exponent must be padded with at most k — 1 zeros. Let us define

128 5. Prime Finite Field Arithmetic

fc-i

^i = {eik+{k-i)eik-\-(k-2)'' • eik-^ieik)^ = ^ 2^e(^n,^j) (5.4)
j=o

Then, we can equivalently represent e as, Y2i=o' ̂ i ' 2^ .̂ Using the above
definition we have,

y = X« = xS*="o' ̂ ^""^^ = n X'*"'^' (5.5)

(5.5) is the beisis of the window MSB-first procedure for exponentiation de­
scribed in the pseudo-code of Figure 5.18. The window method first pre-
computes the values of x^ for j = 1, 2, 3 , . . . , 2̂ ^ — 1. Then, the exponent
e is scanned k bits at a time from the most significant word (Wq^-i) to the
least significant word (Wo). At each iteration the current partial result y is
raised to the 2^ power and multiplied with x^\ where Wi is the current
nonzero word being processed. Referring to Figure 5.18, it can be seen that,

• The first part of the algorithm consists on the pre-computation of the first
2^ powers of x at a cost of 2^ — 2 preprocessing multiplications.

• At each iteration of the main loop, the power y^ can be computed by
performing k consecutive squarings. The total number of squarings is given
by {^ - l)k = m - k.

• At each iteration one multiplication is performed whenever the i-th word
Wi is different than zero. Since all but one of the 2^ different values of Wi
are nonzero, the average number of required multiplications is given as,
(! ^ - l) (l - 2 - ^) - (f - l) (l - 2 - ^) .

Thus, the average number of multiplications needed by the window method
in order to compute an m-bit field exponentiation is given as,

P{m, k) = (2^ _ 2) + (m - /c) -h (^ - 1)(1 - 2"^). (5.6)
K

For A; = 1,2,3,4 the window method sketched at Figure 5.18 is called, respec­
tively, binary, quaternary, octary and hexa MSB-first exponentiation method.
In particular, note that by evaluating (5.6) for /c = 1, the average number
of multiplications for the binary algorithm can be found as | (m — 1) field
operations on average.

One obvious improvement of the strategy just outlined is that instead of
calculating and storing all the 2^ first powers of x, one can just pre-compute
the windows needed for a given exponent e, thus saving some operations. This
last idea is illustrated in the examples below.

Example. Once again, let us consider the exponent e = 1903 =
(11101101111)2 with m = 11. Then, the window method computational
complexity and resulting sequence using k = 2,3,4 can be found as,
Quaternary: e = 1903 = (011101101111)2

5.4 Modular Exponentiation Operation 129

P(m, k) = 2 Pre-comp mults -f 10 Sqrs -f 5 mults = 17.
Precomp. Sequence: x^ —̂ x^ —> x^.
Main sequence:

x'
-^
—>

-^x^-
x i i « - ^

^ 1 9 0 0 _

*X^^

x " « ^
» X ^ ' " ' ^

x''^
a;236

x " ^

-^x*'^

x^^
-^

—f X

x"'^

29

-^
^ a ; ^ «

x^^o

Octal: e = 1903 - (011101101111)2
P(m, A;) — 4 Pre-comp mults 4- 9 Sqrs -f 3 mults — 16.
Precomp. Sequence: x^ -^ x^ —^ x^ —^ x^ -^ x^.
Main sequence:

237 , ^474 , 948 . ^1896 , ^1903

Hexa: e = 1903 = (011101101111)2
P{m, k) = 6 Pre-comp mults H- 8 Sqrs + 2 mults .= 16.
Precomp. Sequence: x^ -^ x'^ -^ x^ -^ x^ —^ x'^ -^ x^^ -^ x^^.
Main sequence:

r"^ - 4 r^^ - 4 r28 _ . r^6 112 118 . 236 , „472

—^ a;944 __̂ ^1888 _^ ^1903

However, none of the above deterministic methods is able to find the short­
est addition chain'^ for e = 1903.

5.4.3 Adaptive Window Strategy

The adaptive or sliding window strategy is quite useful for exponentiations
with extremely large exponents (i.e. exponents with bit length greater than
128 bits) mainly because of its ability to adjust its method of computation
according to the specific form of the exponent at hand. This adjustment is done
by partitioning the input exponent into a series of variable-length zero and
nonzero words called windows. As opposed to the traditional window method
discussed in the previous section, the sliding window algorithm provides a
performance tradeoff in the sense that allows the processing of variable-length
zero and nonzero digits. The main goal pursued by this strategy is to try to
maximize the number and length of zero words, while using relatively large
values of k.

A sliding window exponentiation algorithm is typically divided into two
phases: exponent partitioning and the field exponentiation computation itself.

Addition chains are formally defined in §6.3.3.

130 5. Prime Finite Field Arithmetic

In the first phase, the exponent e is decomposed into zero and nonzero words
(windows) Wi of length L{Wi) by using some partitioning strategy. Although
in general it is not required that the window's lengths L{Wi) must all be
equal, all nonzero windows should have a length L(Wi) smaller than a given
number k. Let Z be the number of zero windows and NZ be the number of
non-zero windows, so that their addition ^ represents the total number of
windows generated by the partitioning phase, i.e.,

^ = Z + NZ (5.7)

It is useful to force the least significant bit of a nonzero window Wi to be
equal to 1. In this way, when comparing with the standard window method
discussed in the previous Section, the number of preprocessing multiplications
are at least nearly halved, since x^ must only be pre-computed for w odd.

q consecuUve zeros
detected

Fig. 5.9. Partitioning Algoritm

Several sliding window partitioning approaches have been proposed [116,
178, 191, 181, 30, 35]. Proposed techniques differ in whether the length of a
nonzero window has to have a constant or a variable length. The partitioning
algorithm instrumented in this work scans the exponent from the most signif­
icant to the least significant bit according to the finite state machine shown
in Figure 5.9. Hence, at any moment the algorithm is either completing a zero
window or a nonzero window. Zero windows are allowed to have an arbitrary
length. However, the maximum length of any given nonzero window should
not exceed the value of k bits.

Starting from the Zero Window State (ZWS), the exponent bits are
checked one by one. As long as the value of the current scanned bit is zero, the
algorithm stays in ZWS accumulating as many consecutive zeros as possible.
If the incoming bit is one, the finite state machine switches to the Nonzero
Window State (NZWS). The automaton will stay there as long as q con­
secutive zeros had not been collected. If this condition occurs the automaton
switches to ZWS (usually q is chosen to be a small number, namely, q e [2,5]).

5.4 Modular Exponentiation Operation 131

Otherwise, if k bits can been collected, the partitioning algorithm stores the
new formed nonzero window and stays in NZWS in order to generate another
nonzero window.

Algorithm 5.19 Shding Window Exponentiation
Require: x, n, e = (em-i . • • 6160)2-
Ensure: y = x^ mod n.
1: Pre-compute and store x^ for at most all j = 1, 2, 3,4,. . . , 2̂^ — 1.
2: Divide e into zero and nonzero windows Wi of length L{Wi) for

i = 0 , 1 , 2 , . . . , * ' - 1 .

for i = ^ — 2 downto 0 do
y = y ;
ifWi^O then

w y = y •x'̂ '̂ ;̂
end if

end for
Return(y)

The pseudo-code for the shding window exponentiation algorithm is shown
in Figure 5.19. Prom that figure it can be seen that,

• The first part of the algorithm consists on the pre-computation of at most
the first 2^ odd powers of x at a cost of no more than 2^~-̂ —1 preprocessing
multiplications.

• At step 2, the exponent e is partitioned using the strategy described above
and depicted in Figure 5.9. As a consequence, a total of Z zero windows
and NZ nonzero windows will be produced.

• At step 3, y is initialized using the value of the Most Significant Window
as y = a;^*-^. It is always assumed that W^^-i ^ 0.

• At each iteration of the main loop, the power y^ ' can be computed by
performing L{Wi) consecutive squarings. The total number of squarings is
given by m - L(iy^- i)

• At each iteration one multipHcation is performed whenever the i-th word
Wi is different than zero. Recall that NZ represents the number of nonzero
windows. Therefore, the number of multiphcations required at this step of
this algorithm is NZ — 1. Although the exact value of NZ will depend
on the partitioning strategy instrumented, our experiments show that an
approximate value for NZ using q — 2, /c = 5, is about 0.15m.

Thus, we find that the average number of multiplications needed to compute
a field exponentiation for an m-bit exponent e is given as,

P{m,k) = {2^-^-l)-^{m-L{Wk-i))-i-NZ~l (5.8)

^ 2 ' ^ - ^ - l + 1.15m-L(P^fc_i).

132 5. Prime Finite Field Arithmetic

Due to the considerable high efficiency of the partitioning strategy for collect­
ing zero words, the sHding window method significantly outperforms the stan­
dard window method when sufficiently large exponents are computed [181].
However, notice that the value of the parameter k cannot be chosen too large
due to the exponentially increasing cost of pre-computing the first 2̂ ^ odd
powers of x (step 1 of Figure 5.19). In practice and depending on the value of
m^ k e [4,8] is generally adopted.

After executing the above algorithm, it is found that the modular exponen­
tiation operation M^ mod n with e — 1903, can be computed by performing 9
field squarings and 6 field multiplications, according with the sequence shown
below,

^ a;300 _^ ^600 _^ ^900 _^ ^1800

Each of the deterministic heuristics just described clearly sets an upper
bound on the number of field operations required for computing the modular
exponentiation operation. In particular, the theoretical cost of the binary
algorithm given in (5.3) imphes that /(e) < m 4- H{e) — 1. A lower bound for
/(e) was found in [321] as, log2 e 4- log2 H{e) — 2.13. Therefore we can write,

log2 e + log2 H{e) - 2.13 < /(e) < L/o^2(e)J + H{e) - 1 (5.10)

Let us suppose that we are interested in computing the modular exponen­
tiation for several exponents of a given fixed bit-length, say, m. Then, as it
was shown in [191], the minimum number of underlying field operations is a
function of the Hamming weight H{e). Indeed, one can expect that on average
/(e) will be smaller for both, H{e) closer to 0 and for H{e) closer to m. On the
contrary, when H{e) is close to m/2, i.e., for those m-bit exponents having a
balanced number of zeros and ones, /(e) happens to be maximal [191].

5.4.4 RSA Exponentiation and the Chinese Remainder Theorem

Let us recall from Chapter 2 that the RSA algorithm requires computation of
the modular exponentiation which is broken into a series of modular multi-
phcations by the apphcation of exponentiation heuristics. Before getting into
the details of these operations, we make the following definitions:

• The public modulus n is a k-hii positive integer, ranging from 512 to 2048
bits.

• The secret primes p and q are approximately k/2 bits.
• The public exponent e is an h-hit positive integer. The size of e is small,

usually not more than 32 bits. The smallest possible value of e is 3.

5.4 Modular Exponentiation Operation 133

• The secret exponent d is a large number; it may be as large as (/)(n) — 1.
We will assume that d is a k-hit positive integer.

After these definitions, we will study how the RSA modular exponentiation
can be greatly benefit by applying the Chinese Remainder Theorem to it.

The Chinese Remainder Theorem

The Chinese Remainder Theorem(CRT) hats a tremendous importance in
cryptography. For instance, Quisquater and Couvreur proposed in [279] to
use it for speeding up the RSA decryption primitive. It can be defined as
follows.

Let Pi for 2 = 1,2,. . . , /c be pairwise relatively prime integers, i.e.,

gcd{pi,pj) = 1 for Z7^ j .

Given lî G [0,pi — 1] for i = 1, 2 , . . . , /c, the Chinese remainder theorem states
that there exists a unique integer u in the range [0, -P—1] where P = pip2 • • -Pk
such that

u = Ui (mod Pi).

In the case of RSA decryption primitive. The Chinese remainder theorem tells
us that the computation of

M : - C ^ (modp .^) ,

can be broken into two parts as

Ml := C^ (mod p),

M2 : - C^ (mod q),

after which the final value of M is computed (lifted) by the application of a
Chinese remainder algorithm. There are two algorithms for this computation:
The single-radix conversion (SRC) algorithm and the mixed-radix conversion
(MRC) algorithm. Here, we briefly describe these algorithms, details of which
can be found in [105, 355, 178, 209]. Going back to the general example, we
observe that the SRC or the MRC algorithm computes u given ui^U2^.. - ^Uk
and pi,p2) • • • ,PA;- The SRC algorithm computes u using the summation

k

u = ^^UiCiPi (mod P) ,
1=1

where
P

Pi =PlP2"'Pi-lPi-\-l'-'Pk = —,
Pi

and Ci is the multiphcative inverse of Pi modulo pi, i.e..

134 5. Prime Finite Field Arithmetic

CiPi = 1 (mod Pi).

Thus, applying the SRC algorithm to the RSA decryption, we first compute

Ml := C^ (mod p),

M2 : - C^ (mod g),

However, applying Per mat's theorem to the exponents, we only need to com­
pute

Mi—C^' (modp),

M2 := C^^ (mod q),

where

di := d mod (p— 1),

d2 := d mod {q — 1).

This provides some savings since (ii, c/2 < d; in fact, the sizes of di and ^2 are
about half of the size of d. Proceeding with the SRC algorithm, we compute
M using the sum

PQ pq
M = MiCi— + M2C2— (mod n) = MiCiq-{- M2C2P (mod n),

where ci = ^~^ (mod p) and C2 = p~^ (mod ^). This gives

M = Mi{q~^ mod p)q -f M2{p~^ mod g')p (mod n).

In order to prove this, we simply show that

M (mod p) = Ml • 1 -f 0 = Ml,

M (mod Q') = O-I-M2 • 1 = M2.

The MRC algorithm, on the other hand, computes the final number u by
first computing a triangular table of values:

Uu
U2\ U22

Uu U32 U33

Ukl Uk2 Uk,k

where the first column of the values un are the given values of Uj, i.e., un = Ui.
The values in the remaining columns are computed sequentially using the
values from the previous column according to the recursion

^i,j+i = {uij - Ujj)cji (mod Pi),

5.4 Modular Exponentiation Operation 135

where Cji is the multiphcative inverse of pj modulo pi, i.e.,

CjiPj = 1 (mod Pi).

For example, U32 is computed as

U32 = {usi - un)ci3 (mod pa),

where C13 is the inverse of pi modulo pa. The final value of u is computed
using the summation

U = Uu-{- U22VI + 1̂ 33PlP2 -f • • • -f UkkPlP2 '-'Pk-l

which does not require a final modulo P reduction. Applying the MRC algo­
rithm to the RSA decryption, we first compute

Ml : - C^^ (mod p),

M2 := C^^ (mod g),

where di and ^2 are the same as before. The triangular table in this case is
rather small, and consists of

Mil
M21 M22

where M u = Mi, M21 = M2, and

M22 = (M21 - Mii)(p~-^ mod q) (mod q).

Therefore, M is computed using

M :== Ml + [(M2 - Ml) • (p~^ mod q) mod q] - p.

This expression is correct since

M (mod p) = Ml + 0 = Ml,

M (mod q) = Mi-\- (M2 - Mi) • 1 = M2.

The MRC algorithm is more advantageous than the SRC algorithm for two
reasons:

• It requires a single inverse computation: p~^ mod q.
• It does not require the final modulo n reduction.

The inverse value (p~^ mod q) can be precomputed and saved. Here, we note
that the order of p and q in the summation in the proposed public-key cryptog­
raphy standard PKCS # 1 is the reverse of our notation. The data structure
[194] holding the values of user's private key has the variables:

exponent1 INTEGER, — d mod (p-1)
exponent2 INTEGER, — d mod (q-1)
coe f f i c i en t INTEGER, — (inverse of q) mod p

136 5. Prime Finite Field Arithmetic

Thus, it uses {q~^ mod p) instead of {p~^ mod q). Let Mi and M2 be defined
as before. By reversing p, q and Mi, M2 in the summation, we obtain

M := M2 -f [(Ml - M2) • {q~^ mod p) mod p] • g.

This summation is also correct since

M (mod ^) = M2 + 0 = M2,

M (mod p) == M2 4- (Ml - M2) • 1 = Mi,

as required. Assuming p and q are {k/2)-hit binary numbers, and d
is as large as n which is a k-hit integer, we now calculate the total number

of bit operations for the RSA decryption using the MRC algorithm. Assuming
di, 0̂ 2, {p~^ mod q) are precomputed, and that the exponentiation algorithm
is the binary method, we calculate the required number of multiplications as

• Computation of Ml: |(/c/2) (/c/2)-bit multiplications.
• Computation of M2: ^{k/2) (A;/2)-bit multiplications.
• Computation of M: One {k/2)-h\t subtraction, two (A;/2)-bit multiplica­

tions, and one k-hit addition.

Also assuming multiplications are of order /c^, and subtractions are of order
A;, we calculate the total number of bit operations as

2 ^ (f c / 2) ^ + 2{fc/2)^ + (fc/2) + fc = 3 P ^ £ + ^

On the other hand, the algorithm without the CRT would compute M = C^
(mod n) directly, using (3/2)/c k-hit multipHcations which require 3/c^/2 bit
operations. Thus, considering the high-order terms, we conclude that the CRT
based algorithm will be approximately 4 times faster.

5.4.5 Recent Prime Finite Field Arithmetic Designs on F P G A s

In this Subsection, we show some of the most significant designs recently pub­
lished in the open Uterature for modular exponentiation. All designs included
in Table 5.1 were implemented either on VLSI or on reconfigurable hardware
platforms. Notice also that there is a strong correlation between design's speed
and the date of publication ,i.e., fastest designs tend to be the ones which have
been more recently published.

Liu et al. presented in [210] a design based on the distributed module
cluster microarchitecture especially designed to reduce long datapaths. The
throughput achieved by their technique ranks as the fastest design published
to date. Amanor et al. presented in [6] several designs based on different
multiplier strategies. Their redundant interleaved multiplier can compute a
1024-bit RSA decryption exponentiation in just 6.1 mS. On the other hand,
authors in [6] also essayed designs based on a Montgomery multipHer block.

5.4 Modular Exponentiation Operation 137

Table 5.1. Modular Exponentiation Comparison Table

Work

Liu et al.plO]

Amanor et al [6]

Kelley et al.[170]

Mukaida et al. [243]

Amanor et al.[6]

Blum et al. [29]

Harris et al. [134]

Kelley et al.[170]

Todorov[361]

Tencaet al.[359]

year

2005

2005

2005

2004

2005

2001

2005

2005

2000

2003

Platform

0,13Mm
CMOS
Virtex

Virtex II

0,11/im
CMOS
Virtex

Virtex

Virtex
II Pro
Virtex

II
0,5/im
CMOS
0,5/i?7i

CMOS

Cost

221K
gates
4608
CLBs
2847
LUTs
61K

gates
8640
CLBs
6613
CLBs
5598

LUTs
780

LUTs
28K

gates
28K

gates

BRAMs,
18-bit M

None

None

5Kb, 32

~

None

""

5Kb, -

5Kb, 8

~

"~

Freq.
MHz

714

69.4

102

250

42.1

45

144

102

64

80

1024-bit
time(mS)

1.47

6.1
(est.)
6.6

7.3

9.7
(est.)

12

16

22

46

88

Mult. Block
Utilized

DMC
Mont. Mult.
Interleaved

Mult.
16-bit Seal
radix 2^^

64-bit Seal
radix 2̂^

CSA Mont.
Mult.

Mont. Mult,
radix 2^

16-bit Seal
radix 2

16-bit Seal
radix 2^^

16-bit Seal
radix 8

8-bit Seal
radix 2

but the timing performance obtained was somehow lesser than that of the
interleaved multipher. Kelley et al. presented in [170] a 16-bit Montgomery
scalable multipher of radix 2^^, the highest radix for a Montgomery multiplier
published to date. With that multiplier block, authors in [170] were able to
achieve a 1024-bit exponentiation in just 6.6 mS. It is noted though, that
the design by Kelley et al. utilized 32 embedded multipliers plus some 5K
bit RAMs. Blum et al. designed in 2001 a high-radix Montgomery multiplier
architecture able of achieving an exponentiation time of 12mS [29].

On the other side of the spectrum, designs by Todorov [361] and Tenca
et al. [359] rank among the most economical of all high performance designs
included in Table 5.1.

Due to the diversity of platforms and resources employed by the designs
featured in Table 5.1, it results rather difficult to establish reasonable criteria
for selecting the most efficient of all of them. Here, we say that a given de­
sign is efficient if it offers a great cost-benefit compromise. Nevertheless, the
design by Mukaida et al. reported in [243] seems to be our best bet for this cat­
egory. Utilizing a radix 16 multipher implemented on ASIC at a clock speed
of 250MHz, authors in [243] produced a design able to compute a 1024-bit
exponentiation within 7.3mS at a hardware price of just 61K gates.

138 5. Prime Finite Field Arithmetic

A final word about the performance comparison presented here. 1024-bit
RSA exponentiation is one of the few major cryptographic primitives which
shows a moderate performance speedup when hardware implementations of
it are compared with its software counterparts. On this regard, Table 5.2
compares two RSA software designs against two of the fastest designs surveyed
here.

As it can be seen, the speedup attained by the design in [210] is of 25.17
and 15.03 when compared with an XScale and a Pentium IV implementations,
respectively.

Table 5.2. Modular Exponentiation: Software vs Hardware Comparison Table

Work

Liu et al.[210]

Amanor et al.[6]

Martmez-Silva et al.[219]

Lopez-Peza et al.[294]

year

2005

2005

2005

2004

Platform

0,13/Lim
CMOS
Virtex

IPAQ H5550
Intel XScale

Intel
Pentium IV

Cost

221K
gates
4608
CLBs

~

• ~

Freq.
MHz

714

69.4

400MHz

2.4GHz

1024-bit
time(mS)

1.47

6.1
(est.)

37

22.10

Speedup

1

4.5

25.17

15.03

5.5 Conclusions

In this Chapter we reviewed several relevant algorithms for performing effi­
cient modular arithmetic on large integer numbers. Addition, modular addi­
tion, Reduction, modular multiplication and exponentiation were some of the
operations studied throughout the material contained in this Chapter. Strong
emphasis was placed on discussing the best strategies for implementing those
algorithms on hardware platforms, either in the domain of ASIC designs or
reconfigurable hardware platforms.

We intended to cover some of the most significant mathematical and algo­
rithmic aspects of the modular exponentiation operation, providing the neces­
sary knowledge to the hardware designer who is interested implementing the
RSA algorithm using the reconfigurable hardware technology.

The last Section of this Chapter contains a small survey of some of the
most representative designs published in the open literature for modular ex­
ponentiation computation.

6

Binary Finite Field Arithmetic

In this Chapter we review some of the most relevant arithmetic algorithm
on binary extension fields GF{2^). The arithmetic over GF{2'^) has many
important applications in the domains of theory of code theory and in cryp­
tography [221, 227, 380]. Finite field's arithmetic operations include: addition,
subtraction, multiphcation, squaring, square root, multiplicative inverse, di­
vision and exponentiation.

Addition and subtraction are equivalent operations in GF{2'^). Addition
in binary finite fields is defined as polynomial addition and can be imple­
mented simply as the XOR addition of the two m-bit operands.

That is why we begin this Section with a review of the main algorithms
reported in the open literature for perhaps the most important field arithmetic
operation: field multiplication.

6.1 Field Mult ipl icat ion

Let A{x),B{x) and C'{x) G G'F(2^) and P(x) be the irreducible polyno­
mial generating (7F(2^). Multiplication in GF{2'^) is defined as polynomial
multiplication modulo the irreducible polynomial P(x), namely,

C'(x) = A{x)B{x) mod P{x).

One important factor for designing multipliers in binary extension fields is
the way that field elements are represented, i.e, the sort of basis that is being
used^ Indeed, field element representation has a crucial role in the design of
architectures for arithmetic operations.

Besides the polynomial or canonical basis, several other bases have been
proposed for the representation of elements in binary extension fields [221,
51, 390]. Among them, probably the most studied one is the Gaussian normal
basis [281, 285, 164, 89, 405].

More details about field element representation can be found in §4.2.

140 6. Binary Finite Field Arithmetic

Even though efficient bit-parallel multipliers for both canonical and normal
basis representation have been regularly reported in the specialized literature,
in this Section we will mainly focus on polynomial basis multiplier schemes,
mostly because they are consistently more efficient than their counterparts in
other bases^.

Traditionally, the space complexity of bit parallel multipliers is expressed
in terms of the number of 2-input AND and XOR gates. For reconfigurable
hardware devices though, the total number of CLBs and/or LUTs utilized
by the design is preferred. Depending on their space complexity, bit parallel
multipliers are classified into two categories: quadratic and subquadratic space
complexity multipliers.

Several quadratic and subquadratic space complexity multipliers have been
reported in literature. Examples of quadratic multipHers can be found in [220,
182, 389, 390, 350, 129, 352, 315, 129, 282, 391, 112, 201, 292, 283, 284, 247, 90,
146). On the other hand, some examples of sub-quadratic multipliers can be
found in [267, 268, 269, 270, 291, 86, 298, 117, 293, 349, 16, 106, 91, 377, 239].
This latter category offers low space complexity especially for large values of
n and therefore they are in principle attractive for cryptographic apphcations.

Among the several approaches for computing the product C'{x), we will
study the following strategies,

• Two-Step multipliers
• Interleaving Multiplication
• Matrix-Vector Multipliers
• Montgomery Multiplier

In the case of two-step multipliers, first the polynomial product C{x) of
degree at most 2m — 2 is obtained as,

m —1 m—1

C{x) = Aix)Bix) = (^ aix')iY^ bix') (6.1)
1=0 1=0

Then, in a second step, the reduction operation needs to be performed in
order to obtain the m — 1 degree polynomial C"(x), which is defined as

C'{x)^C{x)modP{x) (6.2)

It is noticed that once the irreducible polynomial P{x) has been selected, the
reduction step can be accomplished by using XOR gates only.

In the rest of this section different implementation aspects and several effi­
cient methods for computing GF(2^) finite field multiplication are extensively
studied. In § 6.1.1 the analysis of the school or classical method is presented.
Subsection § 6.1.2 analyzes a variation of the classical Karatsuba-Ofman algo­
rithm as one of the most efficient techniques to find the polynomial product of

^ Examples of efficient normal b£isis multiplier designs recently published in the
open literature can be found in [164, 89, 285, 281, 405, 352, 283].

6.1 Field Multiplication 141

product of Equation 6.1. In subsection § 6.1.3 we describe an efficient method
to compute polynomial squaring in hardware, at a complexity cost of just
0(1). Subsections § 6.1.4 and § 6.1.5 explain an efficient hardware method­
ology that carries on the reduction step of Equation 6.2 considering three
separated cases, namely, reduction with irreducible trinomials, pentanomials
and arbitrary polynomials. Then in §6.1.6 a method that interleaves the steps
of multiplication and reduction is presented. Subsection §6.1.7 outlines field
multiplication methods that solve Equation 6.1 by reformulating it in terms of
matrix-vector operations. Then, in §6.1.8, the binary field version of the Mont­
gomery multiplier is discussed. Finally, §6.1.9 compares the most relevant bi­
nary field multiplier designs published up-to date. Designs are compared from
the perspective of three different metrics, namely, speed, compactness and
efficiency.

6.1.1 Classical Multipliers and their Analysis

Let A{x),B{x) be elements of GF(2^) , and let P{x) be the degree m ir­
reducible polynomial generating GF{2'^). Then, the field product C'{x) e
GF{2^) can be obtained by first computing the polynomial product C{x) as

C{x) - A{x)B{x) = I Y, ^i^'] I Yl ^^ '̂
i = 0 i = 0

(6.3)

Followed by a reduction operation, performed in order to obtain the (m — 1)-
degree polynomial C'{x), which is defined as

C'ix) = C{x)modP{x) . (6.4)

Once the irreducible polynomial P{x) is selected and fixed, the reduction
step can be accomplished using only XOR gates. The classical algorithm for­
mulates these two steps into a single matrix-vector product, and then reduces
the product matrix using the irreducible polynomial that generates the field.
The degree 2m — 2 polynomial C(x) in (6.3) can be written as.

Co
C\

C2

Cm-2
Cm —1

Cm

Cm-f-1

C2m-3

C 2 m - 2 .

=

"ao
ai

a2

^m-

O'm-

0
0

0
0

0
ao
di

-2 ^ m -

-1 Cim-

0>m-

0

0
0

0 0
0 0
ao 0

-3 am-4 a m - 5 '
-2 ttm-S O'm-A '
-1 O.m-2 ttm-a •

^ m - l am-2 •

0 0
0 0

•• 0
•• 0
•• 0

• • ao
•• a i
•• a2
•• as

* * ^m-
" 0

0
0
0

0
ao
a i

a2

-1 am-2
a m - 1 .

bo
hi

b2

bm-2
_bm-l

(6.5)

142 6. Binary Finite Field Arithmetic

The computation of the field product C'{x) in (6.4) can be accomplished
by first computing the above matrix-vector product to obtain the vector C
which has 2m — 1 elements. By taking into account the zero entries of the
matrix, we obtain the gate complexity of the computation of C{x) in Table
6.1.

Table 6.1. The Computation

Coordinates
Ci for 0 < i < m - 1
Cm+i for 0 < i < m — 2

AND Gates

i + 1
m - (z + 1)

of C{x) Using Equation (6.5)

XOR Gates
i

m - (i + 1) - 1

TA

1
1

Tx
logsf i - f l l

log2 \m — 1 — i\

Therefore, the total number of gates are found as

AND Gates: l + 2 + --- + m + (m - l) - f (m - 2) - } - - - - - f 2 + l = : m ^ ,

XOR Gates: 1 + 2 + • • • + (m - 1) + (m - 2) -f • • • + 2 -f 1 - (m - 1)^ .

The AND gates operate all in parallel, and require a single AND gate delay
TA- On the other hand, the XOR gates are organized as a binary tree of depth
log2 \j] i^ order to add j operands. The total time complexity is then found by
taking the largest number of terms, which is equal to m for the computation of
Cm-i' Therefore, the total complexity of computing the matrix-vector product
(6.5) so that the elements Ci for z = 0 , 1 , . . . , 2m - 2 are all found is given as.

AND Gates = m^
XOR Gates = (m - 1)^
Total Delay = T^ + [logarn\Tx

(6.6)

Notice that this computation must be followed by reduction modulo the
irreducible polynomial P{x). The reduction operation is discussed in Section
6.1.4.

6.1.2 Binary Karatsuba-Ofman Multipliers

Several architectures have been reported for multiphcation in GF{2'^). For
example, efficient bit-parallel multipliers for both canonical and normal basis
representation have been proposed in [136, 351, 241, 389, 20]. All these algo­
rithms exhibit a space complexity 0{m'^). However, there are some asymptot­
ically faster methods for finite field multiplications, such as the Karatsuba-
Ofman algorithm [168, 268]. Discovered in 1962, it was the first algorithm
to accomplish polynomial multiplication in under 0{7in?) operations [14].
Karatsuba-Ofman multipliers may result in fewer bit operations at the ex­
pense of some design restrictions, particularly in the selection of the degree of
the generating irreducible polynomial m.

6.1 Field Multiplication 143

In [268], it was presented a Karatsuba-Ofman multiplier based on compos­
ite fields of the type GF({2'^y) with m = sn^ s — 2*, t an integer. However,
for certain applications, quite particularly, elliptic curve cryptosystems, it is
important to consider finite fields GF{2'^) where m is not necessarily a power
of two. In fact, for this specific application some sources [145] suggest that,
for security purposes, it is strongly recommended to choose degrees m primes
for finite fields in the range [160, 512].

In the rest of this subsection we will briefly describe a variation of the
classic Karatsuba-Ofman Multiplier called binary Karatsuba-Ofman multipli­
ers that was first presented in [293]. Binary Karatsuba-Ofman multipliers can
be utilized arbitrarily, regardless the form of the required degree m.

Let the field GF{2'^) be constructed using the irreducible polynomial P{x)
of degree m = rn, with r = 2^, /c an integer. Let A,B be two elements in
GF{2'^). Both elements can be represented in the polynomial basis as.

2=0 i=^ z=0

— x ^ ^ aj+mx* 4- V] aix'^ = x^ A^ -f A^
i = 0

and

B=::Y1 ^̂ '̂ = Yl ^̂ '̂ + Yl ^̂ '̂
i=0 i=f^ 2=0

2=0 2=0

Then, using last two equations, the polynomial product is given as

C = x'^A^B^ -h{A^B^-\-A^B^)x'^ -hA^B^. (6.7)

Karatsuba-Ofman algorithm is based on the idea that the product of last
equation can be equivalently written as,

C = x'^A^B^ +A^B^ +
(A^B^ + A^B^ -f (A^ + A^){B^ + 5 ^)) x ^ (6.8)

Let us define
MA

MB

M

= A^ + A^',
= B^-{- B^; (6.9)
= MAMB.

Using Equation 6.8, and taking into account that the polynomial product C
has at most 2m — 1 coordinates, we can classify its coordinates as.

144 6. Binary Finite Field Arithmetic

C == [c2m-2)C2m-35 • • • J C^-fl) Cm]; f6 lO")
C^ =[Cm-l,Cm-2,'"^Ci,Co].

Although (6.8) seems to be more complicated than (6.7), it is ea^y to see that
Equation (6.8) can be used to compute the product at a cost of four polyno­
mial additions and three polynomial multiplications. In contrast, when using
equation (6.7), one needs to compute four polynomial multiplications and
three polynomial additions. Due to the fact that polynomial multiplications
are in general much more expensive operations than polynomial additions,
it is valid to conclude that (6.8) is computationally simpler than the classic
algorithm.

Algorithm 6.1 mul2^{C,A,B): m = 2^n-bit Karatsuba-Ofman Multiplier

Require: Two elements A,B E GF{2'^) with m = rn = 2^n, where A,B can be
expressed as A = x"^ A" -\-A^,B = x'^ B" + B ^ .

Ensure: A polynomial C = AB with up to 2m —1 coordinates, where C = x^C^ +

1: if r == 1 then
2: C = muLn{A, B)-
3: Return(C)
4: end if
5: for i from 0 to | — 1 do
6: MAi^Af-^At";
7: MBi = Bt + Bl'',
8: end for
9: mul2^{C^,A^,B%

10: mul2''{M,MA,MB)]
11: mul2^{C",A^,B");
12: for i from 0 to r — 1 do
13: Mi = Mi-\-Ct + C,";
14: end for
15: for i from 0 to r — 1 do
16: Cj+i
17: end for
18: Return(C).

Karatsuba-Ofman's algorithm can be applied recursively to the three poly­
nomial multipHcations in (6.8). Hence, we can postpone the computations of
the polynomial products A^B^^A^B^ and M, and instead we can split again
each one of these three factors into three polynomial products. By applying
this strategy recursively, in each iteration each degree polynomial multiplica­
tion is transformed into three polynomial multiplications with their degrees
reduced to about half of its previous value.

Eventually, after no more than [log2(m)] iterations, all the polynomial
operands collapse into single coefficients. In the last iteration, the resulting bit

6.1 Field Multiplication 145

multiplications can be directly computed. Although it is possible to implement
the Karatsuba-Ofman algorithm until the [log2 m] iteration, it is usually more
practical to truncate the algorithm earlier. If the Karatsuba-Ofman algorithm
is truncated at a certain point, the remaining multiplications can be computed
by using alternative techniques^.

Let us consider the algorithm presented in Algorithm 6.1. If r = 1, then the
product is trivially found in lines 1-3 as the result of the single n-bit polynomial
multiphcation C — muLn{A,B). Otherwise, in the first loop of the algorithm
(lines 4-6) the polynomials MA and MB of equation (6.9) are computed by a
direct polynomial addition of A^ -h A^ and B^ + J5^, respectively. In lines
7-9, C^^C^ and M, are obtained via §-bit polynomial multiphcation. After
completion of these polynomial multiplications, the final value of the lower half
of C^ as well as the upper half of C^ are found. To find the final values of the
upper half of the polynomial C^ and the lower half of C^, we need to combine
the results obtained from the multiplier blocks with the polynomials C^ , C^
and M, as described in equations (6.8) and (6.9). This final computation is
implemented in fines 10 through 13 of figure 6.1.

Complexity Analysis

The space complexity of the Algorithm 6.1 can be estimated as follows. The
computation of the loop in lines 4-6 requires 2 (|) == r additions. The execution
of lines 7-9, implies the cost of 3 | -bit polynomial multiphers. Finally, lines
10-13 can be computed with a total of 3r additions. Notice that if n > 1 the
additions in Algorithm 6.1 need to be multi-bit operations. Noticing also that
m-bit multipUcations in GF{2) can generate at most (2m - l)-bit products,
we can have an extra saving of four bit-additions in lines 11 and 13. Hence,
the addition complexity per iteration of the m = 2'^n-bits Karatsuba-Ofman
multiplier presented in Algorithm 6.1 is given £is r -h 3r = 4r n-bit additions
plus three times the number of additions needed in a | multiplier block, minus
four bit additions. Notice that for n-bit arithmetic, each one of these additions
can be implemented using n XOR gates.

Recall that m is a composite number that can be expressed as m •= rn^
with r = 2^, A; an integer. Then, one can successively invoke ^-bi t multiplier
blocks, 3̂ times each, for i — 1,2,... ,log2r. After k = log2r iterations, all
the multiplier operations will involve polynomial multiplicands with degree n.
These multiplications can be then computed using an alternative technique,
like the classic algorithm. By applying iteratively the analysis given above,
one can see that the total XOR gate complexity of the m = 2^n-bit hybrid
Karatsuba-Ofman multiplier truncated at the n-bit operand level is given as

such as the classical algorithm studied in §6.1.1 or other techniques

146 6. Binary Finite Field Arithmetic

XOR Gates = M^or2n3^°^2^ + y ' 3 ^ ~ ^ (^ - 4)

log2r •_-^ logar

i = l i=l

r. l o g 2 r ^ . l o g 2 r

= M,,,2n3̂ ĝ̂ ^ + | r n 5] | " ^ E ^̂

o log2 r
= M,or2n3^°s^ ^ 4- 8 r n (| - 1) - 2(3^°^^ '̂ - 1)

- Ma,or2n3̂ ^S2 r _̂ 8rn(r^°S2 f _ 1) _ 2(r^°g2 3 _ i)

= M,,or2nr^°S2 3 ̂ 8n(r^°S2 3 _ gr) - 2(r̂ °S2 3 _ i)

= r̂ Ŝ2 3 (8^ _ 2 4- Ma;or2n) - 8rn 4- 2

= i^-j (8 2 4-M^or2-) -8m4-2 .

Where Mxor2^ represents the XOR gate complexity of the block selected to
implement the n-bit multipliers.

Similarly, notice that no AND gate is needed in Algorithm 6.1, except when
the block selected to implement the n-bit multiplier is called. Let Mand2^
be the AND gate complexity of the block selected to implement the n-bit
multiplier. Then, since this block is called exactly 3̂ °̂ ^ ^ times, we conclude
that the total number of AND gates needed to implement the algorithm in
6.1 is given as,

AND gates = r''^^'Mand2n = {'^y''^^'Mand2n

We give the time complexity of Algorithm 6.1 as follows. The execution
of the first loop in lines 4-6 can be computed in parallel in a hardware im­
plementation. Therefore, the required time for this part of the algorithm is of
just 1 n-bit addition delay, which is equal to an XOR gate delay Tx- Lines
7-9, can also be implemented in parallel. Thus, the associated cost is of one
I-bit multiplier delay. Notice that we cannot implement this second part of
the algorithm in parallel with the first one because of the inherent dependen­
cies of the variables. Finally, lines 10-13 can be computed with a delay of just
3Tx. Hence, the associated time delay of the m — 2^^n-bit Karatsuba-Ofman
multiplier of figure 6.1 is given as

loggr

Time Delay = Tdeiay2n + E ^ "̂ Tdeiay2n + 4Tx log2 r.
2 = 1

In this case it has been assumed that the block selected to implement the
GF{2'^) arithmetic has a Tdeiay2^ gate delay associated with it.

6.1 Field Multiplication 147

In summary, the space and time complexities of the m-bit Karatsuba-
Ofman multiplier are given as

XOR Gates < (^)^°^^ ^ (8 ^ - 2 + M^or2n) - 8m 4- 2 ;
AND Gates < {^y''^^^Mand2n ; (6.11)
Time Delay < Tdeiay2n + 4Tx log2(^) .

As it has been mentioned above, the hybrid approach proposed here re­
quires the use of an efficient multiplier algorithm to perform the n-bit poly­
nomial multiplications. Let us recall that in §6.1.1 above, it was found that
the space and time complexities for the classic n-bit multiplier are given as

XOR Gates = (n - 1)^ ;
AND Gates = n^ ; (6.12)
Time Delay < TAND 4- Tx [logs n] .

Combining the complexities given in equation (6.12), together with the
complexities of equation (6.11) we conclude that the space and time complex­
ities of the hybrid m-bit Karatsuba-Ofman multiplier truncated at the n-bit
multiplicand level are upper bounded by

XOR Gates < (^) "̂"̂ ^ ^ (8n - 2 + M^or2n) - 8m + 2

(6.13) (^)^''^^'(n2 4 - 6 n - l) - 8 m + 2

AND Gates < S'""^^"^Mand2n = {^y^'^'^^]
Time Delay < TAND + Tx (logs ^ + 4 logs ^) •

Let us consider now the cases where m is a power of two, m = rn = 2^^, k > 2.
Then, n = 4 is the most optimal selection for the hybrid Karatsuba-Ofman
algorithm. For this case using equation (6.13) we obtain

XOR Gates < (^)^''^' ^ (n^ -h 6n - 1) - 8m + 2

= (T) ' ' ^ ' ' (4 2 - f 6 . 4 - l) - 8 . 2 ^ - | - 2

= 13 .3^-1-2^^+^^ 2; (g^^^

AND Gates < (^) ^ " ^ ^ ' n 2 = (^) ' ' ' ' % 2 ^ iQ.^k-2.

Time Delay < TAND + Tx (logs ^ + 4 logs ^) =
= TAND + Tx(logs4-f41ogs2'^-2) = TAND-hTx{4k - 6) .

Table 6.2 shows the space and time complexities for the hybrid Karatsuba-
Ofman multiplier using the results found in equation (6.14). The values of m
presented in Table 6.2 correspond to the first ten powers of two, i.e., m — 2^
for z = 0 , 1 , . . . , 9. Notice that the multipliers for m = 1,2,4 are assumed to be
implemented using the classical method only. As we will see, the complexities
of the hybrid Karatusba multipHer for degrees m = 2^ happen to be crucial
to find the hybrid Karatsuba-Ofman complexities for arbitrary degrees of m.

148 6. Binary Finite Field Arithmetic

Table 6.2. Space and Time Complexities for Several m = 2'̂ -bit Hybrid Karatsuba-
Ofman Multipliers

m
1
2
4
8
16
32
64
128
256
512

r
1
1
1
2
4
8
16
32
64
128

n
1
2
4
4
4
4
4
4
4
4

AND gates
1
4
16
48
144
432
1296
3888
11664
34992

XOR gates
0
1
9
55

225
799

2649
8455

26385
81199

Time delay
TA

Tx -\-TA

2Tx + TA

QTx + TA

lOTx + TA
UTx + TA

ISTx -f TA
22Tx + TA
26Tx + TA
SOTx -}- TA

Area (in NAND units)
1.26
7.24

39.96
181.48
676.44
2302.12
7460.76

23499.88
72743.64

222727.72

Binary Karatsuba-Ofman Multipliers

In order to generalize the Karatsuba-Ofman algorithm of Algorithm 6.1 for
arbitrary degrees m, particularly m primes, let us consider the multiplication
of two polynomials A,B e GF(2^) , such that their degree is less or equal to
m — 1, where m = 2^ + d.

A = [0,... ,0,0,a2fc+d-i'• • •''̂ 2'<=+i'̂ 2'=>^2'«-i»^2'«=-2'• • • »<^2,ai,ao];

A^ = [0,... ,0,0,a2/c+d_i,... ,a2fc+i,a2fc];
A = [a2fc_i, a2A;_2? • • •) ^2, ai, ao];

Fig. 6.1. Binary Karatsuba-Ofman Strategy

As a very first approach, we could pretend that both operands have 2 "̂̂ ^
coordinates each, where their respective 2^'^^ — d most significant bits are
all equal to zero. Figure 6.1 shows how the sub-polynomials A^ and A^ will
be redefined according with this approach. If we partition the operands A
and B as shown in Figure 6.1, then, in order to compute their polynomial
multiplication, we can use the regular Karatsuba-Ofman algorithm with m =
2^"^^ Although this approach is obviously valid, it clearly impHes the waste
of several arithmetic operations, as some of the most significant bits of the
operands are zeroes. However, if we were able to identify the extra arithmetic
operations and remove them from the computation, we would then be able to
find a quasi-optimal solution for arbitrary degrees of m. To see how this can

6.1 Field Multiplication 149

be done, consider the Algorithm 6.2, which has been adapted from Algorithm
6.1 previously studied.

Algorithm 6.2 mulgen-d{C^ A, B): m-bit Binary Karatsuba-Ofman Multi­
plier
Require: Two elements A,B e GF{2^) with m an arbitrary number, and where

A,B can be expressed as A = x"^A^ 4-^^,B = x"^B^ + B^.
Ensure: A polynomial C — AB with up to 2m —1 coordinates, where C = x^C^ +

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

k = [log2 m\;
d = m-2^\
if d —— 0 then

C = Kmul2''{A,B)]
return(C);

end if
for i from 0 to d - 1 do

MAi = A f + A f ;
MBi = Bt + Bl^',

end for
mul2''{C^,A^,B^);
mul2^{M,MA,MB)\
mulgen.d{C",A",B")',
for i from 0 to 2^ - 2 do

Mi = Mi+ 0^+0!"',
end for
for i from 0 to 2'' - 2 do

Ck+i = Ck+i + Mi]
end for
Return(C).

In lines 1-2 the values of the constants /c, d such that m = 2^ -\- d^ are com­
puted. If d = 0, i.e, if m is a power of two, then the binary Karatsuba-Ofman
Algorithm 6.2 reverts to the specialized Algorithm 6.1 presented previously.
If that is not the case. Algorithm 6.2 uses the constants k and d to prevent us
to compute unnecessary arithmetic operations. In lines 6-8, the d least signifi­
cant bits of MA and MB of equation (6.9) are computed using the d non-zero
coordinates of A^ and B^. The remaining k — d most significant bits of MA
and MB are directly obtained from A^ and B^, respectively. Notice that the
operands, A^^B^^MA and MB are all 2'^-bit polynomials. Because of that,
our algorithm invokes the multiplier of Algorithm 6.1 in fines 9 and 10. On
the other hand, both operands A^ and B^ are rf-bit polynomials, where cZ,
in general, is not a power of two. Consequently, in line 11, the algorithm calls
itself in a recursive manner. This recursive call is invoked using the operand's
degree reduced to d. In each iteration the degree of the operands gets reduced.

150 6. Binary Finite Field Arithmetic

and eventually, after a total of h iterations (where h is the hamming weight
of the binary representation of the original degree m), the algorithm ends.

A""!! 27:01

B'-[127:0]

MUL
2128

A"(62:0] -

A'-[127:0]-

B'-[127:0] -

B"[62:0] -

XOR
128

XOR
128

(A'-+A")

[127:0]

(B'-+B")

[127:0]

MUL
2128

A'-B'-[255:0]
A'-B^[127:0]

Concatenation

A'-B'-[255:128]

A"B"[122:0]A'-B'-[255:128}

(A"+A'-)(B"+B'-)[255:0]

A"[62:0]

B"[62:0]

MUL A"B"

XOR
256

O[380:0|

M[252:0]

[122:0] REDUCTION

Fig. 6.2. Karatsuba-Ofman Multiplier GF{2^^^)

As a design example, consider the binary Karatsuba-Ofman multiplier
shown in Figure 6.2. That circuit computes the polynomial multiplication of
the elements A and B e GF{2^^^). Notice that for this case m = 191 = 2^-h
d = 2*̂ + 63. Since (191)2 = 10111111, the Hamming weight/i of the binary
representation of m is /i — 7. This implies that we would need a total of
seven iterations in order to compute the multiplication using the generalized
m-bit binary Karatsuba-Ofman multipHer.

However we can do much better by assuming that the d = 63 most
significant leftover bits are 64 (implying m = (192)2 == 11000000). Hence,
algorithm 6.2 can finish the computation in only two iterations, as shown in
Figure 6.2.

By using the complexity figures Hsted in Table 6.2, we can estimate the
space and time complexities of the generalized 191-bit binary Karatsuba-
Ofman multiplier as,

Number of CLBs = 2MULx{l2S) -f Mt/Lx(64) -f C
= 2 -3379+1171+ C
= 7929 -f C

Delay = MUL delay (2^-^^^^ ^J) -i- O
= MC/Lde/a^(2Ll°g2l91J)-fO

= MULdelay{2^) + 0

(6.15)

Where C and O represent the overhead in space and time, respectively, asso­
ciated with the extra circuitry shown in Figure 6.2.

The generalized 191-bit binary Karatsuba-Ofman multiplier was imple­
mented using Xilinx Foundation Series F4.1i software on Xilinx Virtex-E
FPGA device XCV2600e-8bg560. The design is coded using VHDL, using
library components and also by using Xilinx Coregenerator for design entry.
The implementation occupied a total of 8721 sHces and 576 I/O Blocks. We
obtained a total path delay of 43 r^Sec.

6.1 Field Multiplication 151

F ^ Control Logic h.

Iz
Memory Y^

^=^^

Iz
GF(2K)

Karatsuba
Multipler

XZ
1 y1 Network K i '

Fig. 6.3. Programmable Binary Karatsuba-Ofman Multiplier

P rogrammabi l i t y

The schematic diagram shown in figure 6.2 illustrates two desirable charac­
teristics of the binary Karatsuba-Ofman multipliers. First, it is possible to
implement them using non-recursive architectures. In addition, since these
algorithms are highly modular, it is possible to design non-parallel scalable
implementations. By scalable implementations we mean configurations that
allow the user to select the size m of the multiplicands that he/she wants to
work with.

Consider the architecture shown in figure 6.3. We use a control logic block
that allows us to execute the algorithm of figure 6.2 in a sequential manner.
To do this, we also take advantage of the intrinsically modular nature of a 2^-
bit Karatsuba-Ofman multiplier, which can itself be programmed to compute
multiplications that involve operands of a size that is any power of two lower
than 2^.

The partial multiplications obtained using this approach, are stored in a
memory block as figure 6.3 shows. The control logic can then use these par­
tial results to compute the remaining operations so that the total polynomial
product can be obtained. Notice also, that the architecture shown in figure
6.3 can be programmed to implement multiplications with different operands'

6.1.3 Squaring

In this section we investigate some efficient methods to compute polynomial
squaring, which is a special case of polynomial multiphcation. Let us assume

152 6. Binary Finite Field Arithmetic

m — l

that we have an element A given as i4 == ^ aix\ Then the square of A is

given as

i = 0

C{x) = A{x)A{x) - A^{x) = {J2 aix'){J2 ^i^') ^ ^ a^x^^ (6.16)

The main implication of the above equation is that the first k < m bits of A
completely determine the first 2k bits of A"^. Notice also that half the bits of
A"^ (the odd ones) are zeroes. Taking advantage of this feature, the hardware
implementation shown in Figure 6.4 simply interleaves a zero value between
each one of the original bits of A yielding the required squaring computation
which must be followed by a reduction operation to be discussed in the next
Subsection.

SQUARE REDUCTION

IN-

- ^
•OUT

Fig. 6.4. Squaring Circuit

6.1.4 Reduction

Let the field GF{2^) be constructed using the irreducible polynomial P{x)
and let A{x),B{x) € GF{2^). Assuming that we already have computed the
product polynomial C{x) of Equation (6.1), by using any one of the methods
described in the previous two subsections, we want to obtain the modular
product C of Equation (6.2). Recall that the polynomial product C and the
modular product C , have 2m — 1 and m, coordinates, respectively, i.e..

C = [c2m-25 C2m-3j • • • j Cm+lj Cm, • • • , Ci, CQ];

^ = [Cm- l>^m-25 • • • 5Ci,Co].
(6.17)

6.1 Field Multiplication 153

Once the generating polynomial P{x) has been selected, the reduction step
that obtains C" from C can be computed by using XOR and shift operations
only.

Reduction with Trinomials and Pentanomials

Let the field GF{2'^) be constructed using the irreducible trinomial P{x) =
x^ -\- x'^ -h I with a root a and 1 < n < y . Let also A{x)j B{x) be elements
in GF{2'^). In order to obtain the modular product C'(x) of (6.1), we use the
property P{a) — 0, and write

a"^ - 1 + a^ ;

: (6.18)
Q,2m-3 _ Q^rn-3 . ^ m + n - 3 .

ym-\-n—2

The above m — 1 set of identities suggests a method to obtain the m-
coordinates of the modular product C of Equation (6.2). We can partially
reduce the 2m — 1 coordinates of C by reducing its most significant m — 1 bits
into its first m + n — 1 bits, as indicated by (6.18). For instance, in order to
obtain the first partially reduced coordinate CQ we just need to add the regular
product coordinate Cm to the CQ coordinate, yielding CQ as CQ = CQ 4- c^ .̂

Similarly the whole set of m + n — 2 partially reduced coordinates can be
found as,

CQ — CQ + Cm ;

c[= Ci + Cm+1 ;

< - l

C'n

^n+1

^ m - 2

^ m - 1
c'

r'

r'
-3

-2

=
=
^̂

=
=
—

=
=

Cn-1

Cn

Cn+1

Cm-2

Cm—1

^m

Cm-\-n-

Cm-f-n-

4-

+
+

+

-3

-2

Cm+n—1

^Tn+n

Cm-\-n-\-\

C2m-2

)
+ C771 ;

+ Cm+l ;

+ C 2 m - n - 2 5

+ C 2 m - n - l 5

1 C2m—n 5

+ C2m-3 ;

+ C2m-2 •

(6.19)

Notice that in the reduction process of (6.19), the constant coefficient of the
irreducible generating trinomial P{x) reflects its influence in the first m — 1
partially reduced bits. The middle term of P{x)^ on the other hand, affects
the partially reduced bits of (6.19) in the range [cj^,c^^^_2].

154 6. Binary Finite Field Arithmetic

We say that the coefficients in (6.19) have been partially reduced because
in general, if n > 1, we still need to reduce the n - 1 most significant reduced
coordinates of (6.19). However, this same idea can be used repeatedly until
the 771 — 1 modular coordinates of (6.17) are obtained. Each time that this
strategy is applied we reduce m — n coordinates.

r —
1
1

2m-1

(m-1 bits)

_ _ _ p_ _ _i I
\

^ - - 4 (n)

(mbits) 1

n
(m bits) !

9m.1

(m bits) i

(m-n bits)

v
j

d vv

X

Y

C=W xor X xor Y xor Z

Fig. 6.5. Reduction Scheme

For hardware reconfigurable designs, we can implement above ideas as
follows. According to Eq. (6.1) the polynomial product C{x) — A(x)B{x)^
can be represented as a 2m-coefficient vector as.

C{x) ^ 2 m - l ^ m - 2 ^ m - 1 ^m ' ^ m - 1 ^2 -1 ^Oj (6.20)

When working with an irreducible trinomial of the form P{x) — x^ + a:"" + 1,
it is convenient to consider the following four sub-vectors,

C =- A'B mod P(x)

— ^[0,m-l] + ^[m,2m-l] + ^[Tn,2m-l-n]^

+ (^[2m-n,2m-l] + ^[2m-n,2m-l]^^ j (6.21)

Thus, the reduction step can be computed by the addition of four terms,

X = q',
Y = CL

m,2m—1]

' [m , 2 m - l - n] ' ^

^ — ^[2m-n,2m-l] + ^[2m-n,2m-l]^^

This procedure is shown schematically in Fig. 6.5. Notice that for those designs
implemented in hardware platforms, the modular reduction procedure just

6.1 Field Multiplication 155

outlined can be instrumented by using XOR logic gates only. Nevertheless,
the exact computational complexity of this arithmetic operation depends on
the expHcit form of m and the middle coefficient n in the trinomial P{x).

Although the strategy shown in Figure 6.5 has been designed for irre­
ducible trinomials, it can be easily extended to irreducible pentanomials. For
example, let us consider the finite field GF(2^^^)generated using the irre­
ducible pentanomial P{x) = x^^^ -\- x'^ -\- x^ -\- x^ -\- 1 ^. The corresponding
reduction procedure for this pentanomial is depicted in Fig. 6.6.

Fig. 6.6. Pentanomial Reduction

This is a NIST recommended finite field for elliptic curve applications [253].

156 6. Binary Finite Field Arithmetic

6.1.5 Modular Reduction with General Polynomials

The algorithms studied in the previous section are highly efficient for irre­
ducible trinomials and/or pentanomials. However, when general irreducible
polynomials are selected, i.e., irreducible polynomials with an arbitrary num­
ber of nonzero coefficients, the algorithms presented in last section are not
efficient anymore. Because of that, we need to come out with alternative tech­
niques to handle the reduction step. In this section we present a standard
reduction method based in look-up tables specifically intended for general
irreducible polynomials.

Recall that assuming that the polynomial product C with 2m — 1 coordi­
nates is given, we would like to compute

C'{x)=^C{x)modP{x).

Our methods are based on the observation that since we are interested
in the polynomial remainder of the above equation, we can safely add any
multiple of P{x) to C[x) without altering the desired result. This simple
observation suggests the following algorithm that can reduce k bits of the
polynomial product C at once. Assume that the m-f 1 and 2m — 1 coordinates
of P(x) and C(x), respectively, are distributed as follows:

C = [c2m-2, C2m-3, • • • j C2m-l-k, C2m-2-k, • • • , Ci, CQ]]

P = bm,Pm-l , . . - ,Pl ,Po] .

Then, there always exists a /c-bit constant scalar 5, such that

P = I Pm, P m - 1 , • • • , Pm-/e+l, Pm-k, • • • , P i , Po]]

S - P =[C2m-2, C2m-3, • • • , C2m-l-/e, P'm-k^ ' ' • ' Pv Poh

(6.22)

(6.23)

where I < k < m — I. Notice that all the most significant k bits of the scalar
multiplication S • P become identical to the corresponding ones of the number
C. By left shifting the number S • P exactly Shift = 2m — 2 — k — l positions,
we can effectively reduce the number in C by k bits as shown in figure 6.7.

C [c2m-2, C2m-3, . • • , C2m-l-k, C2m-2-k, • • • , Cm-2, Cm-3, • • • , Co] +

2 5 W t (5 . p) [c2m-2,C2m-3, .•.,C2m-l-fe, Pm-fc, • • • > Po, 0, . • . , 0] =

[O^ 0 , . . . , 0̂ C2m-ki • • • , c'm-2, Cm-3, • • • , Co]

Fig. 6.7. A Method to Reduce k Bits at Once

One can apply this strategy an appropriate number of times in order to
reduce all the most m — 1 significant coordinates of C.

In summary, the main design problems that we need to solve in order to
implement the reduction method discussed here are:

6.1 Field Multiplication 157

• Given C and P as in (6.22), find the appropriate constant S that yields the
most significant k bits of the operation SP, identical to the corresponding
ones in C.

• Compute the scalar multiplication S - P oi (6.23).
• Left shift the number 5 • P by Shift positions, so that the result of the

polynomial addition C 4- 2^^^^^[S • P) ends up having k leading zeroes.

Both of the first two design problems, i.e., finding the constant S and com­
puting the scalar product S • P , can be solved efficiently by using a look-up
table approach, provided that a moderated value of k be selected. In practice,
we have found that a selection of /c = 8 yields a reasonable memory/speed
trade-off" in the performance of the algorithm.

For all the 2^ different values that the k most significant bits of C can
possibly take, we want to guarantee that the k most significant bits of the
operation SP are identical to those of C. Hence, once that k has been fixed,
we need to find a set of 2^ different scalars satisfying that requirement.

Algorithm 6.3 presents a method that, given the irreducible polynomial P
and its degree m and the selected value of /c, constructs a table containing all
the 2^ scalars needed to obtain the required result.

Algorithm 6.3 Constructing a Look-Up Table that Contains All the 2^ Pos­
sible Scalars in Equation (6.23)
Require: The irreducible polynomial P; its degree m; and k, the number of bits to

be reduced at once.
Ensure: A table highdivtable with 2^ scalars.

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
LI:
12:
13:

highdivtable = 0;
Â = 2'̂ - 1;
PMSBk = PmPm-l . . . Pm-fc+i;
for i from 0 to N do

A = Dec2Bin{i)\
for j from 0 to k-1 do

if Aj — 1 then
A^A^ RightShift{PMSBk,j)]
highdivtable[i] = highdivtable[i] +2^

end if
end for

end for
Return (highdivtable)

fc-l-j.

The Algorithm 6.3 finds all the 2^ scalars needed by reducing each one
of them using the k most significant bits of the irreducible polynomial P .
For convenience, these bits are stored in the variable PMSBk (see step 3 of
Algorithm 6.3). Steps 4-9 find the appropriate scalar S for each one of all the
2^ possible values that the k MSB of C can take.

158 6. Binary Finite Field Arithmetic

In line 5 the value of C to be processed is translated to its binary represen­
tation and stored in the temporary variable A, Then, in lines 6-9 each one of
the k bits of A is scanned and reduced, if necessary, by using an appropriate
shift version of PMSBk, Finally, in hne 9 the k — \ — j - th bit of the i-th entry
in table highdivtable is set. At the end of the inner loop in lines 6-9, the i-th
entry of highdivtable contains the scalar S that would obtain the result in
(6.23), if the k most significant bits of C where equal to the number in A.

In order to compute the scalar multiplication S • P of (6.23), we use once
again a look-up table approach as shown in Algorithm 6.4.

Algorithm 6.4 Generating a Look-Up Table that Contains All the 2^ Possible
Scalars Multiplications S • P
Require: The irreducible polynomial P; and fc, the number of bits to be reduced

at once.
Ensure: A table Paddedtable, with all the 2^ S • P possible products.
1: for i from 0 to k-1 do
2: Pshift[i] = LeaShift(P,i);
3: end for
4: Â = 2 ' ^ - l ;
5: for i from 0 to N do
6: 5 = Dec2Bin(i)\
7: for j from 0 to k-1 do
8: if Sj = 1 then
9: Paddedtable[i] = Paddedtable[i] -\- Pshift[k]]

10: end if
11: end for
12: end for
13: Return (Paddedtable)

The algorithm in 6.4 is quite similar to Algorithm 6.3. In order to obtain
all the 2^ scalar products of the irreducible polynomial P , the above algorithm
finds first in fines 1-2 all the first 2^ multiples of P for j = 0 , 1 , . . . , /c — 1. Then,
in lines 4-9 all the 2^ scalars S are examined one by one and bit by bit, so that
the scalar product i • P is stored in the i-th entry of the table Paddedtable for
i = 0,1,... ,N = 2^^ — 1. Notice that each entry of Paddedtable has a size of
m + k bits, where m is the degree of the irreducible polynomial P .

Using the two look-up tables generated by Algorithms 6.3 and 6.4, we
can easily obtain the modular reduction of the polynomial C by repeatedly
implementing the operation C + 2^^^^^{S - P).

Consider now Algorithm 6.5, where it has been assumed that the tables
Highdivtable and Paddedtable have been previously computed and are avail­
able.

First, in fine 1 given k and the degree m of the irreducible polynomial P ,
the number of iterations is computed and stored in the variable Â *̂ In fine 2 it

6.1 Field Multiplication 159

Algorithm 6.5 Modular Reduction Using General Irreducible Polynomials
Require: The degree m of the irreducible polynomial; the operand C to be reduced;

and k the number of bits that can be reduced at once.
Ensure: The field polynomial defined as C = C mod P , with a length of m bits.

2: shift = 2m-2-k-l]
3: for i from 0 to Nk do
4: A = Cn-k-iC{n-k-i)-\ • • • C'(n-fc.i)-/e+i;
5: 5 = Highdivtahle[A\\
6: Pshifted = LeftShift{Paddedtable[S], shift);
7: C = C-\- Pshifted]
8: s/iz/t = shift — k\
9: end for

10: Return C

is computed the amount of shift needed to apply properly the method outlined
in figure 6.7. Then, in each iteration of the loop in lines 3-9, k bits of C are
reduced. In line 4 the k bits of C to be reduced are obtained. This information
is used in line 5 to compute the appropriate scalar S needed to obtain the
result of equation (6.23). In fine 6 the S-th entry of the table Paddedtable is
left shifted shift positions so that in line 7 the operation C-{-2^^^^^{S-P) can
be finally computed allowing the effective reduction of k bits at once. Then, in
fine 8 the variable shift is updated in order to continue the reduction process.

Algorithm 6.5 performs a total of Â ;̂ = T^^x l̂ iterations. At each itera­
tion of the algorithm the look-up tables Highdivtable and Paddedtable are
accessed once each. In line 7, and XOR addition is executed, implying that
the complexity cost of the general reduction method discussed in this section
is given as,

Additions = 2Nk, .^ ^^.
Look-up table size (in bits) = 2̂ (̂771 -h 2k) . \ -)

6.1.6 Interleaving Multiplication

In this Subsection we discuss one of the simplest and most economical binary
field multiplier schemes: the serial interleaving multiplication algorithm.

Multiplication by a Primitive Element

Let P(a:;) = po+pia;-f-pia;^-f.. .H-Pm-ia;"^"^ +a;'^ be an m-degree irreducible
polynomial over GF{2). Let also a be a root of p(a;), i.e., p(a) — 0. Then, the
set {1, a, a^ , . . . , a'^"^} is a basis for ^^(2^^), commonly called the polyno­
mial (canonical) basis of the field [221]. An element A G GF{2'^) is expressed

m —1

in this basis as A — ^ aia\ Let A{a) be an arbitrary element of GF{2'^).
i=0

160 6. Binary Finite Field Arithmetic

Then, the product C — a- A{a) can be expressed as,

C = a (ao+ a i a 4 - . . .+arri_ia'^~^) = aoa + aia^ + .. . H-am-iQ;'^. (6.25)

'T5 '^ ^

• # -e

^

-—e
Fig. 6.8. a • A{a) MultipUcation

Using the fact that a is a primitive root of the irreducible polynomial, we
can write,

a ^ = po + Pia + . . . + p m - i a ^ " ^ (6.26)

Substituting Eq. (6.26) into Eq. (6.25) we obtain,

C = Co + cia 4- . . . + C m - i a ^ ~ \

where, CQ — am-iPo and

di — ai-i -f am-iPi,

for i — 1 , . . . , m — 1. A realization of the above operation is shown in
Fig. 6.8. The main building block is an m-tap LFSR register. That regis­
ter is initially loaded with the m coordinates of the field element A, namely,
(ao, ai , a 2 , . . . , am — 1). The signals pi represent the coefficients of the irre­
ducible polynomial. Notice that whenever a given polynomial coefficient is
on, i.e.. Pi = 1, then the corresponding branch of the circuit will be a short
circuit. Otherwise, if Pi = 0 the branch acts as an open circuit. After m clock
cycles, the new register content will be the value of the field element C.

Serial Multiplication

Using the multiplication procedure outlined above, the multiplication of two
arbitrary field elements can be accomplished by using a procedure inspired in
the well-know Horner's scheme.

Let us consider two arbitrary field elements A and B expressed in polyno­
mial basis as,

m —1 m—l

i=0 1=0

6.1 Field Multiplication 161

Then, the product oi A • B can be expressed as,

C{a) - A{a)B{a) mod P{a)

= A{a) (Y^ bia' j mod P{a)

m - l \

Y^ biA{a)a' mod P{a)
s i=0 /

Therefore,

C{a) = {boAia) + biA{a)a -f b2A{a)a'^ 4 - . . . + bm-iAia)'^-'^) mod P{a).

Algorithm 6.6 shows the standard procedure for computing above equation
using Horner's rule.

Algorithm 6.6 LSB-First Serial/Parallel Multipher
Require: An irreducible polynomial P{a) of degree ?n, two elements A^ B G

Ensure: C{a) = A{a)B{a) mod P{a).
1
2
3
4
5
6

C = 0;
for i = 0 to 772 — 1 do

C^biA-i- C;
A = Aa^ mod P(a);

end for
Return(C) .

The multiplier realization of Algorithm 6.6 is shown in Fig. 6.9. The archi­
tecture shown in Fig. 6.9 consists of two LFSR Register plus extra circuitry.
As it was mentioned previously, the signals pi in the first LFSR block represent
the coefficients of the irreducible polynomial, and their values (either ones or
zeroes) determine the LFSR structure. Furthermore, a gate array is included
in order to compute the multiplication operation as is explained below. Ini­
tially the register C is set to zero, whereas the register in the upper part of
Fig. 6.9 is loaded with the m coefficients of the field element A. Thereafter,
when the clock signal is applied to the registers, the value of Aa is generated.
Then, B coefficients, namely, 6o, ̂ i, ^2, • • •, ^m-i are serially introduced in that
order, thus generating the values biAa\ for z = 0 , 1 , . . . , m — 1, which are ac­
cumulated in register C until all the m product coefficients CQ, ci, C2, . . . , Cm-i
are collected.

6.1.7 Matrix-Vector Multipliers

The GF(2^) multiplication given by (6.1) can be described in terms of matrix-
vector operations. There are mainly two different approaches based on matrix
vector operations to compute a field product:

162 6. Binary Finite Field Arithmetic

po~ri 7^} ^

. b^, bo
e-

e*
j ^

^

e- --/---e

i3 5 5
^

T^

e*
"F̂

Fig. 6.9. LSB-First Serial/Parallel Multiplier

a
o*
T^

1. The polynomial multiplication part is performed by any method. Then,
the resulting product is reduced by using a reduction matrix.

2. The polynomial multiplication and modular reduction parts are performed
in a single step by using the so-called Mastrovito matrix.

Let a{x) and b{x) denote two degree m polynomials representing the ele­
ments in GF(2"^). Let c{x) = a{x)b{x) mod P{x) denote their field product.
The coefficient vectors of these polynomials are given by

a== [ao,ai,- • • , am- i]^

b = [bo.bi,--- .bm-i]'-^

c = [co,ci ,-" ,Cm-i]^.

Also, let us define the polynomials

d{x) = a{x)b{x) = do-\- dix H h (i2m-2^^^~^ ,

d(^\x) = do -f c/ix + •.. -f- dm-ix'^-'^ , (6.27)

d^^^{x) =dm-\- dm-^-lX + • • • 4- d2m-2X'^-^ .

The coefficient vectors representing these polynomials are

d = [do^di,'" ,C?2m-2]^ ,

d(^) = [do,dir".dm-if ,

d^^^ = [dm, dm-\-l, • • • , C?2m-2]^ •

The work in [284] reduces the polynomial multiplication d{x) using an
(m X m — 1) reduction matrix Q to obtain the field product c{x) as below:

6.1 Field Multiplication 163

c = d(^) + Q • d^)̂ . (6.28)

Mastrovito Multiplier

The so-called Mastrovito matrix is constructed from the coefficients of the
first multiplicand and the irreducible polynomial defining the field. Then, the
polynomial multiplication and modulo reduction steps are performed together
using this matrix. The papers [351, 128, 401] follow the Mastrovito multiph-
cation scheme outHned below.

c - M b (6.29)

where M is the (m x m) Mastrovito matrix whose entries are the function of
the coefficients of a(x) and P{x). The Mastrovito matrix M is related to the
reduction matrix Q by

M - L + Q . U , (6.30)

where L and U are the following (m x m) and (m — 1 x m) matrices:

L =

U =

ao
ai

(12

O'm-2

_<^m-l

0 am-
0 0

0
ao
a i

0
0

do

^ m - 3 <^m-4

ttm-2 ttm-3

1 Q'm-

dm-

-2 " '

-1 " •

Cl2

^3

0 0
0 0
0 0

ao 0
ai ao

a i

a2

(6.31)

0 0 0 - 1 CLr,

0 0 0 ••• 0 ttm-l.

This is because d{x) = a{x)b{x) can be given in the vector notation by

d = :
d(^)
d(^)

L b
U b

Then, c = d(^) + Q • d(^) = L . b + Q . U . b = (L + Q - U) . b = M . b .
The Mastrovito and the reduction matrices are studied thoroughly in

[284, 401] for various types of irreducible polynomials. In [351] a compre­
hensive study of the Mastrovito multiplier for irreducible trinomials was pre­
sented. Authors in [401] proposed a practical and systematic design approach
for a general Mastrovito multiplier. In [388] it was shown that non-Mastrovito
multipliers using direct modular reduction also provide competitive perfor­
mance. Moreover, efficient non-Mastrovito multipliers for irreducible trinomi­
als were also proposed.

164 6. Binary Finite Field Arithmetic

6.1.8 Montgomery Multiplier

In this section we explain the Montgomery multiplication method in GF(2"^).
Once again, let P{x) be an irreducible polynomial over GF{2) that defines the
field GF(2^). Rather than computing Eq.(6.1), the Montgomery multiplica­
tion calculates

C{x) = A[x)B{x)R-\x) mod P[x) (6.32)

where R{x) is a fixed element and gcd{R{x),P{x)) = 1.
Because of Bezout's identity^, one can find two polynomials i?~^(x) and

P {x) such that
R{x)R-\x) + P{x)P'{x) - 1 (6.33)

where R~^{x) is the inverse of R[x) modulo P{x). These two polynomi­
als can be calculated with the extended Euclidean algorithm. Kog and Acar
[182, 388] selected R{x) — x^ for high performance modular reduction in the
Montgomery multiplication algorithm, which can be given as follows:

Algorithm 6.7 Montgomery Modular Multiplication Algorithm

Require: A{x),B{x),R(x),P'(x)
Ensure: C{x) = A{x)B{x)R~^{x) mod P{x)
1: T{x) = A(x)B{x);
2: U{x) = T{x) P'{x) mod R{x)\
3: C\x) = [T{x) + U{x)P{x)]/R{x)]
4: Return C

To prove the correctness of this algorithm we note that Step 2 implies that
there exists a polynomial

U{x) = T{x) P\x) + H{x)R{x) . (6.34)

We write C{x) in Step 3 by using (6.34) as follows:

<^i^) = flfeyl^W + T{x) P'{x) P{x) + H{x)R{x) P{x)\

= flfe[rW(l + P'{x) P{x))+H{x)R{x) P(x)] .

From (6.33), we can write 1 + P{x)P (x) = R{x)R''^{x) and substitute it
into our last expression

^(^) = W^[T{x)R{x)R-' {x) -f H{x)R{x) P{x)]

= T{x)R'\x)-^H[x) P{x)

= A{x)B{x)R-^ mod P{x) .

For more details on Bezout's identity the reader is refer to §6.3.1.

6.1 Field Multiplication 165

The degree of C{x) can be verified from Step 3 as follows:

deg[C{x)] < max{deg[T{x)],deg[U{x)] 4- deg[P{x)]} - deg[R{x)]

< max{2m — 2, deg[R{x)] — 1 + m} — deg[R{x)]

< max{2m — 2 — deg[R{x)],m — 1} .

Then, it can be concluded that deg[C{x)] < m — 1, if deg[R{x)] > m — 1. If
we choose R{x) = x'^, the result C{x) will be of degree m — 1 at most.

It can be shown [182] that Algorithm 6.7 has an associated computational
cost of 2m^ coefficient multiplications (ANDs) and 2m^ — 3m — 1 coefficient
additions (XORs), whereas the total time complexity is 3TA + (2|'log2m] +
[l o g 2 (m - l) l) r x .

6.1.9 A Comparison of Field Multiplier Designs

Table 6.3. Fastest Reconfigurable

Work

KOM variant by [47],
implemented by [326]
KOM variant by [85],
implemented by [326]

KOM variant by [293],
implemented by [326]

KOM [106]

Recursive
Classical [106]

KOM [117]

Massey-Omura
[118]

Platform

Virtex 2

Virtex 2

Virtex 2

Virtex 2

Virtex 2

Virtex 2

Virtex 2

Field

GF(2'^^)

GF(2'^^)

GF(2^^^)

240 bits

240 bits

240 bits

240 bits

Hardware GF{2'^) Multipliers

Cost

5307
CLBs
5409
CLBs
5840
CLBs
1480

CLBs
1582

CLBs
1660

CLBs
36857
LUTs

Cycles

1

1

1

30

56

54

50

timings
I2.5677S

13.37r?S

14.73778

37877S

523r;S

655778

8OO778

bits
S licesx tim ings

2.445M

2.254M

1.895M

0.429M

0.290M

0.221M

0.0336M (est.)

In this Subsection we compare some of the most representative designs
of GF{2'^) multipliers considering three metrics: speed, compactness and effi­
ciency. Table 6.3 shows the fastest designs reported to date for GF{2'^) field
multiplication. It can be observed that Karatsuba-ofman Multipliers (KOM)
are much faster than other schemes such as recursive classical multiplier or
Massey-Omura scheme. This can be explained from the theoretical point of
view from the fact that KOM algorithms enjoy of a sub-quadratic complexity.

In Table 6.4 we show a selection of some of the most compact reconfigurable
hardware multiplier designs. It is noted that this category is dominated by
the interleaved and Montgomery multiplier schemes.

166 6. Binary Finite Field Arithmetic

Table 6.4. Most Compact Reconfigurable Hardware GF(2'^) Multipliers

Work

Interleaved
[104]

Montgomery
[97]

Class.+Montg.
[18]

Montgomery
118]

Interleaved
[266]

Platform

Virtex

Virtex

Virtex

Virtex

Virtex

Field

GF(2"^^^)

GF(2'"^^)

GF(2^^")

GF(2^^")

GF(2'"^")

Cost

359
CLBs
425

CLBs (est)
1049

CLBs
1427

CLBs
420

CLBs (est)

Cycles

239

466

80

160

210

timings

3.1MS

2.8lAiS

l.U/xS

1.66/iS

12.3/iS

bits
Slicesxtiminqs

0.215M '

0.195M

0.137M

0.0675M

0.042M

We measure efficiency by taking the ratio of number of bits processed over
slices multiplied by the time delay achieved by the design, namely,

bits

Slices X timings

For instance, consider the KOM variant design proposed by [47] and imple­
mented by [326]. As is shown in Table 6.3, working over GF{2^^^), that design
achieved a time delay of just, 12.66778 at a cost of 5307 sHces. Therefore its
efficiency is calculated as,

bits 163
Slices X timings 5307 x 12.56?7

2.445M

When comparing the designs featured in Tables 6.3 and 6.4, it is noticed
that the most efficient multiplier designs are the Karatsuba-Ofman multipli­
ers variants as they were reported in [47, 85, 293]. This is a quite remarkable
feature, which implies that the Karatsuba-Ofman multipliers represent both,
the fastest and the most efficient of all multiplier designs studied in this Chap­
ter.

6.2 Field Squaring and Field Square Root for Irreducible
Trinomials

Let us consider binary extension fields constructed using irreducible trinomials
of the form P(x) = x'^ -{- x'^ -h 1, with m > 2. It is convenient to consider,
without loss of generality, the additional restriction 1 < n < [^J ^.

^ It is known that if P{x) = x"^ -\-x'^ -{-1 is irreducible over GF{2), so is P{x) =
^m _̂ ajW-n _|_ ^228]. Hence, provided that at least one irreducible trinomial of
degiee m exists, it is always possible to find another irreducible trinomial such
that its middle coefficient n satisfies the restriction 1 < n < [y j .

6.2 Field Squaring and Field Square Root for Irreducible Trinomials 167

The rest of this Section is organized as follows. First, in Subsection 6.2.1,
we give the corresponding formulae needed for computing the field squaring
operation when considering arbitrary irreducible trinomials. Those equations
are then used in Subsection 6.2.2 to find the corresponding ones for the field
square root operator.

6.2.1 Field Squaring Computation

Let A = X^^^ aix'^ be an arbitrary element of GF{2'^). Then, according to
Eq. (6.16) its square, A^, can be represented by the 2m-coefficient vector.

A^{x) = [O ttm-i 0 am-2 . . . 0 ai 0 ao]

= K m - l ^m-2 • • • ^m-1 «m i ^ m - 1 ^2 • • • «1 «o] (6-35)

where a[= 0 for i odd. Hence, the upper half of A'^ (i.e., the m most signifi­
cant bits) in Eq. (6.35) is mapped into the first m coordinates by performing
addition and shift operations only.

In order to investigate the exact cost of the field squaring operation, we
categorize all the irreducible trinomials over GF{2) into four different types.
For all four types considered and by means of Eqs. (6.35) and (6.21), the
following explicit formulae for the field squaring operation were found.

Type I: Computing C = A"^ mod P{x)y with P{x) = x"^ -f x" 4- 1, m even, n
odd and n < y ,

a± + arn±i i even, z < n or z > 2n,

a± + ttm+i -f a^_„^i i even, n < i < 2n,

a ^ ^ i _ i i ± i i odd, i < n,

am-n+i i odd, i > riy

Ci = \

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.36) has an associated
cost of m±E:zl XOR gates and 2T^ delays.

Type II: Computing C = ^^ mod P{x), with P{x) = x"^ 4- a:"" 4-1, m even,
n odd and n = ^ ,

(6.37)

for 2 = 0,1, • • • , m — 1. It can be verified that Eq. (6.37) has an associated
cost of ^^^ XOR gates and one Tx delay.

ai -f am+i
2 ~2~

ai
2

^ m + 1 - ^
an+i

i even, i < n,

i even, z > n,

i odd, z < n.

z odd, i > n^

168 6. Binary Finite Field Arithmetic

Type III: Computing C = A^ mod P{x), with P{x) = x"^ + x ^ -f 1, m, n odd
numbers and n < ^^^^,

Ci= {

a± -ha±_^rn^ + a i ^ (^ _ ^)

a± 4- tti , 1

am+i + ar
2

am+i

i even, i < n,

i even, n < z < 2n,

2 even, z > 2n,

i odd, i < n,

z odd, i > n^

(6.38)

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.38) has an associated
cost of ^ XOR gates and 2Tx delays.

Type IV: Computing C = A^ mod P{x), with P{x) = x ^ -f a:̂ + 1, m odd.
n even and n < ^̂ ^̂ ,̂

ai + ai
2 2

2 2

a i
2

a rn + i

ar

+m—n

+ ar

i even, z < n,

even, n < i < 2n,

even, z > 2n,

odd, z < n,

z odd, i > n,

(6.39)

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.39) has an associated
cost of ^+^~-^ XOR gates and one Tx delay.

The complexity costs found on Equations (6.36) through (6.39) are in conso­
nance with the ones analytically derived in [386, 387].

6.2.2 Field Square Root Computation

In the following, we keep the assumption that the middle coefficient n of the
generating trinomial P{x) — x'^ -\-x'^ -\-1 satisfies the restriction 1 < n < ^ .

Clearly, Eqs. (6.36)-(6.39) are a consequence of the fact that in binary
extension fields, squaring is a linear operation. The Hnear nature of binary
extension field squaring, allow us to describe this operator in terms of an
(m X m)-matrix as,

C = A^:=^MA (6.40)

Furthermore, based on Eq. (6.40), it follows that computing the square
root of an arbitrary field element A means finding a field element D ~ yA
such that D^ = MD = A. Hence,

D = M-'^A (6.41)

Eq. (6.41) is especially attractive for fields GF{2^) with order sufficiently
large, i.e., m > > 2, where the matrixes M corresponding to Eqs. (6.36)-(6.39)
are all highly spare (each row has at most three nonzero values).

6.2 Field Squaring and Field Square Root for Irreducible Trinomials 169

Hence, for the trinomial types I, II, III and IV as described above, the
element D = \fA given by Eq. (6.41) can be found by the computation of the
inverse of the corresponding matrix M. Then using \J~A = D = M~^A, we
can determine the m coordinates of the field element as described bellow.

Type I: Computing D such that D"^ = A mod P{x), with P{x) =: x ^ + a:̂ + l,
m even, n odd, and n < y :

di = <
(l2i + a(2i-f n) mod m -\-Cl2i-n LtJ < ^ < ^J

^21 + a(2i-fn) mod m n<i < ^ ,

y(^{2i-\-n) mod m -j < l < TTl

(6.42)

for z :== 0,1, • • • , m — 1. It can be verified that Eq. (6.42) has an associated
cost of VQd^ XOR gates and 2T^ delays.

Type II: Computing D such that D"^ = A mod P(x), with P{x) = x^4-x"' + l,
m even, n odd and n — ^ :

Ci2i + Ci2i-\-^ ^ < •
rl — J n m+2
" i — S Ci2i

^ ^{2i+^) mod m

4 ^ ^ ^ 2

^ <i <m
(6.43)

for z = 0,1, • • • , m — 1. It can be verified that Eq. (6.43) has an associated
cost of ^^^^ XOR gates and one Tx delay.

Type III: Computing D such that D"^ = A mod P{x), with P{x) = a:"' + x^^-
l, m, n odd numbers and n < ^^^^,

di = <

a2i

0-21 + 0.2i-n

<^2i-n

\a2i-r]

I < n-f-1
2 '

21±i < ^ < m±l
2 2 '

m-\-n
2 '

^ < z < m

(6.44)

for i = 0,1, • • • , m - 1. It can be verified that Eq. (6.44) has an associated
n—'.

2 cost of ^^^^ XOR gates and one Tx
delay.

Type IV: Computing D such that D'^ = A mod P[x), with P[x) = x'^ + x'^ +
1, m, odd, n even and [^ ^ 1 <n< L^^J -

170 6. Binary Finite Field Arithmetic

^21 + a2i^{rn-n) + <^2i+(m-2n) + ^2i-\-{m-3n)

0>2i + a2i^{rn-n) + <^2i+(m-2n) + ^ 2 i + (m - 3 n)

^21 + G^2i+(m-2n) + ^ 2 i + (m - 3 n) + «2i-f-(m-4n)

0^2i + ^ 2 i + (m - 2 n) + ^ 2 i + (m - 3 n) + ^2i+(7Ti-4n)

di—{ +a2i4-(m-5n)

^21

0^2i-m

0'2i-m + a 2 i _ (m + n)

tt2i-m + ^ 2 z - (m + n) + ^ 2 i - (m + 2 n)

\^Q>2i-m + G^2i-(m+n) + ^ 2 i - (m + 2 n) + ^22- (m+3n)

. 4 n - (m - l)
^ ^ 2 '

4 n - (m - l) ^ A ^ n
2 2::: «• ^ 2 '

21 < 7 ^ 5 n - (7 n - l)
2 — ^ ^ 2 '

'"-<,"'-^' < i < n,

< i < 2d:Hl±i, m + 1
2

2 - ^ "^ 2
2 n + m + l ^ n ^ 3n4-m+l

2 :^ ^ "^ 2
3 n ± m ± l < z < m

(6.45)
for z = 0,1, • • • ,m — 1. At first glance, Eq. (6.45) can be implemented
with an XOR gate cost of,

„ 4n—(m—1) , m — 3n — 1 „ 4n—(m —1)
3 -̂ ^4-4 4-3 T; -^

, m — 3n — 1 n
4 ^ — + 2 + 2 '

n ^ m — 3n — 1 ^ m — n—1 n
2 + 3 ^ — = ^ 2 2-

However, taking advantage of the high redundancy of the terms involved in
Eq, (6.45), it can be shown (after a tedious long derivation) that actually
^"^^"•^ XOR gates are sufficient to implement it with a 2Tx gate delays.

Table 6.5. Summary of Complexity Results

Type

I
II
III
IV
I
II
III
IV

Trinomial P(x) = a;^ + x^ + 1

m even, n odd
m even, n = m/2

m o d d , n odd
m o d d , n even
m even, n odd

m even, n = m/2
m o d d , n odd
m odd, n even

Operation

Squaring
Squaring
Squaring
Squaring

Square root
Square root
Square root
Square root

XOR gates

{m^n- l)/2
(m 4- 2)/4
(m - l) / 2

(m 4 - n - l) /2
(m 4 - n - l) /2

(m 4- 2)/4
(m - l) / 2

(m 4 - n - l) /2

Time delay

2rx
Tx
2rx
To.
2Ta.
Tx
Tx
2Tx

Table 6.5 summarizes the area and time complexities just derived for the
cases considered. Furthermore, in Table 6.6 we hst all preferred irreducible
trinomials P(x) = x^-\-x^-\-\ of degree m € [160, 571] with m a prime number.
In all the instances considered the computational complexity of computing the
square root operator is comparable or better than that of the field squaring.

6.2 Field Squaring and Field Square Root for Irreducible Trinomials 171

6.2.3 Illustrative Examples

In order to illustrate the approach just outlined, we include in this Section
several examples using first the artificially small finite field GF{2^^) and then
more realistic fields, in terms of practical cryptographic applications.

Example 6.1. Field Square Root Computation over GF{2^^)

Let us consider GF{2}^) generated with the irreducible Type III trinomial
P(x) = x^^ 4- x^ + 1. As it was discussed before, one can find the square root
of any arbitrary field element A G GF[2^^) by applying Eq. (6.41). In order
to follow this approach, based on Eq. (6.38), we first determine the matrix M
of Eq. (6.40) as shown in Table 6.7. Then, the inverse matrix of M modulus
two, M~^, is obtained as shown in Table 6.8. Afterwards, the polynomial
coefficients, in terms of the coefficients of A^ corresponding to the field square
C =^ A^ and the field square root D — y/~A elements can be found from Eqs.
(6.40) and (6.41) as shown in Table 6.9.

As predicted by Eq. (6.38), field squaring can be computed at a cost of
(m - l) /2 = (15 - l) /2 = 7 XOR gates and one T^ delay. In the same way,
the square root operation can be computed at a cost of ^^~ ^ = ^̂ ~̂ ^ = 7
XOR gates with an incurred delay time of one T^, which matches Eq. (6.44)
prediction. It is noticed that in this binary extension field, computing a field
square root requires the same computational effort than the one associated to
field squaring.

Example 6.2. Field Square Root Computation over GF{2^^'^)

Let us consider GF(2}^'^) generated using the irreducible Type II trinomial,
P{x) = x^^'^-{-x^^ -\-1. Using the same approach as for the precedent example,

Table 6.6. Irreducible Trinomials P{x) = x"
Encoded as m(n), with m, a Prime Number

+ x"" + 1 of Degree m G [160, 571]

m,{n)
167(35)
191(9)

193(15)
199(67)
223(33)
233(74)
239(81)
241(70)
257(41)

263(93)
271(70)

Type
III
III
III
III
III
IV
III
IV
III
III
IV

m(n)
281(93)
313(79)
337(55)
353(69)
359(117)
367(21)

383(135)
401(152)
409(87)

431(120)
433(33)

Type
III
III
III
III
III
III
III
IV
III
IV
III

m{n)
439(49)
449(167)
457(61)
463(93)
479(105)
487(127)
503(3)

521(158)
569(77)

type^
III
III
III
III
III
III
III
IV
III

172 6. Binary Finite Field Arithmetic

we can obtain the square root polynomial coefficients of an arbitrary element
A from the field GF{2^^^) as,

(6.46) 1a2i + a2z-f8i 2 < 4 1 ,

a2i 41 < z < 81
^(2z+81) mod 162 8 1 < 2

for 2 = 0,1, • • • , 161. As predicted by Eq. (6.43) the associated cost of the field
square root computation for this field is given as, ^^^^^ = ^̂ '̂̂ "̂ ^̂ = 4 1 XOR
gates with an incurred delay time of one Tx.
Example 6.3. Field Square Root Computation over GF(2^^^)

Let GF{2'^^^) be a field generated with the Type III irreducible trinomial^,
P{x) = x"^^^ -f x'^^ -f 1. The square root of any arbitrary field element A is
given as.

Table 6.7. Squaring matrix M of Eq. (6. ,40)

M =

10 0
000
0 1 0
000
00 1
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
1 00
000
0 10
000
00 1
000
000
000
000

000
00 1
000
000
000
000
000
000
00 1
000
0 0 0
000
1 00
000
0 10

000
000
000
1 00
000
0 1 0
000
00 1
000
000
10 0
000
0 1 0
000
00 1

0 0 0"
1 00
0 00
0 1 0
000
00 1
000
0 00
1 00
1 0 0
0 1 0
0 1 0
00 1
00 1
000

^ This is a NIST recommended finite field for elliptic curve applications [253].

6.3 Multiplicative Inverse 173

Cl2i + ^21+159 + a2i+85 + a22-f 11 ^ < 32,

Ci2i + Ci2i-\-159 + <^2i+85 + Cl2i-\-U + <^2i-63 32 < Z < 37,

a2i + a2i+85 + tt2i+ll + a2i-63 37 < 2 < 69,

ci2i + a2i+85 + a2i+ii + a2i-63 + a2i-i37 69 < z < 74,

a2i 7 4 < z < 1 1 6 ,

a2i-233 116 < z < 154,

Ci2i-233 + a2i-307 154 < Z < 191

^21-233 4- a2i-3Q7 + a2i-381 191 < Z < 228

<̂ 2z-233 + ^2i-307 + ^21-381 + <^2i-455 228 < Z < 233

(6.47)

for z = 0,1, • • • , 232. Eq. (6.47) can be implemented with an XOR gate cost of
^"^^"•^ = 1 5 3 XOR gates with a 4Tx gate delay, which agrees with the value
predicted by Eq. (6.45).

6.3 Multiplicative Inverse

Among customary finite field arithmetic operations, namely, addition, sub­
traction, multiplication and inversion of nonzero elements, the computation
of the later is the most time-consuming one. Multiplicative inversion compu­
tation of a nonzero element a G GF{2'^) is defined as the process of finding
the unique element a~^ G GF{2'^) such that a • a~^ = 1.

Several algorithms for computing the multiplicative inverse in GF{2^)
have been proposed in hterature [153, 93, 356, 135, 399, 127, 296, 122]. In
[135], multiplicative inverse is computed using an improved modification of

Table 6.8. Square Root Matrix M"^ of Eq. (6.41)

M-' =

10 0
00 1
000
000
0 1 0
000
000
000
0 1 0
000
000
000
000
000
000

00 0
00 0
0 1 0
000
000
100
00 1
000
000
100
00 1
000
000
000
000

00 00
00 00
0000
1000
00 10
0000
0000
0 100
000 1
0000
0000
0 100
000 1
0000
0000

0 0 0 0 0"
00 0 00
00000
00000
00000
10 000
00 100
0000 1
00000
0 1000
000 10
00000
00000
0 1000
000 10

174 6. Binary Finite Field Arithmetic

the extended Eudidean algorithm called almost inverse algorithm. That it­
erative algorithm can compute the multiplicative inverse in approximately
2m clock cycles [135]. In [127] an architecture able to compute the Mont­
gomery multiplicative inverse for both, GF{p), for a prime p, and GF{2'^) on
a unified-field hardware platform was proposed.

Based on Fermat's Little Theorem (FLT) and using an ingenious re­
arrangement of the required field operations, the Itoh-Tsujii Multiplicative
Inverse Algorithm (ITMIA) was presented in [153]. Originally, ITMIA was
proposed to be applied over binary extension fields with normal basis field
element representation. Since its publication however, several improvements
and variations of it have been reported [93, 356, 399, 122, 296], showing that
it can be used with other field element representations too.

Unfortunately enough, cryptographic designers have historically shown
some resistance to use FLT-related techniques for computing multiplicative in­
verses when using polynomial basis representation. This phenomenon is prob­
ably due to three frequent misconceptions:

1. Computing multiplicative inverses by using FLT-related techniques is in­
efficient as those methods require many field multiplication and squaring
operations;

2. ITMIA is a competitive design option only when using normal basis rep­
resentation and;

3. The recursive nature of the ITMIA algorithm makes the parallelization of
that algorithm rather difficult if not impossible, forcing the implementa­
tion of the ITMIA procedure in a sequential manner.

In the rest of this Section we describe efficient implementations of the bi­
nary Euclidean algorithm and the Itoh-Tsujii multiplicative inverse algorithm.

Table 6.9. Square and Square Root Coefficient Vectors

ao
as -f ai2

a i

ag + ai3
a2

aio + ai4
as

a n

a4 + as -f- ai2
ai2

as + ag -f ai3
a i3

ae + aio -f au
au

aj + a n

, D =

ao
a2
a4

ae

ai -H as
as + aio
as + ai2
a? + ai4
ai -f ag
as -H a n
as + ai3

a?
ag

a n
. ai3

6.3 Multiplicative Inverse 175

In §6.3.1 main implementation details of the binary Euclidean algorithm are
explained. Then, S6.3.2 describes how the Itoh-Tsuii algorithm can be utilized
for the efficient computation of multiplicative inverses.

6.3.1 Inversion Based on the Extended Euclidean Algorithm

Given two polynomials A and B, not both 0, we say that the greatest common
divisor of A and B^ is the highest polynomial D = gcd{A^ B) that divides
both A and B. Based on the property gcd = {A, B) — gcd[B ± CA, A), the
revered Extended Euclidean Algorithhm (EEA)® is able to find the unique
polynomials G and H that satisfies Bezout's celebrated formula,

AG + B'H^D,

where D = gcd{A, B).
Several variations of the EEA have been proposed in the open literature

[96, 127, 127, 10]. EEA variants include: the almost inverse algorithm, first
proposed in [323], the Binary EucHdean Algorithm (BEA), the Montgomery
inverse algorithm, etc. All those algorithms show a computational complexity
proportional to the maximum of A and B polynomial degrees.

Algorithm 6.8 shows the binary algorithm as it was reported in [96]. That
algorithm takes as inputs the irreducible polynomial P of degree m and the
field element A of degree at most m — 1. It gives as output the field element
A~^ such that

A' A'^ = 1 mod P.

In steps 4 and 10, the operands U and V are divided by a; as many times
as possible, respectively. Furthermore, the variables G and H are also divided
by X in steps 5-8 and 11-14, respectively. Notice that in case that either G or
H are not divisible by a:, then an addition with the irreducible polynomial P
must be performed first. Eventually, after approximately m iterations, either
UorV are equal to 1, which is the condition for exiting the main loop. Either
G ox H will contain the required multiplicative inverse.

The number of iterations required by Algorithm 6.8 depends on several fac­
tors such as design's architecture, target platform and even the exact structure
of the irreducible polynomial P{x), Roughly speaking, the number of itera­
tions N can be estimated as N ^ m, where m is the size of the finite field.

® Euclid's algorithm is proposed in his book Elements published 300 B.C. Never­
theless, some scholars are convinced that it was previously known by Aristotle
and Eudoxus, some 100 years earlier than Euclid's times. According to Knuth,
it can be considered the oldest nontrivial algorithm that has survived to modern
era [178].

176 6. Binary Finite Field Arithmetic

Algorithm 6.8 Binary Euclidean Algorithm
Require: An irreducible polynomial P{X) of degree m, A polynomial A 6 GF(2"
Ensure: A~^ mod Pix).

1:
2:
3
4
5
6
7;
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26;
27;
28;
29;

U =^ A',V =: P- G = l, H = 0;
while {u^l AND t) / 1) do

while X divides U do

X '

if X divides G then

X '

else

end if
end while
while X divides V do

^ X '

if X divides G2 then

X '

else

end if
end while
if (deg(C/)>deg(y)) then

U ^U ^-V-G^G-VH-
else

V =^V -\-U,H = H-\-G',
end if

end while
if U = l then

Return(G);
else

Return(/ /) ;
end if

6.3.2 The IToh-Tsujii Algorithm

In this Section we describe the Itoh-Tsujii Multiplicative Inversion Algorithm
(ITMIA). We start deriving a recursive sequence useful for finding multiplica­
tive inverses. Then, we briefly discuss the concept of addition chains^ which
together with the aforementioned recursive sequence yield an efficient version
of the original ITMIA procedure.

Since the multiplicative group of the Galois field GF{2'^) is cyclic of order
2"^ — 1, for any nonzero element a G GF{2'^) we have a~^ = a^"^"^. Clearly,

m—2 m—1

2 " - 2 = 2(2™-! - 1) = 2 ^ 2̂ ' = ^ 2 '̂.
3=0 j= i

6.3 Multiplicative Inverse 177

The right-most component of above equalities allow us to express the multi­
plicative inverse of a in two ways:

2 r n - l

Let us consider the sequence (/?/j(a) — a^ ~M . Then, for instance,

l3o{a) = l , f3i{a) = a,

and from the first equahty at (6.48), [Pm-iia)] = a~^.
It is easy to see that for any two integers k,j > 0,

(3k^j{a) = Pk{afPj{a). (6.49)

Namely,

Pk+j{a) = a^ ^- - ^ ^—
a a

2^

In particular, for j = k,

Ma) = Pkiafpkia) = Pkiaf+'. (6.50)

Furthermore, we observe that this sequence is periodic of period m:

/C2 = ki mod m => Pk2 («) = A i (a)-

To see this, consider k2 — ki -\- nm. Then, by eq. (6.49) and FLT,

Therefore, the sequence {Pkio))^ is completely determined by its values cor­
responding to the indexes /c = 0 , . . . , m — 1.

As a final remark, notice that for any two integers /c, j , by eq. (6.49):

Pk{o) = /?(fc-(m-j))-i-(m-j)(«) = Pk^j-m{o) (3m-j{o)-

Since the sequence of ^'s is periodic, and the rising to the power 2^ coincides
with the identity in GF(2"^), we have

Eq. (6.49) allows the calculation of a "current" i(= k-\-j)-i\i term as a recursive
function of two previous terms, the /c-th and the j - t h in the sequence.

178 6. Binary Finite Field Arithmetic

6.3.3 Addition Chains

Let us say that an addition chain for an integer m — 1 consists of a finite
sequence of integers U = {uo,ui,... ,ut), and a sequence of integer pairs
V — ((/ci, j i) , . . . , (/ct, jt)) such that tio = 1, "Ut = m — 1, and whenever
I <i <t^ Ui — Uki H- Uj^.

Example 6.4. Considei the case e -= m-1 = 193-1 = 192 = (11000000)2-
Then, a binary addition chain with length t = S iov that e is,

^ - (1, 2, 4, 8, 16, 32, 64, 128, 192)
V = { (0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (6,7))

i.e. the associated sequence is governed by the rule, Ui = Ui-i-^-Ui-i = 2ui-\
for all but the final value which is obtained using Ut — Ut~i 4- Ut-2-

Another addition chain, also with length t := 8, is

C/ - (1, 2, 3, 6, 12, 24, 48, 96, 192)
V = { (0,0), (0,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7, 7))

i.e. for alH 7̂ 2 the combinatorial rule is Ui = Ui-i + Ui-i = 2iii_i, while
U2 = Uo-\-Ui. D

The concept of addition chains leads us to a natural way to generahze the Itoh-
Tsujii Algorithm, by using an addition chain for m - 1 and relations (6.48)
and (6.49) to compute a~^ = [jSm-iia)] •

6.3.4 ITMIA Algorithm

Let a be any arbitrary nonzero element in the field GFiT^). Let us consider
an addition chain U of length i for m — 1 and its associated sequence V. Then
the multiplicative inverse a~^ ^ GF(2'^) of a can be found by repeatedly
applying eq's. (6.49) and/or (6.50). Hence, given j3uo{ci) = a'^ ~^ — a, for
each Ui^l < i < t, compute

[/?.<. (a)]'"•'/?„., (a) = Pu,,+u,,ia) = /3u,(a) = a'"'''

A final squaring step yields the required result since.

Fig. 6.9 shows an algorithm that iteratively computes all the (3^ (a) coefficients
in the exact order stipulated by the addition chain U as discussed above.

We assess the computational complexity of the algorithm shown in Fig. 6.9
as follows. The algorithm performs t iterations (where t is the length of the

6.3 Multiplicative Inverse 179

addition chain U) and one field multiplication per iteration. Thus, we con­
clude that a total of t field multiplication computations are required. On the
other hand, notice that at each iteration i, a total of 2'"̂ 2 field squarings are
performed. Notice also that by definition, the addition chain guarantees that
for each Ui^l < i < ty the relation Ui^ — Ui — ui^ holds. Hence, one
can show by induction that the total number of field squaring operations per­
formed right after the execution of the z-th iteration \^ ui — \. Therefore, at
the end of the final iteration t, a total oiut — \ — m-2 squaring operations
have been performed. This, together with the final squaring operation, yield
a total of m — 1 field squaring computations.

Summarizing, the algorithm of Fig. 6.9 can find the multiplicative inverse
of any nonzero element of the field using exactly,

Multiplications = t\

i^ Squarings = m — 1. (6.52)

Algorithm 6.9 Itoh-Tsujii Multiphcative Inversion Addition-Chain Algo­
rithm
Require: An irreducible polynomial P{X) of degree m, An element a E GF{2'^),

an addition chain U of length t for m — 1 and its associated sequence V.
Ensure: a"^ G GF(2^).
1
2

3
4
5

Puoia) = a;
for i from 1 to t do

/3.,(a) = [Pu,^ (a)] ' '̂ . pu,^ (a) mod P(X);
end for
Return(Pl^{a) mod P{X)).

Example 6.5. Let us consider the binary field GF{2^^^) using the irreducible
trinomial P{X) = X^^^-\-X^^ + 1. Let a G ^^(2^^^) be an arbitrary nonzero
field element. Then, using the addition chain of Example 6.4, the algorithm
of Fig. 6.9 would compute the sequence of fSmia) coefficients as shown in
Table 6.3.4. Once again, notice that after having computed the coefficient
Pus {a), the only remaining step is to obtain a~^ which can be achieved as
a-i = Plia). D

6.3.5 Square Root ITMIA

Let a be any arbitrary nonzero element in the field GF{2'^). Let us consider
an addition chain U of length Hor m - 1 and its associated sequence V. Then
the multiphcative inverse of a, a~^ £ GF{2'^), can be found as follows [295].

Given 7no(a) = a^~^ = y^ , for each ui^l <i < t, compute

180 6. Binary Finite Field Arithmetic

i

0
1

2

3
4
5
6

7
8

Table 6.10.

Ui

1

2

3

6

12

24

48

96

192

Pi{a) Coefficient Generation for

rule

-
2ux

Ui-i -\-U,

2Ui

2U'i

2U'i

2ui

2ui

- 1

- 2

- 1

- 1

- 1

- 1

- 1

2ui-i

K.(«)] •Pu,,(a)

-
{f}uo(a)f • Puoia)
[PuA^)^ • Puoia)

[PuMf" -puM
[PuMf • Pu,{a)
[PuMf -puM
[PuA<^)r' • PuAa)

[PuMf 'puM)
[Pu,{a)f -PuM

PuAo)

Puo(a)

Pui{a)

Pu2(a)

Pna (a)

Pui{a)

Pus{a)

Pue(a)

Puria)
Pus(a)

m-l=192

= g^i*-' 1
= a''-'

= a= ' - i

= a'"-'

^ o ^ ^

r -12 "̂ 2̂ _^ ,̂

Where 7{nt=m-i} = ^"^"^ == a~^ gives the required result.
Fig. 6.10 shows an algorithm that iteratively computes all the 7ni(<^) co­

efficients in the exact order stipulated by the addition chain U as discussed
above. We assess the computational complexity of the algorithm shown in
Fig. 6.10 as follows. The algorithm performs one field multiplication in each
of algorithm's t iterations, yielding a total of t field multiplication computa­
tions required. Furthermore, at each iteration z, a total of 2̂ 2̂ field square
roots are performed. Since by definition, the addition chain guarantees that
for each Ui^l < i < t, the relation Ui^ == Ui — Ui^ holds, one can show that
the total number of field square root operations performed right after the exe­
cution of the i-th iteration isui — 1. Therefore, a total of t̂ t — 1 = m — 2 square
root operations must be performed. This, together with the initial square root
operation, yield a total of m — 1 field square root computations.

Summarizing, the algorithm of Fig. 6.10 can find the inverse of any nonzero
element of the field using exactly,

i^ Multiplications = t;

#Square root = m — 1. (6.53)

Example 6.6. Following with our running example, let us consider the binary
field GF{2^^^) generated using the irreducible trinomial P{X) = X^^^ -\-
X^^ 4- 1. Let a G GF{2^^^) be an arbitrary nonzero field element. Then, the
algorithm of Fig. 6.10 would compute the sequence of 7ui(tt) coefficients as
shown in Table 6.3.5. The multiplicative inverse is given as 7^3 = a~^. D

6.3 Multiplicative Inverse 181

Algorithm 6.10 Square Root Itoh-Tsujii Multiplicative Inversion Algorithm
Require: An irreducible polynomial P{X) of degree m, An element a 6 G'F(2"^),

an addition chain U of length t for m — 1 and its associated sequence V.
Ensure: a'^ 6 ^^(2""). Procedure SquareRootJTMIA(P(X), a, {U,V}) {

2: for i from 1 to t do

3: 7u,(a) = [7u , , (a)] ' - ju,,{a) mod P{X)-

4: end for
5: Return(7nt (a) mod P{X))

i

0

1

2

3

4

5

6

7

8

Table 6.11

Ui

1

2

3

6

12

24

48

96

192

• 7

rule

2ux

Ui-i -{-Ui

2tt,

2ii,

2u,

2u,

2l4,

2u,

- 1

- 2

(a) Coefficient Generation for

|7tiii (a)
2 ^^2

[7.o(a)]^"^°

[7..(a)]^-^°

[7u.(a)l^""^

[7u. (a)] -"^

[7u.(a)]^""^

[7.a(a)]^";;;

[7u7(a)]^

7uo(a)

7uo(a)

7u2(a)

7^3(a)

7u4(a)

7u5(a)

7u6(a)

7U7(«)

7tx,(a)

7txo(a)

7 u i (a)

7u2(a)

7u3(a)

7^4(«)

7^5(a)

7u6(a)

7^7(a)

7^8(a)

m-l=192

= a'-^~"

= a ^ - ^ " '

1 0 - 1 9 2

6.3.6 Extended Euclidean Algorithm versus Itoh-Tsujii Algorithm

In order to assess the performance differences between multiplicative inverse
computation via the Extended Euclidean Algorithm and the Itoh-Tsujii Al­
gorithm, we performed the following experiment.

Using a Virtex 2 xc2v4000-6bf957 as a target device, we implemented Al­
gorithms 6.8 and 6.9 for computing multiplicative inverses in the field GF{2^)
generated using the irreducible trinomial P{x) = x^^^ -f x^^ H- 1. Algorithm
6.8 was implemented according to the finite-state machine shown in Fig. 6.10,
whereas the Itoh-Tsujii Algorithm was implemented using the architecture
shown in Fig. 6.11. The implementation statistics obtained for each algorithm
are summarized in Table 6.12.

According to Table 6.12, it can be observed that the BE A scheme repre­
sents a cheaper solution in terms of hardware resource requirements. Indeed,
the BE A scheme utihzes just 12.02% of the area required by the ITMIA de­
sign. On the contrary, the ITMIA scheme outperforms the BEA scheme in
timing performance, with a speedup of about 3.3 times. Therefore, consider-

182 6. Binary Finite Field Arithmetic

Comp
z div u

no 1

y e s ^

CIJ <_
w
w

Divider
Block u

w
W

Comp
zdivu

yes

no

Comp
zdiv V

no yes
Clk

Divider
Block V

yes
Comp
zdIv V

no

Reassignment variables

Comparator
u != 1 and v != 1

yes - > Output inverse of "a"

Fig. 6.10. Finite State Machine for the Binary Euclidean Algorithm

Basic Block to Control

L>
Control
Block
(FSM) s

F

Feedback

Sel.

F

quarinq^

Squaring
Block

w

>

Squaring
Block

Output

Karatsuba
Multiplier

Squaring
Multiplier

sedback for control

^ Output
Inverse

Fig. 6.11. Architecture of the Itoh-Tsujii Algorithm

6.4 Other Arithmetic Operations 183

Table 6.12. BEA Versus ITMIA: A Performance Comparison

Design

BEA
ITMIA

ITMIA without
1 KOM Block

Cost

1195
9945
2345

Cycles

191
40
40

Freq (MHz)

76.10
55.25
55.25

timings
250977S
724778
7247/8

1 1
Slices xtiminqs

333.53
138.89
589.00

ing our customary efficiency figure of merit of slices xtiminqs' ^^ ^^^ ^^^ ^^^^
the BEA solution is about 2.40 times more efficient than the ITMIA design.

Nevertheless, since for all practical cryptographic and code applications
a binary extension field multiplier is a mandatory operator, we included the
performance statistics of both, the ITMIA design considering the costs of the
expensive Karatsuba-Ofman Multiplier (KOM) block and without considering
it. In the case that the KOM block cost is taken out of the ITMIA statistics,
Table 6.12 shows that the ITMIA solution becomes the most efficient option,
providing An efficiency improvement of nearly 1.77 times with respect to the
BEA design.

6.3.7 Multiplicative Inverse F P G A Designs

Table 6.13 shows the computational cost of several reported designs for the
computation of multiplicative inversion over GF{2^) in hardware platforms.
The standard Itoh-Tsujii algorithm using the architecture described here re­
quires 28 clock cycles in the design reported in [295], thus computing the
multiplicative inverse in about 1.32/iS.

6.4 Other Ar i thmet ic Operations

In this Section we briefly describe some important binary finite field arith­
metic operations such as, the computation of the trace function, the half trace
function and binary exponentiation. The first two operations are key building
blocks for halving an eUiptic curve point, which will be studied in §10.7.

6.4.1 Trace function

Given C G (7F(2"^), the trace function can be defined as:

TriC) = C-\-C^-\-C^" + .,.-{- C^"" ' (6.54)

Due to its linearity, the trace function can be implemented such that the
execution time is 0(1) as [133],

184 6. Binary Finite Field Arithmetic

Table 6.13. Design Comparison for Multiplicative Inversion in G'F(2^

Work

BEA
divisor [403]

BEA
divisor [77]

ITMIA [248]
Parallel

ITMIA [295]
ITMIA [295]

BEA
[248]

Montgomery
Inversion [314]

ITMIA [20]
ITMIA [216]

BEA [114]

Platform

0.18Aim CMOS

0.18Atm CMOS

Xilinx Virtex 2
Xilinx Virtex 2

Xilinx Virtex 2

Xilinx Virtex 2

0.18/im CMOS

Xilinx Virtex
Xilinx Virtex

0.25Atm CMOS

Field

GF{2''"')

GF{2'''^)

GF(2^^^)
GF(2^^")

GF(2'^'^)

GF{2''''^)

160-bit

GF(2^^')
GF(2'^^)
(?F(2^^^)

Cost

1.658

1.192

9945
12021
CLBs
11081
CLBs
1195

CLBs
14.4K

NANDs

-

-

Cycles

198

326

40
20

28

191

1516

390
711
844

Freq (MHz)

400

460

55.25
21.2

21.2

76.1

227.3

50
66
50

timings 1

0.495/iS

0.709^8

0.724//S
0.943AtS

1.32/iS

2.509AtS

2.509/iS

7.8/^8 (est.)
10.7/iS

16.88/iS (est.)

771—1

Tr{C) - Tr{J2 ^ix') = Y, ^iTr{x')
i = 0

(6.55)

As an example, consider the field defined by GF{2^^^) with the reduction
polynomial p{x) = x^^^ -{- x'^ -{- x^ + x^ -\- 1. Then, Tr(x^) = 1 if and only
if z G {0,157}. The implementation of the trace function in reconfigurable
hardware only needs one XOR gate to add the bits 0 and i57 from the input
polynomial.

6.4.2 Solving a Quadra t i c Equa t ion over ^ ^ (2 ^ ^)

In order to solve a quadratic Equation (10.26), we may use the half-trace
function. Let C e GF{2'^) be defined as C{x) = X^^"^ Cix' G GF(2^) with
Tr{C) = 0 and m an odd integer, the half-trace function can be defined as:

H{C) = H{Y^Cix')=^CiH{x') (6.56)
1=0

Therefore, by using the definition of the half trace equation 6.56. We can
precompute the m half-traces of the field elements x^ for z — 0 , 1 , . . . , m — 1;
and by arranging these Equations in a m x m matrix B, we may obtain the
half-trace of an arbitrary element C G GF{2'^) by computing H{C) — CB.

6.4 Other Arithmetic Operations 185

6.4.3 Exponentiation over Binary Finite Fields

Exponentiation over binary finite fields is used for inverse computation via
Fermat Little theorem [295] and key agreement schemes such as the Diffie-
Hellman protocol, among other applications.

For binary extension fields GF{2'^), generated using the m-degree irre­
ducible polynomial P{x), irreducible over GF{2). Let e be an arbitrary m-bit
positive integer e, with a binary expansion representation given as,

(le^_2. . .eieo)2 - 2 — ^ + ^ 2 ^
m-2

2 = 0

Then,

6 = a^ = a2""'+^r=o^2^^^ (6.57)

m-2

i=0

Algorithm 6.11 MSB-first Binary Exponentiation
Require: The irreducible polynomial P{x), a G GF{2'^)^ e = (em-i • • • ^160)2
Ensure: b — a^ mod P{x)
1
2
3
4
5
6
7

6 = a ;
for z = m — 2 downto 0 do

6 = 6 ^
if ej == 1 then

h = b • a mod P{x)\
end if

end for
Return b

Binary strategies evaluate (6.57) by scanning the bits of the exponent e
one by one, either from left to right (MSB-first binary algorithm) or from
right to left (LSB-first binary algorithm) applying the so-called Horner's rule.
Both strategies require a total of m — 1 iterations. At each iteration a squaring
operation is performed, and if the value of the scanned bit is one, a subsequent
field multiplication is performed. Therefore, the binary strategy requires a
total of m — 1 squarings and ^ (e) — 1 field multipHcations, where H{e) is the
Hamming weight of the binary representation of e. The pseudo-code of the
MSB-first binary algorithm is shown in Algorithm 6.11.

On the other hand, it is known from Fermat Little Theorem that for any
nonzero a G GF{2^), we have a^"""^ = 1 which impfies â "" = a and by taking
square root in both sides of the last relation we get â "" = ^/a — c? . I n
general, the i-th square-root of a, with z > 1 can be written as,

186 6. Binary Finite Field Arithmetic

Hence, Eq. (6.57) can be reformulated in terms of the square root operator
as,

m - 2
,2^e, _ , 2 — 1 . , 2 — 2 e ^ _ 2 ^2'e, . ,20eo n

i=Q

= a^-.a^-'-"'-^ a^

a^'^* = a^ • c? ^—^ a^ <=> • a^ "=» (6 .58)

m —1
- (m - 1) ^

i = 2

Algorithm 6.12 Square root LSB-first Binary Exponentiation
Require: The irreducible polynomial P(x)^ a € GF{2'^), e = (em-i .
Ensure: b = a^ mod P{x)

b = a ;
Cm = eo ;
for i = 1 to m do

b=Vb',
if Ci == 1 then

b — b ' a mod P{x)\
end if

end for
Return b

Therefore, the novel square root LSB-first binary strategy requires a to­
tal of m — 1 square root computations and H{e) — 1 field multiplications,
where H{e) is the Hamming weight of the binary representation of e. The
pseudo-code of the square root LSB-first binary algorithm is shown in Al­
gorithm 6.12. Algorithms 6.11 and 6.12 suggest a parallel version that can
combine both ideas. This parallel version is especially attractive for hardware
platforms implementations. Algorithm 6.13 shows this suggesting algorithm.
Notice that both loop computations can be performed in parallel provided
that the architecture has two independent field multiplier units. The compu­
tational time speedup can be estimated in about 50% when compared with
Algorithms 6.11 and 6.12.

6.5 Conclusions

In this chapter, we addressed the problem of how to implement efficiently finite
field arithmetic algorithms for reconfigurable hardware platforms. We included
detailed analysis of complexities for binary field operations such as: multiphca-
tion, squaring, square root, multiphcative inverse computation, among others.

6.5 Conclusions 187

Algorithm 6.13 Squaring and Square Root Parallel Exponentiation
Require: The irreducible polynomial P{x), a G GF{2'^), e = (em-i • • • 6160)2
Ensure: b = a^ mod P{x)
1: 6 = c = 1 ;
2: em = 0 ;

3: iV=LfJ ;
4: for i = N downto 0 do for j — N -\- I to m do
b: b = b^] c= y/c\
6: if ti =— 1 then if Cj == 1 then
7: b — ba\ c = c- a;
8: end if
9: end for

10: 6 = 6c ;
11: Return 6

In §6.1, field multipliers algorithms were studied covering the whole spec­
trum of state-of-the-art strategies for computing that crucial arithmetic oper­
ation as efficiently as possible. That spectrum goes from the mighty fully bit-
parallel Karatsuba-Ofman multiplier to the ultra compact interleaving multi­
plier which can be quite useful for constrained environments.

The most attractive feature of the Karatsuba-Ofman algorithm variation
analyzed in §6.1.2, is that the degree m of the generating irreducible polyno­
mial can be arbitrarily selected by the designer, allowing the usage of prime
degrees. In addition, the new field multiplier leads to architectures which show
a considerably improved space complexity when compared to traditional ap­
proaches. Moreover, the binary Karatsuba-Ofman multiplier leads to highly
modular architectures that are well suited for both, VLSI and reconfigurable
hardware implementations.

We studied in §6.1.4 a method able to perform the reduction step of field
multipliers when an irreducible trinomial or pentanomial is used to generate
the field. Moreover, we also presented a general method for accomplishing
reduction when dealing with arbitrary irreducible polynomials.

In §6.2 a low-complexity bit-parallel algorithm for computing square roots
over binary extension fields was studied. Although the method presented can
be applied for any type of irreducible polynomials, we were particularly inter­
ested in studying the case of irreducible trinomials. Hence, in order to inves­
tigate the exact cost of the square root operator, we categorized irreducible
trinomials over GF{2) into four different types. For all four types considered,
explicit area and time complexity formulae were found for both, field squaring
and field square root operators. It was shown that for the important practi­
cal case of finite fields generated using irreducible trinomials, the square root
operation can be performed with no more computational cost than the one
associated to the field squaring operation.

In §6.3 we presented a performance comparison of two of the most pop­
ular algorithms for computing the field multiplicative inverse operation: the

188 6. Binary Finite Field Arithmetic

Binary Euclidean Algorithm (BEA) and the Itoh-Tsujii Multiplicative Inverse
Algorithm (ITMIA). It was shown that the Itoh-Tsujii strategy offers a com­
petitive performance when implemented in hardware platforms. Furthermore,
we combined the standard Itoh-Tsuii algorithm with the concept of addition
chains. Then, we showed that for this version of the Itoh-Tsuii algorithm the
multiplicative inverse of an arbitrary nonzero field element in GF(2^) can be
computed by performing exactly m — 1 field squarings and t multiplications,
where t is the step-length of the optimal addition-chain for m-1. One of the
main conclusions of this Section is that according to Table 6.12 there is not a
clear winner when comparing the BEA and the ITMIA methods.

Finally, in §6.4 some less popular field arithmetic operations were studied,
such as, the computation of the trace function, the half trace function and
binary field exponentiation. The first two operations are key building blocks
for halving an elliptic curve point, which will be studied in §10.7.

Reconfigurable Hardware Implementation of
Hash Functions

This Chapter has two main purposes. The first purpose is to introduce readers
to how hash functions work. The second purpose is to study key aspects
of hardware implementations of hash functions. To achieve those goals, we
selected MD5 as the most studied and widely used hash algorithm. A step-
by-step description of MD5 has been provided which we hope will be useful
for understanding the mathematical and logical operations involved in it. The
study and analysis of MD5 will be utilized as a base for explaining the most
recent SHA2 family of hash algorithms.

We start this Chapter given a brief introduction to hash algorithms in
Section 7.1. A survey of some famous hash algorithms is presented in Sec­
tion 7.2. Then we provide a detailed discussion of the MD5 algorithm in
Sec. 7.3. All MD5 steps are explained by means of an illustrative example
which is explained at a bit level. In Section 7.4, we describe the SHA2 family
of hash algorithms and some tips are provided with respect to their hardware
implementation. In Section 7.5 design strategies to achieve efficient hash algo­
rithms when implemented on reconfigurable devices are discussed. Section 7.6
presents a review of recent hash function hardware implementations. Finally,
in Section 7.7 concluding remarks are drawn.

7.1 Introduction

As it was explained in Chapter 2, a Hash function iJ is a computationally
efficient function that maps fixed binary chains of arbitrary length {0,1}* to
bit sequences H{B) of fixed length. H{M) is the hash value, hash code or
digest of M [110].

In words, let M be a message of an arbitrary length. A hash function
operates on Mand returns a fixed-length value, /i, as shown in Fig. 7.1. The
value h is commonly called hash code. It is also referred to as a message

190 7. Reconfigurable Hardware Implementation of Hash Functions

digest or hash value. The main application of hash functions lies on producing
fingerprint of a file, message or other blocks of data.

h = H(M)

Fig. 7.1. Hash Function

Hash functions do not use a particular key, but instead, it is a highly non
linear function of all message bits. The code changes with the change of any bit
or bits in the input message and thus it provides error detection capabilities.

In practice, modern hash functions are specifically designed for having a
short bit-length hash code h (usually from around 128 bits up to 512 bits).
This characteristic is especially attractive for the application of hash functions
in virtually every digital signature algorithm. Therefore, rather than attempt­
ing to sign the whole message (which by definition has arbitrary length), it
becomes more practical to sign the hash code of the message as it was depicted
in the basic digital signature/verification scheme shown in Figure 2.6.

As a way of illustration, let us suppose that Ana received $500 from Bill,
and that afterwards, she proceeded signing the hash code /il of the message
M l as shown below.

Ml = Ana received $500 from Bill

hi = H(M1) = 89CB0C238A3C7A78D0DD7063C4153B65

Bill can never claim that Ana received $5000 as the hash code h2 of mes­
sage M2 using the same hash function vastly differs,

M2 = Ana received $5000 from Bob.

h2=H(M2)=CCD40B907C543D96FDB7203979E55E8B

Alternatively, Bill may try to find another message M3 whose hash value
corresponds to the hash value of message Ml, and then claim that Ana actually
signed message M3, not Ml.

If we can find any two messages producing the same message digest, we say
that we have found a collision. Collision is a not desired characteristic of hash
functions but at the same time is unavoidable. All that one can hope is that no
matter how determined an adversary may be, it should result computational
unfeasible for him/her to find collisions. Therefore, a hash function H is said to
be strong enough against collision and thus useful for message authentication,
if it has the following properties [342, 246],

7.2 Some Famous Hash Functions 191

H applies to any block of data.
H returns a fixed-length output.
For any given value x, H{x) is relatively easy to compute. That feature
makes hash function implementations more practical in both software and
hardware platforms (Fig. 7.2a).

T ix T r
(a) (b) (c)

Fig. 7.2. Requirements of a Hash Function

• Given x, it is easy to compute H{x). Given h, it is computationally infea-
sible to find x such that H{x) = h. That is sometimes referred to as one
way property of hash functions (Fig. 7.2b).

• For any given block x^ it is computationally infeasible to find y {y y^
x), with H{y) = H{x). This is sometimes referred to as weak collision
resistance.

• To find a pair (x, y) such that H(x) = H{y), is computationally infeasible.
This is sometimes referred to as strong collision resistance (Fig. 7.2c).

7.2 Some Famous Hash Functions

The overall structure of a typical hash function is shown in Fig. 7.3.

SBi

T l

/

^_Jh

SB2

T l

/

i

Fig. 7.3. Basic Structure of a Hash Function

The structure was first proposed by Merkle [233, 234] and then followed by
most hash function designs in use today including MD5, SHA-1 and RIPEMD-
160 [342].

It is apparent from Fig. 7.3 that a typical hash function is iterative in
nature. That is, it partitions (hashes) a given input message to L sub blocks
SBs of some fixed length m bits and operates sequentially on each SB. Those
message blocks shorter in length than m are padded as necessary with zeroes.

192 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.1. Some Known Hash Functions

Name
AR
Boognish
Cellhash

FFT-Hash I
G O S T R
34.11-94
FFT-Hash II
HAVAL

MAA
MD2
MD4
MD5
N-Hash
PANAMA
Parallel
FFT-Hash
RIPEMD
RIPEMD-128

RIPEMD-160

SHA-0
SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
SMASH
Snefru
StepRightUp
Subhash
Tiger
Whirlpool

Author(s)
ISO [151]
Daemen[58]
Daemen, Govaerts,
Vandewalle [59]
Schnorr [318]
Government Committee of
Russia for Standards [257]
Schnorr [319]
Zheng, Pieprzyk, Seberry [402]

ISO [150]
Rivest [162]
Rivest [288]
Rivest [289]
Miyaguchi, Ohta, Iwata [237]
Daemen, Clapp [56]
Schnorr, Vaudenay [320]

The RIPE Consortium [287]
Dobbertin, Bosselaers,
Preneel [70]
Dobbertin, Bosselaers,
Preneel [70]
NIST/NSA [61]
NIST/NSA [255
NIST/NSA [255
NIST/NSA [255
NIST/NSA [255
NIST/NSA [255
Knudsen [177]
Merkle [235]
Daemen [55]
Daemen [57]
Anderson, Biham [8]
Barreto, Rijmen [286]

Year
1992
1992
1991

1991
1990

1992
1994

1988
1989
1990
1992
1990
1998
1993

1990
1996

1996

1991
1993
2004
2000
2000
2000
2005
1990
1995
1992
1996
2000

Block Size

32
32

128
256

128
1024

32
512
512
512
128
256
128

512
512

512

512
512
512
512
1024
1024
256

512-m
256
32

512
512

Digest Size

up to 160
up to 256

128
256

128
128, 160, 192,

224, 256
32
128
128
128
128

unlimited
128

128
128

160

160
160
224
256
384
512
256

m = 128, 256
256

up to 256
192
512

The heart of a hash algorithm is the so-called compression function F. A
repeated use of function F is made by the hash algorithm. F takes two inputs:
an m-bit input block message and; an n-bit input from previous step, called
hash h of that message block. The output is an n-bit hash /i, namely [317],

hj = F(Sbj,hj.i) (7.1)

7.3 MD5 193

For j=:l , 2 , . . . , L, where L is the total number of SB message blocks. For
j = 1, the function F takes the first sub block SB\ and /lo? where /lo is a fixed
value provided by the algorithm. For /i^? (i-e. j = n), the two inputs are SBn
and /in-i, hn is the hash value of the entire message.

The term compression comes from the fact that the hash output has a much
shorter bit-length n than the original input message bit-length m. Although
it has not been formally proved, some authors consider that the security of
a hash function strongly depends upon the security of its compression func­
tion [234, 62, 245]. Indeed, if the compression function is strongly collision
resistant, then hashing a message using that method is also secure. Modern
hash functions strive for improving the internal logic of their compression
functions. At the same time, extensive research has been carried out on the
issue of how many repetitions of the compression function are essential for ob­
taining an acceptable security and how those repetitions could be sequenced.

Table 7.1 features a list of known hash functions prepared by [17]. Detailed
discussions about the design of most of those h£tsh functions can be found
in [165, 275, 234, 19, 276, 277, 276, 278, 347, 348, 360, 28, 119, 119, 138].

r Message J Message = M

(Message Padding] MP =448 mod 512

f Append Message Length 1 APL= MP + message length in 64-bit
V - y ^ (512 bits)

IWQ WJ W J W J W4 W5 Wg m-j Wg W9 Wjo w, J w,2 /w,3 w,4 m ^

ROUND 1
FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

ROUND 3
HH HH HH HH
HH HH HH HH
HH HH HH HH
HH HH HH HH

J

R

b"

c
d

ROUND 4
// // // //
// // // //
// // // //
// // // // • 1 '

7.3 MD5

Fig. 7,4. MD5

The series of Message Digest (MD) hash algorithms is due to Rivest[289]. The
original message digest algorithm was simply called MD. MD was quickly fol­
lowed by MD2 [162]. Nevertheless, MD2 was soon found to be quite weak.
Rivest then started working on MD3, which however was never released.
MD4 [288] was the next family member. Soon MD4 was also found to be
imperfect, but it provided the theoretical foundations for its successors MD5
(designed in 1992) and also for SHA-0 [61] and RIPEMD [287], from other

194 7. Reconfigurable Hardware Implementation of Hash Functions

authors. Then, in 2004, the never ending battle between hash function design­
ers and crypto analysts had yet another episode, when several advances for
finding collisions on MD5 were announced in [24, 159].

Short after that, Wang et al. without revealing their method, presented on
the rump session of [98] evidence of MD5 colliding messages [370]. Wang et
al. method was later pubhshed in [372]. Before that happened though, several
experimental results were presented in [174], showing for the first time how
MD5 could be break. Recently, it has been proved that collisions on MD5 can
be found (under certain conditions) within a minute using a standard laptop
[175].

Operating on 512-bit input blocks, MD5 produces 128-bit message digests
from input messages of arbitrary length. For longer messages, a partition
into sub blocks is performed. The algorithm then operates iteratively on all
message sub-blocks as shown in Fig. 7.4. In the following Subsection, MD5
steps for hashing a message are described in detail.

7.3.1 Message Preprocessing

First, original message is preprocessed. The message is padded such that its
length (in bits) is congruent to 448 mod 512. Messages shorter than 448 bits
are padded with the first bit set to ' 1 ' and all the rest set to zero. The re­
maining 64 bits for completing a block of 512 bits are reserved for appending
message length. For instance, a message with 200-bit length would require a
padding of 228 bits. The padding would comprise a single ' 1 ' at the most sig­
nificant position followed by 227 zeroes. The last 64 bits are all zeroes except
for the last byte which is "11001000" denoting message length of 200. As a
way of illustration, we show below how a sub block of 512-bit is obtained from
an input message. Let our input message M be,

"MD5 was proposed by Ron Rivest in 1992."

The ASCII representation of the message M (39 characters) is shown in
Table 7.2.

Table 7.2. Bit Representation of the Message M

01001101 01000100 00110101 00100000 OUlOUl 01100001 01110011 00100000
01110000 01110010 01101111 01110000 01101111 01110011 01100101 01100100
00100000 01100010 01111001 00100000 01010010 01101001 01110110 01100101
01110011 01110100 00100000 01101001 01101110 00100000 00110001 00111001
00111001 00110010 00101110

The first step consists on padding the Message M in order to complete a
block of 512 bits as shown in Table 7.3. Notice the location of the padding

7.3 MD5 195

s ta r t bit (i.e. bit '1 ') and the message length (given in a 64-bit representa­
tion) appended into the last 64 bits (shaded). As it was explained above, the
padding process assures t h a t the block message length will always be an exact
multiple of 512. Thereafter the main loop s tar ts . A message parsing is required
for this loop. This is accomplished by dividing the 512-bit input message block
into sixteen 32 bit words.

Table 7.3. Padded Message (M)

01001101 01000100 00110101 00100000 01110111 01100001 01110011 00100000
01110000 01110010 01101111 01110000 01101111 01110011 01100101 01100100
00100000 01100010 01111001 00100000 01010010 01101001 01110110 01100101
01110011 01110100 00100000 01101001 01101110 00100000 00110001 00111001
00111001 00110010 00101110 10000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000001 00011000

In the case of hardware implementations, designers can use various options
for message preprocessing. One of the possible approaches is to use sixteen
32 bit shift registers which are initialized with zeroes except for the first one
which ha^ its first bit set to ' 1 ' . All the 16 registers are cascaded in such a
way tha t the ou tpu t of one is placed as the input of the next register.

Thus , whenever a message is read, all message bits are sequentially t rans­
ferred to shift registers. The s ta r t bit ' 1 ' of the first shift register is now the
end bit of the message as shown in Fig. 7.5. Since there is no need to cascade
final register (SRI5) with the other registers it can be reserved for appending
the message length. T h a t register ar rangement also completes message parsing
as all 16 registers contain 32-bit words.

SRO

0...00000000

(32 - bit)

Message

SR1

00...00000000

(32 - bit)

J::I

SR9

00...00000000 M

(32 - bit)

SR15

00...00000000
(32 - bit)

Length Counter

SRO

00...00000000

SR1

00...00000000

SR9

00... 1 0000000 M

SR15

0...100011000

Message(280 bits) Message Length

F i g . 7.5. Message Block = 32 x 16 =512 Bits

196 7. Reconfigurable Hardware Implementation of Hash Functions

Rivest selected a little-endian architecture for interpret ing a message as a
sequence of 32-bit words. A little endian archi tecture stores the least signif­
icant byte of a word into the lowest byte address. This design decision was
taken due to Rivest observation t ha t several processor architectures with little
endian format offer faster processing [342]. This way, the first block message
is converted into sixteen 32-bit words, which are then wri t ten into hex little
endian format as shown in Table 7.4.

Table 7.4. Message in Little Endian Format

Message in Hex

0x4d443520
0x77617320
0x70726f70
0x6f736564
0x20967920
0x526f6e20
0x52697665
0x69207473
0x6e203139
0x39322e80
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000,0x00000138

Message little endian format

0x2035444d
0x20736177
0x706f7270
0x6465736f
0x20796220
0x206e6f52
0x65766952
0x69207473
0x3931206e
0x802e3239
0x00000000
0x00000000
0x00000000
0x00000000

0x00000138,0x00000000

Appending bits to message blocks according to the Litt le endian format is
intended for 32-bit word ra ther than one byte words. Therefore, the 64 bits
t h a t are reserved for keeping the message length are divided into two 32-bit
words. By applying said convention, the lower order 32-bit word is appended
first as shown in Table 7.4 (observe the last two 32-bit words).

7 .3 ,2 M D Buffer In i t i a l i za t ion

As it has been already mentioned, internally MD5 operates on two inputs:
the input message block and the ou tpu t hash from the previous step. In the
first s tep, the initial hash values are constants provided by the algorithm. The
initial values for MD5 are provided into four 32-bit words. A four-word buffer
(a, 6, c, d) is used to store those values which are then replaced by the ou tpu t
hash values after each step. MD5 a, 6, c, d four words, are also referred to as
chain variables. The initial values for the MD5 chain variables are shown in
Table 7.5.

7.3 MD5 197

Table 7.5. Initial Hash Values in Little Endian Format

Normal Values Little endian format

a - 0x01234567 a = 0x67452301
b = 0x89abcdef b = 0xefcdab89
c = 0xfedcba98 c = 0x98badcfe
d = 0x76543210 d = 0x10325476

7.3.3 Main Loop

The Main loop is composed of four rounds. Each round has as a 512-bit mes­
sage block as an input. As it was mentioned, message blocks are grouped into
sixteen 32-bit words. The second input comes in the form of chain variables
which are also grouped as four words of 32-bit each (totaling 128 bits). All
the four rounds use an auxiliary function, which takes three 32-bit inputs pro­
ducing a single 32-bit output. Table 7.6 presents the four non-linear functions
F, G, H, and I, that are utiHzed in rounds 1 to 4.

Table 7.6. Auxiliary Functions for Four MD5 Rounds

F(A,B,C) = (A AND B) OR ((NOT A) AND C)
G(A,B,C) = (A AND C) OR (B AND (NOT C))
H(A,B,C) = (A XOR B XOR C)
I(A,B,C) = (B XOR (A OR (NOT C)))

All the four non-linear functions are simple and can be easily constructed
in reconfigurable hardware. The architecture of those four functions maps
well to those reconfigurable devices having a 4-bit input/1-bit output Look
Up Tables (LUTs) as a basic unit. On such devices, all the four functions
occupy a single LUT, thus using a total of 4 LUTs for one bit manipulation
as shown in Fig. 7.6.

1 LUT 1 LUT

'&>' S^
(a) (b)

1 LUT 1 LUT

V G Y p H ii;>C>
(c) (d)

Fig. 7.6. Auxiliary Functions in Reconfigurable Hardware (a) F(X,Y,Z) (b)
G(X,Y,Z) (c) H(X,Y,Z) (d) I(X,Y,Z)

198 7. Reconfigurable Hardware Implementation of Hash Functions

Let <C S denote a left circular shift by S bits and let rrii represent the
ith sub-block (0 to 15) of the message. Provided that there is a constant Kj
for the jth state of a round, the four operations corresponding to four MD5
rounds are shown in Table 7.7.

Table 7.7. Four Operations Associated to Four MD5 Rounds

FF(a,b,c,d, m ,̂ S, Kj)
GG(a,b,c,d, m ,̂ S, K)̂
HH(a,b,c,d, m ,̂ S, Kj)

II(a,b,c,d, mi, S, Kj)

a = b + ((a + F(b,c,d) + m̂ + Kj)< S)
a = b 4- ((a -f G(b,c,d) -f m̂ -f- Kj) < S)
a = b + ((a + H(b,c,d) + m̂ + Kj) < S)
a = b + ((a + I(b,c,d) + mi + Kj) < S)

The architecture of a single MD5 operation can be optimized for reconfig­
urable devices by re-ordering some steps as shown in Fig. 7.7.

L> a

b

c

d

2

F or G or
Horl

\

\

\J
- >

+

LUTs

m-

Ki-

w
W

< < < s

< < < s

< < < s

•

•

w

+

Fig. 7.7. One MD5 Operation

Two changes are introduced. First, summation of word a is appended
with the manipulation of the non-Hnear function, this occupies a single LUT.
Similarly, instead of a single shift operation by S bits, a total of three shift
operations have been introduced. That does not cost other logic resources but
only the routing resources of the target reconfigurable device.

There are a total of 64 steps in the four MD5 rounds. The output of each
round for our example message is presented in Table 7.8, Table 7.9, Table 7.10,
and Table 7.11 for round 1, round 2, rounds, and round 4, respectively. The
constant values Ki can be computed by taking the integer part of 2^^ x
abs{sin{i))^ where i is in radians.

7.3.4 Final Transformation

The last step consists on adding the initial and final hash values. Here addition
is a simple integer addition modulo 2*̂ ^ and not an 'XOR' operation. The

7.3 MD5 199

Table 7.8. Round 1

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

(a, b,
(d, a,
(c, d,
(b, c,
(a, b,
(d, a,
(c, d,
(b, c,
(a, b,
(d, a,
(c, d,
(b, c,
(a, b,
(d, a,
(c, d,
(b, c,

Function
c, d, mo, 7,
b, c, mi , 12,
a, b, m2, 17,
d, a, ma, 22,
c, d, m4, 7,
b, c, ms, 12,
a, b, me, 17,
d, a, my, 22,
c, d, ms, 7,
b, c, mg, 12,
a, b, mio, 17,
d, a, mi l , 22,
c, d, mi2, 7,
b, c, mi3, 12,
a, b, mi4, 17,
d, a, mi5, 22,

0xd76aa478)
0xe8c7b756)
0x242070db)
Oxclbdceee)
0xf57c0faf)

0x4787c62a)
0xa8304613)
0xfd469501)
0x698098d8)
0x8b44f7af)
0xffff5bbl)

0x895cd7be)
0x6b901122)
0xfd987193)
0xa679438e)
0x49b40821)

a ••

d-
C :

b :
a
d
c
b
a
d
c
b
a
d
c
b

Output
= 0xbfc20e04
= 0x2445ea9a
= 0xbada24bf
= 0xdae8fl05
= 0xd3e2a4f
= 0x618adecl
= 0x605da696
= 0xbl0d4538
= 0xf0ce7848
= 0xadc2eal9
= 0x8cal0c71
= 0xd06eda96
= 0xcfc79cla
= 0xef0992d6
= 0x419bb7da
= 0xa41613f9

Table 7.9. Round 2

GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG

[a, b, c, d.
[d, a, b, c,
'c, d, a, b,
[b, c, d, a.
[a, b, c, d.
[d, a, b, c,
[c, d, a, b.
[b, c, d, a,
[a, b, c, d.
[d, a, b, c.
[c, d, a, b,
[b, c, d, a,
[a, b, c, d.
[d, a, b, c,
c, d, a, b,

[b, c, d, a.

Function
mi, 5, 0xf61e2562)
me, 9, 0xc040b340)
mil , 14, 0x265e5a51)
mo, 20, 0xe9b6c7aa)
ms, 5, 0x0d62fl05d)
mio, 9, 0x02441453)
mi5, 14, 0xd8ale681)
m4, 20, 0xe7d3fbc8)
mg, 5, 0x21elcde6)
mi4, 9, 0xc33707d6)
ma, 14, 0xf4d50d87)
ms, 20, 0x455al4ed)
mi3, 5, 0xa9e3e905)
m2, 9, 0xfcefa3f8)
mr, 14, 0x676f02d9)
mi2, 20, 0x8d2a4c8a)

Output
a = 0x01816d6a
d = 0x8d2bl4de
c = 0xf0ec903d
b = OxfbbOSbOO
a = 0x3clfe25e
d = 0x53c87df3
c = 0xefcf863a
b = 0x7a06c30d
a = 0x00fb73e8
d = 0x968fd037
c = 0x14952739
b = 0xcf0el9b2
a = 0xeec09e98
d = 0xe0cbl23e
c = 0xadfb03b9
b = 0x3d9b93ef

200 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.10. Round 3

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH

[a, b, c, d,
[d, a, b, c,
[c, d, a, b,
;b, c, d, a,
Ja, b, c, d,
Jd, a, b, c,
[c, d, a, b,
;b, c, d, a,
[a, b, c, d,
[d, a, b, c,
[c, d, a, b,
Jb, c, d, a,
[a, b, c, d,
[d, a, b, c,
[c, d, a, b,
^b, c, d, a,

Functior
ms,
ms,
mil
mi4
mi,
m4,
my,
mio
mi3
mo,
ma,
me,
mg,
mi2
mi5
m2,

4,
11,
16,
23,
4,
11,
6,

23,
4,
11,
16,
23,
4,
11,
16,
23,

I
0xfFfa3942)
0x8771f681)
0x6d9d6122)
0xfde5380c)
0xa4beea44)
0x4bdecfa9)
0xf6bb4b60)
0xbebfbc70)
0x289b7ec6)
0xeaal27fa)
0xd4ef3085)
0x4881d05)

0xd9d4d039)
0xe6db99e5)
0xlfa27cf8)
0xc4ac5665)

a
d
c
b
a
d
c
b
a
d
c
b
a
d
c
b

Output
= 0x3ae82d36
= 0xf21c9795
= 0x8043a89c
= 0x3985c48b
= 0xf8dd0bbf
= 0x7a6540bb
= 0x7263dcl7
= 0x79d86ca3
= 0xaf5015ec
= 0xe9e2e73d
= 0x860d260
= 0xddfa26e9
= 0x3aace80d
= 0xdf9ale0c
= 0xffda7edc
= 0x4d718018

Table 7.11. Round 4

Function
H (a, b, c, d, mo,
II (d, a, b, c, mr,
II (c, d, a, b, mi4
II (b, c, d, a, mg,
II (a, b, c, d, mi2
II (d, a, b, c, ms,
II (c, d, a, b, mio
II (b, c, d, a, mi ,
II (a, b, c, d, ms,
II (d, a, b, c, mi5
II (c, d, a, b, me.
II (b, c, d, a, mi3
II (a, b, c, d, m4.
II (d, a, b, c, mil
II (c, d, a, b, m2.
II (b, c, d, a, mg.

6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,

0xf4292244)
0x432aff97)

0xab9423a7)
0xfc93a039)
0x655b59c3)
0x8f0ccc92)
0xffeff47d)

0x85845ddl)
0x6fa87e4f)
0xfe2ce6e0)
0xa3014314)
0x4e0811al)
0xf7537e82)
0xbd3af235)
0x2ad7d2bb)
0xeb86d391)

a =
d =
c =
b =
a =
d =
c =
b =
a =
d =
c =
b =
a =
d =
c =
b =

Output
0xbc2cfl90
0xc43bf785
0x9d557285
0xbf063e88
0xc5ec3319
0x20d2175b
0xc6863889
0xf70eal06
0xl2f76270
0xd40al21f
0xe4c960a4
0x2fb93bf8
0xadfld7b5
0xfd93443b
0x5a402c56
0x9f2895cb

7.4 SHA-1, SHA-256, SHA-384 and SHA-512 201

resultant four words a, 6, c, and d would be in little-endian format. They need
to be converted back to its original format. Finally, four words a, 6, c, and d
are concatenated to give the 128-bit hash of the given message as shown in
Table 7.12.

Table 7.12. Final Transformation

Initial
Hash Values

Round
Output

Final Conversion from
Transformation Little Endian

a = 0x67452301 b = 0xefcdab89 c = 0x98badcfe d = 0x10325476
a = 0xadfld7b5 b = 0x9f2895cb c = 0x5a402c56 d = 0xfd93443b
a = 0xl536fab6 b = 0x8ef64154 c = 0xf2fb0954
a = 0xb6fa3615 b = 0x5441f68e c = 0x5409fbf2

d = 0x0d508cl9
d = 0xbl98c50d

Final Hash = b6fa36155441f68e5409fbf2bl98c50d

7.4 SHA-1, SHA-256, SHA-384 and SHA-512

The FTPS 180-2 [255] supersedes FIPS 180-1 [95]. It includes four secure hash
algorithms SHA-1, SHA-224, SHA-384 and SHA-512. SHA-1 is identical to
SHA-1 specified in FIPS 180-1 ̂

Some notational changes have been introduced to make it consistent with
the other three algorithms. All four algorithms are one way iterative hash
functions. They differ in terms of block and word size. They also differ in
the size of the message digest, which redounds in different levels of security.
Table 7.13 compares basic specifications of the four secure hash algorithms.

Table 7.13. Comparing Specifications for Four Hash Algorithms

Algorithm Message Size Block Size Word Size Message Digest Security
(bits) (bits) (bits) (bits) (bits)

SHA-1
SHA-256
SHA-384
SHA-512

<2''
<2''
<2^28
<2^28

512
512
1024
1024

32
32
64
64

160
256
384
512

80
128
192
256

^ Just as it happened with MD5, the SHA family of hash algorithms has been
successfully attacked in several recent papers [371, 107].

202 7. Reconfigurable Hardware Implementation of Hash Functions

7.4.1 Message Preprocess ing

Preprocessing is always done before hash computation begins. Preprocessing
comprises three main steps,

Step 1: Padding the message
Step 2: Parsing the padded message
Step 3: Setting the initial hash values

The hash computation for SHA-1 and SHA-256 requires 512-bit block. A
1024-bit input block is processed by SHA-384 and SHA-512 hash computation.
Preprocessing for both categories is discussed separately.

SHA-1 and SHA-256

Step 1: Padding the Message

Let / be the length of the message M in bits. Append bit ' 1 ' to
the end of the message followed by k zeroes such that the length of the

resulting block is 64 bits short of 512 bits, i.e..

Result - M 4-1 -f- /c = 448 mod 512.

The remaining 64 bits are reserved for adding the message length / in
its binary representation. As an example, the message 'try' has an ASCII
representation of 24 bits (8 x 3). Therefore, it requires 423 more bits to be
padded at the end of the message in addition to the leading bit ' 1 ' in order to
complete a block of 448 bits. The message length / = 24 in its 64-bit Boolean
representation is appended at the end, as shown in Fig. 7.8.

423 64

01110100 01110010 01111001 1 00 00 00...011000

Fig. 7.8. Padding Message in SHA-1 and SHA-256

Padding is always made even if the message block is of 448 bits. For a 448-
bit message, a single bit ' 1 ' is appended at the end followed by 447 zeroes.
Thus, in that case, an apparent single block message would be treated as two
separated blocks.

Step 2 : Parsing the message

A padded message is parsed to Â 512-bit blocks, namely, Mo ,Mi , . . . ^MM-
Where each Mi block is organized into sixteen 32-bit blocks, namely, Mf, M/ ,
. . . , M/^. Therefore, the first sixteen 32-bit blocks are: M^, MQS . . . , M^^.

7.4 SHA-1, SHA-256, SHA-384 and SHA-512 203

Step 3: Setting the initial hash values

Before beginning the actual hash function computation, initial values must be
set. Those values are provided by the algorithm. Table 7.14 and Table 7.15
show in hex format five 32-bit words for SHA-1 and eight 32-bit words for
SHA-256, respectively.

Table 7.14. Initial Hash Values for SHA-1

a = 0x67452301
b = 0xefcdab89
c = 0x98badcfe
d = 0x10325476
e = 0xc3d2elf0

Table 7.15. Initial Hash Values for SHA-256

a = 0x6a09e667
b = 0xbb67ae85
b = 0x3c6ef372
c = 0xa54fr53a
d = 0x510e527f
e = 0x9b05688c
f = 0xlf83d9ab
g = 0x5be0cdl9

SHA-384 and SHA-512

Step 1: Padding the message

Padding procedure for SHA-384 and SHA-512 is similar to those of SHA-1 and
SHA-256. However, let us recall that both SHA-384 and SHA-512 operate on
1024-bit message blocks, which consequently causes a change in other lengths.
Let / be the length of the message M in bits. In this case, after appending
a single bit ' 1 ' to the end of the message, k zeroes are added such that the
length of the resulting block is 120 bits short of 1024 bits,

Result = M - f l + A; = 896 mod 1024

The remaining 120 bits are reserved for appending the message length /
in its binary representation. Once again, let us consider the same example

204 7. Reconfigurable Hardware Implementation of Hash Functions

message "try" (24 bits). In this case, 871 more bits are required to be padded
at the end of the message in addition to the mandatory leading bit ' 1 ' to
complete a block of 896 bits. The remaining 120 bits represent the message
length as shown in Fig.7.9.

423 64

01110100 01110010 01111001 1 00 00 00...011000

"~T~" r y /=24

Fig. 7.9. Padding Message in SHA-384 and SHA-512

Step 2 : Parsing the message

Padded messages are parsed to N 1024-bit blocks: Mo, M i , . . . , MM- Where
each Mi comprises thirty-two 32-bit blocks, namely, Mf, M / , . . . ,Mf^ The
first thirty-two 32 blocks are MQ,MQ, . . . , M ^ \ and so on.

Step 3: Setting the initial hash values

The initial values SHA-384 and SHA-512 comprises two sets of eight 64-bit
words as shown in Table 7.16 and Table 7.17.

Table 7.16. Initial Hash Values for SHA-384

a = 0xcbbb9d5dcl059ed8
b = 0x629a292a367cd507
c = 0x9159015a3070ddl7
d = 0xl52fecd8f70e5939
e = 0x67332667ffc00b31
f = 0x8eb44a8768581511
g = 0xdb0c2e0d64f98fa7
h = 0x47b5481dbefa4fa4

7.4.2 Functions

The auxiliary functions used in SHA-1 differ to those functions used in SHA-
256, SHA-384 and SHA-512. Functions used in SHA-256, SHA-384 and SHA-
512 are identical but they operate on different word sizes.

7.4 SHA-1, SHA-256, SHA-384 and SHA-512

Table 7.17. Initial Hash Values for SHA-512

205

a = 0x6a09e667f3bcc908
b = 0xbb67ae8584caa73b
c = 0x3c6ef372fe94f82b
d = 0xa54fr53a5fld36fl
d = 0x510e527fade682dl
e = 0x9b05688c2b3e6clf
f = 0xlf83d9abfb41bd6b
g = 0x5be0cdl9137e2179

7.4.3 SHA-1

The function Ft in SHA-1 takes three 32-bit words X^ Y, and Z, producing
a single 32-bit word output, where the variable t ranges from 0 to 79. It is
defined as indicated below.

Ft = { Ch{X, y, Z) = {X OR Y) e {{NOT X) ORZ) 0 < t < 19

Parity{X, Y,Z) ^ X®Y ®Z 20 < i < 39
Maj{X, y, Z) = {X OR Y) 0 {X OR Z) ®{YORZ)A0<t< 59
Parity{X,Y,Z) = X^Y^Z 60 < t < 79

A reconfigurable hardware architecture for the Ft is illustrated in Fig. 7.10.
It is noted that all three, Ch, Parity, and Maj, occupy a single LUT when
1-bit operand is processed.

Ch(x,y.z)
) J}0 Parity (x, y, z)

(b) .lO- Maj(x,y,z)

Fig. 7.10. Implementing SHA-1 Auxihary Functions in Reconfigurable Hardware

SHA-256, SHA-384 and SHA-512

All three, SHA-256, SHA-384 and SHA-512, use six logical functions. Each
function operates on three words X, "K, and Z producing a new word of
the same size as output. SHA-256 operates on 32-bit long words X, Y and
Z. However, both SHA-384 and SHA-512 operates on 64-bit words. The six
functions are.

206 7. Reconfigurable Hardware Implementation of Hash Functions

Ch{X, y, Z) - {X OR Y) © {{NOT X) OR Z)
Maj{X, y, Z) = {X OR Y) 0 {X OR Z) 0 {Y OR Z)

EQ{X) = ROTR^{X) 0 ROTR^^{X) 0 ROTR^^{X)
Ei{X) = ROTR^lx) 0 ROTR^^lx) 0 ROTR^^{X)
GQ{X) = ROTR'^{X) 0 ROTR^^{X) 0 ROTR^{X)
(71 (X) - ROTR^^X) 0 ROTR^^X) 0 ROTR^^{X)

The architectures for C/i(X, y, Z) and Maj{X,Y,Z) are identical to the
architectures presented in Fig. 7.10. The architectures for UQ, Ui, ao, and cri,
are also simple. Since the rotation operation can be implemented in reconfig­
urable hardware by only using routing resources, each of the aforementioned
functions can be accommodated into a single LUT as shown in Fig. 7.11.

USE ROUTING RESOURCES 1 LUT

xoW'i ROTR'

USE ROUTING RESOURCES 1 LUT

Fig. 7.11. Uo, Ui, cro, and ai in Reconfigurable Hardware

7.4.4 Constants

Constants for SHA-1 and SHA-256 differ. On the other hand, SHA-384 and
SHA-512, share the same constant values.

SHA-1

SHA-1 uses eighty 32-bit constant words KQ^KI,, K79 which are given below,
in hex format.

Kt=<

(0a:5a827999
0a;5a827999
OxSflbbcdc
0xca62cld6

0<t<19
20<t<39
40 < t < 59
60 < i < 79

7.4 SHA-1, SHA-256, SHA-384 and SHA-512 207

SHA-256

SHA-256 uses sixty four 32-bit different constant words, KQ, Ki^... ^KQ^.
Those constants are extracted from the first 32 bits of the fractional parts
of the first 64 prime numbers' cube roots. They are shown in hexadecimal
format in Table 7.18.

Table 7.18. SHA-256 Constants

428a2f98 71374491 bScOfbcf e9b5dba5 3956c25b 59flllfl 923f82a4 ablc5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 cl9bfl74
e49b69cl efbe4786 0fcl9dc6 240calcc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
98365152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2elb2138 4d2c6dfc 53380dl3 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8al a81a664b c24b8b70 c76c51a3 dl92e819 d6990624 f40e3585 106aa070
19a4cll6 Ie376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

SHA-384 &c SHA-512

SHA-384 and SHA-512 use eighty 64-bit different constant words Ko,Ki,..., Kjg.
Those constants are extracted from the first 64 bits of the fractional parts of
the first 80 prime numbers' cube roots. They are shown in hexadecimal format
in Table 7.19.

7.4.5 Hash Computation

The main procedure for hash calculation in SHA-256, SHA-384, and SHA-
512 is similar, only the word size varies. SHA-1 hash computation is however
different. We can classify the hash calculation procedure of the SHA algorithm
family into 3 major steps.

1. Define Word
2. Repeat Operation
3. Final Transformation

SHA-1

• Define Word: After performing message preprocessing for SHA-1, an i*^
block message M^ (0 < n < 15), is used to get 80 words for next steps as
follows:

rrr _ (Mi 0 < t < 19
^ ' - \ ROTL\Wt-z e m - 8 e m- ie) 16 < t < 79

208 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.19. SHA-384 & SHA-512 Constants

428a2f98d728ae22
3956c25bf348b538
d807aa98a3030242
72be5d74f27b896f
e49b69cl9efl4ad2
2de92c6f592b0275
983e5152ee66dfab
c6e00bf33da88fc2
27b70a8546d22fFc
650a73548baf63de
a2bfe8al4cfl0364
dl92e819d6ef5218
19a4cll6b8d2d0c8
391c0cb3c5c95a63
748f82ee5defb2fc
90befffa23631e28
ca273eceea26619c
06f067aa72176fba
28db77f523047d84
4cc5d4becb3e42b6

7137449123ef65cd
59flllflb605d019
12835b0145706fbe
80deblfe3bl696bl
efbe4786384f25e3
4a7484aa6ea6e483
a831c66d2db43210
d5a79147930aa725
2elb21385c26c926
766a0abb3c77b2a8
a81a664bbc423001
d69906245565a910
Ie376c085141ab53
4ed8aa4ae3418acb
78a5636f43172f60
a4506cebde82bde9
dl86b8c721c0c207
0a637dc5a2c898a6
32caab7b40c72493
597f299cfc657e2a

b5c0fbcfec4d3b2f
923f82a4afl94f9b
243185be4ee4b28c
9bdc06a725c71235
0fcl9dc68b8cd5b5
5cb0a9dcbd41fbd4
b00327c898fb213f
06ca6351e003826f
4d2c6dfc5ac42aed
81c2c92e47edaee6
c24b8b70d0f89791
f40e35855771202a
2748774cdf8eeb99
5b9cca4f7763e373
84c87814alf0ab72
bef9a3f7b2c67915
eada7dd6cde0eb le
113f9804bef90dae
3c9ebe0al5c9bebc
5fcb6fab3ad6faec

e9b5dba58189dbbc
ablc5ed5da6d8118
550c7dc3d5ffb4e2
cl9bfl74cf692694
240calcc77ac9c65
76f988da831153b5
bf597fc7beef0ee4
142929670a0e6e70
53380dl39d95b3df
92722c851482353b
c76c51a30654be30
106aa07032bbdlb8
34b0bcb5el9b48a8
682e6ff3d6b2b8a3
8cc702081a6439ec
c67178f2e372532b
f57d4f7fee6edl78

Ib710b35131c471b
431d67c49cl00d4c
6c44198c4a475817

• Repeat Operat ion: A single operat ion for SHA-1 is shown in Fig. 7.12
which must be repeated 80 times. Let us recall t h a t for the first sub block
message, initial values for words a, b,c,d, and e are provided by the algo
r i thm. For the next message sub-blocks, the ou tpu t ha^h value of an i
message block serves as initial vector for the hash computa t ion process of
the next sub block message. The symbol Kt represents SHA-1 constant
values.

th

SBi

f

hi

SB2

h2

Fig. 7.12. Single Operation for SHA-1

SBn

f

T l ^hn

• Final Transformation: Final t ransformation is simply the addit ion (modulo
2^^) of the initial hash value with the final ou tpu t hash value of the N^^
sub block message. A 160-bit hash of the message is then obtained by
concatenat ing five 32-bit words, namely,

7.4 SHA-1, SHA-256, SHA-384 and SHA-512 209

a II 6 II c N II e

SHA-256

• Define Word: After performing message preprocessing for SHA-256, an i^^
block message M^ (0 < n < 15), is used to get 64 words for next steps as
follows^:

Wt = Ml 0<t<19
^ 1 (^ - 2) + Wt-7 4- (Jo{Wt-i5) 16 < i < 63

• Repeat Operation: A single operation for SHA-256 is shown in Fig. 7.13
which is repeated for 60 times. Similarly as in SHA-1, for the first sub block
message, initial values for 8 words a, 6,c,c?,e,/,^, and h are provided by the
algorithm. For next message blocks, output hash values for an i^^ block
message serve as initial vectors for hash calculating process on next sub
block message. The symbol Kt represents constant values for SHA-256.

a

b

c

d

e

f

9

I<^(a)]

hAa\(a,b,c^

"^)

I.{e)]

Ch(e,f,g)
L J

• '̂
1 + —] -f |—1 + r

1

A
Zl +1

a

b

c

d

e

f

9

h

Fig. 7.13. Single Operation for SHA-256

• Final Transformation: Final transformation is simply the addition (modulo
2^^) of the initial hash values with the final output hash values of Â *̂
message sub block. A 256-bit hash of the message is then obtained by
concatenating eight 32-bit words, namely.

« II H I c II d II e II / II 5 II ft

The operations 0 and -I- , must not be mixed.

210 7. Reconfigurable Hardware Implementation of Hash Functions

SHA-384

• Define Word: After performing message preprocessing for SHA-384, an i^^
block message M^ (0 < n < 15), is used to get 80 words for the next steps
as follows^,

y^ {Mi 0<t<19
''' \ (Ji{Wt-2) 4- Wt-7 + (Jo(m-i5) 16 < t < 63

Here addition is performed modulo 2̂ ^̂ .

• Repeat Operation: A single operation for SHA-384 is similar to that of
SHA-256 as shown in Fig. 7.13. The difference Hes in the number of repe­
titions which are 80, instead of the 60 repetitions of SHA-256.

• Final Transformation: Final transformation consists on the addition (mod­
ulo 2̂ *̂) of the initial hash values with the final output hash values of A''*̂
sub block message. A 384-bit message digest is then obtained by truncating
the last 2 words. The first six 64-bit words are concatenated as follows.

a II Ml c N II e II /

SHA-512

The process of hash computation for SHA-512 is quite similar to that of SHA-
384. There are only two exceptions. The first one is due to loading the initial
values for the 8 words a, 6,c,(i,e,/,^, and /i, which are different for both SHA-
384 and SHA-512. The second difference is that a 512-bit message digest is
obtained by concatenating all 8 words. Last 2 words are not truncated as it
î in the case of SHA-384.

f\\9\\h

7.5 Hardware Architectures

The main moral of the preceding Sections is that hash function computation is
iterative in nature. To calculate hash values, several rounds must be performed
where each round comprises a certain number of steps. The output of a step
serves as input to the next step and the output of a round serves as the input
of the next round.

That characteristic does not prevent us from designing a fully pipeline or
sub pipeline architecture for hash functions. Let us recall that the input mes­
sage M is divided into N blocks. Hash computation of a new block cannot
start until the hash computation of the previous block has been fully com­
pleted. The hash values (output) of the first block are now the initial values

^ It is noticed that the word size for SHA-384 is 64-bit as compared to SHA-256
which is 32-bit long.

7.5 Hardware Architectures 211

for the hash computation of the second block message. That restricts us from
start processing the second block although only a single stage is active and
all others are idle during hash computation.

However, different strategies have been proposed by designers in order to
improve the data flow at different stages of the design so that high speed gains
can be obtained. The different design strategies are discussed in the rest of
this Section.

7.5.1 Iterative Design

An iterative design is a natural approach for the implementation of hash
functions on hardware platforms. Fig. 7.14 presents an iterative approach for
implementing hash algorithms in hardware.

Message
Padding

Appending
Message
Padding

CLK

/ Message
Scheduler

/
^

/
M,

->(ROM yU RAM]

• ^

CVn.i
f

Hash Iterative Core
Message Digest

Fig. 7.14. Iterative Approach for Hash Function Implementation

The input message is formatted according to the algorithm requirements
in two steps. Those are message padding, and then appending the message
length on it. Message scheduler shall provide a sub block or a word derived
from some sub blocks for any given algorithm step. Constants provided by the
algorithm can be stored in a memory block (ROM). The initial hash values
are required till the end of one iteration of the algorithm. This is in order
to perform the final transformation (simple XOR with the final output of
the iteration). Hence, at the end of a given iteration, partial results must
update the input parameters for the next iteration. BRAMs can be used for
accomplishing this operation.

The block labeled: "Hash Iterative Core" in Fig. 7.14, includes all log­
ical steps needed for accomplishing a particular compression function com­
putation. The exact sequence of those logical steps (i.e., when should they
be executed and with which parameters), is synchronized by the module la­
beled "Hash Finite State Machine" block. Clearly, the main building blocks
of Fig. 7.14 can be altered/combined/modified using different techniques ac­
cording to the characteristics of the target device and the hash algorithm in
hand.

212 7. Reconfigurable Hardware Implementation of Hash Functions

7.5.2 Pipelined Design

In pipeline architectures, registers are provided at different stages of the algo­
rithm. At each clock cycle, the output of a stage is shifted to the next stage.
Thus, at the first clock cycle, one input block should be loaded. At the next
clock cycle, a second block must be loaded and so on. Once the pipehne is
filled, i.e., the final stage outputs a data, then an output value will be ready
at each clock cycle.

Pipeline is a fast approach but cost has to be paid in terms of hardware
resources. Unfortunately, that approach cannot be fully utihzed for hash func­
tion computation due to the inherent dependencies. As it was explained, the
second iteration cannot be started until the computations for first iteration
have been completed. However a sort of pipelining can be achieved for different
operations of the similar stage.

7.5.3 Unrolled Design

Unrolled design approach is a useful technique used on the implementation
of hash algorithms in order to improve their performance on time. In this
approach, all or part of the stages of a hash algorithm are unrolled as is
shown in Fig. 7.15a. That however produces long critical paths which causes
undesirable long path delays in the circuit. Most designers therefore prefer to
unroll some k stages and then to cascade them for the implementation of the
whole algorithm as is shown in Fig. 7.15b.

IVot

Stage
2

(a) Hash function computation

Stage
Hash

Stage
1

Stage
2

Stage
3

Stage [J
4

Stage
n-1

Stage
n

•Hash

(b) On combining K stages

Fig. 7.15. Hash Function Implementation (a) Unrolled Design (b) Combining k
Stages

7.6 Recent Hardware Implementations of Hash Functions 213

7.5.4 A Mixed Approach

Designing circuits with long critical paths is not useful especially if the target
devices are FPGAs. The propagation of long time delays usually implies a
performance diminishing. However some registers can be provided as interface
buffers between neighbor stages of the hash algorithm. That can be also helpful
for producing a more compact design, which will help the mapping synthesis
tool. Another enhancement can be made by combining an unrolled design
structure with the provision of registers between different stages as shown in
Fig. 7.16.

K

IVo»

Stage
1

Stage
2

Stage
3

Stage
4

\ \
stage U

^ ' 1
\ \

Stage

M 6 1
\ \

Stage

y ' 1
\ \

Stage H

y « 1

h 1 -] Stage \-
U n-3

J\ \
1 Stage
g n.2 1

J\ \ "1 Stage
g n-1 1

h ^ H stage -

^ " 1

[>

R
E
G
1
S
T
E
R

Fig. 7.16. A Mixed Approach for Hash Function Implementation

7.6 Recent Hardware Implementat ions of Hash
Functions

Various hardware implementations of hash algorithms have been reported in
literature. Some of them focus on speed optimization while others concen­
trate on saving hardware resources. Some authors have also tried to exploit
parallelism in operations whenever this can be done. Some designs present
a tradeoff between time and hardware resources. It has been shown that by
adding few registers or few memory units, considerable timing improvements
can be obtained.

In the rest of this Section we review some of the most representative hash
function hardware designs recently reported. In total, we review six hash
function algorithms, namely, MD4, MD5, SHA-1, RIPEMD-160, SHA-2 and
Whirpool.

214 7. Reconfigurable Hardware Implementation of Hash Functions

M D 4

A single MD4 FPGA architecture has been reported in the open Hterature
[328]. The distinct feature of this design is to try to exploit as much par-
allehsm and pipelining for the MD4 hash algorithm as possible. That design
implements arithmetic, logic and circular shift operation using a pipelined par­
allel processor. It takes 94.07 juS to compute the message digest of a 512-bit
input message block at 6.67 MHz frequency consuming only 252 CLE slices.

Table 7.20. MD5 Hardware Implementations

Author(s) Target
Device

Cost Freq.
MHz

Cycles
Mbps

T/S

1 'Fastest ASIC MD5 Cores \
Satoh et al. [312] 0.13/im

ASIC
17.7K
gates

277.8 68 2091 0.117

Compact ASIC MD5 Cores
Satoh et al. [312]

Helicon [358]

Sandra [71]

0.13/im
ASIC

0.18/xm
ASIC
0.6)Lim

ASIC

10.3K
gates
16K

gates
10.9K

gates + RAM

133.3

145

59

68

65

206

1004

1140

146

0.097

0.072

0.013

Fastest FPGA MD5 Cores
Jarvinen et al. [156] Virtex-II

XC2V4000-6
11.5K(10)

slices(RAM)
75.5 66 5857 0.509

Compact FPGA MD5 Cores
Helicon [358] Virtex-II 613(1)

slices(RAM)
96 66 744 1.213

Other FPGA MD5 Cores
Jarvinen et al. [156]

Helicon [358]

Sandra [71]

Kang et al. [166]

1 Deepak, et al. [65]

Virtex-II

XC2V4000-6
Spartan3

Virtex
XCV300E

Apex
EP20K1000E

Virtex
XCV1000-6

5.7K(0)
647(2)

slices(RAM)
630(1)

slices(RAM)
2008
slices
10.5K

logic cells
880(2)

slices(RAM)

80.7
75.5

63

42.9

18

21

66
66

66

206

65

65

2395
586

488

107

142

165

0.417
0.905

0.774

0.053

0.0134

0.187

t Throughput

7.6 Recent Hardware Implementations of Hash Functions 215

MD5

A considerable number of MD5 hardware implementations have been reported
in the open literature. Table 7.20 presents some selected designs. However,
due to the availabihty of a large number of FPGA devices by different man­
ufacturers, with different logic complexity within the basic building block, a
comparison of different hash cores becomes complicated.

The ASIC MD5 design in [312] is the fastest one in its category, with a
throughput of 2.09 Gbps at a cost of 17,764 gates on a 0.13/xm chip.

The authors in [156] designed several MD5 architectures by unroUing a
variable number of MD5 stages. A fully unrolled MD5 architecture is their
fastest design, achieving a throughput of 5.8 Gbps by occupying 11498 slices
plus 10 BRAMs on a Xilinx Virtex-II XC2V4000-6.

A commercially available MD5 core designed by [358] is a compact design
that occupies only 630 slices plus 1 BRAM and reports a throughput of 744
Mbps on a Xilinx Virtex-II device. The throughput over area factor (our figure
of merit for measuring efficiency) achieved in [358] is the best one of all designs
considered in Table 7.20.

Other MD5 architectures on different FPGA chips using different design
approaches are also reported in Table 7.20.

SHA-1

Numerous SHA-1 FPGA implementations have been reported in the litera­
ture. A representative group of them are shown in Table 7.21.

The authors in [312] presented two SHA-1 architectures in ASIC hardware,
one of them is the fastest architecture reported in the literature, achieving a
throughput of 2 Gbps by utilizing 9859 gates in a O.lSfxm chip.

In the reconfigurable hardware category, the fastest design, reported in
[67] achieves a throughput of 899.8 Mbps. That is also a compact design with
the best throughput over area performance.

A SHA-1 architecture in [120] is the 2̂ "̂ fastest FPGA core. It utilizes carry
save adders to speed up multi-operand additions and to minimize delays with
carry propagation. This design reduces the number of operands in a round by
pre-computing addition of Constants (K) and Words(W) {Kt + Wt) and also
it eliminates the final round which is incorporated as a conditional addition
within a round. The throughput for this design is reported as 462 Mbps when
operating at a 75.8 MHz clock frequency.

The most compact design for SHA-1 was presented in [71] using as a
target device a Xilinx V300E. It proposes a pipelined parallel structure by
implementing two arithmetic logic units for SHA-1, achieving a throughput
of 119 Mbps at a 59 MHz clock frequency.

The design in [404] utilizes 1622 shces on an Altera EPIK100QC208-1
achieving a throughput of 268.99 Mbps. That is another compact hardware
SHA-1 core on Altera devices.

216 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.21. Representative SHA-1 hardware Implementations

Author(s) Target
Device

Hardware Freq.
MHz

Cycles Tt
Mbps

T/S"j

Fastest ASIC SHA-1 Cores
Satoh et al [312] O.lSfxm

ASIC
9.9K
gates

333.3 85 2006 0.2031

Compact ASIC SHA-1 Cores
Satoh et al [312]

Helicon [358]

Sandra [71]

0.13/im
ASIC

0.18/xm
ASIC
0.6/jLm

ASIC

7.9K
gates
20K

gates
10.9K + RAM

gates

154.3

166

59

85

81

255

929

1000

119

0.116

0.050

0.011

Compact k Fastest FPGA SHA-1 Cores
Diez et al [67]

Grembowski et al [120]

Virtex-II
XC2V3000

Virtex
XCVlOOO-6

1.55K
slices
2.2K
slices

38.6

75.76

22

84

899.8

462

0.580

0.210

Other FPGA SHA-1 Cores
Sandra [71]

Zibin et al [404]

Kang et al [166]

Sklavos [332]

Virtex
V300E
Apex

EPIKIOOQ
Apex

EP20K1000
Virtex

XCV300

2.0K
slices
1.6K

logic cells
10.5K

logic cells
2.6K
slices

42.9

43.08

18

37

255

82

81

86

268.99

114

233

0.042

0.165

0.011

0.089

t Throughput

Additionally, there exist other SHA-1 cores [67, 404, 166, 332] which pro­
pose some effective techniques to save hardware resources and to increase time
factor. In [166], a significant saving of resources was achieved. This design im­
plements a switching matrix by using multiplexers for an appropriate word
(W) selection. It can operate at 18 MHz and achieves a throughput of 114
Mbps.

The SHA-1 implementation in [332] was used as a pseudo-random number
generator. It is actually a VLSI architecture which was first captured in VHDL
and synthesized on FPGAs. That design allows a system frequency of 37 MHz
and can run at the rate of 233 Mbps.

Finally, the SHA-1 core in [404] explores three Altera FPGA grades for
the same SHA-1 code.

7,6 Recent Hardware Implementations of Hash Functions 217

RIPEMD-160

Table 7.22 presents two FPGA architectures for RIPEMD-160, which were
implemented on devices made by different manufacturers. The design in [249]
is a unified architecture in Altera EPF10K50SBC356-1 for two different hash
algorithms:RIPEMD-160 and MD5. That design achieves a throughput over
200 Mbps for MD5 and 84 Mbps for RIPEMD-160 when operating at 26.66
MHz and it stands as the compact and the fastest RIPMD architecture in
FPGAs. In [71], a RIPEMD-160 FPGA implementation on Xilinx V300E
can run at a 42.9 MHz frequency and achieves a data rate of 89 Mbps.

In ASIC hardware, the fastest RIPEMD architecture is due to [312]. That
design can run at 1.442 Gbps by occupying 24755 gates on a 0.13/xm chip.

Table 7.22. Representative RIPEMD-160 FPGA Implementations

Author(s) Target
Device

Hardware Freq.
MHz

Cycles
Mbps

T /S

Fastest ASIC RIPEMD Cores
Satoh et al [312]

Sandra [71]

0.13/^m ASIC

Q.e/im ASIC

24775 gates
17446 gates

10,900 gates + RAM

270.3
142.9

59

96
96

337

1442
762
89

0.058
0.044
0.008

Compact & Fastest FPGA RIPEMD Cores
Ng et al [249]

Sandra [71]

Apex
EPF10K50S-1

Virtex
V300E

1964 logic elements

2008 slices

26.66

42.9

162

337

84

65

0.042

0.032

t Throughput

SHA-2

Table 7.23 shows several representative SHA-2 hardware cores reported in the
open literature.

Authors in [312] reported four ASIC architectures for SHA-224, SHA-256,
SHA-384, and SHA-512 implemented on a 0.13^m chip. The fastest among
them is the SHA-512 architecture that achieves a throughput of 2.9 Gbps by
using 27297 gates. That is also the fastest ASIC hardware architecture of any
SHA-2 family of hash algorithms.

The fastest FPGA SHA-2 architectures have been proposed in [222]. It
achieves a throughput of 1466 Mbps on a Xilinx Virtex-II device. The archi­
tecture employed for that SHA-2 (512-bit) design consisted on a two-step (2x)
unrolled implementation. Authors in [222] essayed six variants of the same de­
sign which are named as SHA2 (256) basic, SHA2 (256) 2x-unrolled, SHA2
(256) 4x-unrolled, SHA2 (512) basic, SHA2 (512) 2x-unrolled and SHA2 (512)

218 7. Reconfigurable Hardware Implementation of Hash Functions

Table 7.23. Representative SHA-2 FPGA Implementations

Author(s) Target
Device

Hardware Freq.
MHz

Cycles Tt
Mbps

T/S

ASIC SHA-2 Cores
Satoh et al [312]
SHA-224
SHA-256
SHA-384
SHA-512
Helicon [358]
SHA-256

Q.Uixm ASIC
0.13Aim ASIC
0.13//m ASIC
0.13Aim ASIC

0.18/xm ASIC

11484 gates
15329 gates
23146 gates
27297 gates

22K gates

154.1
333.3
125.0
250.0

200

72
72
88
88

65

1096
2370
1455
2909

1575

0.095
0.154
0.062
0.106

0.072
Fastest FPGA SHA-2 Cores

McEvoy [222]
SHA-2(512)

Virtex-II
XC2V2000

4107 slices 65.893 46 1466 0.357

Compact FPGA SHA-2 Cores
Sklavos et al [333]
SHA-2(256)

Virtex
XCV200-6

1060 slices 83 326 0.307

Other FPGA SHA-2 Cores
Sklavos et al [333]
SHA-2(384)
Sklavos et al [333]
SHA-2(512)
McLoone et al [224]
SHA-2(384)
McLoone et al [224]
SHA-2(512)
McEvoy [222]
SHA-2(256)

(Basic)

(2x-unrolled)

(4x-unrolled)

McEvoy [222]
SHA-2(512)

(Basic)

[(4x-unrolled)

Virtex
XCV200-6

Virtex
XCV200-6

Virtex
XCV600E-8

Virtex
XCV600E-8

Virtex-II
XC2V2000

Virtex-II
XC2V2000

Virtex-II
XC2V2000

Virtex-II
XC2V2000

Virtex-II
XC2V2000

1966 slices

2237 slices

2914 slices +
2 BRAMs
2914 slices
2 BRAMs

1373 slices

2032 slices

2898 slices

2726 slices

5807 slices

74

75

38

38

133.06

73.975

40.833

109.03

35.971

80

80

68

38

23

84

27

350

480

479

479

1009

996.7

908.9

1329

1364

0.178

0.214

0.164

0.164

0.734

0.490

0.313

0.487

0.234

t Throughput

7.6 Recent Hardware Implementations of Hash Functions 219

4x-unrolled. Those architectures optimize time performances by combining
pipehning and unrolHng techniques.

In [333], a common architecture is customized for three SHA2 algorithms:
SHA2 (256), SHA2 (384) and SHA2 (512). The design compares three im­
plementations in terms of operating frequency, throughput and area-delay
product. Among them, SHA2 (256) FPGA implementation consumes least
hardware resources in the hterature, achieving a throughput of 326 Mbps on
a Xihnx V200PQ240-6.

In [224], a single chip FPGA implementation is also presented for SHA2
(384) and SHA2 (512). That architecture optimizes time factor and hardware
area by using shift registers for message scheduler and compression block.
Similarly, block select RAMs (BRAMs) are used to store the compression
function constants.

Table 7.24. Representative Whirlpool FPGA Implementations

Author(s) Target
Device

Hardware Freq.l Cycles
MHz|

Tt
Mbps

T/S

Fastest FPGA Whirlpool Cores
McLoone et al [226]
2 X unrolled
Kitsos et al [173]
LUT based
Time optimized

Virtex-4
X4VLX100

Virtex
XCVIOOOE

13210 slices

5585 slices

47.8

87.5 10

4896

4480

0.370

0.802

Compact FPGA Whirlpool Cores
Pramstaller et al [274] Virtex-2P

XC2VP40
1456 slices 131 382 0.262

Other FPGA Whirlpool Cores
Kitsos et al [173]
Boolean expression based
Kitsos et al [173]
LUT based
Kitsos et al [173]
Boolean expression based
Time optimized
McLoone [226]

VirtexE
XCVIOOOE

VirtexE
XCVIOOOE

VirtexE
XCVIOOOE

Virtex-4
X4VLX100

3815 slices

3751 slices

5713 slices

4956 slices

75

93

72

93.56

20

20

10

1920

2380

3686

4790

0.503

0.634|

0.645

0.966

t Throughput

Whirlpool

Table 7.24 lists various Whirlpool FPGA-based architectures. The fastest
Whirlpool core has been reported in [226]. That is a 2 stages (2x) unrolled
Whirlpool architecture implemented on a Xilinx Virtex-4 which achieves a
throughput of 4896 Mbps by consuming 13210 CLB shces.

220 7. Reconfigurable Hardware Implementation of Hash Functions

Another Whirlpool core showing similar throughput to the design in [226]
is due to [173] which reports a throughput of 4480 Mbps on a XiHnx XCVIOOO
by occupying 5585 CLE slices and also some dedicated memory modules.
Three more variants of that design are also presented. Those architectures
implement Whirlpool mini boxes by using Boolean expressions, referred to as
BB (Boolean expressions Based) and by using FPGA LUTs, referred to as LB
(LUT Based) respectively. Let us call them as Whirlpool BB and Whirlpool
LB. Both Whirlpool BB and Whirlpool LB can operate at rates of 1920 Mbps
and 2380 Mbps. Both architectures are further optimized for time, increasing
throughputs to 3686 Mbps and 4480 Mbps.

In contrast to the aforementioned architectures, a compact FPGA imple­
mentation of Whirlpool hash function was reported in [274]. That architecture
focuses on saving considerable hardware resources by using LUT-based RAM
for Whirlpool state. Authors report a hardware cost of just 1456 CLB slices
achieving a data rate of 382 Mbps.

7.7 Conclusions

In this chapter, various popular hash algorithms were described. The main em­
phasis on that description was made on evaluating hardware implementation
aspects of hash algorithms.

MD5 description included in this Chapter can be regarded as a step by
step example of how intermediate values are being updated during algorithm
execution. We have mentioned that MD5 design methodology has a strong
influence in almost all modern hash functions. The explanation provided for
SKA family of hash algorithms can be regarded as an evidence that the struc­
ture of current hash algorithms borrows basic rules and principles from their
predecessors.

A fair number of hash function implementations in reconfigurable Hard­
ware have been reported so far. Those architectures do not pretend to be a
universal solution for all the universe of hash applications such as, secure web
traffic (https /SSL), encrypted e-mail(PGP, S/MIME), digital certificates,
cryptographic document authenticity, secure remote access (ssh/sftp), etc.

However, the usage of reconfigurable hardware for hash function implan­
tations can provide a unique benefit of reconfiguring customized hardware
architecture according to the specifications of end users. Furthermore, given
the fact that most hash functions are enduring difficult times, where several
emblematic hash functions have been critically attacked, new security patches
could be easily incorporated.

8

General Guidelines for Implementing Block
Ciphers in FPGAs

This chapter pretends to provide general guidehnes for the efficient imple­
mentation of block ciphers in reconfigurable hardware platforms. The general
structure and design principles for block ciphers are discussed. Basic primi­
tives in block ciphers are identified and useful design techniques are studied
and analyzed in order to obtain efficient implementations of them on recon­
figurable devices. As a case of study, those techniques are applied to the Data
Encryption Standard (DES), thus producing a compact DES core.

8.1 Introduction

Block ciphers are based on well-understood mathematical problems. They
make extensive use of non-linear functions and linear modular algebra [227].
Most block ciphers exhibit a highly regular structure: same building blocks are
applied a predetermined number of times. Generally speaking, block ciphers
are symmetric in nature. Sometimes encryption and decryption only differ in
the order that sub-keys are used (either ascending or descending order). Thus,
quite often pretty much the same machinery can be used for both processes.

Implementation of block ciphers mainly use bit-level operations and ta­
ble look-ups. The bit-level operations include standard combinational logic
operations (such as XORs, AND, OR, etc.), substitutions, logical shifts and
permutations, etc. Those operations can be nicely mapped to the structure of
FPGA devices. In addition, there are built-in dedicated resources like mem­
ory modules which can be used as a Look Up Tables (LUTs) to speedup the
substitution operation, which is one of the key transformations of modern
block ciphers. Furthermore, contemporary FPGAs are capable of accommo­
dating big circuits making possible to generate highly parallel crypto cores.
All these features combine together for providing spectacular speedups on the
implementation of crypto algorithms in reconfigurable devices.

222 8. General Guidelines for Implementing Block Ciphers in FPGAs

In this chapter, we analyze key block ciphers characteristics. We explore
general strategies for implementing them on FPGA devices. We search for
the most frequent operations involved in their transformations and develop
strategies for their implementations in reconfigurable devices. It has been al­
ready pointed out how bit level parallehsm can be greatly exploited in FPGAs.
As we will see, this fact is especially true for block ciphers. As a way of il­
lustration, we test our methodology in one specific case of study: the Data
Encryption Standard (DES). Furthermore, in the next Chapter our strategies
are also applied to the Advanced Encryption Standard (AES).

DES is the most popular, widely studied and heavily used block cipher. It
has been around for quite a long time, more than thirty years now [64, 92]. It
was developed by IBM in the mid-seventies. The DES algorithm is organized
in repetitive rounds composed of several bit-level operations such as logical
operations, permutations, substitutions, shift operations, etc. Although those
features are naturally suited for efficient implementations on reconfigurable
devices, DES implementations can be found on all platforms: software [64,
92, 169, 25, 23], VLSI [78, 76, 381] and reconfigurable hardware using FPGA
devices [204, 384, 167, 99, 225, 381, 271]. In this Chapter, we present an
efficient and compact DES architecture especially designed for reconfigurable
hardware platforms.

The rest of this Chapter is organized as follows. Section 8.2 describes
the general structure and design principles behind block ciphers. Emphasis is
given on useful properties for the implementation of block ciphers in FPGAs.
An introduction to DES is presented in Section 8.3. In Section 8.4, design
techniques for obtaining an efficient implementation of DES are explained. In
Section 8.5 a survey of recently reported DES cores is given. Finally, conclud­
ing remarks are drawn in Section 8.6.

8.2 Block Ciphers

In cryptography, a block cipher is a type of symmetric key cipher which op­
erates on groups of bits of some fixed length, called blocks. The block size is
typically of 64 or 128 bits, though some ciphers support variable block lengths.
DES is a typical example of a block cipher, which operates on 64-bit plaintext
block. Modern symmetric ciphers operate with a block length of 128 bits or
more. Rijndael (selected in October, 2000 as the new Advanced Encryption
Standard), for instance, allows block lengths of 128, 192, or 256 bits.

A block cipher makes use of a key for both encryption and decryption. Not
always the key length matches the block size of the input data. For example,
in triple DES or 3DES for short (a variant of DES), a 64-bit block is processed
using a 168-bit key (three 56-bit keys) for encryption and decryption. Rijndael
allows various combinations of 128, 192, and 256 bits for key and input data
blocks.

8.2 Block Ciphers 223

As it was already mentioned in §2.7 Some of the major factors that deter­
mine the security strength of a given symmetric block cipher algorithm include,
the quality of the algorithm itself, the key size used and the block size handled
by the algorithm. Block lengths of less than 80 bits are not recommended for
current security applications [253].

In the rest of this Section, general structure and design principles of the
block ciphers are discussed. We explain several primitives which commonly
form part of the repertory of block cipher transformations. Finally, we give
some comments about their hardware implementation, specifically on recon-
figurable type of hardware.

8.2.1 General Structure of a Block Cipher

As is shown in Figure 8.1, there are three main processes in block ciphers:
encryption, decryption and key schedule. For the encryption process, the input
is plaintext and the output is ciphertext. For the decryption process, ciphertext
becomes the input and the resultant output is the original plaintext. A number
of rounds are performed for encryption/decryption on a single block. Each
round uses a round key which is derived from the cipher key through a process
called key scheduling. Those three processes are further discussed below.

Plaintext
1 1 1 1 1 1

i

Block Cipher
Encryption

i
1 1 M M

Ciphertext

round 1 roi

^

ind2 I

keyl|key2|....|keyn

4

Key Schedule

Round transformation

Ciphertext

1 1 1 1 1 1
1

Block Cipher
Decryption

i
1 1 M 1 1

Plaintext

round n

Fig. 8.1. General Structure of a Block Cipher

Block Cipher Encryption

Many modern block ciphers are Fiestel ciphers [342]. Fiestel ciphers divide
input block into two halves. Those two halves are processed through n number
of rounds. In the final round, the two output halves are combined to produce
a single ciphertext block. All rounds have similar structure. Each round uses

224 8. General Guidelines for Implementing Block Ciphers in FPGAs

a round key, which is derived from the previous round key. The round key for
the first round is derived from the user's master key. In general all the round
keys are different from each other and from the cipher key.

Many modern block ciphers partially or completely employ a similar Fies-
tel structure. DES is considered a perfect Fiestel cipher. Modern block ciphers
also repeat n rounds of the algorithm but they do not necessarily divide the
input block into two halves. All the rounds of the algorithm are generally sim­
ilar if not identical. Round operations normally include some non-linear trans­
formations like substitution and permutation making the algorithm stronger
against crypt analytic attacks.

Block Cipher Decryption

As it was explained, one of the main characteristics of a Fiestel cipher is
the usage of a similar structure for encryption and decryption processes. The
difference lies on the order that the round keys are applied. For decryption,
round keys are used in reverse order as that of encryption. Modern block
ciphers also use round keys following a similar style, however, encryption and
decryption processes for some of them may not be the same. In any case, they
preserve the symmetric nature of the algorithm by guaranteeing that each
transformation will always have its corresponding inverse. As a result both,
the encryption and decryption processes tend to appear similar in structure.

Key Schedule

The round keys are derived from the user key through a process called key
scheduling. Block ciphers define several transformations for deriving the round
keys to be utilized during the encryption and decryption processes. For some
of them, round keys for decryption are derived using reverse transformations.
Alternatively, keys derived for encryption can be simply used during the de­
cryption process in reverse order.

8.2.2 Design Principles for a Block Cipher

During the last two decades both, theoretical new findings as well as innova­
tive and ingenious practical attacks have significantly increase the vulnerabil­
ity of security services. Every day, more effective attacks are launched against
cryptographic algorithms. We also have seen a tremendous boost in computa­
tional power. Successful exhaustive key search engines have been developed in
software as well as in hardware platforms. As a consequence of this, old cryp­
tographic standards were revised and new design principles were suggested to
improve current security features. In this subsection, we analyze some of the
key features that directly impact the design of a block cipher.

8.2 Block Ciphers 225

Key Size

If a block cipher is said to be highly resistant against brute force attack, then
its strength is determined by its key length: the longer the key, the longer it
takes before a brute force search can succeed. This is one of the reasons why,
modern block ciphers employ key lengths of 128 bits or more.

Variable Key Length

On the one hand, longer keys provide more security against brute force at­
tacks. On the other hand, a large key length may slow down data transmission
due to low encryption speed. Modern block ciphers therefore offer variable
key lengths in order to support different security and encryption speed com­
promises. All the five finalists of the 2000 competition for selecting the new
advance encryption standard, namely, RC6, Twofish, Serpent, MARS and Ri-
jndael, provide variable key lengths.

Mixed Operations

In order to make the job of a cryptanalyst more complex, it is considered useful
to apply more than one arithmetic and/or Boolean operators into a block
cipher. This approach adds more non-linearity producing complex functions
as an alternative to S-boxes (substitution boxes). Mixed operations are also
used in the construction of S-boxes to add non-linearity thus making them
produce more unpredictable results.

Variable Number of Rounds

Round functions in crypto algorithms add a great deal of complexity, which
impHes that the crypto-analysis process becomes significantly less amenable.
By increasing the number of rounds larger safety margins are provided. On
the contrary, a large number of rounds slows cipher encryption speed. Mod­
ern block ciphers provide variable number of rounds allowing users to trade
security by time. It should be noticed that the strength of a given crypto
algorithm is also linked with the other design parameters. For example, AES
with 10 rounds provides higher security as compared to DES with 16 rounds.

Variable Block Length

The security of a block cipher against brute force attacks is dependent upon
key and block lengths. Longer keys and block lengths obviously imply a bigger
search space, which tend to give more security to a cipher algorithm. As
it has been said, modern ciphers support variable key and block lengths,
thus assuring that the algorithm becomes more flexible according to different
security requirement scenarios.

226 8. General Guidelines for Implementing Block Ciphers in FPGAs

Fast Key Setup

Blowfish uses a lengthy key schedule. Therefore, the process of generating
round keys for encrypting/decrypting a single data block may take a signifi­
cant amount of time. On the other hand, this characteristic also adds security
to Blowfish in the sense that it greatly magnifies the time to search all possibil­
ities for round keys. However for those applications where the cipher key must
be changed frequently, a fast key setup is needed. For example, overheads due
to key setup during the encryption of the security Internet protocol (IPSec)
packets are quite considerable. That is why most modern block ciphers offer
simple and fast key schedule algorithms. Rijndael Key schedule algorithm is
a good example of an efficient process for round key generation.

Software/Hardware Implementations

It was the time when crypto algorithms were designed to get an efficient im­
plementation on 8-bit processors. Most of their arithmetic/logical functions
were designed to operate on byte level. Perhaps, encryption speed was not a
must have issue as it is now. Those times has gone for good. There are applica­
tions which require high encryption speeds either for software or for hardware
platforms. This is why cryptographers started to include those functions in
crypto algorithms which can be efficiently executed in both software and hard­
ware platforms. For example, the XOR operation can be found in virtually
all modern block ciphers, among other reasons, because of its eflficiency when
implemented in software as well as in hardware platforms.

Simple Arithmetic/Logical Operations

A complex crypto algorithm might not be strong enough cryptographically
The attribute of simplicity can be seen in most of the strong block ciphers used
nowadays. They mainly include easily understandable bit-wise operations.

Table 8.1 describes key features for some famous block ciphers including
the five finalists (AES, MARS, RC6, Serpent, Twofish) of the NIST-organized
contest for selecting the new Advanced Encryption Standard. It can be seen
that modern block ciphers use high block lengths of 128 bits or more. Similarly
they provide high key lengths up till 448 bits. Both block and key lengths in
block ciphers are often variable to trade the security and speed for the chosen
algorithm. Number of rounds ranges from 8 to 32. For some block ciphers the
number of round is fixed but for some others that number can vary depending
on the chosen block and key lengths.

It is noticed that most block ciphers can be eflficiently implemented in
software and hardware platforms. All block ciphers generally include bit-wise
(XOR, AND) and shift or rotate operations. Excluding a small minority of
block ciphers, most algorithms use the so-called S-boxes for substitution. Fast
key set-up is an important feature among modern block ciphers. They are

8.2 Block Ciphers 227

Table 8.]

Properties

Block length
Key length
No. of rounds
Software
Hardware
Symmetric
Bit-operations
Permutation
S-Box
1 Shift/rotate
|Fast key setup

DES

64
64
16

V
%/
V
V
V
V
V
V

. Key Features for Some Famous Block (

Blowfish

64
32-448
16

V
V
V
V
X

V
X

X

IDEA

64
128
8

V
V
V
V
X

X

V
V

AES

128-256
128-256
10-14

V
V
X

v/
X

V
V
V

MARS

128
128-448
32

V
V
X

V
X

V
V
V

RC6

128
128-256
20

V
sj
X

%/
X

X

V
/̂

Ciphers

Serpent

128
256
32

x/
x/
X

^
N/

%/
sj

v

TwoFishl

128
128-192
16

/̂
V
sj
v/
sj
%/
V
sj

not always symmetric, that is, same building blocks used for encryption not
necessarily can be used for decryption.

8.2.3 Useful Properties for Implementing Block Ciphers in FPGAs

Hardware implementations are intrinsically more physically secure: key ac­
cess and algorithm modification is considerably harder. In this subsection we
identify some useful properties in symmetric ciphers that have the potential
of being nicely mapped to the structure of reconfigurable hardware devices.

Bit-Wise Operations

Most of the block ciphers include bit-level operations like AND, XOR and
OR which can be efficiently implemented and executed in FPGAs. Indeed,
those operations utilize a relatively modest amount of hardware resources.
The primitive logic units in most of the FPGAs are based on 4-input/l-ouput
configuration. This useful feature of FPGAs allow to build 2, 3, or 4 input
Boolean function using the same hardware resources as shown in Figure 8.2.

Substitution

Substitution is the most common operation in symmetric block ciphers which
adds maximum non-hnearity to the algorithm. It is usually constructed as a
look-up table referred to as substitution box (S-Box). The strength of DES
heavily depends on the security robustness of its S-boxes. AES S-box is used
in both encryption and decryption processes and also in its key schedule al­
gorithm.

228 8. General Guidelines for Implementing Block Ciphers in FPGAs

Logic Cell
of

FPGA

4-in/1-out

Fig. 8.2. Same Resources for 2,3,4-in/l-out Boolean Logic in FPGAs

Formally, an S-box can be defined as a mapping of n input to m output bits,
i.e., F : ZJ" —> ^2^. When n = m the mapping is reversible and therefore it is
said to be bijective. AES hsts only one S-Box, which happens to be reversible,
but all eight DES S-boxes are not^

FPGA devices offer various solutions for the implementation of substitu­
tion operation as shown in Figure 8.3.

• The primitive logic unit in FPGAs can be configured into memory mode.
A 4-in/l-out LUT provides 16 x 1 memory. A large number of LUTs can
be combined into a big memory. This might be seen as a fast approach
because the S-Box pre-computed values can be stored, thus saving valuable
computational time for S-Box manipulation.

• The values for S-boxes in some block ciphers can also be calculated. In
this case, if the target device does not contain enough memory, then one
can use combinational logic to implement S-boxes. That could be rather
slow due to large routing overheads in FPGAs.

• Some FPGA devices contain built-in memory modules. Those are fast
access memories which do not make use of primitive logic units but they
are integrated within FPGAs. The pre-computed values for S-boxes can
be stored in those dedicated modules. That could be faster as compared to
store S-box values in primitive logic units configured into memory mode.
As it was described in Chapter 3, many FPGA devices from different
manufacturers contain those memory blocks, frequently called BRAMs.

Permutation

Permutation is a common block cipher primitive. Fortunately, there is no
cost associated with this operation since it does not make use of FPGA logic

^ It is noticed that the number of candidate Boolean functions for building an n
bit input/m bit output S-box is given as 2'^^ . It follows that even for moderated
values of n and m, the size of the search space becomes huge. However, not all
Boolean functions are suitable for building robust S-Boxes. Some of the desired
cryptographic properties that good candidate Boolean functions must have are:
High non-linearity, high algebraic degree and low auto-correlation, among others.

8.2 Block Ciphers 229

—

LUT
4x1

LUT
4x1

LUT
4x1 -

BRAM

BRAM

BRAM

(a) LCs configured
in memory mode

(b) LCs configured
in logic mode

(c) Using BRAMs

Fig. 8.3. Three Approaches for the Implementation of S-Box in FPGAs

resources. It is just rewiring and the bits are rearranged (concatenated) in
the required order. Figure 8.4 demonstrates a simple example of permuting 6
bits only. That strategy can be extended for the permutation operation over
longer blocks.

Permutation for 6 bits

Fig. 8.4. Permutation Operation in FPGAs

Shift &; Rotate

Shift is simpler than the permutation operation. Shift operation is normally
performed by extracting some particular bit/byte values from a larger register.
One practical example of this situation is: retrieving a 6-bit sub-vector from a
48-bit state register for their further substitution in DES. This operation can
be implemented using wide data buses, which are then divided into small buses
carrying the required bit/byte values. A typical byte-level shift operation is
shown in Figure 8.5a.

230 8. General Guidelines for Implementing Block Ciphers in FPGAs

In some cases, the input data is shifted n bits and n zeroes are added, a
process known as zero padding. In FPGAs, zero padding for n bit? is achieved
by simply connecting n bits to the ground as shown in Figure 8.5b.

Most block ciphers (such as AES, RC6, DEAL, etc.) use the rotation op­
eration. It is similar to shift operation but with no zero padding. Instead, bit
wires are re-grouped according to a defined setup. For example, for a 4-bit
buffer, shifting left aoaia2a3 by 1-bit becomes aia2as0, whereas rotating left
by 1-bit produces aia2a3ao.

Fixed rotation is trivial and there is no cost associated with it. Variable
rotation is also used by some cryptographic algorithms (RC5, RC6, CAST)
however this is not a trivial operation anymore.

IN[31:0]

-A=IN[31:24]

-B = IN[16:8]

-C = IN[23:17]

- D = IN[7:0]

(a) Address required
bits only

7 BITS

-OUT[31:0]

IN[24:0] —

(b) Connect to ground

Fig. 8.5. Shift Operation in FPGAs

Iterative Design Strategy

Block ciphers are naturally iterative, that is, n iterations of the same transfor­
mations, normally called rounds, are made for a single encryption/decryption.
An iterative design strategy is a simple approach which implements the cipher
algorithm by executing n iterations of its rounds. Therefore, n clock cycles are
consumed for encrypting/decrypting a single block, as shown in Figure 8.6.
Obviously, this is an economical approach in terms of required hardware area.
But it slows cipher speed which is n times slower for a single encryption. Such
architectures would be useful for those applications where available hardware
resources are limited and speed is not a critical factor.

Pipeline Design Strategy

In a pipehne design, all the n rounds of the algorithm are unrolled and registers
are provided between two consecutive rounds as shown in Figure 8.7. All the
intermediate registers are triggered at the same clock by shifting data to the
next stage at the rising/falling edge of the clock. Once all the pipeline stages
are filled, the output blocks starts appearing at each successive clock cycle.

8.2 Block Ciphers 231

CZFT
^ ^
- ^ ^

One
Round

^ Select

Latch

* 1
CE CLK

Out

Fig. 8.6. Iterative Design Strategy

This is a fast solution which increases the hardware cost to approximately n
times as compared to an iterative design.

IN-H Round H Latch H

CE CLK

Round
H Latch

CE CLK

n
Round

Latch ^•Out

CE CLK

Fig. 8.7. Pipeline Design Strategy

Sub-pipelining Design Strategy

Figure 8.8 represents a sub-pipeline design strategy. As shown in Figure 8.8,
Sub-pipelining is implemented by placing the registers between different stages
of a single round for a pipehne architecture. That improves performance of
the pipeline architecture as those internal registers shift the results within the
round when outputs of a round are being transferred to the next round. It has
been experimentally demonstrated that careful placement of those registers
within a round may produce a significant increase in the design performance.

Round Round
n

Round

IN-H Latch

CLK2

Latch H I Latch | L-] Latch

CE CLK1 CE CLK1

I Latch I U Latch •Out

CE CLK1

Fig. 8.8. Sub-pipeline Design Strategy

232 8. General Guidelines for Implementing Block Ciphers in FPGAs

Managing Block Size

Modern block ciphers operate on data blocks of 128 bits or more. Unlike
software implementations on general-purpose microprocessors, FPGAs allow
parallel execution of the whole data block provided that there is no data de­
pendency in the algorithm. Therefore, it is always useful to dissection the
cipher algorithm looking for possible parallelization versions of it. Furhter-
more, FPGAs offer more than 1000 external pins to be programmable for
inputs or outputs. This is advantageous when the communication is needed
with several peripheral devices on the same board simultaneously.

Key Scheduling

Fast key setup is one of the characteristics in modern block ciphers. The
keys are required to be changed rapidly in some cryptographic applications.
It is possible to reconfigure FPGA device for the key schedule module only
whenever a change in the key is desired

Key Storage

It is recommendable for cryptographic applications to make use of different
secret keys for different sessions. FPGAs provide enough memory resources
to store various session keys. As the keys are stored inside an FPGA, it is
therefore valid to say that FPGA implementations are physical secure^.

8.3 The Data Encryption Standard

On August, 1974, IBM submitted a candidate (under the name LUCIFER)
for cryptographic algorithm in response to the 2nd call from National Bureau
of Standards (NBS), now the National Institute of Standards k, Technology
(NIST)[253], to protect data during transmission and storage.

NBS launched an evaluation process with the help of National Security
Agency (NSA) and finally adopted on July 15, 1977, a modification of LU­
CIFER algorithm as the new Data Encryption Standard (DES). The Data
Encryption Standard [392], known as Data Encryption Algorithm (DEA) by
the ANSI [392] and the DEA-1 by the ISO [152] remained a worldwide stan­
dard for a long time until it was replaced by the new Advanced Encryption
Standard (AES) on October 2000.

DES and TripleDES provide a basis for comparison of new algorithms. DES
is still used in IPSec protocols, ATM encryption, and the secure socket layer
(SSL) protocol. It is expected that DES will remain in the pubhc domain

^ See §3.7 for more details on the security offered by contemporary reconfigurable
hardware devices.

8.3 The Data Encryption Standard 233

for a number of years. DES expired as a federal standard in 1998 and it
can only be used in legacy systems. Nevertheless, DES continues to be the
most widely deployed symmetric-key algorithm. Its variant, Triple-DES, which
consists on applying three consecutive DES without initial (direct and inverse)
permutations between the second and the third DES, coexists as a federal
standard along with AES.

A detail description of the DES algorithm can be seen in [317, 228, 362].
The description of DES in this chapter it closely follows that of [317].

Description

DES uses a 64-bit long key. The eight bits of that key are used for odd parity
and therefore they are not counted in the key length. The effective key length
is therefore 56 bits, providing 2^^ possible keys. DES is a block cipher: It
encrypts/decrypts data in 64-bit blocks using a 56-bit key. DES is a symmet­
ric algorithm: the same algorithm and the key are used for both encryption
and decryption. DES is an iterative cipher: the basic building block (a sub­
stitution followed by a permutation) called a round is repeated 16 times. For
each DES round, a sub-key is derived from the original key through the pro­
cess of key scheduling. Although the key scheduling algorithm for encryption
and decryption is exactly the same, produced round keys for decryption are
used in reverse order. Figure 8.9 shows the basic algorithm flow for both the
encryption and key schedule processes.

Encryption begins with an initial permutation (IP), which scrambles the
64-bit plain-text in a fixed pattern. The result of the initial permutation is
sent to two 32-bit registers, called the right half register, RQ and left half
register, LQ. Those registers hold the two halves of the intermediate results
through successive 16 applications of the function fk which is given by (n =
0 to 15):

Lfi = Hn-i (R ^\

After 16 iterations, the contents of the right and left half registers are
passed through the final permutation I P ~ \ which is the inverse of the initial
permutation. The output of IP~^ is the 64-bit ciphertext.

A detailed explanation of those three operations is provided in the rest of
this Subsection. The key sechedule algorithm of DES is explained at the end.

3.3.1 The Initial Permutation (IP~^)

The initial permutation is the first operation applied to the input 64-bit block
before the main iterations of the algorithm start. It transposes the input block
as described in Table 8.2. For example, the initial permutation moves bit 58
to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and so forth.

234 8. General Guidelines for Implementing Block Ciphers in FPGAs

56-bit Key

1 Plaintext |

t 1

(;) C -
<hr<if*z:^

^ r K i ? ^

1 1

^>K!?*

C ^
Ciphertext

'ZD

t

f{Ru K2?)

1

/?14, K i s y

b

I PC--

K i ^ PC-2

'cTi fpn
'"Rotated /^ Rotate "\

Left y V Left 7

^RotateA ARotateA
Left J ^ Left J

C2 I I D2
K2M-\ PC-2 I I ~T

'RotateN /'Rotate^
Left y V Left

I C16 I I D16

K . 6 ^ PC-2] I —J

Fig. 8.9, DES Algorithm

The initial permuta t ion has no cryptographic relevance on DES security.
Its pr imary purpose is to make it easier for an application to load plain-text
into a DES chip in byte-sized pieces. Initial permuta t ion implementat ion in
hardware is trivial bu t cumbersome in software.

8.3.2 Structure of the Function /^

The 64-bit output from the initial permutation is divided into two halves LQ
and RQ of 32 bits each as shown in Figure 8.9. Both halves go through the 16
iterations of the function fk (Eq. 8.1) which is described below.

For the first iteration, RQ and 48-bit round key are the two inputs. We
first expand RQ from 32 bits to 48 bits by using the expansion permutation
(Permutation E).

8.3 The Data Encryption Standard 235

Table 8.2. Initial Permutation for 64-bit Input Block

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

The Expansion Permutation (Permutation E)

This operation expands 32-bit right half Ri to 48 bits. Some bits are therefore
repeated and the order of the bits is also changed as shown in Table 8.3.

32
8

16
24

Table 8.3. E-bit Selection

1 2 3 4
9 10 11 12
17 18 19 20
25 26 27 28

5 4
13 12
21 20
29 28

5 6 7 8
13 14 15 16
21 22 23 24
29 30 31 32

9
17
25
1

Table 8.3 shows the position of input bits after applying the permutation
E. For example, the bit in position 3 of input block moves to position 4, bit
21 moves to position 30 and 32 of the output block. The redundant bits and
their positions in the output block can be easily seen as they are outside the
squares in boldface letter as shown in Table 8.3.

This operation has two purposes. First, it makes the size of right half
register equal to the size of the key to perform XOR operation. Second, the
48-bit expanded register can be compressed during the substitution operation.

The output 48-bit is XORed with the 48-bit round key which is then
divided into 6-bit long eight groups. The eight groups each of six bits are
replaced to eight groups of four bits each by applying the substitution boxes
(S-Boxes) whose values are provided by the algorithm.

The S-Box Substitution

DES S-box is a 64-entry table arranged into four rows and sixteen columns.
The input is a 6-bit address and the output is 4-bit long. The first and last
bits aoas of 6-bit address aoaia2a3a4a5 represent the row number while the
middle four bits aia2a3a4 denote the column number. Thus the S-box will
substitute 101011 with the entry at row 4th (11) and column 6th (0101). To

236 8. General Guidelines for Implementing Block Ciphers in FPGAs

Row]

0 1
1
2

3 1
0
1
2
3

ro~]
1
2
3

0
1
2
3

ro~i
1
2

1 3
ro~"

1
2

1 3
1 0

1
2

1 3

ro~
1
2

1 ^

Table 8.4. DBS S-boxes

Column 1

"oi
U
0
4
15

15
3
0
13

10
13
13
1

Vf
13
10
3

ry
14
4
11

| l 2
10
9

| 4

T^
13
1

1 6
TT3

1
7

1 2

1 | 2
4
15
1

12

1
13
14
8

0
7
6
10

13
8
6
15

12
11
2
8

1
15
14
3

11
0
4
11

2
15
11
1

13
7
14
8

8
4
7
10

9
0
4
13

14
11
9
0

4
2
1

12

Tol
4
15
2

2
11
11
13

8
13
4
14

3 | 4
1
4
8
2

14
7
11
1

14
9
9
0

3
5
0
6

1
12
11
7

15
2
5
12

14
7
13
8

rr
[8

1
7

2
14
13
4

6
15
10
3

6
3
8
6

0
6
12
10

7
4
10
1

9
7
2
9

15
4
12
1

6
10
9
4

5 | 6

T5I
2
6
9

11
2
4
15

3
4
15
9

6
15
11
1

10
7
13
14

2
12
8
5

0
9
3
4

15
3
12
10

IT
13
2
1

3
8
13
4

15
6
3
8

9
0
7
13

11
13
7
2

6
9
12
15

8
1
7
10

11
7
14
8

7
8
1

11
7

4
14
1
2

5
10
0
7

10
3
13
8

6
1
8
13

8
5
3
10

13
10
14
7

1
4
2
13

8
3
10
15
5

9
12
5
11

1
2
11
4

1
4
15
9

8
5
15
6

T
6
7
11

3
14
10
9

10
12
0
15

9
10
6
12
11

7
0
8
6

13
8
1

15

2
7
1
4

5
0
9
15

l3^
1
0
14

12
3
15
5

9
5
6
12

10|11|12|13|14|15|
6
12
9
3

2
1
12
7

12
5
2
14

8
2
3
5

3
15
12
0

3
13
4
1

9
5
6
0

13
6
10
9

12
11
7
14

13
10
6
12

7
14
12
3

5
12
14
11

15
10
5
9

T
14
10
7

7
12
8
15

14
11
13
0

5
9
3
10

12
6
9
0

11
12
5
11

11
1
5
12

13
3
6
10

IT
0
1
6

5
2
0
14

5
0
15
3

9I
5
10
0

0
9
3
5

4
11
10
5

12
10
2
7

0
9
3
4

Tl
11
13
0

10
15
5
2

0
14
3
5

"0"̂
3
5
6

5
11
2
14

2
15
14
2

4
14
8
2

14
8
0
5

"51
3
11
8

6
8
9
3

12
9
5

16

8
0

ill
lol
5
15

l\
~8l
1
7

I2J
15
9
4

}A
T\
6
14
3

11
8
6
13

1
6
2
12

7
2
8
11

S-Box|

Si

S2

S3

S4

S5

Se

S7

Ss

substitute a 48-bit word, DES uses eight S-boxes each of size 64 x 4 = 256
bits occupying a total of 2 Kbits memory as shown in Table 8.4

The 32-bit S-Box output undergoes through another permutation, which
is called P-Box Permutation.

The P-Box Permutation

In this step, the input 32-bit (output of the S-box) is permuted to get the
32-bit output. The bit position for P-Box permutation is shown in Table 8.5.

8.3 The Data Encryption Standard 237

As shown in Table 8.5, bit 21 moves to bit 4, bit 4 moves to bit 31 and so on.
There is no repetition in bits and none of them is ignored.

Table 8.5. Permutation P

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

The 32-bit output after P-Box permutation is XORed with LQ. In the next
iteration, we will have L2 = Ri^ which is the block we just calculated and then
we must calculate i^2, repeating the same procedure as it was used for Ri. At
the end of the 16*^ iteration we have the blocks Lie and RIQ. The order of
these blocks is reversed and two blocks are concatenated into a 64-bit block
RIQLIQ, The final permutation IP~^ is then applied.

The Final Permutation IP'^

Table 8.6 provides the bit positions for the final permutation which oper­
ates on 64-bit input block producing 64-bit output block. This completes the
encryption process for a single block.

Table 8.6. Inverse Permutation

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Decryption is simply the inverse of encryption which is carried out by
repeating the same steps as they were explained above. Only the round keys
are applied in the reverse order.

8.3.3 Key Schedule

The round keys for all the 16 rounds are derived from the original key as shown
in Figure 8.9. First the 64-bit DES key is reduced to 56 bits by ignoring every
S^^ bit governed by the Table 8.7. This is referred to as Permuted Choice One
(PC-1). The 48-bit round keys are then derived as follows.

238 General Guidelines for Implementing Block Ciphers in FPGAs

Table 8.7. Permuted Choice one PC-1

57 49 41 33 25 17 9
10

1 58 50 42 34 26 18
2 59 51 43 35 27 19 11

63 55 47 39 31 23 15
14

3 60 52 44 36
7 62 54 46 38 30 22

6 61 53 45 37 29 21 13 5 28 20 12 4

The 56-bit output after PC-1 is divided into two halves Co and DQ. In
each round, the two halves undergo a circular left shift or rotation by either
one or two bits, depending on the round as shown in Table 8.8.

Table 8.8. Number of Key Bits Shifted per Round

Round No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bits shifted 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

After the shift operation, the two halves are concatenated and serve as
input to Permuted Choice Two (PC-2) as given in Table 8.9. The resulting
48-bit block is the required round key. Both halves before permutation PC-2
are also used as the two inputs to generate round keys for the next round as
is shown in Figure 8.9.

Table 8.9. Permuted Choice two (PC-2)

14 17 11 24
23 19 12 4

1 5 3 28 15 6 21 10
26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

8.4 F P G A Implementation of DES Algorithm

In this section DES implementation is described on reconfigurable hardware
platform. The design steps for the development of FPGA architecture are
explained along with some useful design techniques for the improvement of
design performance. Performance results and comparison with the previous
FPGA implementations of DES are presented at the end of this Section.

8.4.1 DES Implementation on F P G A s

Figure 8.10 is a block diagram representation of DES implementation in FP­
GAs. As it has been mentioned before, permutation operations do not occupy

8.4 FPGA Implementation of DES Algorithm 239

logical resources of the device and it can be implemented by rearranging bit
positions for the outgoing bu^ (change of wires), hence it is free of cost. DES
includes several permutations (initial, final, permutation E, permutation P).
The building blocks for those operations in Figure 8.10 are therefore symbolic
representations having no logic inside.

Each DES S-Box occupies 64 x 4—256-bit memory. Hence, a total of 2K
(2048 bits) memory is required for the construction of eight S-Boxes. If it
is not intended to use dedicated memory resources, only 32 CLB slices are
needed for an S-Box on XiHnx VirtexE devices. Some other fabric resources of
the device were occupied for the implementation of latches (Slice Flip Flops)
and logic blocks for XOR operation.

64

RIN
32

V
LIN
32

REG
A

32

REG
B

permutation E

sub-key

LEFT

RIGHT

ho
IP-'

64

_J I 32 r ^ permutation P

N
^ 4 8

OUT

S1
S2
S3
S4
S5
S6
S7
S8

S-Boxes

- 32

Fig. 8.10. DES Implementation on FPGA

DES chip consists of four I/O pins: three inputs and one output. The
three input pins are Chip Enable (CE), Clock (CLK), and input data (IN).
The single output pin is named as OUT. The CE signal activates the DES
chip, whereas the CLK is the only master clock in charge of driving the whole
circuitry. It is used to generate all control signals needed for the synchroniza­
tion of the data flow.

When the CE signal is in low, it enables the circuit. As a consequence,
the input 64-bit block after passing through initial permutation (bit wires
rearranged) is partitioned into two halves RIN and LIN. At the first rising
edge of CLK, both RIN and LIN are transferred to the output of the two
registers REGA and REGB. The REGA output (RIN) goes through a number
of operations: Permutation E, addition with sub-key, substitution (through
S-Boxes), Permutation P, and then finally addition with the initial REGB
output (LIN). On the next clock, the old right half (RIGHT) is the input of
register REGB and the new left half (LEFT) is the input of register REGA.

In the 16*^ clock cycle the two RIGHT and LEFT halves are concatenated
(two buses joined together) and they are pass through the inverse permutation
(IP-^) producing a vahd 64-bit DES ciphertext at OUT pin.

240 8. General Guidelines for Implementing Block Ciphers in FPGAs

It is to be noted that the parallel structure for the eight DES S-Boxes
contributes with a significant reduction of the critical path for encryp­
tion/decryption.

8.4.2 Design Testing and Verification

DES implementation wats made on XCV400e-8-bg560 VirtexE device using
Xilinx Foundation Series F4.1i. The design tool provides two options for de­
sign testing and verification: functional simulation and timing verification.
Functional verification tests the logical correctness of the design. It is per­
formed after the design entry has been completed using VHDL or using library
components of the target devices. It detects logical errors without considering
circuit overheads Uke path delays, synchronization, etc. A netlist of the logic
components in the design is created by the design tool, which is then mapped
to the available resources of the actual target device. Timing verifications are
made at this stage.

Both functional and timing verifications must be performed for a success­
ful design implementation. For both cases, test vectors are used for result
verification and testing. Table 8.10 shows a simple test vector used to verify
DES chip.

Table 8.10. Test Vectors

Input Block 1 First Permutation | /(R,K) [Second permutation
LIN=OxFFFFOOOO
RIN=OxAAAAAAAA

LFOUT=0x 06060606
RFOUT=0 X E7E7E7E7

LEFT=0x49DE9DF2
RIGHT=0 X C7EEC966

LOUT=0xl7F77A33
ROUT=0x7B7AB72A

Figure 8.11 and Figure 8.12 show the results for the functional simulation
and the timing verification for DES implementation in FPGA. Notice that
the diff"erence between Figure 8.11 and 8.12. Time delays in Figure 8.12 are
clearer.

8.4.3 Performance Results

FPGA implementation of DES algorithm was accomplished on a VirtexE de­
vice XCV400e-8-bg560 using Xifinx Foundation Series F4.1i as synthesis tool.
The design was coded using VHDL language. It occupied 165 (3%) CLB slices,
117 (1%) shce Flip Flops and 129 (41%) I/Os. The design achieves a frequency
of 68.05 MHz (14.7 rjS). It takes 16 clock cycles to encrypt one data block
(64-bits). Therefore, the achieved throughput is (68.05 x 64)/16=274 Mbits/s.

8.5 Other DES Designs

Several FPGA implementations of DES have been reported in the literature
achieving throughput ranges from 26 Mbps to 21.3 Gbps. In Table 8.11 we

8.5 Other DES Designs 241

<SS3ZH!ISSSBSSSiSISS!3E9i
^ Fie Signal Waveform OftviCQ Optbitt Toott View Window He^

ai£fl&I3®l[!i!^ZZ3SMI

Bn:iK.<bw)/32

\ipM
ICE
ib-lK
ip.2K
ICLSK
\lfL*K
BRESET
b s E L . . (h e x) « 4
pbuB_K£H
BWAB_SEC
b p O U T C h e x) * ;
b p O U T (h e x) / :

pb;iGHT.(bex)/;
b t o U T . (h e x) # 3 ;
sboUT (hex>#3i

I

3r~l^-v-)(2viJgII]EI-DEa&L^y- 'i^'^'lSrwr^'WJIimiBS-.J^^

Fig. 8.11. Functional Simulation

m fm^mm^Mmmivii\f!9mmminfm/!m'imm
^ Ht Stgrwl Wavrform Device Opttoni Toob Vtow VWrxtow He^

Q.O

ni^—Ji-<1 c-> j
Oh* BOOris NOOhi ISOCTi* tSfJOn* POOiij KJO&n* pOOr̂ s
, . ! .uJuMtMML.MlnMlMuLn.n. „ lH.J .M, InnLMln ' '

[BpB_SEC

bbFOUT.(hox)jr:
bJLOUT (hex}«3:
BROUT. (hox>*3:
bpLEFT (hex}«3:

Fig. 8.12. Timing Verification

review the fastest designs reported in the literature. They are sorted in de­
scending order. The design reported in [299] by Rouvrou et al achieves a
throughput of 21.3 Gbps and it is the fastest design reported up to this book
publication's date. It consist on a pipeline architecture with a pipeline depth
of 37 stages. The 37 stages for that design were developed by introducing a dif­
ferent formulation of DES in which a new mathematical expression especially
tailored for FPGA devices is proposed. In the same paper, authors proposed
a different grouping of the stages resulting in a pipeline architecture of 21
stages. The throughput for the second architecture is reported as 14.5 Gbps.

242 8. General Guidelines for Implementing Block Ciphers in FPGAs

Author

Rouvroy
et al.[301]
Xilinx [148]
Rouvroy
et al.[301]
Trimberger
et al.[363]
Patterson
et al.[2711
Swankoski
et al.[353l
Trimberger
et al.[363]
McLoone
et al.[225]
FreelP-
Proy [99]

Table 8.11. DBS Comparison: Fastest Designs

Device

XC2V1000-6

XC2V1000-6

XCV300 E8

XCV150-6

Virtex-II
Pro

XCV300 E8

XCVIOOO

XCV400-6
XCV400-6

Design
Strategy
Pipeline
37 cycles

Pip. 48 stages
Pipeline
21 cycles

Pip. 48 stages
(3DES)

Jbits and RTR

17 parallel
DBS blocks

Pip. 16 stages

Pipeline
16 stages
Pipeline
16 stages

Area
Slices
2965

3900
3775 LUT
2904 FF

4216 LUT
5573 FF

1584

5544

4216 LUT
1943 FF

6446

2528

Freq.
(Mhz)

333

237
227

188.7

168

140.6

132

59.5

47.7

Throughput
(Mbps)

21300

15100
14500

12000

10752

9000

8400

3808

3100

T / A

7.18

3.87
N.D.

N.D.

6.75

1.65

N.D.

0.59

1.22

The first architecture is also the most efficient architecture with a throughput
over area ratio of 7.18.

Trimberger et al [363, 148] presented three of the fastest DES designs ever
reported. They are pipelined designs with 48 and 16 stages. A Java-based
(Jbits) DES implementation in [271] achieves the encryption rate of 10752
Mbps. It implements all DES primitives in FPGA while the key schedule
is processed in software. The communication between the two operations is
made through a Java-based Apphcation Programming Interface (API) which
is intended for runtime creation and modification of the bit-stream.

Initial high-performance designs were reported by McLoone et al [225] and
the free IP project [99]. Both are 16-stage pipeline architectures that report
throughputs around 3 Gbps. The architecture reported by Swankoski et al in
[353] consists of several independent DES blocks (17).

In Table 8.12 we review the most compact designs reported in the fiter-
ature. They are sorted in ascending order. In general, a throughput greater
than 1 Gbps is well beyond reach of compact designs which, otherwise, is
not the main goal of such designs. On the contrary hardware area is the ma­
jor concern for such type of architectures. Most of them implement one DES
round and iteratively process a block to perform encryption/decryption.

Most recent reported designs [309], [300] and [353] implement both, ci­
phering and key scheduling. The most compact design was reported by Nazar
et al [309] with a design that occupies just 167 slices. The next one, reported
by Rouvroy et al [300], occupies 189 CLB slices attaining better performance
results. Some other designs implement more than one round in order to in­
crease performance [167]. FPGA implementation of DES in [167] implement

8.5 Other DES Designs 243

Table 8.12. DES Comparison: Compact Designs

Author

Nazar et al.[309]
Rouvroy
et al.[300]
CAST [147]
Kapse t al.[167|
Swankoski
et al.[353l
Wonget al.[384J
Kaps et al.[167]
Leonard
et al.[204]
Kapse t al.[167J

Device

XCV400E
XC2V1000-5

Virtex-II 5
XCV4013 E3

Virtex-Il
Pro

XCV4020E
XCV4013 EX3

XCV4025-4

XCV4013 EX3

Design
Strategy
one round
one round

one round
one round
one round

one round
2 stage pipe

key spec.

4 stage pipe

Area
Slices

167
189

238
262
343

438
433
640

741

Freq.
(Mhz)

68.5
274

N.A.
23.9

203.3

10
23.0
6.0

25.2

Throughput
(Mbps)

274
974

816
91.2
765.7

26.7
183.8

24

402.7

T / A

1.64
5.15

3.43
0.35
2.23

0.06
0.42
0.04

0.54

both 2-stage and 4-stage pipeHne approaches obtaining throughput of 183.8
Mbps and 402.7 Mbps, respectively. The design in [384] is a one round DES
implementation on a single-chip FPGA. A fair comparison is not possible with
this design and the one reported in [204], because they did not consider key
scheduling.

In Table 8.13 we select those designs presented in Tables 8.11 and 8.12
showing a throughput over area ratio greater than one. In this sense, the
most efficient designs are also high-performance designs.

Author

Houvroy
et al.[301]
Patterson
et al.[2711
Rouvroy
et al.[300l
Xilinx [148]
CAST 1147]
Swankoski
et al.[353l
SwauKOski
et al.[353]
Nazar
et al.[309]
FreeiP-
Proy [99]

Table 8.13

Dev ice

XC2V1000-6

XCV150-6

XC2V1000-5

Virtex-II 5
Virtex-11

Pro
Virtex-11

Pro
XCV400E

XCV400-6

. DES Comparison: Efficient Designs

Design
Strategy

Pip. 37 cycles

J bits and HTH

one round

Pip. 48 stages
one round
one round

17 parallel
DES blocks
one round

Pip. 16 stages

Area
Slices
"2965"

1584

189

3900
238
343

5544

167

2528

Freq.
(Mhz)

"333'"'

168

274

237
N.A.
203.3

140.6

68.5

47.7

Throughput
(Mbps)

21300"

10752

974

15100
816

765.7

9000

274

3100

T / A

^TIB"

6.75

5.15

3.87
3.43
2.23

1.65

1.64

1.22

Finaly, in Table 8.14 we show some other designs for TripleDES. They
are sorted in descending order with respect to performance. Pipeline strategy

244 8. General Guidelines for Implementing Block Ciphers in FPGAs

Table 8.14. TripleDES Designs

Author

Panu
et al.[131]
Houvroy
et al.pOO]
ISwankoski
et al.[353]
Panu
et al.flSl]
Panu
et al.[131]
Leitold
et al.[202]

Device

Virtex V800
FG 676-6

XC2V1000-5

Virtex-11
Pro

Virtex V800
FG 676-6

Virtex V800
FG 676-6

VLSI
0.6 //m CMOS

Design
Strategy
Pip 'SDES
16 round
It. 3DES

It. 3 Blocks
3DES Parallel

3DES
two round

3DES
wireless app.
3DES CBC
QoS apps.

Area
Slices
6689

604

819

1257

1107

N.A.

Freq.
(Mhz)
~45;35"

258

195.1

25.09

43.90

275

Throughput
(Mbps)

2912

917

734.9

59.44

55.12

155

T / A

IJ:^T

1.51

0.089

0.04

0.04

N.A

is applied by Panu et al in order to develop a TripleDES Core specifically
targeting wireless communications. The design reported by Leitold et al [202]
is not an FPGA design, but rather, it is a VLSI design specifically targeted
to ATM communications.

8.6 Conclusions

This chapter provides a general guideline for the implementation of block ci­
phers in reconfigurable.logic platform. The general structure of block ciphers
was discussed. Most frequent operations in block ciphers were presented, and
at the same time, several useful properties for implementing block ciphers in
FPGAs were discussed. We described the design steps and some design tech­
niques for obtaining fast and/or compact and/or efficient FPGA implemen­
tations. A general guideline, was therefore developed for the implementation
of block ciphers in reconfigurable devices. Our methodology was then applied
for DES implementation resulting on an efficient and compact DES core on
reconfigurable hardware platform.

We also showed a very compact DES architecture which can be ade­
quate for embedded and mobile systems. We presented a review of several
DES designs reported in the technical literature. We walked through high-
performance designs to compact ones. We also reviewed efficient DES designs
as well as several TripleDES designs, which were classified according to their
performance metrics.

9

Architectural Designs For the Advanced
Encryption Standard

In this chapter we present some of the most common architectural alterna­
tives to implement Advanced Encryption Standard (AES) in reconfigurable
hardware. The first factor to be considered on implementing AES is the appli­
cation. There are high speed applications like High Definition TV (HDTV) and
video conferencing where high performance is required. The target through­
put, expressed in gigabits per second (Gbps), must be specified, and to achieve
such a high performance we can replicate several functional units to increase
parallelism. That would however imply higher power and hardware area re­
quirements.

On the other hand, high speed designs are not always desired solutions. In
some applications, such as mobile computing and wireless communications,
smaller throughput is demanded. Then a good balance between hardware
area and design performance should be achieved. In addition, since there are
trends to incorporate secure electronic data exchange into low-end consumer
products, inexpensive AES implementations are needed for PDAs (personal
digital assistant), wireless devices and many other embedded applications.
Furthermore, it has been suggested that apphcations in the domain of ra­
dio frequency identifiers (RFID), low-power AES chip may be needed, thus
demanding extremely compact AES implementations.

9.1 Introduction

Two main factors impact an AES implementation for a given application:
hardware area and timing performance. Quite frequently, both factors have
an opposite effect: Although compact designs tend to occupy a small amount
of hardware resources, they generally show low performances. On the con­
trary, achieving high speed gains requires that many modules should work
simultaneously, thus demanding greater hardware area requirements.

246 9. Architectural Designs For the Advanced Encryption Standard

Another important feature to be considered when choosing an architec­
tural alternative for AES is related to its mode of use. Many applications use
AES in the Electronic Code Book (ECB) mode in which a complete block is
ciphered independently of all other blocks. Then, several blocks can be pro­
cessed in parallel or pipeline strategies can be appHed to increase performance.
Nevertheless, it is noticed that ciphering is only a part of a secure application
and that there exist apphcations for which ciphering is accompHshed with
authentication [214]. For those scenarios, a feedback mode is required. For
example, in Cipher Block Chaining (CBC), a previous ciphered block is used
to encrypt the present block. That however, prevents us from using pipeline
architectures. Therefore, an iterative architecture with some authentication
logic could be a solution.

From its evaluation process to post selection period, the Advanced En­
cryption Standard (AES) has been implemented on all kind of hardware and
software platforms. Gladman [109] and Bertoni et al. [21], reported software
implementations in which AES specification is manipulated to increase per­
formance. AES software implementations have a throughput that ranges from
300 to 800 Mbps depending on the specific architecture and platform selected
by the developers. Some eflftcient AES encryptor/decryptor core VLSI imple­
mentations have been also reported in [143, 376, 215, 303]. Performance of
VLSI implementations ranges from 2 to 7.5 Gbps.

Similarly, various AES FPGA implementations have been reported in
[102, 63, 83, 223]. Those are one round (iterative) or n rounds (pipeline)
FPGA implementations optimized for encryption or encryption/decryption
processes. Since published works have utilized an ample variety of FPGA
devices, reported performance results are broadly variable ranging from 300
Mbps to up to 25 Gbps.

Clearly, modern FPGA technology has a great impact in implementation
performances. Nonetheless, there are algorithmic and architectural strategies
for different target appHcations that also influence the final performance. The
asymmetric characteristics of AES encryption and decryption processes limit
the implementation of high-performance AES cores. Each step for AES en­
cryption has its inverse counterpart for decryption. Designing separated archi­
tectures for encryption and decryption processes would imply the allocation
of a large amount of FPGA resources and the area requirements of such de­
sign might be difficult or even impossible to meet in several FPGA families
of devices.

Published work about AES FPGA implementation covers a wide spectrum.
Some designs [102, 63, 83] have considered only the encryption part of AES.
For example, in [102, 63] an iterative design implementing one round is re­
ported. In [63] key scheduling is also considered, however, in [102] key schedul­
ing was ignored. The design in [83] implements all AES rounds with a pipeline
organization but without key scheduling, whereas the design in [223] reported
an FPGA implementation of a fully pipeline AES encryptor/decryptor core.

9.2 The Rijndael Algorithm 247

In this Chapter, various FPGA architectures of AES are presented. Those
implementations cover all three basic processes: key scheduling, encryption
and decryption. All are single-chip FPGA implementation. Different design
architectures are considered by implementing AES encryptor, decryptor and
encryptor/decryptor cores separately. Both iterative and pipeline techniques
are appHed showing diverse time-area tradeoffs. All AES implementations
were optimized for low cost, high efficiency and/or high portability.

The rest of this Chapter is organized as follows. An introduction to AES
algorithm is presented in Section 9.2. The basic transformations of the al­
gorithm and their effects on the algorithm cryptographic strength are also
explained in this Section. Section 9.3 gives a brief explaination of the AES
modes of use. Section 9.4 describes various algorithmic optimization for im­
plementing AES basic transformations on FPGAs. Those techniques help to
improve overall algorithm performance by modifying the most costly opera­
tions of the algorithm. Section 9.5 deals with general architectures for AES
implementation on FPGAs. Then, the algorithmic optimizations are mixed
with architectural alternatives to obtain several different AES designs. Sec­
tion 9.6 presents performance results for each design and compare them with
published works. Finally, in Section 9.6.1 some recent trends on AES cores
are reviewed providing a classification of several relevant designs. Concluding
remarks are drawn in Section 9.7.

9.2 The Rijndael Algorithm

On October 2000, Rijndael was selected as a new Advanced Encryption Stan­
dard (AES) by NIST [253] replacing Data Encryption Standard (DES). The
name 'Rijndael' is a rearrangement of the names of its two inventors Rijmen
and Daemen [60].

Rijndael is a symmetric block cipher which takes two inputs, namely, the
plaintext block to be encrypted and the secret key. It applies an iterative
procedure at the end of which an output ciphertext block is produced. During
a single iteration, a set of transformations, called a rounds are applied to the
state data block. For each round, a round key is generated through a process
called key scheduling.

In this Section we give a short explanation of the algorithm behavior. We
start explaining the difference between AES and Rijndael. Then, we describe
AES basic structure and building blocks. Thereafter, the round transformation
of the algorithm is specified. Finally, the process of key generation is described.

9.2.1 Difference Between AES and Rijndael

AES fixes the block sizes and key lengths from the range supported by Rijn­
dael. Rijndael can process variable block and key lengths of 128, 192, and 256
bits. Moreover, Rijndael supports all possible combinations of those si^es for

248 9. Architectural Designs For the Advanced Encryption Standard

block and key lengths. The number of rounds depends upon the combination
of the selected block and key lengths as shown in Table 9.1. It can be seen
that the number of rounds ranges from 10 to 14.

key length (bits)

128
192
256

Block length (bits)
128
10
12
14

192
12
12
14

256
14
14
14

Table 9.1. Selection of Rijndael Rounds

On the other hand, AES fixes the block length to 128 bits and supports
key lengths of 128, 192 or 256 bits only. The most frequent AES case of use is
with block and key lengths of 128 bits. In the rest of this chapter whenever we
use the word AES, it means block and key lengths of 128 bits and therefore
with the number of rounds equal to 10. Moreover, In the rest of this Chapter
the names AES and Rijndael are used indistinctly.

9.2.2 Structure of the AES Algorithm

The basic structure of AES algorithm is shown in Figure 9.1.

Input

128

AES Encryptor/Decryptor

x:
K

User-key

128

Output

Fig. 9.1. Basic Structure of Rijndael Algorithm

For encryption, the input is a plaintext block and a key, and the output is
a ciphertext block. For decryption, the input is a ciphertext block and a key
(the same key used for encryption), and the output is the original plaintext.
The basic algorithm flow for encrypting a single block of data is shown in
Figure 9.2.

The AES cipher treats the input 128 bit block as a group of 16 bytes orga­
nized in a 4 X 4 matrix called State matrix. The algorithm consists of an initial

9.2 The Rijndael Algorithm 249

ARK

V
sub-key

BS

T

S°
u

ARK
^

BS 1—
1 [— ^ ^ _ _ _ _

1 (round -1) times
M'^

^ ^ R k

LHJ
ARK

V
sub-key

Fig. 9.2. Basic Algorithm Flow

transformation, followed by a main loop where nine iterations, called rounds^
are executed. Each round transformation is composed of a sequence of four
transformations: ByteSubstitution (BS), ShiftRows (SR), MixColumns (MC)
and AddRoundKey (ARK). For each round of the main loop, a round key is
derived from the original key through a process called Key Scheduling. At the
last round MC step is skipped and consequently just three transformations,
namely, BS, SR and ARK, are executed.

AES decryption can be performed by using same algorithm flow. However
all four steps in the round transformation are replaced with their own inverses
and the round keys for encryptions are used in the reverse order.

9.2.3 The Round Transformation

The round transformation is a sequence of four transformations BS, SR, MC
and ARK. All four transformations contribute in AES strength by inducing
confusion and diffusion^ which are arguably the two most important proper­
ties that a strong symmetric cipher must have. Confusion makes the output
dependent on the key. Ideally, every key bit influences every output bit. Diffu­
sion makes the output dependent on previous input (plain/ciphertext). Ideally,
each output bit is influenced by every (previous) input bit. Roughly speaking,
those characteristics correspond to cipher's substitution and permutation.

Symmetric ciphers need to be complex, so they could not be analyzed
easily. Also, their transformations need to be simple enough to be implemented
efficiently in hardware or software. For AES, the general criteria for round
transformation was inverse function and simplicity besides the step-specific
criteria.

9.2.4 ByteSubstitution (BS)

It is a non-linear transformation where each input byte of the State matrix is
independently replaced by another byte. BS can be seen as a highly non-linear
function. There are a great finite number of possible BS functions, however
some of them are more appropriate than others. In [60] some important prop­
erties about designing a BS function are discussed. Non-linearity and algebraic
complexity being the most important of them.

The BS transformation of an input byte (8-bit vector) a is defined by two
substeps:

250 9. Architectural Designs For the Advanced Encryption Standard

1. Inverse: Let x — a ~ \ the multiplicative inverse in GF(2^) (except if
a = 0 then x == 0).

2. Affine Transformation: Then the output is y = M x a: 0 6, with the
constant bit matrix M and byte h shown below:

11111000
0 1111100
00111110
00011111
10001111
11000111
111000 11
11110001

X

Xj

XQ

X5

X4

a^3

X2
Xi

XQ

0

0
1
1
0
0
0
1
1

(9.1)

All bit operations are performed modulo 2.

BS is decomposed into two transformations. First each input byte is re­
placed with its multiplicative inverse (MI) in GF(2^) with the element {00}
being mapped to itself and then the affine transformation is applied as shown
in Equation 9.1.

From the implementation point of view, BS can be considered as a look-up
table, called S-Box^ in which the input byte is considered as the address of the
table where its substitution is found. Then an S-Box can be seen as a 256 x 8
look up table as shown in Figure 9.3. This is the easiest way to implement BS
and for many apphcations it is enough to consider this way of implementing
i t^

ao.o

a i ,o

32,0

33.0

ao.i

a i . i

32,1

33,1

'30.2

31,2

32,2

33,2

3o.3

3l .3

32,3

33,3

bo,o

bi ,o

b2,0

b3.0

bo,i

b i , i

b2,i

b3,i

o f e

bi,2

b2,2

b3,2

bo,3

bi ,3

b2,3

b3.3

Fig. 9.3. BS Operates at Each Individual Byte of the State Matrix

If we look for a very compact or a high efficient design, we need to look for
the calculation of BS. MultipHcative inverse can be found using the extended
Euchdean algorithm [228]^. Let x be the input byte and let us assume that we

^ It has been proposed that also the multiplications associated to the MixColumn
transformation can be implemented using the Look-up Table methodology [81].

^ Formal definition of field multiplicative inverse and the extended Euclidean algo­
rithm can be found in §4.1.2. Efficient computations of the multiplicative inverse
were discussed in §6.3.

9.2 The Rijndael Algorithm 251

look for the inverse of the polynomial a{x). The extended Euclidean algorithm
can be used to find two polynomials b{x) and c{x) such that:

a{x) X b{x) -f m(x) x c(x) = gcd(a(a;), m{x)) (9.2)

where gcd(a(a:),m(a:)) represents the greatest common divisor of the poly­
nomials a{x) and m(a:). If m{x) is irreducible then we know for sure that
gcd{a{x), m{x)) = 1. Applying modular reduction to Equation 9.2 we get,

a{x) X b{x) = 1 mod m{x) (9.3)

which means that b{x) is the inverse element of a{x). The non-linearity of the
AES S-box is introduced by applying the multiplicative inverse in GF(2^). The
affine transformation has no impact on the non-linearity but it contributes in
increasing the algebraic complexity.

Inverse Operation (IBS)

The inverse BS is obtained by applying inverse affine transformations followed
by the multiplicative inverse in GF(2^). Therefore, the inverse of the affine
transformation in Eqn. 9.1 is defined as follows.

(9.4)

xrl To 10 1 0 0 101
xel 0 0 1 0 1 0 0 1
XBI 1 0 0 1 0 1 0 0 j
0:4 ^ 0 1 0 0 1 0 1 0
X3\ ~ 0 0 1 0 0 1 0 1
X2\ 1 0 0 1 0 0 1 0
XI \ 0 1 0 0 1 0 0 1
a;oJ [1 0 1 0 0 1 0 Oj

For both affine and inverse affine transformations, multiplicative inverse is
taken in GF(2^) with irreducible polynomial m{x) = x^ -\- x"^ -\- x^ -h x -{- I.

X

2/7
2/6

2/5
2/4

2/3

2/2

yi
2/0

e

0
0
0
0
0
1
0
1

9.2.5 ShiftRows (SR)

It is a cyclic shift operation where each row is rotated cyclically to the left
using 0,1,2 and 3-byte offset for encryption as shown in Figure 9.4. Diffusion
optimality is the design criteria for selecting the offsets which requires the
four offsets to be different.

Inverse Operation (ISR)

The inverse operation of ShiftRows is called Inverse ShiftRows (ISR). It is a
cyclic shift operation used for decryption where each row is rotated cyclically
to the right using 0,1,2 and 3-byte offset.

252 9. Architectural Designs For the Advanced Encryption Standard

offset 0 c={>
offset 1 czmj)
offset 2 t= j>
offset 3 czzzj)

Fig. 9.4. ShiftRows Operates at Rows of the State Matrix

a

e

1

m

b

f

J
n

c

g

k

J

d

h

1

k

a

f

k

P

b

g

1

m

c

h

i

n

d

e

J
0

9.2.6 MixColumns (MC)

In this transformation, each column of the State matrix is considered a poly­
nomial over GF(2^) and is multiplied by a fixed polynomial c{x) modulo x"^
-f 1. The polynomial c{x) is given by:

c{x) = 03.x^ + Ol.x^ + 01.x 4- 02 (9.5)

Let b{x) = c{x) • a{x) mod a:̂ -f 1, then the modular multiphcation with a
fixed polynomial can be written as shown in Equation 9.6.

(9.6)

MixColumns operates on the columns of the state matrix £ts shown in Fig­
ure 9.5.

bo
hi
62
63

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

ao
ai

(12

^ 3

ao.o

ai.o

92.0

83.0

ao.i

ai. i

32.1

83.1

ao.2

ai.2

32.2

33.2

ao,3

31.3

32.3

33.3

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

bo.o

bi.o

b2.o

b3.0

bo.i

bi.i

b2.i

b3.i

bo,2

bi.2

b2.2

b3,2

bo,3

bi.3

b2.3

b3.3

Fig. 9.5. MixColumns Operates at Columns of the State Matrix

The design criteria for MixColumns step includes dimensions^ linearity, diffu­
sion and performance on 8-bit processor platforme. The Dimension criterion
it is achieved in the transformation operation on 4-byte columns.

9.2 The Rijndael Algorithm 253

Inverse Operation IMC

The inverse of MixColumns is called (IMC). The constant polynomial c{x)
given in Eqn. 9.5 is co-prime to x"̂ -f 1 and therefore invertible. Let d{x) be
the inverse of c{x) and written as follows.

(03.0:^ + Ol.x^ 4- Ol.x -f 02).d{x) = 01 (mod x^ + 1)

From Eqn. 9.7, it can be seen that d{x) is given by:

d{x) = OB.x^ 4- OD.x'^ + 09.a: + OE

(9.7)

(9.8)

Similarly to MC, in IMC each column of the state matrix is transformed by
multiplying with constant polynomial d{x) written as a matrix multiplication
as shown in Equation 9.9.

(9.!

ao

a2
as

OE OB OD 09
09 OE OB OD
OD 09 OE OB
OB OD 09 OE

bo
hi

b2
63

9.2.7 AddRoundKey (ARK)

In the last step, the output of MC is XOR-ed with the corresponding round
key. This step is denoted as ARK. Figure 9.6 illustrates the effect of key
addition on the state matrix.

ao.o

ai,o

32,0

83,0

ao,i

31.1

32,1

33.1

30,2

3i.2

32,2

33,2

30,3

3i,3

32,3

33.3

®

ko,o

ki,o

k2,0

^3,0

ko,i

k i , i

k2,i

k3,i

ko,2

ki,2

k2,2

k3,2

ko,3

ki,3

k2,3

k3,3

=

bo,o

bi,o

b2,0

b3,0

bo,i

bi.1

b2,i

b3,i

bo,2

bi,2

b2,2

b3.2

bo, 3

bi,3

b2,3

b3,3

Fig. 9.6. ARK Operates at Bits of the State Matrix

Inverse Operation lARK

Inverse of ARK, called I ARK, is essentially the same for encryption and de­
cryption^. The only important thing to remember is that keys are applied for
decryption in reverse order as in encryption.

^ However, as is explained in §9.5.2, efficient implementations of AES encryp-
tor/decryptor cores, require to append the IMC step to the generation of round
keys for decryption.

254 9. Architectural Designs For the Advanced Encryption Standard

9.2.8 Key Schedule

Both, encryption and decryption require the generation of round keys. Round
keys are obtained through the expansion of secret user key by attaching each
j — th round a 4-byte word kj = {ko,jykij^k2jjk3j) to the user key. The
original user key, consisting of 128 bits, is arranged as a 4 x 4 matrix of bytes.

Let w[0], w[l], w[2], and w[3] be the four columns of the original key. Then,
these four columns are recursively expanded to obtain 40 more columns. Let
us assume we have computed columns \ip to w[i — I]. Then, we can compute
the i — th column, W[i], as follows,

r.._(w[i-4]ew[i-l] if i mod 4 7^0 . .
^ m -\w[i-4]e T{w[i - 1]) otherwise ^^'^^^

where T{w[i—1]) is a non-linear transformation of t(;[z—1] calculated as follows:

Let w^ X, y, and z be the elements of column t(;[z - 1] then,

1. Shift cyclically the elements to obtain ^, w, a;, and y.
2. Replace each of the byte with the byte from BS S{z), S{w), S{x) and

S{y)-
3. Compute the round constant rii) = 02^'"^^/'^ in GF(2^).

Then, T{w[i - 1]) is the column vector, {S{z) 0 r(i), S{w), S{x), S{y)). In
this way, columns from w[4] to w[43] are generated from the first four columns.

The 16-byte round key for the j — th round consists of the columns

{w[4j],w[4j 4- l],w[4j 4- 2lw[4j + 3])

Sometimes it results convenient to pre-compute the round keys once and
for all and then store them. A similar process is utihzed for generating round
keys for the decryption process, although they should be used in the reverse
order.

After the explanation of all four AES transformations and key schedule, we
can write the sequence of those transformations when performing encryption
and decryption as follows.

Encryption: MI-^ A F ^ SR-> MC-^ ARK
Decryption: lARK-^ IMC-> ISR-> IAF-> MI

9.3 AES in Different Modes

Most of the published work on AES implementation considers AES in Elec­
tronic Book Mode (ECB). In ECB mode, an individual plaintext block is
converted to ciphertext block. Thus by collecting several plaintext and their
ciphertext blocks, one can produce some pattern information which could

9.3 AES in Different Modes 255

be helpful in recovering the original plaintext. ECB mode in some cases, is
therefore not considered secure. The Cipher Block Chaining mode (CBC), the
Cipher Feedback mode (CFB), and the Output Feedback mode (OFB) offer
better security than ECB, but encryption of the block depends on the feed­
back of its previous block encipherment [253]. This property prevents using
pipelining in which many different blocks are encrypted simultaneously. The
encryption speed in CBC, CFB, and OFB modes is much slower as in ECB.
Fortunately, there exists another mode, called Counter mode (CTR) which in­
creases the security of ECB and has not dependencies among different blocks,
thus allowing all operations to be fully pipelined to achieve high performance.

9.3.1 CTR M o d e

In [100] a CTR mode implementation of AES is reported. In CTR mode, a
plaintext is processed by encrypting a counter value with key 'K' and then
by XORing the output with the plaintext to get the ciphertext. Figure 9.7
presents the counter mode. Decryption procedure takes the same process to
recover the plaintext from the ciphertext. The counter value has no dependen­
cies with previous output, thus pipelining can be fully used. Counter mode
has no padding overhead which is required for ECB, CBC, and CFB modes
when the data is not a multiple of block length. Counter mode does not prop­
agates error and restrict the error to the specific block as compared to CBC
and CFB modes which pass the error to the subsequent blocks.

Load Key

Cipher K

48-bit
Counter

40-bit
Counter

Cipher K

Fig. 9.7. Counter Mode Operations

256 9. Architectural Designs For the Advanced Encryption Standard

Figure 9.7b, presents different counter blocks for obtaining cipher key 'K'.
A three stage counter, 40-bit cipher identification, 48-bit key counter and 40-
bit block counter, are used for each plaintext block. For each cipher artifact,
there is a pre-assigned cipher ID. The key counter increases whenever a new
key has been updated. Block counter increases for each block. The search
space for each part is, although finite, large enough. If the block counter is
exhausted, the key counter will be increased to avoid the use of the same key
with the same counter value. Then, we guarantee that produced keys are all
distinct. The counter value pairs can be used more than once.

The special requirement for CTR mode is that the same counter value
and key should not be used to encrypt more than one block of data. If this
happens, the plaintext would be recovered by XORing the two cipher text,
which in fact, equals to XORing the two plaintext. Especially when one of the
plaintext is already known, the other one can be easily recovered by XORing
the known plaintext with the output ciphertext after XOR.

9.3.2 CCM Mode

For applications in which more robustness is required, there is no choice and
a feedback mode is mandatory. For example, the Wired Equivalent Privacy
(WEP) protocol has been the most widely security tool used for protecting
information in wireless environments. However, this protocol was broken in
2001 by Fluhrer et al. [1]. Based on that attack, nowadays there exist a va­
riety of programs that can be downloaded from Internet to break the WEP
Protocol in few seconds and with almost no effort. This situation has led to a
search for new security mechanisms for guaranteeing reliable ways of protect­
ing information in wireless mobile environments.

AES in CCM (Counter with CBC-MAC) proposed by Whiting et. al. in
[378], has become one of the most promising solutions for achieving security in
wireless networks. This mode simultaneously offers two key security services,
namely, data Authentication and Encryption [214]. CCM means that two
different modes are combined into one, namely, the CTR mode and the CBC-
MAC. CCM is a generic authenticate-and-encrypt block cipher scheme that
has been specifically designed for being use in combination with a 128-bit
block cipher, such as AES. Currently, CCM mode has become part of the new
802.111 IEEE standard.

CCM Primitives

Before sending a message, a sender must provide the following information
[378]:

1. A suitable encryption key K for the block cipher to be used.
2. A nonce N of 15 — L bytes. Nonce value must be unique, meaning that

the set of nonce values used with any given key shall not contain duplicate
values.

9.3 AES in Different Modes 257

3. The message m, consisting of a string of l{m) bytes where 0 < l{m) < 2^^.
4. Additional authenticated data a, consisting of a string of l{a) bytes where

0 < /(a) < 2^^. This additional data is authenticated but not encrypted,
and is not included in the output of this mode.

Figure 9.8 shows CCM authentication and verification processes dataflow.
Notice that because of the CBC feedback nature of the CCM mode a pipeline
approach for implementing AES is not possible, therefore there is no option
but to implement AES encryption core in an iterative fashion.

CCM Authentication consists on defining a sequence of blocks BQ.BI,- " ^ Bn
and thereafter CBC-MAC is apphed to those blocks so that the authentication
field T can be obtained. Blocks BiS are defined as explained below.

First, the authentication data a is formatted by concatenating the string
that encodes l{a) with a itself, followed by organizing the resulting string in
chunks of 16-byte blocks. The blocks constructed in this way are appended to
the first configuration block J5o [375]. Then, message blocks are added right
after the (optional) authentication blocks a. Message blocks are formatted by
splitting the message m into 16-byte blocks which will be the main part of
the sequence of blocks

Bo,Bi, ...,Bn

needed by the authentication mode. Finally, the CBC-MAC is computed as.

Xi :=AESE{K,BO)

Xi+i := AESE{K, Xi e Bi) for i ••

T := firstMhytes{Xn^i)

(9.11)

l , . . . ,n

Where AESE is the AES block cipher selected for encryption, and T is the
MAC value defined as above. If it is needed, the ciphertext would be truncated
in order to obtain T.

IEEE 802.11 MAC Header Framebody

NONCE
(16 bytes)

AAD1
(16 bytes)

M D 2
(16 bytes)

1st block
(16 bytes)

2nd block
(16 bytes)

Zero padded
last block
(16 bytes)

>e'
M

t^
M

?©>

Bn

>e-
Fig. 9.8. Authentication and Verification Process for the CCM Mode

Figure 9.9 shows the CCM encryption/decryption process dataflow. CCM
encryption is achieved by means of Counter (CTR) mode as.

258 9. Architectural Designs For the Advanced Encryption Standard

^

1st block
(16 bytes)

2nd block
(16 bytes)

n
e - TO

T
Cipherblock
(16 bytes)

Cipherblock
(16 bytes)

Framebody
MIC
(8

bytes)

Zero padded
last block
(16 bytes)

A ^
Bn

P^

Zero padded
MIC

(16 bytes)

An.l|

h-e
Last

Cipherblock
(16 bytes)

Cipher MIC
(16 bytes)

Co Cl Cn Cn+1

Fig. 9.9. Encryption and Decryption Processes for the CCM Mode

Si — AESE{K,Ai) for 2 = 0,1,2,

Gi .'= Oi w J^i

.12)

where Ai stands for counters. See [378, 100] for more technical details about
how to build the counters.

Plaintext m is encrypted by XORing each of its bytes with the first
l{m) bytes of the sequence resulting from concatenating the cipher blocks
•S*!, »S'2,53,..., produced by Eq. 9.12. The authentication value is computed by
encrypting T with the key stream block 5o truncated to the desired length
as,

t/ := T e firstMbytes{So) (9.13)

The final result c consists of the encrypted message m, followed by the
encrypted authentication value U.

At the receiver side, the decryption process starts by recomputing the key
stream to recover the message m and the MAC value T. Figure 9.9 shows how
the decryption process is accompHshed in CCM Mode.

Message and additional authentication data is then used to recompute the
CBC-MAC value and check T. If the T value is not correct, the receiver should
not reveal the decrypted message, the value T, or any other information.
Figure 9.8 describes how the verification process is accompHshed.

It is important to notice that the AES encryption process is used in en­
cryption as well as in decryption. Therefore, AES decryption functionality is
not necessary in CCM-mode, which leads to save valuable hardware resources.

9.4 Implementing AES Round Basic Transformations on FPGAs 259

9.4 Implementing AES Round Basic Transformations on
F P G A s

Strategies for efficient fiardware implementation of AES on FPGA devices
can be classified into two types: algorithmic and arcfiitectural optimizations.
Algorithmic optimizations try to obtain some mathematical expressions to
take advantage of FPGA structure. Architectural optimizations exploit design
techniques such as iterative, pipelining and sub-pipelining. In addition, AES
hardware implementation poses a challenge since encryption and decryption
processes are not completely symmetrical which forces to have some additional
observations while implementing a single encryptor/decryptor core.

In Subsection 9.2.3 it was described the basic round transformations, BS,
SR, MC, and ARK, and their corresponding inverse transformations IBS, ISR,
IMC, and I ARK. That Subsection also describes the key schedule process to
generate the necessary subkeys during an encryption or decryption process.

But before start discussing how to implement a full encryption or decryp­
tion core, let us analyze, from the algorithmic optimization point of view,
some important implementation properties shown by the basic round trans­
formations.

The most important operations for the basic transformations include poly­
nomial multiphcation in GF(2^) for BS/IBS, fixed-rotation for SR/ISR, con­
stant polynomial multiplication in GF(2^) for MC/IMC, and simple addition
(XOR) for ARK/I ARK. Fixed-rotation is hardwired and does not consume
FPGA's logic resources. The addition used in ARK/IARK is a simple XOR
operation. Hence, BS/IBS and MC/IMC are the two key functional units
in AES implementations. It has been estimated that BS/IBS and MC/IMC
take more than 65% of the total area in the entire AES encryptor/decryptor
implementation.

Perhaps, the most costly operation for BS/IBS is polynomial multiphca­
tion in GF(2^). We also need to perform a polynomial multiplication in GF(2^)
for MC/IMC but we can take advantage from the fact that is a constant multi­
plication. Even though the latter transformation is relatively less costly than
the former still it occupies considerable FPGA's resources. Therefore, both
BS/IBS and MC/IMC are good candidates for improving overall performance
of the round transformation.

In the rest of this Section, we present various approaches for implementing
BS/IBS and MC/IMC.

Regarding BS/IBS two alternatives are considered. In the first approach
pre-computed values are simply stored on the FPGA's built-in memory mod­
ules. This might be seen as an expensive solution but it helps to save valu­
able computational time. The second approach provides an alternative for
constrained memory requirements and it is based on an on-fly computation
strategy.

Similarly, two approaches for MC/IMC implementations are presented.
First approach, that we have called standard approach, deals with the struc-

260 9. Architectural Designs For the Advanced Encryption Standard

tural organization of MC/IMC transformations. The second approach called
modified approach introduces a small modification before MC to perform IMC
step. Finally, some structural changes are proposed in key schedule algorithm
which can improve hardware performance by cutting path delays.

9.4.1 S-Box/Inverse S-Box Implementations on FPGAs

The straightforward approach for implementing BS is by using a look-up table
in which pre-computed values are stored in memories. That requires memory
modules with fast access. In FPGAs, there are two ways to organize memory:
by using flip-flops and CLBs (i.e., FPGA fabrics), or by using FPGAs built-in
memory modules called BRAMs (BlockRAMs).

Implementing BS/IBS by look-up tables is simple, fast and in many cases
desirable. A single BS/IBS table would require 8-bit wide 256 entries. We
can make some few observations about implementing BS/IBS using look-up
tables.

Firstly, for the implementation of both encryption and decryption on a sin­
gle chip two different separated look-up tables are required, thus duplicating
memory requirements.

Secondly, if we want to increase performance, BS/IBS can be performed
in parallel for the sixteen bytes of the state matrix. The fully parallelization
of BS/IBS would therefore require 16 copies of the same look-up table, one
per state matrix element. Finally, if high performance is required, unfolding
the 10 rounds of AES to construct a pipehne architecture, would require 160
copies of the same look-up table.

In the following, we discuss some other alternatives to implement BS/IBS
in FPGAs.

I. S-Box and Inverse S-Box Implementation

To avoid utilization of a considerable amount of FPGA resources, BS/IBS can
be implemented using a look-up table. The look up table would be used for
MI by implementation affine (AF) and inverse affine (lAF) transformations
using some logic gates for BS and IBS respectively. The combination MI -f-
AF implements BS for encryption and the combination lAF -h MI gives IBS
for decryption. For constructing an encryptor/decryptor core, two separated
designs for encryption and decryption would result in high area requirements.
Prom Section 9.2.4, we know that only one MI transformation in addition
to AF and lAF transformations is required for both encryption and decryp­
tion. Therefore, a multiplexer can be used to switch the data path for either
encryption or decryption as shown in Figure 9.10

II. S-Box and Inverse S-Box Based on Composite Field Techniques

BS/IBS implementations can be made using composite field techniques e.g. BS
can be manipulated in GF((2^)^) and even GF(((22)2)^) instead of GF(2^).

9.4 Implementing AES Round Basic Transformations on FPGAs 261

r-f^—I
IN — W

L-[JAF] 1
H Ml ! -• inv L_r

' ' S.Rnv I—

1 ^ ^ I—I AF f — • S-Box

S-Box

Ml

v
^ Inv

S-Box

Fig. 9.10. S-Box and Inv. S-Box Using Same Look-Up Table

That would reduce memory requirements to 16 x 4 bits in GF(2'^) as compared
to 256 X 8 bits in GF(2^) for a single LUT. More hardware resources would be
however used to implement the required logic in OF(2'^). Several authors [267,
242, 303] have designed AES S-Box based on the composite field techniques
reported first in [267]. Those techniques use a three-stage strategy:

1. Map the element A G OF (2^) to a smaller composite field F by using an
isomorphism function b.

2. Compute the multiplicative inverse over the field F.
3. Finally, map the computations back to the original field.

In [242], an efficient method to compute the inverse multiplicative based on
Fermat's little theorem was outlined. That method is useful because it allows
us to compute the multipficative inverse over a composite filed GF(2"^)" as
a combination of operations over the ground field GF(2^). It is based on the
following theorem:

T h e o r e m 1 [261^ 121] The multiplicative inverse of an element A of the
composite field GF{2'^)^, A^O, can be computed by,

A-^ = (^'^)-M'^-i mod P{x) (9.14)

onm _ 1
Where A'^ G GF(2^) & 7 =

2m _ 1

An important observation of the above theorem is that the element A^ belongs
to the ground field GF(2'^). This remarkable characteristic can be exploited
to obtain an efficient implementation of the inverse multiplicative over the
composite field. By selecting m = 4 and n = 2 in the above theorem, we
obtain 7 = 17 and,

A-^ = (yl'Y)-M'^-i = {A^'^y'^A^^ (9.15)

In case of AES, it is possible to construct a suitable composite field F , by using
two degree-two extensions based on the following irreducible polynomials.

Fi =GF(22) Po{x)=x^-^x-^l
F2 = GF((22)2 p,(^y):=y2^y^^ (9.16)
F3 = GF(((22)2)2 P2(^) = Z 2 ^ ^ + A

262 9. Architectural Designs For the Advanced Encryption Standard

where 0 = {10}2, A = {1100}2

The inverse multipHcative over the composite field F2 defined in the Equa­
tion 9.15, can be found as follows.

Let A e F2 = GF(2^)^ be defined in polynomial basis as A = Any 4- AL,
and let the Galois Fields Fi, F2, and F3 be defined as shown in Equation 9.16,
then it can be shown that,

A^^ = Any + {AH + AL)

A'' = A>« . ^ = O.y + {XiAnY^AH + {AL)''AL)

= XiAnf + {ALy'AL (9.17)

A First
Transformation

Ml
Manipulation

w Second
Transformation 1->[ZD

GF(2°) GF{2y & GF{2y GF(2^)

Fig. 9.11. Block Diagram for 3-Stage MI Manipulation

Figures 9.11 and 9.12 depict block diagram to three-stage inverse multiplier
represented by Equations 9.15 and 9.17.

Fig. 9.12. Three-Stage Approach to Compute Multiplicative Inverse in Composite
Fields

As it was explained before, in order to obtain the multiplicative inverse of
the element A e F =GF(2^), we first map A to its equivalent representation
{AH^AL) in the isomorphic field F2 = GF ((2^)^) using the isomorphism 6
(and its corresponding inverse S~^). In order to map a given element A from
the finite field F to its isomorphic composite field F2 and vice versa, we only
need to compute the matrix multiplication of A, by the isomorphic functions
shown in Equation 9.18 given by [242]:

9.4 Implementing AES Round Basic Transformations on FPGAs 263

5 =

10100000
11011110
1010 1100
10 10 1110
11000110
10011110
01010010
01000011

5-^ =

11100010
01000100
0 1100010
0 1110110
00111110
00 110000
01000011
01110101

(9.18)

The isomorphism function 6 and 6~^ can be constructed as follows:
Let a and P be roots of a same primitive irreducible polynomial {m{x) —

x^ -\- x'^ -\- x^ -^ x^ -\- \ can be used). First search for primitive element a in
the field A and then search for p in the field B. Once 6 and 6~^ are founded,
the matrix representation can be obtained, where a^ is mapped to (3^ or vice
versa. Note that there could be more than one eligible isomorphism.

Also by taking advantage of the fact that A^'^ is an element of F2, the final
operation {A^'^)~^A^^ of Equation 9.15 can be easily computed with further
gate reduction. Last stage of algorithm consists of mapping computed value
in the composite field, back to the field GF(2^).

To further increase the depth of a pipeHne architecture, MI can be calcu­
lated by a composite field approach dealing MI manipulation in GF(2^) and
GF(24) instead ofGF(2^).

In [113], BS has been computed rather than using a look-up table. The
main goal of using this formulation is to get a high-performance AES encryptor
core without depending on look-up tables.

Using the composite field technique, BS arithmetic in GF(2^) is performed
via several arithmetic blocks in GF(2^). This effectively reduces an 8-bit cal­
culation to a 4-bit one, resulting on several stages of computation with lower
delays. That allows obtaining a sort of sub-pipelining architecture in which,
instead of having 11 unfolded stages (each stage corresponding to a single
round), each single round is further unfolded into several stages. Thus, BS
is (sub)divided into four pipeline stages where the first round takes only one
stage, each middle round takes seven stages, and the final round, in which
MC is not required, takes six stages.

In order to keep all stages balanced, i.e., propagating similar delays, a
pipeline architecture with a depth of 70 stages was proposed in [113]. After 70
clock cycles when the pipeline is full, each clock cycle will deliver a ciphered
block. This technique achieves a throughput of 25.107 Gbps, the fastest one
reported up to date of this book pubhcation.

The idea of dividing computations in sub fields is further exploited to its
extreme in [42], where 4-bit calculations are broken into several 2-bit ones.
Authors in [42] explored as many as 432 different isomorphisms. Polynomial
as well as normal basis were considered and using an exhaustive tree- search
algorithm [153], those isomorphisms requiring the minimum number of gates
were selected. Logic optimizations both at the hierarchical level of the Galois

264 9. Architectural Designs For the Advanced Encryption Standard

Field arithmetic and at the low level of individual logic gates were performed.
The authors also reused common expressions to save space and noticing that
NAND gates take less space than other ones, they rewrite all expressions
in terms of such gates. Authors reported results exploring a family of 432
implementations depending on the selected basis ranking from 138 to 195
gates. Such compact 5—box implementations can be used in security for low-
end customer products, such as PDAs, wireless devices and other embedded
applications.

9.4.2 M C / I M C Implementations on F P G A

The MC/IMC transformations are essentially the inner-product operations
on GF(2^) expressed in equations 9.6 and 9.9. They can be reahzed using
byte-level or bit-level substructure sharing methods [140].

For an encryptor/decryptor core MC/IMC steps are implemented sep­
arately and they can be realized in a small series of instructions. In case
of FPGAs, these instructions can be reahzed by keeping in mind the basic
CLB structure (4 input/1 output) in order to limit path delays and to save
space. Let us call this approach the MC/IMC standard approach. Fortunately,
there exists another approach for which the implementation of IMC is made
by introducing small modification before MC. The first approach is efficient
but needs separate implementation for MC and IMC. The MC/IMC modi­
fied approach reuses some modules which eliminates the need for separated
implementation of MC/IMC.

MC and IMC Transformation: Standard Approach

Observing that constant terms in equations 9.6 and 9.9 are the same, it is
possible to consider only the inner product that generates one output byte, Z
in MC and Zinv in IMC, for an input column {ABCD^-

Z = {01}A e {01}J5 © {02}D ® {03}E (9.19)

Using the property of {02}D = {02}D 0 0 = {02}D ® D e D, we can
rewrite equation 9.19 in the following manner:

Z = {AeB®DeE)e {02}{D 0 E) 0 D) (9.20)

We can use an efficient implementation of constant multiplication by 02
in GF(2^) calculated by the functional block xtime{v) and extracting the
common factor in all columns t = {A®B®D^E), then equation 9.19 can
be rewritten as:

Z = t^ xtime{D ^ E) ® D) (9.21)

Therefore, full MC transformation can be efficiently computed by using only
3 steps [21, 60]: an addition step, a doubfing step and a final addition step.

9.4 Implementing AES Round Basic Transformations on FPGAs 265

Let us consider a complete output row of MC transformation. Consider
now the element of State matrix's column one a[0], a[l], a[2], and a[3], then the
transformed MC column a'[0], a'[l]^ Ci'{2], and a'[3] can be efficiently obtained
ajs shown in Equation 9.22.

t ==a[0]ea[l]©a[2]ea[3];
V = a[0] 0 a[l]; v = xtime{v)\ a'[0] = a[0] ®v®t
V = a[i] 0 a[2l; v = xtime{v); a'[l] = a[l] 01? 0 t
V = a[2] 0 a[3]; v = xtime(v); a'[2] = a[2] 0 t̂ 0 t
V = a[3] 0 a[0]; v = xtime{v)] a'[3] = a[3] 0 f 0 t

(9.22)

Observe that Ms a common expression for the four outputs and it needs
to be calculated just once. Next four rows are calculated in parallel and the
circuit is the same except for some input data. Finally, the sum of three
terms requires only eight CLBs, one per bit. Given that CLBs can compute
4-input/l-output functions, it is possible to embed the ARK transformation,
which is just a sum, to the final expression. This does not require additional
CLBs and improves performance since MC and ARK are computed at the
same stage. This is expressed in the following manner:

Stepl
v = a [l]0a[2]0a[3]
V ^ a[0] 0 a[2] 0 a[3]
V = a[0] 0 a[l] 0 a[3]
V = a[0] 0 a[l] 0 a[2]

Step2
xto = xtime{a[0])
xti — xtime{a[l])
xt2 = xtime{a[2])
xts = xtime{a[3])

Steps
a'[0] = k[0] 0 t> 0 xto 0 30ti;
a'[l] = k[l] 0 i; 0 a:ti 0 xt2]
a'l2] = k[2] 0 t; 0 2:̂ 2 0 xts;
a'[3] = k[3] 0 t* 0 xta 0 xto]

(9.23)

The same strategy applied above for MC can be used to compute IMC. Con­
sidering again an input column [ABCD]^, we can expressed Zinv as:

Zinv = {Od}A 0 {09}J5 0 {Oe}D 0 {Ob}E (9.24)

Using the same property for constant multiphcation by {02}, we can
rewrite Equation 9.24 in the following manner:

Ziny = D 0 TV 0 xtime{M 0 A/') 0 xtime{D 0 E) (9.25)

where:

266 9. Architectural Designs For the Advanced Encryption Standard

Ti = To e xtime{xtime{To))

TV = Ti e xtime{xtime{B 0 E))

M = Ti e xtime{xtime{A ® D))

Full IMC transformation can be computed by using seven steps: four sum steps
and three doubling steps. The difference is due to the fact that coefficients in
Equation 9.9 have a higher Hamming weight than the ones in Equation 9.6.
To overcome this drawback, we use the strategy depicted in Equation 9.25
where IMC manipulation is restructured and seven steps are cut to five steps.
Moreover, as explained above, lARK is embedded into IMC resulting in six
total steps. For final round (Round 10), MC/IMC steps are not executed;
therefore a separated implementation of ARK can be made. Let us consider
now a complete output row of IMC transformation embedded with and lARK
transformation, where a, and a' stand as before.

Step 1
t = a[0] 0 a[l] 0 a[3]

So = xtime(a[0]);
si = xtime{a[l])]
52 = xtime{a[2])]
53 = xtime{a[3])\

Step 2

SQ — xtime{so);
s'l = xtime{si)]
52 = xtime{s2)]
53 — xtime{ss)]

Step 8
U ^̂^̂ S Q KJP S-t 07 So U7 So I

f :== So 0 S i 0So 0 S2;
V = Si 0S2 0 S i 0S3;
V = S2 0S3 0s f)0s ' 2 ;
v = S3 0 So 0 s; 0s'3;

Step 4
u — xtime{u)\

Step 5
t' ^ti) u\

Step 6
a'[0] ^a[0]®t' ®v®k[0]
a'[l] ^a[l]®t' ®v®k\\]
a'[2] = a[2]®t' ®v®k[2]
a'[Z] = a [3] 0 t ' 0 - ^ 0 Zeis]

(9.26)

MC and IMC Transformation: Modified Approach

The strategy utilized above for MC and IMC yields up to three and six compu­
tational steps for encryption and decryption respectively. In order to minimize
difference in number of steps, the following strategy can be used.

Observe that it should exist a 4 x 4 byte matrix D{x) in GF(2^) such that
the constant MC matrix of Equation 9.6 can be related to the constant matrix
of Equation 9.9 £ts,

OE OB OD 09 "
09 ^E OB OD
OD 09 OE OB
OB OD 09 OE

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

D{x) (9.27)

9.4 Implementing AES Round Basic Transformations on FPGAs 267

Using the fact that both constant matrices in Equation 9.27 are the inverse of
each other in the finite field F = GF(2^), equation 9.27 can be solved using
the AES irreducible pentanomial m{x) = x -\-x'
column of D{x) as shown in Equation 9.28.

-f x^ + X + 1 [60] for the first

0^0,0

di,o
0^2,0

<^3,0.

'OE OB OD 09"
09 OE OB OD
OD 09 OE OB
OB OD 09 0^;.

'OE
09
OD
OB

(9.28)

where di^o^ i = 0,1,2,3 represent the four coefficients of the first column of
D{x). It follows that Equation 9.28 has a unique solution in the finite field F
as given in Equation 9.29,

c^o,o-5 d i , o - 0 c/2,o = 4 d3^o = 0 (9.29)

Hence, Equation 9.27 can be re-written as shown in Eq. 9.30.

OE OB OD 09 •
09 OE OB OD
OD 09 OE OB
OB OD 09 0^;

02 03 01 o r
01 02 03 01
01 01 02 03
03 01 01 02

05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05

(9.30)

Equation 9.30 suggests an efficient way to compute IMC by re-using the MC
transformation to obtain IMC constant matrix. This is useful since constant
elements of second matrix in the right side of Equation 9.30 have a less Ham­
ming weight as compared to the constants of the original matrix for IMC.

9.4.3 Key Schedule Optimization

Let w[Q], w[l]^ ^̂ [̂2], and w[S] be the four columns of the original key arranged
into 4 x 4 matrix of bytes. Then, those four columns are recursively expanded
to obtain 40 more columns as follows. Let the columns up to it;[z — 1] have
been determined then,

w[i - 4] e w[i - 1] if i mod 4 7̂ 0
w[i -4]^T{w[i -1]) otherwise

(9.31)

Where T{w[i — 1]) a is non-Hnear transformation based on the application
of the S-Box to the four bytes of the column. It involves also an additional
cyclic rotation of the bytes within the column and the addition of a round
constant {rcon) for symmetric elimination [60]. Let w[0], i(;[l], it;[2], and w[3]
be represented as:

268 9. Architectural Designs For the Advanced Encryption Standard

w[0]

w[2]=^

ko
/C4

ks
ki2_

k2'
ke
kio
ku

w[l] =

w[3] =

'ki

/C5

kg

_ki3

' k3

kr
ku
kib

(9.32)

Then according to the above expressions, the new columns
w'[0], w'[l], w'[2], and it;'[3] of the next round key can be calculated as

shown in Equation 9.33.

k[

^2

^3

Step 1
= ko ^ SBox{ki3) e
= ko ^ SBox{ku)',
= ko ^ SBox{ki5);
= ko ^ SBoxlku);

Step 3
/Cg '=• Kg KB fC/^')

rCg ^==- rCg © /C5',

/C|o — ^ 1 0 ® ^ 6 '

K\\ -— Kll M3 I^Y'I

rcon

k'

^13

^14

^15

Step 2
\ 1^4 ^̂ 1^4 ® " 0̂'

rCg = rC5 © /Cj5

KQ ^^^ /Cg © /C25

Kj =^ KY ® rCgJ

Step 4
= ku^k'g]
= ku^kl)]
= ki4 © KIQ]

— A;i5 © kii]

(9.33)

But it was mentioned before that in a typical FPGA device, a 4 input
look-up table can be configured indistinctly to handle 2, 3, or 4 input logic
gates. Hence, we can save some time by parallelizing the above computation
using only two steps. By applying redundant computations. Equation 9.33
can be rewritten as it is shown in Equation 9.34 for the first row. Parallel
computations are applied to obtain k'^^ /cg, and k[2'

Stepl

k'o = ko ^ SBox{k\2) © rcon\

Step2
1^4 ^^^ rC4 © ^0*'

rCg = /C4 © rCg © /CQI

rCj2 ^^ "^4 ® rv8 ® "^12 ® ^ 0 '

(9.34)

9.5 AES Implementations on F P G A s

The basic organization of the hardware implementation of the AES algorithm
is shown in Figure 9.13 which represents three blocks: encryptor/decryptor

Input

9.5 AES Implementations on FPGAs 269

User-key

AES Encryptor/Decryptor K

IPT^I
r Key Schedule

Output

n
Control unit

Fig. 9.13. Beisic Organization of a Block Cipher

unit, key scheduling unit, and a control unit for synchronizing the flow of
data between them.

Three main processes participate in AES:

• Key Schedule
• Encryption
• Decryption

The above three processes can be implemented using different design
strategies showing distinct time-area tradeoffs. Depending on the application
specification, the AES implementation can be carried out for just encryption,
encryption/decryption on the same chip, separate encryption and decryption
cores, or simply decryption. A separate implementation of AES encryptor or
decryptor core would be less complex and efficient. Implementing AES encryp-
tor/decryptor core on a single chip FPGA by mixing their common blocks,
will give out an area efficient solution but one of them, either encryption or
decryption could be performed at a time. To develop a full duplex operation
having a capabiHty to perform both encryption and decryption simultaneously
would require relatively high hardware resources and consequently would be­
come a bit slow.

For AES, key schedule implementations are different for an encryptor, de­
cryptor or encryptor/decryptor cores. The usage of internal memory resources
of an FPGA for storing pre-computed round-keys would be a simple approach.
For encryption/decryption processes however it is recommendable not to use
the same key for long time. A key schedule implementation will therefore pro­
vide a user the added flexibility of selecting encryption/decryption key of his
own choice at any given time.

9.5.1 Architectural Alternatives for Implementing AES

Several approaches can be followed to implement AES on hardware achieving
variable performance results [218].

Iterative architectures implement a reduced number of rounds (typically
one) in an independent fashion. This kind of architectures occupy small area

270 9. Architectural Designs For the Advanced Encryption Standard

of circuits but at the expense of low throughput. Unrolled architectures have
a large number of rounds that are independently implemented in hardware.
Pipelining allows to process multiples blocks of data at the same time at
different stages to have higher throughput. Pipelining is achieved by putting
rows of registers among different stages. Sub-pipelining inserts registers inside
the round transformation to create sub-stages.

o
CO

0)

"D
C
3

< •

[\
-J

l/J

(0
9^ K CO

Z3

CO

s o

IE
(0

V)
c
F

1

a)

C

• o

<

-^ h>
K en
Z3

u>

%
o

'sz
(/)

^
"O c 3

u
•o

<

Fig. 9.14. Iterative Design Strategy

Block ciphers are of iterative nature, that is, n iterations of the same
algorithm are made for a single encryption/decryption. An iterative design
strategy would be a straightforward approach to implement the algorithm
which executes n iterations of it by consuming n clock cycles for a single
encryption/decryption as shown in Figure 9.14. The first round only considers
ARK, the next nine rounds implement the four basic transformation, BS, SR,
MC and ARK. The last round implements all but MC transformation. Clearly,
it is an economical approach with respect to the hardware area and the cost
has to be paid in terms of design speed which gets reduced with a factor of
n. Such architectures would be useful for applications where hardware area is
Hmited and speed is not more critical.

If reconfigurable platform is the choice for the implementation of a block
cipher, a high speed architecture would result by implementing n rounds of
the algorithm as modern FPGAs have enough logic density to accommodate
massive circuits. The simplest way to improve performance is to use loop un-
roUing that expand the iterative structure by rephcating rounds and conecting
the output to the input of two consecutive rounds. This architecture is shown
in Figure 9.15. By eliminating switches (multiplexers) and registers the accu­
mulated delay can be reduced, but the duplication of multiple rounds incurs
in large critical paths, which implies lower clock frequencies.

By putting registers between two consecutive rounds, which operate at
the same clock cycle, we can achieve a pipeline architecture as shown in Fig­
ure 9.16.

9.5 AES Implementations on FPGAs 271

> s
<D
V
• o
c 3
o a:

<

F

W

!̂ •>.
13

CO
x:
CO

(0

c
h 3
O
O
X

>»
a> V

TJ

r
o

TO

-o <

w W

U)
(U

•>
-3
CO

'̂ i
o 01

CO

• > ,

(U
V
TJ

r =j

"D
•n
<

Fig. 9.15. Loop Unrolling Design Strategy

>,
a)

•D

r 3
o

OH

• D

<

-w

B

k>
(0

CD

C/J

i
CO

w c
E
o
9.
• •s

>»
(I)

r
3
o

o
T3 <

B S

l>

(0

CD

3
C/J

i a:

CO

>,
(D

O

D
T3

<
•2 Ij

Fig. 9.16. Pipeline Design Strategy

Each round forms a pipeline stage of the data flow. The critical path is cut
into stages although it is not diminished. The main advantage is that several
diflferent blocks can be processed at the same time but in diff"erent rounds
of the encryption/decryption process. Once the pipeline is filled, the output
blocks appear a* each successive clock cycle. This allows to increase perfor­
mance multiplied by the number of rounds or stages in the pipeline (typically
eleven). This architecture increases throughput but it becomes costly in terms
of hardware area.

FPGAs provide large number of flip-flops, which can be used to put sev­
eral registers inside the different steps of a single round for a pipeline design
strategy. This improves the performance of a pipeline architecture as those
registers shift the internal results of a round while the final results are being
transferred to the next round. It has been observed that careful use of those
registers inside a round causes a significant increase in design performance.
Figure 9.17 represents a sub-pipehne design strategy. This approach increases
the depth of the pipehne up to 40 stages.

Although one can think that the increase in performance is folded as many
times as the number of stages this is not completely exact. The problem is
that all stages must have similar delays which is not true for AES. According
to the formulation of BS, it is clear that its implementation takes longer delays
than other basic transformations.

To keep balanced stages and at the same time to increase the depth of
pipeline, we can break BS calculation by a four-stage composite field approach
as it was explained in Section 9.4.1 and it is shown in Figure 9.18. Each middle

272 9. Architectural Designs For the Advanced Encryption Standard

CQ
$
•>> CQ

Ui

\%\
o

^

(/> F
3

o

hi

>»
(D

1 "O
1 1=
1 = >

1 "̂

r

$
• * ^

m
-D
13
C/J

(0

o
Q:

^ •C
CO

>̂
a>
^
c
r j

" ^ • ^

5

Fig. 9.17. Sub-pipehne Design Strategy

round is decomposed into seven stages, four from BS and one for SR, MC
and ARK, each. That gives a 70 stages pipehne approach which reports high
performance at the expense of great area requirements.

o

eg

CD

•-
CO

• - 1^

CM
i
w

(0

n

O

rr "O

r

s
•̂
CD
o

CD

CD

Q>

(A

-
h= 3

CD

CD
o

CD

„
u
rr

>> o

3

SubBytes
Y

SubBytes

Fig. 9.18. Sub-pipeUne Design Strategy with Balanced Stages

Pipehning and sub-pipehning are useful only when the cipher block is
used in the ECB mode (electronic code book). As it was mentioned in Section
9.3, in the Output Feedback Mode (OFB) and in the COM mode (Counter
with CBC-MAC), pipelining looses its potential since a cipherblock is used to
encrypt the next block. The only acceptable architecture for feed back modes
is the iterative one, also called loop architecture.

In the rest of this section we disccuss some alternatives for implementing
AES. All of them are intended to be implemented on a single-chip FPGA.
There exists multi-chip implementations but as FPGA density is increasing,
those implementations would be less meaningful in the future.

Varieties for AES implementation include encryptor, decryptor, and en-
cryptor/decryptor cores using iterative or pipeline approaches. Each AES im­
plementation targets specific criteria composed of factors like efficiency, cost,
effectiveness and portability. Table 9.2 provides a roadmap to all implemented
AES designs. It consideres four parameters: design (Sec.9.5), based on Sec­
tion (Sec. 9.4), E/D/K module (encryption/decryption/key schedule) and ar­
chitecture (encryptor, decryptor or encryptor/decryptor core). Key schedule
implementations for encryptor, decryptor and encryptor/decryptor cores are
ateo presented.

9.5 AES Implementations on FPGAs 273

Table 9.2. A Roadmap to Implemented AES Designs

Design

Sec. 9.5.2

Sec. 9.5.2

Sec. 9.5.3

Sec. 9.5.3

Sec. 9.5.4

Sec. 9.5.4

Sec. 9.5.5

Sec. 9.5.5

Sec. 9.5.5

Based on
the Section

Sec. 9.4.3

Sec. 9.4.3

Sec. 9.4.1
Sec. 9.4.2
Sec. 9.4.1
Sec. 9.4.2
Sec. 9.4.1
Sec. 9.4.2
Sec. 9.4.1
Sec. 9.4.2
Sec. 9.4.1
Sec. 9.4.2
Sec. 9.4.1
Sec. 9.4.2
Sec. 9.4.1
Sec. 9.4.2

E /D/K Module

(Key schedule)

(Key schedule)

S-box Look-up table
MC classic

S-box Look-up table
MC classic

S-box Look-up table
MC classic

S-box Composite field
MC classic

S-box Look-up table
Modified MC/IMC

S-box Look-up table
MC classic

S-box Look-up table
Modified IMC

Architecture

For iterative Sz pipeline
encryptor cores only

For Pipehne
encryptor/decryptor cores

Encryptor core
(Iterative)

Encryptor core
(Pipeline)

Encryptor/decryptor
core (Pipeline)

Encryptor/decryptor
core (Pipeline)

Encryptor/decryptor
core (Pipeline)
Encryptor core

(Pipeline)
Decryptor core

(Pipeline)

All designs presented in this section were completely synthesized and suc-
cesfully implement using Xihnx Foundation Tool F4.1i. All designs are either
coded in VHDL or by using libraries of the target devices. CoreGenerator is
another tool used for design entry.

(9.35)

9.5.2 Key Schedule Algorithm Implementations

Let the user key consisting of 16 bytes be arranged as:

ko k4 ks ki2
ki /C5 /C9 /ci3

^2 kQ kio ku
ks kr kii ki3

The process of generating next round key is optimized as discussed in
Section 9.4.3 and is shown in Figure 9.19. The KGEN block consists of four
similar units where each unit contains an S-Box and four XORs. The first
block is slightly different as a constant predefined value {rcon) is XOR-ed in
each round. As shown in Figure 9.19, last four bytes ku, Â ia, /CH, /cis, of each
round key are substituted with the bytes from S-Box and then various XOR
operations are performed to get the next round key.

The KGEN block is the basic building block used to generate round Keys
for all AES implementations. However, the key management for producing

274 9. Architectural Designs For the Advanced Encryption Standard

K4 K12 ^5 K5 Ki3^<6 Ke Ki4^7

K 4 K's K'i2 K 5 K'9 K'i3 K 6 K'10 K'u K'j K'n K'15

Fig. 9.19. KGEN Architecture

round keys differs depending on the particular implementation's strategy be­
ing used. For an encryptor core in iterative mode, round keys are also gener­
ated in iterative mode. For fully pipeline encryptor core, all round keys must
be available before the encryption process starts. In a fully pipeline encryp-
tor/decryptor core, the round keys for decryption are stored in reverse order
as that of encryption.

Key Schedule for Iterative and Pipeline Encryptor Cores

For an encryptor core in iterative mode, a single round key is generated. The
round key is fed to perform ARK step and also latched to feed back to KGEN
block in order to get prepared for processing the next round key as shown in
Figure 9.20. A multiplexer is used to switch the user-key first time and then
for all rounds, each round key is used to generate the next round key.

User-Key

K 1 \
)J
1 y A
Select

CLK-

Key
Generator

CE -

R
e
g
j

s
t
e
r

' Round-Key

Fig. 9,20. Key Schedule for an Encryptor Core in Iterative Mode

9.5 AES Implementations on FPGAs 275

For a fully pipelined encryptor core, the round keys must be available
for each round permanently. The key generation process for a fully pipehne
encryptor core is shown in Figure 9.21. The internal structure of each block is
the same as shown in Figure 9.20, however, same block is rephcated n (number
of rounds) times. Once the round keys are generated, there is no need to repeat
this process again and again. The same round keys serve for the whole session.
For a fully pipeline encryptor core, the encryption process can be started in
a parallel way, and there is no need to wait for the completion of all round
keys.

Key1 Key 2 Key 9 Key 10

CLK-

R
e
g
i
s
t
e
r

!

Key
Generator

CLK—

R
e

g
i
s
t
e

J r

t
Key

Generator

CLK—

R
e

g
i
s
t
e
r

f
Key

Generator

CLK-

R
e
g
i
s
t
e
r

f
Key

Generator

Fig. 9.21. Key Schedule for a Fully Pipeline Encryptor Core

Key Schedule for Encryptor/Decryptor Cores

For an encryptor/decryptor core on a single-chip FPGA, all the round keys
must be generated and latched before the encryption/decryption processes
start. The reason why round keys cannot be generated in a parallel way is
because they are required in reverse order for decryption. The process of key
generation is the same as explained above, however, round keys are stored in
the registers for encryption and decryption in ascending or descending order
respectively as shown in Figure 9.22. Besides this difference, the same blocks
can be used for encryption and decryption processes.

As shown in Figure 9.22, round keys are generated by KGEN block as
it was explained above by introducing two modifications. The first one deals
with the generation of select signals (s^) through an up/down counter. The
main purpose of having those select signals is to choose the correct order for
round keys either for the encryption or for the decryption process.

The second modification is the addition of IMC step which is required for
generating round keys for decryption. It is applied through a multiplexer that
allows passing round keys directly for encryption and switches the other line
for applying IMC operation for the decryption round keys. IMC operation is
performed before all the round keys are latched in their registers. Obeying
algorithm description of the AES decryption process, this modification is not
applied to first and last round keys.

276 9. Architectural Designs For the Advanced Encryption Standard

IMC Mf E/D

LATCH

~^

I

USER-KEY
I KGEN I

Fig. 9.22. Key Schedule for a Fully Pipeline Encryptor/Decryptor Core

IMC modifications discussed in Section 9.4.2 are applied in the IMC step
for key scheduling as shown in Figure 9.23. This module is part of the second
AES encryptor/decryptor core to be explained in the next Section.

H ModM I MC

IMC

E/D

LATCH

- >

X o
1-

3

I
o

X

o
5

X

o
X

o
5

X

o
X

o
5

X

o
X

o
5

X

o

^—
USER-KEY

I KGEN I

Fig. 9.23. Key Schedule for a Fully Pipeline Encryptor/Decryptor Core with Mod­
ified IMC

9.5.3 AES Encryptor Cores - Iterative and Pipeline Approaches

FPGAs implementations of AES encryptor cores are carried out using two
strategies: iterative and pipeline.

AES Encryptor Core Using an Iterative Approach

For an iterative approach, instead of implementing n iterations of the algo­
rithm, one iteration is implemented and n clock cycles are consumed to achieve
final output. An AES iterative approach is shown in Figure 9.24.

M PLAIN -TEXT-^^ RND 0

9.5 AES Implementations on FPGAs 277

USER-KEY

- L . K j — S ROUND-KEY CLK ROUND-KEY

I LATCH 1 RND 10 l - ^ RND 1-9 LATCH

\/

RND 10 ! - • CIPHER - TEXT

Fig. 9.24. Iterative Approach for AES Encryptor Core

The encryption process is presented in Figure 9.24, where RNDO is a simple
ARK step: the user-key and plain-text are added. The RNDl-9 block includes
the four AES steps, namely, BS,SR,MC,ARK. Round keys are generated for
all iterations of the algorithm. A multiplexer selects RNDO output at the
first cycle and then selects the latch output for RNDl-9 during the next nine
cycles. RNDIO is implemented separately without including the MC step.

The latch output is connected to the RNDIO block and it is also fed-back
to the multiplexer. All latch outputs passes through RNDIO block but only
during the tenth cycle its output is collected giving the final result. No clock
cycle is therefore consumed to perform RNDIO.

Sixteen ROMs (256 x 8) are configured by using CLB in memory mode for
performing the BS step of RNDl-9. Since RNDIO also includes the BS step,
sixteen more ROMs are required for this step. The key scheduling algorithm
also includes the BS step for the last four bytes of each round key (See Section
9.5.2) as shown in Figure 9.19, occupying four extra ROM blocks. A total of 36
ROM blocks are used for encryption part only. The SR step is combined with
BS step. The MC and ARK steps are combined to reduce area requirements
as discussed in Section 9.4.2.

The design was implemented on Xilinx VirtexE FPGA devices (XCV812BEG).
It utilizes 36 ROMs, 385 I/O Blocks (95%) and 2744 slices (28%) to achieve a
throughput of 258.5 Mbits/sec at 20.192 MHz. An encryption is completed in
10 clock cycles. That design does not make use of FPGA dedicated resources
(BRAMs, etc.), hence it has a high portability and can be implemented vir­
tually in every commercial FPGA device.

Fully Pipeline AES Encryptor Core

For a pipeline architecture, all AES rounds are unrolled. That is achieved by
repeating one AES round 11 times as shown in Figure 9.25.

Similar to the iterative architecture, RNDO is just ARK step. The RNDl-
9 block includes all four steps BS, SR, MC, and ARK. The RNDIO includes
three steps BS, SR, ARK excluding MC step. 160 ROMs are required for 10
AES rounds instead of 16 ROMs occupied by the iterative architecture to
perform BS step. Typically, the critical data path in pipeline architecture is
longer, which implies that the design can run at lower speeds. However, by
using dedicated memory modules BRAMs, as explained in the introduction
Section, it is possible to reduce critical path delays.

278 9. Architectural Designs For the Advanced Encryption Standard

J-L-

PLAIN
TEXT-^

128

rxxxxx ira
CIPHER

- • T E X T
128

r T T T T T T T T T

Fig. 9.25. Fully Pipeline AES Encryptor Core

The Virtex and VirtexE FPGA devices [397, 396] contain more than 280
BRAMs each of 4K. Each dual port BRAM can be configured as two single
port BRAMs which reduces half of the memory requirements. A total of 80
BRAMs are therefore used to perform BS step. The same approach is used for
key schedule implementation by occupying 20 BRAMs instead of 40 ROMs.

The design is targeted to Xihnx VirtexE FPGA devices (XCV812BEG)
and occupies 2136 CLB shces (22%), 385 I/O Blocks (95%) and 100 BRAMs
(35%). It uses a system clock of 22.41 MHz and data is processed at a rate
of 2868 Mbits/sec. For a fully pipeline encryptor core, encryption starts from
first clock cycle without initial delay. The round keys are generated in parallel.
It takes 11 clock cycles to fill the pipeline first and then encrypted blocks start
appearing at each consecutive clock cycle.

At first look, a comparison of the iterative and pipeHne architectures sug­
gests that the number of CLB slices occupied by the pipeline architecture
seems to be less as compared to an iterative architecture. But this is ac­
complished at the price of occupying extra memory (100 BRAMs) needed to
achieve desired fully pipeline architecture. The usage of dedicated memory
resources (BRAMs) makes the pipehne design importable as it can only be
targeted to those FPGA devices equipped with embedded memory function­
ality.

9.5.4 AES Encryptor/Decryptor Cores- Using Look-Up Table and
Composite Field Approaches for S-Box

For an encryptor/decryptor core, each encryption step (BS, SR, MC, ARK)
has its own inverse (IBS, ISR, IMC, lARK) which has to be implemented
separately. The implementation of BS and IBS on a single chip is the most
costly operation for AES implementation on FPGAs. In this design, two ar­
chitectures are proposed for the BS/IBS implementation on FPGAs. First
architecture proposes high performance implementations of BS/IBS step and
second architecture is based on on-fly architecture scheme which tries to re­
duce memory requirements. The implementation of the remaining three steps
SR, MC, and ARK is the same as the one described in Section 9.5.3. In the
following, BS/IBS implementation strategies are discussed.

For encryption, BS implementation can be made by computing the Mul­
tiplicative Inverse (MI) of the input byte in GF(2^) followed by the affine

IN-

9.5 AES Implementations on FPGAs 279

- S-BOX

-INV S-BOX

Ml

lAF

AF

Ml

E/D

lAF

V

Ml

AF S-BOX

- > INV S-BOX

b)

Fig. 9.26. S-Box and Inv S-Box Using (a) Different MI (b) Same MI

transformation (AF). For decryption, inverse affine transformation (lAF) is
applied first followed by MI step. Implementing MI as look-up table requires
memory modules, therefore, a separated implementation of BS/IBS causes the
allocation of high memory requirements especially for a fully pipelined archi­
tecture. We can reduce such requirements by developing a single data path
which uses one MI block for encryption and decryption. Figure 9.26 shows the
BS/IBS implementation using single block for MI.

There are two design approaches for implementing MI: look-up table
method and composite field calculation.

MI Using Look-Up Table Method

MI can be implemented using memory modules (BRAMs) of FPGAs by stor­
ing pre-computed values of MI. By configuring a dual port BRAM into two
single port BRAMs, 8 BRAMs are required for one stage of a pipeline ar­
chitecture, hence a total of 80 BRAMs are used for 10 stages. A separated
implementation of AF and lAF is made. Data path selection for encryption
and decryption is performed by using two multiplexers which are switched de­
pending on the E/D signal. A complete description of this approach is shown
in Figure 9.27

The data path for both encryption and decryption is, therefore, as follows:

Encryption: MI-> AF-> SR-> MC-^ ARK
Decryption: ISR-> IAF-> MI-^ IMC->IARK

The design targets Xilinx VirtexE FPGA devices (XCV2600) and occupies
80 BRAMs (43%), 386 I/O blocks (48%), and 5677 CLB sHces (22.3%). It runs
at 30 MHz and data is processed at 3840 Mbits/s.

280 9. Architectural Designs For the Advanced Encryption Standard

ISR

lAF

r— E/D

Ml

Ml using
look-up tables

AF

SR

IMC

lARK

MC

ARK

V

Fig. 9.27. Data Path for Encryption/Decryption

The data blocks are accepted at each clock cycle and then after 11 cy­
cles, output encrypted/decrypted blocks appear at the output at consecutive
clock cycles. It is an efficient fully pipeline encryptor/decryptor core for those
cryptographic applications where time factor really matters.

MI with Composite Field Calculation

This is composite field approach that deals with MI manipulation in GF(2^)
and GF(2^) instead of GF(2^) as it was explained in Section 9.4.1. It is a
3-stage strategy as shown in Figure 9.28.

[ZH
First

Transformation
Ml

Manipulation
Second

Transformation h-S
GF(2°) GF(2)̂̂ & GF{tf GF(2°)

Fig. 9.28. Block Diagram for 3-Stage MI Manipulation

First and last stages transform data from OF (2^) to OF(2"*) and vice versa.
The middle stage manipulates inverse MI in GF(2'^). The implementation of
the middle stage with two initial and final transformations is represented in
Figure 9.29 which depicts a block diagram of the three-stage inverse multiplier
represented by Equations 9.15 and 9.17. It is noted that the Data path for
encryption/decryption for this approach remains the same as the change in
this approach is introduced in the MI manipulation.

Fig. 9.29. Three-stage to Compute Multiplicative Inverse in Composite Fields

9.5 AES Implementations on FPGAs 281

The circuit shown in Figure 9.30 and Figure 9.31 present a gate level
implementation of the aforementioned strategy.

GF^^}nultipller GF(2ymultiplier

Fig. 9.30. GF{2^f and GF{2^) Multipliers

Fig. 9.31. Gate Level Implementation for x^ and Xx

The architecture is implemented on Xilinx VirtexE FPGA devices (XCV2600BEG)
and occupies 12,270 CLB shces (48%), 386 I/O blocks (48%). It runs at 24.5
MHz and throughput achieved is 3136 Mbits/s. The increment on CLB slices
utilized for this design is due to the manipulation for MI instead of using
BRAMs. The increased design complexity causes the throughput to decrease
when compared against the first design.

9.5.5 AES Encryptor/Decryptor, Encryptor, and Decryptor Cores
Based on Modified M C / I M C

Three AES cores are presented in this Section. First design is an encryp-
tor/decryptor core based on the ideas discussed in Section 9.4.2 for MC/IMC
implementations. The second and third designs implement encryption and de­
cryption paths separately for that design. There are two main reasons for the

282 9. Architectural Designs For the Advanced Encryption Standard

separate implementation of encryption and decryption paths. First, to real­
ize the effects of the modifications introduced in MC/IMC transformations.
Second, most of reported AES implementations are either encryptor cores or
encryptor/decryptor cores and few attention has been put to decryptor only
cores.

Encryptor/Decryptor Core

This architecture reduces the large difference between the encryption/decryption
time by exploiting the ideas explained in Section 9.4.2 for MC/IMC transfor­
mations. For this design, BS/IBS implementations are made by storing pre-
computed MI values in FPGA's memory modules (BRAMs) with separate
implementation of AF/IAF as explained in Section 9.5.4. The MC and ARK
are combined together for encryption and a small modification ModM is ap­
plied before MC-f ARK to get IMC operation as shown in Figure 9.32. Two
multiplexers are used to switch the data path for encryption and decryption.

DEC
ISR lAF /

^ HKi—rf"°
MC + ARK \-^ OUT

Fig. 9.32. AES Algorithm Encryptor/Decryptor Implementation

The data path for both encryption and decryption is, therefore, as follows:

Encryption', MI-> AF-> SR-> MC-> ARK
Decryption: ISR-> IAF-> MI-> M o d M ^ MC-> ARK

This AES encryptor/decryptor core occupies 80 BRAMs (43%), 386 I/O
Blocks (48%) and 5677 sHces (22.3%) by implementing on Xilinx VirtexE
FPGA devices (XCV812BEG). It uses a system clock of 34.2 MHz and the
data is processed at the rate of 4121 Mbits/sec. This is a fully pipehne archi­
tecture optimized for both time and space that performs at high speed and
consumes less space.

Encryptor Core

It is a fully pipeline AES encryptor core. As it was already mentioned, the
encryptor core implements the encryption path for AES encryptor/decryptor
core explained in the last Section. The critical path for one encryption round
is shown in Figure 9.33.

For BS step, pre-computed values of the S-Box are directly stored in the
memories (BRAMs), therefore, AF transformation is embedded into BS. For

9.5 AES Implementations on FPGAs 283

PLMN-TEXT-»>| BS I SR I 1 MC | ARK [- • CIPHER-TEXT

Fig. 9.33. The Data Path for Encryptor Core Implementation

the sake of symmetry, BS and SR steps are combined together. Similarly MC
and ARK steps are merged to use 4-input/l-output CLB configuration which
helps to decrement circuit time delays. The encryption process starts from
the first clock cycle as the round-keys are generated in parallel as described
in Section 9.5.2. Encrypted blocks appear at the output 11 clock cycles after,
when the pipeline got filled. Once the pipeline is filled, the output is available
at each consecutive clock cycle.

The encryptor core structure occupies 2136 CLB sHces(22%), 100 BRAMs
(35%) and 386 I/O blocks (95%) on targeting Xilinx VirtexE FPGA devices
(XCV812BEG). It achieves a throughput of 5.2 Gbits/s at the rate of 40.575
MHz. A separated realization of this encryptor core provide a measure of tim­
ings for encryption process only. The results shows huge boost in throughput
by implementing the encryptor core separately.

Decryptor Core

It is a fully pipeline decryptor core which implements the separate critical
path for the AES encryptor/decryptor core explained before. The critical path
for this decryptor core is taken from Figure 9.32 and then modified for IBS
implementations. The resulting structure is shown in Figure 9.34.

CIPHER-TEXTH ' ISR IBS

IMC
f

ModM
N

MC ARK ' PLAIN-TEXT

Fig. 9.34. The Data Path for Decryptor Core Implementation

The computations for IBS step are made by using look-up tables and pre-
computed values of inverse S-Box are directly stored into the memories
(BRAMs). The lAF step is embedded into IBS step for symmetric reasons
which is obtained by merely rewiring the register contains. The IMC step
implementation is a major change in this design, which is implemented by
performing a small modification ModM before MC step as discussed in Sec­
tion 9.4.2. The MC and ARK steps are once again merged into a single module.

The decryption process requires 11 cycles to generate the entire round
keys, then 11 cycles are consumed to fill up the pipeline. Once the pipeline is
filled, decrypted plaintexts appear at the output after each consecutive clock
cycle. This decryptor core achieves a throughput of 4.95 Gbits/s at the rate of
38.67 MHz by consuming 3216 CLB slices(34%), 100 BRAMs (35%) and 385

284 9. Architectural Designs For the Advanced Encryption Standard

I/Os (95%). The implementation of decryptor core is made on Xilinx VirtexE
FPGA devices (XCV812BEG).

A comparison between the encryptor and decryptor cores reveals that there
is no big difference in the number of CLB slices occupied by these two de­
signs. Moreover, the throughput achieved for both designs is quite similar. The
decryptor core seems to be profited from the modified IMC transformation
which resulted in a reduced data path. On the other hand, there is a signifi­
cant performance difference between separated implementations of encryptor
and decryptor cores against the combination of a single encryptor/decryptor
implementation.

We conclude that separated cores for encryption and decryption provide
another option to the end-user. He/she can either select a large FPGA de­
vice for combined implementation or prefer to use two small FPGA chips
for separated implementations of encryptor and decryptor cores, which can
accomplish higher gains in throughput.

Table 9.3. Specifications of AES FPGA implementations

Sec. 9.5.4 [308]
Sec. 9.5.4 [308]
Sec. 9.5.5 [297]
Sec. 9.5.3 [311]
Sec. 9.5.3 [311]
Sec. 9.5.5 [307]
Sec. 9.5.5 [306]

ICore

E/D
E/D
E/D

E
E
E

1 ^

Type

P
P
P
IL
P
P
P

Device
(XCV)
2600E
2600E
2600E
812E
812E
812E
812E

BRAMs

80

100

100
100
100

CLB(S)
Slices
6676
13416
5677
2744
2136
2136
3216

Throughput
Mbits/s (T)

3840
3136
4121
258.5
5193
5193
4949

T/S

0.58
0.24
1.73
0.09
2.43
2.43
1.54

9.5.6 Review of This Chapter Designs

The performance results obtained from the designs presented throughout this
chapter are summarized in Table 9.3.

In Section 9.5.4 we presented two encryptor/decryptor cores. The first
one utihzed a Look-Up Table approach for performing the BS/IBS transfor­
mations. On the contrary, the second encryptor/decrpytor core computed the
BS/IBS transformations based on an on-fly architecture scheme in GF(2'^) and
GF(2^)^ and does not occupy BRAMs. The penalty paid was on an increment
in CLB shces.

The encryptor/decryptor core discussed in Section 9.5.5 exhibits a good
performance which is obtained by reducing delay in the data paths for
MC/IMC transformations, by using highly efficient memories BRAMs for
BS/IBS computations, and by optimizing the circuit for long delays.

The encryptor core design of Section 9.5.3 was optimized for both area/time
parameters and includes a complete set-up for encryption process. The user-

9.6 Performance 285

key is accepted and round-keys are subsequently generated. The results of
each round are latched for next rounds and a final output appears at the
output after 10 rounds. This increases the design complexity which causes
a decrement in the throughput attained. However this design occupies 2744
CLB shces, which is acceptable for many appHcations.

Due to the optimization work for reducing design area, the fully pipeline
architecture presented in Sections 9.5.3 and 9.5.5 consumes only 2136 CLB
slices plus 100 BRAMs. The throughput obtained was of 5.2 Gbits/s. Finally,
the decryptor core of (Sec. 9.5.5) achieves a throughput of 4.9 Gbits/s at the
cost of 3216 CLB shces.

9.6 Performance

Since the selection of new advanced encryption standard was finalized on Oc­
tober, 2000, the literature is replete with reports of AES implementations on
FPGAs. Three main features can be observed in most AES implementations
on FPGAs.

1. Algorithm's selection: Not all reported AES architectures implement
the whole process, i.e., encryption, decryption and key schedule algo­
rithms. Most of them implement the encryption part only. The key sched­
ule algorithm is often ignored as it is assumed that keys are stored in the
internal memory of FPGAs or that they can be provided through an exter­
nal interface. The FPGA's implementations at [102, 83, 63] are encryptor
cores and the key schedule algorithm is only implemented in [63]. On the
other hand the AES cores at [223, 366, 357] implement both encryption
and decryption with key schedule algorithm.

2. Design's strategy: This is an important factor that is usually taken
based on area/time tradeoffs. Several reported AES cores adopted various
implementation's strategies. Some of them are iterative looping (XL) [102],
sub-pipeline (SP) [83], one-round implementation [63]. Some fully pipeline
(PP) architectures have been also reported in [223, 366, 357].

3. Selection of FPGA: The selection of FPGAs is another factor that in­
fluences the performance of AES cores. High performance FPGAs can be
efficiently used to achieve high gains in throughput. Most of the reported
AES cores utilized Virtex series devices (XCV812, XCVIOOO, XCV3200).
Those are single chip FPGA implementations. Some AES cores achieved
extremely high throughput but at the cost of multi-chip FPGA architec­
tures [366, 357].

9.6.1 Other Designs

Comparing FPGA's implementations is not a simple task. It would be a fair
comparison if all designs were tested under the same environment for all im­
plementations. Ideally, performances of different encryptor cores should be

286 9. Architectural Designs For the Advanced Encryption Standard

compared using the same FPGA, same design's strategies and same design
specifications.

In this Section a summary of the most representative designs for AES
in FPGAs is presented. We have grouped them into four categories: speed,
compactness, efficiency, and other designs.

Table 9.4. AES Comparison: High Performance Designs

Author

Good et al.
Good et al.

ll3l
113

Zambreno et al.[400]
Saggese et al.[305]
Standaert et al.[346J
Jarvinen et al.[157]

Core

ETD
E/D

E
E
E
E

Type

" ~ P ~
P
P
P
P
P

Device

XC3S2000-5
XCV2000e-8
XC2V4000

XCVE2000-8
VIRTEX3200E

XCVlOOOe-8

Mode

"EUB"
E C B

EOB
ECB
ECB
ECB

Slices
(BRAMs)
17425(0)
16693(0)
16938(0)

5819(100)
15112(0)
11719(0)

(Mbps)
25107
23654
23570
20,300
18560
16500

T / A

1.44
1.41
1.39
1.09
1.22
1.40

* Throughput

In the first group, shown in Table 9.4, we present the fastest cores re­
ported up to date. Throughput for those designs goes from 16.5 Gbps to 25.1
Gbits/s. To achieve such performances designers are forced to utihze pipelined
architectures and, clearly, they need large amounts of hardware resources.

Up to this book's publication date, the fastest reported design achieved
a throughput of 25.1 Gbits/s. It was reported in [113] and it applies a sub-
pipehning strategy. The design divides BS transformation in four steps by
using composite field computation. BS is expressed in computational form
rather than as a look-up table. By expressing BS with composite field arith­
metic, logic functions required to perform GF(2^) arithmetic are expressed
in several blocks of GF(2^) arithmetic. That allows obtaining a sort of sub-
pipelining architecture in which each single round is further unfolded into
several stages with lower delays. This way, BS is divided into four subpipeline
stages. As a result, there is a single stage in the first round, each middle
round is composed of seven stages, while the final round, in which MC is
not required, takes six stages. To keep balanced stages with similar delays, a
pipeline architecture with a depth of 70 stages was developed. After 70 clock
cycles once that the pipeline is full, each clock cycle delivers a ciphered block.

In the second group shown in Table 9.5 compact designs are shown. The
bigger one in [297] takes 2744 slices without using BRAMs. The most compact
design reported in [113] needs only 264 slices plus 2 BRAMS and it has a 2.2
Mbps throughput. In order to have a compact design it is necessary to have
an iterative (loop) design. Since the main goal of these designs is to reduce
hardware area, throughputs tend to be low. Thus, we can see that in general,
the more compact a design is the lower its throughput.

9.6 Performance 287

Table 9.5. AES Comparison: Compact Designs

Author

Good et al.[113]
Amphion CS5220 [7]
Weaver et al.[375]
Chodowick et al. 52
Chodowick et al.[52]
Rouvry et al.[302J
Saqib [297J

Core

E
E
E
E
E
E
E

Type

IL
IL
IL
IL
IL
IL
IL

Device

XCS2S15-6
XVE-8

XVE600-8
XC2530-6
XC2530-5
XC3S50-4
XCV812E

Mode

ECB
ECB
E O B

ECB
ECB
E O B

EOB

Slices
(BRAMs)

264(2)
421(4)

460(10)
522(3)
522(3)
1231(2)

2744

T*
(MbpsJ

2.2
290
690
166
139
87

258.5

T /A

.008
0.69
1.5

0.74
0.62
0.07
0.09

* Throughput

Since BS is the most expensive transformation in terms of area, the idea of
dividing computations in composite fields is further exploited in [113] to break
4-bit calculations into several 2-bit calculations. It is therefore a three stage
strategy: mapping the elements to subfields, manipulation of the substituted
value in the subfield and mapping of the elements back to the original field.
Authors in [113] explored as many as 432 choices of representation both, in
polynomial as well as normal basis representation of the field elements.

In the third group, a list of several designs is presented. We sorted the
designs included according to the throughput over area ratio as is shown in
Table 9.6^. That ratio provides a measure of efficiency of how much hardware
area is occupied to achieve speed gains. In this group we can find iterative as
well as pipelined designs. Among all designs considered, the design in [297]
only included the encryption phase and the most efficient design in [223]
reporting a throughput of 6.9 Gbps by occupying some 2222 CLE sfices plus
100 BRAMs for BS transformation. We stress that we have ignored the usage
of BRAMs in our estimations. If BRAMs are taken into consideration, then
the design in [346] is clearly more efficient than the one in [223].

The designs in the first three categories implement ECB mode only. The
fourth one, which is the shortest, reports designs with CTR and CBC feed­
back modes as shown in Table 9.7. Let us recall that a feedback mode requires
an iterative architecture. The design reported in [214] has a good through­
put/area tradeoff, since it takes only 731 slices plus 53 BRAMs, achieving a
throughput of 1.06 Gbps.

As we have seen, most authors have focused on encryptor cores, imple­
menting ECB mode only. There are few encryptor/decryptor designs reported.
However, from the first three categories considered, we classified AES cores ac­
cording to three different design criteria: a high throughput design, a compact
design or an efficient design.

"̂ In this figure of merit, we did not take into account the usage of specialized FPGA
functionality, such as BRAMs.

288 9. Architectural Designs For the Advanced Encryption Standard

Table 9.6

Author

McLoone et al. 1223]
Standaert et al.[346J
Saqib et al. [307]
Saggese et al,[305]
Amphion CS5230 17]
Rodriguez et al. [297]
Lopez et al [214]
Segredo et al. [325
Segredo et al. [325
Calder et al. [41
Labbe et al.[193
Gaj et al.[102J

Core

E
E
E
E
E

E/D
E
E
E
E
E
E

. AES Comparison: Efficient Designs

Type

P
P
P
IL
P
P
IL
IL
IL
IL
IL
IL

Device

XCV812E
VIRTEX2300E

XCV812E
XCVE2000-8

XVE-8
XCV2600E

Spartan 3 3s4000
XCV600E-8
XCV-100-4

Altera EPFIOK
XCVlOOO-4
XCVIOOO

Mode

ECB
ECB
ECB
ECB
ECB
ECB
ECB
ECB
ECB
ECB
ECB
ECB

Slices
(BRAMsl
2222(100)

542(10)
2136(100)

446(10)
573(10)

5677(100)
633(53)
496 lO)
496(10)

1584
2151(4)

2902

T*
XMbps)

6956
1450
5193
1000
1060
4121
1067
743
417

637.24
390

331.5

T/A

3.10
2.60
2.43
2.30
1.90
1.73
1.68
1.49
0.84
0.40
0.18
0.11

"Throughput

Table 9.7. AES Comparison: Designs with Othe

Author

Fu et al [100]
Charot et al.[49]
Lopez et al
Lopez et al

214
214

Bae et al [15]

Core

E
E
E
E
E

Type

IL
IL
IL
IL
IL

Device

XCV2V1000
Altera APEX

Spartan 3 3s4000
Spartan 3 3s4000

Altera Stratix

Mode

"CTR:
CTR
CBC
CTR

[CCMJ

r Modes of Operation

Slices
iBRAMs)
2415 (NA)

N/A
1031(53)
731(53)

5605(LC)

T*
(Mbps)

1490
512
1067
1067
285

T/A

0.68
N/A
1.03
1.45
NA

* Throughput

After having analyzed the designs included in this Section, we conclude
that there is still room for further improvements in designing AES cores for
the feedback modes.

9.7 Conclusions

A variety of different encryptor, decryptor and encryptor/decryptor AES cores
were presented in this Chapter. The encryptor cores were implemented both
in iterative and pipeline modes. Some useful techniques were presented for the
implementations of encryptor/decryptor cores, including: composite field ap­
proach for BS/IBS, look-up table method for BS/IBS, and modified MC/IJVIC
approach.

All the architectures described produce optimized AES designs with dif­
ferent time and area tradeoffs. Three main factors were taking into account
for implementing diverse AES cores.

9.7 Conclusions 289

• High performance: High performances can be obtained through the effi­
cient usage of fast FPGA's resources. Similarly, efficient algorithmic tech­
niques enhance design performance.

• Low cost solution: It refers to iterative architectures which occupy less
hardware area at the cost of speed. Such architectures accommodate in
smaller areas and consequently in cheaper FPGA devices.

• Portable architecture: A portable architecture can be migrated to most
FPGA devices by introducing minor modifications in the design. It pro­
vides an option to the end-user to choose FPGA of his own choice. Porta­
bility can be achieved when a design is implemented by using the standard
resources available in FPGA devices, i.e., the FPGA CLE fabric. A general
methodology for achieving a portable architecture, in some cases, implies
lesser performance in time.

For AES encryptor cores, both iterative and fully pipehne architectures
were implemented. The AES encryptor/decryptor cores accomplished the
BS/IBS implementation using two techniques: look-up table method and;
composite fields. The latter is a portable and low cost solution.

The AES encryptor/decryptor core based on the modified MC/IMC is
a good example of how to achieve high performance by using both efficient
design and algorithmic techniques. It is a single-chip FPGA implementation
that exhibits high performance with relatively low area consumption.

In short, time/area tradeoffs are always present, however by using efficient
techniques at both, design and algorithm level, the always present compromise
between area and time can be significantly optimized.

10

Elliptic Curve Cryptography

In this chapter we discuss several algorithms and their corresponding hard­
ware architecture for performing the scalar multiplication operation on elhp-
tic curves defined over binary extension fields GF{2^). By applying parallel
strategies at every stage of the design, we are able to obtain high speed im­
plementations at the price of increasing the hardware resource requirements.
Specifically, we study the following four diff"erent schemes for performing el-
hptic curve scalar multiplications,

• Scalar multiplication apphed on Hessian elliptic curves.
• Montgomery Scalar Multiplication apphed on Weierstrass elliptic curves.
• Scalar multiplication applied on Koblitz elliptic curves.
• Scalar multiplication using the Half-and-Add Algorithm.

10.1 Introduct ion

Since its proposal in 1985 by [179, 236], many mathematical evidences have
consistently shown that, bit by bit, Elhptic Curve Cryptography (ECC) offers
more security than any other major public key cryptosystem.

Prom the perspective of elliptic curve cryptosystems, the most crucial
mathematical operation is the elliptic curve scalar multiplication, which can
be informally stated as follows. Let /c be a positive integer and P a point
on an elliptic curve. Then we define elliptic curve scalar mutiplication as the
operation that computes the multiple Q = kP, defined as the point resulting
of adding P -f P -h . . . 4- P , k times. Algorithm 10.1 shows one of the most
basic methods used for computing a scalar multiplication, which is based on a
double-and-add algorithm isomorphic to the Horner's rule. As its name sug­
gests, the two most prominent building blocks of this method are the point

292 10. Elliptic Curve Cryptography

doubling and point addition primitives. It can be verified that the computa­
tional cost of Algorithm 10.1 is given as m — 1 point doubhngs plus an average
of ^^^^^^ point additions.

The security of elliptic curve cryptosystems is based on the intractability
of the Elliptic Curve Discrete Logarithm Problem (ECDLP) that can be for­
mulated as follows. Given an elliptic curve E defined over a finite field GF{p^)
and two points Q and P that belong to the curve, where P has order r, find a
positive scalar k G [1, r — 1] such that the equation Q — kP holds. Solving the
discrete logarithm problem over elliptic curves is believed to be an extremely
hard mathematical problem, much harder than its analogous one defined over
finite fields of the same size.

Scalar multiplication is the main building block used in all the three funda­
mental ECC primitives: Key Generation^ Signature and Verification schemes^

Although elliptic curve cryptosystems can be defined over prime fields,
for hardware and reconfigurable hardware platform implementations, binary
extension finite fields are preferred. This is largely due to the carry-free bi­
nary nature exhibit by this type of fields, which is a valuable characteristic
for hardware systems leading to both, higher performance and lesser area
consumption.

Many implementations have been reported so far [128, 334, 261, 333, 20,
311, 327, 46], and most of them utilize a six-layer hierarchical scheme such as
the one depicted in Figure 10.1. As a consequence, high performance imple­
mentations of elliptic curve cryptography directly depend on the efficiency in
the computation of the three underlying layers of the model.

The main idea discussed throughout this chapter is that each one of the
three bottom layers shown in Figure 10.1 can be implemented using parallel
strategies. Parallel architectures oflFer an interesting potential for obtaining a
high timing performance at the price of area, implementations in [333, 20, 339,
9] have explicitly attempted a parallel strategy for computing elliptic curve
scalar multiplication. Furthermore, for the first time a pipeline strategy was
essayed for computing scalar multiplication on a GF{P) elliptic curve in [122].

In this Chapter we present the design of a generic parallel architecture
especially tailored for obtaining fast computation of the elliptic curves scalar
multiplication operation. The architecture presented here exploits the inherent
parallelism of two elliptic curves forms defined over GF(2"^): The Hessian form
and the Weierstrass non-supersingular form. In the case of the Weierstrass
form we study three diflFerent methods, namely,

• Montgomery point multipHcation algorithm;
• The T operator applied on Koblitz elliptic curves and;
• Point multiplication using halving

1 Elliptic curve cryptosystem primitives, namely, Key generation, Digital Signature
and Verification were studied in §2.5

10.1 Introduction 293

Aplications ̂

Elliptic Curve
Protocols '

Elliptic Curve ^
Primitives ^

Elliptic Curve
Operations

Elliptic Curve
Arithmetic

e-Commerce Digital Money

Secure Communications

Diffie-Hellman Authentification

Key Generation SignA/erification

;y.in'-'.'.n];.r.-;l^ni'

; - - : v ; . y , H r ; , , ^-^HSK;
V - ' - '• . W

l^:--'-^J^:i'^'rr . y ^..rr..--..

;-^v-^-ir:---; ' , - .

-
, r , . l , - i , . , . - . ;

• ^

Fig. 10.1. Hierarchical Model for Elliptic Curve Cryptography

The rest of this Chapter is organized as follows. Section 10.2 briefly de­
scribe the Hessian form of an elliptic curve together with its corresponding
group law. Then, in Section 10.3 we describe Weierstrass elliptic curve in­
cluding a description of the Montgomery point multiplication algorithm. In
Section 10.4 we present an analysis of how the ability of having more than
one field multiplier unit can be exploited by designers for obtaining a high
parallelism on the elliptic curve computations. Then, In Section 10.5 we de­
scribe the generic parallel architecture for elliptic curve scalar multiplication.
Section 10.6 discusses some novels parallel formulations for the scalar mul­
tiplication on Koblitz curves. In Section 10.7 we give design details of a re-
configurable hardware architecture able to compute the scalar multiplication
algorithm using halving. Section 10.8 includes a performance comparison of
the design presented in this Chapter with other similar implementations pre­
viously reported. Finally, in Section 10.9 some concluding remarks are high­
lighted.

294 10. Elliptic Curve Cryptography

10.2 Hessian Form

Chudnvosky et al. presented in [53] a comprehensive study of formal group
laws for reduced elliptic curves and Abelian varieties. In this section we discuss
the Hessian form of elliptic curves and its corresponding group law followed
by the Weierstrass elliptic curve form.

The original form for the law of addition on the general cubic was first
developed by Cauchy and was later simplified by Sylvester-Desboves [316, 66].
Chudnovsky considered this particular elliptic curve form: ^^By far the best and
the prettiest'^ [63]. In modern era, the Hessian form of Elliptic curves has been
studied by Smart and Quisquater [335, 160].

Let P{x) be a degree-m polynomial, irreducible over GF(2). Then P{x)
generates the finite field ¥q = GF{2'^) of characteristic two. A Hessian
elliptic curve E{¥q) is defined to be the set of points (x,y,z) e GF{2'^) x
GF{2'^) that satisfy the canonical homogeneous equation,

x^ -\-y^ + z^ = Dxyz (10.1)

Together with the point at infinity denoted by O and given by (1 ,0 , -1) .
Let P — {xi^yi^zi) and Q = {x2,y2yZ2) be two points that belong to

the plane cubic curve of Eq. 10.1. Then we define ~P = {yi,xi,zi) and
P + Q = {x3,y3,Z3) where,

Xs = y\^X2Z2-y2^XiZi

2/3 = xi'^y2Z2 - X2^yizi (10.2)
Z3 = zi'^y2X2 - Z2^yixi

Provided that P ^ Q, The addition formulae of Eq. (10.2) might be paral-
leHzed using 12 field multipHcations as follows [335],

Al == yiX2 \2 = xiy2 A3 ^ X1Z2
A4 = Z1X2 A5 = 2:1̂ 2 Ae = Z2yi
si = AiAe 52 = A2A3 S3 = A5A4 (10.3)
tl = A2A5 t2 = A1A4 t^ = XQXS
X3 = Si- ti y3 = S2- t2 Z3 = S3- ^3

Whereas the formulae for point doubling are giving by

^3 = yi {zi^ - xi^);
2/3 ==xi{yi^-zA- (10.4)
Z3 = zi {xi^ -yi^).

Where 2P = {x3yy3jZ3). The doubhng formulae of Eq. (10.4) can be also
paralleHzed requiring 6 field multiplications plus three field squarings for their
computation. The resulting arrangement can be rewritten as [335],

Ai^a^i^ A2 = 2/î >^3 = zi'^\
A4 = xiAi A5 = yiA2 Ae =-2;iA3; fio 5")
A7 = A5 — Ae As = Ae — A4 Ag = A4 — A5;
X2 = yiX8 y2=Xi\7 Z2=^ZI\Q]

10.2 Hessian Form 295

Algorithm 10.1 Doubling & Add algorithm for Scalar Multiplication: MSB-
First
Require: k = {km-ukm-2 ,fci,/co)2 with kn-i = 1, P{x,y,z) e E{GF{2'^))
Ensure: Q = kP
1
2
3
4;
5:
6

for i = m — 2 downto 0 do
Q = 2 • 0; /*point doubling*/
if fci = 1 then

Q = Q^P'^ /*point addition*/
end if

end for
Return Q

By implementing Eqs. (10.3) and (10.5), one can obtain the two building
blocks needed for the implementation of the second layer shown in Figure 10.1.
Hence, provided that those two blocks are available, one can compute the third
layer of Figure 10.1 by using the well-known doubhng and add Algorithm 10.1.
That sequential algorithm needs an average of ^^^^ point additions plus m
point doublings in order to complete one scalar multiplication computation.

Alternatively, we can use the algorithm of Figure 10.2 that can poten­
tially be implemented in parallel since in this case the point addition and
doubling operations do not show any dependencies between them. Therefore,
if we assume that the algorithm of Figure 10.2 is implemented in parallel, its
execution time in average will be of that of approximately y point additions
plus ^ point doubhngs^.

In Subsection 10.4 we discuss how to obtain an efficient parallel-sequential
implementation of the second and third layers of the model of Figure 10.1.

Algorithm 10.2 Doubhng & Add algorithm for Scalar Multiphcation: LSB-
First
Require: /c = {km-i,km-2 ,ki,ko)2 with kn-i = 1, P{x,y,z) e E{GF{2'^))
Ensure: Q = kP
1
2:
3
4
5
6
7

Q = l ; i ^ = P ;
for i = 0 to m — 1 do

if /ci = 1 then
0 = 0 + i?; /*point addition*/

end if
R=:2R; /*point doubling*/

end for
Return Q

Because of the inherent parallelism of this algorithm, ^ point doublings compu­
tations can be overlapped with the execution of about y point additions.

296 10. Elliptic Curve Cryptography

10.3 Weierstrass Non-Singular Form

As it was already studied in Section 4.3, a Weierstrass non-supersingular ellip­
tic curve E{¥q) is defined to be the set of points {x,y) G GF{2'^)x GF{T^)
that satisfy the affine equation,

y^ + xy ^ x^ -f ax^ 4- 6, (10.6)

Where a and h € Fg,6 ^ 0, together with the point at infinity denoted by
O, The Weierstrass elliptic curve group law for affine coordinates is given as
follows.

Let P — (xi^yi) and Q = (0:2,2/2) be two points that belong to the curve
10.6 then -P = {xuxi-hyi). For all P on the curve P H-O - O + P = P . If
Q i^ -P, then P -{-Q - (x3,2/3), where

^3 - Wf + 4 P = Q '̂"-̂ ^

ys \xUixi + ^)x3+X3 P = Q '̂""-"^

From Eqns. (10.7) and (10.8) it can be seen that for both of them, point
addition (when P :^ -Q) and point doubling (when P — Q), the computations
for (x3,y3) require one field inversion and two field multiplications"^.

Notice also (a clever observation first made by Montgomery) that the x-
coordinate of 2P does not involve the y-coordinate of P.

10.3.1 Projective Coordinates

Compared with field multiplication in affine coordinates, inversion is by far
the most expensive basic arithmetic operation in GF(2^) . Inversion can be
avoided by means of projective coordinate representation. A point P in pro­
jective coordinates is represented using three coordinates X, y , and Z. This
representation greatly helps to reduce internal computational operations^. It
is customary to convert the point P back from projective to affine coordinates
in the final step. This is due to the fact that affine coordinate representation
involves the usage of only two coordinates and therefore is more useful for
external communication saving some valuable bandwidth.

In standard projective coordinates the projective point (X:Y:Z) with Z^ 0
corresponds to the affine coordinates x = X/Z and y = Y/Z. The projective
equation of the elliptic curve is given eis:

Y^Z -h XYZ = X^-\- aX'^Z + hZ^ (10.9)

^ The computational costs of field additions and squarings are usually neglected.
"* Projective Coordinates were studied in more detail in §4.5

10.3 Weierstrass Non-Singular Form 297

10.3.2 The Montgomery Method

Let P = {xi,yi) and Q = (^2,^2) be two points that belong to the curve of
Equation 10.6. Then P -\- Q = (0:3,2/3) and P — Q = (2:4, ̂ 4), also belong to
the curve and it can be shown that X3 is given as [128],

x,=x,^ - ^ + f - ^ V 5 (10-10)
Xi 4-^2 \Xi -\-X2)

Hence we only need the x coordinates of P , Q and P — Q to exactly determine
the value of the x-coordinate of the point P -\- Q. Let the x coordinate of P
be represented by X/Z. Then, when the point 2P — (X2, —, -̂ 2) is converted
to projective coordinate representation, it becomes [211],

X2 = X^-^b'Z'^]
Z2 = X^- Z 2 y2, (10.11)

The computation of Eq. 10.11 requires one general multiplication, one
multiplication by the constant b, five squarings and one addition. Fig. 10.3
is the sequence of instructions needed to compute a single point doubling
operation Mdouble{Xi, Zi) at a cost of two field multiplications.

Algorithm 10.3 Montgomery Point Doubling

Require: P = (Xi, - ,Z i) € £;(GF(2"')), c such that c^ = b
Ensure: P = 2 • P / * Mdouble(Xi, Zi)*/
1: T = Xf]
2: M = c-Zf-
3: Z2 = T- Zl]
4: M = M^;
5: T = T^;
6: X2=T + M;
7: Return (^2,^2)

In a similar way, the coordinates of P + Q in projective coordinates can
be computed as the fraction X3/Z3 and are given as:

Z3--
X3--

= (X1-
= x- Z:

Z2+X-^
, + (Xi •

, . Z i
Z2)-

r-,
{X2

The required field operations for point addition of Eq. 10.12 are three gen­
eral multiplications, one multiplication by x, one squaring and two additions.
This operation can be efficiently implemented as shown in Fig. 10.4.

298 10. Elliptic Curve Cryptography

Algorithm 10.4 Montgomery Point Addition
R e q u i r e : P = (Xi, - , Zi) , Q = (X2, - , Z2) G E{GF2
E n s u r e : P = P + Q / * Madd(Xi, Zi, X2, Z2)*/

1: M = (Xi -Z2) + (Z i -X2) ;
2: Z3 - M^;
3
4
5
6

N={Xi-Z2)-{Zi'X2y,
M = X' Z3]
X3 = M + iV;
R e t u r n {Xs^Zs)

Montgomery Point Multiplication

A method based on the formulas for doubHng (from Eq. 10.11) and for addi­
tion (from Eq. 10.12) is shown in Fig. 10.5 [211]. Notice that steps 2.2 and
2.3 are formulae for point doubling {Mdouble) and point addition (Madd)
from Figs. 10.3 and 10.4 respectively. In fact both Mdouble and Madd opera­
tions are executed in each iteration of the algorithm. If the test bit ki is 4 ' ,
the manipulations are made for Madd{Xi^ Zi, X2, Z2) and Mdouhle{X2^ Z2)
(steps 5-6) else Madd{X2,Z2,Xi,Zi) and Mdouble{Xi,Zi), i.e., Mdouble
and Madd with reversed arguments (step 8-9).

The approximate running time of the algorithm shown in Fig. 10.5 is 6mM
+ (1 / + lOM) where M represents a field multiplication operation, m stands
for the number of bits and / corresponds to inversion. It is to be noted that the
factor (1 / -f lOM) represents time needed to convert from standard projective
to affine coordinates. In the next Subsection we explain the conversion from
SP to affine coordinates and then in Subsection 10.4, we discuss how to obtain
an efficient parallel implementation of the above algorithm.

Conversion from Standard Projective (SP) to Affine Coordinates

Both, point addition and point doubling algorithms are presented in standard
projective coordinates. A conversion process is therefore needed from SP to
affine coordinates. Referring to the algorithm of Fig. 10.5, the corresponding
affine x-coordinate is obtained in step 3:

Whereas the affine representation for the y-coordinate is computed by step 4:

2/3 = (x + Xi/Zi)[iXi -f xZi){X2 + XZ2) + {x^ + y){ZiZ2)]{xZiZ2)-' + y.

Notice also that both expressions for xs and 1/3 in affine coordinates include
one inversion operation. Although this conversion procedure must be per­
formed only once in the final step, still it would be useful to minimize the
number of inversion operations as much as possible. Fortunately it is possi­
ble to reduce one inversion operation by using the common operations from

10.3 Weierstrass Non-Singular Form 299

A l g o r i t h m 10 .5 Montgomery Point Multiplication

Require: k = (/cn-i,/cn-2 ,/ci,/co)2 with kn-i = 1, P{x,y,z) E E{GF2'^)
Ensure: Q = kP

1: Xi = cc;, Zi = 1;
2: X2 = x^ + 6;, Z2 = x^;
3: for i = n — 2 downto 0 do
4: if ki = 1 then
5: Marfd(Xi,Zi ,X2,Z2);
6: Mdouble\x2,Z2)\
7: else
8: Madci(X2,Z2,Xi,Zi) ;
9: Mdouble{Xi,Zi)-

10: end if
11: end for
12: X3 = X i / Z i ;
13: y3 = {x + Xi/Zi)[{Xi + xZi)(X2 + xZ2)-\- {x^ + 2/)(2'iZ2)](2:^1^2)-' -f 2/;
14: Return (3:3,2/3)

the conversion formulae for bo th x and ^-coordinates. A possible sequence of
the instructions from SP to afRne coordinates is given by the algori thm in
Fig. 10.6.

A l g o r i t h m 10 .6 S tandard Projective to Affine Coordinates
Require: P = (X i ,Z i) , Q = {X2, Z2), P{x,y) G E{GF2'^)
Ensure: (0:3,2/3) /* affine coordinates */

1: Ai = Zi X Z2;
2: \2 = Zi X x\
3: A3 = A2 + Xi\
4: A4 = Z2 X x\
5: A5 = A4 4- Xi\
6: Ae = A4 + X2\
7: A7 = A3 X Ae;
8: As = x"^ -\-y\
9: A9 = Ai X As;

10: Aio = AT + A9;
11: All = a: X Ai;
12: A12 = mferse(Aii) ;
13: Ai3 = A12 X Aio;
14: 3:3 = Ai4 = A5 X A12;
15: Ai5 = Ai4 + x\
16: A16 = Ai5 X A13;
17: 2/3 = A16 -\-y\
18: Return (0:3,2/3)

300 10. Elliptic Curve Cryptography

The coordinate conversion process makes use of 10 muItipHcations and
only 1 inversion ignoring addition and squaring operations.

The algorithm in Fig. 10.6 includes one inversion operation which can be
performed using Extended Euclidean Algorithm or Fermat's Little Theorem
(FLT)^

10.4 Parallel Strategies for Scalar Point Multiplication

As it was mentioned in the introduction Section, parallel implementations
of the three underlying layers depicted in Figure 10.1 constitutes the main
interest of this Chapter. Several parallel techniques for performing field arith­
metic, i.e. the first Layer of the model, were discussed in Chapter 5. However,
hardware resource limitations restrict us from attempting a fully parallel im­
plementation of second and third layers. Thus, a compromising strategy must
be adopted to exploit parallelism at second and third layers.

Let us suppose that our hardware resources allow us to accommodate up
to two field multiplier blocks. Under this scenario, the Hessian form point
addition primitive (0:3 '. ys - Z3) = {xi : yi : zi) -\- {x2 ' y2 - ^2) studied in
Section 10.2 can be accomplished in just six clock cycles as^.

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 6.

Ai = y i • X2;

A3 = Xi - Z2]

A5 = zi - ^ 2 ;

Si = Ai • Ae;

S3 = A5 • A4;

^2 = Ai • A4;

a : 0:3 = Si - t i ; y3 = S2- t2

A2 = a;i • 2/2;

X4 = Zi' X2\

Ae == Z2 -yw
S2 = A2 • A3;

ti = A2 • A5;

^3 — Ae • A3;

^3 = S3 - ^ 3 ;

Similarly, the Hessian point doubling primitive, namely, 2{x\ \ y\ \ z\) =
(x2 '- y2 '• Z2) can be performed in just 3 cycles as*̂ .

Cycle 1 : Ai = a î̂ ; A2 =-yi^; A3 == 2̂ 1̂ ;
Cycle l . a : A4 = xi • Ai; A5 = ?/i • A2;
Cycle 2 : Ae = ^1 • A3; Z2 = Zi • (A4 - A5);
Cycle 2.a : A7 = A5 - Ae; As = Ae - A4;
Cycle 3 : X2 = yi' As; y2 = ^1 • A7;

The same analysis can be carried out for the Montgomery point multipli­
cation primitives. The Montgomery point doubling primitive 2(Xi : - \ Zi) =

^ Efficient multiplicative inverse algorithms were studied in §6.3.
^ Because of their simplicity, the arithmetic operations of Cycle 6.a can be com­

puted during the execution of Cycle 6.
^ Due to the simplicity of the arithmetic operations included in cycles 1 and 2.a

above, those operations can be merged with the operations performed in cycles
l.a and 2, respectively.

10.4 Parallel Strategies for Scalar Point Multiplication 301

{X2 : - : Z2) when using two multiplier blocks can be accomplished in just
one clock cycle as,

Cycle 1: T = Xf; M = c • Z?; Z2 - T • Z?;
Cycle l . a : X 2 = r 2 + M2; ^^^'^^^

Whereas, the Montgomery point addition primitive {Xi : — : Zi) = {Xi : — :
Zi) 4- {X2 : — : Z2) when using two multiplier blocks can be accomplished in
just two clock cycles as,

Cycle 1 : ii = (Xi • Z2); 2̂ - (^1 • ^2);
Cycle l .a : M = 1̂ 4- 2̂; ^1 - M^;
Cycle 2 : N = ti -12; M = x - Zi] ^ ^^
Cycle 2.a: Xi ^ M-i-N]

If two multiplier blocks are available, we can choose whether we want to
parallehze the second or the third Layer of the model shown in Fig. 10.1.

Algorithm 10.5, i.e. the third Layer of Fig. 10.1, can be executed in paral­
lel by assigning one of our two multiplier blocks to compute the Montgomery
point addition of Algorithm 10.4, and the other to perform the Montgomery
point doubling of Algorithm 10.3. Then, the corresponding computational cost
of point addition and point doubhng primitives become of four and two field
multiplications, respectively. In exchange, steps 5-6 and 8-9 of Algorithm 10.5
can be performed in parallel. Since those steps can be performed concurrently
their associated execution time reduces to about 4 field multiplications. There­
fore, the execution time associated to Algorithm 10.5 would be equivalent to
4m field multiphcations^.

Alternatively, the second layer can be executed in parallel by using our two
multiplier blocks for computing point addition and point doubling in just 2
and 1 cycles, as it was shown in Eqs.(10.14) and (10.13), respectively. However,
this decision will force us to implement Algorithm 10.5 (corresponding to the
third layer of Fig. 10.1) in a sequential manner. Therefore, the execution time
associated to Algorithm 10.5 would be equivalent to 3m field multiplications.

If our hardware resources allow us to implement up to four field multiplier
blocks, then we can execute both, the second and third Layers of Fig. 10.1 in
parallel. In that case the execution time of AlgorithmlO.5 reduces to just 2m
field multiplications.

It is noticed that this high parallelism achieved by the Montgomery point
multiplication method cannot be achieved by the Hessian form of the Elliptic
curve.

Table 10.1 presents four of the many options that we can follow in order to
parallehze the computation of scalar point multiphcation. The computational
costs shown in Table 10.1 are normalized with respect to the required number

Since we can execute concurrently the procedures Mdouble and Madd the exe­
cution time of the former is completely overlapped by the latter.

302 10. Elliptic Curve Cryptography

Table 10.1. GF{2'^) Elliptic Curve Point Multiplication Computational Costs

Strategy
2nd
Layer
Sequential
Sequential
Parallel
Parallel

3rd
Layer
Sequential
Parallel
Sequential
Parallel

Req. No.
of Field
Mults.

1
2
2
4

EC Operation Cost
Hessian Form

Doubling] Addition
6 M
6 M
3 M
3 M

1 2 M
1 2 M

6 M
6 M

Equivalent
Time
Costs

12mM
9m M
QmM

ImM

EC Operation Cost
Montgomery Algorithm
DoublingI Addition

2 M
2 M
I M

M

4 M
4 M
2 M
2 M

Equivalent
Time
Costs

QmM
Am,M
3mM

2m M

of field multiplication operations (since the computation time of squaring
operations is usually neglected in arithmetic over GF(2"^)).

Notice that the computation times of the Hessian form has been estimated
assuming that the scalar multiplication has been accomplished by executing
Algorithm 10.2. For instance, the execution time of the Hessian form in the
fourth row of Table 10.1 has been estimated as follows,

rm. ^ . ^ T-. r̂ '^ r^ A 3m , ^ 6m , ^ 9m , ^
Time Cost = —PD + —PA = —-M 4- — - M = —-M.

2 2 2 2 2

Due to area restrictions we can afford to accommodate up to two fully par­
allel field multipliers in our design. Thus, we can afford both, second and third
options of Table 10.1. However, third option is definitely more attractive as
it demonstrates better timing performance at the same area cost. Therefore,
and as it is indicated in the third row of Table 10.1, the estimated computa­
tional cost of our elliptic curve Point multiplication implementation will be of
6m field multiplications in Hessian form. It costs only 3m field multiplications
using the Montgomery algorithm for the Weierstrgiss form.

In the next Section we discuss how this approach can be carried out on
hardware platforms.

10.5 Implementing scalar multiplication on
Reconfigurable Hardware

Figure 10.2 shows a generic structure for the implementation of elliptic curve
scalar multiplication on hardware platforms. That structure is able to imple­
ment the parallel-sequential approach listed in the third row of Table 10.1,
assuming the availability of two GF(2^) multiplier blocks.

In the rest of this Section, it is presupposed that two fully-parallel GF(2^^^)
Karatsuba-Ofman field multipliers can be accommodated on the target FPGA
device.

The architecture in Figure 10.2 is comprised of four classes of blocks:
field multipliers. Combinational logic blocks and/or finite field arithmetic (i.e.
squaring, etc.), Blocks for intermediate results storage and selection (i.e. reg­
isters, multiplexers, etc.), and a Control unit (CU).

10.5 Implementing scalar multiplication on Reconfigurable Hardware 303

MUL
GF(2")̂

U^^lJ L

f

reg
reg

reg

reg
reg

1 reg

—h"

HJJ
—fT

(̂2-") r i — i J n L

*C.L = Combinational Logic

I—I reg

reg

H reg

reg
—I reg

j^2-{

M3i

3L
Control Unit

Fig. 10.2. Basic Organization of Elliptic Curve Scalar Implementation

A Control Unit is present in virtually every hardware design. Its main
responsibility is to control the dataflow among the different design's modules.
Design's main architecture, on the other hand, is responsible of computing all
required arithmetic/logic operations. It is frequently called Arithmetic-Logic
Unit (ALU).

10.5.1 Arithmetic-Logic Unit for Scalar Multiplication

Figure 10.3 shows the arithmetic-logic unit designed for computing the scalar
multiplication algorithms discussed in the preceding Sections. It is a generic
FPGA architecture based on the parallel-sequential approach for kP compu­
tations discussed before.

In order to implement the memory blocks of Figure 10.2, fast access
FPGA's read/write memories BlockRAMs (BRAMs) were used. As it was
studied in Chapter 3, a dual port BRAM can be configured as a two sin­
gle port BRAMs with independent data access. This special feature allows
us to save a considerable number of multiplexer operations as the required
data is independently accessible from any of the two available input ports.
Hence, two similar BRAMs blocks (each one composed by 12 BRAMs) pro­
vide four operands to the two multiplier blocks simultaneously. Since each
BRAM contains 4k memory cells, two BRAM blocks are sufficient. The com­
bination of 12 BRAMs provides access to a 191-bit bus length. All control
signals (read/write, address signals to the BRAMs and multiplexer enable
signals) are generated by the control unit (CU). A master clock is directly fed
to the BRAM block which is afterwards divided by two, serving as a master
clock for the rest of the circuitry. The external multiplexers apply pre and post
computations (squaring, XOR, etc.) on the inputs of the multipliers whenever
they are required.

304 10. Elliptic Curve Cryptography

M1

MUL
GF(2"^)

^ tl
MUL

GF(2'^) M^
a

f=ts T2=C

T1=X

Xi

Zi

J-i

LK-S4

Lr^5!n-[j
N-So

V

T2=C

Ti=x
Xi

Yi
Zi

IP
M-Sa

31 M2

Control Unit

Fig. 10.3. Arithmetic-Logic Unit for Scalar Multiplication on FPGA Platforms

Let us recall that we need to perform an inversion operation in order to
convert from standard projective coordinates to affine coordinates ^. A squarer
block "Sqrinv" is especially included for the sole purpose of performing that
inversion. As it was explained in Section 6.3.2, the Itoh-Tsujii multiphcative
inverse algorithm requires the computation of m field squarings. This can
be accomplished by cascading several squarer blocks so that several squaring
operations can be executed within a single clock cycle (See Fig. 6.11 for more
details).

In the next Subsection we discuss how the arithmetic logic unit of Figure
10.2 can be utihzed for computing a Hessian scalar multiplication.

10.5.2 Scalar multiplication in Hessian Form

According to Eq. (10.3) of Section 10.2 we know that the addition of two points
in Hessian form consists of 12 multiplications, 3 squarings and 3 addition
operations. Implementing squaring over GF(2^) is simple, so we can neglect
it. Using the parallel architecture proposed in Figure 10.3, point addition can
be performed in 6 clock cycles using two GF(2^®^) multiplier blocks. The
Hessian curve point addition sequence using two multiplier units is specified
in Eq. (10.13). Table 10.2 shows that sequence in terms of read/write cycles.

^ This conversion is required when executing a Montgomery point multiplication
in Standard Projective coordinates

10.5 Implementing scalar multiplication on Reconfigurable Hardware 305

Referring to the architecture of Figure 10.3, M l and M2 are two memory
(BRAMs) blocks, each one composed of two independent ports PTl and PT2.

It is noticed that the inputs/outputs of the multipliers are different from
those read/write values at the memory blocks. This is due to pre or post
computations required during the next clock cycle. Table 10.2 lists computed
values during/after multiplications for both, the read and write cycles.

Table 10.2. Point addition in Hessian Form
Cycle

1
2
3
4
5
6

Read
Ml

PTl

Yi
Xi
Zi
Ai
A2
As

PT2

Xi
Zi
Zi
A2
Ai
Ae

M2
P T l

^ 2

^ 2

Y2
Ae
A3
A4

PT2

¥2
X2
Yi

As
A4
A3

Write
M1/M2

PTl

Ai
A3
As
X3

ys
Z3

PT2

A2
A4
Ae

-
-
-

Similarly, Hessian point doubling implementation of Eq. (10.13) consists
of 6 multiphcations, 3 squarings and 3 additions. Table 10.3 describes the
algorithm flow implemented using the same architecture (Figure 10.3).

Table 10.3. Point doubling in Hessian Form

Cycle

1
2
3

Read
Ml

PTl

Xi
A9
A8

PT2

Yi
A4
A9

M2
PTl

Xi
Zi
Yi

PT2

Yi
Zi
Xi

Write
M1/M2

PTl

A4
Z2

X2

PT2

Ag
As
2/2

Let m represents the number of bits and M denotes a single finite field
multiplication. Then the number of multiplications for one point addition
and point doubfing are 6M and 3M, respectively. Referring to the algorithm
in Figure 10.1, average of {^)QM and 3mM multiphcations are needed for
computing all m bits of the vector k. Thus, 6mM are the total multiplication
operations required for computing kP scalar multiplication.

In the case of m = 191 bits, the total number of field multiplications re­
quired by the algorithm are 1146. Let T be the minimum clock period allowed
by the synthesis tool. Then, 1146 x T is the total time required for completing
one Hessian elliptic curve scalar multiplication.

306 10. Elliptic Curve Cryptography

10.5.3 Montgomery Point Multiplication

Let us consider now Algorithm 10.5, where each bit of the scalar k are scanned
from left to right (i.e., MSB-First).

At every iteration (regardless if the bit scanned is zero or one), both
point addition (Madd) and point doubling {Mdouble) operations must be
performed. However, notice that the order of the arguments is reversed: if the
tested bit is T , Mdouble{X2^Z2)^ Madd{Xi, Zi^ X2, Z2) are computed and
Mdouble{Xi, Zi), Madd{X2, Z2, Xi.Zi) otherwise. Algorithms 10.4 and 10.3
describe the sequence of instructions for Madd and Mdouble operations, re­
spectively, whereas Eqs. (10.14) and (10.13) specify how those primitives can
be accomplished in 2 and 1 cycles, respectively^^.

Tables 10.4 and 10.5 describe the multiplications performed for both point
addition and point doubling operations in three normal clock cycles when the
scanned bit is ' 1 ' or '0' respectively. We kept the same notations used in al­
gorithms 10.4 and 10.3 for point addition and point doubling, respectively.
Ml and M2 represent two memory blocks (BRAMs) each one with two inde­
pendent ports PTl and PT2. Some required arithmetic operations (squaring
etc.) need to be performed during read/write cycles at the memories before
and after the multiplication operations.

Table 10.4. kP Computation, if Test-Bit is '1 '

Cycle

1
2
3

Read
Ml

P T l

Xi
X2
P

PT2

Z2

Z2

Q

M2
PTl

Zi
Zi

Q

PT2

X2
Tx
T2

Write
M1/M2

PTl

P
^ 2 = ^ 3

Xi=X'

PT2

Q
X2=X3
Zi=Z'

The resulting vectors Xi,Zi,X2,Z2, are updated at the memories after the
completion of point addition and doubling operations using 3 clock cycles per
each bit. Therefore, the total time for the whole 191-bit scalar is 191 x 3 x T,
where T represents design's maximum allowed frequency.

10.5.4 Implementation Summary

All finite field arithmetic blocks and then the kP computational architecture
were implemented on a VirtexE XCV3200e-8bg560 device by using Xilinx
Foundation Tool F4.1i for design entry, synthesis, testing, implementation
and verification of results. Table 10.6 lists timing performances and occupied
resources by the said architectures.

°̂ Provided that two multiplier units are available.

10.5 Implementing scalar multiplication on Reconfigurable Hardware 307

Table 10.5. kP Computation, If Test-Bit is '0'

Cycle

1

2

3

Read
M l

P T l

X2

Xi

P

PT2

Zi

Zi

Q

M2
P T l

Z2

Zi

Q

P T 2

Xi

Ti

T2

Write
M1/M2

P T l

P

Zi=Z3
X2=X'

P T 2

Q
X i = X 3
Z2=-Z'

Elliptic curve point addition and point doubling do not participate directly
as a single computational unit in this design; however parallel computations
for both point addition and point doubling are designed together as it was
shown in Algorithm 10.1.

Both point addition and point doubhng occupy 18300 (56.39 %) CLB sHces
and it takes IOO.I77S (at a clock speed of 9.99 MHz) to complete one execution
cycle. As it was mentioned in Section 10.2, when using two field multiplier
units, six and three clock cycles are needed for computing point addition and
point doubling in Hessian form, respectively.

The total consumed time for computing each iteration of the algorithm of
Figure 10.1 is 900.9?] if the corresponding bit is one and 300.37/5 otherwise.
Therefore, scalar point multiphcation in Hessian form is the time needed to
complete m/2 point additions (in average) and m point doubhngs. For our
case m ^ l 9 1 , the total time is therefore (191/2) • (600.617) + 191 • (300.37/) =
114.71/isii.

Similarly, two and one clock cycles are needed to perform Montgomery
point addition and point doubling, respectively. The associated executing time
is thus, 200.17/5 and 100.27/5 for point addition and point doubling respectively.
Each iteration of the algorithm thus consumes 300.37/5 for 3 clock cycles. In the
case of m = 191, the total time needed for computing a scalar multiplication
is 191(300.3) = 57/x5.

Inversion is performed at the end of the main loop of Algorithm 10.5. It
takes 28 clock cycles to perform one inversion in GF{2^^^) occupying 1312
CLB slices. The CLB slices for inversion in fact are the FPGA resources oc­
cupied for squaring operations only and the multiplier blocks are the same
used for point addition and point doubling. The total conversion time (See
Algorithm 10.6) is therefore 28 • IOO.I7/ -f 10 • IOO.I7/ = 3.8/i5. Therefore, the
execution time for algorithm 10.5 is given as the sum of the time for comput­
ing the scalar multiplication and the time to perform coordinate conversion
namely,

57.36+ 3.8 = 61.16/X5.

It is noted that we did not include a conversion from projective to affine coordi­
nates in the case of the Hessian form.

308 10. Elliptic Curve Cryptography

The architecture for elliptic curve scalar multiplication in both cases (Hes­
sian form & Montgomery point multiplication) occupies 19626 (60 %) CLB
slices, 24 (11%) BRAMs and performs at the rate of lOO.lrys (9.99 MHz).
The design for GF(2i^i) Karatsuba-Ofman Multiplier occupies 8721 (26.87%)
CLB slices, where one field multiphcation is performed in 43.lrjs. Table 10.6
summarizes the design statistics.

Table 10.6. Design Implementation Summary

Design

Inversion in GF{2^^^)
Binary Karatsuba Multiplier
1 Field Multiplication
Point addition -f- Point
doubling in Hessian Form
Point Multiplication
in Hessian form
Point addition 4- Point doubling
(Montgomery Point Multiplication)
Point Multiplication
(Montgomery Point Multiplication)

Device
(XCV)

3200E
3200E

3200E

3200E

3200E

3200E

CLB
slices

1312
8721

18300

19626 &
24 BRAMs

18300

19626 k
24 BRAMs

Timings

2.8?7s
AS.lrjs
lOO.lrjs

300.3r?s (if bit = '0')
900.9r/s (if bit = '1')

114.71MS

300.3?7s
(3 Multiplications)

61.16/xs

10.6 Koblitz Curves

First proposed in 1991 by N. Koblitz [180], Koblitz Elliptic Curves have been
object of analysis and study since then, due to their superb usage of endomor-
phism via the Frobenius map for increasing the elliptic curve arithmetic com­
putational performance [180, 133]. Across the years, several efforts for speed­
ing up elliptic curve scalar multiplication on Koblitz curves have been reported
both, in hardware and software platforms [13, 384, 216, 133, 132, 339, 340].

Let P{x) be a degree-m polynomial, irreducible over GF{2). Then P{x)
generates the finite field F^ = GF{2'^) of characteristic two. A Kobhtz elliptic
curve Ea{¥q)^ also known as Anomalous Binary Curve (ABC) [180], is de­
fined as the set of points {x,y) e GF{2'^) x GF{2'^), that satisfy the Kobhtz
equation.

Ea'.y'^ + xy = x^ -^ax^ -\-1, (10.15)

together with the point at infinity denoted by O. It is customary to use the
notation Ea where a G {0,1}. It is known that Ea forms an addition Abelian
group with respect to the elliptic point addition operation^^.

^̂ Notice that since Eq. (10.15) assumes a 6 {0,1}, then Koblitz curves are also
defined over GF{2).

10.6 Koblitz Curves 309

So far, most works have strived for reducing the cost associated to the
double-and-add method by following two main strategies: Reducing the com­
putational complexity of both, point addition and point doubling primitives
and; reducing the number of times that the point addition primitive is invoked
during the algorithm execution. Recently, the idea of representing the scalar A;
in mixed base rather than the traditional binary form has been proposed. This
way, point doubUngs can be partially substituted with advantage by tripling,
quadruphng and even halving a point [171, 69, 12, 13, 385, 176].

In this Section we discuss yet another approach for speeding up the com­
putational cost of scalar multiplication on Koblitz curves: the usage of parallel
strategies. In concrete, we show that the usage of the T~^ Frobenius operator
can be successfully applied in the domain of Koblitz elliptic curves giving an
extra flexibility and potential speedup to known elliptic curve scalar multipli­
cation procedures.

The rest of this Section is organized as follows. In Subsection 10.6.1
some relevant mathematical concepts are briefly outlined. Then, in Subsec­
tion 10.6.2 several parallel formulations of the scalar multiplication on Koblit2
curves are presented. Subsection 10.6.3 discusses relevant implementation as­
pects of the proposed parallel algorithms for hardware platforms.

10.6.1 The r and T~^ Frobenius Operators

In a field of characteristic two, the map between an element x and its square
x^ is called the Frobenius map. It can be defined on elliptic points as:

T{x,y) :={x'^,y^).

Similarly, we can define the r~^ Frobenius operator as,

r-'^{x,y) := {\/x,y/y).

In binary extension fields, the Lagrange theorem^^ dictates that A^"^ — A for
any arbitrary element A e GF{2'^), which in turn imphes that for any i G Z,
A^ = A^ . Notice also that by applying the square root operator in both
sides of Fermat little theorem identity, we obtain, V~A. — A? = A^"^ ,
which can be generahzed as, A^ ' = A'^'^ ' for i = 0 , 1 , . . . , m.

Using above identities, it is easy to show that the Frobenius operator
satisfies the properties enumerated in the next theorem.

Theorem 10.6.1 The Frobenius operator satisfies the following properties,

1,
2.
3.

I

TT ^ = r V = 1
r' r^r^" '^^^, forieZ
r-' = r^-% for i = 1,2,"-
r' = r - (^ - ^) , / o r z = l ,2,-

,m — 1
• • ,m — 1

310 10. Elliptic Curve Cryptography

T ^ = T ^ = T

Fig. 10.4. An illustration of the r and r ^ Abelian Groups (with m an Even
Number)

In other words, the r and the r~^ operators generate an Abelian group
of order m as is depicted in Fig. 10.4. Considering an arbitrary element
A G GF{2'^), with m even, Fig. 10.4 illustrates, in the clockwise direction, all
the m elhptic curve points that can be generated by repeatedly computing the
r operator, i.e., r^P for z = 0,1, • • • , m— 1. On the other hand, in the counter­
clockwise direction, Fig. 10.4 illustrates all the m points that can be generated
by repeatedly computing the r~^ operator, i.e., r~^P for 2 = 0,1, • • • , m — 1.

Frobenius Operator Applied on Koblitz Curves

Koblitz curves exhibit the property that, if P = (x, y) is a point in Ea then
so is the point (x^,y^) [338]. Moreover, it has been shown that, (x'^,^^) +
2{x,y) = /i(x^,^^) for every (x,y) on Ea, where (i = (-1)^"^. Therefore,
using the Frobenius notation, we can write the relation,

r{rP) + 2P = (r2 + 2)P - firP. (10.16)

Notice that last equation impUes that a point doubling can be computed
by applying twice the r Frobenius operator to the point P followed by a point

^^ Lagrange theorem can be used to prove the Fermat's little theorem and its gen­
eralization Euler's theorem studied in Chapter 4

10.6 Koblitz Curves 311

addition of the points /j^rP and r'^P, Let us recall that the Frobenius operator
is an inexpensive operation since field squaring is a linear operation in binary
extension fields.

By solving the quadratic Eq. 10.16 for r, we can find an equivalence be­
tween a squaring map and the scalar multiplication with the complex number
r — ~-̂ Y ~'̂ . It can be shown that any positive integer k can be reduced
modulo T^ — 1. Hence, a r-adic non-adjacent form (T N A F) of the scalar k
can be produced as,

i-i

k=^ Y^UiT^^
i=0

where each ui G {0, ±1} and / is the expansion's length. The scalar multiplica­
tion kP can then be computed with an equivalent non-adjacent form (NAF)
addition-subtraction method.

Standard (NAF) addition-subtraction method computes a scalar multi-
phcation in about m doubles and m/3 additions [129]. Likewise, the T N A F
method implies the computation of I r mappings (field squarings) and 1/3
additions.

On the other hand, it is possible to process uj digits of the scalar k at
a time. Let a; > 2 be a positive integer. Let us define ai = i mod r^ for
i G [1,3, 5 , . . . , 2'̂ ~-̂ — 1]. A width-o; rNAF of a nonzero element k is an
expression k — Y^JIQUIT'^ where each ui G [0, ± a i , ± a 3 , . . . , ±a2w-i_i] and
ui-i 7̂ 0. It is also guaranteed that at most one of any consecutive u coeffi­
cients is nonzero. Therefore, the CJTNAF expansion of k represents an equiv­
alence relation between the scalar multiplication kP and the expression,

UQP + TUiP + T'^U2P + . . . + r^-^ui-iP (10.17)

In [338, 337, 26] it was proved that for a Kobhtz elhptic curve Ea[GF{2'^)],
the length / of a rNAF expansion, is always less or equal than m 4- a -h 3,

^NAF < m 4- a -f- 3

Using the properties enounced in Theorem 10.6.1, Equation (10.17) can be
reduced even further whenever I > m.

Indeed, given the fact that r^+^ — r^ for z = 0,1, • • • ,m — 1, we can
reduce all the expansion coefficients ui greater than m as follows,

m-fa+2 m—1 m + a + 2 a-\-2 m — l

k= Yl ^̂ '̂ ' ^ XI ^̂'̂^ "̂ XI '^^^^ = X^ ('"i + ^m+i) '̂ ' + XI '^^^'
1=0 i=Q i=m i=0 i = a + 3

(10.18)
Furthermore, using property 4 of Theorem 10.6.1, it is always possible to

express a length m CJTNAF expansion in terms of the r~^ operator as follows.

312 10. Elliptic Curve Cryptography

m—l

k-=Yl ^'^' "" ('̂ 0 "̂ '^1'^^ + ^2T^ H- . . . + Um-ir"^'^) (10.19)

m—l

i=0

Summarizing, Koblitz elliptic curve scalar multiplication can be accom­
plished by processing eUiptic point addit ions and r a n d / o r r~^ mappings.
Hence, a Koblitz multiplication algori thm is usually divided into two main
phases: a u;-TNAF expansion of the scalar /c; and the scalar multiplication
itself based on the r Frobenius operator and eUiptic curve addit ion sequences.

1 0 . 6 . 2 C J T N A F Scalar M u l t i p l i c a t i o n in T w o P h a s e s

A l g o r i t h m 10 .7 a ; rNAF Expansion[133, 132]

Require: Curve Parameters; representative elements: a^ = Pu + JUT for
u = 1,3,...,2^^-^ - 1 ; 5 ; ^ca/ar/u.

Ensure: u)rNAF{k)
1
2
3
4
5
6
7;
8;
9:

10
11:
12
13
14;
15
16:
17;

Compute (ro,r i) <— k mod 6;
for {i = 0; (ro ^ 0) OR (n y^ 0); i = i -\- 1} do

if ro is odd then
li —̂ ro + ritw mods 2^;
if u > 0 then

else
^ < 1; u < u]

end if
ro ^ ro - ^Pu] r i ^ n - .̂ 7 ;̂ Wi <— ^Q:^;

else
Ui <— 0;

end if
(r o , n) ^ (n + ' i a , ^) ;

end for
/ = i;
Return /, (tti_i,Ui_2, • • • ,1x1,^0);

Algorithms 10.7 and 10.8 show the adapta t ions of Solinas procedures as
they were reported in [132, 133].

It should be noticed t ha t Algorithm 10.7 produces the C J T N A F expansion
coefficients from right to left, i.e., the least significant coefficient UQ is first
produced, then ui and so on, until the most significant coefficient, namely,
w/-! , is obtained. Algorithm 10.8 on the contrary, computes the expression
10.17 from left to right, i.e., it s ta r t s processing ui-i first, then ui-2 until it
ends with the coefficient UQ.

10.6 Koblitz Curves 313

Algorithm 10.8 a;TNAF Scalar Multiplication [133, 132]

Require: uTNAF{k) = J2^Zluir\ P e Ea{F2m).
Ensure: kP

1: Precompute Pu = ctuP, for u e { l , 3 , 5 ,,2^'"^ — l} where ai — i mod r^' for
ie {1 ,3 , . . . ,2^-^ - 1 } ;

2
3
4
5
6
7
8
9

10
11
12
13
14

Q^O;
for i from / — 1 downto 0 do

Q < - r Q ;
if Ui y^ 0 then

Find u such that au = i t^i;
if li > 0 then

Q^Q + Pu\
else

Q^Q-P-u;
end if

end if
end for
Return Q;

The combination of those two characteristics is unfortunate as it forces
us to work in a strictly sequential manner: First Algorithm 10.7 must be
executed and only when it finishes, Algorithm 10.8 can start the computation
of the Koblitz curve scalar multiplication operation. However, invoking Eq.
(10.19), we can formulate a parallel version of Algorithm 10.8 as is shown
in Algorithm 10.9. If two separated point addition units are available, the
expected computational speedup of the parallel version in Algorithm 10.9 is
of about 50 % when compared with its sequential version.

10.6.3 Hardware Implementation Considerations

In an effort to minimize the number of clock cycles required by Algorithm 10.8
when implemented in a hardware platform, we first proceed to pre-process the
width-C(;rNAF expansion of coefficient k as described below.

Firstly, without loss of generality we will assume that the length of the
expansion is m^^. Secondly, let us recall that it is guaranteed that at most
one of any consecutive a; coefficients of an CJTNAF expansion is nonzero. Let
Wi e [1 ,3 ,5 , . . . , 2^"-^ — 1] denote each one of the up to Â^̂ = f z ^ l nonzero
LorNAF expansion coefficients. Then, the expansion would have the following
structure:

ii;o, 0 . . . 0, ici, 0 . . . 0, it;2,0,. . . , 0, Wi-i,0... 0, WN^-I

Above runs of up to 2i£; — 2 consecutive zeroes [340], can be counted and
stored. Let Zi e [a; — 1,2a; — 2] denote the length of each of the at most

"̂̂ Otherwise, if / > m, we can use Eq. (10.18) in order to reduce the expansion
length back to m.

314 10. Elliptic Curve Cryptography

A l g o r i t h m 10 .9 C J T N A F Scalar Multiplication: Parallel Version

Require: UTNAF{k) = YITJQ^ Uir\ P e Ea{F-2m).
Ensure: kP

1: PreCompute Pu = ctuP, for u ^ {l , 3, 5,...., 2^~^ ~~ l } where cti = i mod r'^' for
ie {1,3 , . . . ,2^-^ - 1 } ;

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Q = R = 0]
N=[f\;um==^ 0;
for i from Â downto 0 do

Q - T Q ;

if Ui ^ 0 then
Find u such that a±u =
if n > 0 then

Q^Q + Pu]
else

Q ^ O - P _ u ;
end if

end if
end for
Q^Q-\-R-
Return Q;

= i n^ ;

for j = A'̂ + 1 to m do
R^r-^R',
if Uj 7̂ 0 then

Find u such that a±u = i^^jj
if n > 0 then

R^ R-{-Pu;
else

R ^— R — P-u]
end if

end if
end for

A l g o r i t h m 10 .10 C J T N A F Scalar Multiplication: Hardware Version

Require: TNAFoj{k) in the format: WQ,ZI,W2, Z3,... ,ZNIU-2,'UJN^O-I^ ^W —
2 r ^] . Where tî i G [1, 3, 5 , . . . , 2^"^ - 1] and Zi e [w - l,2w-2]

Ensure: kP
1: Precompute Pu = ctuP, for u G {l , 3, 5,...., 2^"^ - l } where ai = i mod r^' for

le {l,3,. . . ,2^^-i - 1 } ;

for i from N — 1 downto 0 do
if i is odd then {/*processing a zero coefficient ^i*/}

Q ^ r'^'-'Q
Zi <r— Zi — (W — 1)
if Zi ji^ 0 t h e n

end if
else {/*processing a nonzero coefficient lUi*/}

Find u such that a^ = ic^i;
if II > 0 then

0 ^ 0 + Pu;
else

Q<-Q-P-u;
end if

end if
end for
Return Q;

10.6 Koblitz Curves 315

Â ^ ~ llJ+ii ^^"^^ runs. Then, the proposed compact version of the expansion
has the following form,

Wo,Zo,Wi,Z2,. . . ,ZN^-1,WN^-1 (10.20)

In this new format we just need to store in memory at most 2|"j^;^] expansion
coefficients. Algorithm 10.10 shows how to take advantage of the compact rep­
resentation just described. Given the relatively cheap cost of the field squaring
operation, steps 5-8 of Algorithm 10.10 can compute up to CJ—1 apphcations of
the T Frobenius operator^^. This will render a valuable saving of system clock
cycles. Moreover, using the same idea already employed in Algorithm 10.9, we
can parallehze Algorithm 10.10 using the r and r~^ operators concurrently.
The resulting procedure is shown in Algorithm 10.11.

Algorithm 10.11 CJTNAF Scalar MultipHcation: Parallel HW Version
Require: rNAF^ik) in the

2 r - ^ l . Where li;, € [1 ,3 ,5 ,
Ensure: kP

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

PreCompute Pu = duP^ for
ie { 1 , 3 , . . . , 2 ^ - ' - 1 } ;
Q = R = 0\
i V = L ^ J ;
for i from A'' downto 0 do

if i is odd then
Q ^ ^ ^ - l Q .

Zi *r- Zi — {W — \) \

if î 7̂ 0 then

Q - r'^Q;
end if

else
Find u such that a±u -
if w > 0 then

Q^Q + Pu]
else

Q^Q-P-u;
end if

end if
end for
Q^Q-\-R;

: Return Q;

format: wo,zi,W2, zs,... ,ZNU,-2,WN^U-II ^W =
. . . , 2^-^ - 1] and ZiElw- 1, 2w - 2]

ue {l ,3,5, ,2 '^-^ - 1} where ai = z mod r"' for

for j = N -f 1 to m do
if i is odd then

H^T-^^- '^H;

^j ^ zj - {yj- 1) ;
ii Zi ^ 0 then

R^r'm-,
end if

else
= ±Wi; Find u such that a±u = ±WJ;

if ti > 0 then
R^ R-^Pu]

else
R <^ R — P-u]

end if
end if

end for

15 Let us recall that applying i times the r Frobenius operator over an elliptic point
Q consists of squaring each coordinate of Q i times. See §6.2 for details about
how to compute efficiently squaring and other field arithmetic operations

316 10. Elliptic Curve Cryptography

BRAM Z
0̂

T Operator

T Operator

^ Point
Addition

Unit

CLKH

CEH

Control
Unit

• • S o

- S i

Fig. 10.5. A Hardware Architecture for Scalar Multiplication on the NIST Koblitz
Curve K-233

Proposed Hardware Architecture

According to Algorithm 10.11, one can accomplish a scalar multiplication
operation by computing two sequences, namely, r operator-then-add and; r~^
operator-then-add. Both sequences are independent and therefore, they can
be processed concurrently provided that hardware resources meet up design
requirements. An aggressive approach would be to use two point addition
units with r and r~^ blocks operating separately. That, however, could be
unaffordable as the point addition block consumes a vast amount of hardware
resources. A more conservative approach consisting of a single point addition
unit is shown in Fig. 10.5. The main idea used there is to keep the r and
r~^ computations in parallel while a multiplexer block allows the control
unit to decide which result will be processed next by the point addition unit.
Intermediate results required for next stages of the algorithm are read/written
in a Block select RAM (BRAM).

The inputs/output of the point addition unit read/write data from/to the
BRAM block according to an address scheme orchestrated by the control unit.
Data paths for the r and T~^ operators and then point addition are adjusted
by providing selection bits for the three multiplexers MUXl, MUX2, and
MUX3. Notice that all three multiplexers handle three 233-bit inputs/outputs.
This is the required size for a three-coordinate LD projective point as it was
described in Subsection 4.5.2. The r and r~^ operators were designed using the
formulae described in §6.2. The Point Addition Unit (PAU) performs the point
addition operation using the LD-affine mixed coordinates algorithm to be
explained in the next Section. PAU has two inputs. One input comes from (via
MUX3) the output of either r or r~^ blocks in the form of a three-coordinate
LD projective point. The other input comes directly from the BRAM block
and corresponds to one of the pre-computed multiples of P , namely, P^. =

10.7 Half-and-Add Algorithm for Scalar Multiplication 317

auiP- Those multiples have been pre-computed in affine coordinates. A 4- bit
counter and a ROM constitute the control unit block. The ROM block is filled
with control wordSy which are used at each clock cycle for the orchestration
and synchronization of algorithm's dataflow. The ROM block address bits are
timely incremented by a 4-bit counter. A total of 11 bits (8 bits for each port
of the BRAM, 1 bit for MUXl, 1 bit for MUX2 and 1 bit for MUX3) are used
for controlling and synchronizing the whole circuitry. The 11-bit control word
for each clock cycle is filled in the BRAM block, and then they are extracted
at the rising edge of each clock cycle.

The expected performance of the architecture shown in Fig. 10.5 can be
estimated as follows. As it has been mentioned, in a UT N A F expansion there
exists a total of N^ = \-j^] nonzero coefficients. Let ^ be the number of cycles
required for computing an elliptic point addition operation. Knowing that the
Frobenius operators depicted in Fig. 10.5 are each able to compute u — 1 r
or r~^ operators in one cycle, it seems fair to say that our architecture can
process a coefficient zero in -^—^ cycles. Therefore, the total number of system
clock cycles required by Algorithm 10.10 for computing a scalar multiplication
can be estimated as,

#Number of Clock Cycles = ^ - ^ + _ 1 _ a ^ (10.21)
^ "̂ ^ c j - f l c j - l c j - f - l ^ ^

In the case of Algorithm 10.11 since the r and r~^ operations are computed
at the same time that the point addition processing is taking place, the total
number of clock cycles can be estimated as just,

771

#Number of Clock Cycles - ^ - . (10.22)

As a way of illustration, let us assume that the architecture shown in
Fig. 10.5 has been implemented using the arithmetic building blocks for the
NIST recommended K-233 Koblitz curve. Then using m = 233 and ^ = 8 and
equations (10.21) and (10.22), a saving of 14.28%,13.51% and 13.04% can be
obtained when using a; = 4,5,6, respectively.

10.7 Half-and-Add Algorithm for Scalar Multiplication

Schroeppel [322] and Knudsen [176] independently proposed in 1999 a method
to speedup scalar multiplication on elliptic curves defined over binary exten­
sion fields. Their method is based on a novel eUiptic curve primitive called
point halving, which can be defined as follows.

Given a point Q of odd order, compute P such that Q = 2P. The point
P is denoted as ^Q. Since theoretically, point halving is up to three times as
fast as point doubUng, it is possible to improve the performance of scalar mul­
tiplication computation Q = n P by replacing the double-and-add algorithm

318 10. Elliptic Curve Cryptography

with a half-and-add method based on an expansion of the scalar n in terms
of negative powers of 2.

As it was discussed in Chapter 2, the efficiency of ECDSA depends on the
arithmetic involving the points of the curve. For this reason it becomes nec­
essary to implement efficient curve operations in order to obtain high perfor­
mances. In this Section we describe an architecture that employs a parallelized
version of the half-and-add method and its associated building blocks.

The rest of this Section is organized as follows. Subsection 10.7.1, describes
the algorithms utilized for implementing elliptic curve arithmetic. In Subsec­
tion 10.7.2, the proposed hardware architecture is explained in detail.

10.7.1 Efficient Elliptic Curve Arithmetic

With the help of the arithmetic operators described in Chapter 6, we can
efficiently construct the three main elliptic curve operations, namely, point
addition, point doubhng and point halving.

As a means of avoiding the expensive field inversion operation, it results
convenient to work with Lopez-Dahdb (LD) projective coordinates^^. For con­
venience, here we will repeat some of the main characteristics of those coor­
dinates.

In LD projective coordinates, the projective point (X:Y:Z) with Z^ 0
corresponds to the affine coordinates x = X/Z and y — Y/Z'^. The elliptic
curve Equation (10.6) mapped to LD projective coordinates is given as,

F^ + XYZ = X^Z + aX'^Z'^ + bZ^ (10.23)

The point at infinity is represented as (9 = (1 : 0 : 0). Let P = {Xi : Yi :
Zi) and Q — {X2 : y2 ^ 1) be an arbitrary point belonging to the curve 4.19.
Then the point - P = {Xi \ Xi+Yi \ Z) is the addition inverse of the point
P .

Point Doubling

The point doubhng primitive 2(Xi \ Yi \ Z\) — (X3 : Y^ : Z3) can be
performed as,

Z^ = Xi ' Z\ \ X3 = Xi -\-b ' Zi \
n = 6Zi^Z3 + X3 • {aZ^ + Yi^ -h bZi^

(10.24)

Assuming that only one field multipHer block is available, it is possible to
compute above Equations in just three clock cycles as shown in Table 10.7.

^̂ LD projective coordinates were already studied in Section 4.5.

10.7 Half-and-Add Algorithm for Scalar Multiplication 319

Table 10.7. Parallel Lopez-Dahab Point Doubling Algorithm

A Parallel approach of point doubling, LD-affine coordinates.
Input: P = {Xi : Yi \ Z\) in LD coordinates
on EjK '. y^ •\- xy = x^ ^ ax^ ^ h,a ^ {0, 1}.
Output: 2P = {Xs : Ys ' Z3) in LD coordinates

cycle Co
~iy \r'2 r7'2

Z3 = A i • Zi
T2 = (X f + T i) - (Z 3 + y i '
Y3 = Ti-Z3+ T2

Ci

1. cycle:
2. cycle:
3: cycle:

+ Ti)
Ti = 6 • Z?

Xs = Xt + Ti

Point Addition

IfQ^-P, the point addition primitive {Xi : Yi : Zi) + {X2 : ¥2) = {X3 :
Ya : Z3) can be performed at a computational cost of 8 field multiplications
as,

A = Y2-Z^ + Yv,
C = Zi-B;

Z3 = C2;
X3 = ^2 ^ £> + E;
G = (X2 + Y2) • Zl

B — X2 ' Zl + Xi\
D = B'^-{C-\-aZl)-
E^ AC]
F — X^ + X2 ' Z^;
Y3 = {E + Z3)-F + G

(10.25)

Table 10.8. Parallel Lopez-Dahab Point Addition Algorithm

A parallel approach of point addition, LD-affine coordinates.
Input: P = {Xi : Yi : Zl) in LD coordinates,
Q = (3^2,2/2) in affine coordinates
on E/K : y"^ -\-xy = x^ -i- ax'^ + 6.
Output: P + Q = {X3 : Y3 : Z3) in LD coordinates

cycle
1. cycle:
2. cycle:
3. cycle:
4. cycle:
5. cycle:
6. cycle:
7. cycle:
8. cycle:

Co
ya = 2/2 • Z't + Yi

X3=X2-Zi+ Xi

Ti = X3 • Zl

X3 = Xl-{a'Z!-{-Ti)

X3 = ^3 • Ti + X3 + y3^
Ti = X2 ' Z3 -\- X3

Y3 = {x2 4- 2/2) • zi
Y3 = (T2 + Z3) 'Ti-{-Y3

Ci

Z3 = Tf
Ti = y3 • T i

T2 = T3

Once again, we point out that field multiplication is by far the most time
consuming arithmetic operation. Field addition can be time neglected in a
hardware implementation.

320 10. Elliptic Curve Cryptography

Therefore we can parallelize some operations in such a way that we can
perform two operations at a time. As it is shown in Table 10.8, by rearranging
the set of Equations 10.25 we can manage for computing a point addition
operation in LD projective coordinates in just eight clock cycles.

Point Halving

Point halving can be seen as the reverse operation of point doubling [96]. We
can define the elliptic curve point halving as follows. Let Q = (2:2,2/2) be
an arbitrary point that belongs to the curve of Eq. (10.6). Our problem in
hand is to find a second point P = (xi ,yi) , such that Q — 2P: This can be
accomplished by solving the following set of equations,

Â 4- A == X2 + a

xi = \/y2 4-a;2(A-f 1)
yi = Xxi + xj

Algorithm 10.12 Point Halving Algorithm
Require: 2P = (3:2,2/2)
Ensure: P = {xi,yi)
1: Solve Â -f- A = 0:2 + a for A.
2: t = y2 -\- X2 ' X]
3: if Tr{t) = 0 then
4: xi — \/i-\- X2\
5: else
6: A = A + l;xi = V ;̂
7: end if
8: 2/1 = A • xi -Vx\\
9: Return {x\^y\)

Algorithm 10.12 was proposed in [96] for computing an elliptic point halving.
However, it results more convenient in practice to define the X-representation
of a point as follows. Given Q = {x,y) e E{GF{2'^))^ let us define (a:, AQ),
where

AQ - X + -
X

Given the A-representation of Q, we may compute a point halving without
converting back to aflfine coordinates. In this way, repeated halvings can be
performed directly on A-representation.

Half-and-Add Scalar Multiplication Algorithm

In Chapter 6 several algorithms addressing the problem of how to perform effi­
cient finite field arithmetic were studied. Notice that Algorithm 10.12 requires
the following GF{2^) arithmetic main building blocks.

10.7 Half-and-Add Algorithm for Scalar Multiplication 321

1. Computing field square root (studied in §6.2).
2. Computing the trace (studied in §6.4.1).
3. Solving quadratic equations (studied in §6.4.2).

Above operations constitute the building blocks for performing elliptic
curve scalar multiplication using the half-and-add method shown in Algo­
rithms 10.12 and 10.13.

Algorithm 10.13 Half-and-Add LSB-First Point MultipHcation Algorithm
Require: P G £^(^^(2"")), k = /co/2"'~^ + • • • + k'^-i + 2k'm mod n, with h G

{-1,0,1} for z =, 1,... ,m.
Ensure: kP
1: Q = O;
2: if k'm = I then
3: Q = 2P;
4: end if
5: for i from m — 1 downto 0 do
6: if k'i>0 then
7: Q = Q + P',
8: else if /cj < 0 then
9: Q = Q-P',

10: end if
11: P = P/2;
12: end for
13: Return (Q)

10.7.2 Implementation

The proposed architecture for achieving eUiptic curve scalar multiplication is
shown in Figure 10.6. The architecture consists of two main units, namely, an
Arithmetic Logic Unit (ALU) block (responsible of performing field arithmetic
and elliptic curve arithmetic), and a control unit (that manages and controls
the dataflow of the whole circuit).

Control Unit

Table 10.9 shows the operations that can be performed by the circuit per
clock cycle. In the first column the operations that the ALU can perform
are hsted. The first eight rows specify the sequence of operations needed for
computing an elliptic curve point addition. The next three rows specify the
operations needed for computing a point doubUng primitive. The last three
rows show the necessary operations for computing a point halving (either in
A-representation or in affine coordinates).

322 10. Elliptic Curve Cryptography

Fig. 10.6. Point Halving Scalar Multiplication Architecture

The second column represents the inputs given to the ALU circuit, whereas
the fourth column shows the ALU circuit output being written to memory.

AO

-e-
Half

Trace

-GD-

^

A1

A2
GMZ}

A3

e-

'—I MUL
163

e-

-G!>

-©-
e-

e

^
Square

Root

¥

CO

I Trace [-»•

©-
vcc

Fig. 10,7. Point Halving Arithmetic Logic Unit

10.7 Half-and-Add Algorithm for Scalar Multiplication 323

Finally, the third column includes a twenty-six bit control word that stipulates
which parts of the Arithmetic Logic Unit must be activated by the Control
Unit. The control word format is explained below.

Table 10.9. Operations Supported by the ALU Module

operation

Vi = 2/2 • z'i + n
X\—xi'Z\^ X\

Ti=Xi- Zi
X i = X ? - (Z ? + T i)

T2=-X2' Zi-^ Xi
Yi - {X2 -}- 2/2) • Zf

Fi = (T i - | - Z i) - T 2 + y i
Zi = X't • Z'i

Xi = (Xi^+Ti) - (y i2 + Z i + T l)
n = Zi • Ti -}- T2

Point Halving (affines)
Point Halving (A-representation)

2/2 = \X2 + x\

input
a^aia^ci-i
yiZxYx-
X2Z1X1 —
X1Z1--
XiZi-Ti
y2ZiYi~
X2Z1X1-
X2Ziy2-
Y1T1T2Z1
XiZi - -
YiZiXiTi
T2Z1 - Ti

X2 - 2 / 2 -

X2 - 2 / 2 -

X2 - 2 / 2 -

control word
S25 • • • So

IxxOlOOOxxllOlOOOOllOxxxlx
llOxxxxOxxOOOlOOlOllOxxxlx
lOxxxxxOxOxxOlOOlxxOOxxxlx
OOxxxxxO1OxxOO1OOxxOOOO111
OxxOlOOOxxl10100001lOxxxlx
llOxxxxOxxOOOlOOlOllOxxxlx
OlxxxOlOxxOlllOOOxxOOxxxlx
OxxOOlOxlOlllOOllOOlOxxxlx
OOxxxxxOxOxxOOOOOxxOOOOOl 1
OxOlOxxxxlOxxxxxxxxOlOlOll
OOxxxlOlxxOlOlOOlOllOxxxlx
lOlxxxOlxxOlOl10101lOxxxOO
lOlxxxOlxxOlOlUOxxOOxxxOO
lOlxxxOlxxOlOlOOllOlOxxxlx

output
CoCi

Yix
Xix
Tix

XiZi
TiXi
T2X
Yix
Yix

Z1T2
T2X1
Yix

X2y2

X2X

- 2 / 2

Each control word consists of a string of 26 bits organized as follows:

XJCOOIOIO 1100 lOOllOOlOXXXlX

direction MUX ALU

The first eight bits designate the addresses to be read by the memory block,
the next four bits designate which operand will be loaded to the ALU unit,
and finally the last fourteen bits designate which operations will be performed
by the ALU unit according to the list of supported operations shown in Table
10.9.

As an example, consider point halving computation in affine coordinates of
Algorithm 10.12. The datapath for this computation is illustrated in Fig. 10.8.
First, it is necessary to load 0:2,2/2 into the input registers Ao,A2, respectively.
Additionally, a copy of X2 is stored in Ai. Then, the operations for loading
HT{Ao -f 1) and Ai on the finite field multiplier are commanded by the
Control Unit. Next, we multiply Ai • HT{Ao -h 1) and immediately after A2 is
added to that product obtaining ^2 + Ai • HT{AQ-hi). Thereafter, the result
obtained by the multiplication operation is computed into the trace unit, in
order to choose the appropriate operand for the square-root unit, and to send
the corresponding outputs Co, Ci. The dataflow just described is highlighted
in Figure 10.8.

As mentioned previously, our architecture allows us to perform three main
elliptic curve operations, namely, point addition, point doubhng and point

324 10. Elliptic Curve Cryptography

«JLCZ]
Fig. 10.8. Point Halving Execution

halving, Table 10.10 lists the number of cycles required in order to perform
such operations. Furthermore, Figures 10.9 and 10.10 show the time diagram
corresponding to the execution of the point addition and point doubling prim­
itives, respectively.

Table 10.10. Cycles per Operation

Elliptic curve operations
Point Halving (affine coordinates)
Point Halving (A-representation)
Point Doubling
Point Addition

cycles
1
2

3
8

10.7.3 Performance Estimation

We estimate the running time of the circuit of Fig. 10.6 as follows. We need
eight cycles and one cycle for performing a Point Addition (PA) in mixed LD
coordinates and a Point Halving (PH) operation, respectively. On the other
hand, the computational cost of Algorithm 10.13 is approximately,

—PA-^mPH.
o

10.7 Half-and-Add Algorithm for Scalar Multiplication 325

Load
(Inputs)

Operation 1

Operation 2

Operation 3

CO

y2

Zi

Yi

Z,^

Y^-Z,^

Y j 'Z i '+Y,

Y,

Cycle 1

X2

Z,

Xi

X2'Zi

X2«Zi+Xi

Xi

Cycle 2

Xi

Zi

X i 'Z ,

Ti

Cycle 3

Xi

Zi

Ti

X i '

Z i '+T i

Xi2-(Zi=^+Ti)

Xi

Zi

Cycle 4

Yi

X,

Ti

Yi-Ti

Y i '+X i

Y i 'T i+Y i '+X i

T,

Xi

Cycle 5

X2

Zi

Xi

X2-Zi

X2«Zi+Xi

T2

Cycle 6

X2

Zi

yz

Z i '

X2-»-y2

(X2+y2)+Zi='

Yi

T2

Cycle 7

T2

Yi

Ti

Zi

Ti+Zi

T2'(Ti+Zi)

T2'(Ti+Zi)+Yi

Y,

Cycle 8

Fig. 10.9. Point Addition Execution

Load
(Inputs)

AO

A1

A2

A3

Operation 1

Operation 2

Operation 3

CO

C1

Y2

Zi

Xi

Z /

X/+Zi=

Zi

T2

Y2

Zi

Xi

X / + T i

Y i '+T iZ i

X /+T , ' (Y i '+T iZ i)

T2

Xi

Cycle 2

T2 j

Zi '

Tz 1

Zi«Ti 1

Zi«Ti+T2 1

Yi 1

Cycle 3 1 Cycle 1

Fig. 10.10. Point Doubling Execution

Translating above equation to clock cycles, we get,

^ (8) -f mPH(l) = ^m Clock Cycles,
o o

In other words, the architecture presented in this Section (see Figures 10.6
and 10.7) needs approximately -ym clock cycles for performing an elliptic
curve point multiphcation using the Half-and-Add Algorithm 10.13.

326 10. Elliptic Curve Cryptography

Talkie 10.11. Fastest Ellipt

Author

Cruz-A. et al.[54]
Hernandez-R et al.[137]

Cheung et al. [50]
Shu et al.[329]

Saqib et al.[310]
Lutz [216]

Jarvinen et al.[155]
Gura et al. [125]
Satoh et al. [313]

Orlando et al.[261]
1 Bednara et al. [20]
1 Sozzani et al. [341]

Ernst et al. [313]
1 Schroeppel et al. [322]

year

2UU6
2UUb
2005
2005
2006
2004
2004
2002
2003
2000
2002
2005
2002
2003

ic Curve Scalar Multiplication Hardware Designs

platform

Virtex II
Virtex II
Virtex 4
Virtex II
Virtex II
Virtex II
Virtex II
Virtex II

0.13/im CMOS
Virtex
Virtex

0.13Mm CMOS
Atmel

0.13Atm CMOS

m

233
163
113
163
191
163
163
163
160
167
191
163
113
178

clock
MHz

27.58
23.94

65
68.9
9.99
66.0
90.2
66.4
510.2
76.7
50

417
12

227

time

[ML
17.64
25.0
30
48

61.16
75
106
143
190
210
270
270
1400
4400

Cost
LUTs

39762(11)
22665

13922 (est)
25763

39252(24)
10017

36158(est)
22665

-
3002

-
-
-

143K gates

m
T-LUT

332.19
287.67
270.55
131.81
79.56

216.95
42.53
36.14

-
265.03

-
-
-
-

10.8 Performance Comparison

In this Section we compare some of the most representative eUiptic curve
designs reported during this decade. In our survey we considered three metrics;
speed, compactness and efRciency. Our study tries to sum up the state-of-the-
art of scalar multiplication hardware implementations.

Table 10.11 shows the fastest designs reported to date for elliptic scalar
multiplication over GF(2'^y^. It can be observed that the design of [54] which
features a specialized design on Koblitz curves shows the highest speed of all
designs considered.

Table 10.12. Most Compact EUiptic

Author

Kim et al. [172]
Oztiirk

et al. [265]
Aigner et al. [2]

Schroeppel
et al. [322]

Shuhua
et al. [330]

year

2002
2004

2004
2003

2005

platform

0.35/im CMOS
0.13Mm CMOS

0.13/im CMOS
0.13/xm CMOS

Virtex II

Curve Scalar Multiplication Hardware Designs

m

192 binary
167 prime
167 prime
191 binary
178 binary

192 prime

clock
MHz

10
20

200
10

227

50

time
(mS)

36.2 (est)
31.9
3.1

46.9
4.4

6

Cost

16.84K gates
30.3K gates
34.4K gates
25K NANDs
143K gates

4729 LUTs

m
TGates

0.315
0.1727

1.56
0.163
0.283

~

^̂ Whenever the number of LUTs utilized by the design is not available, an esti­
mation based on the reported number of CLBs has been made. The number in
parenthesis in the seventh column represents the total number of BRAMs.

10.8 Performance Comparison 327

In Table 6.4 we show a selection of some of the most compact reconfigurable
hardware elliptic curve designs reported to date. It is noted that this category
is dominated by those designs implemented in VLSI working with elliptic
curves defined over GF{2'^). Indeed, the most compact GF{P) elliptic curve
design in [265] has a hardware cost 1.8 times greater than that of the smallest
GF{2'^) elliptic curve design in [172].

We measure efficiency by taking the ratio of number of bits processed over
slices multiplied by the time delay achieved by the design, namely,

bits

Slices X timings

For instance, consider the Koblitz design presented in [54]. As is shown in
Table 10.11, working over GF(2^^^), that design achieved a time delay of just
17.64/xS at a cost of 39762 Look Up Tables (LUTs) and 11 Block RAMs.
Therefore its efficiency is calculated as.

hits 233
Slices X timings 39762 x 17.64/x

- 332.19

When comparing the designs featured in Tables 10.11 and 10.13, it is noticed
that the fastest and most efficient multiplier designs are the Koblitz elliptic
curve designs as well as the half-and-add scalar multiplication design studied
in this Chapter.

Table 10.13. Most Efficient Elliptic Curve Scalar Multiplication Hardware Designs

Author

Cruz-A. et al.[54]
Hernandez-R et al.[137]

Cheung et al, [50]

Orlando et al.[261]
Lutz [216]

Shue t al.[329]

Saqib et al.[310]

Jarvinen et al.[155]

Gura et al. [125]
Leung et al. [205]

year

2006
2005
2005

2000
2004
2005

2006

2004

2002
2002

platform

Virtex II
Virtex II
Virtex 4

Virtex
Virtex II
Virtex II

Virtex II

Virtex II

Virtex II
Virtex

m

^33
163
113
163
167
163
163
233
191
191
163
193
233
163
113

clock
MHz

27.58
23.94

65
35

76.7
66.0
68.9
67.9
9.99
9.99
90.2
90.2
73.6
66.4
31

time
(MS)

17.64
25.0
30
50

210
75
48
89

61.16
114.71

106
139
227
143
750

Cost
LUTs

39762(11)
22665

13922 (est)
20047 (est)

3002
10017
25763
35800

39252(24)
39252(24)
36158(est)
38500(est)
46040(est)

22665
17506

m
TLUT

332.19
287.67
270.55
162.61
265.03
216.95
131.81
73.13
79.56
42.41
42.53
36.06
22.29
36.14
8.61

328 10. Elliptic Curve Cryptography

10.9 Conclusions

Two major factors contribute for achieving high performances in the architec­
tures presented throughout this chapter. Firstly, the usage of parallel strate­
gies apphed at every stage of the design. Secondly, efficient elliptic curve algo­
rithms such as the Montgomery point multiplication, scalar multiplication on
Koblitz curves, the half-and-add method, etc, along with their efficient imple­
mentations on reconfigurable hardware. Furthermore, it resulted also crucial
to take advantage of the lower-grained characteristic of reconfigurable hard­
ware devices and their associated functionality (in the form of BRAMs and
other resources).

In §10.5 we studied a generic architecture able to compute the scalar mul-
tipfication in Hessian form as weU as the Montgomery point multiplication
algorithm. It is noticed that theoretically (see Table 10.1), the Weierstreiss
form utilizing the Montgomery point multiplication formulation can be com­
puted in about half the execution time consumed by the Hessian form. This
prediction was confirmed in practice in [310] for elliptic curves defined over
GF(2^^^), as is shown in Table 10.13.

Then, we presented in §10.6 parallel formulations of the scalar multipli­
cation operation on Koblitz curves. The main idea proposed in that Section
consisted on the concurrent usage of the r and T~^ Frobenius operators, which
allowed us to parallelize the computation of scalar multiplication on elHptic
curves. On the other hand, we described a compact format of the cjrNAF ex­
pansion which was especially tailored for hardware implementations. In this
new format at most 2[j^;^] expansion coefficients need to be stored and pro­
cessed, provided that the arithmetic unit can compute up to a; — 1 subsequent
applications of the r Frobenius operator in one single clock cycle. Further­
more, it was shown that by using as building blocks the r and r~^ Frobenius
operators along with a single point addition unit, a parallel version of the clas­
sical double-and-add scalar multiplication algorithm can be obtained, with an
estimated speedup of up to 14% percent when compared with the traditional
sequential version.

In §10.7 we presented an architecture that is able to compute the elHptic
curve scalar multiplication using the half-and-add method. Additionally, we
presented optimizations strategies for computing a point addition and a point
doubling using LD projective coordinates in just eight and three clock cycles,
respectively.

Finally, in §10.8 we compared some of the most representative eUiptic
curve designs reported during this decade. In our survey we considered three
metrics: speed, compactness and efficiency. Our study tries to sum up the
state-of-the-art of scalar multiplication hardware implementations.

References

1. S. Adam, J. loannidis, and A. D. Rubin. Using the Fluhrer, Mantin, and Shamir
Attack to Break WEP. Technical report, ATT Labs TD-4ZCPZZ, Available
at: http://www.cs.rice.edu/~astubble/wep., August 2001.

2. H. Aigner, H. Bock, M. Hiitter, and J. Wolkerstorfer. A Low-Cost ECC Co­
processor for Smartcards. In Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004' Proceedings, volume 3156 of Lecture Notes in Computer Science, pages
107-118. Springer, 2004.

3. Altera. Design Software, 2006.
URL: http://www.altera.com/products/software/sfw-index.jsp.

4. Altera. Device Family Overview, 2006.
http://www.altera.com/products/devices/common/dev-
family_overview.html.

5. Altera. The Nios II Processor, 2006.
url: http://www.altera.com/literature/lit-nio2.jsp.

6. D. N. Amanor, V. Bunimov, C. Paar, J. Pelzl, and M. Schimmler. Efficient
Hardware Architectures for Modular Multiplication on FPGAs. In T. Rissa,
S. J. E. Wilton, and P. H. W. Leong, editors. Proceedings of the 2005 In­
ternational Conference on Field Programmable Logic and Applications (FPL),
Tampere, Finland, August 24-26, 2005, pages 539-542. IEEE, 2005.

7. Amphion Semiconductor. CS5210-40: High Performance AES Encryption
Cores, 2003.

8. R. J. Anderson and E. Biham. TIGER: A Fast New Hash Function. In
Proceedings of the Third International Workshop on Fast Software Encryption,
pages 89-97, London, UK, 1996. Springer-Verlag.

9. B. Ansari and H. Wu. Parallel Scalar Multiplication for Elliptic Curve Cryp-
tosystems. In International Conference on Communications, Circuits and Sys­
tems, 2005, volume I, pages 71-73. IEEE Computer Society, May 2005.

10. F. Argiiello. Lehmer-Based Algorithm for Computing Inverses in Galois Fields
gf(2^). lEE Electronic Letters, 42(5):270-271, March 1997.

11. P. J. Ashenden. Circuit Design with VHDL. Morgan Kaufmann Publishers,
second edition, 2002.

12. R. M. Avanzi, C. Heuberger, and H. Prodinger. Minimality of the Ham­
ming Weight of the r -NAF for Koblitz Curves and Improved Combination

330 References

with Point Halving. Cryptology ePrint Archive, Report 2005/225, 2005.
http://eprint.iacr.org/.

13. R. M. Avanzi and F. Sica. Scalar Multiplication on Koblitz Curves us­
ing Double Bases. Cryptology ePrint Archive, Report 2006/067, 2006.
http://eprint.iacr.org/.

14. E. Bach and J. Shallit. Algorithmic Number Theory, Volume I: Efficient Algo­
rithms. Kluwer Academic Publishers, Boston, MA, 1996.

15. D. Bae, G. Kim, J. Kim, S. Park, and O. Song. An Efficient Design of CCMP
for Robust Security Network. In International Conference on Information
Security and Cryptology, volume 3935, pages 337-346, Seoul, Korea, December
2005. Springer-Verlag.

16. J. C. Bajard, L. Imbert, and G. A. Jullien. Parallel Montgomery Multiplication
in GF(2) Using Trinomial Residue Arithmetic. In 17th IEEE Symposium on
Computer Arithmetic (ARITH-17 2005), 27-29 June 2005, Cape Cod, MA,
USA, pages 164-171. IEEE Computer Society, 2005.

17. P. Barreto. The Hash Functions Lounge. Available at:
http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html#BC04.

18. L. Batina, N. Mentens, S.B. Ors, and B. Preneel. Serial Multiplier Architectures
over GF(2'^) for Elliptic Curve Cryptosystems. In Proceedings of the 12th IEEE
Mediterranean Electrotechnical Conference MELECON 2004, volume 2, pages
779-782. IEEE Computer Society, May 2004.

19. F. Bauspiess and F. Damm. Requirements for Cryptographic Hash Functions.
Computers and Security, ll(5):427-437, September 1992.

20. M. Bednara, M. Daldrup, J. Shokrollahi, J. Teich, and J. von zur Gathen.
Reconfigurable Implementation of Elliptic Curve Crypto Algorithms. In 9th
Reconfigurable Architectures Workshop (RAW-02), pages 157-164, Fort Laud­
erdale, Florida, U.S.A., April 2002.

21. G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin. Ef­
ficient Software Implementation of AES on 32-bits Platforms. In Proceedings
of the CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
159-171. Springer, 2002.

22. E. Biham. A Fast New DES Implementation in Software. In FSE '97: Pro­
ceedings of the 4th International Workshop on Fast Software Encryption, pages
260-272, London, UK, 1997. Springer-Verlag.

23. E. Biham. A Fast New DES Implementation in Software. In 4th Int. Workshop
on Fast Software Encryption, FSE97, pages 260-271, Haifa, Israel, January
1997. Springer-Verlag, 1997.

24. E. Biham and R. Chen. Near-Collisions of SHA-0. In Advances in Cryptol­
ogy - CRYPTO 2004, 24th Annual International Crypto logy Conference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of
Lecture Notes in Computer Science, pages 290-305. Springer, 2004.

25. M. Bishop. An Application of a Fast Data Encryption Standard Implementa­
tion. In Computing Systems, 1(3), pages 221-254, Summer 1988.

26. I. F. Blake, V. K. Murty, and G. Xu. A Note on Window r-NAF Algorithm.
Inf. Process. Lett, 95(5):496-502, 2005.

27. G. R. Blakley. A Computer Algorithm for the Product AB modulo M. IEEE
Transactions on Computers, 32(5):497-500, May 1983.

28. A. Blasius. Generating a Rotation Reduction Perfect Hashing Function. Math­
ematics Magazine, 68(1):35-41, Feb 1995.

References 331

29. T. Blum and C. Paar. High-Radix Montgomery Modular Exponentiation on
Reconfigurable Hardware. IEEE Trans. Computers, 50(7):759-764, 2001.

30. J. Bos and M. Coster. Addition Chain Heuristics. In G. Brassard, (editor)
Advances in Cryptology —CRYPTO 89 Lecture Notes in Computer Science,
435:400-407, 1989.

31. A. Bosselaers, R. Govaerts, and J. Vandewalle. Fast Hashing on the Pen­
tium. In CRYPTO '96: Proceedings of the 16th Annual International Cryptol­
ogy Conference on Advances in Cryptology, pages 298-312, London, UK, 1996.
Springer-Verlag.

32. R. P. Brent and H. T. Kung. A Regular Layout for Parallel Adders. IEEE
Transactions on Computers, 31(3):260-264, March 1982.

33. E. F. Brickell. A Fast Modular Multiplication Algorithm with Application to
Two Key Cryptography. In Advances in Cryptology, Proceedings of Crypto 86,
pages 51-60, New York, NY, 1982. Plenum Press.

34. E. F. Brickell. A Survey of Hardware Implementation of RSA (abstract). In
Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
Lecture Notes in Computer Science, pages 368-370. Springer, 1989.

35. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast Ex­
ponentiation with Precomputation. In R. A. Rueppel, (editor) Advances in
Cryptology —EUROCRYPT 92 Lecture Notes in Computer Science, 658:200-
207, 1992.

36. M. Brown, D. Hankerson, J. Lopez, and A. Menezes. Software Implementation
of the NIST Elliptic Curves over Prime Fields. In CT-RSA 2001: Proceedings
of the 2001 Conference on Topics in Cryptology, pages 250-265, London, UK,
2001. Springer-Verlag.

37. G. J. Calderon, J. Velasco-Medina, and J. Lopez-Hernandez. Implementacion
en Hardware del Algoritmo Rijndael [in Spanish]. In X Workshop IBERCHIP,
page 113, 2004.

38. D. Canright. A Very Compact S-Box for AES. In J. R. Rao and B. Sunar,
editors. Cryptographic Hardware and Embedded Systems - CHES 2005, 7th
International Workshop, Edinburgh, UK, August 29 - September 1, 2005, Pro­
ceedings, volume 3659 of Lecture Notes in Computer Science, pages 441-455.
Springer, 2005.

39. Celoxica. Agility compiler, version 1.2, 2006.
40. CERTICOM. Certicom challenge: Eccp-109 solved. Available at:

http://www.certicom.com/index.php, 2002.
41. CERTICOM. Certicom challenge: Ecc2-109 solved. Available at:

http://www.certicom.com/index.php, 2004.
42. Certicom'^^. ECC Tutorial. http://www.certicom.com/index.php?action=

ecc_tutorial,home.
43. N. S. Chang, C. H. Kim, Y. H. Park, and J. Lim. A Non-Redundant and

Efficient Architecture for Karatsuba-Ofman Algorithm. In Information Se­
curity, 8th International Conference, ISC 2005, Singapore, September 20-23,
2005, Proceedings, volume 3650 of Lecture Notes in Computer Science, pages
288-299. Springer, 2005.

44. S. Charlwood and P. James-Roxby. Evaluation of the XC6200-Series Archi­
tecture for Cryptographic Application. In FPL 98, Lecture Notes in Com­
puter Science 1482, pages 218-227. Springer-Verlag Berlin Heidelberg 2003,
August/September 1998.

332 References

45. F. Charot, E. Yahya, and C. Wagner. Efficient Modular-Pipelined AES Imple­
mentation in Counter Mode on ALTERA FPGA. In Field-Programahle Logic
and Applications, pages 282-291, 2003.

46. R. C. C. Cheung, N. J. Telle, W. Luk, and P. Y. K. Cheung. Customizable
Elliptic Curve Cryptosystems. IEEE Trans. Computers on Very Large Scale
Integration (VLSI) Systems, 13(9): 1048-1059, September 2005.

47. L. Childs. A Concrete Introduction to Higher Algebra. Springer-Verlag Berlin
Heidelberg, Germany, 1995.

48. P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the AES
Algorithm. In C. D. Walter, (J. K. Kog, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lecture
Notes in Computer Science, pages 319-333. Springer, 2003.

49. D. V. Chudnovsky and G. V. Chudnovsky. Sequences of Numbers Generated
by Addition in Formal Groups and New Primality and Factorization Tests.
Advances in Applied Math., 7:385-434, 1986.

50. J. Cruz-Alcaraz and F. Rodriguez-Henriquez. Multiplicacion Escalar en Cur-
vas de Koblitz: Arquitectura en Hardware Reconfigurable (in Spanish). In
XII-IBERCHIP Workshop, IWS-2006, pages 1-10. Iberoamerican Develop­
ment Program of Science and Technology (CYTED), March 2006.

51. J. Daemen. Cipher and Hash Function Design, Strategies Based on Linear and
Differential Cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, 1995.

52. J. Daemen and C. S. K. Clapp. Fast Hashing and Stream Encryption with
PANAMA. In FSE '98: Proceedings of the 5th International Workshop on Fast
Software Encryption, pages 60-74, London, UK, 1998. Springer-Verlag.

53. J. Daemen, R. G., and J. Vandewalle. A Hardware Design Model for Cryp­
tographic Algorithms. In ESORICS '92: Proceedings of the Second European
Symposium on Research in Computer Security, pages 419-434, London, UK,
1992. Springer-Verlag.

54. J. Daemen, R. Govaerts, and J. Vandewalle. Fast Hashing Both in Hardware
and Software. ESAT-COSIC Report 92-2, Department of Electrical Engineer­
ing, Katholieke Universiteit Leuven, April 1992.

55. J. Daemen, R. Govaerts, and J. Vandewalle. A Framework for the Design
of One-Way Hash Functions including Cryptanalysis of Damgard's One-Way
Function based on a Cellular Automaton. In ASIACRYPT, pages 82-96, 1991.

56. J. Daemen and V. Rijmen. The Design of Rijndael, AES-The Advance En­
cryption Standard. Springer-Verlag Berlin Heidelberg, New York, 2002.

57. W. M. Dal and R. G. Kammer. FIPS 180-1: Secure Hash Standard SHAl,
January 2000. Available at: http://www.nist.org.

58. I. Damgard. A Design Principle for Hash Functions. In CRYPTO '89: Pro­
ceedings of the 9th Annual International Cryptology Conference on Advances
in Cryptology, pages 416-427, London, UK, 1990. Springer-Verlag.

59. A. Dandalis, V. K. Prasanna, and J. D. P. Rolim. A Comparitive Study of
Performance of AES Candidates Using FPGAs. In The Third AES3 Candidate
Conference, New York, April 2000.

60. M. Davio, Y. Desmedt, J. Goubert, F. Hoornaert, and J. J. Quisquater. Effi­
cient Hardware and Software Implementations for the DES. In Proc. of Crypto'
83, pages 144-146, August 1984.

References 333

61. J. Deepakumara, H. Heys, and R. Venkatesan. FPGA Implementation of MD5
Hash Algorithm. In Proceedings of the Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 919-924, Toronto, Canada, May 2001.

62. A. Desboves. Resolution, en nombres entiers et sous sa forme la plus generale,
de I'equation cubique, homogene, a trois inconnues. Nouvelles Annales de
Mathematiques 3-eme serie^ 5:545-579, 1886.

63. J.M. Diez, S. Bojanic, Lj. Stanimirovicc, C. Carreras, and O. Nieto-Taladriz.
Hash Algorithms for Cryptographic Protocols: FPGA Implementations. In
Proceedings of the 10*^ Telecommunications Forum, TELFOR2002, Belgrade,
Yugoslavia, May 26 -28, 2002.

64. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans­
actions on Information Theory, 22(6):644-654, November 1976.

65. V. S. Dimitrov, L. Imbert, and P. K. Mishra. Fast Elliptic Curve Point
Multiplication using Double-Base Chains. Cryptology ePrint Archive, Report
2005/069, 2005. Available at: http://eprint.iacr.org/.

66. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strengthened
Version of RIPEMD. In Proceedings of the Third International Workshop on
Fast Software Encryption, pages 71-82, London, UK, 1996. Springer-Verlag.

67. S. Dominikus. A Hardware Implementation of MD4-Family Hash Algorithms.
In Proceedings of the 9th IEEE International Conference on Electronics, Cir­
cuits and Systems, ICECS 2002, Dubrovnik, Croatia, Sep. 15-18 2002.

68. S. R. Dusse and B. S. Kaliski, Jr. A Cryptographic Library for the Motorola
DSP56000. In EUROCRYPT '90: Proceedings of the workshop on the theory
and application of cryptographic techniques on Advances in cryptology, pages
230-244, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

69. M. Dworkin. NIST Special Publication 800-58C: Recommendation for Block
Cipher Modes of Operation: The CCM Mode for Authentication and Confiden­
tiality, May 2004. Available at: http://csrc.nist.gov/CryptoToolkit/modes/.

70. M. Dworkin. NIST Special Publication 800-58B: Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication, May 2005.
Available at: http://csrc.nist.gov/CryptoToolkit/modes/.

71. Morris Dworkin. NIST Special Publication 800-58A: Recommendation
for Block Cipher Modes of Operation, December 2001. Available at:
http://csrc.nist.gov/CryptoToolkit/modes/.

72. H. Eberle. A High Speed DES Implementation for Network Applications.
In Advances in Cryptology-CRY PTC 92, Lecture Notes in Computer Science,
pages 521-539, Berlin, Germany, September 1992. Springer-Verlag.

73. H. Eberle, N. Gura, S. C. Shantz, and V. Gupta. A Cryptographic Processor
for Arbitrary Elliptic Curves over GF(2"^). Technical Report TR-2003-123,
Sun Microsystem Laboratories, Available at: http://research.sun.com/. May
2003.

74. H. Eberle and C. P. Thacker. A 1 Gbit/Second GaAs DES Chip. In IEEE
1992 Custom Integrated Circuits Conference, pages 19.7/1-4, New York,USA,
1992. Springer-Verlag.

75. E. E. Swartzlander (editor). Computer Arithmetic, volume I and II. IEEE
Computer Society Press, Los Alamitos, CA, 1990.

76. O. Egecioglu and Q. K. Kog. Fast Modular Exponentiation. In E. Ankan,
editor, Communication, Control, and Signal Processing: Proceedings of 1990
Bilkent International Conference on New Trends in Communication, Control,
and Signal Processing, pages 188-194. Elsevier, 1990.

334 References

77. A. Elbirt and C. Paar. Efficient Implementation of Galois Field Fixed Field
Constant Multiplication. In Third International Conference on Information
Technology: New Generations, ITNG 2006, pages 172-177. IEEE Computer
Society, April 2006.

78. A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA-based Performance
Evaluation of the AES Block Cipher Candidate Algorithm Finalists. IEEE
Trans. Very Large Scale Integr. Syst, 9(4):545-557, 2001.

79. J. Elbirt, W. Yip, B. Chetwyned, and C. Paar. A FPGA Implementation
and Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalist. In The Third AES3 Candidate Conference, New York, April 2000.

80. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Bgised on
Discrete Logarithms. IEEE Transactions on Information Theory, 31(4) :469-
472, July 1985.

81. S. S. Erdem and Q. K. Kog. A Less Recursive Variant of Karatsuba-Ofman
Algorithm for Multiplying Operands of Size a Power of Two. In 16th IEEE
Symposium on Computer Arithmetic (Arith-16 2003), 15-18 June 2003, San­
tiago de Compostela, Spain, pages 28-35. IEEE Computer Society, 2003.

82. M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Bliimel. A Reconfigurable
System on Chip Implementation for Elliptic Curve Cryptography over GF(2^).
In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna­
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, volume 2523
of Lecture Notes in Computer Science, pages 381-399. Springer-Verlag, 2003.

83. ETSI. European Telecommunications Standards Institute. URL:
http:/ /www.etsi . / /org/.

84. ETSI. ETSI Technical Specification. Access Transmission Systems on Metal­
lic Access Cables; Very High Speed Digital Subscriber Line (VDSL); Part 1:
Functional requirements.

85. H. Fan and Y. Dai. Low Complexity Bit-Parallel Normal Bases Multipliers for
GF(2^). lEE Electronics Letters, 40(l):24-26, 2004.

86. H. Fan and Y. Dai. Fast Bit-Parallel GF(2'') Multiplier for All Trinomials.
IEEE Trans. Computers, 54(4):485-490, 2005.

87. H. Fan and M. Anwar Hasan. A New Approach to Subquadratic Space Com­
plexity Parallel Multipliers for Extended Binary Fields. Centre for Applied
Cryptographic Research (CACR) Technical Report CACR 2006-02, 2006. avail­
able at: http://www.cacr.math.uwaterloo.ca/.

88. D. C. Feldmeier. A High Speed Crypt Program, April 1989. Technical Memo
TM-ARH-013711.

89. G. L. Feng. A VLSI Architecture for Fast Inversion in GF(2""). IEEE Trans­
actions on Computers, 38(10): 1383-1386, October 1989.

90. FIPS. Data Encryption Standard. Federal Information Standards Publication,
Dec. 1993. Federal Information Processing Standards Publication 46-2.

91. FIPS (Federal Information Processing Standards Publication). Secure Hash
Standard: FIPS PUB 180. Federal Information Processing Standards Publica­
tion, May 1993. Available at: http://www.nist.org.

92. K. Fong, D. Hankerson, J. Lopez, and A. Menezes. Field Inversion and Point
Halving Revisited. IEEE Trans. Computers, 53(8): 1047-1059, 2004.

93. A. P. Fournaris and O. Koufopavlou. GF(2^) Multipliers Based on Montgomery
Multiplication Algorithm. In Proceedings of the 2004 International Symposium
on Circuits and Systems IS CAS'04, volume 2, pages 849-852, May 2004.

References 335

94. M. K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, ^4^^ Annual
International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science.
Springer, 2004.

95. Free-DES. Free-DES Core (2000), March 2000. URL: http://www.free-
ip.com/DES/.

96. Y. Fu, L. Hao, and X. Zhang. Design of an Extremely High Performance
Counter Mode AES Reconfigurable Processor. In Proceedings of the Second In­
ternational Conference on Embedded Software and Systems (ICESS'05), pages
262-268. IEEE Computer Society, 2005.

97. G. Estrin. Organization of Computer Systems - the Fixed Plus Variable Struc­
ture Computer. In Western Joint Computer Conference, volume 3, pages 33-
40, 1960.

98. K. Gaj and P. Chodowiec. Comparison of the Hardware Performance of the
AES Candidates Using Reconfigurable Hardware. In The Third A ESS Candi­
date Conference, pages 40-54, New York, April 2000.

99. K. Gaj and P. Chodowiec. Fast Implementation and Fair Comparison of the Fi­
nal Candidates for Advanced Encryption Standard Using Field Programmable
Gate Arrays. In CT-RSA 2001: Proceedings of the 2001 Conference on Topics
in Cryptology, pages 84-99, London, UK, 2001. Springer-Verlag.

100. M. Garcia-Martinez, R. Posada-Gamez, G. Morales-Luna, and F. Rodriguez-
Henriquez. FPGA Implementation of an Efficient Multiplier over Finite Fields
GF(2"^). In International Conference on Reconfigurable Computing and FP-
GAs ReConFig05, Puebla City, Mexico, pages 1-4, September 2005.

101. H. L. Garner. The Residue Number Systems. IRE Transactions on Electronic
Computers, 8(6):140-147, June 1959.

102. J. Gathen and J. Shokrollahi. Efficient FPGA-Based Karatsuba Multipliers for
Polynomials over F2. In Selected Areas in Cryptography, 12th International
Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised
Selected Papers, volume 3897 of Lecture Notes in Computer Science, pages
359-369. Springer-Verlag, 2006.

103. P. Gauravaram, W. Millan, and J. Gonzalez-Nieto. Some Thoughts on Collision
Attacks in the Hash Functions MD5, SHA-0 and SHA-1. Cryptology ePrint
Archive, Report 2005/391, 2005. Available at: http://eprint.iacr.org/.

104. B. Gilchrist, J. H. Pomerene, and S. Y. Wong. Fast Carry Logic for Digital
Computers. IRE Transactions on Electronic Computers, 4:133-136, 1955.

105. B. Gladman. The AES Algorithm (Rijndael) in C and C+-|-. Available at:
http://fp.gladman.plus.com/cryptography_technology/rijndael/.

106. O. Goldreich. Foundations of Cryptography Volume 1, Basic Tools. Cambridge
University Press, 2003. Reprinted with corrections.

107. O. Goldreich. Foundations of Cryptography Volume 2, Basic Applications.
Cambridge University Press, 2004.

108. D. Gollmann. Equally Spaced Polynomials, Dual Bases, and Multiplication in
F2n. IEEE Trans. Computers, 51(5):588-591, 2002.

109. T. Good and M. Benaissa. AES on FPGA from the Fastest to the Smallest.
In J. R. Rao and B. Sunar, editors. Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29
- September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer
Science, pages 427-440. Springer, 2005.

336 References

110. J. Goodman and A. P. Chandrakasan. An Energy-Efficient Reconfigurable
Public-Key Cryptography Processor. IEEE Journal of Solid-State Circuits,
36(11):1808-1820, Nov. 2001.

111. D. Gordon. Discrete Logaritms in GF{P) Using the Number Field Sieve. SI AM
Journal on Discrete Mathematics, 6:124-138, 1993.

112. D. M. Gordon. A Survey of Fast Exponentiation Methods. Journal of Algo­
rithms, 27(1):129-146, April 1998.

113. C. Grabbe, M. B., J. Gathen, J. Shokrollahi, and J. Teich. A High Performance
VLIW Processor for Finite Field Arithmetic. In 17th International Parallel
and Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice,
France, CD-ROM/Abstracts Proceedings, page 189. IEEE Computer Society,
2003.

114. C. Grabbe, M. Bednara, J. Teich, J. Gathen, and J. Shokrollahi. FPGA Designs
of Parallel High Performance GY{2'^^^) Multipliers. In ISCAS (2), pages 268-
271, 2003.

115. X. Gregg. Hashing Forth: It's a Topic Discussed so Nonchalantly that Neo­
phytes Hesitate to Ask How it Works. Forth Dimensions, 17(4), 1995.

116. T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T. Lehman,
and B. Schott. Comparative Analysis of the Hardware Implementations of
Hash Functions SHA-1 and SHA-512. In ISC '02: Proceedings of the 5th Inter­
national Conference on Information Security, pages 75-89, London, UK, 2002.
Springer-Verlag.

117. J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosys-
tems. In Advances in Cryptology-CRYPTO 97, volume 1294 of Lecture Notes
in Computer Science, pages 342-356, Berlin, Germany, 1997. Springer-Verlag.

118. J. Guajardo and C. Paar. Itoh-Tsujii Inversion in Standard Basis and Its
Application in Cryptography and Codes. Designs, Codes and Cryptography,
25:207-216, 2002.

119. Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized Generation of
Data-Path from C Codes for FPGAs. In DATE '05: Proceedings of the confer­
ence on Design, Automation and Test in Europe, pages 112-117, Washington,
DC, USA, 2005. IEEE Computer Society.

120. Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A Quantitative Analysis of the
Speedup Factors of FPGAs over Processors. In FPGA '04: Proceedings of the
2004 ACM/SIGDA 12th international symposium on Field programmable gate
arrays, pages 162-170, New York, NY, USA, 2004. ACM Press.

121. N. Gura, S. Shantz, and H. Eberle et. al. An End-to-End Systems Approach to
Elliptic Curve Cryptography. Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, 2523:349-365, August 2003.

122. A. A. A. Gutub, M. K. Ibrahim, and A. Kayah. Pipelining GF(P) Elliptic Curve
Cryptography Computation. In International Conference on Communications,
Circuits and Systems, 2005, pages 93-99. IEEE Computer Society, March 2006.

123. A. A. A. Gutub, A. F. Tenca, E. Savas, and Q. K. Kog. Scalable and Unified
Hardware to Compute Montgomery Inverse in GF(P) and GF(2'^). Cryp­
tographic Hardware and Embedded Systems - CHES 2002, 4ih International
Workshop, Redwood Shores, CA, USA, 2523:484-499, August 20002.

124. A. Halbutogullari and Q. K. Kog. Mastrovito Multiplier for General Irreducible
Polynomials. IEEE Transactions on Computers, 49(5):503-518, 2000.

References 337

125. A. Halbutogullari and Q. K. Kog. Parallel Multiplication in using Polynomial
Residue Arithmetic. Des. Codes Cryptography, 20(2):155-173, 2000.

126. T. R. Halfhill. MIPS Embraces Configurable Technology: Pro Series Processors
with Corextend Compete with ARC and Tensilica, March 2003. Available at:
http://www.altera.com/literature/lit-nio2.jsp.

127. P. Hamalainen, M. Hannikainen, and J. Saarinen. Configurable Hardware Im­
plementation of Triple-DES Encryption Algorithm for Wireless Local Network.
In Proc. of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP2001), volume II, pages 1221-1224, Salt Lake City, USA,
May 2001. IEEE.

128. D. Hankerson, J. Lopez-Hernandez, and A. Menezes. Software Implementation
of Elliptic Curve Cryptography Over Binary Fields. Cryptographic Hardware
and Embedded Systems - CHES 2000, Second International Workshop, Worces­
ter, MA, USA, August 17-18, 2000, Proceedings, 1965:1-24, August 2000.

129. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Cryptography.
Springer-Verlag, New York, 2004.

130. D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu. An Improved
Unified Scalable Radix-2 Montgomery Multiplier. In 17th IEEE Symposium
on Computer Arithmetic (ARITH-17 2005), 27-29 June 2005, Cape Cod, MA,
USA, pages 172-178. IEEE Computer Society, 2005.

131. M. A. Hasan. Efficient Computation of Multiplicative Inverses for Crypto­
graphic Applications. In 15th IEEE Symposium on Computer Arithmetic, Vail,
Colorado, U.S.A., June 2001.

132. M. A. Hasan, M. Z. Wang, and V. K. Bhargava. A Modified Massey-Omura
Parallel Multiplier for a Class of Finite Fields. IEEE Transactions on Com­
puters, 42(10):1278-1280, November 1993.

133. S. M. Hernandez-Rodriguez and F. Rodriguez-Henriquez. An FPGA Arith­
metic Logic Unit for Computing Scalar Multiplication Using the Half-and-Add
Method. In IEEE International Conference on Reconfigurable Computing and
FPGAs (ReConFig05), pages 1-7. IEEE Computer Society Press, September
2005.

134. Y. Hirano, T. Satoh, and F. Miura. Improved Extendible Hashing with High
Concurrency. Systems and Computers in Japan, 26(13): 1-11, 1995.

135. F. Hoornaert, M. Decroos, J. Vandewalle, and R. Govaerts. Fast RSA-
Hardware: Dream or Reality? In Advances in Cryptology — EUROCRYPT 88,
volume 330 of Lecture Notes in Computer Science, pages 257-264. Springer,
1988.

136. S. F. Hsiao and M. C. Chen. Efficient Substructure Sharing Methods for
Optimising the Inner-Product Operations in Rijndael Advanced Encryption
Standard. lEE Proceedings on Computer and Digital Technology, 152(5):653-
665, September 2005.

137. M. Button, J. Rabaey, G. Delp, R. Vasishta, V. Betz, and S. Knapp. Will
Power Kill FPGAs?, 2006. Session Chair-Mike Hutton.

138. K. Hwang. Computer Arithmetic, Principles, Architecture, and Design. John
Wiley k Sons, New York, NY, 1979.

139. T. Ichikawa, T. Kasuya, and M. Matsui. Hardware Evaluation of the AES
Finalists. In The Third A ESS Candidate Conference, pages 279-285, New
York, April 2000.

140. IEEE. IEEE 802 LAN/MAN Standards Committee. URL:
http://grouper.ieee.org/groups/802/index.html.

338 References

141. IEEE standards documents. IEEE PI363: Standard Specifications for
Public Key Cryptography. Draft Version D18. IEEE, November 2004.
http://grouper.ieee.org/groups/1363/.

142. J. L. Imana, J. M. Sanchez, and F. Tirado. Bit-Parallel Finite Field Multipliers
for Irreducible Trinomials. IEEE Transactions on Computers, 55(5):520-533,
2006.

143. CAST Inc. DES Encryption Core, available from URL: http://www.cast-
inc.com.

144. Xilinx Inc., V. Pasham, and S. Triemberger. High-speed DES
and TripleDES Encryptor/Decryptor, August 2001. URL:
http://www.xilinx.com/xapp/xapp270.pdf.

145. Y. Inoguchi. Outline of the Ultra Fine Grained Parallel Processing by FPGA.
In Seventh International Conference on High Performance Computing and
Grid in Asia Pacific Region IIPCAsia'04, pages 434-441. IEEE Computer So­
ciety Press, July 2004.

146. ISO. ISO standard 8731-2, 1988. Available at: http://www.iso.org/.
147. ISO. ISO N179 AR Fingerprint Function. Working document, ISO-

IEC/JTC1/SC27 /WG2, International Organization for Standardization, 1992.
148. ISO/IEC 15946. Information Technology - Security Techniques - Cryptographic

techniques based on Elliptic Curve. Committee Draft (CD),, 1999. URL:
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail7CS
NUMBER=31077.

149. T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses
in GF(2'^) Using Normal Basis. Information and Computing, 78:171-177, 1988.

150. ITU. International Telecommunication Union. URL:
http://www.itu.int/home/index.html.

151. K. Jarvinen, M. Tommiska, and J. Skytta. A Scalable Architecture for Ellip­
tic Curve Point Multiplication. In IEEE International Conference on Field-
Programmable Technology, FPT2004, pages 303-306. IEEE Computer Society
Press, December 2004.

152. K. Jarvinen, M. Tommiska, and J. Skytta. Hardware Implementation Analysis
of the MD5 Hash Algorithm. In Proceedings of the 38th Annual Hawaii In­
ternational Conference on System Sciences (HICSS'05) - Track 9, page 298.1,
Washington, DC, USA, 2005. IEEE Computer Society.

153. K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta. A Fully Pipelined Memory-
less 17.8 Gbps AES-128 Encryptor. In Proc. of Int. Symp. Field-Programmable
Gate-Arrays (FPGA2003, pages 207-215, Monterey, CA, Feb. 2003.

154. J. Jedwab and C. J. Mitchell. Minimum Weight Modified Signed-Digit Rep­
resentations and Fast Exponentiation. lEE Electronics Letters, 25(17):1171-
1172, August 1989.

155. A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Advances in Cryptology - CRYPTO 2004, 24th Annual Inter­
national CryptologyConference, Santa Barbara, California, USA, August 15-
19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science,
pages 306-316. Springer, 2004.

156. M. Joye and J. Quisquater. Hessian Elliptic Curves and Side-Channel Attacks.
Cryptographic Hardware and Embedded Systems - CHES 2001, Third Interna­
tional Workshop, Paris, France, May 14-16, 2001, Proceedings, 2162:402-410,
May 2001.

References 339

157. M. Joye and J. J. Quisquater, editors. Cryptographic Hardware and Embedded
Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004' Proceedings^ volume 3156 of Lecture Notes in Com,puter
Science. Springer, 2004.

158. B. S. Kaliski Jr. RFC 1319: The MD2 Message-Digest Algorithm. Internet
Activities Board, April 1992.

159. B. S. Kaliski Jr., Q. K. Kog, and C. Paar, editors. Cryptographic Hardware and
Embedded Systems - CHES 2002, 4ih International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes
in Computer Science. Springer, 2003.

160. M. Juliato, G. Araujo, J. Lopez, and R. Dahab. A Custom Instruction Ap­
proach for Hardware and Software Implementations of Finite Field Arithmetic
over F2^^ using Gaussian Normal Bases. In Proceedings of the 2005 IEEE In­
ternational Conference on Field-Programmable Technology, FPT 2005, 11-14
December 2005, Singagore, pages 5-12. IEEE Computer Society, 2005.

161. A. Kahate. Cryptography and Network Security. Tata McGraw-Hill, 2003.
162. Y. K. Rang, D. W. Kim, T. W. Kwon, and J. R. Choi. An Efficient Implemen­

tation of Hash Function Processor for IPSEC. In Proceedings of 2002 IEEE
Asia-Pacific Conference on ASIC, pages 93-96, Taipei, Taiwan, Aug 2002.

163. J. P. Kaps and C. Paar. Fast DES Implementations for FPGAs and its Ap­
plication to a Universal Key-Search Machine. In Proc. 5th Annual Workshop
on selected areas in cryptography-Sac' 98, pages 234-247, Ontario, Canada,
August 1998. Springer-Verlag, 1998.

164. A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Au­
tomata. Soviet Phys. Doklady (English Translation), 7(7):595-596, January
1963.

165. P. R. Karn. Karns DES implementation source code.
166. K. Kelley and D. Harris. Very High Radix Scalable Montgomery Multipliers.

In Proceedings of the 5th IEEE International Workshop on System-on-Chip
for Real-Time Applications (IWSOC 2005), 20-24 July 2004, Banff, Alberta,
Canada, pages 400-404. IEEE Computer Society, 2005.

167. M. Khabbazian and T.A. Gulliver. A New Minimal Average Weight Repre­
sentation for Left-to-Right Point Multiplication Methods. Cryptology ePrint
Archive, Report 2004/266, 2004. Available at: http://eprint.iacr.org/.

168. J. H. Kim and D. H. Lee. A Compact Finite Field Processor over GF(2'^)
for Elliptic Curve Cryptography. In IEEE International Conference on Com­
munications, Circuits and Systems, ICC CAS 2002, volume II, pages 340-342.
IEEE Computer Society Press, May 2002.

169. P. Kitsos and O. Koufopavlou. Eflficient Architecture and Hardware Imple­
mentation of the Whirlpool Hash Function. IEEE Transactions on Consumer
Electronics, 50(1):208-214, February 2004.

170. V. Klima. Finding MD5 Collisions a Toy for a Notebook. Cryptology ePrint
Archive, Report 2005/075, 2005. Available at: http://eprint.iacr.org/.

171. V. Khma. Tunnels in Hash Functions: MD5 Collisions Within a
Minute. Cryptology ePrint Archive, Report 2006/105, 2006. Available at:
http://eprint.iacr.org/.

172. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In
K. Y. Lam, E. Okamoto, and C. Xing, editors. Advances in Cryptology - ASI-
ACRYPT '99, volume 1716 of Lecture Notes in Computer Science, pages 135-
149. Springer, 1999.

340 References

173. L. R. Knudsen. SMASH A Cryptographic Hash Function. In FSE, pages
228-242, 2005. to appear.

174. D. E. Knuth. The Art of Computer Programming 3rd. ed. Addison-Wesley,
Reading, Massachusetts, 1997.

175. N. Kobhtz. EUiptic Curve Cryptosystems. Mathematics of Com.putation,
48(177):203-209, Janury 1987.

176. N. KobUtz. CM-Curves with Good Cryptographic Properties. In CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 279-287. Springer,
1991.

177. g . K. Kog. High-Speed RSA Implementation. Technical Report TR 201, 71
pages, RSA Laboratories, Redwood City, CA, 1994.

178. Q. K. Kog and T. Acar. Montgomery Multiplication in GF(2). Designs, Codes
and Cryptography, 14(l):57-69, 1998.

179. Q. K. Kog and C. Y. Hung. Carry Save Adders for Computing the Product
AB modulo A .̂ lEE Electronics Letters, 26(13):899-900, June 1990.

180. Q. K. Kog and C. Y. Hung. Multi-Operand Modulo Addition Using Carry Save
Adders. lEE Electronics Letters, 26(6):361-363, March 1990.

181. Q. K. Kog and C. Y. Hung. Bit-Level Systolic Arrays for Modular Multiplica­
tion. Journal of VLSI Signal Processing, 3(3):215-223, 1991.

182. Q. K. Kog, D. Naccache, and C. Paar, editors. Cryptographic Hardware and
Embedded Systems - CUES 2001, Third International Workshop, Paris, France,
May I4-I6, 2001, Proceedings, volume 2162 of Lecture Notes in Computer Sci­
ence. Springer, 2001.

183. Q. K. Kog and C. Paar, editors. Cryptographic Hardware and Embedded Sys­
tems, First International Workshop, CHES'99, Worcester, MA, USA, August
12-13, 1999, Proceedings, volume 1717 of Lecture Notes in Computer Science.
Springer, 1999.

184. Q. K. Kog and C. Paar, editors. Cryptographic Hardware and Embedded Sys­
tems - CHES 2000, Second International Workshop, Worcester, MA, USA,
August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in Computer
Science. Springer, 2000.

185. M. Kochanski. Developing an RSA Chip. In Advances in Cryptology -
CRYPTO '85, Santa Barbara, California, USA, August 18-22, 1985, Pro­
ceedings, volume 218 of Lecture Notes in Computer Science, pages 350-357.
Springer, 1985.

186. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO
'99: Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, pages 388-397, London, UK, 1999. Springer-Verlag.

187. I. Koren. Computer Arithmetic Algorithms. Prentice-Hall, Englewood Cliffs,
NJ, 1993.

188. D. C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New
York, NY, 1992.

189. D. Kulkarni, W. A. Najjar, R. Rinker, and F. J. Kurdahi. Compile-time Area
Estimation for LUT-based FPGAs. ACM Trans. Des. Autom. Electron. Syst.,
11(1):104-122, 2006.

190. N. Kunihiro and H. Yamamoto. New Methods for Generating Short Addition
Chains. lEICE Trans. Fundamentals, E83-A(l):60-67, January 2000.

191. I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs. In
FPGA '06: Proceedings of the intemation symposium on Field programmable
gate arrays, pages 21-30, New York, NY, USA, 2006. ACM Press.

References 341

192. A. Labbe and A. Perez. AES Implementations on FPGA: Time Flexibility
Tradeoff. In Proceedings of FPL02, pages 836-844, 2002.

193. RSA Laboratories. The Public-Key Cryptography Standards (PKCS), June
2002. Available at: http://www.rsasecurity.com/rsalabs/node.asp7id—2124.

194. RSA Laboratories. RSA Challenge. Available at:
http://www.rsasecurity.com/rsalabs/node.asp?id=2092, November 2005.

195. RSA Laboratories. RSA Security, 2005. http://www.rsasecurity.com/rsalabs/.
196. R. E. Ladner and M. J. Fischer. Parallel Prefix Computation. Journal of the

ACM, 27(4):831-838, 1980.
197. S. Lakshmivarahan and S. K. Dhall. Parallelism in the Prefix Problem, Oxford

University Press, Oxford, London, 1994.
198. J. Lamoureux and S. J. E. Wilton. FPGA Clock Network Architecture: Flex­

ibility vs. Area and Power. In FPGA '06: Proceedings of the international
symposium on Field programmable gate arrays, pages 101-108, New York, NY,
USA, 2006. ACM Press.

199. D. Laurichesse and L. Blain. Optimized Implementation of RSA Cryptosystem.
Computers & Security, 10(3):263-267, May 1991.

200. S. O. Lee, S. W. Jung, C. H. Kim, J. Yoon, J. Y. Koh, and D. Kim. De­
sign of Bit Parallel Multiplier with Lower Time Complexity. In Information
Security and Cryptology - ICISC 2003, 6th International Conference, Seoul,
Korea, November 27-28, 2003, Revised Papers, volume 2971 of Lecture Notes
in Computer Science, pages 127-139. Springer-Verlag, 2004.

201. H. Leitold, W. Mayerwieser, U. Payer, K. C. Posch, R. Posch, and J. Wolker-
storfer. A 155 Mbps Triple-DES Network Encryptor. In CHESS 2000, pages
164-174, LNCS 1965, 2000. Springer-Verlag.

202. A. Lenstra and H. Lenstra, editors. The Development of the Number Field
Sieve, Lecture Notes in Mathematics 1554- Springer-Verlag, 1993.

203. J. Leonard and W. H. Magione-Smith. A Case Study of Partially Evaluated
Hardware Circuits: Key Specific DES. In Field-Programmable Logic and Ap­
plications, FPL' 97, pages 234-247, London, UK, September 1997. Springer-
Verlag, 1997.

204. I. K. H. Leung and P. H. W. Leong. A Microcoded Elliptic Curve Processor
using FPGA Technology. IEEE Transactions on VLSI Systems, 10(5):550-559,
2002.

205. S. Levy. The Open Secret. Wired Magazine, 7(04):l-6, April 1999. Available
at: http://www.wired.eom/wired/archive/7.04/crypto.html.

206. D. Lewis, E. Ahmed, G. Baeckler, V. Betz, and et al. The Stratix II Logic and
Routing Architecture. In FPGA '05: Proceedings of the 2005 ACM/SIGDA
13th international symposium, on Field-programmable gate arrays, pages 14-
20, New York, NY, USA, 2005. ACM Press.

207. D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, and et al. The
Stratix 960; Routing and Logic Architecture. In FPGA '03: Proceedings of the
2003 ACM/SIGDA eleventh international symposium on Field programmable
gate arrays, pages 12-20, New York, NY, USA, 2003. ACM Press.

208. J. D. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley,
Reading, MA, 1981.

209. Q. Liu, D. Tong, and X. Cheng. Non-Interleaving Architecture for Hardware
Implementation of Modular Multiplication. In IEEE International Symposium
on Circuits and Systems, 2005. ISCAS 2005, volume 1, pages 660-663. IEEE,
May 2005.

342 References

210. J. Lopez and R. Dahab. Improved Algorithms for Elliptic Curve Arithmetic in
GF(2'^). In SAC'98, volume 1556 of Lecture Notes in Computer Science, pages
201-212, 1998.

211. J. Lopez and R. Dahab. Fast Multiplication on Elliptic Curves over GF{2'^)
without Precomputation. Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES'99, Worcester, MA, USA, August 12-13,
1999, Proceedings, 1717:316-327, August 1999.

212. J. Lopez-Hernandez. Personal communication with J. Lopez-Hernandez, 2006.
213. E. Lopez-Trejo, F. Rodriguez Henriquez, and A. Diaz-Perez. An Efficient

FPGA Implementation of CCM Mode Using AES. In International Confer­
ence on Information Security and Cryptology, volume 3935 of Lecture Notes
in Computer Science, pages 208-215, Seoul, Korea, December 2005. Springer-
Verlag.

214. A. K. Lutz, J. Treichler, F. K. Gurkaynak, H. Kaeslin, G. Easier, A. Erni,
S. Reichmuth, P. Rommens, S. Oetiker, and W. Fitchtner. 2 Gbits/s Hard­
ware Realization of RIJNDAEL and SERPENT-A Comparative Analysis. In
Proceedings of the CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 171-184. Springer, 2002.

215. J. Lutz. High Performance Elliptic Curve Cryptographic Co-processor. Mas­
ter's thesis. University of Waterloo, 2004.

216. R. Lysecky and F. Vahid. A Study of the Speedups and Competitiveness of
FPGA Soft Processor Cores using Dynamic Hardware/Software Partitioning.
In DATE '05: Proceedings of the conference on Design, Automation and Test
in Europe, pages 18-23. IEEE Computer Society, 2005.

217. S. Mangard. A High Regular and Scalable AES Hardware Architecture. IEEE
Transactions on Computers, 52(4):483-491, April 2003.

218. G. Martinez-Silva, F. Rodriguez-Henriquez, N. Cruz-Cortes, and L. G. De
la Fraga. On the Generation of X.509v3 Certificates with Biometric In­
formation. Technical report, CINVESTAV-IPN, April 2006. Available at:
http://delta.cs.cinvestav.mx/ francisco/.

219. E. D. Mastrovito. VLSI Designs for Multiplication over Finite Fields GF (2"^).
In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 6th In­
ternational Conference, AAECC-6, Rome, Italy, July 4-8, 1988, Proceedings,
volume 357 of Lecture Notes in Computer Science, pages 297-309. Springer-
Verlag, 1989.

220. R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, Boston, MA, 1987.

221. R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane. Optimisation
of the SHA-2 Family of Hash Functions on FPGAs. ISVLSI 2006, pages 317-
322, 2006.

222. M. McLoone and J. V. McCanny. High Performance FPGA Rijndael Algorithm
Implementation. In Proceedings of the CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 68-80. Springer, 2001.

223. M. McLoone and J.V. McCanny. Efficient Single-Chip Implementation of
SHA-384 and SHA-512. In Proceedings. 2002 IEEE International Conference
on Field- Programmable Technology, FPT02, volume 5, pages 311-314, Hong
Kong, December 16-18, 2002.

224. M. McLoone and J.V. McCanny. High-performance FPGA Implementation of
DES Using a Novel Method for Implementing the Key Schedule. lEE Proc:
Circuits, Devices & Systems, 150(5) :373-378, October 2003.

References 343

225. M. McLoone, C. Mclvor, and A. Savage. High-Speed Hardware Architectures
of the Whirlpool Hash Function. In FPT'05, pages 147-162. IEEE Computer
Society Press, 2005.

226. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullen, S. A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers,
Boston, MA, 1993.

227. A. J. Menezes, P. C. van Oorschot, and S. A.Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, 1996.

228. A.J. Menezes. Elliptic Curve Public Key Crypto systems. Kluwer Academic
Publishers, 1993.

229. Mentor Graphics. Catapult C, 2005.
230. Mentor Graphics, http://www.model.com/. ModelSim, 2005.
231. MentorGraphics, http://www.mentor.com/products/fpga_pld/synthesis/.

Leonardo Spectrum, 2003.
232. R. Merkle. Secrecy, Authentication, and Public Key Systems. Stanford Uni­

versity, 1979.
233. R. C. Merkle. One Way Hash Functions and DES. In CRYPTO '89: Proceed­

ings on Advances in cryptology, pages 428-446, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

234. R. C. Merkle. A Fast Software One-Way Hash Function. Journal of Cryptology,
3:43-58, 1990.

235. V. Miller. Uses of Elliptic Curves in Cryptography. In H. C. Williams (ed­
itor) Advances in Cryptology — CRYPTO 85 Proceedings, Lecture Notes in
Computer Science, 218:417-426, January 1985.

236. S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit Hash Function (N-Hash). In
SECURICOM '90, pages 123-137, 1990.

237. P. L. Montgomery. Modular Multiplication Without Trial Division. Mathe­
matics of Computation, 44(170):519-521, April 1985.

238. P. L, Montgomery. Five, Six, and Seven-Term Karatsuba-Like Formulae. IEEE
Trans. Comput, 54(3):362-369, 2005.

239. F. Morain and J. Olivos. Speeding Up the Computations on an Elliptic Curve
Using Addition-Subtraction Chains. Rapport de Recherche 983, INRIA, March
1989.

240. M. Morii, M. Kasahara, and D. L. Whiting. Efficient Bit-Serial Multiplica­
tion and the Discrete-Time Wiener-Hopf Equation over Finite Fields. IEEE
Transactions on Information Theory, 35(6): 1177-1183, 1989.

241. S. Morioka and A. Satoh. An Optimized S-Box Circuit Architecture for Low
Power AES Design. In Proceesings of the CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pages 172-183. Springer, 2002.

242. K. Mukaida, M. Takenaka, N. Torii, and S. Masui. Design of High-Speed and
Area-Efficient Montgomery Modular Multiplier for RSA Algorithm. In IEEE
Symposium on VLSI Circuits, 2004, pages 320-323. IEEE Computer Society,
2004.

243. R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelh. Logic Synthesis for
Field-Programmable Gate Arrays. Kluwer Academic Publishers, Norwell, MA,
USA, 1995.

244. M. Naor and M. Yung. Universal One-way Hash Functions and their Cryp­
tographic Applications. In STOC '89: Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 33-43, New York, NY, USA,
1989. ACM Press.

344 References

245. J. Nechvatal. Public Key Cryptography. In In G. Simmons ed. Contemporary
Cryptology: The Science of Information Integrity, Piseataway, NJ, 1992. IEEE
Press.

246. C. Negre. Quadrinomial Modular Arithmetic using Modified Polynomial Basis.
In International Symposium on Information Technology: Coding and Comput­
ing (ITCC 2005), Volume 1, 4-6 April 2005, Las Vegas, Nevada, USA, pages
550-555. IEEE Computer Society, 2005.

247. M. Negrete-Cervantes, K. Gomez-Avila, and F. Rodriguez-Henriquez. Inves­
tigating Modular Inversion in Binary Finite Fields (in Spanish). Technical
Report CINVESTAV_COMP 2006-1, 29 pages, Computer Science Department
CINVESTAV-IPN, Mexico, May 2006.

248. C. W. Ng, T. S. Ng, and K. W. Yip. A Unified Architecture of MD5 and
RIPEMD-160 Hash Algorithms. In Proceedings of IEEE International Sympo­
sium on Circuits and Systems, ISCAS 2004, volume 2, pages 11-889- 11-892,
Vancouver, Canada, 2004.

249. R. K. Nichols and P. C. Lekkas. Wireless Security: Models, Threats, and Solu­
tions. McGraw Hill, 2000.

250. NIST. FIPS 46-3: Data Encryption Standard DES. Federal In­
formation Processing Standards Publication 46-3, 1999. Available
at :http://csrc.nist.gov/publications/fips/.

251. NIST. ANSI T1E1.4, Sep. 1 1999. Draft Technical Document, Revisionl6,
Very High Speed Digital Subscriber Lines; System requirements.

252. NIST. Announcing the Advanced Encryption Standard AES. Fed­
eral Information Standards Publication, November 2001. Available at:
http://csrc.nist.gov/CryptoToolkit/aes/index.html.

253. NIST. FIPS 186-2: Digital Signature Standard DSS. Federal Informa­
tion Processing Standards Publication 186-2, October 2001. Available
at :http://csrc.nist.gov/publications/fips/.

254. NIST. Secure Hash Signature Standard (SHS). Technical Report FIPS PUB
180-2, NIST, August 1 2002.

255. NIST. FIPS 186-3: Digital Signature Standard DSS. Federal Informa­
tion Processing Standards Publication 186-3, march 2006. Available at:
http://csrc.nist.gov/publications/drafts/.

256. Government Committee of Russia for Standards. Information Technology.
Cryptographic Data Security. Hashing function, 1994. Gosudarstvennyi Stan­
dard of Russian Federation.

257. National Institute of Standards and Technology. NIST Special Publication
800-57: Recommendation for Key Management Part 1: General, August 2005.

258. J. V. Oldfield and R. C. Dorf. Field Programmable Gate Arrays: Reconfigurable
Logic for Rapid Prototyping and Implementations of Digital Systems. John
Wiley &^ Sons, Inc., New York, NY, USA, 1995.

259. J. K. Omura. A Public Key Cell Design for Smart Card Chips. In Interna­
tional Symposium on Information Theory and its Applications, pages 27-30,
November 1990.

260. G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve
Processor for GF(2^). Cryptographic Hardware and Embedded Systems -
CHES 2000, Second International Workshop, Worcester, MA, USA, August
17-18, 2000, Proceedings, 1965:41-56, August 2000.

References 345

261. G. Orlando and C. Paar. A Scalable GF{P) Elliptic Curve Processor Archi­
tecture for Programmable Hardware. Cryptographic Hardware and Embedded
Systems - CHES 2001, Third International Workshop, Paris, Prance, May 14-
16, 2001, Proceedings, 2162:348-363, May 2001.

262. S. B. 6rs , E. Oswald, and B. Preneel. Power-Analysis Attacks on an FPGA -
First Experimental Results. In Cryptographic Hardware and Embedded Systems
- CHES 2003, 5th International Workshop, Cologne, Germany, September 8-
10, 2003, Proceedings, volume 2779 of Lecture Notes in Computer Science,
pages 35-50. Springer, 2003.

263. E. Oztiirk, B. Sunar, and E. Savas. Low-Power Elliptic Curve Cryptography
Using Scaled Modular Arithmetic. In Cryptographic Hardware and Embedded
Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer
Science, pages 92-106. Springer, 2004.

264. G. Theodoridis P. Kitsos and O. Koufopavlou. An Efficient Reconfig-
urable Multiplier for Galois Field GF{2'^). Elsevier Microelectronics Journal,
34(10):975-980, October 2003.

265. C. Paar. Efficient VLSI Architectures for Bit Parallel Computation in Galois
Fields. PhD thesis, Universitat GH Essen, 1994.

266. C. Paar. A New Architecture for a Parallel Finite Field Multiplier with Low
Complexity Based on Composite Fields. IEEE Transactions on Computers,
45(7):856-861, July 1996.

267. C. Paar, P. Fleischmann, and P. Roelse. Efficient Multiplier Architectures for

Galois Fields GF(2 ^ ") . IEEE Trans. Computers, 47(2): 162-170, 1998.
268. C. Paar, P. Fleischmann, and P. Soria-Rodriguez. Fast Arithmetic for Public-

Key Algorithms in Galois Fields with Composite Exponents. IEEE Trans.
Computers, 48(10): 1025-1034, 1999.

269. C. Patterson. High Performance DES Encryption in Virtex FPGAs using Jbits.
In Field-programmable custom computing machines, FCCM' 00, pages 113-121,
Napa Valley, CA, USA, January 2000. IEEE Comput. Soc, CA, USA, 2000.

270. V. A. Pedroni. Circuit Design with VHDL. The MIT Press, August 2004.
271. J. Pollard. Montecarlo Methods for Index Computacion (mod p). Mathematics

of Computation, 13:918-924, 1978.
272. N. Pramstaller, C. Rechberger, and V. Rijmen. A Compact FPGA Imple­

mentation of the Hash Function Whirlpool. In FPGA '06: Proceedings of the
international symposium on Field Programmable Gate Arrays, pages 159-166,
New York, NY, USA, 2006. ACM Press.

273. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

274. B. Preneel. Cryptographic Hash Functions. European Transactions on
Telecommunications, 5(4):431-448, 1994.

275. B. Preneel. Design Principles for Dedicated Hash Functions. In Fast Software
Encryption, FSE 1993, volume 809 of Lecture Notes in Computer Science,
pages 71-82. Springer, 1994.

276. B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In Advances in Cryptology - CRYPTO '93,
13th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Com­
puter Science, pages 368-378. Springer, 1994.

346 References

277. J. J. Quisquater and C. Couvreur. Fast Decipherment Algorithm for RSA
Pubhc-Key Cryptosystem. Electronics Letters, 18(21):905-907, October 1982.

278. J. R. Rao and B. Sunar, editors. Cryptographic Hardware and Embedded Sys­
tems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29
- September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer
Science. Springer, 2005.

279. A. Reyhani-Masoleh. Efficient Algorithms and Architectures for Field Multi­
plication Using Gaussian Normal Bases. IEEE Trans. Comput., 55(l):34-47,
2006.

280. A. Reyhani-Masoleh and M. A. Hasan. A New Construction of Massey-Omura
Parallel Multiplier over GF(2). IEEE Trans. Computers, 51(5):511-520, 2002.

281. A. Reyhani-Masoleh and M. A. Hasan. Efficient Multiplication Beyond Opti­
mal Normal Bases. IEEE Trans. Computers, 52(4):428-439, 2003.

282. A. Reyhani-Masoleh and M. A. Hasan. Low Complexity Bit Parallel Architec­
tures for Polynomial Basis Multiplication over GF(2"^). IEEE Trans. Comput­
ers, 53(8):945-959, 2004.

283. A. Reyhani-Masoleh and M. Anwar Hasan. Low Complexity Word-Level Se­
quential Normal Basis Multipliers. IEEE Trans. Comput, 54(2):98-110, 2005.

284. V. Rijmen and P. S. L. M. Barreto. The Whirlpool Hash Function. First open
NESSIE Workshop, Nov. 13-14 2000.

285. RIPE. RIPE Integrity Primitives: Final Report of RACE Integrity Primitives
Evaluation (R1040). Technical report, Research and Development in Advanced
Communication Technologies in Europe, June 1992.

286. R. Rivest. The Md4 Message Digest Algorithm. In Advances in Cryptology -
CRYPTO '90 Proceedings, pages 303-311, 1991.

287. R. Rivest. The MD5 Message-Digest Algorithm. Technical Report Internet
RFC-1321, IETF, 1992. http://www.ietf.org/rfc/rfcl321.txt.

288. Ronald L. Rivest. RSA Chips (Pgist/Present/Future). In Advances in Cryp­
tology, Proceedings of EUROCRYPT 84^ volume 209 of Lecture Notes in Com­
puter Science, pages 159-165, 1984.

289. F. Rodriguez-Henriquez. New Algorithms and Architectures for Arithmetic in
GF(2"^) Suitable for Elliptic Curve Cryptography, PhD thesis: Oregon State
University, 2000.

290. F. Rodriguez-Henriquez and Q. K. Kog. On Fully Parallel Karatsuba Mul­
tipliers for GF{2'^). In International Conference on Computer Science and
Technology (CST 2003), pages 405-410, Cancun, Mexico, May 2003.

291. F. Rodriguez-Henriquez and Q. K. KoQ. Parallel Multipliers Beised on Special
Irreducible Pentanomials. IEEE Trans, Computers, 52(12):1535-1542, 2003.

292. F. Rodriguez-Henriquez, C.E. Lopez-Peza, and M.A Leon-Chavez. Compar­
ative Performance Analysis of Public-Key Cryptographic Operations in the
WTLS Handshake Protocol. In 1st International Conference on Electrical and
Electronics Engineering ICEEE 2004, pages 124-129. IEEE Computer Society,
2004.

293. F. Rodriguez-Henriquez, G. Morales-Luna, N. Saqib, and N. Cruz-Cortes.
Parallel Itoh-Tsujii Multiplicative Inversion Algorithm for a Special Class
of Trinomials. Cryptology ePrint Archive, Report 2006/035, 2006.
http://eprint.iacr.org/.

294. F. Rodriguez-Henriquez, N. A. Saqib, and N. Cruz-Cortes. A Fast Implemen­
tation of Multiplicative Inversion over GF(2"^). In International Symposium

References 347

on Information Technology (ITCC 2005), volume 1, pages 574-579, Las Vegas,
Nevada, U.S.A., April 2005.

295. F. Rodriguez-Henriquez, N. A. Saqib, and A. Diaz-Perez. 4.2 Gbit/s Single-
Chip FPGA Implementation of AES Algorithm. lEE Electronics Letters,
39(15):1115-1116, July 2003.

296. F. Rodriguez-Henriquez, N. A. Saqib, and A. Diaz-Perez. A Fast Parallel
Implementation of Elliptic Curve Point Multiplication over OF(2"^). Micro­
processor and Microsystems, 28(5-6):329-339, August 2004.

297. K. Rosen. Elementary Number Theory and its Applications. Addison-Wesley,
Reading, MA, 1992.

298. G. Rouvroy, F. X. Standaert, J. J. Quisquater, and J. D. Legat. Design Strate­
gies and Modified Descriptions to Optimize Cipher FPGA Implementations:
Fast and Compact Results for DES and Triple-DES. In FPL 2003, volume
2778 of Lecture Notes in Computer Science, pages 181-193. Springer-Verlag
Berlin Heidelberg 2003, 2003.

299. G. Rouvroy, F. X. Standaert, J. J. Quisquater, and J. D. Legat. Eficcient Uses
of FPGAs for Implementations of DES and its Experimental Linear Crypto-
analysis. IEEE Transactions on Computers, 52{4):473-482, 2003.

300. G. Rouvroy, F. X. Standaert, J. J. Quisquater, and J. D. Legat. Compact and
Efficient Encryption/Decryption Module for FPGA Implementation of AES
Rijndael Very Well Suited for Embedded Applications. In International Con­
ference on Information Technology: Coding and Computing 2004 (ITCC2004),
volume 2, pages 538-587, 2004.

301. A. Rudra, P. K. Dubey, C. S. Julta, V. Kumar, J. R. Rao, and P. Rohatgi. Ef­
ficient Rijndael Encryption Implementation with Composite Field Arithmetic.
In Proceedings of the CHES 2001, volume 2162 of Lecture Notes in Computer
Science, pages 171-184. Springer, 2001.

302. A. Rushton. VHDL for Logic Synthesis. John Wiley & Sons, Inc., New York,
NY, USA, 1998.

303. G. P. Saggese, A. Mazzeo, N. Mazzocca, and A. G. M. Strollo. An FPGA-
Based Performance Analysis of the Unrolling, Tiling, and Pipelining of the
AES Algorithm. In Field-Programable Logic and Applications FPL03, Lecture
Notes in Computer Science 2778, pages 292-302, 2003.

304. N. A. Saqib, A. Diaz-Perez, and F. Rodriguez-Henriquez. Highly Optimized
Single-Chip FPGA Implementations of AES Encryption and Decryption Cores.
In X Workshop Iberchip, pages 117-118, Cartagena-Colombia, March 2004.

305. N. A. Saqib, F. Rodriguez-Henriquez, and A. Diaz-Perez. Sequential and
Pipelined Architecures for AES Implementation. In Proceedings of the lASTED
International Conference on Computer Science and Technology, pages 159-163,
Cancun, Mexico, May 2003. lASTED/ACTA Press.

306. N. A. Saqib, F. Rodriguez-Henriquez, and A. Diaz-Perez. Two Approaches for
a Single-Chip FPGA Implementation of an Encryptor/Decryptor AES Core. In
FPL 2003, volume 2778 of Lecture Notes in Computer Science, pages 303-312.
Springer-Verlag Berlin Heidelberg 2003, 2003.

307. N. A. Saqib, F. Rodriguez-Henriquez, and A. Diaz-Perez. A Compact and
Efficient FPGA Implementation of the DES Algorithm. In International Con­
ference on Reconfigurable Computing and FPGAs (ReConFig04), pages 12-18,
Colima, Mexico, September 2004. Mexican Society for Computer Sciences.

348 References

308. N. A. Saqib, F. Rodriguez-Henriquez, and A. Diaz-Perez. A Reconfigurable
Processor for High Speed Point Multiplication in Elliptic Curves. International
Journal of Embedded Systems, fin press) , 2006.

309. N. A. Saquib, F. Rodriguez-Henriquez, and A. Diaz-Perez. AES Algorithm
Implementation - An Efficient Approach for Sequential and Pipeline Archite-
cures. In Fourth Mexican International Conference on Computer Science, pages
126-130, Tlaxcala-Mexico, September 2003. IEEE Computer Society Press.

310. A. Satoh and T. Inoue. ASIC-Hardware-Focused Comparison for Hash Func­
tions MD5, RIPEMD-160, and SHS. In ITCC '05: Proceedings of the In­
ternational Conference on Information Technology: Coding and Computing
(ITCC'05) - Volume /, pages 532-537, Washington, DC, USA, 2005. IEEE
Computer Society.

311. A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transactions on Computers, 52(4):449-460, April 2003.

312. E. Savas, M. Naseer, A. Gutub A.A, and Q. K. Kog. Efficient Unified Mont­
gomery Inversion with Multibit Shifting. lEE Proceedings-Computers and Dig­
ital Techniques, 152(4):489-498, July 2005.

313. E. Savas, A. F. Tenca, and Q. K. Kog. A Scalable and Unified Multiplier Ar­
chitecture for Finite Fields GF() and GF(2"^). In Cryptographic Hardware and
Embedded Systems - CHES 2000, Second International Workshop, Worcester,
MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in
Computer Science, pages 277-292. Springer-Verlag, 2000.

314. N. Schappacher. Developpement de la loi de groupe sur une cubique. Progress
in Mathematics-Birkhduser, pages 159-184, 1991. available at:http://www-
irma.u-strasbg.fr/ schappa/Publications.html.

315. B. Schneier. Applied Cryptography. John Wiley and Sons, New York, second
edition edition, 1998.

316. C. P. Schnorr. FFT-Hashing, An Efficient Cryptographic Hash Function, 1991.
Crypto'91 rump session, unpublished manuscript.

317. C. P. Schnorr. FFT-hash II, Efficient Cryptographic Hashing. Lecture Notes
in Computer Sciences, 658:45-54, 1993.

318. C. P. Schnorr and S. Vaudenay. Parallel FFT-Hashing. In Fast Software
Encryption, Cambridge Security Workshop, pages 149-156, London, UK, 1994.
Springer-Verlag.

319. A. Schonhage. A Lower Bound for the Length of Addition Chains. Theoretical
Computer Science, 1:1-12, 1975.

320. R. Schroeppel, C. Beaver, R. Gonzales, R. Miller, and T. Draelos. A low-power
Design for an Elliptic Curve Digital Signature Chip. Cryptographic Hardware
and Embedded Systems - CHES 2002, 4^h International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers, 2523:366-380, August
2003.

321. R. Schroeppel, H. Orman, S. W. O'Malley, and O. Spatscheck. Fast Key Ex­
change with Elliptic Curve Systems. In CRYPTO '95: Proceedings of the 15th
Annual International Cryptology Conference on Advances in Cryptology, pages
43-56, London, UK, 1995. Springer-Verlag.

322. H. Sedlak. The RSA Cryptography Processor. In Advances in Cryptology —
EUROCRYPT 87, volume 304 of Lecture Notes in Computer Science, pages
95-105, 1987.

323. A. Segredo£ts, E. Zabala, and G. Bello. Diseno de un Procesador Criptografico
Rijndael en FPGA [in Spanish]. In X Workshop IBERCHIP, page 64, 2004.

References 349

324. V. Serrano-Hernandez and F. Rodriguez-Henriquez. An FPGA Evaluation of
Karatusba-Ofman Multiplier Variants (in Spanish). Technical Report CINVES-
TAV_COMP 2006-2, 12 pages, Computer Science Department CINVESTAV-
IPN, Mexico, May 2006.

325. A. Shamir. Turing Lecture on Cryptology: A Status Report. Available
at: http://www.acm.org/awards/turing_citations/rivest-shamir-adleman.html,
2002.

326. M. B. Sherigar, A. S. Mahadevan, K. S. Kumar, and S. David. A Pipelined
Parallel Processor to Implement MD4 Message Digest Algorithm on Xilinx
FPGA. In VLSID '98: Proceedings of the Eleventh International Conference
on VLSI Design: VLSI for Signal Processing, page 394, Washington, DC, USA,
1998. IEEE Computer Society.

327. C. Shu, K. Gaj, and T. A. El-Ghazawi. Low Latency Elliptic Curve Cryptog­
raphy Accelerators for NIST Curves Over Binary Fields. In Proceedings of the
2005 IEEE International Conference on Field-Programmable Technology, FPT
2005, 11-14 December 2005, Singagore, pages 309-310. IEEE, 2005.

328. W. Shuhua and Z. Yuefei. A Timing-and-Area Tradeoff GF(P) Elliptic Curve
Processor Architecture for FPGA. In IEEE International Conference on Com­
munications, Circuits and Systems, ICCCAS 2005, pages 1308-1312. IEEE
Computer Society Press, June 2005.

329. K. Siozios, G. Koutroumpezis, K. Tatas, D. Soudris, and A. Thanailakis. DAG­
GER: A Novel Generic Methodology for FPGA Bitstream Generation and its
Software Tool Implementation. In 19th International Parallel and Distributed
Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings, 4-S
April 2005, Denver, CA, USA. IEEE Computer Society, 2005.

330. N. Sklavos, P. Kitsos, K. Papadomanolakis, and O. Koufopavlou. Random
Number Generator Architecture and VLSI Implementation. In Proceedings of
IEEE International Symposium on Circuits and Systems, ISC AS 2002, pages
IV-854- IV-857, Scottsdale, Arizona, May 2002.

331. N. Sklavos and O. Koufopavlou. On the Hardware Implementations of the
SHA-2 (256, 384, 512) Hash Functions. In Proceedings of IEEE International
Symposium on Circuits and Systems, ISC AS 2003, volume 5, pages V-153-
V-156, Bangkok, Thailand, 2003.

332. K. R. Sloan, Jr. Comments on "A Computer Algorithm for the Product AB
modulo M". IEEE Transactions on Computers, 34(3):290-292, March 1985.

333. N. Smart. The Hessian Form of an Elliptic Curve. Cryptographic Hardware
and Embedded Systems - CHES 2001, Third International Workshop, Paris,
Prance, May 14-16, 2001, Proceedings, 2162:118-125, May 2001.

334. N. Smart and E. Westwood. Point Multiplication on Ordinary Elliptic Curves
over Fields of Characteristic Three. Applicable Algebra in Engineering, Com­
munication and Computing, 13:485-497, 2003.

335. M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and editors F. J. Taylor.
Residue Arithmetic: Modem Applications in Digital Signal Processing. IEEE
Press, New York, NY, 1986.

336. J. Solinas. Generalized Mersenne Numbers. Technical Report CORR 1999-39,
Dept. of Combinatorics and Optimization, Univ. of Waterloo, Canada, 1999.

337. J. A. Solinas. An Improved Algorithm for Arithmetic on a Family of Elliptic
Curves. In CRYPTO '97: Proceedings of the 17th Annual International Cryp­
tology Conference on Advances in Cryptology, pages 357-371, London, UK,
1997. Springer-Verlag.

350 References

338. J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Des. Codes Cryptography,
19(2-3): 195-249, 2000.

339. F. Sozzani, G. Bertoni, S. Turcato, and L. Breveglieri. A Parallelized Design for
an Elliptic Curve Cryptosystem Coprocessor. In ITCC '05: Proceedings of the
International Conference on Information Technology: Coding and Computing
(ITCC'05) - Volume /, pages 626-630, Washington, DC, USA, 2005. IEEE
Computer Society.

340. W. Stallings. Cryptography and Network Security: Principles and Practice.
Prentice Hall, Upper Saddle River, New Jersey 07458, 1999.

341. F. X. Standaert, L. O. T. Oldenzeel, D. Samyde, and J. J. Quisquater. Power
Analysis of FPGAs: How Practical is the Attack? In Field Programmable Logic
and Application, 13th International Conference, FPL 2003, Lisbon, Portugal,
September 1-3, 2003, Proceedings, volume 2778 of Lecture Notes in Computer
Science, pages 701-711. Springer, 2003.

342. F. X. Standaert, S. B. Ors, and B. Preneel. Power Analysis of an FPGA:
Implementation of Rijndael: Is Pipelining a DPA Countermeasure? In M. Joye
and J . J . Quisquater, editors. Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings, volume 3156 of Lecture Notes in Computer Science, pages
30-44. Springer, 2004.

343. F. X. Standaert, S. B. Ors, J. J. Quisquater, and B. Preneel. Power Analysis
Attacks Against FPGA Implementations of the DES. In Field Programmable
Logic and Application, 14th International Conference , FPL 2004, Leuven,
Belgium, August 30-September 1, 2004, Proceedings, volume 3203 of Lecture
Notes in Computer Science, pages 84-94. Springer, 2004.

344. F. X. Standaert, G. Rouvroy, J. J. Quisquater, and J. D. Legat. Efficient
Implementation of Rijndael Encryption in Reconfigurable Hardware: Improve­
ments and Design Tradeoffs. In C. D. Walter, Q. K. Kog, and C. Paar, ed­
itors, Cryptographic Hardware and Embedded Systems - CHES 2003, 5th In­
ternational Workshop, Cologne, Germany, September 8-10, 2003, Proceedings,
volume 2779 of Lecture Notes in Computer Science, pages 334-350. Springer,
2003.

345. D. R. Stinson. Combinatorial Techniques for Universal Hashing. Computer
and System Sciences, 48(2):337-346, April 1994.

346. D. R. Stinson. Universal Hashing and Authentication Codes. Designs, Codes
and Cryptography, 4(4):369-380, 1994.

347. B. Sunar. A Generalized Method for Constructing Subquadratic Complexity
GF(2'') Multipliers. IEEE Trans. Computers, 53(9):1097-1105, 2004.

348. B. Sunar and (J. K. Kog. Mastrovito Multiplier for All Trinomials. IEEE
Transactions on Computers, 48(5):522-527, May 1999.

349. B. Sunar and Q. K. Kog. An Efficient Optimal Normal Basis Type II Multiplier.
IEEE Trans. Computers, 50(l):83-87, 2001.

350. E. J. Swankowski, R. R. Brooks, V. Narayanan, M. Kandemir, and M. J.
Irwin. A Parallel Architecture for Secure FPGA Symmetric Encryption. In
18th International Parallel and Distributed Symposium IPDPS'04, P^g^ 132.
IEEE Computer Society, 2004.

351. Synopsys, http://www.synopsys.com/products/. Galaxy Design Platform,
2006.

352. N. S. Szabo and R. I. Tanaka. Residue Arithmetic and its Applications to
Computer Technology. McGraw-Hill, New York, NY, 1967.

References 351

353. N. Takagi, J. Yoshiki, and K. Tagaki. A Fast Algorithm for Multiplicative
Inversion in GF(2"^) Using Normal Basis. IEEE Transactions on Computers^
50(5):394-398, May 2001.

354. Helion Tech. High Performance Solution in Silicon: AES (Rijndael) Cores.
Available at: http://www.heliontech.com/core2.htm.

355. Helion Technology. Datasheet - High Performance MD5 Hash
Core for Xilinx FPGA. url: http://www.heliontech.com/downloads/
md5_xilinx_helioncore.pdf.

356. A. F. Tenca and Q. K. Kog. A Scalable Architecture for Modular Multiplication
Based on Montgomery's Algorithm. IEEE Trans. Comput, 52(9):1215-1221,
2003.

357. J. P. Tillich and G. Zemor. Group-Theoretic Hash Functions. In Algebraic
Coding, First French-Israeli Workshop, Paris, France, July 19-21, 1993, Pro­
ceedings, volume 781 of Lecture Notes in Computer Science, pages 90-110.
Springer, 1993.

358. G. Todorov. ASIC Design, Implementation and Analysis of a Scalable High-
Radix Montgomery Multiplier. Master's thesis, Oregon State University, De­
cember 2000.

359. W. Trappe and L.C. Washington. Introduction to Cryptography with Coding
Theory. Prentice Hall, Inc., Upper Saddle River, NJ 07458, 2002.

360. S. Trimberger, R. Pang, and A. Singh. A 12 Gbps DES Encryptor/Decryptor
Core in an FPGA. In CHESS 2000, pages 156-163, LNCS 1965, 2000. Springer-
Verlag.

361. T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger. A 90nm Low-power
FPGA for Battery-Powered Applications. In FPGA '06: Proceedings of the
intemation symposium on Field programmable gate arrays, pages 3-11, New
York, NY, USA, 2006. ACM Press.

362. K. Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point Performance.
In FPGA '04: Proceedings of the 2004 ACM/SIGDA 12th international sympo­
sium on Field programmable gate arrays, pages 171-180, New York, NY, USA,
2004. ACM Press.

363. George Mason University. Hardware IP Cores of Advanced Encryption Stan­
dard AES-Rijndael. Available at: http://ece.gmu.edu/crypto/rijndael.htm.

364. VASG. VHDL Analysis and Standardization Group, March 2003.
365. C. D. Walter. Systolic Modular Multiplication. IEEE Transactions on Com­

puters, 42(3):376-378, March 1993.
366. C. D. Walter, Q. K. Kog, and C. Paar, editors. Cryptographic Hardware and

Embedded Systems - CHES 2003, 5th International Workshop, Cologne, Ger­
many, September 8-10, 2003, Proceedings, volume 2779 of Lecture Notes in
Computer Science. Springer, 2003.

367. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD. RUmp Session, Crypto 2004, Cryptology
ePrint Archive, Report 2004/199, 2004. Available at: http://eprint.iacr.org/.

368. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1. In Ad­
vances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
volume 3621 of Lecture Notes in Computer Science, pages 17-36. Springer,
2005.

352 References

369. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Ad­
vances in Cryptology - EUROCRYPT 2005, 24th Annual International Con­
ference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Com­
puter Science^ pages 19-35. Springer, 2005.

370. S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital System
Designers. Holt, Rinehart and Winston, New York, NY, 1982.

371. P. Wayner. British Document Outlines Early Encryption Discovery, 1997.
http://www.nytimes.com/library/cyber/week/122497encrypt.html.

372. N. Weaver and J. Wawrzynek. High Performance, Compact AES Implementa­
tions in Xilinx FPGAs. Technical report, U.C. Berkeley BRASS group, avail­
able at http://www.cs.berkeley.edu/ nnweaver/sfra/rijndael.pdf, 2002.

373. B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke. Hardware Performance of
Round 2 Advanced Encryption Standard Algorithms. In The Third A ESS
Candidate Conference^ New York, April 2000.

374. A. Weimerskirch and C. Paar. Generalizations of the Karatsuba Al­
gorithm for Efficient Implementations. Ruhr-Universitat-Bochum, Ger­
many. Technical Report, 2003. available at: http://www.crypto.ruhr-uni-
bochum.de/en_publications.html.

375. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).
In Submission to NIST, 2002.

376. S. Wicker. Error Control Systems for Digital Communication and Storage.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

377. S. B. Wicker and V. K. Bhargava (editors). Reed-Solomon Codes and Their
Applications. Prentice-Hall, Englewood Cliffs, NJ, 1994.

378. D. C. Wilcox, L. G. Pierson, P. J. Robertson, E. L. Witzke, and K. Gass. A
DES ASIC Suitable for Network Encryption at 10 Gbs and Beyond. In CHES
99, pages 37-48, LNCS 1717, August 1999.

379. T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-the-art
Implementations and Attacks. Trans, on Embedded Computing Sys., 3(3):534-
574, 2004.

380. T. J. Wollinger and C. Paar. How Secure Are FPGAs in Cryptographic Ap­
plications? In Field Programmable Logic and Application, 13th International
Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003, Proceedings,
volume 2778 of Lecture Notes in Computer Science, pages 91-100. Springer,
2003.

381. K. Wong, M. Wark, and E. Dawson. A Single-Chip FPGA Implementation of
the Data Encryption Standard (DES) Algorithm. In IEEE Globecom Commu­
nication Conf., pages 827-832, Sydney, Australia, Nov. 1998.

382. K. W. Wong, E. C. W. Lee, L. M. Cheng, and X. Liao. Fast ElHptic Scalar
Multiplication using New Double-base Chain and Point Halving. Cryptology
ePrint Archive, Report 2006/124, 2006. Available at: http://eprint.iacr.org/.

383. H. Wu. Low Complexity Bit-Parallel Finite Field Arithmetic using Polynomial
Basis. In Q. K. Kog and C. Paar, editors. Workshop on Cryptographic Hardware
and Embedded Systems (CHES 99), volume 1717 of Lecture Notes in Computer
Science, pages 280-291. Springer-Verlag, August 1999.

384. H. Wu. On Complexity of Squaring Using Polynomial Basis in GF(2"'). In
S. Tavares D. Stinson, editor. Workshop on Selected Areas in Cryptography
(SAC 2000), volume LNCS 2012, pages 118-129. Springer-Verlag, September
2000.

References 353

385. H. Wu. Montgomery Multiplier and Squarer for a Class of Finite Fields. IEEE
Trans. Computers, 51(5):521-529, 2002.

386. H. Wu and M. A. Hasan. Low Complexity Bit-Parallel Multipliers for a Class
of Finite Fields. IEEE Trans. Computers, 47(8):883-887, 1998.

387. H. Wu, M. A. Hasan, and I. F. Blake. New Low-Complexity Bit-Parallel Fi­
nite Field Multipliers Using Weakly Dual Bases. IEEE Trans. Computers,
47(11):1223-1234, 1998.

388. H. Wu, M. A. Hasan, L F. Blake, and S. Gao. Finite Field Multiplier Using
Redundant Representation. IEEE Trans. Computers, 51(11):1306-1316, 2002.

389. ANSI X9.62. Federal Information Processing Standard (FIPS) 46, National
Bureau Standards, January 1977.

390. Xilinx, http://www.xilinx.com/support/techsup/tutorials/index.htm. ISE 7
In-Depth Tutorial, 2005.

391. Xilinx. MicroBlaze Soft Processor Core, 2005. Available at:
http://www.xilinx.com/.

392. Xilinx, http://www.xilinx.com/bvdocs/publications/ds099.pdf. Spartan-S
FPGA Family: Complete Data Sheet, January 2005.

393. Xilinx. Virtex-4 Multi-Platform FPGA, 2005. Available at:
http://www.xilinx.com/.

394. Xilinx. Virtex-II platform FPGAs: Complete Data Sheet, 2005. Available at:
http://www.xilinx.com/.

395. Xilinx. Virtex-5 Multi-Platform FPGA, May 2006. Available at:
http://www.xihnx.com/.

396. S. M. Yen. Improved Normal Basis Inversion in GF(2'^). lEE Electronic
Letters, 33(3): 196-197, January 1997.

397. J. Zambreno, D. Nguyen, and A. Choudhary. Exploring Area/Delay Trade-offs
in an AES FPGA Implementation. In Proc. of Field Programmable Logic and
Applications (FPL, volume 3203 of Lecture Notes in Computer Science, pages
575-585. Springer-Verlag, 2004.

398. T. Zhang and K. K. Parhi. Systematic Design of Original and Modified Mas-
trovito Multipliers for General Irreducible Polynomials. IEEE Transactions on
Computers, 50(7):734-749, 2001.

399. Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL A One-Way Hashing Algorithm
with Variable Length of Output. In ASIACRYPT '92: Proceedings of the
Workshop on the Theory and Application of Cryptographic Techniques, pages
83-104, London, UK, 1993. Springer-Verlag.

400. J. Y. Zhou, X. G. Jiang, and H. H. Chen. An Efficient Architecture for Com­
puting Division over GF(2'^) in Elliptic Curve Cryptography. In Proceedings
of the 6th International Conference On ASIC, ASIC ON 2005, volume 1, pages
274-277. IEEE Computer Society, October 2005.

401. D. Zibin and Z. Ning. FPGA Implementation of SHA-1 Algorithm. In Pro­
ceedings of the 5 International Conference on ASIC, pages 1321-1324, Oct
2003.

402. J. zur Gathen and M. Nocker. Polynomial and Normal Bases for Finite Fields.
J. Cryptology, 18(4):337-355, 2005.

Glossary

Adittion Chains An addition chain for an integer m — 1 consists of a finite
sequence of integers U = [UQ^UI^ ... ,Ut)^ and a sequence of integer pairs
y = ((^ij Ji)j • • •, {h,jt)) such that UQ = 1^ ut = m — l, and whenever
1 < i < tj Ui = Uki -\- Uj^. Addition chains are particularly useful for
performing field exponentiation.

Area (hardware) Hardware resources occupied by the design. In terms of
FPGAs, hardware area includes number of CLBs, memory blocks, lOBs,
etc.

Authentication It is a security service related to identification. This func­
tion applies to both entities and information itself.

Block cipher A type of symmetric key cipher which operates on groups of
bits of a fixed length, termed blocks.

BlockRAMs Built-in memory modules in FPGAs.
Brute force attack A brute force attack is brute force search for key space:

trying all possible keys to recover plaintext from cipher text.
Cipher A cipher is an algorithm for performing encryption and decryption.
Ciphertext An encrypted message is called ciphertext.
CLB Configurable logic block (CLB) is a programmable unit in FPGAs. A

CLB can be reconfigured by the designer resulting a functionally new
digital circuit.

Confidentiality It guarantees that sensitive information can only be ac­
cessed by those users/entities authorized to unveil it.

Configurable Soc (CSoC) CSoc integrates reconfigurable hardware, one
or more processor and memory blocks on a single chip.

Confusion Confusion makes the output dependent on the key. Ideally every
key bit influences every output bit.

Cryptographic Security Strength the Security strength of a given
cryptographic algorithm is determined by the quality of the algorithm
itself, the key size used and the block size handled by the algorithm.

356 References

Data Integrity It is a service which addresses the unauthorized alteration of
data. This property refers to data that has not been changed, destroyed,
or lost in a malicious or accidental manner.

Decryption The process of retrieving plaintext from ciphertext is called de­
cryption.

DifRe-Hellman Key Exchange Protocol Invented in 1976 by Whitfield
Diffie, Martin Hellman and Ralph Merkle, the Diffie-Hellman key exchange
protocol was the first practical method for estabhshing a shared secret over
an unprotected communication channel.

Difussion Diffusion makes the output dependent on the previous input
(plaintext/ciphertext). Ideally each output bit is influenced by every input
bit.

Discrete Logarithm Problem Given a number p, a generator g e Zp* and
an arbitrary element a G Zp*, find the unique number i, 0 < i < p — 1,
such that a = g^{modp).

Downstream It defines the transmission from line terminal to network ter­
minal (from customer to network premise).

Elliptic curve In mathematics, elliptic curves are defined by certain cubic
(third degree) equations. They find applications in cryptography.

Elliptic curve cryptography Elliptic curve cryptography (ECC) is an ap­
proach to public-key cryptography based on the mathematics of elliptic
curves.

Elliptic Curve Discrete logarithmic problem Let Epq be an elliptic curve
defined over the finite field F^and let P be a point P G Ep^ with primer
order n. Consider the /c-multiple of the point P, Q = kP defined as the
elliptic curve point resulting of adding P , /c — 1 times with itself, where k is
a positive scalar in [1, n — Ij . The elliptic curve discrete logarithm problem
consists on finding the scalar k that satisfies the equation Q — kP.

Elliptic curve scalar multiplication Let P be a point on Elliptic curve
then the scalar product nP can be obtained by adding n copies of the
same point P. The product nP = P -f P-|- H- P obtained in this way
is referred as elliptic curve scalar multiplication.

Encryption Encoding the contents of the message in such a way that it hides
its contents from outsiders is called Encryption.

Extended Euclidean Algorithm In order to obtain the modular inverse
of a number a we may use the extended Euclidean algorithm, with which
it is possible to find the two unique integer numbers x, y that satisfy the
equation, ax 4- my = 1.

F P G A A field-programmable gate array or FPGA is a gate array that can
be reprogrammed, after it is manufactured.

Full Adder A full-adder is a combinational circuit with 3 input and 2 out­
puts. The inputs Ai, Bi^ d and the outputs Si and Ci^i are boolean
variables. It is assumed that Ai and Bi are the zth bits of the integers A
and J5, respectively, and Q is the carry bit received by the zth position.

References 357

The FA cell computes the sum bit Si and the carry-out bit Ci-^i which is
to be received by the next cell.

Fundamental Theorem of Arithmetic Any natural number n > 1 is ei­
ther a prime number, or it can be factored as a product of powers of
prime numbers pi. Furthermore, except for the order of the factors, this
factorization is unique.

Granularity Granularity of the reconfigurable logic is defined as the size of
the smallest functional unit that can be addressed by device programming
tools.

Greatest common divisor Given two integers a and b different than 0, we
say that the integer c/ > 1 is the greatest common divisor, or gcd, of a and
b if d\a, d\b and for any other integer c such that c\a and c\b then c\d. In
other words, d is the greatest positive number that divides both, a and b.

HDL Hardware Description Languages (HDLs) are used for formal descrip­
tion of electronic circuits. They describe circuit's operation, its design,
and tests to verify its operation by means of simulation. Typical HDL
compilers tools, verify, compile and synthesize an HDL code, providing
a list of electronic components that represent the circuit and also giving
details of how they are connected.

Integer Factorization Problem Given an integer number n, obtain its
prime factorization, i.e., find n = pi^^P2^^P3^^ • • 'Pk^^ ^ where pi is a prime
number and ê > L

Iterative Looping It implements only one round and n iterations of the
algorithm are carried out by feeding back previous round results.

JTAG The Joint Test Action Group (JTAG) is the common name for the
IEEE 1149.1 standard that defines the interface protocol between pro­
grammable devices and high-end computers.

Key schedule In cryptography, the algorithm for computing the sub-keys
for each round in a block cipher from the encryption (or decryption) key
is called the key schedule."

Logic Cell A logic cell is a very basic unit in FPGA which includes a 4-input
function generator, carry logic, and a storage element (flip-flop).

Look Up Table A function generator in a logic cell is implemented as a
look-up table which can be programmed to a desired Boolean logic, in
addition, each look up table acts as a memory unit.

Loop unrolling It implements n rounds of the algorithm, thus after an ini­
tial delay, output appears at each clock cycle.

Message Digest A cryptograph hash function takes a message of an ar­
bitrary length and outputs a fixed length string, referred to as message
digest or hash of that message. The purpose of message digest is to provide
fingerprint of that message.

Montgomery Multiplier In 1985, P. L. Montgomery introduced an effi­
cient algorithm for computing R = A- B mod n where A, B, and n are
/c-bit binary numbers. The Montgomery reduction algorithm computes
the resulting /c-bit number R without performing a division by the modu-

358 References

lus n. Via an ingenious representation of the residue class modulo n, this
algorithm replaces division by n operation with division by a power of 2.

Non-Repudiation It is a security service which prevents an entity from
denying previous commitments or actions.

One Way Function Is an injective function / (x) , such that f{x) can be
computed efficiently, but the computation of f~^{y) is computational in­
tractable, even when using the most advanced algorithms along with the
most sophisticated computer systems.

One-way Trapdoor Function We say that a one-way function is a One­
way trapdoor function if is feasible to compute f~^{y) if and only if a
supplementary information (usually the secret key) is provided.

Permutation Permutation refers to the rearrangement of an element. In
cryptography, elements (bit strings) are generally permuted in according
to some fixed permutation tables provided by the algorithm.

Plaintext In cryptographic terminology, message is called plaintext.
Portable Digital Assistants (PDAs) PDAs are handheld small computers

that were originally designed as personal organizers. PDAs usually contain
note pad, address book, task hst, clock and calculator, etc. Modern PDAs
are even more versatile. Most of them are equipped with an Intel XScale
^Processor running at 400 MHz with up to 128MB of RAM memory.

Reconfigurable computing Denotes the use of reconfigurable hardware,
also called custom computing.

Reconfigurable hardware Hardware devices in which the functionality of
the logic gates is customizable at run-time. FPGAs is a type of reconfig­
urable hardware.

Stream cipher Stream ciphers encrypt each bit of the plaintext individually
before moving on to the next.

Substitution Substitution refers to the replacement of an element with a
new element. In cryptography, substitution operation is mainly used in
block ciphers where an element is replaced with the elements from the
substitution boxes called as S-boxes. The substituted values in some block
ciphers can also be calculated.

System-on-Chip (SoC) SoC is a programmable platform which integrates
many functions into a single chip. It may include analog as well digital
components. A typical SoC includes one or more processing element (mi­
crocontroller/microprocessor or DSP), memory blocks, oscillators, ana­
log to digital or digital to analog or both and other peripherals (counter
timers, USB, Ethernet, power supply).

Throughput It is a measure for timing performance of a design and is calcu­
lated as: Throughput= (Allowed Frequency x Number of bits) / Number
of rounds (bits/s).

Upstream It defines the transmission from network terminal to line terminal
(from network to customer premise).

Index

Advanced Encryption Standard
Round Transformation, 249

Adaptive Window Exponentiation
Strategy, 128

Addition Chains, 178
Advanced Encryption Standard

AddRoundKey, 253
Algorithm, 248
Block Length, 248
ByteSubstitution, 249
Inverse Affine Transformation, 251
Inverse BS, 251
Inverse MixColumns, 253
Inverse Shift Row, 251
Key Length, 248
Key Schedule, 254
Key Scheduling, 249
MixColumns, 252
Rijndael Algorithm, 247
Round Constant, 254
Round Key, 249
Rounds, 249
ShiftRows, 251
State Matrix, 248

Affine Coordinates, 78, 83, 296
Anomalous Binary Curve, 308
Asymmetric algorithms, 13
Attacks

Meet-in-the-middle attack, 26
Birthday attack, 26
Brute force, 26

Bezout's identity, 164

Binary Finite Field
Addition, 139
Exponentiation, 185
Half Trace Function, 184
Multiplication, 139
Multiplicative Inverse, 173

BEA vs ITMIA, 181
Binary Euclidean Algorithm, 175
FPGA Designs, 183
Itoh-Tsujii Algorithm, 176, 178

Reduction, 152, 153
Square Root, 168

Examples, 171
Squaring, 151, 167
Trace Function, 183

Binary Finite Field Arithmetic, 139
Binary Montgomery Multiplier, 164
Bit-Wise Operations, 227
Block Cipher, 10, 221, 222

Blocks, 222
Decryption, 224
Encryption, 223
Permutation, 228
Shift operation, 229
Substitution, 227
Variable rotation, 230

Blowfish, 226

Carry Completion Sensing Adder, 92
Carry Look-Ahead Adder, 94
Carry Propagate Adder, 91
Carry Save Adder, 96
Carry Save Adders, 109

360 Index

Chinese Remainder Theorem, 69, 132
Ciphertext, 9
Composite Field, 260
Confusion, 249
Cryptographic Primitives, 29
Cryptography, 7

Definition, 8

Data Encryption Standard, 10, 232, 247
Final Permutation, 237
Fixed Rotation, 230
Implementation, 238
Initial Permutation, 233
Key Storage, 232
P-Box Permutation, 236
S-Box Substitution, 235

Design
Analysis, 56
Entry, 54
Flow, 53
Statistics, 59
Strategy, 55

Diffie-Hellman Key Exchange Protocol,
23

Diffusion, 249
Digital Signature Scheme, 13, 15

Key Generation, 16
Signature, 16
Verification algorithm, 16

Discrete Logarithm Problem, 15, 79
Divisibility

Divisible, 64
Divisor, 64
Factor, 64
Multiple, 64

Downstream, 28

Elliptic Curves, 73
Addition formulae, 294
Addition law, 74
Arithmetic, 318
Coordinate conversion, 300
Discrete Logarithm problem, 15, 292
Doubling k Add algorithm, 295
Doubling formulae, 294
Doubling law, 76
Groups, 20, 74, 79
Half-and-Add Algorithm, 317
Operations, 74

Order, 79
Over GF(2"^), 77
Point Addition, 78, 318
Point Doubling, 78, 318
Point Halving, 319
Scalar Multiplication, 76

Encryption, 9
Euler Function, 66
Euler Theorem, 66

Order, 66
Expansion Permutation, 235
Extended Euclidean Algorithm

Multiplicative Inverse, 68
Extended Euclidean algorithm, 69, 250

Multiplicative inverse, 250

Fermat's Little Theorem, 66, 174
Field Programable Gate Arrays

Circuit Analysis, 55
CLB, 35

Field Programmable Gate Array
Inner-Round pipelining, 59
Iterative Looping, 58
Logic Cell, 41
Logic Mode, 41
Look-Up Table, 38
Loop Unrolhng, 58
Memory Mode, 41
Physically secure, 227

Field Programmable Gate Arrays, 35,
37

Area, 60
BlockRams, 32
CLB, 38, 41, 307
Configurable Logic Blocks (CLBs), 37
Functional Verification, 54
granularity, 38
Instruction Efficiency, 50
Iteration-level parallelism, 50
Look-Up Tables, 41
Place and Route, 55
Synthesis, 54

Fiestel ciphers, 224
Finite Fields, 292

Definition, 70
Frobenius Operator, 310

Hardware Approach, 57
Hash function, 11, 14, 189

Index 361

Compression Function, 191
Famous Algorithms, 191
MD5, 193
SHA-2 Family, 201
value, 11, 189

Hessian Form, 294, 304
Point Addition, 304
Point Doubling, 305

High-Radix Interleaving Method, 122
High-Radix Montgomery's Method, 123

Interleaving Multiplication
Over Binary Fields, 159
Over Prime Fields, 107

Irreducible Polynomial, 139, 251
General Polynomial, 156
Pentanomial, 155
Trinomials, 155

Joint Test Action Group (JTAG), 37

Karatsuba-Ofman Multiplier, 143
Binary, 143

Key, 9
private, 16
public, 16
Public key, 13

Key Exchange, 23
Koblitz Elliptic Curves, 308

LSB-First Binary Exponentiation, 126

Matrix-Vector Multipliers, 161
Mastrovito Multiplier, 163

Modular Division, 68
Modular Exponentiation, 68
Modular Squaring, 103
Montgomery Exponentiation, 118
Montgomery Method, 297
Montgomery Modular Multiplication,

116
Montgomery Point Multiplication, 298,

305
MSB-First Binary Exponentiation , 125

NonRestoring Division Algorithm, 106

Omura's Method, 99
One-way Function, 14
One-way trapdoor function, 14, 358

Other Platforms, 48

Plaintext, 9
Point Halving algorithm, 320
Point representation

Affine representation, 82
Projective representation, 82

Polynomial addition, 139
Polynomial multiplication, 139
Polynomial product, 140
Polynomial squaring, 151
Primitive Root, 66
Private keys, 13
Processor cores

soft, 37, 38
Programming FPGA, 55
Projective Coordinates, 83, 296
Projective coordinates

Jacobians, 84
Lopez-Dahab, 84
Standard, 84

Public Key Cryptography, 9, 12

Reconfigurable Computing Paradigm,
50

Reconfigurable Devices, 31
Reconfigurable Hardware

Implementation Aspects, 53
Security, 61

Reconfigurable Logic, 32
Reduction Operation, 140
Restoring Division Algorithm, 105
RSA

Digital Signature, 16, 17
Key Generation, 16
Signature Verification, 18
Standards, 17

S-Box, 250
Secret key cryptography, 9
Secure communication, 7
security parameter, 16
Security Services

Authentication, 9
Confidentiality, 8
Data integrity, 9
Non-repudiation, 9

Security Strength, 26, 222
Software Implementations, 31

362 Index

Stream Cipher, 10 VHDL, 35
Symmetric algorithms, 10 Virtex, 37
symmetric cryptography Virtex-5, 39

Modes of Operations, 26 VLSI implementations, 31

Throughput, 60 Weierstrass Form, 296
Throughput/Area , 61 Window Exponentiation Strategies, 125

Upstream, 28 Window Method, 87

Verilog, 35 Xihnx, 35, 37, 39, 306

S I G N A L S A N D C O M M U N I C A T I O N T E C H N O L O G Y

(continued from page ii)

Information Measures
Information and its Description in Science
and Engineering
C. Amdt ISBN 3-540-40855-X

Processing of SAR Data
Fundamentals, Signal Processing,
Interferometry
A. Hein ISBN 3-540-05043-4

Chaos-Based Digital Communication Systems
Operating Principles, Analysis Methods, and
Performance Evalutation
F.C.M. Lau and C.K. Tse
ISBN 3-540-00602-8

Adaptive Signal Processing
Application to Real-World Problems
J. Benesty and Y. Huang (Eds.)
ISBN 3-540-00051-8

Multimedia Information Retrieval and
Management Technological
Fundamentals and Applications D. Feng, W.C.
Siu, and H.J. Zhang (Eds.)
ISBN 3-540-00244-8

Structured Cable Systems
A.B. Semenov, S.K. Strizhakov,and I.R.
Suncheley
ISBN 3-540-43000-8

UMTS
The Physical Layer of the Universal Mobile
Telecommunications System
A. Springer and R. Weigel
ISBN 3-540-42162-9

Advanced Theory of Signal Detection
Weak Signal Detection in Generalized
Obeservations
I. Song, J. Bae, and S.Y. Kim
ISBN 3-540-43064-4

Wireless Internet Access over GSMand UMTS
M. Tafemer and E. Bonek
ISBN 3-540-42551-9

Printed in the United States of America.

