

Closing the Power Gap Between
ASIC & Custom
Tools and Techniques for Low Power
Design

David Chinnery • Kurt Keutzer

Closing the Power Gap
Between ASIC & Custom

Tools and Techniques for Low
Power Design

David Chinnery Kurt Keutzer
AMD University of California, Berkeley
Sunnyvale, CA Berkeley, CA
USA USA

Library of Congress Control Number: 2007929117

ISBN 978-0-387-25763-1 e-ISBN 978-0-387-68953-1

Printed on acid-free paper.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,

connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this
publication of trade names, trademarks, service marks and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 4 3 2 1

springer.com

NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in

© 2007 Springer Science+Business Media, LLC

PREFACE

We were very pleased with the warm reception that industry analysts, the
trade press, and most importantly, hard working circuit designers, gave to
our book entitled Closing the Gap Between ASIC and Custom that was first
published in 2002. In that book, we focused on identifying the factors that
cause a significant speed differential between circuits designed in an ASIC
methodology and those designed with a “no holds barred” custom approach.
We also sought to identify and describe design tools and techniques that
could close the gap between the speeds of ASIC and custom circuits. That
book wasn’t even in press before designers and fellow researchers came
forward to challenge us to investigate a gap of growing importance: the gap
in power dissipation and energy efficiency between circuits designed in
ASIC and custom methodologies.

We learned a lot from our first book. In the content of our work we
learned that circuit design and layout tricks were unlikely to be the source
of sustained advantages of custom design. Instead clocking methodologies
and microarchitecture were more likely to be areas where custom circuits
sustained their advantage over ASICs. In our presentation of our research we
found that technical conferences such as the Design Automation Conference
were good venues for trying out our material and getting valuable feedback.
Finally, in the production of the book itself we learned that putting high-
level surveys and detailed descriptions of current research together with
illustrative design examples was a good formula for creating a book of broad
interest.

Like its predecessor we envision three main audiences for this book.
The first audience is ASIC and ASSP designers who are restricted to a
high productivity ASIC design methodology but still need to produce low-
power circuits with high-energy efficiency. The second audience is custom
designers who are seeking to design low power circuits with a more produ-
ctive design flow. While the perspective of these two groups is different,
the solutions they are seeking are very similar. In this book we account for
the relative power impact of different elements of a custom-design metho-
dology. We believe that this analysis should help custom design groups to
determine where their limited design resources are best spent and help ASIC-
oriented design groups understand where they most need improvement.
Secondly, we identify specific tools and methodologies targeted to reduce
the power of ASICs that are consistent with an ASIC design methodology,
but which can also be usefully employed in custom circuit design.

The third audience for this book is researchers in electronic design auto-
mation who are looking for a broader survey of contemporary low-power

tools, methodologies, and design techniques. We hope that this book offers a
more complete presentation of the battery of techniques that can be brought
to bear to save power than is typically offered in conference publications or
even survey articles. We also hope that the design examples used in this
book will help researchers to contextualize their own research.

Occasionally at technical conferences you will hear someone say: “Another
power paper? Isn’t that a solved problem?” Low power design has indeed
been a focal research area for fifteen years. However, a look at the power
challenges of today’s industrial designs indicates that the topic of this book
has never been timelier.

David Chinnery

Kurt Keutzer

Prefacevi

ACKNOWLEDGMENTS

Many people have given us advice, feedback and support over the years.
We will endeavor to acknowledge the majority of those people here, but
there are also numerous others with whom we have discussed research and
who have made helpful suggestions.

The Semiconductor Research Corporation supported our research on low
power. Our thanks to STMicroelectronics for access to their 0.13um process
technology and to the contacts at STMicroelectronics, Bhusan Gupta and
Ernesto Perea. For the algorithmic portion of our research, we collaborated
extensively with David Blaauw, Sarvesh Kulkarni, Ashish Srivastava, and
Dennis Sylvester. Sarvesh Kulkarni and Ashish Srivastava provided chara-
cterized asynchronous level converters and Synopsys PowerArc charact-
erized libraries for STMicroelectronics 0.13um process. We would like to
thank the Intel industrial liaisons, in particular Vijay Pitchumani and Desmond
Kirkpatrick, for their advice.

We would like to thank researchers at the Berkeley Wireless Research
Center: Stephanie Augsburger, Rhett Davis, Sohrab Emami-Neyestanak,
Borivoje Nikolić, Fujio Ishihara, Dejan Markovic, Brian Richards, Farhana
Sheikh, and Radu Zlatanovici. Laurent El Ghaoui also helped with convex
optimization research.

We would like to acknowledge the contributors to sessions on Closing
the Gap between ASIC and Custom and the two books on the topic. Fruitful
discussions with them have helped clarify our assumptions and delve into
the details: Ameya Agnihotri, Debashis Bhattacharya, Subhrajit Bhattacharya,
Vamsi Boppana, Andrew Chang, Pinhong Chen, John Cohn, Michel Cote,
Michel Courtoy, Wayne Dai, William Dally, David Flynn, Jerry Frenkil,
Eliot Gerstner, Ricardo Gonzalez, Razak Hossain, Lun Bin Huang, Bill
Huffman, Philippe Hurat, Anand Iyer, Srikanth Jadcherla, Michael Keating,
Earl Killian, George Kuo, Yuji Kukimoto, Julian Lewis, Pong-Fei Lu,
Patrick Madden, Murari Mani, Borivoje Nikolić, Greg Northrop, Satoshi
Ono, Michael Orshansky, Barry Pangrle, Matthew Parker, Ruchir Puri,
Stephen Rich, Nick Richardson, Jagesh Sanghavi, Kaushik Sheth, Jim
Schwartz, Naresh Soni, David Staepelaere, Leon Stok, Xiaoping Tang, Chin-
Chi Teng, Srini Venkatraman, Radu Zlatanovici, and Tommy Zounes.

We would also like to thank others within our department who have helped
with low power research and editing: Abhijit Davare, Masayuki Ito, Trevor
Meyerowitz, Matthew Moskewicz, David Nguyen, Kaushik Ravindran,
Nadathur Satish, and Brandon Thompson.

David thanks his wife, Eleyda Negron, for her help and support. Kurt
thanks Barbara Creech for her patience and support.

Acknowledgments

The cover was designed by Steven Chan. It shows the Soft-Output
Viterbi Algorithm (SOVA) chip morphed with a custom 64-bit datapath.
The SOVA chip picture is courtesy of Stephanie Ausberger, Rhett Davis,
Borivoje Nikolić, Tina Smilkstein, and Engling Yeo. The SOVA chip was
fabricated with STMicroelectronics. The 64-bit datapath is courtesy of
Andrew Chang and William Dally. GSRC and MARCO logos were added.

viii

CONTENTS

1. Introduction 1
David Chinnery, Kurt Keutzer
1.1 Definitions: ASIC and custom...1
1.2 What is a standard cell ASIC methodology?...................................3
1.3 Who should care about this book?...6
1.4 Organization of the rest of the book ..8
1.5 What’s not in this book..9

CONTRIBUTING FACTORS

2. Overview of the Factors Affecting the Power Consumption 11
David Chinnery, Kurt Keutzer
2.1 Introduction..11
2.2 Process technology independent FO4 delay metric12
2.3 Components of power consumption..14
2.4 ASIC and custom power comparison ..15
2.5 Factors contributing to ASICs being higher power.......................19
2.6 Summary..47

3. Pipelining to Reduce the Power 55
David Chinnery, Kurt Keutzer
3.1 Introduction..57
3.2 Pipelining overheads..61
3.3 Pipelining power and delay model ..67
3.4 ASIC versus custom pipelining ...74
3.5 Other factors affecting the power gap ...81
3.6 Other factors affecting the minimum energy per operation81
3.7 Summary..84

4. Voltage Scaling 89
David Chinnery, Kurt Keutzer
4.1 Introduction..89
4.2 Delay..90
4.3 Switching power ..94
4.4 Short circuit power ..95
4.5 Leakage power...97
4.6 0.13um data for total power...99
4.7 Summary..104

Preface v
Acknowledgments vii

Contents

DESIGN TECHNIQUES

5. Methodology to Optimize Energy of Computation for SOCs 107
Jagesh Sanghavi, Eliot Gerstner
5.1 Introduction..107
5.2 Problem definition and solution approach...................................109
5.3 Optimization methodology ..110
5.4 Experimental results ..113
5.5 Summary..119

6. Linear Programming for Gate Sizing 121
David Chinnery, Kurt Keutzer
6.1 Introduction..121
6.2 Overview of TILOS gate sizing...124
6.3 Linear programming formulation ..126
6.4 Optimization flow..137
6.5 Comparison of gate sizing results..140
6.6 Computational runtime ..143
6.7 Summary..147

7. Linear Programming for Multi-Vth and Multi-Vdd Assignment 151
David Chinnery, Kurt Keutzer
7.1 Introduction..151
7.2 Voltage level restoration for multi-Vdd155
7.3 Previous multi-Vdd and multi-Vth optimization research156
7.4 Optimizing with multiple supply and threshold voltages............160
7.5 Comparison of multi-Vdd and multi-Vth results167
7.6 Analysis of power savings with multi-Vth and multi-Vdd171
7.7 Computational runtimes with multi-Vdd and multi-Vth.............185
7.8 Summary..186

8. Power Optimization using Multiple Supply Voltages 189
Sarvesh Kulkarni, Ashish Srivastava,
Dennis Sylvester, David Blaauw
8.1 Introduction..189
8.2 Overview of CVS and ECVS ..192
8.3
8.4 Power savings with CVS and GECVS ..199
8.5 Gate sizing and dual-Vth assignment ..201
8.6 Power savings with VVS and GVS...211
8.7 Summary..214

9. Placement for Power Optimization 219
Ameya R. Agnihotri, Satoshi Ono, Patrick H. Madden
9.1 Introduction..219

Greedy ECVS: a new dual−VDD assignment algorithm............196

x

9.2 Placement basics ..221
9.3 Physical synthesis ..226
9.4 Multiple supply voltage placement ...239
9.5 State of the art ..242
9.6 Summary..246

10. Power Gating Design Automation 251
Jerry Frenkil, Srini Venkatraman
10.1 Introduction..251
10.2 Leakage control techniques ...252
10.3 Power gating design issues ..255
10.4 Coolpower design automation ...262
10.5 Application flows...269
10.6 Results..272
10.7 Future work..277
10.8 Summary..278

281
Barry Pangrle, Srikanth Jadcherla
11.1 Introduction..281
11.2 Multiple voltage definitions and scenarios..................................283
11.3 Design examples..290
11.4 Summary..297

12. Winning the Power Struggle in an Uncertain Era 299
Murari Mani, Michael Orshansky
12.1 Introduction..299
12.2 Process variability and its impact on power300
12.3 Parametric yield estimation ...303
12.4 Optimization techniques for yield: an overview305
12.5 Efficient statistical parametric yield maximization.....................308
12.6 Summary..319

DESIGN EXAMPLES

13. Pushing ASIC Performance in a Power Envelope 323
Leon Stok, Ruchir Puri, Subhrajit Bhattacharya, John Cohn,
Dennis Sylvester, Ashish Srivastava, Sarvesh Kulkarni
13.1 Introduction..324
13.2 Power-performance trade-off with multi-Vdd and multi-Vth.....324
13.3 Design issues in multi-Vdd ASICs..332
13.4 Case study ..344
13.5 Summary..353

Contents

11. Verification for Multiple Supply Voltage Designs

xi

Contents

14. Low Power ARM 1136JF-S Design 357

George Kuo, Anand Iyer
14.1 Introduction..357
14.2 Project objective ..358
14.3 Key decisions and implemenations ...362
14.4 Results..377
14.5 Summary..381

Index 383

xii

Chapter 1 1

INTRODUCTION

David Chinnery, Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720, USA

This book examines the power consumption of ASIC and custom inte-

rated-circuits. In particular, we examine the relationship between custom
circuits designed without any significant restriction in design methodology
and ASIC circuits designed in a high-productivity EDA tool methodology.
From analysis of similar ASIC and custom designs, we estimate that the
power consumption of typical ASICs may be 3 to 7× that of custom ICs
fabricated in process technology of the same generation. We consider ways
to augment and enhance an ASIC methodology to bridge this power gap
between ASIC and custom.

Reducing circuit power consumption has been a hot topic for some time;
however, there has not been detailed analysis of the power gap between an
automated design methodology and custom design. This work gives a quan-
iative analysis of the factors contributing to the power gap. By identifying
the largest contributing factors, and which of these can be automated, we
aim to help close the power gap.

We examine design approaches and tools to reduce the power con-
sumption of designs produced in an automated design flow. In particular,
we focus on microarchitectural techniques, improvements in algorithms for
gate sizing and place and route, voltage scaling and use of multiple supply
voltages to reduce dynamic power, power gating to reduce leakage power,
and statistical power minimization. Design examples illustrate the use of
these techniques and show that energy efficiency can be improve by a factor
of 2 to 3×.

1.1 DEFINITIONS: ASIC AND CUSTOM

The term application-specific integrated-circuit (ASIC), has a wide
variety of associations. Strictly speaking, it simply refers to an integrated

2 Chapter 1

circuit (IC) that has been designed for a particular application. This defines
a portion of the semiconductor market. Other market segments include memo-
ies, microprocessors, and field programmable gate arrays (FPGAs).

Two industries grew to support the development of ASICs: vendors
fabricating chips, and companies offering electronic design automation (EDA)
software. The ASIC semiconductor-vendor industry, established by companies
such as LSI Logic, provides the service of fabricating ASICs designed by
other independent design groups. EDA companies such as Cadence and
Synopsys provide commercial tools for designing these ASICs. Another key
element of the ASIC design process is ASIC libraries. ASIC libraries are
carefully characterized descriptions of the primitive logic-level building blocks
provided by the ASIC vendors. Initially these libraries targeted gate-array
implementations, but in time the higher-performance standard-cell targets
became more popular.

ASIC vendors then offered complete design flows for their fabrication
process. These consisted of ASIC tools, ASIC libraries for the process, and a
particular design methodology. These embodied an ASIC methodology and
were known as ASIC design kits. Smith’s book on ASICs [6] is a great one-
stop reference for ASICs.

Generally, ASICs are designed at the register-transfer level (RTL) in
Verilog or VHDL, specifying the flow of data between registers and the state
to store in registers. Commercial EDA tools are used to map the higher level
RTL description to standard cells in an ASIC library, and then place the cells
and route wires. It is much easier to migrate ASIC designs to a new process
technology, compared to custom designs which have been optimized for a
specific process at the gate or transistor-level. ASIC designers generally
focus on high level designs choices, at the microarchitectural level for
example.

With this broader context, let us pause to note that the use of the term
ASIC can be misleading: it most often refers to an IC produced through a
standard cell ASIC methodology and fabricated by an ASIC vendor. That IC
may belong to the application-specific standard product (ASSP) portion of
the semiconductor market. ASSPs are sold to many different system vendors
[6], and often may be purchased as standard parts from a catalog, unlike
ASICs.

The term custom integrated-circuit, or custom IC, also has a variety of
associations, but it principally means a circuit produced through a custom-
design methodology. More generally, custom IC is used synonymously with
the semiconductor market segments of high-performance microprocessors
and digital signal processors.

Introduction 3

Technology independent optimization (e.g.
factoring, common subexpression elimination)

Technology mapping (pattern matching
logic to functions in the library)

Prioritize delay,
area or power

Synthesizable Verilog or VHDL

Gate level netlist

Optimizations (e.g. gate sizing, pin
swapping, buffer insertion/removal)

Library

Models of wire
load for # of

fanouts vs. total
cell area

Standard cells
for logic gates

Library

Models of wire
load for # of

fanouts vs. total
cell area

Standard cells
for logic gates

Delay, area,
power constraints

Synthesis

Place and route

Blockages (e.g.
RAM), power grid

Global routing

Cell placement

Clock tree synthesis

Detailed wire routing

Gate level netlist

Layout

Technology independent gate netlist
(e.g. AND2 & inverter gates)

Figure 1.1 A typical EDA flow from a high level hardware design language (HDL)
description through to layout.

Custom ICs are typically optimized for a specific process technology and
take significantly more time to design than ASICs, but can achieve higher
performance and lower power by higher quality design and use of techniques
that are not generally available to ASICs. For example, custom designers
may design logic gates at the transistor-level to provide implementations that
are optimal for that specific design; whereas an ASIC designer is limited by
what is available in the standard cell library.

1.2 WHAT IS A STANDARD CELL ASIC
METHODOLOGY?

A standard cell ASIC methodology incorporates a standard cell library
and automated design tools to utilize this library, in order to achieve higher

4 Chapter 1

designer productivity. The designer specifies the circuit behavior in a
hardware description language (HDL) such as Verilog or VHDL [5]. This
high level description is then mapped to a library of standard cells that
implement various logic functions, as shown in Figure 1.1. Various optimi-
zations are performed to try and meet delay, power, or area constraints
specified by the designer. The final layout of the chip is not known at the
synthesis stage, so the wire capacitances are estimated using a wire load
model. Then the standard cells are placed, wires are routed between them,
and a clock tree network is inserted to distribute the clock signal.

The EDA flow may be iterated through many times as a design is
changed to meet performance constraints. Small changes may be made at the
layout level, but significant changes like resizing gates on a delay-critical
path may require redoing place and route. After place and route, wire load
models for later iterations may be updated based on the resulting layout.

There are also verification steps to try to ensure that the final circuit that
is fabricated performs correctly. These include verifying that the gate level
logic corresponds to the HDL description; gate level simulation to check
correct functional behavior; verifying the layout meets design rules; checking
that supply and ground voltage (IR) drops are within tolerances for the
standard cell library or design; cross-talk analysis to check signal interference
between wires on the chip; and electromagnetic interference analysis to check
signal interference with the surrounding environment.

Custom designers sometimes use an ASIC methodology, in particular for
portions of the chip that are not timing critical, such as control logic. For
performance-critical datapath logic, it is highly advantageous in terms of
speed, power, and area to manually lay out the semi-regular logic. If their
position is known, cells can have less guard banding, or input and output
ports in a particular place to reduce wire lengths, and so forth. Custom
design of individual cells and manual placement is laborious, increasing the
time-to-market and requiring much larger design teams. Such design-specific
optimizations are seldom useful on other designs except for commonly used
structures such as memory, and also may not be usable if the technology for
the design changes. There have been several attempts by EDA companies to
sell datapath synthesis tools, but they have not been successful. It is very
difficult for tools to identify the appropriate layout, as a datapath does not
usually a regular structure that can be identified by a general purpose tool,
though some design companies do have in-house datapath generation tools.

Using a vendor-provided standard cell library for a given fabrication
process technology improves designer productivity. Lower transistor-level
circuit design issues are abstracted to gate-level power and delay chara-
cteristics, and standard cells are designed robustly with guard-banding to
ensure correct behavior. A library typically has several drive strengths of
cells that implement a given logic function. These drive strengths correspond

Introduction 5

to the capacitive load that a cell can drive without excessive delay and with
acceptable signal characteristics. Cell placement is simplified by using a
fixed height for all the cells. Rows of cells are placed on the chip, with
contiguous supply voltage (Vdd) rails and ground voltage (GND) rails at the
top and bottom of the rows. This makes it possible for automated placement
of standard cells in the manner shown in Figure 1.2. A new standard cell
library can be used by iterating an RTL design through the design flow
again, which makes it much easier to migrate between process technologies.

We will discuss later optimizing the drive strength of logic gates in a
circuit and similar issues. Thus it is useful to briefly examine transistor-level
layouts. The left of Figure 1.3 shows a detailed circuit schematic for an
inverter. There is some ambiguity when we refer to a “gate”, whether it is a
logic gate such as an inverter, or the transistor gate shown labeled G – this
will be clarified where appropriate in the text.

INV NAND3NOR2 NOR2

INVNAND3 NOR2 NOR2

INV INV

Vdd

GND

Vdd

GND

NOR2

INV NAND3NOR2 NOR2

INVNAND3 NOR2 NOR2

INV INV

Vdd

GND

Vdd

GND

NOR2

Figure 1.2 Placement of standard cells on standard cell rows are shown, with cells on
alternate rows rotated 180° to share power rails. Standard cell height is fixed, but width and
placement along a row may vary, and cells may also be mirrored horizontally.

Vdd

a

b
z

NOR2

Vdd

a

b
z

NOR2

Vdd

a

b
z

NAND2

Vdd

a

b
z

NAND2

a z

Vdd

inverter

a z

Vdd

inverter

a z

NMOS transistor

S

D
G B

D

S
G

B PMOS transistor

Vdd

Figure 1.3 On the left is shown a detailed circuit schematic for an inverter. Transistor gate G,
source S, drain D and bulk B (also referred to as substrate) nodes are noted. Connections to
the substrate are generally omitted, in which case it is assumed that the NMOS p-well
connects to ground (0V), and the PMOS n-well connects to the supply voltage (Vdd). On the
right are shown the circuit schematics for three logic gates.

6 Chapter 1

In Figure 1.3, note that the NOR2 gate has two PMOS transistors in
series in the pull-up portion, whereas the NAND2 gate has two NMOS
transistors in series in the pull-down portion. The more transistors in
series, the slower the logic gate is due to increased series resistance. PMOS
transistors are slower than NMOS transistors, so the NOR2 is slower than a
NAND2, assuming the same transistor sizes. Wider transistors may be used
to reduce the delay. A typical inverter PMOS to NMOS ratio to have equal
pull-up and pull-drive strengths is 2:1. To reduce the additional delay of
transistors in series, for a NOR2 gate this becomes 4:1, and for a NAND2
gate this is 2:2. Skewed P to N ratios, substrate biasing, and other circuit
issues will be discussed briefly in later chapters. However, increasing the
transistor widths increases the power used in charging and discharging the
logic gate.

This is an example of low-level power-performance trade-offs that would
be considered by a custom circuit designer. To reduce the time to design a
circuit, an ASIC circuit designer typically avoids such issues by using a
fixed library of standard cells. It is assumed that the library has appropriate
PMOS to NMOS ratios and a range of sizes for logic gates to optimally
drive the circuit in different load capacitance conditions. However, this
assumption is not necessarily true. Such factors may contribute to suboptimal
ASIC designs. This and other power-performance trade-offs are examined in
this book.

1.3 WHO SHOULD CARE ABOUT THIS BOOK?

1.3.1 ASIC and ASSP designers seeking high performance

Power consumption has become a major design constraint for high per-
formance circuits and limits performance for high end microprocessor chips
in today’s technologies. Our book titled Closing the Gap between ASIC &
Custom [1] detailed how to achieve high performance for ASICs in an EDA
design flow, but we did not focus on the limitations imposed by power
consumption. Some of the techniques used to achieve lower power in high
performance custom designs can be automated for use in an ASIC design
methodology.

While many ASIC designers may be power-budget limited when seeking
higher performance, we quickly acknowledge that not all ASIC designers are
seeking higher performance. Many ASIC designs need only to be cheaper
than FPGAs (field programmable gate arrays) or faster than general-purpose
processor solutions to be viable. For these designs, the desire for higher
performance is dominated by final part cost, low non-recurring engineering
cost, and time-to-market concerns. Non-recurring engineering costs for
ASICs have grown substantially with increased transistor density and deep-

Introduction 7

submicron design issues. Mask-set costs are now exceeding one million
dollars. Both the number and cost of tools required to do ASIC design are
rising. In order to recoup their massive investment in fabrication facilities,
semiconductor vendors for ASICs are “raising the bar” for incoming ASIC
designs. Specifically, ASIC semiconductor vendors are raising the minimum
volumes and expected revenues required to enter into contract for fabricating
ASICs. These different factors are causing more ASIC design groups to
rethink their approach. Some groups are migrating to using FPGA solutions.
Some groups are migrating to application-specific standard parts (ASSPs)
that can be configured or programmed for their target application.

Those groups that retain their resolve to design ASICs have a few common
characteristics. First, these groups aim to amortize increasing non-recurring
engineering costs for ASIC designs by reusing a design across multiple
applications. Thus they are no longer designing “point solution” ASICs, but
are tending toward more sustainable IC platforms with software that can
be updated as application requirements change [2]. Secondly, as transistor
density increases with Moore’s law [4], more and more devices are inte-
grated onto a single chip to reduce the net production cost. Multiple processor
cores are integrated onto a chip to increase performance or allow for more
programmability to achieve retargetable IC platforms. However, the power
consumption also increases with more devices on a chip. Finally, given the
effort and attention required to design a highly complex ASIC, design
groups are demanding more out of their investment. In short, this book
targets ASIC and ASSP designers seeking high-performance and low power
within an automated design methodology, and we contend that this number
is increasing over time.

1.3.2 ASIC and ASSP designers seeking lower power

Power consumption is of primary importance in chips designed for embed-
ded and battery powered applications. To reduce part costs, cheap plastic
packaging is preferred, which limits the maximum heat dissipation. For
many applications such as mobile phones, a long battery lifetime is desirable,
so low power is important. ASIC implementations are often chosen for low
power, as they can be an order of magnitude or more lower power than appli-
cations implemented on an FPGA [3] or in software running on a general
purpose processor.

The main approaches to reducing power consumption are scaling down
supply voltage and using smaller gate sizes to reduce dynamic power, and
increasing threshold voltage to reduce static leakage power; however, these
techniques to reduce power also substantially slow down a circuit. Thus we
focus on reducing the power gap between ASIC and custom designs subject
to some performance constraint. In ASIC designs with tight performance

8 Chapter 1

constraints and a tight power budget, ASIC designers must use high perfor-
mance techniques to create some timing slack for power minimization.

1.3.3 Custom designers seeking higher productivity

An equally important audience for this book is custom designers seeking
low power ICs in a design methodology that uses less human resources, such
as an ASIC design methodology. Without methodological improvements,
custom design teams can grow as fast as Moore’s Law to design the most
complex custom ICs. Even the design teams of the most commercially succ-
essful microprocessors cannot afford to grow at that rate.

We hope to serve this audience in two ways. First, we account for the
relative power impact of different elements of a custom-design methodology.
Projects have limited design resources and must be used judiciously. There-
fore, design effort should be applied where it offers the greatest benefit.
We believe that our analysis should help to determine where limited design
resources are best spent.

Secondly, specific tools targeted to reduce the power of ASICs can be
applied to custom design. The custom designer has always lacked adequate
tool support. Electronic Design Automation (EDA) companies have never
successfully found a way to tie their revenues to the revenues of the devices
they help design. Instead, EDA tool vendors get their revenues from licensing
design tools for each designer, known as a “design seat”. It doesn’t matter if
the chip designed with an EDA tool sells in volumes of ten million parts or
one, the revenue to the EDA company is the same. It has been estimated that
there are more than ten times as many ASIC designers (50,000 – 100,000
worldwide) as custom designers (3,000 – 5,000 worldwide). As a result EDA
tool vendors naturally “follow the seats” and therefore have focused on tools
to support ASIC designers rather than custom designers. Companies using
custom design augment tools from EDA vendors with their own in-house
tools. These in-house tools can be improved by identifying where gaps exist
in the standard approaches that have been used for circuit design, or replaced
in cases where EDA tools perform sufficiently well.

1.4 ORGANIZATION OF THE REST OF THE BOOK

This book examines the power gap between ASIC and custom design
methodologies, techniques to reduce the power gap, and design examples
illustrating these techniques. The remaining chapters in this book are organized
into these three groups.

The first set of chapters discusses the contributing factors to power
consumption in ASICs being larger than in custom designs, with power and
performance models. The power gap is estimated in Chapter 2, then we

Introduction 9

provide a detailed overview of the contributing factors, and discuss the
design difficulties associated with exploiting these methods in an automated
design flow and the extent to which they may be automated. A high-level
pipeline power-performance model is combined with a low-level model of
gate sizing and voltage scaling power-delay trade-offs in Chapter 3. This
enables estimates of the benefit of using microarchitectural techniques to
provide timing slack for power minimization at later design stages, and
quantitative analysis of the influence of different design factors. Chapter 4
compares analytical and empirical models of circuit power and delay
with voltage scaling, discussing the dynamic power, leakage power and
delay trade-offs with gate sizing and optimization of supply and threshold
voltages.

The second group of chapters details a variety of design techniques and
tools to help minimize power consumption. Chapter 5 gives examples of
microarchitectural optimizations that can increase energy efficiency by more
than 10× for specific applications. Chapter 6 shows that the typical greedy
heuristics for gate sizing are suboptimal, and that a linear programming
formulation with a global circuit can provide greater power reductions. The
linear programming approach is applied to gate-level supply and threshold
voltage assignment in Chapter 7 to analyze how much power may be saved
by using these approaches. Alternative algorithms for supply voltage assign-
ment are examined in Chapter 8. Chapter 9 details improved tools for auto-
mated placement and discusses the placement issues when using multiple
supply voltages. Results for reducing leakage power with an automated tool
for power gating are presented in Chapter 10. Design verification issues
and verification tool support needed for use of multiple voltage and sleep
domains are examined in Chapter 11. Then Chapter 12 details power mini-
mization with statistical timing and power analysis.

The last set of chapters presents two design examples utilizing low power
techniques. Chapter 13 reports the power savings achieved with standard cell
library improvements, arithmetic optimizations, bit slicing, and voltage scaling
on DSP (digital signal processor) blocks for a satellite communications chip.
Chapter 14 presents a low power design flow that was used to minimize
power consumption of an ARM 1136JF-S processor, utilizing multiple supply
and threshold voltages. These design examples show that using the low power
techniques discussed in this book can provide increased energy efficiency by
a factor of 2 to 3×.

1.5 WHAT’S NOT IN THIS BOOK

This book focuses on power consumption of integrated circuits and the
tools and techniques by which lower power can be achieved. ASIC and
custom performance and approaches to increase circuit speed were discussed
extensively in our book on the topic [1]. Other than in the context of place

10 Chapter 1

and route tools in Chapter 11, area minimization is not a direct focus, as that
is a less critical design constraint compared to speed and power in today’s
technologies that allow billions of transistors on a chip. Where the power
minimization techniques that we suggest here negatively impact on circuit
delay or area we have made every effort to point that out.

1.6 REFERENCES
[1] Chinnery, D., and Keutzer, K., Closing the Gap Between ASIC & Custom: Tools and

Techniques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002,
432 pp.

[2] Keutzer, K. et al., “System-level Design: Orthogonalization of Concerns and Platform-
Based Design,” IEEE Transactions on Computer-Aided Design, vol. 19, no. 12, December
2000, pp. 1523-1543.

[3] Kuon, I., and Rose, J., “Measuring the Gap Between FPGAs and ASICs,” International
Symposium on Field Programmable Gate Arrays, 2006, pp. 21-30.

[4] Moore, G., “Cramming more components onto integrated circuits,” Electronics, vol. 38,
no. 8, 1965, pp. 114-117.

[5] Smith, D., HDL Chip Design: A Practical Guide for Designing, Synthesizing and Simu-
lating ASICs and FPGAs Using VHDL or Verilog, Doone Publications, 1998, 464 pp.

[6] Smith, M., Application-specific Integrated Circuits, Addison-Wesley, Berkeley, CA, 1997.

Chapter 2 2

OVERVIEW OF THE FACTORS AFFECTING
THE POWER CONSUMPTION

David Chinnery, Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720, USA

We investigate differences in power between application-specific inte-

grated circuits (ASICs) and custom integrated circuits, with examples from
0.6um to 0.13um CMOS. A variety of factors cause synthesizable designs to
consume 3 to 7× more power. We discuss the shortcomings of typical synthesis
flows, and changes to tools and standard cell libraries needed to reduce
power. Using these methods, we believe that the power gap between ASICs
and custom circuits can be closed to within 2.6× at a tight performance cons-
traint for a typical ASIC design.

2.1 INTRODUCTION

In the same technology generation, custom designs can achieve 3 to 8×
higher clock frequency than ASICs [18]. Custom techniques that are used to
achieve high speed can also be used to achieve low power [62]. Custom
designers can optimize the individual logic cells, the layout and wiring bet-
ween the cells, and other aspects of the design. In contrast, ASIC designers
generally focus on optimization at the RTL level, relying on EDA tools to
map RTL to cells in a standard cell library and then automatically place and
route the design. Automation reduces the design time, but the resulting
circuitry may not be optimal.

Low power consumption is essential for embedded applications. Power
affects battery life and the heat dissipated by hand-held applications must be
limited. Passive cooling is often required, as using a heat sink and/or fan is
larger and more expensive.

Power is also becoming a design constraint for high-end applications due
to reliability, and costs for electricity usage and cooling. As technology scales,
power density has increased with transistor density, and leakage power is

12 Chapter 2

becoming a significant issue even for high end processors. Power consump-
tion is now a major problem even for high end microprocessors. Intel canceled
the next generation Tejas Pentium 4 chips due to power consumption issues
[100].

In this chapter, we will discuss the impact of manual and automated
design on the power consumption, and also the impact of process technology
and process variation. Our aim is to quantify the influence of individual
design factors on the power gap. Thus, we begin by discussing a process
technology independent delay metric in Section 2.2. Section 2.3 discusses
the contribution to a chip’s power consumption from memory, control and
datapath logic, and clocking, and also provides an overview of dynamic and
leakage power.

In Section 2.4, we compare full custom and synthesizable ARM pro-
cessors and a digital signal processor (DSP) functional unit. We show that
ASICs range from 3 to 7× higher power than custom designs for a similar
performance target. To date the contribution of various factors to this gap
has been unclear. While automated design flows are often blamed for
poor performance and poor energy efficiency, process technology is also
significant. Section 2.5 outlines factors contributing to the power gap. We
then examine each factor, describing the differences between custom and
ASIC design methodologies, and account for its impact on the power gap.
Finally, we detail approaches that can reduce this power gap. We summarize
our analysis in Section 2.6.

2.2 PROCESS TECHNOLOGY INDEPENDENT FO4
DELAY METRIC

At times we will discuss delay in terms of FO4 delays. It is a useful metric
for normalizing out process technology dependent scaling of the delay of
circuit elements.

The fanout-of-4 inverter delay is the delay of an inverter driving a load
capacitance that has four times the inverter’s input capacitance [38]. This is
shown in Figure 2.1. The FO4 metric is not substantially changed by process
technology or operating conditions. In terms of FO4 delays, other fanout-of-
4 gates have at most 30% range in delay over a wide variety of process and
operating conditions, for both static logic and domino logic [38].

If it has not been simulated in SPICE or tested silicon, the FO4 delay in a
given process technology can be estimated from the channel length. Based
on the effective gate length Leff, the rule of thumb for FO4 delay is [39].
 360 effL× ps for typical operating and typical process conditions (2.1)
 500 effL× ps for worst case operating and typical process conditions (2.2)

Overview of the Factors Affecting the Power Consumption 13

where the effective gate length Leff has units of micrometers. Typical process
conditions give high yield, but are not overly pessimistic. Worst case operating
conditions are lower supply voltage and higher temperature than typical
operating conditions. Typical operating conditions for ASICs may assume a
temperature of 25°C, which is optimistic for most applications. Equation
(2.2) can be used to estimate the FO4 delay in silicon for realistic operating
conditions [39].

Leff is often assumed to be about 0.7 of the drawn gate length for a
process technology – for example, 0.13um for a 0.18um process technology.
However, many foundries are aggressively scaling the channel length to
increase the speed. Thus, the FO4 delay should be calculated from the effec-
tive gate length, if it is known, rather than from the process technology
generation.

From previous analysis [18], typical process conditions are between 17%
and 28% faster than worst case process conditions. Derating worst case process
conditions by a factor of 1.2× gives
 600 effL× ps for worst case operating and worst case process conditions (2.3)

Equation (2.3) was used for estimating the FO4 delays of synthesized
ASICs, which have been characterized for worst case operating and worst
case process conditions. This allows analysis of the delay per pipeline stage,
independent of the process technology, and independent of the process and
operating conditions.

Note: these rules of thumb give approximate values for the FO4 delay
in a technology. They may be inaccurate by as much as 50% compared to
simulated or measured FO4 delays in silicon. These equations do not accu-
rately account for operating conditions. Speed-binning and process improve-
ments that do not affect the effective channel length are not accounted for.
Accurate analysis with FO4 delays requires proper calibration of the metric:
simulating or measuring the actual FO4 delays for the given process and
operating conditions.

square wave
voltage source

1X 4X 16X 64X
open

circuitsquare wave
voltage source

1X 4X 16X 64X
open

circuit

Figure 2.1 This illustrates a circuit to measure FO4 delays. The delay of the 4X drive strength
inverter gives the FO4 delay. The other inverters are required to appropriately shape the input
waveform to the 4X inverter and reduce the switching time of the 16X inverter, which affect
the delay of the 4X inverter [38].

14 Chapter 2

2.3 COMPONENTS OF POWER CONSUMPTION

Designers typically focus on reducing both the total power when a
circuit is active and its standby power. There is usually a minimum per-
formance target, for example 30 frames/s for MPEG. When performance
is less important, the energy per operation to perform a given task can be
minimized.

Active power includes both dynamic power consumption, when the logic
evaluates or the clock transitions, and current leakage when logic is not
switching. There is no computation in logic in standby, the clock must be
gated to prevent it switching, and leakage is the dominant source of power
consumption in standby.

The major sources of power consumption in circuitry are the clock tree
and registers, control and datapath logic, and memory. The breakdown of
power consumption between these is very application and design dependent.
The power consumption of the clock tree and registers ranged from 18% to
36% of the total power for some typical embedded processors and micro-
processors (see Section 3.2.4). In custom cores for discrete cosine transform
(DCT) and its inverse (IDCT), contributions to the total power were 5% to
10% from control logic, about 40% from the clock tree and clock buffers,
and about 40% from datapath logic [101][102]. Memory can also account for
a substantial portion of the power consumption. For example, in the
StrongARM caches consume 43% of the power [62].

2.3.1 Dynamic power

Dynamic power is due to switching capacitances and short circuit power
when there is a current path from supply to ground.

The switching power is proportional to αfCVdd
2, where α is the switching

activity per clock cycle, f is the clock frequency, C is the capacitance that is
(dis)charged, and Vdd is the voltage swing. The switching activity is increased
by glitches, which typically cause 15% to 20% of the activity in comple-
mentary static CMOS logic [77].

Short circuit power typically contributes less than 10% of the total
dynamic power [14], and increases with increasing Vdd, and with decreasing
Vth. Short circuit power can be reduced by matching input and output rise
and fall times [96].

As the dynamic power depends quadratically on Vdd, methods for redu-
cing active power often focus on reducing Vdd. Reducing the capacitance by
downsizing gates and reducing wire lengths is also important.

Overview of the Factors Affecting the Power Consumption 15

2.3.2 Leakage power

In today’s processes, leakage can account for 10% to 30% of the total
power when a chip is active. Leakage can contribute a large portion of the
average power consumption for low performance applications, particularly
when a chip has long idle modes without being fully off.

Optimally choosing Vdd and Vth to minimize the total power consum-
ption for a range of delay constraints in 0.13um technology, the leakage
varied from 8% to 21% of the total power consumption in combinational
logic, as discussed later in Section 4.6.1. However, the possible Vdd and Vth
values depend on the particular process technology and standard cell
libraries available. For example for a delay constraint of 1.2× the minimum
delay, the best library choice had Vdd of 0.8V and Vth of 0.08V (see Table
7.7 with 0.8V input drivers), and leakage contributed on average 40% of
total power.

Leakage power in complementary static CMOS logic in bulk CMOS is
primarily due to subthreshold leakage and gate leakage. Subthreshold leakage
increases exponentially with decrease in Vth and increase in temperature. It
can also be strongly dependent on transistor channel length in short channel
devices. Gate leakage has increased exponentially with reduction in gate
oxide thickness. There is also substrate leakage. Leakage has become increa-
singly significant in deep submicron process technologies.

2.4 ASIC AND CUSTOM POWER COMPARISON

To illustrate the power gap, we examine custom and ASIC implement-
tations of ARM processors and dedicated hardware to implement discrete
cosine transform (DCT) and its inverse (IDCT). ARM processors are general
purpose processors for embedded applications. ASICs often have dedicated
functional blocks to achieve low power and high performance on specific
applications – for example, media processing. JPEG and MPEG compression
and decompression of pictures and video use DCT and IDCT. There is a
similar power gap between ASIC and custom for the ARM processors and
for DCT and IDCT blocks.

2.4.1 ARM processors from 0.6 to 0.13um

We compare chips with full custom ARM processors, soft, and hard
ARM cores. Soft macros of RTL code may be sold as individual IP (intel-
lectual property) blocks and are portable between fabrication processes.
In a hard macro, the standard cell logic used, layout and wiring have been
specified and optimized then fixed for a particular fabrication process. A
hard macro may be custom, or it may be “hardened” from a soft core. A
complete chip includes additional memory, I/O logic, and so forth.

16 Chapter 2

Table 2.1 Full custom and hard macro ARMs [11][31][32][43][70]. The highlighted full
custom chips have 2 to 3× MIPS/mW.

Technology Voltage Frequency Power
(um) (V) (MHz) (mW)

ARM710 0.60 5.0 40 36 424 0.08
Burd 0.60 1.2 5 6 3 1.85
Burd 0.60 3.8 80 85 476 0.18
ARM810 0.50 3.3 72 86 500 0.17
ARM910T 0.35 3.3 120 133 600 0.22
StrongARM 0.35 1.5 175 210 334 0.63
StrongARM 0.35 2.0 233 360 950 0.38
ARM920T 0.25 2.5 200 220 560 0.39
ARM1020E 0.18 1.5 400 500 400 1.25
XScale 0.18 1.0 400 510 150 3.40
XScale 0.18 1.8 1000 1250 1600 0.78
ARM1020E 0.13 1.1 400 500 240 2.08

MIPS MIPS/mWProcessor

Table 2.2 The highlighted ARM7TDMI hard macros have 1.3 to 1.4× MIPS/mW versus the
synthesizable ARM7TDMI-S cores [5].

ARM Core Technology (um) Frequency (MHz) Power (mW) MIPS/mW
ARM7TDMI 0.25 66 51 1.17
ARM7TDMI-S 0.25 60 66 0.83
ARM7TDMI 0.18 100 30 3.00
ARM7TDMI-S 0.18 90 35 2.28
ARM7TDMI 0.13 130 10 11.06
ARM7TDMI-S 0.13 120 13 8.33

To quantify the power gap between ASIC and custom, we first examined
hard macro and full custom ARMs, listed in Table 2.1. Compared to the
other designs, the three full custom chips in bold achieved 2 to 3× millions
of instructions per second per milliwatt (MIPS/mW) at similar MIPS, as
shown in Figure 2.2. The inverse of this metric, mW/MIPS, is the energy per
operation. The Dhrystone 2.1 MIPS benchmark is the performance metric
[98]. It fits in the cache of these designs, so there are no performance hits for
cache misses or additional power to read off-chip memory.

Lower power was achieved in several ways. The DEC StrongARM used
clock-gating and cache sub-banking to substantially reduce the dynamic
power [62]. The Intel XScale and DEC StrongARM used high speed logic
styles to reduce critical path delay, at the price of higher power consumption
on these paths. To reduce pipeline register delay, the StrongARM used
pulse-triggered flip-flops [62] and the XScale used clock pulsed latches [22].
Shorter critical paths allow the same performance to be achieved with a
lower supply voltage (Vdd), which can lower the total power consumption.
Longer channel lengths were used in the StrongARM caches to reduce the

Overview of the Factors Affecting the Power Consumption 17

leakage power, as the two 16kB caches occupy 90% of the chip area [62].
The XScale used substrate biasing to reduce the leakage [24].

For the same technology and similar performance (MIPS), the Vdd of the
full custom chips is lower than that of the hard macros – reducing Vdd gives
a quadratic reduction in dynamic power. The StrongARM can operate at up
to 233MHz at 2.0V and the XScale can operate at up to 1GHz at 1.65V [43].
If operating at higher performance was not required, it is likely that even
higher MIPS/mW could have been achieved.

Energy efficiency can be improved substantially if performance is sacri-
ficed. Burd’s 0.6um ARM8 had software controlled dynamic voltage scaling
based on the processor load. It scaled from 0.18MIPS/mW at 80MHz and
3.8V, to 2.14MIPS/mW at 5MHz and 1.2V [11]. Voltage scaling increased
the energy efficiency by 1.1× for MPEG decompression which required an
average clock frequency of 50MHz, and increased the energy efficiency by
4.5× for audio processing which required a clock frequency of only 17MHz
[12].

There is an additional factor of 1.3 to 1.4× between hard macro and
synthesizable ARM7 soft cores, as shown in Table 2.2. These MIPS/mW are
higher than those in Table 2.1, as they exclude caches and other essential
units. The ARM7TDMI cores are also lower performance, and thus can
achieve higher energy efficiency.

Overall, there is a factor of 3 to 4× between synthesizable ARMs and the
best full custom ARM implementations.

Figure 2.2 This graph compares MIPS/mW of custom and hard macro ARMs in Table 2.1.

0.0

1.0

2.0

3.0

4.0

0.60 0.50 0.35 0.25 0.18 0.13
Technology (um)

M
IP

S/
m

W

hard macro

full custom

18 Chapter 2

2.4.1.1 Other full custom ARM implementations

There are two other noteworthy higher performance full custom ARMs,
though they are less energy efficient than the 0.18um XScale.

Samsung’s Halla is a full custom 0.13um implementation of the
ARM1020E with power consumption from 0.26W at 400MHz and Vdd of
0.7V to 1.8W at 1200MHz and Vdd of 1.1V [50]. Achieving 1480MIPS at
1200MHz clock frequency, the energy efficiency ranged from 0.82MIPS/mW
at 1200MHz to 1.90MIPS/mW at 400MHz. Differential cascode voltage
switch logic (DCVSL) was used for high performance, but DCVSL has
substantial power consumption compared to complementary static CMOS
logic that is used in ASICs. Sense amplifiers were used with the low voltage
swing dual rail bus to detect voltage swings of less than 200mV, achieving
high bus speeds at lower power consumption [60]. The die area of the Halla
was 74% more than ARM’s 0.13um ARM1020E.

Intel’s 90nm implementation of the XScale, codenamed Monahans, has
770mW dynamic power consumption at 1500MHz and Vdd of 1.5V with per-
formance of 1200MIPS at this point [72]. The energy efficiency of Monahans
is 1.56MIPS/mW at 1500MHz – data for improved energy efficiencies at
lower Vdd has not been published. Clock pulsed latches were also used in
this implementation of the XScale. The hold time for the clock gating enable
signal was the duration of the clock pulse, and thus did not require latching.
Domino logic was used for high performance in the shifter and cache tag
NOR comparators. 75% of instruction cache tag accesses were avoided by
checking if the instruction cache request line was the same as the previous
one. Selective accesses and avoiding repeated accesses reduced power by
42% in the dynamic memory management unit [21].

2.4.2 Comparison of DCT/IDCT cores

Application-specific circuits can reduce power by an order of magnitude
compared to using general purpose hardware [77]. Two 0.18um ARM9 cores
were required to decode 30 frames/s for MPEG2, consuming 15× the power
of a synthesizable DCT/IDCT design [28]. However, the synthesizable
DCT/IDCT significantly lags its custom counterparts in energy efficiency.

Table 2.3 Comparison of ASIC and custom DCT/IDCT core power consumption at 30
frames/s for MPEG2 [28][101][102].

Design Technology (um) Voltage (V) DCT (mW) IDCT (mW)
ASIC 0.18 1.60 8.70 7.20
custom DCT 0.6 (Leff 0.6) 1.56 4.38
custom IDCT 0.7 (Leff 0.5) 1.32 4.65

Overview of the Factors Affecting the Power Consumption 19

Fanucci and Saponara designed a low power synthesizable DCT/IDCT
core, using similar techniques to prior custom designs. Despite being three
technology generations ahead, the synthesizable core was 1.5 to 2.0× higher
power [28]. Accounting for the technology difference by conservatively
assuming power scales linearly with device dimensions [71], the gap is a
factor of 4.3 to 6.6×. The data is shown in Table 2.3.

2.5 FACTORS CONTRIBUTING TO ASICS BEING
HIGHER POWER

Various parts of the circuit design and fabrication process contribute to
the gap between ASIC and custom power. Our analysis of the most significant
design factors and their impact on the total power when a chip is active is
outlined in Table 2.4. The “typical” column shows the maximum contribution
of individual factors comparing a typical ASIC to a custom design. In total
these factors can make power an order of magnitude worse. In practice, even
the best custom designs can’t fully exploit all these factors simultaneously.
Low power design techniques that can be incorporated within an EDA flow
can reduce the impact of these factors in a carefully designed ASIC as per
the “excellent” column in Table 2.4.

Most low power EDA tools focus on reducing the dynamic power in
control logic, datapath logic, and the clock tree. The design cost for custom
memory is low, because of the high regularity. Several companies provide
custom memory for ASIC processes. Optimization of memory hierarchy,
memory size, caching policies, and so forth is application dependent and
beyond the scope of this book, though they have a substantial impact on the
system-level performance and power consumption. We will focus on the
power consumption in a processor core.

Table 2.4 Factors contributing to ASICs being higher power than custom. The excellent
column is what ASICs may achieve using low power and high performance techniques. This
table focuses on the total power when a circuit is active, so power gating and other standby
leakage reduction techniques are omitted. The combined impact of these factors is not
multiplicative – see discussion in Section 2.5.1.

Contributing Factor Typical ASIC Excellent ASIC
microarchitecture 5.1× 1.9×
clock gating 1.6× 1.0×
logic style 2.0× 2.0×
logic design 1.2× 1.0×
technology mapping 1.4× 1.0×
cell and wire sizing 1.6× 1.1×
voltage scaling 4.0× 1.0×
floorplanning and placement 1.5× 1.1×
process technology 1.6× 1.0×
process variation 2.0× 1.3×

20 Chapter 2

Microarchitectural techniques such as pipelining and parallelism increase
throughput, allowing timing slack for gate downsizing and voltage scaling.
The microarchitecture also affects the average instructions per cycle (IPC),
and hence energy efficiency. The power and delay overheads for microarchi-
tectural techniques must be considered. With sufficient timing slack, reducing
the supply voltage can greatly increase the energy efficiency. For example
in Table 2.1, scaling the XScale from Vdd of 1.8V to 1.0V increases the
efficiency from 0.78MIPS/mW to 3.40MIPS/mW, a factor of 4.4×, but the
performance decreases from 1250MIPS to 510MIPS.

Process technology can reduce leakage by more than an order of magni-
tude. It also has a large impact on dynamic power. Process variation results
in a wide range of the leakage power for chips and some variation in the
maximum operating clock frequency for a given supply voltage. For high
yield, a higher supply voltage may be needed to ensure parts meet the desired
performance target, resulting in a significant spread in power consumption.
Limiting process variation and guard-banding for it without being overly
conservative help reduce the power consumption.

Using a high speed logic style on critical paths can increase the speed by
1.5× [18]. Circuitry using only slower complementary static CMOS logic at
a tight performance constraint may be 2.0× higher power than circuitry using
a high speed logic style to provide timing slack for power reduction by
voltage scaling and gate downsizing.

Other factors in Table 2.4 have smaller contributions to the power gap.
We will discuss the combined impact of the factors and then look at the
individual factors and low power techniques to reduce their impact.

2.5.1 Combined impact of the contributing factors

The combined impact of the factors is complicated. The estimate of the
contribution from voltage scaling assumes that timing slack is provided by
pipelining, so this portion is double counted. The timing slack depends on
the tightness of the performance constraint, which has a large impact on the
power gap. We assumed a tight performance constraint for both the typical
ASIC and excellent ASIC for the contributions from microarchitecture,
logic style, and voltage scaling in Table 2.4. If the performance constraint
is relaxed, then the power gap is less. For example, from our model of pipe-
lining to provide timing slack for voltage scaling and gate sizing, the power
gap between a typical ASIC and custom decreases from 5.1× at a tight per-
formance constraint for the typical ASIC to 4.0× if the constraint is relaxed
by 7%.

Chapter 3 details our power and delay model that incorporates pipelining,
logic delay, voltage scaling and gate sizing. The logic delay is determined by
factors such as the logic style, wire lengths, process technology, and process
variation which affects the worse case delay.

Overview of the Factors Affecting the Power Consumption 21

From analysis with this model, an excellent ASIC using the low power
techniques that we recommend below may close the power gap to a factor of
2.6 at a tight performance constraint for a typical ASIC [16].

2.5.2 Microarchitecture

Algorithmic and architectural choices can reduce the power by an order
of magnitude [77]. We assume that ASIC and custom designers make
similar algorithmic and architectural choices to find a low power imple-
mentation that is appropriate for the required performance and target
application. Pipelining and parallelism are the two major microarchitectural
techniques that can be used to maintain throughput (see Figure 2.3), when
other power reduction techniques increase critical path delay. With similar
microarchitectures, how do ASIC and custom pipelining and parallelism
compare?

x(n)

×h0

+

×h1

+

×h2

×h7

+

×h6

+

×h5

y(n)+

×h6

+

×h7

y(n)+

×h1

+

×h0

x(n)

x(n)odd

y(n)odd

x(n)even

×h7

+

×h6

+

×h5

+

×h1

+

×h0
select

y(n)

y(n)even

×h7

+

×h6

+

×h5

+

×h1

+

×h0

(a) Direct form FIR filter

(b) Transpose form FIR filter

(c) Two-path parallel transpose FIR filter

M
U

X

+

×h3

+

×h4

+

×h4

+

×h4

+

×h3

+

×h5

+

×h2

+

×h4

+

×h3

+

×h4

+

×h3

+

×h2

+

×h2

Figure 2.3 This diagram shows pipelined (b) and parallel implementations (c) of the
unpipelined direct form finite input response (FIR) filter in (a) [19][79]. The FIR filter
calculates yn=h0xn+h1xn-7+…+ h7xn-7. The critical paths are shown in grey. The minimum
clock period decreases as the registers break the critical path up into separate pipeline stages.
Computation in each pipeline stage proceeds concurrently. The parallel implementation
doubles the throughput, but the area is more than doubled. The multiplexer to select the odd
or even result from the two parallel datapaths at each clock cycle is denoted by MUX.

22 Chapter 2

On their own, pipelining and parallelism do not reduce power. Pipelining
reduces the critical path delay by inserting registers between combinational
logic. Glitches may not propagate through pipeline registers, but the switching
activity of the combinational logic is otherwise unchanged. Additional pipe-
line registers add to the leakage power and especially to the dynamic power,
because the clock signal going to the registers has high activity. Pipelining
may reduce the instructions per cycle (IPC) due to branch misprediction and
other hazards; in turn this reduces the energy efficiency. Parallelism trades
off area for increased throughput, with overheads for multiplexing and
additional wiring [6]. Both techniques enable the same performance to be
met at lower supply voltage with smaller gate sizes, which can provide a net
reduction in power.

Bhavnagarwala et al. [6] predict a 2 to 4× reduction in power with
voltage scaling by using 2 to 4 parallel datapaths. Generally, ASICs can make
as full use of parallelism as custom designs, but careful layout is required to
minimize additional wiring overheads.

Delay overheads for pipelining include: register delay; register setup
time; clock skew; clock jitter; and any imbalance in pipeline stage delays
that cannot be compensated for by slack passing or useful clock skew. For a
given performance constraint, the pipelining delay overheads reduce the
slack available to perform downsizing and voltage scaling.

In the IDCT, the cost of pipelining was about a 20% increase in total
power, but pipelining reduced the critical path length by a factor of 4. For
the same performance without pipelining, Vdd would have to be increased
from 1.32V to 2.2V. Thus pipelining helped reduce power by 50% [102].

2.5.2.1 What’s the problem?

The timing overhead per pipeline stage for a custom design is about 3
FO4 delays, but it may be 20 FO4 delays for an ASIC, substantially reducing
the timing slack available for power reduction. For a typical ASIC, the
budget for the register delay, register setup time, clock skew and clock jitter
is about 10 FO4 delays. Unbalanced critical path delays in different pipeline
stages can contribute an additional 10 FO4 delays in ASICs. If the delay
constraint is tight, a little extra timing slack can provide substantial power
savings from downsizing gates – for example, a 3% increase in delay gave a
20% reduction in energy for a 64-bit adder [104].

For pipeline registers, most ASICs use slow edge-triggered D-type
flip-flops that present a hard timing boundary between pipeline stages,
preventing slack passing. The clock skew between clock signal arrivals at
different points on the chip must be accounted for. Faster pulse-triggered
flip-flops were used in the custom StrongARM [62]. Some pulse-triggered
flip-flops have greater clock skew tolerance [80]. Custom designs may use

Overview of the Factors Affecting the Power Consumption 23

level-sensitive latches to allow slack passing, and latches are also less
sensitive to clock skew [19].

The custom XScale used clock-pulsed transparent latches [22]. A D-type
flip-flop is composed of a master-slave latch pair. Thus a clock-pulsed latch
has about half the delay of a D-type flip-flop and has a smaller clock load,
which reduced the clock power by 33%. Clock-pulsed latches have increased
hold time and thus more problems with races. The pulse width had to be
carefully controlled and buffers were inserted to prevent races. The clock
duty cycle also needs to be carefully balanced.

To estimate the impact of worse ASIC pipelining delay overhead, we
developed a pipeline performance and power model, with power reduction
from gate downsizing and voltage scaling versus timing slack (see Chapter
3). At a tight performance constraint for the ASIC design, we estimate that
ASIC power consumption can be 5.1× that of custom, despite using a similar
number of pipeline stages. While there is no timing slack available to the
ASIC design, the lower custom pipeline delay overhead allows significant
power reduction by gate downsizing and voltage scaling.

2.5.2.2 What can we do about it?

Latches are well-supported by synthesis tools [83], but are rarely used
other than in custom designs. Scripts can be used to convert timing critical
portions of an ASIC to use latches instead of flip-flops [17]. High-speed
flip-flops are now available in some standard cell libraries and can be used
in an automated design methodology to replace slower D-type flip-flops on
critical paths [33]. Useful clock skew tailors the arrival time of the clock
signal to different registers by adjusting buffers in the clock tree and can be
used in ASIC designs for pipeline balancing [26]. With these methods, the
pipeline delay overhead in ASICs can be reduced to as low as 5 FO4 delays
[18]. This enables more slack to be used for downsizing, voltage scaling, or
increasing the clock frequency. From our pipeline model, ASICs can close
the gap for the microarchitecture and timing overhead factor to within 1.9×
of custom.

2.5.3 Clock gating

In typical operation, pipeline stages and functional units are not always
in use. For example, during a sequence of integer operations, the floating
point unit may be idle. Providing the logical inputs to the idle unit are held
constant, there are only two sources of power dissipation in the idle unit:
static leakage; and switching activity at registers and any other clocked
elements due to the clock signal – for example, precharge of domino logic.

24 Chapter 2

clock

select_shift

select_add

clock

insert
clock
gating

add

shift

add

shift

Figure 2.4 This is a simple illustration of clock gating. The clock signal to the registers is
gated with a control signal that selects which functional unit is in use. A transparent low latch
is usually inserted to de-glitch the enable signal [51].

Architectural or gate-level signals can turn off the clock to portions of
the clock tree that go to idle units. This can be done with a clock gating
control signal and clock signal at an AND gate, as illustrated in Figure 2.4.
As the clock tree and registers can contribute 20% to 40% of the total power,
this gives substantial dynamic power savings if units are often idle. The
power overheads for logic to generate clock gating signals and the clock
gating logic need to be compared versus the potential power savings. Usually
clock gating signals can be generated within only one clock cycle, and there
is only a small delay increase in the arrival of the gated clock signal at the
register.

The StrongARM’s total power when active would be about 1.5× worse
without clock gating [62]. The StrongARM uses a 12 bit by 32 bit multiply-
accumulate (MAC) unit. For some applications, one multiply operand will
be 24-bit or less, or 12-bit or less, thus the number of cycles the 12×32 MAC
is required is less than the three cycles for a full 32×32 multiply. This saves
power by avoiding unnecessary computation. Typical code traces had shift
operations of zero, so power could be saved by disabling the shifter in this
case [62].

The custom DCT core uses clock gating techniques extensively. In typical
operation, consecutive images are highly correlated. Calculations using the
significant bits of pixels in common between consecutive images can be
avoided. This reduced the number of additions required by 40%, and gave on
average 22% power savings for typical images [101]. After the discrete cosine
transform on a typical image, there are many coefficients of value zero. This
was exploited in the custom IDCT to separately clock gate pipeline stages
processing coefficients of zero [102].

We estimate that clock gating techniques can increase energy efficiency
when the chip is active by up to 1.6×. Note that the power savings from
clock gating vary substantially with the application.

Overview of the Factors Affecting the Power Consumption 25

2.5.3.1 What’s the problem?

Clock gating requires knowledge of typical circuit operation over a
variety of benchmarks. If a unit is seldom idle, clock gating would increase
power consumption. Until recently, clock gating was not fully supported by
commercial tools. Retiming to reposition the registers [75] can be essential
to better balance the pipeline stages, but EDA tools did not support retiming
of registers with clock gating.

Care must be taken with gated clock signals to ensure timing correct
operation of the registers. Glitches in the enable signal must not propagate to
the clock gate while the clock gate is high. This results in a long hold time
for the enable signal, which may be avoided by inserting a transparent low
latch to de-glitch the enable signal [51]. The transparent low latch prevents
the signal that goes to the clock gate from changing while the clock is high.
The setup time for the enable signal is longer to account for the clock gate
and de-glitching latch. The clock signal arrives later to the register due to the
delay of the clock gate, which increases the hold time for that register. The
clock tree delay of the clock signal to the clock gate can be reduced to
compensate for this, but that may require manual clock tree design.

2.5.3.2 What can we do about it?

An ASIC designer can make full use of clock gating techniques by care-
fully coding the RTL for the desired applications, or using automated clock-
gating. The techniques used in custom DCT and IDCT designs were used in
the synthesizable DCT/IDCT [28]. In the synthesizable DCT/IDCT, clock
gating and data driven switching activity reduction increased the energy
efficiency by 1.4× for DCT and 1.6× for IDCT [28].

In the last few years, commercial synthesis tools have become available
to automate gate-level clock-gating, generating clock gating signals and
inserting logic to gate the clock. There is now support for retiming of flip-
flops with gated clock signals. Power Compiler was able to reduce the power
of the synthesizable ARM9S core by 41% at 5% worse clock frequency [30]
– primarily by gate downsizing, pin reordering, and clock gating. Useful
clock skew tools can compensate for the additional delay on the gated clock
signal [26].

There are tools for analyzing the clock-tree power consumption and
activity of functional units during benchmark tests. These tools help designers
identify signals to cut off the clock signal to logic when it is not in use, and
to group logic that is clock gated to move the clock gating closer to the root
of the clock tree to save more power.

As ASICs can make effective use of clock gating, there should be no
power gap due to clock gating in comparison with custom.

26 Chapter 2

clock

select_shift

select_add

clock

insert
power gating

add

shift

add

shift

virtual ground
ground

Figure 2.5 This is a simple illustration of power gating. The sleep transistors are turned on by
a control signal that selects which functional unit is in use, reducing leakage from supply to
ground. Registers may not be disconnected in this manner without losing state information.

2.5.4 Power gating and other techniques to reduce leakage
in standby

After clock gating idle units, only static leakage remains. The leakage
can be substantially reduced by several methods: reducing the supply voltage
(see Section 2.5.9); disconnecting the power rails with sleep transistors [64],
known as power gating; increasing Vth via substrate biasing to reduce
subthreshold leakage; and assigning logic gate inputs to a lower leakage
state [56]. All these methods take a significant amount of power and thus are
only worthwhile when a unit will be idle for tens to thousands of clock
cycles or more [27] – for example, when most of a mobile phone’s circuitry
is idling while awaiting an incoming call. This requires architectural or soft-
ware level signals to transition between normal operation and sleep mode.

Reducing the supply voltage reduces the subthreshold leakage current as
there is less drain induced barrier lowering (DIBL), and also reduces the
gate-oxide tunneling leakage [57]. For example, leakage decreases by 3×
when Vdd is reduced from 1.2V to 0.6V with our 0.13um libraries (see
Section 4.5.1). Dynamic voltage scaling is discussed further in Section 2.5.9.

Subthreshold leakage and gate leakage vary substantially depending on
which transistors in a gate are off, which is determined by the inputs.
Leakage in combinational logic can be reduced by a factor of 2 to 4× by
assigning primary inputs to a lower leakage state [56][58]. Additional circuitry
is required in the registers to store the correct state, while outputting the low
leakage state; or state information may be copied from the registers and
restored on resumption from standby. There is also dynamic power cons-
umption in the combinational logic in the cycle that inputs are assigned to a
low leakage state. Thus, units must be idle for on the order of ten cycles to
justify going to a low leakage state.

Overview of the Factors Affecting the Power Consumption 27

Normally, the p-well of the NMOS transistors is connected to ground
and the n-well of the PMOS transistors is connected to the supply. The
subthreshold leakage can be reduced by increasing the threshold voltages by
reverse biasing the substrate, connecting the n-well to more than 0V and
connecting the p-well to less than Vdd. This requires charge pump circuitry
to change the voltage, additional power rails, and a twin well or triple well
process [24]. The advantage of reverse body bias is that the state is retained.
Reverse body bias is less effective for reducing leakage in shorter channel
transistors, for example providing a 4× reduction in leakage in 0.18um
technology and 2.5× reduction in 0.13um [49], making it a less useful
technique in deeper submicron technologies.

An alternate method of reverse body bias is to connect both the NMOS
transistor source and well to a virtual ground Vss (see Figure 2.5) which is
raised to reduce leakage in standby. This avoids the need for charge pump
circuitry and twin well or triple well process [24]. To avoid losing state
information, the reduction in Vdd – Vss must be limited by circuitry to
regulate the voltage [23]. Reducing Vdd – Vss also helps reduce the leakage.
This reverse body bias and voltage collapse approach gave a 28× reduction
in leakage in the 0.18um XScale with minimal area penalty [24]. Returning
from “drowsy” mode took 20us, corresponding to 18,000 cycles at 800MHz,
as the phase-locked loop (PLL) was also turned off to limit power consum-
ption. In comparison, using sleep transistors in the XScale would have
reduced leakage by only about 5×, if power gating was not applied to latches
and other memory elements that need to retain state, as they comprise about
a sixth of the total transistor width [24].

Power gating with sleep transistors to disconnect the supply and/or
ground rail (Figure 2.5) can provide more than an order of magnitude
leakage reduction in circuitry that uses leaky low Vth transistors on criti-
cal paths and high Vth sleep transistors [64]. This is often referred to as
MTCMOS, multi-threshold voltage CMOS. The “virtual” supply and “virtual”
ground rails, which are connected to the actual power rails via sleep tran-
sistors, may be shared between logic gates to reduce the area overhead for
the sleep transistors. Disconnecting the power rails results in loss of state,
unless registers contain a latch connected to the actual supply and ground
rails [64]. Registers also have connections to the virtual supply and virtual
ground rails to limit leakage.

Leakage was reduced by 37× in a 0.13um 32-bit arithmetic logic unit
(ALU) using PMOS sleep transistors at the expense of a 6% area overhead
and 2.3% speed decrease [89]. The leakage was reduced 64× by using
reverse body bias in conjunction with PMOS sleep transistors in sleep mode,
and forward body bias in active mode reduced the speed penalty to 1.8%.
The total area overhead for the sleep transistors and the body bias circuitry
was 8%. Using sleep transistors saved power if the ALU was idle for at least

28 Chapter 2

a hundred clock cycles. Two clock cycles were required to turn the transistors
back on from sleep mode, and four cycles were required to change from
reverse body bias. With only forward body bias, Vdd could be reduced from
1.32V to 1.28V with no speed penalty, and leakage was reduced by 1.9× at
zero bias in standby [89].

2.5.4.1 What’s the problem?

Reducing leakage via state assignment, substrate biasing, reducing supply
voltage, and sleep transistors requires architectural or software level signals
to specify when units will be idle for many cycles. These techniques cannot
be automated at the gate level and require architectural level support for
signals to enter and exit standby over multiple cycles.

For state assignment, registers that retain data instead output a 0 or 1 in
sleep mode. For registers that don’t retain data in standby, extra circuitry is
required if the reset output differs from the low leakage state output. These
registers are larger and consume more power than a standard register.

Substrate biasing and reducing the supply voltage require a variable
supply voltage from a voltage regulator. The cell libraries need to have
delay, dynamic power, leakage power and noise immunity characterized at
the different supply and substrate voltages. If functional units enter standby
at different times, additional power rails may be required and wells biased at
different potentials must be spatially isolated. These techniques are often
used in low power custom designs, but are complicated to implement in
ASICs.

There is a voltage drop across sleep transistors when they are on, degrading
the voltage swing for logic. Wider sleep transistors degrade the voltage
swing less, but have higher capacitance. Power up of sleep transistors takes
substantial energy due to their large capacitance [64]. Standard cells must be
characterized for the degraded supply voltage. Layout tools must cluster the
gates that connect to the same virtual power rail that is disconnected by a
given sleep signal, as having individual sleep transistors in each gate is too
area expensive. As the registers that retain state connect to the virtual power
rails and directly to the power rails, the standard cell rows on which registers
are placed must be taller to accommodate the extra rails. The virtual and
actual supply and ground voltages differ in standby. Thus, the substrates of
the transistors connected to virtual power rails and those connected directly
to the power rails are at different voltages and must be isolated spatially,
increasing the area overhead. The floating output of a power-gated cell can
cause large currents if it connects directly to a cell which is not power
gated, so additional circuitry is required to drive the output of the power-
gated cell [92].

Overview of the Factors Affecting the Power Consumption 29

2.5.4.2 What can we do about it?

ASICs seldom use standby power reduction techniques other than full
power down, but there is now better tool support for power gating. An EDA
flow with power gating can provide two orders of magnitude reduction in
leakage if state is not retained, at the cost of 10% to 20% area overhead and
6% higher delay (see Chapter 10). The ARM1176JZ-S synthesizable core
supports dynamic voltage scaling, allowing the supply voltage to be scaled
from 1.21V to 0.69V in the 0.13um process, but this requires additional
hardware support [35].

To date state assignment and reverse substrate biasing have not been
implemented in an EDA methodology. As state assignment cannot be effec-
tively used with combinational logic that is power gated and provides far
less leakage reduction than using sleep transistors, it is unlikely to be useful
except for circuits that have only short idle periods, on the order of tens
of clock cycles. Substrate biasing nicely complements power gating with
forward body bias reducing the delay penalty for voltage drop across the
sleep transistors, and with reverse body bias reducing the leakage in regis-
ters that are on to retain state information. As reverse substrate bias is less
effective at shorter channel lengths, ASICs may have from 4× higher standby
leakage than custom designs that use reverse body bias in 0.18um to 2×
worse than custom in deeper submicron technologies.

2.5.5 Logic style

ASICs almost exclusively use complementary static CMOS logic for
combinational logic, because it is more robust to noise and Vdd variation
than other logic styles. Pass transistor logic (PTL), dynamic domino logic
and differential cascode voltage switch logic (DCVSL) are faster than
complementary static CMOS logic. These logic styles are illustrated in
Figure 2.6. Complementary CMOS logic suffers because PMOS transistors
are roughly 2× slower than NMOS transistors of the same width, which is
particularly a problem for NOR gates. With the two PMOS transistors in
series in Figure 2.6(a), the PMOS transistors must be sized about 4× larger
for equal rise and fall delays, substantially increasing the load on the fanins.
The high speed logic styles can be used to reduce the critical path delay,
increasing performance. Alternatively, the additional timing slack can be
used to achieve lower power at high performance targets. Complementary
CMOS logic is lower power than other logic styles when high performance
is not required. Hence, low power custom designs primarily use comple-
mentary CMOS, with faster logic only on critical paths. ASIC designs are
mapped to slower, purely complementary CMOS logic standard cell lib-
raries.

30 Chapter 2

(a) complementary CMOS logic

slow, larger
capacitance PMOS
transistors in series A B+

A

B

(b) differential cascode voltage
switch logic (DCVSL)

A B+

BA

clock

(d) dynamic domino logic

A B+

0
(c) pass transistor logic (PTL)

A B+

A B+B

A

BA

BA

clock

A

B

B

Figure 2.6 This figure shows NOR2 logic gate implementations in different logic styles. The
domino logic output is inverted, so that after precharging the inputs to domino logic gates are
low to avoid them being discharged until an input transition to high occurs [71].

The StrongARM used primarily complementary CMOS, with static
DCVSL to implement wide NOR gates [62]. In the custom IDCT multiplier,
the carry and sum of the full adder cells are both on the critical path [102]. A
complementary CMOS gate generated the carry out, and a static DCVSL
gate generated the sum. This full adder was 37% faster than a purely comple-
mentary CMOS mirror adder.

The StrongARM and XScale used some dynamic logic. Dynamic DCVSL
(dual rail domino logic) has twice the activity of single rail domino logic.
The Samsung Halla used dynamic DCVSL and is higher power than the
complementary CMOS ARM1020E at 400MHz. However, the Halla runs at
up to 1.2GHz, while the ARM1020E is limited to 400MHz [60]. Zlatanovici
[104] compared 0.13um single rail domino and complementary static CMOS
64-bit adders. Domino could achieve as low as 6.8 FO4 delays at 34pJ/cycle.
The fastest static CMOS version was 12.5 FO4 delays, but only 18pJ/cycle.

PTL is a high speed and low energy logic style [7]. In a 0.6um study,
a complementary CMOS carry-lookahead 32-bit adder was 20% slower
than complementary PTL, but the complementary CMOS adder was 71%
lower power [103]. At maximum frequency in 0.25um, a complementary
CMOS 3-input XOR ring oscillator had 1.9× delay and 1.3× power compared
to versions in PTL and DCVSL [52]. The XScale ALU bypass adder was
implemented in PTL. At 1.1V, this was 14% slower than single rail domino,
but it has no precharge and lower switching activity [22].

Overview of the Factors Affecting the Power Consumption 31

High speed logic styles can increase the speed of combinational logic
by 1.5× [18]. We discuss the potential power savings with reduced combi-
national logic delay calculated from the pipeline model in Section 3.5. We
optimistically assumed no extra power consumption for using a high speed
logic style on critical paths. At a tight performance constraint, pipelines with
only complementary static CMOS combinational logic had up to 2.0× higher
energy per operation.

2.5.5.1 What’s the problem?

PTL, DCVSL, and dynamic logic libraries are used as in-house aids to
custom designers. Standard cell libraries with these logic styles are not avai-
lable to ASIC designers. All of these logic styles are less robust than comple-
mentary CMOS logic, and have higher leakage power.

Differential cascode voltage switch logic is faster than complementary
CMOS logic, but is higher energy [7][20]. DCVSL requires both input signal
polarities and has higher switching activity than complementary CMOS
logic. Static DCVSL has cross-coupled outputs, resulting in longer periods
of time with a conducting path from supply to ground and larger short circuit
current. The DCVSL inputs and their negations must arrive at the same time
to limit the duration of the short circuit current, requiring tight control of the
layout to ensure similar signal delays.

Dynamic logic is precharged on every clock cycle, increasing the clock
load, activity, and dynamic power. The precharged node may only be dischar-
ged once, so glitches are not allowed. Shielding may be required to prevent
electromagnetic noise due to capacitive cross-coupling discharging the pre-
charged node. To avoid leakage through the NMOS transistors discharging
the node, a weak PMOS transistor is required as a “keeper” [99]. There can
be charge sharing between dynamic nodes or on PTL paths.

Pass transistor logic suffers a voltage drop of Vth across the NMOS pass
transistor when the input voltage is high [71]. Consequently, the reduced
voltage output from PTL may need to be restored to full voltage to improve
the noise margin and to avoid large leakage currents in fanouts. The voltage
drop can be avoided by using a complementary PMOS transistor in parallel
with the NMOS transistor, but this increases the loading on the inputs,
reducing the benefit of PTL. Buffering is needed if the fanins and fanouts are
not near the PTL gates, and an inverter may be needed to generate a negated
input.

Using these logic styles requires careful cell design and layout. A typical
EDA flow gives poor control over the final layout, thus use of these logic
styles would result in far more yield problems and chip failures.

32 Chapter 2

2.5.5.2 What can we do about it?

The foundry requirement of high yield means that the only standard cell
libraries available to ASIC designers will continue to be robust complementary
static CMOS logic. Thus an EDA design flow cannot reduce the power gap
for logic style.

An alternative is for designers to adopt a semi-custom design flow: high
speed custom cells and manual layout can be used for timing critical logic;
or custom macros can be used.

2.5.6 Logic design

Logic design refers to the topology and the logic structure used to imple-
ment datapath elements such as adders and multipliers. Arithmetic structures
have different power and delay trade-offs for different logic styles, techno-
logies, and input probabilities.

2.5.6.1 What’s the problem?

Custom designers tend to pay more attention to delay critical datapaths.
Specifying logic design requires carefully structured RTL and tight synthesis
constraints. For example, we found that flat synthesis optimized out logic
that reduced switching activity in multiplier partial products [47], so the
scripts were written to maintain the multiplier hierarchy during synthesis.
The reduced switching activity reduced the power-delay product by 1.1× for
the 64-bit multiplier.

Careful analysis is needed to compare alternate algorithmic implemen-
tations for different speed constraints. For example, high-level logic tran-
sition analysis showed that a 32-bit carry lookahead adder had about 40%
lower power-delay product than carry bypass or carry select adders [13]. There
was also a 15% energy difference between 32-bit multipliers. Zlatanovici
compared 64-bit domino adders in 0.13um, and found that the radix-4 adders
achieved smaller delay and about 25% lower energy than radix-2 [104].

We estimate that incomplete evaluation of logic design alternatives may
result in 1.2× higher power for a typical ASIC.

2.5.6.2 What can we do about it?

Synthesis tools can compile to arithmetic modules. The resulting energy
and delay is on par with tightly structured RTL. In general, ASIC designers
should be able to fully exploit logic design.

Overview of the Factors Affecting the Power Consumption 33

3/8

3/8
7/321/2

1/2

1/2

1/2

3/8

1/2 7/32
1/2

1/2
1/2

3/81/2

3/8
equivalent logic,

lower activity

Figure 2.7 This figure illustrates how refactoring logic can reduce the switching activity
while giving the same functional result. Switching activities are annotated on the diagram, as
propagated from independent inputs that have equal probability of being zero or one.

2.5.7 Technology mapping

In technology mapping a logical netlist is mapped to a standard cell
library in a given technology. Different combinations of cells can implement
a gate with different activity, capacitance, power and delay. For example to
implement an XOR2, an AO22 with inverters may be smaller and lower
power, but slower. (An AO22 logic gate computes ab + cd, so XOR2 may be
implemented by ab ab+ .) Refactoring can reduce switching activity (see
Figure 2.7). Common sub-expression elimination reduces the number of
operations. Balancing path delays and reducing the logic depth decreases
glitch activity. High activity nets can be assigned to gate pins with lower
input capacitance. [63][77]

2.5.7.1 What’s the problem?

While there are commercial tools for power minimization, power mini-
mization subject to delay constraints is still not supported in the initial phase
of technology mapping. Minimizing the total cell area minimizes circuit
capacitance, but it can increase activity. For a 0.13um 32-bit multiplier after
post-synthesis power minimization, the power was 32% higher when using
minimum area technology mapping. This was due to more (small) cells being
used, increasing activity. We had to use technology mapping combining delay
and area minimization targets for different parts of the multiplier. Technology
mapping for low power may improve results; without this and other low
power technology mapping techniques, ASICs may have 1.4× higher power
than custom.

2.5.7.2 What can we do about it?

Power minimization tools do limited remapping and pin reassignment,
along with clock gating and gate sizing [84]. These optimizations are applied
after technology mapping for minimum delay, or minimum area with delay
constraints. EDA tools should support technology mapping for minimum
power with delay constraints. This requires switching activity analysis, but it
is not otherwise substantially more difficult than targeting minimum area.

34 Chapter 2

For a given delay constraint, technology mapping can reduce the power
by 10% to 20%, for a 10% to 20% increase in area [63][77]. Low power
encoding for state assignment can also give 10% to 20% power reduction
[90]. Logic transformations based on logic controllability and observability,
common sub-expression elimination, and technology decomposition can
give additional power savings of 10% to 20% [68]. Pin assignment can
provide up to 10% dynamic power savings by connecting higher activity
inputs to gate input pins with lower capacitance [74].

ASICs should not lag custom power consumption due to technology
mapping, if better EDA tool support is provided.

2.5.8 Gate sizing and wire sizing

Wires and transistors should be sized to ensure correct circuit operation,
meet timing constraints, and minimize power consumption. ASICs must
choose cell sizes from the range of drive strengths provided in the library.
ASIC wire widths are usually fixed. Downsizing transistors gives a linear
reduction in their capacitance and thus dynamic power, and also gives a
linear reduction in leakage. Reducing the wire width gives a linear reduction
in wire capacitance but a linear increase in wire resistance, increasing signal
delay on the wire.

2.5.8.1 What’s the problem?

There is a trade-off between power and delay with gate sizing. To reduce
delay, gates on critical paths are upsized, increasing their capacitance. In
turn, their fanin gates must be upsized to drive the larger capacitance. This
results in oversized gates and buffer insertion on the critical paths. Delay
reductions come at the price of increasingly more power and worse energy
efficiency.

To balance rise and fall delays, an inverter has PMOS to NMOS width
ratio of about 2:1 as a PMOS transistor has about half the drain current of
a NMOS transistor of the same width. Accounting for the number of tran-
sistors in series, other logic gates also have 2:1 P/N ratio to balance rise and
fall delays for an inverter of equivalent drive strength, as illustrated in Figure
2.8. However, to minimize the average of the rise delay and fall delay, the
P/N ratio for an inverter should be about 1.5:1 [37]. Reducing the P/N ratio
provides a small reduction in delay and a substantial reduction in power
consumption, by reducing the capacitance of the larger PMOS transistors.
The optimal P/N ratio to minimize the delay is larger for larger loads [73]. In
addition, sometimes the rise and fall drive strengths needed are different –
for example, the rising output transition from a cell may be on a critical path,
but the falling transition may not be critical.

Overview of the Factors Affecting the Power Consumption 35

NOR2

2

NAND2inverter

2

4

4 2

2

1
1

2

1

Figure 2.8 This figure shows the relative NMOS and PMOS transistor widths for equal rise
and fall delays in different logic gates of equivalent drive strength.

The ratio of pullup to pulldown drive strength determines at what input
voltage a gate switches from low to high or high to low [99]. Equal rise and
fall delays maximize the noise margin for a high or low input. Thus skewing
the P/N ratio reduces the noise margin. Ideally, standard cell libraries should
provide a range of drive strength skews and lower power cells with reduced
P/N ratio, but often only cells with equal rise and fall drive strength are
available to ensure high yield.

A design-specific standard cell library developed for the iCORE [73]
gave a 20% speed increase by using reduced P/N width ratio, and by using
larger transistor widths to increase drive strength instead of buffering. The
larger transistor widths required increased cell height, but the net impact on
layout area was minimal as they were only used in the most critical paths.
However, the design time for this library was about two worker years.

Custom libraries may be finer grained, which avoids oversizing gates,
and have skewed drive strengths. Cells in datapath libraries are denser
and have smaller input capacitance [18]. Specific cell instances can be
optimized. Cells that connect to nearby cells don’t need guard-banding. This
avoids the need for buffering to handle driving or being driven by long
wires.

Wire widths can also be optimized in custom designs. Gong et al. [34]
optimized global clock nets on a 1.2um chip. By simultaneously optimizing
buffer and wire sizes, they reduced the clock net power by about 63%. This
amounts to a 10% to 20% saving in total power.

The basic approach to gate sizing in commercial EDA software has
changed little in the past 20 years. These gate sizers like TILOS [29] proceed
in a greedy manner, picking the gate with the best power or area versus
delay tradeoff to change, and iterating. There are known circuit examples
where these approaches perform suboptimally, but it has not been clear how
much of a problem this is for typical circuits for real world applications. We
found power savings of up to 32.3% versus gate sizing in Design Compiler,
which is commonly used in EDA flows for circuit synthesis, and 16.3%

36 Chapter 2

savings on average across the ISCAS’85 benchmarks and three typical
datapath circuits (see Section 6.5.3). Gate sizing is an NP-complete problem,
but circuit sizes are large and optimization software must have runtimes of
O(n2) or less to be of practical use [81], where n is the number of gates in the
circuit. The TILOS-like greedy approaches are relatively fast, being O(n2),
and other approaches that perform better with similar static timing analysis
(STA) accuracy have had worse computational complexity.

Some commercial power minimization software has only recently pro-
vided the option of minimizing the total power. Previously, the user had to
prioritize minimizing either the dynamic power or the leakage power, which
can be suboptimal.

We estimate that these limitations in gate sizing and wire sizing for
typical ASICs may lead to a power gap of 1.6× versus custom.

2.5.8.2 What can we do about it?

Gate downsizing to reduce power consumption is well supported by
power minimization tools. Some commercial tools support clock tree wire
sizing, but there are no commercial tools available for sizing other wires.
Automated cell creation, characterization and in-place optimization tools are
available. Standard cell libraries with finer grained drive strengths and lower
power consumption are available, though users may be charged a premium.

We synthesized the base configuration of a Tensilica Xtensa processor in
0.13um. The power/MHz was 42% lower and the area was 20% less at
100MHz than at the maximum clock frequency of 389MHz, due to using
smaller gates and less buffers. If delay constraints are not too tight, tools can
reduce power by gate downsizing without impacting delay. At 325MHz,
Power Compiler was able to reduce the power consumption by 26% and
reduce the area by 12% for no delay penalty.

Libraries with fine granularity help to reduce the power by avoiding use
of oversized gates. In a 0.13um case study of digital signal processor (DSP)
functional macros, using a fine grained library reduced power consumption
by 13% (see Chapter 13).

After place and route when wire lengths and capacitive loads are accu-
rately known, in place optimization can remove guard banding where it
is unnecessary. ASIC designers have tended to distrust this approach, as the
optimized cells without guard banding cannot be safely used at earlier stages
in the EDA flow. Skewing the pullup to pulldown drive strength to optimize
the different timing arcs through a gate can also improve energy efficiency.
A prototype tool flow for in place cell optimization increased circuit speed
by 13.5% and reduced power consumption by 18%, giving a 1.4× increase
in energy efficiency for the 0.35um 12,000 gate bus controller [25]. 300
optimized cells were generated in addition to the original standard cell
library that had 178 cells.

Overview of the Factors Affecting the Power Consumption 37

Our linear programming gate sizing approach discussed in 0 takes a
global view of the circuit rather than performing greedy “peephole” optimi-
zation. We achieved up to 32.3% power savings and on average 16.3%
power savings versus gate sizing in Design Compiler for the combinational
netlists. Our optimization approach has between O(n) and O(n2) runtime
growth, making it scalable to large circuit sizes.

ASICs may have 1.1× worse power than custom due to gate and wire
sizing, as wire sizing tools are not available other than for the clock tree, and
some design-specific cell optimizations are not possible without custom cell
design, beyond what is possible with automated cell creation.

2.5.9 Voltage scaling

Reducing the supply voltage Vdd quadratically reduces switching power.
Short circuit power also decreases with Vdd. Reducing Vdd also reduces
leakage. For example, with our 0.13um library leakage decreases by a factor
of three as Vdd is decreased from 1.2V to 0.6V. As Vdd decreases, a gate’s
delay increases. To reduce delay, threshold voltage Vth must also be scaled
down. As Vth decreases, leakage increases exponentially. Thus there is a
tradeoff between performance, dynamic power and leakage power.

Ideally, we want to operate at as low Vdd as possible, with Vth high
enough to ensure little leakage. For example, dynamic scaling of the supply
voltage from 3.8V to 1.2V gives a 10× increase in energy efficiency at the
price of decreasing performance by a factor of 14 for Burd’s 0.6um ARM
implementation [11]. Reducing the power consumption in this manner req-
uires timing slack.

Power consumption may be reduced by using multiple supply voltages
and multiple threshold voltages. High Vdd and low Vth can be used on
critical paths to reduce their delay, while lower Vdd and higher Vth can be
used elsewhere to reduce dynamic and leakage power.

2.5.9.1 What’s the problem?

Custom designs can achieve at least twice the speed of ASICs with high
performance design techniques [18]. At the same performance target as an
ASIC, a custom design can reach lower Vdd using the additional timing
slack. Compare Vdd of Burd, StrongARM and XScale to other ARMs in
Table 2.1. With lower Vdd they save between 40% and 80% dynamic power
versus other ARMs in the same technology. This is the primary reason for
their higher energy efficiency. To use lower Vdd, ASICs must either settle
for lower performance or use high speed techniques, such as deeper pipe-
lining, to maintain performance.

Dynamically adjusting the supply voltage for the desired performance
requires a variable voltage regulator and takes time, during which correct

38 Chapter 2

signals must be maintained to avoid transitioning into illegal states from
which behavior is unknown. To change from 1.2V to 3.8V in Burd’s ARM
[11] required energy equal to that consumed in 712 cycles of peak operation,
and there was a delay of 70us. Increasing or decreasing the supply voltage
by 800mV took 50us in the XScale [22].

Several barriers remain to ASICs using low Vdd. Using lower Vdd
requires lower Vth to avoid large increases in gate delay. Vth is determined
by the process technology. A foundry typically provides two or three
libraries with different Vth: high Vth for low power; and low Vth for high
speed at the expense of significant leakage power. Most ASIC designers
cannot ask a foundry to fine tune Vth for their particular design, even if an
intermediate Vth might be preferable to reduce leakage. Vdd can be optimized
for ASICs, but typical ASIC libraries are characterized at only two nominal
supply voltages – say 1.2V and 0.9V in 0.13um. To use Vdd of 0.6V, the
library must be re-characterized. There is also less noise immunity at lower
Vdd.

Use of multiple supply voltages either requires that the wells of PMOS
transistors in low Vdd gates are reverse biased by connecting them to high
Vdd, or spatial isolation between the wells connected to low Vdd and high
Vdd. Layout tools must support these spacing constraints. Low voltage
swing signals must be restored to full voltage swing with a voltage level
converter to avoid large leakage currents when a high Vdd gate is driven by
a low Vdd input. Most level converter designs require access to both high
Vdd and low Vdd, which complicates layout and may require that they
straddle two standard cell rows, additionally the PMOS wells connected to
different Vdd must be spatially isolated. Voltage level converters are not
available in ASIC libraries. Synthesis and optimization tools must insert
level converters where needed, and prevent low Vdd gates driving high Vdd
gates in other cases.

If voltage level converters are combined with the flip-flops, the power
and delay overheads for voltage level restoration are less. Due to the addi-
tional power and delay overheads for asynchronous level converters (those
not combined with flip-flops), there have been reservations about whether
they provide any practical benefits over only using level converter flip-flops
[93]. There has also been concern about their noise immunity [46].

Multi-Vdd circuitry has more issues with capacitive cross-coupling noise
due to high voltage swing aggressors on low voltage swing lines. Thus it
may be best to isolate high Vdd and low Vdd circuitry into separate voltage
islands, rather than using multi-Vdd at a gate level. Multi-Vdd at the gate-
level can also require additional voltage rails. Gate level multi-Vdd requires
tool support to cluster cells of the same Vdd to achieve reasonable layout
density. An additional voltage regulator is needed to generate the lower Vdd.

Using multiple threshold voltages is expensive. Each additional PMOS
and NMOS threshold voltage requires another mask to implant a different

Overview of the Factors Affecting the Power Consumption 39

dopant density, substantially increasing processing costs. A set of masks
costs on the order of a million dollars today and an additional Vth level
increases the fabrication cost by 3% [69]. Each additional mask increases the
difficulty of tightly controlling yield, motivating some manufacturers to limit
designs to a single NMOS and single PMOS threshold voltage.

To take full advantage of multiple threshold voltages within gates,
standard cells with multi-Vth and skewed transistor widths must be provided.
High Vth can be used to reduce leakage while low Vth can be used to reduce
dynamic power. For example, using low Vth PMOS transistors and high Vth
NMOS transistors in a complementary CMOS NOR gate, as leakage is less
through the PMOS transistors that are in series. In gates that have an uneven
probability of being high or low, there is more advantage to using high Vth
to reduce leakage for the pullup or pulldown network that is more often off.
Similarly, for wider transistors with high Vth may be preferable for gates
that have low switching activity, while narrower transistors with low Vth is
better when there is higher switching activity.

2.5.9.2 What can we do about it?

There are tools to automate characterizing a library at different Vdd
operating points. Characterization can take several days or more for a large
library. Standard cell library vendors can help by providing more Vdd chara-
cterization points. Commercial tools do not adequately support multi-Vdd
assignment or layout, but separate voltage islands are possible.

There are voltage level converter designs that only need to connect to
high Vdd (see Figure 13.8). Some asynchronous level converters designs
have been shown to be robust and have good noise immunity in comparison
to typical logic gates at low Vdd [53]. It would help if voltage level converters
were added to standard cell libraries.

Foundries often support high and low Vth cells being used on the same
chip. Power minimization tools can reduce power by using low Vth cells on
the critical path, with high Vth cells elsewhere to reduce leakage. Combining
dual Vth with sizing reduced leakage by 3 to 6× for a 5% increase in delay
on average versus using only low Vth [78]. From a design standpoint, an
advantage of multiple threshold voltages is that changing the threshold
voltage allows the delay and power of a logic gate to be changed without
changing the cell footprint, and thus not perturbing the layout. As discussed
in Chapter 7, multi-threshold voltage optimization is straightforward, providing
those cells are provided in the library. Optimization runtime increases at
worst linearly with the number of cells in the library.

Geometric programming optimization results on small benchmark circuits
suggest that multi-Vdd and multi-Vth may only offer 20% power savings
versus optimal choice of single Vdd, single NMOS Vth, and single PMOS
Vth [16]. As ASIC designers are limited to Vth values specified by the

40 Chapter 2

foundry, there may be more scope for power savings in ASICs when Vth is
suboptimal. After scaling Vdd from 1.2V to 0.8V by using a low Vth of
0.08V, we found power savings of up to 26% by using a second higher Vth
to reduce leakage with our linear programming optimization approach in
Chapter 7, and average power savings were 16%. We found that power savings
with gate-level multi-Vdd were generally less than 10%. Using multi-Vdd is
more appropriate at a module level, making a good choice of a single supply
voltage for the module based on the delay of critical paths.

With 9% timing slack versus the maximum clock frequency, Stok et al.
in Chapter 13 reduced power consumption by 31% by scaling from Vdd of
1.2V to Vdd of 1.0V. Usami et al. [94] implemented automated tools to
assign dual Vdd and place dual Vdd cells, with substrate biasing for the
transistors to operate at low Vth in active mode to increase performance and
high Vth in standby mode to reduce leakage. They achieved total power
reduction of 58% with only a 5% increase in area. The ARM1176JZ-S [35]
synthesizable core supports dynamic voltage scaling, but this requires addi-
tional software and hardware support. This demonstrates that ASICs can use
such methods with appropriately designed RTL, software, and EDA tool
support, reducing the power gap due to voltage scaling alone to 1.0×.

2.5.10 Floorplanning, cell placement and wire routing

The quality of floorplanning of logic blocks and global routing for wires,
followed by cell placement and detailed wire routing, have a significant
impact on wire lengths. A significant portion of the capacitance switched in
a circuit is wiring capacitance. The power consumption due to interconnect
is increasing from about 20% in 0.25um to 40% in 0.09um [82]. Wire lengths
depend on cell placement and congestion. Larger cells and additional buffers
are needed to drive long wires. We estimate that poor floorplanning, cell
sizing and cell placement with inaccurate wire load models can result in 1.5×
worse power consumption in ASICs compared to custom.

2.5.10.1 What’s the problem?

Custom chips are partitioned into small, tightly placed blocks of logic.
Custom datapaths are manually floorplanned and then bit slices of layout
may be composed. Automatic place and route tools are not good at recog-
nizing layout regularity in datapaths.

We used BACPAC [82] to examine the impact of partitioning. We com-
pared partitioning designs into blocks of 50,000 or 200,000 gates in 0.13um,
0.18um, and 0.25um. Across these technologies, using 200,000 gate blocks
increased average wire length by about 42%. This corresponds to a 9% to
17% increase in total power. The delay is also about 20% worse with larger
partitions [18]. The net increase in energy per operation is 1.3 to 1.4×.

Overview of the Factors Affecting the Power Consumption 41

When sizing gates and inserting buffers, the first pass of synthesis uses
wire load models to estimate wire loads. Wire load models have become
increasing inaccurate, with wires contributing a larger portion of load capa-
citance in the deep submicron. A conservative wire load model is required
to meet delay constraints, but this results in most gates being over-sized [18],
making the power higher.

Physical synthesis iteratively performs placement and cell sizing, to refine
the wire length estimates. Cell positions are optimized then wire lengths are
estimated with Steiner trees. Steiner tree wire length models used by physical
synthesis are inaccurate if a wire route is indirect. There can be too many
critical paths to give them all a direct route. Power minimization increases
path delay, so more paths are critical, increasing congestion. This may
degrade performance. For example for the base configuration of Tensilica’s
Xtensa processor for a tight performance target of 400MHz clock frequency
in 0.13um, we found that the clock frequency was 20% worse after place and
route when power minimization was used.

2.5.10.2 What can we do about it?

Physical synthesis, with iteratively refined wire length estimates and cell
placement, produces substantially better results than a tool flow using only
wire load models. In our experience, physical synthesis can increase speed
by 15% to 25%. The cell density (area utilization) increases, reducing wire
lengths, and then cells may be downsized, which reduces power by 10%
to 20%.

Earlier power minimization tools often ended up increasing the worst
critical path delay after layout if the delay constraint was tight. This is less of
a problem in today’s tools, where power minimization is integrated with
physical synthesis. Tool flow integration has also improved, particularly as
some of the major CAD software vendors now have complete design flows
with tools that perform well throughout the design flow – rather than using
for example Synopsys tools for synthesis and Cadence tools for place and
route.

An ASIC designer can generate bit slices from carefully coded RTL with
tight aspect ratio placement constraints. Bit slices of layout may then be
composed. With bit slices, Chang showed a 70% wire length reduction
versus automated place-and-route [15], which would give a 1.2 to 1.4×
increase in energy efficiency. Stok et al. in Chapter 13 found that bit slicing
and some logic optimization, such as constant propagation, improved clock
frequency by 22% and reduced power consumption by 20% for seven DSP
functional macros implemented in 0.13um, improving the energy efficiency
by a factor of 1.5×. Compared to bit slicing using a library of datapath cells,
manual placement and routing can still achieve smaller wire lengths [15],
leaving a gap of about 1.1×.

42 Chapter 2

2.5.11 Process technology

After the layout is verified, the chip is fabricated in the chosen process
technology by a foundry. Within the same nominal technology generation,
the active power, leakage power, and speed of a chip differ substantially
depending on the process used to fabricate the circuit. Older technologies are
slower and are cheaper per mask set. However, newer technologies have
more dies per wafer and thus may be cheaper per die for larger production
runs. Newly introduced technologies may have lower yield, though these
problems are typically ironed out as the technology matures [61].

High performance chips on newer technologies have substantially higher
subthreshold leakage power as threshold voltage is scaled down with supply
voltage to reduce dynamic power. Gate tunneling leakage is also higher as
transistor gate oxide thickness is reduced for the lower input voltage to the
transistor gate to retain control of the transistor.

Gate leakage can be reduced if the gate oxide thickness tox is increased,
which requires a high-k gate dielectric permittivity εox to maintain the drive
current (see Equation (4.1)). For example, Intel will use hafnium oxide in
their 45nm process [44], which has dielectric permittivity of about an order
magnitude larger than silicon oxide that is used in most of today’s processes,
enabling Intel to reduce the gate leakage by more than 10×.

The power consumption and power per unit area can be less in deeper
submicron technologies if performance is not increased [55]. For example in
65nm, Intel’s low power P1265 process reduces leakage 300×, but has 55%
lower saturation drain current and hence is about 2.2× slower [48], compared
to their higher performance P1264 technology [91]. To reduce leakage they
increased oxide thickness from 1.2nm to 1.7nm, increased gate length from
35nm to 55nm, and increased threshold voltage from about 0.4V to 0.5V (at
drain-source voltage of 0.05V) [48]. Note that the higher threshold voltage
results in a greater delay increase if supply voltage is reduced.

While Intel started selling processors produced in 65nm bulk CMOS
technology at the start of 2006, AMD is still producing chips in 90nm silicon-
on-insulator (SOI) technology [8][36]. AMD is on track to offer 65nm SOI
chips in the last quarter of 2006 [67]. Intel is a technology generation ahead,
and has the cost advantage of using cheaper bulk CMOS and more dies per
wafer with its smaller technology. However, SOI has better performance per
watt than bulk CMOS, so Intel has only a slight advantage in terms of
performance and energy efficiency.

In the same nominal technology generation, there are substantial diff-
erences between processes. Different technology implementations differ
by up to 25% in speed [18], 60% in dynamic power, and an order of mag-
nitude in leakage. We compared several gates in Virtual Silicon’s IBM
8SF and UMC L130HS 0.13um libraries. 8SF has about 5% less delay and

Overview of the Factors Affecting the Power Consumption 43

only 5% of the leakage compared to L130HS, but it has 1.6× higher dynamic
power [97]. Our study of two TSMC 0.13um libraries with the base configu-
ration of Tensilica’s Xtensa processor showed that TSMC’s high Vth, low-k
library was 20% lower power/MHz, with 66% less leakage power and 14%
less dynamic power, than the low Vth, low-k library (see Table 2.5).

The power consumption, wire RC delays, and IR drop in the wires can
be reduced by use of copper wires and low-k interlayer dielectric insulator.
Copper interconnect has 40% lower resistivity than aluminum. Low-k diele-
ctrics of 2.7 to 3.6 electrical permittivity (k) are used in different processes,
compared to SiO2’s dielectric constant of 3.9. Using low-k interlayer dielectric
insulator reduces interconnect capacitance by up to 25%, reducing dynamic
power consumption by up to 12%. High-k transistor gate dielectrics increase
the transistor drive strength and thus speed, and can also reduce the gate tunne-
ling leakage by an order of magnitude [59].

Narendra et al. showed that silicon-on-insulator (SOI) was 14% to 28%
faster than bulk CMOS for some 0.18um gates. The total power was 30%
lower at the same delay, but the leakage was 1.2 to 20× larger [65]. A 0.5um
DSP study showed that SOI was 35% lower power at the same delay as bulk
CMOS [76]. Double-gated fully depleted SOI is less leaky than bulk CMOS.

The StrongARM caches were 90% of the chip area and were primarily
responsible for leakage. A 12% increase in the NMOS channel length
reduced worst case leakage 20×. Lengthening transistors in the cache and
other devices reduced total leakage by 5× [62]. Transistor capacitance, and
thus dynamic power, increases linearly with channel length. Channel length
can be varied in ASICs to reduce leakage if such library cells are available.

As a process technology matures, incremental changes can improve
yield, improve performance and reduce power consumption. In Intel's 0.25um
P856 process the dimensions were shrunk by 5% and, along with other
modifications, this gave a speed improvement of 18% in the Pentium II [10].
The 0.18um process for the Intel XScale had a 5% shrink from P858, and
other changes to target system-on-chip applications [22]. There was also a
5% linear shrink in Intel’s 0.13um P860 process and the effective gate length
was reduced from 70nm to 60nm [87]. A 5% shrink reduces transistor
capacitance and dynamic power by about 5%. These process improvements
are typical of what is available to high volume custom designs.

We estimate that different choices within the same process technology
generation may give up to 1.6× difference in power.

Table 2.5 Dynamic and leakage power for two different 0.13um TSMC libraries for
Tensilica’s Xtensa processor for the base configuration with a clock frequency of 100MHz.
Library low Vdd, low k-dielectric low Vdd, low k-dielectric, high Vth
Dynamic power (uW) 6.48 5.66
Leakage power (mW) 0.67 0.25
Total power (mW) 7.15 5.90

44 Chapter 2

2.5.11.1 What’s the problem?

Standard cells are characterized in a specific process. The cells must
be modified and libraries updated for ASIC customers to take advantage of
process improvements. Without such updates, 20% speed increase and greater
reductions in power may be unavailable to ASIC customers. Finding the
lowest power for an ASIC requires synthesis with several different libraries
to compare power at performance targets of interest. The lowest power
library and process may be too expensive.

2.5.11.2 What can we do about it?

Generally, it requires little extra work to re-target an ASIC EDA flow to
a different library. ASICs can be migrated quickly to different technology
generations, and updated for process improvements. In contrast, the design
time to migrate custom chips is large. Intel started selling 90nm Pentium 4
chips in February 2004 [36], but a 90nm version of the XScale was only
reported in June 2005 [72] and is not currently in production to our know-
ledge. Meanwhile, ARM has synthesized the more recent Cortex-A8 core
for 65nm [4]. ASICs should be able to take full advantage of process impro-
vements, closing the gap for process technology to 1.0×.

2.5.12 Process variation

Chips fabricated in the same process technology vary in power and speed
due to process variation, as illustrated in Figure 2.9. Some of the chips
fabricated may be too slow, while some are significantly faster. In previous
technology generations, the faster chips could be sold at a premium. However,
faster chips have more leakage power and greater variation in leakage power
[9]. Thus the faster chips may consume too much power, particularly if run
at a higher clock frequency where dynamic power is also higher as it increases
linearly with clock frequency.

There are a number of sources of process variation, such as optical
proximity effects, and wafer defects. The channel length L, transistor width,
wire width and wire height have about 25% to 35% variation from nominal
at three standard deviations (3σ). Transistor threshold voltage Vth and oxide
thickness have about 10% variation at 3σ [66]. Decreased transistor oxide
thickness substantially increases gate tunneling leakage, and a decrease in
Vth or L can cause a large increase in subthreshold leakage current, though
these transistors are faster. Dynamic power scales linearly with transistor
and wire dimensions, as capacitances increase.

To ensure high yield accounting for process variation, libraries are
usually characterized at two points. To meet the target speed, the process’
worst case speed corner is used – typically 125°C, 90% of nominal Vdd,

Overview of the Factors Affecting the Power Consumption 45

with slow transistors. To prevent excessive power, the active power may be
characterized at a worst case power corner, e.g. –40°C, 110% of nominal
Vdd, and fast transistors. Leakage is worse at high temperature. Due to Vdd
alone, the active power is 50% higher at the worst case power corner than at
the worst case speed corner. These process corners are quite conservative
and limit a design. The fastest chips fabricated in a typical process may be
60% faster than estimated from the worst case speed corner [18]. Similarly,
examining the distribution of power of fabricated 0.3um MPEG4 codecs
[85], the worst case power may be 50% to 75% higher than the lowest power
chips produced.

Figure 2.9 This graph illustrates yield versus maximum clock frequency f and total power P
at that clock frequency. The minimum frequency is 1.0GHz and the maximum power is
160W. The maximum frequency of about 1.4GHz is determined from the power constraint.
2.3% of the chips are slower than 1.0GHz and 2.2% are faster than 1.4GHz. 10.7% of the
chips have power consumption of more than 160W. Data was generated with a normal
distribution of f = N(1.2,0.1) and distribution for total power of P = 100f + e–10+10f+N(0,0.4), with
dynamic power of 100f. The leakage distribution is similar to the 0.18um technology in [9].

46 Chapter 2

Table 2.6 This table compares the rated power consumption of chips operating at the same
clock frequency that are sold by Intel and AMD today [1][2][3][41][42][45][86]. Higher
speed parts can operate at a lower supply voltage, reducing the power consumption. These
lower power processors are sold at a premium.

Technology Frequency Voltage Power Power
Processor Model Codename (nm) (GHz) (V) (W) Increase

Athlon 64 X2 4800+ Windsor 90 2.40 1.25 65
Athlon 64 X2 4800+ Windsor 90 2.40 1.35 89 ×1.4
Athlon 64 X2 3800+ Windsor 90 2.00 1.08 35
Athlon 64 X2 3800+ Windsor 90 2.00 1.25 65 ×1.9
Athlon 64 X2 3800+ Windsor 90 2.00 1.35 89 ×2.5
Athlon 64 3500+ Orleans 90 2.20 1.25 35
Athlon 64 3500+ Orleans 90 2.20 1.40 62 ×1.8
Turion 64 MT-40 Lancaster 90 2.20 1.20 25
Turion 64 ML-40 Lancaster 90 2.20 1.35 35 ×1.4
Core 2 Duo T7600 Merom 65 2.33 1.30 35
Xeon 5100 5148 Woodcrest 65 2.33 1.25 40 ×1.1
Xeon 5100 5140 Woodcrest 65 2.33 1.40 65 ×1.9
Core 2 Duo T7200 Merom 65 2.00 1.30 35
Xeon 5100 5130 Woodcrest 65 2.00 1.40 65 ×1.9
Core Duo L2500 Yonah 65 1.83 1.21 15
Core Duo T2400 Yonah 65 1.83 1.33 31 ×2.1
Core Duo L2400 Yonah 65 1.66 1.21 15
Core Duo T2300 Yonah 65 1.66 1.33 31 ×2.1

Exploiting the variation in power consumption, Intel and AMD have
been selling lower power chips at a premium. The power consumption of the
cheaper, higher power parts is typically up to about 2× that of the low power
chips, as shown in Table 2.6. Note that Intel’s Merom (laptop), Conroe
(desktop) and Woodcrest (server) chips are essentially the same [40], though
voltages, caching strategies and so forth may be changed for lower power
but lower performance for the laptop version.

Custom circuitry can be designed to ameliorate process variation in
fabricated chips. In the Pentium 4, the clock is distributed across the chip to
47 domain buffers, which each have a 5 bit programmable register to remove
skew from the clock signal in that domain to compensate for process
variation [54]. A similar scheme was used to reduce clock skew in the 90nm
XScale [21]. The body bias can be changed to adjust the transistor threshold
voltage, and thus the delay and leakage power. Body bias can be applied at a
circuit block level to reduce the standard deviation in clock frequency
between dies from 4.1% to 0.21%, improving speed by 15% versus the
slower chips without body bias, while limiting the range in leakage power
to 3× for a 0.15um test chip [88]. To do this, representative critical path
delays and the leakage current must be measured while the bias is varied.
Additional power rails are needed to route the alternate NMOS and PMOS

Overview of the Factors Affecting the Power Consumption 47

body bias voltages from the body bias generator circuitry, resulting in a 3%
area overhead [88]. Forward body bias allowed Vdd to be reduced from
1.43V to 1.37V giving a 7% reduction in total power for a 0.13um 5GHz 32-
bit integer execution core [95].

2.5.12.1 What’s the problem?

For ASIC parts that are sold for only a few dollars per chip, additional
testing for power or speed binning is too expensive. Such ASICs are chara-
cterized under worst case process conditions to guarantee good yield. Thus
ASIC power and speed are limited by the worst case parts. Without binning,
there may be a power gap of ×2 versus custom chips that are binned. Custom
chips that have the same market niche as ASICs have the same limitation on
testing for binning, unless they are sold at a much higher price per chip.

The complicated circuitry and tight control of layout and routing req-
uired to compensate for process variation in a fabricated chip is not possible
within an ASIC methodology.

2.5.12.2 What can we do about it?

To account for process variation, ASIC power may be characterized after
fabrication. Parts may then be advertised with longer battery life. However,
post-fabrication characterization of chip samples does not solve the problem
if there is a maximum power constraint on a design. In this case, ASICs may
be characterized at a less conservative power corner, which requires better
characterization of yield for the standard cell library in that process. For
typical applications, the power consumption is substantially less than peak
power at the worst case power corner. Additional steps may be taken to limit
peak power, such as monitoring chip temperature and powering down if it is
excessive.

We estimate a power gap of up to 1.3× due to process variation for ASICs
in comparison to custom designs that compensate for process variation, from
analysis of a 15% increase in custom speed with the pipeline model in
Chapter 3.

2.6 SUMMARY

We compared synthesizable and custom ARM processors from 0.6um to
0.13um. We also examined discrete cosine transform cores, as an example of
dedicated low power functional units. In these cases, there was a power gap
of 3 to 7× between custom and ASIC designs.

We have given a top-down view of the factors contributing to the power
gap between ASIC and custom designs. From our analysis, the most significant
opportunity for power reduction in ASICs is using microarchitectural tech-
niques to maintain performance while reducing power by voltage scaling.

48 Chapter 2

Reducing the pipeline delay overhead and using pipelining to increase timing
slack can enable substantial power savings by reducing the supply voltage
and downsizing gates. Multiple threshold voltages may be used to limit leak-
age while enabling a lower Vdd to be used. Choosing a low power process
technology and limiting the impact of process variation reduces power by a
large factor.

In summary, at a tight performance constraint for a typical ASIC design,
we believe that the power gap can be closed to within 2.6× by using these
low power techniques with fine granularity standard cell libraries, careful
RTL design and EDA tools targeting low power. The remaining gap is
mostly from custom designs having lower pipelining overhead and using
high speed logic on critical paths. Using a high speed logic style on critical
paths can provide timing slack for significant power savings in custom
designs. High speed logic styles are less robust and require careful layout,
and thus are not amenable to use in an ASIC EDA methodology.

An example of combining low power and high performance design
techniques on DSP functional macros is in Chapter 13. To improve perfor-
mance and reduce power consumption, they used arithmetic optimizations,
logic optimization, a finer grained library, voltage scaling from 1.2V to
1.0V, and bit-slicing. Performance improved from 94MHz to 177MHz and
energy efficiency increased from 0.89MHz/mW to 2.78MHz/mW – a factor
of 3.1×. This demonstrates the power savings that may be achieved by using
low power techniques in ASICs.

The next chapter details our power and delay model that incorporates the
major factors that contribute to the power gap between ASIC and custom. It
includes pipelining, logic delay, voltage scaling and gate sizing. The logic
delay is determined by factors such as the logic style, wire lengths after
layout, process technology, and process variation which affects the worse
case delay.

2.7 REFERENCES
[1] AMD, AMD Processors for Desktops: AMD Athlon 64 Processor and AMD Sempron

Processor, September 2006. http://www.amdcompare.com/us-en/desktop/
[2] AMD, AMD Turion 64 Mobile Technology Model Number, Thermal Design Power,

Frequency, and L2 Cache Comparison, September 2006.http://www.amd.com/us-en/
Processors/ProductInformation/0,,30_118_12651_12658,00.html

[3] AMD, Processor Pricing, September 2006. http://www.amd.com/us-en/Corporate/
VirtualPressRoom/0,,51_104_609,00.html?redir=CPPR01

[4] ARM, ARM Cortex-A8, 2006. http://www.arm.com/products/CPUs/ARM_Cortex-
A8.html

[5] ARM, ARM Processor Cores. http://www.armdevzone.com/open.nsf/htmlall/A944EB
65693A4EB180256A440051457A/$File/ARM+cores+111-1.pdf

[6] Bhavnagarwala, A., et al., “A Minimum Total Power Methodology for Projecting Limits
on CMOS GSI,” IEEE Transactions on VLSI Systems, vol. 8, no. 3, June 2000, pp. 235-
251.

Overview of the Factors Affecting the Power Consumption 49

[7] Bisdounis, L., et al., “A comparative study of CMOS circuit design styles for low-power

high-speed VLSI circuits,” International Journal of Electronics, vol. 84, no. 6, 1998, pp.
599-613.

[8] Bohr, M., “Staying Ahead of the Power Curve: Q&A with Intel Senior Fellow Mark T.
Bohr,” Technology@Intel Magazine, August 2006.

[9] Borkar, S. et al., “Parameter variation and impact on Circuits and Microarchitecture,” in
Proceedings of the Design Automation Conference, 2003, pp. 338-342.

[10] Brand, A., et al., “Intel's 0.25 Micron, 2.0 Volts Logic Process Technology,” Intel
Technology Journal, Q3 1998, 8 pp. http://developer.intel.com/technology/itj/q31998/pdf/
p856.pdf

[11] Burd, T., et al., “A Dynamic Voltage Scaled Microprocessor System,” IEEE Journal of
Solid State Circuits, vol. 35, no. 11, 2000, pp. 1571-1580.

[12] Burd, T., Energy-Efficient Processor System Design, Ph.D. dissertation, Department of
Electrical Engineering and Computer Sciences, University of California, Berkeley, CA
2001, 301 pp.

[13] Callaway, T., and Swartzlander, E., “Optimizing Arithmetic Elements for Signal
Processing,” VLSI Signal Processing, 1992, pp. 91-100.

[14] Chandrakasan, A., and Brodersen, R., “Minimizing Power Consumption in Digital
CMOS Circuits,” in Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp. 498-523.

[15] Chang, A., “VLSI Datapath Choices: Cell-Based Versus Full-Custom,” S.M. Thesis,
Massachusetts Institute of Technology, February 1998, 146 pp. http://cva.stanford.edu/
publications/1998/achang_sm_thesis.pdf

[16] Chinnery, D, Low Power Design Automation, Ph.D. dissertation, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, 2006.

[17] Chinnery, D., et al., “Automatic Replacement of Flip-Flops by Latches in ASICs,”
chapter 7 in Closing the Gap Between ASIC & Custom: Tools and Techniques for High-
Performance ASIC Design, Kluwer Academic Publishers, 2002, pp. 187-208.

[18] Chinnery, D., and Keutzer, K., Closing the Gap Between ASIC & Custom: Tools and
Techniques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002,
432 pp.

[19] Chinnery, D., Nikolić, B., and Keutzer, K., “Achieving 550 MHz in an ASIC
Methodology,” in Proceedings of the Design Automation Conference, 2001, pp. 420-425.

[20] Chu, K., and Pulfrey, D., “A Comparison of CMOS Circuit Techniques: Differential
Cascode Voltage Switch Logic Versus Conventional Logic,” Journal of Solid-State
Circuits, vol. sc-22, no. 4, August 1987, pp. 528-532.

[21] Clark, L., “The XScale Experience: Combining High Performance with Low Power from
0.18um through 90nm Technologies,” presented at the Electrical Engineering and
Computer Science Department of the University of Michigan, September 30, 2005.
http://www.eecs.umich.edu/vlsi_seminar/f05/Slides/VLSI_LClark.pdf

[22] Clark, L., et al., “An Embedded 32-b Microprocessor Core for Low-Power and High-
Performance Applications,” Journal of Solid-State Circuits, vol. 36, no. 11, November
2001, pp. 1599-1608.

[23] Clark, L., et al., “Standby Power Management for a 0.18um Microprocessor,” in
Proceedings of the International Symposium on Low Power Electronics and Design,
2002, pp. 7-12.

[24] Clark, L., Morrow, M., and Brown, W., “Reverse-Body Bias and Supply Collapse for
Low Effective Standby Power,” IEEE Transactions on VLSI Systems, vol. 12, no. 9,
2004, pp. 947-956.

[25] Cote, M., and Hurat, P. “Faster and Lower Power Cell-Based Designs with Transistor-
Level Cell Sizing,” chapter 9 in Closing the Gap Between ASIC & Custom: Tools and
Techniques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002, pp.
225-240.

50 Chapter 2

[26] Dai, W., and Staepelaere, D., “Useful-Skew Clock Synthesis Boosts ASIC Performance,”

chapter 8 in Closing the Gap Between ASIC & Custom: Tools and Techniques for High-
Performance ASIC Design, Kluwer Academic Publishers, 2002, pp. 209-223.

[27] Duarte, D., et al., “Evaluating run-time techniques for Leakage Power Reduction,” in
Proceedings of the Asia and South Pacific Design Automation Conference, 2002, pp. 31-38.

[28] Fanucci, L., and Saponara, S., “Data driven VLSI computation for low power DCT-
based video coding,” International Conference on Electronics, Circuits and Systems,
vol.2, 2002, pp. 541-544.

[29] Fishburn, J., and Dunlop, A., “TILOS: A Posynomial Programming Approach to
Transistor Sizing,” in Proceedings of the International Conference on Computer-Aided
Design, 1985, pp. 326-328.

[30] Flynn, D., and Keating, M., “Creating Synthesizable ARM Processors with Near Custom
Performance,” chapter 17 in Closing the Gap Between ASIC & Custom: Tools and
Techniques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002, pp.
383-407.

[31] Furber, S., ARM System-on-Chip Architecture. 2nd Ed. Addison-Wesley, 2000.
[32] Ganswijk, J., Chip Directory: ARM Processor family. http://www.xs4all.nl/~ganswijk/

chipdir/fam/arm/
[33] Garg, M., “High Performance Pipelining Method for Static Circuits using Heterogeneous

Pipelining Elements,” in Proceedings of the European Solid-State Circuits Conference,
2003, pp. 185-188.

[34] Gong, J., et al., “Simultaneous buffer and wire sizing for performance and power
optimization,” International Symposium on Low Power Electronics and Design, 1996,
pp. 271-276.

[35] Greenhalgh, P., “Power Management Techniques for Soft IP,” Synopsys Users Group
European Conference, May 6, 2004, 12 pp.

[36] Hare, C. 786 Processors Chart. http://users.erols.com/chare/786.htm
[37] Harris, D., “High Speed CMOS VLSI Design – Lecture 2: Logical Effort & Sizing,”

November 4, 1997.
[38] Harris, D., et al. “The Fanout-of-4 Inverter Delay Metric,” unpublished manuscript,

1997, 2 pp. http://odin.ac.hmc.edu/~harris/research/FO4.pdf
[39] Ho, R., Mai, K.W., and Horowitz, M., “The Future of Wires,” in Proceedings of the

IEEE, vol. 89, no. 4, April 2001, pp. 490-504.
[40] Horan, B., “Intel Architecture Update,” presented at the IBM EMEA HPC Conference,

May 17, 2006.www-5.ibm.com/fr/partenaires/forum/hpc/intel.pdf
[41] Intel, Dual-Core Intel Xeon Processor 5100 Series, Features, September 2006.

http://www.intel.com/cd/channel/reseller/asmona/eng/products/server/processors/5100/
feature/index.htm

[42] Intel, Intel Core Duo Processor Specifications, September 2006.http://www.intel.com/
products/processor/coreduo/specs.htm

[43] Intel, Intel XScale Microarchitecture: Benchmarks. http://developer.intel.com/design/
intelxscale/benchmarks.htm

[44] Intel, Meet the World's First 45nm Processor, 2007. http://www.intel.com/technology/
silicon/45nm_technology.htm?iid=search

[45] Intel, Processor Number Feature Table, September 2006. http://www.intel.com/products/
processor_number/proc_info_table.pdf

[46] Ishihara, F., Sheikh, F., and Nikolić, B., “Level Conversion for Dual-Supply Systems,”
IEEE Transactions on VLSI Systems, vol. 12, no. 2, 2004, pp. 185-195.

[47] Ito, M., Chinnery, D., and Keutzer, K., “Low Power Multiplication Algorithm for
Switching Activity Reduction through Operand Decomposition,” in Proceedings of the
International Conference on Computer Design, 2003, pp. 21-26.

Overview of the Factors Affecting the Power Consumption 51

[48] Jan, C., et al., “A 65nm Ultra Low Power Logic Platform Technology using Uni-axial

Strained Silicon Transistors,” Technical Digest of the International Electron Devices
Meeting, 2005, pp. 60-63.

[49] Keshavarzi, A., et al., “Effectiveness of Reverse Body Bias for Leakage Control in
Scaled Dual Vt CMOS ICs,” International Symposium on Low-Power Electronics
Design, 2001, pp. 207-212.

[50] Kim, J., “GHz ARM Processor Design,” tutorial at the International System-on-Chip
Conference, October 23, 2002.

[51] Kitahara, T., et al., “A clock-gating method for low-power LSI design,” in Proceedings
of the Asia and South Pacific Design Automation Conference, 1998, pp. 307-312.

[52] Kosonocky, S., et al., “Low-Power Circuits and Technology for Wireless Data Systems,”
IBM Journal of Research and Development, vol. 47, no. 2/3, March/May 2003, pp. 283-
298.

[53] Kulkarni, S., and Sylvester, D., “Fast and Energy-Efficient Asynchronous Level
Converters for Multi-VDD Design,” IEEE Transactions on VLSI Systems, September
2004, pp. 926-936.

[54] Kurd, N.A, et al., “A Multigigahertz Clocking Scheme for the Pentium® 4 Micro-
processor,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11, November 2001, pp.
1647-1653.

[55] Kuroda, T., “Low-power CMOS design in the era of ubiquitous computers,” OYO
BUTURI, vol. 73, no. 9, 2004, pp. 1184-1187.

[56] Lee, D., et al., “Analysis and Minimization Techniques for Total Leakage Considering
Gate Oxide Leakage,” proceedings of the Design Automation Conference, 2003, pp. 175-
180.

[57] Lee, D., et al., “Simultaneous Subthreshold and Gate-Oxide Tunneling Leakage Current
Analysis in Nanometer CMOS Design,” in Proceedings of the International Symposium
on Quality Electronic Design, 2003, pp. 287-292.

[58] Lee, D., and Blaauw, D., “Static Leakage Reduction through Simultaneous Threshold
Voltage and State Assignment,” in Proceedings of the Design Automation Conference,
2003, pp. 191-194.

[59] Lee, D., Blaauw, D., and Sylvester, D., “Gate Oxide Leakage Current Analysis and
Reduction for VLSI Circuits,” IEEE Transactions on VLSI Systems, vol. 12, no. 2, 2004,
pp. 155-166.

[60] Levy, M., “Samsung Twists ARM Past 1GHz,” Microprocessor Report, October 16,
2002.

[61] McDonald, C., “The Evolution of Intel’s Copy Exactly! Technology Transfer Method,”
Intel Technology Journal, Q4 1998. http://developer.intel.com/technology/ itj/q41998/pdf/
copyexactly.pdf

[62] Montanaro, J., et al., “A 160MHz, 32-b, 0.5W, CMOS RISC Microprocessor,” Journal
of Solid-State Circuits, vol. 31, no. 11, 1996, pp. 1703-1714.

[63] Moyer, B., “Low-Power Design for Embedded Processors,” in Proceedings of the IEEE,
vol. 89, no. 11, November 2001.

[64] Mutoh, S., et al., “1-V Power Supply High-Speed Digital Circuit Technology with
Multithreshold-Voltage CMOS,” Journal of Solid-State Circuits, vol. 30, no. 8, 1995, pp.
847-854.

[65] Narendra, S., et al., “Comparative Performance, Leakage Power and Switching Power of
Circuits in 150 nm PD-SOI and Bulk Technologies Including Impact of SOI History
Effect,” Symposium on VLSI Circuits, 2001, pp. 217-218.

[66] Nassif, S., “Delay Variability: Sources, Impact and Trends,” International Solid-State
Circuits Conference, 2000.

[67] Ostrander, D., “Logic Technology and Manufacturing,” slides presented at AMD’s
Technology Analyst Day, 2006. http://www.amd.com/us-en/assets/content_type/Down-
loadableAssets/DarylOstranderAMDAnalystDay.pdf

52 Chapter 2

[68] Pradhan, D., et al., “Gate-Level Synthesis for Low-Power Using New Transformations,”

International Symposium on Low Power Electronics and Design, 1996, pp. 297-300.
[69] Puri, R., et al., “Pushing ASIC Performance in a Power Envelope,” in Proceedings of the

Design Automation Conference, 2003, pp. 788-793.
[70] Quinn, J., Processor98: A Study of the MPU, CPU and DSP Markets, Micrologic

Research, 1998.
[71] Rabaey, J.M., Digital Integrated Circuits. Prentice-Hall, 1996.
[72] Ricci, F., “A 1.5 GHz 90 nm Embedded Microprocessor Core,” Digest of Technical

Papers of the Symposium on VLSI Circuits, 2005, pp. 12-15.
[73] Richardson, N., et al., “The iCORETM 520MHz Synthesizable CPU Core,” Chapter 16 of

Closing the Gap Between ASIC and Custom, 2002, pp. 361-381.
[74] Shen, W., Lin, J., and Wang, F., “Transistor Reordering Rules for Power Reduction in

CMOS Gates,” in Proceedings of the Asia South Pacific Design Automation Conference,
1995, pp. 1-6.

[75] Shenoy, N., “Retiming Theory and Practice,” Integration, The VLSI Journal, vol. 22, no.
1-2, August 1997, pp. 1-21.

[76] Simonen, P., et al., “Comparison of bulk and SOI CMOS Technologies in a DSP
Processor Circuit Implementation,” International Conference on Microelectronics, 2001.

[77] Singh, D., et al., “Power Conscious CAD Tools and Methodologies: a Perspective,” in
Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp. 570-594.

[78] Sirichotiyakul, S., et al., “Stand-by Power Minimization through Simultaneous
Threshold Voltage Selection and Circuit Sizing,” in Proceedings of the Design
Automation Conference, 1999, pp. 436-441.

[79] Staszewski, R., Muhammad, K., and Balsara, P., “A 550-MSample/s 8-Tap FIR Digital
Filter for Magnetic Recording Read Channels,” IEEE Journal of Solid-State Circuits,
vol. 35, no. 8, 2000, pp. 1205-1210.

[80] Stojanovic, V., and Oklobdzija, V., “Comparative Analysis of Master-Slave Latches and
Flip-Flops for High-Performance and Low-Power Systems,” IEEE Journal of Solid-State
Circuits, vol. 34, no. 4, April 1999, pp. 536-548.

[81] Stok, L., et al., “Design Flows,” chapter in the CRC Handbook of EDA for IC Design,
CRC Press, 2006.

[82] Sylvester, D. and Keutzer, K., “Getting to the Bottom of Deep Sub-micron,” in
Proceedings of the International Conference on Computer Aided Design, November
1998, pp. 203-211.

[83] Synopsys, Design Compiler User Guide, version U-2003.06, June 2003, 427 pp.
[84] Synopsys, Power Compiler User Guide, version 2003.06, 2003.
[85] Takahashi, M., et al., “A 60-mW MPEG4 Video Codec Using Clustered Voltage Scaling

with Variable Supply-Voltage Scheme,” Journal of Solid-State Circuits, vol. 33, no. 11,
1998, pp. 1772-1780.

[86] techPowerUp! CPU Database, August 2006. http://www.techpowerup.com/cpudb/
[87] Thompson, S., et al., “An Enhanced 130 nm Generation Logic Technology Featuring 60

nm Transistors Optimized for High Performance and Low Power at 0.7 – 1.4 V,”
Technical Digest of the International Electron Devices Meeting, 2001, 4 pp.

[88] Tschanz, J. et al., “Adaptive Body Bias for Reducing the Impacts of Die-to-Die and
Within-Die Parameter Variations on Microprocessor Frequency and Leakage,” IEEE
International Solid-State Circuits Conference, 2002.

[89] Tschanz, J., et al., “Dynamic Sleep Transistor and Body Bias for Active Leakage Power
Control of Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, 2003,
pp. 1838-1845.

[90] Tsui, C., et al., “Low Power State Assignment Targeting Two- And Multi-level Logic
Implementations,” in Proceedings of the International Conference on Computer-Aided
Design, 1994, pp. 82-87.

Overview of the Factors Affecting the Power Consumption 53

[91] Tyagi, S., et al., “An advanced low power, high performance, strained channel 65nm

technology,” Technical Digest of the International Electron Devices Meeting, 2005, pp.
245-247.

[92] Usami, K., et al., “Automated Selective Multi-Threshold Design For Ultra-Low Standby
Applications,” in Proceedings of the International Symposium on Low Power Design,
2002, pp. 202-206.

[93] Usami, K., and Horowitz, M., “Clustered voltage scaling technique for low power design,”
in Proceedings of the International Symposium on Low Power Design, 1995, pp. 3-8.

[94] Usami, K., and Igarashi, M., “Low-Power Design Methodology and Applications
Utilizing Dual Supply Voltages,” in Proceedings of the Asia and South Pacific Design
Automation Conference, 2000, pp. 123-128.

[95] Vangal, S., et al., “5GHz 32b Integer-Execution Core in 130nm Dual-VT CMOS,” Digest
of Technical Papers of the IEEE International Solid-State Circuits Conference, 2002, pp.
334-335, 535.

[96] Veendrick, H., “Short-circuit dissipation of static CMOS circuitry and its impact on the
design of buffer circuits,” Journal of Solid-State Circuits, vol. SC-19, August 1984, pp.
468-473.

[97] Virtual Silicon. http://www.virtual-silicon.com/
[98] Weicker, R., “Dhrystone: A Synthetic Systems Programming Benchmark,” Communi-

cations of the ACM, vol. 27, no. 10, 1984, pp. 1013-1030.
[99] Weste, N., and Eshraghian, K., Principles of CMOS VLSI Design, Addison-Wesley,

1992.
[100] Wolfe, A., “Intel Clears Up Post-Tejas Confusion,” VARBusiness magazine, May 17,

2004. http://www.varbusiness.com/sections/news/breakingnews.jhtml?articleId=18842588
[101] Xanthopoulos, T., and Chandrakasan, A., “A Low-Power DCT Core Using Adaptive

Bitwidth and Arithmetic Activity Exploiting Signal Correlations and Quantization,”
Journal of. Solid State Circuits, vol. 35, no. 5, May 2000, pp. 740-750.

[102] Xanthopoulos, T., and Chandrakasan, A., “A Low-Power IDCT Macrocell for MPEG-2
MP@ML Exploiting Data Distribution Properties for Minimal Activity,” Journal of
Solid State Circuits, vol. 34, May 1999, pp. 693-703.

[103] Zimmerman, R., and Fichtner, W., “Low-Power Logic Styles: CMOS Versus Pass-
Transistor Logic,” Journal of Solid-State Circuits, vol. 32, no. 7, July 1997, 1079-1090.

[104] Zlatanovici, R., and Nikolić, B., “Power-Performance Optimal 64-bit Carry-Lookahead
Adders,” European Solid-State Circuits Conference, 2003, pp. 321-324.

Chapter 3 3

PIPELINING TO REDUCE THE POWER

David Chinnery, Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720, USA

Algorithmic and architectural choices can reduce the power by an order

of magnitude [56]. We assume that ASIC and custom designers make similar
algorithmic and architectural choices to find a low power implementation
that meets performance requirements for the target application.

Circuit designers explore trade-offs for different microarchitectural features
that implement a given architecture for typical applications. The analysis
may be detailed using cycle accurate instruction simulators, but low level
circuit optimizations are not usually examined until a much later design
phase. High level microarchitectural choices have a substantial impact on
the performance and power consumption, affecting the design constraints for
low level optimizations.

This chapter examines the power gap between ASIC and custom with
pipelining and different architectural overheads. Other researchers have
proposed high level pipelining models that consider power consumption, but
they do not consider gate sizing and voltage scaling. We will augment a
pipeline model with a model of power savings from voltage scaling and gate
sizing versus timing slack. This enables simultaneous analysis of the power
and performance trade-offs for both high-level and low-level circuit optimi-
zations.

Pipelining does not reduce power by itself. Pipelining reduces the critical
path delay by inserting registers between combinational logic. Glitches may
be prevented from propagating across register boundaries, but logic activity
is otherwise unchanged. The clock signal to registers has high activity which
contributes to the dynamic power. Pipelining reduces the instructions per
clock cycle (IPC), due to high branch misprediction penalties and other
hazards, and thus can reduce the energy efficiency. The timing slack from
pipelining can be used for voltage scaling and gate downsizing to achieve
significant power savings (see Figure 3.1 and Figure 3.2).

56 Chapter 3

Figure 3.1 The optimal number of pipeline stages to minimize energy/instruction is shown
versus the performance constraint. At a tight performance constraint additional stages
penalize performance, little timing slack is available, and there is little opportunity for voltage
scaling and gate sizing. At more relaxed performance constraints, additional stages provide
timing slack for a substantial power reduction with voltage scaling and gate downsizing, as
shown in Figure 3.2. These results are for the custom design parameters with our model.

Figure 3.2 Power savings with additional pipeline stages to provide timing slack for voltage
scaling and gate sizing versus power consumption without these methods and fewer stages.

From our analysis, pipelining contributes up to a factor of 5.1× to the
power gap between ASIC and custom at a tight performance constraint.
There is no timing slack at a tight performance constraint for the ASIC
where additional pipeline stages will reduce performance, but at this point
there is still timing slack for voltage scaling and gate downsizing in a custom
design. A custom design may also use additional pipeline stages to further
improve performance, as pipeline stage delay overheads are less for custom.
The power gap is less as the performance constraint is relaxed, reducing the
gap to 4.0× at only 7% lower performance. The gap can be reduced to 1.9× if
the pipeline stage delay overhead is reduced.

0

5

10

15

20

25

30

35

0 50 100 150 200
Required Average Time Per Instruction (FO4 delays)

N
um

be
r

of
 P

ip
el

in
e

St
ag

es
Optimal # of stages with voltage scaling & gate sizing
Optimal # of stages without voltage scaling & gate sizing

0%

15%

30%

45%

60%

75%

90%

0 50 100 150 200
Required Average Time Per Instruction (FO4 delays)

Po
w

er
 S

av
in

gs

Pipelining to Reduce the Power 57

3.1 INTRODUCTION

Pipelining and parallelism allow the same performance to be achieved at
lower clock frequencies. The timing slack can be used to reduce the power
by using a lower supply voltage, a higher threshold voltage and reduced gate
sizes. Parallel computation trades off area for increased throughput. Pipelining
breaks up a datapath into multiple stages with registers between each stage
to store the intermediate results. The shorter critical path length from pipelining
allows a higher clock frequency. Computation in each pipeline stage can
proceed simultaneously if there is no data interdependency, and thus the
throughput is higher.

Chandrakasan and Brodersen examined pipelining and parallelism on an
8-bit datapath composed of an adder and comparator in 2.0um technology
[10]. If two such datapaths are run in parallel, the clock period can be
doubled, and the timing slack can be used to reduce to decrease the supply
from 5V to 2.9V. The circuit capacitance more than doubles to 2.15× due to
wiring overheads for the parallel datapath and multiplexing of the results.
Running the datapath in parallel and reducing the supply reduces the dynamic
power by 64%. If instead the datapath is pipelined with registers between the
adder and comparator, the supply can be reduced from 5V to 2.9V and the
capacitance overhead for the latches is 15%, giving a net power reduction of
61%. The area is more than doubled to 3.4× for the two parallel datapaths,
whereas the area for the pipelined datapath is only 1.3× with the additional
registers.

For an inverse discrete cosine (IDCT) core in 0.7um process technology
with 0.5um channel length, the pipelining power overhead was about 20% of
the total power. Without pipelining, the critical path would have been 4× as
long and Vdd would have to be increased from 1.32V to 2.2V to achieve the
same performance, increasing the total power by 2.2× [70].

Not all microarchitectural techniques for higher performance enable
increased energy efficiency. Multiple instructions are executed in parallel
execution units in a superscalar architecture, but the additional hardware to
determine which instructions can be executed in parallel and reorder the
instructions can reduce the energy efficiency [36]. Speculative execution
before the outcome of a branch instruction is known wastes energy if the
branch is mispredicted. Implementing speculative execution requires branch
prediction logic and may require logic to rewind incorrect results. Software
hints for branch prediction can reduce the hardware overhead [36].

Very deep pipelines are less energy efficient, as the pipelining over-
heads are too large and there is an increased penalty for pipeline hazards.
Consequently, Intel is moving from the Pentium 4 NetBurst architecture
with 31 stages to the Intel Core architecture with two processor cores that
run in parallel, each having a 14 stage pipeline [37]. The Cedar Mill Pentium

58 Chapter 3

4 has about 4.4× the energy/operation of the Yonah Core Duo, despite Yonah
having only 2% lower performance on the SPEC CINT2000 benchmark and
both being 65nm designs [28].

3.1.1 Power and performance metrics

A typical metric for performance is millions (MIPS) or billions of instruc-
tions per second (BIPS) on a benchmark. Commonly used performance bench-
marks are the Dhrystone integer benchmark [67], and the integer (SPECint)
and floating point (SPECfp) benchmarks from the Standard Performance
Evaluation Corporation [58]. Power is measured in watts (W). To account
for both power and performance, metrics such as BIPS3/W, BIPS2/W, and
BIPS/W are used [9][57]. The inverse of these metrics are also often
used. For example, energy per instruction (EPI) corresponds to W/BIPS, and
energy-delay product corresponds to W/BIPS2 if we assume that the CPI
is fixed.

Minimizing energy or power consumption leads to very large clock
periods and low performance being optimal, as dynamic and leakage power
can be greatly reduced by using the timing slack to reduce gate sizes, to
reduce the supply voltage, and to increase the transistor threshold voltages.
Thus metrics placing more emphasis on performance are often used, for
example BIPS3/W and BIPS2/W. More pipeline stages are optimal for metrics
with higher weights on performance. Alternatively, the power consumption
may be minimized for a specified performance or delay constraint. Changing
the microarchitecture may change the delay constraint on the clock period
to meet the given performance constraint, for example computing inverse
discrete cosine transform serially or in parallel.

3.1.2 Parallel datapath model

Bhavnagarwala et al. developed a model for using parallel datapaths to
scale down the supply voltage Vdd [8]. To meet the same performance with n
datapaths, the clock frequency can be reduced by a factor of 1/n, and the net
switching activity and the dynamic power for the datapaths remain the same
if the supply voltage is fixed. If voltages are fixed, the leakage power incre-
ases because there are n datapaths leaking rather than one. There is additional
routing and multiplexing circuitry for the parallel datapaths, which adds to
the dynamic and static power consumption. The expression for the total power
that they derive is [8]

 2

1 1
2

overhead overhead
total datapath dd static for datapath

datapath datapath

C CP C V F P n
C C

α
⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.1)

where Cdatapath is the total datapath capacitance that switches with activity α,
F is the number of operations per second, and Coverhead is the capacitance of

Pipelining to Reduce the Power 59

the additional routing and multiplexing circuitry. They estimate the overhead
capacitance to depend quadratically on the number of parallel datapaths [8]:
 2()overhead datapathC mn C= + Γ (3.2)

where m and Γ are fitting constants. From this they estimate that the power
savings with parallel datapaths range from 80% power savings with four
parallel datapaths for technology with channel length of 0.25um to 15%
power savings with two parallel datapaths for technology with channel
length of 0.05um. The optimal number of parallel datapaths decreases with
technology generation as supply and threshold voltage Vth are scaled down,
and the ratio of Vdd/Vth decreases, increasing the performance penalty for
lower Vdd [8].

The overhead for parallel datapaths is very application dependent, with
m in Equation (3.2) having a value from 0.1 to 0.7 depending on the
application [8]. Thus the usefulness of parallelism depends greatly on the
application. Generally, ASIC and custom designs can make similar use of
parallel datapaths, but ASICs have larger wiring overheads with automatic
place and route. ASICs suffer higher delay overheads than custom for
pipelining – this has a much greater impact on the energy efficiency than
ASIC overheads for parallel datapaths, so the remainder of this chapter
focuses on the power gap between ASIC and custom with pipelining.

3.1.3 Pipeline model

Pipeline delay models suggest that deeply pipelined designs with logic
depth of as low as 8 FO4 delays per stage are optimal for performance [38].
For integer and floating point SPEC 2000 benchmarks, Srinivasan et al.
found that the optimal pipeline stage delay was 10 FO4 delays to maximize
BIPS, 18 FO4 delays for the BIPS3/W metric, and 23 FO4 delays for
BIPS2/W [57]. They assumed an unpipelined combinational logic delay of
110 FO4 delays and 3 FO4 timing delay overhead.

Harstein and Puzak did similar analysis following the work of Srinivasan
et al. They assumed an unpipelined combinational logic delay of 140 FO4
delays and 2.5 FO4 timing delay overhead [32]. The optimal pipeline stage
delay was 22.5 FO4 delays for the BIPS3/W metric, which is close to the
result from Srinivasan et al. given the difference in unpipelined delays. In
their models, the pipeline stage delay T is given by [32]

comb total
timing overhead

tT t
n

= + (3.3)

where tcomb total is the unpipelined delay, n is the number of pipeline stages,
and ttiming overhead is the timing overhead for the registers and clocking. Their
performance metric, average time per instruction, can be written for a scalar
architecture as [32]

60 Chapter 3

 / instruction (1)T T nγ= + (3.4)

where γ is the increase in cycles per instruction (CPI) per pipeline stage due
to pipeline hazards, and it is assumed that on average an instruction would
complete execution every cycle in the absence of hazards. To determine the
power for the registers, they use the expression from Srinivasan et al.
[32][57],

1

timing clock gating dynamic leakage LP E P N n
T

ηα⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.5)

where αclock gating is the fraction of time the pipeline is not clock gated; Edynamic
and Pleakage are respectively the dynamic switching energy and the leakage
power for a latch; NL is the number of latches if there is only a single
pipeline stage; n is the number of pipeline stages; and η is the latch growth
factor with the number of pipeline stages.

We augment Harstein and Puzak’s model by allowing timing slack to be
used for voltage scaling and gate sizing to reduce the dynamic power and
leakage power for the combinational logic and the registers. In addition, we
assume different ASIC and custom values for ttiming overhead and include
pipeline imbalance in the pipeline stage delay for ASICs.

Harstein and Puzak assume that αclock gating is 1/(1+γn) [32], with dynamic
power consumption for pipeline hazards avoided by shutting off the clock to
stalled pipeline stages. This is a reasonable assumption if there is no
speculative execution. We will make the same assumption for the value of
αclock gating. We do not consider power gating or reverse body biasing to
reduce the leakage during a pipeline stall. For these leakage reduction
techniques, the delay and power overhead to raise and lower the voltage are
only justified when the circuitry will be unused for at least tens of clock
cycles [14].

With an unpipelined combinational logic delay of 180 FO4 delays and 3
FO4 timing delay overhead for custom, we find that a clock period of 8 FO4
delays is optimal to maximize performance, 21 FO4 delays to maximize
BIPS3/W, and 59 FO4 delays to maximize BIPS2/W. When power is
included in the metric, the optimal clock period is significantly larger than
that determined by Srinivasan et al., because we allow timing slack to be
used to reduce power by voltage scaling and gate sizing. The optimal clock
period for a typical ASIC is 2× to 4× larger than custom due to the 20 FO4
delay pipeline stage overhead.

The largest power gap between ASIC and custom is when it is difficult
for the ASIC to meet the performance constraint. At the maximum
performance for a typical ASIC of 56 FO4 delays on average per instruction,
the ASIC power is 5.1× that of custom. As the performance constraint is
relaxed, the power gap decreases to 4.0× at only 7% lower performance. For

Pipelining to Reduce the Power 61

very low performance requirements, the energy efficiency of ASIC and custom
microarchitectures is essentially the same.

The delay overhead is the most important factor for the power gap bet-
ween ASIC and custom with pipelining. If the pipeline stage delay overhead
can be reduced from 20 FO4 delays to 5 FO4 delays, the power gap between
ASIC and custom is only up to 1.9×.

In Section 3.2, we discuss the overheads for pipelining in ASIC and
custom designs. Using our geometric programming optimization results for
dynamic power and leakage power with voltage scaling and gate sizing [11],
we augment Harstein and Puzak’s model with power reduction versus timing
slack in Section 3.3. Then in Section 3.4, this augmented model of pipeline
power and delay is used to estimate the power gap between ASIC and
custom due to pipelining focusing on the impact of the required performance
and the pipeline stage delay overhead. The effect of other factors in the
pipeline model on the power gap is considered in Section 3.5. Glitching and
additional power overheads affect the minimum energy per operation as
discussed in Section 3.6. The results are summarized in Section 3.7.

3.2 PIPELINING OVERHEADS

There are several pipelining overheads that we need to consider when
comparing pipelining for ASIC and custom designs. There is timing over-
head for the registers that store the combinational logic outputs of each
stage, and the power consumption for the registers and clock signal. The
delay of combinational logic in different pipeline stages may be imbalanced.
The penalty for pipeline hazards that delay the next instruction being executed
increases with the number of pipeline stages. These overheads are typically
less for carefully designed custom circuits compared to ASICs.

Pipeline hazards include data dependency, branch misprediction, cache
misses, and so forth. For example, the Willamette Pentium 4 with 20 pipeline
stages has 10% to 20% less instructions per cycle than the Pentium III which
has only 10 pipeline stages [40].

Adding the timing overhead and pipeline imbalance, the pipelining delay
overhead is typically about 30% of the clock period for ASICs and 20% of
the clock period for custom designs [13]; however, custom designs usually
have a much smaller clock period than ASICs. The pipelining delay over-
head may be 30% for a custom design with many pipeline stages such as the
Pentium 4. When we compared the microarchitectural impact on ASIC and
custom speeds, we estimated the pipelining delay overhead in FO4 delays
for a variety of custom and ASIC processors as shown in Table 3.1 and
Table 3.2 [13]. The pipelining delay overhead ranges from as low as about
2 FO4 delays in some custom designs to 20 FO4 delays in the ASIC pro-
cessors.

62 Chapter 3

Table 3.1 Characteristics of ASICs and super-pipelined Pentium 4 processors assuming 30%
pipelining delay overhead [2][3][4][5][23][45][49][52][59][61][62][63][64][65][71].

Custom PCs Fr
eq

ue
nc

y
(M

H
z)

T
ec

hn
ol

og
y

(n
m

)

E
ff

ec
tiv

e
C

ha
nn

el
 L

en
gt

h
(n

m
)

V
ol

ta
ge

 (V
)

In
te

ge
r

Pi
pe

lin
e

St
ag

es

FO
4

de
la

ys
/s

ta
ge

30
%

 P
ip

el
in

in
g

O
ve

rh
ea

d
(F

O
4

de
la

ys
)

U
np

ip
el

in
ed

 C
lo

ck
 P

er
io

d
(F

O
4

de
la

ys
)

Pi
pe

lin
in

g
O

ve
rh

ea
d

%
 o

f
U

np
ip

el
in

ed
 C

lo
ck

 P
er

io
d

C
lo

ck
 F

re
qu

en
cy

 In
cr

ea
se

 b
y

Pi
pe

lin
in

g

Pentium 4 (Willamette) 2000 180 100 1.75 20 10.0 3.0 143 2.1% ×14.3
Pentium 4 (Gallatin) 3466 130 60 1.60 31 9.6 2.9 212 1.4% ×22.0

ASICs
Xtensa T1020 (Base) 250 180 130 1.80 5 61.5 18.5 234 7.9% ×3.8
Lexra LX4380 266 180 130 1.80 7 57.8 17.4 301 5.8% ×5.2
iCORE 520 180 150 1.80 8 25.6 7.7 151 5.1% ×5.9
ARM 926EJ-S 200 180 130 1.80 5 64.1 19.2 244 7.9% ×5.9
ARM 1026EJ-S 540 90 50 1.00 6 61.7 18.5 278 6.7% ×4.5
ARM 1136J-S 400 130 80 1.20 8 52.1 15.6 307 5.1% ×5.9
ARM Cortex-A8 800 65 40 1.20 13 62.5 18.8 588 3.2% ×9.4

Table 3.2 Custom design characteristics assuming 20% timing overhead [19][23][24][27]
[29][30][31][35][39][41][48][49][51][55][60][66].

Custom Processors Fr
eq

ue
nc

y
(M

H
z)

T
ec

hn
ol

og
y

(n
m

)

E
ff

ec
tiv

e
C

ha
nn

el
 L

en
gt

h
(n

m
)

V
ol

ta
ge

 (V
)

In
te

ge
r

Pi
pe

lin
e

St
ag

es

FO
4

de
la

ys
/s

ta
ge

20
%

 P
ip

el
in

in
g

O
ve

rh
ea

d
(F

O
4

de
la

ys
)

U
np

ip
el

in
ed

 C
lo

ck
 P

er
io

d
(F

O
4

de
la

ys
)

Pi
pe

lin
in

g
O

ve
rh

ea
d

%
 o

f
U

np
ip

el
in

ed
 C

lo
ck

 P
er

io
d

C
lo

ck
 F

re
qu

en
cy

 In
cr

ea
se

 b
y

Pi
pe

lin
in

g

Alpha 21264 600 350 250 2.20 7 13.3 2.7 77 3.4% ×5.8
IBM Power PC 1000 250 150 1.80 4 13.3 2.7 45 5.9% ×3.4

Custom PCs
Athlon XP (Palomino) 1733 180 100 1.75 10 11.5 2.3 95 2.4% ×8.2
Athlon 64 (Clawhammer) 2600 130 80 1.50 12 9.6 1.9 94 2.0% ×9.8
Pentium III (Coppermine) 1130 180 100 1.75 10 17.7 3.5 145 2.4% ×8.2
Core 2 Extreme (Conroe) 2930 65 35 1.34 14 19.5 3.9 222 1.8% ×11.4

Custom ARMs
StrongARM 215 350 250 2.00 5 37.2 7.4 156 4.8% ×4.2
XScale 800 180 135 1.80 7 18.5 3.7 107 3.4% ×5.8
Halla (ARM 1020E) 1200 130 80 1.10 6 20.8 4.2 104 4.0% ×5.0

Pipelining to Reduce the Power 63

The total delay for the logic without pipelining was calculated from the
number of pipeline stages, estimated pipelining overhead, and the FO4 delay
for the process and operating conditions. For Table 3.1 and Table 3.2, the
FO4 delay was calculated assuming worst case operating conditions and
typical process conditions using Equation (2.2), except for the ARM cores in
Table 3.1 where the process conditions were worst case and Equation (2.3)
was used. The estimated FO4 delay for the custom processes may be more
than the real FO4 delay in fabricated silicon for these chips, because of
speed-binning, unreported process improvements, and better than worse
case operating conditions. As a result, the custom FO4 delays/stage may be
underestimated in Table 3.1 and Table 3.2.

The following subsections estimate timing overhead; pipeline imbalance;
instructions per cycle with number of pipeline stages for ASIC and custom
designs; and discuss the power overhead for pipelining. We will look at a
pipeline model incorporating these factors in Section 3.3.

3.2.1 Timing overhead per pipeline stage for ASIC
and custom designs

The timing overhead specifies the delay for registers and synchronization
of the clock signal to the registers. It includes the setup time during which
the input to the register must be stable before the clock signal arrives; the
delay for a signal to propagate from a register’s input to output; clock skew
accounting for the clock signal arriving at different registers at different
times; and clock jitter in the arrival time of the periodic clock signal.

The timing overhead for an ASIC may be as much as 10 FO4 delays, but
can be reduced to 5 FO4 delays if latches are used instead of D-type flip-
flops. We have used Design Compiler scripts to automate replacement of
flip-flops by latches, achieving 5% to 20% speed increase in the Xtensa
processor [12]. In comparison, the custom timing overhead can be as low as
2.6 FO4 delays as detailed in Table 3.3.

3.2.2 Pipeline imbalance in ASIC and custom designs

The pipeline imbalance for an ASIC with flip-flops can range from
10 FO4 delays down to 2.6 FO4 delays in a carefully balanced design.
Unbalanced critical path delays in different pipeline stages can be addressed
in several ways. ASICs may use automatic retiming of the register positions
to balance critical path delays in different stages. Slack passing by using
transparent latches or by useful clock skew is commonly used in custom
designs. Useful clock skew tailors the arrival time of the clock signal to
different registers by adjusting buffers in the clock tree, and can be used in
ASIC designs [17]. Pipeline imbalance with different design techniques is
summarized in Table 3.4.

64 Chapter 3

From our experiments replacing flip-flops by latches in the 5-stage
Tensilica Xtensa processor [12], we estimate that a typical ASIC may have
imbalance of 15% of the clock period. The base configuration of the Xtensa
has a maximum stage delay (clock period) of about 67 FO4 delays, of which
15% is 10 FO4 delays.

The imbalance between pipeline stages for a well balanced ASIC can be
as low as 10% of the clock period. For example, the 8-stage iCORE has
about 10% imbalance in the critical sequential loop through IF1, IF2, ID1,
ID2, and OF1 back to IF1 through the branch target repair loop [52]. The
iCORE has about 26 FO4 delays per pipeline stage, thus the imbalance is
about 2.6 FO4 delays.

Table 3.3 Comparison of ASIC and custom timing overheads, assuming balanced pipeline
stages [13]. Alpha 21164 [7], Alpha 21264 [29] and Pentium 4 [42] setup times were
estimated from known setup times for latches and pulse-triggered flip-flops. The pulse-
triggered latches in the Pentium 4 are effectively used as flip-flops rather than as transparent
latches. Timing overhead for flip-flops was calculated from tCQ + tsu + tsk + tj. As there are two
latches, positive and negative-edge triggered, per clock cycle, the timing overhead for latches
was calculated from 2tDQ + tj multicycle, where multi-cycle jitter tj multi-cycle of 1.0 FO4 delays was
assumed for ASICs.

Contributions to ASIC and custom
timing overhead in FO4 delays D

-t
yp

e
fli

p-
flo

ps

G
oo

d
L

at
ch

es

Pa
ss

 tr
an

si
st

or
 la

tc
he

s i
n

A
lp

ha
 2

11
64

E
dg

e-
tr

ig
ge

re
d

fli
p-

flo
ps

 in

A
lp

ha
 2

12
64

C
lo

ck
-p

ul
se

d
la

tc
he

s i
n

Pe
nt

iu
m

 4

Clock-to-Q delay t CQ 4.0 2.0 2.0
2× D-to-Q latch propagation delay (2×t DQ) 4.0 2.6
Flip-flop setup time t su 2.0 0.0 0.0
Edge jitter t j 0.1 0.7
Clock skew t sk 0.7 0.3
Budget for clock skew and edge jitter t sk + t j 4.0 1.0
Timing overhead per clock cycle 10.0 5.0 2.6 2.8 3.0

ASICs Custom

Table 3.4 Summary of pipeline imbalance for ASIC and custom designs

Pipeline Imbalance (FO4 delays)
Typical ASIC with flip-flops 10.0
Carefully balanced ASIC with flip-flops 2.6
Optimal design with flip-flops, no slack passing 1.0
Slack passing via latches or cycle stealing 0.0

Pipelining to Reduce the Power 65

Automated flip-flop retiming won’t typically achieve a pipeline imbalance
of a single gate delay. Retiming is based on assumptions such as fixed
register delay, fixed register setup time, and fixed gate delays. In reality, this
depends on the drive strength and type of flip-flop chosen, and the gate loads
which are changed by retiming. Additionally, the combinational gates and
registers will usually be resized after retiming. Reducing the clock period by
retiming may be limited by input or output delay constraints, such as reading
from and writing to the cache [33]. These issues limit the optimality of auto-
mated retiming.

Slack passing is not limited by the delay of a particular stage. Custom
designers also have tighter control of gate delays, register positions, and
better knowledge of wire loads that depend on layout – which is not known
for retiming in the synthesis stage of an ASIC EDA methodology. Thus
custom designs may be able to balance stages, whereas ASICs typically suffer
some pipeline imbalance.

With useful clock skew or transparent latches, slack passing between
stages can eliminate pipeline imbalance. From the iCORE and Xtensa exam-
ples, a 10% to 15% reduction in clock period can be achieved by slack
passing for ASICs with imbalanced pipeline stages.

Table 3.5 Cycles per instruction (CPI) for various processors [16][18][34][43][52][54][72].
Processor # of Pipeline Stages IPC CPI Increase in CPI/stage, γ

ARM7TDMI 3 0.53 1.90 30.0%
ARM9TDMI 5 0.67 1.50 10.0%
ARM810 5 0.71 1.40 8.0%
DEC StrongARM 5 0.61 1.63 12.7%
Intel XScale 7 0.56 1.78 11.2%
STMicroelectronics iCORE 8 0.70 1.43 5.4%
Pentium 4 (Willamette) 20 3.0%
Pentium 4 (Cedar Mill) 31 0.54 1.84 2.7%

not known

3.2.3 Instructions per cycle versus number of pipeline
stages

Instructions per cycle (IPC) and its reciprocal cycles per instruction (CPI)
are measures of how quickly instructions are executed after accounting for
pipeline stalls due to hazards. Reductions in IPC can be caused by cache
misses, waiting for data from another instruction that is executing, branch
misprediction, and so forth. The CPI for a number of processors is summarized
in Table 3.5.

The CPI is very application dependent, as some applications have more
branches and other hazards. For the Cedar Mill Pentium 4 with 31 pipeline
stages, the CPI ranges from 0.64 to 7.87 for different benchmarks in the SPEC
CINT2000 benchmark set. The geometric mean for Cedar Mill for the SPEC

66 Chapter 3

CINT2000 benchmark set was 1.84 [18]. The 1.5GHz Willamette Pentium 4
with 20 pipeline stages is 15% to 20% faster for integer applications than a
1.0GHz Pentium III with 10 pipeline stages [34], which corresponds to a
20% to 23% worse IPC.

For a variety of benchmarks, the IPC for the five stage DEC StrongARM
ranges from 0.30 to 0.83 [72], and the IPC ranges from 0.38 to 0.82 for the
seven stage Intel XScale [16]. The geometric means of the IPC values were
0.61 and 0.56 respectively.

The IPC for the three stage ARM7TDMI was 0.5, whereas the
ARM9TDMI with five pipeline stages had an IPC of 0.7 [54]. The higher
IPC for the five stage ARM810 and ARM9 pipelines was achieved by
adding static branch prediction, single cycle load, single cycle store, and
doubling the memory bandwidth [43]. The eight stage STMicroelectronics
iCORE also achieved an IPC of 0.7 by microarchitectural optimizations in
an ASIC EDA methodology [52]. The ARM810 used standard cells for the
control logic, but was otherwise full custom [43]. The ARM7TDMI and
ARM9TDMI were full custom, but synthesizable versions of these proces-
sors were also created [21].

Without additional microarchitectural features such as data forwarding
and improved branch prediction to maintain high IPC, the CPI increases
approximately linearly with the number of pipeline stages as more pipeline
stages are stalled when a hazard is encountered [32]. Assuming that an
unpipelined design has an IPC of close to 1.0, which is somewhat optimistic
as there may be cache misses and off-chip memory will take more than
a cycle to read, the CPI increase per pipeline stage ranges from 30.0% to
2.7%.

3.2.4 Power overheads for pipelining

The majority of the power overhead for pipelining is power consumption
in the clock tree and registers. The registers and clock tree can consume
from 18% to 36% of the total power, as shown in Table 3.6. Clock gating
was used in these processors to reduce the power consumed by the registers
and clock tree.

Branch prediction, data forwarding and other microarchitectural tech-
niques to maintain a high IPC with deeper pipelines also take some power.
We assume that these additional power overheads are small relative to the
clock tree and register power, and do not explicitly include them in the
pipeline power model in the same manner as [32] and [57].

The percentage of power consumed by registers and the clock tree
depends on the application. For example, the clock tree accounts for 18% of
the XScale for the DSP FIR benchmark, but it is 23% for the Dhrystone
MIPS 2.1 benchmark [15].

Pipelining to Reduce the Power 67

Table 3.6 Register and clock tree power consumption in various processors. The StrongARM
[47] and XScale [15] are custom embedded processors. The Alpha 21264 [26] and Itanium [1]
are custom desk top processors. The MCORE [25] is a semi-custom processor, and the 16-bit
CompactRISC ASIC [46] was synthesized.

Registers and Clock Tree
Processor # of Pipeline Stages Power as % of Total Power

16-bit CompactRISC 3 34%
MCORE 4 36%
StrongARM 5 25%
XScale (DSP FIR filter) 7 18%
XScale (Dhrystone MIPS) 7 23%
Alpha 21264 7 32%
Itanium 8 33%

In Motorola’s 0.36um 1.8V MCORE embedded processor with a four
stage pipeline, the datapath and clock tree each contribute 36% of the total
power, and control logic contributes the other 28% of the total power. If the
custom datapath was instead synthesized, the datapath’s power would have
been 40% higher [25].

Few breakdowns of power data for synthesized processors are available.
We expect register and clock tree power to consume a similar portion of
the total power in ASICs. In a synthesized 0.18um 1.8V National Semi-
conductor 16-bit CompactRISC processor with a three stage pipeline, the
register file consumed 34% of the processor core’s total dynamic power [46].

We now examine a model that incorporates these pipelining overheads.

3.3 PIPELINING POWER AND DELAY MODEL

To build the pipeline power and delay model, we first calculate the
minimum pipeline stage delay Tmin. Given some upper limit on the clock
period, the actual clock period T can be anywhere between the upper limit
and the minimum. We will discuss a simple experimental fit to determine the
reduced power from voltage scaling and gate downsizing with timing slack
(T – Tmin). We can then find the optimal number of pipeline stages and
optimal amount of timing slack to use for power reduction in order to mini-
mize the power.

3.3.1 Pipeline stage delay

The number of pipeline stages n in a processor varies widely. For
example the ARM7 architecture has a three stage pipeline comprising inst-
ruction fetch, instruction decode, and execute [22]; whereas the Cedar Mill
Pentium 4 has 31 stages [37]. The total unpipelined delay tcomb total can range
from about 50 to 300 FO4 delays, as was estimated earlier in Table 3.1 and
Table 3.2.

68 Chapter 3

If a pipeline with n stages is ideally balanced, the combinational delay
per pipeline stage is

 comb total
comb

tt
n

= (3.6)

The maximum delay of a pipeline stage, which limits the minimum clock
period Tmin, is

min

comb total
imbalance timing overhead

tT t t
n

= + + (3.7)

where timbalance accounts for the pipeline stages being unbalanced, and ttiming

overhead is the timing overhead.
The clock period T that is used must be at least Tmin, but may be larger to

provide slack for power reduction by voltage scaling and gate downsizing.

3.3.2 Utilizing slack for voltage scaling and downsizing
to reduce power

We can reduce the dynamic energy per clock cycle and reduce the
leakage power by reducing the supply voltage Vdd, increasing the threshold
voltage Vth, and reducing the gate size. The impact of gate size, supply
voltage and threshold voltage on the leakage power and dynamic power is
detailed in Chapter 4. In this section, we are just interested in how the leakage
power and dynamic power decrease as timing slack is used to downsize
gates and scale the voltages.

Increasing a gate’s size reduces the delay, but increases the load on
fanins, requiring them to also be upsized. Consequently, at a tight delay
constraint there is substantially higher power consumption with many gates
having been upsized. To meet a tight delay constraint, the supply voltage
will also be higher and the threshold voltage may be lower to reduce the
critical path delay. The rapidly increasing power consumption as T appro-
aches the minimum delay Tmin results in the classic “banana” curve shape
shown for dynamic power and leakage power in Figure 3.3. From a tight
delay constraint, a small amount of timing slack can be used to significantly
reduce the energy consumed per clock cycle.

The power versus delay curves with gate sizing and voltage scaling for
the dynamic power and leakage power versus clock period are fit well by
hyperbolic functions of the form

min

d

ba
T c

T

+
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (3.8)

where a, b, c and d are experimentally fitted constants. We require that a ≥
0, so that the power does not become negative as T becomes large.

Pipelining to Reduce the Power 69

As the leakage depends exponentially on the threshold voltage, and the
threshold voltage can be increased with increasing clock period, the
accuracy of the fit to leakage power can be improved by including an
exponential term:

/ min

min

T T

d

bea
T c

T

λ

+
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (3.9)

where exponent λ is also an experimentally fitted constant.
Accurate fits for the dynamic and leakage power for a benchmark in

0.13um technology are shown in Figure 3.3. The relative root mean square
error is 0.5% for the dynamic power fit and 3.1% for the leakage power fit,
where the relative root mean square (RMS) error is given by

2

, ,

1 ,

1Relative Root Mean Square Error
N

data i fit i

i data i

y y
N y=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (3.10)

Figure 3.3 Curve fits for the dynamic and leakage power for ISCAS’85 benchmark c880. The
total power was minimized by choosing optimal gate sizes, single supply voltage, single
NMOS threshold voltage and single PMOS threshold voltage by geometric program
optimization [11]. The allowed range for the supply voltage was 1.3V to 0.6V. The allowed
ranges for the threshold voltages were ±0.13V from the nominal threshold voltage.

0.0

0.5

1.0

1.5

2.0

2.5

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Delay (ns)

Po
w

er
 (m

W
)

Dynamic power
Fit to dynamic power
Leakage power
Fit to leakage power

70 Chapter 3

The leakage power contributes from 5.9% to 11.8% of the total power.
The maximum error in the total power is 0.7%. The fits are

 2.704

min

0.758() 0.0422

0.352
dynamicP T

T
T

= +
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 (3.11)

0.971 / min

0.182

min

0.212()

0.997

T T

leakage
eP T

T
T

−

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 (3.12)

where fitting coefficients have been shown to three significant figures, and
Tmin for c880 was 1.69ns.

With pipelining allowing higher clock frequency, the switching activity
and hence dynamic power increases proportionally to the clock frequency,
that is as 1/T. The dynamic power fit implicitly includes the dependence of
switching activity on T.

Glitching caused by spurious transitions from signals propagating through
the logic at different speeds also affects the switching activity. Glitching
depends approximately linearly on the logic depth [57], so pipelining reduces
glitching by reducing the logic depth. Glitching only has a small impact on
the power gap between ASIC and custom, so we do not consider it at this
stage. Section 3.6.1 discusses the impact of glitching.

We must also account for the power consumption of the registers and
clock tree, as the number of registers varies with the pipeline depth.

3.3.3 Power consumption of the registers and clock tree

Deeper pipelines typically require more registers per pipeline stage, be-
cause balancing the stage delays may require the additional registers to be
placed at cut points where there are more edges. To take into account the
register and the clock tree power, Harstein and Puzak [32] use a power
model from Srinivasan et al. [57], which has the form

1

timing clock gating dynamic leakageP E P n
T

ηα β⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.13)

where αclock gating is the fraction of time the pipeline is not clock gated; βnη is
the additional fraction of power due to the registers and the clock tree; and η
is a scaling factor – the “latch growth factor”. η takes into account how
many additional registers are required as the pipeline depth increases. If η =
1, the number of registers for per pipeline stage does not vary with the depth.

Srinivasan et al. show that the latch growth factor η is about 1.7 for a
floating point unit, and 1.9 for a Booth recoder and Wallace tree multiplier.
Throughout most of their analysis they assume a value for η of 1.1 [57].

Pipelining to Reduce the Power 71

Harstein and Puzak also assume an η value of 1.1 [32]. For a fixed circuit
with neither gate sizing nor voltage scaling, as the dynamic power consum-
ption is proportional to the switching activity and hence the clock frequency,
the dynamic energy per clock cycle is independent of the clock frequency.
Thus, they assume that the register and clock tree power is the only signi-
ficant change in the total power with the number of pipeline stages n, as the
dynamic energy for the combinational logic is fixed.

Voltage scaling and gate sizing can be used to reduce the power for the
registers and clock tree, and we assume that their power scales in the same
manner versus timing slack as the combinational logic. Including the combi-
national logic’s power consumption in Equation (3.13) gives

1 (1)total clock gating dynamic leakageP E P n
T

ηα β⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (3.14)

Allowing timing slack (T – Tmin) for gate sizing and voltage scaling to
help reduce the power, using the dynamic and leakage power models from
Section 3.3.2 normalized to their value at Tmin,

 ()

min

min

min

()
(1)

()1 (1)
()

()

dynamic
clock gating leakage

dynamic
total

leakage
leakage

leakage

P T
k

P T
P T n

P TT
k

P T

η

α

β

⎛ ⎞
−⎜ ⎟

⎜ ⎟= +⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (3.15)

where kleakage is the fraction of total power due to leakage at Tmin. Our
dynamic and leakage power models account for the decrease in switching
activity for T >Tmin, but we still require the 1/Tmin factor to account for
switching activity varying with Tmin. The 1/Tmin factor also affects leakage,
because the fraction of total power due to leakage at Tmin is determined
versus the dynamic power without clock gating (αclock gating = 1).

As in the earlier models, we will assume that a value for η of 1.1 is a
reasonable estimate for the integer pipeline of a processor. Assuming a given
value for η, we can calculate the value of β in Equation (3.15) from the
number of pipeline stages and the percentage of register and clock tree
power in a processor. From the register and clock tree power data for
different processors in Table 3.6 and assuming η of 1.1, β ranges from 0.026
to 0.15. We use a value for β of 0.05, which is typical for most of the
processors of five to eight pipeline stages.

We use Harstein and Puzak’s model for the clock gating factor [32],
 () 1/(1)clock gating n nα γ= + (3.16)

where clock gating enables avoiding dynamic power consumption due to
pipeline hazards by shutting off the clock to stalled pipeline stages. This is a
reasonable assumption if there is no speculative execution.

72 Chapter 3

We now look at using these models to choose the optimal number of
pipeline stages and allocation of slack for voltage scaling and gate sizing.

3.3.4 The pipeline power and delay model for optimization

We now have the pipeline stage delay and can calculate the power redu-
ction from the timing slack used for voltage scaling and gate sizing. The
number of clock cycles per instruction must be accounted for. Assuming one
instruction would be executed per cycle if there were no hazards, and that
the penalty for pipeline hazards increases linearly with the number of stages
as discussed in Section 3.2.3, the average time per instruction is [32]
 / instruction (1)T T nγ= + (3.17)

where γ is the increase in CPI per pipeline stage due to hazards.
Typical metrics that we wish to optimize include maximizing the perfor-

mance, minimizing the energy per operation, and minimizing the power for a
given performance constraint. The numerical solution of these optimization
problems will usually give a non-integer value for the number of pipeline
stages n, though in a real circuit n must be integral.

3.3.4.1 Maximum performance: minimum T/instruction

The maximum performance is found by minimizing the average time per
instruction in Equation (3.17), where T is given by Equation (3.7). Setting
the derivative with respect to n to zero, the solution is

()

()

min /

comb total

imbalance timing overhead

imbalance timing overhead comb total imbalance timing overhead

imbalance timing overhead comb total

tn
t t

T t t t t t

T instruction t t t

γ

γ

γ

=
+

= + + +

= + +

 2 ()comb total imbalance timing overheadt t tγ+ +

 (3.18)

3.3.4.2 Maximum BIPSm/W: minimum Ptotal(T/instruction)m

Minimizing the energy per operation is equivalent to maximizing BIPS/W
(instructions per second per unit of power). The minimum energy per operation
is found when there is substantial timing slack to reduce the dynamic and
leakage power, and the pipelining power overheads are minimized. Conse-
quently, a single pipeline stage is optimal to minimize the energy per opera-
tion, as this minimizes the power overhead for registers. More than one
pipeline stage is optimal to minimize energy per operation when glitching
and additional power overheads are accounted for – see Section 3.6 for
further discussion.

Pipelining to Reduce the Power 73

The solution for minimum energy per operation is not particularly inte-
resting from a circuit design viewpoint as most applications require higher
performance than where the minimum energy per operation occurs. Thus
the performance is usually more heavily weighted in the objective. The
more general optimization problem is to maximize BIPSm/W by finding the
optimal number of pipeline stages n and optimal clock period T in

min

min

min

minimize ((1))

subject to

 1
()1

(1)1

m
total

comb total
imbalance timing overhead

dynamic

dy
total

P T n
tT t t

n
T T
n

P T
n P

P
T

γ

γ

+

= + +

≥
≥

+
=

min

min

(1)
()

(1)
()

()

leakage
namic

leakage
leakage

leakage

k
T

n
P T

k
P T

ηβ

⎛ ⎞
−⎜ ⎟

⎜ ⎟ +⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (3.19)

where the dynamic and leakage power are fitted as in equations (3.11) and
(3.12). m is typically 0, 1, 2, or 3. m of 0 minimizes power, regardless of
performance. m=1 minimizes the energy per operation. The energy-delay
product is given by m=2. Values for m of 2 or more emphasize minimizing
delay over minimizing power. The optimization problem in Equation (3.19)
can be solved easily with the Newton-Raphson gradient descent algorithm.

3.3.4.3 Minimum power Ptotal at performance Trequired per instruction

Many applications require a specific performance. To find the minimum
power for a given required performance, or average time per instruction
Trequired per instruction, we solve for n and T in

min

min

min

min

minimize

subject to

1
(1)

() 1 (1)
(1) ()1

total

comb total
imbalance timing overhead

required per instruction

dynamic
leakage

dynamic
total

leak
leakage

P
tT t t

n
T T
n
T n T

P T
k

n P T
P

PT
k

γ

γ

= + +

≥
≥
+ =

−
+

=

+
min

(1)
()

()
age

leakage

n
T

P T

ηβ

⎛ ⎞
⎜ ⎟
⎜ ⎟ +⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠ (3.20)

74 Chapter 3

Table 3.7 This table lists parameters and variables used for pipeline modeling. The default
values assumed for the parameters are listed. The excellent ASIC corresponds to an ASIC
using latches, or faster pulsed flip-flops where needed and useful clock skew, to reduce the
register delay and impact of clock skew, and to address imbalance in pipeline stage delays.

Parameter for Design Typical Excellent
Style Overhead Represents ASIC ASIC Custom

t imbalance (FO4 delays) unbalanced pipeline stage delay overhead 10 0 0
t timing overhead (FO4 delays) timing overhead per pipeline stage 10 5 3

Parameter Represents Value
k leakage fraction of total power from leakage at T min 0.1

m
exponent for delay per instruction in the
objective varies

T required per instruction (FO4 delays) required delay per instruction varies
t comb total (FO4 delays) total unpipelined combinational delay 180

β
coefficient for power due to registers and
the clock tree 0.05

γ
increase in clock cycles per instruction
(CPI) with pipeline stages due to hazards 0.05

η latch growth factor for increase in number
of registers with pipeline depth 1.1

Optimization Variable Represents
n number of pipeline stages
T (FO4 delays) clock period

Dependent Variable Represents
P dynamic dynamic power
P leakage leakage power
P timing power consumption of registers and clock
P total total power consumption
t comb (FO4 delays) combinational delay per pipeline stage
T min (FO4 delays) minimum clock period
αclock gating fraction of time pipeline is not clock gated

Value for

We now use the solutions of Equation (3.20) to compare the minimum
power for ASIC and custom designs for a given performance constraint.

3.4 ASIC VERSUS CUSTOM PIPELINING

We will now estimate the gap between ASIC and custom designs due to
microarchitecture using the model in Section 3.3 with default values for
parameters listed in Table 3.7, which correspond to an integer pipeline in a
high performance ASIC processor and the custom equivalent. For other
applications, different parameter values should be considered – the impact of
varying the parameters is discussed later in Section 3.5.

Pipelining to Reduce the Power 75

Pipeline stage delay overhead has the greatest impact on the results, so
we initially focus on the differences due to this. The total pipelining delay
overhead for a typical ASIC is 20 FO4 delays due to slow D-type flip-flops
and imbalanced pipeline stages, compared to 3 FO4 delays for custom. If an
ASIC design uses latches, or faster pulsed flip-flops where needed and
useful clock skew, then the pipelining delay overhead may be as low as 5
FO4 delays.

We wish to determine the impact of microarchitecture in the absence of
other factors such as slower logic style, so we assume an unpipelined
combinational delay of 180 FO4 delays which is reasonable for the custom
processors in Table 3.2, though less than we estimated for the ASICs in
Table 3.1. To reduce the clock period to 40 FO4 delays, at least nine pipeline
stages must be used for our typical ASIC that has a pipeline stage delay
overhead of 20 FO4 delays; whereas a custom design with a pipeline stage
delay overhead of 3 FO4 delays needs only five pipeline stages. As a large
portion of the ASIC’s clock period is devoted to the pipelining delay
overhead, reducing the delay overhead is very important to improve ASIC
performance.

As was assumed by Srinivasan et al. [57] and Harstein and Puzak [32],
we assume a value of 1.1 for the latch growth factor η for an integer
pipeline. From this and the clock tree and register power in Table 3.6, we
estimate the coefficient β for the clock and register power to be 0.05, which
is typical for most of the processors of five to eight pipeline stages [11].

We assume that ASIC and custom designers can take the same advantage
of data forwarding, branch prediction and other techniques to reduce the CPI
penalty for deeper pipelines. A CPI penalty per stage of 0.05/stage for both
ASIC and custom is assumed.

The power-delay curve fits from geometric programming optimization of
ISCAS’85 benchmark c880 will be used to estimate the power savings that
can be achieved by voltage scaling and gate sizing. The dynamic power and
leakage power are normalized as in Equation (3.15), and the minimum delay
is set to the minimum stage delay from pipelining in Equation (3.7). When
Vdd and Vth are chosen to minimize the total power consumption, leakage
may be 8% to 21% of the total power consumption as discussed in Section
4.6.1. We assume that leakage is 10% of the total power at the minimum
delay, as may be typical for high performance circuits in 0.13um.

We will first examine the maximum performance that can be achieved
by ASICs and custom, and then look at metrics that include power consum-
ption as well as performance. Then we will compare the power gap between
ASIC and custom at maximum performance and relaxed performance
constraints. The results for different metrics are summarized in Table 3.8.

76 Chapter 3

Table 3.8 This table compares the minimum of various metrics for ASIC and custom. Below
the normalized comparison versus custom are listed the optimal number of pipeline stages n,
clock period T, delay per instruction T/instruction, et al. to optimize each metric. Note that the
numerical solution below for the optimization problem has a non-integer value for the number
of pipeline stages n, though in a real circuit n must be integral.

T /instruction P (T /instruction)3 P (T /instruction)2 Energy/operation
Typical ASIC 2.5 3.5 1.7 1.0
Excellent ASIC 1.2 1.3 1.1 1.0

Normalized versus custom

Minimum T /instruction (maximizing BIPS)

n T min
T (FO4
delays)

T /instruction
(FO4 delays)

Power
P

Energy /
Operation

Typical ASIC 13.3 33.5 33.5 55.8 0.0356 1.987
Excellent ASIC 26.5 11.8 11.8 27.4 0.1174 3.220
Custom 34.2 8.3 8.3 22.4 0.1795 4.020

Minimum P (T /instruction)3 (maximizing BIPS3/W)

n T min
T (FO4
delays)

T /instruction
(FO4 delays)

Power
P

Energy /
Operation P (T /instruction)3

Typical ASIC 8.5 41.1 64.6 92.2 0.0054 0.497 4225
Excellent ASIC 14.2 17.7 27.3 46.7 0.0143 0.668 1457
Custom 16.6 13.9 21.3 38.9 0.0192 0.747 1129

Minimum P (T /instruction)2 (maximizing BIPS2/W)

n T min
T (FO4
delays)

T /instruction
(FO4 delays)

Power
P

Energy /
Operation P (T /instruction)2

Typical ASIC 6.5 47.8 139.2 184.3 0.0010 0.175 32.3
Excellent ASIC 9.6 23.7 69.6 103.1 0.0020 0.204 21.0
Custom 10.6 20.0 58.6 89.6 0.0024 0.214 19.2

Minimum energy/operation P (T /instruction) (maximizing BIPS/W)

n T min
T (FO4
delays)

T /instruction
(FO4 delays)

Power
P

Energy /
Operation

Typical ASIC 1.0 200.0 892.2 936.8 0.0001 0.105
Excellent ASIC 1.0 185.0 825.3 866.5 0.0001 0.105
Custom 1.0 183.0 816.4 857.2 0.0001 0.105

3.4.1 Maximum performance (minimum delay/instruction)

The minimum delay per instruction is 22.4 FO4s for custom, 27.4 FO4s
for an excellent ASIC, and 55.8 FO4s for a typical ASIC (see Table 3.8).
The corresponding clock period is 8.3 FO4s for custom, 11.8 FO4s for an
excellent ASIC, and 33.5 FO4s for a typical ASIC. These model results are
comparable to the custom 3.466GHz 0.13um Gallatin Pentium 4 with clock
period of 9.6 FO4s and the high performance, synthesized 520MHz 0.18um
iCORE with clock period of 25.6 FO4s (from Table 3.1).

Pipelining to Reduce the Power 77

The typical ASIC with 20 FO4 stage delay overhead is about 2.5× slower
than custom with 3 FO4 stage delay overhead, whereas the excellent ASIC
with only 5 FO4 stage delay overhead closes the performance gap to 1.2×.
These results correspond fairly well with our earlier analysis which estimated
a performance gap due to microarchitecture and timing overhead of 2.6× for
a typical ASIC to 1.4× for an excellent ASIC [13].

Maximizing performance leads to deep pipelines being optimal, from 34.2
pipeline stages for custom to 13.3 stages for a typical ASIC. For a real world
comparison, Intel’s Prescott and Cedar Mill Pentium 4 custom processors have
31 integer pipeline stages [37] from Intel’s pushing to the extreme higher
performance and higher clock frequency to compete with AMD; while ARM’s
Cortex-A8 synthesizable processor has thirteen pipeline stages [6].

3.4.2 Maximum BIPSm/W with voltage scaling and gate
sizing

The optimal clock period increases and the optimal number of pipeline
stages decreases when power is included in the optimization objective.
We can maximize metrics of the form BIPSm/W with Equation (3.19),
minimizing P(T/instruction)m. Results are listed in Table 3.8, except for
minimizing power for which an infinite clock period is optimal to avoid
dynamic power.

A single pipeline stage is optimal to avoid the pipelining power overhead
for more registers when minimizing the power (m = 0) or energy per operation
(m = 1). More than one pipeline stage is optimal to minimize energy per
operation when glitching and additional power overheads are accounted
for – see Section 3.6 for further discussion.

The optimal clock period of 816 FO4 delays for custom to 892 FO4
delays for ASIC to minimize the energy/operation corresponds to a clock
frequency of 31MHz and 28MHz respectively in 0.13um technology with
0.08um channel length. Some applications such as the discrete cosine trans-
form (DCT) and its inverse (IDCT) [20][69][70] can be performed at such
low clock frequencies via parallel datapaths, achieving low energy per opera-
tion. The DCT and IDCT cores do have more than one pipeline stage –
pipelining is used to implement the algorithm and allow clock gating of units
that are not in use to reduce the dynamic power.

Many applications require higher performance, so metrics placing a greater
weight on delay are commonly used. Comparing the inverse of BIPS3/W, a
typical ASIC has 3.5× the P(T/instruction)3 of custom, while an excellent
ASIC is only 1.3× worse. The gap is larger for BIPS3/W as the performance
gap is multiplied. For both ASIC and custom, the ratio of T/Tmin is about 1.5
to maximize BIPS3/W providing a significant amount of slack for voltage
scaling and gate downsizing.

78 Chapter 3

The optimal number of pipeline stages to maximize BIPS3/W is roughly
half the number of stages to maximize performance, as inclusion of power
consumption in the objective substantially penalizes very deep pipelines for
their additional registers. To maximize BIPS3/W for custom, the optimal
number of pipeline stages from the model is 16.6 and the optimal clock
period is 21.3 FO4 delays, which is comparable to Intel’s Conroe Core 2
Extreme with 14 pipeline stages and a clock period of 19.5 FO4 delays.
Conroe’s predecessor, the Yonah Core Duo, was specifically designed to be
more energy efficient than the Pentium 4 models with 31 integer pipeline
stages that maximized performance and have 4.4× more energy per operation
[28]. To maximize BIPS3/W for a typical ASIC, the optimal clock period of
64.6 FO4 delays from the model is very similar to the clock period of a
number of the ASICs in Table 3.1, though the number of pipeline stages for
these ASICs ranges from 5 to 13.

We now look at the minimum power for a given performance constraint.

3.4.3 Minimum power for a given performance constraint

A fixed performance constraint can be used instead of weighting perfor-
mance in the objective. The minimum power consumption to satisfy the
performance constraint can be determined by solving Equation (3.20).

The power gap between a typical ASIC and custom ranges from 5.1× at
the maximum performance for the typical ASIC down to 1.0× depending on
the performance constraint, as shown in Figure 3.4. If the pipeline stage
delay overhead is reduced from 20 FO4 delays to 5 FO4 delays, the power
gap is at most 1.9× at the maximum performance for the excellent ASIC.
The corresponding optimal number of pipeline stages is shown in Figure 3.5.
The optimal clock period for both ASIC and custom is very similar and
varies almost linearly with the performance constraint [11].

When the required average time per instruction is large, a typical ASIC
has more pipeline stages than custom to get similar timing slack for power
reduction. As the required performance increases, fewer stages are optimal
for an ASIC due to the larger pipeline stage delay overhead. As the maximum
performance is approached, the number of pipeline stages increases rapidly
and the timing slack for power reduction approaches zero with the ratio of
T/Tmin approaching one (see Figure 3.6).

At a more relaxed constraint of 80 FO4 delays per instruction, the power
gap between a typical ASIC and custom is only 2.8×, and the excellent ASIC
is only 1.1× worse. At this point, the optimal clock period for the typical
ASIC of 55 FO4 delays corresponds to about 450MHz in 0.13um with
channel length of 0.08um. Typical low power embedded processors in
0.13um are slower than this, indicating that the power gap between ASIC
and custom is not that large in their lower performance market niche.

Pipelining to Reduce the Power 79

Figure 3.4 Minimum power relative to custom for the parameters listed in Table 3.7.

Figure 3.5 Optimal number of pipeline stages n to minimize power.

0.0

1.0

2.0

3.0

4.0

5.0

0 50 100 150 200 250 300
Required Average Time Per Instruction (FO4 delays)

M
in

 P
ow

er
 R

el
at

iv
e

to
 C

us
to

m excellent ASIC

typical ASIC

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300
Required Average Time Per Instruction (FO4 delays)

N
um

be
r

of
 P

ip
el

in
e

St
ag

es

custom

excellent ASIC

typical ASIC

80 Chapter 3

Figure 3.6 The ratio of the clock period to the minimum pipeline stage delay T/Tmin
approaches one as the performance constraint becomes tight. Consequently, there is
substantially less timing slack (T – Tmin) for power reduction by voltage scaling and gate
sizing, and the dynamic power and the leakage power increase significantly.

Figure 3.7 The minimum energy per operation at different performance constraints.

The minimum energy per operation for custom at maximum performance
is 39× larger than the minimum energy per operation of 0.105 (see Figure
3.7). The energy/operation for the combinational logic is 12× larger, but the
power for the registers and clock tree has grown from 5% of the total power
with a single pipeline stage to 71% of the total power with 34.6 pipeline
stages. The number of registers has increased by a factor of 34.61.1 = 49.3.

0.0

0.5
1.0

1.5

2.0
2.5

3.0

3.5
4.0

4.5

0 50 100 150 200 250 300 350 400
Required Average Time Per Instruction (FO4 delays)

T
/T

m
in

custom

excellent ASIC

typical ASIC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250 300 350 400
Required Average Time Per Instruction (FO4 delays)

E
ne

rg
y/

O
pe

ra
tio

n

custom

excellent ASIC

typical ASIC

Pipelining to Reduce the Power 81

3.5 OTHER FACTORS AFFECTING

THE POWER GAP

Our discussion has focused on the impact of the required performance
and the pipeline stage delay overhead on the power gap. The difference in
pipeline delay overhead is the most significant cause of the power gap
between ASIC and custom with pipelining.

We have examined the significance of other model parameters: glitching
in complementary CMOS logic; increased CPI penalty per pipeline stage; no
clock gating to avoid dynamic power during pipeline stalls; higher leakage
power; and increased clock tree and register power [11]. While these factors
can have a significant impact on the power consumption, they increase the
power gap between ASIC and custom by at most 20%, assuming the same
parameter values for both. The two other factors that have a larger impact on
the gap are how much savings can be achieved with voltage scaling and gate
sizing, and use of high performance logic styles in custom designs.

The power savings with voltage scaling and gate sizing depend on how
steep the power-delay curve is, which depends on the range of allowable
supply and threshold voltages in the process technology and the range of
gate sizes in the library. The power gap due to pipelining is only 1.6× with
no voltage scaling nor gate sizing. Allowing timing slack to be utilized for
gate sizing can increase the power gap by 1.6× and voltage scaling can
increase the power gap by 3.2× [11].

Custom designers can take advantage of domino logic or other high per-
ormance logic styles to reduce the combinational logic delay. For example,
dynamic domino logic used for the 1.0GHz IBM PowerPC was 50% to
100% faster than static combinational logic with the same functionality [50].
For our model, this corresponds to reducing the unpipelined combinational
logic delay from 180 to 120 FO4 delays. If the combinational logic delay is
reduced to 120 FO4 delays for custom, the power gap is 7.9× between
custom and a typical ASIC at maximum performance for the typical ASIC,
and the power gap is 3.9× between custom and the excellent ASIC at maxi-
mum performance for the excellent ASIC. Thus the impact of logic style on
the power gap is 1.6× for the typical ASIC and 2.0× for the excellent ASIC,
but we have not accounted for the additional power that may be required
for high performance logic styles.

3.6 OTHER FACTORS AFFECTING THE MINIMUM
ENERGY PER OPERATION

We concluded in Section 3.4.2 that a single pipeline stage was optimal to
minimize energy/operation, but this is no longer the case when glitching and
other power overheads are included in the pipeline power model.

82 Chapter 3

Other causes of power consumption include the memory; off-chip
communication; video display and other peripheral devices. These other power
overheads do not affect the minimum power of a processor for a given
performance constraint, and thus do not affect the power gap between ASIC
and custom designs. However, the additional power does affect the energy
per operation [11].

We will illustrate how other power overheads may be incorporated in the
pipeline model by adding in glitching.

3.6.1 Glitching in complementary static CMOS logic

Different logic styles have different switching activity and some logic
styles suffer from spurious signal transitions, glitches, propagating through
the logic. Glitching increases the switching activity in complementary CMOS
logic, but by construction glitches may not occur in dynamic logic. Glitches
typically cause 15% to 20% of the switching activity in complementary
CMOS logic [56].

Glitches do not propagate through edge-triggered flip-flops, providing
the setup time is not violated, nor through level-sensitive latches when they
are opaque. Thus pipeline registers reduce switching activity due to glitches.

Based on experimental data from a dynamic circuit timing simulator,
Srinivasan et al. modeled glitching’s contribution to the dynamic power of
the pipeline’s combinational logic as depending linearly on the logic depth
[57]. A generated glitch was assumed to have a high probability of propa-
gating through the combinational logic. While the glitching power may
be fit reasonably well by a linear model over the range of pipeline depths
considered by Srinivasan et al., glitching power data for pipelined 32-bit
[53] and 64-bit [68] FPGA multipliers has sublinear growth with logic
depth [11].

The growth of glitching with logic depth depends on a number of factors.
Glitches from a gate’s output may propagate through the fanout logic gates.
The glitch may not propagate if it is not the controlling input of a fanout
gate. If the delay of paths through the logic are unbalanced, there is more
glitching [44]. Some functional blocks have more glitching than others. For
example, in an inverse discrete cosine transform (IDCT) core about 37% of
the power consumption in the accumulators was due to glitches, whereas
glitches accounted for only 14% of the power for the chip as a whole [102].

Pipelining to Reduce the Power 83

Figure 3.8 Glitching overhead estimated by the linear and sublinear glitching models in
equations (3.22) and (3.23) respectively versus logic depth.

3.6.1.1 Glitching power model

To account for glitching in complementary CMOS logic, as glitching
only affects the dynamic power for the combinational logic, we use [11]

()
min min

min min

()(1)
()

(1 ()) ()1 (1)
(1) ()

leakage
total leakage

leakage

glitching dynamic
leakage

dynamic

P TnP T k
T P T

n n P T
k

T n P T

η

η

β

α β
γ

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞+ +

+ −⎜ ⎟⎜ ⎟+⎝ ⎠

 (3.21)

where αglitching(n) is the model for glitching as a fraction of the dynamic
power due to non-spurious transitions.

In the vein of Srinivasan et al. [57], we consider a linear model for
glitching with logic depth, which is inversely proportional to the number of
pipeline stages,

 2()glitching n
n

α = (3.22)

Based on fits to glitching in 32-bit and 64-bit FPGA multipliers, we also
consider a model for glitching growing sublinearly with logic depth,

 4 /() 1 (1)
4

n
glitching

nn eα −= − − (3.23)

The dynamic power overhead for the combinational logic estimated by these
glitching models is shown in Figure 3.8.

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

0 30 60 90 120 150 180
Combinational Logic Depth per Stage (FO4 delays)

G
lit

ch
in

g
as

 P
er

ce
nt

ag
e

of
 D

yn
am

ic

Po
w

er
 fo

r
th

e C
om

bi
na

tio
na

l L
og

ic Linear 2/n
Sublinear 1-n(1-exp(-4/n))/4

84 Chapter 3

The sublinear model in Equation (3.23) provides similar results to the
linear model in Equation (3.22) for deeper pipelines, with less than 10%
lower glitching for n = 14 and more pipeline stages. For shallower pipelines,
the glitching estimated by the sublinear model is substantially less than that
from the linear model: for a single pipeline stage, the glitching overhead is
75% from the sublinear model, and 200% from the linear model.

3.6.1.2 Impact of glitching

The maximum performance for a typical ASIC was achieved with 13
pipeline stages, by which point glitching accounts for only 15% of the dyna-
mic power for the combinational logic and only 6% of the total power.
Moreover, the optimal number of pipeline stages for custom and ASIC designs
are similar (this was shown in Figure 3.5), resulting in similar contributions
from glitching. Consequently, glitching increases the power gap between ASIC
and custom by at most 5%.

For a single stage pipeline, glitches contribute a large percentage of
the total power, and thus have a significant impact on the minimum energy
per operation. More pipeline stages are optimal to prevent glitches propaga-
ting. For the linear glitching model in Equation (3.22), 5.3 pipeline stages
minimizes the energy per operation. With the sublinear glitching model in
Equation (3.23), 3.9 stages is optimal. The minimum energy/operation is 0.17
and 0.16 respectively, about 60% more than without glitching.

3.7 SUMMARY

ASICs have a substantially higher pipelining delay overhead than custom
circuits, which reduces the benefit of additional pipeline stages and sub-
stantially reduces the timing slack available for power reduction. With pipe-
lining to provide timing slack for power reduction, a typical ASIC with a 20
FO4 pipeline stage delay overhead may have 5.1× the power of a custom
processor with only 3 FO4 delay overhead at a tight performance constraint.
The power gap is less at more relaxed performance constraints, reducing to
4.0× at only 7% lower performance. The delay overhead in an ASIC can be
reduced by using latches or faster pulsed flip-flops on critical paths with
useful clock skew, instead of slower D-type flip-flops that don’t allow slack
passing between unbalanced pipeline stages. If the ASIC pipeline stage
delay overhead can be reduced to 5 FO4 delays, the gap is only 1.9×.

The difference in pipeline delay overhead is the most significant cause of
the power gap between ASIC and custom with pipelining. The impact of
other factors such as glitching in complementary CMOS logic, increased
CPI penalty per pipeline stage, no clock gating to avoid dynamic power
during pipeline stalls, higher leakage power, and increased clock tree and
register power is at most 20%.

Pipelining to Reduce the Power 85

Only custom designs can make use of high performance logic styles such
as dynamic domino logic. If the custom design reduces the combinational
logic delay with a high performance logic style, the ASIC may have up to
2.0× larger power gap at maximum performance, ignoring additional power
consumption of high performance logic styles. We attribute this factor to
logic style rather than microarchitecture.

Inclusion of voltage scaling and gate sizing in the pipeline model has a
substantial impact on the power consumption. It is important to consider
high level circuit techniques to provide timing slack along with these low
level circuit techniques that can reduce power if there is timing slack. The
improvements with gate sizing and voltage scaling depend greatly on the
steepness of the power-delay curves, which depend on the range of allowable
supply and threshold voltages in the process technology and the range of
gate sizes in the library.

Pipeline model parameters can be estimated from the particular micro-
architecture being considered for a design. For good estimates, the dynamic
and leakage power with gate sizing and/or voltage scaling must be fit over
a range of delay targets for representative circuit benchmarks in the target
process technology for a design.

3.8 REFERENCES
[1] Anderson, F., Wells, J., and Berta, E., “The Core Clock System on the Next Generation

ItaniumTM Microprocessor,” Digest of Technical Papers of the IEEE International Solid-
State Circuits Conference, 2002, pp. 146-147, 453.

[2] ARM, ARM926EJ-S, 2006. http://www.arm.com/products/CPUs/ARM926EJ-S.html
[3] ARM, ARM1026EJ-S, 2006. http://www.arm.com/products/CPUs/ARM1026EJS.html
[4] ARM, ARM1136J(F)S, 2006. http://www.arm.com/products/CPUs/ARM1136JF-S.html
[5] ARM, ARM Cortex-A8, 2006. http://www.arm.com/products/CPUs/ARM_Cortex-

A8.html
[6] ARM, ARM Cortex-A8, 2005.http://www.arm.com/products/CPUs/ARM_Cortex-A8.html
[7] Benschneider, B.J., et al., “A 300-MHz 64-b Quad-Issue CMOS RISC Microprocessor,”

IEEE Journal of Solid-State Circuits, vol. 30, no. 11, November 1995, pp. 1203-1214.
[8] Bhavnagarwala, A., et al., “A Minimum Total Power Methodology for Projecting Limits

on CMOS GSI,” IEEE Transactions on VLSI Systems, vol. 8, no. 3, June 2000, pp. 235-
251.

[9] Brooks, D., et al., “Power-Aware Microarchitecture: Design and Modeling Challenges
for Next-Generation Microprocessors,” IEEE Micro, vol. 20, no. 6, 2000, pp. 26-44.

[10] Chandrakasan, A., and Brodersen, R., “Minimizing Power Consumption in Digital CMOS
Circuits,” in Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp. 498-523.

[11] Chinnery, D, Low Power Design Automation, Ph.D. dissertation, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, 2006.

[12] Chinnery, D., et al., “Automatic Replacement of Flip-Flops by Latches in ASICs,”
chapter 7 in Closing the Gap Between ASIC & Custom: Tools and Techniques for High-
Performance ASIC Design, Kluwer Academic Publishers, 2002, pp. 187-208.

[13] Chinnery, D., and Keutzer, K., Closing the Gap Between ASIC & Custom: Tools and Tech-
niques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002, 432 pp.

[14] Clark, L., “The XScale Experience: Combining High Performance with Low Power from
0.18um through 90nm Technologies,” presented at the Electrical Engineering and

86 Chapter 3

Computer Science Department of the University of Michigan, September 30, 2005.
http://www.eecs.umich.edu/vlsi_seminar/f05/Slides/VLSI_LClark.pdf

[15] Clark, L., et al., “An Embedded 32-b Microprocessor Core for Low-Power and High-
Performance Applications,” Journal of Solid-State Circuits, vol. 36, no. 11, November
2001, pp. 1599-1608.

[16] Contreras, G., et al., “XTREM: A Power Simulator for the Intel XScale Core,” in
Proceedings of the ACM Conference on Languages, Compilers, and Tools for Embedded
Systems, 2004, 11 pp.

[17] Dai, W., and Staepelaere, D., “Useful-Skew Clock Synthesis Boosts ASIC
Performance,” chapter 8 in Closing the Gap Between ASIC & Custom: Tools and
Techniques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002, pp.
209-223.

[18] Davies, B., et al., “iPART: An Automated Phase Analysis and Recognition Tool,” Intel
Research Tech Report IR-TR-2004-1, 2004, pp. 12.

[19] De Gelas, J. AMD’s Roadmap. February 28, 2000. http://www.aceshardware.com/Spades/
read.php?article_id=119

[20] Fanucci, L., and Saponara, S., “Low-Power VLSI Architectures for 3D Discrete Cosine
Transform (DCT),” in Proceedings of the International Midwest Symposium on Circuits
and Systems, 2003, pp. 1567-1570.

[21] Flynn, D., and Keating, M., “Creating Synthesizable ARM Processors with Near Custom
Performance,” chapter 17 in Closing the Gap Between ASIC & Custom: Tools and
Techniques for High-Performance ASIC Design, Kluwer Academic Publishers, 2002, pp.
383-407.

[22] Furber, S., ARM System-on-Chip Architecture. 2nd Ed. Addison-Wesley, 2000.
[23] Ghani, T., et al., “100 nm Gate Length High Performance/Low Power CMOS Transistor

Structure,” Technical digest of the International Electron Devices Meeting, 1999, pp.
415-418.

[24] Golden, M., et al., “A Seventh-Generation x86 Microprocessor,” IEEE Journal of Solid-
State Circuits, vol. 34, no. 11, November 1999, pp. 1466-1477.

[25] Gonzalez, D., “Micro-RISC architecture for the wireless market,” IEEE Micro, vol. 19,
no. 4, 1999, pp. 30-37.

[26] Gowan, M., Biro, L., and Jackson, D., “Power Considerations in the Design of the Alpha
21264 Microprocessor,” in Proceedings of the Design Automation Conference, 1998, pp.
726-731.

[27] Greenlaw, D., et al., “Taking SOI Substrates and Low-k Dielectrics into High-Volume
Microprocessor Production,” Technical Digest of the International Electron Devices
Meeting, 2003, 4 pp.

[28] Grochowski, E., and Annavaram, M., “Energy per Instruction Trends in Intel
Microprocessors,” Technology@Intel Magazine, March 2006, 8 pp.

[29] Gronowski, P., et al., “High-Performance Microprocessor Design,” IEEE Journal of
Solid-State Circuits, vol. 33, no. 5, May 1998, pp. 676-686.

[30] Hare, C. 586/686 Processors Chart. http://users.erols.com/chare/586.htm
[31] Hare, C. 786 Processors Chart. http://users.erols.com/chare/786.htm
[32] Harstein, A., and Puzak, T., “Optimum Power/Performance Pipeline Depth,” in Procee-

dings of the 36th International Symposium on Microarchitecture, 2003, pp. 117-126.
[33] Hauck, C., and Cheng, C. “VLSI Implementation of a Portable 266MHz 32-Bit RISC

Core,” Microprocessor Report, November 2001, 5 pp.
[34] Hinton, G., et al., “A 0.18-um CMOS IA-32 Processor With a 4-GHz Integer Execution

Unit,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11, November 2001, pp. 1617-1627.
[35] Hinton, G., et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technical

Journal, Q1 2001, pp. 13.

Pipelining to Reduce the Power 87

[36] Hofstee, H., “Power Efficient Processor Architecture and the Cell Processor,” in

Proceedings of the Symposium on High-Performance Computer Architecture, 2005, pp.
258-262.

[37] Horan, B., “Intel Architecture Update,” presented at the IBM EMEA HPC Conference,
May 17, 2006.www-5.ibm.com/fr/partenaires/forum/hpc/intel.pdf

[38] Hrishikesh, M., et al., “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4
Inverter Delays,” in Proceedings of the Annual International Symposium on Computer
Architecture, May 2002, pp. 14-24.

[39] Intel, Intel Unveils World’s Best Processor, July 27, 2006. http://www.intel.com/
pressroom/archive/releases/20060727comp.htm

[40] Intel, Inside the NetBurst Micro-Architecture of the Intel Pentium 4 Processor, Revision
1.0, 2000. http://developer.intel.com/pentium4/download/netburst.pdf

[41] Keltcher, C., et al., “The AMD Opteron Processor for Multiprocessor Servers,” IEEE
Micro, vol. 23, no. 2, 2003, pp. 66-76.

[42] Kurd, N.A, et al., “A Multigigahertz Clocking Scheme for the Pentium® 4
Microprocessor,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11, November 2001,
pp. 1647-1653.

[43] Larri, G., “ARM810: Dancing to the Beat of a Different Drum,” presented at Hot Chips,
1996.

[44] Leitjen, J., Meerbergen, J., and Jess, J., “Analysis and Reduction of Glitches in
Synchronous Networks,” in Proceedings of the European Design and Test Conference,
1995, pp. 398-403.

[45] Lexra, Lexra LX4380 Product Brief, 2002, http://www.lexra.com/LX4380_PB.pdf
[46] Mahnke, T., “Low Power ASIC Design Using Voltage Scaling at the Logic Level,”

Ph.D. dissertation, Department of Electronics and Information Technology, Technical
University of Munich, May 2003, pp. 204.

[47] Montanaro, J., et al., “A 160MHz, 32-b, 0.5W, CMOS RISC Microprocessor,” Journal
of Solid-State Circuits, vol. 31, no. 11, 1996, pp. 1703-1714.

[48] MTEK Computer Consulting, AMD CPU Roster, January 2002. http://www.cpuscorecard.
com/cpuprices/head_amd.htm

[49] MTEK Computer Consulting, Intel CPU Roster, January 2002. http://www.cpuscorecard.
com/cpuprices/head_intel.htm

[50] Nowka, K., and Galambos, T., “Circuit Design Techniques for a Gigahertz Integer
Microprocessor,” in Proceedings of the International Conference on Computer Design,
1998, pp. 11-16.

[51] Perera, A.H., et al., “A versatile 0.13um CMOS Platform Technology supporting High
Performance and Low Power Applications,” Technical Digest of the International
Electron Devices Meeting, 2000, pp. 571-574.

[52] Richardson, N., et al., “The iCORETM 520MHz Synthesizable CPU Core,” Chapter 16 of
Closing the Gap Between ASIC and Custom, 2002, pp. 361-381.

[53] Rollins, N., and Wirthlin, M., “Reducing Energy in FPGA Multipliers Through Glitch
Reduction,” presented at the International Conference on Military and Aerospace
Programmable Logic Devices, September 2005, 10 pp.

[54] Segars, S., “The ARM9 Family – High Performance Microprocessors for Embedded
Applications,” in Proceedings of the International Conference on Computer Design,
1998, pp. 230-235.

[55] Silberman, J., et al., “A 1.0-GHz Single-Issue 64-Bit PowerPC Integer Processor,” IEEE
Journal of Solid-State Circuits, vol. 33, no.11, November 1998. pp. 1600-1608.

[56] Singh, D., et al., “Power Conscious CAD Tools and Methodologies: a Perspective,” in
Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp. 570-594.

[57] Srinivasan, V., et al., “Optimizing pipelines for power and performance,” in Proceedings
of the International Symposium on Microarchitecture, 2002, pp. 333-344.

88 Chapter 3

[58] Standard Performance Evaluation Corporation, SPEC’s Benchmarks and Published

Results, 2006. http://www.spec.org/benchmarks.html
[59] STMicroelectronics, “STMicroelectronics 0.25µ, 0.18µ & 0.12 CMOS,” slides presented

at the annual Circuits Multi-Projets users meeting, January 9, 2002. http://cmp.imag.fr/
Forms/Slides2002/061_STM_Process.pdf

[60] techPowerUp! CPU Database, August 2006. http://www.techpowerup.com/cpudb/
[61] Tensilica, Xtensa Microprocessor – Overview Handbook – A Summary of the Xtensa

Data Sheet for Xtensa T1020 Processor Cores. August 2000.
[62] Thompson, S., et al., “An Enhanced 130 nm Generation Logic Technology Featuring 60

nm Transistors Optimized for High Performance and Low Power at 0.7 – 1.4 V,”
Technical Digest of the International Electron Devices Meeting, 2001, 4 pp.

[63] TSMC, 0.13 Micron CMOS Process Technology, March 2002.
[64] TSMC, 0.18 Micron CMOS Process Technology, March 2002.
[65] TSMC, TSMC Unveils Nexsys 90-Nanometer Process Technology, August 2006.

http://www.tsmc.com/english/technology/t0113.htm
[66] Tyagi, S., et al., “An advanced low power, high performance, strained channel 65nm

technology,” Technical Digest of the International Electron Devices Meeting, 2005, pp.
245-247.

[67] Weicker, R., “Dhrystone: A Synthetic Systems Programming Benchmark,” Communi-
cations of the ACM, vol. 27, no. 10, 1984, pp. 1013-1030.

[68] Wilton, S., Ang, S., and Luk, W., “The Impact of Pipelining on Energy per Operation in
Field-Programmable Gate Arrays,” in Proceedings of the International Conference on
Field Programmable Logic and Applications, 2004, pp. 719-728.

[69] Xanthopoulos, T., and Chandrakasan, A., “A Low-Power DCT Core Using Adaptive
Bitwidth and Arithmetic Activity Exploiting Signal Correlations and Quantization,”
Journal of. Solid State Circuits, vol. 35, no. 5, May 2000, pp. 740-750.

[70] Xanthopoulos, T., and Chandrakasan, A., “A Low-Power IDCT Macrocell for MPEG-2
MP@ML Exploiting Data Distribution Properties for Minimal Activity,” Journal of
Solid State Circuits, vol. 34, May 1999, pp. 693-703.

[71] Yang, F., et al., “A 65nm Node Strained SOI Technology with Slim Spacer,” Technical
Digest of the International Electron Devices Meeting, 2003, pp. 627-630.

[72] Zhuang, X., Zhang, T., and Pande, S., “Hardware-managed Register Allocation for
Embedded Processors,” in Proceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems, 2004, pp. 10.

Chapter 4 4

VOLTAGE SCALING

David Chinnery, Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720, USA

4.1 INTRODUCTION

Scaling the supply voltage (Vdd) and threshold voltages (Vth) to an
optimal point for a design can provide substantial power savings, particularly
at a relaxed performance constraint. We will examine how Vdd, Vth and
gate size affect the circuit delay, dynamic power and leakage power with
analytical models. We compare these models to empirical fits for a 0.13um
library characterized at different Vdd and Vth values. These models help us
examine the trade-off between power and delay, and determine which power
reduction techniques can provide the most benefit in different situations.

In this chapter, we focus on use of a single supply voltage (Vdd) and a
single threshold voltage (Vth). In Chapter 7, we will examine use of multiple
supply and multiple threshold voltages in comparison to using a single Vdd
and single Vth. Throughout this chapter, we assume that the NMOS and
PMOS threshold voltages are of about the same magnitude, Vthn = –Vthp, and
will generally refer to this value as the threshold voltage.

Dynamic power is due to switching capacitances and short circuit
power. Switching power consumption occurs when logic switches from 0 to
1 and 1 to 0, and capacitances are charged and discharged. A short circuit
current from supply to ground occurs in a gate when both the pull-up PMOS
network of transistors and pull-down NMOS network of transistors are
conducting. Signal glitches propagating also cause switching and short circuit
power.

Leakage power occurs when logic is idle, whether the circuit is in standby
or simply not switching. Leakage power is primarily due to subthreshold
leakage and gate leakage.

90 Chapter 4

Table 4.1 Delay and total power consumption for ISCAS’85 benchmark c7552, using
PowerArc characterized 0.13um libraries with 1.2V supply voltage, and threshold voltage of
0.23V or 0.08V. Using the netlist delay minimized at 0.23V is sufficient to provide a delay
minimized netlist when using the 0.08V library instead, but the power is about 10% higher.

Total
Netlist Vdd (V) Vth (V) Delay (ns) Power (mW)

Delay minimized at Vdd=1.2V/Vth=0.23V 1.2 0.23 0.847 27.9
Delay minimized at Vdd=1.2V/Vth=0.23V 1.2 0.08 0.695 47.9
Delay minimized at Vdd=1.2V/Vth=0.08V 1.2 0.08 0.695 43.6

Delay & Power with

Delay and power data for different Vdd and Vth values was analyzed on
ISCAS’85 benchmarks [2] with libraries characterized in PowerArc for
STMicroelectronics’ 0.13um HCMOS9D process. The comparison was at
the minimum delay achievable with the particular Vdd and Vth. The power
and delay data were normalized to Vdd=1.2V/Vth=0.23V data, and then
averaged across the netlists. There was little variation in the normalized data
at the same Vdd and same Vth across the netlists [6]. To provide a range of
Vth values for the characterization with PowerArc, the zero bias threshold
voltage parameter vth0 [1] in the SPICE technology files was adjusted.

The netlists were delay minimized in Design Compiler with the Vdd=1.2V
and Vth=0.23V library. To minimize the delay, it was not necessary to resize
the circuits when using different Vdd and Vth values, as illustrated in Table
4.1. The wire loads were 3+2×#fanouts fF, and output port loads were 3fF
excluding the load of the wire to the port.

The delay dependence on Vdd and Vth is discussed in Section 4.2. We
then examine switching power, short circuit power and leakage power in
sections 4.3, 4.4 and 4.5. The net power consumption and how to choose
Vdd and Vth to minimize it for a given delay constraint is detailed in Section
4.6. These trade-offs are summarized in Section 4.7.

4.2 DELAY

The delay for an input transition to cause a transition at a gate’s output is
due to the time it takes to charge or discharge the load capacitance and the
gate internal capacitances. There are also wire RC delays, but these contribute
less than 1% of the critical path delay for our small combinational benchmarks
where wires are not that long.

A simple model for the delay can be derived from the saturation drain
current through a transistor. The saturation current dependence on input
voltage can be modeled with the Sakurai-Newton alpha-power law [12]

 ()ox
saturation drain current in th

ox eff

WI c V V
t L

αε
µ= − (4.1)

Voltage Scaling 91

where c is a constant; µ is the charge carrier mobility; εox is the electric
permittivity; tox is the gate oxide thickness; Leff is the effective transistor
channel length; W is the transistor gate width (size); Vin is the driving voltage
to the NMOS transistor gate; and α is the velocity saturation index which
depends on the technology, and is between 1 and 2. A value for α of about
1.3 is typical for today’s technologies.

Using the saturation drain current from Equation (4.1), the delay d for
charging a capacitance C from 0V to Vdd may be approximated as [14]

 /
()

dd
dd saturation drain current

dd th

CVd CV I k
W V V α= =

−
 (4.2)

where k is a constant, and W is the width of the transistor through which
current is flowing to charge the capacitor. From Equation (4.2), the delay
scaling with Vdd and Vth is [14]

 2 1 1
1 1 2 2

1 2 2

()Delay scaling factor from & to & =
()

dd dd th
dd th dd th

dd dd th

V V VV V V V
V V V

α

α

−
−

 (4.3)

A gate’s delay is reduced as its size increases, but increases as the size of
fanout gates and thus their capacitance increases. A gate also has internal
capacitances which contribute an additional “parasitic delay” as it is termed
in “logical effort” delay models [14][15]. The delay also increases as the
supply voltage Vdd is reduced and as the threshold voltage Vth is increased.

Excluding the driving gate from analysis by using a fixed input voltage
ramp, as a gate is upsized to reduce the delay, the reduction in gate delay is
less for larger gate sizes due to the parasitic delay. The dynamic power for
charging and discharging the internal capacitances increases linearly with
gate size. This results in the classic power-delay “banana” curve shown in
Figure 4.1. Including the driving gate in analysis results in a delay increase
for larger gate sizes due to the load on the driving gate, as shown in Figure
4.2. Thus if a gate is upsized, its fanins may also need to be upsized.

By comparing the impact of gate size, threshold voltage, and supply
voltage on delay and these power terms, we see that there are significant
delay-power trade-offs that must be carefully analyzed. To minimize power,
it is not clear that reducing supply voltage to reduce switching power, or
increasing threshold voltage to reduce leakage power, is more important than
reducing gate size. All of these choices increase the circuit delay, except for
gate downsizing, which may increase delay or reduce delay as the reduced
load on preceding gates reduces their delay. Optimization approaches which
favor one technique, typically Vdd, over the others will be suboptimal in
situations where the power-delay sensitivity to this technique is less. As
noted by Brodersen et al. [3], reducing the threshold voltage or increasing
the supply voltage, subject to process constraints, to provide slack for gate
downsizing can sometimes give better overall power savings.

92 Chapter 4

Figure 4.1 Power versus delay for inverter cells from the 0.13um PowerArc characterized
libraries. The input signal was a ramp with 0.1ns slew. Each point on a curve is for a different
gate size, and larger gate sizes have larger power consumption. The load capacitance was 8fF,
and the switching frequency was 4GHz, where dynamic power dominates leakage power.

Figure 4.2 Power versus delay for inverter cells from the 0.13um PowerArc characterized
libraries. The driving gate was included in the power and delay analysis. In addition for the
0.8V Vdd cells, there is a level converter flip-flop delay overhead of 80ps, but no power
overhead, for voltage level restoration to drive the output at 1.2V. Each point on a curve is for
a different gate size, and larger gate sizes have larger power consumption. The load
capacitance was 8fF, and the switching frequency was 4GHz.

0

100

200

300

400

500

600

0.00 0.05 0.10 0.15 0.20
Delay (ns)

Po
w

er
 (u

W
)

vdd 1.2V, vth 0.08V

vdd 1.2V, vth 0.23V

vdd 0.8V, vth 0.08V

vdd 0.8V, vth 0.23V

0

100

200

300

400

500

600

0.00 0.05 0.10 0.15 0.20
Delay (ns)

Po
w

er
 (u

W
)

vdd 1.2V, vth 0.08V

vdd 1.2V, vth 0.23V

vdd 0.8V, vth 0.08V

vdd 0.8V, vth 0.23V

80ps delay overhead for
level converter flip-flop

Voltage Scaling 93

Table 4.2 This table lists the average error magnitude for the delay fits using the analytical
model in Equation (4.3) and the empirical fit in Equation (4.4). Vth was 0.08V, 0.12V, 0.14V
and 0.23V.

Mean error magnitude vs. Mean error magnitude vs.
Delay Fit Vdd 0.8V & 1.2V delay data Vdd 0.5V, 0.8V & 1.2V delay data

Analytical model, α =1.30 7.3% 17.0%
Analytical model, α =1.66 1.5% 6.0%
Analytical model, α =1.83 4.8% 4.3%
Empircal fit, α =1.10 0.6% 0.8%

4.2.1 Empirical fit to 0.13um delay data

We will now discuss fitting the delay to 0.13um data at a range of Vdd
and Vth values. Several cells were characterized incorrectly with Vdd of
0.5V, so we present delay fits with and without the 0.5V Vdd library.

The derivation of the analytical delay model in equations (4.2) and (4.3)
ignores signal slew and other factors. Assuming α of 1.3 for today’s techno-
logies for the saturation drain current may be reasonable, but does not give a
good fit with Equation (4.3) for the delay. The delay is underestimated by up
to 19.4% at Vdd of 0.8V and by up to 52.3% at Vdd of 0.5V.

A least squares fit of Equation (4.3) to the 1.2V and 0.8V Vdd delay data
gives a value for α of 1.66. The α=1.66 fit underestimates the 0.5V Vdd
delays by up to 24.4%. Including the 0.5V Vdd data in the least squares fit,
gives a value for α of 1.83, but the fit errors are still up to 6.6%.

Thus delay scaling with Equation (4.3) in [14] and other papers is at best
somewhat inaccurate if α is fitted correctly, and otherwise wrong when a
value for α of 1.2 to 1.3 is assumed typically.

From analysis of the derivation in the Sakurai-Newton alpha power
law delay model [12] and experimenting with different fits, the best fit to
normalized delay was given by

 10.587 0.241()
()

dd
dd th

dd th

Vd V V
V V

α
α+= + −

−
 (4.4)

with a value for α of 1.101. This fit had an average error magnitude of 0.8%
and the maximum error was only 2.1%. The accuracy of the fits is summarized
in Table 4.2.

As the supply voltage is reduced, if the threshold voltage is kept
constant, the delay begins to increase rapidly. Whereas if both Vdd and Vth
are scaled down, then the delay does not increase as much. This is illustrated
in the graph of the normalized delay given by Equation (4.4) in Figure 4.3.
For example at Vdd=0.8V/Vth=0.08V, the delay is only 10% worse than at
Vdd=1.2V/Vth=0.23V.

94 Chapter 4

Figure 4.3 Graph of the fit in Equation (4.4) for the minimum delay versus supply voltage
and threshold voltage, normalized versus the circuit delays with Vdd=1.2V/Vth=0.23V.

4.3 SWITCHING POWER

As digital logic performs computations, logic transitions occur between 0
and 1, charging circuit capacitances to a high voltage, or discharging them
back to a low voltage. The switching power for charging and discharging a
capacitance C to a voltage Vdd and back to 0V with switching frequency f is

 21
2switching ddP CV f= (4.5)

Capacitances in the circuit include internal “parasitic” capacitances within
each gate, capacitances of the input pins of each gate, and wire capacitances.
In standard cell library characterization, switching power for the internal
gate capacitances is included with the short circuit power in the “internal
power” of a gate. A gate’s internal capacitances and input pin capacitances
depend on the transistor width (i.e. the gate size).

With the quadratic dependence of switching power on supply voltage Vdd
in Equation (4.5), reducing the supply voltage is often seen as the most
effective way to reduce dynamic power. However at a tight delay constraint,
reducing gate sizes can provide a greater power reduction: as each gate loads
its fanins, if a gate is upsized to reduce delay, then its fanins must in turn be
upsized to prevent their delay increasing. Consequently, the gate sizes and

Voltage Scaling 95

power increase rapidly as delay is reduced towards a tight delay constraint.
Conversely, if timing slack is available near a tight delay constraint, reducing
a gate’s size allows fanins to be reduced in size, and substantial power savings
may be achieved.

4.3.1 Empirical fit to 0.13um input pin capacitance

In a combinational complementary CMOS circuit, the switching power is
the power consumed charging and discharging the wire capacitances, output
port capacitances and gate input pin capacitances. The power for (dis)charging
gate internal capacitances is included in the internal power (see Section 4.4.1).
Gate input pin capacitances vary with Vdd and Vth.

By setting the wire loads and output port loads to zero, we determine that
wire loads contribute 37% and the output ports contribute 1% of the switching
power, excluding switching of gate internal capacitances, on average across
the ISCAS’85 benchmarks with the Vdd=1.2V/Vth=0.23V library. The delay
is also 25% more with wire loads versus no wire loads. We measured the
switching power at the original clock frequency to factor out the delay
change.

Given the switching power due to the output port and wire loads, the
remainder of the switching power is due to the gate input pin capacitances.
We can then determine how gate input pin capacitance Cin varies with Vth
and Vdd, by dividing by the Vdd

2 term in Equation (4.5). A least squares fit
with a first order Taylor series gives
 Normalized input pin capacitance 0.957 0.200 0.859in dd thC V V= + − (4.6)

where Cin was normalized to 1.0 at Vdd=1.2V and Vth=0.23V. This fit has
an average error magnitude of 1.0% and maximum error of 2.6%.

The increase in gate capacitance with decreases in Vth has been
identified previously [13][17], but the dependence of Cin on Vdd has not
generally been discussed in multi-Vdd optimization research. However, the
reduction in Vth with increased Vdd due to drain induced barrier lowering
(DIBL) [11] is well known from a process standpoint. In our 0.13um data,
there was up to a 22% Cin increase if Vdd was increased from 0.5V to 1.2V,
and up to a 20% increase in Cin if Vth was reduced from 0.23V to 0.08V [6].

4.4 SHORT CIRCUIT POWER

Short circuit power is dissipated when there is a current from supply to
ground in a gate when both the pull-up PMOS network of transistors and
pull-down NMOS network of transistors are conducting. In 1984, Veendrick
[16] derived the short circuit current for an inverter without load. He
assumed that the saturation drain current has the form in Equation (4.1) with
α of 2, resulting in average short circuit current of [16]

96 Chapter 4

 3

1 (2)ox
short circuit dd th in

ox eff dd

WI c V V s
t L V
ε

µ= − (4.7)

where c is a constant, and sin is the input slew.
A value for α of about 1.3 is typical for today’s technologies to model

the saturation drain current with Equation (4.1). Following a similar derivation
to Veendrick, the short circuit power without load in terms of the optimization
variables of direct interest to us is
 1

 (2)short circuit dd thP cfW V V α += − (4.8)

where c is a constant and f is the switching frequency.
Consequently, the short circuit power is between quadratically and cubi-

cally dependent on the supply voltage, depending on the value of α. The short
circuit power is linearly dependent on the gate size, and increases as the
threshold voltage is reduced.

The impact of slew is not included in Equation (4.8). As noted by
Veendrick [16], the short circuit power contributes only a minor portion of
the dynamic power when the input slews to the gate and the gate’s output
slew are similar. This minimizes the duration when both PMOS and NMOS
transistor chains are conducting. A circuit’s short circuit power is minimized
if the input slews to a gate and its output slews are equal, and the short
circuit power increases rapidly as input slew increases relative to output slew
[4]. As input slews are usually similar to a gate’s output slew, short circuit
power typically contributes less than 10% of the dynamic power [5]. However,
this can be an underestimate for low threshold voltages.

4.4.1 Empirical fit to 0.13um internal power data

The internal power has two components: the short circuit power, and the
switching power for internal “parasitic” capacitances. For a fit to the internal
power, we expect terms of the form (Vdd – 2Vth)α for the short circuit power
from Equation (4.8) and a Vdd

2 term for the switching power of the gate
internal capacitances from Equation (4.5). A good fit was provided by

 ()

2 3.183 0.1620.413 0.958(2) 0.039(2)
internal switching internal capacitances short circuit

dd dd th dd th

P P P

f V V V V V

= +

= + − + −
 (4.9)

The fit has an average error magnitude of 0.4% and maximum error of 1.0%.
The first Vdd

2 term in Equation (4.9) accounts for the switching of inter-
nal capacitances. Multiplying the Vdd

2 term by a first order Taylor series in
Vdd and Vth to consider the dependence of internal capacitance on Vth and
Vdd, in the manner of Equation (4.6), does not improve the fit substantially.
This suggests that gate internal capacitance is independent of Vth and Vdd.

Voltage Scaling 97

Figure 4.4 Graph of the short circuit energy (Vdd – 2Vth) terms in Equation (4.9), normalized
versus the short circuit energy at Vdd=1.2V/Vth=0.23V.

The second term in Equation (4.9) accounts for the majority of the short
circuit power, while the last term provides a slight correction to the short
circuit power. The fitted exponents for the short circuit power terms do not
correspond to what we might expect from Equation (4.8), if α is about 1.3,
but Equation (4.8) does not include the effect of input slew and load capa-
citance which introduce higher order terms.

The short circuit energy is graphed in Figure 4.4. As the threshold
voltage is reduced, the short circuit power grows significantly. The short
circuit energy approaches zero as Vdd approaches 2Vth, as predicted by
Veendrick [16], because at Vdd = 2Vth NMOS and PMOS transistors cannot
be “on” (i.e. VGS > Vth) simultaneously, so there is no short circuit current.
The short circuit power reduces substantially as Vdd decreases, by about a
factor of 10× as Vdd is reduced from 1.2V to 0.6V at Vth=0.08V. The short
circuit power is reduced by this large factor due to the smaller period of time
when both pull-up and pull-down transistor chains are conducting.

4.5 LEAKAGE POWER

In deep submicron process technologies with low threshold voltages, the
dominant sources of leakage power are subthreshold leakage and gate leakage.
Subthreshold leakage occurs when the transistor gate-source voltage VGS is
below the threshold voltage Vth, and the minority carrier concentration varies

98 Chapter 4

across the MOSFET channel causing a diffusion current between drain and
source. Gate leakage is due to a high electric field across the thin transistor
gate oxide, which results in tunneling of electrons through the transistor gate
oxide [11].

An analytical model for the subthreshold leakage current is [7]

() ()
2

/ /0
 1q V V V V mkT qV kTox GS th b DS DS

subthreshold leakage
ox eff

W kTI c e e
t L q

γ ηε
µ − − + −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (4.10)

where c is a constant; k is Boltzmann’s constant; q is the charge of an
electron; T is the temperature; VDS is the transistor drain to source voltage;
VGS is the transistor gate to source voltage; Vth0 is the zero bias threshold
voltage, Vb is the body bias voltage; γ is the linearized body effect coeffi-
cient; m is the subthreshold swing coefficient; and η is the drain-induced
barrier lowering (DIBL) coefficient.

The subthreshold leakage increases rapidly as the temperature increases.
At 25°C, The “ideal” subthreshold slope is ln(10)kT/q = 60mV/decade if m
is 1 in Equation (4.10), though in real processes the subthreshold slope is
worse (more) than this [10].

Simplifying the expression in Equation (4.10) to the optimization varia-
bles of interest to us, the subthreshold leakage power for an NMOS transistor
in an inverter is approximately

 ()2 0
 1

c V Vth dd
subthreshold leakage ddP c V We η− += (4.11)

where c1 and c2 are constants; the input voltage VGS = 0V when it is “off”
and leaking; VDS = Vdd; and Vb = 0V assuming there is no body bias applied.
The subthreshold leakage increases exponentially as the threshold voltage
Vth is reduced. The subthreshold leakage increases linearly with gate size
(transistor width W) and with the supply voltage Vdd. However, Vdd increases
leakage further due to the drain-induced barrier lowering term.

Gate oxide tunneling leakage current Iox can be modeled as [8]

2.5 2.5() ()bV cT bV cTGS ox GD ox

ox eff effI aL e aL e
− −− −= + (4.12)

where a, b and c are constants; Leff is the effective channel length; VGS is the
gate to source voltage; VGD is the gate to drain voltage; and tox is the
transistor gate oxide thickness. The gate leakage increases exponentially as
the gate oxide thickness is reduced, and is significant in process technologies
below 90nm, in some cases exceeding the subthreshold leakage.

Both subthreshold leakage and gate leakage vary significantly depending
on the input state to the logic gate. Subthreshold leakage is largest when the
leakage current path from Vdd to ground has only one transistor that is off.
This stack effect can be used to reduce the subthreshold leakage, for
example with sleep transistors for power gating as discussed in Chapter 10.

Voltage Scaling 99

The gate tunneling leakage is largest when VGS = VGD = Vdd, and decreases
rapidly when VGS and VGD are reduced [8].

4.5.1 Empirical fit to 0.13um leakage power data

In STMicroelectronics’ 0.13um HCMOS9D process, subthreshold leakage
is by far the most significant component of leakage power, but gate leakage
is also included in the technology models. The leakage power increases
exponentially as the threshold voltage is reduced. For our 0.13um data,
leakage increases by about 56× as Vth is reduced from 0.23V to 0.08V, and
increases by about 3× as Vdd is increased from 0.6V to 1.2V [6].

Fitting the analytical model for subthreshold leakage in Equation (4.11)
to the leakage data normalized to the value at Vdd=1.2V/Vth=0.23V, we get
 26.9 0.770158 V Vth dd

leakage ddP V e− += (4.13)

This fit has an average error magnitude of 2.6% and a maximum error of
6.0%. This is quite a good fit considering that the function is exponential.

From the fitted Vth coefficient in Equation (4.13), we can determine the
subthreshold leakage slope at 25°C

 ln10Subthreshold leakage slope 86mV/decade
26.9

= = (4.14)

The subthreshold slope of 86mV/decade is about what we expect.

4.6 0.13um DATA FOR TOTAL POWER

From the empirical fits and the analysis of the components of switching
energy and internal energy, we can determine the individual contributions to
the total energy, as shown in Figure 4.5. The leakage power was normalized
to about 1% of the total power at Vdd=1.2V/Vth=0.23V at the minimum
delay. At high Vdd and high Vth, the majority of the energy is due to
switching of capacitances and short circuit current. If Vdd is scaled down to
reduce the dynamic power, Vth must be reduced to avoid excessive delay,
but then the leakage power becomes large.

The majority of the dynamic power is due to the switching power for
the gate internal capacitances, gate input pin capacitances and wire loads.
About 42% of the switching power is for (dis)charging the gate input pin
capacitances, 32% is due to the gate internal capacitances, and 26% is due to
the wire loads. These percentages vary up to ±3% with Vdd and Vth, as gate
input pin capacitance varies with Vdd and Vth. Switching of the output ports
contributes less than 1% of the switching power, as we assumed only a small
output port load of 3fF. However in circuits with buses or chip outputs, these
capacitances can be much larger and then I/O, receiving/sending input/output
data, contributes a significant portion of the chip power.

100 Chapter 4

Figure 4.5 This graph shows the normalized total energy per cycle at different supply and
threshold voltages, with the breakdown into leakage, short circuit and switching energy.

Leakage power is very significant at low threshold voltages. If threshold
voltages are reduced too much, the majority of the power consumption is
due to leakage, as leakage increases exponentially with reduction in Vth.

Vth(V) 0.23 0.14 0.12 0.08 0.23 0.14 0.12 0.08 0.23 0.14 0.12 0.08 0.23 0.14 0.12 0.08
Vdd(V) 5.06.08.02.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
N

or
m

al
iz

ed
 T

ot
al

 E
ne

rg
y/

C
yc

le

Leakage
Short Circuit
Switching

Voltage Scaling 101

Short circuit power can be quite significant at high Vdd and low Vth – it
contributes up to 27.2% of the total power at Vdd=1.2V/Vth=0.08V. Typically,
circuit designers say that short circuit power contributes around 10% of total
power, and a common assumption in optimization research to ignore the
impact of short circuit power. However, our analysis indicates that it is
important to include short circuit power when considering lower Vth.

While the power savings by reducing Vdd and increasing Vth can be
huge, the accompanying delay increase must also be considered. For
example, there is a 20× power reduction going from Vdd=1.2V/Vth=0.14V
to Vdd=0.6V/Vth=0.23V, but the delay increases by 3.3×. Assuming no
delay constraint, the appropriate metric to use is the energy. There is only a
6× energy reduction from Vdd=1.2V/Vth=0.14V to Vdd=0.6V/Vth=0.23V,
as can be seen in Figure 4.5. Note that this comparison is somewhat
simplistic as we haven’t considered power minimization with gate sizing yet.
Instead of reducing Vdd and increasing Vth, the timing slack could be used
for gate downsizing to reduce gate internal capacitances and gate input pin
capacitances. Thus the actual benefits of Vdd=0.6V/Vth=0.23V may be
significantly less.

4.6.1 Optimal Vdd and Vth to minimize the total power

We can now determine the optimal Vdd and Vth to minimize power
consumption when meeting a given delay constraint from the delay and
power fits for the 0.13um technology. Combining equations (4.4), (4.6),
(4.9) and (4.13), we minimize the total power Ptotal with

max

1.101
2.101

26.7 0.770

2 3.183

0.162

minimize
subject to

0.587 0.241()
()

158

0.413 0.958(2)
 0.039()

total

dd
dd th

dd th

V Vth dd
leakage dd

internal dd dd th

dd th

switchi

P
T T

VT V V
V V

P V e

E V V V

V V

E

− +

=

= + −
−

=

= + −

+ −

20.62(0.957 0.200 0.859)
0.37 0.01

10.011 (0.430 0.559)

dd th
ng dd

total leakage internal switching

V V
V

P P E E
T

+ −⎛ ⎞
= ⎜ ⎟+ +⎝ ⎠

= + +

 (4.15)

where T is the critical path delay; Tmax is the delay constraint; Pleakage is the
leakage power; Einternal is the energy/cycle from short circuit currents and
switching of internal capacitances; and Eswitching is the switching energy of
transistor gates (62%), wire loads (37%) and output port loads (1%).

102 Chapter 4

While the optimal Vdd and Vth depend on the process technology,
conventional wisdom based on theoretical analysis by Nose and Sakurai [9]
suggests that leakage should contribute 30% of total power to minimize the
total power consumption, independent of the process technology, switching
activity and delay constraint. They ignored short circuit current, the depend-
ence of transistor gate capacitance on Vdd and Vth, and the impact of drain-
induced barrier lowering on leakage. The largest inaccuracy in their analysis
was scaling delay with Equation (4.2) and α of 1.3, which underestimates
delay by up to 50% at low Vdd (see Section 4.2.1).

In contrast to Nose and Sakurai’s result, to minimize the total power for
our 0.13um data, we find that leakage contributes from 8% to 21% of the
total power depending on the delay constraint and how much leakage there is
versus dynamic power. To model the effect of different activities and process
technologies, thus the amount of leakage, we considered three scenarios for
leakage power with 0.1×, 1× and 10× the leakage in Equation (4.15). For
each order of magnitude increase in the weight on leakage, the optimal Vth
averages 0.095V higher and the optimal Vdd averages 0.17V higher, reducing
leakage by a factor of 9.0× which mostly cancels out the 10× weight increase,
in exchange for a 40% increase in dynamic power on average (see Figure
4.6). The total power consumption is also 40% higher.

Leakage contributes more power at a tight delay constraint, as shown in
Figure 4.7, because a lower Vth must be used to meet the delay constraint.
As the delay constraint is relaxed, the timing slack enables an exponential
reduction in the leakage power by increasing Vth. The minimum contri-
bution from leakage occurs at a delay constraint of about 0.9. When the
delay constraint is relaxed further, Vdd is reduced faster than the increase in
Vth (see Figure 4.8), because of the exponential dependence of leakage
power on Vth. The contribution of leakage slowly increases as the delay
constraint is increased beyond 0.9, because the switching activity decreases
as 1/T, reducing dynamic power but not leakage. In the scenario where
there is more leakage, at a tight delay constraint the percentage of leakage
is larger because Vth must be lower, but at more relaxed delay constraints
the percentage of leakage is less because Vdd is higher and there is more
dynamic power.

In sequential circuitry, the optimal portion of total power from leakage
may be higher as dynamic power in idle units can be avoided by clock
gating, but power gating and other leakage reduction methods can only be
used in standby mode.

Voltage Scaling 103

Figure 4.6 The leakage power and dynamic power versus the delay constraint.

Figure 4.7 Percentage of total power due to leakage versus the delay constraint.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized Delay Constraint

N
or

m
al

iz
ed

 P
ow

er

Dynamic power with 0.1x leakage
Dynamic power with 1x leakage
Dynamic power with 10x leakage
Leakage power with 0.1x leakage
Leakage power with 1x leakage
Leakage power with 10x leakage

8%

10%

12%

14%

16%

18%

20%

22%

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized Delay Constraint

Pe
rc

en
t L

ea
ka

ge

0.1x leakage

1x leakage

10x leakage

104 Chapter 4

Figure 4.8 Optimal Vth and Vdd to minimize the total power versus the delay constraint.

4.7 SUMMARY

Having examined the power and delay trade-offs, let us summarize the
power minimization approaches. Gate downsizing reduces the gate internal
capacitances and gate input pin capacitances, thus reducing switching power.
Reducing the gate size also gives an approximately linear reduction in leakage
and short circuit power, due to the higher transistor resistances.

Reducing the supply voltage provides a quadratic reduction in switching
power, and also provides substantial reductions in short circuit power and
leakage power. Increasing the threshold voltage exponentially reduces the
leakage power and also reduces the short circuit power. In the 0.13um techno-
logy, the leakage at Vth of 0.08V is about 56× the leakage at 0.23V Vth, and
the leakage at Vdd of 1.2V is about 3× the leakage at 0.6V.

Both an increase in Vdd and a decrease in Vth increase the gate input pin
capacitance Cin, which increases the delay and the switching power. Cin
increases by 22% if Vdd is increased from 0.5V to 1.2V at Vth of 0.23V,
and it increases by 20% if Vth is reduced from 0.23V to 0.08V at Vdd of
0.5V. The dependence of Cin on Vdd has not generally been mentioned in
other multi-Vdd optimization research, though it can be as significant as the
effect of Vth on Cin. Other optimization research has noted the impact of Vth
on Cin [13][17]. In contrast, we found that gate internal capacitances did not

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized Delay Constraint

V
ol

ta
ge

 (V
)

Vdd with 0.1x leakage
Vdd with 1x leakage
Vdd with 10x leakage
Vth with 0.1x leakage
Vth with 1x leakage
Vth with 10x leakage

Voltage Scaling 105

depend significantly on Vth or Vdd. Thus reducing supply voltage and incre-
asing threshold voltage provide some additional power reduction by reducing
the gate input capacitance.

Except for gate downsizing in some situations, these power minimization
approaches come with a delay penalty. If Vth is scaled with Vdd then delay
is inversely proportional to Vdd. However, Vth scaling is limited by the
exponential increase in leakage power as Vth is reduced. Thus the delay may
increase substantially when Vdd is reduced. To avoid the delay penalty for
low Vdd and high Vth, we can use high Vdd and low Vth on critical paths,
and use low Vdd and high Vth elsewhere to reduce the power. Chapters 7
and 8 will examine the power savings that can be achieved with use of multi-
ple supply voltages and multiple threshold voltages.

Optimization researchers often exclude wire loads and short circuit
power to simplify analysis; however, we found that wire loads can contribute
24% of the total power, and short circuit power can account for up to 27% of
the total power at high Vdd and low Vth. The wire loads also increase the
critical path delay, by 25% on average with the Vdd=1.2V/Vth=0.23V
library. Typically, circuit designers say that short circuit power contributes
around 10% of total power. However, our analysis indicates that it is
important to include short circuit power when considering lower Vth.

From the empirical fits for the delay and power, the optimal Vdd and Vth
to minimize the total power consumption can be determined. For example,
the optimal Vdd is 1.0V and the optimal Vth is 0.14V for a delay constraint
of 1.0; and the optimal Vdd is 0.86V and the optimal Vth is 0.15V for a
delay constraint of 1.2, where delays have been normalized to the delay with
Vdd of 1.2V and Vth of 0.23V in the 0.13um process technology.

The analysis for the optimal Vdd and Vth does not consider that additional
timing slack may be used for gate downsizing. In Chapter 7, we consider
selection of Vdd and Vth with gate sizing, but Vdd is limited to 0.6V, 0.8V
or 1.2V, and Vth is limited to 0.08V, 0.14V or 0.23V. Without gate sizing,
our analysis would predict that Vdd of 1.2V and Vth of 0.23V are the best
choice for delay of 1.0, and that Vdd of 0.8V and Vth of 0.08V are the best
choice for delay of 1.2. The optimal Vdd is still 1.2V at a delay constraint of
1.0, but the optimal Vth is lower, 0.14V (see Table 7.3), providing timing
slack of 12% of the clock period for gate downsizing, compared to no timing
slack with Vth of 0.23V. At a delay constraint of 1.2, the optimal Vdd and
Vth remain respectively 0.8V and 0.08V (see Table 7.7 with 0.8V input
drivers) as there is sufficient timing slack, 8% of the clock period, for gate
downsizing.

Conventional wisdom based on theoretical analysis by Nose and Sakurai
[9] suggests that leakage should contribute 30% of total power when Vdd
and Vth are chosen optimally to minimize the total power consumption,
independent of the process technology, switching activity and delay constraint.
Choosing Vdd and Vth optimally to minimize the total power with the

106 Chapter 4

empirical fits to 0.13um data, we found that leakage contributes from 8% to
21% of the total power depending on the delay constraint and how much
leakage there is, thus depending on the process technology and switching
activity. However, the possible Vdd and Vth values depend on the particular
process technology and available standard cell libraries. For example for the
delay constraint of 1.2 with the best library choice with Vdd of 0.8V and Vth
of 0.08V, leakage contributed on average 40% of the total power.

4.8 REFERENCES
[1] Avant!, Star-Hspice Manual, 1998, 1714 pp.
[2] Brglez, F., and Fujiwara, H., “A neutral netlist of 10 combinational benchmark circuits

and a target translator in Fortran,” in Proceedings of the International Symposium
Circuits and Systems, 1985, pp. 695-698.

[3] Brodersen, R., et al., “Methods for True Power Minimization,” in Proceedings of the
International Conference on Computer-Aided Design, 2002, pp. 35-42.

[4] Burd, T. “Low-Power CMOS Library Design Methodology,” M.S. Report, University of
California, Berkeley, UCB/ERL M94/89, 1994, 78 pp.

[5] Chandrakasan, A., and Brodersen, R., “Minimizing Power Consumption in Digital
CMOS Circuits,” in Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp. 498-523.

[6] Chinnery, D., Low Power Design Automation, Ph.D. dissertation, Department of
Electrical Engineering and Computer Sciences, University of California, Berkeley, 2006.

[7] De, V., et al., “Techniques for Leakage Power Reduction,” chapter in Design of High-
Performance Microprocessor Circuits, IEEE Press, 2001, pp. 48-52.

[8] Lee, D., Blaauw, D., and Sylvester, D., “Gate Oxide Leakage Current Analysis and
Reduction for VLSI Circuits,” IEEE Transactions on VLSI Systems, vol. 12, no. 2, 2004,
pp. 155-166.

[9] Nose, K., and Sakurai, T., “Optimization of VDD and VTH for Low-Power and High-
Speed Applications,” in Proceedings of the Asia South Pacific Design Automation
Conference, 2000, pp. 469-474.

[10] Rabaey, J.M., Digital Integrated Circuits. Prentice-Hall, 1996.
[11] Roy, K., Mukhopadhyay, S., and Mahmoodi-Meimand, H., “Leakage Current

Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS
Circuits,” in Proceedings of the IEEE, vol. 91, no. 2, 2003, pp. 305-327.

[12] Sakurai, T., and Newton, R., “Delay Analysis of Series-Connected MOSFET Circuits,”
Journal of Solid-State Circuits, vol. 26, no. 2, February 1991, pp. 122-131.

[13] Sirichotiyakul, S., et al., “Stand-by Power Minimization through Simultaneous Threshold
Voltage Selection and Circuit Sizing,” in Proceedings of the Design Automation
Conference, 1999, pp. 436-441.

[14] Stojanovic, V., et al., “Energy-Delay Tradeoffs in Combinational Logic Using Gate
Sizing and Supply Voltage Optimization,” in Proceedings of the European Solid-State
Circuits Conference, 2002, pp. 211-214.

[15] Sutherland, I., Sproull, R., and Harris, D., Logical Effort: Designing Fast CMOS Circuits,
Morgan Kaufmann, 1999.

[16] Veendrick, H., “Short-circuit dissipation of static CMOS circuitry and its impact on the
design of buffer circuits,” Journal of Solid-State Circuits, vol. SC-19, Aug. 1984, pp.
468-473.

[17] Wang, Q., and Vrudhula, S., “Algorithms for Minimizing Standby Power in Deep
Submicrometer, Dual-Vt CMOS Circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 21, no. 3, 2002, pp. 306-318.

Chapter 5 5

METHODOLOGY TO OPTIMIZE ENERGY

Jagesh Sanghavi, Eliot Gerstner
Tensilica
3255-6 Scott Boulevard
Santa Clara, CA 95054
sanghavi@tensilica.com, gerstner@tensilica.com

We present a novel energy optimization methodology based on processor

customization. Unlike previous approaches focused either on behavioral-
level optimization with approximate consideration for underlying hardware,
or register transfer level (RTL), or gate-level power optimization with limited
microarchitectural trade-offs, the new approach compiles cycle count reducing
instruction extension description to synthesizable hardware and accurately
estimates dynamic power at the register transfer level. For a sample set of
digital signal processing (DSP) applications, we see energy reductions excee-
ding a factor of 10× compared to fixed instruction set processors.

5.1 INTRODUCTION

Power is an important design consideration for a range of battery-operated
consumer electronic devices such as PDAs (personal digital assistants), cell
phones, and digital cameras. To increase battery life during active use, the
real metric to minimize is the energy of computation, i.e., the area under
the power curve as a function of time. Secondly, these devices have bursty
computation requirements during which a specific signal processing task is
performed by a functional unit. Hence, it is important to effectively reduce
the power dissipated by a functional unit when it is in the idle state. Finally,
these devices must be programmable to cope with evolving standards require-
ments and provide feature evolution on the same hardware platform.

The dissipated power consists of three components: switching power,
short-circuit power, and leakage power. The switching component is power
dissipated by charging and discharging circuit nodes. The short-circuit com-
ponent is due to short-circuit currents when both P-channel and N-channel

OF COMPUTATION FOR SOCS

108 Chapter 5

transistors are partially on during output signal transition. The leakage power
is primarily due to gate leakage and subthreshold leakage. Although leakage
power dissipation has received a lot of attention, the issue may be mitigated
by process technology advances (multiple threshold voltages and high diele-
ctric constant gate oxide), ASIC design methodology changes [14], and non-
uniform scaling. Voltage scaling has been an effective technique to reduce
the dynamic power (sum of switching and short-circuit power) with every
new process technology due to quadratic dependence of power on the supply
voltage. However, as the device geometries shrink further to 65nm and 45nm
transistor gate lengths, the energy minimization will need to decrease its
reliance on voltage scaling and will need to rely more on architectural and
microarchitectural explorations, effective clock gating, and design methodo-
logy employing power rail shut-off techniques.

The impact of architectural and microarchitectural changes on power
requires accurate estimation of the dynamic power. At the minimum, the
dynamic power that depends on switching activity in the circuit requires an
RTL description to estimate the power with reasonable accuracy [15].
However, it is extremely difficult to explore major architectural and micro-
architectural changes while designing at the register transfer level. With
time-to-market schedule constraints for a reasonably complex design, it is
possible only to perform very limited design explorations. The previous work
has focused on behavioral-level power optimization [1] with approximate
consideration for the underlying hardware implementation and concomitantly
inaccurate power estimates [7].

Extensible processors [5][19] have been proposed as a solution to drama-
tically improve the application performance. Application-specific processors
can be extended by adding custom instructions to efficiently implement
algorithmic kernels. By customizing the processor for a specific application
or class of applications, extensible processors are able to drastically reduce
the cycle count for a range of application benchmarks [4].

In this chapter, we propose a new methodology to optimize the energy of
computation based on customizing an extensible processor. The new approach
compiles the instruction extension description into synthesizable hardware
and uses RTL power estimation to accurately focus on the dynamic power
dissipation. The new approach reduces the area under the power curve over
time by dramatically reducing the cycle count and shuts off the power to
instruction extension units when they are idle.

The rest of the chapter is organized as follows. We define the problem
and motivate the solution approach in Section 5.2. We present the energy
minimization methodology in Section 5.3. We present the experiment results
on a set of case studies in Section 5.4. Finally, we conclude the paper and
provide directions for future research in Section 5.5.

Methodology to Optimize Energy of Computation for SOCs 109

5.2 PROBLEM DEFINITION AND SOLUTION

APPROACH

The objective is to minimize the energy of computation required to
perform a specific processing task in a system context in the presence of
possible area and speed constraints. Although it is possible to optimize
power using the appropriate algorithm [10], the goal of this paper is to define
a methodology that minimizes the energy of computation for a specific C/C++
description of the application.

It is important to be able to accurately estimate dynamic power to optimize
it [3][8]. In contrast to approaches that create a power model based on an
estimate of switching capacitance in response to input transitions [13] or that
estimate power based on parameters such as number and type of operations
and number of edges in control/data flow specification [1][17], we measure
the power on the generated RTL. RTL power estimation provides a better
estimate of dynamic power by performing a quick logic synthesis and poten-
tially a quick physical synthesis to estimate wire capacitances.

Instead of solving the energy optimization problem in general at a beha-
vioral or unconstrained architectural level, we focus our attention on the
use of an extensible processor platform. As transistor densities increase in
accordance with Moore’s law, an extensible processor may emerge as the
fundamental building block that provides the next level of abstraction above
RTL. We present a set of transformations that reduce the energy of compu-
tation in the context of extensible processors.

In the system-on-chip context, energy optimization using an extensible
processor compares favorably to a hardwired solution that implements the
specific functionality. The energy dissipated by the datapath logic of a
hardwired solution will be comparable to an execution unit added in the
extensible processor. The advantage of hardwired logic decreases further
when the energy requirement for address generation logic and control logic
are taken into consideration. In the system context, a hardwired solution
typically shares memory with the control processor, hence, one must also
take into account the energy costs of additional ports on the memory or
contention management logic.

When viewed from the larger system perspective, the overhead of running
the processor pipeline to execute specific functionality is outweighed by the
design, verification, and integration complexities of the hardwired solution.

110 Chapter 5

5.3 OPTIMIZATION METHODOLOGY

The energy optimization methodology is shown in Figure 5.1. The
methodology consists of the following four steps:

1. Extraction of software kernels and design of custom instructions

2. Hardware generation and software tool generation for custom instru-

ctions

3. Creating hardware switching activity for the application software kernels

4. Estimating RTL power using generated hardware and switching activity

We describe below each of these steps in detail.

Energy efficient design

C/C++ application code

Extract kernels

Software kernels

Design new instructions

Instruction extension description

TIE compiler

Instruction extension hardware

RTL power estimation

Power report

Budget
met?

Tech
library

No

Yes

Compiler / assembler
/ linker

Instruction stream

Verification infrastructure
/ simulator

Activity file

Figure 5.1 Energy optimization methodology

Methodology to Optimize Energy of Computation for SOCs 111

5.3.1 Instruction Set Extension

The designer starts with a C/C++ description of the application. Based
on intuition, prior experience, and software profiling tools, the designer
extracts the computation kernels that dissipate a significant fraction of the
total energy.

Once these software kernels are identified, the designer defines new
instructions that reduce the system energy. This aspect of design is based on
the following transformation guidelines:

• Data localization: When a large amount of computation is performed

on a data set of moderate size, it is important to ensure that entire data
set is resident in the processor register file. This ensures the loads and
stores from local memories are minimized. Not only does this reduce the
energy of computation for the processor, but it also reduces the data
memory energy dissipation.

• Combining basic instructions: By combining multiple instructions into

a custom instruction that either uses the same hardware or adds a marginal
amount of additional hardware, the power per instruction will grow only
slightly. However, the cycle count reduction leads to reduction in the
total energy.

• Parallelization: The common parallelization techniques used are Single

Instruction Multiple Data (SIMD) and multiple operations per instru-
ction word. Additional hardware leads to increased capacitance, so the
power per custom instruction that uses parallelization techniques will
increase. However, the same computation using the unaugmented hard-
ware would take proportionately longer to compute, where the instruction
stream lengthening would be determined by SIMD vector length or the
number of operations performed by the instruction word.

For the above transformations, it is important to ensure that the area

increase is within the specified budget. The extensible processor must support
freely intermixed variable length instructions; any restriction that requires
instructions to be the same width will be untenable due to an increase in the
instruction memory cost and resulting instruction-fetch cost. Secondly, the
transformations above rely on aggressive clock gating that shuts off the clock
to the associated execution unit and register file during inactive phases. In
fact, it is important to ensure that the execution unit is active only when the
custom instruction is being executed in the pipeline and is switched off
when a custom instruction retires or when custom instructions in the processor
pipeline are killed due to an exception.

112 Chapter 5

5.3.2 Hardware and Software Tool Generation

The set of custom instructions are described in the Tensilica Instruction
Extension (TIE) language [19] that is used to extend the Xtensa processor
[5]. A TIE Compiler is used to generate the synthesizable hardware that
implements execution units that correspond to the custom instructions. In
addition to the hardware for custom instructions, the TIE Compiler generates
appropriate components of the software tool chain; namely the compiler,
assembler, and linker.

The following features of the TIE Compiler are important in achieving
the goal of energy minimization:

• Clock gating: The clock to the execution unit is gated; the execution-

unit logic is activated only during the time when a custom instruction
implemented by the execution unit is executing in the processor pipeline.

• Register file: The TIE language enables the designer to specify an

arbitrary size register file that can be used by the custom instructions.

• SIMD instructions: The TIE language has the capability to implement

SIMD instructions.

• Multiple operation instructions: TIE can describe wide instructions of

varying length which can be used to implement multiple operations in
parallel. The varying length instructions can be freely intermixed without
penalty.

5.3.3 Hardware Switching Activity Generation

The extracted software kernels are compiled into an instruction stream
using the software tool chain. The instruction stream is converted into a
memory image and simulated using the verification infrastructure. The hard-
ware switching activity information is determined from the simulation.

5.3.4 RTL Power Analysis

The RTL power analysis tool takes in the activity file, RTL description,
and standard-cell library information to perform a quick logic synthesis. In
power analysis, the wire capacitances are estimated using a wire load model
(with capacitance estimated from the number of fanouts) provided with the
standard cell library, which was selected as it gave the closest correlation
between the RTL power estimate and post-layout power analysis. Capacitance
estimates may be improved by performing a quick placement. The RTL
power estimation includes clock power based on the type of clock tree. In

Methodology to Optimize Energy of Computation for SOCs 113

our experience, the RTL power estimate is within 15% to 20% of the power
computed for the post-layout netlist with 2.5-D extraction1.

5.4 EXPERIMENTAL RESULTS

We present four case studies that demonstrate the reduction of energy of
computation. These are dot product computation, Advanced Encryption
Standard (AES) encryption computation [9], Fast Fourier Transform (FFT)
computation, and Viterbi decoder computation. The kernels presented here
are representative signal processing routines commonly found in consumer
applications.

The RTL power analysis is performed using Sequence’s PowerTheater
Analyst tool [15], with an Artisan standard cell library for TSMC’s 0.13um
low threshold voltage, FSG process2. For each of the examples, the design is
simulated at the register transfer level and power is estimated assuming
100MHz operation at the typical process corner and typical operating corner
(25°C, 1.0V supply). Energy is calculated from power × number of cycles ×
cycle time, where the cycle time is 10ns at 100MHz.

5.4.1 Dot Product

This example consists of computing a dot product of two vectors, each
with 2,048 16-bit entries, as shown in Equation (5.1).

1 1

2048
2 2

1

2048 2048

, where , and i i
i

a b
a b

a b

a b
=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑a b a bi
#

 (5.1)

1 2.5-D extraction is performed by Silicon Ensemble on a placed and routed

netlist to determine the cross-coupling capacitance from looking at nearest
neighbors on the same layer (the first two-dimensional parasitic extraction),
then all wires that cross over or cross under (the second 2-D extraction).
These capacitances are summed together to get the lumped cross-coupling
capacitance to the victim net.

2 FSG is fluorinated silica glass, with a dielectric constant k of 3.6, which is
typically used in 0.13um processes. Its dielectric constant is lower than that
of pure SiO2, which has k of 4.0 and used to be the standard dielectric that
was used in earlier process technologies. The lower k value for the
interlayer dielectric (ILD) reduces the wiring capacitance.

114 Chapter 5

Table 5.1 Cycle count, power, and energy for dot product of two vectors with 2,048 16-bit
entries on different configurations. The configurations are the Xtensa with a multiplier in the
case of MaxMUL, with extensions of two multiply-accumulate blocks in the case of MAC-2,
and four multiply-accumulate blocks in the case of MAC-4.

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
MaxMUL 0.906 11,909 27.8 3.31
MAC-2 1.064 7,426 25.1 1.86
MAC-4 1.263 5,896 26.5 1.56

The measurement results for the dot product computation are shown in
Table 5.1. The table compares the energy of computation without the TIE
and with TIE instruction extensions. The first column shows the configuration
name. The second column is the area after logic synthesis. The third column
shows the cycle count to execute the software corresponding to the dot
product kernel. The fourth column shows the average power reported by the
power estimation tool. And, the final column shows the calculated energy.
Please note that the cycle count also includes a “reset” code sequence and
other software overhead that is common among MaxMUL, MAC-2, and
MAC-4 configurations.

The MaxMUL configuration implements a multiplier but does not support
a multiply-accumulate instruction. The MAC-2 and MAC-4 configurations
extend the MaxMUL configuration by adding two and four multiply-accu-
mulate (MAC) units, each implementing 16×16 multiplication with 32-bit
addition. The area increase is about 10,000 to 12,000 gates per MAC unit,
assuming a NAND2 drive-strength-2 gate to be about 8um2 in 0.13um tech-
nology.

The number of cycles decreases by about 4,500 for the MAC-2 confi-
guration. The reduction in the instruction count is due to merged loads and
merged computation operations. For the MAC-2 configuration, two loads are
merged into one instruction; two multiplications and two addition operations
are performed in one instruction compared to four instructions required for
MaxMUL. A 64-bit register is used, with one MAC putting results in the
upper 32-bits of the register, and the second MAC unit putting its results in
the lower 32-bits. The average power reported for the MAC-2 configuration
is lower than MaxMUL, because the “reset” code sequence and other software
overheads that dissipate much less power (than the load, multiply, and add
instructions) constitute a large fraction of the total cycle count for the
MAC-2 configuration. The energy of computation is reduced from 3.31uJ to
1.86uJ.

The addition of two more MAC units to give the MAC-4 configuration
causes the cycle count to drop by 1,500 due to halving of loads and MAC
instructions compared to the MAC-2 configuration. The energy decreases
marginally from 1.86uJ to 1.56uJ.

Methodology to Optimize Energy of Computation for SOCs 115

Table 5.2 Cycle count, power, and energy for AES encryption on 55 16-byte blocks of
plaintext. The configurations are the Small Xtensa (SX), and SX extended with TIE code to
implement AES in hardware (SX+AES).

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
SX 0.367 283,004 21.6 61.13
SX+AES 0.822 2,768 26.9 0.74

5.4.2 Advanced Encryption Standard (AES) Encryption

The advanced encryption standard (AES) works on one 128-bit (16-byte)
block of plaintext at a time, and uses a 128-bit encryption key [9]. The 128-
bit encryption key is expanded to ten additional 128-bit keys, which together
make up the “key schedule” of the algorithm. These keys can be generated
before the core of the algorithm, or on the fly as necessary.

The 16-byte block of plaintext is conceptually stored and operated upon
in a 4×4 byte state array. There are four encryption steps performed on this
4×4 byte array: SubBytes, ShiftRows, MixColumns, and AddRoundKey.
This latter AddRoundKey step involves one of the eleven keys from the key
schedule. These four encryption steps are performed eleven times on a given
128-bit block of plaintext to arrive at the AES-encrypted ciphertext block.

Implemented as standard C, the inner loop of four encryption steps plus
key expansion takes hundreds of cycles. However, using TIE, and taking
advantage of the ability to declare 128-bit wide buses and a custom register
file, this can be reduced to a single TIE instruction that takes one cycle to
compute. This single TIE instruction is called 11 times for a given plaintext
block, and there are also 3 cycles of load/store operations, giving a final
count of 14 cycles per 16-byte plaintext block.

The power, cycle count, and energy of computation for AES are shown
in Table 5.2. AES encryption is performed on 55 blocks of 16 bytes each.
The total number of blocks is reduced from 1,663 to make disk space
reasonable for gathering data for a Small Xtensa (SX) configuration. However,
this results in a very small cycle count for the SX configuration augmented
with AES TIE. As each block requires only 14 cycles for the SX+AES
configuration, most of the 2,768 cycles is “reset” code. To report the power
more accurately, the power for the SX+AES configuration is from the full
1,663 block run, which takes about 38,000 cycles.

For the AES example, the area increase due to custom instructions
exceeds the size of the original processor configuration (124%). The cycle
count decreases quite drastically. The average power does go up as expected,
due to more computations per cycle. However, the increase in the computation
power is offset by reduction in the load and store power. The cycle reduction
is achieved by the use of wide loads, wide stores, a user-defined register
file that localizes the data, and key manipulation instructions that are very

116 Chapter 5

effectively performed in the extension unit hardware. Due to drastic reduction
in the cycle count, the energy consumption of 0.74uJ is a small fraction of
the 61.1uJ energy required without instruction extensions.

For the SX+AES configuration, the amount of simulation cycles for the
“reset” code is a significant fraction of the total cycles. The power dissipated
as a function of time for the SX+AES configuration is shown in Figure 5.2.
The figure demonstrates the effectiveness of clock gating that shuts off the
clock to the AES execution unit during the “reset” code execution, reducing
power by a factor of 2 during reset.

Figure 5.2 This figure shows the effect of clock gating on AES during reset code execution,
where the power is halved due to clock gating.

5.4.3 Fast Fourier Transform

The fast Fourier transform (FFT) covers a family of techniques for
computing the discrete Fourier transform (DFT). The discrete Fourier
transform of a sequence x of N points is given by

1

2 /

0
[] []

N
ikn N

n
X k x n e π

−
−

=

=∑ (5.2)

where k is from 0 to N–1. The inverse discrete Fourier transform is given by

1

2 /

0

1[] []
N

ikn N

k
x n X k e

N
π

−

=

= ∑ (5.3)

We chose to implement an N-point radix-2 decimation-in-frequency FFT
algorithm for complex input values [11]. Radix-2 refers to the FFT approach
where a transform of length N is broken up into two transforms of length
N/2, which are then subdivided in a similar manner, down to the complex
butterfly computation shown in Figure 5.3.

Methodology to Optimize Energy of Computation for SOCs 117

a

b

A a b= +

2 /() ir NB a b e π−= −
2 /ir Ne π−–1

Figure 5.3 The butterfly computation for the radix-2 decimation-in-frequency FFT, where r is
an integer and depends on the particular stage of the computation.

Table 5.3 Cycle count, power, and energy for fast Fourier transform. The comparisons are
between C code on an Xtensa with a multiplier (MUL); C code on an Xtensa with a multiplier
and extension with two multipliers for the radix-2 butterfly operation (MUL-BFLY); and
hand-coded assembly on MUL-BFLY.

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
MUL 0.421 325,506 17.4 56.64
MUL-BFLY 0.588 37,676 20.4 7.57
assembly coded 0.588 13,836 18.3 2.53

There are many loops in this algorithm, all of which follow the basic
sequence of load-compute-store operations on their respective data. Thus
the first concern is how to best perform loop optimizations such that the
compute portion of one iteration can be done while waiting to perform the
load or store of an adjacent loop iteration. The Xtensa architecture allows for
at most one load or store per processor cycle, however the computation
portion can be written to occur in parallel, limited only by the amount of
compute hardware available. The width of the processor interface (PIF)
determines the throughput of the load/store instructions, and with a PIF
width of 128 bits, a throughput of two sets of complex butterfly inputs in
two cycles is achievable; the throughput of stores is the same. Through this
method of loop unrolling and optimization, about one complex butterfly
computation can be achieved per cycle.

The cycle count, power, and energy of computation for a 256-point
complex FFT are shown in Table 5.3. The table compares the following: a
standard C routine running on an Xtensa configuration with a multiplier
(MUL); a C routine on an Xtensa configuration with a multiplier and with
two multipliers that are used to implement the radix-2 butterfly operation
(MUL-BFLY); and hand-coded assembly for the MUL-BFLY configuration.

Custom instructions fold multiple load instructions into a single load
instruction, fold multiple store instructions into a single store instruction, and
implement radix-2 butterfly operation. This significantly reduces the number
of cycles in computation kernels. With hand-coded assembly for the MUL-
BFLY (assembly coded) configuration, it is possible to reduce the cycle
count further by clever register allocation and inner-loop code reorgani-
zation. The additional hardware cost to implement the radix-2 butterfly is

118 Chapter 5

about 21,000 gates. The reduction in the energy of computation is from 57uJ
for the original approach to less than 3uJ.

5.4.4 Viterbi Decoder

Viterbi decoding is used to determine the maximum likelihood sequence,
given a sequence of transmitted data which has some noise. The transmitted
data is encoded with a convolution of the current input with a set number of
earlier input bits and a masking polynomial. This can be represented by a
state machine where only some state transitions are possible. This enables
detection and correction of errors at the receiver, by excluding sequences of
bits that could not have occurred or have low probability – i.e. by finding the
maximum likelihood sequence.

The core part of the Viterbi decoder that determines the throughput is the
add-compare-select routine:
 1 1 1 1

, , , ,, (add)n n n n
i k i i k j k j j kp s b p s b− − − −= + = + (5.4)

 1 1
, ,min(,) (compare and select)n n n

k i k j ks p p− −= (5.5)

where sk
n is a state metric (a value representing the likelihood of being in

state k at time n); bi,k is a branch metric (a value representing the likelihood
of transition from state i to state k); and pi,k

n-1 is a path metric, accounting for
the probability of being in state i at time n–1 (si

n–1) then transitioning to state
k at time n. A simple two-state trellis butterfly computation for the Viterbi
algorithm is shown in Figure 5.4.

The add-compare-select routine is the main target of TIE optimization
for the Viterbi decoder. The Viterbi decoder implemented is for the GSM
wireless communication standard, which has 16 states in every trellis column
and requires eight butterfly operations to decode a single bit. The inner
add-compare-select loop requires about 42 cycles on the base Xtensa. Two
TIE instructions are created to optimize this process, one 128-bit wide
load instruction into a state register, and one instruction that calculates the
shortest arc into each state, stores these in state accumulators, and writes out
16 binary encoded bytes which designates the most-likely arcs going into
each subsequent state. With the TIE extension, the inner loop executes 64
butterfly computations in 10 clock cycles – a speedup by about 270× for the
inner loop.

s2
n–1

timetn–1 tn

b1,1s1
n–1 s1

n

s2
nb2,2

b1,2 b2,1

s2
n–1

timetn–1 tn

b1,1s1
n–1 s1

n

s2
nb2,2

b1,2 b2,1

Figure 5.4 The two-state trellis butterfly computation for the Viterbi algorithm.

Methodology to Optimize Energy of Computation for SOCs 119

Table 5.4 Cycle count, power, and energy for Viterbi decoder

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
Viterbi 0.522 279,537 23.5 65.69
Viterbi+TIE 0.595 7,632 26.2 2.00

The data for the Viterbi decoder is shown in Table 5.4. The data consisted
of six trials of 192 frames each, with two integer entries per frame. The power
measurement for the Viterbi+TIE configuration is on ten trials, because cycle
count for six trials is too low to make reset code negligible. The increase in
hardware cost is less than 10,000 gates, and the cycle count reduces from
280,000 to less than 8,000 cycles.

5.5 SUMMARY

We present a new approach to energy optimization at microarchitectural
and architectural-level using extensible processors. Extensible processors
offer an attractive alternative to hardwired logic as the potential energy inc-
rease from the use of a processor platform is more than compensated by
the complexity of designing, verifying, and integrating hardwired logic. We
present a methodology to optimize the energy that consists of designing custom
instructions; generating hardware and software tools; generating hardware
switching activity; and measuring power at the RT level. We obtain a drastic
reduction in the energy of computation compared to fixed-instruction-set
processors.

Several approaches have been presented to automatically generate custom
instructions for extensible processors [2][6][12][16]. For future work, it is
promising to take the energy minimization objectives into account while
automatically generating custom instructions from the application code.
Also, it is interesting to look at ways to make the software compiler energy
aware [18].

5.6 REFERENCES
[1] Chandrakasan, A., et al., “Optimizing power using transformations,” IEEE Transactions

on Computer-Aided Design, vol. 14, no. 1, 1995.
[2] Cheung, N., Henkel, J., and Parameswaran, S., “Inside: Instruction selection/identification

and design exploration for extensible processor,” proceedings of the International Confe-
rence on Computer-Aided Design, 2003.

[3] Devadas, S., and Malik, S., “A survey of optimization techniques targeting low power
VLSI circuits,” proceedings of the Design Automation Conference, 1995.

[4] Embedded Microprocessor Benchmark Consortium, http://www.eembc.org/
[5] Gonzalez, R., “Xtensa: A configurable and extensible processor,” IEEE Micro, March 2000.
[6] Goodwin, D., and Petkov, D., “Automatic generation of application specific processors,”

proceedings of the international conference on Compilers, Architecture and Synthesis for
Embedded Systems, 2003, pp. 137-147.

[7] Landman, P., and Rabaey, J., “Power estimation for high level synthesis,” proceedings of
the European Design Automation Conference, 1993, pp. 361-366.

120 Chapter 5

[8] Najm, F., “A survey of power estimation techniques in VLSI circuits,” proceedings of

the Design Automation Conference, 1994.
[9] National Institute of Standards and Technology, Advanced Encryption Standard (AES),

http://csrc.nist.gov/publications
[10] Ong, P., and Yan, R., “Power conscious software design - a framework for modeling

software on hardware,” proceedings of the IEEE Symposium on Low Power Electronics,
1994.

[11] Oppenheim, A., and Schafer, R., Discrete-Time Signal Processing. Prentice-Hall Inter-
national, 1989.

[12] Peymandoust, A., et al., “Automatic instruction set extension and utilization for embedded
processors,” proceedings of the International Conference on Application-specific Systems,
Architectures and Processors, 2003.

[13] Powell, S., et al., “Estimating power dissipation of VLSI signal processing chips,” in
VLSI Signal Processing IV, 1990.

[14] Puri, R., et al., “Pushing ASIC Performance in a Power Envelope,” proceedings of the
Design Automation Conference, 2003.

[15] Sequence Design, PowerTheater User Guide, http://www.sequencedesign.com
[16] Sun, F., et al., “A scalable application-specific processor synthesis methodology,”

proceedings of the International Conference on Computer-Aided Design, 2003.
[17] Svensson, C., and Liu, D., “A power estimation tool and prospects for power savings in

CMOS VLSI chips,” proceedings of the International Workshop on Low Power Design,
1994, pp. 171-176.

[18] Tiwari, V., Malik, S., and Wolfe, A., “Power analysis of embedded software: a first
step towards software power minimization,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 2, no. 4, 1994, pp. 437-445.

[19] Wang, A., et al., “Hardware/software instruction set configurability for system-on-chip
processors,” proceedings of the Design Automation Conference, 2001.

Chapter 6 6

LINEAR PROGRAMMING FOR GATE SIZING

David Chinnery, Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720, USA

For many ASIC designs, gate sizing is the main low level design technique

used to reduce power. Gate sizing is a classical circuit optimization problem
for which the same basic method has been used for the past 20 years. The
standard approach is to compute a sensitivity metric, for example for the
power versus delay tradeoff for upsizing, and then greedily resize the gate
with highest sensitivity, iterating this process until there is no further improve-
ment. Such methods are relatively fast, with quadratic runtime growth versus
circuit size, but they are known to be suboptimal. The challenge has been to
find a better approach that still has fast runtimes.

Our linear programming approach achieves 12% lower power even on
the smallest ISCAS’85 benchmark c17, as shown in Figure 6.1. The linear
program provides a fast and simultaneous analysis of how each gate affects
gates it has a path to. Versus gate sizing using the commercial tool Design
Compiler with a 0.13um library, we achieve on average 12% lower power at
a delay constraint of 1.1 times the minimum delay (Tmin), and on average
17% lower at 1.2Tmin – in one case 31% lower. The runtime for posing and
solving the linear program scales between linearly and quadratically with
circuit size.

6.1 INTRODUCTION

We wish to find the minimum power for a circuit to satisfy given delay
constraints. To limit the solution space, we consider a gate-level combi-
national circuit with fixed circuit topology. The circuit may be represented
as a directed acyclic graph (DAG), where each node is a logic gate and
edges are connections between gates. The logic gate at each node is fixed;
we do not allow nodes to be inserted or removed, or graph edges to change –
for example pin swapping is not allowed.

122 Chapter 6

X4
c

d

X4

a
X4

b

e

X20

X20

X4

X4

X4 X4

X4
f

g

Design Compiler delay minimized netlist
Power 1.71mW
Delay 0.09ns

X4
c

d

X2

a
X1

b

e

X8

X4

X2

X2

X2 X2

X2
f

g

Power 0.76mW
Delay 0.11ns

Linear program power minimized

X2
c

d

X4

a
X1

b

e

X8

X4

X4

X4

X4 X1

X2
f

g

Power 0.86mW
Delay 0.11ns

Design Compiler power minimized

Figure 6.1 At a delay constraint of 1.2Tmin for ISCAS’85 benchmark c17, we achieve lower
power than Design Compiler. The two shaded gates on the lower left circuit are suboptimally
downsized by Design Compiler. In contrast, the linear programming approach downsizes four
of the NAND2 gates and achieves 12% lower power.

For each logic gate, there are a number of logic cell implementations that
may be chosen from the available standard cell libraries. Each cell has
different delay, dynamic power, and leakage power characteristics. These
characteristics are determined by factors such as the gate oxide thickness,
width, length and threshold voltage of transistors composing the logic cell;
transistor topology – for example stack forcing [16] and alternate XOR
implementations; and the supply voltage. We shall limit discussion in this
chapter to gate sizing. However, the same delay and power tradeoffs need to
be considered for all these factors, and the optimization problem does not
fundamentally differ except in the case of gate supply voltage, where there
can be topological constraints. Our objective is to minimize the power
subject to a delay constraint, but the approach herein is equally applicable to
minimize the area subject to a delay constraint. Using libraries with multiple
supply and threshold voltages is a relatively new low power technique and
will be discussed in chapters 7 and 8.

Linear Programming for Gate Sizing 123

AND2 cell choices:
AND2X1 – delay 2ns, power 1mW
AND2X2 – delay 1ns, power 2mW

AND4 cell choices:
AND4X1 – delay 2ns, power 2mW
AND4X2 – delay 1ns, power 4mW

2mW /1nsP
d

∆
− =
∆

1mW /1nsP
d

∆
− =
∆

Figure 6.2 This simple example shows that greedily choosing the gate with the maximum
sensitivity is suboptimal. If all the gates are initially size X2, the critical path is 2ns and power
is 12mW. Consider a 3ns delay target. Picking the max power_reduction/delay_increase
sensitivity results in sizing down the AND4 gate, giving total power of 10mW. If the four
AND2 gates are sized down instead, the power is only 8mW.

6.1.1 Gate sizing approaches

Gate sizing algorithms have changed little in the past 20 years. In 1985,
Fishburn and Dunlop proposed a fast method (TILOS) to minimize area
and meet delay constraints, greedily picking the transistor with maximum
delay_reduction/transistor_width_increase at each step [6]. Variants of this
are still standard in commercial sizing tools.

Approaches similar to TILOS can be used to minimize power when gate
sizing. Srivastava et al. used max delay_reduction/power_increase to meet
delay constraints, after reducing power by assigning gates to low supply
voltage (Vdd) [22]. Downsizing a gate gives a linear reduction in the power
to charge and discharge its internal capacitances and input pin capacitances,
as the capacitance is proportional to the transistor widths in the gate. Leakage
power is also reduced linearly as gate width is reduced.

Greedy heuristics that pick the gate with the maximum sensitivity fail to
consider the whole circuit and are suboptimal – for example see Figure 6.2.
The challenge is to find a better approach with a global view of the circuit
that has fast runtimes.

Several groups have used convex optimization to find a globally optimal
solution. Convex optimization requires convex delay and power models,
such as linear or posynomial models. In our experience, linear models are
inaccurate. Least squares fits of linear models versus gate size and load
capacitance of 0.13um library data had delay inaccuracy of 19% to 30%, and
least squares fits of piecewise linear models also has sizable error of 10% to
30% [20]. The analysis in [20] assumed a fixed input slew of 0.07ns, so
these errors will be even larger once variable slew is taken into account.
Linear program (LP) solvers with linear models can scale to problems with
millions of variables. Higher order convex models, such as posynomials
[13], are at best accurate to within 5% to 10% [4][13][20][24]. The accuracy
is limited because real data for delay and power is not a convex function of
gate size – standard cell layouts change significantly as the gate width changes,

124 Chapter 6

due to transistor folding for layout of larger cells and other cell layout
concerns. Sacrificing delay accuracy is unacceptable, when a 10% delay
increase can give 20% power savings (e.g. compare power at 1.1Tmin and
1.2Tmin in Table 6.2). Optimization with posynomial models requires using a
geometric program solver with runtimes that scale cubically [4]. Thus
geometric programming optimization of circuits of tens of thousands of
gates or more is computationally infeasible. In addition, convex models must
assume at least a piecewise continuous range for optimization variables that
are typically discrete, which introduces suboptimality when the resulting
intermediate values must be rounded up or down in some manner to a
discrete value – though this is less of an issue for a library with very fine-
grained sizes.

It is possible to formulate a linear program to perform optimization at a
global level with more accurate delay and power models. The basic approach
is to use the linear program to specify the delay constraints, and the power
and delay changes if the cell for a gate is changed. A heuristic is required to
choose which cell change is the best to encode in the linear program, for
example the cell that gives the best power_reduction/delay_increase. The
solution to the linear program indicates which cells may be changed, or how
much timing slack is available to change a cell to one that consumes less
power. Cells with sufficient slack are then changed. This procedure of speci-
fying the best alternate cells in the linear program, solving it, and assigning
cell changes is iterated.

The linear program formulation requires some timing slack for the circuit
to be downsized and upsized in an iterative manner to converge on a good
solution. A 0.13um standard cell library was used. At a delay constraint of
1.1 times the minimum delay (Tmin), we achieve on average 12% lower
power by sizing than Design Compiler at the same delay constraint, and on
average 17% lower at 1.2Tmin – in one case 31% lower. Design Compiler is
the commercial EDA synthesis tool which is most commonly used in industry,
and it is generally considered to produce high quality results compared to
other EDA tools [8]. The timing and power results for the optimized netlists
have been verified in Design Compiler.

An overview of gate sizing approaches along the lines of TILOS is
provided in Section 6.2. The linear programming formulation is detailed in
Section 6.3. The optimization flow is detailed in Section 6.4. Section 6.5
compares our gate sizing results versus gate sizing in Design Compiler, and
then Section 6.6 discusses computational runtime. Section 6.7 concludes
with a short summary of this gate sizing work.

6.2 OVERVIEW OF TILOS GATE SIZING

Starting with a circuit that violates delay constraints, TILOS aims to
meet the delay constraints with the minimum increase in area. Transistors on

Linear Programming for Gate Sizing 125

critical paths, that is paths that don’t satisfy the delay constraint, were analyzed
with the following sensitivity metric [6]

 reduce delay
dSensitivity
w

∆
= −

∆
 (6.1)

where ∆d is the change in delay on the path and ∆w > 0 is the increase in
transistor width. ∆d was determined from convex delay models for the
distributed RC network representing the circuit. The total circuit area was
measured as the sum of the transistor widths, so the aim was to get the best
delay reduction with the minimum transistor width increase. The transistor
with the maximum sensitivity was upsized to reduce the path delay. This
greedy approach proceeded iteratively upsizing transistors with maximum
sensitivity until delay targets are met, or there are no upsizing moves to further
reduce delay [6].

Dharchoudhury et al. used a similar approach for transistor-level sizing
of domino circuits in 1997. By this time, distributed RC networks had fallen
out of favor in industry due to inaccuracy and it was essential for timing
accuracy to model individual timing arcs. The sensitivity to upsizing a tran-
sistor was computed by [5]

_ min

1 l
reduce delay

l timing arcs l

dSensitivity
w Slack Slack k∈

∆
= −

∆ − +∑ (6.2)

where Slackmin is the worst slack of a timing arc seen in the circuit; Slackl is
the slack on the timing arc; ∆dl is the change in delay on the timing arc if the
transistor is upsized (∆w > 0); and k is a small positive number for numerical
stability purposes. The weighting 1/(Slackl – Slackmin + k) more heavily
weights the timing arcs on critical paths.

Srivastava and Kulkarni in [14] and [22] used a delay reduction metric
similar to Dharchoudhury et al., for gate-level sizing to minimize power and
meet delay constraints in their TILOS-like optimizer. The sensitivity metric
was [22]

_ min

1 l
reduce delay

l timing arcs l

dSensitivity
P Slack Slack k∈

∆
= −

∆ − +∑ (6.3)

where ∆P > 0 is the change in total power for upsizing a gate. The same
analysis was used in [21] for the delay versus leakage power trade-off. The
timing slack on a timing arc through a gate from input i to output j is
computed as
 ()arc ij required at output j arrival at input i arc ijSlack t t d= − − (6.4)

where trequired at output j is the time the transition must occur at gate output j for
the delay constraint to be met on paths that include the timing arc;
tarrival at input i is the arrival time at input i; and darc ij is the delay on the timing
arc. The slack is the maximum increase in delay of the timing arc that will

126 Chapter 6

satisfy the delay constraints, and it will be negative if a delay constraint is
not met on a path through the gates with that timing arc. Note here that the
impact on delay of slew changing is not included in Equation (6.3), and that
for accuracy the delay change on the timing arc ∆dl should include the delay
change of the gate that drives gate input i due to the change in input capaci-
tance of pin i as the gate is upsized. This TILOS gate sizing approach does
not include gate downsizing, but that is not important as the starting point for
the TILOS gate sizer is with all gates at minimum size.

Similar metrics have been used for greedy power minimization appro-
aches. For example, for leakage reduction [25]

leakage

reduce power

P
Sensitivity

d
∆

= −
∆

 (6.5)

and for power reduction [22]

l

reduce power
l timing_arcs l

SlackSensitivity P
d∈

= −∆
∆∑ (6.6)

The worst case theoretical complexity of these TILOS-like sizers is
O(|V||E|), as iteratively the gate with the maximum delay reduction is picked,
then static timing analysis must be updated over the timing arc edges from
gate to gate, and the number of size increases for a gate is limited. For our
benchmarks, |E| ranged from 1.59× to 2.01×|V|. Consequently, the worst case
runtime behavior is O(|V|2), as was observed in Section 6.6.2 for gate sizing
with Design Compiler.

The greedy approach of optimizing the gate with the greatest sensitivity
is a peephole optimization approach. The optimizer considers only changing
one gate at a time and only looks at the impact on the immediate neighbor-
hood. For example, reducing a gate’s delay will provide some timing slack
there, but the primary output delay on that path may not be reduced as there
may be other convergent paths that are timing critical. An approach with a
global view is needed to consider multiple gates simultaneously and determine
the overall impact of them changing.

6.3 LINEAR PROGRAMMING FORMULATION

Linear programming has been proposed previously for gate sizing with
linear delay models [1][12]. As described above, linear delay models are very
inaccurate for today’s technologies. Instead, we encode the delay constraints
and the impact of cells changing in the linear program. The linear program
formulation provides a global view of the circuit for optimization.

The linear program gives a fast and simultaneous analysis of how changing
each gate affects the gates it has a path to. From the LP solution, all the
gates may be sized simultaneously, which avoids greedily sizing individual
gates.

Linear Programming for Gate Sizing 127

u
v

x

w
a
b

z
i1

i2
i3

o1

o2
Figure 6.3 A combinational circuit for illustrating the delay constraints. Primary inputs are
denoted i1 to i3, and the primary outputs are o1 and o2.

u
v

w

x
Source Sink

Topological level
0 1 2 3 4

i1

i2

i3

o1

o2

vw

vx

uv

Figure 6.4 Directed acyclic graph (DAG) representation of the circuit in Figure 6.3. Primary
inputs connect to the source, and primary outputs connect to the sink. The topological level is
determined in a breadth first manner from the source which is level 0. Vertex names are noted
inside the circle representing the node, and edge names are next to the edge.

The idea for the linear programming approach came from the zero-slack
algorithm, which determines a maximal safe assignment of additional delays
to each node that avoids violating the delay constraints at the outputs, but if
any further delay was added to a node then a delay constraint would be
violated [15]. No timing slack remains in the resulting circuit, hence the
name “zero-slack”. The essential idea is formulating a set of delay constraints
that determine how delays along a path add up and what additional delays
can be added at each node without violating output constraints. In this cons-
traint formulation, the delay constraints are linear. Our linear programming
approach differs from [15], using the change in total power as the objective
function, effectively a weighted sum over the additional delay at each node.

A combinational circuit (Figure 6.3) is represented as a directed acyclic
graph G(V,E) (Figure 6.4), where each gate is represented by a vertex in V,
and edges in E between vertices represent wires. Assuming no gate drives
more than one input on another gate, we can uniquely represent a directed
edge from gates u to gate v, as uv; u is a fanin of v, and v is a fanout of u.

For each gate v, we can determine the best alternate library cell that
implements the same logic, by examining the following sensitivity metric:

 Sensitivity metric for changing cell , where 0, 0v
v v

v

P P d
d

∆
= ∆ < ∆ >
∆

 (6.7)

128 Chapter 6

where ∆dv and ∆Pv are respectively the change in delay and power if the cell
is changed. The cell alternative with the minimum value for this metric is the
best alternative, giving the largest power_reduction/delay_increase. If the
only cell alternates have ∆Pv > 0 then the gate will not be changed.

For each gate, the best cell alternative, if one exists that reduces power,
is encoded in the linear program using a cell choice variable γv∈[0,1], which
determines if it is changed. γ = 1 if the alternate cell is used, γ = 0 if not. The
LP solution may give a γ value in-between 0 and 1, in which case appro-
priate thresholds must be chosen.

The linear program’s objective function to minimize the total power is
 minimize v v

v V
Pγ

∈

∆∑ (6.8)

and there are constraints on the cell choice variables,
 0 1, for all v v Vγ≤ ≤ ∈ (6.9)

These cell choice variables are the only “free variables”; they determine the
delay constraint variables, tvw, on each vw between gates. The delay constraints
on edges between gates are
 , for all , (), ()vw uv v v vt t d d v V w fanout v u fanin vγ≥ + + ∆ ∈ ∈ ∈ (6.10)

Namely, the arrival time at the output of gate v (tvw, on edge vw) is equal to
the arrival time at the input of gate v on edge uv (tuv), plus the delay of gate
v, plus the change in delay ∆dv of gate v if its cell is changed.

For simplicity, we assume that all circuit paths are subject to the same
maximum delay constraint, Tmax, noting that it is straightforward to encode
different delay constraints in the linear program if so desired. A circuit sink
node is added to V', such that all primary outputs of the combinational circuit
connect to the sink and are subject to the constraint Tmax. Delay constraints to
the circuit sink are
 max , for all () wSinkt T w fanin Sink≤ ∈ (6.11)

Similarly, we add a circuit source to V', such that all primary inputs
connect to the source, V' = V ∪ {Source, Sink}. We assume that arrival times
from the circuit source are at t = 0, though it is trivial to specify individual
arrival times by input if so desired, giving
 0, for all ()Source ut u fanout Source= ∈ (6.12)

where tSource u is the arrival time from the source to gate u. As there may be
more than one connection from a gate to the circuit source or sink, to uniquely
identify those edges we can use the primary input or output name.

The complete linear program to minimize power, subject to delay cons-
traints, is

Linear Programming for Gate Sizing 129

max

minimize

subject to , for all , for all (),
 for all ()

0, for all ()

, for

v v
v V

vw uv v v v

Source u

wSink

P

t t d d v V w fanout v
u fanin v

t u fanout Source
t T

γ

γ
∈

∆

≥ + + ∆ ∈ ∈
∈

= ∈
≤

∑

all ()
0 1, for all v

w fanin Sink
v Vγ

∈
≤ ≤ ∈

 (6.13)

This was our initial formulation for the linear program [17]. The signal
slew is not included, nor are rise and fall delays considered separately. This
leads to significant delay inaccuracy. As the fanin delay impact due to
changed input capacitance Cin is not modeled, gates can not be upsized to
avoid increasing fanin delay. There is no method for reducing delay to fix
violated delay constraints. With the help of Fujio Ishihara and Farhana
Sheikh, we tested this approach on a 17,000 gate inverse discrete cosine
transform block to implement dual supply voltages with a 0.13um library –
the simplistic models resulted in a 24% increase in the clock period when
measured in Synopsys Design Compiler, despite a tight delay constraint.

6.3.1 Improving power and delay accuracy

This subsection discusses how the linear program is accurately formulated
using the data from incremental static timing and power analysis.

Static timing and power analysis are performed using the standard cell
libraries to determine gate delay, slew and power values used in the linear
program. Considering alternate cells for a gate is a core part of the inner
optimization loop for setting up the linear program, so it is essential that it be
fast. In particular, when analyzing changing the gate for a cell, only a very
limited range of interactions must be considered to minimize computational
overheads. It is also important to be able to roll back this change and consider
alternatives for another gate, without any additional overheads to recompute
the original timing and power values.

Software modules were written to perform incremental timing and power
analysis, with the ability to store temporary alternative values when consi-
dering cell changes and to store the best alternatives found. Design Compiler
was used as a reference to debug the software for timing and power analysis,
and later validate the results for optimized netlists.

The changes in delay and power determined by incremental analysis are
encoded in the linear program. The LP remains limited in accuracy, because
only first order changes, one gate’s cell changing at a time, can be encoded.
Static timing and power analysis are performed after the linear program has
been solved and cells have been changed, to more accurately determine the
power of the new circuit and whether delay constraints have been met.

130 Chapter 6

6.3.1.1 What variables must be modeled in the LP for accuracy?

As outlined earlier, a central optimization issue is the accuracy of the
delay and power models. The linear program constraints must model the
impact on delay and power due to changing gate size, Vdd, or Vth.

Consider changing a single gate’s cell. The input capacitance Cin of the
gate’s input pins loads the fanin gates, affecting their delay and switching
power. The gate’s drive strength affects its delay and output slew, which
may increase the delay of paths the gate is on, and the internal power of
fanouts may be affected by the change in output slew. If the gate’s voltage
changes, that affects the switching power for the load it drives. The gate’s
subthreshold leakage increases exponentially with decreasing Vth. The gate
size primarily determines Cin, which affects the load on fanins. Size (transistor
width), Vdd, and Vth all affect the gate drive strength.

The impact of changing a gate on its power and delay and on that of
neighboring gates was examined. Incremental timing analysis allowed exp-
loring what neighborhood of affected gates needs to be considered for
accurate analysis. The fanin level of logic must be considered, as there can
be substantial delay and slew changes due to changing the load capacitance.
Analysis was also performed with one or two fanout logic levels, from both
the gate that is changed and its fanins.

More than 95% of the change in power occurs at the gate whose cell
changes: switching power due to Cin; switching power of the load with Vdd;
leakage power; and internal power. Slew changes affect the short circuit
power of neighboring gates, but short circuit power is only a small part of
the total power – typically less than 10% [3]. Usually 99% or more of the
total power impact is accounted for at the gate, though in some cases it may
be as low as 95%. Thus to determine with reasonable accuracy the change in
power by changing a gate, we only need to consider the gate itself and can
avoid computing the impact on other gates.

In contrast, changing Cin and output slew significantly impacts the delay
of neighboring gates. The impact of Cin is limited to the immediate fanins –
the fanins of fanin gates do not see the change in load capacitance, as
complementary static CMOS logic decouples this. However, the delay and
slew changes of fanins and of the gate itself propagate forwards topologically.
It is computationally expensive to calculate this impact over more than the
fanin level of logic. Instead, we conservatively determine the worst case
impact on the transitive fanout from the gate being changed and its fanins.
This was sufficient to produce good power minimization results with fast
computation time – though the impact of slew propagation to the fanouts
must be considered as described in Section 6.3.1.2. Delay propagation is
handled in the usual way for static timing analysis, with output arrival time
constraints in terms of the arrival time at the inputs and delay of the gate.

Linear Programming for Gate Sizing 131

To determine the impact of a gate x’s input capacitance changing on a
fanin v, we assume the cell of the fanin gate has not changed and calculate
the change in delay due to x changing, adding this to the delay constraint.
For example, for the constraint on the arrival time of the rising output of gate
v on edge vw is
 , , , , , , ,

(),
vw rise uv fall uv rise v uv rise v x uv rise x

x fanout v x w

t t d d dγ γ
∈ ≠

≥ + + ∆ + ∆∑ (6.14)

where tuv,fall is the falling arrival time at v from gate u; duv,rise is the delay
from the signal on uv to the output of v rising; and ∆duv,rise,x is the change in
delay out of this timing arc if the cell of x changes. Here we have assumed
gate v is of negative polarity, namely that a falling input may cause a rising
output transition. Wire RC delays, for example on the edge from gate v to
gate w, are also included in the delay calculations.

6.3.1.2 Modeling the impact of signal slew propagation

We will now address modeling the delay impact of signal slew in the linear
program. For cells in our 0.13um libraries, ∆sout/∆sin ranges from –0.23 to
0.67, where ∆sout is the change in output slew due to change in input slew
∆sin. ∆d/∆sin sensitivity ranges from –0.32 to 0.54, where ∆d is the delay
change due to ∆sin. Thus a slew change can significantly impact delay.
Larger magnitude ∆d/∆sin values occur with larger NOR and NAND drive
strengths, and when the input voltage swing exceeds the gate supply voltage,
for example -0.29 in the case of Vin=1.2V and Vdd=0.6V.

A simple approach was proposed in [19] to analyze the transitive fan-
out delay impact of slew on a given path. Their delay models were linear
versus slew, and they did not consider rise and fall delay separately. So it is
straightforward just to sum the delay impact along the path, giving, in our
terminology, the transitive fanout delay/slew sensitivity β as

 z z
uv vw

a a

d s
s s

β β∆ ∆
= +
∆ ∆

 (6.15)

where a and z are respectively the input and output pins of gate v shown in
Figure 6.3, which has output delay dz and output slew sz due to a signal on a
with input slew sa; ∆dz/∆sa and ∆sz/∆sa are the gradients for gate delay and
output slew from the linear models; and the path goes through the connected
gates u, v and w in the order u→v→w. A slew change ∆s at the output of
gate u increases the path delay by βuv∆s.

Our approach to calculate the transitive fanout delay impact of slew
considers multiple paths simultaneously and is more accurate, providing upper
and lower bounds on the slew impact. To consider simultaneous changes, we
account for gates in the transitive fanout changing by determining the worst
case slew impact over all alternate cells available for a gate. In reverse

132 Chapter 6

topological order, we then calculate the maximum and minimum transitive
fanout delay/slew sensitivity β:

,max ,max , () ,

,min ,min , () ,

max max max

min min min

z z
uv vws C w fanout v s Ca load a loada a

z z
uv vws C w fanout v s Ca load a loada a

d s
s s

d s
s s

β β

β β

∈

∈

⎧ ⎫⎧ ⎫ ⎧ ⎫∆ ∆⎪ ⎪= +⎨ ⎬ ⎨ ⎨ ⎬⎬
∆ ∆⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧ ⎫∆ ∆⎪ ⎪= +⎨ ⎬ ⎨ ⎨ ⎬⎬
∆ ∆⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

 (6.16)

To conservatively bound the slew impact on delay, we multiply by βuv,min
if the output slew of u decreases, and by βuv,max if it increases. We do model
multiple outputs and separate rise/fall delays, but omit these in Equation
(6.16) for clarity.

A change in slew propagating may reduce the delay if the lower bound
βuv,min > 0 and the change in input slew is ∆s < 0, as βuv,min∆s < 0. However,
as the output slew is the maximum over the timing arcs, this decrease in
delay may not propagate if the slew on this arc is not the maximum slew,
even if this arc is on the critical path in terms of delay. Consequently,
βuv,min > 0 may be optimistic. In practice, this does not appear to be a
significant issue in most cases, but it might explain why delay reduction can
perform poorly with more aggressive slew analysis, where βuv,min is typically
around 0.1.

Several approaches may be used when calculating β. Firstly, to be
conservative and reduce computation time, β may be calculated over all
the alternate cells for a gate, not just the current cell. Alternately, β may be
calculated only for the current cell, which avoids re-computation after the
best cell is chosen for each gate. β could also be calculated over the current
cell and the best alternate cell. This last option was not tried, because it
requires additional computation in the inner optimization loop that sets up
the linear program.

Secondly, we can conservatively calculate β over all alternate possible
input slew and load conditions, or about the current input slew and load
conditions only – optimistically assuming that they will not change subs-
tantially.

In practice, it is not clear what the best approach to calculate β is. The
results achieved with these different options typically vary within about 2%
of the best solution, and no single approach is always best. Starting with a more
conservative approach, calculating β over all alternate cells for a gate and over
all possible load and input slew conditions, and then trying more aggressive
settings, calculating β over only the cell for a gate and only the current load
and input slew conditions, produces better results on average than starting
with more aggressive settings. With the conservative settings, typical values
are 0.0 for βmin and 0.3 for βmax. With the aggressive settings, typical values
are 0.1 for βmin and 0.2 for βmax.

Linear Programming for Gate Sizing 133

Adding the additional slew terms to Equation (6.14), we have

, , , , , , , ,

, , , , ,
(),

()

 ()
vw rise uv fall uv rise v uv rise v vw rise uv rise v

x uv rise x vw rise uv rise x
x fanout v x w

t t d d s

d s

γ β

γ β
∈ ≠

≥ + + ∆ + ∆

+ ∆ + ∆∑ (6.17)

where ∆suv,rise,x is the change in slew out of this timing arc if the cell of x
changes. Multiplying by βvw gives the worst case transitive slew impact on
delay, where we use βvw,min if ∆suv < 0, or βvw,max if ∆suv > 0. The change in
delay and slew of v due to the cell of w changing is included in the delay and
slew changes for w, thus there is no γw(∆duv,rise,w+βvw∆suv,rise,w) term for tvw,rise.

Comparing Equation (6.17) to Equation (6.10), there are additional terms
here that consider the impact of slew, the impact of the cell of output gates x
changing, and rise and fall timing arcs are considered separately.

We examined the importance of including the transitive fanout delay
impact of slew by setting β = 0 and performing optimization. The inaccuracy
due to ignoring slew resulted in delay constraints violations and less power
savings due to the timing inaccuracy and reduced timing slack available for
power minimization [4]. This shows how important it is to account for slew
both in static timing analysis and in the optimization formulation.

6.3.2 Formulating cell changes

Now that we have identified what is necessary for delay and power
accuracy, we can again address identifying the best alternative cells for a
gate. Instead of computing our sensitivity metric with a single value for the
delay change in Equation (6.7), ∆Pv/∆dv, we must consider multiple timing
arcs. To allow the linear programming approach to be used for delay
reduction, we must allow ∆dv < 0 to be encoded in the LP. As discussed in
Section 6.3.1.1, ∆Pv is determined by summing over the change in leakage
power, change in internal power, change in switching power of the gate’s
inputs, and change in switching power of the gate’s outputs if Vdd changes.

When considering multiple timing arcs and ∆dv, there are two options
that were considered. We could just use the worst change in delay and
additionally the transitive delay impact of slew, or we could combine multiple
timing arcs into the metric. The latter approach was performed by averaging
the delay and transitive delay impact of slew over the timing arcs. Averaging
the timing arcs is equivalent to the worst case if pull-up and pull-down drive
strengths are balanced and individual timing arcs have similar delays.
However, in practice this is not the case (e.g. see Figure 7.4 and Figure 7.5).
Generally, the more conservative approach using the worst case delay change
on a timing arc to determine ∆dv produces slightly better results, because this
is less likely to result in a delay change that violates the delay constraint. A
third possible approach, which has not been tried, would be to weight by

134 Chapter 6

slack on each timing arc. Note that when ∆dv is calculated, it includes the
impact of the cell changing on the delay and the slew of the fanins of v on
timing arcs that propagate to v.

The best alternative cell for a gate is chosen as follows. If a cell change
reduces power and delay (∆P<0, ∆d<0), pick the cell which best reduces the
objective, delay or power. Otherwise: to reduce power pick the cell with
maximum power_reduction/delay_increase (min ∆P/∆d, ∆P<0, ∆d>0); to
reduce delay pick the cell with the max delay_decrease/power_increase
(max ∆P/∆d, ∆P>0, ∆d<0). Here, ∆d is the maximum delay change over its
timing arcs, including the slew impact, or the average change over the timing
arcs as discussed above. Note that for different gates we may encode cells
that reduce delay or reduce power in the same linear program. For example
when minimizing power, if a gate is already minimum size, then there may
be no cell change that reduces power further, but if there is a size increase
that reduces delay at the expense of power, we encode that in the LP to allow
for the situation where other gates can better use the slack that would be
created by upsizing the gate – the LP determines whether this is a worthwhile
trade-off or not.

The best delay and power cell alternatives for a gate are cached by its
input slews, input arrivals and load capacitance values, and that of its fanins
along with their supply voltages. Caching provides substantial speed ups for
setting up the LP on later iterations.

The LP solution gives values for the cell choice variables γv between
zero and one. A threshold is used to determine when to change a cell: if a
cell reduced delay and γv > 0.01, the alternate cell was used; if a cell reduced
power and γv > 0.99, the alternate cell was used. A number of different
thresholds were tried, these produced the best results. The philosophy behind
using a threshold of 0.01 for delay is that if that gate’s delay needs to be
reduced to meet delay constraints, then the alternate cell must be used.
Conversely, a high threshold was set for power reduction, because if γv
wasn’t close to 1, we couldn’t guarantee that delay constraints would be met
if the cell was changed. In practice, this threshold approach produces very
good power minimization results as described in Section 6.5.2.

6.3.3 Input drivers

An additional accuracy improvement is modeling the impact of gates
loading the primary inputs, by including input drivers in the circuit repre-
sentation. The cell for the input drivers is user specified, and might be set to
a drive strength X1 inverter for example. The switching power of the driver
input pins is not included, nor is the internal power of the input drivers. The
set of drivers is denoted D. As the cell for a driver v cannot change, γv = 0,
the delay constraint on an input driver is

Linear Programming for Gate Sizing 135

 , , , , , ,

(),

()vw rise Source v rise x uv rise x vw uv rise x
x fanout v x w

t d d sγ β
∈ ≠

≥ + ∆ + ∆∑ (6.18)

where dSource v,rise is the rise delay of the input driver.

6.3.4 The linear program

To minimize the total power, the complete formulation for the linear
program formulation is

 ,

 ,

, max

, max

minimize

subject to 0, for all

0, for all
, for all ()
, for all ()

0 1, for all

v v
v V

Source u fall

Source u rise

wSink rise

wSink fall

v

v

P

t u D

t u D
t T w fanin Sink
t T w fanin Sink

v V

γ

γ
γ

∈

∆

= ∈

= ∈

≤ ∈
≤ ∈

≤ ≤ ∈
=

∑

, , , , , , , ,

, , , , ,
(

0, for all
For all , (), (),
timing arc constraints:

()

 ()
vw rise uv fall uv rise v uv rise v vw rise uv rise v

x uv rise x vw rise uv rise x
x fanout v

v D
v V D w fanout v u fanin v

t t d d s

d s

γ β

γ β
∈

∈
∈ ∪ ∈ ∈

≥ + + ∆ + ∆

+ ∆ + ∆
),

, , , , , , , ,

, , , , ,
(),

()

 ()

x w

vw fall uv rise uv fall v uv fall v vw fall uv fall v

x uv fall x vw fall uv fall x
x fanout v x w

t t d d s

d s

γ β

γ β

≠

∈ ≠

≥ + + ∆ + ∆

+ ∆ + ∆

∑

∑

 (6.19)

where tuv,fall is the falling arrival time at v from gate u; duv,rise is the delay
from the signal on uv to the output of v rising; and ∆duv,rise,x and ∆suv,rise,x are
the changes in delay and slew out of this timing arc if the cell of x changes.
Multiplying by βvw gives the worst case transitive slew impact on delay,
where we use βvw,min if ∆suv < 0, or βvw,max if ∆suv > 0. The change in delay
and slew of v due to the cell of w changing is included in the delay and slew
changes for w. This is why we don’t have a γw(∆duv,rise,w+βvw,rise∆suv,rise,w) term
for tvw,rise for example. The LP with linear approximations cannot model the
higher order delay impact of multiple cells changing (γvγx terms). Solving
such higher order problems would be much slower.

The delay constraints specified in Equation (6.19) assume that the gates
have negative polarity, that is a rising input causes a falling output if there is
a logical transition, or a falling input causes a rising output. Constraints for
positive polarity and nonunate transitions can be handled similarly. Positive
polarity means that a rising (falling) output is caused by a rising (falling)

136 Chapter 6

input transition. A nonunate transition can be caused by both a rising input
or a falling input, depending on the value of other inputs – for example for
an XOR gate. Our software handles all timing arcs, including positive
polarity and nonunate gates, and gates with multiple outputs. Wire delays are
included in the timing analysis. The wire load model is specified in the
library, or extracted post-layout wiring parasitics could be specified for each
wire.

We can also use the same LP formulation approach to reduce delay when
T > Tmax . When reducing delay, the objective is
 maxminimize max{ , } v v

v V
T T k Pτ γ

∈

+ ∆∑ (6.20)

where k is a weight to limit the power increase when reducing delay, and
τ limits the delay reduction. If the ratio of total power to the critical path
delay is large, then k should be small to allow delay reduction. For our
benchmarks, the best values were k of 0.01 and τ of 0.99, so that after delay
reduction there is timing slack for further power minimization. In several
cases to meet Tmax, k of 0.001 and τ of 0.98 were used.

The complete formulation of the linear program for delay reduction with
a weighting on power is

max

 ,

 ,

, max

, max

minimize max{ , }

subject to 0, for all

0, for all
, for all ()
, for all ()

0 1,

v v
v V

Source u fall

Source u rise

wSink rise

wSink fall

v

T T k P

t u D

t u D
t T w fanin Sink
t T w fanin Sink

τ γ

γ

∈

+ ∆

= ∈

= ∈

≤ ∈
≤ ∈

≤ ≤

∑

, , , , , , , ,

, , , ,

for all
0, for all

For all , (), (),
timing arc constraints:

()

 (

v

vw rise uv fall uv rise v uv rise v vw rise uv rise v

x uv rise x vw rise uv ri

v V
v D

v V D w fanout v u fanin v

t t d d s

d s

γ

γ β

γ β

∈
= ∈

∈ ∪ ∈ ∈

≥ + + ∆ + ∆

+ ∆ + ∆ ,
(),

, , , , , , , ,

, , , , ,
(),

)

()

 ()

se x
x fanout v x w

vw fall uv rise uv fall v uv fall v vw fall uv fall v

x uv fall x vw fall uv fall x
x fanout v x w

t t d d s

d s

γ β

γ β

∈ ≠

∈ ≠

≥ + + ∆ + ∆

+ ∆ + ∆

∑

∑

 (6.21)

The next section describes how these delay reduction and power mini-
mization linear programs are used iteratively to reduce the circuit power
consumption while meeting delay constraints.

Linear Programming for Gate Sizing 137

no

delay minimization with
Design Compiler or TILOS

T≤Tmax

yes

yes
no

> 3 delay iterations?

yes

no

> max iterations?yes

try different optimization parameters no ∆P > 1%
over 5 LP runs

> max iterations?

best with T≤Tmax is
optimized netlist

best with T≤Tmax is
optimized netlist

T≤Tmax yes

no

yes

no

linear program to assign γ values,
min((max{0.99Tmax,T))+0.01Σ(γ∆P))

sensitivity = max{∆P/∆d}, ∆d<0,
over a gate’s alternate cells

change cells if γ > 0.01 for ∆d < 0 linear program to assign γ values,
min(Σ(γ∆P)) subject to T≤Tmax

change cells if γ > 0.99 for ∆d > 0

sensitivity = min{∆P/∆d}, ∆P<0,
over a gate’s alternate cells

Delay reduction with weight on power

Minimize power with delay constraint

combinational gate
level Verilog netlist
combinational gate
level Verilog netlist

Figure 6.5 Detailed optimization flow diagram.

6.4 OPTIMIZATION FLOW

The optimization flow is shown in Figure 6.5. We start with a combi-
national gate-level netlist (in a Verilog file), accompanying switching activity
and leakage state probabilities (in a SAIF file), and standard cell libraries
(Liberty .lib format). Input drivers or input slew and output port load capa-
citance are user specified. Power minimization is performed subject to a delay
constraint. If delay constraints are violated after optimization, delay reduction
with a weighting on power is performed. The optimization is iterated until
the maximum number of iterations is reached.

The starting point for optimization matters little providing that if a delay
constraint is violated, for example after power minimization, we can reduce
the delay to satisfy delay constraints. For example, multi-Vth experiments
starting with all gates at low Vth rather than high Vth gave only marginally

138 Chapter 6

better results after optimization. However, at a fairly tight delay constraint,
such as 1.1× the minimum critical path delay, the delay reduction phase may
have trouble reducing delay, in which case it is essential to start with a delay
minimized netlist.

Alternate cells for a logic gate are chosen by the best power/delay sensi-
tivity as described in Section 6.3.2; we set up the linear program constraints;
and then the open source COIN-OR LP solver [7] is used to choose γ values
to minimize the power subject to delay constraints. Gates with γ close to 1 in
the LP solution are then changed – a threshold of γ > 0.99 generally worked
best. If γ < 0.99 then there is insufficient slack in the circuit for the cell to be
changed without violating a delay constraint, assuming that changing the cell
results in a delay increase.

Gates are changed simultaneously without fully considering the impact
of other gate changes. If a gate is upsized increasing Cin and its fanin is
downsized, then the fanin delay is larger than modeled in the LP which may
lead to violating Tmax. If this occurs, we perform delay reduction to satisfy
Tmax. For delay reduction, a threshold of γ > 0.01 worked well – if a gate has
to be upsized to satisfy the delay constraint, we do so.

Thus the solution converges iteratively to reduce power and satisfy Tmax.
At a tight delay constraint, the delay reduction may fail to satisfy Tmax.
Design Compiler with greedy delay_reduction/power_increase reduces delay
better than our tool. The output of our optimization is the optimized Verilog
netlist, for which the static timing and power analysis can then be verified in
Design Compiler.

As the solution converges, the power reduction that is achieved per itera-
tion decreases. To ensure that the solution is close to the optimal that can be
achieved by the linear programming approach, several different parameter
settings can be tried to see if any additional savings may be achieved.

6.4.1 The importance of the delay reduction phase

The importance of the delay reduction phase is illustrated by Figure 6.6,
which shows the typical progress of the optimization flow. After a couple
of iterations of power minimization, the timing slack in the initial delay-
minimized circuit has been used to perform gate downsizing. If cell changes
were not allowed to cause the delay constraint to be violated, the optimi-
zation would stop at a solution with total power of about 5.9mW. Alter-
natively, we can allow the power minimization flow to make cell changes
that may end up violating delay constraints, changing the cells of gates that
have γ > 0.99 from the LP solution, without additional computational over-
heads to double-check that the delay constraints are not violated.

Linear Programming for Gate Sizing 139

Figure 6.6 This graph shows the power and delay after each iteration of the optimization
flow. This is for the c1355 benchmark at a delay constraint of 1.2Tmin for the Design Compiler
delay-minimized netlist which is the starting point. The Vdd=1.2V/Vth=0.23V PowerArc
characterized 0.13um library was used for this gate sizing optimization.

After cells have been changed and static timing analysis reports a circuit
delay that violates the delay constraint Tmax, we then perform delay reduction,
but we add a weight on the power in the objective to ensure that the power
does not increase too much. This helps ensure that power minimization
phase steps have steeper ∆P/∆T than the delay reduction steps, thus multiple
iterations of power minimization with delay reduction can achieve further
power savings. In the example shown in Figure 6.6, a substantial 30% power
savings are achieved beyond the 5.9mW point, with a minimum power of
4.13mW at a point that meets the delay constraint.

The delay reduction phase allows hill climbing, by allowing the Tmax
constraint to be violated by power minimization to see if additional power
savings are possible. The cell changes from delay reduction may be different
to those performed in delay minimization of the initial netlist, thus providing
some slack back into the circuit for power minimization, without reversing
all the power minimization steps that resulted in violating Tmax.

Unfortunately, the delay reduction phase can sometimes perform poorly
at a tight delay constraint. For a delay constraint of 1.1Tmin, starting with
TILOS-optimized netlists sized for 1.1Tmin results in 4.6% worse results on
average than starting with delay minimized netlists [4]. Delay reduction can
perform poorly for several reasons.

0

1

2

3

4

5

6

7

8

9

10

0.77 0.82 0.87 0.92
Delay (ns)

Po
w

er
 fo

r
c1

35
5

at
 1

.2
Tm

in
 (m

W
)

~5.90mW

minimum power of
4.13mW satisfying
the delay constraint

30% power
savings

is 0.934nsmaxT

140 Chapter 6

Table 6.1 The functions performed by the ISCAS’85 benchmark circuits. The smallest
benchmark, c17, wasn’t in [10].

Circuit Function
c17 not detailed in their paper
c432 27-channel interrupt controller
c499 32-bit single-error-correcting circuit
c880 8-bit ALU
c1355 32-bit single-error-correcting circuit
c1908 16-bit single-error-correcting/double-error-detecting circuit
c2670 12-bit ALU and controller
c3540 8-bit ALU
c5315 9-bit ALU
c6288 16x16 multiplier
c7552 32-bit adder/comparator

Firstly, the weight on power in the delay reduction objective may prevent
certain cell changes that are essential to reduce delay below Tmax, but cause
too large an increase in power. This can be solved by reducing the weighting
on power, and allowing additional delay reduction. Setting τ = 0.98 and
k = 0.001 in Equation (6.20) is a parameter change that is tried to do this.

Secondly, the aggressive slew analysis setting may underestimate the
delay increase due to a slew increase and overestimate the delay reduction
due to a slew decrease. In contrast, the conservative slew analysis setting is
pessimistic and often provides better delay reduction results.

Thirdly, in both phases of the optimization, all cells are changed simul-
taneously after the optimization. However, the linear program is a linear
approximation, and there are no second order terms of the form γuγv to directly
account for the delay impact of say a cell being downsized while its fanout
is upsized. This case can result in delay actually getting worse after delay
reduction is attempted. This is more difficult to solve without additional com-
putation overheads, as cells need to be sized individually. For example, a
cell being downsized but its fanout upsized could be disallowed, though
either one of these on its own would be acceptable, and analysis would be
required to decide which of the two cells is better to resize.

6.5 COMPARISON OF GATE SIZING RESULTS

We shall compare our results versus the commercial synthesis tool Design
Compiler [23], which is most commonly used in industry today and has a
gate sizing approach that is based on TILOS. Design Compiler is generally
considered to produce high quality results compared to other commercially
available EDA tools [8]. Section 6.5.1 discusses the combinational bench-
marks on which we compare results. Section 6.5.2 compares our results
versus Design Compiler, which performs gate sizing based on a TILOS sizing

Linear Programming for Gate Sizing 141

approach. Section 6.5.3 then discusses how optimal the linear program sizing
results are, and whether any additional improvements can be made.

6.5.1 Benchmarks

Two sets of circuit benchmarks were used in this chapter. The first set of
benchmarks was the combinational ISCAS’85 benchmark set [2]. Besides
these netlists being small, one of the criticisms of them has been that they are
not realistic circuit benchmarks. In particular, what circuits they represent and
how to stimulate them properly with input vectors is not detailed in the
benchmark set. The ISCAS’85 benchmarks were reverse-engineered by
Hansen, Yalcin and Hayes [10], and the functions that they determined for
these circuits are listed in Table 6.1. The behavioral Verilog netlists for these
reverse-engineered netlists are available [9], and they were synthesized and
delay minimized using Design Compiler with the PowerArc characterized
Vdd=1.2V/Vth=0.23V 0.13um library. Assignment statements and redundant
outputs were removed manually in the synthesized netlists. These gate-level
synthesized netlists were simulated with VCS using independent random
inputs with equal probabilities of 0 or 1 to produce SAIF (Switching Activity
Interchange Format) files with switching activity and gate input state proba-
bilities for power analysis. For comparison to our LP power minimization
approach, the delay minimized netlists were then power minimized in Design
Compiler restricted to sizing only changes.

The second set of three benchmark circuits was provided by Professor
Nikolić’s group at the Berkeley Wireless Research Center. The SOVA EPR4
circuit is an enhanced partial response class-4 (EPR4) decoder [26]. There is
also a Huffman decoder [18]. These are typical datapath circuits that appear
on chips for communication systems. These circuits were mapped to the
PowerArc characterized Vdd=1.2V/Vth=0.12V 0.13um library by Sarvesh
Kulkarni and Ashish Srivastava, who provided the combinational gate-level
netlists. The SOVA EPR4 and R4 SOVA benchmarks are substantially
larger than the ISCAS’85 benchmarks.

6.5.2 Comparison versus Design Compiler

For results in this section, the PowerArc characterized 0.13um library at
25°C with Vdd of 1.2V and Vth of 0.23V was used. The channel length was
0.13um. This was characterized for STMicroelectronics 0.13um HCMOS9D
process. The library consisted of nine inverter sizes; and four sizes of NAND2,
NAND3, NOR2 and NOR3 logic gates. The output port load capacitance
was set to 3fF, which is reasonable if the combinational outputs drive flip-
flops, and in addition there is a wire load to the port. The wire load model
used was 3+2×num_fanout fF. The input slew was 0.1ns for the 1.2V input
drive ramps – typical slews within the circuits ranged from 0.05ns to 0.15ns.

142 Chapter 6

The same wire load, input slew, and load conditions were used in [14] and
[22]. The switching activities used were directly from the SAIF files. Leakage
was about 0.1% of total power, due to characterization at 25°C and high Vth.
This avoids the problem with versions of Design Compiler before 2004.12
where either dynamic power or leakage power had to be prioritized, rather
than total power – as leakage is so small, prioritizing dynamic power is
equivalent to total power, which is minimized by the linear programming
approach.

The starting point for LP optimization was the netlists that were synthe-
sized and delay minimized using Design Compiler, and that was also the
starting point for sizing_only power minimization in Design Compiler.
Results were verified in Design Compiler.

The linear programming approach does better than Design Compiler in
all cases, except for c880 at a delay constraint of 1.1×Tmin where the LP
power is 2.4% higher (shown in bold in Table 6.2). This is not surprising as
the LP approach is heuristic and may still get stuck in a local minimum. The
LP approach performs better in most cases because it has a global view,
rather than the greedy peephole approach of TILOS.

Table 6.2 Here we compare our sizing results (LP) with sizing only power minimization
results from Design Compiler (DC), at delay constraints of 1.1Tmin and 1.2Tmin, where Tmin
(shown in column 7) is the critical path delay after delay minimization by Design Compiler.
Circuit statistics such as the number of logic levels, the numbers of inputs and outputs, the
number of gates, and the number of edges between gates in the circuit are also listed. The “LP
then DC” results are discussed in Section 6.5.3.

Netlist

logic
levels

inputs

outputs

gates

edges

Min
Delay
(ns) DC LP

LP
then
DC DC LP

LP
then
DC

c17 4 5 2 10 17 0.094 1.11 0.96 0.95 0.86 0.76 0.76
c432 24 36 7 259 485 0.733 2.78 2.21 2.18 2.22 1.74 1.70
c499 25 41 32 644 1,067 0.701 5.83 4.59 4.48 4.98 3.73 3.64
c880 23 60 26 484 894 0.700 3.37 3.45 3.13 2.83 2.60 2.54

c1355 27 41 32 764 1,322 0.778 6.88 5.42 5.26 5.97 4.12 4.04
c1908 33 33 25 635 1,114 0.999 3.26 3.08 3.01 2.67 2.40 2.36
c2670 23 234 139 1,164 1,863 0.649 9.23 8.42 8.28 8.08 6.87 6.79
c3540 36 50 22 1,283 2,461 1.054 6.69 5.79 5.70 5.60 4.64 4.53
c5315 34 178 123 1,956 3,520 0.946 10.39 9.48 9.15 8.82 7.81 7.66
c6288 113 32 32 3,544 6,486 3.305 6.91 6.07 5.89 6.08 4.69 4.61
c7552 31 207 86 2,779 4,759 0.847 18.02 16.65 16.34 15.60 13.44 13.23

Huffman 29 79 42 774 1,286 0.845 6.02 4.81 4.62 5.07 3.72 3.61
SOVA EPR4 110 791 730 15,686 27,347 3.039 17.07 15.82 15.61 15.28 13.89 13.73

R4 SOVA 144 1,177 815 33,344 59,178 4.811 24.26 21.81 21.22 20.82 19.16 18.69
Minimum power savings vs. Design Compiler: -2.4% 7.0% 8.0% 10.1%
Average power savings vs. Design Compiler: 12.0% 14.5% 16.6% 18.1%
Maximum power savings vs. Design Compiler: 21.4% 23.5% 30.9% 32.3%

Power (mW)

1.2T min1.1T min

Linear Programming for Gate Sizing 143

We achieved 12.0% and 16.6% average power savings versus Design
Compiler at delay constraints of 1.1×Tmin and 1.2×Tmin respectively – see
Table 6.2. We achieved lower power even on the smallest ISCAS’85
benchmark, c17, as was illustrated in Figure 6.1. This illustrates the sub-
optimal choices made by greedy optimization approaches that only consider
individual gates, rather than the whole circuit. These results were versus the
2003.03 version of Design Compiler – version 2004.12 was also tried, but it
produced worse power results on average.

6.5.3 Post-pass cleanup with Design Compiler

After our linear programming optimization returns the lowest power
solution that satisfies the delay constraint, there is a little timing slack left,
up to about 0.6% of the delay target, which can be used to further downsize
individual gates. Each LP optimization pass sizes multiple gates, whereas
to fully utilize the remaining slack, individual gates should be sized. A
power_reduction/delay_increase sensitivity approach such as provided by
Design Compiler’s sizer is appropriate for this.

On average, a post-pass with Design Compiler on the LP power
minimized netlists achieved another 2% to 3% power savings versus the LP
results, as listed in the “LP then DC” columns in Table 6.2. Interestingly, for
c880 where the LP results were worse than Design Compiler at 1.1Tmin by
2.4%, the post-pass by Design Compiler improves the result by 9.3%, giving
7% overall power reduction with “LP then DC” versus the Design Compiler
result. After running Design Compiler, there is typically at most 0.001ns
slack, i.e. less than 0.1% of the delay constraint. The average power savings
of the “LP then DC” results versus Design Compiler were 14.5% and 18.1%
at delay constraints of 1.1Tmin and 1.2Tmin respectively.

It should be noted that multiple passes of power minimization sizing by
Design Compiler on its own does not provide any significant benefit (<1%)
over a single incremental power minimizing sizing compilation in Design
Compiler. Design Compiler gets stuck in a local minimum where it has
greedily downsized the wrong gates.

6.6 COMPUTATIONAL RUNTIME

This section examines the runtime for the linear program, and then com-
pares it to the TILOS-like sizing runtimes in Design Compiler.

6.6.1 Theoretical runtime complexity and actual runtimes

It is not straightforward to determine the theoretical worst case run-
time complexity. The open source COIN-OR LP solver [7] uses the simplex
method to solve the linear program, which has exponential runtime growth

144 Chapter 6

with problem size in the worst case. There are linear programming methods
with guaranteed polynomial runtime; however, typically the simplex method
is a fast method for solving linear programs.

Each vertex in the directed acyclic graph representation has one “free”
cell choice variable, and edges between vertices (i.e. wires between gates)
determine the constraints. As a result, our linear program constraint matrix is
sparse, because the number of edges is of similar order to the number of
vertices (O(|E|) is O(|V| for our benchmarks). Thus we might expect that
runtime growth with circuit size will be reasonable.

To measure the actual runtimes, we need to consider when optimization
should be terminated. The LP optimization flow consists of two approaches:
power minimization subject to a delay constraint, and delay reduction with a
weighting on power. In both of these, a linear program is posed and solved
to determine which cells to change. These alternating optimization phases
shift back and forth in the power-delay space about the delay constraint, as
was illustrated in Figure 6.6. In addition, the more sophisticated optimization
approach changes parameter settings if optimization progress is slow. Conse-
quently, there is no clearly defined optimization endpoint. However, the
point at which any further power savings are minimal can be measured. To
do this, we can run a large number of iterations, where each iteration refers
to a run of setting up the LP, solving it, and changing cells, whether this is
for power minimization or delay reduction.

Table 6.3 Number of iterations for gate sizing with the LP optimization flow to find a solution
that satisfies the delay constraint and is within 1% of the minimum power found in 40 LP
iterations. Runtimes for 20 iterations at a delay constraint of 1.2×Tmin with the 0.13um
Vdd=1.2V, Vth=0.23V library are listed. The number of iterations to get within 1% does not
depend on the circuit size, whereas the LP solver runtime grows roughly quadratically.

#
Benchmark gates At 1.1T min At 1.2T min Total LP Solver Total - LP Solver

c17 10 14 4 0.6 0.2 0.4
c432 259 15 21 28.2 8.8 19.4
c880 484 16 14 49.8 16.4 33.4
c1908 635 5 12 70.5 26.6 44.0
c499 644 21 14 63.7 23.7 40.0
c1355 764 13 15 79.4 30.5 49.0
Huffman 774 16 20 67.7 27.3 40.4
c2670 1,164 12 17 105.4 42.4 63.1
c3540 1,283 12 9 223.5 114.6 108.9
c5315 1,956 9 9 231.6 96.7 134.9
c7552 2,779 13 12 383.8 165.2 218.6
c6288 3,544 21 15 1,811.2 1,450.5 360.7
SOVA EPR4 15,686 8 7 3,427.1 2,106.1 1,321.0
R4 SOVA 33,344 5 5 20,078.2 17,679.1 2,399.0

iterations to get within 1% Runtime for 20 iterations (s)

Linear Programming for Gate Sizing 145

Figure 6.7 Runtimes for the LP approach in Table 6.3 shown on a log-log scale.

We examined the number of iterations required to get within 1% of the
best solution found in 40 iterations. It appears that the number of iterations
to get a good solution with gate sizing is not dependent on the circuit size or
circuit depth in terms of logic levels. This is because gates are sized simul-
taneously on each iteration. From the data in Table 6.3, about 20 iterations
is sufficient to get good results. Fewer iterations were required for the two
largest benchmarks (SOVA EPR4, R4 SOVA). If fewer iterations are
required for larger benchmarks, the growth of runtime with circuit size will
be less.

The runtime for twenty iterations for sizing the benchmarks on a 2GHz
Athlon XP with 512KB of L2 cache is shown in Figure 6.7 on a log-log
scale, as there is a wide range of circuit sizes, over three orders of magni-
tude. The runtime for static timing and power analysis, posing the LP, and
changing cells using the LP solution grows linearly with the circuit size
and dominates the total runtime for smaller netlists, below about 1,000 gates.
The runtime for the linear program solver can grow quadratically with
circuit size, and is the dominant portion of the total runtime for the larger
circuits.

The LP solver runtime is substantially larger at three points, benchmarks
c3540, c6288 and R4 SOVA. The runtime for the LP solver grows between
O(|V|) and O(|V|2), where |V| is the number of gates [4].

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

10 100 1,000 10,000 100,000
Number of gates |V |

R
un

tim
e

(s
)

Total runtime

LP solver runtime

Total - LP solver

146 Chapter 6

Figure 6.8 Runtime for running power minimization in Design Compiler on the best solution
found by linear programming, that is for the “LP then DC” Design Compiler run. These
runtimes were on a 300MHz Sun Ultra II. Design Compiler’s runtimes grow faster than
O(|V|), but slower than O(|V|2) [4].

6.6.2 Runtime comparison versus Design Compiler

It is interesting to compare runtimes versus Design Compiler’s runtimes,
run on a 300MHz Sun Ultra II, shown in Figure 6.8. This was for Design
Compiler performing power minimization on the netlists after linear pro-
gramming optimization, where the analysis is similar to what occurs in a
single iteration of linear programming power minimization. Accounting for
the much slower computer used to run the benchmarks, power minimization
in Design Compiler is about an order of magnitude faster than our runtimes.
Our runtimes in Figure 6.7 and Design Compiler’s runtimes in Figure 6.8
have quite similar shapes – performing faster on certain benchmarks and
slower on others.

There are several ways that the runtimes for the LP approach could be
reduced. Firstly, the standard settings for the linear program solver have
been used, which performs analysis with the simplex algorithm to converge
to a precise local minimum. However, we don’t need the same degree of
precision, and relaxing the accuracy requirement would reduce the number
of simplex iterations and speed up the LP solver. Secondly, the first few
LP iterations provide the biggest power savings. Later iterations tend to
bounce around the optimal solution as too many gates are being changed

1

10

100

1,000

10,000

100,000

100 1,000 10,000 100,000
Number of gates |V|

R
un

tim
e

(s
)

Linear Programming for Gate Sizing 147

simultaneously. It may be possible to run fewer LP iterations and then use a
TILOS sizing post-pass to clean up the result. Thirdly, additional analysis
could be performed with the solution from the LP solver to avoid changing
gates that would cause a delay constraint violation, or to use an alternate cell
that reduces power but avoids the delay constraint violation. Lastly, a better
delay minimization approach, getting closer to the delay constraint, may help
speed up convergence. These latter suggestions have computational overheads
too, so experiments are needed to see what benefit they offer.

6.7 SUMMARY

The gate sizing results in this chapter demonstrated that commonly used
greedy TILOS-like circuit sizing approaches are suboptimal. It was known
that this traditional approach to gate sizing could be suboptimal for small
circuit examples, but it was not clear how to address the problem, nor whether
there was significant suboptimality on typical circuits.

Our linear programming optimization flow simultaneously optimizes all
gates in the circuit. Comparing the LP approach to the commercial imple-
mentation of a TILOS-like sizer in Design Compiler, the power savings on
average were 12.0% and 14.5% at 1.1×Tmin and 1.2×Tmin respectively. We
achieved a power reduction of 31% on one circuit.

Iterating cycles of reducing power then reducing delay to meet the delay
constraint provides more power savings than stopping power minimization
when the delay constraint is reached: further cycles of delay reduction then
power reduction get out of this local minimum. Results also demonstrated
the importance of having accurate delay and power analysis within the
optimization formulation. In particular, it is important to consider slew and
separate timing arcs, which much academic optimization research tends to
avoid.

The runtime for posing the linear program constraints and changing cells
using the linear programming solution scales linearly with circuit size. The
LP solver runtimes scale between linearly and quadratically with circuit size,
so this approach is applicable for larger circuits. Some approaches that may
be useful for reducing the runtime of the linear programming solver have
been outlined.

There are two improvements that may be made to our approach. (1) A
traditional sizing tool, like Design Compiler, is better for pure delay minimi-
zation. This greedy, one gate at a time, optimization approach is also useful
for a slight further improvement after our optimization. It was observed that
a post-pass sizing individual gates with Design Compiler improved on the
linear programming results by a further 2% to 3%. (2) If γ < threshold to
change a gate’s cell, other cells which require less slack could be considered.
In particular, the current linear programming formulation is not applicable
for a tight delay constraint, as the delay reduction phase is incapable of

148 Chapter 6

meeting a very tight delay constraint. In practice, this will not generally be a
major issue when power is a significant constraint, as the delay constraint is
usually relaxed a little to allow a more energy optimal solution, rather than
many gates being upsized at a tight delay constraint.

Given the computational complexity for this non-convex gate sizing
optimization problem, it is not possible to compare the results found to the
global minimum except for very small circuits. In comparison to other heuristic
approaches, there was only one case where the linear programming approach
was worse than Design Compiler. This was for c880 at 1.1×Tmin in Table 6.2,
where the power was 2.4% higher than Design Compiler, and 11.4% worse
than the result found by running the LP approach then Design Compiler. The
best results were found by using the linear programming approach with a
post-pass by Design Compiler, which averages 2% lower power than just
using the LP approach.

We did compare our LP results versus the equivalent integer linear pro-
gramming (ILP) formulation with the cell choice variables γv restricted to
0 or 1. The integer problem is too computationally expensive to solve
completely, except for the smallest benchmark c17. However, we compared
ILP results from CPLEX’s solver with a 1,000s time limit per iteration to the
LP results. The ILP results were not better on average than the LP results,
and were worse than the LP results after a post-pass by Design Compiler [4].
Given the prohibitive computation times for ILP and negligible benefit, the
LP relaxation of the ILP problem should be used.

Our LP approach can be extended to a second order conic program
(SOCP) to include the impact of process variation in the manner described in
Chapter 12, taking advantage of the timing analysis accuracy improvements
detailed in this chapter.

This chapter focused on power minimization subject to a delay constraint,
but our approach is equally applicable to area minimization subject to a
delay constraint.

Chapter 7 analyzes the power savings that can be achieved with use of
multiple threshold voltages and multiple supply voltages versus the strong
gate-sizing approach provided in this chapter.

6.8 REFERENCES
[1] Berkelaar, M., and Jess, J., “Gate sizing in MOS digital circuits with linear programming,”

in Proceedings of the European Design Automation Conference, 1990, pp. 217-221.
[2] Brglez, F., and Fujiwara, H., “A neutral netlist of 10 combinational benchmark circuits

and a target translator in Fortran,” in Proceedings of the International Symposium Circuits
and Systems, 1985, pp. 695-698.

[3] Chandrakasan, A., and Brodersen, R., “Minimizing Power Consumption in Digital CMOS
Circuits,” in Proceedings of the IEEE, vol. 83, no. 4, April 1995, pp. 498-523.

[4] Chinnery, D., Low Power Design Automation, Ph.D. dissertation, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, 2006.

Linear Programming for Gate Sizing 149

[5] Dharchoudhury, A., Blaauw, D., Norton, J., Pullela, S., and Dunning, J., “Transistor-level

sizing and timing verification of domino circuits in the Power PC microprocessor,” in
Proceedings of the International Conference on Computer Design, 1997, pp. 143-148.

[6] Fishburn, J., and Dunlop, A., “TILOS: A Posynomial Programming Approach to Transistor
Sizing,” in Proceedings of the International Conference on Computer-Aided Design, 1985,
pp. 326-328.

[7] Forrest, J., Nuez, D., and Lougee-Heimer, R., CLP User Guide, http://www.coin-or.org/
Clp/userguide/

[8] Goering, R., “The battle for logic synthesis,” EE Times, September 9, 2004. http://
www.eetimes.com/news/design/columns/tool_talk/showArticle.jhtml?articleID=46200731

[9] Hansen, M., Yalcin, H., Hayes, J., ISCAS High-Level Models. http://www.eecs.umich.edu/
~jhayes/iscas.restore/benchmark.html

[10] Hansen, M., Yalcin, H., Hayes, J., “Unveiling the ISCAS-85 Benchmarks: A Case Study in
Reverse Engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, 1999, pp. 72-80.

[11] ILOG, ILOG CPLEX 10.1 User’s Manual, July 2006, 476 pp.
[12] Jacobs, E., “Speed-Accuracy Trade-off in Gate Sizing,” in Proceedings of the workshop

on Circuits, Systems and Signal Processing, 1997, pp. 231-238.
[13] Kasamsetty, K., Ketkar, M. and Sapatnekar, S., “A New Class of Convex Functions for

Delay Modeling and their Application to the Transistor Sizing Problem,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no.
7, 2000, pp. 779-788.

[14] Kulkarni, S., Srivastava, A., and Sylvester, D., “A New Algorithm for Improved VDD
Assignment in Low Power Dual VDD Systems,” International Symposium on Low-
Power Electronics Design, 2004, pp. 200-205.

[15] Nair, R., et al., “Generation of Performance Constraints for Layout,” IEEE Transactions
on Computer-Aided Design, vol. 8, no. 8, 1989, pp. 860-874.

[16] Narendra, S., et al., “Comparative Performance, Leakage Power and Switching Power of
Circuits in 150 nm PD-SOI and Bulk Technologies Including Impact of SOI History
Effect,” Symposium on VLSI Circuits, 2001, pp. 217-8.

[17] Nguyen, D., et al., “Minimization of Dynamic and Static Power Through Joint Assign-
ment of Threshold Voltages and Sizing Optimization,” International Symposium on Low
Power Electronics and Design, 2003, pp. 158-163.

[18] Nikolić, B., et al., “Layout Decompression Chip for Maskless Lithography,” in Emerging
Lithographic Technologies VIII, Proceedings of SPIE, vol. 5374, 2004, 8 pp.

[19] Pant, P., Roy, R., and Chatterjee, A., “Dual-Threshold Voltage Assignment with Transistor
Sizing for Low Power CMOS Circuits,” IEEE Transactions on VLSI Systems, vol. 9, no.
2, 2001, pp. 390-394.

[20] Satish, N., et al., “Evaluating the Effectiveness of Statistical Gate Sizing for Power
Optimization,” Department of Electrical Engineering and Computer Science, University
of California, Berkeley, California, ERL Memorandum M05/28, August 2005.

[21] Sirichotiyakul, S., et al., “Stand-by Power Minimization through Simultaneous Threshold
Voltage Selection and Circuit Sizing,” in Proceedings of the Design Automation Confe-
rence, 1999, pp. 436-41.

[22] Srivastava, A., Sylvester, D., and Blaauw, D., “Power Minimization using Simultaneous
Gate Sizing Dual-Vdd and Dual-Vth Assignment,” in Proceedings of the Design Auto-
mation Conference, 2004, pp. 783-787.

[23] Synopsys, Design Compiler User Guide, version U-2003.06, June 2003, 427 pp.
[24] Tennakoon, H., and Sechen, C., “Gate Sizing Using Lagrangian Relaxation Combined

with a Fast Gradient-Based Pre-Processing Step,” in Proceedings of the International
Conference on Computer-Aided Design, 2002, pp. 395-402.

[25] Wei, L., et al., “Mixed-Vth (MVT) CMOS Circuit Design Methodology for Low Power
Applications,” in Proceedings of the Design Automation Conference, 1999, pp. 430-435.

[26] Yeo, E., et al., “A 500-Mb/s Soft-Output Viterbi Decoder,” IEEE Journal of Solid-State
Circuits, vol. 38, no. 7, 2003, pp. 1234-1241.

Chapter 7 7

LINEAR PROGRAMMING FOR MULTI-VTH
AND MULTI-VDD ASSIGNMENT

David Chinnery, Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720, USA

Having provided a strong gate sizing benchmark using only a single

transistor threshold voltage (Vth) and single supply voltage (Vdd) in Chapter
6, we now examine the impact of additionally using multiple-Vth and dual
Vdd to minimize power. Comparing cells with different Vth values is no diffe-
rent to comparing cells with different sizes, providing that the leakage is
included in the total circuit power. Multiple supply voltages can also be
handled similarly, with level converter overheads for restoring to high Vdd.

Our dual-Vdd/dual-Vth/sizing results achieve on average 5% to 13%
power savings versus the two alternate dual-Vdd/dual-Vth/sizing optimization
approaches suggested in [6] and [10]. Importantly, the linear programming
approach has runtimes that scale between linearly and quadratically with
circuit size, whereas other algorithms that have been proposed for multi-
Vdd, multi-Vth and gate size assignment have cubic runtime growth. This
chapter examines in detail optimization with multiple supply voltages and
multiple threshold voltages.

7.1 INTRODUCTION

A high supply voltage and a low threshold voltage may be necessary to
meet circuit delay constraints. However, using a lower Vdd can quadratically
reduce the dynamic power, and using a higher Vth can exponentially reduce
the leakage power. Thus it is possible to substantially reduce power while
meeting delay constraints by using high Vdd with low Vth on delay critical
paths, and low Vdd with high Vth where there is sufficient timing slack.
There are significant design costs for using multiple supply voltages and
multiple threshold voltages, so circuit designers are concerned about how
much power saving multi-Vdd and multi-Vth can truly provide.

152 Chapter 7

Figure 7.1 This diagram illustrates some of the differences between single Vdd and dual Vdd
layout. Single Vdd layout is more compact as shown in (a). If the PMOS n-wells are
connected to different supply voltages, then there are minimum spacing requirements as
shown in (b). An alternative is to connect the n-wells of PMOS transistors in both VDDH and
VDDL gates to VDDH, but this reverse biases the PMOS transistors in the VDDL gate as
shown in (c). Note that the PMOS n-wells in (c) are all connected to VDDH.

Each additional PMOS and NMOS threshold voltage requires another
mask to implant a different density of dopants, which substantially increases
processing costs. A set of masks costs on the order of a million dollars today
and an additional Vth level increases the fabrication cost by 3% [8]. Each

Linear Programming for Multi-Vth and Multi-Vdd Assignment 153

additional mask also increases the difficulty of tightly controlling process
yield, which strongly motivates manufacturers to limit designs to a single
NMOS and single PMOS threshold voltage. From a design standpoint, an
advantage of multiple threshold voltages is that changing the threshold
voltage allows the delay and power of a logic gate to be changed without
changing the cell footprint, and thus not perturbing the layout.

Each additional supply voltage requires an additional voltage regulator
and power supply rails for that voltage. The logic needs to be partitioned in
some manner into voltage regions where a single supply is used. The regions
of each supply voltage are not usually fully utilized and some spacing is
required between them, increasing chip area. Wire lengths also increase bet-
ween cells in different Vdd regions. The area overhead for gate-level dual
Vdd assignment in modules of a media processor was 15% [13].

An alternative is to route the two supply rails along every standard cell
row, which increases the cell height and has a similar area overhead. In bulk
CMOS there are also minimum spacing issues between the PMOS n-wells at
different biases to prevent latchup, as shown in Figure 7.1(b). The PMOS n-
wells in high Vdd (VDDH) gates cannot be connected to low Vdd (VDDL)
as this forward biases the transistors, increasing leakage substantially, and
can cause other problems. VDDL gates can have the PMOS n-well connected
to VDDH as shown in Figure 7.1(c), but this reverse biases the transistors,
making the VDDL gate even slower – though this can be compensated for
by using a lower PMOS Vth for VDDL gates.

Figure 7.2 This graph shows the impact of reverse biasing the PMOS substrate. Vs is the
source voltage (the supply voltage for an inverter), Vb is the body bias, and the input voltage
is fixed at 0V. The body is reverse biased when Vb > Vs, which increases the threshold voltage
and reduces the current. The thicker lines show drain current without reverse biased PMOS
substrate, and the thin lines show the drain current with substrate reverse biased at 1.2V.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Drain Source Voltage (V)

N
or

m
al

iz
ed

 D
ra

in
 C

ur
re

nt
Vs=1.2V, Vb=1.2V
Vs=0.8V, Vb=0.8V
Vs=0.8V, Vb=1.2V
Vs=0.6V, Vb=0.6V
Vs=0.6V, Vb=1.2V

Vs=1.2V, Vb=1.2V
Vs=0.8V, Vb=0.8V
Vs=0.8V, Vb=1.2V
Vs=0.6V, Vb=0.6V
Vs=0.6V, Vb=1.2V

10% worse due
to reverse bias

26% worse due
to reverse bias

154 Chapter 7

If the substrate is reverse biased at 1.2V for PMOS transistors with 0.8V
and 0.6V drain-source voltage, the drain current is 10% lower at 0.8V and
26% lower at 0.6V, as shown in Figure 7.2. Even without being reverse
biased, the PMOS transistor drain current is 55% and 78% lower respect-
tively than a PMOS transistor connected to a high supply voltage of 1.2V. In
silicon-on-insulator (SOI) technology, the transistors are isolated and spacing
between wells at different biases is not an issue.

If the alternate supply voltage rails are routed on each standard cell row,
it is much easier to change the supply voltage of cells without substantially
perturbing the layout, simplifying post-layout optimization. It also makes it
easy to connect to both power supply rails, which is needed for most voltage
level restoration “level converters” [8]. When different supply voltages are
routed next to each other, the second metal layer may be needed for internal
wiring in logic cells, which creates blockages on metal layer two, reducing
routing resources for wiring between cells.

Whether using separate voltage regions or routing the supply voltages
next to each other, using multi-Vdd increases the chip area, which lowers the
yield per wafer and increases fabrication costs.

Our optimization approach does not consider the increased area for
multi-Vdd and the impact on yield of both multi-Vdd and multi-Vth approa-
ches, but clearly there must be significant power savings to justify the cost.
Large power savings have been suggested by a number of researchers, but in
some cases the delay and the power models were inaccurate, or the initial
comparison point was poor, causing power savings to be overstated. To
justify the use of multi-Vdd and multi-Vth, we must show substantial power
savings versus a good choice of single supply voltage and single threshold
voltage with power minimization by gate sizing.

It is essential that gate sizing is considered with multi-Vdd and multi-
Vth, as gate sizing can achieve greater power savings at a tight delay
constraint. We found that the power savings achieved with multi-Vdd and
multi-Vth are in most cases less than the power savings achieved by gate
sizing with the linear programming approach versus the TILOS-like opti-
mizers.

While multiple threshold voltages do not complicate the optimization
problem, using multiple supply voltages requires insertion of voltage level
converters to restore the voltage swing to higher Vdd gates as described in
Section 7.2. As there is yet no standard approach for multiple supply voltage
and multiple threshold voltage optimization, Section 7.3 summarizes previous
research in the area, discussing the limitations and advantages of the various
optimization approaches. Few papers have considered trying to perform simul-
taneous optimization with assignment of multiple supply voltages, multiple
threshold voltages, and gate sizes. How the voltage level converter power
and delay overheads are handled with the linear programming approach is
detailed in Section 7.4.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 155

VDDL

VDDH

0V
VDDL

current

VGS = VDDL – VDDH

forward bias:
VDDL

VDDH

0V
VDDL

current

VGS = VDDL – VDDH

forward bias:

Figure 7.3 This diagram illustrates the need for voltage level restoration. The schematic
shows an inverter with supply voltage of VDDH, being driven by an inverter of supply voltage
VDDL. When the VDDL inverter output is high, the driving voltage is only VDDL, which results in
a forward bias of VDDL – VDDH across the PMOS transistor of the VDDH inverter. The forward-
biased PMOS transistor is not completely off resulting in large static currents.

Perhaps the best of the multi-Vdd/multi-Vth/sizing optimization methods
proposed by other researchers are the two approaches proposed by Sarvesh
Kulkarni, Ashish Srivastava, Dennis Sylvester, and David Blaauw in Chapter
8 [6][10]. Under the same conditions, the linear programming approach for
multi-Vdd/multi-Vth/sizing is compared versus their results in Section 7.5.
On average, the linear programming approach reduces power 5% to 13%
versus their results across a range of delay constraints.

Having established that the linear programming approach performs well
for supply voltage assignment and threshold voltage assignment as well as
gate sizing, Section 7.6 examines how much power can be saved with multi-
Vth and multi-Vdd versus using a single Vdd and single Vth. Section 7.7
discusses the impact of multi-Vdd and multi-Vth assignment in addition to
sizing on the runtimes. Section 7.8 gives a summary of our results.

7.2 VOLTAGE LEVEL RESTORATION
FOR MULTI-VDD

If a low Vdd (VDDL) input drives a high Vdd (VDDH) gate, the PMOS
transistors are forward biased by VDDL – VDDH which results in static current.
This is illustrated with two inverters in Figure 7.3. To avoid this, a voltage
level converter is needed to restore the signal to full voltage swing, restoring
the signal from 0V↔VDDL to 0V↔VDDH. A VDDH gate may drive a
VDDL gate.

Algorithms for gate level supply voltage assignment can be broadly sepa-
rately into two methodologies depending on where voltage level restoration
may occur. Clustered voltage scaling (CVS) [12] refers to when voltage level
restoration only occurs at the registers, to reduce the level converter power
and delay overhead. All VDDL gates must either drive VDDL gates or drive
a level converter latch. Hence there are distinct clusters of VDDL combina-
tional gates that have only VDDL combinational gates in their transitive
fanout. A gate may only be changed from VDDH to VDDL if the fanouts are

156 Chapter 7

all VDDL, or changed from VDDL to VDDH if the fanins are all VDDH.
Extended clustered voltage scaling (ECVS) [14] additionally allows “asynch-
ronous” level converters to be placed between combinational logic gates,
removing the restrictions on when a gate’s Vdd may be changed. In ECVS,
VDDL gates are still clustered in order to amortize the power and delay
overheads for the level converters. CVS and ECVS algorithms are detailed
in Section 8.2

Combining a level converter with a flip-flop minimizes the power over-
head for voltage level restoration. As typical level converter and flip-flop
designs essentially include a couple of inverters acting as a buffer, the level
converter can replace these in the flip-flop. The power consumed by an
LCFF can be less than that of a VDDH flip-flop, particularly if a low-voltage
clock signal is used [2]. An LCFF with high-speed pulsed flip-flop design is
comparable in delay to a regular D-type flip-flop [4], thus avoiding the level
converter delay overhead. The delay and power overheads for voltage level
restoration are minimal in CVS.

There has been concern about the noise immunity of asynchronous level
converters [4]. The asynchronous level converters that we use for ECVS
were shown to be robust and have good noise immunity [5].

We now look at the algorithms that have been proposed previously for
multi-Vth and multi-Vdd optimization.

7.3 PREVIOUS MULTI-VDD AND MULTI-VTH
OPTIMIZATION RESEARCH

A number of researchers have explored use of multiple threshold voltages,
and/or multiple supply voltages. Some papers report large power savings
versus an initial configuration that is substantially sub-optimal. For example
when starting with a circuit with high leakage power with all transistors at
low threshold voltage, introducing a second higher threshold voltage will
provide significant power savings, but the real question is how much power
would be saved with dual Vth versus choosing a more optimal single thres-
hold voltage and sizing gates optimally. To address this, multi-Vth and multi-
Vdd results in Section 7.6 are compared versus the optimal sizing results
with the best threshold voltage available from a choice of three Vth values –
though if a finer granularity of Vth were available, that would no doubt
provide some additional power savings. In particular, we generally look at
dual Vth/sizing power savings versus sizing with a higher Vth library, as it is
much more difficult to reduce power versus an initial configuration that is
already low on leakage power that has gate sizes optimized to reduce dynamic
power.

Another major shortcoming of many academic papers is using simplified
delay and power models that are inaccurate, such as ignoring slew and failing
to use separate rise and fall timing arcs. Few algorithmic papers state the

Linear Programming for Multi-Vth and Multi-Vdd Assignment 157

accuracy of their models. In some cases, it is not clear how optimization
approaches with such models can be extended to real circuits using full static
timing analysis with standard cell libraries, as their algorithmic approach or
computation speed depend on the underlying simplified models. Merging
rise and fall delays halves the number of delay constraints in optimization.
Simplified power and delay analysis that ignores slew and doesn’t use lookup
tables for analysis, for example using linear interpolation versus load capa-
citance, can speed up analysis runtimes by an order of magnitude. This has a
major impact on the total computational runtime as analyzing trade-offs is an
essential portion of the inner loop of any optimizer. For example, runtimes
reported for our initial linear programming approach [7] are about 10× faster
with 0.18um simplified logical effort delay models and no internal power
analysis versus interpolating 0.13um library data.

Given the range of computers used to run benchmarks in different papers,
it is difficult to directly compare runtimes across tools. For the purposes of
sizing large circuits in industry, it is more interesting to compare the runtime
complexity. It is essential that runtime complexity be less than O(|V|2), where
|V| is the number of gates in a circuit, to run on circuits of any appreciable
size [11].

We summarize some of the better multi-Vth and multi-Vdd optimization
approaches below.

7.3.1 Summary of papers on optimization with multi-Vth

TILOS-like optimizers have been used for multi-Vth assignment by a
number of researchers, including Wei et al. [15]; Sirichotiyakul et al. [9];
and Wei, Roy, and Koh [16]. These optimizers proceed in a greedy manner,
picking the gate with the best power or area versus delay tradeoff to change,
and iterating. A number of other optimization heuristics have also been tried.

Most threshold voltage assignment approaches concentrate on reducing
leakage power, though Wei, Roy, and Koh minimized total power [16]. Power
dissipation is a major constraint in today’s technologies, so minimizing total
power is the more appropriate optimization objective. If so desired, total
power could be minimized until a given constraint is reached, and then the
objective could be set to reducing leakage power with constraints on both
total power and delay. The only way to encode multiple objectives in an
optimization is to weight the objectives according to their priority and include
appropriate constraints, but it is generally best to find feasible solutions, for
example satisfying the delay constraint, before focusing on a secondary
objective.

Sirichotiyakul et al. began with a high Vth circuit and iteratively assigned
transistors to low Vth, with transistors prioritized in a TILOS-like manner
for the delay reduction versus the increase in leakage power. After a transistor
was assigned to low Vth, transistors in neighboring gates over three levels of

158 Chapter 7

logic were resized. In the 0.25um process with supply voltage of 0.9V, their
dual Vth approach reduced leakage by 3.1× to 6.2× with at most 1.3% delay
penalty [9] compared to gate sizing with all gates at low Vth,. The circuit
sizer was a TILOS-like sizer that provides a good baseline, but, as noted
earlier, large savings can be achieved versus an all low Vth configuration.
They did not consider the impact on dynamic power and the total circuit
power consumption. Analysis of their algorithm indicates a theoretical com-
plexity of O(|V|2).

Wei, Roy and Koh began with all gates at minimum size and high Vth.
The sensitivity metric for gate upsizing or reducing a gate’s threshold voltage
was –∆d/∆P. In a 0.25um process with Vdd of 1V and threshold voltages of
0.2V and 0.3V with 0.1 switching activity, total power was reduced by 14%
using dual Vth and gate sizing versus gate sizing with low Vth [16]. The
theoretical worst case runtime complexity of this approach is the same as
TILOS, O(|V|2).

Wei et al. compared gate-level assignment versus stack-level, and versus
assignment at the level of series connected transistors, and found that series-
level assignment provided 25% better power reduction than gate-level
assignment [15]. Our work does not directly consider transistor-level Vth
assignment, but if standard cell libraries are available with characterized
cells of mixed-Vth, it is straightforward to use them in the optimization.

These TILOS-like algorithms appear to be the best of the Vth assignment
algorithms, as other multi-Vth research has not shown better results than
TILOS. We do not compare the LP approach versus TILOS for gate-level
threshold voltage assignment, as Chapter 6 has already shown that our linear
programming approach produces better sizing results than TILOS.

7.3.2 Summary of papers on optimization with multi-Vdd

For multiple supply voltage assignment, the approach in common to
many of the algorithms is starting with a VDDH netlist, and prioritizing
assignment to VDDL, typically in reverse topological order. The approaches
by Srivastava and Kulkarni (see Chapter 8) take this one step further by
forcing additional VDDL assignment using slack gained from starting with
all gates at low Vth and gate upsizing. Having changed as many gates as
possible to VDDL in either a CVS or ECVS methodology, they pick the best
multi-Vdd/low Vth configuration, then look at assigning gates to high Vth.

Clustered voltage scaling (CVS) with voltage level restoration by level
converters combined with latches was proposed in 1995 by Usami and
Horowitz [12]. Their CVS algorithm proceeded in depth-first search manner
from the combinational outputs, assigning VDDH gates to VDDL if they
have sufficient slack and only VDDL or level converter latch fanouts. Assig-
ning gates to VDDL was prioritized by the gate load capacitance or the slack
in descending order. For two benchmarks in 0.8um process technology, dual

Linear Programming for Multi-Vth and Multi-Vdd Assignment 159

supply voltages of 5V and 4V gave power savings of 9% and 18% when
using a library with fine grained gate sizes [12]. Their delay models did not
include slew nor separate rise/fall delays, and short circuit power was not
included. The complexity of CVS is O(|V|2) (see Section 8.6.1).

In 1997, Usami et al. proposed an ECVS algorithm with the delay
constraint relaxed to allow all flip-flops to be set to LCFFs or VDDL [13].
The combinational gates were examined in reverse topological order. If a
VDDH gate had all VDDL fanouts and there was sufficient timing slack, it
was set to VDDL. If the gate had some VDDH fanouts, an asynchronous
level converter must be inserted. However, one gate may be insufficient to
amortize the power overhead for the level converter. Thus in addition to the
reduction in power for the gate changing from VDDH to VDDL, the
potential power reduction for changing the gate’s fanins to VDDL was
estimated. They fabricated a dual supply voltage media processor chip in
0.3um technology with VDDH of 3.3V. In the initial circuit, more than 60%
of the paths had slack of half the cycle time, suggesting that the initial circuit
was not sizing power minimized, thus giving larger power savings with dual
Vdd. They achieved on average 28% power savings for the combinational
logic with VDDL of 1.9V. The area overhead in the dual Vdd modules was
15% due to level converters, additional VDDL power lines, and reduced cell
density due to constrained placement on a VDDH row or VDDL row [13].
The theoretical runtime complexity for this heuristic is also O(|V|2).

More recent optimization approaches have included gate sizing with
CVS and ECVS multiple supply voltage assignment. The theoretical runtime
complexity of these algorithms is O(|V|3) or worse, which is too slow given
the typical size of circuits of interest to designers today.

Chapter 8 details multi-Vdd assignment algorithms proposed by Kulkarni
et al. that include gate sizing and threshold voltage assignment with O(|V|3)
runtime complexity. Their GVS algorithm for ECVS-multi-Vdd/multi-Vth/
sizing gives 21.6% average power saving versus their TILOS-like gate sizer,
but the average power saving is only 15.0% versus our better LP sizing
results (see Table 7.1).

Previous multi-Vdd algorithms have handled level converter power and
delay overheads by iteratively changing gates to VDDL and choosing the
best configuration found along the way, or by estimating the power savings
of changing multiple gates to VDDL. Both of these approaches can be
computationally expensive.

We now examine how to account for the voltage level converter delay
and power overheads with the linear programming approach that was detailed
in Chapter 6.

160 Chapter 7

7.4 OPTIMIZING WITH MULTIPLE SUPPLY

AND THRESHOLD VOLTAGES

Using multiple threshold voltages does not complicate our optimization
approach. The different delay and power – particularly leakage power – must
be accounted for, but this just changes the values in the corresponding
lookup tables for the standard cell library. Static timing and power analysis
do not otherwise change. The power and delay trade-offs for different cell
sizes and different threshold voltages for a cell are considered when deter-
mining the best alternate cell for a gate to encode in the linear program.
Then optimization proceeds normally.

In contrast, using multiple supply voltages not only complicates optimi-
zation, but can hinder getting out of local minima. A voltage level converter
must be inserted between low supply voltage and high supply voltage gates.
The additional power and delay for level converters must be encoded in
the linear program. The level converter overheads create a very “bumpy”
optimization surface with many local minima, hindering gates changing
from low Vdd to high Vdd or vice versa.

We assume that level converters are placed by the driven input of the
VDDH gate to avoid any additional wiring overheads. The same assumption
is made in Chapter 8, which we shall compare our results to.

With multi-Vth and multi-Vdd, the linear program and optimization
parameters are the same as used for gate sizing, detailed in Section 6.3.4.
The change for adding or removing a level converter as necessary for multi-
Vdd is included in the ∆P, ∆d and ∆s values encoded with the alternate cell
choices in the linear program.

7.4.1 Voltage level converter power and delay overheads

If a gate is changed from VDDH to VDDL, it needs level converters to
VDDH fanouts, and it no longer needs any fanin level converters. If a gate is
changed from VDDL to VDDH, it needs level converters on any VDDL
fanins, and no longer needs any fanout level converters. The level converters
overheads are not represented directly in the linear program, to avoid adding
unnecessary variables and unnecessary constraints. Instead the change in
power for adding or removing level converters is added to the change in
power for changing the gate’s cell, and the delay change is added to the
gate’s delay change on the appropriate delay constraint edge.

The overheads for level converter flip-flops and “asynchronous” level
converters are shown in Figure 7.4 and Figure 7.5. This data is from exami-
nation of the cell alternatives for a particular gate before encoding the best
alternative for each gate in the linear program.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 161

Figure 7.4 These graphs show delay and power trade-offs for alternate cells for a gate,
including the level converter flip-flop (LCFF) overhead. We assumed that LCFFs do not
consume more power than a normal flip-flop, but that they do impose an 80ps delay penalty.
The effect of the 80ps delay penalty is shown here on alternate cell choices for a size X4
Vdd=1.2V/Vth=0.08V inverter that drives an output port in ISCAS’85 benchmark c17. Some
power is saved by changing to VDDL and inserting the level converter flip-flop. Each point
on a curve represents a different gate size – the largest gates consume the most power and
have higher delay than the current cell with size X4 that is at the origin.

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.00 0.04 0.08 0.12 0.16

Worst ∆Delay (ns)

∆P
ow

er
 (m

W
)

vdd=1.2V,vth=0.08V

vdd=1.2V,vth=0.23V

vdd=0.8V,vth=0.08V

vdd=0.8V,vth=0.23V

0.00

0.04

0.08

0.12

0.00 0.04 0.08 0.12 0.16

∆Rise Delay (ns)

∆F
al

l D
el

ay
 (n

s)

80ps due to LCFF
delay overhead

delay increase with LCFF
and small power reduction
as at 0.8V instead of 1.2V

162 Chapter 7

Figure 7.5 These graphs show delay and power trade-offs for alternate cells for a gate,
including the asynchronous level converter overhead. These graphs show the alternate cell
choices for a Vdd=1.2V/Vth=0.23V drive strength X12 inverter in ISCAS’85 benchmark
c5315. The rise delay increases, because of the delay for a falling VDDH input to reach
VDDL. In contrast, there is only a small increase in the fall delay. The power overhead for an
asynchronous level converter is large, shown by the shift in the curves on the power versus
delay graph, and cannot be amortized across a single gate. Each point on a curve represents a
different gate size – the largest gates consume the most power.

For level converter flip-flops at the VDDL outputs of combinational
logic, we assumed that there is no power overhead. There is some delay
overhead – typically about 2 FO4 delays [2], which corresponds to 80ps in
our 0.13um process. The impact of the additional 80ps LCFF delay on VDDH

-0.02

0.00

0.02

0.04

0.06

-0.04 0.00 0.04 0.08 0.12 0.16 0.20 0.24
∆Rise delay (ns)

∆F
al

l d
el

ay
 (n

s)

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

-0.04 0.00 0.04 0.08 0.12 0.16 0.20 0.24

Worst ∆Delay (ns)

∆P
ow

er
 (m

W
)

vdd=1.2V, vth=0.08V

vdd=1.2V, vth=0.23V

vdd=0.8V, vth=0.08V

vdd=0.8V, vth=0.23V

rise
delay

increase

increase
due to level
converter

delay
& power

Linear Programming for Multi-Vth and Multi-Vdd Assignment 163

and VDDL cell alternatives is shown in Figure 7.4. The 80ps delay penalty
is considerable compared to the inverter delay. The power savings by changing
to VDDL are often less than by downsizing a gate, which argues against
prioritizing assignment to low Vdd over gate downsizing.

To analyze the ECVS approach, we used the strength 5 asynchronous
level converter shown in Figure 7.6 [5]. This design is a higher speed and
more energy efficient modification of a pass gate level converter. Transistor
M1 is an NMOS pass gate that isolates the input from the level converter’s
VDDH supply. Feedback from the inverter, composed of M2 and M3
transistors, to transistor M4 pulls up a VDDL input to VDDH. The logic
connected to the transistor gate of M1 serves to raise the transistor gate
voltage to VDDL + 0.11V, ensuring that transistor M1 is still off when the
input voltage is VDDL to isolate the input from VDDH, but improving the
performance of M1 and reducing contention with the inverter’s feedback [5].
The two characterized drive strengths of the level converter have similar
input capacitance and delay to a Vdd=1.2V/Vth=0.23V X2 drive strength
inverter, but their leakage is about 30× more due to use of low Vth transistors
and more leakage paths from Vdd to ground.

A VDDH input to a VDDL gate reduces the fall delay, but increases the
rise delay. For example, an inverter’s input falling from Vdd=1.2V, with
slew of 0.15ns, only reaches 0.8V after 0.05ns, which delays when the
inverter’s output starts to rise by at least 0.05ns. Compared to 0.8V input
drivers, using input drivers of 1.2V to 0.8V gates generally reduces the fall
delay more than the increase in rise delay for our 0.13um libraries, giving
about 1% to 3% net reduction in circuit delay for most of the ISCAS’85
benchmarks. The increased rise delay is apparent for Vdd of 0.8V in Figure
7.5, which shows the VDDH and VDDL cell alternatives for an inverter with
the overhead for inserting an asynchronous level converter at the output.

VDDL

VDDH

M1

M3

M2
in

outM4M6

M5

Cbuf

Figure 7.6 The strength 5 asynchronous voltage level converter [5]. The NMOS transistors
labeled with have Vth of 0.11V. The other NMOS and PMOS transistors have Vth of
0.23V and –0.21V respectively. VDDH is 1.2V and VDDL is 0.8V or 0.6V, with transistors
and capacitance Cbuf sized appropriately.

164 Chapter 7

delay minimization with
Design Compiler or TILOS

(with single Vdd and single Vth)

VDDH
standard cell
library .lib

VDDH
standard cell
library .lib

combinational gate
level Verilog netlist
combinational gate
level Verilog netlist

Multi-Vdd power minimization with
linear programming approach

– level converters inserted where
there is sufficient timing slack
to assign more gates to VDDL

VDDL
standard cell
library .lib

VDDL
standard cell
library .lib

Multi-Vdd power minimization with
linear programming approach

– removing voltage level
converters to reduce power

level converter
library .lib

(power set to zero)

level converter
library .lib

(power set to zero)

best multi-Vdd
netlist with T≤Tmax

best multi-Vdd
netlist with T≤Tmax

level converter
library .lib

(correct power)

level converter
library .lib

(correct power)

Figure 7.7 An overview of the optimization flow for multi-Vdd with asynchronous level
converters. The linear programming flow for each multi-Vdd power minimization run is the
same as for sizing in Figure 6.5, with removal and insertion of level converters included when
considering alternate cells for a gate.

Changing more than one gate to VDDL is required to amortize the
asynchronous level converter power overhead, as can be seen from the power-
delay trade-offs in Figure 7.5. This poses a significant barrier to our optimi-
zation formulation, as we pick the best cell alternative to encode in the linear
program by considering only a single gate.

7.4.2 Climbing the optimization barrier posed by level
converter power overheads

Linear programming CVS results showed some power savings versus
only using gate sizing. LP results for ECVS, where asynchronous level
converters were allowed, provided minimal (1%) or no additional power
savings versus CVS [3]. The optimized circuits did not have asynchronous
level converters, because the power overhead for a level converter was too
high to amortize across a single gate.

The LP optimization had no method of climbing the “hills” posed on the
optimization surface by the power overhead for a level converter. In contrast,

Linear Programming for Multi-Vth and Multi-Vdd Assignment 165

iteratively forcing gates to VDDL enables hill climbing in an ECVS multi-
Vdd methodology, which is the approach taken with multi-Vdd in Chapter 8.

We examined the power savings possible when the level converter power
and delay overheads were reduced. With reduced level converter overheads,
asynchronous level converters were used in the LP optimized circuits. From
this came the idea of setting the level converter power overheads to zero,
enabling use of the level converters, without violating the delay constraints.

It was essential to not change the level converter delays for two reasons.
Firstly, the linear programming optimization approach is not as good at
delay reduction, which suggests that trading delay for power reduction, then
trying to correct it later would be a mistake. Secondly, increased path delay
with the delay overhead of a level converter has a major impact on optimi-
zation choices and the power, for example causing gates to be upsized.

Setting level converter power consumption to zero, running the LP app-
roach, correcting the level converter power, then running the LP approach
again provided good results and level converters were used [3]. The run with
level converter power set to zero power results in using a larger number of
level converters. The LP run with the correct level converter power then
substantially reduces the number of level converters, but more gates remain
at VDDL than in a CVS approach – that is VDDL regions are clustered. The
ECVS multi-Vdd optimization flow is shown in Figure 7.7. A simplified
example to illustrate what happens is shown in Figure 7.8.

7.4.3 Climbing the optimization barrier posed by level
converter delay overheads

The delay overhead for level converters and larger rise delays when
Vin > Vdd can still pose a significant barrier to achieving better results with
multi-Vdd. To illustrate the severity of this problem, consider the circuit in
Figure 7.8(e), but suppose that the delay overhead for an asynchronous level
converter is 2 units of delay. The larger level converter delay causes the path
delay from gate 3→2→5 to be 5 units, violating the delay constraint. We
cannot change gate 5 to VDDL to remove the level converter, as this would
introduce a level converter from gate 6 to gate 5 which is a critical path.
Changing gate 2 to VDDH shifts the level converter to its input, which does
not reduce the delay on the path. The solution is to change both gate 2 and
gate 3 to VDDH, but as we determine the best alternatives to encode in the
LP for a single gate at a time, we cannot find this solution.

The problem with the multi-Vdd delay overheads can occur in situations
where the best solution would be to change multiple gates to VDDH, or in
situations where the best solution would be to change multiple gates to
VDDL. For the example in Figure 7.8, if the combinational outputs can be
driven at VDDL, setting all gates to VDDL would be the lowest power
solution. Indeed, setting all gates to VDDL is a better solution in the case

166 Chapter 7

described in Section 7.6.5.2, but it is not a solution that we can find without
forcing all gates to VDDL in the first place.

1
23

4
5

6
7

8

9

1
23

4
5

6
7

8

9

1
23

4
5

6
7

8

9

(a) Initial all VDDH circuit for
multi-vdd power minimization

(b) Gate 1 can be changed to VDDL
by inserting a level converter flip-flop
(LCFF) at the output

1
23

4
5

6
7

8

9

(d) Gate 2 can be changed to
VDDL by shifting the level
converter from its input to its
output to gate 5.

1
23

4
5

6
7

8

9

(d) Gate 2 can be changed to
VDDL by shifting the level
converter from its input to its
output to gate 5.

1
23

4
5

6
7

8

9

(e) The power overhead for an
asynchronous level converter is too
large to amortize by a single gate
changing to VDDL. Thus the optimal
configuration has gate 4 at VDDH.

1
23

4
5

6
7

8

9

(e) The power overhead for an
asynchronous level converter is too
large to amortize by a single gate
changing to VDDL. Thus the optimal
configuration has gate 4 at VDDH.

1
23

4
5

6
7

8

9

(c) Gates 3 and 4 can only be changed
to VDDL if an “asynchronous” level
converter is inserted between gates
2 and 5, and between gates 4 and 6.

Represents Delay PowerSymbol
VDDH

NAND2 1 5

VDDH
inverter 1 3

VDDL
NAND2 1 2

VDDL
inverter 1 1

asynchronous
level converter 1 4
level converter

flip-flop 1 0

Represents Delay PowerSymbol
VDDH

NAND2 1 5

VDDH
inverter 1 3

VDDL
NAND2 1 2

VDDL
inverter 1 1

asynchronous
level converter 1 4
level converter

flip-flop 1 0

Figure 7.8 This illustrates where level converters may be needed on a simple circuit. The
legend at the bottom right lists the delay and power of gates for this example. Suppose we
start in (a) with a circuit where all gates are at VDDH, and that the circuit delay constraint is 4
units. We require that the outputs are driven at VDDH. Gate 1 may be changed to VDDL, if
we use a level converter flip-flop at its output, shown in (b). The power overhead for an
asynchronous level converter is too large to amortize over only a single gate. Thus we
temporarily set the level converter power to zero to try and change more gates to VDDL.
Changing gates 3 and 4 to VDDL give power savings of 3 each, and we insert level
converters at their outputs in (c). Then in (d), we can propagate the level converter from the
input of gate 2 to its output, to get additional savings. Now we restore the power overhead for
the level converters, and find that it is best to change gate 4 back to VDDH, as shown in (e).

Linear Programming for Multi-Vth and Multi-Vdd Assignment 167

It might be possible to surmount the optimization barrier posed by the
level converter delay overheads by temporarily setting the delay overhead to
zero. Actually setting level converter delays to zero may be unacceptable,
because the level converters then act as very effective buffers that can reduce
delay by reducing the load on a gate. A better approach would be to set the
net delay impact to zero, that is no change in delay of the fanin gate or on the
timing arc where the level converter would be inserted. However, this will
usually result in too many gates being at VDDL and thus slower, causing
the delay constraint to be violated once correct delay overheads are used.
Performing delay reduction to meet the delay constraints may then give a
suboptimal power result where too many gates have to be upsized to reduce
the delay. In particular, it would be helpful to have a better delay minimizer
than the linear programming approach currently provides.

Given a good delay reduction approach to fix violated delay constraints,
relaxing the delay constraint would allow more gates to be assigned to VDDL,
and then delay reduction could be performed to satisfy the tightened delay
constraint. Thus the level converter delay penalty is not an optimization
barrier to reducing power by assigning more gates to VDDL at a relaxed
delay constraint.

Another approach would be to find groups of gates to assign to VDDL or
VDDH amortizing the delay penalty across them. However, this will be very
expensive computationally.

More gates could be forced to VDDL in the manner proposed in Chapter
8, but prioritizing assignment to lower supply voltage over gate downsizing
or increasing threshold voltage will be suboptimal, except in situations
where there is greater power sensitivity to Vdd, which is often not the case.
These approaches are also too computationally expensive as they are O(|V|3).

It is not clear how to resolve this problem. Further optimization experi-
ments with the multi-Vdd delay overhead barrier require a better delay mini-
mizer than the linear programming approach. For now, we will also examine
solutions where all gates are at the lower supply voltage, noting that there
may be other intermediate multi-Vdd solutions that would be better that we
cannot find due to the delay barrier.

7.5 COMPARISON OF MULTI-VDD
AND MULTI-VTH RESULTS

We shall now compare the linear programming results versus the multi-
Vdd/multi-Vth/sizing CVS and ECVS results provided by Sarvesh Kulkarni
and Ashish Srivastava in Chapter 8 for Vth values of 0.23V and 0.12V,
and Vdd values of 1.2V, 0.8V and 0.6V. The gate delays with Vdd of 0.6V
were estimated by scaling from 0.8V to 0.6V using Equation (4.4); the
other libraries were characterized in PowerArc for STMicroelectronics’
0.13um HCMOS9D process. To provide a range of Vth values for the

168 Chapter 7

characterization with PowerArc, the zero bias threshold voltage parameter
vth0 [1] in the SPICE technology files was adjusted.

We used the same libraries and conditions as they did. The port loads were
3fF, excluding the additional wire load. The wire loads were 3+2×num_fanout
fF, and slews were 0.1ns for the 1.2V input drive ramps. Switching activities
were multiplied by a fraction such that leakage was about 20% of total
power at Vdd=1.2V/Vth=0.12V. We used an 80ps delay overhead for level
converter flip-flops, and used the two characterized sizes of the strength 5
asynchronous level converter described in [5]. The ISCAS’85 and Huffman
benchmarks for comparison were discussed in Section 6.5.1.

There were twelve inverter cell sizes, and seven sizes for NAND2,
NAND3, NOR2 and NOR3 logic gates1. For multi-Vdd with a low supply
voltage of 0.8V or 0.6V, we encountered slews that were outside the cell
input slew characterization range. To avoid input slews exceeding 1.02ns,
the maximum cell capacitance was set to prevent a gate having an output
slew of more than 1.02ns.

The multi-Vth/multi-Vdd/sizing approaches in Chapter 8 start from a
circuit where gates have been upsized from minimum size by their TILOS-
like sizer to meet the delay constraint with high Vdd and low Vth. They do
not perform any gate downsizing, but may perform further gate upsizing to
allow more gates to be changed to low Vdd and high Vth. As the linear
programming approach outperforms their TILOS-like sizer, some power
savings will be simply due to better gate sizing. Their multi-Vdd approaches
climb the voltage level converter power and delay hills in the optimization
surface by forcing as many gates as possible to VDDL. Despite lacking a
global circuit view when assigning gates to VDDL, they may achieve lower
power by assigning more gates to VDDL, as we do not have any method
for climbing the level converter delay hills in the multi-Vdd optimization
surface.

The linear programming approach performs better if optimization starts
with a delay minimized netlist. Thus, the netlists sized by the TILOS-like
sizer for minimum delay (1.0×Tmin) with high Vdd and low Vth were the
starting point for the LP runs. The logic gates in the netlists are the same, but
the sizes differ from the starting point used for the University of Michigan
optimization, which starts with the circuit sized to meet the particular delay
constraint.

The TILOS sizing power results were on average 7.6% worse than the
LP sizing results, thus we use the LP sizing results to provide the sizing
baseline with single Vdd and single Vth, as shown in Table 7.1.

1 The inverter gate sizes were X1, X2, X3, X4, X6, X8, X10, X12, X14,

X16, X18 and X20. The other gate sizes were X1, X2, X4, X5, X6, X7 and
X8.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 169

Dual Vth with sizing in the LP approach is on average 13.7% lower
power than the LP sizing baseline, which is not surprising given that leakage
is 20% of the total power with single Vth of 0.12V at the delay constraint of
1.1×Tmin. The LP CVS and ECVS Vdd=1.2V&0.8V/Vth=0.23V&0.12V
results are respectively on average 17.4% and 21.7% lower power than the
LP sizing results. The largest power saving is 37.6% for benchmark c7552.
For the lower power ECVS results, using VDDL of 0.6V provides 2% or
less power savings versus VDDL of 0.8V. As a lower supply voltage is less
robust to noise and will have slower LCFFs, though we assume 80ps LCFF
for both VDDL values in these results, VDDL of 0.6V is probably not
worthwhile. The LP ECVS results are on average about 5% lower power
than the LP CVS results, as shown on the right in Table 7.2.

The University of Michigan sizing/multi-Vth/multi-Vdd results for
netlists c432 and c1355 are worse than the LP sizing results, because multi-
Vdd is not particularly helpful for these netlists and their TILOS-like sizing
results are more than 20% worse than the LP sizing results for these two
benchmarks. The linear programming results are on average about 6% lower
power than the University of Michigan CVS and ECVS results, as shown in
Table 7.2.

Table 7.1 This table shows the percentage power savings versus the sizing baseline provided
with the linear programming (LP) approach with Vdd=1.2V/Vth=0.12V at 1.1×Tmin.
University of Michigan (UM) results from Chapter 8 are reported in the last two columns for
their CVS and ECVS approaches that include dual Vth and gate sizing (they refer to these
respectively as VVS and GVS in Chapter 8). They found that using 0.6V for VDDL gave
worse results for their multi-Vdd approaches, so those results are not included.

TILOS CVS ECVS
0.23 0.23 0.23 0.23 0.23 0.23 0.23

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

0.8 0.8 0.8 0.8
0.6 0.6

Netlist
c432 -23.0% 0.0% 6.6% 4.5% 9.2% 6.6% 8.7% -7.4% -11.2%
c880 -1.4% 0.0% 15.9% 22.4% 21.9% 23.7% 22.6% 22.9% 26.3%
c1355 -21.4% 0.0% 5.7% 6.0% 6.7% 8.2% 8.0% -10.8% -9.9%
c1908 -8.9% 0.0% 9.8% 11.1% 11.2% 14.4% 13.8% 11.1% 7.4%
c2670 -1.8% 0.0% 17.7% 29.0% 31.8% 32.3% 33.1% 26.5% 27.9%
c3540 -3.9% 0.0% 15.1% 16.6% 17.0% 21.8% 20.9% 13.1% 11.7%
c5315 -1.7% 0.0% 15.2% 18.0% 19.5% 26.7% 28.1% 16.9% 25.3%
c7552 -2.1% 0.0% 21.8% 30.3% 28.0% 37.6% 37.1% 22.0% 33.1%
Huffman -4.4% 0.0% 15.8% 18.5% 19.3% 23.7% 23.9% 16.2% 24.1%
Average -7.6% 0.0% 13.7% 17.4% 18.3% 21.7% 21.8% 12.3% 15.0%

Vth (V)

Vdd (V)

LP UM

Power savings versus LP sizing

CVS ECVS

170 Chapter 7

Table 7.2 This table compares the linear programming CVS and ECVS results versus the
University of Michigan CVS and ECVS results respectively, and compares our LP results
with gate sizing and dual Vth for ECVS versus CVS.

Vth (V) 0.23 0.23 0.23 0.23 0.23 0.23
0.12 0.12 0.12 0.12 0.12 0.12

Vdd (V) 1.2 1.2 1.2 1.2 1.2 1.2
0.8 0.8 0.8

0.6 0.6 0.6
c432 11.1% 15.4% 16.0% 17.8% 2.1% -0.5%
c880 -0.6% -1.2% -3.5% -5.1% 1.7% 0.9%
c1355 15.2% 15.8% 16.5% 16.3% 2.3% 1.5%
c1908 -0.1% 0.1% 7.6% 7.0% 3.8% 2.9%
c2670 3.3% 7.1% 6.1% 7.1% 4.7% 1.9%
c3540 4.1% 4.5% 11.4% 10.3% 6.2% 4.6%
c5315 1.4% 3.1% 1.9% 3.8% 10.6% 10.7%
c7552 10.6% 7.7% 6.8% 6.0% 10.5% 12.6%
Huffman 2.8% 3.7% -0.4% -0.2% 6.4% 5.7%
Average 5.3% 6.3% 6.9% 7.0% 5.4% 4.5%

LP savings versus UM LP ECVS savings
LP CVS LP ECVS versus LP CVS

In most cases the LP results are lower power, but they are up to 5.1%
higher power for c880. In the few cases where the University of Michigan
results are better, they were able to assign more gates to VDDL to achieve
lower total power. This emphasizes the importance of level converter “delay
hill” climbing in the optimization space, which our linear programming
approach lacks. Several possible approaches to climbing these delay barriers
between local minima with the LP approach were discussed in Section 7.4.3.
It is a difficult non-convex optimization problem.

We would expect that an optimization approach which uses only a subset
of the optimization space (e.g. CVS with level converter flip-flops only)
would provide suboptimal or at best equivalent results to approaches with
additional options (e.g. ECVS which also has asynchronous level converters).
This is not always the case as the optimization approaches are heuristic, with
no guarantee of finding the global minimum, and they can get stuck in local
minima. The benefits of multi-Vdd may be underestimated due to the diffi-
culty of assigning more gates to VDDL with the level converter delay penalty
creating a nonconvex “bumpy” optimization space where it is difficult to get
out of local minima.

Our multi-Vdd/multi-Vth power savings of 28% or more versus sizing
are sufficient to justify use of multi-Vdd and multi-Vth. We compare multi-
Vdd and multi-Vth results versus single Vdd and single Vth in more detail in
the next section. In particular, we start with high Vth netlists for which
leakage is 1% of the total power, from which it is more difficult to achieve
substantial power savings with multi-Vth.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 171

7.6 ANALYSIS OF POWER SAVINGS WITH

MULTI-VTH AND MULTI-VDD

Comparisons versus Design Compiler in Section 6.5.2 showed that
the linear programming approach provided very good gate sizing results.
In Section 7.5, we saw that the LP approach also provides good multi-Vdd/
multi-Vth/sizing results, averaging 5% to 7% lower power for both CVS and
ECVS multi-Vdd methodologies. By comparison to the good gate sizing
baseline with single Vdd and single Vth, we can now carefully analyze the
power savings that may be possible with multi-Vdd and multi-Vth in addition
to gate sizing.

With the large amount of data presented in this section, we italicize the
more significant results.

7.6.1 General experimental conditions

The starting gate sizes for multi-Vth and multi-Vdd optimization are
the Design Compiler netlists that were sized to minimize delay with the
Vdd=1.2V/Vth=0.23V 0.13um PowerArc characterized library. Using high
Vdd and low Vth cells provides the minimum delay starting point for optimi-
zation (see Table 4.1 and accompanying discussion).

We used fewer gate sizes for results in this section. There were nine
inverter sizes, and four sizes for NAND2, NAND3, NOR2 and NOR3 logic
gates1. Using more gate sizes did not significantly change the results from
Design Compiler or our LP approach, as only the larger gate sizes were not
included. Inclusion of the larger gate sizes does not change the results signi-
ficantly as the larger gates with substantial power consumption are seldom
used in the power minimized netlists.

For multi-Vdd with a low supply voltage of 0.8V or 0.6V, we encoun-
tered slews that were outside the cell input slew characterization range.
These cell sizes were characterized with input slew of up to 1.8ns. To avoid
input slews exceeding 1.8ns, the maximum cell capacitance was set to prevent
a gate having an output slew of more than 1.8ns.

As in the earlier analysis, the port loads were 3fF, not including the wire
load, and wire loads were 3+2×num_fanout fF. Switching activities were
multiplied by a fraction such that leakage was about 1% of total power at
Vdd=1.2V/Vth=0.23V. Input slew was set to 0.1ns. The input drive ramps
have voltage swing from 0V to 1.2V, except in Section 7.6.5 for the single
0.8V Vdd results where we look at the impact of using 0.8V drivers. With
multi-Vdd, the optimization is not allowed to set the input drivers to VDDL
to further reduce power.

1 The inverter gate sizes were XL, X1, X2, X3, X4, X8, X12, X16 and X20.

The other gate sizes were XL, X1, X2, X4.

172 Chapter 7

7.6.2 Experimental conditions for multi-Vth comparison

Power savings are compared at a tight delay constraint for high Vth to
avoid exaggerating savings versus low Vth, where leakage and thus total
power are substantially higher. Starting with all gates at low Vth, it is easy to
reduce leakage by going to high Vth, as many gates are not on timing critical
paths. The power savings are less when starting with all gates at high Vth,
because using low Vth causes a substantial increase in leakage power that
can only be justified by gate downsizing on timing critical paths, or using the
resulting timing slack to reduce Vdd.

We shall examine multi-Vth with three Vth values: 0.23V, 0.14V, and
0.08V. The leakage at Vth of 0.14V and 0.08V is respectively about 10× and
50× than at 0.23V, but they also provide a substantial delay reduction versus
Vth=0.23V, ranging from 12% to 43% less depending on Vdd. There is
minimal benefit for choosing Vth higher than a value that results in leakage
being 1% of total power – the power savings are at best 1%, and in practice
less due to the reduced slack for gate downsizing. Thus we consider a
scenario with 1% of total power being leakage at high Vth.

The delay constraints were 1.0×Tmin and 1.2×Tmin for multi-Vth results,
where Tmin is the minimum delay for the Design Compiler delay minimized
netlists at Vdd=1.2V/Vth=0.23V. Using a lower threshold voltage provides
sufficient timing slack to get good multi-Vth results with the linear program-
ming approach at a delay constraint of 1.0×Tmin for Vdd=1.2V/Vth=0.23V.
We expect that using a lower Vth may provide most benefit at the tight
1.0×Tmin delay constraint, as the additional slack allows gates to be down-
sized, backing away from the sharp rise in dynamic power on the gate sizing
power versus delay “banana” curves. Analysis is also performed at 1.2×Tmin,
as this is where we found the greatest power savings with geometric pro-
gramming optimization of multi-Vdd and multi-Vth for benchmarks c499
and c880, and where other researchers have performed multi-Vdd analysis
[6][10].

7.6.3 Experimental conditions for multi-Vdd comparison

We shall examine three possible supply voltages: 1.2V, 0.8V and 0.6V.
Earlier multi-Vdd research suggested as a rule of thumb to use a low supply
voltage of about 70% of VDDH, while some more recent research has
suggested that VDDL should be 50% of VDDH [6]. Thus if VDDH is 1.2V,
VDDL should be 0.8V or 0.6V. The gate delays with Vdd of 0.6V were
estimated by scaling from 0.8V to 0.6V using Equation (4.3) with α = 1.66;
the other libraries were characterized in PowerArc for STMicroelectronics’
0.13um HCMOS9D process. To provide a range of Vth values for the
characterization with PowerArc, the zero bias threshold voltage parameter
vth0 [1] in the SPICE technology files was adjusted.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 173

There is a 50% delay increase when using Vdd=0.6V even with
Vth=0.08V, though Vdd=0.6V/Vth=0.08V does reduce power by about
65% versus Vdd=1.2V/Vth=0.23V from analysis without gate sizing in
Chapter 4. In comparison, Vdd=0.8V/Vth=0.08V has only a 10% delay inc-
rease and reduces power by 28%. For multi-Vdd, the smaller delay penalty
at VDDL=0.8V will allow it to be used for more gates in the circuit than
VDDL=0.6V. A smaller VDDL delay penalty leaves more slack for power
minimization by gate down sizing or increasing Vth.

We used a delay constraint of 1.2×Tmin to look at the benefits of multi-
Vdd, where Tmin is the minimum delay for the Design Compiler delay
minimized netlists at Vdd=1.2V/Vth=0.23V. There is sufficient slack for the
linear programming approach to work well at Vth=0.23V. 10% to 20%
relaxed delay constraints from the TILOS sized netlists were used in [6] and
[10] to allow sufficient slack for good power savings with multi-Vdd. The
Design Compiler delay minimized netlists average 22% faster than the
TILOS delay minimized netlists that were used as a starting point in Section
7.5. Thus, there may be significantly less timing slack at 1.2×Tmin for the
Design Compiler netlists than for the TILOS netlists. However, it is difficult
to compare the netlists as they differ because delay minimization in Design
Compiler used both technology mapping and gate sizing, whereas TILOS
was limited to gate sizing. Reducing Vth below 0.23V provides multi-Vdd
scenarios with more timing slack.

We must account for the delay and power overheads for restoring a low
voltage swing signal. Compared to high speed flip-flops, a level converter
flip-flop has a delay overhead of about 2 FO4 delays [2], which corresponds
to 80ps in our 0.13um process. Making the same assumption for results in
Section 7.6.4 as in Chapter 8, we assume an 80ps delay overhead for voltage
level restoration with an LCFF and no power overhead.

An LCFF delay overhead of 0ps is appropriate if comparing to the typical
D-type flip-flops in an ASIC standard cell library [4], rather than high speed
pulsed flip-flops. Results with 0ps LCFF delay overhead are discussed in
Section 7.6.5. The additional timing slack permits lower power results with
Vdd of 0.8V. With 80ps LCFFs, VDDH of 1.2V is required to meet the
delay constraints with sufficient timing slack to reduce power.

For ECVS, we used two characterized drive strengths of the strength 5
asynchronous level converters [5]. This higher speed and energy efficient
modification of a pass gate level converter was described in Section 7.4.1.

We make the same assumption as made by Kulkarni and Srivastava et al.
in [6], [10] and Chapter 8 that level converters are placed next to the input
pin of the gate that they drive, and that there are no additional wiring over-
heads. This assumption is optimistic, unless there is a standard cell library
with level converters incorporated into the logic cells. However, there are
level converter designs incorporating additional logic, (e.g. see Figure 13.8),
so this assumption may be reasonable.

174 Chapter 7

The optimization approach is only a heuristic, so in some cases the results
found given a larger possible state space, for example dual Vdd versus single
Vdd, can be worse. Section 7.6.5 will dwell on multi-Vdd results with 0ps
LCFF delay overhead that are substantially worse than using a single Vdd of
0.8V. As we are interested in looking at the benefits of multi-Vdd and multi-
Vth, a suboptimal result obscures the benefits. Instead, if there was a better
solution found with a subset of the Vdd or Vth values, that solution has been
tabulated, except for the multi-Vdd results in Section 7.6.5 where their
suboptimality is discussed.

7.6.4 Results with 80ps level converter flip-flop delay
overhead

We begin analysis assuming an 80ps LCFF delay overhead for voltage
level restoration at the outputs. This applies to the multi-Vdd results and to
the single Vdd results where the supply voltage has been scaled to 0.8V. We
have made the same assumptions as in Chapter 8 for comparison of our
results to theirs. In Section 7.6.5, we analyze results with a 0ps LCFF delay
overhead, which substantially improves the single Vdd=0.8V results.

7.6.4.1 Impact of multi-Vth with single Vdd at 1.0×Tmin

To examine the benefits of using multiple supply and threshold voltages,
we must first provide a sizing only baseline with single Vdd and single Vth.
At a delay constraint of 1.0×Tmin, the only possible choice of supply voltage
if only a single Vdd is used is 1.2V, as the delay is too large otherwise. For
Vth of 0.23V, there is no timing slack, and the linear programming approach
cannot minimize power without violating the delay constraint. Thus the Design
Compiler power minimization results are reported for Vth=0.23V at the
1.0×Tmin delay constraint.

The best single Vth gate sizing results at 1.0×Tmin are with Vth of 0.14V,
reducing the power on average by 12.0% from the Vth=0.23V sizing results.
The lower threshold voltage gives sufficient slack for gate downsizing to
reduce the dynamic power without resulting in excessive leakage, unlike
using Vth of 0.08V which is 19.7% higher power on average as listed in
Table 7.3.

The largest power saving with dual Vth versus the single Vth=0.14V
baseline is 7.0% with Vth of 0.23V and 0.14V, and on average they provide
5.2% power savings. The additional leakage with low Vth of 0.08V is too
great to justify using it with dual Vth, though sparing use of it on the critical
path for triple Vth provides up to 5.1% power savings versus dual Vth.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 175

Table 7.3 This table compares dual Vth and triple Vth sizing power minimization results
versus the best sizing only results with single Vth of 0.14V. The delay constraint was
1.0×Tmin and Vdd was 1.2V for all these results. Results for single Vth of 0.23V are from
Design Compiler (DC); the other results are from the linear programming approach (LP).

Triple
0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08

Netlist DC
c17 -13.7% 0.0% -20.1% 7.0% -8.0% 0.0% 7.0%
c432 -19.6% 0.0% -17.9% 2.5% -5.6% 0.8% 3.3%
c499 -20.9% 0.0% -17.1% 7.0% -0.2% 2.8% 8.1%
c880 -4.2% 0.0% -20.8% 5.1% 4.6% 2.8% 10.0%
c1355 -26.1% 0.0% -17.2% 4.6% -1.8% 2.6% 5.9%
c1908 -11.1% 0.0% -19.9% 6.1% -1.6% 1.0% 6.1%
c2670 -13.5% 0.0% -23.5% 5.2% 0.5% 1.4% 7.1%
c3540 -17.4% 0.0% -20.9% 4.5% -1.7% 0.8% 5.9%
c5315 -6.4% 0.0% -24.1% 6.2% 0.0% 1.4% 6.8%
c6288 -12.7% 0.0% -16.9% 2.4% -3.5% 1.6% 3.8%
c7552 -8.0% 0.0% -18.3% 6.2% 0.8% 3.2% 7.6%
Average -14.0% 0.0% -19.7% 5.2% -1.5% 1.7% 6.5%

Power savings vs. Vdd=1.2V/Vth=0.14V

Single Dual

LP

7.6.4.2 Impact of multi-Vth with single Vdd at 1.2×Tmin

With a relaxed delay constraint of 1.2×Tmin, in some cases single Vth of
0.23V produced the best results for gate sizing and in other cases Vth of
0.14V was the best choice, as shown in Table 7.4. The best single Vth/single
Vdd/gate sizing results were with Vdd of 1.2V, though the relaxed delay
constraint does allow Vdd of 0.8V with Vth reduced to 0.08V in some cases.
The best of these gate sizing only results are used for a baseline to compare
multi-Vth against.

Dual threshold voltages of 0.23V and 0.14V with Vdd of 1.2V provide the
best dual Vth power savings, except for benchmark c6288, averaging 5.0%
lower power than the single Vth baseline. The leakage with Vth of 0.08V is
too high to justify its use with Vdd of 1.2V. Triple Vth provides at most
1.3% power savings versus dual Vth.

Interestingly, optimization of c6288 with single Vdd of 0.8V and Vth
values of 0.14V and 0.08V achieves the largest dual Vth power savings of
7.8% versus the single Vth gate sizing baseline, and this result is 4.1% lower
power than the multi-Vth results with Vdd of 1.2V. This is the only case
where the multi-Vth results with Vdd of 0.8V achieve lower power. With
Vdd of 0.8V, low Vth of 0.08V is essential to try and meet the delay
constraint. For the single Vth results, using only Vth of 0.08V results in too
much leakage and worse total power. For those gates with sufficient slack to

176 Chapter 7

change to high Vth, the higher Vth of 0.14V provides about a 5× reduction
in leakage power. The 80ps LCFF delay overhead is only 2% of the delay
constraint for c6288, but for the other netlists it is 6% or more of the delay
constraint, leaving less slack for gates to be downsized or changed to high
Vth. This is why the results for c6288 with Vdd of 0.8V are different.

For the Vdd=0.8V/multi-Vth results where the delay constraints were not
violated, the delay reduction phase of the LP approach did manage to meet
the delay constraint after iterations of the power reduction phase, which was
not the case for the Vdd=0.8V/single Vth results. To reduce delay with Vth,
a gate can be changed back to low Vth, which only slightly increases the
capacitive load on fanin gates and doesn’t reduce their speed substantially.
Whereas to reduce delay with sizing, a gate must be upsized, which sub-
stantially increases the capacitive load on the fanins and increases their
delay. Thus the delay reduction phase can reduce delay better with multi-Vth
than with gate sizing alone.

Table 7.4 This table compares dual Vth and triple Vth sizing power minimization results
versus the best sizing only results with single Vth. The delay constraint was 1.2×Tmin and
input drivers were ramps with voltage swing from 0V to 1.2V. There was an 80ps LCFF
delay overhead at the outputs for the Vdd=0.8V results. Vdd=0.8V results were not included
if there was no power savings versus the baseline. All these results are for the LP approach.

Triple Dual Triple
0.23 0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08 0.08 0.08

1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vdd (V) 0.8 0.8

Netlist
c17 -8.8% 0.0% -20.4% 5.0% -2.3% 0.0% 5.0%
c432 -3.5% 0.0% -24.3% 6.7% 1.0% 0.0% 6.7%
c499 -7.2% 0.0% -30.0% 1.8% -5.7% -3.7% 1.8%
c880 0.0% -3.1% -31.5% 5.0% 1.9% -2.3% 5.0%
c1355 -1.8% 0.0% -26.2% 4.5% -0.8% 0.0% 4.7%
c1908 0.0% -0.2% -29.3% 7.1% 3.3% -0.8% 7.7% -18.1% -8.3%
c2670 0.0% -2.8% -31.1% 4.3% 2.5% -2.8% 4.6%
c3540 -0.4% 0.0% -27.9% 6.9% 2.3% 0.8% 7.5% -8.8% -8.8%
c5315 0.0% -4.9% -36.0% 3.7% 1.4% -4.7% 3.9% -53.3% -53.3%
c6288 -1.0% 0.0% -24.9% 3.9% 1.5% 0.7% 5.2% 7.8% 7.8%
c7552 0.0% -1.3% -29.0% 5.6% 2.3% -0.9% 5.6%
Average -2.1% -1.1% -28.2% 5.0% 0.7% -1.2% 5.2% -18.1% -15.7%

failed delay constraint

failed delay constraint
failed delay constraint
failed delay constraint

failed delay constraint

Power savings vs. single Vdd/single Vth baseline

Single

failed delay constraint
failed delay constraint

Single Dual

Linear Programming for Multi-Vth and Multi-Vdd Assignment 177

7.6.4.3 Summary of multi-Vth results with 80ps LCFF delay overhead

Using dual threshold voltages provides only a power saving of up to
11.4%, which does not justify the additional processing costs and yield impact.
Using three different threshold voltages provides no significant additional
benefits. However, we will revisit this with Vdd of 0.8V and 0ps LCFF
delay overheads in Section 7.6.5, where dual Vth is found to provide larger
power savings.

In the next section we examine the power savings with multiple supply
voltages at 1.2×Tmin. Then we look at using multiple supply voltages in
conjunction with multiple threshold voltages in Section 7.6.4.5. We might
anticipate that multi-Vth is more beneficial with multi-Vdd, as the lower Vth
can help provide sufficient slack to change more gates to low Vdd.

7.6.4.4 Impact of multi-Vdd with single Vth at 1.2×Tmin

The largest power saving with ECVS dual Vdd versus the single Vdd
baseline was 13.9% for c2670 with Vdd values of 1.2V and 0.6V and Vth of
0.14V, as shown in Table 7.5. The largest power saving with CVS dual Vdd
was 12.2% was for the same benchmark and Vdd values, but Vth was 0.23V.
On average ECVS provides only 1.2% power savings versus CVS, though
the maximum power saving is 7.3%. Dual Vdd with single Vth provided no
power savings for c17 and c499.

Comparing the best CVS dual Vdd/single Vth/sizing results against the
baseline, CVS dual Vdd gives on average 2.5% power savings. The results
with VDDL of 0.8V and 0.6V were quite similar, indicating a somewhat
flat optimization space in terms of the choice for VDDL. In most cases, the
best choice for a single Vth with dual Vdd was 0.14V, as it provides more
slack for gates to change to VDDL than a Vth of 0.23V. The best ECVS dual
Vdd with single Vth results versus the baseline give an average 4.1% power
saving.

The dual Vdd/single Vth results range from 6.6% better to 11.2% worse
than the single Vdd/dual Vth results at 1.2×Tmin, and are 1% better on
average. The power savings depend on the particular design and the opti-
mizer, for example the LP approach works well with multi-Vth but has
problems in some cases with multi-Vdd. Depending on the power savings
and the design cost, it may be preferable to use only dual Vth, only dual
Vdd, or both. However, the maximum power savings of 7.8% with single
Vdd/dual Vth and 13.9% with dual Vdd/single Vth are probably insufficient
to justify the additional design cost.

We now look at the benefits of multi-Vdd with multiple threshold voltages.
Using a low Vth provides slack for greater use of low Vdd, and voltage level
converter designs may utilize more than one threshold voltage. For example,
the strength 5 level converters [5] use Vth of 0.23V and 0.11V.

178 Chapter 7

Table 7.5 This table compares CVS and ECVS dual Vdd/single Vth/sizing power
minimization results versus the sizing only baseline results in Table 7.4. At the bottom are
shown the ECVS power savings versus CVS.

0.23 0.23 0.23 0.23
0.14 0.14 0.14 0.14

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vdd (V) 0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6
Netlist

c17 -8.8% 0.0% -8.8% 0.0% -8.8% 0.0% -8.8% 0.0%
c432 -2.4% 0.6% -2.9% 0.0% -2.4% 0.6% -2.9% 0.0%
c499 -7.1% 0.0% -7.1% 0.0% -7.1% 0.0% -7.1% 0.0%
c880 2.3% 0.0% 3.0% 1.4% 2.3% 6.2% 3.0% 4.2%
c1355 -1.8% 0.0% -1.8% 0.0% -1.8% 0.8% -1.5% 0.0%
c1908 1.4% 2.2% 0.4% 2.6% 1.6% 3.4% 1.9% 3.6%
c2670 9.8% 7.8% 12.2% 11.3% 10.0% 10.4% 12.2% 13.9%
c3540 1.8% 2.1% 2.2% 1.9% 3.0% 7.6% 2.2% 5.5%
c5315 3.3% -0.1% 3.2% 0.4% 6.6% 7.1% 3.9% 7.7%
c6288 0.4% 1.3% -0.1% 1.2% 0.4% 1.3% -0.1% 1.2%
c7552 2.3% 0.6% 1.7% 0.7% 2.3% 3.7% 1.7% 3.2%
Average 0.1% 1.3% 0.2% 1.8% 0.5% 3.7% 0.4% 3.6%

Netlist
c17 0.0% 0.0% 0.0% 0.0%
c432 0.0% 0.0% 0.0% 0.0%
c499 0.0% 0.0% 0.0% 0.0%
c880 0.0% 6.2% 0.0% 2.8%
c1355 0.0% 0.8% 0.3% 0.0%
c1908 0.1% 1.2% 1.4% 1.0%
c2670 0.2% 2.8% 0.0% 3.0%
c3540 1.1% 5.6% 0.0% 3.7%
c5315 3.4% 7.2% 0.7% 7.3%
c6288 0.0% 0.0% 0.0% 0.0%
c7552 0.0% 3.1% 0.0% 2.5%
Average 0.4% 2.5% 0.2% 1.8%

Single

CVS dual Vdd ECVS dual Vdd

Vth (V)

ECVS power saved vs. CVS

Power savings vs. single Vdd/single Vth baseline

7.6.4.5 Impact of multi-Vdd with multi-Vth at 1.2×Tmin

In most cases, the best Vdd values were 1.2V and 0.6V for dual Vdd/
dual Vth, and the best Vth values were 0.23V and 0.14V. The largest power
saving seen with ECVS dual Vdd/dual Vth versus the single Vdd/single Vth
baseline was 18.6%, as shown in Table 7.6, and the average power saving
with the best dual Vdd/dual Vth results for each benchmark is 8.5%. The

Linear Programming for Multi-Vth and Multi-Vdd Assignment 179

best dual Vdd/dual Vth power saving versus single Vdd/dual Vth is 6.9%, and
the results are 4.6% better on average. The best dual Vdd/dual Vth power
saving versus dual Vdd/single Vth is 15.0%, and the results are 3.4% better
on average. The largest power saving for dual Vdd/triple Vth versus dual
Vdd/dual Vth was 2.3% for c5315.

Table 7.6 This table compares CVS and ECVS dual Vdd/multi-Vth/sizing power
minimization results versus the sizing only baseline results in Table 7.4. At the bottom are
shown the ECVS power savings versus CVS. Suboptimal dual Vdd/dual Vth results with low
Vth of 0.08V are omitted here.

Dual Triple Dual Triple Dual Triple Dual Triple
0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vdd (V) 0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

Netlist
c17 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
c432 6.9% 7.7% 7.5% 7.5% 7.0% 7.7% 7.5% 7.5%
c499 1.8% 1.9% 1.8% 1.8% 1.8% 1.9% 1.8% 1.8%
c880 6.9% 6.9% 7.0% 7.0% 10.4% 10.4% 7.3% 9.3%
c1355 4.7% 4.7% 4.8% 4.9% 4.7% 4.9% 4.8% 4.9%
c1908 8.4% 8.6% 10.2% 10.2% 9.4% 9.4% 10.2% 10.2%
c2670 13.8% 14.0% 16.7% 16.8% 15.1% 16.4% 18.6% 18.6%
c3540 8.1% 8.8% 8.5% 9.0% 10.6% 10.8% 10.4% 10.9%
c5315 6.6% 6.8% 6.7% 6.7% 11.0% 11.5% 11.9% 13.9%
c6288 4.7% 5.2% 5.1% 5.2% 4.7% 5.2% 5.1% 5.1%
c7552 6.2% 6.6% 6.8% 7.0% 6.9% 7.7% 8.1% 8.1%
Average 6.6% 6.9% 7.3% 7.4% 7.9% 8.3% 8.2% 8.7%

Netlist
c17 0.0% 0.0% 0.0% 0.0%
c432 0.1% 0.0% 0.0% 0.0%
c499 0.0% 0.0% 0.0% 0.0%
c880 3.8% 3.8% 0.3% 2.5%
c1355 0.0% 0.2% 0.0% 0.0%
c1908 1.0% 0.8% 0.0% 0.0%
c2670 1.5% 2.8% 2.3% 2.2%
c3540 2.7% 2.1% 2.1% 2.1%
c5315 4.8% 5.0% 5.5% 7.7%
c6288 0.0% 0.0% 0.0% 0.0%
c7552 0.8% 1.2% 1.4% 1.2%
Average 1.3% 1.5% 1.1% 1.4%

Power savings vs. single Vdd/single Vth baseline

ECVS power savings vs. CVS

CVS dual Vdd ECVS dual Vdd

180 Chapter 7

Results from these small benchmarks suggest that dual Vth with dual
Vdd doesn’t provide substantial benefits over using single Vth with dual
Vdd, and that the processing costs for additional mask layers would not be
justified. An additional Vth value doesn’t provide much power saving: either
by using a second higher Vth to reduce leakage, or a second lower Vth to
provide more timing slack to reduce Vdd.

Comparing ECVS versus CVS for the best dual Vth values of 0.23V and
0.14V, ECVS provided up to 5.5% power savings. This may be insufficient
improvement to justify use of asynchronous level converters, given that
they are not as robust to noise as level converter flip-flops, and thus require
tighter design constraints on voltage IR drop and more careful noise ana-
lysis.

The gate sizing results for the LP approach in Chapter 6 had average
power savings of 16.6% versus Design Compiler for the delay constraint of
1.2Tmin. Thus LP gate sizing provides about twice the average improvement
of 8.5% seen with dual Vdd/dual Vth/sizing, without any additional
processing costs for multi-Vth or area overhead for multi-Vdd. Given the
additional design costs, use of dual Vdd and dual Vth appear dubious.

In the next section with 0ps LCFF delay overheads, we will examine
how optimal these multi-Vdd results are, and see situations where multi-Vth
can provide larger power savings.

7.6.5 Results with 0ps level converter flip-flop delay
overhead

Thus far, an 80ps LCFF delay penalty has been assumed for voltage level
restoration to 1.2V at the primary outputs if the driving gate has a 0.8V or
0.6V supply. However, the delay of a level converter flip-flop is comparable
to that of a typical D-type flip-flop in an ASIC standard cell library [4],
though slower than fast pulsed flip-flops. Thus a 0ps delay penalty is appro-
priate if comparing to D-type flip-flops.

The output signals may also not require voltage level restoration. For
example, the whole circuit may use a 0.8V supply voltage. In this case, there
will be some additional delay due to using registers with 0.8V supply. A
typical D-type flip-flop used for a register in an ASIC has delay of 2 to 4
FO4 delays, corresponding to 80ps to 160ps in this 0.13um process. Voltage
scaling from Vdd=1.2V/Vth=0.23V to Vdd=0.8V/Vth=0.14V increases the
delay by about 15%. So the flip-flops may be 12ps to 24ps slower, which is
substantially less than an 80ps delay penalty.

In this section, we look at LP results with single Vdd=0.8V and 0ps
LCFF delay overhead. Then we will examine why optimization with multi-
Vdd has problems finding result as good as these.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 181

Table 7.7 This table compares single Vdd=0.8V results versus the baseline of the best sizing
only results with 1.2V input drivers from Table 7.4 and the second column here. At the
bottom left, the gate sizing results with Vdd of 0.8V are compared against the best gate sizing
results from Table 7.4. The input drivers had voltage swing of 0.8V or 1.2V. At the bottom
right are shown the power savings with 0.8V drivers versus 1.2V drivers.

Single Triple Single Triple
0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Netlist
c17 3.3% 3.3% 24.4% 24.4%
c432 -8.6% -8.7% 2.3% 3.4% 5.5% 6.0% 14.0% 16.0%
c499 -2.7% 0.7% 9.2% 10.1% 7.8% 10.0% 19.7% 20.7%
c880 -5.7% 8.9% 16.7% 16.7% 8.8% 19.5% 27.7% 27.7%
c1355 -15.5% -1.1% 6.7% 6.7% 7.5% 9.4% 18.2% 18.3%
c1908 -11.8% 7.8% 15.5% 16.5% 9.0% 15.1% 24.1% 24.6%
c2670 0.0% 9.4% 16.3% 16.6% 3.2% 22.2% 28.6% 29.5%
c3540 0.0% 9.2% 16.9% 17.3% 8.7% 17.8% 24.3% 25.4%
c5315 0.0% 14.0% 18.1% 18.6% 13.2% 21.4% 27.7% 28.9%
c6288 0.0% 2.6% 9.5% 9.5% 5.9% 5.9% 14.3% 15.0%
c7552 0.0% 10.5% 18.0% 18.5% 11.9% 18.1% 25.1% 26.0%
Average -4.4% 5.3% 12.9% 13.4% 7.7% 13.5% 22.5% 23.3%

Saved vs.Vdd=1.2V
Netlist single Vth baseline Netlist

c432 -8.6% c432 13.0% 13.4% 12.0% 13.0%
c499 -2.7% c499 10.3% 9.4% 11.6% 11.8%
c880 -5.7% c880 13.8% 11.6% 13.2% 13.2%
c1355 -15.5% c1355 19.9% 10.4% 12.2% 12.4%
c1908 -11.8% c1908 18.6% 8.0% 10.1% 9.6%
c2670 4.1% c2670 3.2% 14.1% 14.7% 15.4%
c3540 0.3% c3540 8.7% 9.5% 8.9% 9.8%
c5315 3.9% c5315 13.2% 8.7% 11.7% 12.7%
c6288 3.3% c6288 5.9% 3.4% 5.3% 6.0%
c7552 3.5% c7552 11.9% 8.4% 8.6% 9.2%
Average -2.9% Average 11.8% 9.7% 10.8% 11.3%

with 1.2V drivers with 0.8V drivers
Dual Dual

Saved vs. 1.2V drivers

Power savings vs. single Vdd/single Vth baseline with 1.2V drivers
failed delay constraint

7.6.5.1 Impact of multi-Vth with Vdd of 0.8V at 1.2×Tmin

Vth of 0.08V is necessary with Vdd=0.8V to meet the delay constraint.
With 1.2V drivers, the single Vdd=0.8V/Vth=0.08V results are up to 4.1%
better than the Vdd=1.2V gate sizing baseline, but on average are 2.9%
worse as shown in Table 7.7. The increased rise delay with 1.2V input swing
to the 0.8V gates prevents the delay constraint being satisfied for c17, where

182 Chapter 7

the 0.033ns for the input to fall from 1.2V to 0.8V (calculated from the 0.1ns
input slew of the drivers) is 29% of the 0.112ns delay constraint.

When voltage is scaled from Vdd=1.2V/Vth=0.23V to Vdd=0.8V/
Vth=0.08V, there is about a 26× increase in leakage, but the dynamic power
is reduced substantially by about a factor of 2.2× from the analysis that
excluded gate sizing in Chapter 4. As the dynamic power was 99% of the
total power at Vdd=1.2V/Vth=0.23V, this trade-off can be worthwhile. In
the absence of gate sizing, Vdd=0.8V/Vth=0.08V reduced power on average
by 28% versus Vdd=1.2V/Vth=0.23V, but with gate sizing included the
average power saving is only 10.4% with 0.8V input drivers. The extra
timing slack at Vdd=1.2V/Vth=0.23V allows more gate downsizing, thus
reducing Vdd provides less power savings.

With 1.2V drivers, the Vdd=0.8V/dual Vth results with Vth values of
0.14V and 0.08V are up to 18.1% lower power than the baseline, and
average 12.9% less. In comparison for single Vdd of 1.2V at 1.2×Tmin, dual
Vth was only 5.0% better than the baseline on average, and at best 7.1%
better. Thus the dual Vth results at Vdd of 0.8V are much better. The low
Vth of 0.08V provides sufficient slack for Vdd to be reduced to 0.8V, and
the higher Vth of 0.14V is used where possible to reduce leakage. Comparing
the Vdd=0.8V results, adding the high Vth of 0.14V allows power to be
reduced by 16.5% on average versus the single Vth=0.08V results. This may
be sufficient power savings to justify the additional process costs for dual
Vth. At Vdd=0.8V, gates with Vth of 0.14V were only about 15% slower
than at Vth of 0.08V, compared to Vth of 0.23V which had 50% larger
delay. Consequently, Vth of 0.14V is a better choice for high Vth than
0.23V. Comparing triple Vth and dual Vth results at Vdd=0.8V in Table 7.7,
there is at most 2.3% power savings by using the third threshold voltage.

Until now, we have assumed that the input drivers had voltage swing of
1.2V. Using 0.8V input drivers reduces the dynamic power to switch
capacitances driven by the primary inputs. The results with 0.8V input
drivers average 10.9% lower power than the results with 1.2V drivers in
Table 7.7. With 0.8V gates and 0.8V input drivers, the single Vth of 0.08V
results average 7.7% lower power than the other gate sizing results. In
comparison to these better gate sizing results, results for 0.8V gates and
0.8V drivers with dual Vth of 0.14V and 0.08V average 16.0% lower power,
and the maximum power saving is 26.2%. This shows the full extent of
power savings that might be achieved by scaling Vdd from 1.2V to 0.8V.
These savings are comparable to what we achieved with the gate sizing
approach versus Design Compiler.

The multi-Vdd results were restricted to having 1.2V input drivers, so it
is not fair to compare them to Vdd=0.8V results with 0.8V drivers. With 0ps
LCFF delay overhead and 1.2V drivers, we will compare the multi-Vdd
results with single Vdd=0.8V results in the next subsection.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 183

7.6.5.2 Multi-Vdd results are suboptimal versus using single 0.8V Vdd

The ECVS multi-Vdd/multi-Vth results with 0ps LCFF delay overhead
averaged 8.9% worse than Vdd=0.8V/Vth=0.14V&0.08V results with 1.2V
drivers and 0ps LCFF delay overhead [3], excluding c17 where the delay
constraint could not be met with Vdd=0.8V and 1.2V drivers. The multi-Vdd
solutions with VDDL of 0.8V were clearly suboptimal as the single Vdd=0.8V
solution is in a subspace of the multi-Vdd solution space.

Several different approaches were tried to improve the suboptimal multi-
Vdd results [3]. The closest results started optimization with all gates at
Vdd=0.8V and Vth=0.08V, for which the dual Vdd=1.2V&0.8V results were
only 2.8% worse on average than the single Vdd=0.8V results.

The multi-Vdd results are suboptimal because the delay overhead of
the level converters creates barriers in the optimization space to iteratively
changing all the supply voltages to 0.8V, as level converters have to be
inserted at intermediate steps. The problem posed by the delay overhead
of level converters was discussed in Section 7.4.3, along with possible ways
of overcoming the barrier. Forcing more gates to VDDL and keeping track of
the best solution found, as proposed in Chapter 8, may allow a better solution
to be found.

This concludes the analysis of using multi-Vdd and multi-Vth in comp-
arison to using only a single Vdd and single Vth. We saw some power savings,
but they were not comparable to the power savings from sizing alone with
the linear programming approach versus TILOS, except for Vdd=0.08V/
Vth=0.14V&0.08V with 0ps LCFF delay overheads. We now look at what
additional computation time is required for multi-Vdd and multi-Vth optimi-
zation.

184 Chapter 7

Figure 7.9 This log-log graph shows the runtime for 40 iterations of the LP solver. As
illustrated with the lines showing O(|V|) and O(|V|2) runtime growth, the linear program solver
runtimes grow between linearly and quadratically with circuit size.

Figure 7.10 This log-log graph shows the runtime for 40 iterations, excluding the LP solver
runtime. The runtimes excluding the linear program solver grow linearly with circuit size.

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000
Number of gates |V|

R
un

tim
e

fo
r

40
 it

er
at

io
ns

 o
f t

he
 L

P
so

lv
er

 (s
)

1 Vdd/1 Vth
1 Vdd/2 Vth
1 Vdd/3 Vth
CVS 2 Vdd/1 Vth
CVS 2 Vdd/2 Vth
CVS 2 Vdd/3 Vth
ECVS 2 Vdd/1 Vth
ECVS 2 Vdd/2 Vth
ECVS 2 Vdd/3 Vth
6.5x10^-2 |V|^1
8.0x10^0 |V|^1
1.5x10^-5 |V|^2
3.4x10^-4 |V|^2

10

100

1,000

10,000

100,000

100 1,000 10,000 100,000
Number of gates |V|

T
ot

al
 r

un
tim

e
ex

cl
ud

in
g

L
P

so
lv

er
 (s

)

1 Vdd/1 Vth
1 Vdd/2 Vth
1 Vdd/3 Vth
CVS 2 Vdd/1 Vth
CVS 2 Vdd/2 Vth
CVS 2 Vdd/3 Vth
ECVS 2 Vdd/1 Vth
ECVS 2 Vdd/2 Vth
ECVS 2 Vdd/3 Vth
8.0x10^-2 |V|^1
9.5x10^-1 |V|^1

Linear Programming for Multi-Vth and Multi-Vdd Assignment 185

7.7 COMPUTATIONAL RUNTIMES WITH

MULTI-VDD AND MULTI-VTH

The LP solver runtimes in Figure 7.9 are not substantially affected by
the number of Vdd and Vth values, as that does not affect the number of
variables or constraints in the linear program. Rather, the net runtime for
multiple LP solver iterations depends on the timing slack and Vdd and
Vth values available, as this determines the number of iterations for power
minimization versus delay reduction and power minimization with the LP
solver typically takes twice as long as delay reduction.

Excluding the LP solver, the CVS runtimes are not much worse than the
single Vdd runtimes, as Vdd changes are considered only for gates on the
VDDH to VDDL wavefront, that is gates with all fanouts at VDDL or
primary outputs and all fanins at VDDH. The ECVS runtimes are up to 2.2
times the CVS runtimes, as changing Vdd is considered for all gates, doubling
the setup runtime to consider the different Vdd alternatives, and there are
additional computation overheads for insertion and removal of level con-
verters. Considering alternate cells for a gate for multi-Vth can double setup
runtimes for dual Vth and triple setup runtimes for triple Vth. The computation
runtimes excluding the LP solver are shown in Figure 7.10.

With a CVS multi-Vdd methodology, each iteration allows at most one
additional level of logic to change from high Vdd to low Vdd, or vice versa.
Thus for a very deep circuit, for example c6288 with 113 logic levels, more
iterations can be required for CVS multi-Vdd. The number of iterations
required to get within 1% of the best solution varies substantially depending
on the Vdd and Vth values available and the corresponding timing slack. Up
to about 40 iterations is necessary in a few cases to get within 1% of the best
solution when there is substantial timing slack, for example with Vth of
0.08V. For many cases 20 or fewer iterations are required, as for gate sizing.

As the delay overhead for level converters is substantial, an ECVS
multi-Vdd methodology can also take more iterations for Vdd changes to
propagate. The number of iterations required to get within 1% of the best
solution are in the same range for ECVS and CVS. However, for ECVS we
start with zero power for the level converters, and then run further optimi-
zation iterations with the correct level converter power. Usually less than 20
additional iterations are required to get within 1% of the best solution, as
primarily gates on the boundary of the VDDH and VDDL regions change
Vdd to reduce the number of level converters.

Runtimes for the Huffman, SOVA EPR4 and R4 SOVA benchmarks are
included in these figures. The larger benchmarks have longer runtimes, so a
less exhaustive range of results were collated, and the limited multi-Vdd
and multi-Vth results for them have not been included in this chapter. Bench-
mark c17 was omitted due to its small size and small runtimes.

186 Chapter 7

In summary, the runtimes for setting up the linear program grow linearly
with the number of alternate cells available. For sizing only runs in Chapter
6, we saw that only about 20 iterations were necessary to find a good solution.
However, with multi-Vth and CVS multi-Vdd there are cases where up to 40
iterations were necessary to converge within 1% of the best solution, and
ECVS may take up to 60 iterations in total.

On smaller benchmarks, the Chapter 8 approaches for CVS and ECVS
multi-Vdd with multi-Vth and gate sizing are substantially faster. However,
as their runtime growth is O(|V|3) and our worst case runtime growth is
O(|V|2), the LP approach was faster for c6288 and larger benchmarks.

7.8 SUMMARY

This chapter examined the power savings that the linear programming
approach can achieve with single and multiple supply and threshold volt-
ages. In comparison to the best optimization approaches without major simpli-
fying assumptions that we know of for multi-Vdd/multi-Vth/sizing, our LP
approach reduces power on average by 5% to 7%. The LP approach has
runtime growth of O(|V|) to O(|V|2), rather than O(|V|3), so the LP approach is
also more applicable to larger benchmarks.

Scaling a single Vdd and single Vth optimally can provide significant power
savings, reducing the power savings that may be found with multi-Vdd
and multi-Vth. Versus the nominal Vdd=1.2V/Vth=0.23V, using Vdd=1.2V/
Vth=0.14V reduces power on average by 12.0% at 1.0×Tmin, and Vdd=0.8V/
Vth=0.08V reduces power by 10.8% on average at 1.2×Tmin assuming 0ps
level converter flip-flop delay overhead and that input drivers are also scaled
down to 0.8V.

The optimal value of Vth depends greatly on Vdd. Vth of 0.08V provides
a 22% speed increase at Vdd=1.2V versus Vth of 0.23V, but provides a 50%
speed increase at Vdd=0.8V. In addition at Vdd=0.8V, the leakage is only
about half the leakage at Vdd=1.2V. So the absolute increase in leakage
power is less as Vth is reduced at Vdd=0.8V, reducing the penalty for using
low Vth to reduce delay. Thus using a single Vth of 0.08V is acceptable at
Vdd of 0.8V in the 1.2×Tmin scenario, but a poor choice with Vdd of 1.2V.

The multi-Vdd/multi-Vth results were compared against the best single
Vdd/single Vth results at a given delay constraint. Our gate sizing results
provided a strong baseline to compare results against.

In our detailed analysis of multi-Vdd and multi-Vth, the largest power
savings were with Vdd=0.8V/Vth=0.14V&0.08V versus the optimal choice
of Vdd=0.8V/Vth=0.08V at 1.2×Tmin assuming 0ps LCFF delay overhead
and 0.8V input drivers. In this scenario, dual Vth reduced power on average
by 16.0% and the maximum power saving was 26.2%. Triple Vth provided
at most 5.1% power savings versus using dual Vth in the scenarios that we
have considered, which is not sufficient to justify use of a third Vth.

Linear Programming for Multi-Vth and Multi-Vdd Assignment 187

Despite achieving better multi-Vdd/multi-Vth results than other known
approaches, the LP multi-Vdd results with VDDL of 0.8V were suboptimal
by up to 23.6% versus using a single Vdd of 0.8V with Vth values of 0.14V
and 0.08V assuming 0ps LCFF delay overhead at 1.2×Tmin [3].

The level converter delay and power overheads and larger rise delay
when Vin > Vdd pose a significant barrier to optimization. Running optimi-
zation with the level converter power set to zero then running further iterations
with the correct power did improve ECVS results substantially [3]. Experi-
ments with reducing the level converter delay overheads would require a
better delay reduction approach to ensure the final netlist meets the delay
constraints, as the intermediate netlist with zero level converter delays will
violate the delay constraints. The linear programming approach is not as
good as Design Compiler at delay minimization, so some combined approach
with a TILOS-like optimizer would be helpful.

The largest power saving with ECVS multi-Vdd versus single Vdd/single
Vth at 1.2×Tmin assuming 80ps LCFF delay overhead and 1.2V input drivers
was 13.9%, but the average power saving was only 4.1%. In that scenario,
ECVS with asynchronous voltage level converters averages only 1.2%
power saving versus CVS, where only level converter flip-flops are allowed,
though the maximum power saving with ECVS versus CVS is 7.3%.

We saw larger power savings with ECVS versus CVS and multi-Vdd/
multi-Vth versus single Vdd/single Vth in the comparisons to the University
of Michigan results, but Vdd=1.2V/Vth=0.12V was not the optimal choice
for single Vdd/single Vth in that scenario.

There is no significant advantage for using VDDL of 0.6V versus 0.8V.
The greatest saving for VDDL of 0.6V versus 0.8V was 4.2%, and the
average saving was only 0.3%. We have not accounted for any additional
LCFF delay for conversion from 0.6V to 1.2V compared to converting from
0.8V to 1.2V, assuming 80ps delay for both. In correcting the Vdd=0.6V
delays, the α=1.66 delay scaling with Equation (4.3) may still have been
optimistic by 13% at Vth=0.23V to 6% at Vth=0.08V compared to the delay
fit in Equation (4.4) that fit the Vdd=0.5V data as well. Lower Vdd cells also
have other problems such as smaller voltage noise margins. These weak
0.6V VDDL results argue against the conclusion in [6] and other papers that
VDDL should be 50% of VDDH. The rule of thumb to use a value of about
70% of VDDH for VDDL, that is 0.8V, provides sufficiently good results.

The delay reduction phase of the LP approach performs better with
multi-Vth, as changing a gate from high Vth to low Vth to speed it up only
slightly increases the load on fanin gates compared to upsizing a gate.

The multi-Vth power savings may be enough to justify the additional
process costs for a second Vth. The weak multi-Vdd results do not justify
use of multi-Vdd on these small benchmarks. More power savings may be
available with multi-Vdd for an optimization approach that can overcome
the optimization barrier posed by the level converter delay overheads.

188 Chapter 7

For a larger sequential circuit with different delay constraints on portions
of the circuit, different supply voltages may be justified. For example, Vdd
of 1.2V at 1.0×Tmin and Vdd of 0.8V at 1.2×Tmin. In the event that multiple
supply voltages are justified by use at a module level in this manner, our
results suggest that another 5% to 10% power saving may be available via a
gate-level CVS or ECVS multi-Vdd assignment methodology.

7.9 REFERENCES
[1] Avant!, Star-Hspice Manual, 1998, 1714 pp.
[2] Bai, M., and Sylvester, D., “Analysis and Design of Level-Converting Flip-Flops for

Dual-Vdd/Vth Integrated Circuits,” IEEE International Symposium on System-on-Chip,
2003, pp. 151-154.

[3] Chinnery, D., and Keutzer, K., “Linear Programming for Sizing, Vth and Vdd Assign-
ment,” in Proceedings of the International Symposium on Low Power Electronics and
Design, 2005, pp. 149-154.

[4] Ishihara, F., Sheikh, F., and Nikolić, B., “Level Conversion for Dual-Supply Systems,”
IEEE Transactions on VLSI Systems, vol. 12, no. 2, 2004, pp. 185-195.

[5] Kulkarni, S., and Sylvester, D., “Fast and Energy-Efficient Asynchronous Level Con-
verters for Multi-VDD Design,” IEEE Transactions on VLSI Systems, September 2004,
pp. 926-936.

[6] Kulkarni, S., Srivastava, A., and Sylvester, D., “A New Algorithm for Improved VDD
Assignment in Low Power Dual VDD Systems,” International Symposium on Low-
Power Electronics Design, 2004, pp. 200-205.

[7] Nguyen, D., et al., “Minimization of Dynamic and Static Power Through Joint Assign-
ment of Threshold Voltages and Sizing Optimization,” International Symposium on Low
Power Electronics and Design, 2003, pp. 158-163.

[8] Puri, R., et al., “Pushing ASIC Performance in a Power Envelope,” in Proceedings of the
Design Automation Conference, 2003, pp. 788-793.

[9] Sirichotiyakul, S., et al., “Stand-by Power Minimization through Simultaneous Thres-
hold Voltage Selection and Circuit Sizing,” in Proceedings of the Design Automation
Conference, 1999, pp. 436-41.

[10] Srivastava, A., Sylvester, D., and Blaauw, D., “Power Minimization using Simultaneous
Gate Sizing Dual-Vdd and Dual-Vth Assignment,” in Proceedings of the Design Auto-
mation Conference, 2004, pp. 783-787.

[11] Stok, L., et al., “Design Flows,” chapter in the CRC Handbook of EDA for IC Design,
CRC Press, 2006.

[12] Usami, K., and Horowitz, M., “Clustered voltage scaling technique for low power
design,” in Proceedings of the International Symposium on Low Power Design, 1995, pp.
3–8.

[13] Usami, K., et al., “Automated Low-Power Technique Exploiting Multiple Supply
Voltages Applied to a Media Processor,” IEEE Journal of Solid-State Circuits, vol. 33,
no. 3, 1998, pp. 463-472.

[14] Usami, K., et al., “Automated Low-power Technique Exploiting Multiple Supply
Voltages Applied to a Media Processor,”, in Proceedings of the Custom Integrated
Circuits Conference, 1997, pp.131-134.

[15] Wei, L., et al., “Mixed-Vth (MVT) CMOS Circuit Design Methodology for Low Power
Applications,” in Proceedings of the Design Automation Conference, 1999, pp. 430-435.

[16] Wei, L., Roy, K., and Koh, C., “Power Minimization by Simultaneous Dual-Vth
Assignment and Gate-Sizing,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, 2000, pp. 413-416.

Chapter 8 8

POWER OPTIMIZATION USING MULTIPLE
SUPPLY VOLTAGES

Sarvesh Kulkarni, Ashish Srivastava, Dennis Sylvester, David Blaauw
Department of Electrical Engineering and Computer Science,
University of Michigan,Ann Arbor, MI
shkulkar,ansrivas,dmcs@umich.edu

Multiple supply voltage design is an effective technique for power mini-

mization in CMOS circuits. Clustered Voltage Scaling (CVS) and Extended
Clustered Voltage Scaling (ECVS) are the two major methodologies used for
assigning the voltage supply to gates in circuits having dual power supplies.
This chapter presents current state of the art approaches that combine CVS
and ECVS with threshold voltage assignment and gate sizing to enable the
maximum reduction in power dissipation. Later we also present a comp-
arison of achievable power savings using CVS and ECVS and point out that
ECVS provides appreciably larger power improvements compared to CVS.
However, ECVS rests on the availability of well designed asynchronous
level converters. We also quantify the impact of the efficiency of level con-
version on power savings.

8.1 INTRODUCTION

Dynamic power dissipation in CMOS circuits is proportional to the
square of the supply voltage (VDD). A reduction in VDD thus considerably
lowers the power dissipation of the circuit. Dual- (or more generally multi-)
VDD design is an important scheme that exploits this concept to reduce
power consumption in integrated circuits (ICs) [5][30]. Since a reduction in
VDD degrades circuit performance, in order to maintain performance in
dual-VDD designs, cells along critical paths are assigned to the higher VDD
(VDDH) while cells along non-critical paths are assigned to a lower VDD
(VDDL). Thus the timing slack available on non-critical paths is efficiently
converted to energy savings by use of a second supply voltage. However,
level conversion (from VDDL to VDDH) becomes essential at boundaries
where a VDDL driven cell feeds into a VDDH driven cell to eliminate the

190 Chapter 8

undesirable static current that otherwise flows. This current flows since the
logic “high” signal of the VDDL driven cell cannot completely turn off the
PMOS pull-up network of the subsequent VDDH cell.

The use of level converters is largely determined by the algorithm used
in assigning VDD to gates. The two major existing algorithms used for VDD
assignment are (1) Clustered Voltage Scaling (CVS) [30], and (2) Extended
Clustered Voltage Scaling (ECVS) [10]. In CVS, the cells driven by each
power supply are grouped (“clustered”) together and level conversion is
needed only at sequential element outputs (referred to as “synchronous level
conversion”). In ECVS, the cell assignment is more flexible, allowing level
conversion anywhere (i.e., not just at the sequential element outputs) in the
circuit. This is referred to as “asynchronous level conversion”. Since ECVS
allows more freedom in VDD assignment, it has been suggested that it
potentially provides greater power reductions than CVS [33].

Both CVS and ECVS assign the appropriate power supply to the gates by
traversing the circuit from the primary outputs to the primary inputs in
reverse topological level order. CVS is based on a topological constraint that
only allows a single transition from a VDDH driven cell to a VDDL driven
cell along any path from input to output (i.e., a VDDL driven cell may not
feed into a VDDH driven cell). Depending on the design, this may greatly
reduce the fraction of VDDL assigned gates and degrade the achievable
power savings. Alternatively, ECVS relaxes this topological constraint by
allowing a VDDL driven cell to feed a VDDH driven cell along with the
insertion of a dedicated asynchronous level converter (ALC). However,
since ECVS performs this assignment simply by visiting gates one at a time
in reverse topological level order, it still assigns supply voltages in a funda-
mentally constrained manner. Noting these drawbacks, an algorithm that
removes the “levelization” approach will be discussed in Section 8.3. Since
level converters consume power and timing slack, it is important to consider
their effect on the power savings.

Techniques such as gate sizing and dual threshold voltage (Vth) assign-
ment can be combined with dual-VDD assignment in order to realize a more
optimized design. Many different approaches have been proposed that use
the variables of VDD/Vth/sizing for power optimization. In [34] the authors
address the problem of power optimization using simultaneous VDD and
Vth assignment. They propose two different approaches depending on whether
a system is dynamic or leakage power dominated. The approach for dynamic
power dominated systems fails to consider that assigning a gate to high Vth
negatively impacts the extent to which other gates in the circuit can be
assigned to VDDL and thus fails to consider the optimization of total power.
The approach for leakage dominated systems assigns gates to high Vth in the
order of their level from the outputs. Since Vth assignment does not impose
any topological constraints as in the case of VDD assignment, this approach
unnecessarily limits the achievable power savings. Recently, [21] proposed a

Power Optimization using Multiple Supply Voltages 191

new method for slack redistribution to solve the leakage power optimization
problem with dual-Vth and sizing by iteratively formulating and solving a
linear program. However, the extension to dual-VDD assignment is formulated
as an integer linear program resulting in unreasonable runtime complexity.
Reference [7] uses a Lagrangian multiplier based optimization followed by
heuristic clustering for dual-VDD and dual-Vth assignment. This is a general
technique for solving optimization problems involving discrete variables,
where the problem is initially solved while assuming the variables involved
are continuous. This allows the problem to be solved in a computationally
efficient manner (using well-known non-linear optimization techniques), and
then heuristically clustering the obtained solution to the discrete domain
[25][27][28]. The Lagrangian multiplier based approach is used to perform
module level power optimization using path enumeration. The approach
requires a power-aware partitioning of a circuit, which is a very difficult
problem as acknowledged by the authors. The approach cannot be extended
to perform gate-level power optimization due to its computational complexity
and also does not consider other circuit issues such as level conversion.
Reference [9] uses a genetic algorithm based approach to solve the problem
of simultaneous VDD and Vth assignment with gate sizing, which is both
computationally inefficient and performs poorly.

References [4] and [36] address the power minimization problem using
dual-VDD assignment and sizing. In particular, [4] uses maximum weighted
independent sets to identify gates for downsizing or assignment to VDDL by
identifying sets of gates which have independent timing slacks. This technique
is severely limited by the amount of slack available in the original circuit as
there are no means to create additional slack by sizing gates, only to consume
it. In [36], the authors use a sensitivity-based technique to optimize power
dissipation using dual-VDD assignment. Another work employs a delay
balancing approach to solve the problem of VDD assignment [28]. There has
been a large amount of work recently in power optimization using dual-Vth
and sizing [12][14][21][22][24][35]. References [22], [24] and [35] use
sensitivity-based approaches to direct the optimization, whereas [12] solves
the problem using a Lagrangian relaxation based tool. Reference [14] employs
a state-space enumeration based approach along with efficient pruning
methods and demonstrates better power savings for tight delay constraints
and better run-time compared to [24]. However, all these approaches fail to
integrate all three design variables that are crucial to low-power design,
namely sizing, threshold and supply voltages, in a computationally efficient
manner.

In Section 8.2 we describe the basic implementation of CVS and ECVS.
In Section 8.3 we describe a recently developed algorithm (referred to as
Greedy ECVS or GECVS) that avoids some of the pitfalls of the original
ECVS. Section 8.4 presents power savings obtained using these algorithms.

192 Chapter 8

In Section 8.5 we present techniques that extend CVS and GECVS by
including Vth assignment and gate sizing to perform power optimization
using all three (VDD, Vth and sizing) levers available to a designer. Finally,
in Section 8.6 we present more results and conclude in Section 8.7.

8.2 OVERVIEW OF CVS AND ECVS

This section provides a comprehensive summary of the existing CVS
and ECVS algorithms. For all the algorithms discussed, the starting point
is a design having all cells assigned to VDDH and then VDDL is utilized
according to the algorithm being applied. Both CVS and ECVS aim at using
the available timing slack in a circuit by applying a lower supply voltage on
gates that are off the critical paths. This results in reduced dynamic power
dissipation and hence lowers system level power dissipation. However, they
differ in the policies they follow in making this power supply assignment.
As a result of this, the final structure of the resulting netlists after applying
these algorithms differs. As stated in Section 8.1, voltage level conversion
is required whenever a VDDL driven cell feeds a VDDH driven cell. An
example of this is shown in Figure 8.1, where a VDDL driven inverter
directly feeds into a VDDH driven inverter. The resulting DC current will
result in extremely high static power dissipation without the use of level
converters.

CVS and ECVS differ in the way they address the issue of level conver-
sion. Since CVS does not allow VDDL driven cells to directly feed VDDH
driven cells, level conversion is therefore implemented only at flip-flop (or
sequential) boundaries. The level conversion functionality can be embedded
into the flip-flop circuit [1][11] and such a flip-flop is referred to as a level
converting flip-flop (LCFF).

ECVS relaxes this topological constraint and allows a VDDL driven cell
to feed a VDDH driven cell after its output has undergone level conversion.
ECVS thus has more freedom in finding portions of the circuit that can be
operated at the lower supply and can potentially lead to higher power savings.
However, the asynchronous level converters impose penalties in terms of
their delay, power and area. Fast and low power ALCs are thus important in
mitigating these penalties. Figure 8.2 depicts the nature of the final topologies
attained by CVS and ECVS when applied to a given circuit. From this
figure, it is seen that CVS partitions a circuit into two clusters that can be
ordered topologically – one having only VDDH cells and the other having
only VDDL cells. The scenario in which a VDDL driven cell directly feeds a
VDDH driven cell is clearly precluded in this partitioning. On the other
hand, ECVS allows interspersing of VDDL and VDDH cells with insertion
of any required ALCs. We now discuss the implementation of these algorithms
in greater detail.

Power Optimization using Multiple Supply Voltages 193

IN
VDDL swing

VDDL

VDDH

DC current

IN
VDDL swing

VDDL

VDDH

DC current

Figure 8.1 Demonstrating the need for level conversion.

Level
converting
flip-flops

Level
converting
flip-flopsHigh Vdd

Low Vdd

This high voltage output
doesn’t need level
conversion, and would
go to a normal flip-flop.

(a) Clustered Voltage Scaling (CVS) – combinational logic can be
partitioned into separate VDDH and VDDL portions in
topological order.

VDDL to VDDH
asynchronous
level converter

Level
converting
flip-flops

Level
converting
flip-flops

High Vdd

Low Vdd

This high voltage output
doesn’t need level
conversion, and would
go to a normal flip-flop.

(b) Extended Clustered voltage scaling (ECVS) – a VDDL signal may
go to a VDDH gate if an asynchronous level converter (ALC) is
inserted. Here the logic cannot be partitioned into separate VDDH
and VDDL portions that are topologically ordered.

Low Vdd

Figure 8.2 This illustrates the difference between the circuit structures after the application of
ECVS and CVS.

194 Chapter 8

CVS() {
 minimum power found = power of initial VDDH circuit.
 Best configuration = all VDDH assignment.

 L = gates that only drive circuit primary outputs.
 While L is non-empty {
 STEP: “SET VDDL” –
 Select candidate A from L.
 Remove A from L.
 Set the supply voltage of A to VDDL.

 If A drives a primary output, insert an LCFF.

 Check timing.
 If circuit still meets timing constraints {
 STEP: “CONSTRAINED TOPOLOGY” –
 Add to L gates that fan into A but not into any VDDH gate.

 Check power consumption.
 If power < minimum power found {
 minimum power found = power.
 Best configuration = current VDDL assignment.
 }
 } else {
 Remove any added LCFFs.
 Set the supply voltage of A back to VDDH.
 }
 }
}

Figure 8.3 Pseudo-code for the CVS algorithm.

CVS maintains a list (referred to as L) of candidate cells that can be
assigned to VDDL. New cells continue to be added to this list as the algorithm
proceeds. The elements of L are ranked according to a heuristic and the first
element is chosen to be assigned to VDDL at each step of the algorithm. The
initial implementation of CVS [30] used a heuristic which ordered the cells
in L on the basis of their slack. L is initialized to the set of gates that drive
the circuit primary outputs. Pseudo-code for CVS is shown in Figure 8.3.

The step “CONSTRAINED TOPOLOGY”, guarantees that there will be
no VDDL driven gate that feeds directly into a VDDH driven gate. However,
this constraint acts to curtail many potential VDDL cell assignments as later
results will demonstrate.

ECVS (as earlier implemented in [10][31][32][33]) begins by levelizing
the circuit from the primary outputs to the primary inputs. LCFFs are inserted
when a cell driving a primary output is assigned to VDDL (as in the case of
CVS). Similarly ALCs are inserted whenever a VDDL gate feeds into a

Power Optimization using Multiple Supply Voltages 195

VDDH gate. ECVS is also executed in reverse topological order. Pseudo-
code for the ECVS algorithm is shown in Figure 8.4.

Since ECVS subsumes CVS, it can theoretically attain a higher degree of
VDDL gate assignments. ECVS, however, must consider the overheads
imposed by the ALCs. Although ECVS has clear advantages over CVS, its
policy of determining the VDD assignments is still constrained by levelization.
An approach that avoids this constraint is described next.

ECVS () {
 minimum power found = power of initial VDDH circuit.
 Best configuration = all VDDH assignment.

 L = gates that only drive circuit primary outputs.
 While L is non-empty {
 STEP: “SET VDDL” –
 Select candidate A from L.
 Remove A from L.
 Set the supply voltage of A to VDDL.

 If A drives a primary output, insert an LCFF.

 For each gate B ∈ fanouts(A) {
 If (supply of B = VDDH)
 Insert an ALC on the path from A to B.
 }

 Check timing.
 If circuit still meets timing constraints {
 STEP: “LEVELIZED” –
 Add to L gates that fan into A and only into other gates
 that have already been considered or primary outputs.

 Check power consumption.
 If power < minimum power found {
 minimum power found = power.
 Best configuration = current VDDL assignment.
 }
 } else {
 Remove any added LCFFs or ALCs.
 Set the supply voltage of A back to VDDH.
 }
 }
}

Figure 8.4 Pseudo-code for the ECVS algorithm. Note the differences from Figure 8.3.

196 Chapter 8

8.3 GREEDY ECVS: A NEW DUAL−VDD

ASSIGNMENT ALGORITHM

ECVS-style approaches are most effective when they are able to find
‘groups’ or ‘clusters’ of connected gates that can be assigned to the lower
supply. This is so since such a grouped assignment will require fewer ALCs
and minimize their resulting overhead. A sensitivity measure that uses the
information available in the slack distribution of the circuit and the power
savings attainable before finalizing each VDDL assignment move can be
used for this purpose. This avoids the problems inherent in ECVS, which
merely traverses the circuit (after levelization) and makes the earliest seen
feasible move.

At each stage of the new algorithm, a sensitivity measure for all cells that
are potential candidates for VDDL assignment is evaluated. Every VDDL
assignment may call for either the insertion or removal of ALCs in the
vicinity (at the inputs/output of the gate under consideration). This is
because an ALC is required only when a VDDL driven gate needs to supply
a VDDH driven gate. Since a levelized VDDL assignment (as in ECVS) is
not followed here, this ALC removal is frequently required and is
accomplished by the update_vicinity() sub-routine in the pseudo-code
below. As a result of a move, the arrival time at the output of the gate being
assigned to VDDL will change (arrival time at the output includes the arrival
time at the output of any added level converters, if the move requires
ALC/LCFF insertion). This changes the slack of various paths in the circuit.
The overall power dissipation of the circuit will also change as a result of the
move. A move assigning VDDL to a gate feeding a primary output requires
inserting an LCFF and the LCFF delay must be included in the arrival time
calculation in this case. The LCFF data used was obtained from [1][11].

The sensitivity for a move is determined from the change in total power
∆P, change in arrival time at the gate output ∆D (summing the worst
changes in rise and fall delay), and the sum of the worst rise and fall slacks
of timing arcs through the gate (slack). The slack for a given rise or fall
timing arc ij through a gate, Slackarc ij, is calculated as the difference of the
delay of the arc (darc ij) and the difference of the required arrival time at the
output node and the arrival time at the input node of the gate:

 () , where

timing is from gate input to gate output .
arc ij required at output j arrival at input i arc ijSlack t t d

arc ij i j

= − −
 (8.1)

The slack reflects the maximum possible increase in delay of the timing arc
that still satisfies the timing characteristics of the overall design. The sensi-
tivity for the gate is defined as follows:

 Sensitivity (set VDDL) = P slack
D

−∆ ×
∆

 (8.2)

Power Optimization using Multiple Supply Voltages 197

where it is assumed that ∆D > 0. The code handles the case where ∆D ≤ 0,
but this does not occur in practice for a VDDH to VDDL change with our
benchmarks and libraries.

Sensitivities for all gates that can undergo VDDL assignment are eval-
uated at every iteration of the algorithm, and the gate with the maximum
sensitivity is selected. The state of the circuit is saved at this point and the
algorithm proceeds to the next iteration. From the definition of sensitivity in
Equation (8.2), observe that this algorithm allows negative moves to be
taken, thus opening the possibility of uncovering better solutions in the long
run. Essentially this sensitivity measure enables us to choose the move
giving the best power savings per unit delay penalty. The slack term in the
sensitivity computation acts as a weighting factor to encourage VDDL
assignment for gates with more slack. Evaluating this sensitivity for a gate
only requires the rise/fall transition and arrival times at the inputs of the gates
that feed it. This sensitivity can thus be evaluated efficiently as a constant-
time operation.

This algorithm, designated GECVS (Greedy-ECVS) [16], tends to group
VDDL gates together inherently due to the nature of the sensitivity function.
Since the ∆D and ∆P terms consider the ALC overheads associated with a
particular VDDL assignment, the algorithm automatically guides itself
towards building groups or clusters of VDDL gates. What is unique about
GECVS is that these clusters can form at the beginning of a path, just as
easily as they can at the end of a chain of combinational logic. This makes
GECVS fundamentally more flexible than CVS or ECVS, which proceed
with VDDL assignment using a backwards traversal. Since CVS and ECVS
follow a backward traversal for VDDL assignment, they naturally tend to
assign more gates near the primary outputs to the lower supply. As gates
near primary outputs typically have low switching activity (on average) [20],
this can also lead to degraded savings. GECVS avoids this levelized approach
and does not suffer from this drawback. Pseudo-code for GECVS is shown
in Figure 8.5.

Various approaches for the physical design of dual-VDD circuits have
been discussed earlier. In [15] and [19], the authors proposed the use of
macro voltage islands where entire functional units operate at different
supplies. Reference [23] proposed the use of a somewhat more fine-grained
strategy that used voltage islands interfaced through level converters. A
more fine-grained approach is presented in [33] that employs alternating
rows of VDDH and VDDL cells – this is an ideal approach for designs that
are highly performance critical as well as severely power constrained. The
technique presented in [33] attempts to minimize the wire length between
the VDDL cell and the ALC that it drives, for delay reduction. An opposite
approach that places the ALCs directly at the input of the fanout gates rather
than at the output of the driving gate improves the dynamic power consumed
in switching the wire at the expense of additional delay.

198 Chapter 8

The update_vicinity() step occurs over the local neighborhood of the
gate: on the fanout side of the gate, the gate itself and any ALCs it might
have induced; and on the fanin side, the fanin gates and any required ALCs.

Determining feasible moves is done as follows. Before calculating the
sensitivities of all gates, all timing information, such as arrival times and
slacks, is calculated with static timing analysis and stored. Then when cal-
culating the sensitivities for each gate, these stored values are used and the
new arrival times are found using only the gates in the immediate neigh-
borhood, as described for update_vicinity() above – if the slack can
accommodate this increased delay, this gate is remembered. The vicinity
calculations are not exact (as compared to static timing analysis over the
transitive fanout from the gate’s fanins), but this filtering greatly reduces the
number of gates to be tried in the final timing check. The final timing checks
are with static timing analysis over the full affected region, to confirm that
the delay target is met.

GECVS () {
 minimum power found = power of initial VDDH circuit.
 Best configuration = all VDDH assignment.

 Do {
 For each VDDH gate ‘A’ {
 Set A to VDDL.
 If A drives a primary output, insert an LCFF.
 update_vicinity () // insert or remove ALCs as necessary
 Calculate sensitivity for A using Equation (8.2).
 Set A back to VDDH
 update_vicinity () // insert or remove ALCs as necessary
 }

 Select the maximum sensitivity gate ‘B’ that meets timing.

 Check power consumption.
 If power < minimum power found {
 minimum power found = power.
 Best configuration = current VDDL assignment.
 }
 }
 While there are feasible moves (i.e., moves meeting timing)
}

Figure 8.5 Pseudo-code for the GECVS algorithm.

Power Optimization using Multiple Supply Voltages 199

Table 8.1 Comparison of power savings using CVS and GECVS versus the original design
with all gates being at VDDH and low Vth.

Circuit CVS GECVS CVS GECVS
c432 1.0% 1.5% 0.8% 0.8%
c880 8.2% 10.3% 15.0% 21.3%
c1355 0.0% 0.0% 0.0% 1.0%
c1908 4.3% 7.7% 3.4% 8.4%
c2670 21.1% 25.5% 16.5% 25.0%
c3540 3.2% 8.3% 2.9% 9.7%
c5315 7.6% 19.0% 8.3% 22.0%
c7552 14.9% 20.2% 22.0% 28.8%
Huffman 6.6% 12.7% 6.7% 14.4%

Average 7.4% 11.7% 8.4% 14.6%

VDDL = 0.6V VDDL = 0.8V

8.4 POWER SAVINGS WITH CVS AND GECVS

The underlying process assumed is a 0.13um dual-Vth CMOS process.
The higher (nominal) power supply VDDH is 1.2V and VDDL was either
0.6V or 0.8V. Table 8.1 summarizes the dynamic power savings achieved by
CVS and GECVS for the various benchmark circuits with VDDL = 0.6V
and 0.8V. The delay target was set to be 10% slower than the fastest possible
all-VDDH/low Vth design as found by a TILOS [8] based gate sizing
algorithm. The algorithms were evaluated on circuits from the ISCAS’85
benchmark set [3]. The data for LCFFs was adopted from [1]. This work
shows that LCFFs impose a delay overhead which is about two FO4 delays
in the target technology, or about 80ps in our studies. The ALC used was the
circuit STR6 from [17] (shown in Figure 13.5(d)). This ALC has a delay of
84ps and consumes 6.3fJ of internal energy per transition. The switching
activity at each node was computed by simulating the design for 10,000
cycles with independent random inputs with equal probabilities of logical
value 0 and 1. The switching activity at each input was then scaled to so that
approximately 20% of the overall power dissipation was due to leakage
power. The wire capacitance is approximated by
 3 2 fFwire wireC fanouts= + × (8.3)

where fanoutswire is the number of gates to which the wire connects, exclu-
ding its driver. Equation (8.3) is based on the model used in [29] and provides
a wire capacitance of 5fF for a gate with one fanout, corresponding to a wire
length of approximately 25um in our technology.

GECVS performs significantly better than CVS and provides approxi-
mately twice the power savings or more in some circuits. On average, circuits
optimized using GECVS have about 6% lower power than those optimized
with CVS (Table 8.1). The percentage of power consumed by ALCs under

200 Chapter 8

GECVS is shown in Table 8.2. On average, ALCs consume 6% of the total
power. Figure 8.6 compares the fraction of the total gates assigned to VDDL
of 0.8V in the final design. GECVS enables more VDDL assignments com-
pared to CVS thereby reducing power.

Table 8.2 Percentage of total power consumed by asynchronous level converters and their
percentage gate count for the optimized GECVS results shown in Table 8.1.

Circuit Logic depth ALC power ALC count ALC power ALC count
c432 23 1.1% 1.8% 0.0% 0.0%
c880 26 1.9% 2.3% 6.7% 7.2%
c1355 28 0.0% 0.0% 0.7% 1.6%
c1908 40 4.8% 5.1% 6.5% 9.3%
c2670 25 5.5% 7.2% 7.4% 9.0%
c3540 42 6.9% 12.6% 7.9% 12.7%
c5315 41 6.8% 10.3% 7.7% 9.1%
c7552 44 8.7% 10.1% 9.0% 8.5%
Huffman 47 9.0% 10.2% 12.8% 17.5%
Average 5.0% 6.6% 6.5% 8.3%

VDDL = 0.6V VDDL = 0.8V

c432 c880 c1355 c1908 c2670 c3540 c5315 c7552 HUFF
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Benchmark

%
V

D
D

L
 C

el
ls

CVS
GECVS

Figure 8.6 Comparison of achieved levels of VDDL assignment by CVS and GECVS, with
VDDL of 0.8V.

Power Optimization using Multiple Supply Voltages 201

8.5 GATE SIZING AND DUAL-VTH ASSIGNMENT

All algorithms discussed to this point achieve power savings by simply
changing the supply voltage of the gates in the design to the lower supply
(VDDL) as frequently as possible. Techniques such as gate sizing and dual-
Vth assignment can be used to further reduce the power. In this section, we
describe extensions to CVS and GECVS that incorporate these techniques.

8.5.1 CVS Based Power Optimization Using Dual-Vth
Assignment and Gate Sizing

In this section we discuss a two stage sensitivity-based heuristic
approach to minimize total power using dual-VDD assignment, gate sizing,
and dual-Vth assignment for a standard cell library mapped design. All the
gates in the design are initially assumed to be operating at the higher supply
voltage and lower threshold voltage. Throughout the flow of the algorithm
(which we refer to as VVS [26]) a “wave-front” is maintained located at the
interface between the VDDL and VDDH gates (e.g. see Figure 8.8). Similar
to CVS, level conversion within the logic itself is not allowed, and therefore
we must strictly observe the topological constraint imposed in dual-VDD
designs. The timing constraints on the design remain fixed throughout the
flow of the algorithm.

Initially, all gates are low Vth and with VDDH supply voltage. In the
first stage of the VVS algorithm, called the backward pass, VDD assignment
and sizing are combined to minimize total power while we move the front
from the primary outputs towards the primary inputs. Threshold voltages are
kept at low Vth in the backward pass. The second stage, or the forward pass,
uses the optimal location of the front found in the first stage as the starting
point for the optimization and then relies on both VDD and Vth assignment
along with gate sizing to further reduce total power while the front is moved
back towards the primary outputs. Thus all three design variables are used to
perform concurrent VDD assignment, Vth assignment and gate sizing in the
forward pass.

8.5.1.1 Backward Pass

To adhere to the topological constraint imposed by dual-VDD we define
the backward front, the list L as defined in CVS(), which consists of all
gates operating at VDDH that do not fanout to any gate operating at VDDH.
Thus, assigning any gate on the backward front to VDDL will not violate the
topological constraint since all its fanout gates also operate at VDDL. This
front is initialized to be the set of gates that drive the primary outputs of the
design. A simple CVS() procedure is first used to assign gates on the front to
VDDL as long as the circuit meets timing.

202 Chapter 8

Backward Pass() {
 CVS()

 L = backward front (VDDH gates not fanning out to VDDH gates).
 While list L is non-empty {
 // Candidate selection based on predictive metric
 STEP: “SET VDDL” –
 Calculate predictive metric for all gates in backward front.
 Select candidate A from L.
 Remove A from L.
 Set the supply voltage of A to VDDL.

 If A drives a primary output, insert an LCFF.

 STEP: “UPSIZING” –
 While circuit fails timing and number of upsizing moves
 is < 10% of total number of gates in the circuit) {
 Calculate sensitivity of all gates to upsizing with Equation (8.4).
 Upsize gate with maximum sensitivity to the next higher
 size available in the library.
 }

 Check timing.
 If circuit meets timing constraints {
 STEP: “CONSTRAINED TOPOLOGY” –
 Add to L gates that fan into A but not into any VDDH gate.

 Check power consumption.
 If power < minimum power found {
 minimum power found = power.
 Best configuration = current VDDL & sizing assignment.
 }
 } else {
 Undo upsizing moves.
 Remove any added LCFFs.
 Set the supply voltage of A back to VDDH and flag A.
 }
 }
}

Figure 8.7 Pseudo-code for the backward pass of the VVS algorithm.

At the end of CVS(), none of the gates on the backward front can be
assigned to VDDL without violating the timing constraints. Figure 8.8 shows
the scenario at this stage. Gates 1 to 3 have been set to VDDL by CVS() and
gates 4, 5, and 8 now form the backward front. Gate sizing is then employed
to compensate for the delay increase arising from the assignment of a gate to
VDDL. The pseudo-code for this stage is shown in Figure 8.7.

Power Optimization using Multiple Supply Voltages 203

4

6

7
5

1

2

3

8

4

6

7
5

1

2

3

8

Figure 8.8 Backward “wave front” for an example circuit at the end of CVS. The gates in
dark grey have been assigned to VDDL. Gates in light grey are candidates for being assigned
to VDDL – the backward front.

Specifically, after a candidate gate on the backward front is assigned to
VDDL, a sensitivity measure to upsize gates to the next available size in the
standard-cell library for all the gates in the circuit is calculated. This is used
to identify gates to be upsized. Let ∆Darc represent the change in delay of
a timing arc of the gate and ∆P the change in power dissipation due to
upsizing a gate to the next higher size in the library. The sensitivity of each
gate in the circuit to upsizing is computed as

min

1Sensitivity arc

arcs arc

D
P Slack Slack K

∆
=
∆ − +∑ (8.4)

where Slackmin is the worst slack of a timing arc seen in the circuit, and K is
a small positive quantity for numerical stability purposes. Slackarc represents
the slack associated with the particular timing arc of the gate as defined in
Equation (8.1).

The form of the sensitivity measure gives a higher value to gates lying
on the critical paths of the circuit. The arcs represent the falling and rising
arcs associated with each of the inputs of the gate. Thus, for a 3-input
NAND gate the sensitivity measure will be obtained by summing over all six
possible arcs. The ∆Darc computation for a gate (say G) is performed by
upsizing the gate to the next higher size in the library. Since only gates
which are the immediate inputs of G see a different load capacitance, only

204 Chapter 8

these gates need to be re-simulated during sensitivity computation to
calculate the new arrival time at the inputs of G which is used to calculate
∆Darc at the output of G. Any change in delay due to slew changes in the
fanout cone of G is considered to be second order and neglected for sensi-
tivity computation. Similarly ∆P can also be easily computed by considering
only the immediate fanin of the gate, the gate itself, and the load capacitance
(with switching voltage changing from VDDH to VDDL). The gate with the
maximum sensitivity is then selected and sized up to the next available
size in the library. It is important to note that the sensitivity calculation for a
gate does not require a full circuit timing analysis or an incremental timing
analysis (which would propagate the impact of the change through the
fanout cone), which would otherwise make the runtime prohibitively large.
Complete timing analysis is performed and this process is repeated until all
slacks in the circuit become positive. While performing gate upsizing, delays
and slacks of the gates that form the fanin and fanout cone are modified and
hence we need to re-compute the timing information and sensitivities only
for these gates.

The number of upsizing moves allowed to meet timing is fixed to a
constant large number (10% of the number of gates in the circuit) to avoid
pursuing bad solutions that could also possibly result in overly large area
increases. The choice of a 10% limit on the number of gates to be upsized is
based on the observation that varying this percentage from 8% to 50%
results in a very small change in the power dissipation achieved. The power
dissipation for values less than 8% gradually increases as we reduce the
maximum number of gates that can be upsized. This limit on the percentage
of upsizing moves that provides the maximum reduction was not found to
increase with circuit size (i.e. the absolute number increases linearly with
circuit size). If the circuit fails to meet timing after the maximum number of
upsizing moves, then the VDDL assignment and the associated upsizing
moves are reversed and the gate assigned to VDDL is flagged so that it is not
reconsidered for VDDL assignment.

We do allow moves that result in a net increase of total power in an
attempt to allow the flow of the algorithm to escape local minima. Due to the
topological constraints imposed on VDDL assignment, if a gate is not
assigned to VDDL then none of the gates in its input cone can be assigned to
VDDL. Otherwise a steepest decent only approach is likely to get stuck in a
local minimum that may be far from the global minimum. Consider the case
where the path that goes through gates 7, 5 and 2 forms the critical path of
the circuit in Figure 8.8. If gate 5 is not assigned to VDDL, gate 6 and other
gates in its fanin cone (if present) cannot be assigned to VDDL. Thus a
lower total power might be achieved if gate 6 can be assigned to VDDL,
after having assigned gate 5 to VDDL with upsizing to meet delay constraints
which resulted in an increase in power at that step.

Power Optimization using Multiple Supply Voltages 205

Gates on the backward front are ordered using a predictive metric – a
heuristic used to steer the flow of the algorithm in the right direction. The
predictive metric can be used to identify the capacitance and the slack asso-
ciated with the fanout cone of a gate. The sum of the product of the capacitance
and timing slack at each node in the fanin cone has been used as the predictive
metric.

The end of the backward pass is signaled when the list containing the
gates on the backward front becomes empty or else none of the gates in
the list can be assigned to VDDL without violating timing (even with the
maximum allowed amount of upsizing). At all points during the backward
pass the best-seen solution is saved and this solution is restored at the end of
the backward pass.

8.5.1.2 Forward Pass

At the end of the backward pass, the circuit sizing and VDD assignments
(the VDDH to VDDL “wave front”) which best minimized total power for
the dual-VDD, single low Vth is chosen. The second stage, or forward pass,
is then used to move the front forward towards the primary outputs in
conjunction with high Vth allocation and possible gate upsizing to minimize
the total power in a dual-Vth scenario.

We now define the forward front, which consists of all gates that are
operating at VDDL and have all of their fanins operating at VDDH. In
Figure 8.8, assuming that upsizing in the backward pass allows us to further
assign gates 4, 5 and 8 to VDDL, these same three gates would now form the
forward front. Importantly, assigning a gate on the forward front to operate
at VDDH will not lead to a violation of the topological constraint. We now
calculate 1) a sensitivity measure for gates on the forward front with respect
to VDDH operation, and 2) a sensitivity measure for all gates in the circuit
with respect to upsizing to the next higher size in the library. Both these
sensitivities are calculated as the ratio of the sum of the delay changes of all
timing arcs to the change in power dissipation as a result of the corres-
ponding operation. An expression similar to Equation (8.4) is not used since
this operation is not used to identify gates that are critical and is only used to
generate additional timing slack in the circuit (to enable high Vth assignment).
The gate with the maximum sensitivity is then either assigned to VDDH or
upsized based on the operation to which the maximum sensitivity corresponds.
Note that any gate in the circuit may be upsized whereas only gates in the
forward front may be re-assigned to VDDH.

Once a gate is upsized or reset to VDDH operation, timing slack has
been created in the circuit. To exploit this slack and reduce total power, the
next step begins by computing the sensitivity of all gates in the circuit with
respect to operation at high Vth (recall that initially all gates are low Vth).
This sensitivity is calculated as the ratio of the change in power to the change

206 Chapter 8

in delay multiplied by the slack of the gate in order to identify gates that
provide the maximum decrease in power for the minimum increase in delay
and is expressed as

 Sensitivity arc

arcs arc

SlackP
D

= ∆
∆∑ (8.5)

Based on this sensitivity measure gates are assigned to high Vth as long
as the timing constraints of the design are met. This set of moves (assignment
to VDDH or upsizing a gate followed by the associated high Vth assignments)
is then accepted if the total power is found to decrease. If the total power
increases and the initial move was an upsizing move then all these moves are
reversed, otherwise the moves are accepted in keeping with our approach to
avoid local minima. In addition, if the initial move was an upsizing move
then the gate is flagged so that it is not reconsidered for upsizing. The best-
seen solution is always maintained and restored at the end of the forward
pass. The pseudo-code for this stage of the algorithm is shown in Figure 8.9.

This two-stage VVS algorithm allows us to make intelligent choices to
trade-off dynamic power for leakage power in order to obtain a reduction
in the total power dissipation. The algorithm is effectively directed to auto-
matically provide either more leakage power or dynamic power reduction
based on the initial design point. The two-stage algorithm can easily quantify
the impact of setting a gate to high Vth on the extent to which other gates in
the circuit can be assigned to VDDL. In other words, we can independently
judge the impact of Vth and VDD assignment on total power, something that
is difficult to achieve in a flow that simultaneously assigns VDDL and high
Vth throughout the optimization or performs VDD and Vth assignments
completely separately in two independent stages. The important capability of
reassigning gates to VDDL leads to a reduction in the total power dissipation
of the design in low activity cases (leakage power dominated designs) and
steers the algorithm towards a proper low-power solution. In such cases an
optimization approach where a dual-Vth and sizing optimization is followed
by a dual-VDD and sizing optimization would result in highly sub-optimal
results.

8.5.2 GECVS Based Power Optimization Using Dual-Vth
Assignment and Gate Sizing

The GECVS algorithm can be extended to include gate sizing and dual-
Vth optimization. Two major heuristic modules are incorporated: the first
module seeks to increase the VDDL assignment in the circuit (referred to as
‘Assign−VDDL’), while the second seeks to increase the high Vth assignment
(referred to as ‘Assign−High Vth’). The overall flow containing GECVS,
dual-Vth and gate sizing is referred to as GVS.

Power Optimization using Multiple Supply Voltages 207

Forward Pass() {
 L = forward front (VDDL gates with only VDDH fanins).
 While list L is non-empty {
 // Sensitivities to upsizing and VVDH assignment calculated
 Calculate sensitivity of gates in L to changing to VDDH.
 Calculate sensitivity of all gates to upsizing.

 Select candidate A with maximum sensitivity.
 Upsize or assign A to VDDH based on maximum sensitivity.

 If A is changed to VDDH {
 Remove A from L.
 Add to L gates that fan out of A but are not fanouts of any
 VDDL gate.
 If A drives a primary output, remove the LCFF.
 }

 Calculate sensitivity of all low Vth gates changing to high Vth.
 While timing is not violated {
 Set low Vth gate with maximum sensitivity (Equation (8.5))
 to high Vth.
 }

 Check power consumption.
 If power < minimum power found {
 minimum power found = power.
 Best configuration = current VDDL, high Vth &
 sizing assignment.
 } else if upsizing initiated move and total power increases {
 Undo upsizing move.
 Flag gate A not to be considered again for upsizing.
 Undo associated high Vth assignment moves.
 }
 }
}

Figure 8.9 Pseudo-code for the backward pass of the VVS algorithm.

8.5.2.1 Assign-VDDL

At the end of GECVS, any slack remaining in the circuit is not sufficient
to support additional VDDL assignments which provide power reductions.
In other words, any further VDDL assignments will either cause the circuit
to fail timing or increase power consumption. This heuristic attempts to
increase the number of VDDL assignments by employing the technique of
gate upsizing in order to create slack. Note that during this step, only those
VDDH driven gates that do not have any VDDH gates in their fanouts are

208 Chapter 8

considered as candidates for VDDL assignment (such gates are simply
referred to as ‘candidates’ below). This condition is imposed since assigning
such a candidate VDDH gate to VDDL will not require the insertion of
ALCs and thus the overhead for changing to VDDL is less. This thinking is
in line with the concept of building ‘groups’ or ‘clusters’ of VDDL cells as
introduced in Section 8.3. This heuristic also serves to reduce the number of
gates considered for VDDL assignment, which helps reduce the execution
time. Figure 8.10 gives examples showing a gate that can be a candidate for
VDDL assignment, gate A in Figure 8.10(a); and a gate that cannot be a
candidate, gate E in Figure 8.10(b), in this step.

After identifying the candidates for VDDL assignment we next evaluate
the sensitivities as was done in standard GECVS using Equation (8.2). Once
the sensitivities of all candidates have been evaluated, the gate with the
maximum sensitivity is assigned to VDDL. No ALC insertion is needed at
this point as none of the fanouts are at VDDH. Once the gate with the best
sensitivity has been assigned to VDDL, the circuit no longer meets timing
and we now upsize gates on critical paths to meet timing. In identifying
gates to upsize we evaluate the sensitivities of all gates to upsizing using the
following definition. This sensitivity was also employed in Section 5.1 by
Equation (8.4) and is reproduced here for convenience.

min

1Sensitivity arc

arcs arc

D
P Slack Slack K

∆
=
∆ − +∑ (8.6)

where ∆Darc and ∆P are the change in delay and power dissipation due to
upsizing (by one drive strength); Slackmin is the worst timing slack in the
circuit; and K is a small positive quantity for numerical stability. The ‘arcs’
in Equation (8.6) are the falling and rising arcs associated with each gate
input. The sensitivity has higher values for gates on critical paths and thus
guides the algorithm towards upsizing the most beneficial gates [6].

A

D

C

B

VDDH

VDDL

VDDL

VDDL

E

H

G

F

VDDH

VDDL

VDDL

VDDH

(b) In this case, gate E is not a potential
candidate for VDDL assignment. Setting
gate E to VDDL requires an ALC to be
inserted since gate H is fed by VDDH.

(a) Gate A is a potential candidate for VDDL
assignment. Setting gate A to VDDL does not
require an ALC to be inserted since all fanout
gates (B,C,D) are fed by VDDL.
Figure 8.10 Candidates for additional VDDL assignment during the ‘Assign−VDDL’ step.

Power Optimization using Multiple Supply Voltages 209

Once sensitivities for all the gates are evaluated, the gate with the maxi-
mum sensitivity is selected and sized up. This sensitivity evaluation does
not require a full circuit timing analysis and hence does not lead to large
runtimes. This procedure is repeated until the circuit no longer fails timing.
The number of upsizing moves is limited to a large number (10% of the total
number of gates in the circuit) in order to stop pursuing bad moves that
require too much upsizing (which would lead to a high area overhead and
also smaller power improvements). We again allow moves that immediately
result in increased power (after VDDL assignment and required upsizing
moves) in order to include hill-climbing capability in the algorithm.

The list of candidates to assign to VDDL is updated after each accepted
move, since setting a gate to VDDL may create more candidates in its fanin
cone. This procedure of VDDL assignment is continued as long as there are
candidates remaining that can be set to VDDL without violating timing given
upsizing.

The pseudo-code for the assign VDDL step is shown in Figure 8.11.

8.5.2.2 Assign-High Vth

At the end of the ‘Assign−VDDL’ step, some slack may still remain in the
circuit. We next attempt to convert this slack into power savings by conver-
ting gates from low Vth to high Vth. Although assigning a gate to high Vth
will clearly slow it down, the gate input pin capacitances also reduce some-
what [24] (~8% in our technology), speeding up gates that fan into it. The
approach used in GECVS (Figure 8.5) is again employed for the high Vth
assignment – the only difference is that moves are from low Vth to high Vth
here, rather than VDDH to VDDL as in GECVS. At the end of this step, no
further gates can be set to high Vth without violating timing. Thus, in order
to explore the possibility of increasing power savings by more high Vth
assignment, we upsize certain gates or assign gates back to VDDH (thus
creating slack). In order to identify the gates to be upsized or set to VDDH
the following sensitivity measure is defined:

 Sensitivity (upsizing/set-VDDH) = D
P

∆
∆

 (8.7)

where, ∆D and ∆P are the change in delay and power dissipation.
This sensitivity enables us to choose the gate giving the best delay imp-

rovement per unit power penalty. In considering gates to be set to VDDH, a
heuristic analogous to the one followed in Assign-VDDL (Figure 8.11) can
be followed. Specifically in the Assign-High Vth step while setting gates
back to VDDH, we only consider gates that do not have any VDDL gates as
their fanins. This ensures no ALC insertion will be required. Sensitivities of
setting all such gates to VDDH are evaluated while sensitivities of all gates
in the circuit with respect to upsizing (by one drive strength) are evaluated

210 Chapter 8

using Equation (8.7). Once all sensitivities have been computed, the gate
with the largest sensitivity is set to VDDH or upsized accordingly, creating
slack. Once slack is created, more gates can be assigned to high Vth following
the approach outlined above.

Assign-VDDL() {
 L = Candidate gates identified in Figure 8.10, i.e., VDDH gates not
 fanning out to VDDH gates.
 While list L is non-empty {
 // VDDL assignment sensitivity calculated with Equation (8.2)
 Calculate sensitivity of gates in L to changing to VDDL.

 STEP: “SET VDDL” –
 Select candidate A with maximum sensitivity from L.
 Remove A from L.
 Set the supply voltage of A to VDDL.

 If A drives a primary output, insert an LCFF.

 STEP: “UPSIZING” –
 While circuit fails timing and number of upsizing moves
 is < 10% of total number of gates in the circuit) {
 Calculate sensitivity of all gates to upsizing with Equation (8.6).
 Upsize gate with maximum sensitivity to the next higher
 size available in the library.
 }

 Check timing.
 Check power consumption.
 If circuit meets timing and power increase < hill-climbing
 tolerance {
 STEP: “CLUSTERING” –
 Add to L gates that fan into A but not into any VDDH gate.

 If power < minimum power found {
 minimum power found = power.
 Best configuration = current VDDL, Vth &
 sizing assignment.
 }
 } else {
 Undo upsizing moves.
 Remove any added LCFFs.
 Set the supply voltage of A back to VDDH.
 }
 }
}

Figure 8.11 Pseudo-code for the Assign-VDDL algorithm.

Power Optimization using Multiple Supply Voltages 211

Table 8.3 Power savings with the VVS algorithm, which adds dual-Vth and sizing to CVS.
VDDL = 0.8V. High Vth = 0.23V. Low Vth = 0.12V.

VVS
Circuit Leakage Switching Total Leakage Switching Total Savings
c432 43 155 198 22 151 173 12.7%
c880 61 250 310 31 205 236 23.9%
c1355 163 537 699 106 532 638 8.8%
c1908 89 339 428 36 313 349 18.4%
c2670 118 541 658 40 435 475 27.9%
c3540 161 570 731 82 529 611 16.4%
c5315 219 1017 1235 117 892 1009 18.3%
c7552 232 983 1215 196 732 928 23.6%
Huffman 68 310 378 25 278 303 19.7%

Average: 18.9%

Initial Power (uW) VVS Power (uW)

8.6 POWER SAVINGS WITH VVS AND GVS

Table 8.3 summarizes our results after applying the heuristics described
above to CVS and GECVS. The initial power point is from delay minimization
in the manner of TILOS (per Equation (8.6)), then backing off 10% from the
minimum delay point (1.1×Tmin) with power minimization (per Equation
(8.5)). The same 1.1×Tmin delay constraints are used for the results presented
in Table 8.3 and Table 8.4 – i.e. comparing sizing/dual-VDD/dual-Vth
results versus a sizing only/high VDD/low Vth initial point. Only results for
VDDL of 0.8V are detailed here, as these results were better than for VDDL
of 0.6V. From comparing the percentage improvements in Table 8.1 with
those in the most right-hand column of Table 8.3 and Table 8.4, power
savings can be improved significantly when sizing, VDD and Vth assignment
are utilized together for reasonably large test cases – on average 10% addi-
tional savings vs. CVS, and 7% additional savings vs. GECVS.

In contrast, approaches such as the genetic algorithm presented in [9] are
expected to fail for larger benchmarks because of the increased problem size.
We implemented the genetic algorithm and found about 15% power savings
versus the initial power point for c17, but the genetic algorithm provided no
power savings for the larger benchmarks in comparison to the initial point.

Level converter performance has an important impact on achievable power
savings. The asynchronous level converter we used was the circuit referred
to as STR6 in [17]. This ALC has a delay of 84ps and consumes 6.3fJ of
internal energy per transition. The LCFF data was based on [1][11] which
show that LCFF delay overhead is about 2 FO4 delays, or about 80ps in
our technology. The LCFFs have no internal power overheads and reduced
switching power due to VDDL driving the input capacitance of the register.

212 Chapter 8

Table 8.4 Power savings with the GVS algorithm, which adds dual-Vth and sizing to GECVS.
VDDL = 0.8V. High Vth = 0.23V. Low Vth = 0.12V.

GVS
Circuit Leakage Switching Total Leakage Switching Total Savings
c432 43 155 198 31 148 179 9.6%
c880 61 250 310 36 189 225 27.3%
c1355 163 537 699 119 514 633 9.5%
c1908 89 339 428 64 300 364 15.0%
c2670 118 541 658 74 391 466 29.2%
c3540 161 570 731 128 492 621 15.1%
c5315 219 1017 1235 147 760 907 26.5%
c7552 232 983 1215 135 662 797 34.4%
Huffman 68 310 378 41 234 275 27.3%

Average: 21.6%

Initial Power (uW) GVS Power (uW)

0.0 0.2 0.4 0.6 0.8 1.0
10

15

20

25

30

35

40

Power reduces as
level converters improve

%
 P

ow
er

 sa
vi

ng
s b

y
V

V
S

an
d

G
V

S

Normalized level converter delay and power

VVS
GVS

Figure 8.12 Impact of level converter performance on system level power dissipation of
benchmark c5315 with VDDL of 0.8V.

By scaling the data for the level converters, we studied the possible power

enhancements that can be obtained via further improved level converter
circuits. Figure 8.12 shows the variation in the achieved power savings using
VVS and GVS for an example case as level converter delay and power are
varied, sweeping from the full power and delay (normalized to 1.0) to zero
power and delay overhead. A reasonable sensitivity of power savings to
level converter performance can be seen.

Power Optimization using Multiple Supply Voltages 213

Table 8.5 This table compares the runtimes of CVS, GECVS, VVS, and GVS. The runtime
complexity of the algorithms is summarized at the bottom.

Number Logic
Circuit of Gates Depth CVS GECVS VVS GVS
c432 166 23 0.6 0.7 1.2 0.9
c880 390 26 2.7 4.6 5.4 8.4
c1355 558 28 6.1 6.4 13.6 7.4
c1908 432 40 3.6 4.0 9.1 5.3
c2670 964 25 16.8 21.9 56.1 57.4
c3540 962 42 24.5 31.8 65.1 51.4
c5315 1,627 41 68.8 119.9 229.9 386.6
c7552 1,994 44 110.6 286.7 222.9 889.9
Huffman 509 47 3.7 4.7 15.7 33.0

O(n 2) O(n 3) O(n 3) O(n 3)

Runtime (s)

Runtime Complexity

8.6.1 Runtime and Complexity of the Multi-Vdd Algorithms

The final runtimes of the CVS, GECVS, VVS and GVS algorithms are
compared in Table 8.5, as measured on a computer with a 3GHz Pentium
microprocessor and 2GB RAM. The worst case complexities of these
algorithms in terms of the number n of gates are as follows.

CVS can have at most all n gates assigned to VDDL. Each VDDL
assignment needs one execution of the static timing analyzer (STA) to check
if timing is met. Since the complexity of the STA is O(n), the worst case
complexity of CVS is O(n2).

In the case of GECVS, each potential VDDL assignment begins with the
sensitivity calculation for all gates (Equation (8.2)). Since each sensitivity
calculation takes O(1) time, this takes O(n) time. Once all sensitivities are
calculated, finding the timing feasible gate with maximum sensitivity has a
worst case complexity of O(n2) (since in the worst case an STA run is
needed for each gate). Overall, since all gates can potentially be assigned to
VDDL, we get a worst case complexity of O(n3) for GECVS.

The worst-case run-time complexity of the VVS algorithm is O(n3).
Static timing analysis has a run time complexity of O(n) and in the worst
case we can make O(n2) moves in both the backward and forward passes. In
the backward pass we can potentially attempt to assign O(n) gates to low
Vdd and for each of these possible assignments we can maximally have O(n)
upsizing moves in the circuit. The total number of upsizing moves (due to
the size of the standard-cell library) is O(n), therefore the worst-case occurs
when all upsizing moves are reversed. Thus the possible number of upsizing
moves is O(n2), making the overall worst-case complexity of the backward
pass O(n3). Similarly we can find the worst-case complexity of the forward

214 Chapter 8

pass and hence of the overall approach to be O(n3). For the forward pass the
worst-case complexity occurs only when we revert back to the original
circuit after assigning O(n) gates in the circuit to high Vth. However, since
the amount of slack generated in the circuit due to a single high Vdd
assignment or gate upsizing is small, the number of possible high Vth
assignments due to upsizing or high Vdd assignment of a single gate can be
expected to be O(1), hence the average complexity of the forward pass can
be expected to be O(n2). For the backward pass the complexity is actually
given by O(n2s) where s is the number of gates on the boundary of low and
high Vdd gates at the end of the backward pass. This boundary forms the
cutset of the acyclic graph which represents the circuit network. The cutset
size is relevant since we only undo the up-sizing associated with the gates
that form the cutset. The number of upsizing moves associated with gates
other than the ones forming the cutset is O(n) since we only have a fixed
number of drive strengths for a given logic gate. In the worst-case s can be
O(n) and this gives us the worst-case complexity of O(n3).

The complexities of the Assign-VDDL and Assign High-Vth modules of
GVS can be found as follows. In case of Assign-VDDL, we first need O(n)
time to calculate the sensitivities (Equation (8.2)) of all gates. After choosing
the gate with the maximum sensitivity, we need another O(n) time for calcu-
lating sensitivities to upsizing (Equation (8.6)) and an STA run for checking
timing after the gate with maximum sensitivity is sized up. Since we allow
O(n) number of upsizing moves per VDDL assignment, this takes O(n2)
time. Finally, since all gates can potentially go to VDDL, the overall comp-
lexity for Assign-VDDL becomes O(n3). In case of Assign High-Vth, we
first calculate the sensitivities of all gates to upsizing and VDDH assignment
(Equation (8.7)). This takes O(n) time. Once the gate with maximum sensi-
tivity is upsized or assigned back to VDDH, we calculate sensitivities of
all gates for high Vth assignment. As in the case of GECVS, selecting the
timing feasible move with maximum sensitivity takes O(n2) time. Since every
iteration of Assign-High Vth creates slack through one VDDH assignment or
one drive strength upsizing, only a handful (typically less than 10) of gates
can go to High Vth per iteration. And since we can have at most O(n) number
of such iterations, the overall complexity of Assign-High Vth becomes
O(n3). Hence, the complexity of GVS which includes GECVS, Assign-VDDL
and Assign-High Vth is O(n3).

8.7 SUMMARY

This chapter overviewed some algorithms for supply voltage assignment
in multi-VDD circuits. Heuristics for combining the three optimization
techniques of gate sizing, multi VDD assignment and multi Vth assignment
were also presented. We quantified the impact of level converters on system-

Power Optimization using Multiple Supply Voltages 215

level power dissipation, motivating further work in the development of fast
and low-energy asynchronous level converters.

The approaches discussed in this chapter are sensitivity based techniques
which are able to accurately consider the impact of signal slews et al. on the
timing of the design. Thus, these approaches are guaranteed to meet timing
at the end of the optimization which is extremely important in an ASIC
methodology. Moreover, the inherently discrete nature of Vth and VDD
assignment problems does not allow direct application of traditional conti-
nuous optimization techniques, and combinatorial optimization techniques
are extremely costly. Thus, efficient and intelligent heuristics that can consider
the impact of a single Vth/VDD assignment on the final power savings are
very useful.

Other important considerations such as the physical design and power
delivery also arise when implementing multi-VDD circuits. The problem of
physical design can be handled by dividing the floorplan into islands of
VDDL and VDDH cells. Alternatively, modifying the standard cell layouts
to accommodate the multiple power supplies allows complete freedom in
choosing which gates to operate at each of the supplies [2].

Robust power distribution grids need to be designed as cells supplied by
lower supplies are very susceptible to power supply variations. This can be
accomplished at no area or wire congestion overheads by recognizing that
multi-VDD circuits operate at lower supply currents [18]. Efficient DC-DC
converters for delivering power to multi-VDD chips are discussed in [13].

8.8 ACKNOWLEDGMENTS

This work was supported by the Semiconductor Research Corporation,
the MARCO/DARPA Gigascale Systems Research Center, and Intel Corp-
oration. The authors thank Y. Kim from the University of Michigan, Ann
Arbor, for the characterization of the standard cell libraries used in this
work. The authors also thank Professor B. Nikolic from the University of
California, Berkeley for providing the Huffman benchmark circuit.

8.9 REFERENCES
[1] Bai, M., and Sylvester, D., “Analysis and design of level converting flip-flops for dual-

Vdd/Vth integrated circuits,” Proc. Int. Symp. System-on-Chip, 2003, pp. 151-154.
[2] Bai, M., Kulkarni, S., Kwong, W., Srivastava, A., Sylvester, D., and Blaauw, D., “An

implementation of a 32-bit ARM processor using dual power supplies and dual threshold
voltages,” Proc. Ann. Symp. VLSI, 2003, pp. 149-154.

[3] Brglez, F., and Fujiwara, H., “A neutral netlist of 10 combinational benchmark circuits
and a target translator in Fortran,” Proc. Int. Symp. Circuits and Systems, 1985, pp. 695-698.

[4] Chen, C., and Sarrafzadeh, M., “Simultaneous voltage scaling and gate sizing for low-
power design,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing,
Jun. 2002, pp. 400-408.

216 Chapter 8

[5] Chen, C., Srivastava, A., and Sarrafzadeh, M., “On gate level power optimization using

dual-supply voltages,” IEEE Trans. VLSI Syst., vol. 9, Oct. 2001, pp. 616-629.
[6] Dharchoudhury, A., Blaauw, D., Norton, J., Pullela, S., and Dunning, J., “Transistor-level

sizing and timing verification of domino circuits in the Power PC microprocessor,” Proc.
Int. Conf. Computer Design, 1997, pp. 143-148.

[7] Dhillon, Y., Diril, A., Chatterjee, A., and Lee, H., “Algorithm for achieving minimum
energy consumption in CMOS circuits using multiple supply and threshold voltages at
the module level,” Proc. Int. Conf. Computer Aided Design, 2003, pp. 693-700.

[8] Fishburn, J., and Dunlop, A., “TILOS: a posynomial programming approach to transistor
sizing,” Proc. Int. Conf. Computer Aided Design, 1985, pp. 326-328.

[9] Hung, W., Xie, Y., Vijaykrishnan, N., Kandemir, M., Irwin, M., and Tsai, Y., “Total power
optimization through simultaneously multiple-VDD multiple-VTH assignment and device
sizing,” Proc. Int. Symp. Low-Power Electronics Design, 2004, pp. 144-149.

[10] Igarashi, M., Usami, K., Nogami, K., Minami, F., Kawasaki, Y., Aoki, T., Takano, M.,
Mizuno, C., Ishikawa, T., Kanazawa, M., Sonoda, S., Ichida, M., and Hatanaka, N., “A
low-power design method using multiple supply voltages,” Proc. Int. Symp. Low-Power
Electronics Design, 1997, pp. 36-41.

[11] Ishihara, F., Sheikh, F., and Nikolic, B., “Level conversion for dual supply systems,”
Proc. Int. Symp. Low-Power Electronics Design, 2003, pp. 164-167.

[12] Karnik, T., Ye, Y., Tschanz, J., Wei, L., Burns, S., Govindarajulu, V., De, V., and Borkar,
S., “Total power optimization by simultaneous dual-Vt allocation and device sizing in
high performance microprocessors,” Proc. Design Automation Conf., 2002, pp. 486-491.

[13] Hazucha, P., Schrom, G., Hahn, J., Bloechel, B., Hack, P., Dermer, G., Narendra, S.,
Gardner, D., Karnik, T., De, V., and Borkar, S., “A 233-MHz 80%-87% efficient four-
phase DC-DC converter utilizing air-core inductors on package,” IEEE J. Solid-State
Circuits, Apr. 2005, pp. 838-845.

[14] Ketkar, M., and Sapatnekar, S., “Standby power optimization via transistor sizing and
dual threshold voltage assignment,” Proc. Int. Conf. Computer Aided Design, 2002, pp.
375-378.

[15] Kosonocky, S., Bhavnagarwala, A., Chin, K., Gristede, G., Haen, A., Hwang, W.,
Ketchen, M., Kim, S., Knebel, D., Warren, K., and Zyuban, V., “Low power circuits and
technology for wireless digital systems,” IBM J. R&D, vol. 47, no. 2/3, 2003.

[16] Kulkarni, S., Srivastava, A., and Sylvester, D., “A new algorithm for improved VDD
assignment in low power dual VDD systems,” Proc. Int. Symp. Low-Power Electronics
Design, 2004, pp. 200-205.

[17] Kulkarni, S., and Sylvester, D., “High performance level conversion for dual VDD
design,” IEEE Trans. VLSI Syst., Sep. 2004, pp. 926-936.

[18] Kulkarni, S., and Sylvester, D., “Power distribution techniques for dual VDD circuits,”
Proc. Asia-South Pacific Design Automation Conf., 2006, pp. 838-843.

[19] Lackey, D., Zuchowski, P., Bednar, T., Stout, D., Gould, S., and Cohn, J., “Managing power
and performance for SOC designs using voltage islands,” Proc. Int. Conf. Computer Aided
Design, 2002, pp. 195-202.

[20] Nemani, M., and Najm, F., “Toward a high level power estimation capability,” IEEE
Trans. Computer Aided Design, vol. 15, Jun. 1996, pp. 588-598.

[21] Nguyen, D., Davare, A., Orshansky, M., Chinnery, D., Thompson, B., and Keutzer, K.,
“Minimization of dynamic and static power through joint assignment of threshold volt-
ages and sizing optimization,” Proc. Int. Symp. Low-Power Electronics Design, 2003,
pp. 158-163.

[22] Pant, P., Roy, R., and Chatterjee, A., “Dual-threshold voltage assignment with transistor
sizing for low power CMOS circuits,” IEEE Trans. VLSI Syst., 2001, pp. 390-394.

[23] Puri, R., Stok, L., Cohn, J., Kung, D., Pan, D., Sylvester, D., Srivastava, A., and Kulkarni, S.,
“Pushing ASIC performance in a power envelope,” Proc. Design Automation Conf., 2003,
pp. 788-793.

Power Optimization using Multiple Supply Voltages 217

[24] Sirichotiyakul, S., Edwards, T., Oh, C., Zuo, J., Dharchoudhury, A., Panda, R., and

Blaauw, D., “Stand-by power minimization through simultaneous threshold voltage
selection and circuit sizing,” Proc. Design Automation Conf., 1999, pp. 436-441.

[25] Srivastava, A., “Simultaneous Vt selection and assignment for leakage optimization,”
Proc. Int. Symp. Low-Power Electronics Design, 2003, pp. 146-151.

[26] Srivastava, A., Sylvester, D., and Blaauw, D., “Power minimization using simultaneous
gate sizing, dual-Vdd, and dual-Vth assignment,” Proc. Design Automation Conf., 2004,
pp. 783-787.

[27] Sundararajan, V., and Parhi, K., “Low power synthesis of dual threshold voltage CMOS
VLSI circuits,” Proc. Int. Symp. Low-Power Electronics Design, 1999, pp. 139-144.

[28] Sundararajan, V., and Parhi, K., “Synthesis of low power CMOS VLSI circuits using
dual supply voltages,” Proc. Design Automation Conf., 1999, pp. 72-75.

[29] Sylvester, D., and Keutzer, K., “System-level performance modeling with BACPAC –
Berkeley advanced chip performance calculator,” Int. Workshop System-Level Interconnect
Prediction (workshop notes), 1999, pp. 109-114.

[30] Usami, K., and Horowitz, M., “Clustered voltage scaling technique for low-power
design,” Proc. Int. Symp. Low-Power Electronics Design, 1995, pp. 3-8.

[31] Usami, K., and Igarashi, M., “Low-power design methodology and applications utilizing
dual supply voltages,” Proc. Asia South Pacific Design Automation Conf., 2000, pp. 123-
128.

[32] Usami, K., Igarashi, M., Ishikawa, T., Kanazawa, M., Takahashi, M., Hamada, M.,
Arakida, H., Terazawa, T., and Kuroda, T., “Design methodology of ultra low-power
MPEG4 codec core exploiting multiple voltage scaling techniques,” Proc. Design
Automation Conf., 1998, pp. 483-488.

[33] Usami, K., Igarashi, M., Minami, F., Ishikawa, M., Ichida, M., and Nogami, K.,
“Automated low-power technique exploiting multiple supply voltages applied to a media
processor,” IEEE J. Solid-State Circuits, Mar. 1998, pp. 463-472.

[34] Wei, L., et al., “Mixed-Vth (MVT) CMOS Circuit Design Methodology for Low Power
Applications,” in Proceedings of the Design Automation Conference, 1999, pp. 430-435.

[35] Wei, L., Roy, K., and Koh, C., “Power minimization by simultaneous dual-Vth assign-
ment and gate sizing,” Proc. Custom Integrated Circuits Conf., 2000, pp. 413-416.

[36] Yeh, C., Chang, M., Chang, S., and Jone, W., “Gate-level design exploiting dual supply
voltages for power-driven applications,” Proc. Design Automation Conf., 1999, pp. 68-71.

Chapter 9 9

PLACEMENT FOR POWER OPTIMIZATION
Physical Synthesis

Ameya R. Agnihotri, Satoshi Ono, Patrick H. Madden
Computer Science Department
T. J. Watson School of Engineering
State University of New York at Binghamton
P.O. Box 6000
Binghamton, NY 13902

9.1 INTRODUCTION

Circuit placement is a well studied area of VLSI design. The logic ele-
ments in a circuit design must be transferred onto the silicon substrate –
transistors are not allowed to overlap, and there are a variety of spacing and
size constraints. In this chapter, we survey techniques to minimize power
within a placement context. By “placement”, we mean a mapping of each
logic element to a physical location.

Minimization of power during circuit placement requires a delicate
balance of constraints. There is always a trade-off between power and speed.
If speed is not an issue, power can be reduced by operating at a low freq-
uency, increasing device threshold voltages, and down-sizing devices which
reduces the layout area. However for modern circuits, it’s rare to have such
low performance objectives. Rather, the challenge is to design a circuit that
is both fast and low power.

Early place and route power minimization methods focused on reducing
the lengths of interconnect wires with higher switching activity. Minimization
of the length of delay critical nets has also been a traditional concern. Recent
focus has been on the integration of multiple supply voltages and multiple
threshold voltages, so that circuit performance can be finely tuned.

The traditional “wire length” objective in placement addresses power
minimization by reducing the switching capacitance of the interconnect
wires. Each wire has a capacitive load; charging and discharging this load

220 Chapter 9

consumes power. In one recent study [41], for example, it was estimated that
50% of the dynamic power consumption of a microprocessor designed in
0.13um technology could be attributed to the switching capacitance of
circuit interconnect. This percentage is from a highly optimized design – a
poor quality circuit placement would have longer interconnect lengths,
contributing an even greater share of the dynamic power.

Reducing the length of delay critical nets is beneficial to power consum-
ption, as this makes achieving timing closure easier. If a long interconnect
wire is on a delay critical path, the only way to meet a timing constraint may
be to either insert buffers and/or to increase the size of gates along the path;
each of these will increase power consumption.

The physical locations of each circuit element determine the lengths of
interconnecting wires, which in turn influences the need for gate sizing and
buffer insertion. While interconnect length reduction is not the only objective
in placement, it is an extremely important one

There are three dominant algorithmic techniques in use for circuit
placement: analytic methods, partitioning based placement, and simulated
annealing. Most commercial placement tools rely heavily on analytic
methods, but hybrids are common – each technique has its strengths and
weaknesses. Circuit placements produced by current methods are known to
be significantly suboptimal for even simple metrics [10]; for timing and
power optimization, the suboptimality is likely even greater. Many placement
researchers believe that significant improvements are possible, and that an
algorithmic breakthrough would have tremendous benefit.

The circuit placement is frequently broken into global and detailed
placement steps. During global placement, only coarse estimates of wire
length and wire delay are known. While there are techniques to gain rough
estimates of interconnect lengths before placement [16][50], these methods
lack the accuracy needed for fine tuning [49]. For modern high-performance
design, a great deal of circuit optimization must be performed after global
placement has been completed.

In global placement, power minimization can be handled by biasing the
solution such that there is a preference for shorter lengths on the most active
signal nets. We discuss this biasing in the section on “net weighting”. As a
placement algorithm converges towards a final configuration, estimates of
individual net lengths become more accurate, and the true delay critical
paths of the circuit begin to emerge. Biasing the nets such that those on the
critical paths become shorter also benefits power: shorter nets require smaller
drivers to meet performance constraints.

During detailed placement, the circuit can be fine-tuned, with combi-
nations of gate sizing, buffer insertion, logic resynthesis, and small-scale
placement modifications. Combinations of logic optimization and physical
layout (both placement and routing) are generically known as physical
synthesis.

Placement for Power Optimization 221

Recent efforts to further minimize power consumption by using multiple
supply voltages have presented new challenges. In particular, cells must be
placed in rows (or portions of a row) with appropriate supply voltage and
that level converters be placed such that they can access both supply voltage
levels. This complicates placement legalization.

It is important to note that the placement problem has been changing
over the past few years. The number of available transistors has been incre-
asing exponentially, but the ability of designers to utilize them has lagged
behind. In most cases, modern chips are “power and speed limited”, and not
“device limited”. It is not uncommon for large designs to have a great deal
of open space between blocks and logic elements – the capacity of each die
exceeds the needs for the circuit. Thus, the “packing” nature of the problem
that was a significant challenge in previous generations is now almost
irrelevant – handling the abundance of “white space” has emerged as a new
concern [2][6].

The placement optimization problem and objectives for this are discu-
ssed in Section 9.2. Placement approaches and physical synthesis are detailed
in Section 9.3, then Section 9.4 examines placement issues with multiple
supply voltages. State of the art results for placement tools are examined in
Section 9.5. We conclude in Section 9.6.

9.2 PLACEMENT BASICS

On the surface, circuit placement may appear to be a relatively simple
problem. In Figure 9.1, we illustrate three types of common placement pro-
blems: standard cell placement, mixed size placement, and floorplanning. In
standard cell placement, large numbers of relatively simple logic elements
are arranged in horizontal rows – the elements frequently have the func-
tionality of basic Boolean operators. Mixed size placement problems contain
both standard cells, and also larger and more complex circuit blocks; this is
frequently referred to as the “boulders and dust” problem. At the highest
level is floorplanning: large blocks of circuitry must be arranged such that
they fit together, while minimizing wire length (or a variety of other objec-
tives).

The input to a placement tool is generally a circuit net list, coupled with
some constraints on the “core area” into which the circuit is to be embedded.
A circuit net list contains a large number of logic elements – almost always
rectilinear, and for standard cell design, rectangular with uniform height.
These logic elements must be arranged within the core area such that they do
not overlap.

The set of logic elements in a circuit is typically denoted as C={c1,c2,…,cn}.
C is the entire set of logic elements, while each ci corresponds to a single
device (ranging from a simple logic gate to a macro block). Connecting the
logic elements together are the signal nets N={n1,n2,…,nm}. Often, it is

222 Chapter 9

useful to treat the circuit as a hypergraph, with the logic elements as vertices,
and the signal nets as hyperedges.

With a small amount of excess area, fitting logic elements into the space
provided is usually relatively easy. Complicating the placement problem are
wire length, power, and delay considerations. We will consider these briefly;
detailed discussions of placement objectives can be found in [3][34][40].

9.2.1 Wire Length

The most studied placement objective is wire length minimization. Consider
a simplified placement problem: we will assume that each logic element is
square, and that they are to be placed onto a two dimensional grid. Packing
the elements in such a way that they do not overlap is trivial – so long as the
number of grid spaces is at least equal to the number of logic elements.

When one considers the interconnecting signal nets, however, the pro-
blem becomes NP-Complete [47]. If we have n logic elements, and an equal
number of grid spaces, there are O(n!) different ways to embed them into
the grid.

Standard cell Mixed size

Floorplanning

Logic cellsRouting Channel

Macro block

Empty
space

Standard cell Mixed size

Floorplanning

Logic cellsRouting Channel

Macro block

Empty
space

Figure 9.1 Standard cell placement, mixed size placement, and floorplanning problems. We
focus primarily on standard cell and mixed size placement.

Placement for Power Optimization 223

cell A

cell B

cell C cell D

Circuit Netlist Circuit Placement

Half Perimeter Spanning Tree Steiner Tree

A

B

C

D

cell A

cell B

cell C cell D

Circuit Netlist Circuit Placement

Half Perimeter Spanning Tree Steiner Tree

A

B

C

D

Figure 9.2 Wire length estimation in placement. A half perimeter metric is normally used in
global placement. For gate sizing and buffer insertion, however, it is preferable to have more
accurate measures.

For each signal net, the half perimeter of the bounding box is a rough
estimate of the interconnect wiring needed for the net – for two and three pin
nets, this is exact. Thus, a common objective is to minimize the sum of the
half perimeters; HPWL (half perimeter wire length) is well known.

Improving somewhat over the perimeter objective are minimum span-
ning tree (MST) and Steiner minimal tree (SMT) objectives. In some resp-
ects, these objectives are better than HPWL – but as they ignore the actual
topologies found by global and detail routing, they are also inaccurate. We
illustrate different methods for estimating the wire length of a net in Fig-
ure 9.2.

9.2.2 Power

The impact of placement on dynamic power consumption has been studied
extensively. A typical formulation [41] to capture this is

 2

 signal nets

1
2 j j dd

j N
P a C V f

∈

= ∑ (9.1)

where P is the total dynamic power consumption due to switching wire
capacitances; aj is the switching activity factor for signal net j; Cj is the
switching capacitance of the net; Vdd is the supply voltage; and f is the clock
frequency. While the notation varies slightly, the basic equations remain the
same; [44] utilized a similar formula in an early survey of power minimi-
zation.

224 Chapter 9

Switching capacitance, Cj, depends heavily on the interconnect length.
To accommodate this in placement optimization, it is possible to perform net
weighting to bias the solution such that nets that switch frequently have
reduced lengths. How net weighting for power is handled in the different
placement approaches is discussed in detail in Section 9.3.

9.2.3 Delay

Delay minimization is the most elusive objective in placement, for a
number of reasons. Even with a fixed placement, determining the longest
delay path through a circuit is nontrivial.

During placement, the locations of individual logic elements may change
repeatedly. As wire lengths between logic elements change, the critical paths
in a circuit change. If one uses an accurate delay analysis method during
circuit placement, run times are unacceptable. Fast delay analysis methods
are inaccurate, which can result in over optimization of non-critical paths, or
in performance objectives being missed.

Note that some “false” paths can’t actually affect the circuit delay; deter-
mining false paths is in principle a difficult problem. To impact the delay of
a circuit, a path must be sensitized; this is effectively circuit satisfiability, a
classic NP-Complete problem. Fortunately, circuit designers frequently have
good insight into the nature of the true critical paths, and many false paths
can be eliminated by heuristic methods.

9.2.4 Routability

While we consider this only briefly, it should be clear that the actual
routing of a circuit has a great impact on interconnect length, and thus the
power consumption of a circuit. In portions of many designs, the routing
demand can be close to the available resources; these regions are “congested”.
Routing congestion can be reduced through the introduction of routing
detours; congested designs have increased numbers of vias between metal
layers (which add to the capacitance of the nets), and an overall increase in
interconnect length.

There has been extensive work in routability-driven placement in recent
years [37][59]. Generally, excess area in the design, the “white space”, is
distributed within the placement region. In general, this has the effect of
increasing half-perimeter wire length estimates; the routed wire lengths,
however, are reduced due to reduced congestion with less routing detours.

A primary challenge to routability-driven placement is accurately esti-
mating routing demand [38][39][58]. If the routing estimates do not match
the actual behavior of the routing tools, space may be inserted where it is not
required (increasing wire length), while areas that need space are overlooked
(resulting in detours, or even routing failure).

Placement for Power Optimization 225

Figure 9.3 A “congestion map” normally shows densely occupied regions with light colors. A
routing detour may erase any improvements made by careful placement. If the design is
congested, wire detours will increase the capacitance of interconnect nets, increasing
switching power. Congested regions also have more net-to-net coupling capacitance, and thus
wider variation in delay.

Routing detours, as illustrated in Figure 9.3, may eliminate any gains that
may have been expected from power and delay optimization – wire lengths

226 Chapter 9

are unexpectedly higher than the estimates used by the optimization tools.
For this reason, some have advocated a return to the “variable die” routing
model [55]. Most modern design flows use a “fixed-die” routing model [59].
Variable die routing allows expansion between rows of standard cells to
increase routing space, avoiding the introduction of routing detours.

9.2.5 Problem Complexity

Evaluating the “quality” of a given placement is difficult; compounding
this is the inherent NP-completeness of placement. For n logic elements,
there can be O(n!) different arrangements. There are no known optimal
algorithms for even the simplest of metrics.

While there is disagreement regarding the degree of suboptimality of
current placement methods, there is general agreement that the degree is
quite significant. It should be stressed that the methods discussed in the next
section are all heuristic in nature. Current tools based on analytic methods,
bisection, and annealing, produce similar results on some benchmarks, and
widely differing results on others. On a set of synthetic benchmarks with
known optimal configurations [10], wire lengths produced by modern tools
were anywhere from 30% to 150% away from optimal—with some tools
exhibiting pathological behavior. We speculate that in terms of average wire
length, most methods are at least 50% away from optimality on “real”
circuits. For delay optimization, we would speculate that results could be a
factor of two or more away from optimality.

9.3 PHYSICAL SYNTHESIS

In this section, we first discuss general methods for net weighting and
global placement. Most placement approaches first find a rough distribution
of logic elements across the layout area, while addressing power and perfor-
mance objectives by weighting individual signal nets.

Following global placement are legalization, gate sizing, and buffer
insertion. It is during this phase that “physical synthesis” has departed most
significantly from traditional placement. In early fabrication technologies,
circuit delay was relatively independent of interconnect delay; device sizes
could be fixed at an early stage, and nearly any reasonable placement would
produce performance results close to those expected. With modern fabrication,
interconnect delay is far more significant, and it is only at the last stages of
physical design that performance can be accurately estimated.

The amount of optimization to be performed may make design closure
difficult. For example in one recent study [48], large numbers of repeaters
were needed to meet performance targets. The insertion of repeaters into the
design caused changes to the overall structure of the placement, making
some optimizations ineffective.

Placement for Power Optimization 227

Significant changes in area due to gate sizing and buffer insertion cause
wire estimates to be inaccurate, which can require layout to be redone.
Layout and sizing iterations may fail to converge on an acceptable solution
and results can be unpredictable. This is essentially why traditional placement
flows failed – wire load models were so inaccurate that the results were quite
suboptimal in terms of area and power due to oversized cells to conservatively
try and drive what might be long wires, but in the typical case were over-
estimated, also limiting the minimum delay that could be achieved. While an
underestimate in the less common case of longer wires would lead to failure
to satisfy delay constraints for paths with long wires after routing.

The “stability” of a placement in this context is a key concern [7]. Some
designs now contain a great deal of internal white space, so that insertion of
buffers and gate sizing does not disrupt the placement structure. Logical
effort [51] based optimization can be extremely effective, but can require a
large overhead in terms of total wire length.

9.3.1 Net Weighting

At the core of almost all performance-driven placement techniques is a
net weighting scheme. In a circuit, some nets are delay critical, or transition
very frequently. By increasing the weight of a net in something as simple as
a half perimeter wire length calculation, the results of a placement algorithm
can be tuned towards better performance. Figure 9.4 shows a simplified
example; if power is the only objective, one of first two arrangements might
be acceptable. The third arrangement will minimize delay.

n1 n2

Fixed Fixed

A

If n1 switches less often than n2,
power can be minimized by shifting
logic element A to the right.

n1 n2

Fixed Fixed

A
If n2 switches less often, the best
solution is to shift A to the left.

n1 n2

Fixed Fixed

A
If the nets are delay critical, equalizing
the distances will give the best delay.

n1 n2

Fixed Fixed

A

If n1 switches less often than n2,
power can be minimized by shifting
logic element A to the right.

n1 n2

Fixed Fixed

A
If n2 switches less often, the best
solution is to shift A to the left.

n1 n2

Fixed Fixed

A
If the nets are delay critical, equalizing
the distances will give the best delay.

Figure 9.4 If nets have different switching activity, it may be beneficial to weight the nets so
that their lengths are different after placement. In this figure, the first two arrangements
optimize the length of n1 or n2; which is better depends on the switching activity. In practice,
neither may be desirable: interconnect delay is roughly quadratic with net length, and a
balanced arrangement may give better delay, and require less sizing of drivers.

228 Chapter 9

Net weighting methods are not new. An early method was developed
by Dunlop [19], and most current placement tools use something similar.
Weights for individual nets are frequently based on the “slack allocation”
methods of Frankle [22]. By traversing the circuit with a longest-path
algorithm (easily done in a directed graph), it is possible to find long paths
that may limit performance. Increasing the weight of nets along the path will
result in the placement algorithm pulling the logic elements along the path
together, reducing wire length. Decreasing the weight of non-critical nets
also achieves this. Integrating switching activity into this approach is trivial.

A common criticism of net weighting is that it addresses the nets indivi-
dually, but not the paths. As the placement changes, or gate sizing and buffer
insertion are performed, the critical path can change repeatedly. Without
frequent recomputation of net weights, it is likely that the placement tool
will optimize non-critical portions of the circuit.

It is important to note again that the longest path may not necessarily
be relevant; it is not uncommon for a long path to be “false”. In practice,
performance driven design is done by either focusing on a set of paths pro-
vided by the circuit designer, or by having a set of false paths to explicitly
ignore. As placement and physical synthesis operations are performed, the
timing of a circuit is updated repeatedly (usually with an incremental method
to minimize computation overheads); net weights are recomputed, and optimi-
zation continues.

9.3.2 Global Placement

In current practice, there are three dominant placement techniques: ana-
lytic, recursive partitioning, and simulated annealing.

9.3.2.1 Analytic Placement

Analytic placement [21][33][46][54][56] is a generic term for methods
that formulate the placement problem as a set of equations; the objective is
to minimize the sum of the distances between connected logic elements.
Figure 9.4 provides a simple example; the optimal position for element “A”
can be formulated such that we minimize the distance, or the square of the
distances. The position of the logic element would typically be represented
as a pair of variables for the x and y location. Linear and quadratic programs
can then be formulated, and individual connections can be weighted.

The circuit in Figure 9.4 is trivial; the optimal solution can be found easily
with a pencil and paper. For large circuits, one might expect the formulation
to have tens of thousands of variables; there are many algorithmic techni-
ques to solve problems of this size quickly. Figure 9.5 illustrates pseudocode
for a generic analytic approach; there are many variations (for example
[21][33][54][56]).

Placement for Power Optimization 229

Solve force equations to
minimize

Recalculate net weights
for power and delay
optimization

Add spreading forces
or constraints

Solution
converged?

Legalize the
abstract placement

| |j kw x x−∑
yes

no

Figure 9.5 Flowchart for an analytic placement approach, with net weighting to address
power and performance. There are many different ways to formulate the optimization
objectives; the x and y optimization objectives are frequently computed independently. There
are a variety of methods to remove overlap, and this is an active research area.

In typical formulations, the signal nets ni connect the circuit elements
cjck. The objective in this formulation is to minimize the sum of distances
between circuit elements. Many analytic placement tools minimize the square
of the distance between connected elements: this formulation is differentiable,
which makes it relatively easy to solve. The quadratic formulation also
captures a useful aspect of the placement problem somewhat naturally: if
interconnect wiring is unbuffered, delay is approximately proportional to
the square of the net length. In some sense, quadratic formulations can be
viewed as minimizing the sum of net delays – not necessarily a bad objec-
tive.

While squared distance formulations are easier to solve, linear objective
functions are also common. Linear wire length more accurately models routed
wire length, and a great deal of effort has gone into the development of
efficient solution methods.

With analytic methods, there is an “obvious” optimal solution to the set
of equations; one in which all circuit elements are directly overlapping.
While there are differences in how the equations are formulated or solved, it
is in the handling of overlap where one sees the greatest variation between
approaches. Methods based on partitioning [33][56], the introduction of
additional forces [21], and cell shifting [54] have all been investigated.

The natural integration of power and delay objectives, coupled with effi-
cient mathematical solvers, has made analytic placement extremely popular.
There are many variations on this theme, and a majority of commercial place-
ment tools utilize some form of analytic placement.

230 Chapter 9

Generate random move
(swap or rotate circuit elements)

Set initial temperature T,
generate initial random placement

Revert to the prior configuration

Weight nets, or reduce T

∆cost < 0, or
e–∆cost/T < random[0,1]?

yes

no

move
accepted

T is reduced slowly until the solution “freezes”

Many random moves are
generated at each temperature T

move rejected

Figure 9.6 Flowchart for an annealing based placement approach. There are a variety of
different cooling schedules and move strategies. To adjust the weights of interconnect nets,
there are periodic calls to an algorithm that finds a set of long paths.

9.3.2.2 Simulated Annealing

A second common placement approach is simulated annealing, based
on methods first described in [32]. In terms of wire length minimization,
annealing can produce excellent results, but at the expense of high run times.
The current academic tool Dragon [57], for example, produces leading results
in terms of length, but has comparatively high run times. For industrial
placement tools, annealing has fallen out of favor.

As is done with analytic placement, power and delay optimization is
integrated into annealing tools through net weighting. An early work to
perform timing-driven placement was the academic tool TimberWolf [52];
we show pseudocode in Figure 9.6.

In [52], a method by Dreyfus [18] was used to find a fixed number of the
longest paths in the circuit. Slack-based methods were used to weight the
nets. Throughout the annealing process, the set of long paths was repeatedly
computed, and weights were reassigned.

Placement for Power Optimization 231

Recently, performance driven placement within an annealing framework
was revisited, with a surprising result [55]. Rather than attempting to optimize
the circuit through weighting of nets, the objective was simply to minimize
routed wire length. Delay and power considerations were then addressed
through extensive gate sizing, and custom cell generation. Compared to com-
mercial tools, the approach produced far better results.

The results in [55] pose an interesting question: namely, is timing driven
placement (with net weighting) an essential part of timing driven design?
The placement method used, while based on [52], simply optimized wire
length – net weighting was entirely ignored. That superior results (in terms
of both circuit delay and power consumption) were obtained by ignoring net
weights is somewhat counter-intuitive. One way to interpret this is that a
more complex (and perhaps accurate) formulation is also more difficult to
optimize; the solution quality obtained for the simplified problem is thus
better than the solution for the complex version.

A second interesting outcome of the work is a reconsideration of the
“fixed-die” routing model – the authors used a “variable die” formulation,
which eliminated routing detours while also allowing very dense placement.
In most current design methodologies, the spacing between rows of logic
elements is fixed; the total area is also fixed. The variable-die methodology
allows increased space between rows of logic elements, which provides
needed routing resources and allows detours to be eliminated.

9.3.2.3 Partitioning Based Placement

A third popular placement approach is recursive partitioning (and most
frequently, recursive bisection). The advent of strong multi-level partitioning
algorithms [13][30] has made the basic methods outlined by Breuer [9] quite
effective. With the terminal propagation techniques of Dunlop and Kernighan
[20], modern bisection based placement tools can produce leading results on
both standard cell [4] and mixed size [31] placements. We show a flowchart
for a typical recursive bisection approach in Figure 9.7.

However, in terms of performance optimization for power and delay,
partitioning methods are at a bit of a disadvantage when compared to analytic
or annealing methods. Partitioning methods approach the placement problem
with a top-down perspective; subcircuits are treated as generic clusters of
logic until fairly late in the placement process. Because net lengths within
the cluster are not known, delay and power consumption estimates cannot be
made accurately until fairly late in the placement process – frequently too
late to make effective changes.

232 Chapter 9

Each region may be
partitioned repeatedly
until terminal
propagation stabilizes

Partition each region; cut
directions are determined by
the region aspect ratio

Weight nets to address
power or delay constraints

Legalize the placement

Define initial placement region

Partitioning continues
until each region contains
a single logic element

Each region may be
partitioned repeatedly
until terminal
propagation stabilizes

Partition each region; cut
directions are determined by
the region aspect ratio

Weight nets to address
power or delay constraints

Legalize the placement

Define initial placement region

Partitioning continues
until each region contains
a single logic element

Figure 9.7 Flowchart for a recursive bisection placement approach. The fractional cut
formulation greatly simplifies cut line insertion, and results in improved wire lengths. Most
current tools are based around multi-level partitioning algorithms.

One method to have some success was the approach of Ou and Pedram
[43]. In bisection based methods, nets that are cut early in the placement
process generally have higher length; if a net is cut repeatedly, it can be very
long. To avoid having long nets, and in particular, long nets along a critical
path, nets were weighted based on if they had been previously cut.

9.3.3 Legalization and Detailed Placement

We discuss placement legalization and detailed placement extensively,
as these are key components of an effective physical synthesis flow. Even if
the placement tool provides a legal solution initially (both bisection and
annealing frequently can do this), it may become illegal – gate sizing and
buffer insertion may change the size of logic elements, or introduce new
ones. Thus, legalization must be an essential part of any successful optimi-
zation strategy.

Traditionally, legalization has been most closely associated with analytic
methods. Tools such as Kraftwerk [21], APlace [28][29], and FastPlace
[53] are known to produce high quality results. Recently, partitioning based
placement tools have made a great deal of improvement [4], and are making
significant use of legalization techniques. Dynamic programming based
legalization has been used [4][26], and a simple “tetris” method patented by
Hill [23] has been adapted to handle mixed size designs [31].

Placement for Power Optimization 233

Logic elements are globally placed, but are
not row aligned and can have overlaps.

Legalization shifts each element slightly,
to remove overlap and align with rows.

Figure 9.8 An example of placement legalization. A common objective is to minimize
displacement.

9.3.3.1 Traditional Legalization Methods

An early approach to placement legalization was developed in the well
known tool Domino [14], which uses a network flow approach to move cells
from over congested areas to less congested regions. Flow-like techniques
have been used in a number of other works (for example [15][25]).

A recent version of the placement tool Capo has a single row dynamic
programming based legalization approach [26]. It uses “cell juggling” to
adjust the density of cells within a single row. The method uses a number of
cost functions based on minimum perturbation, minimizing half perimeter
wire length (HPWL), minimum maximum movements (legalizing a row by
minimizing the maximum movement from the original locations), and an
iterative modification of the minimum HPWL cost function. The approach
needs prior assignment of cells to rows. [4] also uses dynamic programming
legalization.

For mixed size placement, [8] used both flow based techniques and dyna-
mic programming. The method was effective for large industrial designs.

We illustrate the legalization problem in Figure 9.8. The general objective
is to move logic elements that are not row-aligned, or are overlapping, to
new positions that are both aligned and overlap free.

While there are many complex methods, a remarkably simple “tetris”
[23] based method has gained popularity. We show pseudocode for the method
in Figure 9.9. In this method, all cells are first sorted by their horizontal
positions. Each cell, in sorted order, is then placed into a legal position that
minimizes displacement from the abstract position. APlace [28] [29] uses a
variant of the tetris method. Feng Shui [31] extended it to handle mixed size
placements. In most cases, the method produces excellent results.

234 Chapter 9

TetrisLegalization() {
 Sort all elements by their left edge location
 Initialize all cell rows as empty
 Initialize the right edge of each row

 For each element in order {
 Find a legal position in a row to minimize displacement
 Move the element to that position
 Update the right edge of the row
 }
}

Figure 9.9 Pseudocode for the “tetris” legalization method by Hill. This is a simple greedy
algorithm that processes the logic elements from left to right. Each cell is placed in the row
that minimizes displacement. The method is extremely fast, and for uniformly distributed
abstract placements, surprisingly effective.

The tetris method does have some shortcomings, however. In placements
produced by Feng Shui, the cells are closely packed. When cells are distri-
buted more widely (as is done with fixed-die placement methods), not all
cells are properly legalized by this tool. The “tetris” method also has no way
to handle out of core cells effectively, and “stacking” of cells or macro blocks
can degrade results.

In [1], it was observed that the placements for Feng Shui were illegal on
some industrial benchmarks. When the abstract placement contains areas
with significant overlap, solution quality of placements legalized by the
Tetris method can degrade abruptly. Study of these placements showed that
the increase in wire length came from only a subset of the nets – those
connected to cells that had not only been displaced during legalization, but
in particular to those in “pyramid” shaped areas of the legal placement.
Figure 9.10 shows such an instance – in the center of the placement, there is
a dark triangular shaped area of cells, with empty space in the surrounding
regions.

Considering the operation of the greedy legalizer reveals how the pyra-
mids are constructed. If there is little overlap, and the cells can be placed
into legal positions with only small amounts of displacement, the process
works extremely well. When there is overlap, however, cells must be displaced
– and this displacement can occur horizontally or vertically. As an extreme
case, consider a sample placement in which all logic elements are stacked on
top of each other: each time an element is moved to a legal location, the
position with minimum distance is at the perimeter of a growing “Manhattan
circle.”

The tetris method is attractive due to its simplicity. However for it to be
effective, it is critical for the placement to not have areas with excessive
demand. Methods to eliminate dense regions are discussed below.

Placement for Power Optimization 235

Figure 9.10 The “pyramid” effect in that occurs in Tetris-based legalization where significant
overlap is present.

9.3.3.2 Detailed Placement

After legalization, many tools commonly apply single and multiple row
branch-and-bound optimizations to improve wire lengths.

By simply passing a “sliding window” over the placement region, and
enumerating the different permutations of cells within the window, wire length
improvements can normally be obtained. While the number of permutations
can be exponential, by keeping the window small – in most cases, from six
to eight cells – this can be done with acceptable run times.

A variety of other techniques are also available. For example, the “optimal
interleaving” work of Hur and Lillis [25] has many applications. With minor
modifications, it can be used to distribute open space within a row, and the
legalization method of [4] has a number of similarities.

236 Chapter 9

9.3.4 Integration with Logic Synthesis

Many significant changes in the traditional design flow have occurred at
the transition from detailed placement to routing. In earlier design flows, the
typical sequence was logical synthesis, placement, and then routing. With
the increased impact of interconnect on overall performance, logic synthesis
optimizations are now frequently performed after detailed placement – and
these optimizations must be incorporated into the layout.

Other chapters consider in depth the types of optimizations normally
performed. For simplicity, we will focus here on gate sizing – optimizations
such as buffer and repeater insertion, or the wholesale modification of portions
of the circuit net list, are handled in a similar manner.

After the completion of placement, and possibly routing, one might find
that the performance of a circuit could be improved by changing the size of a
subset of gates. If sizes increase, cell overlaps can occur; we discuss methods
to remove overlap here. After overlap removal is performed, the design can
be made legal again, and the optimization process continues.

9.3.4.1 White Space

Many industrial designs contain a great deal of excess white space. For
example, a recent set of benchmarks released by IBM [42] has a mixture of
fixed macro blocks and standard cells. The space available for placement of
the standard cells can be twice as large as the area of the cells themselves –
there is a great deal of open space available.

There can be many reasons for having large amounts of open space. For
the example benchmarks, this space allows for the “logical effort” [51]
approach to circuit optimization to be performed with relative ease. Logic
gates can be sized extensively – with abundant space, overlaps are relatively
small and can be removed easily. Furthermore, there is space available for
the insertion of buffers and repeaters.

9.3.4.2 Placement Transformation

If there is abundant open space, cell sizing and buffer insertion can be
done without disrupting the overall placement. Without extra space, the
integration of logic synthesis and placement can be much more difficult and
“straight-forward” legalization is likely to produce unacceptable results. As
described above, the greedy legalization method by Hill exhibits a “pyramid
effect”, and other legalization methods can also perform poorly. If the relative
positions of logic changes significantly during legalization, the wire lengths
anticipated during cell sizing don’t match the final placement, making the
cell sizing suboptimal in terms of delay, area, and power. In general, a design
with a great deal of overlap, or areas with high utilization, poses a significant
challenge to legalization methods.

Placement for Power Optimization 237

CutLineShifting() {
 STEP: ‘SET INITIAL PLACEMENT REGION’ –
 r1 = entire placement area
 R = {r1}
 Assign all moveable objects to r1

 While (R contains a region with more than one element) {
 For each ri in R {
 // Aspect ratio determines cut direction
 If (tall) {
 Split the region at 50% horizontally
 If the cell areas of the two subregions do not match {
 Compress the larger region and expand the smaller
 region vertically
 }
 } else if (wide) {
 Split the region at 50% vertically
 If the cell areas of the two subregions do not match {
 Compress the larger region and expand the smaller
 region horizontally
 }
 }
 Remove ri from the set of regions
 Add new smaller regions
 }
 }
 // Now legalize the placement
}

Figure 9.11 Pseudocode for the cut line shifting method; the overall approach can be thought
of as “fractional cut bisection” in reverse. If a portion of the placement is too dense, logic
elements can be moved in a relatively stable and uniform manner.

To simplify the legalization problem, recent research has focused on
“placement transformation” techniques [36]. The objective of placement
transformation is relatively simple: logic elements should be spread out by
some combination of horizontal or vertical shifting, while avoiding large
disruptions in interconnect lengths.

Note that this is not in any sense a “minimum displacement” objective: if
a group of logic elements shift in the same direction, their interconnecting
nets do not change in length. A solution that has a great deal of displacement
[7] may be perfectly acceptable. Stable net lengths will lead to small changes
in circuit delay, and easier timing and power convergence.

The “cut line shifting” method developed by Li [37] was shown to be
effective in removal of overlaps, without introducing large changes in net
lengths. The method is remarkably simple, and effective on placements
produced by a variety of tools. The algorithm is outlined in Figure 9.11 and
the operation of the approach is shown in Figure 9.12.

238 Chapter 9

Initial unbalanced distribution Cut line inserted horizontally Top region expands,
bottom region contracts

Lower region is still
unbalanced

Cut line inserted vertically Left region contracts,
right region expands

Initial unbalanced distribution Cut line inserted horizontally Top region expands,
bottom region contracts

Lower region is still
unbalanced

Cut line inserted vertically Left region contracts,
right region expands

Figure 9.12 An example of cut line shifting.

We should note that there can be many ways of overlap removal, and
methods developed as part of analytic placement can also be applied. For
example, consider the “cell shifting” method used in the placement tool
FastPlace [54]. The circuit is divided into horizontal or vertical strips; each
strip is then divided into a set of bins. By adjusting the height or width of a
band to adjust to cell area constraints, the degree of cell overlap can be
minimized.

The cell shifting technique, shown in Figure 9.13, is similar in spirit to
cut line shifting. As such, it can achieve a similar effect. Both techniques are
extremely fast, and can remove overlap while preserving the basic structure
of the placement.

9.3.4.3 Stability of New Placements

Placement transformation is a relatively new development in physical
design. To enable physical synthesis, “stability” of a placement algorithm is
essential.

Placement for Power Optimization 239

Horizontal stripe

Redistribution of
logic elements by
expansion or contraction
of each bin

Horizontal stripe

Redistribution of logic
elements by expansion or
contraction of each bin

Horizontal stripe

Redistribution of
logic elements by
expansion or contraction
of each bin

Horizontal stripe

Redistribution of logic
elements by expansion or
contraction of each bin

Figure 9.13 An example of cell shifting. Rather than the alternating cut lines of cut line
shifting, this approach divides the circuit into horizontal or vertical stripes, and then adjusts
the positions of elements within each stripe.

For analytic methods, slight changes to a circuit net list (through the
insertion of repeaters and buffers, or through the sizing of logic elements)
have a modest impact on the overall structure of the placement solution [7].
By contrast, recursive bisection placement and annealing methods can
produce wildly different placements from two different runs. The stability of
analytic solutions is yet another reason the approach is preferred for industrial
tools. In an industrial flow, a circuit net list may change repeatedly – if each
new placement solution is fundamentally different than the prior one, effort
spent on gate sizing and buffer insertion will have little effect.

With the introduction of placement transformation, one can obtain
stability within any global placement flow – provided that the degree of
change to the circuit is relatively modest. We anticipate that there will be a
great deal of progress in this area over the next few years, and that transfor-
mation will alter how many industrial groups perform logic synthesis. Rather
than running a placement engine “from scratch” with each circuit modify-
cation, an existing placement may be adjusted with transformation, to meet
the space requirements for gate sizing, buffer insertion, or small scale logic
changes.

9.4 MULTIPLE SUPPLY VOLTAGE PLACEMENT

The techniques discussed in the previous sections can be viewed to a
large degree as “enhancements” to traditional placement objectives. To mini-
mize power dissipation of high activity nets, or to shorten wire length of
critical path nets, a simple net-weighting approach can be applied. These
modifications do not make fundamental changes to the basic placement
algorithms.

Even the integration of gate sizing and buffer insertion has a relatively
modest impact. If abundant white space is available, the “new” circuit can be
legalized easily. Using recently developed techniques for placement trans-
formation, space can be made available without significantly disrupting the
overall structure.

240 Chapter 9

Level
converting
flip-flops

Level
converting
flip-flopsHigh Vdd

Low Vdd

This high voltage output
doesn’t need level
conversion, and would
go to a normal flip-flop.

Level
converting
flip-flops

Level
converting
flip-flopsHigh Vdd

Low Vdd

This high voltage output
doesn’t need level
conversion, and would
go to a normal flip-flop.

Figure 9.14 A simple diagram illustrating clustered voltage scaling. Clustered voltage scaling
integrates level conversion within the latches. Downstream gates can switch to lower voltage,
as long as this transition is monotonic because no additional voltage level converters are
allowed between combinational logic in a clustered voltage scaling approach. (Low Vdd gates
are shaded.)

In this section, we focus on a recent trend in low power circuitry: the
utilization of multiple supply voltages as a method to reduce total power
consumption. Methods to determine appropriate supply and threshold voltages
are covered in other chapters. Here we focus on methods to place and legalize
a multiple voltage circuit netlist. In general, it is acceptable for a high-Vdd
gate to drive a low-Vdd gate, but not vice-versa – a logic 1 low Vdd output is
unable to fully turn off the PMOS transistors in the high Vdd gate, resulting
in considerable leakage current.

Multiple supply voltages impact the placement problem in a fundamental
way. Firstly, construction of the power grid must be considered. If different
voltages are scattered throughout the design, two complete power grids must
be constructed, consuming valuable routing resources. The preferred method
is to have logic with the same supply voltage clumped together spatially to
some degree; the extent of aggregation required is an area of active research.
Secondly, in bulk CMOS there are spacing requirements between regions
with different supply voltages; the transistor wells must be separated1, and
this again is a motivation for aggregation. Finally, when transitioning from
low Vdd to high Vdd, voltage level converters must be inserted into the
design, and they typically require access to both power levels, adding yet
another placement constraint.

1 Otherwise the low Vdd gate PMOS n-wells must be connected to high Vdd.

This reverse biases the well (vs. low Vdd), raising the PMOS transistor
threshold voltage and reducing the pull-up drive strength, which is already
substantially less due to operating at low Vdd (see Figure 7.2).

Placement for Power Optimization 241

High Vdd cell row

Low Vdd cell row

Lo
w

 V
dd

po
w

er
 g

rid

H
ig

h
V

dd
po

w
er

 g
rid

High Vdd cell row

Low Vdd cell row

Lo
w

 V
dd

po
w

er
 g

rid

H
ig

h
V

dd
po

w
er

 g
rid

Figure 9.15 In some cases, supply voltages may be selected on a row-by-row basis. If a row is
extremely long, this may constrain the solution significantly. The row-based restriction
constrains placement, which may result in increased wire length and lower area utilization.

For voltage assignments at the macro block level, the problem is relatively
simple; the blocks are large enough that power routing is easy, and the loca-
tions of level converters can be planned. The situation with gate level assign-
ment is more interesting, and we focus on that here.

9.4.1 Clustered Voltage Scaling

The first approach to fine-grained voltage assignment was clustered
voltage scaling [53]. With clustered voltage scaling, level converters are
integrated with latches. The low voltage input is stepped up within the latch,
which has a high output voltage. Cells connected directly to the latch can
then be at either high or low Vdd. Different transition points between high-
Vdd and low-Vdd can be examined. At the circuit level, the voltage assign-
ment problem can be viewed as one of finding an appropriate logic “layer”
to transition from high Vdd to low, as illustrated in Figure 9.14. A number of
other methods have also been explored (e.g. [11][12] [17]).

Placement constraints have been addressed by restricting entire standard
cell rows to use only a single power level, as illustrated in Figure 9.15. The
supply voltages for a given row may be determined in an iterative manner;
first a rough placement is performed, and then supply voltages are assigned
to logic elements. Once the total area of logic elements at a given voltage
level is known, the number of rows needed to perform legalization can be
determined. This is normally done in a fairly simple manner, with an attempt
to make legalization possible without major disruptions in the placement.

242 Chapter 9

After rows have been assigned power levels, the placement may be imp-
roved by (for example) low temperature simulated annealing. During optimi-
zation, there may be high voltage logic elements assigned to low voltage
rows, and vice versa. This mismatch can be penalized; the annealing process
can then move these elements to rows with appropriate power levels, while
also optimizing wire length.

9.4.2 Voltage Islands

A concern with the “row-based” constraint is that it normally increases
interconnect lengths significantly. In many cases, circuit elements must be
moved a great distance to obtain a legal placement.

There is growing interest in “voltage island” [24][35][45] configurations
to address this problem. This approach is illustrated in Figure 9.16. Portions
of a row may have different power levels. This requires increased spacing
between some elements in a row, and can have an overhead in terms of the
power grid wiring. The benefit is in reduced constraints on the placement,
resulting in improved interconnect lengths and better area utilization.

The minimum size of a power island depends a great deal on the circuit
structure, performance requirements and so on. Block-level power assignments
can be viewed as one end of the spectrum. How finely grained power should
be is currently being investigated.

We conclude this section by noting that there is active research on methods
to legalize multiple Vdd designs. The added constraint can be integrated into
the method by Hill [23] by simply restricting the rows (or portions of a row)
that are considered. However, the restrictions may cause displacement,
which can result in increased wire lengths.

9.5 STATE OF THE ART

In this section, we present experimental results of current academic
placement tools on standard benchmarks. For some classes of problems,
results of leading tools are similar; for others, results differ widely.

The nature of public benchmarks illustrates many of the difficulties faced
by both academic and industry research groups. Most leading-edge circuit
designs contain valuable intellectual property. Thus, circuits that have been
released to the public are commonly several years old, and are also relatively
small. Furthermore, in almost all cases, the logical behavior of the circuit has
been stripped. Without knowing the functionality of each logic element, it is
impossible to perform timing or power analysis.

Placement for Power Optimization 243

Voltage Islands
Figure 9.16 A “voltage island” approach allows for fine-grained selection of voltages, with
variation within a row. There are minimum lengths of a row to maintain a uniform power
level, and there can be a spacing requirement between voltages.

For academic research groups, these limitations prevent almost all mean-
ingful comparisons except for half perimeter wire length. Many commercial
tools have restrictions against benchmarking as part of their license agree-
ments. One can assume that comparisons of tools are made within industry
groups, but these results are not made public.

9.5.1 Standard Cell Placement and Routability

For the traditional standard cell placement problem, there has been some-
thing of a convergence of results for half perimeter wire length. The “Version 2
IBM Place” benchmarks are widely used [57]. These are based on hyper-
graph partitioning benchmarks [5], which were mapped to a commercial
standard cell library. The partitioning benchmarks were in fact derived from
IBM circuits, with logical functionality stripped off to protect intellectual
property.

Note that only a subset of the eighteen hypergraph benchmarks has been
converted into placement benchmarks; the numbering of these benchmarks
corresponds to the hypergraphs that they are based on.

244 Chapter 9

Table 9.1 Routed wire length results on IBM Place benchmarks; these designs use a 0.18um
standard cell library. Half perimeter wire lengths are normally within a few percent of each
other, with mPL-R frequently having the highest wire length. There is wide variation in the
routed wire length, however; routing congestion results in wire length increases or outright
routing failure. Successful routing results are shown in bold. The average routed wire length
relative to mPL-R is shown at the bottom of the table.

Benchmark # Cells # Nets Dragon Feng Shui mPL-R
ibm01 12,282 11,507 0.93 0.85 0.77
ibm02 19,321 18,429 2.18 2.37 1.89
ibm07 45,135 44,394 4.55 4.49 4.29
ibm08 50,977 47,944 4.78 5.19 4.58
ibm09 51,746 50,393 3.81 3.56 3.50
ibm10 67,692 64,227 7.46 7.02 6.84
ibm11 68,525 67,016 5.68 5.41 5.16
ibm12 69,663 67,739 10.61 10.47 10.52
Comparison ×1.09 ×1.08 ×1.00

Routed Wire Length

These benchmarks contain between 12,000 and 70,000 movable objects.
This is extremely small in comparison to typical industrial designs, but repre-
sentative of small blocks within a larger design.

In terms of wire length, the analytic placement tool mPL-R, the annealer
Dragon, and the bisection based tool Feng Shui, all produce results within a
few percent of each other. However, the results differ significantly after
routing by a commercial tool: congestion results in routing detours, and the
different placement tools have significantly different results.

In Table 9.1, we show routed wire length results for each tool on each of
the benchmarks. If routing is successful, the result is listed in bold face;
despite having good half perimeter wire length results, both Dragon and
Feng Shui frequently fail during routing. mPL-R, which frequently has the
highest half perimeter wire length results, produces successful routings on
all benchmarks – it utilizes the cut line shifting method to insert space into
the design, thereby eliminating congestion.

9.5.2 Mixed Size Benchmarks

While there has been something of a convergence of results on standard
cell half perimeter wire length results, there is greater variation in mixed size
placement. Two main approaches are used. One is to first place the macro
blocks, and then place the standard cells around them. The second and more
effective approach is to place both large and small objects simultaneously.

Placement for Power Optimization 245

Table 9.2 Half perimeter wire length comparisons of Capo, mPG, and Feng Shui on IBM
Place benchmarks. By using a fractional cut representation and a relatively simple legalizer,
Feng Shui obtained large improvements over prior methods for mixed size designs. The
average half perimeter wire length relative to Feng Shui is shown at the bottom of the table.

Benchmark #Cells #Nets Capo mPG Feng Shui
ibm01 12,282 11,507 3.1 3.0 2.4
ibm02 19,321 18,429 6.8 7.4 5.3
ibm03 22,207 21,621 10.4 11.2 7.5
ibm04 26,633 26,163 10.1 10.5 8.0
ibm05 29,347 28,446 11.1 10.9 10.1
ibm06 321,825 33,354 9.9 9.2 6.8
ibm07 45,135 44,394 15.3 13.7 11.7
ibm08 50,977 47,944 17.9 16.4 13.6
ibm09 51,746 50,393 19.9 18.6 13.8
ibm10 67,692 64,227 45.5 43.6 37.5
ibm11 68,525 67,016 29.4 26.5 20.0
ibm12 69,663 67,739 55.8 44.3 35.6
ibm13 81,508 83,806 37.7 37.7 25.0
ibm14 146,009 143,202 50.3 43.5 38.5
ibm15 158,244 161,196 65.0 65.5 52.1
ibm16 182,137 181,188 90.0 72.4 61.3
ibm17 183,102 180,684 89.2 78.5 70.6
ibm18 210,323 200,565 51.8 50.7 45.1
Comparison ×1.29 ×1.26 ×1.00

Our bisection based placement tool Feng Shui, using the fractional cut
approach and a legalization method based on Hill’s work, obtained improve-
ments of 26% or more on average over prior works. Results of experiments
on the mixed size benchmarks (also derived from the partitioning bench-
marks), are shown in Table 9.2. Very recently, the analytic tool APlace [28]
was able to match the results of Feng Shui, using the same legalization and
detailed placement methods.

9.5.3 Abundant White Space

The most recently released set of benchmarks is the ISPD2005 place-
ment contest suite [43]. This set is unusual in many respects. Firstly, some
circuits contain more than two million movable objects, substantially larger
than other public benchmarks; these sizes are typical for current industry
designs. Secondly, there is abundant white space: 50% to 85% of the space
is open, making the effective handling of white space essential for good
results. Finally, the macro blocks are fixed within the main placement area,
creating obstacles that must be avoided.

246 Chapter 9

Table 9.3 Results of the ISPD2005 placement contest. Large amounts of white space and
fixed macro blocks caused poor behavior in some tools, resulting in a large gap in results. The
average half perimeter wire length relative to APlace is shown at the bottom of the table.

Benchmark # Cells # Nets APlace Dragon Feng Shui Kraftwerk
adaptec2 254,457 266,009 87 95 123 158
adaptec4 494,716 515,951 188 201 337 352
bigblue1 277,604 284,479 95 103 115 149
bigblue2 534,782 577,235 144 160 285 322
bigblue3 10,995,519 1,123,170 358 380 471 656
bigblue4 2,169,183 2,229,886 833 904 1040 1404
Comparison ×1.00 ×1.08 ×1.50 ×1.84

From the experimental results shown in Table 9.3, it should be clear that
some placement tools handle the constraints better than others. The best and
worst performing tools were the analytic placers APlace [28] and Kraftwerk
[21]. The tool Dragon [59], which is a hybrid of annealing and bisection,
produced results that were on average 8% higher than APlace. The bisection
based tool Feng Shui [31], which performs well on designs with movable
macro blocks, produced results with 50% higher wire lengths due to inade-
quate handling of open space.

9.6 SUMMARY

There has been an upswing in academic placement research, illustrating
the rising importance of the problem. Circuit designers are under intense
pressure to minimize both power and circuit delay. The quality of a placement
can make or break a design. The semiconductor industry is extremely com-
petitive, and there is very little margin for error.

Poor placement can be very costly. Excess area increases the cost per die
and reduces the yield. High power reduces battery life and can cause chip
failure, or power may exceed design specifications rendering the chip unusable
for its given task. Likewise worse delay may fail to meet design specifications,
or cause incorrect functioning of the chip – which can also be caused by
layout errors. Any of these problems increase time-to-market, and a product
that is late or misses the market window can be extremely costly. Conse-
quently, engineers need tight control of the design flow from architecture to
synthesis to placement and routing, including verification at all steps; and
the design flow must be predictable and converge.

While the problem has been studied for many years, the general consensus
of the research community is that placement results are significantly sub-
optimal with respect to wire length objectives [10][27]. In [10], a set of
synthetic benchmarks with known optimal configurations were created; place-
ments produced by leading academic and commercial tools were commonly
50% or more away from optimal, and in some cases more than a factor
of two away. While many disagree with the analysis, and argue that the

Placement for Power Optimization 247

benchmarks are not representative of “real” circuitry, the magnitude of sub-
optimality was startling.

Considerable improvement has been obtained. In a recent placement
competition [42], the wire lengths produced by the older analytic placement
tool Kraftwerk were almost a factor of two times the results from APlace.
One can conclude that there has in fact been a great deal of progress, and
that more improvement is to be expected.

Wire length can be considered a relatively simple objective to capture.
Power and delay objectives are much more complex, making it reasonable to
assume that the magnitude of suboptimality may be even greater.

9.7 REFERENCES
[1] Adya, S., et al., “Unification of partitioning, placement, and floorplanning,” in Proc. Int.

Conf. on Computer Aided Design, 2004, pp. 550–557.
[2] Adya, S., Markov, I., and Villarrubia, P., “On whitespace in mixed-size placement and

physical synthesis,” in Proc. Int. Conf. on Computer Aided Design, 2003, pp. 311–318.
[3] Adya, S., et al., “Benchmarking for large-scale placement and beyond,” IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 4, 2004, pp.
472–487.

[4] Agnihotri, A., et al., “Fractional cut: Improved recursive bisection placement,” in Proc.
Int. Conf. on Computer Aided Design, 2003, pp. 307–310.

[5] Alpert, C., et al., “The ISPD98 circuit benchmark suite,” in Proc. Int. Symp. on Physical
Design, 1998, pp. 80–85.

[6] Alpert, C., Nam, G., and Villarrubia, P., “Free space management for cut-based
placement,” in Proc. Int. Conf. on Computer Aided Design, 2002, pp. 746–751.

[7] Alpert, C., et al., “Placement stability metrics,” in Proc. Asia South Pacific Design
Automation Conf., 2005, pp. 1144–1147.

[8] Brenner, U., Pauli, A., and Vygen, J., “Almost optimum placement legalization by mini-
mum cost flow and dynamic programming,” in Proc. Int. Symp. on Physical Design, 2004,
pp. 2–9.

[9] Breuer, M., “A class of min-cut placement algorithms,” in Proc. Design Automation Conf.,
1977, pp. 284–290.

[10] Chang, C., Cong, J., and Xie, M., “Optimality and scalability study of existing placement
algorithms,” in Proc. Asia South Pacific Design Automation Conf., 2003, pp. 621–627.

[11] Chang, J., and Pedram, M., “Power minimization using multiple supply voltages,” in
Proc. Int. Symp. on Low Power Electronic Design, 1996, pp. 157–162.

[12] Chen, C., and Sarrafzadeh, M., “An effective algorithm for gate-level power-delay tradeoff
using two voltages,” in Proc. Int. Conf. on Computer Aided Design, 1999, pp. 222–227.

[13] Cong, J., and Smith, M., “A parallel bottom-up clustering algorithm with applications to
circuit partitioning in VLSI design,” in Proc. Design Automation Conf., 1993, pp. 755–780.

[14] Doll, K., Johannes, F., and Antreich, K., “Iterative placement improvement by network
flow methods,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 13, no. 10, 1994, pp. 1189–1200.

[15] Donath, W., et al., “Transformational placement and synthesis,” in Proc. Design,
Automation and Test in Europe Conf., 2000, pp. 194–201.

[16] Donath, W., “Placement and average interconnection lengths of computer logic,” IEEE
Trans. on Circuits and Systems, vol. CAS-26, no. 4, 1979, pp. 272–277.

[17] Donno, M., et al., “Enhanced clustered voltage scaling for low power,” in Proc. Great Lakes
Symposium on VLSI, 2002, pp. 18–23.

248 Chapter 9

[18] Dreyfus, S., “An appraisal of some shortest-path algorithms,” Operations Research, vol.

17, 1969, pp. 395–412.
[19] Dunlop, A., et al., “Chip layout optimization using critical path weighting,” in Proc.

Design Automation Conf., 1984, pp. 133–136.
[20] Dunlop, A., and Kernighan, B., “A procedure for placement of standard-cell VLSI

circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. CAD-4, no. 1, January 1985, pp. 92–98.

[21] Eisenmann, H., and Johannes, F., “Generic global placement and floorplanning,” in
Proc. Design Automation Conf., 1998, pp. 269–274.

[22] Frankle, J., “Iterative and adaptive slack allocation for performance-driven layout,” in
Proc. Design Automation Conf., 1992, pp. 536–542.

[23] Hill, D., “Method and system for high speed detailed placement of cells within an
integrated circuit design,” U.S. Patent No. 6,370,673, Apr. 9, 2002.

[24] Hu, J., et al., “Architecting voltage islands in core-based system-on-a-chip designs,” in
Proc. Int. Symp. on Low Power Electronic Design, 2004, pp. 180–185.

[25] Hur, S., and Lillis, J., “Mongrel: Hybrid techniques for standard cell placement,” in
Proc. Int. Conf. on Computer Aided Design, 2000, pp. 165–170.

[26] Kahng, A., Markov, I., and Reda, S., “On legalization of row-based placements,” in
Proc. Great Lakes Symposium on VLSI, 2004, pp. 214–219.

[27] Kahng, A., and Reda, S., “Evaluation of placer suboptimality through zero-change netlist
transformations,” in Proc. Int. Symp. on Physical Design, 2005, pp. 208–215.

[28] Kahng, A., and Wang, Q., “An analytic placer for mixed-size placement and timing-
driven placement,” in Proc. Int. Conf. on Computer Aided Design, 2004, pp. 565–572.

[29] Kahng, A., and Wang, Q., “Implementation and extensibility of an analytic placer,” in
Proc. Int. Symp. on Physical Design, 2004, pp. 18–25.

[30] Karypis, G., “Multilevel hypergraph partitioning: Application in VLSI domain,” in Proc.
Design Automation Conf., 1997, pp. 526–529.

[31] Khatkhate, A., et al., “Recursive bisection based mixed block placement,” in Proc. Int.
Symp. on Physical Design, 2004, pp. 84–89.

[32] Kirkpatrick, S., “Optimization by simulated annealing: Quantitative studies,” J. Statistical
Physics, vol. 34, 1984, pp. 975–986.

[33] Kleinhans, J., et al., “GORDIAN: VLSI placement by quadratic programming and
slicing optimization,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 10, no. 3, 1991, pp. 356–365.

[34] Koźmiński, K., “Benchmarks for layout synthesis – evolution and current status,” in
Proc. Design Automation Conf., 1991, pp. 265–270.

[35] Lackey, D., et al., “Managing power and performance for System-on-Chip designs using
voltage islands,” in Proc. Int. Conf. on Computer Aided Design, 2002, pp. 195–202.

[36] Li, C., Koh, C., and Madden, P., “Floorplan management: Incremental placement for
gate sizing and buffer insertion,” in Proc. Asia South Pacific Design Automation Conf.,
2005, pp. 349–354.

[37] Li, C., et al., “Routability-driven placement and white space allocation,” in Proc. Int.
Conf. on Computer Aided Design, 2004, pp. 394–401.

[38] Liu, Q., and Marek-Sadowska, M., “Pre-layout wire length and congestion estimation,”
in Proc. Design Automation Conf., 2004, pp. 582–588.

[39] Lou, J., Krishanmoorthy, S., and Sheng, H., “Estimating routing congestion using
probabilistic analysis,” in Proc. Int. Symp. on Physical Design, 2001, pp. 112–117.

[40] Madden, P., “Reporting of standard cell placement results,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, no. 2, February 2002, pp. 240–247.

[41] Magen, N., et al., “Interconnect-power dissipation in a microprocessor,” in Proc. System
Level Interconnect Prediction Workshop, 2004, pp. 7–13.

[42] Nam, G., et al., “The ISPD2005 placement contest and benchmark suite,” in Proc. Int.
Symp. on Physical Design, 2005, pp. 216–220.

Placement for Power Optimization 249

[43] Ou, S., and Pedram, M., “Timing-driven placement based on partitioning with dynamic

cut-net control,” in Proc. Design Automation Conf., 2000, pp. 472–476.
[44] Pedram, M. “Power minimization in IC design: Principles and applications,” ACM

Trans. on Design Automation of Electronics Systems, vol. 1, no. 1, 1996, pp. 3–56.
[45] Puri, R., et al., “Pushing ASIC performance in a power envelope,” in Proc. Design

Automation Conf., 2003, pp. 788–793.
[46] Rohe, A., and Brenner, U., “An effective congestion driven placement framework,” in

Proc. Int. Symp. on Physical Design, 2002, pp. 1–6.
[47] Sahni, S., and Bhatt, A., “The complexity of design automation problems,” Proc. Design

Automation Conference, 1980, pp. 402—411.
[48] Saxena, P., et al., “Repeater scaling and its impact on CAD,” IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, vol. 23, no. 4, 2004, pp. 451–463.
[49] Scheffer, L., and Nequist, E., “Why interconnect prediction doesn’t work,” in Proc.

System Level Interconnect Prediction Workshop, 2000, pp. 139–144.
[50] Stroobandt, D., “A priori system-level interconnect prediction: Rent’s rule and wire

length distribution models,” in Proc. System Level Interconnect Prediction Workshop,
2001, pp. 3–21.

[51] Sutherland, I., Sproull, R., and Harris, D., Logical Effort: Designing Fast CMOS Circuits.
Morgan Kaufmann, 1999.

[52] Swartz, W., and Sechen, C., “Timing driven placement for large standard cell circuits,”
in Proc. Design Automation Conf., 1995, pp. 211–215.

[53] Usami, K., and Horowitz, M., “Clustered voltage scaling technique for low-power
design,” in Proc. Int. Symp. on Low Power Electronic Design, 1995, pp. 3–9.

[54] Viswanathan, N., and Chu, C., “Fastplace: Efficient analytical placement using cell shifting,
iterative local refinement and a hybrid net model,” in Proc. Int. Symp. on Physical Design,
2004, pp. 26–33.

[55] Vujkovic, M., et al., “Efficient timing closure without timing driven placement and
routing,” in Proc. Design Automation Conf., 2004, pp. 268–273.

[56] Vygen, J., “Algorithms for large-scale flat placement,” in Proc. Design Automation Conf.,
1997, pp. 746–751.

[57] Wang, M., Yang, X., and Sarrafzadeh, M., “Dragon2000: Standard-cell placement tool
for large industry circuits,” in Proc. Int. Conf. on Computer Aided Design, 2000, pp.
260–263.

[58] Westra, J., and Groeneveld, P., “Is probabilistic congestion estimation worthwhile?” in
Proc. System Level Interconnect Prediction Workshop, 2005, pp. 99–106.

[59] Yang, X., Choi, B., and Sarrafzadeh, M., “Routability driven white space allocation for
fixed-die standard cell placement,” in Proc. Int. Symp. on Physical Design, 2002, pp. 42–50.

Chapter 10 10

POWER GATING DESIGN AUTOMATION

Jerry Frenkil, Srini Venkatraman
Sequence Design, Inc.
Westford, MA 01886

10.1 INTRODUCTION

The demand for portable electronic devices is growing rapidly and, due
in large part to the development of wireless communications, is expected to
continue to grow. This demand has generated great interest in low power
design, which initially focused on controlling dynamic power consumption.
While this focus resulted in significant improvements in dynamic power
efficiency, two issues subsequently arose which rendered this initial focus
inadequate. The combination of these two issues has motivated the develop-
ment of leakage reduction techniques and related design automation.

The first issue pertains to the operational characteristics of wireless
devices – basically, their operation tends to be bursty. That is, relatively short
periods of activity are followed by relatively lengthy periods of inactivity,
and while the power consumption during the active period is dominated by
dynamic power, the power consumption during the inactive period (known
as standby or sleep mode) is dominated by leakage power.

The second issue pertains to leakage power itself. Leakage is increasing
exponentially with each new process generation due to the scaling of tran-
sistor threshold voltages [19].

This chapter will describe in detail the use of power gating for leakage
reduction along with cell-based design automation methods employed by
the CoolPower™ design tool, and is organized as follows. The next section
briefly surveys different leakage reduction techniques, providing the moti-
vation for power gating. The subsequent sections describe design issues,
CoolPower automation methods including analysis and optimization techni-
ques, and two different power gating application flows as well as results
from using those flows. This chapter then concludes with a view to the future
and likely new developments in power gating design.

252 Chapter 10

10.2 LEAKAGE CONTROL TECHNIQUES

This section briefly presents and compares several different leakage control
techniques to enable the reader to understand the motivations for the deve-
lopment and deployment of MTCMOS power gating.1

Leakage has several different components, however the largest comp-
onents are sub-threshold related [11]. The equation for sub-threshold leakage
current is

 () / /
0 e (1)V V nV V Vgs th T ds T

leakage sI I e− −= − (10.1)

where
 2

0 (/)s eff eff TI K W L V= (10.2)
 0th th bs dsV V V Vγ η= − − (10.3)

and Vgs is the transistor-gate to source voltage; Vds is the drain to source
voltage; Vth0 is the zero bias threshold voltage; γ is the linearized body effect
coefficient; Vbs is the source to body voltage; η is the DIBL (drain induced
barrier lowering) coefficient; n is the subthreshold swing coefficient; VT is
the thermal voltage; K is a process constant; Weff is the effective transistor
width; and Leff is the effective transistor channel length. [7][15]

Leakage control techniques focus on controlling one or more terms in
these equations. The most prevalent techniques can be categorized as reducing
Vgs, increasing Vth0, lowering Vbs, and reducing Vds. Several different methods
for controlling these terms are described below along with how they relate to
equations (10.1) to (10.3).

10.2.1 Reverse Body Bias (RBB)

Since leakage currents are a function of the device thresholds, one
method for controlling leakage is to control Vth through the use of substrate,
or body, bias. In this case, the substrate or the appropriate well is biased so
as to raise the transistor thresholds thus reducing leakage. Since raising Vth
also affects performance, the bias can be applied adaptively such that during
active mode the reverse bias is small while in standby mode the reverse bias
is more negative. Thus, reverse body bias reduces leakage by increasing Vth
due to decreasing the γVbs term in Equation (10.3).

1 Multi-Threshold CMOS (MTCMOS) is commonly used as a synonym for

power gating, since the most prevalent power gating implementations
utilize multiple transistor thresholds. However, it has also been used to
refer to the use of non-power gated CMOS circuits designed utilizing
multiple transistor thresholds. In this chapter, MTCMOS will be used
synonymously with power-gating, while multi-Vth denotes the use of multi-
ple transistor thresholds in otherwise conventional circuit design.

Power Gating Design Automation 253

Use of body bias requires a substrate bias-generator to generate the bias
voltage. This generator will consume some dynamic power, partially offsetting
any gain from reduced leakage.

However, a more significant issue with the use of substrate biasing for
leakage reduction is that it is generally less effective in advanced techno-
logies [10]. The body effect factor γ decreases with advanced technologies
[2], reducing the extent of the leakage control. Consequently, reductions of
4× at 90nm and only 2× at 65nm have been reported [21].

10.2.2 Dynamic Voltage Scaling (DVS)

One technique for reducing dynamic power, dynamic voltage scaling,
can also be used for reducing leakage power. DVS works by reducing the
power supply voltage Vdd when the work load does not require maximal
performance.

DVS can also be applied to inactive circuits for leakage reduction. In
Equation (10.1), the reduction in Vdd is reflected in a smaller value for Vds
which has an exponential effect on leakage. Power savings of 8× to 16×
have been reported when scaling the voltage to the 300mV range, the lowest
voltage at which state can be maintained [3].

However, DVS requires additional circuitry to monitor and predict the
workload as well as a dynamic voltage regulator to dynamically adjust the
supply voltage. Also, the timing analysis of DVS circuitry is complicated
since proper operation must be validated over a number of additional voltage
points. Nevertheless, DVS has been combined with RBB for even greater
leakage reduction than either technique can achieve alone [16].

10.2.3 Multi-Vth Cell Swapping

The most prevalent technique used to date for leakage reduction is multi-
Vth cell swapping, most commonly deployed with two different transistor
thresholds (and hence known as dual-Vth cell optimization) [20][26]. In this
technique, low-Vth cells are used on critical paths while high-Vth cells are
used on non-critical paths. The low-Vth cells are fast but leaky, while the
high-Vth cells are just the opposite. Thus, the multi-Vth technique can reduce
leakage power without any performance penalty.

A significant advantage of multi-Vth cell swapping is that it is generally
footprint neutral. That is, no floorplanning or layout changes are required for
implementation. High-Vth cells replace their low-Vth equivalents in exact
positions in the layout, thus effectively changing only the implant mask.

Leakage can typically be reduced by about 50% compared to a circuit
implemented with all low-Vth cells although the reduction is heavily depen-
dent upon the amount of available slack in the original circuit [25]. However,
the remaining low-Vth cells still consume significant amounts of leakage power.

254 Chapter 10

Thus, this technique is usually insufficient for achieving large reductions in
standby mode leakage power. For this reason, designers have turned to more
aggressive leakage control design techniques such as MTCMOS power gating
[23][24].

10.2.4 MTCMOS Power Gating

MTCMOS power gating is a design technique in which a power gating
transistor is inserted in the stack between the logic transistors and either
power or ground, thus creating a virtual supply rail or a virtual ground rail,
respectively. (In order to simplify the descriptions of power gated circuitry,
the following text will refer to virtual grounds only, except in those cases
where header switches or virtual supplies present issues that are different
from those related to footers and virtual grounds.)

Such configurations are shown in Figure 10.1. The logic block contains
all low-Vth transistors for fastest switching speeds while the switch tran-
sistors, header or footer, are built using high-Vth transistors to minimize the
leakage. Power gating can be implemented without using multiple thresholds,
but it will not reduce leakage as much as if implemented with multiple
thresholds.

 MTCMOS refers to the mixture of the transistor thresholds in power
gating circuits. The most common implementations of power gating use a
footer switch alone to limit the switch area overhead. High-Vth NMOS footer
switches are about half the size of equivalent-resistance high-Vth PMOS
header switches due to differences in majority carrier mobilities.

Power gating reduces leakage by reducing the gate-to-source voltage
which in turn drives the logic transistors deeper into the cutoff region. This
occurs because of the stack effect. The source terminal of the bottom-most
transistor in the logic stack is no longer at ground, but rather at a voltage
somewhat above ground due to the presence of the power gating transistor.
Leakage is reduced due to the reduction of the Vgs term in Equation (10.1).

Header
switch

Virtual
supply

Logic
block Footer

switch

Virtual
ground

Logic
block

Figure 10.1 MTCMOS power-gating circuit topology

Power Gating Design Automation 255

Power gating itself has several variants, such as Super Cut-off CMOS [9]
and Zigzag Super Cut-off CMOS [17]. In Super Cut-off CMOS, instead of
using high-Vth NMOS or PMOS switch transistors, low-Vth switch transistors
are used. In standby mode, the switches are driven deeper into cut-off by
applying a gate voltage below Vss for NMOS switches and above Vdd for
PMOS switches, thus decreasing Vgs beyond what can be achieved with
conventional gate voltages. In Zigzag Super Cut-off CMOS, both header and
footer switches are used in an alternating fashion along logic paths in combi-
nation with Super Cutoff CMOS to reduce the amount of time required for
the virtual rails to settle after turning on the switch transistors.

Power gating can be combined with other leakage reduction techniques,
such as those described above, to achieve even greater leakage reduction.
When implemented alone, power gating can achieve 10 to 100× reduction in
leakage. When implemented in combination with other techniques, such as
reverse body bias on the switch, the reduction can be even larger. [13]

While power gating can be implemented in either a custom design style
or an ASIC cell based design style, the following section will describe issues
and automation techniques for the ASIC cell based design style.

10.3 POWER GATING DESIGN ISSUES

The design of power gated circuits presents the designer with a number
of issues that are not usually encountered in designing non-power gated
circuits. This section briefly describes some of these issues to give some
perspective on the design automation presented in subsequent sections.

10.3.1 Power Gating Topologies

Power gating can be implemented using several different topologies,
such as global power gating, local power gating, and switch-in-cell power
gating. Each of these topologies is primarily distinguished by the connections
between the switches and the logic and, as can be expected, each has its own
advantages and disadvantages.

10.3.1.1 Global power gating

Global power gating refers to a logical topology in which multiple swit-
ches are connected to one or more blocks of logic, and a single virtual ground
is shared in common among all the power gated logic blocks. In this arran-
gement, illustrated in Figure 10.2, there is a single virtual ground for each
sleep domain (a group of logic controlled by a particular sleep enable signal).
This topology is effective for large blocks in which all the logic is power
gated, but is less effective, for physical design reasons, when the logic blocks
are small. It does not apply when there are many different power gated blocks,
each controlled by a different sleep enable.

256 Chapter 10

sleepNsleepN

Block CBlock A Block B

Figure 10.2 Global power gating topology

sleepNsleepN

Block CBlock A Block B

Figure 10.3 Local power gating topology

10.3.1.2 Local power gating

Local power gating refers to a logical topology in which each switch
singularly gates its own virtual ground connected to its own group of logic.
The key issue here is that a single switch cell is used for each logic group
(with the single switch being shared among all cells in that group of logic),
as opposed to using multiple, arrayed switch cells. This arrangement results
in multiple segmented virtual grounds for a single sleep domain. Figure 10.3
illustrates the connections for local power gating. Compared to global power
gating (as illustrated in Figure 10.2), local power gating provides more
flexibility in floorplanning since the various power gated blocks within a
given sleep domain need not be physically contiguous.

10.3.1.3 Switch-in-cell

Switch-in-cell may be thought of as an extreme form of local power gating
implementation. In this topology, each logic cell contains its own switch
transistor, as illustrated with an inverter in Figure 10.4.

Power Gating Design Automation 257

in out

sleepN

Figure 10.4 Switch-in-cell: a switch is included in each individual logic cell

The switch-in-cell approach has several notable advantages and disadvan-
tages. Its primary advantages are that delay calculation is very straightforward
(since each cell is timing characterized with its own, dedicated internal
switch) and that it can be placed, generally without restriction, like any other
standard cell. However, its disadvantages are significant, chief among them
being that the area overhead is substantial (due to an additional transistor in
the pulldown stack, and the need to size up the previously existing logic
transistors to compensate for the additional device in the stack). And, given
that each individual instance has its own switch, the aggregate input capa-
citance presented to the sleep signal is much larger than needed for shared
switches requiring a larger than necessary amount of dynamic energy to
open and close the switches. Additionally, since the size of the switch tran-
sistor is set during the design of each of the individual cells, the performance
impact of the switch is also set at the time of the cell design, thus potentially
limiting the applicability of the cells to either low-performance (small switches
with a large performance impact) or high-performance (large switches with a
small performance impact), but not both, unless of course two (or more)
complete sets of logic cells are designed with each set utilizing different
switch transistor sizes.

10.3.2 Switch Sizing Tradeoffs

All power gating topologies face the challenging tradeoff of switch
sizing. A common switch sizing goal is to minimize the switch area, but this
results in a larger virtual ground voltage which degrades switching perfor-
mance but produces a larger reduction in leakage currents.

Sizing must respect one fundamental constraint: switches must be large
enough to hold their virtual grounds sufficiently close to ground potential.
That is, switches must limit “ground bounce” – the smaller the switch resis-
tance, the smaller the voltage on the virtual ground.

However, achieving smaller switch resistance requires a physically larger
switch. Unfortunately, the larger the switch the smaller the leakage reduction
[4][13] since a larger switch, with smaller on resistance, reduces the body

258 Chapter 10

effect on the logic transistors – the larger switch produces a smaller virtual
ground voltage (logic transistor source voltage) which in turn results in a less
negative γVbs term in Equation (10.3).

On the other hand, the virtual ground voltage must be minimized to
minimize its impact on performance. The larger the virtual ground voltage,
the smaller the gate drive on the logic transistors and the slower the logic
transistors will switch. Also, the logic transistors will not pull down as far,
thereby slowing transitions on gates that they drive.

Thus, we have a classic tradeoff: minimizing the performance impact of
the virtual ground results in more area overhead and lesser leakage reduction
due to larger switches. One method of reducing the area consumed by the
switches is to share them, since using the switch-in-cell approach consumes
relatively significant amounts of area. However, the use of shared switches
complicates delay calculation and timing analysis. In any case, it is clear that
switch sizing has a major impact on critical circuit characteristics and thus
deserves careful attention.

10.3.3 Delay Calculation and Timing Analysis

Given that the size of the switches affects the voltage drop on the virtual
grounds, and that the voltage drop impacts timing performance, we must
consider how power gating affects delay calculation and timing analysis.

There are two general methods for the timing analysis of power gated
circuits. The first method uses conventional delay calculation and relies
upon tightly controlling the virtual ground voltage drop. The second method
uses back-annotated virtual ground voltages in the delay calculator to compute
a set of instance-specific voltage-sensitive delay values.

The first method is identical to the existing non-power-gated delay
calculation method. All variations in supply voltages are assumed to lie
within the voltage range for the cell library timing characterization. During
timing characterization of the library logic cells, a non-zero voltage is asserted
on the ground line to approximate the effects of the cell being connected to a
non-ideal rail. If the voltage drop seen by the cell in-situ is less than the
value used during characterization, then the cell is considered to be operating
within the characterization limits, or guardbands. This common practice for
the timing analysis of non-power gated circuits also applies to power gated
circuits provided that the voltage drop on the virtual ground is constrained to
be within the cell-library characterization limits.

The second method, by contrast, places no a priori constraints on virtual
ground voltages. Instead, post-route voltage drop analysis determines the
virtual ground voltages. The delay calculator then computes the delays
through each instance based on the particular virtual ground voltages seen by
each instance. This flow requires a set of library timing models that accurately
model voltage effects upon delay.

Power Gating Design Automation 259

10.3.4 Power Gating Granularity

Granularity refers to the size of each logic block controlled by a single
switch or single sleep domain. This section describes the basic choices.

10.3.4.1 Coarse Grained and Fine Grained Power Gating

Consider two different chips, one that has a single sleep control that can
power down the entire chip and a second chip that has multiple sleep control
signals, each of which separately controls different logic functions such as
an execution unit, memory controller, instruction decoder, etc. The former
design is said to use coarse-grained power gating, since power is gated very
coarsely, in this case either all or nothing. The latter design is said to use
fine-grained power gating since power can be shut off to individual units
without shutting off the power to other units at that time.

The choice of granularity has both logical and physical implications. A
power domain refers to a group of logic with a logically unique sleep signal.
Each power domain must be physically arranged to share the virtual ground
common to that particular group (except for the boundary case of the switch-
in-cell topology in which there are no shared virtual grounds).

The motivation for fine-grained power gating is to reduce active mode
leakage power, that is, the leakage power consumed during normal operation.
While the coarse-grained example above will reduce leakage during standby,
it will not affect active leakage since with a single sleep domain the power
supply is either completely connected (active mode) or completely discon-
nected (standby mode). However, with fine-grained switching, portions of
the design may be switched off while the other portions continue to operate.
For example, in a VLIW processor with four execution units, if only three of
the execution units are active, the fourth may be put to sleep until such time
as it is scheduled to resume computation.

10.3.4.2 Full and Selective Power Gating

Chips, or modules, may be completely or partially power gated. With full
power gating, all logic instances are power gated. With selective power gating,
only a subset of the logic instances are power gated.

Selective power gating typically combines fine-grained power gating
with multi-Vth cell swapping. In this case, selective power gating refers
specifically to the power gating of individual instances along a critical path.
In this implementation style, all instances along the non-timing critical paths
use high-Vth cells, while those instances along the critical paths use low-Vth
cells to maintain performance but are power-gated to minimize leakage
while not operating.

260 Chapter 10

FF

Critical Path

high-Vth

(a) Multi-Vth implementation

FF

FF

FF

FF

FF

low-Vth

FF

Critical Path

(b) Power gated implementation

FF

FF

FF

FF

sleepN

FF

high-Vth

Figure 10.5 Selective power gating

Figure 10.5 illustrates an example of selective power gating. The top
schematic shows the results of a multi-Vth optimization in which only the
instances along the critical path utilize low-Vth cells while all other instances
are high-Vth cells. The bottom schematic shows the same circuit after power
gating the low-Vth cells.

Selective power gating minimizes the area overhead of the switches
while maintaining fast switching speeds. Since only the low-Vth fraction of
the logic instances are power gated, fewer switches are needed. However,
placement and clustering issues present physical implementation challenges.
Switch-in-cell libraries are often used in selective power gating applications
since they eliminate the problem of sharing virtual grounds, although they
still require routing of the sleep signals.

Power Gating Design Automation 261

10.3.5 State Retention

When state registers are power gated, they will lose their state unless
particular measures are taken to prevent the loss of memory. Multiple methods
exist for retaining state, including saving state to off-chip memory by scanning
out the internal state prior to power-down and subsequently scanning it back
in upon power-up, utilizing specially designed state retention registers that
remember their state even when power gated [3], and not power gating state
registers (only power gating combinational logic).

Each of these methods has its own advantages and disadvantages. Scanning
state in and out is relatively straightforward but takes time and consumes
dynamic power in the process. Use of state retention registers simplifies the
logic design, but requires complex circuit designs for the state retention
registers and often impacts both area and performance. Power gating only
the combinational logic resolves the issue of state retention, but requires
circuitry to prevent the interface nodes from floating.

10.3.6 Power Domain Interfacing

When only a portion of a chip is power gated, the power-gated logic will
drive some signals that are received by non-power gated logic. These signals
are called interface or fence nodes and require special attention, as they will
float when the driving logic is disconnected from the power rails. [14][27]

When an interface node floats to an intermediate voltage, approximately
Vdd/2, both the p-channel and the n-channel transistors in the receiving logic
will conduct, drawing large amounts of current from the power supply. Not
only does this negate the power savings from power gating, it can also cause
reliability problems or outright failure due to electromigration, as the inter-
connect is not sized to support these types of currents.

To prevent floating, the interface nodes can simply use float-prevention
mechanisms, such as an isolation cell, as illustrated in Figure 10.6. Note that
in the case of fine-grained power gating, outputs of power gated logic that
drive other power gated logic must also be prevented from floating if the
receiving logic is power gated by a logically different sleep signal.

sleepN sleepN

Interface
bufferPower

gated
logic

Power
gated
logic

Non-power
gated
logic

Non-power
gated
logic

Figure 10.6 Power domain interfacing

262 Chapter 10

10.4 COOLPOWER DESIGN AUTOMATION

To date, design automation for power gating has been narrowly focused
and has not adequately addressed the issues of area overhead, performance
impact, or overall cell-based design flows. However, it is essential that
design automation address these issues holistically, since the use of switches
complicates so many design facets. These facets include mixing power-gated
and non-power-gated logic, current flow analysis, switch and virtual ground
optimization, and worst case design, among others. For example, one approach
simplified the design automation requirements by employing the switch-in-
cell structure described above [23]; since each cell contains its own dedicated
virtual ground, no virtual ground sharing or routing is required. However,
the area overhead of this approach is substantial, as much as 80% additional
area per power-gated instance [4][23], driving up the per-die cost. Other
approaches used shared virtual grounds [1][8], reducing the area overhead
compared to the switch-in-cell approach but complicating the design auto-
mation.

In all cases, the issue of switch sizing is central to the overall solution.
Our overall approach embodied in CoolPower is similar to that of [1] and [8]
in that we use shared virtual grounds and dynamic currents to size switches.
However we overcome significant limitations of those approaches both in
current calculation as well as in optimization. The switch network employs
local power gating with a shared-switch architecture. Our current calculation
solution computes current waveforms based upon an all-events static timing
analysis. During optimization, we size the switches based not only on sink
currents but also on virtual ground parasitic resistance. These optimizations
are performed subject to user-specified constraints for peak transient voltage
on the virtual ground, maximal distance between switches, and electromigra-
tion limits.

CoolPower includes internal delay calculation, timing and signal integrity
analysis and optimization, and incremental placement capabilities, but relies
upon external routers to route signals, power and ground, as well as the virtual
grounds. Operating at the cell level, CoolPower requires cell-level models
for non power gated cells, power gated cells, and switch cells (LEF for place-
ment, Liberty for timing and power analysis), and netlist and placement files
to describe the design (Verilog and DEF formats, respectively). CoolPower
relies on a conventional standard-cell placement architecture which, coupled
with its current calculation and switch optimization, enables completely
automatic design of electrically robust power-gated MTCMOS circuits. It
produces as output power-gated netlist and placement files (again, in Verilog
and DEF formats, respectively).

The following sections will describe CoolPower’s operation in more
detail.

Power Gating Design Automation 263

10.4.1 Design Transformation

CoolPower begins implementation of a power-gated circuit by loading
the design, including a list of modules to be power gated, and the names
of the sleep signals for those modules. CoolPower inserts a virtual ground
into the circuit and logically gates the specified logic module or group of
cells. First, CoolPower replaces all specified non-power gated instances
(without a virtual ground connection) with power gated instances (with a
virtual ground connection). Next, CoolPower inserts switches to connect the
power-gated instances, through the virtual ground connection, to the real
ground and the switch input is wired to the specified sleep control signal.
Additionally, CoolPower inserts interface cells on power-gated block outputs
that drive non-power gated logic to prevent any floating inputs. Interface
cells are also inserted on outputs from power-gated blocks that drive power-
gated logic that is controlled by different sleep signals, as there is no guar-
antee that the two power-gated blocks are put to sleep at the same time.

State retention is handled during transformation by one of two methods.
The first method gates the power to only the combinational logic and not the
registers; the registers thus maintain state since they would be continuously
powered. The second method uses specially designed state-retention registers
in the input netlist such that even if the entire design is power gated, state is
maintained in the retention registers.

Finally, after these transformations are completed, CoolPower performs
a timing analysis to ensure that no critical paths or timing parameters were
violated during the transformation process. If any violations are found, Cool-
Power’s timing closure optimizations are run to repair the violations.

These capabilities enable the pre-synthesis design phase to proceed with-
out modification, exactly as it would for non-power-gated circuits, since
CoolPower performs all transformations, insertions, and connections needed
for virtual grounds, switches, and interface cells.

10.4.2 Analysis

The analysis of current flow is an essential element in the design, optimi-
zation, and verification of virtual grounds and switch networks. Not only is it
necessary to analyze the current flow, but its accuracy affects the optimization
results in terms of both area and electrical integrity.

10.4.2.1 Types of Current Analysis

In early power gating implementations, an average current was computed
under the assumption that the ratio of peak current to average current is app-
roximately constant, thus enabling design decisions to be based on average
currents, [27] where the computation of the average currents could be based

264 Chapter 10

upon average power values determined from simulation traces. While easy
to implement, this approach is problematic in that peak currents can deviate
substantially from simple multiples of average current due to issues such as
clock skew, decoupling capacitance, and package inductance; each of these
issues affects the peak current and voltage spikes but does not alter the
average values. Thus the use of average currents to size virtual grounds and
switches is risky, as the peak value of the dynamic voltage drop may be
significantly underestimated.

More recent work has suggested the use of dynamic, or time varying,
currents for analyzing and optimizing virtual ground networks. [1] proposed
the use of probabilistic analysis to produce expected dynamic discharge
currents, which are calculated to be the product of the peak discharge current
of the cell and the probability of its occurrence. However, this approach also
has a very serious issue in that it is not a worst case calculation, and thus
presents similar risks to the use of average currents since it cannot deter-
ministically account for worst case switching scenarios wherein multiple
cells switch simultaneously.

10.4.2.2 Static timing analysis based current analysis

CoolPower addresses all of these problems by producing a worst case
dynamic current waveform. A vectorless static timing analysis (STA) com-
putes the entire set of potential switching events [6] which is subsequently
used to compute the dynamic currents. This set of switching events contains
all of the potential events, both rising and falling, scheduled in time. This set
is then filtered to remove redundant and don’t care events, such as those that
cannot occur due to modal operation. This filtered set of switching events is
used to compute a set of current events, from which a composite current
waveform is created for each instance. The composite current waveform
represents the maximum current consumed, at each point in time, by that
particular instance. It includes current consumed by rising and falling output
transitions, internal crowbar currents, as well as currents consumed by input
only events. Thus, the composite current waveform may have numerous
peaks, with each peak occurring at the time at which that cell is scheduled to
switch. In this way, neither switching events nor current peaks are neglected
as is the case for average current methods or probabilistic dynamic current
methods.

It should be noted that min-max timing analyses, which produce a range
of switching times, are much too conservative. It is often the case that the
range between minimum and maximum is quite lengthy such as for a two-
input NAND that has one very early arriving input and one very late arriving
input. In our approach we use exact switching times to compute current
events, thus avoiding the need to smear the current event from the earliest
switching time to the latest switching time as in [1]. Variation is considered

Power Gating Design Automation 265

by widening the calculated exact switching time to a small range for each
event, as opposed to the overly generalized min-max approach.

An example of a composite current waveform for one cell is shown in
Figure 10.7. The multiple peaks in the current waveform correspond to diffe-
rent current events that could occur at different times due to different stimuli.
For example, events 1 and 3 are output rising events while events 2 and 4 are
output falling events. Thus the waveform represents the composite of all the
cell’s current consuming events.

10.4.3 Optimization

The goals of switch optimization are to minimize area while meeting
performance and electrical constraints in reasonable computation time.

10.4.3.1 Optimization Constraints

Switch transistor optimization has previously been treated primarily as
that of a sizing problem [1][8] with the proper sizing being determined only
by the voltage drop across the switch. The motivation for controlling the
voltage drop is to control the impact of the virtual ground on the delay of the
switching circuits connected to the virtual ground.

One solution, switch-in-cell [23], involves no switch optimization as the
sizing is handled during the design of each individual cell, so no sizing is
required during chip assembly. However, for shared switches, block- or chip-
level virtual ground currents must be computed in order to properly size the
switches. In [27], average currents are used for sizing, while [1][8] employ
dynamic currents; [8] sizes the switches based on mutually exclusive switching
and then merges the sizes into a single equivalent switch for a global power
gating structure, whereas [1] sizes the switches for clustered groups of logic
using local power gating.

Time t

C
ur

re
nt

 I(
t)

0

50

100

150

200

250

300

350

Event 2

Event 1

Event
3

Event 4

Figure 10.7 Composite current waveform

266 Chapter 10

While sizing is clearly a first order concern, it is not the only issue that
optimization should address in the design of robust power gated circuits. In
particular, capacitive coupling and electromigration effects can render unreli-
able an otherwise voltage compliant virtual ground design.

Since the primary goal of optimization is to minimize area, switch resis-
tances are maximized subject to a voltage constraint. This resistance, along
with the potentially lengthy route of the virtual ground net, makes the virtual
ground subject to substantial coupling capacitance. Thus potential aggressor
signals can couple to the virtual ground causing temporary, albeit substantial,
voltage bounces.

Electromigration becomes a concern because usually the area occupied
by the virtual ground route is minimized by making the route width as narrow
as possible. Since a route’s electromigration limit is proportional to width,
minimizing the width reduces the electromigration limit.

10.4.3.2 Current Scheduling

Our solution for switch optimization has two components, the first of
which is current scheduling – the waveshaping of virtual ground currents
through the assignment of power gated logic instances to particular switches
[5]. The goal of current scheduling is to assign logic instances to particular
switches such that the currents due to those instances do not cause a voltage
violation; that is, we schedule the currents for each switch subject to when
the currents occur and how large they are. This is similar to the approach in
[8] in that we do the assignments based on when the cells switch. However,
by contrast, our implementation utilizes detailed timing information as opposed
to unit-delays. Additionally, our approach is not limited to mutually exclusive
switching; non-mutually-exclusive switching is allowed subject to a user
specified constraint on overlapping current waveforms. This implementation
is similar to that of [1], however that approach’s use of simulation based
activities makes it susceptible to missing a worst case switching scenario. By
contrast, our use of STA based composite current waveforms in optimization
enables us to avoid that problem and produce switch networks suitable for
worst case design.

The assignments of logic instances to switch cells are made using a Bin
Packing algorithm in which each bin is filled according to the amount of
current consumed by each logic instance per time bin. The assignments are
also subject to distance constraints and electromigration constraints. If a
logic instance is beyond the specified distance limit for a particular switch, it
is not considered as a candidate to be connected to that particular switch. If
the logic instance is close enough to the switch, and its currents can be success-
fully bin packed but in so doing it would violate the specified electromigration
limit, then that particular connection is discarded and another connection is
evaluated.

Power Gating Design Automation 267

10.4.3.3 Switch Sizing

Once the logic instance to switch assignments have been made, the
switches are individually sized according to the specified voltage constraint.
The most appropriate switch size for each instance is determined by evalua-
ting the various switch sizes available in the library. CoolPower chooses the
physically smallest switch that still meets the voltage constraint given the
expected current flow established during the prior current scheduling optimi-
zation.

 In contrast to previous approaches, our sizing is subject to the voltage
drop across the virtual ground route in addition to the voltage drop across the
switch itself. This is particularly significant given the aforementioned moti-
vation to minimize the width of the virtual ground route. Thus the critical
evaluation metric during optimization is not the voltage drop across the
switch, but rather the voltage seen by each individual logic instance’s virtual
ground connection.

The routing of the virtual ground affects not only the voltage seen by the
power gated logic cells, but also the total area occupied by the switches – the
larger the IR drop along the virtual ground route, the larger the switch must
be in order to meet the voltage constraint at the connection to the logic
instance. Thus the precise placement of the switches relative to the switching
logic is critical as the sizing is dependent upon the placement. To enable
correct simultaneous switch sizing and placement, CoolPower can move
logic instances to create open space in the desired switch location. However,
to prevent timing closure problems due to logic instance movement, Cool-
Power performs an internal trial timing analysis for each potential move. If
the move under consideration would result in a timing or signal integrity
violation, the move is discarded, the logic instance is left in its original
location, and another instance movement is considered in order to free up
placement space. However, if the trial timing analysis indicates that the
contemplated instance movement would not adversely affect timing or signal
integrity characteristics then the placement change is committed to the inter-
nal design database along with the switch insertion. These cell movement
capabilities enable CoolPower to not only control the voltage drop on the
virtual ground, but also to minimize the area overhead of the switches as
the logic cell movement creates placement space for the switches in the
precisely desired locations.

The effects of virtual ground route length upon switch sizing is illus-
trated in Figure 10.8 and Figure 10.9 which plot data for a particular 130nm
module optimized by CoolPower.

268 Chapter 10

60 70 80 90

10
0 100

70

40
10

0

50

100

150

200

250

300

350

N
um

be
r

of
 S

w
itc

he
s

V vg
_m

ax
(m

V)

Lvg_max (um)
Figure 10.8 Number of inserted switch cells as a function of voltage Vvg_max and virtual
ground length Lvg_max constraints

Figure 10.8 shows the effects of the virtual ground route length and
voltage constraints upon the number of switch cells inserted. As can be seen,
the longer the route length, the fewer switches are needed – more logic cells
can share a single switch than when the route length is constrained to be
shorter. Similarly, when the dynamic voltage constraint is larger, fewer swit-
ches are needed because more logic cells can share a given switch without
violating the voltage constraint.

Figure 10.9 shows similar data, however here total switch cell area is
plotted as a function of the virtual ground route length and voltage constraints.
The overall shape of the surface is similar to Figure 10.8, but the switch cell
area is a weaker function of the route length, because when switches must be
placed closer together, less voltage drop builds up along the virtual ground
route. Thus each of the switches may be sized smaller even though more
overall switches may be required.

10.4.3.4 Optimization in the Design Flow

The optimizations described above are performed both prior to and after
routing. Prior to routing, estimated parasitics are used for both timing analysis
and power analysis, and the results of those two analyses are in turn used
by the current scheduling and sizing routines. The objective of the pre-route
optimizations is to not only size the switches, but also to place them effec-
tively, while the objective of the post-route optimizations is to adjust the
design to account for any deviation from the pre-route estimated perfor-
mance.

Power Gating Design Automation 269

60 80

10
0 100

70

40
10

0
2,000
4,000
6,000
8,000

10,000

12,000

14,000
16,000

Sw
itc

h
C

el
l A

re
a

(u
m

2)

V vg
_m

ax
(m

V)

Lvg_max (um)
Figure 10.9 Switch cell area vs. voltage Vvg_max and virtual ground length Lvg_max constraints

10.5 APPLICATION FLOWS

Power gating can generally be implemented in two different applications.
The first, Full Power Gating, refers to power gating all the logic elements in
a block or design. The second, Selective Power Gating, is used to power gate
only portions of a block. Implementation flows using CoolPower for both
types of power gating are described in this section. User inputs include the
logic to be power gated along with the associated sleep control signal names,
type of interface buffer to be used if any, and optimization constraints for
maximum dynamic voltage drop and current density. In each case, the flow
is completely automated and the switches are sized for worst case operation.

10.5.1 Full Power Gating

Full, or complete, power gating is just what the name implies – all logic
instances are connected to power (ground) through a header (footer) switch.
The implementation of full power gating suggests that state is not retained
unless a particular mechanism, such as the use of state retention registers, is
employed to save state.

The design flow to generate a fully power gated chip is shown in Figure
10.10. This flow is notable in that the up-front design of the logic generally
need not consider any implications of the physical level power gating.

The flow begins with the design of the register transfer level (RTL) code
in the conventional manner; that is, no special considerations need be given
to the fact that power gating circuitry will be inserted during a later step. One
possible exception here is the sleep control signal – if the synthesized RTL
code does not contain an explicit sleep control signal, then the RTL code
must be modified such that the resulting synthesized netlist contains one.

270 Chapter 10

Physical synthesis

Replace all non-MTCMOS
cells with MTCMOS cells

Insert switches

Optimize switch sizes
and placement

Routing and
extraction

Analyze Vgnd voltage drop and
resize switches (as needed)

Clock tree synthesis and
sleep control buffering

Write new DEF

Initial netlist
and placement

RTL

Revised netlist
and placement

Routed design and
extracted RCs

CoolPower

Run delay calculation
and timing analysis,

repair any timing failures

Figure 10.10 Full power gating design flow

As illustrated in Figure 10.10, CoolPower loads the initial netlist and
placement and, as a first step, replaces all non-power gated logic instances
with power gated versions. Next, unsized switches are inserted into the netlist
and floorplan followed by an optimization step, during which the switches
are clustered with associated logic and sized according to the algorithms
described above in the current scheduling and sizing sections. The sizing
optimization considers the availability of switch placement locations; if the
desired switch size cannot be placed in the desired location, logic cells are
moved in order to free up available space. At this point all the switch sizes
and locations are known. The next operation buffers the fanout tree for the
sleep signal, since the aggregate switch cell input capacitance can be signi-
ficant. Clock tree synthesis is also performed at this time, after which a new
DEF file is produced containing the modified placement including the inser-
ted switches and interface cells.

Power Gating Design Automation 271

The design is now routed, including signal, real supply, and virtual supply
routing. After routing and subsequent parasitic extraction, the design is
analyzed post-route to verify the electrical characteristics (voltage drop and
electromigration), similar to post-route timing verification. If any violations
are found, then post-route sizing operations can be employed to repair the
violations. An ECO route would be needed to route any changes introduced
by the post-route repair operations, however the number of changes intro-
duced at this step is minimal requiring few reroutes and no floor plan changes.

10.5.2 Selective Power Gating

In selective power gating only the selected instances are power gated and
the un-selected logic remains ungated. While conceptually any portion of a
design could be power gated while not gating the other portions, in practice
selective power gating specifically refers to gating only those logic elements
that are implemented with low-Vth logic cells. Thus, selective power gating
is an extended version of the multi-Vth cell swapping technique described
above [12][23] – logic on non-critical paths utilize high-Vth cells while the
low-Vth cells on the critical paths are replaced with power gated cells.

272 Chapter 10

Multi-Vth cell swapping – use
low-Vth cells on critical paths

Insert switches

Optimize switch sizes
and placement

Routing and
extraction

Analyze Vgnd voltage drop and
resize switches (as needed)

Clock tree synthesis and
sleep control buffering

Write new DEF

Initial netlist
and placement

Revised netlist
and placement

Routed design and
extracted RCs

CoolPower

Run delay calculation
and timing analysis,

repair any timing failures

Replace low-Vth non-MTCMOS
cells with MTCMOS cells

Insert interface buffers as needed

Physical synthesis

RTL

Figure 10.11 Selective power gating design flow

The Selective Power Gating flow is shown in Figure 10.11. This flow is
a modification of the full power gating flow shown in Figure 10.10. More
specifically, there are a couple of additional steps in the selective flow
during which the low-Vth logic instances are identified for power-gating.

10.6 RESULTS

CoolPower has been used to implement and optimize both full and selec-
tive power gating in several different designs. Some results of these efforts
are briefly described below.

Power Gating Design Automation 273

Table 10.1 Full power gating results

A D E
Process technology 90nm 130nm 90nm
Supply voltage 1.5V 1.5V 1.2V
Logic function 32-bit ALU 8-bit datapath multi-processor
Retain state in registers? yes yes no
of instances 1,852 118 182,225
of power-gated logic instances 1,388 80 181,809
of switch instances 104 3 15,872
of interface instances 206 10 0
Logic cell to switch cell ratio 13.3 26.7 11.5
Power-gated logic cell area (um2) 15,259 886 1,457,391
Switch cell area (um2) 2,565 114 136,545
Switch area overhead (%) 16.8% 12.9% 9.4%
Interface cell area (um2) 791 38 0
Interface cell area overhead (%) 5.2% 4.3% 0.0%
Original bounding-box area (um2) 977,725 3,483 22,156,698
New bounding-box area (um2) 977,725 3,483 22,156,698
Bounding-box area increase (%) 0.0% 0.0% 0.0%

Parameter Design

10.6.1 Full Power Gating

Full power gating was implemented and optimized by CoolPower using
footer switches in several different blocks of varying sizes at both 130nm
and 90nm. The results of these implementations are shown in Table 10.1.

 For designs A and D, all combinational logic was power gated; state
retention was implemented by not power gating any of the registers, which
necessitated the insertion of interface cells. However, for design E, all logic
elements, including registers, were power gated; state was retained in on-
chip memories which were left continuously powered. In all cases, the maxi-
mum virtual ground dynamic voltage target was 100mV.

The area overhead of the inserted power gating switches varied from 9%
to 17%, with interface cells adding another 4% to 5% where utilized. The
latter area could be reduced significantly by adding registers to the standard
cell library that include the interface structure within the register cell. Never-
theless, CoolPower in all cases was able to physically insert all of these
structures, using the cell movement facilities to precisely position logic cells
and switches without increasing the bounding box of the design, thus achie-
ving zero net area overhead.

274 Chapter 10

Table 10.2 Selective power gating results

A B C E
Process technology 90nm 90nm 90nm 90nm
Supply voltage 1.5V 1.5V 1.5V 1.2V
Logic function 32 bit ALU 32 bit DSP 32 bit DSP multi-processor
Retain state in registers? yes yes yes yes
of instances 1,808 148,879 226,259 182,225
of power-gated logic instances 359 14,418 55,479 19,639
of switch instances 55 1,005 2,057 4,060
of interface instances 206 9,213 29,140 12,259
Logic cell to switch cell ratio 6.5 14.3 27.0 4.8
Power-gated logic cell area (um2) 6,136 248,173 218,846 143,563
Switch cell area (um2) 1,192 46,954 23,303 17,923
Switch area overhead (%) 19.4% 18.9% 10.6% 12.5%
Interface cell area (um2) 791 35,378 54,820 43,249
Interface cell area overhead (%) 12.9% 14.3% 25.0% 30.1%
Original bounding-box area (um2) 977,725 5,651,221 34,552,882 22,156,698
New bounding-box area (um2) 977,725 5,651,221 34,552,882 22,156,698
Bounding-box area increase (%) 0.0% 0.0% 0.0% 0.0%

Parameter Design

10.6.2 Selective Power Gating

Selective power gating was implemented and optimized by CoolPower
using footer switches in several different 90nm designs. The results for these
designs are tabulated in Table 10.2. Designs A and E are the same designs
used for full power gating in the preceding section. As above, the maximum
virtual ground dynamic voltage target was 100mV.

In each of these cases, selective power gating was implemented by first
performing a multi-Vth optimization and then replacing the low-Vth instances
with power gated instances. Interface cells were inserted on all nets driven
by power gated instances and received by non-power gated logic.

The area occupied by the switch cells varies from 11% to 19%; this
variance is a function primarily of two factors. First, the number of power
gated instances depends upon how many low-Vth instances were needed to
meet timing in the multi-Vth optimized design, which in turn is determined
by how much performance margin existed in the original design. Second, the
number of switch instances is determined in large part by the degree of
sharing achieved by the current scheduling algorithm; sharing is affected by
the logic function and connectivity, the geographic distribution of the power
gated logic instances, and the voltage constraint used for the optimization.
For example, compared to the full power gating results, the area overhead
for selective power gating is generally larger – with full power gating the
geographic clustering is usually more effective since all logic instances in

Power Gating Design Automation 275

the physical vicinity will be power gated leading to greater degree of sharing.
Nevertheless, in all cases, the final area overhead was again zero since the
logic cells were moved during the optimization process so as to insert the
switch cells in the precisely desired positions. This capability, in the end,
enabled CoolPower to avoid bloating the bounding box of the placed logic.

10.6.3 Performance

As described earlier, one of the issues with power gating is understanding
and managing the performance impact of the virtual grounds. In order to
determine the specific effects on a particular design, we studied the impact
of switch sizing upon performance using a logic block power gated by Cool-
Power.

In this case, we optimized the D block using the full power gating flow
described above for a particular virtual ground voltage constraint. The design
was then routed after which the critical path was extracted and simulated
using HSPICE, for both rising and falling transitions under worst case
conditions (slow-slow process, 1.4V, 100°C). This simulation included the
effects of the switches and virtual ground parasitics. The switches were then
resized for different voltage constraints and the resulting circuits were
reanalyzed. The data from this study is presented below in Table 10.3. In
this table, the Avg Vssv voltage and Max Vssv voltage columns reflect the
average and maximum measured Vssv values, respectively. The top table
reflects the performance of a rising edge propagating through the critical
path, the bottom table a falling edge. Each row corresponds to a different set
of switch sizings, however the sizings are identical for the two tables.

As can be expected, the delay along the path increases as the maximum
virtual ground voltage target is relaxed, although the magnitude of the delay
increase is relatively small. Here the maximum virtual ground voltage reflects
an instantaneous or dynamic effect, implying that not all of the cells along
the path “see” or experience that maximum voltage when they switch. This
effect can be confirmed by considering the relationship between the virtual
ground average and maximum dynamic voltages. In this case the maximum
dynamic voltage is six to eight times larger than the average voltage. This
indicates that instances switching at times other than that of the peak voltage
must experience a much lower dynamic voltage.

The falling edge path delay increases more than the rising edge path
delay, as expected. The falling edges in the path are directly affected by the
virtual ground since the increased virtual ground voltage reduces the effec-
tive gate-to-source driving voltage on the n-channel pull-downs. However,
the output rising edges of the power gated instances in the path are less
affected since the virtual ground is not directly connected to the p-channel
devices supplying the charging currents.

276 Chapter 10

Table 10.3 Power gating delay effects

Avg Vssv
voltage
(mV)

Max Vssv
voltage
(mV)

Critical
path
(ns)

Delay
change

(%)

Non-Power Gated n/a 0.0 0.994 n/a
2.89 22.9 1.003 0.92%
5.88 42.0 1.012 1.81%

11.81 74.8 1.020 2.67%
15.51 91.7 1.034 4.00%

Avg Vssv
voltage
(mV)

Max Vssv
voltage
(mV)

Critical
path
(ns)

Delay
change

(%)
Non-Power Gated n/a 0.0 1.073 n/a

4.55 22.7 1.087 1.33%
9.19 41.1 1.106 3.04%

18.86 74.5 1.137 5.97%
25.06 91.3 1.148 6.96%

Power Gated

Design

Rising Edge

Power Gated

Design

Falling Edge

Table 10.4 Leakage reduction results

Design

Max
Vssv

voltage
(mV)

Sleep
Mode

Leakage
(uA)

Leakage
reduction

factor
(X)

Non-Power Gated 0.0 2.170 n/a
22.9 0.035 62
42.0 0.021 102
74.8 0.011 195
91.7 0.009 235

Power Gated

Leakage currents were also measured for each of the sizing sets used in
Table 10.3. This data is presented in Table 10.4. It illustrates the tradeoff
between virtual ground voltages and leakage reduction – the larger the
allowed peak voltage on the virtual ground, the smaller the standby leakage
current. Figure 10.12 overlays the delay results from Table 10.3 with the
leakage results from Table 10.4 enabling us to see that small increases in
delay are accompanied by large reductions in standby leakage. In round
numbers, a two orders of magnitude reduction in leakage currents can be
achieved with only a 3% delay push out due to virtual ground effects. Thus
we can clearly see that the central design issue for the leakage reduction –
area overhead – performance impact tradeoff is the careful sizing of the
switch cells (the Vssv peak voltage acting as proxy for the switch sizing).

Power Gating Design Automation 277

Figure 10.12 Critical path delay and standby leakage as a function of virtual ground voltage

10.7 FUTURE WORK

While power gating as a leakage control technique has been known for
several years [18], few production designs have utilized it due to numerous
design issues. This situation will change with the growing need to control
the larger leakage currents in advanced technologies. Additionally, the deve-
lopment of power gating specific design tools such as CoolPower will reduce
the difficulty and time required to implement power gating, thus enhancing
its adoption.

Nevertheless, both the complexity of power gating implementations and
associated design automation will increase. For example, to reduce leakage
currents during a chip’s active mode, dynamic fine grained power gating will
be deployed wherein many relatively small blocks will be power gated
independently of each other, much in the same manner as clock gating is
implemented today. This will require more complex control logic as well as
more attention to the transient characteristics of turning the switches on and
off. In particular, the rush currents that flow when a switch is closed will
need to be carefully controlled so as to induce only a minimal voltage bounce
on the real and virtual rails. And, in a quest for even greater levels of leakage
reduction, power gating will be combined more often with other techniques,
such as RBB and DVS, although RBB is unlikely to be used with extreme
fine grained power gating due to the mismatch in recovery times (RBB
requires a much longer wake up time than power gating [22]).

1.07

1.09

1.11

1.13

1.15

0 20 40 60 80 100
Vssv Voltage (mV)

D
el

ay
 (p

s)

0.001

0.01

0.1

1

10

L
ea

ka
ge

 (u
A

)

Delay

Leakage

278 Chapter 10

As the logical and physical design issues become automated, more
attention will be paid to run-time and compile-time software control of the
switches. In the former case, the switches’ control logic will be designed for
operating system control much in the way that high level clock gating is
controlled today. Additionally, for programmable applications, compilers
will optimize not only for execution speed and code density, but also for the
length of time the power gated logic blocks can be kept continuously
inactive so as to maximize the amount of leakage reduction.

10.8 SUMMARY

Leakage has become one of the most critical challenges facing integrated
circuit designers and threatens to become even more so. Since part of the
challenge is that advanced processes exacerbate leakage instead of mitigating
it (as occurred in the past for other issues), the leakage challenge must be
addressed largely in the design domain.

MTCMOS power gating has emerged as an effective design technique
for controlling leakage, however it has not yet been widely deployed due to a
variety of unique design issues and a lack of effective design automation.

We have presented in this chapter an answer for those issues – CoolPower,
a fully automated solution for the efficient implementation of MTCMOS
power gated circuits. We have outlined a number of critical design issues,
such as switch sizing for worst case design and sleep domain interfacing,
and described how CoolPower addresses those issues automatically. Finally,
we presented detailed results of CoolPower’s automation demonstrating its
viability and effectiveness.

10.9 REFERENCES
[1] Anis, M., Areibi, S., and Elmasry, M., “Design and optimization of multithreshold

(MTCMOS) Circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 10, October 2002, pp. 1324-1342.

[2] von Arnim, K., et. al., “Efficiency of body biasing in 90-nm CMOS for low-power
digital circuits,” IEEE Journal of Solid State Circuits, vol. 40, no. 7, July 2005, pp. 1549-
1556.

[3] Calhoun, B., et. al., “Power gating and dynamic voltage scaling,” Leakage in Nanometer
CMOS Technologies, S. Narendra and A. Chandraksan, editors, Springer, 2005.

[4] Choi, K., Xu, Y., and Sakurai, T., “Optimal zigzag (OZ): an effective yet feasible power-
gating scheme achieving two orders of magnitude lower standby leakage,” proceedings
of the Symposium on VLSI Circuits, 2005, pp. 312-315.

[5] Frenkil, J., “Current scheduling system and method for optimizing multi-threshold
CMOS designs,” U. S. Patent No. 7117457, Oct. 3, 2006.

[6] Frenkil, J., “Vectorless instantaneous current estimation,” U. S. Patent No. 6807660, Oct.
19, 2004.

[7] Kao, J., Miyazaki, M., and Chandrakasan, A., “A 175-mV multiply-accumulate unit
using an adaptive supply voltage and body bias architecture,” IEEE Journal of Solid
State Circuits, vol. 37, no. 11, November 2002, pp. 1545-1554.

Power Gating Design Automation 279

[8] Kao, J., Narendra, S., Chandrakasan, A., “MTCMOS hierarchical sizing based on mutual

exclusive discharge patterns,” proceedings of the Design Automation Conference, 1998,
pp. 495-500.

[9] Kawaguchi, H., Nose, K., and Sakurai, T., “A super cut-off CMOS (SCCMOS) scheme
for 0.5-V supply voltage with picoampere stand-by current,” IEEE Journal of Solid State
Circuits, vol. 35, no. 10, October 2000, pp. 1498-1501.

[10] Keshavarzi, A., et. al., “Effectiveness of reverse body bias for leakage control in scaled
dual Vt CMOS ICs,” proceedings of the International Symposium on Low Power Electro-
nics and Design, 2001, pp. 207-212.

[11] Keshavarzi, A., Roy, K., and Hawkins, C., “Intrinsic leakage in low power deep
submicron CMOS ICs,” International Test Conference Proceedings, 1997, pp. 146-155.

[12] Kitahara, T., et. al., “Area-efficient Selective Multi-Threshold CMOS Design Methodology
for Standby Leakage Power Reduction,” proceedings of the Design Automation and Test
in Europe Conference, 2005, pp. 646-647.

[13] Kosonocky, S., et. al., “Enhanced multi-threshold (MTCMOS) circuits using variable
well bias,” proceedings of the International Symposium on Low Power Electronics and
Design, 2001, pp. 165-169.

[14] Lackey, D., et. al., “Managing Power and Performance for System-on-Chip Designs using
Voltage Islands,” proceedings of the International Conference on Computer-Aided Design,
2002, pp. 192-202.

[15] Liu, W., et. al., “BSIM3v3.2.2 MOSFET Model User’s Manual,” Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley, technical
report no. UCB/ERL M99/18.

[16] Martin, S., et al., “Combined dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads,” proceedings of the International
Conference on Computer-Aided Design, 2002, pp. 721-725.

[17] Min, K., Kawaguchi, H., and Sakurai, T., “Zigzag super cut-off CMOS (ZSCCMOS)
block activation with self-adaptive voltage level controller: an alternative to clock-gating
scheme in leakage dominant era,” proceedings of the International Solid State Circuits
Conference, 2003, pp. 400-401.

[18] Mutoh, S., et. al., “1-V power supply high-speed digital circuit technology with multi-
threshold-voltage CMOS,” IEEE Journal of Solid State Circuits, vol. 30, no. 8, August
1995, pp. 847-853.

[19] Semiconductor Industry Association, The International Technology Roadmap for Semi-
conductors, 2003.

[20] Sirichotiyakul, S., et al., “Stand-by power minimization through simultaneous threshold
voltage selection and circuit sizing,” proceedings of the Design Automation Conference,
1999, pp. 436-441.

[21] Taiwan Semiconductor Manufacturing Company, “Fine Grain MTCMOS Design Metho-
dology,” TSMC Reference Flow Release 6.0, 2005.

[22] Tschanz, J., et. al., “Dynamic sleep transistor and body bias for active leakage power
control of microprocessors,” IEEE Journal of Solid State Circuits, vol. 38, no. 11, November
2003, pp. 1838-1845.

[23] Usami, K., et. al., “Automated selective multi-threshold design for ultra-low standby
applications,” proceedings of the International Symposium on Low Power Electronics and
Design, 2002, pp. 202-206.

[24] Uvieghara, G., et al., “A highly-integrated 3G CDMA2000 1X cellular baseband chip
with GSM/AMPS/GPS/Bluetooth/multimedia capabilities and ZIF RF support,” procee-
dings of the International Solid State Circuits Conference, 2004, pp. 422-423.

[25] Wang, Q., and Vrudhula, S., “Algorithms for minimizing standby power in deep sub-
micrometer, dual-Vt CMOS circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 3, March 2002, pp 306-318.

280 Chapter 10

[26] Wei, L., et al., “Design and optimization of low voltage high performance dual threshold

CMOS circuits,” proceedings of the Design Automation Conference, 1998, pp. 489-494.
[27] Won, H., et al., “An MTMCOS design methodology and its application to mobile com-

puting,” proceedings of the International Symposium on Low Power Electronics and Design,
2003, pp. 110-115.

Chapter 11 11

VERIFICATION FOR MULTIPLE SUPPLY
VOLTAGE DESIGNS

Barry Pangrle, Srikanth Jadcherla
ArchPro Design Automation, Inc.
San Jose, CA 95124, USA

11.1 INTRODUCTION

Power management is an increasingly important aspect of system and
integrated circuit (IC) design. As designers are learning more about power
management techniques and incorporating them into their designs, they are
left wondering how to verify that these new energy saving strategies haven’t
created a flaw in the final implementation. Designs, which previously appeared
functionally correct based upon assumptions that voltage levels were held
constant across the logic portion of the design, may break when voltages in
the design vary or during voltage shutdown or wakeup. New tools are needed
to verify designs where voltages are no longer constant.

The current state of electronic design automation (EDA) tools is largely
built upon an underlying logical representation. The typical register transfer
level (RTL) to GDSII flow starts with an RTL description. This RTL is pro-
cessed by a logic synthesis tool that produces a logical netlist that is then
simulated by a logic simulator. This flow has worked across a number of
CMOS generations based on the previously mentioned assumption that the
voltages were held constant. As designers incorporate new voltage varying
power management techniques in their designs, today’s tools fall short of
meeting the challenge to adequately represent and handle the impact of
designed-in voltage variance.

The verification of a multi-voltage system on a chip (SOC) is analogous
to a multi-level video game. Level 1 is just getting through the flow and
making sure that all the islands and their interconnections are properly
handled. Diagnostics written at this level ensure that each chip function is
supplied with the appropriate voltage rails and that the correct protection
devices are in place. In a sense, this is a verification of spatial partitioning.

282 Chapter 11

Of course, this is not possible if you cannot express your voltage based
partitions (islands) at the electronic system level (ESL), register transfer
level (RTL), or gate-level netlist description.

The second level entails ensuring that the whole sequencing of power
management happens as desired. This is the verification of the temporal
variation in voltage rails. It must be verified that the SOC can circulate
through all the desired states and transitions. It must also be verified that the
SOC does not get stuck in deadlock, transition into any illegal states, or
perform a disallowed transition between legal states. This is indeed quite
complicated. SOC designers need a lot of assistance from software/driver
authors to come up with these vectors and vice versa. Typically, the SOC
itself has finite state machines (FSMs) that induce transitions between states.
It also has logic to monitor power, performance, temperature, or other
metrics that feed into this FSM. Often these signals come from domains that
are shut down leading to a “chicken and egg” situation. This is what makes
verifying the sequence of state transitions so complicated. Sequences also
need to be verified for the handshake between devices such as the SOC,
voltage regulator module (VRM), battery, temperature sensor and software.

Here is a simple rule to follow: All voltage related events must be visible
to software and/or system electronics. Spatial elements (groups of cells) in a
chip are resources to accomplish functions. Voltage control alters the availa-
bility, performance and load characteristics of these functions. Thus, it is not
possible to do any meaningful voltage based control without coordinating
with at least the software and the VRM. Hence the need to carefully step
through power management states in a coordinated manner across devices
and software.

The third level involves ensuring that the desired power/energy savings
are happening and better yet, that they are cost effective. Power management
neither comes easily nor cheaply. Power management schemes typically
impose new costs on layout area, performance and design effort. You may
have to choose between multiple schemes. Table 11.1 presents a simple
example of the flavor of some of the tradeoffs. After initial design estimates,
these trade-offs need to tracked and updated as a chip is designed.

Some of these costs may be surprising. The package cost of a five island
AVS chip may rise due to the complicated routing of multiple rails and
the steps needed to put in the necessary decoupling etc. This is highly case
sensitive, which means that the IC design team must keep an eye on the impact
of power management on schedule and cost overall. You may also be surprised
by five island AVS possibly having very little battery life benefit over three
island AVS, for a given class of applications.

True verification of a power management system achieves all of these
levels, as neglecting any level can cause a product to fail. Designers need to
do this at every design step: There are so many tools and scripts that modify
the design. Any of these can break a multi-voltage design at some level.

Verification for multiple supply voltage designs 283

Table 11.1 A simple example of the relative power savings, design time, and cost trade-offs
for different power schemes. Adaptive voltage scaling (AVS) refers to when island voltages
are dynamically adjusted to meet performance requirements.

Single Voltage 3 Island AVS 5 Island AVS
Average power 1.0 0.6 0.4
Package cost 1.0 0.6 0.7
Chip design time (man months) 1.0 1.5 3.0
Voltage regulator modules 1× 2× 6×
Heat sink Yes Yes, lower cost No
Fan with fan driver IC Yes No No
Die cost 1.0 ? ?
Test Cost 1.0 3.0 5.0
Debug cycle 1.0 3.0 5.0
Software development time (man months) 1.0 1.5 3.0

For example after detailed routing, you might find that one or more
islands have no space for decoupling capacitance. This will mean either an
accommodation in the package or an external decoupling capacitor, both of
which increase the cost. On the other hand, you may also decide to revisit
the class of applications for which the decoupling capacitance is calculated,
or even choose to transition voltages on the affected islands in a slower
manner to reduce the decoupling capacitance needed.

This chapter examines using multiple voltages and the impact it has on
the functionality and correctness of a design from architecture to implemen-
tation. Logical netlists in EDA tools have long represented the logical
connectivity of signals between gates with the underlying assumption being
that supply voltage VDD and ground voltage VSS were non-varying and “always
on”. Section 11.2 discusses different types of voltage techniques used to
improve the energy efficiency of designs. Section 11.3 contains examples to
illustrate several important multiple voltage issues and ways to address these
issues. We conclude with a summary in Section 11.4.

11.2 MULTIPLE VOLTAGE DEFINITIONS
AND SCENARIOS

One aim of power management is to increase the energy efficiency for a
given design. Energy within an implementation is typically consumed by the
charging and discharging of load capacitances and by leakage paths that
cause unwanted electrical current to flow. The power P due to the charging
and discharging of a capacitance C is

 21 ()
2 DD SSP fC V Vα= − (11.1)

where α is the switching activity factor, f is the clock frequency, and
(VDD – VSS) is the voltage across the capacitor when it is charged.

284 Chapter 11

Since the voltage term is squared, it is a popular target for reducing
dynamic power. Studies have shown that the operating frequency for a given
design scales approximately linearly with the voltage [8]. Therefore, if the
voltage is scaled to match the operating frequency, there is roughly a VDD

3
impact on the switching power (which can be derived from Equation (11.1),
assuming VSS = 0V). This relationship has led designers to partition their
designs into separate areas that run at the lowest necessary voltage to ensure
proper operation of the design. This section will look at design partitioning
to reduce power and establish a set of common terminology.

11.2.1 Voltage Domains and Islands

Traditional designs are greatly simplified by using a single voltage level
to represent a logical “1” value. In fact, if it weren’t for the increasing
demand for energy efficient designs it is doubtful that any designer would
opt to so increase the complexity of a design by using multiple voltages.
Most of the complexity of using multiple voltages shows up on the “boun-
daries”. The question is, on the boundaries of what? In this point, we need
to be clear in our terminology. The boundaries that we will concentrate our
attention on are “domains” and “islands”.

Islands are defined as a set of cells, or a group of HDL (hardware descrip-
tion language) or ESL statements with common rail connections. These rail
connections consist of supply voltages VDD {1..n}; ground voltage VSS;
auxiliary supply rail voltage for sequential elements VRET; voltage to footer
sleep transistors SLPN; voltage to header sleep transistors SLPP; NMOS body
bias voltage VBBN; and PMOS body bias voltage VBBP. This is illustrated in
Figure 11.1.

Domains are defined by the driving voltage, VDD, that defines a logical
“1” level. Note it is possible to have multiple “islands” within a “domain”.
Many of the checks described later in this chapter rely on the classification
of islands and domains.

Wires that connect between two different islands are referred to as cross-
overs because the signal “crosses over” an island boundary. It is important
that all wires are taken into consideration in this regard. It is not only signal
wires communicating between blocks that need attention but also clocks,
scan chains and other wires that may only be used in special modes (e.g. reset).
The differences between the two islands will determine the necessary action
that needs to be taken to ensure correct behavior.

Verification for multiple supply voltage designs 285

SLPN

SLPP

VRET Voltage
Island

VDD

VSS

VBBN

VBBP

(a)

SLPN

SLPP

VDD

VSS

footer sleep transistor

header sleep transistor

virtual ground

virtual supply

VRET

re
gi

st
er

re
gi

st
er

clock

combinational
logic

Sequential
elements

VBBN

VBBP

VRET

Sequential
elements

re
gi

st
er

(b)

VDD

re
gi

st
er

re
gi

st
er

clock

combinational
logic

re
gi

st
er

(c)

SLPN

SLPP

VRET Voltage
Island

VDD

VSS

VBBN

VBBP

(a)

SLPN

SLPP

VDD

VSS

footer sleep transistor

header sleep transistor

virtual ground

virtual supply

VRET

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

clock

combinational
logic

Sequential
elements

VBBN

VBBP

VRET

Sequential
elements

re
gi

st
er

re
gi

st
er

(b)

VDD

re
gi

st
er

re
gi

st
er

re
gi

st
er

re
gi

st
er

clock

combinational
logic

re
gi

st
er

re
gi

st
er

(c)
Figure 11.1 Diagram (a) shows a voltage island as defined by the voltage rails and voltage
signals that go to it; (b) illustrates this in more detail using a simple example of a NAND2
gate with input and output registers. In contrast, diagram (c) shows the voltage rails that are
used in typical static CMOS in ASICs – NMOS wells are tied to ground (i.e. VBBN = VSS =
0V); PMOS wells are tied to VDD (VBBP = VDD); there are no sleep transistors for power
gating; and there is no need for a separate retention voltage for the sequential elements as VDD
is not power gated.

286 Chapter 11

11.2.2 Level Shifting

A signal may originate in one domain and then crossover into another
domain with a different VDD level. There are two possibilities to consider: 1)
the source VDD is greater than the destination VDD; or 2) the destination VDD
is greater than the source VDD.

In the first case, the signal may “overdrive” the input at the receiving
end. For example on an inverter at the receiving end, this would typically
cause the output fall times to decrease and the output rise times to increase (a
common mistake is the assumption that both would decrease). This may be
acceptable and the designer may choose not to insert any level shifting on
this signal. If the design libraries have been characterized for this type of
operating condition (i.e. characterized for VDD,in > VDD,gate, as well as
VDD,in = VDD,gate), it is possible to handle these timing conditions during
synthesis and the rest of the design implementation.

In the second case, more attention is necessary. If VDD from the source
(VDDL) is significantly lower than VDD in the destination domain (VDDH), a
VDDL “1” signal will forward bias the PMOS transistors it connects to in the
VDDH domain, increasing subthreshold leakage current (VDDL – VDDH > Vth,p,
the PMOS transistor threshold voltage which is negative) or possibly leaving
the transistor on (VDDL – VDDH ≤ Vth,p) and causing even more substantial
short circuit current. Secondly, the noise margin on the VDDL signal is
reduced, and it may not be able to drive the input strong enough to produce a
valid output signal (VDDL less than the transition threshold).

An example of a signal from a lower voltage domain driving a gate with
a higher supply voltage is shown in Figure 11.2. Domain 1 uses a VDD of
0.65V, while Domain 2 uses a VDD of 1.3V. In this case it is very likely that
the output of Domain 1 isn’t strong enough to sufficiently drive gates in
Domain 2. As the figure shows, this can also lead to internal short circuit
paths being created in the gates in Domain 2.

on

off
VDDL “1”

on

on
“X”

0V “0”
“X”

VDDL = 0.65V VDDH = 1.30V

Domain 1 Domain 2

ISC

on

off
VDDL “1”

on

on
“X”

0V “0”
“X”

VDDL = 0.65V VDDH = 1.30V

Domain 1 Domain 2

ISC

Figure 11.2 This circuit shows a low supply voltage VDDL signal driving a high supply
voltage VDDH gate. The PMOS transistor of the VDDH gate is forward biased sufficiently that it
is on, resulting in short circuit current ISC. The VDDL “1” signal in the low supply voltage
domain results in unknown “X” values in the high supply voltage domain.

Verification for multiple supply voltage designs 287

In cases where the source domain won’t create output signals with suffi-
cient strength to properly drive the destination domain, or to reduce leakage
of gates driven by lower voltage, it is necessary to insert voltage level shifters
to properly drive the signal from the source to the destination. Voltage level
shifters are essentially buffers that pass the same logical signal from input
to output but scale the output to the necessary voltage for the logical signal
in the destination domain. Designers can define a level shifter insertion
threshold based on a percentage of the destination VDD to indicate when it is
desirable to insert a level shifter into the destination. For example, if the
source VDD is less than 0.8 of the destination VDD, a level shifter would be
inserted. The threshold actually chosen would depend on desired circuit
performance and the operating conditions characterized for the libraries.

A possible third case also exists when the source and destination islands
have independently varying VDD levels. In this case, it may at times be nece-
ssary to up level shift the voltage when the source VDD is lower than the
destination VDD and down level shift when the source VDD is higher than
the destination VDD. In these cases it is necessary to insert an up/down
level shifter on each crossover signal to ensure the desired operating chara-
cteristics.

11.2.3 Isolation (Shutdown/Sleep)

Implementing domains with different voltages is a powerful technique
for reducing energy consumption in active portions of the design. Reducing
the voltage also reduces the leakage currents, but to a lesser extent than the
savings to dynamic energy consumption. A significant penalty with leakage
is that it occurs whether the circuitry is actively switching to perform useful
work or just sitting idle. It can be viewed as wasted energy overhead that
doesn’t significantly contribute to the work performed for useful compu-
tation.

A way to significantly reduce leakage is to remove the circuitry from
its power source. While this isn’t very helpful while the circuit is doing
useful computation, it can be extremely beneficial when a block of logic
isn’t being actively used. However, removing a block from its power source
raises some serious issues about how the design will continue to operate
properly. The first concern is whether the state of the block needs to be
retained and if so, how to accomplish it. When a block is powered down
there are three options for handling the state values: 1) scan the state out
and store it in a memory external to the block that will remained powered;
2) store the state locally with special circuitry that will remained powered; or
3) if the state isn’t needed, throw it away and reinitialize if necessary when
the block is powered back up again. Each option has its own set of advantages
and disadvantages.

288 Chapter 11

In the case of scanning out the state, it may be possible to reuse the test
scan chains for accessing the state and restoring its value later. This may
imply a small overhead in the control circuitry to implement this solution. A
disadvantage of this approach is the extra time needed to scan the state out
and then back in again. Extra energy is also spent to scan the state out and
back. During this period, the block needs to retain power. In the case of
scanning the state back in, it may delay the start of useful activity. The total
cost of the solution may also need to include additional memory to store the
state if the memory is otherwise not available.

The second option entails the use of special registers to locally retain
the state of the block. This has the advantage of keeping the state closely
associated with its circuitry thus making it quicker to save and restore the
state. Blocks using this type of implementation may have more power
down opportunities than blocks using a scan approach. The downside of this
approach is that the retention registers are significantly larger and higher
power than non-retention based registers, and it may also be necessary to
route a separate power source to the retention portion of the registers.

The third option is the simplest and cheapest to implement. For some
designs, every time a block is powered up it is initialized to the same state,
making it unnecessary to store the previous state of the block.

Another consideration when shutting down or sleeping blocks is the
values that will be placed on the signals that are sourced from the block
being shutdown. If the values are allowed to merely float as the turned off
circuitry reaches some equilibrium point, there could be serious energy
consequences at the destination blocks. As was shown in Figure 11.2 for
the case of inserting level shifters between different voltage domains, it is
possible to create short circuit paths at the receiving end if appropriate logic
levels are not maintained on crossover signals. For blocks that are shutdown,
placing isolation cells at the outputs ensures that the crossover signals that
are sourced from the shutdown block will maintain valid logic values and
not create energy robbing short circuits paths at the destinations. The isolation
cells are of 3 basic types: 1) isolate to “0”, 2) isolate to “1”, or 3) retain the
last value before shutdown. The signal to provide isolation can be either
active low or active high depending on the application. Some ASIC libraries
may contain cells to perform these functions while others need to have them
created and incorporated.

Isolation cells can be placed at the destination side with the appropriate
control logic. If the isolation is to occur at the output of the source block
then it is necessary to route the appropriate power to ensure that the isolation
cell itself doesn’t get powered off with the rest of the source block.

Shutting down the power to the cells of a block can occur internally or
externally to the block. If the power gating switches (sleep transistors in
Figure 11.1(b)) are placed in the block, then shutting off the power may be
referred to as “sleeping” the block. In this case, there is a signal explicitly

Verification for multiple supply voltage designs 289

sent to the block that will control whether power is available. Note that sleep
signals are part of the island definition. For instance, two blocks that operate
at the same VDD in the same domain, but have different controlling sleep
signals, will form two separate islands both within the same domain. The
sleep signal will control power gating switches that interrupt the flow of
current either at the VDD rail, VSS rail or both. Figure 11.3(a) show an example
of the power gating being controlled from the VDD rail. In this case, the
power gating switch is referred to as a “header”. Likewise, Figure 11.3(b)
shows a case where the power gating switch is on the VSS rail and is referred
to as a “footer” switch. Generally, either a header or a footer sleep transistor
is required to cut off the leakage current path from VDD to VSS.

VSS

SLPN

Footer

Cell Cell Cell

VDD

“Virtual” VSS

…

Header

VSS

SLPP

Cell Cell Cell

VDD

“Virtual” VDD

…

(a)

(b)

VSS

SLPN Footers

Cell Cell Cell

VDD

…

(c)
Figure 11.3 Different power-gating configurations are shown here. In (a) there is a shared
header sleep transistor; in (b) there is a shared footer transistor; and in (c) each standard cell
has a separate footer within it.

290 Chapter 11

There is some voltage drop across the sleep transistor when it is on, so
there is a trade-off between the area penalty and power up penalty for larger
sleep transistors versus a larger voltage drop across a smaller sleep transistor.
In some designs, a header and footer may both be used simultaneously with
opposite polarity applied to the controlling sleep signals for the headers and
footers respectively. In many layouts, the power gating switches are placed
so that the rails that they control take the place of the usual VDD or VSS rails.
In this case, the controlled rails are referred to as “virtual” rails.

It is also possible to include the header or footer transistor directly into
each cell as shown in Figure 11.3(c). An advantage to such an approach is
that it simplifies the analysis and implementation for the design. The effects
of the added transistor can now be incorporated directly into each cell’s
characterization. Any additional delays incurred due to the header or footer
transistors show up explicitly in the cell library’s timing tables. It also simp-
lifies the question of where and how often to place the power gating switches
since they are now distributed directly into the cells. One downside to this
approach is the increased area penalty that is incurred by the cells in the
library to accommodate the extra transistor and cell input.

A variation on this approach to gain back some performance is to add an
additional voltage to the design [7]. Each cell incorporates a footer transistor
that is a high performance low threshold voltage transistor. In order to reduce
leakage, the cells are designed to have a voltage lower than VSS on the footer
gate. This allows better performance and lower leakage with the additional
cost of design complexity to provide a voltage lower than VSS to turn off the
footers in each cell.

On the other hand, using power gating switches (header or footer tran-
sistors) external to the cells allows the use of existing libraries. The overhead
for the power gating transistors is typically less than that for the in-cell
approach and the usual VDD and VSS connections to the cells are used. The
downside is that analysis must be performed to ensure that the IR-drop on
the virtual rails is within expected tolerances, otherwise the library has to
be re-characterized for the reduced voltage swing. It may be necessary to
place more power gating cells to guarantee that the IR-drop is adequately
limited.

11.3 DESIGN EXAMPLES

This section describes increasingly complex design examples that demon-
strate proper checking for isolation and level shifting as well as dynamic
simulations that show the impacts of varying the voltage under different
implementations for the following designs.

Verification for multiple supply voltage designs 291

B

A
+

VANDVadd

Vfooter ISO

8
8

Figure 11.4 Two different domains are used for the adder and isolation. The isolation is
contained in the receiving domain (VAND).

To demonstrate these concepts the first simple example, shown in Figure
11.4, consists of an adder and a set of AND gates. The adder and AND gates
are in separate voltage domains with the adder in Vadd and the AND gates
in VAND. (Similar to the two inverters shown in Figure 11.2.) This is repre-
sentative of a block (the adder) that can be slept or shutdown and the isolation
circuitry (AND gates) residing in the receiving domain. The adder is power-
gated by an nMOS footer transistor controlled by the Vfooter signal. When the
Voltage on Vfooter drops below the threshold voltage of the footer transistor,
the adder module is said to be in sleep mode.

11.3.1 Sleep

The example design in Figure 11.4 helps to demonstrate the importance
of checking the dynamic sequencing of voltage controlling signals for beha-
vioral accuracy. The waveforms in Figure 11.5 show a typical RTL simulation
that is unaware of any changes in the operation of power-gating transistors
controlling a group of gates. The logic definition of the cells isn’t changed
since the power-gating transistor, in this case a footer, isn’t part of the cell.
As the voltage Vfooter drops to 0V, the logical outputs of the AND gate are
computed as if the power-gating transistor didn’t exist. To accurately
simulate the effects of the footer transistor, it is necessary to catch events
on the Vfooter signal and properly assert correct values at the outputs of the
effected cells.

Today’s logic based simulators do not take into account the effects of
changes on voltage rails or the impact of sleeping parts of the design. Figure
11.5 shows a typical RTL simulation where the voltage on Vfooter drops from
1.2V to 0.0V. The output waveforms show no impact from the adder going
into sleep mode. This illustrates a risk in only performing a static check for
isolation and not having a dynamic verification technique for checking the
FSM controller sequences.

292 Chapter 11

100 2000

A
B

ISO

INPUTS

add_out
AND_out

OUTPUTS

Vadd
Vfooter
VAND

1.2
0.0

30

2f

00

0a

1.2

0b

1

0b30

1.2
1.2

1
01

0

VOLTAGES

Figure 11.5 The effect of changing Vfooter to 0V is notably absent in this waveform diagram.

30
00

0b
0b30 X

Z

100 2000

A
B

ISO

INPUTS

add_out
AND_out

OUTPUTS

Vadd
Vfooter
VAND

1.2
0.0

2f 0a

1.2

1

1.2
1.2

1
01

0

VOLTAGES

Figure 11.6 This waveform diagram shows the impact on add_out as Vfooter goes to 0V.

The waveform diagram in Figure 11.6 shows the effects of applying 0V

on Vfooter and sleeping the adder. Note that the when Vfooter changes to 0V
that the output of the adder goes to a high impedance state “Z”. An error in
the control sequencing now becomes readily apparent.

It is important to note that a simple check for the existence of isolation
circuitry is not sufficient to find this type of control sequencing error. A
static check would “pass” indicating that the necessary isolation circuitry
(AND gates) is present but would fail to detect the dynamic run time error.

Verification for multiple supply voltage designs 293

adder multiplier

A B

Y

Vadd Vmult

ALU

opCode

multiplier
clock

MUX

DEMUX DEMUX
opCode

adder
clock

adder multiplier

A B

Y

Vadd Vmult

ALU

opCode

multiplier
clock

MUXMUX

DEMUXDEMUX DEMUXDEMUX
opCode

adder
clock

Figure 11.7 This arithmetic logic unit (ALU) consists of an adder and multiplier that may be
in different domains with different voltages.

11.3.2 Shutdown

Typically, shutdown involves forcing the driving voltage rail to VSS. This
can be accomplished using an on-chip or off-chip voltage regulator. Shutting
down a block eliminates any leakage current in that block but typically
takes longer to bring back into operating mode. Other considerations include
“in-rush” currents that may be excessive and have problematic peak power
characteristics as well as reliability issues. Designers will often stage smaller
portions of the design to ramp back up in sequence to avoid the issues around
creating a large instantaneous current draw.

There are two important types of verification to be performed. The first
is to check that the connectivity has been properly handled in the design, and
the second is to check that the signals are sequenced properly to ensure correct
behavior. For example, once it has been determined that the necessary level
shifting and isolation have been inserted, the controlling signals have to
be properly asserted in time in order for the circuit to function correctly.
A dynamic simulation of the sequencing of the control signals and voltage
variations can demonstrate whether the circuit exhibits correct time based
behaviors.

To illustrate the points in this section, a simple example with multiple
islands is used. A block diagram of the example is shown in Figure 11.7.
The design is a simple ALU (arithmetic logic unit), consisting of an adder
and a multiplier. The adder and multiplier are their own respective islands,

294 Chapter 11

and based on their voltages may be in their own respective domains as well.
There are two inputs to the ALU, A and B and one output Y. Note only one
of the adder or multiplier is performing useful computation at any given
time. Effectively, their inputs are transparently latched in the 1:2 demulti-
plexers (DEMUX) controlled by the “opcode”. The opcode also steers the
appropriate module output via the 2:1 multiplexer (MUX) to the ALU output
at Y. The following two waveform diagrams show the differences between
using a typical RTL simulator and one that is multi-voltage aware.

Vadd

VALU

Vmul

opCode

0 50 100 150 200 250 300 350

1

1

1

2

1

1

1

1

1

1

3

2

2

4

0

0

1

2

2

4 3

3

3

2

2

1

2 6 2

2

23

1

1 0

32

6

add_inst1/y

add_inst1/b

add_inst1/a

mult_inst1/y

mult_inst1/b

mult_inst1/a

Figure 11.8 Typical RTL simulation ran for the ALU that neglects any changes due to
shutdown of the adder or multiplier in the circuitry in Figure 11.7.

Vadd

VALU

Vmul

opCode

0 50 100 150 200 250 300 350

1

1

1

2

1

1

1

1

1

1

3

2

2

4

0

0

1

2

2

4 3

3

3

2

2

1

2 6 2 0

2

23

1

1 0

32

add_inst1/y

add_inst1/b

add_inst1/a

mult_inst1/y

mult_inst1/b

mult_inst1/a

4

Figure 11.9 Multi-voltage based RTL simulation ran for the ALU reflecting changes due to
shutdown of the adder or multiplier in the circuitry in Figure 11.7.

Verification for multiple supply voltage designs 295

A pure logic simulation without voltage information is shown in Figure
11.8. Note that because of the register inserted at the inputs and outputs of
the adder and multiplier that there is an additional delay from when the
inputs appear at the adder and multiplier and when the output values change.

11.3.3 System Level, Adaptive Voltage Scaling

For this section, the example used in Figure 11.4 is again used to illus-
trate the main concepts. A necessary feature for AVS designs is the ability to
control the voltage rails in an analog-like fashion.

Figure 11.10 shows a diagram for a simple VRM. The output voltage (V)
is controlled by the input powerState. A binary voltage indicator is used to
signal when the requested voltage is stable at the voltage output. This model
enables a continuous change in the voltage in simulation time. A new voltage
level is requested by powerState and then the VRM will set the indicator
to “0” and move the output voltage to the requested level. Once the new
voltage level is reached, the indicator is set to “1”. This signal can be used
by other power management circuitry to control the behavior of the design.
One possible use is to have the indicator signal assist in any control in clock
frequencies. If there is a request to raise the voltage and frequency for higher
performance, typically the voltage will first be raised to the new value and
then the clock frequency will be raised to its new value. The voltage indicator
in this case could be used to signal that it is safe to increase the clock freq-
uency once the requested voltage has been achieved.

The modification made to the design in Figure 11.4 is to use a VRM to
control the driving voltage (Vadd) for the adder. Instead of using a footer to
sleep the adder as in Section 11.3.1, the driving voltage is reduced to demon-
strate the effects of dynamically varying the power rail.

This example brings into play more advanced concepts of multi-voltage
design. One important aspect is the determination of good logic “1” and “0”
values. If the driving voltage of a sending block drops below a certain level,
the receiving block will not be able to recognize a valid “1” on the corres-
ponding input. For this example, a valid “1” is considered to be 70% of the
receiving block’s Vdd. In this case, since all driving voltage rails except Vadd
are at 1.2V, the output of the adder must be greater than or equal to 0.84V. If
the Vadd drops below 0.84V then the other blocks will consider a “1” output
from the adder module as an “X” at their input.

PowerState VRM
Vindicator6

V(real type)
Figure 11.10 Simple voltage regulator module (VRM).

296 Chapter 11

7 0 1 23 7 0 1 23

VAND

Vfooter

Vadd

Vadd_indicator

powerState

ISO

a

b

add_out

AND_out

0 50 100 150 200 250 300

1.2

1.2

1.2

30

1

1.2

0

0.6

30

1

0 1 23 7 0 1 23 7 0 1 23 7 0 1 23 7 0 1 23 7 0 1 23 7

1 2 34 8 1 2 34 8

1 2 34 8 1 2 34 8 1 2 34 8 1 2 34 8

1 2 34 8 1 2 34 8 1 2 34 8 1 2 34 8

1 2 34 8 1 2 34 8

1 2 34 8 1 2 34 8

1 2 34 8 1 2 34 8

Figure 11.11 Typical RTL simulation ran for the adder and isolation circuitry shown in
Figure 11.4.

Another concept covered here is the voltage at which a block still retains
its state but no longer functions properly at speed, referred to as the “standby”
voltage. In this case for the adder module, that voltage is set to 0.6V. In other
words, at 0.6V the adder module retains its state, so that if the block is also
clock-gated at that time and the voltage is then later raised and the clock
re-enabled, the block will come back in a good operating state. If the block
is clocked while the driving voltage is at 0.6V or below, the values could be
corrupted.

Figure 11.11 shows an RTL simulation where the driving voltage for the
adder is varied between 1.2V and 0.6V. The signal Vadd_indicator is used to
indicate when the VRM has reached the appropriate output voltage level.
The powerState variable has a range of 0 to 32 and indicates 20mV incre-
ments above the baseline voltage of 0.6V. In this example, Vadd goes to
standby voltage but no lower. Setting powerState = 30 (0x1E) corresponds
to a requested voltage of 0.6V + (30 × 0.02) = 1.2V which is where the
simulation starts. powerState is then set to 0 and Vadd starts to drop to 0.6V.
After a period of time, powerState is again set to 30 and Vadd returns to 1.2V
with the voltage indicator in both cases initially going to “0” and then retur-
ning to “1”. Since the RTL simulator isn’t multi-voltage aware, the outputs
of the adder and AND gates are unaffected by the changes in the voltage
level of Vadd.

Verification for multiple supply voltage designs 297

7 0 1 23 7 0 1 23

VAND

Vfooter

Vadd

Vadd_indicator

powerState

ISO

a

b

add_out

AND_out

0 50 100 150 200 250 300

1.2

1.2

1.2

30

1

1.2

0

0.6

30

1

0 1 23 7 0 1 23 7 0 1 23 7 0 1 23 7 0 1 23 7 0 1 23 7

1 2 34 8

1 2 X4 8 X X XX X

X X XX X 1 2 3X 8

X 2 3X X

1 2 34 8

1 2 34 8X

1 2 34 8 1 2 34 8

1 2 X4 8 X X XX X X X XX X

X X XX X X X XX X 1 2 3X 8 1 2 3X 8

X 2 3X X X 2 3X X

1 2 34 8 1 2 34 8

1 2 34 8 1 2 34 8X

Figure 11.12 Multi-voltage based RTL simulation ran for the adder and isolation circuitry
shown in Figure 11.4.

Figure 11.12 shows the same example this time simulated with a multi-
voltage based simulator. It is interesting to note that the output values of the
AND gates go to “X” before the output of the adder module starts to produce
any “X” outputs. In this case, the AND gates are sensitive to the voltage
level of any incoming “1” signals. Since Vadd drops below 70% of 1.2V
shortly after 50 time intervals in Figure 11.12, the output values of the AND
gates start to go to “X”. Once Vadd drops to 0.6V and the inputs continue to
change, the outputs of the adder also go to a value of “X”. As the voltage
Vadd begins to increase, the adder once again starts to produce good logic
outputs but it is not until Vadd reaches 0.84V that the AND gates again
produce good logic output values.

11.4 SUMMARY

The push to more energy efficient designs is becoming more prevalent.
Given a thermal envelope constraint defined by the package that an IC
will reside in, more often it is becoming the case that the performance and
operating frequency are defined by the power characteristics of the IC. In
these cases, more effort is being placed on computational efficiency with
respect to power. Witness the current de-emphasis in clock speeds and the
move to multi-core designs for processors ranging from laptops and notebooks
to high performance servers.

One of the most promising variables that designers have at their disposal
is the voltage. As designs with variable voltage, power gating and shutdown
become more popular, there will be an increasing need for tools to help design
and verify them. Dynamic simulation that accurately models the functional
impact of varying the voltage in a design was described in Section 11.3. Tools

298 Chapter 11

at this level need to handle voltage as a real variable in the design and be able
to incorporate the effects of its dynamic variations. Inability to do so will
leave holes in any chip’s verification strategy and lead to chips that will have
costly errors that will only be found late in the design cycle and likely after
tape out.

The work described here can be extended to the gate level as well. The
EDA industry will need libraries with power and timing information for a
wider range of voltages versus the typical +/– 10% fast/slow corners usually
available. The island definitions are valid throughout the flow but the libraries
will need to include more data to accurately reflect the realities at lower levels
of abstraction.

11.5 REFERENCES
[1] Lackey, D., et. al, “Managing Power and Performance for SOC Designs Using Voltage

Islands,” Proceedings of the International Conference on Computer-Aided Design, 2002,
pp. 195-202.

[2] Usami, K. and Igarishi, M., “Low-Power Design Methodology and Applications Utilizing
Dual Supply Voltages,” ASP Design Automation Conf., 2000, pp. 123-128.

[3] Martin, S.M., Flautner, K., Mudge, T. and Blaauw, D., “Combined Dynamic Voltage
Scaling and Adaptive Body Biasing for Lower Power Microprocessors under Dynamic
Workloads,” Proceedings of the International Conference on Computer-Aided Design,
2002, pp. 721-725.

[4] Shigematsu, S., Mutoh, S., Matsuya, Y., Tanabe, Y. and Yamada, J., “A 1-V High-Speed
MTCMOS Circuit Scheme for Power-Down Application Circuits,” IEEE Journal of
Solid-State Circuits, vol. 32, no. 6, June 1997, pp. 861-869.

[5] Shigematsu, S., Mutoh, S., Matsuya, Y. and Yamada, J., “A 1-V High-Speed MTCMOS
Circuit Scheme for Power-Down Applications,” IEEE Symposium on VLSI Circuits
Digest of Technical Papers, June 8-10, 1995, pp. 125-126.

[6] Mehra, R. and Pangrle, B., “Synopsys Low-Power Design Flow,” Chapter 40, CRC Low-
Power Electronics Design, CRC Press, 2004, pp. 40-1 to 40-20.

[7] Hillman, D. and Wei, J., “Implementing Power Management IP for Dynamic and Static
Power Reduction in Configurable Microprocessors using the Galaxy Design Platform at
130nm,” Boston Synopsys Users’ Group (SNUG), 2004.

[8] Nowka, K.J., Carpenter, G.D. and Brock, B.C., “The Design and Application of the
PowerPC 405LP Energy-Efficient System-On-A-Chip,” IBM Journal of Research and
Development, vol. 47, no. 5/6, 2003.

Chapter 12 12

WINNING THE POWER STRUGGLE

Murari Mani, Michael Orshansky
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX, 78712, USA

12.1 INTRODUCTION

The growth of process variability in scaled CMOS requires that it is
explicitly addressed in the design of high performance and low power ASICs.
This growth can be attributed to multiple factors, including the difficulty of
manufacturing control, the emergence of new systematic variation-generating
mechanisms, and the increase in fundamental atomic-scale randomness – for
example, the random placement of dopant atoms in the transistor channel.
Scaling also leads to the growth of standby, or leakage power [7]. Importantly,
leakage depends exponentially on threshold voltage and gate length of the
device. The result is a large spread in leakage power in the presence of
process variations.

Recently, considerable research efforts have focused on developing
statistical approaches to timing analysis, including the models and algorithms
accounting for the impact of delay variability on circuit performance. These
techniques concern themselves with eliminating the conservatism introduced
by employing traditional worst-case timing models in predicting the timing
yield of the circuit. In view of the importance of variability, new methods
are needed to evaluate the power-limited parametric yield of integrated
circuits and guide the design towards statistically feasible and preferable
solutions. This can be achieved through the migration to statistical optimi-
zation techniques that account for both power and delay variability.

In this chapter we examine the impact of variability on power, along
with the strategies to counter its detrimental effect and improve performance
and parametric yield. In Section 12.2 we provide an overview of process

IN AN UNCERTAIN ERA

300 Chapter 12

variability trends and discuss their impact on power and parametric yield.
Section 12.3 deals with analytical techniques for evaluating circuit parametric
yield considering leakage and timing variability. Section 12.4 presents an
overview of optimization strategies for yield improvement. In Section 12.5
we discuss in detail, an efficient algorithm that targets power minimization
under probabilistically specified timing and power constraints.

12.2 PROCESS VARIABILITY AND ITS IMPACT
ON POWER

Several factors contribute to the growth in process variability [2][3][24]
[34]. While the continued need for more performance necessitates rapid
technology scaling, there are severe limitations to our capacity to improve
manufacturing tolerances [22]. This is manifested in the rise of such effects
as channel length variation due to the optical proximity effect [13][17];
systematic spatial gate length variation due to the aberrations in the stepper
lens [38]; and variation in interconnect properties caused by non-uniform
rate of chemical-mechanical polishing (CMP) in layout regions of different
pattern density [10][39]. Scaling also brings about parameter uncertainty of a
fundamental atomic-level nature. This is best exemplified by variability in
transistor threshold voltage due to random dopant fluctuations (RDF). As
transistors scale, the transistor channel contains fewer dopant atoms whose
precise number and location cannot be controlled, while even small fluctua-
tions can impact threshold voltage significantly [8][16][42].

The patterns of variability are also changing: the intra-chip component of
variation grows as a percentage of total variability in key process parameters
such as channel length and threshold voltage [4][26]. It is this change that is
largely responsible for the need to develop new approaches to timing analysis
and optimization, as the traditional methods fail in the presence of uncorre-
lated intra-chip variability.

The increase in leakage power with scaling, and the strong dependence
of leakage on highly varying process parameters, raises the importance of
statistical leakage and parametric yield modeling. There are several reasons
for increased leakage power consumption. Supply voltage scaling requires
the reduction in threshold voltage (Vth) in order to maintain gate over-
drive strength. Threshold voltage reduction causes an exponential increase
in subthreshold channel leakage current. To make matters worse, aggressive
scaling of gate oxide thickness leads to significant gate oxide tunneling
current [41].

For transistors in the weak inversion region, the subthreshold current can
be expressed as:

 () / /(1)V V V V Vgs th thermal ds thermal
subI e eη− −∝ − (12.1)

Winning the Power Struggle in an Uncertain Era 301

where Vgs and Vds are gate- and drain-to-source voltages, Vthermal is the thermal
voltage, and η is the subthreshold slope coefficient [41]. For the purpose of
statistical analysis, the exponential dependence of subthreshold current on
process parameters is better captured by an empirical model in terms of the
variation in effective channel length (∆L) and the variation in threshold
voltage (∆V), taken to be stochastically independent of channel length [32]:

2() /2 3 1L a L a V a

subI e− ∆ + ∆ + ∆∝ (12.2)

where a1, a2, and a3 are process-dependent parameters. The gate tunneling
current strongly depends on the oxide thickness (Tox) and can be described as
[18]:

2.5 2.5() ()1 2 1 2c V c T c V c Tgs ox gd ox

oxI e e
− −− −∝ + (12.3)

where c1, c2, are the process-dependent fitting parameters, and Vgs and Vds
are the gate-to-source and gate-to-drain voltages respectively. A simple
empirical model captures the dependence of Iox on the variation in the oxide
thickness (∆T) [32]:
 /T b

oxI e−∆∝ (12.4)

where b is the process-dependent parameter.
The models indicate that both subthreshold and gate leakage currents are

exponential functions of highly-variable process parameters, specifically
effective channel length, threshold voltage, and oxide thickness. This strong
dependence causes a large spread in leakage current in the presence of process
variations (Figure 12.1), with subthreshold leakage depending primarily on
Leff and Vth, and gate leakage depending on Tox. Historically, Tox has been a
well-controlled parameter, and as a result, it had smaller impact on leakage
variability. However, this is rapidly changing as technology approaches the
limits of thin film scaling. While leakage power exhibits exponential depen-
dencies on process variables, chip frequency has a near-linear dependency
on most parameters [32]. This difference in magnitude of variation is easily
observed in measurements. Figure 12.1 shows that a 1.3× variation in delay
between fast and slow die could potentially lead to a 20× variation in leakage
current [3].

Leakage power is inversely correlated with chip frequency. Slow die
have low leakage, while fast die have high leakage (Figure 12.1). The same
parameters that reduce gate delay – shorter channel length, lower threshold
voltage, thinner gate oxide – also increase the leakage. Moreover, the spread
in leakage grows as the chip becomes faster. In characterizing chips according
to their operating frequency, it has been observed that a substantial portion
of chips in the fast bins have unacceptably high leakage.

302 Chapter 12

Figure 12.1 Exponential dependence of leakage current on 0.18um process parameters results
in a large spread for relatively small variations around their nominal value. Figure courtesy of
the authors of [3]. (© 2003 ACM, Inc. Included here by permission.)

Figure 12.2 Inverse correlation between leakage power and frequency contributes to
parametric yield loss. The maximum frequency of usable chips is reduced because chips in
what would be the “fast” bin exceed power limits. This data was generated with a normal
distribution for the clock frequency, and thus channel length [32], which exponentially affects
leakage, and then a log normal distribution for leakage about these points. A scatter plot of
leakage vs. frequency shows a similar distribution to Figure 12.1. In contrast, dynamic power
increases linearly with clock frequency (i.e. switching activity).

Winning the Power Struggle in an Uncertain Era 303

In the absence of substantial leakage power, parametric yield is deter-
mined by the maximum possible clock frequency. Switching power is rela-
tively insensitive to process variation. When the leakage power typical of
current CMOS technologies is added, the total power starts approaching
the power limit determined by the cooling and packaging considerations.
Crucially, the exponential dependence of leakage on process spread means
that the total power may cross the cooling (power) limit well below the maxi-
mum possible chip frequency, since chips operating at higher frequencies
have exponentially higher leakage power consumption. Thus, due to the
inverse correlation between speed and leakage, yield is limited both by slower
chips and chips that are too fast, because they are too leaky.

This is further illustrated in Figure 12.2. The leakage-delay correlation
and the resulting dual squeeze on parametric yield is one of the reasons why
new methods that can simultaneously estimate timing-limited and power-
limited yield need to be utilized.

12.3 PARAMETRIC YIELD ESTIMATION

It is possible to get a fairly reliable estimate of the chip's parametric yield
early in the design flow, at the design exploration phase, based on a very
small number of chip parameters: the total chip area, the number of devices,
the nominal and statistical technology parameters, and the supply and threshold
voltages. The estimate can then be used to optimize the technology and design
parameters before the design is fully specified. Both subthreshold and gate
oxide leakage components can be accounted for [32].

In the estimation of parametric yield, we can safely assume that chip freq-
uency is most strongly influenced by global channel length (Lg) variation.
This assumption is validated by both simulation and by industrial practice
where microprocessor speed binning is strictly correlated with the gate
length variability [32]. Relying on Equations (12.2) and (12.4), the process
parameters that impact leakage components are decomposed into their local
(∆Ll, ∆Vl, ∆Tl) and global (∆Lg, ∆Vg, ∆Tg) contributions.

Because the variation of path delay is primarily defined by the global
∆Lg variation, when estimating yield, it is convenient to express Isub as an
explicit function of ∆Lg. The impact of local and global variability on the
leakage distribution is evaluated separately. The chip leakage variation due
to local variability is a sum of current contributions from all devices on the
chip. Because of that, the impact of local variability of all parameters on
leakage can be captured by their impact on the mean leakage (at fixed values
of global parameters). Specifically, the impact of local variability on leakage
at a given value of Lg is to shift the mean of the distribution (due to ∆Vg, ∆Tg)
by the amount that depends on the variance of local variability due to all
components. For example, the increase of mean leakage caused by local
variability ∆Ll is:

304 Chapter 12

2

22 2 0.52
2 21 (2 4)1 21

() (1) exp[]Ll
L L Ll i

Li

S
σλ

λ λ σ λ λ
σ σ −

+
= + (12.5)

where λ1, λ2, and λ3 are process-dependent variables, and σL is the standard
deviations of intra-die components Ll. It is easy to see that SL ≥ 1, and
SL = 1, when local variation is absent. Similar expressions can be derived for
scaling factors SV and ST that capture impact of local variation of ∆Vl and ∆Tl
on the mean of the leakage. The total chip leakage, as a function of global
variation terms, is obtained by weighting the leakage contribution of
individual gates by their widths, W [32]:

2(() /) (/)0 02 3 1L a L a V a T bg g g g

total L V sub T gateI W S S I e S I e− ∆ + ∆ + ∆ −∆⎛ ⎞= +⎜ ⎟
⎝ ⎠∑ (12.6)

where SL, SV, and ST are the scaling factors to capture the effect of local
variability in Leff, Vth and Tox respectively; 0

subI and 0
gateI are the nominal

values of subthreshold and gate leakage respectively; and a1, a2, a3 and b are
fitting coefficients. Here ∆Lg, ∆Vg, and ∆Tg are treated as independent
normal random variables.

Reject
(too slow)

Reject
(too leaky)

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 T
ot

al
 C

ir
cu

it
L

ea
ka

ge

Number of standard deviations of Lg
(global Leff variation) from nominal

Reject
(too slow)

Reject
(too leaky)

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 T
ot

al
 C

ir
cu

it
L

ea
ka

ge

Number of standard deviations of Lg
(global Leff variation) from nominal

Figure 12.3 Monte Carlo scatter plot showing SPICE simulation of the circuit leakage for a
64-bit adder with 100nm Berkeley predictive technology model [9]. Variability in Vg and Tg
are responsible for “local” spread in leakage causing ~27% yield loss in the highest
performance bin. Figure courtesy of the authors of [32]. (© 2004 ACM, Inc. Included here by
permission.)

Winning the Power Struggle in an Uncertain Era 305

Consider the power and delay variability of an adder shown in Figure
12.3. For each value Lg, which corresponds to a specific frequency bin, the
spread of leakage is caused by the variation in Vg and Tg. A consequence of
this spread is that even though the frequency of a chip confirms to speci-
fications, it may still contribute to parametric yield loss due to its unacceptably
high leakage power consumption. The analytical framework developed above
enables the estimation of the leakage yield corresponding to a specific leak-
age constraint, or the leakage current corresponding to any yield quantile. Be-
cause power yield can be computed for every specific value of ∆Lg, the
estimate of joint timing-limited and power-limited yield can be thus easily
found.

12.4 OPTIMIZATION TECHNIQUES FOR YIELD:
AN OVERVIEW

The previous section considered analysis methods to evaluate chip-level
and circuit-level parametric yield. We now discuss the optimization strategies
that can be employed to improve parametric yield. Traditional circuit optimi-
zation techniques are insufficient for the purpose of parametric yield improve-
ment in nanometer scale integrated circuits. In the past, case-files have been
used effectively with the traditional deterministic algorithms while guaran-
teeing a specific yield point. Typically, these case files would be worst case,
nominal, and best case process corners combined with the worst case, nominal,
and best case operating (voltage, temperature) corners. The effect of variability
was captured in these case files by modifying the device SPICE model
parameters to correspond to a specific percentile of the parameter distribution.
Analyzing and optimizing the circuit with these parameters guaranteed that it
would meet the performance constraints at a specific percentile of probability
[25]. However, this approach works only when variability is predominantly
inter-chip, causing differences in the chip-to-chip properties, with parameter
variation in devices within a chip being neglected. In nanometer scale tech-
nologies, intra-chip variation is significant. Also, deterministic optimization
makes the tacit assumption that circuit performances of different gates have
identical sensitivities to the variation of process parameters. The highly
non-linear and non-additive responses of performance variability make this
premise untenable [28]. This results in the breakdown of the case-file based
approach to handling variability in optimization as it becomes impossible to
come up with a case file that will guarantee a specific yield point.

Circuit-level variability is directly dependent on the decision variables:
for instance, the standard deviation of threshold voltage depends inversely
on the square root of transistor area [14]. Statistical algorithms that explicitly
account for the variance of objective and constraint functions during optimi-
zation are expected to perform much better. In contrast, deterministic algo-
rithms lack the notion of parameter variance and parametric yield, preventing

306 Chapter 12

design for yield as an active design strategy. An algorithm that does not
comprehend the dynamic changes in performance variability arising from
threshold voltage dependency on sizing is unlikely to be successful in para-
metric yield optimization. Instead, if a worst case process corner is assumed
to ensure sufficient yield the circuit gets over-designed resulting in worse
power consumption and lower performance. Thus, the introduction of rigorous
statistical power-optimization has a potentially significant impact on circuit
performance and parametric yield.

Optimizing the parametric yield metric directly seems computationally
very difficult because of its numerical properties (yield is an integral of the
probability distribution function). For that reason, most yield-improvement
strategies map yield into other metrics that are more convenient computa-
tionally. For the sake of discussion, the known optimization approaches for
yield improvement can be classified into two categories: those that model
the impact of variability on timing yield only, and those that consider timing
and power limited parametric yield simultaneously.

A variety of strategies has been proposed for considering the impact of
variability on timing yield. One effect of variability on the behavior of high-
performance well-tuned circuits is the spreading among the timing paths
from the “wall” of critical paths generated by circuit tuning [1]. The more
the paths pushed against the wall, the bigger is the detrimental impact of
variability in pushing out the performance. We could improve timing yield
by reducing the height of the path delay “wall”, since it is simply an artifact
of mathematical optimization, which is hard to justify considering the practical
design limitations. A penalty function can be introduced in the circuit tuner
to prevent such path build-up [1]. This is an indirect strategy for yield impro-
vement however, since the true path delay variance is not used to guide
optimization.

It is possible to formulate a general statistical gate sizing problem that
can be described by analytical but non-linear functions and solve it directly
using a general non-linear solver [15]. The objective and constraints are
expressed as explicit functions of the mean and variance of gate delays.
However, the techniques relying on non-linear optimization tend to be exces-
sively slow which would greatly limit the capacity for large-scale circuit
optimization. In [33] an extension to the Lagrangian relaxation based app-
roach [11] is proposed. Here, the gate sizing problem is solved iteratively
while updating the required arrival time constraint using information from a
statistical timing analyzer. The notion of timing yield is incorporated by
making the delay target be defined at a quantile value. More efficient formu-
lations based on geometric programming are also possible. In [29], the fact
that sizing problems have fairly flat maxima is exploited by utilizing heuristic
techniques to compute the “soft-max” of arrival times. Statistical static timing
analysis is then used to guide the optimization in the right direction. The

Winning the Power Struggle in an Uncertain Era 307

algorithm based on geometric programming presented in [35] models
parameter variations using an uncertainty ellipsoid, and proceeds to construct
a robust geometric program, which is solved by convex optimization tools.
Efficient algorithms based on the special structure of convex problems, such
as conic programming, have also been used for statistical gate sizing [19].

However, as we have argued earlier in the chapter, in the nanometer
regime, parametric timing yield alone is not a sufficient metric as it ignores
variability in leakage power. This necessitates the development of computa-
tionally efficient statistical optimization techniques to minimize parametric
yield loss resulting from power and delay variability [24][20] [37]. The early
work [37] extends to a statistical setting the well-known iterative coordinate-
descent algorithm, best exemplified in the electronic design automation area
by TILOS [12]. Specifically, it performs leakage power minimization using
the power-reduction potential provided by a dual-Vth technology and by gate
sizing. In the deterministic approach, the initial configuration is one which
meets timing constraints and has all gates set to low-Vth. Gates are subse-
quently swapped from low-Vth to high Vth based on the following sensitivity
measure s:

 ps
d
δ∆

=
∆

 (12.7)

Here ∆p and ∆d are the changes in power dissipation and delay of the gate if
it is swapped to high-Vth and δ is the slack of the gate (see Equation (6.4) in
Section 6.2 for more details). If the timing constraints are violated after a
swap is made, gates are upsized depending on their efficiency to convert the
additional power accrued due to resizing to reduction in delay.

In the statistical counterpart of this optimization strategy, statistical timing
analysis is used to determine if timing constraints are met. Additionally, the
first and second moments of sensitivities are used instead of nominal sensi-
tivity values. However, one major limitation of using a greedy sensitivity
based approach described above, is that it may make sub-optimal decisions
as it views one gate at a time. This is illustrated in a deterministic setting
in Chapter 6, where larger power savings can be achieved by adopting a
framework that has a global view of the circuit.

The power savings enabled by this statistical algorithm, as compared
to its deterministic counterpart, range from 15% to 35%. The algorithm is
computationally expensive, however. While it is based on coordinate-descent
algorithms that have proved their practical utility in gate sizing, the extension
to the statistical setting causes the run-time to grow considerably. This may
become a concern when using the algorithm on large circuits. The optimization
approach discussed in the next section is about an order of magnitude faster
than the approach in [37], due to the efficient statistical optimization problem
formulation as a second order conic program (SOCP).

308 Chapter 12

12.5 EFFICIENT STATISTICAL PARAMETRIC

YIELD MAXIMIZATION

The primary limitation of existing statistical CAD techniques is their
high computational cost. This makes the application of such algorithms to
industrial-size circuits a difficult task. In this section, we focus thoroughly
on a statistical yield enhancement technique that achieves high computa-
tional efficiency, while treating both timing and power metrics probabilis-
tically [20].

12.5.1 Power Minimization by Delay Budgeting

In order to enable an efficient computational formulation, the problem of
parametric yield maximization in this algorithm is converted into that of
statistical leakage minimization under probabilistic timing constraints. It
uses a two phase approach based on optimal delay budgeting and slack
utilization, akin to [27]. The delay budgeting phase is formulated as a robust
version of the power-weighted linear program that assigns slacks based on
power-delay sensitivities of gates. The notion of variability in delay and power
due to process variations is explicitly incorporated into the optimization, by
setting up an uncertain robust linear program. The statistical (robust) linear
program is cast into a second order conic program that can be solved effi-
ciently. The slack assignment is inter-leaved with the configuration selection
which optimally redistributes slack to the gates in the circuit to minimize
total power savings.

Post-synthesis circuit optimization heuristics for sizing and dual-Vth
allocation are effective in reducing leakage, and have been widely explored
in a deterministic setting [27][36][43]. While relying on different implemen-
tation strategies, all these techniques essentially trade the slack of non-critical
paths for power reduction by either downsizing the transistors or gates or
setting them to a higher Vth.

Since the joint sizing and dual-Vth assignment optimization problem is
computationally hard, it is convenient to move into the power delay confi-
guration space as described below. The deterministic algorithm for power
minimization is a two-phase iterative relaxation scheme. The input to the
first phase is a circuit sized for maximum slack using a transistor (gate) sizing
algorithm, such as TILOS [12], with all the devices set to low Vth.. This
circuit has the highest possible power consumption of any circuit realization.
The available slack is then optimally distributed to the gates based on the
power-delay sensitivities: that is, the slack is allocated in a way that maximizes
the power reduction. The second phase consists of a local search among gate
configurations in the library, such that slack assigned to gates in previous
phase is utilized for power reduction.

Winning the Power Struggle in an Uncertain Era 309

The idea of using power-delay sensitivity of a circuit as an optimization
criterion is itself well known [21]. A linear measure of a gate’s power-delay
sensitivity is power reduction per unit of added delay:

 Ps
D
∂

= −
∂

 (12.8)

The power reduction for gate i with an added delay d(i) 0≥ is then linearly
approximated by s(i)d(i). A unit of added slack to a node with a higher
sensitivity will lead to the greater power reduction. This concept is extended
to efficient optimization based on large-scale linear programming by conver-
ting a power minimization problem into a power-weighted slack redistri-
bution. This is similar to the metric in [37], Equation (12.7), but instead of
looking at each gate individually and greedily picking the gate with the best
trade-off, a linear program is used to assign the added delays with a global
view of the power savings that may be achieved.

Let a gate configuration be any valid assignment of sizes and threshold
voltages to transistors in a gate in the library. For any fixed load, a set of
Pareto points in the power-delay space can be identified among all the
possible configurations (Figure 12.4). A power optimal solution will contain
only the Pareto-optimal gate configurations. The trade-offs between delay
and both leakage and dynamic power can be captured in tables, parameterized
by the capacitive load. For each of the Pareto-optimal gate configurations,
the decrease in power consumption (∆P) and the change in delay (∆D) are
calculated. For example, one may compute the sensitivity of changing the
gate from all transistors having low Vth to the configuration where all tran-
sistors have high Vth.

Using this framework, a linear program can be formulated to distribute
slack to gates with the objective of maximizing total power reduction while
satisfying the delay constraints on the circuit. This can be expressed as [27]:

max

maximize

subject to , for all fanin()
, for all primary outputs

0

i i

i j i i

k

i

s d

t t d d j i
t T k

d dδ

≥ + + ∈
≤ ∈
≤ ≤

∑
0

 (12.9)

Here ti is the arrival time at node i, Tmax is the required arrival time at the
primary output, di

0 is the delay of the gate i in the circuit configuration
obtained by sizing for maximum slack, di is the additional slack assigned,
and δd is the maximum allowed slack increment.

310 Chapter 12

(a) With a 5fF capacitive load and input slew 0.2ns.

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

0

5

10

15

20

25

30

35

40

Po
w

er
 (u

W
)

Delay (ps)

low Vth PMOS, low Vth NMOS
low Vth NMOS, high Vth PMOS
low Vth PMOS, high Vth NMOS
high Vth PMOS, high Vth NMOS
Pareto optimal curve

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

0

5

10

15

20

25

30

35

40

Po
w

er
 (u

W
)

Delay (ps)

low Vth PMOS, low Vth NMOS
low Vth NMOS, high Vth PMOS
low Vth PMOS, high Vth NMOS
high Vth PMOS, high Vth NMOS
Pareto optimal curve

low Vth PMOS, low Vth NMOS
low Vth NMOS, high Vth PMOS
low Vth PMOS, high Vth NMOS
high Vth PMOS, high Vth NMOS
Pareto optimal curve

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

0

5

10

15

20

25

30

35

40

Po
w

er
 (u

W
)

Delay (ps)

low Vth PMOS, low Vth NMOS
low Vth NMOS, high Vth PMOS
low Vth PMOS, high Vth NMOS
high Vth PMOS, high Vth NMOS
Pareto optimal curve

(b) With a 15fF capacitive load and input slew 0.2ns.

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23

0

5

10

15

20

25

30

35

40

Po
w

er
 (u

W
)

Delay (ps)

low Vth PMOS, low Vth NMOS
low Vth NMOS, high Vth PMOS
low Vth PMOS, high Vth NMOS
high Vth PMOS, high Vth NMOS
Pareto optimal curve

low Vth PMOS, low Vth NMOS
low Vth NMOS, high Vth PMOS
low Vth PMOS, high Vth NMOS
high Vth PMOS, high Vth NMOS
Pareto optimal curve

(b) With a 15fF capacitive load and input slew 0.2ns.
Figure 12.4 The power-delay space for a NAND2 gate driving two different capacitive loads.
The Pareto frontier is depicted by the dashed gray lines. A power-optimal circuit will consist
exclusively of Pareto-optimal gate configurations. The points on a curve correspond to the
nine different gate sizes in the library. SPICE simulations were used for analysis with a 70nm
process using the Berkeley Predictive Technology Model [9].

Winning the Power Struggle in an Uncertain Era 311

combinational gate
level netlist

linear program assigns delay to each gate
to maximize power reduction ∑sidi,

subject to ti < Tmax.

change gates with sufficient slack

∆P > ε

calculate cell with best power reduction
for each gate (s = –∂P/∂d)

Size for minimim delay with low Vth with
linear program to generate maximum slack

yes
no

optimized netlist

70nm cell
library

switching activities
& state probabilities

combinational gate
level netlist

combinational gate
level netlist

linear program assigns delay to each gate
to maximize power reduction ∑sidi,

subject to ti < Tmax.

change gates with sufficient slack

∆P > ε

calculate cell with best power reduction
for each gate (s = –∂P/∂d)

Size for minimim delay with low Vth with
linear program to generate maximum slack

yes
no

optimized netlistoptimized netlist

70nm cell
library

70nm cell
library

switching activities
& state probabilities
switching activities
& state probabilities

Figure 12.5 Flowchart illustrating the iterative relaxation algorithm for power minimization.

The algorithm is constructed as an iterative relaxation method. Its core is
an interleaved sequence of (i) optimal slack-redistribution using linear
programming, and (ii) the local search over the gate configuration space to
identify a configuration that will absorb the assigned slack (Figure 12.5). It
has been shown that when the configuration space is continuous, and delay
is a monotonic and separable function, such a procedure is optimal for small
increments of slack assignments δd [40]. As the sensitivity vector (si) is a
first order linear approximation, it is only accurate within a narrow delay
range, which also requires moving towards the solution under small slack
increments.

The library consists of two discrete threshold voltages (0.1V and 0.2V),
and a continuous range of gate sizes, with piecewise linear interpolation of
delay and power versus load capacitance from SPICE characterization.
Assuming a continuous range of gate sizes is reasonable, given that good
low power standard cell libraries should have finely grained gate sizes or use
a “liquid cell” sizing methodology. Even though the configuration space
generated by Vth assignments is discrete, the ability to size transistors in a
continuous manner permits treating the delay range for a cell as continuous.
This ensures that a configuration maximally utilizing the slack allotted in
the slack assignment phase can be found. The value for δd is chosen heuris-
tically – as long as δd is small enough (relative to Tmax of the circuit), the
approach produced good results. A typical value chosen for δd was 2% of
the clock period Tmax.

312 Chapter 12

Table 12.1 Low Vth devices exhibit a higher leakage spread, while high Vth devices exhibit a
higher delay spread.

Nominal 99th percentile Nominal 99th percentile
Low V th (0.1V) 1.00 1.15 1.00 2.15
High V th (0.2V) 1.20 1.50 0.12 0.20

Delay Leakage

12.5.2 Statistical Delay Budgeting using Robust Linear
Programming

We now describe how the statistical equivalent for the power minimi-
zation problem under variability is reformulated as a robust linear program.
This will permit using interior-point methods that are highly efficient for
solving convex optimization problems. In order to make the presentation
specific, we assume that there are two primary sources of variability: effective
channel length (Leff) and gate-length independent variation of threshold
voltage (Vth). These parameters have significant impact on timing (Leff) and
leakage power (Vth). In general, more sources of variation can be used. An
additive statistical model that decomposes the variability, of both Leff and Vth,
into the global and local variability components is used. For gate length the
model is
 0eff g lL L L L= + ∆ + ∆ (12.10)

A similar model is used for Vth. Consistent with empirical data, both Leff and
Vth are assumed to be Gaussian random variables. Under the leakage models
described earlier in the chapter, the leakage power (Equation (12.6)) is a log-
normal random variable. In contrast, assuming a fixed clock frequency, it
was observed that the dynamic power was only a weak function of process
variability in Leff. It can be shown that and the sensitivity coefficient also
follows a log-normal distribution. The modeling framework gives the ability
to account for the different values of parameter variability in low-Vth and
high-Vth gates: low-Vth gates exhibit higher variation in leakage, while high-
Vth gates exhibit higher delay variability. This is illustrated in Table 12.1 for
a 70nm process.

Robust optimization is concerned with ensuring the feasibility and opti-
mality of the solution under all permissible realizations of the coefficients of
the objective and constraint functions [5]. The novelty of the described
algorithm is that it sets up a rigorous statistical equivalent of the slack
assignment using the notion of robust linear programming and explicitly
incorporates uncertainty in a formulation that is amenable to highly efficient
computation. When formulating a statistical power minimization problem,
an equivalent formulation of Equation (12.9), which places the power weighted

Winning the Power Struggle in an Uncertain Era 313

slack vector into the constraint set, is more convenient. Suppose that Pmax is
the initial maximum power, P̂ is the optimal power achieved by Equation
(12.9) at a specific Tmax, and 1̂d the vector of optimal allocated slacks. The
following optimization problem is equivalent to Equation (12.9):

max

max

minimize
ˆsubject to

, for all fanin()
, for all primary outputs

0

i

i i

i j i i

k

i

d

s d P P
t t d d j i
t T k

d dδ

≥ −
≥ + + ∈
≤ ∈
≤ ≤

∑
∑

0 (12.11)

That is, if 2d̂ denotes allocated slacks for Equation (12.11), it can be shown
that 1 2

ˆ ˆ=d d , and 1 2
ˆ ˆ()= ()P d P d is a minimum power solution at the specified

Tmax. Equation (12.11) forces the linear program to place a premium on the
total slack and assign more slack to gates with higher sensitivity in order to
meet the power constraint. The statistical equivalent of Equation (12.11) is
now formulated by probabilistically treating the uncertainty of the sensitivity
vector and of timing constraints:

()

()

max

max

minimize

ˆsubject to Pr

, for all fanin()
Pr , for all primary outputs
0

i

i i

i j i i

k

i

d

s d P P

t t d d j i
t T k
d d

η

ζ
δ

≥ − ≥

≥ + + ∈

≤ ≥ ∈

≤ ≤

∑
∑

0 (12.12)

Here, the deterministic constraints have been transformed into probabilistic
constraints, where Pr() denotes the probability of the expression inside the
brackets. These probabilistic constraints set respectively the power-limited
parametric yield η, and the timing-limited parametric yield ζ. Based on the
formulation of the model of uncertainty, they capture the uncertainty due to
process parameters via the uncertainty of power and delay metrics.

The above probabilistic inequalities have to be reformulated such that
they can be efficiently handled by available optimization methods. The
challenge is to handle these inequalities analytically, in closed form. The
probabilistic timing constraints in Equation (12.12) are transformed such that
the resulting expression still guarantees achieving the specified parametric
yield level using the quantile (percent point) function:
 1

max()i Di
D Tφ ζ σ−+ ≤ (12.13)

where Di
σ is the standard deviation of the ith path with delay Di at primary

output i. In order to reduce the number of constraints and increase the

314 Chapter 12

sparsity of the constraint matrices, the path-based constraints are further
transformed into node-based constraints. A heuristic method of modeling
the node delays with 1()i di

d φ ζ σ−+0 0 , where
di

σ 0 is the standard deviation of

the gate delay, worked well in practice, but more sophisticated mappings
can be introduced. This permits the formulation of the probabilistic timing
constraint as:

max

1

, for all primary outputs

() , for all fanin()
k

i j i idi

t T k

t t d d j iφ ζ σ−

≤ ∈

≥ + + + ∈0
0

 (12.14)

Using the fact that sensitivity is a lognormal random variable, the power
constraint can be transformed into one which is linear in the mean and
variance of sidi:

1/ 2

1

minimize

subject to ()() ln() / ()
, for all fanin()
() , for all fanin()

0

i

T T
s

i j i i

i j i idi

i

d

s d d d P
t t d d j i
t t d d j i

d d

κ η λ η

φ ζ σ

δ

−

+ Σ ≤ ∆
≥ + + ∈

≥ + + + ∈

≤ ≤

∑

0

0
0

 (12.15)

Here, η and ζ are the power and timing-limited parametric yields;
(,)ss LN s Σ∼ is the log-normal sensitivity vector with mean s and co-

variance matrix ∑s; and λ(η) and κ(η) are the fitting functions dependent on
η. The mean, variance and covariance of leakage and delay are characterized
via a Monte-Carlo simulation for all the cells in the library. The statistical
properties of the power-delay sensitivity of the cell can then be computed
analytically.

The above problem has a special structure that can be exploited to per-
form very fast optimization. The reason is that the constraints are second-
order conic functions that can be efficiently optimized by interior point
methods [31]. Because the second-order conic programs are convex [5], they
guarantee a globally optimal solution to this slack redistribution formulation
that considers variation. The reliance on interior-point methods means that
the computational complexity of solving this non-linear program is close to
that of linear programming, and this is confirmed by experiments. The
second phase of the power minimization algorithm is linear in the number of
alternatives in the gate configuration space.

Winning the Power Struggle in an Uncertain Era 315

12.5.3 Evaluating the Effectiveness of Statistical Power

Optimization

The above algorithm was implemented in C as a pre-processing module
to interface with the commercial conic solver in MOSEK [23]. The bench-
mark circuits were synthesized to a cell library that was characterized for a
70nm process using Berkeley Predictive Technology Model [9] .

The gates present in the library are NOR2, NOR3, NOR4, NAND2,
NAND3, NAND4 and inverter. Gates have eight discrete sizes, ranging from
1× to 8× the minimum size, and were characterized for a fixed input slew of
20ps. To permit treating the configuration space as continuous, an interpolating
function was used to obtain the delay and leakage of gate sizes between the
SPICE characterized sizes. Gate delay (average of worst case rise and fall
delay) and internal power were specified by lookup tables for each value of
load capacitance. Switching power was calculated as αfCLVdd

2, where α is the
activity factor, f is the clock frequency, CL is the load capacitance, and Vdd is
the supply voltage. The activity factors and state probabilities were deter-
mined by random simulation. Leakage power was computed for each input
state and the state probabilities were used to obtain the average leakage. The
delay analysis can be extended to include separate timing arcs and slews as
in the linear programming formulation in Chapter 6.

It is assumed that granularity of Vth allocation is at the NMOS/PMOS
stack level. For NMOS (PMOS) transistors, the high threshold voltage is
0.20V (–0.20V) and the low threshold voltage is 0.10V (–0.10V). Different
levels of variability in Leff were explored ranging from 3% to 8% of σ/µ.
Pelgrom’s model [30] is used to describe σVth dependence on transistor size.
The assumed magnitude of Vth variability is σ/µ = 7%. An equal breakdown
of variability into global and local components was used. Spatial correlation
of local variability was not considered, but could be incorporated into the
algorithm if needed.

The fundamental reason for the reduction in power enabled by statistical
optimization is the ability of the statistical algorithm to explicitly account for
the variance of constraint and objective functions. Because of this statistical
optimization allots slack more efficiently in that it penalizes allocation of
slack to gates with high power variance. As a result, the spread of the leakage
distribution is reduced and the mean is shifted towards lower values. Figure
12.6 shows the probability distribution function of the static power obtained
by Monte Carlo simulation of the circuit configurations produced by the
statistical and deterministic optimizations. The figure indicates that the static
power savings increase at higher percentiles. Another manifestation of the
greater effectiveness of statistical optimization is the fact that it can assign
more transistors to a high Vth. For example, for the c432 ISCAS’85 bench-
mark [6] optimized for a target delay of 0.55ns for 99.9% timing and power

316 Chapter 12

yields, the number of transistors set to high Vth by the statistical algorithm is
20% more than the corresponding number for the deterministic algorithm.

The comparison of statistical optimization and deterministic optimization
results is further illustrated in Figure 12.7. Under the same power and timing
yield constraints (ζ = η = 99.9%), statistical optimization produces uniformly
better power-delay curves. The improvement strongly depends on the under-
lying structure of physical process variation. As the amount of uncorrelated
variability increases, i.e. the local component grows in comparison with the
global component, the power savings enabled by statistical optimization
increase. The power savings at the 95th percentile are 23%, and those at 99th
percentile are 27% respectively. The ability to directly control the level of
parametric power- and timing-limited yield permits choosing a “sweet spot”
in the power-delay space.

Figure 12.8 and Figure 12.9 show a set of power-delay curves for one of
the benchmarks, c432. Figure 12.8 plots the total power vs. delay at the
output obtained by running the statistical optimization for various timing
yield levels (ζ), with the power yield set at 99.9%. It can be observed that at
tight timing constraints the difference in power optimized for different yield
levels is significant. Figure 12.9 confirms that optimizing the circuit for a
lower power yield will lead to higher total power consumption and longer
delay. For the same yield, the trade-off between power and arrival time is
much more marked at tighter timing constraints.

50 100 150 200 250 300 350 400 450
0.000

0.002

0.004

0.006

0.008

0.010

Fr
eq

ue
nc

y

Statistical Optimization
Deterministic Optimization

Static Power (uW)
50 100 150 200 250 300 350 400 450

0.000

0.002

0.004

0.006

0.008

0.010

Fr
eq

ue
nc

y

Statistical Optimization
Deterministic Optimization

Static Power (uW)
Figure 12.6 The probability distribution functions of static (leakage) power produced by a
Monte Carlo simulation of the benchmark circuit (c432) optimized by the deterministic and
statistical algorithms.

Winning the Power Struggle in an Uncertain Era 317

0.60 0.61 0.62 0.63 0.64 0.66 0.67

600

650

700

750

800

850

900 Deterministic optimization
Statistical: inter and intra-chip variation
Statistical: all intra-chip variation

T
ot

al
 P

ow
er

 (u
W

)

Delay (ns)
Figure 12.7 Power-delay curves for 99.9% timing and power yield. Statistical optimization
does uniformly better. For the case of mixed inter- and intra-chip variability, an equal
breakdown is assumed.

0.53 0.56 0.58 0.60 0.62 0.64 0.67
550

600

650

700

750

800

850

900
Timing yield = 99.9%
Timing yield = 95%
Timing yield = 84%

Po
w

er
 a

t 9
9.

9%
 P

ow
er

 Y
ie

ld

Delay (ns)
Figure 12.8 Power-delay curves at different timing yield levels for the c432 benchmark. At
larger delay, the power penalty for higher yield is smaller.

600 700 800 900 1000 1100 1200 1300

0.60

0.61

0.62

0.63

0.64

0.66

0.67

0.68 Power Yield = 99.9%
Power Yield = 95.4%
Power Yield = 84.0%

D
el

ay
 (n

s)
 a

t 9
9.

9%
 D

el
ay

 Y
ie

ld

Total power (uW)
Figure 12.9 Power-delay curves at different power limited yields

318 Chapter 12

0

5

10

15

20

25

30

35

40

sc_
ivl

og
ic

sc_
inc

12

sc_
edc

s1
c43

2
c49

9
c88

0
c13

55
c19

08
c26

70
c35

40
c53

15
c62

88

Benchmark

Po
w

er
 r

ed
uc

tio
n

(%
)

Static Power

Total Power

Figure 12.10 Savings in total and leakage power enabled by the statistical algorithm across
the benchmark circuits (the ISCAS’85 benchmark circuits [6] and IBM benchmarks courtesy
of A. Devgan). Average savings of 33% in leakage power and 17% in total power are
obtained.

Figure 12.10 captures the savings in power obtained by employing the
statistical optimization algorithm outlined in this section. The average leakage
power savings are 33%, which can be achieved without the loss of timing
or power yield by statistical optimization, as opposed to the deterministic
approach.

Figure 12.11 shows the run-time behavior of the algorithm. The chara-
cteristics of the circuits on which the algorithm was tested are shown in
Table 12.2. The algorithm was run on a dual core 1.5GHz AMD Athlon
workstation with 2GB of RAM. The optimization problems were solved
using the interior point optimization package MOSEK [23]. A single SOCP
optimization run of c6288 for slack assignment takes about 11 seconds. It
can be seen that the run-time is roughly linear in circuit size making the
algorithm scalable to large industrial blocks. Note that quadratic runtime
growth has been observed by other authors for linear programming (LP) in
some cases (see Section 6.6).

The formulation of dual Vth assignment and gate sizing based on SOCP
is more than an order of magnitude faster than a coordinate descent algorithm
based on [37]. This speedup is obtained due to the special structure of the
SOCP program, which is not available to general nonlinear problem solvers,
enabling the optimization problem to be solved extremely efficiently. We
observed that the constraint matrix of the SOCP formulation is quite sparse –
this makes the solution of the SOCP problem quite efficient.

Winning the Power Struggle in an Uncertain Era 319

Table 12.2 Circuit characteristics and run time.

Number Number Number
Circuit of gates of Inputs of Outputs Logic Depth Run Time (s)

sc_ivlogic 40 8 6 9 9
sc_inc12 78 16 9 8 10
sc_edcs1 258 28 12 8 30
c432 261 36 7 23 31
c499 641 41 32 23 52
c880 615 60 26 22 47
c1355 685 41 32 18 56
c1908 1,238 33 25 29 122
c2670 2,041 233 140 25 153
c3540 2,582 50 22 44 171
c5315 3,753 178 123 27 241
c6288 2,704 32 32 88 273

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

SOCP
LP

R
un

 ti
m

e
(s

)

Number of Nodes
Figure 12.11 Run time behavior of the statistical total power optimization algorithm (SOCP).
This is compared to the runtime for solving the deterministic linear programming (LP)
problem. Runtime grows linearly with circuit size.

12.6 SUMMARY

In this chapter, we have analyzed the impact of variability on power and
its impact on circuit performance and yield. In the recent past it was suffi-
cient to model the impact of variability on timing. With high-end designs
experiencing a double-sided squeeze on parametric yield due to the power-
dissipation limits, power variability needs to be explicitly taken into account.
This requires the adoption of new analysis and optimization methodologies

320 Chapter 12

that incorporate the notion of power-limited parametric yield loss. While
there are currently no commercially available CAD tools for parametric
yield optimization, the area of parametric yield analysis and optimization is
rapidly developing, and it can be expected that such tools will soon appear
on the market. Continued progress in this tool development area will help
ASIC designers deal with variability in a far more effective fashion.

12.7 REFERENCES
[1] Bai, X., et al., “Uncertainty aware circuit optimization,” in Proc. of Design Automation

Conference, 2002, pp. 58-63.
[2] Boning, D., and Nassif, S., “Models of Process Variations in Device and Interconnect,”

Design of High-Performance Microprocessor Circuits, A. Chandrakasan (ed.), 2000.
[3] Borkar, S., et al., “Parameter variation and impact on Circuits and Microarchitecture,” in

Proc. of Design Automation Conference, 2003, pp. 338-342.
[4] Bowman, K., and Meindl, J., “Impact of within-die parameter fluctuations on the future

maximum clock frequency distribution,” in Proc. of IEEE Custom Integrated Circuits
Conference, 2001, pp. 229-232.

[5] Boyd, S., and Vandenberghe, L., Convex Optimization, New York, NY, Cambridge
University Press, 2004.

[6] Brglez, F., and Fujiwara, H., “A neutral netlist of 10 combinational benchmark circuits
and a target translator in Fortran,” in Proc. International Symposium on Circuits and
Systems, 1985, pp. 695-698.

[7] Brodersen, R., et al., “Methods for True Power Minimization,” in Proc. of International
Conference on Computer Aided Design, 2002, pp. 35-40.

[8] Burnett, D., et al., “Implications of Fundamental Threshold Voltage Variations for High -
Density SRAM and Logic circuits,” in Proc. Of Symposium on VLSI Technology, 1994,
pp. 15-16.

[9] Cao, Y., et al., “New paradigm of predictive MOSFET and interconnect modeling for
early circuit design,” in Proc. of IEEE Custom Integrated Circuits Conference, 2000, pp.
201-204.

[10] Chang, E., et al., “Using a Statistical Metrology Framework to Identify Systematic and
Random Sources of Die- and Wafer-level ILD Thickness Variation in CMP Processes,”
in Proc. of International Electron Devices Meeting, 1995, pp. 499-502.

[11] Chen, C., Chu, C., and Wong, D., “Fast and exact simultaneous gate and wire sizing by
Lagrangian relaxation,” in Proc. of International Conference on Computer Aided Design,
1998, pp. 617-624.

[12] Fishburn, J., and Dunlop, A., “TILOS: A Posynomial Programming Approach to
Transistor Sizing,” in Proc. of International Conference on Computer Aided Design,
1985, pp. 326-328.

[13] Fitzgerald, D., “Analysis of polysilicon critical dimension variation for submicron
CMOS processes,” M.S. thesis, Dept. Elect. Eng. Comp. Sci., Mass. Inst. Technol.,
Cambridge, June 1994.

[14] Hakim, N., “Tutorial on Statistical Analysis and Optimization,” Design Automation
Conference, 2005.

[15] Jacobs, E., and Berkelaar, M., “Gate sizing using a statistical delay model,” in Proc. of
Design Automation Conference, 2000, pp. 283-290.

[16] Keshavarzi, A., et al., “Measurements and modeling of intrinsic fluctuations in MOSFET
threshold voltage,” in Proc. of International Symposium on Low Power Electronics and
Design, 2005, pp. 26-29.

Winning the Power Struggle in an Uncertain Era 321

[17] Lenevson, M., Viswanathan, N., and Simpson, R., “Improving resolution in photolitho-

graphy with a phase-shifting mask,” IEEE Transactions On Electron Devices, vol. 29
(11), pp. 1828-1836, 1982.

[18] Lee, D., Blaauw, D., and Sylvester, D., “Gate Oxide Leakage Current Analysis and
Reduction for VLSI Circuits,” IEEE Transactions on Very large Scale Integration (VLSI)
Systems, vol. 12(2), pp.155-166, February 2004.

[19] Mani, M., and Orshansky, M., “A new statistical optimization algorithm for gate sizing,”
Proc. of International Conference on Computer Design, 2004, pp. 272 – 277.

[20] Mani, M., Devgan, A., and Orshansky, M., “An Efficient Algorithm for Statistical
Minimization of Total Power under Timing Yield Constraints,” in Proc. of Design
Automation Conference, 2005, pp. 309-314.

[21] Markovic, D., et al., “Methods for true energy-performance optimization,” IEEE Journal
of Solid-State Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

[22] Mehrotra, V., et al., “Modeling the effects of manufacturing variation on high-speed
microprocessor interconnect performance,” in International Electron Devices Meeting
Technical Digest, 1998, pp. 767-770.

[23] MOSEK ApS, The MOSEK optimization tools version 3.2 (Revision 8), User’s manual
and reference. http://www.mosek.com/documentation.html#manuals

[24] Nassif, S., “Delay Variability: Sources, Impact and Trends,” in Proc. of International
Solid-State Circuits Conference, 2000, pp. 368-369.

[25] Nassif, S., “Statistical worst-case analysis for integrated circuits,” Statistical Approaches
to VLSI, Elsevier Science, 1994.

[26] Nassif, S., “Within-chip variability analysis,” in International Electron Devices Meeting
Technical Digest, 1998, pp. 283-286.

[27] Nguyen, D., et al., “Minimization of dynamic and static power through joint assignment
of threshold voltages and sizing optimization,” in Proc. of International Symposium on
Low Power Electronics and Design, 2003, pp. 158-163.

[28] Orshansky, M., Chen, J., and Hu, C., “A Statistical Performance Simulation Methodo-
logy for VLSI Circuits,” in Proc. of Design Automation Conference, 1998, pp. 402-407.

[29] Patil, D., et al., “A New Method for Design of Robust Digital Circuits,” in Proc. of
International Symposium on Quality of Electronic Design, 2005, pp. 676-681.

[30] Pelgrom, M., Duinmaijer, A., and Welbers, A., “Matching properties of MOS
transistors,” IEEE Journal of Solid-State Circuits, Vol. 24, pp. 1433-1439, Oct. 1989.

[31] Prekopa, A., Stochastic Programming, Kluwer Academic, 1995.
[32] Rao, R., et al., “Parametric Yield Estimation Considering Leakage Variability,” in Proc.

of Design Automation Conference, 2004, pp. 442-447.
[33] Seung, P., Paul, B., and Roy, K., “Novel sizing algorithm for yield improvement under

process variation in nanometer technology, ”in Proc. of Design Automation Conference,
2004, 2004, pp. 454-459.

[34] Semiconductor Industry Association, International Technology Roadmap for Semi-
conductors, 2001.

[35] Singh, J., et al., “Robust gate sizing by geometric programming,” in Proc. of Design
Automation Conference, 2005, pp. 315-320.

[36] Sirichotiyakul, S., et al., “Stand-by power minimization through simultaneous threshold
voltage selection and circuit sizing,” in Proc. of Design Automation Conference, 1999,
pp. 436-441.

[37] Srivastava, A., Sylvester, D., and Blaauw, D., “Statistical optimization of leakage power
considering process variations using dual-Vth and sizing,” in Proc. of Design Automation
Conference, 2004, pp. 773-778.

[38] Stine, B., Boning, D., and Chung, J., “Analysis and decomposition of spatial variation in
integrated circuit processes and devices,” IEEE Transactions On Semiconductor Manu-
facturing, vol. 1, pp. 24-41, Feb. 1997.

322 Chapter 12

[39] Stine, B., et al., “A Closed-Form Analytic Model for ILD Thickness Variation in CMP

Processes,” in Proc. of CMP-MIC, pp. 266-273, 1997.
[40] Sundararajan, V., Sapatnekar, S., and Parhi, K., “Fast and Exact Transistor sizing Based

on Iterative Relaxation,” IEEE Transactions on Computer Aided Design, vol. 21, no. 5,
pp. 568-581, May 2002.

[41] Taur, Y., and Ning, T., Fundamentals of Modern VLSI Devices, Cambridge Univ. Press,
1998.

[42] Takeuchi, K., Tatsumi, T., and Furukawa, A., “Channel Engineering for the Reduction of
Random-Dopant-Placement-Induced Threshold Voltage Fluctuations,” in International
Electron Devices Meeting Technical Digest, 1997, pp. 841-844.

[43] Wang, Q., and Vrudhula, S., “Static power optimization of deep submicron CMOS
circuit for dual Vth technology,” Proc. of International Conference on Computer Aided
Design, 1998, pp. 490-496.

Chapter 13 13

PUSHING ASIC PERFORMANCE IN A POWER
ENVELOPE

Leon Stok, Ruchir Puri, Subhrajit Bhattacharya, John Cohn
IBM Research, Yorktown Hts, NY
IBM Microelectronics, Essex Jn, VT
leonstok,ruchir,sbhat,johncohn@us.ibm.com

Dennis Sylvester, Ashish Srivastava, Sarvesh Kulkarni
EECS, University of Michigan,Ann Arbor, MI
dmcs,ansrivas,shkulkar@umich.edu

Power dissipation is becoming the most challenging design constraint in

nanometer technologies. Among various design implementation schemes,
standard cell ASICs offer the best power efficiency for high-performance
applications. The flexibility of ASICs allow for the use of multiple voltages
and multiple thresholds to match the performance of critical regions to their
timing constraints, and minimize the power everywhere else. We explore the
trade-off between multiple supply voltages and multiple threshold voltages
in the optimization of dynamic and static power.

The use of multiple supply voltages presents some unique physical and
electrical challenges. Level shifters need to be introduced between the various
voltage regions. Several level shifter implementations are discussed. The
physical layout needs to be designed to ensure the efficient delivery of the
correct voltage to various voltage regions. More flexibility can be gained by
using appropriate level shifters.

To conclude this chapter, we present a semi-custom design methodology
which illustrates the benefit of a subset of these low-power optimization
techniques using a DSP (digital signal processor) chip for satellite communi-
cation. Chips for satellite communications have very stringent requirements
on power dissipation but require significant processing capability. These
classes of chips are therefore an excellent test for a methodology that brings
many of the low power optimizations together.

324 Chapter 13

13.1 INTRODUCTION

Power efficiency is becoming an increasingly important design metric in
deep submicron designs. ASICs have a significant power advantage over
other implementation methods. A dedicated ASIC will have a significantly
better power-performance product than a general purpose processor or
regular fabrics such as FPGAs. For designs that push the envelope of power
and performance, ASIC technology remains the only choice. However, the
cost pressures in nanometer technologies are forcing designers to push the
limits of design technology in order to fully exploit increasingly complex
and expensive technology capabilities. In this chapter, we discuss technology,
circuit, layout and optimization techniques to improve the power delay
product. We focus on the issue of pushing ASIC performance in a power
envelope by exploiting the use of multiple supply voltages (Vdd) and
multiple device thresholds (Vth). In Section 13.2, we discuss the trade-off
between multiple Vdd and multiple Vth options to optimize power. In
Section 13.3, we present novel design techniques to physically implement
fine-grained generic voltage islands for multiple-Vdd implementations. In
the context of multi-Vdd implementation, we also present some novel level
conversion circuits which can be used to implement very flexible voltage
island schemes. Finally, we present a design case study to show the relative
impact of some design techniques in a low-power ASIC methodology.

13.2 POWER-PERFORMANCE TRADE-OFF
WITH MULTI-VDD AND MULTI-VTH

This section explores the trade-off between multiple supply voltages and
multiple threshold voltages in the optimization of dynamic and static power.
From a dynamic power perspective, supply voltage reduction is the most
effective technique to limit power. However, the delay increase with reducing
Vdd degrades the throughput of the circuit. Similarly, to reduce static power
an increase in Vth provides exponential improvements, again at the expense
of speed. To counter the loss in performance, dual Vdd [5][33] and dual Vth
[22][25][34] techniques have been proposed. These approaches assign gates
on critical paths to operate at the higher Vdd or lower Vth and non-critical
portions of the circuit operate at lower Vdd or higher Vth, reducing the total
power consumption without degrading performance (held fixed as a cons-
traint). These techniques have been successfully implemented, but most of
the existing work focuses on one of these techniques in isolation as opposed
to jointly.

Previous work [11] estimates the optimal Vdd and Vth values to be
used in multi-voltage systems to minimize either dynamic or static power
respectively. They confirm earlier work [32] claiming that, in a dual Vdd
system the optimal lower Vdd is 60-70% of the original Vdd. In general,

Pushing ASIC Performance in a Power Envelope 325

[10][32] have found optimized multi-Vdd systems to provide dynamic
power reductions of roughly 40-45%. In [29], it is shown that intelligently
reducing Vth in multi-Vdd systems can offset the traditional delay penalties
at low-Vdd with lessened static power consequences (due to both the reduced
Vdd and the off-state leakage current levels). In order to explore the achie-
vable design envelope in a joint multiple Vdd and Vth environment, we
abstract a generic CMOS network as a set of non-intersecting parallel paths.
We then formulate a linear programming problem to minimize power by
assigning capacitance (representing gates) on these paths to a combination
of supply and threshold voltages (assuming a known initial path delay distri-
bution) [26].

We perform a path-based analysis of a generic logic network to estimate
the power improvement obtained by applying multiple supply voltages and
multiple threshold voltages. To simplify the problem, we assume node and
edge disjoint paths, as stated above. We also assume that it is possible to
apply a combination of supplies and thresholds to any fraction of the total
path capacitance. This is equivalent to stating that extended clustered voltage
scaling (ECVS) is used, which allows for asynchronous level conversion
anywhere along a path [32]. While we do not explicitly consider overhead
due to level conversion in most of this work, we describe various level
converter topologies and the impact of their power and delay penalties.

Consider Vdd1 and Vth1 to be the supply and threshold voltages in a
single Vdd/Vth system. If Ctotal is the total path capacitance of a path, then
the total dynamic power dissipation is simply expressed as
 2

1dynamic totalP fC Vdd= (13.1)

where f is the frequency of operation.
Considering the same path implemented in an n-Vdd/m-Vth design, we

define Ci,j as the capacitances operating at a supply voltage Vddi and
threshold voltage Vthj. If we define the capacitance (Ci) to be the capacitance
operating at a supply voltage Vddi, it can be expressed as

 ,
1

m

i i j
j

C C
=

=∑ (13.2)

The total dynamic power dissipation can now be expressed as

 2 2
1

2 2

n n

dynamic total i i i
i i

P f C C Vdd C Vdd
= =

⎛ ⎞⎡ ⎤
= − +⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
∑ ∑ (13.3)

The first term in Equation (13.3) corresponds to the capacitance operating at
Vdd1 and is obtained by subtracting the sum of the capacitances operating at
voltages other than Vdd1 from the total path capacitance C1,1. Now the ratio
of the dynamic power dissipation to the original design, obtained by dividing
Equation (13.3) by Equation (13.1), can be expressed as

326 Chapter 13

2

2 1

11 1
n

i
dynamic i

itotal

VddGain C
C Vdd=

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥= − − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
∑ (13.4)

The static power can be expressed similarly. If Wtotal is the total device
width (both PMOS and NMOS), then the static power dissipation due to
subthreshold leakage, with Vdd1 and Vth1 only, is of the form
 /1

1 10 Vth S
static totalP kVdd W −= (13.5)

where S is the subthreshold swing (typically given in units of mV/decade),
and k is a constant depending on device parameters and temperature. The
reduction in static power in low-Vdd devices is due to: DIBL; the lower Vdd
itself; and other complex device-related phenomena such as the relationship
among doping, Vth, and S [15]. DIBL occurs because the drain bias (Vds)
creates a large drain/substrate depletion region, leading to a reduced Vth.
The typical model for DIBL is linear with Vds:
 0 dsVth Vth Vη= − (13.6)

In this model η is the DIBL coefficient and is typically in the range of 60 to
110mV/V, and Vth0 is the nominal long-channel threshold voltage in the
absence of DIBL. Since Vds is Vdd in typical leakage scenarios, a reduction
in Vdd for a given device leads directly to a rise in Vth and an exponentially
smaller subthreshold leakage current. To capture these effects we assume
that static power is proportional to the square of the supply voltage rather
than the linear relationship expressed in Equation (13.5). If Wi,j is the device
width (both PMOS and NMOS) at supply voltage Vddi and threshold voltage
Vthj then in an n-Vdd/m-Vth design, the static power can be expressed as

//2 21
, 1 ,

(,) (1,1) (,) (1,1)
10 10 Vth SVth S j

static total i j i j i
i j i j

P k W W Vdd W Vdd −−

≠ ≠

⎛ ⎞⎡ ⎤
= − +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑ (13.7)

The gain in static power is given by

2

() /1
,

(,) (1,1) 1

11 1 10 Vth Vth Sji
static i j

i jtotal

VddGain W
W Vdd

− −

≠

⎛ ⎞⎡ ⎤
⎜ ⎟= − − ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ (13.8)

While our results use Equation (13.8) to reflect the relationship between Ioff
and Vdd, experiments using a linear (Vddi/Vdd1) term rather than quadratic
to represent static power gains showed only minor changes in the overall
power reductions and optimal Vdd/Vth values.

The change in delay D when Vdd or Vth is changed is estimated using
the alpha-power law model [23]:

Pushing ASIC Performance in a Power Envelope 327

 1 1
,

1

Vdd Vdd VthiDi j Vdd Vdd Vthi j

α⎛ ⎞⎛ ⎞ −
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠⎝ ⎠

 (13.9)

To obtain the minimum power dissipation condition we note that at the
minima

 () 0d s d sP P P P
x x x

∂ + ∂ ∂
= + =

∂ ∂ ∂
 (13.10)

where Pd is the dynamic power dissipation and Ps is the static power
dissipation, and x represents a design variable such as Vdd or Vth. Let Pd0
represent the dynamic power in the initial design and Ps0 represent the static
power consumption of the initial design. If we minimize a weighted sum of
the gains, where the gains are as expressed in equations (13.4) and (13.8),
we obtain

 0 0((/)) (/) 0d d s sK P P P P
x x

∂ ∂
+ =

∂ ∂
 (13.11)

which can be expressed as

 0

0

0s d s

d

KP P P
P x x

∂ ∂
+ =

∂ ∂
 (13.12)

Comparing equations (13.12) and (13.10), we infer that if we minimize a
weighted sum of the gains in power and define the weighting factor K as the
ratio of dynamic and static power at the initial design point (i.e., K=Pd0 /Ps0)
we minimize the total power dissipation as well.

As shown in [11], the capacitance and transistor width along a path are
largely proportional to the path’s delay. Hence the ratios of widths in
Equation (13.8) can be replaced by ratios of capacitance. At this point the
problem of power minimization for given voltages and thresholds can be
formulated as a linear programming problem with the ratios of capacitances
as the variables.

For an n-Vdd/m-Vth design, there is a corresponding design space over
the allowed range of values for these supply and threshold voltages other
than the initial supply and threshold voltage. For example, for a 2-Vdd/3-Vth
design, points are of the form (Vdd2, Vth2, Vth3), where Vddi∈[0.6V, 1.2V]
and Vthi∈[0.08V, 0.3V], and we assume that Vdd1 is fixed at 1.2V and Vth1
is fixed at 0.3V. For each of these design space points (step size 0.01V
between points), the problem is formulated and the ratios of capacitance
corresponding to different path delays are obtained as a solution of the linear
program. The ratios of capacitance are then integrated over the path-delay
distribution to obtain the total capacitance operating at each combination of
Vdd and Vth. Again, we define the weighting factor K as the ratio of the
dynamic to static power in the original single Vdd/Vth design (e.g., K = 10

328 Chapter 13

implies that 10/11 of the total initial power was dynamic). As described
above, total power minimization is achieved by minimizing a weighted sum
of the static and dynamic power. Hence the goal of total power reduction can
now be expressed as

 (),
.

,

maximize

subject to 1 1 1

dynamic static

i j
i j

i j total

K Gain Gain

C
D t

C

⋅ +

⎛ ⎞
+ − ≤⎜ ⎟

⎝ ⎠
∑

 (13.13)

which can be simplified to

 ,
.

,

maximize

subject to 1

dynamic static

i j
i j

i j total

K Gain Gain

C
t D

C

⋅ +

≤∑
 (13.14)

where t is the original path delay normalized by the critical path delay (i.e.
t ≤ 1). The constraint in Equation (13.13) is obtained by multiplying the
delay contributed by the fraction of capacitance Ci,j by the factor (Di,j – 1),
which reflects the increase in delay. This increase in delay is added to the
original path delay to obtain the final path delay. The constraint forces the
delay of each path to be less than the critical delay of the network (which is
normalized to 1), thus we maintain the operating frequency of f. Since paths
are independent of each other, minimizing the power dissipation on each of
the paths will lead to the minimum power of the complete logic network.

To determine the power savings that may be achieved, we weight the
occurrence of paths by how often a given delay t occurs, p(t). Any generic
p(t) can be used within this framework to estimate the achievable power
reduction using multiple supply and threshold voltages. Note that p(t) plays a
key role in the optimization procedure through the constraint in Equation
(13.14), although it does not actually appear in either Gaindynamic or Gainstatic.
These gain terms only serve to compute the power reductions for a given
Vdd and Vth assignment; they do not consider the validity of each given
assignment with respect to the timing constraint. See [26] for further details.

This general framework is similar to [11], but enables several key
enhancements: 1) minimizes total power consumption, defined as the sum of
static and dynamic components, 2) simultaneously optimizes both Vdd and
Vth to achieve this goal, and 3) considers DIBL (drain-induced barrier
lowering), which strongly limits the achievable power reduction in a multi-
Vdd, single Vth environment. Our results indicate that the total power
reduction achievable in modern and future integrated circuits is on the order
of 60-65% using the dual Vdd/Vth technique (Figure 13.1 and Figure 13.2).
A key factor when optimizing a multi-Vdd/Vth system is the parameter K
which is the ratio of dynamic to static power in the original single Vdd/Vth
design, i.e., K = Pdynamic / Pstatic.

Pushing ASIC Performance in a Power Envelope 329

0 5 10 15 20 25 30 35 40 45 50

-180

-160

-140
-20

0

20

40

60

80
Po

we
r

Sa
vi

ng
s

(%
)

Ratio of dynamic power to static power, K

Total power
Dynamic power
Static power

0 5 10 15 20 25 30 35 40 45 50

-180

-160

-140
-20

0

20

40

60

80
Po

we
r

Sa
vi

ng
s

(%
)

Ratio of dynamic power to static power, K

Total power
Dynamic power
Static power

Figure 13.1 Breakdown of total power savings into static and dynamic components with dual
Vdd/dual Vth, where Vdd1 = 1.2V and Vth1 = 0.3V.

0.80.70.60.50.40.3

0.20
0.18

0.16
0.14

0.12
0.40

0.50

0.60

0.70

0.80

0.90

1.00
T

ot
al

 P
ow

er
 (n

or
m

al
iz

ed
)

 Vdd2
 (V)

Vth
2 (V)

Figure 13.2 Power reduction as a function of the second Vdd and the second Vth.

330 Chapter 13

1.1 1.2 1.3 1.4 1.5 1.6

0.3

0.4

0.5

0.6 More velocity saturated
than modern devices

(due to strained silicon,
slowed voltage scaling)

M
in

im
um

 P
ow

er
 (N

or
m

al
iz

ed
)

Velocity saturation index, α

Less velocity saturated
than modern devices

1.1 1.2 1.3 1.4 1.5 1.6

0.3

0.4

0.5

0.6 More velocity saturated
than modern devices

(due to strained silicon,
slowed voltage scaling)

M
in

im
um

 P
ow

er
 (N

or
m

al
iz

ed
)

Velocity saturation index, α

Less velocity saturated
than modern devices

Figure 13.3 Future devices may be more velocity saturated, resulting in lower power
consumption.

Larger K values push the optimization towards lower Vdd and lower Vth
to address the dominant dynamic power. An important finding is that the
optimal second Vdd in multi-Vth systems is about 50% of the higher supply
voltage, in contrast with a lower Vdd value of 60%-70% of the higher Vdd
for single Vth designs as found previously. An implication of this finding is
that level converter structures must be capable of converting over a larger
relative range. This seems feasible provided the level converters themselves
leverage multiple threshold voltages. However, the delay associated with the
level converters themselves limits the amount of achievable power reduction.
The inclusion of level conversion delay penalties demonstrates the trade-off
between allocating available slack to level conversion and achievable power
reductions. Typically, one to two asynchronous level conversions per path
are tolerable in designs with larger logic depths (30+ FO4 delays) with
<15% power penalty. Also, continued aggressive channel length scaling
(without commensurate supply voltage reductions) and new device structures
such as strained-Si channels point to increasingly velocity saturated (α closer
to 1 in Equation (13.9)) devices that are ideal for voltage scaling (Figure
13.3), since the drive current of a gate, and hence the gate delay, becomes
less sensitive to reduction in supply voltage.

Pushing ASIC Performance in a Power Envelope 331

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

10

20

30

40

50

60

70

11% lower power at
fixed # of critical paths Minimum power for

dual Vdd /single Vth

40% fewer critical
paths at fixed power

Minimum power point
for dual Vdd/dual Vth

Fr
ac

tio
n

of
 p

at
hs

 w
ith

in
 5

%
of

 c
ri

tic
al

 p
at

h
de

la
y

Minimum Achievable Power (Normalized)
Figure 13.4 Dual-Vdd/Vth provides better power/delay criticality trade-off than dual-Vdd for
same power.

Additionally, we note the relationship between power savings and critical
path density (which is defined to be the fraction of paths within 5% of the
critical path delay); this is important since a rapidly increasing number of
critical paths combined with rising process variability increases design times
and emphasizes a need for incremental statistical timing analysis tools. Dual
Vdd/Vth offers better control of the slack-power trade-off compared to dual
Vdd only as shown in Figure 13.4.

In future designs that are both power and variability-constrained, the
design space of Figure 13.4 may become crucial. For designs that do not
demand ultra low power, designers can avoid the physical design issues
associated with the use of multiple supply voltages on a chip by aggressive
scaling of a single Vdd combined with multiple device threshold voltages
(as illustrated by the case study in Section 13.4). For instance, the use of
1.2V as Vdd for 130nm technologies is commonplace and assumed in the
above discussion. However, the use of a single 0.9V supply with a small
subset of gates using an ultra-low Vth to maintain speed may yield lower
overall power. To investigate this possibility, we use the same design
space exploration tool as above to look at the efficacy of single Vdd/multi-
Vth design. Again, we normalize power to the single Vdd, single Vth design
point.

332 Chapter 13

Table 13.1 This table shows the power consumption that may be achieved using single Vdd
and dual Vdd with dual Vdd and dual Vth, compared to an initial design point with single
Vdd of 1.2V and single Vth of 0.3V. The columns on the right hand side of the table show the
optimal supply and optimal threshold voltages (where the first threshold voltage was fixed at
0.3V) for the single Vdd results.

Dual Vdd/
Dual-Vth

Single Vdd/
Dual-Vth

Single Vdd/
Triple-Vth

Single Vdd/
Dual-Vth

Single Vdd/
Triple-Vth

Single Vdd/
Dual-Vth

Single Vdd/
Triple-Vth

1 0.34 0.54 0.48 1.20 1.10 0.44 0.25, 0.42
5 0.45 0.67 0.62 0.93 0.87 0.19 0.16, 0.23

10 0.43 0.63 0.56 0.89 0.81 0.17 0.14, 0.21
15 0.42 0.61 0.52 0.89 0.75 0.17 0.12, 0.19
20 0.41 0.58 0.49 0.83 0.75 0.15 0.12, 0.19
50 0.36 0.50 0.41 0.77 0.69 0.13 0.10, 0.17

Optimal Threshold
Voltages (V) for

K

Minimum achievable power
(normalized to single Vdd/Vth)

Optimal Supply
Voltage (V) for

In Table 13.1 we see that the potential improvements from a single
Vdd/multi-Vth system can be quite substantial especially when K is large.
For a reasonable K value of 10, a single Vdd system can provide 65-77% of
the gains that dual Vdd/Vth shows depending on the number of threshold
voltages used (2 or 3). Furthermore, the numbers for dual Vdd/Vth do not
include level conversion penalties so can be considered as best-case power
reductions. Contrary to the dual Vdd case, the inclusion of a third Vth when
a single optimized (flexible) supply voltage is used provides appreciable
gains beyond the dual-Vth system. Since each extra mask step for an addi-
tional Vth level increases the wafer fabrication cost by 3%, use of multiple
supply voltages by itself remains a very attractive choice for power-reduction.
In the following section, we discuss the electrical and physical design issues
of multiple Vdd implementations.

13.3 DESIGN ISSUES IN MULTI-VDD ASICS

Design of ASICs with multiple supply voltages presents some unique
electrical and physical design challenges. In this section, we present some
novel solutions to these challenges.

13.3.1 Circuit Design Issues

Electrically, to avoid excessive static power consumption between the
low and high voltage regions, voltage level converters need to be inserted.
Minimizing the overhead of level converter insertion while meeting inter-
facing constraints presents a significant challenge. In this section, we describe
some novel level converter circuits which not only provide efficient delay
and power characteristics but also enable very flexible physical design of
multi-Vdd schemes.

Pushing ASIC Performance in a Power Envelope 333

in
VddL

out

VddH

M3

M4 M5

M6

(a) Differential cascode voltage
switch (DCVS) level converter

VddL

VddH

M1

M7 M3

M2

(d) Strength 6 (STR6) level converter

in outM4M6

M5

CbufVddL

VddH

M1

M5 M3

M2

(c) Strength 1 (STR1) level converter

in outM4

VddL

VddH

M1

M4

M3

M2

(b) Pass gate (PG) level converter

in outin
VddL

out

VddH

M3

M4 M5

M6

(a) Differential cascode voltage
switch (DCVS) level converter

VddL

VddH

M1

M7 M3

M2

(d) Strength 6 (STR6) level converter

in outM4M6

M5

CbufVddL

VddH

M1

M5 M3

M2

(c) Strength 1 (STR1) level converter

in outM4

VddL

VddH

M1

M4

M3

M2

(b) Pass gate (PG) level converter

in out

Figure 13.5 Different dual-supply voltage designs for level converters. Transistors and the
inverter with indicate low-Vth devices.

We have developed several versions of the low-energy asynchronous
pass-gate (PG) based level converter from [10]. Figure 13.5 shows the two
existing level converters (DCVS and PG) and the new level converters (STR1
and STR6) [18]. The first, STR1, relies on a known high-performance dynamic
logic technique of splitting the keeper into two devices to minimize the capa-
citive load on the actual gate. STR6, while including the technique used in
STR1, employs the threshold drop of M5 to create a higher gate voltage for
the pass-transistor and effectively speed it up. Transistor M6 is added to
ensure that the gate voltage of M1 does not exceed VddL + VthM1 which
would yield reverse leakage current into VddL (where VddL is the lower
Vdd). In comparison to the DCVS (Differential Cascode Voltage Swing)
level converter, STR6 is up to 25% faster at the optimal delay point or
consumes up to 60% less energy at fixed delay. STR1 has a simpler design
and enables 30- 40% lower energy than DCVS and 15-30% lower energy
than the PG structure. Furthermore, we investigated the use of STR1 for
embedded logic functionality and found that it is 4% faster with 55% lower
energy than a 2-input NAND DCVS gate when VddL is 0.8V (VddH=1.2V,
where VddH is the higher Vdd).

Maintaining robustness is an important concern when circuits are oper-
ated at low voltages. Also, the circuits discussed above have a pass transistor
at the input. They may thus appear to have more susceptibility to noise because
of the lack of input isolation. However, as we explain below, this is not the
case with these circuits since the exposed pass transistor is always tied high.

334 Chapter 13

The proposed circuits were found to be closely comparable in robustness
to the DCVS circuit and other standard logic gates such as inverters. While
typical pass-transistor circuits require input isolation as they may pass erro-
neous values that are sampled on the output, the PG-based level converters
in this work only use their pass transistor to pass the input voltage to an
internal node that is connected to the gate of another MOSFET. Since the
pass transistor is always ON, there is no chance of a noisy signal being
sampled (i.e., disconnected from the input) and stored on the internal node.
Thus, from a noise perspective the circuit becomes similar to the case where
the input is tied directly to the gate of the pull-up PMOS (e.g., M3 in PG in
Figure 13.5(b)). In particular, the problematic ‘Pass 0’ noise source [4]
where a negative noise pulse on the input can turn ON an NMOS device
with 0V at its gate and mistakenly pass a 0 to the output, cannot occur here
since the input to the pass transistor is tied high. We studied and compared
the robustness of the various level converters by adopting the following
methods to represent typical on-chip switching behavior.

DCVS PG STR1 STR6

55

60

65

70

75

80

85

90

95

100

105

110

115

120

55

60

65

70

75

80

85

90

95

100

105

110

115

120 s1 = 20%
s2 = 59%

s1 = 19%
s2 = 56%s1 = 19%

s2 = 56%
s1 = 21%
s2 = 57%

D
el

ay
 a

t d
iff

er
en

t c
or

ne
rs

 (p
s)

Level converter type

Fast process corner, 0°C, 1.0×Vdd

Slow process corner, 100°C, 1.0×Vdd

Typical process corner, 25°C, 1.0×Vdd
Typical process corner, 25°C, 1.1×Vdd

Typical process corner, 25°C, 0.9×Vdd

Legend:

Figure 13.6 Level converter supply and process variation sensitivity. s1 is the percent spread
of delay at ±10% Vdd corners measured from the typical corner with 1.0×Vdd. s2 is the
percent spread of delay at fast and slow process corners from the typical corner with 1.0×Vdd.

Pushing ASIC Performance in a Power Envelope 335

LC
0

VddH
outin

0

VddL

Vpk

Vpk

(a)

LC out

(b)

VddH

VddL

in

VddL

Vpk

Ccp Cgr

VddH

0
Aggressor Line

Weak keeper
(for pre-charge

high case)

LC
0

VddH
outin

0

VddL

Vpk

Vpk

(a)

LC out

(b)

VddH

VddL

in

VddL

Vpk

Ccp Cgr

VddH

0
Aggressor Line

Weak keeper
(for pre-charge

high case)

Figure 13.7 Circuits for voltage level converter robustness analysis.

We first studied the performance of the level converters at different
process corners and with varying power supply voltage and temperature.
This study gives insight into the sensitivity of each of the circuits to such
variations. Results using VddL = 0.8V are shown in Figure 13.6. We studied
the delay of all level converters with ±10% DC supply noise on both VddL
and VddH, at 25°C and the typical process corner; with nominal Vdd at 0°C
and the 130nm fast process corner; and with nominal Vdd at 100°C and the
130nm slow process corner. The delay variation is nearly the same for all
level converters and shows acceptable spread. For comparison, the FO4
inverter delay in this technology varies by 18% and 51% for ±10% Vdd
variation and fast/slow process respectively with these numbers rising to
20% and 56% at reduced voltages.

In addition, triangular noise pulses with base width of 80ps (2 FO4
inverter delays) and peak magnitude of 0.3V (25% of VddH and 37.5% of
VddL in this case) were applied as inputs to each of the level converters
when they were sized for optimal speed. In all cases, there was no output
glitching whatsoever, implying that these asynchronous level converters are
tolerant of substantial input noise. The static voltage transfer characteristics
all show large gain in their transition regions which are within 50mV of
VddL/2 in all cases.

Since circuit robustness is expected to be worst for the lowest supply
voltages (VddL = 0.6V), we further investigated the robustness at such low
voltages. We applied more pessimistic triangular noise pulses of width
equaling 120ps (twice the FO4 delay at VddL = 0.6V) and varied the
amplitude (Vpk) until the circuit failed (i.e., the output reaches 0.5 ×
nominal_output_high_voltage; the nominal_output_high_voltage for the level

336 Chapter 13

converters in our studies is 1.2V, while for the inverter being studied for
comparison here, it is 0.6V). Figure 13.7(a) shows this setup. We compared
the DCVS and STR6 level converters to an inverter (with similar input and
output capacitance) and observed that the circuit robustness of these circuits
compares closely to standard logic gates such as inverters. Table 13.2(a)
reports our results for this study. Here we have only reported numbers for
STR6, since STR6 is expected to be more susceptible to noise because of the
raised pass transistor voltage.

We also studied a scenario where the level converter is a part of a larger
dynamic circuit (Figure 13.7(b)). The input of the circuit under test acts as
the victim line (a dynamic node with a weak keeper) and a capacitively
coupled aggressor (operating at VddH) is considered as the coupling noise
source. For a fixed ground capacitance of the victim line (10fF), the coupling
capacitance was increased until the circuit failed. Table 13.2(b) summarizes
our results for this study. The capacitance reported in the table is the coupling
capacitance at which the circuit failed. A higher capacitance thus implies
superior robustness. Under this scenario too, we found the level converters
to be at least as robust as the inverter (i.e., required a larger amount of
coupling capacitance and hence coupled noise).

The scenario described by Figure 13.7(a) was also examined in the pre-
sence of +10% DC supply noise on both VddH and VddL to test the circuits
under even more aggravated noise conditions. Table 13.2(c) reports results
for this study. Again, we observe that the level converters are comparable in
robustness to the inverter.

Table 13.2 Level converter robustness analysis with VddL of 0.6V, compared to an inverter.
Glitch Type Inverter DCVS STR6

Positive-going (higher value means more robust) 0.48V 0.53V 0.53V
Negative-going (lower value means more robust) 0.06V 0.14V 0.16V

(a) The failure voltage of the circuits is tabulated below for both polarities of noise glitches at
the input (positive glitch starting and settling at 0V, e.g. 0V → 0.48V → 0V, and negative
glitch starting and settling at VddL, e.g. 0.6V → 0.06V → 0.6V).

Aggressor Swing Direction Inverter DCVS STR6
VddH to 0V (higher value means more robust) 6.5fF 5.8fF 7.6fF
0V to VddH (higher value means more robust) 9.4fF 11.2fF 10.2fF

(b) The failure coupling capacitance is tabulated below for both swing directions (VddH to
0V, and 0V to VddH) of the aggressor.

Glitch Type Inverter DCVS STR6
Positive-going (higher value means more robust) 0.51V 0.56V 0.56V
Negative-going (lower value means more robust) 0.09V 0.18V 0.19V

(c) The analysis in (a) above is repeated in the presence of +10% VddL and VddH variation.

Pushing ASIC Performance in a Power Envelope 337

(b) The same level converter design
approach with embedded NAND2
logic. The output is level restored
and inverted, i.e. AND2.

A

B

n1 p4

p3

n3

VddH

VddL
signals

out

A

n1 p4

p3

n3

VddH

outVddL
signal

(a) Single supply voltage level converter
– the output is restored to swinging
from 0V to VddH. The “embedded
logic” to buffer the input is an inverter,
so the level converter acts as a buffer.

n2

p2

Figure 13.8 Voltage level converters that require only a single VddH supply rail.

Level converters presented above require both a high and low power
supply for level conversion. This limits the physical placement of such level
converters to the boundary of high and low voltage designs which restricts
the physical design flexibility. To address this, we developed a novel asyn-
chronous level-converter, which requires only one supply (VddH) to convert
the incoming low voltage signal to the higher voltage making its placement
much more flexible [21] in the entire high voltage regions. In addition to the
single supply advantage, this converter exhibits a significantly improved
power dissipation compared to the traditional DCVS converter.

Figure 13.8 shows the new voltage level converter that requires only
a single supply rail. We utilize the threshold drop across the n-channel
MOSFET n1 to provide a virtual low-supply voltage to the input inverter
(p2,n2).

Section 13.2 discussed the optimal low-supply voltage in a dual-supply
design, which was generally found to be 40% below the high supply voltage.
However, scaling of Vdd is limited to by how low Vth can be scaled –
otherwise drive current is degraded (e.g. consider reducing Vdd in Equation
(13.9) without reducing Vth – the delay gets worse). To maintain good CMOS
performance characteristics, it is desirable to have the ratio of Vth/Vdd
below 0.3 [31]. Scaling of Vth is limited due to exponentially increasing
subthreshold leakage as Vth is reduced (see Equation (13.5)). To prevent
excessive power consumption due to subthreshold leakage, the threshold
voltage is limited to about 0.2V at 100°C [31]. Thus in sub-100nm techno-
logies, the supply voltage cannot be scaled much below 1V. Typically, the
low supply in sub-100nm designs will be limited to 25-30% below the high-
supply voltage.

338 Chapter 13

120

110

100

90

80

70

60

50
1.0 1.1 1.2 1.3 1.4 1.5 1.6

A
ve

ra
ge

 D
el

ay
 (p

s)

DCVS level converter

New level converter
(~5% less delay)

Typical Cu11 low-supply operation

120

110

100

90

80

70

60

50
1.0 1.1 1.2 1.3 1.4 1.5 1.6

A
ve

ra
ge

 D
el

ay
 (p

s)

DCVS level converter

New level converter
(~5% less delay)

Typical Cu11 low-supply operation

Figure 13.9 Comparison of the delay of the DCVS level converter with the single-supply
level converter versus the voltage for the low supply.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Low Supply Voltage (V)

Po
we

r
D

iss
ip

at
io

n
(n

W
)

18,000

16,000

14,000

12,000

10,000

8,000

Typical Cu11 low-supply operation

DCVS level converter

New level converter
(~50% less power)

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Low Supply Voltage (V)

Po
we

r
D

iss
ip

at
io

n
(n

W
)

18,000

16,000

14,000

12,000

10,000

8,000

Typical Cu11 low-supply operation

DCVS level converter

New level converter
(~50% less power)

Figure 13.10 Comparison of the total power of the DCVS level converter with the single-
supply level converter versus the low supply voltage, with a switching activity of 0.1 (where a
switching transition is 0-1-0 or 1-0-1).

Pushing ASIC Performance in a Power Envelope 339

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Low Supply Voltage (V)

1
4

12

10

8

6

Le
ak

ag
e

Po
we

r
(n

W
)

DCVS level converter

New level converter
(>30% leakage reduction)

Typical Cu11 low-supply operation

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Low Supply Voltage (V)

1
4

12

10

8

6

1
4

12

10

8

6

Le
ak

ag
e

Po
we

r
(n

W
)

DCVS level converter

New level converter
(>30% leakage reduction)

Typical Cu11 low-supply operation

Figure 13.11 Comparison of the leakage power of the DCVS level converter with the single-
supply rail voltage level converter versus the low supply voltage value.

Figure 13.9, Figure 13.10 and Figure 13.11 show that when compared to
the traditional DCVS level converter (in 130nm Cu-11 technology with
nominal Vdd=1.5V), the new converter achieves up to 5% less delay, and
consumes approximately 50% less total power and 30% less leakage power,
in the nominal operating range of the low-voltage supply. The biggest advan-
tage of this level converter is its flexible placement which enables efficient
physical design of fine-grained voltage islands as discussed in the following
section.

13.3.2 Physical Design Issues

Most of the previous work [35] in multi-Vdd designs has mainly focused
on Clustered Voltage Scaling by Usami et al. [33]. Unfortunately, this metho-
dology enforces a rigid circuit row based layout of high and low voltage
cells. This can be overly restrictive as it may require significant perturbation
in location of timing critical cells thereby degrading performance. In this
section, we present some physical implementation schemes based on voltage
islands which have more flexibility in their layout.

13.3.2.1 Macro based Voltage Islands

Recently, a new voltage island methodology to enable multiple supply
voltages in systems on chip (SoC) was introduced [19] which allows various

340 Chapter 13

functional units of the ASIC/SoC to operate at different voltages. This voltage
island methodology can be used in variety of designs. For example, in an
SoC that integrates a processor core with memory and control logic, the
performance critical processor core requires highest voltage to maximize
its performance. However, the on chip memory and control logic may not
require the highest voltage operation and can be operated at a reduced voltage
to save significant active power without compromising system performance.
In addition, voltage flexibility at unit level allows pre-designed standard
components from other applications to be reused in a new SoC application.
Voltage islands can also facilitate power savings in battery powered appli-
cations which are more sensitive to standby power. Traditionally, designers
use power gating [16] to limit leakage current in quiescent states. The use
of voltage islands at functional unit level in a SoC provides an effective
physical design approach to gate the power supply of the entire macro in
order to completely power it off.

13.3.2.2 Fine-Grained Generic Voltage Islands

The macro-based voltage island methodology is targeted towards an
entire macro or functional unit being assigned to a different voltage. For
designs that are highly performance critical as well as severely power cons-
trained, it is useful to have a finer grained control over the supply voltages
for ASICs or even within a macro/core in an SoC. We propose a flexible
physical design approach that allows generic voltage islands and enables a
fine grained implementation of the dual-supply voltage assignment in a
placement driven synthesis framework [6]. A generic voltage island structure
with power grid is shown in Figure 13.12, where we can assign different
voltages at both macro and cell levels. It has more freedom in terms of
layout style by allowing multiple voltage islands within the same row. A
generic design flow is built on top of IBM’s placement driven synthesis
(PDS) design closure tool [8]. PDS integrates logic synthesis, placement,
buffering, gate sizing, and multiple threshold voltage optimization [20].

The overall flow with generic voltage islands is as follows. First, PDS
timing closure is run with the entire circuit timed at VddH. For deep sub-
micron circuits, interconnect delay dominates the gate delay. Thus we need
rough placement information to identify critical versus non-critical cells.
Once PDS reaches a later stage of optimization, e.g., global placement is
determined and timing is more or less closed, we can perform the generic
voltage island generation, by assigning non-critical cells to a lower supply
voltage.

Pushing ASIC Performance in a Power Envelope 341

Figure 13.12 Generic voltage island layout style.

To minimize the physical design overhead, we consider two kinds of
adjacencies during VddL macro/cell selection. One is the logic adjacency,
i.e., the low voltage cells are as contiguous as possible in signal paths to
minimize the number of level shifters. The other is the physical adjacency,
i.e., low voltage cells are physically close to each other, so that it is easy to
form voltage islands.

Since the generic voltage islands are implemented within the framework
of PDS, we can employ various optimization engines during voltage assign-
ment, e.g., to trade-off gate sizing with voltage assignment. After voltage
assignment, low and high voltage cells are clustered to form the fine grained
generic voltage islands. The clustering step requires the knowledge of power
grid topology which is co-designed with this placement in order to enable a
flexible placement of fine grained voltage islands. We first define the power
grid patterns to facilitate the placement movement. They are computed based
on the cell locations that are assigned to high and low voltage cells. Then we
will move cells locally (while trying to maintain the original cell order) to
form VddL and VddH islands.

342 Chapter 13

Figure 13.13 A processor with generic voltage islands.

Traditionally, a dual-supply DCVS level converter is used to interface
signals across VddL and VddH voltage islands Since DCVS level converters
require both VddL and VddH supplies, their placement is limited to the
boundary of low and high voltage islands where both the supplies are easily
available. To remove this placement restriction on level converter, we utilize
the single supply voltage level-converter (Figure 13.8). Since this converter
requires only VddH supply, it can be placed anywhere in the VddH voltage
islands, thereby enabling much more flexible placement. This results in
significantly smaller physical design overhead for level converter insertion
as the converters can be inserted in uncongested regions. We have applied
this generic voltage island approach to an IBM processor core in 130nm
Cu-11 technology with approximately 50,000 cell instances with VddH =
1.5V and VddL = 1.2V. Figure 13.13 shows the layout of this processor
designed using generic voltage islands which resulted in 8% total power
savings without any delay or area penalty.

13.3.3 Issues in using multiple threshold voltages

Using cells with multiple threshold voltages has power-performance
benefits, as discussed in Section 13.2. Even though using multiple threshold

Pushing ASIC Performance in a Power Envelope 343

voltages in a design is relatively easy, it is not free by any means, and does
require changes to library creation and the design flow. We discuss some of
the issues in using multiple threshold voltages in this section.

As has been mentioned in Section 13.2, each additional Vth level incre-
ases fabrication cost by 3%. Two to three Vth levels are common in today’s
technologies. Cost sensitive ASICs often use two threshold levels, or even a
single threshold level. Using three threshold levels is more common in high-
performance processor designs. A low threshold device in 90nm technology
can have leakage more than 30 times the leakage of a regular threshold
device with the same area but has only 15% better performance. Hence it
should be clear that only a small percentage of the total devices in the design
can be low threshold devices.

From a design point of view, using multiple threshold voltages has only
a small effect on the design flow, which is a big advantage, unlike voltage
islands which require major changes such as modifying the power grid and
the introduction of level converters. Mixing devices with different thresholds
does introduce extra placement constraints between the devices. But the
constraints are usually enforced during library design in the layout of the
library cells. Hence no additional constraints need to be enforced in the rest
of the design flow.

Having multiple threshold devices increases the library size by 2× or 3×.
Since a larger library increases runtimes of synthesis tools, a typical design
flow will use only regular-Vth cells during the synthesis and placement
phase even if multiple threshold voltage cells are available. A second reason
for not using multiple thresholds during the initial synthesis phase is that
most tools are not leakage aware. Allowing leakage-insensitive tools to use
low Vth cells will lead to a design with high static power dissipation. Hence
low threshold cells are usually used in a post-processing step by path-delay
optimization tools which are leakage aware.

It should be pointed out that an insensitive partitioning of the design flow
into a first phase using only regular Vth cells and post-processing steps with
low Vth cells may not be always wise. If the cycle time is aggressive, and
only regular Vth cells are available, tools can increase the power by upsizing
the regular Vth cells needlessly to try to achieve the cycle time in the first
phase. A smarter modified methodology could be to use a less aggressive
cycle time during the initial phase which uses only regular Vth cells, and
pushing for the aggressive cycle time during the post-processing phase with
low Vth cells.

In the next section, we discuss a power and performance critical design
for satellite applications that was designed using a semi-automatic design
flow using two supply voltages and two threshold voltages.

344 Chapter 13

ADC
data Hilbert

Transform

Preweight
8E1 FIR

Preweight
QE1 FIR

Preweight
E1 FIR

FFT 8E1

FFT QE1

FFT E1
ADC
data Hilbert

Transform

Preweight
8E1 FIR

Preweight
QE1 FIR

Preweight
E1 FIR

Preweight
8E1 FIR

Preweight
QE1 FIR

Preweight
E1 FIR

FFT 8E1

FFT QE1

FFT E1

FFT 8E1

FFT QE1

FFT E1

Figure 13.14 The seven macros of the DEMOD ASIC chosen for the case study and their data
flows. The ADC is the analog to digital converter; the FIR filters are finite input response
filters; and FFT is the fast Fourier transform.

13.4 CASE STUDY

Modern communications satellites, as well as many military applications,
require significant on-board digital signal processing (DSP) capabilities,
enabled by application-specific integrated circuits (ASICs). Such systems
are also driven by severe size, weight, and power constraints. For satellites,
power is most critical due to limitations on generation and heat removal, as
well as need for high reliability. Such systems are equally hard driven by
cost and schedule.

In this section, we focus on the application of semi-custom design tech-
niques for high-performance, yet power efficient DSP ASICs. We evaluate
the feasibility of significant improvements over today’s state-of-the-art near
custom chip performance with an ASIC-like cost and schedule. Specifically,
we will discuss a synthesis and physical design methodology to reduce the
performance (delay) × power metric for DSP ASICs.

The classes of DSPs we are looking at are the fixed function, real-time,
distributed (FRD) DSPs. In a FRD DSP, processing elements and memory
are allocated exactly where needed to execute a fixed data flow algorithm.
At the other extreme of DSP architectures is the software programmable
DSP, with centralized compute and memory resources. Our experience, as
well as studies by University of California Berkeley (UCB) [7], finds that
the FRDs are about 50× more power efficient than the processors. While the
ASIC designs investigated in this case study are “mission specific”, the
design techniques are suitable for a wide range of applications.

We identified a representative FRD DSP class circuit from existing
Boeing communications satellite ASICs for intensive benchmarking of the
semi-custom design methodology. Specifically, we chose a subset of the
DEMOD ASIC, a critical component of the SPACEWAY™ communication
satellite DSP unit [28]. The original chip is about 2.3 million gates in
complexity and implemented in IBM’s 0.18um SA-27 ASIC technology. For

Pushing ASIC Performance in a Power Envelope 345

this work we decided to use IBM’s Cu-11 0.13um technology, and we
focused on the critical seven-macro subset consisting of Hilbert Transform,
FIR filter (3), and FFT (3) macros shown in Figure 13.14. The subset
requires about 240,000 logic gates and 42 KB of register array —about 20%
of the full DEMOD design. To ensure that the design optimization work was
sufficiently challenging, we scaled the target clock rate from 83 MHz in SA-
27 to 175 MHz in Cu-11. After re-mapping the design to Cu-11, we ran the
baseline flow, followed by application of a subset of the semi-custom
techniques to optimize for low power.

13.4.1 The Relative Power Performance Metric

To evaluate the contribution of the various design steps on the quality of
the design as well as evaluating the final design, we used the Relative Power
Performance (RPP) metric. The Power Performance (PP) metric is defined
as the product of the delay or performance of the design, and the power
of the design, i.e., PP = power × performance. The initial design point has
a RPP of 1.0, and any other design point has a RPP which is given by
PPinitial_design_point/PPnew_design_point. A higher RPP implies a faster or less power-
hungry implementation, i.e. a more efficient implementation.

To measure the delay, the netlist was placed and Steiner routing was
performed. Thus realistic wire delay and load models were used for timing
closure and for measuring the path delays. Accurate load calculation is
important for selecting the sizes of the gates, and this in turn affects area,
path delays and power consumption of the circuit.

A power estimation methodology is fundamental to exploring power-
performance tradeoff. We consider both active and leakage power com-
ponents while estimating the power consumption. Active power dissipation
depends on the total capacitance being switched, the switching factor, the
clock frequency f and the operational voltage Vdd. The following equation
gives the details of the power calculation:

2

_ _
 _ _

()

total dd logic nets net clk nets net
logic nets clk nets

macros leakage

P fV C C

P P

σ σ
∀ ∀

= +

+ +

∑ ∑
 (13.15)

where
 (_)

 _ _ _ _
net pin wire internal source gate

pins on net wires on net

C C C C
∀ ∀

= + +∑ ∑ (13.16)

Cnet is the total capacitance of each net comprising of the pin capacitance
Cpin, the wire capacitance Cwire, and the internal gate capacitance of the
driver Cinternal(source_gate). σlogic_nets is the average switching factor of the logic
nets, and σclk_nets is the average switching factor of clock nets. Pmacros is the
average power of hard macros (e.g., arrays), and Pleakage is the leakage power.

346 Chapter 13

In our ASIC design experience, Steiner tree length correlates relatively
well to post-routing net length, especially when the same Steiner algorithm
is used through various routing stages. Therefore we extracted detailed
parasitics on the Steiner routing estimates to calculate total wire capacitance
Cwire loading the gates.

We assumed a value of 0.1 for the average switching factor of the logic
nets σlogic_nets, and 1.0 for the average switching factor of the clock nets
σclk_nets (in this chapter by switching activity we refer to a complete switching
transition, i.e., 0-1-0 or 1-0-1). Since the focus is on exploring power-
performance tradeoffs, relative power comparisons among various design
points are the primary focus rather than the absolute accuracy of total power.
Thus using approximate values for the switching factors is justified.

Since leakage power, Pleakage, increases exponentially with decreasing
threshold voltages, this component plays a crucial role in deciding the
amount of lower threshold voltage cells we could accept in the design in
order to gain performance. The power numbers are computed at the worst
case process corner for power which is not necessarily the worst case
process corner for delay. We consider leakage power in our calculations by
averaging over the input state space, i.e., for a two input gate, the average
power over input values “00”, “01”, “10” and “11” is used.

13.4.2 Baseline Flow

We used a traditional flow to establish a baseline against which we could
compare a semi-custom flow targeting low power implementations. For the
baseline design flow we deployed IBM’s BooleDozer [27] logic synthesis
system, Cplace [13] placement program and Xrouter [12] for routing. In this
“traditional” baseline flow, synthesis and physical design are separate steps,
interconnect estimation is based on wireload models during the synthesis
stage, and there is no automated post-placement timing correction. The
design was partitioned into seven regions for floorplanning based on the top
level macros mentioned in Section 13.4. The floorplan is shown in Figure
13.15. The design from the baseline flow can be run at a frequency of
94MHz and dissipates 106mW (column 2 of Table 13.4).

13.4.3 Semi-custom flow for low power designs

The proposed semi-custom flow is illustrated in Figure 13.16. In the pre-
synthesis stage, bitstack components are inferred. Gain-based synthesis is
used to take advantage of finer grained libraries, and to avoid the use of
wire-load models during the synthesis stage. After logic optimizations in
synthesis, the final netlist is placed and routed (using Steiner tree routes) by
our Placement Driven Synthesis tool (PDS) [8]. PDS is IBM’s optimization
tool that combines placement, synthesis and global wire optimization to

Pushing ASIC Performance in a Power Envelope 347

do timing-driven placement and synthesis. In the PDS stage advanced
custom logic techniques such as low-Vth and voltage scaling were applied
to minimize the area and power terms in the DAP metric. The various steps
of the semi-custom flow are explained in more detail in the following sub-
sections.

Figure 13.15 The placed design for the baseline flow. The seven macros are shaded gray or
white alternately. Compare this figure with Figure 13.4.

Figure 13.16 Semi-custom design flow for low power.

348 Chapter 13

13.4.4 Arithmetic Optimizations

A detailed study of the critical paths revealed many adders in series,
often coming out of multiplier structures. The arithmetic expression optimi-
zations using the IBM behavioral synthesis tool Hiasynth [3], including tree-
height balancing and carry-save adder (CSA) implementations, resulted in
significantly improved area and delay. The clock frequency increases from
94 to 145MHz, as can be seen in column 3 of Table 13.4 (see Section
13.4.10), due to the critical path reduction in the arithmetic trees. The area
for the unoptimized and optimized arithmetic circuits is almost equal at the
beginning of logic synthesis. But since the former has much longer paths,
logic synthesis tries to meet the timing constraint for the former by using
larger cells and larger buffers. A direct implication of using smaller sized
cells and a smaller number of buffers for the arithmetic optimized circuit is
that power consumption is significantly reduced, from 106mW to 86mW
at 94MHz, but increases to 134mW at the best frequency of 145MHz
(comparing columns 2 and 3 of Table 13.4).

13.4.5 Semi-Custom Bitstacks

Since the FRD DSPs have many adders and multipliers, we investigated
fast implementations of such circuits including carry-lookahead adders and
Wallace tree multipliers [14].

However, bitstacked implementations (Figure 13.17) go one step further
by paying attention not only to the number of levels of logic required to
implement the operations, but also creating an implementation which can
have a compact placement with very short wires. We mapped the adders and
multipliers in the design to the bitstack implementations for IBM’s Cu-11
technology. The bitstack generator also takes in an argument that controls
the drive strength of the unit that is generated. The size chosen ensured
that the output cells of the bitstacks have sufficient strength to drive the
loads at the outputs of these bitstacks. By not applying synthesis on the bit-
stacks, we guarantee that the bitstacks can be placed exactly in their row/
column scheme. Bitstacking regular arithmetic units can have a significant
impact on delay, area and power. Near zero slack was reached after inserting
the bitstacks while power consumption at the higher frequency of 177 MHz
was only 107mW compared to 134mW for the arithmetic optimized only
design (columns 3 and 4 of Table 13.4).

However we noticed several things about the DEMOD design which
prompted us to optimize the bitstacks using synthesis though this involved
sacrificing the built-in regularity of the bitstacks. Several bitstack compo-
nents had constant signals as inputs. Constant propagation would allow many
gates to be optimized away. In addition, redundancy removal could use this
information to optimize other portions of the design.

Pushing ASIC Performance in a Power Envelope 349

Secondly, the outputs of the bitstacks had significantly different loads.
Selecting a bitstack component that would not cause any violation at any of
its outputs leads to significant overdesign. To overcome the above sources of
sub-optimality, we selected a small size implementation for all the bitstack
components and did not protect them from synthesis. This allowed many
gates to be optimized away due to constant propagation. It also allowed
resizing to close on timing by automatically choosing the most optimal gate
sizes. Even though the regularity was lost, PDS used the connectivity and
timing constraints effectively to place the bitstacks in close regions as can be
seen from the placement view shown in Figure 13.18. This improved the
Relative Power Performance metric to 1.86 in column 4 of Table 13.4.

Figure 13.17 An illustration of a bitstack layout. Logic in a bit is placed in a column. Several
columns are stacked side-by-side from left-to-right. The control signals are routed vertically.

Figure 13.18 Placement view with the darker regions showing compact placement of three of
the bitstack components.

350 Chapter 13

13.4.6 Fine-Grained Libraries

In a full custom methodology, a designer has the option to size each
transistor exactly to match the load that it is driving. This allows for delay
and especially power and area optimization. In ASIC design using conven-
tional standard cell libraries, limited choices are available in cells sizes for
each function. For example, an inverter is only available in four or five
standard sizes. An oversized cell is typically chosen to drive a particular load
in order to meet the delay and slew (rise time) constraints on the cell outputs
since a smaller cell would violate these constraints. However, a large cell
reflects a large load back to its inputs, requiring its input to be upsized as
well. This works its way all the way back to the inputs of the synthesized
partition and all gates are sized larger than necessary. One way to prevent
this is to use a fine-grained library with many more sizes for each type of
cell. Unfortunately, adding many cell sizes to a library slows down conven-
tional synthesis considerably since most synthesis algorithms resize by looping
through all cell sizes and will be penalized with at least a linear slow down.
Gain-based synthesis [2] avoids this problem, by using a single delay equation
for all sizes of a particular cell type. Only in the final part of synthesis or
after placement the actual size of a cell is calculated.

Gain-based synthesis also addresses the wireload problem of traditional
synthesis algorithms. In designs like the DEMOD, dominated by low fan-in
and low fan-out arithmetic logic gates, the wireload models shipped with a
technology which are design independent are on average too pessimistic.
When designs are synthesized with overly pessimistic wireload models,
large cells are chosen to satisfy the timing and slew constraints for the given
wireload. Placement places these larger cells further apart, resulting in longer
wires that need to be driven. A better approach therefore is to start with
a design that is minimally sized, and leave the final sizing up to a design
closure tool like PDS which is able to place and optimize the netlist simul-
taneously. Gain-based synthesis does not require wireload models for its
delay calculations. Since the load has been removed from the delay equation,
good delays can be predicted without the use of wireload models. This
allows us to create a realistic sized design in synthesis before placement, and
to obtain timing closure more quickly. Applying gain-based synthesis without
wireload models to our DEMOD macros result in a final power of 93mW
and a RPP of 2.15.

13.4.7 Maximizing Frequency

When positive slack is present in the design it can be traded off for
power reduction through voltage scaling. To find out how much extra slack
existed in the design we re-ran PDS to target the fastest possible design at
1.2V. The fastest design we could obtain was at 193MHz (at a cost of 17%

Pushing ASIC Performance in a Power Envelope 351

more power) because of a register file to register file cycle limiting path as
shown in column 6 (1.2V fast) in Table 13.4.

13.4.8 Voltage Scaling

Since the maximum frequency is significantly higher (193MHz compared
to the required 177MHz), we had the opportunity to trade performance for
power. To do this, we reduced the supply voltage from 1.2V to 1.1V. This
produced a large number of negative slack paths. We then used PDS to re-
close timing at the original cycle time but at 1.1V. The 1.1V design, in
column 7 of Table 13.4 uses approximately 16% less power at the target
performance of 177 MHz compared to the 1.2V design in column 5. To
study the effect of voltage scaling further, we reduced the voltage to 1.0V
and 0.9V (the minimum voltage allowed in the Cu-11 technology). However,
to keep the performance at 177MHz we had to apply Low Vth transform-
ations as will be discussed in the next section.

13.4.9 Low-Vth Logic and Voltage Islands

The use of lower threshold devices increases device performance along
with increasing its sub-threshold current, i.e., leakage power. So, use of low
Vth devices is restricted to timing critical paths in order to avoid excessive
increase in leakage current, especially in mobile low power applications. In
addition, the increase in quiescent current also interferes with IDDQ fault
testing. IBM’s Cu-11 ASIC library includes a low Vth version of each cell.
These elements have the same layout footprint but higher performance
than their nominal Vth counterparts. We made use of these low Vth cells to
recover some performance lost through voltage scaling with very little power
increase by utilizing the low Vth optimization capability in PDS. PDS low
Vth optimization substitutes cells on critical paths with their equivalent low
Vth versions and dynamically updates the critical paths information. This
substitution of low Vth cells is guided by the dynamic analysis of leakage
power and can be constrained by a maximum limit on the leakage power
increase.

By applying the multi-Vth operations in PDS, we were able to keep the
performance at 177MHz and reduce the power to 64mW at a 1.0V operating
point compared to 78mW at 1.1V. The total power savings more than offsets
the increase in leakage power (leakage increased from 0.24mW to 2.3mW).
It should be pointed out that at smaller technology nodes, leakage will be a
much higher percentage of total power, and leakage increase will require
more attention.

We also used PDS to further lower the supply voltage after selective low
Vth substitution. This experiment had some interesting outcomes. PDS low
Vth substitution allowed us to lower the supply voltage all the way to 0.9V

352 Chapter 13

before any combinational path became critical. This allowed power to be
reduced to a very low value of 46mW. However the register arrays demon-
strated large performance sensitivity to voltage reduction. The critical path at
0.9V was a register array to register array path, which could not be tuned by
PDS and which prevented us lowering the overall voltage to 0.9V while
maintaining the desired frequency. In the future we will experiment with
placing these sensitive arrays in separate voltage islands [19] which would
allow the chip logic supply voltage to be scaled separately from the array
supply voltage.

13.4.10 Results

To evaluate the relative contributions of the optimizations, all results are
reported after place and route. We turn on the optimizations one-by-one and
run the baseline flow for the remainder to get to a final design.

The power consumption for the clock tree, flip-flop data and clock,
random logic, and register array are listed in Table 13.3, with the leakage for
the whole design. Most of the base line’s power (68%) is due to the random
logic, but the power for the random logic is more than halved after the
optimizations, and contributes all the power savings prior to voltage scaling.

Table 13.4 summarizes a general improvement of the RPP metric that
tracks the increasing sophistication of the semi custom flow. The final result
of the voltage scaled gain-based PDS flow has a combined metric improve-
ment factor of 3.13. As can be seen from the table, for the case of a single
voltage for the whole design, aggressive voltage scaling to 1.0V with multi-
Vth optimizations provides the best power-performance tradeoff with an
RPP metric of 3.13. Allowing two voltage islands with the majority of the
design at 0.9V and the register arrays at 1.0V improves the metric further
to 3.47.

The progression of the optimization steps can be summarized from a
second viewpoint. To maximize performance and minimize power, the
design was divided into two voltage islands. One voltage island had the
register arrays operating at 1.0V. The second voltage island had the rest of
the logic operating at 0.9V. To drive down the operating voltage of the
voltage island with the logic from a 1.2V to 0.9V, aggressive synthesis and
selective insertion of low Vth cells were used. The above approach towards
design optimization represents a general optimization scenario for industrial
designs. The design is split into a small number of voltage islands, usually
two, and then each voltage island is optimized aggressively using a combi-
nation of low threshold devices and voltage scaling.

Pushing ASIC Performance in a Power Envelope 353

Table 13.3 Distribution of power consumption (mW) in the design.

Base Line Bit Stack

Finer
Grained
Library

Voltage
Scaling
(1.1V)

Clock 11.9 18.4 15.6 13.1
Flip-flop Data 9.3 17.5 14.6 12.2
Flip-Flop Clock 4.0 7.5 7.5 6.2
Logic 72.2 48.1 39.8 33.4
Register Array 7.9 15.0 15.0 12.5
Leakage 0.3 0.3 0.3 0.3
Total 105.7 106.8 92.7 77.7

Table 13.4 Tracking the relative power performance (RPP) metric with the design
optimizations.

Base
Line

Arithmetic
Optimizations

Bit
Stack

Finer
Grained
Library

fast
1.2V 1.1V 1.0V 0.9V

Power (mW) 105.7 133.9 106.8 92.7 108.1 77.7 63.6 45.7
Performance (MHz) 94 145 177 177 193 177 177 141
Power Savings -26.6% -1.0% 12.4% -2.2% 26.5% 39.9% 56.8%
Relative Power
Performance 1.00 1.22 1.86 2.15 2.01 2.56 3.13 3.47

13.5 SUMMARY

In this chapter, we explored the trade-off between multiple supply
voltages and multiple threshold voltages in the optimization of dynamic and
static power which can result in 60% power savings. Novel solutions to the
unique physical and electrical challenges presented by multiple voltage
schemes were proposed. We described a new single supply level converter
that does not restrict the physical design. A power performance improvement
of ×3.13 was obtained by applying some of these optimization techniques to
a hardwired DSP test case. In this, electrical optimizations such as voltage
scaling, multi-threshold optimization and the use of finer grained libraries
enabled 1.7× improvement and the remaining 1.9× was enabled by high level
arithmetic optimizations and bitstacking.

13.6 ACKNOWLEDGMENTS

The work on generic voltage islands was done in collaboration with
Tony Correale, Doug Lamb, David Pan and Dave Wallach. We thank Lakshmi
Reddy for help with PDS experiments.

354 Chapter 13

Figure 13.19 The placed design for the semi-custom flow.

13.7 REFERENCES
[1] Albrecht, C., Korte, B., Schietke, J., and Vygen, J., “Cycle Time and Slack Optimization for

VLSI-Chips,” proceedings of the International Conference on Computer-Aided Design,1999,
pp. 232-238.

[2] Beeftink, F., Kudva, P., Kung, D., Puri, R., and Stok, L., “Combinatorial cell design for
CMOS libraries,” Integration: the VLSI Journal, vol. 29, 2000, pp. 67-93.

[3] Bergamaschi, R.A., et al., “High-level Synthesis in an Industrial Environment,” IBM
Journal of Research and Development, vol. 39, 1995.

[4] Bernstein, K., et al., High Speed CMOS Design Styles, Kluwer Academic Publishers,
Boston, 1998.

[5] Chen, C., Srivastava, A., and Sarrafzadeh, M., “On gate level power optimization using
dual-supply voltages,” IEEE Transactions on VLSI Systems, vol. 9, Oct. 2001, pp.616-629.

[6] Correale, A., Pan, D., Lamb, D., Wallach, D., Kung, D., and Puri, R., “Generic Voltage
Island: CAD Flow and Design Experience,” Austin Conference on Energy Efficient Design,
March 2003 (IBM Research Report).

[7] Davis, W.R., et al., “A Design Environment for High Throughput, Low Power, Dedi-
cated Signal Processing Systems,” proceedings of the Custom Integrated Circuits Confe-
rence, 2001, pp. 545.

[8] Trevillyan, L., Kung, D., Puri, R., Kazda, M., and Reddy, L.,“An integrated environment
for technology closure of deep-submicron IC Designs,” IEEE Design & Test of Computers,
vol. 21, no. 1, February 2004, pp. 14-22.

Pushing ASIC Performance in a Power Envelope 355

[9] Fishburn, J.P., “Clock Skew Optimization,” IEEE Transactions on Computers, vol. C-39,

1990, pp. 945-951.
[10] Hamada, M., et al., “A top-down low power design technique using clustered voltage

scaling with variable supply-voltage scheme,” proceedings of the Custom Integrated Circuits
Conference, 1998, pp. 495-498.

[11] Hamada, M., Ootaguro, Y., and Kuroda, T., “Utilizing surplus timing for power reduction,”
proceedings of the Custom Integrated Circuits Conference, 2001, pp. 89-92.

[12] Hetzel, A., “A sequential detailed router for huge grid graphs,” proceedings of Design
Automation and Test in Europe, 1998 , pp. 332.

[13] Hojat, S., et al., “An integrated placement and synthesis approach for timing closure of
PowerPCTM microprocessors,” proceedings of the International Conference on Computer
Design, 1997, pp. 206.

[14] Hwang, K., Computer Arithmetic: Principles, Architecture, and Design, Wiley Publishers,
1979.

[15] Krishnamoorthy, R., et al., “Dual supply voltage clocking for 5GHz 130nm integer
execution core,” proceedings of the Custom Integrated Circuits Conference, 2002, pp.
128-129.

[16] Kosonocky, S., et al., “Low Power Circuits and Technology for wireless digital systems,”
IBM Journal of Research and Development, vol. 47, no. 2/3, 2003.

[17] Kudva, P., Kung, D., Puri, R., and Stok, L., “Gain based Synthesis,” International Confe-
rence on Computer-Aided Design tutorial, 2000.

[18] Kulkarni, S.H., and Sylvester, D., “High performance level conversion for dual VDD
design,” IEEE Transactions on VLSI Systems, vol. 12, 2004, pp. 926-936.

[19] Lackey, D., et al., “Managing Power and Performance for SOC Designs using voltage
islands,” proceedings of the International Conference on Computer-Aided Design, 2002.

[20] Puri, R., D’souza, E., Reddy, L., Scarpero, W., and Wilson, B., “Optimizing Power-
Performance with Multi-Threshold Cu11-Cu08 ASIC Libraries,” Austin Conference on
Energy Efficient Design, March 2003 (IBM Research Report).

[21] Puri, R., Pan, D., and Kung, D., “A Flexible Design Approach for the Use of Dual
Supply Voltages and Level Conversion for Low-Power ASIC Design,” Austin Conference
on Energy Efficient Design, March 2003 (IBM Research Report).

[22] Rohrer, N., et al., “A 480MHz RISC microprocessor in a 0.12µm Leff CMOS technology
with copper interconnects,” proceedings of the International Solid State Circuits Confe-
rence, 1998, pp. 240-241.

[23] Sakurai, T., and Newton, R., “Alpha-power law MOSFET model and its application to
CMOS inverter delay and other formulas,” IEEE Journal of Solid-State Circuits, vol. 25,
no. 2, April 1990, pp. 584-593.

[24] Sakurai, T., and Newton, R., “Delay Analysis of Series-Connected MOSFET Circuits,”
IEEE Journal of Solid-State Circuits, vol. 26, no. 2, February 1991, pp. 122-131.

[25] Sirichotiyakul, S., et al., “Standby power minimization through simultaneous threshold
voltage selection and circuit sizing,” proceedings of the Design Automation Conference,
1999, pp. 436-441.

[26] Srivastava, A., and Sylvester, D., “Minimizing total power by simultaneous Vdd/Vth
assignment,” IEEE Transactions on CAD, vol. 23, 2004, pp. 665-677.

[27] Stok, et al., L., “BooleDozer Logic Synthesis for ASICs,” IBM Journal of Research and
Development, vol. 40, no. 3/4, 1996.

[28] Sunderland, D.A., et al, “Second Generation Megagate ASICs for the SPACEWAYTM
Satellite Communications Payload,” NASA Symposium on VLSI Design, May 2003.

[29] Sylvester, D., and Kaul, H., “Future performance challenges in nanometer design,”
proceedings of the Design Automation Conference, 2001, pp. 3-8.

[30] Szymanski, T. G., “Computing Optimal Clock Schedules,” proceedings of the Design
Automation Conference, 1992, pp. 399-404.

356 Chapter 13

[31] Taur, Y., “CMOS Design near the limit of scaling,” IBM Journal of Research and Deve-

lopment, vol. 46, no. 2/3, 2002.
[32] Usami, K., et al., “Automated Low-Power Technique Exploiting Multiple Supply

Voltages Applied to a Media Processor,” IEEE Journal of Solid-State Circuits, vol. 33,
no. 3, 1998.

[33] Usami, K., and Horowitz, M., “Clustered voltage scaling techniques for low-power
Design,” proceedings of the International Symposium on Low Power Electronics and
Design, 1995.

[34] Wang, Q., and Vrudhula, S., “Algorithms for minimizing standby power in deep sub-
micron, dual-Vt CMOS circuits,” IEEE Transactions on CAD, vol.21, 2002, pp. 306-318.

[35] Yeh, C., et al., “Layout Techniques supporting the use of Dual Supply Voltages for Cell-
based Designs,” proceedings of the Design Automation Conference, 1999.

Chapter 14 14

LOW POWER ARM 1136JF-S™ DESIGN

George Kuo, Anand Iyer
Cadence Design Systems, Inc.
San Jose, CA 95134, USA

14.1 INTRODUCTION

Methodologies for ASIC design have been seen as lagging behind
custom design methodologies for a long time. With process migration to
90nm and below, ASIC design methodologies are fast catching up with
custom design methodologies.

An economic driver for ASICs is the increasing demand for mobile
and consumer devices. These devices have smaller form factors. They are
becoming part of everyday life with high usage, and need to be robust.
For example, a device that combines cellular telephony with a PDA is used
many times during the day without recharging. This is forcing designers
to look at power as an important metric when they design chips for these
devices. Such low power designs are becoming more and more common-
place.

Low power has always been the forte of custom design methodologies.
Whether in system design, process and logic selection or implementation,
low power design was handled by specialist designers using custom tools.
Increased demand for mobile and consumer applications with high device
integration have pressured circuit designers to adopt faster, automated design
approaches. Synthesizable application specific designs can meet these time-
to-market needs with moderate power consumption, but to achieve lower
power custom design approaches must be adopted and automated.

Many EDA companies are addressing this challenge to translate custom
low power methodologies into a more generalized methodology. These metho-
dologies are validated through designing prototype chips. One such project
was completed recently to validate a low power methodology including voltage
scaling for controlling power. This chapter talks about this project and outlines
the designer choices and the decisions as the project progressed. Emphasis

358 Chapter 14

was given to getting maximum power reduction without changing the under-
lying architecture nor using a specialized process technology.

14.2 PROJECT OBJECTIVE

A variety of power management techniques have been developed and
applied to date, but most of these would require extensive design expertise or
manual implementation process. The team developed a design methodology to
reduce power dissipation of a typical microprocessor, resulting in an easily
adoptable power management solution that neither requires complex archi-
tecture nor expensive low power process technology. The team wanted to
evaluate the power reduction from the design flow choices independent of
any superior architecture or fancy process technology. Design description

The integrated circuit that the team developed, which included an
ARM1136JF-S microprocessor and related circuitry, was designed to func-
tion in an ARM system development board, ARM RealView® [1]. The major
components of this chip include the microprocessor core; the ETB11 and
ETM11 trace bus and memory functions; and a multi-level advanced high
performance bus (AHB) at the chip level to connect the AHB Lite ports of
the core for accessibility from the external pins of the device. The bus
structure also allows access to the 128 KB on-chip RAM to enable data
transfers from any four ports concurrently [4][6]. The test chip is shown in
Figure 14.1.

Blocks shown on the test chip on the left of the ARM1136JF-S in Figure
14.1 are the ARM MBIST (memory built-in self test) logic for testing
memories; JTAG (Joint Test Action Group) IEEE standard test access port
(TAP) and boundary scan logic; external and internal clock muxing logic,
and logic generating the reset signal; and coprocessors for validating the
chip.

In the ARM1136JF-S, the ARM11 core is an implementation of the
ARMv6 running 32-bit ARM, 16-bit Thumb and 8-bit Jazelle instructions.
The vector floating point coprocessor supports scalar and vector arithmetic
on vectors with up to four double precision elements [4]. The TLB is the
translation look aside buffer that caches which physical memory addresses
corresponds to which virtual addresses. The DMA (direct memory access)
logic supports peripherals transferring information directly with the memory.

14.2.1.1 ARM1136JF-S Based System-on-Chip

Low Power ARM 1136JF-S™ Design 359

ARM
MBIST

JTAG, TAP
Test Logic

External /
Internal

Clock Select

Validation
Coprocessor

Validation
Coprocessor

ARM1136 test chip

Instructions
Interrupts

ETB
MBIST

ETB
RAM

ETM

VIC

Trace

External

AHB Lite Ports

Full

AHB

AHB
MBIST

Test Chip
RAM

AHB Bus
Matrix

ARM1136JF-S
Vector Floating

Point Coprocessor

L1 Data
Cache

Core

Lo
ad

 S
to

re

U
ni

t

Fe
tc

h Data
Cache

Instruction
Cache

TLB

DMA

L1 Instruction
Cache

ARM
MBIST

JTAG, TAP
Test Logic

External /
Internal

Clock Select

Validation
Coprocessor

Validation
Coprocessor

ARM1136 test chip

Instructions
Interrupts

ETB
MBIST

ETB
RAM

ETM

VIC

Trace

External

AHB Lite Ports

Full

AHB

AHB
MBIST

Test Chip
RAM

AHB Bus
Matrix

ARM1136JF-S
Vector Floating

Point Coprocessor

L1 Data
Cache

Core

Lo
ad

 S
to

re

U
ni

t

Fe
tc

h Data
Cache

Instruction
Cache

TLB

DMA

L1 Instruction
Cache

Figure 14.1 ARM1136JF-S test chip block diagram.

On the right of the ARM1136JF-S in Figure 14.1, are the embedded trace
macrocell (ETM) for debug and trace and the embedded trace buffer (ETB)
for capturing the ETM output and saving it to an on-chip buffer for later
access; the vector interrupt controller (VIC) for handling interrupts; and the
AHB bus logic.

Two additional co-processors were included to exercise the ARM1136
co-processor interface. These components along with the usual support logic
required for manufacturing test and debug in a typical ARM system-on-chip
(SoC) device were included at the test chip level. These test components
with those detailed above form the main structure of the test chip.

The entire design with the specific memory configuration was verified
using the Cadence NC simulation environment with the binary validation
testbench kit provided by ARM [2], which totals more than 700 test sets and
required several days of run time. The simulation results were also captured
in both VCD (Voltage Change Dump) and TCF (Toggle Count Format) for
subsequent power optimization and detail power analysis in the flow. In
particular, peak power and average power patterns were used as benchmark
references for the simulated results and the final silicon measurement. The
TCF was used by the RTL Compiler synthesis to better estimate the actual
switching activities, to help produce better balanced dynamic power optimi-
zation and leakage state probability. The VCD file, being much larger in size

360 Chapter 14

(about 4GB for one of the peak power test cases) to capture all relevant logic
events, was used in the detail power analysis with Voltage Storm Power
Meter™.

As this was a test chip, a 388 pin BGA (ball grid array) package was
used to ensure high availability of functional signals. The package was also
defined by the requirements of the ARM1136 evaluation platform provided
for application development.

14.2.1.2 Technology and libraries

To validate the broad applicability of our approach, a typical process
technology was used, the TSMC 90nm G silicon process, and the ARM
Artisan® general-purpose physical IP, including SAGE-X™ standard cell
libraries and memory generators [5]. As described below, the standard cell
libraries were augmented with extended voltage range characterization and
cells aimed at enabling power reduction design techniques.

14.2.1.3 EDA Tools and Methodology

Version 4.1 of the Cadence Encounter digital IC design platform was
used for implementation of this low power methodology, including RTL
Compiler™ synthesis, CeltIC Nanometer Delay Calculator™, and Voltage-
Storm for power analysis. The tool flow used in this project is shown in
Figure 14.2. The motivation behind the Encounter low power methodology
is described in [9].

14.2.2 Project strategy overview

This design tackled three areas of power management challenges: leakage
power; dynamic (or active) power; and power integrity of the design as a
whole. This design also looked at developing and validating an integrated
and effective flow as one of the desired goals.

Leakage power optimization was mainly based on the usage of multiple
threshold voltage (Vth) cells to balance between timing and power perfor-
mance. In addition, voltage scaling contributed to the overall reduction in
leakage power. The key challenges with the traditional method of multiple-
pass synthesis or using post-processing scripts were the complexity added to
the design flow, and uncertainty in whether or not the optimal balance of
timing and leakage power had been achieved. Both challenges were solved
in this design by using single pass-global optimization from Encounter RTL
Compiler™ in the synthesis step, followed by SOC Encounter™’s post route
leakage optimization to fine-tune the results with more detailed parasitic
information. This single pass methodology can be used in a hierarchical
design flow if the design capacity or implementation strategy requires it.

Low Power ARM 1136JF-S™ Design 361

RTL clock gating

Multi-supply voltage (MSV)
Floorplanning

Multi-Vth, multi-supply voltage-
aware physical optimization

MSV-aware power routing

Timing, crosstalk, MSV-driven
signal routing

Leakage and dynamic IR drop
and EM verification

Dynamic and leakage power
optimization

MSV-aware power planning
and power mesh optimization

Accurate MSV delay calculation
& crosstalk analysis

Placement and
level shifter insertion

Power-
aware

synthesis

Silicon
virtual

prototyping

Global
physical
synthesis

Routing

Design
integrity

verification

Post-route timing, crosstalk,
and multi-Vth optimization

Low-power clock tree synthesis

Timing/power/area

Encounter
RTL

Compiler

SoC
Encounter

GPS

NanoRoute

CeltIC NDC

Voltage Storm -
PowerMeter

Multi-Vth
Library

RTL clock gating

Multi-supply voltage (MSV)
Floorplanning

Multi-Vth, multi-supply voltage-
aware physical optimization

MSV-aware power routing

Timing, crosstalk, MSV-driven
signal routing

Leakage and dynamic IR drop
and EM verification

Dynamic and leakage power
optimization

MSV-aware power planning
and power mesh optimization

Accurate MSV delay calculation
& crosstalk analysis

Placement and
level shifter insertion

Power-
aware

synthesis

Silicon
virtual

prototyping

Global
physical
synthesis

Routing

Design
integrity

verification

Post-route timing, crosstalk,
and multi-Vth optimization

Low-power clock tree synthesis

Timing/power/area

Encounter
RTL

Compiler

SoC
Encounter

GPS

NanoRoute

CeltIC NDC

Voltage Storm -
PowerMeter

Multi-Vth
Library

Multi-Vth
Library

Figure 14.2 The power management design flow that was used.

Minimizing the dynamic power focused on voltage scaling the design
into different power domains based on their performance requirements, which
the team refer to as a Multiple Supply Voltage implementation (MSV). This
is essentially the voltage island approach proposed in [10].

An automated tool flow was critical to meet the four month netlist to
tape-out schedule, with the peak engineering resource of four people, or an
equivalent of about 12 person-months total. In this MSV flow, two power
domains were used, one with 1.0V supply and the other with 0.8V supply.
Voltage level shifters were automatically inserted, placed and routed (power
and signal) for interface from the 0.8V domain to the higher voltage domain.
Besides managing the complex power routing, this design also used SOC
Encounter to ensure optimization, routing and analysis across the different
operating voltages was performed with sufficient accuracy.

Further reductions in dynamic power were achieved with aggressive
implementation of clock gating where possible to reduce the switching

362 Chapter 14

activities. The clock gating flow started with allowing Encounter RTL
Compiler to automatically identify all opportunities for clock gating in the
netlist. The clock gating was then moved automatically to the highest hierar-
chical starting point of the clock tree, and then the desired clock gating cells
were inserted. This flow finished with power aware clock tree synthesis and
clock skew balancing. Finally, the impact of traditional timing performance
and design integrity challenges, such as signal integrity and IR drop (supply
voltage drop due to current across resistance) were amplified due to the voltage
scaling. These challenges were solved with the advancement in timing
model and improved design practices.

14.3 KEY DECISIONS AND IMPLEMENATIONS

14.3.1 Dynamic power

14.3.1.1 Voltage scaling decisions

In this project, the design team first addressed dynamic power consum-
ption, which can be represented by the equation:
 2

d ddP kfCV= (14.1)

where k is the toggle rate (the fraction of time that transistors are switching);
C is circuit capacitance, including interconnect and transistor capacitance;
Vdd is the supply voltage to cells; and f is the operating frequency.

As Equation (14.1) indicates, power is proportional to the square of the
supply voltage. Consequently, designers can save a significant amount of
dynamic power simply by reducing the voltage – an approach called voltage
scaling. On the other hand, lowering the supply voltage slows transistor
switching speeds (as detailed in Section 4.2). Because this design needed to
perform to 350MHz to meet the requirements of ARM’s development partners,
the team had to be selective in determining which parts of the design could
use the voltage scaling technique.

To get a rough baseline for the design performance that can be achieved
with the targeted technology, the team did a first pass synthesis check, using
the Artisan 90nm SAGE-X library and zero wireload setting (i.e. assuming
no wire loads). This information was then fed from Encounter RTL Compiler
into SOC Encounter to perform floorplanning and partition exploration.

In this case, the team created a multi-supply voltage (MSV) design,
partitioning the design into separate “voltage islands” or “voltage domains”,
where each domain operates at a different supply voltage depending on its
timing requirement.

Low Power ARM 1136JF-S™ Design 363

Figure 14.3 Test chip voltage domain layout, where the rectangle in the lower left corner is
the low supply voltage domain and the remainder is the high voltage domain.

Timing-critical blocks were put in the high Vdd domain, operating at the
standard 90nm supply voltage of 1.0V. Blocks with less critical timing paths
were aggregated into a second domain, anticipating that the supply voltage
of these blocks would be scaled down to reduced the power. A floorplan of
the chip is shown in Figure 14.3. At this step, determining the proper voltage
required an analysis of the relationship of cell performance versus Vdd.

364 Chapter 14

30%

Non-linear increase in
delay due to IR Drop

linear approximation
0

50

100

150

200

250

300

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Voltage (V)

D
el

ay
 (p

s)

SPICE
SignalStorm NDC
K Factor

30%

Non-linear increase in
delay due to IR Drop

linear approximation
0

50

100

150

200

250

300

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Voltage (V)

D
el

ay
 (p

s)

SPICE
SignalStorm NDC
K Factor

SPICE
SignalStorm NDC
K Factor

Figure 14.4 Supply voltage versus delay for a buffer in 90nm technology.

For this particular technology, the safe operating range for the supply
voltage of the cells was from about 0.7V to 1.2V, with the nominal voltage
of 1.0V. However as shown in Figure 14.4, the delay impact of reducing the
supply voltage by 30% could be on the order of 2.5×.

In the initial timing exploration of this design, a 400MHz timing target
was used to identify timing critical regions of the logic. This was perfor-
med without both wire loads and detailed floorplan for a quick analysis.
Various memory accesses had surfaced as potentially timing critical, while
the ARM1136JF-S core itself was able to meeting the timing requirements
with some slack. This suggested a natural grouping of the design into two
separate partitions. Though the design was not stressed to determine the
maximum slack at 1.0V, the relative fast synthesis execution (about 1.5
hours) and minimum negative slack paths observed seem to agree with conti-
nuation of the partitioning exercise. The low supply voltage of 0.8V was
selected based on this analysis and with the design performance profile.
With the low voltage partition scaled from 1.0V down to 0.8V, a 36%
reduction in dynamic power for that portion of the design was expected (as
per Equation (14.1)).

Now that the voltages were selected, the next task was to characterize the
standard cell libraries for these voltages. The characterization relied on the
single physical footprint having two timing views: one for operation at 1.0V
operation, and one for operation at 0.8V. The delay of a NAND2 gate at
these two different supply voltages is shown in Figure 14.5. The characteri-
zation did not take a long time; approximately two days were used to rechar-
acterize the entire standard cell set of about 450 cells, as only two voltages
were used inside the chip. This step could be slow and cumbersome if there
were many voltage values for the power domains.

Low Power ARM 1136JF-S™ Design 365

Figure 14.5 NAND2X1 cell delay with 1.0V and 0.8V supply voltage.

A library characterized at many supply voltages is not only huge for
analysis, but also can suffer in accuracy from the non-linear nature of the
delay effects on power. A new characterization format called Effective
Current Source Modeling (ECSM) avoids these problems by recognizing the
current waveform of a device to compute the delay through the device. This
format helps in analyzing not only timing in multiple voltage scenarios but
also in multiple driver situations. ECSM is discussed in detail in Section
14.3.1.4.

14.3.1.2 Voltage level shifters

Once the libraries are characterized for multiple supply voltages, the
design team had to create voltage level shifters for signals crossing between
these two blocks. A voltage level shifter translates the interface signal from
one voltage level to another, e.g. from a low voltage swing of 0V to 0.8V to
a full (high) voltage swing of 0V to 1.0V.

Voltage level shifters were used for several reasons. Firstly, the crosstalk
due to high Vdd (VddH) signals on low Vdd (VddL) signals can be significant,
so it is best not to route VddH signals within the VddL domain. Secondly, a
high Vdd gate driven by a low Vdd input has forward biased PMOS tran-
sistors which cause substantial leakage current. Thirdly, standard cell libraries
are typically characterized assuming the same voltage swing on the inputs as
the supply voltage for the cells, rather than say characterizing VddH gates
with VddL inputs.

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Load Capacitance (pF)

D
el

ay
 (n

s)

1.0V NAND2X1
0.8V NAND2X1

366 Chapter 14

VddL

A Y

input with voltage
swing from 0V to 0.8V

output with voltage
swing from 0V to 1.0V

Figure 14.6 The basic design of the low Vdd to high Vdd voltage level shifter that was used.
The supply rail for the level shifter is high Vdd, and the first inverter in the buffer used a low
Vdd supply connection as well.

In principal, a level shifter might be used for both the VddH → VddL
direction and the VddL → VddH direction, where VddH is the high supply
voltage and VddL is the low supply voltage. However, in practice, it is
typically acceptable in CMOS design to “over-drive” the cells, with slight
timing inaccuracy at the lower voltage sink node (i.e. using the low Vdd
input to low Vdd cell characterizations for high Vdd input to low Vdd cells).
For example, the switching threshold of a 1.0V signal to a gate operated at
0.8V may cause the switching to be slightly faster in one direction. This
induced inaccuracy has very small impact on the overall timing, especially if
the boundary logic consists of synchronous registers as a general good
design guideline in this project; level shifters were inserted only in the
upshift direction, VddL → VddH.

The level shifter that the design team created was that of a simple buffer
function, as shown in Figure 14.6, and was four standard cell rows tall. The
default power supply rail was 0.8V. The 1.0V supply connected to a pin of
this cell. Both the 0.8V Vdd routing and 1.0V Vdd routing were done using a
power router. Using a prescribed width for routing these different power
supplies, the team eliminated any electro-migration failures in the design.
The level shifter placement and power routing is shown in Figure 14.7.

It is worth mentioning that to guard against higher risk of latch-up due to
power ramp-up/ramp-down between the two voltage domains, the layout of
the level shifters cells had additional n-well spacing – beyond what was
minimally required by the specific 90nm technology from the foundry.

This project used a prototype version of the voltage level-shifter cell.
The level shifter cell was later optimized, as a result of this project, to a
much more compact and efficient design in the Artisan Design Component
Library. As it was, level shifters account for less than 5% of the overall chip
area, and each level shifter consumed about the equivalent power of drive
strength X8 buffer (Bufx8). As the level shifter was used to go between
domain boundaries, sufficient drive strength of the same buffer equivalent
(BufX8) was also maintained.

Low Power ARM 1136JF-S™ Design 367

Figure 14.7 Level shifter placement and power supply rail routing.

14.3.1.3 Level shifter insertion and placement

As described in Section 14.3.1.1, this chip was partitioned into two power
domains based on performance. Once the power domains were defined, the
level shifters were automatically inserted for the signals going across the
boundary from the low voltage domain to the high voltage domain. The place-
ment of these level shifters proved to be a challenge. Placement of level
shifters needed to take several things in consideration:

1. Level shifters needed to be placed along the natural signal path – any

deviation can impact timing.

2. Level shifters need access to both low Vdd and high Vdd – a long route
of the alternate supply can result in electromigration violations.

3. Level shifter placement should be isolated from normal standard cell
placement – any interaction between low voltage and high voltage signals
can increase signal integrity violations.

368 Chapter 14

Typically, the design implementation of level shifters has been performed
manually, and in an iterative fashion: first, the routing topology for the intra-
block signal’s optimal crossing is determined; then the level shifter cells
are manually inserted; and then the proper power connection is manually
designed. All these steps are labor intensive and error-prone. Especially
considering the potential iterations of different floorplan explorations, this
manual approach can have a significant impact on the design and its design
time.

Automating level shifter insertion and placement was one of the key
aspects of this project. The resulting placement is shown in Figure 14.7.

There were 3,300 signals crossing from the 0.8V domain to the 1.0V
domain. Automating level shifter insertion became the key to meeting the
project schedule, because these specialized cells had added implementation
complexity with insertion, placement and power routing,. The level shifters
needed to be placed along the boundary of the low voltage block where
signals were output to eliminate any timing closure issues. Signal integrity
was another concern as the high voltage signals can couple with a low
voltage signal causing more cross coupling noise than normal. In addition,
signal noise immunity depends on the voltage level. Signals at the higher
voltage level have higher noise tolerance than those at a lower supply voltage.
At the time of this project, a conservative noise threshold was used to ensure
acceptable noise tolerance. The noise threshold was set to 25% of the lower
of the two different supplies (i.e. 0.2V). This ensured tight signal integrity
acceptance for the 0.8V signals, and a slight margin for the 1.0V signals.
The tool was later updated to handle signal integrity issues between voltage
domains automatically. At the interface between two blocks, the signals with
1.0V and 0.8V co-exist, and even a moderate strength 1.0V signal can cause
noise issues on a 0.8V signal net. To detect this situation, the signal integrity
tool uses two techniques. Firstly, the noise tolerance may be different for
different signals. For example, a 1.0V signal may have a 0.1V noise tole-
rance and a 0.8V signal may have 0.08V noise tolerance. Secondly, a SPICE
like simulation of the noise waveform through the path using the transfer
function of the cells (including level shifters) ensures accurate propagation
of the noise waveform. With these two techniques, the signal integrity issues
can automatically be analyzed and corrected.

The concurrent placement of both the 1.0V and 0.8V domains included
around 100,000 instances in the 0.8V region and 200,000 instances in the
1.0V region.

14.3.1.4 Timing analysis across power domains

Timing paths crossing the power domains pose a challenge to the exis-
ting static timing infrastructure. To get around this issue, designers try either
to artificially confine their power domains within synchronous boundaries

Low Power ARM 1136JF-S™ Design 369

[11] or abstract various power domains for static timing analysis. The static
timing analyzer built on Encounter tools allowed us to perform timing checks
for paths crossing the power domains by loading up the correct libraries for
the different power domains and using the timing information of the level
shifters. The voltage differences are handled through modeling current as
opposed to modeling voltage (which a traditional timing analyzer does). The
newly developed Effective Current Source Modeling (ECSM) addressed this
specifically and allowed an accurate estimate of the delay across the power
domains [7].

ECSM models were derived from looking at the cell characterization
problem differently. There were two observations made during the characteri-
zation process: (1) Modeling the driver as a voltage controlled current
source provided better accuracy than traditionally modeling it as a voltage
controlled voltage source and (2) The Ceff (effective capacitance seen at the
output of a driver) which is assumed as constant in the normal modeling
actually varies during the transition. ECSM models take care of both these
issues by storing an I/V characterization using a time quantized Ceff. Figure
14.8 shows the characterization space for a given input slew rate.

Modeling for multiple voltages is an easy task with ECSM. For multiple
voltage scenarios, there are two ways that ECSM can help the designer:

1. When used in a design with many power domains (many voltage values),

in order to obtain accurate delay information, designers need to charac-
terize the timing views of the cells in the design at these various voltage
values. This not only increases the characterization effort but also slows
down the EDA tool that needs to read these characterized libraries.
ECSM requires the cells to be characterized at a subset of voltage values
and accurately interpolating the delays - with a bounded accuracy of 5%
to SPICE – between these points. For example, a library that is charac-
terized at 0.8V, 1.0V and 1.2V using ECSM models could be used at any
voltage point in between 0.8V and 1.2V.

2. ECSM can also be used to compute additional delay due to IR drop on
the nominal voltage supply. This additional delay can be used to perform
meaningful delay-power trade-offs.

To validate ECSM’s ability to provide continuous accurate delay coverage

across the entire potential operating range of Vdd levels, a joint study was
conducted with ARM Physical IP (Artisan). Delay analysis with the ECSM
models and SPICE simulation was compared with five sampled cells, under
different loading and slew rates, and a range of voltages from 0.7V to 1.2V
[7]. The ECSM model was built with three characterization points of 0.70V,
0.90V and 1.08V (nominal voltage) for each cell, and measured at six
different voltage levels (0.70V, 0.80V, 0.90V, 1.00V, 1.08V, 1.20V) with

370 Chapter 14

different input slew (0.04ns, 0.20ns, 1.50ns) and output loads (1.7fF, 20fF,
170fF), to collect the comparison data.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.002

0.05

0.10

0.15

0.20

0.25

0.00

Load

Capacita
nce

C load

Input Voltage Vin

O
ut

pu
t C

ur
re

nt
 I o

ut

0.074

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.002

0.05

0.10

0.15

0.20

0.25

0.00

Load

Capacita
nce

C load

Input Voltage Vin

O
ut

pu
t C

ur
re

nt
 I o

ut

0.074

Figure 14.8 ECSM characterization for a given input slew rate.

AFCSHCINX2 (SPICE)

AFCSHCINX2 (ECSM)

DFFX2 (SPICE)

DFFX2 (ECSM)

BUFX2 (SPICE)

BUFX2 (ECSM)

NAND2X1 (SPICE)

NAND2X1 (ECSM)

NOR3X1 (SPICE)

NOR3X1 (ECSM)0

200

400

600

800

1000

1200

1.20 1.08 1.00 0.90 0.80 0.701.20 1.08 1.00 0.90 0.80 0.70
Supply Voltage (V)

D
el

ay
 (p

s)

Figure 14.9 This figure shows the gate delay versus supply voltage for the ECSM models and
SPICE simulation, which are in good agreement.

Low Power ARM 1136JF-S™ Design 371

N
um

be
r

of
 P

oi
nt

s

-20

0

20

40

60

80

100

120

-3.5% -1.5% 0.5% 2.5% 4.5%
ECSM error vs. SPICE

N
um

be
r

of
 P

oi
nt

s

-20

0

20

40

60

80

100

120

-3.5% -1.5% 0.5% 2.5% 4.5%
ECSM error vs. SPICE

Figure 14.10 This graph shows the distribution of ECSM model error vs. SPICE. The mean
error is about 0.5%, and the standard deviation is 0.6%.

Figure 14.9 shows the ECSM and SPICE results at each comparison point
with increasing voltage. From this graph, there is little difference between
the ECSM prediction and the SPICE results. Looking at the deviation of the
approximately 200 comparison points (see Figure 14.10), one sees that the
average error of ECSM vs. SPICE is 0.5%, with a standard deviation of
0.6%. This was a remarkable validation of the accuracy of the ECSM models,
especially for multiple-supply voltage design.

14.3.1.5 Clock gating

One of the techniques to reduce the dynamic power is to reduce the
switching activities (k in Equation (14.1)). As the clock signal transitions
twice each clock cycle, one of the major strategies to reduce switching
activity in synchronous digital design is to “turn-off” the clock while the
logic or the “state” of the synchronous register is not expected to be changing.
This is also known as “clock gating”.

Traditionally, clock gating has been designed manually, as the designer
would be familiar with which portions of the function can be stopped and
when. However, not all opportunities for clock gating may be found this
way; it may be time consuming, and may not be comprehensive in coverage.
For this project, the team decided to implement clock gating wherever
possible because of the significant reduction in switching power that can be
achieved, and the cost of design implementation can be low. Encounter RTL
Compiler was used to automate identification and insertion of clock gating
functions, using ARM PIP’s integrated clock gating cells (ICG).

372 Chapter 14

ICG
ICG

ICG

clock

(a) clock gating without de-cloning

enable

ICG

(b) clock gating after de-cloning

clock

enable

ICG
ICG

ICG

clock

(a) clock gating without de-cloning

enable

ICG
ICG

ICG

clock

(a) clock gating without de-cloning

enable

ICG

(b) clock gating after de-cloning

clock

enable

ICG

(b) clock gating after de-cloning

clock

enable

Figure 14.11 Pruning the number of clock gating cells in (a) by moving clock gating
upstream hierarchically (as in (b)) for logic that can share the same clock enable logic.

Automatically identifying clock gating opportunities is done by using the
tool to examine the entire netlist, to determine which registers and latches
can share the same clock enabling logic. 1,112 clock gating opportunities
were identified, in addition to the clock gating that was already coded in the
RTL design.

After identifying these new clock gating opportunities, RTL Compiler
was used to prune the number of clock gating cells by moving the gating
function upstream hierarchically (shown in Figure 14.11). By gating at a
higher level in the clock tree, more logic can be turned off. And by having
less clock gating cells and branches, the design has a better starting point for
clock tree generation. However, this process, also known as de-cloning,
needs to be done with caution. Moving clock gating cells up the hierarchy
can lead to needing to generate complex gating signals. This can also put
undue burden on the setup time at the enable pin of the gating cell. If
constrained within a few levels of hierarchy, this can give us an additional
5% to 10% of clock power savings.

14.3.2 Leakage power

Leakage power has become a growing concern with advanced techno-
logy nodes of 130nm and below. Why is leakage power a problem?

Power consumption of a CMOS gate has three major components:
 total d sc lkP P P P= + + (14.2)

where Pd is the dynamic power, Psc is the short circuit power, and Plk is the
leakage power. Before deep submicron processes, Plk was marginal relative
to switching power. However, this leakage power grows from less than 5%
of the total power budget at 0.25um to 20-25% at 130nm and to 30-40% at
90nm [12]. Below 90nm, the chip could be dissipating almost as much
power due to leakage as due to dynamic power.

Low Power ARM 1136JF-S™ Design 373

Table 14.1 Leakage and saturation drain current in TSMC 90nm and 130nm processes, for the
low, standard, and high transistor threshold voltage libraries.

TSMC
Transistor threshold voltage Low Standard High Low Standard
Leakage current (pA/um) 100 10 1.5 10 0.25
Saturation drain current (uA/um) 755 640 520 590 535

90nm 130nm

Table 14.2 Threshold voltage value of the 1.0V cells.
N-Channel P-Channel

Standard Vth 0.228V 0.165V
High Vth 0.354V 0.333V

To deal with increasing subthreshold leakage currents, semiconductor
foundries have added higher threshold voltage transistors that have lower
leakage at the cost of greater delay. Standard cell designers can use those
transistors to design the same functional gate with different leakage current,
but maintaining the same cell footprint. This enables cell swapping to reduce
leakage power without impacting the place and route floorplan. The trade-
off between leakage and drive strength (saturation drain current) for different
Vth values in TSMC’s 90nm and 130nm processes is shown in Table 14.1.
See Table 14.2 for the standard and high Vth values of this design’s libraries.

The cost of this leakage optimization is reduction in speed: about a 25%
increase in delay for 4× leakage power reduction at 0.8V supply comparing
high threshold voltage and standard threshold voltage cells in Figure 14.12
and Figure 14.13. In addition, there is the process expense for the additional
implant required if two transistor threshold voltages are used.

In this low power design, the complete RTL was synthesized with the
newly developed global optimization synthesis technology, using two Vth
libraries (standard and high) concurrently optimized for leakage power, timing
and area in a single pass strategy. Gates in the high Vth library are lower
leakage, but slower than gates in the standard Vth library. It was important to
note that the balance between the different but equally important design
targets, such as timing and power, routinely requires trade-offs in cell selec-
tion based on dynamic power, delay and leakage. Automation of that optimi-
zation in the synthesis tool simplified this design implementation. In the
design, standard Vth cells were used in timing critical paths, whereas high Vth
cells were used in other paths to optimize for power.

Having a global view of the design with RTL Compiler helped optimize
the entire design by trading timing slack for area/power effect during the
initial mapping stage of synthesis. Cells on critical paths are mapped to fast
cells that are low Vth and are narrow (few inputs) functional cells, which
avoids slow pull-up or pull-down series transistor chains in a logic gate. To
reduce power, other cells are high Vth to reduce leakage, and wide (more

374 Chapter 14

inputs) to collapse instances and reduce net count – thereby reducing area
and power. It was obvious that the bigger portion of the design the RTL
Compiler can see, the better optimization can be realized.

Figure 14.12 Leakage power for a NAND2XL (low power, small NAND2) cell at different
supply Vdd and threshold voltages Vth.

Figure 14.13 Delay for a NAND2XL (low power, small NAND2) cell at different supply and
threshold voltages.

0

50

100

150

200

250

300

350

1.0V Vdd
standard Vth

0.8V Vdd
standard Vth

1.0V Vdd
high Vth

0.8V Vdd
high Vth

NAND2XL leakage with different Vdd and Vth

W
or

st
 le

ak
ag

e
po

w
er

 (n
W

)

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.01 0.01 0.02 0.02 0.03 0.03
Load Capacitance (pF)

C
el

l D
el

ay
 (n

s)

0.8V Vdd. high Vth
0.8V Vdd, standard Vth
1.0V Vdd. high Vth
1.0V Vdd, standard Vth

Low Power ARM 1136JF-S™ Design 375

Table 14.3 Multi-Vth cell utilization in the low and high supply voltage domains. 8.5% of the
cells in the low voltage domain were high Vth, and 97% of the cells in the high voltage
domain were high Vth.

Library Cell count Percentage of Total Cells
0.8V supply, high threshold voltage 16,210 5.4%
0.8V supply, standard threshold voltage 174,738 57.8%
1.0V supply, high threshold voltage 108,052 35.8%
1.0V supply, standard threshold voltage 2,710 0.9%

Besides using multiple threshold voltages to reduce leakage, RTL com-
piler uses other optimization techniques to meet both the dynamic and leakage
power design target. Such optimizations include logic restructuring, buffer
insertion and removal, pin swapping and gate resizing. Cell sizing and buffer
manipulations are aimed at optimizing the switching time, to reduce unne-
cessary switching activity due to glitching, and therefore reducing dynamic
power and maintaining balanced performance. Pin swapping swaps functio-
nally identical input pins, so that the signal with higher switching activity
connects to the gate input pin with lower input capacitance. Logic restruc-
turing minimizes the number of logic levels traversed by high switching
activity signals to reduce the dynamic power.

 The leakage power optimization does not occur only in the synthesis
step. As the design went through detailed place and route, more accurate RC
(wiring) parasitic information becomes available. This information was used
to fine-tune the multi-Vth cell selection, balancing the performance goal with
the power target. In this project, timing and area target were both fixed, but
the power target was set aggressively to understand the potential limit of the
power optimization tools. This was performed with SOC Encounter’s post
route optimization stage, with optLeakagePower -postRoute –highEffort
(example script command line).

The overall mix of multi-Vth cells showed an expected profile between
performance and power. 97% of all cells used in the 1.0V domain where
high Vth cells, after the final optimization (see Table 14.3). Less high Vth
cells were used in the 0.8V domain to ensure performance targets were met.

14.3.3 Power Integrity Verification

The sign-off power analysis tool based on the Encounter platform recog-
nized the power domains and gave us results per power domain. The analysis
results took the level shifters into account, and the power nets were traced
through the level shifters into the other domain. Figure 14.14(a) shows the
results of power analysis on the shared ground (GND) net; Figure 14.14(b)
shows the power analysis on the Vdd net for the 0.8V region; and Figure
14.14(c) shows the power analysis on the Vdd net for the 1.0V region. The
design’s IR drop was less than 22mV, or about 2% worst case.

376 Chapter 14

Figure 14.14 This figure shows the IR drop effect (a) on the shared ground for the complete
chip, (b) on the 0.8V domain supply voltage, and (c) on the 1.0V domain supply voltage.

Low Power ARM 1136JF-S™ Design 377

The team also performed dynamic power analysis to assess the usage of
decoupling capacitances and utilized the what-if capability of the tool to try
out various combinations of decoupling capacitance placement. Though
multiple supply voltage design does not have any direct impact on the place-
ment of decoupling capacitors, the dynamic power analysis was required to
ensure the benefit from the decoupling capacitances would not be neutralized
by the additional power penalty induced by these decoupling capacitances.

For this design, an initial switching activity of 30% was assumed to get
the early power estimate and budget. As the design implementation progre-
ssed, actual gate level functional simulation patterns (derived from the
verification vector set described in [2]) for peak-power and typical power
were executed to capture the needed VCD and TCF files for more accurate
power analysis Since the static timing analyzer uses the absolute voltage
value, it was very easy to translate the instance-based IR drop numbers for
the placement into delays. Optimization was done to account for this delay
and the team could thus trade-off power against timing and area.

14.4 RESULTS

14.4.1 Simulated Results at Tape-Out

To compare and contrast the effectiveness of the power management
strategies, this project implemented the same design in two different flows.
One is with the traditional timing closure flow; the other is with the power
management solution described so far. To make the comparison reasonable,
both implementations used the same RTL design, same technology library,
the same die size (4mm × 4mm), same floorplan, and most importantly,
tapeout at the same target frequency of 355MHz.

Tapeout analyses were done in both worst case corner (slow process,
125°C, 0.9V) and best case corner (fast process, –40°C and 1.1V), with addi-
tional leakage power analysis done with fast process, 125°C and 1.1V for the
potential worst case for power.

The simulated results at tapeout corresponded well to our expectations.
Table 14.4 compares the power savings obtained against the baseline imple-
mentation, normalized to the overall power from the baseline.

Recall that the major strategies used to reduce dynamic power were
voltage scaling and clock gating. The 1.0V domain has about 12% dynamic
power savings due to additional clock gating and other logic optimizations,
such as power aware cell selection, pin swapping, gate sizing, buffer insertion
and removal, logic restructuring, and reduction of gate counts overall. Note
that while power minimization was not performed specifically on the baseline
implementation, area minimization was performed, which would have 2nd
order effect on some power reduction.

378 Chapter 14

The 0.8V power domain results show much higher dynamic power
savings of 50.3%. With supply voltage reduced by 20%, a power saving of
36% (= 1.02 – 0.82) was expected. The other 14% power savings was due to
clock gating and logic optimization.

The leakage power optimization also correlated well to estimates. As
would be expected, the 1.0V domain has much higher performance margin
to allow for use of high Vth. As noted previously, over 97% of cells used in
this region were high Vth cells, and there was nearly 70% leakage power
savings as expected. (As noted earlier, high Vth gives about a ×4 reduction in
leakage current, so the team expect reduction in leakage power to 0.25 ×
0.97 + 0.03 = 27% of the original power, or 73% leakage power savings.)

In the lower supply voltage domain, there was less opportunity to use
high Vth as there was less timing slack available due to using low Vdd, and
less savings were expected. However, leakage power is proportional to the
current-voltage product (Plk α IlkVdd), so reducing Vdd does also reduce the
leakage power. The 20% reduction in Vdd gives more than 20% reduction in
leakage as there are also additional factors affecting subthreshold leakage
such as drain-induced barrier lowering (DIBL) which is reduced at lower
Vdd, and 8.5% of the cells were changed to high Vth, giving 33.5% leakage
power savings in the 0.8V Vdd domain.

The combined overall power saving of 40.3% was a great achievement
using mainstream production tools, with a mature and general purpose process
and library, and impacting neither the design architecture nor the design
implementation flow.

Table 14.4 Power savings of the multi-Vdd/multi-Vth design versus the baseline design, where
both domains had single 1.0V supply and only the standard Vth. The total dynamic and leakage
power savings were respectively 38.0% and 46.6%.

Power
Baseline Low Power Reduction

1.0V domain Dynamic power 0.235 0.207 11.9%
(includes RAM) Leakage power 0.097 0.030 69.1%

Subtotal 0.332 0.237 28.6%

0.8V domain Dynamic power 0.501 0.249 50.3%
(no RAM) Leakage power 0.167 0.111 33.5%

Subtotal 0.668 0.360 46.1%

Total for both domains 1.000 0.597 40.3%

Normalized power

Low Power ARM 1136JF-S™ Design 379

Figure 14.15 Physical floorplan of the chip.

The physical floorplan is shown in Figure 14.15. The die size is 4mm by
4mm, with 360 I/O pads. There are about 300,000 cells in total. The area
utilization is about 80%, with memories comprising approximately 60% of
the total area. Overall, the area overhead for implementing multiple supply
voltages was less than 5%. Note that the same floorplan was used for the
baseline. As the cell footprints are the same, there was no significant change
in area due to using multiple threshold voltages. There was minimal impact
on the design flow and schedule due to our low power design approach com-
ared to the baseline timing closure implementation.

14.4.2 Silicon Validation

To validate the results and correlate to actual silicon behavior, the chip
was fabricated (shown in Figure 14.16). The received silicon IC (integrated
circuit) parts were packaged in a BGA package, then tested using Inovys
Personal Ocelot tester under typical operating conditions (room temperature
and nominal supply voltages).

380 Chapter 14

Figure 14.16 Silicon image of the test chip.

The IC achieved functional and electrical design validation with first
silicon. Additionally, over 15,000 system-level validation tests have been
completed successfully using ARM’s RealView® system validation board at
speed. The fabricated ARM chip successfully runs the Linux (version 2.4),
Windows CE, and SunOS operating systems.

Basic parts screening included normal JTAG, Scan and Memory BIST
(built-in self test). Functional patterns were also used to check minimum
functionality of the devices. Finally, looping Dhrystone benchmarks were
used to measure the power, at different combinations of system clock freq-
encies from 1MHz to 50MHz on the ATE (Automated Test Equipment) test
fixture. The table below summarizes the simulated baseline results, the
simulated low power implementation, the measured low power implemen-
ation, and a reference power measurement of the same ARM core in 0.13um.

Low Power ARM 1136JF-S™ Design 381

Table 14.5 Active power of the chip for the Dhrystone 2.1 benchmark set, comparing power
estimates (at 25°C, 90% of nominal supply voltage, and typical process corner) and measured
power for the fabricated chip.

Simulated
Baseline
(90nm)

Simulated
Low Power

(90nm)

Measured
Low Power

(90nm)

ARM published
1136JF-S Power

in 130nm
Core 0.28 0.14 0.10 0.60
Other 0.36 0.32 0.21
Total 0.64 0.46 0.31

Power Domain

Active Power Dissipation (mW/MHz)

The relationship between the simulated baseline and simulated low
power implementation at tapeout was elaborated in the last section. The
measured silicon results show the correlation between silicon and simulation
are consistent, with the simulation being conservative by about 30% to 40%,
due to assuming more severe operating conditions and process variances (see
Table 14.5). For example, the simulated typical condition assumed 25°C and
10% Vdd variance but the actual silicon measurement would deviate in both
the temperature and voltage supply. However, in general the results were
better than expected, as indicated by the 0.14mW/MHz estimate against the
measured 0.10mW/MHz.

 In addition to the implementation comparison, an ARM published
power measurement of the ARM1136JF-S core [3] was used to draw refe-
ence against the silicon verified 0.1mW/MHz power performance. Though
the published number of 0.6mW/MHz was for 130nm technology and under
typical operating conditions, it served as a perspective of the power perfor-
ance achieved with this low power design.

14.5 SUMMARY

This power management project demonstrated the usability in an EDA
flow of multiple supply and multiple threshold voltages to reduce power,
along with more standard power minimization techniques. This strategy,
when applied with EDA tools that can handle these approaches and automate
them properly, can realize significant power savings without much impact to
the design architecture or process. Voltage scaling and clock gating achieved
38% dynamic power savings while maintaining a high clock frequency.
Leakage power was reduced 47% by using multi-Vth cell libraries, again
without impacting the timing performance. By creating a comprehensive low
power design flow this project has provided mainstream system-on-chip
designers the capability to effectively manage power. It is the conclusion of
this project that adoption of these techniques should be easy for a main
stream ASIC design.

382 Chapter 14

14.6 ACKNOWLEDGMENTS

We would like to thank C. Chu, A. Gupta, L. Jensen, T. Valind, P.
Mamtora, C. Hawkins, P. Watson, Huang, J. Gill, D. Wang, I. Ahmed, P.
Tran, H. Mak, O. Kim, F. Martin, Y. Fan, D. Ge, J. Kung, V. Shek, for their
contribution to the project [8]. Special thanks to D. Le, T. Nguyen, S. Yang,
P. Bennet and A. Khan for their contribution to the project and review of this
document.

14.7 REFERENCES
[1] ARM, (Realview) Core Tile for ARM1136JF-S, 2005. http://www.arm.com/products/

DevTools/Versatile/CT1136JF-S.html
[2] ARM, ARM1136 ImplementationGuide, 2002.
[3] ARM, ARM1136J(F)-S, 2005. http://www.arm.com/products/CPUs/ARM1136JF-S.html
[4] ARM, ARM 1136JF-S and ARM1136J-S Technical Reference Manual, 2005. http://

www.arm.com/pdfs/DDI0211F_arm1136_r1p0_trm.pdf
[5] ARM, ARM - Artisan Products: Standard Cells, 2005. http://www.artisan.com/products/

standard_cell.html
[6] Bennett, P., and Kuo, G., “ARM1136 Low Power Test Chip – case study for 90nm

Low Power Implementation,” DesignCon, Santa Clara, California, 2005, http://www.
designcon.com/conference/2005/3-ta3.html

[7] Cadence, “Accurate Multi-Voltage Delay Analysis: Artisan Libraries and Cadence
Encounter Digital IC Design Platform Enable Low Power Design,” technical paper,
2004. http://www.cadence.com/datasheets/ArtisanMSMV_tp.pdf

[8] Khan, A., et al. “A 90nm Power Optimization Methodology and its Application to the
ARM 1136JF-S Microprocessor,” proceedings of the Custom Integrated Circuits Confe-
ence, 2005.

[9] Kuo, G., and Iyer, A., “Empowering Design for Quality of Silicon: Cadence Encounter
Low-Power Design Flow,” technical paper, 2004. http://www.cadence.com/datasheets/
lowpower_tp.pdf

[10] Lackey, D., et al.,“Managing Power and Performance for System-On-Chip Designs
Using Voltage Islands,” proceedings of the International Conference on Computer-Aided
Design, 2002, pp. 195-202.

[11] Liu, R.H., “How to create designs with dynamic/adaptive voltage scaling,” presentation
at the ARM Developers’ Conference, Santa Clara, California, 2004.

[12] Rusu, S., “Trends and Challenges in High-Performance Microprocessor Design,” keynote
presentation at Electronic Design Processes, Monterey, California, 2004. http://www.
eda.org/edps/edp04/submissions/presentationRusu.pdf

INDEX

AMD PC processors 42, 46, 62, 67
ARM processor cores 15-18, 25,

40, 44, 62, 65-66, 358-381
bit slices and bit stacking 41,

348-349, 353
clock gating 23-25, 60, 371-372,

381
CPI (cycles per instruction) and

IPC (instructions per cycle)
22, 55, 60-61, 65-66

clustered voltage scaling (CVS)
155-156, 158-159, 164-165,
169-170, 177-180, 185-188,
192-194, 201-206, 211-214,
241-242

DCT/IDCT ((inverse) discrete
cosine transform) cores 15,
18-19, 22, 24-25

D-type flip-flops 22-23, 63-64,
75, 84

DEC StrongARM 16-17, 22, 24,
30, 43, 62, 65-66

delay models 90-93, 130-133,
147, 309, 313-314, 327, 330

DIBL (drain-induced barrier low-
ering) 95, 98, 252, 326, 328

dynamic power 14, 24, 44, 68-70,
99, 102-104, 130, 190,
325-330, 361-362, 377-378

dynamic voltage scaling (DVS)
and adaptive voltage scaling

 295-297
ECSM (effective current source

modeling) 369-371
extended clustered voltage scaling

(ECVS) 155-156, 158-159,
164-165, 169-170, 177-180,
185-188, 192-200, 206-214

FO4 (fan-out-of-4) inverter delay
metric and rules of thumb
12-13

forward body bias 46-47
gate oxide tunneling leakage 26,

42, 98-99, 301
gate sizing and transistor width

34-36, 55-56, 68-70, 81,
90-91, 94, 96, 98, 104-105,
121-148, 171, 203-208, 236,
350, 353

glitches 14, 22, 33, 55, 82-84, 95
Intel PC processors 12, 43-44, 46,

57-58, 62, 65-67, 76-78
Intel XScale 16-18, 20, 23, 27, 30,

37-38, 43-44, 46-47, 62,
65-66

interconnect and wiring 4, 34-35,
37, 40-41, 43, 90, 95, 99,
105, 113, 219-247, 266-268,
346

IR (current times resistance)
voltage drop 43, 267-269,
275-276, 375-377

isolation for power domain
interfacing 261, 287-288,
290-292

latches 23, 63-65, 75, 84
layout 4-5, 22, 28, 31-32, 35,

38-41, 113, 152-154, 215,
219-247, 253, 339-342, 351,
366, 379

leakage power 15, 26-29, 42-43,
68-70, 89, 97-99, 100,
102-104, 105-106, 108, 130,
190, 252, 276-278, 287,
300-305, 318, 326-330, 346,
351, 372-374, 378, 381

logic design 32, 348, 353

(AVS) 26, 28-29, 37, 253,

384 Index

logic style 29-32, 81
microarchitecture 21-23, 107-119
multi-Vdd 37-40, 151-174,

177-188, 195-215, 324-332
multi-Vth 37-40, 151-154, 156-

160, 167-188, 190, 253-254,
324-332, 342-343, 351-352

parallelism 21-22, 57-59
partitioning 40, 191, 231-232
physical synthesis 41, 226-239,

346-347, 350-351
pipeline stage delay imbalance 22,

63-65
pipelining 21-22, 61-85
power gating with sleep

transistors 26-29, 98,
251-278, 284-285, 287-292

process technology 42-44
process variation 44-47, 299-320
pulse-triggered flip-flops 22,

63-64, 75, 84
reverse body bias (RBB) 27-28,

152-153, 240, 252-253
Samsung Halla 18, 30, 62
short circuit power 14, 31, 37, 89,

95-97, 101, 105, 130

signal slew 93, 96, 130-133, 147
SOI (silicon-on-insulator) 42
state retention in sleep mode

27-29, 287-288
STMicroelectronics iCORE 35,

62, 64-65
subthreshold leakage 26-27,

42-44, 97-99, 252, 300-301
switching power 94-95, 130, 219,

223, 283, 345
technology mapping 33
Tensilica Xtensa 36, 41, 43, 62,

64-65, 112, 114-118
useful clock skew 23, 25, 63, 65,

75, 84
voltage islands or voltage

domains 38-39, 215, 242,
282-286, 293-294, 339-342,
352, 361-369, 375-378

voltage level converters 38,
155-156, 160-167, 173-174,
180, 192-193, 196, 199-200,
212, 332-339, 365-368

voltage scaling 37-38, 40, 55-56,
68-70, 81, 85, 89-106,
351-353, 361-365, 381

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

