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PREFACE 

We were very pleased with the warm reception that industry analysts, the 
trade press, and most importantly, hard working circuit designers, gave to 
our book entitled Closing the Gap Between ASIC and Custom that was first 
published in 2002. In that book, we focused on identifying the factors that 
cause a significant speed differential between circuits designed in an ASIC 
methodology and those designed with a “no holds barred” custom approach. 
We also sought to identify and describe design tools and techniques that 
could close the gap between the speeds of ASIC and custom circuits. That 
book wasn’t even in press before designers and fellow researchers came 
forward to challenge us to investigate a gap of growing importance: the gap 
in power dissipation and energy efficiency between circuits designed in 
ASIC and custom methodologies.  

We learned a lot from our first book. In the content of our work we 
learned that circuit design and layout tricks were unlikely to be the source  
of sustained advantages of custom design. Instead clocking methodologies 
and microarchitecture were more likely to be areas where custom circuits 
sustained their advantage over ASICs. In our presentation of our research we 
found that technical conferences such as the Design Automation Conference 
were good venues for trying out our material and getting valuable feedback. 
Finally, in the production of the book itself we learned that putting high-
level surveys and detailed descriptions of current research together with 
illustrative design examples was a good formula for creating a book of broad 
interest.  

Like its predecessor we envision three main audiences for this book. 
The first audience is ASIC and ASSP designers who are restricted to a 
high productivity ASIC design methodology but still need to produce low-
power circuits with high-energy efficiency. The second audience is custom 
designers who are seeking to design low power circuits with a more produ-
ctive design flow. While the perspective of these two groups is different, 
the solutions they are seeking are very similar. In this book we account for 
the relative power impact of different elements of a custom-design metho-
dology. We believe that this analysis should help custom design groups to 
determine where their limited design resources are best spent and help ASIC-
oriented design groups understand where they most need improvement. 
Secondly, we identify specific tools and methodologies targeted to reduce 
the power of ASICs that are consistent with an ASIC design methodology, 
but which can also be usefully employed in custom circuit design.  

The third audience for this book is researchers in electronic design auto-
mation who are looking for a broader survey of contemporary low-power 



 
tools, methodologies, and design techniques. We hope that this book offers a 
more complete presentation of the battery of techniques that can be brought 
to bear to save power than is typically offered in conference publications or 
even survey articles. We also hope that the design examples used in this 
book will help researchers to contextualize their own research.  

Occasionally at technical conferences you will hear someone say: “Another 
power paper? Isn’t that a solved problem?” Low power design has indeed 
been a focal research area for fifteen years. However, a look at the power 
challenges of today’s industrial designs indicates that the topic of this book 
has never been timelier. 

 
David Chinnery 

Kurt Keutzer 

Prefacevi 



 

ACKNOWLEDGMENTS 

Many people have given us advice, feedback and support over the years. 
We will endeavor to acknowledge the majority of those people here, but 
there are also numerous others with whom we have discussed research and 
who have made helpful suggestions.  

The Semiconductor Research Corporation supported our research on low 
power. Our thanks to STMicroelectronics for access to their 0.13um process 
technology and to the contacts at STMicroelectronics, Bhusan Gupta and 
Ernesto Perea. For the algorithmic portion of our research, we collaborated 
extensively with David Blaauw, Sarvesh Kulkarni, Ashish Srivastava, and 
Dennis Sylvester. Sarvesh Kulkarni and Ashish Srivastava provided chara-
cterized asynchronous level converters and Synopsys PowerArc charact-
erized libraries for STMicroelectronics 0.13um process. We would like to 
thank the Intel industrial liaisons, in particular Vijay Pitchumani and Desmond 
Kirkpatrick, for their advice.  

We would like to thank researchers at the Berkeley Wireless Research 
Center: Stephanie Augsburger, Rhett Davis, Sohrab Emami-Neyestanak, 
Borivoje Nikolić, Fujio Ishihara, Dejan Markovic, Brian Richards, Farhana 
Sheikh, and Radu Zlatanovici. Laurent El Ghaoui also helped with convex 
optimization research. 

We would like to acknowledge the contributors to sessions on Closing 
the Gap between ASIC and Custom and the two books on the topic. Fruitful 
discussions with them have helped clarify our assumptions and delve into 
the details: Ameya Agnihotri, Debashis Bhattacharya, Subhrajit Bhattacharya, 
Vamsi Boppana, Andrew Chang, Pinhong Chen, John Cohn, Michel Cote, 
Michel Courtoy, Wayne Dai, William Dally, David Flynn, Jerry Frenkil, 
Eliot Gerstner, Ricardo Gonzalez, Razak Hossain, Lun Bin Huang, Bill 
Huffman, Philippe Hurat, Anand Iyer, Srikanth Jadcherla, Michael Keating, 
Earl Killian, George Kuo, Yuji Kukimoto, Julian Lewis, Pong-Fei Lu, 
Patrick Madden, Murari Mani, Borivoje Nikolić, Greg Northrop, Satoshi 
Ono, Michael Orshansky, Barry Pangrle, Matthew Parker, Ruchir Puri, 
Stephen Rich, Nick Richardson, Jagesh Sanghavi, Kaushik Sheth, Jim 
Schwartz, Naresh Soni, David Staepelaere, Leon Stok, Xiaoping Tang, Chin-
Chi Teng, Srini Venkatraman, Radu Zlatanovici, and Tommy Zounes. 

We would also like to thank others within our department who have helped 
with low power research and editing: Abhijit Davare, Masayuki Ito, Trevor 
Meyerowitz, Matthew Moskewicz, David Nguyen, Kaushik Ravindran, 
Nadathur Satish, and Brandon Thompson. 

David thanks his wife, Eleyda Negron, for her help and support. Kurt 
thanks Barbara Creech for her patience and support. 



Acknowledgments
 

The cover was designed by Steven Chan. It shows the Soft-Output 
Viterbi Algorithm (SOVA) chip morphed with a custom 64-bit datapath. 
The SOVA chip picture is courtesy of Stephanie Ausberger, Rhett Davis, 
Borivoje Nikolić, Tina Smilkstein, and Engling Yeo. The SOVA chip was 
fabricated with STMicroelectronics. The 64-bit datapath is courtesy of 
Andrew Chang and William Dally. GSRC and MARCO logos were added. 

viii



 

CONTENTS 

1. Introduction 1 
David Chinnery, Kurt Keutzer  
1.1 Definitions: ASIC and custom.........................................................1 
1.2 What is a standard cell ASIC methodology?...................................3 
1.3 Who should care about this book?...................................................6 
1.4 Organization of the rest of the book ................................................8 
1.5 What’s not in this book....................................................................9 
 

CONTRIBUTING FACTORS 

2. Overview of the Factors Affecting the Power Consumption 11 
David Chinnery, Kurt Keutzer 
2.1 Introduction....................................................................................11 
2.2 Process technology independent FO4 delay metric ......................12 
2.3 Components of power consumption..............................................14 
2.4 ASIC and custom power comparison ............................................15 
2.5 Factors contributing to ASICs being higher power.......................19 
2.6 Summary........................................................................................47 

3. Pipelining to Reduce the Power 55 
David Chinnery, Kurt Keutzer 
3.1 Introduction....................................................................................57 
3.2 Pipelining overheads......................................................................61 
3.3 Pipelining power and delay model ................................................67 
3.4 ASIC versus custom pipelining .....................................................74 
3.5 Other factors affecting the power gap ...........................................81 
3.6 Other factors affecting the minimum energy per operation ..........81 
3.7 Summary........................................................................................84 

4. Voltage Scaling 89 
David Chinnery, Kurt Keutzer  
4.1 Introduction....................................................................................89 
4.2 Delay..............................................................................................90 
4.3 Switching power ............................................................................94 
4.4 Short circuit power ........................................................................95 
4.5 Leakage power...............................................................................97 
4.6 0.13um data for total power...........................................................99 
4.7 Summary......................................................................................104 

Preface v
Acknowledgments vii



Contents
 
DESIGN TECHNIQUES 

5. Methodology to Optimize Energy of Computation for SOCs 107 
Jagesh Sanghavi, Eliot Gerstner 
5.1 Introduction..................................................................................107 
5.2 Problem definition and solution approach...................................109 
5.3 Optimization methodology ..........................................................110 
5.4 Experimental results ....................................................................113 
5.5 Summary......................................................................................119 

6. Linear Programming for Gate Sizing 121 
David Chinnery, Kurt Keutzer 
6.1 Introduction..................................................................................121 
6.2 Overview of TILOS gate sizing...................................................124 
6.3 Linear programming formulation ................................................126 
6.4 Optimization flow........................................................................137 
6.5 Comparison of gate sizing results................................................140 
6.6 Computational runtime ................................................................143 
6.7 Summary......................................................................................147 

7. Linear Programming for Multi-Vth and Multi-Vdd Assignment 151 
David Chinnery, Kurt Keutzer 
7.1 Introduction..................................................................................151 
7.2 Voltage level restoration for multi-Vdd ......................................155 
7.3 Previous multi-Vdd and multi-Vth optimization research ..........156 
7.4 Optimizing with multiple supply and threshold voltages............160 
7.5 Comparison of multi-Vdd and multi-Vth results ........................167 
7.6 Analysis of power savings with multi-Vth and multi-Vdd .........171 
7.7 Computational runtimes with multi-Vdd and multi-Vth.............185 
7.8 Summary......................................................................................186 

8. Power Optimization using Multiple Supply Voltages 189 
Sarvesh Kulkarni, Ashish Srivastava, 
Dennis Sylvester, David Blaauw  
8.1 Introduction..................................................................................189 
8.2 Overview of CVS and ECVS ......................................................192 
8.3 
8.4 Power savings with CVS and GECVS ........................................199 
8.5 Gate sizing and dual-Vth assignment ..........................................201 
8.6 Power savings with VVS and GVS.............................................211 
8.7 Summary......................................................................................214 

9. Placement for Power Optimization 219 
Ameya R. Agnihotri, Satoshi Ono, Patrick H. Madden 
9.1 Introduction..................................................................................219 

Greedy ECVS: a new dual−VDD assignment algorithm............196 

x



 
 

9.2 Placement basics ..........................................................................221 
9.3 Physical synthesis ........................................................................226 
9.4 Multiple supply voltage placement .............................................239 
9.5 State of the art ..............................................................................242 
9.6 Summary......................................................................................246 

10. Power Gating Design Automation 251 
Jerry Frenkil, Srini Venkatraman  
10.1 Introduction..................................................................................251 
10.2 Leakage control techniques .........................................................252 
10.3 Power gating design issues ..........................................................255 
10.4 Coolpower design automation .....................................................262 
10.5 Application flows.........................................................................269 
10.6 Results..........................................................................................272 
10.7 Future work..................................................................................277 
10.8 Summary......................................................................................278 

281 
Barry Pangrle, Srikanth Jadcherla 
11.1 Introduction..................................................................................281 
11.2 Multiple voltage definitions and scenarios..................................283 
11.3 Design examples..........................................................................290 
11.4 Summary......................................................................................297 

12. Winning the Power Struggle in an Uncertain Era 299 
Murari Mani, Michael Orshansky 
12.1 Introduction..................................................................................299 
12.2 Process variability and its impact on power ................................300 
12.3 Parametric yield estimation .........................................................303 
12.4 Optimization techniques for yield: an overview .........................305 
12.5 Efficient statistical parametric yield maximization.....................308 
12.6 Summary......................................................................................319 
 

DESIGN EXAMPLES 

13. Pushing ASIC Performance in a Power Envelope 323 
Leon Stok, Ruchir Puri, Subhrajit Bhattacharya, John Cohn, 
Dennis Sylvester, Ashish Srivastava, Sarvesh Kulkarni 
13.1 Introduction..................................................................................324 
13.2 Power-performance trade-off with multi-Vdd and multi-Vth.....324 
13.3 Design issues in multi-Vdd ASICs..............................................332 
13.4 Case study ....................................................................................344 
13.5 Summary......................................................................................353 
 

Contents

11. Verification for Multiple Supply Voltage Designs 

xi



Contents
 
14. Low Power ARM 1136JF-S Design 357 

George Kuo, Anand Iyer  
14.1 Introduction..................................................................................357 
14.2 Project objective ..........................................................................358 
14.3 Key decisions and implemenations .............................................362 
14.4 Results..........................................................................................377 
14.5 Summary......................................................................................381 

 
Index 383 

 

xii



 

Chapter 1 1 

INTRODUCTION 

David Chinnery, Kurt Keutzer 
Department of Electrical Engineering and Computer Sciences 
University of California at Berkeley 
Berkeley, CA 94720, USA 

 
This book examines the power consumption of ASIC and custom inte-

rated-circuits. In particular, we examine the relationship between custom 
circuits designed without any significant restriction in design methodology 
and ASIC circuits designed in a high-productivity EDA tool methodology. 
From analysis of similar ASIC and custom designs, we estimate that the 
power consumption of typical ASICs may be 3 to 7× that of custom ICs 
fabricated in process technology of the same generation. We consider ways 
to augment and enhance an ASIC methodology to bridge this power gap 
between ASIC and custom.  

Reducing circuit power consumption has been a hot topic for some time; 
however, there has not been detailed analysis of the power gap between an 
automated design methodology and custom design. This work gives a quan-
iative analysis of the factors contributing to the power gap. By identifying 
the largest contributing factors, and which of these can be automated, we 
aim to help close the power gap.  

We examine design approaches and tools to reduce the power con-
sumption of designs produced in an automated design flow. In particular, 
we focus on microarchitectural techniques, improvements in algorithms for 
gate sizing and place and route, voltage scaling and use of multiple supply 
voltages to reduce dynamic power, power gating to reduce leakage power, 
and statistical power minimization. Design examples illustrate the use of 
these techniques and show that energy efficiency can be improve by a factor 
of 2 to 3×. 

1.1 DEFINITIONS: ASIC AND CUSTOM 

The term application-specific integrated-circuit (ASIC), has a wide 
variety of associations. Strictly speaking, it simply refers to an integrated 
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circuit (IC) that has been designed for a particular application. This defines 
a portion of the semiconductor market. Other market segments include memo-
ies, microprocessors, and field programmable gate arrays (FPGAs). 

Two industries grew to support the development of ASICs: vendors 
fabricating chips, and companies offering electronic design automation (EDA) 
software. The ASIC semiconductor-vendor industry, established by companies 
such as LSI Logic, provides the service of fabricating ASICs designed by 
other independent design groups. EDA companies such as Cadence and 
Synopsys provide commercial tools for designing these ASICs. Another key 
element of the ASIC design process is ASIC libraries. ASIC libraries are 
carefully characterized descriptions of the primitive logic-level building blocks 
provided by the ASIC vendors. Initially these libraries targeted gate-array 
implementations, but in time the higher-performance standard-cell targets 
became more popular.  

ASIC vendors then offered complete design flows for their fabrication 
process. These consisted of ASIC tools, ASIC libraries for the process, and a 
particular design methodology. These embodied an ASIC methodology and 
were known as ASIC design kits. Smith’s book on ASICs [6] is a great one-
stop reference for ASICs.  

Generally, ASICs are designed at the register-transfer level (RTL) in 
Verilog or VHDL, specifying the flow of data between registers and the state 
to store in registers. Commercial EDA tools are used to map the higher level 
RTL description to standard cells in an ASIC library, and then place the cells 
and route wires. It is much easier to migrate ASIC designs to a new process 
technology, compared to custom designs which have been optimized for a 
specific process at the gate or transistor-level. ASIC designers generally 
focus on high level designs choices, at the microarchitectural level for 
example. 

With this broader context, let us pause to note that the use of the term 
ASIC can be misleading: it most often refers to an IC produced through a 
standard cell ASIC methodology and fabricated by an ASIC vendor. That IC 
may belong to the application-specific standard product (ASSP) portion of 
the semiconductor market. ASSPs are sold to many different system vendors 
[6], and often may be purchased as standard parts from a catalog, unlike 
ASICs. 

The term custom integrated-circuit, or custom IC, also has a variety of 
associations, but it principally means a circuit produced through a custom-
design methodology. More generally, custom IC is used synonymously with 
the semiconductor market segments of high-performance microprocessors 
and digital signal processors.  
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Technology independent optimization (e.g.
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(e.g. AND2 & inverter gates)

 
Figure 1.1 A typical EDA flow from a high level hardware design language (HDL) 
description through to layout.  

Custom ICs are typically optimized for a specific process technology and 
take significantly more time to design than ASICs, but can achieve higher 
performance and lower power by higher quality design and use of techniques 
that are not generally available to ASICs. For example, custom designers 
may design logic gates at the transistor-level to provide implementations that 
are optimal for that specific design; whereas an ASIC designer is limited by 
what is available in the standard cell library.  

1.2 WHAT IS A STANDARD CELL ASIC 
METHODOLOGY? 

A standard cell ASIC methodology incorporates a standard cell library 
and automated design tools to utilize this library, in order to achieve higher 



4 Chapter 1
 
designer productivity. The designer specifies the circuit behavior in a 
hardware description language (HDL) such as Verilog or VHDL [5]. This 
high level description is then mapped to a library of standard cells that 
implement various logic functions, as shown in Figure 1.1. Various optimi-
zations are performed to try and meet delay, power, or area constraints 
specified by the designer. The final layout of the chip is not known at the 
synthesis stage, so the wire capacitances are estimated using a wire load 
model. Then the standard cells are placed, wires are routed between them, 
and a clock tree network is inserted to distribute the clock signal.  

The EDA flow may be iterated through many times as a design is 
changed to meet performance constraints. Small changes may be made at the 
layout level, but significant changes like resizing gates on a delay-critical 
path may require redoing place and route. After place and route, wire load 
models for later iterations may be updated based on the resulting layout.  

There are also verification steps to try to ensure that the final circuit that 
is fabricated performs correctly. These include verifying that the gate level 
logic corresponds to the HDL description; gate level simulation to check 
correct functional behavior; verifying the layout meets design rules; checking 
that supply and ground voltage (IR) drops are within tolerances for the 
standard cell library or design; cross-talk analysis to check signal interference 
between wires on the chip; and electromagnetic interference analysis to check 
signal interference with the surrounding environment. 

Custom designers sometimes use an ASIC methodology, in particular for 
portions of the chip that are not timing critical, such as control logic. For 
performance-critical datapath logic, it is highly advantageous in terms of 
speed, power, and area to manually lay out the semi-regular logic. If their 
position is known, cells can have less guard banding, or input and output 
ports in a particular place to reduce wire lengths, and so forth. Custom 
design of individual cells and manual placement is laborious, increasing the 
time-to-market and requiring much larger design teams. Such design-specific 
optimizations are seldom useful on other designs except for commonly used 
structures such as memory, and also may not be usable if the technology for 
the design changes. There have been several attempts by EDA companies to 
sell datapath synthesis tools, but they have not been successful. It is very 
difficult for tools to identify the appropriate layout, as a datapath does not 
usually a regular structure that can be identified by a general purpose tool, 
though some design companies do have in-house datapath generation tools. 

Using a vendor-provided standard cell library for a given fabrication 
process technology improves designer productivity. Lower transistor-level 
circuit design issues are abstracted to gate-level power and delay chara-
cteristics, and standard cells are designed robustly with guard-banding to 
ensure correct behavior. A library typically has several drive strengths of 
cells that implement a given logic function. These drive strengths correspond  
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to the capacitive load that a cell can drive without excessive delay and with 
acceptable signal characteristics. Cell placement is simplified by using a 
fixed height for all the cells. Rows of cells are placed on the chip, with 
contiguous supply voltage (Vdd) rails and ground voltage (GND) rails at the 
top and bottom of the rows. This makes it possible for automated placement 
of standard cells in the manner shown in Figure 1.2. A new standard cell 
library can be used by iterating an RTL design through the design flow 
again, which makes it much easier to migrate between process technologies.  

We will discuss later optimizing the drive strength of logic gates in a 
circuit and similar issues. Thus it is useful to briefly examine transistor-level 
layouts. The left of Figure 1.3 shows a detailed circuit schematic for an 
inverter. There is some ambiguity when we refer to a “gate”, whether it is a 
logic gate such as an inverter, or the transistor gate shown labeled G – this 
will be clarified where appropriate in the text.  

 

INV NAND3NOR2 NOR2

INVNAND3 NOR2 NOR2

INV INV

Vdd

GND

Vdd

GND

NOR2

INV NAND3NOR2 NOR2

INVNAND3 NOR2 NOR2

INV INV

Vdd

GND

Vdd

GND

NOR2
 

Figure 1.2 Placement of standard cells on standard cell rows are shown, with cells on 
alternate rows rotated 180° to share power rails. Standard cell height is fixed, but width and 
placement along a row may vary, and cells may also be mirrored horizontally. 

Vdd

a

b
z

NOR2

Vdd

a

b
z

NOR2

Vdd

a

b
z

NAND2

Vdd

a

b
z

NAND2

a z

Vdd

inverter

a z

Vdd

inverter

a z

NMOS transistor

S

D
G B

D

S
G

B PMOS transistor

Vdd

 
Figure 1.3 On the left is shown a detailed circuit schematic for an inverter. Transistor gate G, 
source S, drain D and bulk B (also referred to as substrate) nodes are noted. Connections to 
the substrate are generally omitted, in which case it is assumed that the NMOS p-well 
connects to ground (0V), and the PMOS n-well connects to the supply voltage (Vdd). On the 
right are shown the circuit schematics for three logic gates.  
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In Figure 1.3, note that the NOR2 gate has two PMOS transistors in 
series in the pull-up portion, whereas the NAND2 gate has two NMOS 
transistors in series in the pull-down portion. The more transistors in 
series, the slower the logic gate is due to increased series resistance. PMOS 
transistors are slower than NMOS transistors, so the NOR2 is slower than a 
NAND2, assuming the same transistor sizes. Wider transistors may be used 
to reduce the delay. A typical inverter PMOS to NMOS ratio to have equal 
pull-up and pull-drive strengths is 2:1. To reduce the additional delay of 
transistors in series, for a NOR2 gate this becomes 4:1, and for a NAND2 
gate this is 2:2. Skewed P to N ratios, substrate biasing, and other circuit 
issues will be discussed briefly in later chapters. However, increasing the 
transistor widths increases the power used in charging and discharging the 
logic gate.  

This is an example of low-level power-performance trade-offs that would 
be considered by a custom circuit designer. To reduce the time to design a 
circuit, an ASIC circuit designer typically avoids such issues by using a 
fixed library of standard cells. It is assumed that the library has appropriate 
PMOS to NMOS ratios and a range of sizes for logic gates to optimally 
drive the circuit in different load capacitance conditions. However, this 
assumption is not necessarily true. Such factors may contribute to suboptimal 
ASIC designs. This and other power-performance trade-offs are examined in 
this book. 

1.3 WHO SHOULD CARE ABOUT THIS BOOK? 

1.3.1 ASIC and ASSP designers seeking high performance 

Power consumption has become a major design constraint for high per-
formance circuits and limits performance for high end microprocessor chips 
in today’s technologies. Our book titled Closing the Gap between ASIC & 
Custom [1] detailed how to achieve high performance for ASICs in an EDA 
design flow, but we did not focus on the limitations imposed by power 
consumption. Some of the techniques used to achieve lower power in high 
performance custom designs can be automated for use in an ASIC design 
methodology. 

While many ASIC designers may be power-budget limited when seeking 
higher performance, we quickly acknowledge that not all ASIC designers are 
seeking higher performance. Many ASIC designs need only to be cheaper 
than FPGAs (field programmable gate arrays) or faster than general-purpose 
processor solutions to be viable. For these designs, the desire for higher 
performance is dominated by final part cost, low non-recurring engineering 
cost, and time-to-market concerns. Non-recurring engineering costs for 
ASICs have grown substantially with increased transistor density and deep-
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submicron design issues. Mask-set costs are now exceeding one million 
dollars. Both the number and cost of tools required to do ASIC design are 
rising. In order to recoup their massive investment in fabrication facilities, 
semiconductor vendors for ASICs are “raising the bar” for incoming ASIC 
designs. Specifically, ASIC semiconductor vendors are raising the minimum 
volumes and expected revenues required to enter into contract for fabricating 
ASICs. These different factors are causing more ASIC design groups to 
rethink their approach. Some groups are migrating to using FPGA solutions. 
Some groups are migrating to application-specific standard parts (ASSPs) 
that can be configured or programmed for their target application.  

Those groups that retain their resolve to design ASICs have a few common 
characteristics. First, these groups aim to amortize increasing non-recurring 
engineering costs for ASIC designs by reusing a design across multiple 
applications. Thus they are no longer designing “point solution” ASICs, but 
are tending toward more sustainable IC platforms with software that can 
be updated as application requirements change [2]. Secondly, as transistor 
density increases with Moore’s law [4], more and more devices are inte-
grated onto a single chip to reduce the net production cost. Multiple processor 
cores are integrated onto a chip to increase performance or allow for more 
programmability to achieve retargetable IC platforms. However, the power 
consumption also increases with more devices on a chip. Finally, given the 
effort and attention required to design a highly complex ASIC, design 
groups are demanding more out of their investment. In short, this book 
targets ASIC and ASSP designers seeking high-performance and low power 
within an automated design methodology, and we contend that this number 
is increasing over time. 

1.3.2 ASIC and ASSP designers seeking lower power 

Power consumption is of primary importance in chips designed for embed-
ded and battery powered applications. To reduce part costs, cheap plastic 
packaging is preferred, which limits the maximum heat dissipation. For 
many applications such as mobile phones, a long battery lifetime is desirable, 
so low power is important. ASIC implementations are often chosen for low 
power, as they can be an order of magnitude or more lower power than appli-
cations implemented on an FPGA [3] or in software running on a general 
purpose processor.  

The main approaches to reducing power consumption are scaling down 
supply voltage and using smaller gate sizes to reduce dynamic power, and 
increasing threshold voltage to reduce static leakage power; however, these 
techniques to reduce power also substantially slow down a circuit. Thus we 
focus on reducing the power gap between ASIC and custom designs subject 
to some performance constraint. In ASIC designs with tight performance 
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constraints and a tight power budget, ASIC designers must use high perfor-
mance techniques to create some timing slack for power minimization. 

1.3.3 Custom designers seeking higher productivity 

An equally important audience for this book is custom designers seeking 
low power ICs in a design methodology that uses less human resources, such 
as an ASIC design methodology. Without methodological improvements, 
custom design teams can grow as fast as Moore’s Law to design the most 
complex custom ICs. Even the design teams of the most commercially succ-
essful microprocessors cannot afford to grow at that rate.  

We hope to serve this audience in two ways. First, we account for the 
relative power impact of different elements of a custom-design methodology. 
Projects have limited design resources and must be used judiciously. There-
fore, design effort should be applied where it offers the greatest benefit. 
We believe that our analysis should help to determine where limited design 
resources are best spent.  

Secondly, specific tools targeted to reduce the power of ASICs can be 
applied to custom design. The custom designer has always lacked adequate 
tool support. Electronic Design Automation (EDA) companies have never 
successfully found a way to tie their revenues to the revenues of the devices 
they help design. Instead, EDA tool vendors get their revenues from licensing 
design tools for each designer, known as a “design seat”. It doesn’t matter if 
the chip designed with an EDA tool sells in volumes of ten million parts or 
one, the revenue to the EDA company is the same. It has been estimated that 
there are more than ten times as many ASIC designers (50,000 – 100,000 
worldwide) as custom designers (3,000 – 5,000 worldwide). As a result EDA 
tool vendors naturally “follow the seats” and therefore have focused on tools 
to support ASIC designers rather than custom designers. Companies using 
custom design augment tools from EDA vendors with their own in-house 
tools. These in-house tools can be improved by identifying where gaps exist 
in the standard approaches that have been used for circuit design, or replaced 
in cases where EDA tools perform sufficiently well.  

1.4 ORGANIZATION OF THE REST OF THE BOOK 

This book examines the power gap between ASIC and custom design 
methodologies, techniques to reduce the power gap, and design examples 
illustrating these techniques. The remaining chapters in this book are organized 
into these three groups.  

The first set of chapters discusses the contributing factors to power 
consumption in ASICs being larger than in custom designs, with power and 
performance models. The power gap is estimated in Chapter 2, then we  
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provide a detailed overview of the contributing factors, and discuss the 
design difficulties associated with exploiting these methods in an automated 
design flow and the extent to which they may be automated. A high-level 
pipeline power-performance model is combined with a low-level model of 
gate sizing and voltage scaling power-delay trade-offs in Chapter 3. This 
enables estimates of the benefit of using microarchitectural techniques to 
provide timing slack for power minimization at later design stages, and 
quantitative analysis of the influence of different design factors. Chapter 4 
compares analytical and empirical models of circuit power and delay 
with voltage scaling, discussing the dynamic power, leakage power and 
delay trade-offs with gate sizing and optimization of supply and threshold 
voltages. 

The second group of chapters details a variety of design techniques and 
tools to help minimize power consumption. Chapter 5 gives examples of 
microarchitectural optimizations that can increase energy efficiency by more 
than 10× for specific applications. Chapter 6 shows that the typical greedy 
heuristics for gate sizing are suboptimal, and that a linear programming 
formulation with a global circuit can provide greater power reductions. The 
linear programming approach is applied to gate-level supply and threshold 
voltage assignment in Chapter 7 to analyze how much power may be saved 
by using these approaches. Alternative algorithms for supply voltage assign-
ment are examined in Chapter 8. Chapter 9 details improved tools for auto-
mated placement and discusses the placement issues when using multiple 
supply voltages. Results for reducing leakage power with an automated tool 
for power gating are presented in Chapter 10. Design verification issues 
and verification tool support needed for use of multiple voltage and sleep 
domains are examined in Chapter 11. Then Chapter 12 details power mini-
mization with statistical timing and power analysis. 

The last set of chapters presents two design examples utilizing low power 
techniques. Chapter 13 reports the power savings achieved with standard cell 
library improvements, arithmetic optimizations, bit slicing, and voltage scaling 
on DSP (digital signal processor) blocks for a satellite communications chip. 
Chapter 14 presents a low power design flow that was used to minimize 
power consumption of an ARM 1136JF-S processor, utilizing multiple supply 
and threshold voltages. These design examples show that using the low power 
techniques discussed in this book can provide increased energy efficiency by 
a factor of 2 to 3×. 

1.5 WHAT’S NOT IN THIS BOOK 

This book focuses on power consumption of integrated circuits and the 
tools and techniques by which lower power can be achieved. ASIC and 
custom performance and approaches to increase circuit speed were discussed 
extensively in our book on the topic [1]. Other than in the context of place 
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and route tools in Chapter 11, area minimization is not a direct focus, as that 
is a less critical design constraint compared to speed and power in today’s 
technologies that allow billions of transistors on a chip. Where the power 
minimization techniques that we suggest here negatively impact on circuit 
delay or area we have made every effort to point that out.  
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We investigate differences in power between application-specific inte-

grated circuits (ASICs) and custom integrated circuits, with examples from 
0.6um to 0.13um CMOS. A variety of factors cause synthesizable designs to 
consume 3 to 7× more power. We discuss the shortcomings of typical synthesis 
flows, and changes to tools and standard cell libraries needed to reduce 
power. Using these methods, we believe that the power gap between ASICs 
and custom circuits can be closed to within 2.6× at a tight performance cons-
traint for a typical ASIC design.  

2.1 INTRODUCTION 

In the same technology generation, custom designs can achieve 3 to 8× 
higher clock frequency than ASICs [18]. Custom techniques that are used to 
achieve high speed can also be used to achieve low power [62]. Custom 
designers can optimize the individual logic cells, the layout and wiring bet-
ween the cells, and other aspects of the design. In contrast, ASIC designers 
generally focus on optimization at the RTL level, relying on EDA tools to 
map RTL to cells in a standard cell library and then automatically place and 
route the design. Automation reduces the design time, but the resulting 
circuitry may not be optimal. 

Low power consumption is essential for embedded applications. Power 
affects battery life and the heat dissipated by hand-held applications must be 
limited. Passive cooling is often required, as using a heat sink and/or fan is 
larger and more expensive.  

Power is also becoming a design constraint for high-end applications due 
to reliability, and costs for electricity usage and cooling. As technology scales, 
power density has increased with transistor density, and leakage power is 
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becoming a significant issue even for high end processors. Power consump-
tion is now a major problem even for high end microprocessors. Intel canceled 
the next generation Tejas Pentium 4 chips due to power consumption issues 
[100].  

In this chapter, we will discuss the impact of manual and automated 
design on the power consumption, and also the impact of process technology 
and process variation. Our aim is to quantify the influence of individual 
design factors on the power gap. Thus, we begin by discussing a process 
technology independent delay metric in Section 2.2. Section 2.3 discusses 
the contribution to a chip’s power consumption from memory, control and 
datapath logic, and clocking, and also provides an overview of dynamic and 
leakage power. 

In Section 2.4, we compare full custom and synthesizable ARM pro-
cessors and a digital signal processor (DSP) functional unit. We show that 
ASICs range from 3 to 7× higher power than custom designs for a similar 
performance target. To date the contribution of various factors to this gap 
has been unclear. While automated design flows are often blamed for 
poor performance and poor energy efficiency, process technology is also 
significant. Section 2.5 outlines factors contributing to the power gap. We 
then examine each factor, describing the differences between custom and 
ASIC design methodologies, and account for its impact on the power gap. 
Finally, we detail approaches that can reduce this power gap. We summarize 
our analysis in Section 2.6. 

2.2 PROCESS TECHNOLOGY INDEPENDENT FO4 
DELAY METRIC 

At times we will discuss delay in terms of FO4 delays. It is a useful metric 
for normalizing out process technology dependent scaling of the delay of 
circuit elements. 

The fanout-of-4 inverter delay is the delay of an inverter driving a load 
capacitance that has four times the inverter’s input capacitance [38]. This is 
shown in Figure 2.1. The FO4 metric is not substantially changed by process 
technology or operating conditions. In terms of FO4 delays, other fanout-of-
4 gates have at most 30% range in delay over a wide variety of process and 
operating conditions, for both static logic and domino logic [38]. 

If it has not been simulated in SPICE or tested silicon, the FO4 delay in a 
given process technology can be estimated from the channel length. Based 
on the effective gate length Leff, the rule of thumb for FO4 delay is [39]. 
 360 effL×  ps for typical operating and typical process conditions (2.1) 
 500 effL× ps for worst case operating and typical process conditions (2.2) 
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where the effective gate length Leff has units of micrometers. Typical process 
conditions give high yield, but are not overly pessimistic. Worst case operating 
conditions are lower supply voltage and higher temperature than typical 
operating conditions. Typical operating conditions for ASICs may assume a 
temperature of 25°C, which is optimistic for most applications. Equation 
(2.2) can be used to estimate the FO4 delay in silicon for realistic operating 
conditions [39].  

Leff is often assumed to be about 0.7 of the drawn gate length for a 
process technology – for example, 0.13um for a 0.18um process technology. 
However, many foundries are aggressively scaling the channel length to 
increase the speed. Thus, the FO4 delay should be calculated from the effec-
tive gate length, if it is known, rather than from the process technology 
generation. 

From previous analysis [18], typical process conditions are between 17% 
and 28% faster than worst case process conditions. Derating worst case process 
conditions by a factor of 1.2× gives 
 600 effL× ps for worst case operating and worst case process conditions (2.3) 

Equation (2.3) was used for estimating the FO4 delays of synthesized 
ASICs, which have been characterized for worst case operating and worst 
case process conditions. This allows analysis of the delay per pipeline stage, 
independent of the process technology, and independent of the process and 
operating conditions. 

Note: these rules of thumb give approximate values for the FO4 delay  
in a technology. They may be inaccurate by as much as 50% compared to 
simulated or measured FO4 delays in silicon. These equations do not accu-
rately account for operating conditions. Speed-binning and process improve-
ments that do not affect the effective channel length are not accounted for. 
Accurate analysis with FO4 delays requires proper calibration of the metric: 
simulating or measuring the actual FO4 delays for the given process and 
operating conditions. 

square wave 
voltage source

1X 4X 16X 64X
open 

circuitsquare wave 
voltage source

1X 4X 16X 64X
open 

circuit

 
Figure 2.1 This illustrates a circuit to measure FO4 delays. The delay of the 4X drive strength 
inverter gives the FO4 delay. The other inverters are required to appropriately shape the input 
waveform to the 4X inverter and reduce the switching time of the 16X inverter, which affect 
the delay of the 4X inverter [38]. 
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2.3 COMPONENTS OF POWER CONSUMPTION 

Designers typically focus on reducing both the total power when a 
circuit is active and its standby power. There is usually a minimum per-
formance target, for example 30 frames/s for MPEG. When performance  
is less important, the energy per operation to perform a given task can be 
minimized.  

Active power includes both dynamic power consumption, when the logic 
evaluates or the clock transitions, and current leakage when logic is not 
switching. There is no computation in logic in standby, the clock must be 
gated to prevent it switching, and leakage is the dominant source of power 
consumption in standby.  

The major sources of power consumption in circuitry are the clock tree 
and registers, control and datapath logic, and memory. The breakdown of 
power consumption between these is very application and design dependent. 
The power consumption of the clock tree and registers ranged from 18% to 
36% of the total power for some typical embedded processors and micro-
processors (see Section 3.2.4). In custom cores for discrete cosine transform 
(DCT) and its inverse (IDCT), contributions to the total power were 5% to 
10% from control logic, about 40% from the clock tree and clock buffers, 
and about 40% from datapath logic [101][102]. Memory can also account for 
a substantial portion of the power consumption. For example, in the 
StrongARM caches consume 43% of the power [62]. 

2.3.1 Dynamic power 

Dynamic power is due to switching capacitances and short circuit power 
when there is a current path from supply to ground.  

The switching power is proportional to αfCVdd
2, where α is the switching 

activity per clock cycle, f is the clock frequency, C is the capacitance that is 
(dis)charged, and Vdd is the voltage swing. The switching activity is increased 
by glitches, which typically cause 15% to 20% of the activity in comple-
mentary static CMOS logic [77].  

Short circuit power typically contributes less than 10% of the total 
dynamic power [14], and increases with increasing Vdd, and with decreasing 
Vth. Short circuit power can be reduced by matching input and output rise 
and fall times [96].  

As the dynamic power depends quadratically on Vdd, methods for redu-
cing active power often focus on reducing Vdd. Reducing the capacitance by 
downsizing gates and reducing wire lengths is also important. 
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2.3.2 Leakage power 

In today’s processes, leakage can account for 10% to 30% of the total 
power when a chip is active. Leakage can contribute a large portion of the 
average power consumption for low performance applications, particularly 
when a chip has long idle modes without being fully off. 

Optimally choosing Vdd and Vth to minimize the total power consum-
ption for a range of delay constraints in 0.13um technology, the leakage 
varied from 8% to 21% of the total power consumption in combinational 
logic, as discussed later in Section 4.6.1. However, the possible Vdd and Vth 
values depend on the particular process technology and standard cell 
libraries available. For example for a delay constraint of 1.2× the minimum 
delay, the best library choice had Vdd of 0.8V and Vth of 0.08V (see Table 
7.7 with 0.8V input drivers), and leakage contributed on average 40% of 
total power.  

Leakage power in complementary static CMOS logic in bulk CMOS is 
primarily due to subthreshold leakage and gate leakage. Subthreshold leakage 
increases exponentially with decrease in Vth and increase in temperature. It 
can also be strongly dependent on transistor channel length in short channel 
devices. Gate leakage has increased exponentially with reduction in gate 
oxide thickness. There is also substrate leakage. Leakage has become increa-
singly significant in deep submicron process technologies.  

2.4 ASIC AND CUSTOM POWER COMPARISON 

To illustrate the power gap, we examine custom and ASIC implement-
tations of ARM processors and dedicated hardware to implement discrete 
cosine transform (DCT) and its inverse (IDCT). ARM processors are general 
purpose processors for embedded applications. ASICs often have dedicated 
functional blocks to achieve low power and high performance on specific 
applications – for example, media processing. JPEG and MPEG compression 
and decompression of pictures and video use DCT and IDCT. There is a 
similar power gap between ASIC and custom for the ARM processors and 
for DCT and IDCT blocks. 

2.4.1 ARM processors from 0.6 to 0.13um 

We compare chips with full custom ARM processors, soft, and hard 
ARM cores. Soft macros of RTL code may be sold as individual IP (intel-
lectual property) blocks and are portable between fabrication processes.  
In a hard macro, the standard cell logic used, layout and wiring have been 
specified and optimized then fixed for a particular fabrication process. A 
hard macro may be custom, or it may be “hardened” from a soft core. A 
complete chip includes additional memory, I/O logic, and so forth. 
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Table 2.1 Full custom and hard macro ARMs [11][31][32][43][70]. The highlighted full 
custom chips have 2 to 3× MIPS/mW.  

Technology Voltage Frequency Power
(um) (V) (MHz) (mW)

ARM710 0.60 5.0 40 36 424 0.08
Burd 0.60 1.2 5 6 3 1.85
Burd 0.60 3.8 80 85 476 0.18
ARM810 0.50 3.3 72 86 500 0.17
ARM910T 0.35 3.3 120 133 600 0.22
StrongARM 0.35 1.5 175 210 334 0.63
StrongARM 0.35 2.0 233 360 950 0.38
ARM920T 0.25 2.5 200 220 560 0.39
ARM1020E 0.18 1.5 400 500 400 1.25
XScale 0.18 1.0 400 510 150 3.40
XScale 0.18 1.8 1000 1250 1600 0.78
ARM1020E 0.13 1.1 400 500 240 2.08

MIPS MIPS/mWProcessor

 

Table 2.2 The highlighted ARM7TDMI hard macros have 1.3 to 1.4× MIPS/mW versus the 
synthesizable ARM7TDMI-S cores [5].  

ARM Core Technology (um) Frequency (MHz) Power (mW) MIPS/mW
ARM7TDMI 0.25 66 51 1.17
ARM7TDMI-S 0.25 60 66 0.83
ARM7TDMI 0.18 100 30 3.00
ARM7TDMI-S 0.18 90 35 2.28
ARM7TDMI 0.13 130 10 11.06
ARM7TDMI-S 0.13 120 13 8.33  

To quantify the power gap between ASIC and custom, we first examined 
hard macro and full custom ARMs, listed in Table 2.1. Compared to the 
other designs, the three full custom chips in bold achieved 2 to 3× millions 
of instructions per second per milliwatt (MIPS/mW) at similar MIPS, as 
shown in Figure 2.2. The inverse of this metric, mW/MIPS, is the energy per 
operation. The Dhrystone 2.1 MIPS benchmark is the performance metric 
[98]. It fits in the cache of these designs, so there are no performance hits for 
cache misses or additional power to read off-chip memory. 

Lower power was achieved in several ways. The DEC StrongARM used 
clock-gating and cache sub-banking to substantially reduce the dynamic 
power [62]. The Intel XScale and DEC StrongARM used high speed logic 
styles to reduce critical path delay, at the price of higher power consumption 
on these paths. To reduce pipeline register delay, the StrongARM used 
pulse-triggered flip-flops [62] and the XScale used clock pulsed latches [22]. 
Shorter critical paths allow the same performance to be achieved with a 
lower supply voltage (Vdd), which can lower the total power consumption. 
Longer channel lengths were used in the StrongARM caches to reduce the 
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leakage power, as the two 16kB caches occupy 90% of the chip area [62]. 
The XScale used substrate biasing to reduce the leakage [24].  

For the same technology and similar performance (MIPS), the Vdd of the 
full custom chips is lower than that of the hard macros – reducing Vdd gives 
a quadratic reduction in dynamic power. The StrongARM can operate at up 
to 233MHz at 2.0V and the XScale can operate at up to 1GHz at 1.65V [43]. 
If operating at higher performance was not required, it is likely that even 
higher MIPS/mW could have been achieved. 

Energy efficiency can be improved substantially if performance is sacri-
ficed. Burd’s 0.6um ARM8 had software controlled dynamic voltage scaling 
based on the processor load. It scaled from 0.18MIPS/mW at 80MHz and 
3.8V, to 2.14MIPS/mW at 5MHz and 1.2V [11]. Voltage scaling increased 
the energy efficiency by 1.1× for MPEG decompression which required an 
average clock frequency of 50MHz, and increased the energy efficiency by 
4.5× for audio processing which required a clock frequency of only 17MHz 
[12]. 

There is an additional factor of 1.3 to 1.4× between hard macro and 
synthesizable ARM7 soft cores, as shown in Table 2.2. These MIPS/mW are 
higher than those in Table 2.1, as they exclude caches and other essential 
units. The ARM7TDMI cores are also lower performance, and thus can 
achieve higher energy efficiency.  

Overall, there is a factor of 3 to 4× between synthesizable ARMs and the 
best full custom ARM implementations. 

 
Figure 2.2 This graph compares MIPS/mW of custom and hard macro ARMs in Table 2.1.  
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2.4.1.1 Other full custom ARM implementations 

There are two other noteworthy higher performance full custom ARMs, 
though they are less energy efficient than the 0.18um XScale.  

Samsung’s Halla is a full custom 0.13um implementation of the 
ARM1020E with power consumption from 0.26W at 400MHz and Vdd of 
0.7V to 1.8W at 1200MHz and Vdd of 1.1V [50]. Achieving 1480MIPS at 
1200MHz clock frequency, the energy efficiency ranged from 0.82MIPS/mW 
at 1200MHz to 1.90MIPS/mW at 400MHz. Differential cascode voltage 
switch logic (DCVSL) was used for high performance, but DCVSL has 
substantial power consumption compared to complementary static CMOS 
logic that is used in ASICs. Sense amplifiers were used with the low voltage 
swing dual rail bus to detect voltage swings of less than 200mV, achieving 
high bus speeds at lower power consumption [60]. The die area of the Halla 
was 74% more than ARM’s 0.13um ARM1020E. 

Intel’s 90nm implementation of the XScale, codenamed Monahans, has 
770mW dynamic power consumption at 1500MHz and Vdd of 1.5V with per-
formance of 1200MIPS at this point [72]. The energy efficiency of Monahans 
is 1.56MIPS/mW at 1500MHz – data for improved energy efficiencies at 
lower Vdd has not been published. Clock pulsed latches were also used in 
this implementation of the XScale. The hold time for the clock gating enable 
signal was the duration of the clock pulse, and thus did not require latching. 
Domino logic was used for high performance in the shifter and cache tag 
NOR comparators. 75% of instruction cache tag accesses were avoided by 
checking if the instruction cache request line was the same as the previous 
one. Selective accesses and avoiding repeated accesses reduced power by 
42% in the dynamic memory management unit [21]. 

2.4.2 Comparison of DCT/IDCT cores  

Application-specific circuits can reduce power by an order of magnitude 
compared to using general purpose hardware [77]. Two 0.18um ARM9 cores 
were required to decode 30 frames/s for MPEG2, consuming 15× the power 
of a synthesizable DCT/IDCT design [28]. However, the synthesizable 
DCT/IDCT significantly lags its custom counterparts in energy efficiency.  

 

Table 2.3 Comparison of ASIC and custom DCT/IDCT core power consumption at 30 
frames/s for MPEG2 [28][101][102].  

 

Design Technology (um) Voltage (V) DCT (mW) IDCT (mW)
ASIC 0.18 1.60 8.70 7.20
custom DCT 0.6 (Leff 0.6) 1.56 4.38
custom IDCT 0.7 (Leff 0.5) 1.32 4.65  
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Fanucci and Saponara designed a low power synthesizable DCT/IDCT 
core, using similar techniques to prior custom designs. Despite being three 
technology generations ahead, the synthesizable core was 1.5 to 2.0× higher 
power [28]. Accounting for the technology difference by conservatively 
assuming power scales linearly with device dimensions [71], the gap is a 
factor of 4.3 to 6.6×. The data is shown in Table 2.3. 

2.5 FACTORS CONTRIBUTING TO ASICS BEING 
HIGHER POWER 

Various parts of the circuit design and fabrication process contribute to 
the gap between ASIC and custom power. Our analysis of the most significant 
design factors and their impact on the total power when a chip is active is 
outlined in Table 2.4. The “typical” column shows the maximum contribution 
of individual factors comparing a typical ASIC to a custom design. In total 
these factors can make power an order of magnitude worse. In practice, even 
the best custom designs can’t fully exploit all these factors simultaneously. 
Low power design techniques that can be incorporated within an EDA flow 
can reduce the impact of these factors in a carefully designed ASIC as per 
the “excellent” column in Table 2.4. 

Most low power EDA tools focus on reducing the dynamic power in 
control logic, datapath logic, and the clock tree. The design cost for custom 
memory is low, because of the high regularity. Several companies provide 
custom memory for ASIC processes. Optimization of memory hierarchy, 
memory size, caching policies, and so forth is application dependent and 
beyond the scope of this book, though they have a substantial impact on the 
system-level performance and power consumption. We will focus on the 
power consumption in a processor core. 

Table 2.4 Factors contributing to ASICs being higher power than custom. The excellent 
column is what ASICs may achieve using low power and high performance techniques. This 
table focuses on the total power when a circuit is active, so power gating and other standby 
leakage reduction techniques are omitted. The combined impact of these factors is not 
multiplicative – see discussion in Section 2.5.1. 

 

Contributing Factor Typical ASIC Excellent ASIC
microarchitecture 5.1× 1.9×
clock gating 1.6× 1.0×
logic style 2.0× 2.0×
logic design 1.2× 1.0×
technology mapping 1.4× 1.0×
cell and wire sizing 1.6× 1.1×
voltage scaling 4.0× 1.0×
floorplanning and placement 1.5× 1.1×
process technology 1.6× 1.0×
process variation 2.0× 1.3×  
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Microarchitectural techniques such as pipelining and parallelism increase 
throughput, allowing timing slack for gate downsizing and voltage scaling. 
The microarchitecture also affects the average instructions per cycle (IPC), 
and hence energy efficiency. The power and delay overheads for microarchi-
tectural techniques must be considered. With sufficient timing slack, reducing 
the supply voltage can greatly increase the energy efficiency. For example  
in Table 2.1, scaling the XScale from Vdd of 1.8V to 1.0V increases the 
efficiency from 0.78MIPS/mW to 3.40MIPS/mW, a factor of 4.4×, but the 
performance decreases from 1250MIPS to 510MIPS.  

Process technology can reduce leakage by more than an order of magni-
tude. It also has a large impact on dynamic power. Process variation results 
in a wide range of the leakage power for chips and some variation in the 
maximum operating clock frequency for a given supply voltage. For high 
yield, a higher supply voltage may be needed to ensure parts meet the desired 
performance target, resulting in a significant spread in power consumption. 
Limiting process variation and guard-banding for it without being overly 
conservative help reduce the power consumption. 

Using a high speed logic style on critical paths can increase the speed by 
1.5× [18]. Circuitry using only slower complementary static CMOS logic at 
a tight performance constraint may be 2.0× higher power than circuitry using 
a high speed logic style to provide timing slack for power reduction by 
voltage scaling and gate downsizing. 

Other factors in Table 2.4 have smaller contributions to the power gap. 
We will discuss the combined impact of the factors and then look at the 
individual factors and low power techniques to reduce their impact.  

2.5.1 Combined impact of the contributing factors 

The combined impact of the factors is complicated. The estimate of the 
contribution from voltage scaling assumes that timing slack is provided by 
pipelining, so this portion is double counted. The timing slack depends on 
the tightness of the performance constraint, which has a large impact on the 
power gap. We assumed a tight performance constraint for both the typical 
ASIC and excellent ASIC for the contributions from microarchitecture, 
logic style, and voltage scaling in Table 2.4. If the performance constraint  
is relaxed, then the power gap is less. For example, from our model of pipe-
lining to provide timing slack for voltage scaling and gate sizing, the power 
gap between a typical ASIC and custom decreases from 5.1× at a tight per-
formance constraint for the typical ASIC to 4.0× if the constraint is relaxed 
by 7%. 

Chapter 3 details our power and delay model that incorporates pipelining, 
logic delay, voltage scaling and gate sizing. The logic delay is determined by 
factors such as the logic style, wire lengths, process technology, and process 
variation which affects the worse case delay.  
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From analysis with this model, an excellent ASIC using the low power 
techniques that we recommend below may close the power gap to a factor of 
2.6 at a tight performance constraint for a typical ASIC [16]. 

2.5.2 Microarchitecture 

Algorithmic and architectural choices can reduce the power by an order 
of magnitude [77]. We assume that ASIC and custom designers make 
similar algorithmic and architectural choices to find a low power imple-
mentation that is appropriate for the required performance and target 
application. Pipelining and parallelism are the two major microarchitectural 
techniques that can be used to maintain throughput (see Figure 2.3), when 
other power reduction techniques increase critical path delay. With similar 
microarchitectures, how do ASIC and custom pipelining and parallelism 
compare?  
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Figure 2.3 This diagram shows pipelined (b) and parallel implementations (c) of the 
unpipelined direct form finite input response (FIR) filter in (a) [19][79]. The FIR filter 
calculates yn=h0xn+h1xn-7+…+ h7xn-7. The critical paths are shown in grey. The minimum 
clock period decreases as the registers break the critical path up into separate pipeline stages. 
Computation in each pipeline stage proceeds concurrently. The parallel implementation 
doubles the throughput, but the area is more than doubled. The multiplexer to select the odd 
or even result from the two parallel datapaths at each clock cycle is denoted by MUX. 
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On their own, pipelining and parallelism do not reduce power. Pipelining 
reduces the critical path delay by inserting registers between combinational 
logic. Glitches may not propagate through pipeline registers, but the switching 
activity of the combinational logic is otherwise unchanged. Additional pipe-
line registers add to the leakage power and especially to the dynamic power, 
because the clock signal going to the registers has high activity. Pipelining 
may reduce the instructions per cycle (IPC) due to branch misprediction and 
other hazards; in turn this reduces the energy efficiency. Parallelism trades 
off area for increased throughput, with overheads for multiplexing and 
additional wiring [6]. Both techniques enable the same performance to be 
met at lower supply voltage with smaller gate sizes, which can provide a net 
reduction in power. 

Bhavnagarwala et al. [6] predict a 2 to 4× reduction in power with 
voltage scaling by using 2 to 4 parallel datapaths. Generally, ASICs can make 
as full use of parallelism as custom designs, but careful layout is required to 
minimize additional wiring overheads. 

Delay overheads for pipelining include: register delay; register setup 
time; clock skew; clock jitter; and any imbalance in pipeline stage delays 
that cannot be compensated for by slack passing or useful clock skew. For a 
given performance constraint, the pipelining delay overheads reduce the 
slack available to perform downsizing and voltage scaling. 

In the IDCT, the cost of pipelining was about a 20% increase in total 
power, but pipelining reduced the critical path length by a factor of 4. For 
the same performance without pipelining, Vdd would have to be increased 
from 1.32V to 2.2V. Thus pipelining helped reduce power by 50% [102].  

2.5.2.1 What’s the problem? 

The timing overhead per pipeline stage for a custom design is about 3 
FO4 delays, but it may be 20 FO4 delays for an ASIC, substantially reducing 
the timing slack available for power reduction. For a typical ASIC, the 
budget for the register delay, register setup time, clock skew and clock jitter 
is about 10 FO4 delays. Unbalanced critical path delays in different pipeline 
stages can contribute an additional 10 FO4 delays in ASICs. If the delay 
constraint is tight, a little extra timing slack can provide substantial power 
savings from downsizing gates – for example, a 3% increase in delay gave a 
20% reduction in energy for a 64-bit adder [104]. 

For pipeline registers, most ASICs use slow edge-triggered D-type 
flip-flops that present a hard timing boundary between pipeline stages, 
preventing slack passing. The clock skew between clock signal arrivals at 
different points on the chip must be accounted for. Faster pulse-triggered 
flip-flops were used in the custom StrongARM [62]. Some pulse-triggered 
flip-flops have greater clock skew tolerance [80]. Custom designs may use 
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level-sensitive latches to allow slack passing, and latches are also less 
sensitive to clock skew [19].  

The custom XScale used clock-pulsed transparent latches [22]. A D-type 
flip-flop is composed of a master-slave latch pair. Thus a clock-pulsed latch 
has about half the delay of a D-type flip-flop and has a smaller clock load, 
which reduced the clock power by 33%. Clock-pulsed latches have increased 
hold time and thus more problems with races. The pulse width had to be 
carefully controlled and buffers were inserted to prevent races. The clock 
duty cycle also needs to be carefully balanced.  

To estimate the impact of worse ASIC pipelining delay overhead, we 
developed a pipeline performance and power model, with power reduction 
from gate downsizing and voltage scaling versus timing slack (see Chapter 
3). At a tight performance constraint for the ASIC design, we estimate that 
ASIC power consumption can be 5.1× that of custom, despite using a similar 
number of pipeline stages. While there is no timing slack available to the 
ASIC design, the lower custom pipeline delay overhead allows significant 
power reduction by gate downsizing and voltage scaling. 

2.5.2.2 What can we do about it? 

Latches are well-supported by synthesis tools [83], but are rarely used 
other than in custom designs. Scripts can be used to convert timing critical 
portions of an ASIC to use latches instead of flip-flops [17]. High-speed 
flip-flops are now available in some standard cell libraries and can be used 
in an automated design methodology to replace slower D-type flip-flops on 
critical paths [33]. Useful clock skew tailors the arrival time of the clock 
signal to different registers by adjusting buffers in the clock tree and can be 
used in ASIC designs for pipeline balancing [26]. With these methods, the 
pipeline delay overhead in ASICs can be reduced to as low as 5 FO4 delays 
[18]. This enables more slack to be used for downsizing, voltage scaling, or 
increasing the clock frequency. From our pipeline model, ASICs can close 
the gap for the microarchitecture and timing overhead factor to within 1.9× 
of custom.  

2.5.3 Clock gating  

In typical operation, pipeline stages and functional units are not always 
in use. For example, during a sequence of integer operations, the floating 
point unit may be idle. Providing the logical inputs to the idle unit are held 
constant, there are only two sources of power dissipation in the idle unit: 
static leakage; and switching activity at registers and any other clocked 
elements due to the clock signal – for example, precharge of domino logic. 
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Figure 2.4 This is a simple illustration of clock gating. The clock signal to the registers is 
gated with a control signal that selects which functional unit is in use. A transparent low latch 
is usually inserted to de-glitch the enable signal [51]. 

Architectural or gate-level signals can turn off the clock to portions of 
the clock tree that go to idle units. This can be done with a clock gating 
control signal and clock signal at an AND gate, as illustrated in Figure 2.4. 
As the clock tree and registers can contribute 20% to 40% of the total power, 
this gives substantial dynamic power savings if units are often idle. The 
power overheads for logic to generate clock gating signals and the clock 
gating logic need to be compared versus the potential power savings. Usually 
clock gating signals can be generated within only one clock cycle, and there 
is only a small delay increase in the arrival of the gated clock signal at the 
register. 

The StrongARM’s total power when active would be about 1.5× worse 
without clock gating [62]. The StrongARM uses a 12 bit by 32 bit multiply-
accumulate (MAC) unit. For some applications, one multiply operand will 
be 24-bit or less, or 12-bit or less, thus the number of cycles the 12×32 MAC 
is required is less than the three cycles for a full 32×32 multiply. This saves 
power by avoiding unnecessary computation. Typical code traces had shift 
operations of zero, so power could be saved by disabling the shifter in this 
case [62]. 

The custom DCT core uses clock gating techniques extensively. In typical 
operation, consecutive images are highly correlated. Calculations using the 
significant bits of pixels in common between consecutive images can be 
avoided. This reduced the number of additions required by 40%, and gave on 
average 22% power savings for typical images [101]. After the discrete cosine 
transform on a typical image, there are many coefficients of value zero. This 
was exploited in the custom IDCT to separately clock gate pipeline stages 
processing coefficients of zero [102]. 

We estimate that clock gating techniques can increase energy efficiency 
when the chip is active by up to 1.6×. Note that the power savings from 
clock gating vary substantially with the application. 
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2.5.3.1 What’s the problem? 

Clock gating requires knowledge of typical circuit operation over a 
variety of benchmarks. If a unit is seldom idle, clock gating would increase 
power consumption. Until recently, clock gating was not fully supported by 
commercial tools. Retiming to reposition the registers [75] can be essential 
to better balance the pipeline stages, but EDA tools did not support retiming 
of registers with clock gating.  

Care must be taken with gated clock signals to ensure timing correct 
operation of the registers. Glitches in the enable signal must not propagate to 
the clock gate while the clock gate is high. This results in a long hold time 
for the enable signal, which may be avoided by inserting a transparent low 
latch to de-glitch the enable signal [51]. The transparent low latch prevents 
the signal that goes to the clock gate from changing while the clock is high. 
The setup time for the enable signal is longer to account for the clock gate 
and de-glitching latch. The clock signal arrives later to the register due to the 
delay of the clock gate, which increases the hold time for that register. The 
clock tree delay of the clock signal to the clock gate can be reduced to 
compensate for this, but that may require manual clock tree design.  

2.5.3.2 What can we do about it? 

An ASIC designer can make full use of clock gating techniques by care-
fully coding the RTL for the desired applications, or using automated clock-
gating. The techniques used in custom DCT and IDCT designs were used in 
the synthesizable DCT/IDCT [28]. In the synthesizable DCT/IDCT, clock 
gating and data driven switching activity reduction increased the energy 
efficiency by 1.4× for DCT and 1.6× for IDCT [28]. 

In the last few years, commercial synthesis tools have become available 
to automate gate-level clock-gating, generating clock gating signals and 
inserting logic to gate the clock. There is now support for retiming of flip-
flops with gated clock signals. Power Compiler was able to reduce the power 
of the synthesizable ARM9S core by 41% at 5% worse clock frequency [30] 
– primarily by gate downsizing, pin reordering, and clock gating. Useful 
clock skew tools can compensate for the additional delay on the gated clock 
signal [26]. 

There are tools for analyzing the clock-tree power consumption and 
activity of functional units during benchmark tests. These tools help designers 
identify signals to cut off the clock signal to logic when it is not in use, and 
to group logic that is clock gated to move the clock gating closer to the root 
of the clock tree to save more power.  

As ASICs can make effective use of clock gating, there should be no 
power gap due to clock gating in comparison with custom. 
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Figure 2.5 This is a simple illustration of power gating. The sleep transistors are turned on by 
a control signal that selects which functional unit is in use, reducing leakage from supply to 
ground. Registers may not be disconnected in this manner without losing state information.  

2.5.4 Power gating and other techniques to reduce leakage 
in standby  

After clock gating idle units, only static leakage remains. The leakage 
can be substantially reduced by several methods: reducing the supply voltage 
(see Section 2.5.9); disconnecting the power rails with sleep transistors [64], 
known as power gating; increasing Vth via substrate biasing to reduce 
subthreshold leakage; and assigning logic gate inputs to a lower leakage 
state [56]. All these methods take a significant amount of power and thus are 
only worthwhile when a unit will be idle for tens to thousands of clock 
cycles or more [27] – for example, when most of a mobile phone’s circuitry 
is idling while awaiting an incoming call. This requires architectural or soft-
ware level signals to transition between normal operation and sleep mode. 

Reducing the supply voltage reduces the subthreshold leakage current as 
there is less drain induced barrier lowering (DIBL), and also reduces the 
gate-oxide tunneling leakage [57]. For example, leakage decreases by 3× 
when Vdd is reduced from 1.2V to 0.6V with our 0.13um libraries (see 
Section 4.5.1). Dynamic voltage scaling is discussed further in Section 2.5.9. 

Subthreshold leakage and gate leakage vary substantially depending on 
which transistors in a gate are off, which is determined by the inputs. 
Leakage in combinational logic can be reduced by a factor of 2 to 4× by 
assigning primary inputs to a lower leakage state [56][58]. Additional circuitry 
is required in the registers to store the correct state, while outputting the low 
leakage state; or state information may be copied from the registers and 
restored on resumption from standby. There is also dynamic power cons-
umption in the combinational logic in the cycle that inputs are assigned to a 
low leakage state. Thus, units must be idle for on the order of ten cycles to 
justify going to a low leakage state.  
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Normally, the p-well of the NMOS transistors is connected to ground 
and the n-well of the PMOS transistors is connected to the supply. The 
subthreshold leakage can be reduced by increasing the threshold voltages by 
reverse biasing the substrate, connecting the n-well to more than 0V and 
connecting the p-well to less than Vdd. This requires charge pump circuitry 
to change the voltage, additional power rails, and a twin well or triple well 
process [24]. The advantage of reverse body bias is that the state is retained. 
Reverse body bias is less effective for reducing leakage in shorter channel 
transistors, for example providing a 4× reduction in leakage in 0.18um 
technology and 2.5× reduction in 0.13um [49], making it a less useful 
technique in deeper submicron technologies. 

An alternate method of reverse body bias is to connect both the NMOS 
transistor source and well to a virtual ground Vss (see Figure 2.5) which is 
raised to reduce leakage in standby. This avoids the need for charge pump 
circuitry and twin well or triple well process [24]. To avoid losing state 
information, the reduction in Vdd – Vss must be limited by circuitry to 
regulate the voltage [23]. Reducing Vdd – Vss also helps reduce the leakage. 
This reverse body bias and voltage collapse approach gave a 28× reduction 
in leakage in the 0.18um XScale with minimal area penalty [24]. Returning 
from “drowsy” mode took 20us, corresponding to 18,000 cycles at 800MHz, 
as the phase-locked loop (PLL) was also turned off to limit power consum-
ption. In comparison, using sleep transistors in the XScale would have 
reduced leakage by only about 5×, if power gating was not applied to latches 
and other memory elements that need to retain state, as they comprise about 
a sixth of the total transistor width [24]. 

Power gating with sleep transistors to disconnect the supply and/or 
ground rail (Figure 2.5) can provide more than an order of magnitude 
leakage reduction in circuitry that uses leaky low Vth transistors on criti-
cal paths and high Vth sleep transistors [64]. This is often referred to as 
MTCMOS, multi-threshold voltage CMOS. The “virtual” supply and “virtual” 
ground rails, which are connected to the actual power rails via sleep tran-
sistors, may be shared between logic gates to reduce the area overhead for 
the sleep transistors. Disconnecting the power rails results in loss of state, 
unless registers contain a latch connected to the actual supply and ground 
rails [64]. Registers also have connections to the virtual supply and virtual 
ground rails to limit leakage.  

Leakage was reduced by 37× in a 0.13um 32-bit arithmetic logic unit 
(ALU) using PMOS sleep transistors at the expense of a 6% area overhead 
and 2.3% speed decrease [89]. The leakage was reduced 64× by using 
reverse body bias in conjunction with PMOS sleep transistors in sleep mode, 
and forward body bias in active mode reduced the speed penalty to 1.8%. 
The total area overhead for the sleep transistors and the body bias circuitry 
was 8%. Using sleep transistors saved power if the ALU was idle for at least 
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a hundred clock cycles. Two clock cycles were required to turn the transistors 
back on from sleep mode, and four cycles were required to change from 
reverse body bias. With only forward body bias, Vdd could be reduced from 
1.32V to 1.28V with no speed penalty, and leakage was reduced by 1.9× at 
zero bias in standby [89]. 

2.5.4.1 What’s the problem?  

Reducing leakage via state assignment, substrate biasing, reducing supply 
voltage, and sleep transistors requires architectural or software level signals 
to specify when units will be idle for many cycles. These techniques cannot 
be automated at the gate level and require architectural level support for 
signals to enter and exit standby over multiple cycles. 

For state assignment, registers that retain data instead output a 0 or 1 in 
sleep mode. For registers that don’t retain data in standby, extra circuitry is 
required if the reset output differs from the low leakage state output. These 
registers are larger and consume more power than a standard register. 

Substrate biasing and reducing the supply voltage require a variable 
supply voltage from a voltage regulator. The cell libraries need to have 
delay, dynamic power, leakage power and noise immunity characterized at 
the different supply and substrate voltages. If functional units enter standby 
at different times, additional power rails may be required and wells biased at 
different potentials must be spatially isolated. These techniques are often 
used in low power custom designs, but are complicated to implement in 
ASICs.  

There is a voltage drop across sleep transistors when they are on, degrading 
the voltage swing for logic. Wider sleep transistors degrade the voltage 
swing less, but have higher capacitance. Power up of sleep transistors takes 
substantial energy due to their large capacitance [64]. Standard cells must be 
characterized for the degraded supply voltage. Layout tools must cluster the 
gates that connect to the same virtual power rail that is disconnected by a 
given sleep signal, as having individual sleep transistors in each gate is too 
area expensive. As the registers that retain state connect to the virtual power 
rails and directly to the power rails, the standard cell rows on which registers 
are placed must be taller to accommodate the extra rails. The virtual and 
actual supply and ground voltages differ in standby. Thus, the substrates of 
the transistors connected to virtual power rails and those connected directly 
to the power rails are at different voltages and must be isolated spatially, 
increasing the area overhead. The floating output of a power-gated cell can 
cause large currents if it connects directly to a cell which is not power 
gated, so additional circuitry is required to drive the output of the power-
gated cell [92]. 
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2.5.4.2 What can we do about it? 

ASICs seldom use standby power reduction techniques other than full 
power down, but there is now better tool support for power gating. An EDA 
flow with power gating can provide two orders of magnitude reduction in 
leakage if state is not retained, at the cost of 10% to 20% area overhead and 
6% higher delay (see Chapter 10). The ARM1176JZ-S synthesizable core 
supports dynamic voltage scaling, allowing the supply voltage to be scaled 
from 1.21V to 0.69V in the 0.13um process, but this requires additional 
hardware support [35].  

To date state assignment and reverse substrate biasing have not been 
implemented in an EDA methodology. As state assignment cannot be effec-
tively used with combinational logic that is power gated and provides far 
less leakage reduction than using sleep transistors, it is unlikely to be useful 
except for circuits that have only short idle periods, on the order of tens  
of clock cycles. Substrate biasing nicely complements power gating with 
forward body bias reducing the delay penalty for voltage drop across the 
sleep transistors, and with reverse body bias reducing the leakage in regis-
ters that are on to retain state information. As reverse substrate bias is less 
effective at shorter channel lengths, ASICs may have from 4× higher standby 
leakage than custom designs that use reverse body bias in 0.18um to 2× 
worse than custom in deeper submicron technologies. 

2.5.5 Logic style 

ASICs almost exclusively use complementary static CMOS logic for 
combinational logic, because it is more robust to noise and Vdd variation 
than other logic styles. Pass transistor logic (PTL), dynamic domino logic 
and differential cascode voltage switch logic (DCVSL) are faster than 
complementary static CMOS logic. These logic styles are illustrated in 
Figure 2.6. Complementary CMOS logic suffers because PMOS transistors 
are roughly 2× slower than NMOS transistors of the same width, which is 
particularly a problem for NOR gates. With the two PMOS transistors in 
series in Figure 2.6(a), the PMOS transistors must be sized about 4× larger 
for equal rise and fall delays, substantially increasing the load on the fanins. 
The high speed logic styles can be used to reduce the critical path delay, 
increasing performance. Alternatively, the additional timing slack can be 
used to achieve lower power at high performance targets. Complementary 
CMOS logic is lower power than other logic styles when high performance 
is not required. Hence, low power custom designs primarily use comple-
mentary CMOS, with faster logic only on critical paths. ASIC designs are 
mapped to slower, purely complementary CMOS logic standard cell lib-
raries. 
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Figure 2.6 This figure shows NOR2 logic gate implementations in different logic styles. The 
domino logic output is inverted, so that after precharging the inputs to domino logic gates are 
low to avoid them being discharged until an input transition to high occurs [71]. 

The StrongARM used primarily complementary CMOS, with static 
DCVSL to implement wide NOR gates [62]. In the custom IDCT multiplier, 
the carry and sum of the full adder cells are both on the critical path [102]. A 
complementary CMOS gate generated the carry out, and a static DCVSL 
gate generated the sum. This full adder was 37% faster than a purely comple-
mentary CMOS mirror adder. 

The StrongARM and XScale used some dynamic logic. Dynamic DCVSL 
(dual rail domino logic) has twice the activity of single rail domino logic. 
The Samsung Halla used dynamic DCVSL and is higher power than the 
complementary CMOS ARM1020E at 400MHz. However, the Halla runs at 
up to 1.2GHz, while the ARM1020E is limited to 400MHz [60]. Zlatanovici 
[104] compared 0.13um single rail domino and complementary static CMOS 
64-bit adders. Domino could achieve as low as 6.8 FO4 delays at 34pJ/cycle. 
The fastest static CMOS version was 12.5 FO4 delays, but only 18pJ/cycle.  

PTL is a high speed and low energy logic style [7]. In a 0.6um study,  
a complementary CMOS carry-lookahead 32-bit adder was 20% slower 
than complementary PTL, but the complementary CMOS adder was 71% 
lower power [103]. At maximum frequency in 0.25um, a complementary 
CMOS 3-input XOR ring oscillator had 1.9× delay and 1.3× power compared 
to versions in PTL and DCVSL [52]. The XScale ALU bypass adder was 
implemented in PTL. At 1.1V, this was 14% slower than single rail domino, 
but it has no precharge and lower switching activity [22]. 
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High speed logic styles can increase the speed of combinational logic  
by 1.5× [18]. We discuss the potential power savings with reduced combi-
national logic delay calculated from the pipeline model in Section 3.5. We 
optimistically assumed no extra power consumption for using a high speed 
logic style on critical paths. At a tight performance constraint, pipelines with 
only complementary static CMOS combinational logic had up to 2.0× higher 
energy per operation.  

2.5.5.1 What’s the problem? 

PTL, DCVSL, and dynamic logic libraries are used as in-house aids to 
custom designers. Standard cell libraries with these logic styles are not avai-
lable to ASIC designers. All of these logic styles are less robust than comple-
mentary CMOS logic, and have higher leakage power.  

Differential cascode voltage switch logic is faster than complementary 
CMOS logic, but is higher energy [7][20]. DCVSL requires both input signal 
polarities and has higher switching activity than complementary CMOS 
logic. Static DCVSL has cross-coupled outputs, resulting in longer periods 
of time with a conducting path from supply to ground and larger short circuit 
current. The DCVSL inputs and their negations must arrive at the same time 
to limit the duration of the short circuit current, requiring tight control of the 
layout to ensure similar signal delays.  

Dynamic logic is precharged on every clock cycle, increasing the clock 
load, activity, and dynamic power. The precharged node may only be dischar-
ged once, so glitches are not allowed. Shielding may be required to prevent 
electromagnetic noise due to capacitive cross-coupling discharging the pre-
charged node. To avoid leakage through the NMOS transistors discharging 
the node, a weak PMOS transistor is required as a “keeper” [99]. There can 
be charge sharing between dynamic nodes or on PTL paths.  

Pass transistor logic suffers a voltage drop of Vth across the NMOS pass 
transistor when the input voltage is high [71]. Consequently, the reduced 
voltage output from PTL may need to be restored to full voltage to improve 
the noise margin and to avoid large leakage currents in fanouts. The voltage 
drop can be avoided by using a complementary PMOS transistor in parallel 
with the NMOS transistor, but this increases the loading on the inputs, 
reducing the benefit of PTL. Buffering is needed if the fanins and fanouts are 
not near the PTL gates, and an inverter may be needed to generate a negated 
input. 

Using these logic styles requires careful cell design and layout. A typical 
EDA flow gives poor control over the final layout, thus use of these logic 
styles would result in far more yield problems and chip failures. 
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2.5.5.2 What can we do about it? 

The foundry requirement of high yield means that the only standard cell 
libraries available to ASIC designers will continue to be robust complementary 
static CMOS logic. Thus an EDA design flow cannot reduce the power gap 
for logic style. 

An alternative is for designers to adopt a semi-custom design flow: high 
speed custom cells and manual layout can be used for timing critical logic; 
or custom macros can be used. 

2.5.6 Logic design 

Logic design refers to the topology and the logic structure used to imple-
ment datapath elements such as adders and multipliers. Arithmetic structures 
have different power and delay trade-offs for different logic styles, techno-
logies, and input probabilities. 

2.5.6.1 What’s the problem? 

Custom designers tend to pay more attention to delay critical datapaths. 
Specifying logic design requires carefully structured RTL and tight synthesis 
constraints. For example, we found that flat synthesis optimized out logic 
that reduced switching activity in multiplier partial products [47], so the 
scripts were written to maintain the multiplier hierarchy during synthesis. 
The reduced switching activity reduced the power-delay product by 1.1× for 
the 64-bit multiplier. 

Careful analysis is needed to compare alternate algorithmic implemen-
tations for different speed constraints. For example, high-level logic tran-
sition analysis showed that a 32-bit carry lookahead adder had about 40% 
lower power-delay product than carry bypass or carry select adders [13]. There 
was also a 15% energy difference between 32-bit multipliers. Zlatanovici 
compared 64-bit domino adders in 0.13um, and found that the radix-4 adders 
achieved smaller delay and about 25% lower energy than radix-2 [104]. 

We estimate that incomplete evaluation of logic design alternatives may 
result in 1.2× higher power for a typical ASIC.  

2.5.6.2 What can we do about it? 

Synthesis tools can compile to arithmetic modules. The resulting energy 
and delay is on par with tightly structured RTL. In general, ASIC designers 
should be able to fully exploit logic design. 
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Figure 2.7 This figure illustrates how refactoring logic can reduce the switching activity 
while giving the same functional result. Switching activities are annotated on the diagram, as 
propagated from independent inputs that have equal probability of being zero or one. 

2.5.7 Technology mapping 

In technology mapping a logical netlist is mapped to a standard cell 
library in a given technology. Different combinations of cells can implement 
a gate with different activity, capacitance, power and delay. For example to 
implement an XOR2, an AO22 with inverters may be smaller and lower 
power, but slower. (An AO22 logic gate computes ab + cd, so XOR2 may be 
implemented by ab ab+ .) Refactoring can reduce switching activity (see 
Figure 2.7). Common sub-expression elimination reduces the number of 
operations. Balancing path delays and reducing the logic depth decreases 
glitch activity. High activity nets can be assigned to gate pins with lower 
input capacitance. [63][77] 

2.5.7.1 What’s the problem? 

While there are commercial tools for power minimization, power mini-
mization subject to delay constraints is still not supported in the initial phase 
of technology mapping. Minimizing the total cell area minimizes circuit 
capacitance, but it can increase activity. For a 0.13um 32-bit multiplier after 
post-synthesis power minimization, the power was 32% higher when using 
minimum area technology mapping. This was due to more (small) cells being 
used, increasing activity. We had to use technology mapping combining delay 
and area minimization targets for different parts of the multiplier. Technology 
mapping for low power may improve results; without this and other low 
power technology mapping techniques, ASICs may have 1.4× higher power 
than custom. 

2.5.7.2 What can we do about it? 

Power minimization tools do limited remapping and pin reassignment, 
along with clock gating and gate sizing [84]. These optimizations are applied 
after technology mapping for minimum delay, or minimum area with delay 
constraints. EDA tools should support technology mapping for minimum 
power with delay constraints. This requires switching activity analysis, but it 
is not otherwise substantially more difficult than targeting minimum area.  
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For a given delay constraint, technology mapping can reduce the power 
by 10% to 20%, for a 10% to 20% increase in area [63][77]. Low power 
encoding for state assignment can also give 10% to 20% power reduction 
[90]. Logic transformations based on logic controllability and observability, 
common sub-expression elimination, and technology decomposition can 
give additional power savings of 10% to 20% [68]. Pin assignment can 
provide up to 10% dynamic power savings by connecting higher activity 
inputs to gate input pins with lower capacitance [74].  

ASICs should not lag custom power consumption due to technology 
mapping, if better EDA tool support is provided. 

2.5.8 Gate sizing and wire sizing 

Wires and transistors should be sized to ensure correct circuit operation, 
meet timing constraints, and minimize power consumption. ASICs must 
choose cell sizes from the range of drive strengths provided in the library. 
ASIC wire widths are usually fixed. Downsizing transistors gives a linear 
reduction in their capacitance and thus dynamic power, and also gives a 
linear reduction in leakage. Reducing the wire width gives a linear reduction 
in wire capacitance but a linear increase in wire resistance, increasing signal 
delay on the wire. 

2.5.8.1 What’s the problem? 

There is a trade-off between power and delay with gate sizing. To reduce 
delay, gates on critical paths are upsized, increasing their capacitance. In 
turn, their fanin gates must be upsized to drive the larger capacitance. This 
results in oversized gates and buffer insertion on the critical paths. Delay 
reductions come at the price of increasingly more power and worse energy 
efficiency. 

To balance rise and fall delays, an inverter has PMOS to NMOS width 
ratio of about 2:1 as a PMOS transistor has about half the drain current of  
a NMOS transistor of the same width. Accounting for the number of tran-
sistors in series, other logic gates also have 2:1 P/N ratio to balance rise and 
fall delays for an inverter of equivalent drive strength, as illustrated in Figure 
2.8. However, to minimize the average of the rise delay and fall delay, the 
P/N ratio for an inverter should be about 1.5:1 [37]. Reducing the P/N ratio 
provides a small reduction in delay and a substantial reduction in power 
consumption, by reducing the capacitance of the larger PMOS transistors. 
The optimal P/N ratio to minimize the delay is larger for larger loads [73]. In 
addition, sometimes the rise and fall drive strengths needed are different – 
for example, the rising output transition from a cell may be on a critical path, 
but the falling transition may not be critical. 
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Figure 2.8 This figure shows the relative NMOS and PMOS transistor widths for equal rise 
and fall delays in different logic gates of equivalent drive strength. 

The ratio of pullup to pulldown drive strength determines at what input 
voltage a gate switches from low to high or high to low [99]. Equal rise and 
fall delays maximize the noise margin for a high or low input. Thus skewing 
the P/N ratio reduces the noise margin. Ideally, standard cell libraries should 
provide a range of drive strength skews and lower power cells with reduced 
P/N ratio, but often only cells with equal rise and fall drive strength are 
available to ensure high yield. 

A design-specific standard cell library developed for the iCORE [73] 
gave a 20% speed increase by using reduced P/N width ratio, and by using 
larger transistor widths to increase drive strength instead of buffering. The 
larger transistor widths required increased cell height, but the net impact on 
layout area was minimal as they were only used in the most critical paths. 
However, the design time for this library was about two worker years. 

Custom libraries may be finer grained, which avoids oversizing gates, 
and have skewed drive strengths. Cells in datapath libraries are denser 
and have smaller input capacitance [18]. Specific cell instances can be 
optimized. Cells that connect to nearby cells don’t need guard-banding. This 
avoids the need for buffering to handle driving or being driven by long 
wires.  

Wire widths can also be optimized in custom designs. Gong et al. [34] 
optimized global clock nets on a 1.2um chip. By simultaneously optimizing 
buffer and wire sizes, they reduced the clock net power by about 63%. This 
amounts to a 10% to 20% saving in total power. 

The basic approach to gate sizing in commercial EDA software has 
changed little in the past 20 years. These gate sizers like TILOS [29] proceed 
in a greedy manner, picking the gate with the best power or area versus 
delay tradeoff to change, and iterating. There are known circuit examples 
where these approaches perform suboptimally, but it has not been clear how 
much of a problem this is for typical circuits for real world applications. We 
found power savings of up to 32.3% versus gate sizing in Design Compiler, 
which is commonly used in EDA flows for circuit synthesis, and 16.3% 
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savings on average across the ISCAS’85 benchmarks and three typical 
datapath circuits (see Section 6.5.3). Gate sizing is an NP-complete problem, 
but circuit sizes are large and optimization software must have runtimes of 
O(n2) or less to be of practical use [81], where n is the number of gates in the 
circuit. The TILOS-like greedy approaches are relatively fast, being O(n2), 
and other approaches that perform better with similar static timing analysis 
(STA) accuracy have had worse computational complexity. 

Some commercial power minimization software has only recently pro-
vided the option of minimizing the total power. Previously, the user had to 
prioritize minimizing either the dynamic power or the leakage power, which 
can be suboptimal. 

We estimate that these limitations in gate sizing and wire sizing for 
typical ASICs may lead to a power gap of 1.6× versus custom. 

2.5.8.2 What can we do about it? 

Gate downsizing to reduce power consumption is well supported by 
power minimization tools. Some commercial tools support clock tree wire 
sizing, but there are no commercial tools available for sizing other wires. 
Automated cell creation, characterization and in-place optimization tools are 
available. Standard cell libraries with finer grained drive strengths and lower 
power consumption are available, though users may be charged a premium. 

We synthesized the base configuration of a Tensilica Xtensa processor in 
0.13um. The power/MHz was 42% lower and the area was 20% less at 
100MHz than at the maximum clock frequency of 389MHz, due to using 
smaller gates and less buffers. If delay constraints are not too tight, tools can 
reduce power by gate downsizing without impacting delay. At 325MHz, 
Power Compiler was able to reduce the power consumption by 26% and 
reduce the area by 12% for no delay penalty.  

Libraries with fine granularity help to reduce the power by avoiding use 
of oversized gates. In a 0.13um case study of digital signal processor (DSP) 
functional macros, using a fine grained library reduced power consumption 
by 13% (see Chapter 13).  

After place and route when wire lengths and capacitive loads are accu-
rately known, in place optimization can remove guard banding where it  
is unnecessary. ASIC designers have tended to distrust this approach, as the 
optimized cells without guard banding cannot be safely used at earlier stages 
in the EDA flow. Skewing the pullup to pulldown drive strength to optimize 
the different timing arcs through a gate can also improve energy efficiency. 
A prototype tool flow for in place cell optimization increased circuit speed 
by 13.5% and reduced power consumption by 18%, giving a 1.4× increase  
in energy efficiency for the 0.35um 12,000 gate bus controller [25]. 300 
optimized cells were generated in addition to the original standard cell 
library that had 178 cells.  
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Our linear programming gate sizing approach discussed in 0 takes a 
global view of the circuit rather than performing greedy “peephole” optimi-
zation. We achieved up to 32.3% power savings and on average 16.3% 
power savings versus gate sizing in Design Compiler for the combinational 
netlists. Our optimization approach has between O(n) and O(n2) runtime 
growth, making it scalable to large circuit sizes.  

ASICs may have 1.1× worse power than custom due to gate and wire 
sizing, as wire sizing tools are not available other than for the clock tree, and 
some design-specific cell optimizations are not possible without custom cell 
design, beyond what is possible with automated cell creation.  

2.5.9 Voltage scaling 

Reducing the supply voltage Vdd quadratically reduces switching power. 
Short circuit power also decreases with Vdd. Reducing Vdd also reduces 
leakage. For example, with our 0.13um library leakage decreases by a factor 
of three as Vdd is decreased from 1.2V to 0.6V. As Vdd decreases, a gate’s 
delay increases. To reduce delay, threshold voltage Vth must also be scaled 
down. As Vth decreases, leakage increases exponentially. Thus there is a 
tradeoff between performance, dynamic power and leakage power.  

Ideally, we want to operate at as low Vdd as possible, with Vth high 
enough to ensure little leakage. For example, dynamic scaling of the supply 
voltage from 3.8V to 1.2V gives a 10× increase in energy efficiency at the 
price of decreasing performance by a factor of 14 for Burd’s 0.6um ARM 
implementation [11]. Reducing the power consumption in this manner req-
uires timing slack.  

Power consumption may be reduced by using multiple supply voltages 
and multiple threshold voltages. High Vdd and low Vth can be used on 
critical paths to reduce their delay, while lower Vdd and higher Vth can be 
used elsewhere to reduce dynamic and leakage power. 

2.5.9.1 What’s the problem? 

Custom designs can achieve at least twice the speed of ASICs with high 
performance design techniques [18]. At the same performance target as an 
ASIC, a custom design can reach lower Vdd using the additional timing 
slack. Compare Vdd of Burd, StrongARM and XScale to other ARMs in 
Table 2.1. With lower Vdd they save between 40% and 80% dynamic power 
versus other ARMs in the same technology. This is the primary reason for 
their higher energy efficiency. To use lower Vdd, ASICs must either settle 
for lower performance or use high speed techniques, such as deeper pipe-
lining, to maintain performance. 

Dynamically adjusting the supply voltage for the desired performance 
requires a variable voltage regulator and takes time, during which correct 
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signals must be maintained to avoid transitioning into illegal states from 
which behavior is unknown. To change from 1.2V to 3.8V in Burd’s ARM 
[11] required energy equal to that consumed in 712 cycles of peak operation, 
and there was a delay of 70us. Increasing or decreasing the supply voltage 
by 800mV took 50us in the XScale [22].  

Several barriers remain to ASICs using low Vdd. Using lower Vdd 
requires lower Vth to avoid large increases in gate delay. Vth is determined 
by the process technology. A foundry typically provides two or three 
libraries with different Vth: high Vth for low power; and low Vth for high 
speed at the expense of significant leakage power. Most ASIC designers 
cannot ask a foundry to fine tune Vth for their particular design, even if an 
intermediate Vth might be preferable to reduce leakage. Vdd can be optimized 
for ASICs, but typical ASIC libraries are characterized at only two nominal 
supply voltages – say 1.2V and 0.9V in 0.13um. To use Vdd of 0.6V, the 
library must be re-characterized. There is also less noise immunity at lower 
Vdd. 

Use of multiple supply voltages either requires that the wells of PMOS 
transistors in low Vdd gates are reverse biased by connecting them to high 
Vdd, or spatial isolation between the wells connected to low Vdd and high 
Vdd. Layout tools must support these spacing constraints. Low voltage 
swing signals must be restored to full voltage swing with a voltage level 
converter to avoid large leakage currents when a high Vdd gate is driven by 
a low Vdd input. Most level converter designs require access to both high 
Vdd and low Vdd, which complicates layout and may require that they 
straddle two standard cell rows, additionally the PMOS wells connected to 
different Vdd must be spatially isolated. Voltage level converters are not 
available in ASIC libraries. Synthesis and optimization tools must insert 
level converters where needed, and prevent low Vdd gates driving high Vdd 
gates in other cases.  

If voltage level converters are combined with the flip-flops, the power 
and delay overheads for voltage level restoration are less. Due to the addi-
tional power and delay overheads for asynchronous level converters (those 
not combined with flip-flops), there have been reservations about whether 
they provide any practical benefits over only using level converter flip-flops 
[93]. There has also been concern about their noise immunity [46].  

Multi-Vdd circuitry has more issues with capacitive cross-coupling noise 
due to high voltage swing aggressors on low voltage swing lines. Thus it 
may be best to isolate high Vdd and low Vdd circuitry into separate voltage 
islands, rather than using multi-Vdd at a gate level. Multi-Vdd at the gate-
level can also require additional voltage rails. Gate level multi-Vdd requires 
tool support to cluster cells of the same Vdd to achieve reasonable layout 
density. An additional voltage regulator is needed to generate the lower Vdd. 

Using multiple threshold voltages is expensive. Each additional PMOS 
and NMOS threshold voltage requires another mask to implant a different 
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dopant density, substantially increasing processing costs. A set of masks 
costs on the order of a million dollars today and an additional Vth level 
increases the fabrication cost by 3% [69]. Each additional mask increases the 
difficulty of tightly controlling yield, motivating some manufacturers to limit 
designs to a single NMOS and single PMOS threshold voltage.  

To take full advantage of multiple threshold voltages within gates, 
standard cells with multi-Vth and skewed transistor widths must be provided. 
High Vth can be used to reduce leakage while low Vth can be used to reduce 
dynamic power. For example, using low Vth PMOS transistors and high Vth 
NMOS transistors in a complementary CMOS NOR gate, as leakage is less 
through the PMOS transistors that are in series. In gates that have an uneven 
probability of being high or low, there is more advantage to using high Vth 
to reduce leakage for the pullup or pulldown network that is more often off. 
Similarly, for wider transistors with high Vth may be preferable for gates 
that have low switching activity, while narrower transistors with low Vth is 
better when there is higher switching activity.  

2.5.9.2 What can we do about it? 

There are tools to automate characterizing a library at different Vdd 
operating points. Characterization can take several days or more for a large 
library. Standard cell library vendors can help by providing more Vdd chara-
cterization points. Commercial tools do not adequately support multi-Vdd 
assignment or layout, but separate voltage islands are possible. 

There are voltage level converter designs that only need to connect to 
high Vdd (see Figure 13.8). Some asynchronous level converters designs 
have been shown to be robust and have good noise immunity in comparison 
to typical logic gates at low Vdd [53]. It would help if voltage level converters 
were added to standard cell libraries.  

Foundries often support high and low Vth cells being used on the same 
chip. Power minimization tools can reduce power by using low Vth cells on 
the critical path, with high Vth cells elsewhere to reduce leakage. Combining 
dual Vth with sizing reduced leakage by 3 to 6× for a 5% increase in delay 
on average versus using only low Vth [78]. From a design standpoint, an 
advantage of multiple threshold voltages is that changing the threshold 
voltage allows the delay and power of a logic gate to be changed without 
changing the cell footprint, and thus not perturbing the layout. As discussed 
in Chapter 7, multi-threshold voltage optimization is straightforward, providing 
those cells are provided in the library. Optimization runtime increases at 
worst linearly with the number of cells in the library. 

Geometric programming optimization results on small benchmark circuits 
suggest that multi-Vdd and multi-Vth may only offer 20% power savings 
versus optimal choice of single Vdd, single NMOS Vth, and single PMOS 
Vth [16]. As ASIC designers are limited to Vth values specified by the 
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foundry, there may be more scope for power savings in ASICs when Vth is 
suboptimal. After scaling Vdd from 1.2V to 0.8V by using a low Vth of 
0.08V, we found power savings of up to 26% by using a second higher Vth 
to reduce leakage with our linear programming optimization approach in 
Chapter 7, and average power savings were 16%. We found that power savings 
with gate-level multi-Vdd were generally less than 10%. Using multi-Vdd is 
more appropriate at a module level, making a good choice of a single supply 
voltage for the module based on the delay of critical paths. 

With 9% timing slack versus the maximum clock frequency, Stok et al. 
in Chapter 13 reduced power consumption by 31% by scaling from Vdd of 
1.2V to Vdd of 1.0V. Usami et al. [94] implemented automated tools to 
assign dual Vdd and place dual Vdd cells, with substrate biasing for the 
transistors to operate at low Vth in active mode to increase performance and 
high Vth in standby mode to reduce leakage. They achieved total power 
reduction of 58% with only a 5% increase in area. The ARM1176JZ-S [35] 
synthesizable core supports dynamic voltage scaling, but this requires addi-
tional software and hardware support. This demonstrates that ASICs can use 
such methods with appropriately designed RTL, software, and EDA tool 
support, reducing the power gap due to voltage scaling alone to 1.0×.  

2.5.10 Floorplanning, cell placement and wire routing 

The quality of floorplanning of logic blocks and global routing for wires, 
followed by cell placement and detailed wire routing, have a significant 
impact on wire lengths. A significant portion of the capacitance switched in 
a circuit is wiring capacitance. The power consumption due to interconnect 
is increasing from about 20% in 0.25um to 40% in 0.09um [82]. Wire lengths 
depend on cell placement and congestion. Larger cells and additional buffers 
are needed to drive long wires. We estimate that poor floorplanning, cell 
sizing and cell placement with inaccurate wire load models can result in 1.5× 
worse power consumption in ASICs compared to custom. 

2.5.10.1 What’s the problem? 

Custom chips are partitioned into small, tightly placed blocks of logic. 
Custom datapaths are manually floorplanned and then bit slices of layout 
may be composed. Automatic place and route tools are not good at recog-
nizing layout regularity in datapaths. 

We used BACPAC [82] to examine the impact of partitioning. We com-
pared partitioning designs into blocks of 50,000 or 200,000 gates in 0.13um, 
0.18um, and 0.25um. Across these technologies, using 200,000 gate blocks 
increased average wire length by about 42%. This corresponds to a 9% to 
17% increase in total power. The delay is also about 20% worse with larger 
partitions [18]. The net increase in energy per operation is 1.3 to 1.4×. 
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When sizing gates and inserting buffers, the first pass of synthesis uses 
wire load models to estimate wire loads. Wire load models have become 
increasing inaccurate, with wires contributing a larger portion of load capa-
citance in the deep submicron. A conservative wire load model is required  
to meet delay constraints, but this results in most gates being over-sized [18], 
making the power higher.  

Physical synthesis iteratively performs placement and cell sizing, to refine 
the wire length estimates. Cell positions are optimized then wire lengths are 
estimated with Steiner trees. Steiner tree wire length models used by physical 
synthesis are inaccurate if a wire route is indirect. There can be too many 
critical paths to give them all a direct route. Power minimization increases 
path delay, so more paths are critical, increasing congestion. This may 
degrade performance. For example for the base configuration of Tensilica’s 
Xtensa processor for a tight performance target of 400MHz clock frequency 
in 0.13um, we found that the clock frequency was 20% worse after place and 
route when power minimization was used.  

2.5.10.2 What can we do about it? 

Physical synthesis, with iteratively refined wire length estimates and cell 
placement, produces substantially better results than a tool flow using only 
wire load models. In our experience, physical synthesis can increase speed 
by 15% to 25%. The cell density (area utilization) increases, reducing wire 
lengths, and then cells may be downsized, which reduces power by 10%  
to 20%. 

Earlier power minimization tools often ended up increasing the worst 
critical path delay after layout if the delay constraint was tight. This is less of 
a problem in today’s tools, where power minimization is integrated with 
physical synthesis. Tool flow integration has also improved, particularly as 
some of the major CAD software vendors now have complete design flows 
with tools that perform well throughout the design flow – rather than using 
for example Synopsys tools for synthesis and Cadence tools for place and 
route.  

An ASIC designer can generate bit slices from carefully coded RTL with 
tight aspect ratio placement constraints. Bit slices of layout may then be 
composed. With bit slices, Chang showed a 70% wire length reduction 
versus automated place-and-route [15], which would give a 1.2 to 1.4× 
increase in energy efficiency. Stok et al. in Chapter 13 found that bit slicing 
and some logic optimization, such as constant propagation, improved clock 
frequency by 22% and reduced power consumption by 20% for seven DSP 
functional macros implemented in 0.13um, improving the energy efficiency 
by a factor of 1.5×. Compared to bit slicing using a library of datapath cells, 
manual placement and routing can still achieve smaller wire lengths [15], 
leaving a gap of about 1.1×. 



42 Chapter 2
 
2.5.11 Process technology  

After the layout is verified, the chip is fabricated in the chosen process 
technology by a foundry. Within the same nominal technology generation, 
the active power, leakage power, and speed of a chip differ substantially 
depending on the process used to fabricate the circuit. Older technologies are 
slower and are cheaper per mask set. However, newer technologies have 
more dies per wafer and thus may be cheaper per die for larger production 
runs. Newly introduced technologies may have lower yield, though these 
problems are typically ironed out as the technology matures [61]. 

High performance chips on newer technologies have substantially higher 
subthreshold leakage power as threshold voltage is scaled down with supply 
voltage to reduce dynamic power. Gate tunneling leakage is also higher as 
transistor gate oxide thickness is reduced for the lower input voltage to the 
transistor gate to retain control of the transistor.  

Gate leakage can be reduced if the gate oxide thickness tox is increased, 
which requires a high-k gate dielectric permittivity εox to maintain the drive 
current (see Equation (4.1)). For example, Intel will use hafnium oxide in 
their 45nm process [44], which has dielectric permittivity of about an order 
magnitude larger than silicon oxide that is used in most of today’s processes, 
enabling Intel to reduce the gate leakage by more than 10×. 

The power consumption and power per unit area can be less in deeper 
submicron technologies if performance is not increased [55]. For example in 
65nm, Intel’s low power P1265 process reduces leakage 300×, but has 55% 
lower saturation drain current and hence is about 2.2× slower [48], compared 
to their higher performance P1264 technology [91]. To reduce leakage they 
increased oxide thickness from 1.2nm to 1.7nm, increased gate length from 
35nm to 55nm, and increased threshold voltage from about 0.4V to 0.5V (at 
drain-source voltage of 0.05V) [48]. Note that the higher threshold voltage 
results in a greater delay increase if supply voltage is reduced. 

While Intel started selling processors produced in 65nm bulk CMOS 
technology at the start of 2006, AMD is still producing chips in 90nm silicon-
on-insulator (SOI) technology [8][36]. AMD is on track to offer 65nm SOI 
chips in the last quarter of 2006 [67]. Intel is a technology generation ahead, 
and has the cost advantage of using cheaper bulk CMOS and more dies per 
wafer with its smaller technology. However, SOI has better performance per 
watt than bulk CMOS, so Intel has only a slight advantage in terms of 
performance and energy efficiency. 

In the same nominal technology generation, there are substantial diff-
erences between processes. Different technology implementations differ 
by up to 25% in speed [18], 60% in dynamic power, and an order of mag-
nitude in leakage. We compared several gates in Virtual Silicon’s IBM 
8SF and UMC L130HS 0.13um libraries. 8SF has about 5% less delay and 
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only 5% of the leakage compared to L130HS, but it has 1.6× higher dynamic 
power [97]. Our study of two TSMC 0.13um libraries with the base configu-
ration of Tensilica’s Xtensa processor showed that TSMC’s high Vth, low-k 
library was 20% lower power/MHz, with 66% less leakage power and 14% 
less dynamic power, than the low Vth, low-k library (see Table 2.5).  

The power consumption, wire RC delays, and IR drop in the wires can 
be reduced by use of copper wires and low-k interlayer dielectric insulator. 
Copper interconnect has 40% lower resistivity than aluminum. Low-k diele-
ctrics of 2.7 to 3.6 electrical permittivity (k) are used in different processes, 
compared to SiO2’s dielectric constant of 3.9. Using low-k interlayer dielectric 
insulator reduces interconnect capacitance by up to 25%, reducing dynamic 
power consumption by up to 12%. High-k transistor gate dielectrics increase 
the transistor drive strength and thus speed, and can also reduce the gate tunne-
ling leakage by an order of magnitude [59]. 

Narendra et al. showed that silicon-on-insulator (SOI) was 14% to 28% 
faster than bulk CMOS for some 0.18um gates. The total power was 30% 
lower at the same delay, but the leakage was 1.2 to 20× larger [65]. A 0.5um 
DSP study showed that SOI was 35% lower power at the same delay as bulk 
CMOS [76]. Double-gated fully depleted SOI is less leaky than bulk CMOS. 

The StrongARM caches were 90% of the chip area and were primarily 
responsible for leakage. A 12% increase in the NMOS channel length 
reduced worst case leakage 20×. Lengthening transistors in the cache and 
other devices reduced total leakage by 5× [62]. Transistor capacitance, and 
thus dynamic power, increases linearly with channel length. Channel length 
can be varied in ASICs to reduce leakage if such library cells are available. 

As a process technology matures, incremental changes can improve 
yield, improve performance and reduce power consumption. In Intel's 0.25um 
P856 process the dimensions were shrunk by 5% and, along with other 
modifications, this gave a speed improvement of 18% in the Pentium II [10]. 
The 0.18um process for the Intel XScale had a 5% shrink from P858, and 
other changes to target system-on-chip applications [22]. There was also a 
5% linear shrink in Intel’s 0.13um P860 process and the effective gate length 
was reduced from 70nm to 60nm [87]. A 5% shrink reduces transistor 
capacitance and dynamic power by about 5%. These process improvements 
are typical of what is available to high volume custom designs.  

We estimate that different choices within the same process technology 
generation may give up to 1.6× difference in power.  

Table 2.5 Dynamic and leakage power for two different 0.13um TSMC libraries for 
Tensilica’s Xtensa processor for the base configuration with a clock frequency of 100MHz. 
Library low Vdd, low k-dielectric low Vdd, low k-dielectric, high Vth
Dynamic power (uW) 6.48 5.66
Leakage power (mW) 0.67 0.25
Total power (mW) 7.15 5.90  
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2.5.11.1 What’s the problem? 

Standard cells are characterized in a specific process. The cells must  
be modified and libraries updated for ASIC customers to take advantage of 
process improvements. Without such updates, 20% speed increase and greater 
reductions in power may be unavailable to ASIC customers. Finding the 
lowest power for an ASIC requires synthesis with several different libraries 
to compare power at performance targets of interest. The lowest power 
library and process may be too expensive. 

2.5.11.2 What can we do about it? 

Generally, it requires little extra work to re-target an ASIC EDA flow to 
a different library. ASICs can be migrated quickly to different technology 
generations, and updated for process improvements. In contrast, the design 
time to migrate custom chips is large. Intel started selling 90nm Pentium 4 
chips in February 2004 [36], but a 90nm version of the XScale was only 
reported in June 2005 [72] and is not currently in production to our know-
ledge. Meanwhile, ARM has synthesized the more recent Cortex-A8 core 
for 65nm [4]. ASICs should be able to take full advantage of process impro-
vements, closing the gap for process technology to 1.0×. 

2.5.12 Process variation  

Chips fabricated in the same process technology vary in power and speed 
due to process variation, as illustrated in Figure 2.9. Some of the chips 
fabricated may be too slow, while some are significantly faster. In previous 
technology generations, the faster chips could be sold at a premium. However, 
faster chips have more leakage power and greater variation in leakage power 
[9]. Thus the faster chips may consume too much power, particularly if run 
at a higher clock frequency where dynamic power is also higher as it increases 
linearly with clock frequency.  

There are a number of sources of process variation, such as optical 
proximity effects, and wafer defects. The channel length L, transistor width, 
wire width and wire height have about 25% to 35% variation from nominal 
at three standard deviations (3σ). Transistor threshold voltage Vth and oxide 
thickness have about 10% variation at 3σ [66]. Decreased transistor oxide 
thickness substantially increases gate tunneling leakage, and a decrease in 
Vth or L can cause a large increase in subthreshold leakage current, though 
these transistors are faster. Dynamic power scales linearly with transistor 
and wire dimensions, as capacitances increase. 

To ensure high yield accounting for process variation, libraries are 
usually characterized at two points. To meet the target speed, the process’ 
worst case speed corner is used – typically 125°C, 90% of nominal Vdd, 
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with slow transistors. To prevent excessive power, the active power may be 
characterized at a worst case power corner, e.g. –40°C, 110% of nominal 
Vdd, and fast transistors. Leakage is worse at high temperature. Due to Vdd 
alone, the active power is 50% higher at the worst case power corner than at 
the worst case speed corner. These process corners are quite conservative 
and limit a design. The fastest chips fabricated in a typical process may be 
60% faster than estimated from the worst case speed corner [18]. Similarly, 
examining the distribution of power of fabricated 0.3um MPEG4 codecs 
[85], the worst case power may be 50% to 75% higher than the lowest power 
chips produced. 

 

Figure 2.9 This graph illustrates yield versus maximum clock frequency f and total power P 
at that clock frequency. The minimum frequency is 1.0GHz and the maximum power is 
160W. The maximum frequency of about 1.4GHz is determined from the power constraint. 
2.3% of the chips are slower than 1.0GHz and 2.2% are faster than 1.4GHz. 10.7% of the 
chips have power consumption of more than 160W. Data was generated with a normal 
distribution of f = N(1.2,0.1) and distribution for total power of P = 100f + e–10+10f+N(0,0.4), with 
dynamic power of 100f. The leakage distribution is similar to the 0.18um technology in [9]. 
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Table 2.6 This table compares the rated power consumption of chips operating at the same 
clock frequency that are sold by Intel and AMD today [1][2][3][41][42][45][86]. Higher 
speed parts can operate at a lower supply voltage, reducing the power consumption. These 
lower power processors are sold at a premium.  

Technology Frequency Voltage Power Power
Processor Model Codename (nm) (GHz) (V) (W) Increase

Athlon 64 X2 4800+ Windsor 90 2.40 1.25 65
Athlon 64 X2 4800+ Windsor 90 2.40 1.35 89 ×1.4
Athlon 64 X2 3800+ Windsor 90 2.00 1.08 35
Athlon 64 X2 3800+ Windsor 90 2.00 1.25 65 ×1.9
Athlon 64 X2 3800+ Windsor 90 2.00 1.35 89 ×2.5
Athlon 64 3500+ Orleans 90 2.20 1.25 35
Athlon 64 3500+ Orleans 90 2.20 1.40 62 ×1.8
Turion 64 MT-40 Lancaster 90 2.20 1.20 25
Turion 64 ML-40 Lancaster 90 2.20 1.35 35 ×1.4
Core 2 Duo T7600 Merom 65 2.33 1.30 35
Xeon 5100 5148 Woodcrest 65 2.33 1.25 40 ×1.1
Xeon 5100 5140 Woodcrest 65 2.33 1.40 65 ×1.9
Core 2 Duo T7200 Merom 65 2.00 1.30 35
Xeon 5100 5130 Woodcrest 65 2.00 1.40 65 ×1.9
Core Duo L2500 Yonah 65 1.83 1.21 15
Core Duo T2400 Yonah 65 1.83 1.33 31 ×2.1
Core Duo L2400 Yonah 65 1.66 1.21 15
Core Duo T2300 Yonah 65 1.66 1.33 31 ×2.1  

Exploiting the variation in power consumption, Intel and AMD have 
been selling lower power chips at a premium. The power consumption of the 
cheaper, higher power parts is typically up to about 2× that of the low power 
chips, as shown in Table 2.6. Note that Intel’s Merom (laptop), Conroe 
(desktop) and Woodcrest (server) chips are essentially the same [40], though 
voltages, caching strategies and so forth may be changed for lower power 
but lower performance for the laptop version. 

Custom circuitry can be designed to ameliorate process variation in 
fabricated chips. In the Pentium 4, the clock is distributed across the chip to 
47 domain buffers, which each have a 5 bit programmable register to remove 
skew from the clock signal in that domain to compensate for process 
variation [54]. A similar scheme was used to reduce clock skew in the 90nm 
XScale [21]. The body bias can be changed to adjust the transistor threshold 
voltage, and thus the delay and leakage power. Body bias can be applied at a 
circuit block level to reduce the standard deviation in clock frequency 
between dies from 4.1% to 0.21%, improving speed by 15% versus the 
slower chips without body bias, while limiting the range in leakage power 
to 3× for a 0.15um test chip [88]. To do this, representative critical path 
delays and the leakage current must be measured while the bias is varied. 
Additional power rails are needed to route the alternate NMOS and PMOS 
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body bias voltages from the body bias generator circuitry, resulting in a 3% 
area overhead [88]. Forward body bias allowed Vdd to be reduced from 
1.43V to 1.37V giving a 7% reduction in total power for a 0.13um 5GHz 32-
bit integer execution core [95].  

2.5.12.1 What’s the problem? 

For ASIC parts that are sold for only a few dollars per chip, additional 
testing for power or speed binning is too expensive. Such ASICs are chara-
cterized under worst case process conditions to guarantee good yield. Thus 
ASIC power and speed are limited by the worst case parts. Without binning, 
there may be a power gap of ×2 versus custom chips that are binned. Custom 
chips that have the same market niche as ASICs have the same limitation on 
testing for binning, unless they are sold at a much higher price per chip.  

The complicated circuitry and tight control of layout and routing req-
uired to compensate for process variation in a fabricated chip is not possible 
within an ASIC methodology. 

2.5.12.2 What can we do about it? 

To account for process variation, ASIC power may be characterized after 
fabrication. Parts may then be advertised with longer battery life. However, 
post-fabrication characterization of chip samples does not solve the problem 
if there is a maximum power constraint on a design. In this case, ASICs may 
be characterized at a less conservative power corner, which requires better 
characterization of yield for the standard cell library in that process. For 
typical applications, the power consumption is substantially less than peak 
power at the worst case power corner. Additional steps may be taken to limit 
peak power, such as monitoring chip temperature and powering down if it is 
excessive. 

We estimate a power gap of up to 1.3× due to process variation for ASICs 
in comparison to custom designs that compensate for process variation, from 
analysis of a 15% increase in custom speed with the pipeline model in 
Chapter 3.  

2.6 SUMMARY 

We compared synthesizable and custom ARM processors from 0.6um to 
0.13um. We also examined discrete cosine transform cores, as an example of 
dedicated low power functional units. In these cases, there was a power gap 
of 3 to 7× between custom and ASIC designs.  

We have given a top-down view of the factors contributing to the power 
gap between ASIC and custom designs. From our analysis, the most significant 
opportunity for power reduction in ASICs is using microarchitectural tech-
niques to maintain performance while reducing power by voltage scaling. 
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Reducing the pipeline delay overhead and using pipelining to increase timing 
slack can enable substantial power savings by reducing the supply voltage 
and downsizing gates. Multiple threshold voltages may be used to limit leak-
age while enabling a lower Vdd to be used. Choosing a low power process 
technology and limiting the impact of process variation reduces power by a 
large factor.  

In summary, at a tight performance constraint for a typical ASIC design, 
we believe that the power gap can be closed to within 2.6× by using these 
low power techniques with fine granularity standard cell libraries, careful 
RTL design and EDA tools targeting low power. The remaining gap is 
mostly from custom designs having lower pipelining overhead and using 
high speed logic on critical paths. Using a high speed logic style on critical 
paths can provide timing slack for significant power savings in custom 
designs. High speed logic styles are less robust and require careful layout, 
and thus are not amenable to use in an ASIC EDA methodology.  

An example of combining low power and high performance design 
techniques on DSP functional macros is in Chapter 13. To improve perfor-
mance and reduce power consumption, they used arithmetic optimizations, 
logic optimization, a finer grained library, voltage scaling from 1.2V to 
1.0V, and bit-slicing. Performance improved from 94MHz to 177MHz and 
energy efficiency increased from 0.89MHz/mW to 2.78MHz/mW – a factor 
of 3.1×. This demonstrates the power savings that may be achieved by using 
low power techniques in ASICs. 

The next chapter details our power and delay model that incorporates the 
major factors that contribute to the power gap between ASIC and custom. It 
includes pipelining, logic delay, voltage scaling and gate sizing. The logic 
delay is determined by factors such as the logic style, wire lengths after 
layout, process technology, and process variation which affects the worse 
case delay. 
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Algorithmic and architectural choices can reduce the power by an order 

of magnitude [56]. We assume that ASIC and custom designers make similar 
algorithmic and architectural choices to find a low power implementation 
that meets performance requirements for the target application.  

Circuit designers explore trade-offs for different microarchitectural features 
that implement a given architecture for typical applications. The analysis 
may be detailed using cycle accurate instruction simulators, but low level 
circuit optimizations are not usually examined until a much later design 
phase. High level microarchitectural choices have a substantial impact on 
the performance and power consumption, affecting the design constraints for 
low level optimizations.  

This chapter examines the power gap between ASIC and custom with 
pipelining and different architectural overheads. Other researchers have 
proposed high level pipelining models that consider power consumption, but 
they do not consider gate sizing and voltage scaling. We will augment a 
pipeline model with a model of power savings from voltage scaling and gate 
sizing versus timing slack. This enables simultaneous analysis of the power 
and performance trade-offs for both high-level and low-level circuit optimi-
zations. 

Pipelining does not reduce power by itself. Pipelining reduces the critical 
path delay by inserting registers between combinational logic. Glitches may 
be prevented from propagating across register boundaries, but logic activity 
is otherwise unchanged. The clock signal to registers has high activity which 
contributes to the dynamic power. Pipelining reduces the instructions per 
clock cycle (IPC), due to high branch misprediction penalties and other 
hazards, and thus can reduce the energy efficiency. The timing slack from 
pipelining can be used for voltage scaling and gate downsizing to achieve 
significant power savings (see Figure 3.1 and Figure 3.2).  
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Figure 3.1 The optimal number of pipeline stages to minimize energy/instruction is shown 
versus the performance constraint. At a tight performance constraint additional stages 
penalize performance, little timing slack is available, and there is little opportunity for voltage 
scaling and gate sizing. At more relaxed performance constraints, additional stages provide 
timing slack for a substantial power reduction with voltage scaling and gate downsizing, as 
shown in Figure 3.2. These results are for the custom design parameters with our model. 

Figure 3.2 Power savings with additional pipeline stages to provide timing slack for voltage 
scaling and gate sizing versus power consumption without these methods and fewer stages.  

From our analysis, pipelining contributes up to a factor of 5.1× to the 
power gap between ASIC and custom at a tight performance constraint. 
There is no timing slack at a tight performance constraint for the ASIC 
where additional pipeline stages will reduce performance, but at this point 
there is still timing slack for voltage scaling and gate downsizing in a custom 
design. A custom design may also use additional pipeline stages to further 
improve performance, as pipeline stage delay overheads are less for custom. 
The power gap is less as the performance constraint is relaxed, reducing the 
gap to 4.0× at only 7% lower performance. The gap can be reduced to 1.9× if 
the pipeline stage delay overhead is reduced. 
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3.1 INTRODUCTION 

Pipelining and parallelism allow the same performance to be achieved at 
lower clock frequencies. The timing slack can be used to reduce the power 
by using a lower supply voltage, a higher threshold voltage and reduced gate 
sizes. Parallel computation trades off area for increased throughput. Pipelining 
breaks up a datapath into multiple stages with registers between each stage 
to store the intermediate results. The shorter critical path length from pipelining 
allows a higher clock frequency. Computation in each pipeline stage can 
proceed simultaneously if there is no data interdependency, and thus the 
throughput is higher.  

Chandrakasan and Brodersen examined pipelining and parallelism on an 
8-bit datapath composed of an adder and comparator in 2.0um technology 
[10]. If two such datapaths are run in parallel, the clock period can be 
doubled, and the timing slack can be used to reduce to decrease the supply 
from 5V to 2.9V. The circuit capacitance more than doubles to 2.15× due to 
wiring overheads for the parallel datapath and multiplexing of the results. 
Running the datapath in parallel and reducing the supply reduces the dynamic 
power by 64%. If instead the datapath is pipelined with registers between the 
adder and comparator, the supply can be reduced from 5V to 2.9V and the 
capacitance overhead for the latches is 15%, giving a net power reduction of 
61%. The area is more than doubled to 3.4× for the two parallel datapaths, 
whereas the area for the pipelined datapath is only 1.3× with the additional 
registers.  

For an inverse discrete cosine (IDCT) core in 0.7um process technology 
with 0.5um channel length, the pipelining power overhead was about 20% of 
the total power. Without pipelining, the critical path would have been 4× as 
long and Vdd would have to be increased from 1.32V to 2.2V to achieve the 
same performance, increasing the total power by 2.2× [70]. 

Not all microarchitectural techniques for higher performance enable 
increased energy efficiency. Multiple instructions are executed in parallel 
execution units in a superscalar architecture, but the additional hardware to 
determine which instructions can be executed in parallel and reorder the 
instructions can reduce the energy efficiency [36]. Speculative execution 
before the outcome of a branch instruction is known wastes energy if the 
branch is mispredicted. Implementing speculative execution requires branch 
prediction logic and may require logic to rewind incorrect results. Software 
hints for branch prediction can reduce the hardware overhead [36].  

Very deep pipelines are less energy efficient, as the pipelining over-
heads are too large and there is an increased penalty for pipeline hazards. 
Consequently, Intel is moving from the Pentium 4 NetBurst architecture 
with 31 stages to the Intel Core architecture with two processor cores that 
run in parallel, each having a 14 stage pipeline [37]. The Cedar Mill Pentium 
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4 has about 4.4× the energy/operation of the Yonah Core Duo, despite Yonah 
having only 2% lower performance on the SPEC CINT2000 benchmark and 
both being 65nm designs [28]. 

3.1.1 Power and performance metrics 

A typical metric for performance is millions (MIPS) or billions of instruc-
tions per second (BIPS) on a benchmark. Commonly used performance bench-
marks are the Dhrystone integer benchmark [67], and the integer (SPECint) 
and floating point (SPECfp) benchmarks from the Standard Performance 
Evaluation Corporation [58]. Power is measured in watts (W). To account 
for both power and performance, metrics such as BIPS3/W, BIPS2/W, and 
BIPS/W are used [9][57]. The inverse of these metrics are also often 
used. For example, energy per instruction (EPI) corresponds to W/BIPS, and 
energy-delay product corresponds to W/BIPS2 if we assume that the CPI  
is fixed.  

Minimizing energy or power consumption leads to very large clock 
periods and low performance being optimal, as dynamic and leakage power 
can be greatly reduced by using the timing slack to reduce gate sizes, to 
reduce the supply voltage, and to increase the transistor threshold voltages. 
Thus metrics placing more emphasis on performance are often used, for 
example BIPS3/W and BIPS2/W. More pipeline stages are optimal for metrics 
with higher weights on performance. Alternatively, the power consumption 
may be minimized for a specified performance or delay constraint. Changing 
the microarchitecture may change the delay constraint on the clock period  
to meet the given performance constraint, for example computing inverse 
discrete cosine transform serially or in parallel.  

3.1.2 Parallel datapath model 

Bhavnagarwala et al. developed a model for using parallel datapaths to 
scale down the supply voltage Vdd [8]. To meet the same performance with n 
datapaths, the clock frequency can be reduced by a factor of 1/n, and the net 
switching activity and the dynamic power for the datapaths remain the same 
if the supply voltage is fixed. If voltages are fixed, the leakage power incre-
ases because there are n datapaths leaking rather than one. There is additional 
routing and multiplexing circuitry for the parallel datapaths, which adds to 
the dynamic and static power consumption. The expression for the total power 
that they derive is [8]  

 2
  

1 1
2

overhead overhead
total datapath dd static for datapath

datapath datapath

C CP C V F P n
C C

α
⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.1) 

where Cdatapath is the total datapath capacitance that switches with activity α, 
F is the number of operations per second, and Coverhead is the capacitance of 
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the additional routing and multiplexing circuitry. They estimate the overhead 
capacitance to depend quadratically on the number of parallel datapaths [8]: 
 2( )overhead datapathC mn C= + Γ  (3.2) 

where m and Γ are fitting constants. From this they estimate that the power 
savings with parallel datapaths range from 80% power savings with four 
parallel datapaths for technology with channel length of 0.25um to 15% 
power savings with two parallel datapaths for technology with channel 
length of 0.05um. The optimal number of parallel datapaths decreases with 
technology generation as supply and threshold voltage Vth are scaled down, 
and the ratio of Vdd/Vth decreases, increasing the performance penalty for 
lower Vdd [8]. 

The overhead for parallel datapaths is very application dependent, with 
m in Equation (3.2) having a value from 0.1 to 0.7 depending on the 
application [8]. Thus the usefulness of parallelism depends greatly on the 
application. Generally, ASIC and custom designs can make similar use of 
parallel datapaths, but ASICs have larger wiring overheads with automatic 
place and route. ASICs suffer higher delay overheads than custom for 
pipelining – this has a much greater impact on the energy efficiency than 
ASIC overheads for parallel datapaths, so the remainder of this chapter 
focuses on the power gap between ASIC and custom with pipelining. 

3.1.3 Pipeline model 

Pipeline delay models suggest that deeply pipelined designs with logic 
depth of as low as 8 FO4 delays per stage are optimal for performance [38]. 
For integer and floating point SPEC 2000 benchmarks, Srinivasan et al. 
found that the optimal pipeline stage delay was 10 FO4 delays to maximize 
BIPS, 18 FO4 delays for the BIPS3/W metric, and 23 FO4 delays for 
BIPS2/W [57]. They assumed an unpipelined combinational logic delay of 
110 FO4 delays and 3 FO4 timing delay overhead.  

Harstein and Puzak did similar analysis following the work of Srinivasan 
et al. They assumed an unpipelined combinational logic delay of 140 FO4 
delays and 2.5 FO4 timing delay overhead [32]. The optimal pipeline stage 
delay was 22.5 FO4 delays for the BIPS3/W metric, which is close to the 
result from Srinivasan et al. given the difference in unpipelined delays. In 
their models, the pipeline stage delay T is given by [32] 

  
 

comb total
timing overhead

tT t
n

= +  (3.3) 

where tcomb total is the unpipelined delay, n is the number of pipeline stages, 
and ttiming overhead is the timing overhead for the registers and clocking. Their 
performance metric, average time per instruction, can be written for a scalar 
architecture as [32] 
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 / instruction (1 )T T nγ= +  (3.4) 

where γ is the increase in cycles per instruction (CPI) per pipeline stage due 
to pipeline hazards, and it is assumed that on average an instruction would 
complete execution every cycle in the absence of hazards. To determine the 
power for the registers, they use the expression from Srinivasan et al. 
[32][57], 

  
1

timing clock gating dynamic leakage LP E P N n
T

ηα⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.5) 

where αclock gating is the fraction of time the pipeline is not clock gated; Edynamic 
and Pleakage are respectively the dynamic switching energy and the leakage 
power for a latch; NL is the number of latches if there is only a single 
pipeline stage; n is the number of pipeline stages; and η is the latch growth 
factor with the number of pipeline stages.  

We augment Harstein and Puzak’s model by allowing timing slack to be 
used for voltage scaling and gate sizing to reduce the dynamic power and 
leakage power for the combinational logic and the registers. In addition, we 
assume different ASIC and custom values for ttiming overhead and include 
pipeline imbalance in the pipeline stage delay for ASICs. 

Harstein and Puzak assume that αclock gating is 1/(1+γn) [32], with dynamic 
power consumption for pipeline hazards avoided by shutting off the clock to 
stalled pipeline stages. This is a reasonable assumption if there is no 
speculative execution. We will make the same assumption for the value of 
αclock gating. We do not consider power gating or reverse body biasing to 
reduce the leakage during a pipeline stall. For these leakage reduction 
techniques, the delay and power overhead to raise and lower the voltage are 
only justified when the circuitry will be unused for at least tens of clock 
cycles [14]. 

With an unpipelined combinational logic delay of 180 FO4 delays and 3 
FO4 timing delay overhead for custom, we find that a clock period of 8 FO4 
delays is optimal to maximize performance, 21 FO4 delays to maximize 
BIPS3/W, and 59 FO4 delays to maximize BIPS2/W. When power is 
included in the metric, the optimal clock period is significantly larger than 
that determined by Srinivasan et al., because we allow timing slack to be 
used to reduce power by voltage scaling and gate sizing. The optimal clock 
period for a typical ASIC is 2× to 4× larger than custom due to the 20 FO4 
delay pipeline stage overhead. 

The largest power gap between ASIC and custom is when it is difficult 
for the ASIC to meet the performance constraint. At the maximum 
performance for a typical ASIC of 56 FO4 delays on average per instruction, 
the ASIC power is 5.1× that of custom. As the performance constraint is 
relaxed, the power gap decreases to 4.0× at only 7% lower performance. For 
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very low performance requirements, the energy efficiency of ASIC and custom 
microarchitectures is essentially the same.  

The delay overhead is the most important factor for the power gap bet-
ween ASIC and custom with pipelining. If the pipeline stage delay overhead 
can be reduced from 20 FO4 delays to 5 FO4 delays, the power gap between 
ASIC and custom is only up to 1.9×. 

In Section 3.2, we discuss the overheads for pipelining in ASIC and 
custom designs. Using our geometric programming optimization results for 
dynamic power and leakage power with voltage scaling and gate sizing [11], 
we augment Harstein and Puzak’s model with power reduction versus timing 
slack in Section 3.3. Then in Section 3.4, this augmented model of pipeline 
power and delay is used to estimate the power gap between ASIC and 
custom due to pipelining focusing on the impact of the required performance 
and the pipeline stage delay overhead. The effect of other factors in the 
pipeline model on the power gap is considered in Section 3.5. Glitching and 
additional power overheads affect the minimum energy per operation as 
discussed in Section 3.6. The results are summarized in Section 3.7. 

3.2 PIPELINING OVERHEADS 

There are several pipelining overheads that we need to consider when 
comparing pipelining for ASIC and custom designs. There is timing over-
head for the registers that store the combinational logic outputs of each 
stage, and the power consumption for the registers and clock signal. The 
delay of combinational logic in different pipeline stages may be imbalanced. 
The penalty for pipeline hazards that delay the next instruction being executed 
increases with the number of pipeline stages. These overheads are typically 
less for carefully designed custom circuits compared to ASICs.  

Pipeline hazards include data dependency, branch misprediction, cache 
misses, and so forth. For example, the Willamette Pentium 4 with 20 pipeline 
stages has 10% to 20% less instructions per cycle than the Pentium III which 
has only 10 pipeline stages [40]. 

Adding the timing overhead and pipeline imbalance, the pipelining delay 
overhead is typically about 30% of the clock period for ASICs and 20% of 
the clock period for custom designs [13]; however, custom designs usually 
have a much smaller clock period than ASICs. The pipelining delay over-
head may be 30% for a custom design with many pipeline stages such as the 
Pentium 4. When we compared the microarchitectural impact on ASIC and 
custom speeds, we estimated the pipelining delay overhead in FO4 delays 
for a variety of custom and ASIC processors as shown in Table 3.1 and 
Table 3.2 [13]. The pipelining delay overhead ranges from as low as about  
2 FO4 delays in some custom designs to 20 FO4 delays in the ASIC pro-
cessors.  
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Table 3.1 Characteristics of ASICs and super-pipelined Pentium 4 processors assuming 30% 
pipelining delay overhead [2][3][4][5][23][45][49][52][59][61][62][63][64][65][71].  
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Pentium 4 (Willamette) 2000 180 100 1.75 20 10.0 3.0 143 2.1% ×14.3
Pentium 4 (Gallatin) 3466 130 60 1.60 31 9.6 2.9 212 1.4% ×22.0

ASICs
Xtensa T1020 (Base) 250 180 130 1.80 5 61.5 18.5 234 7.9% ×3.8
Lexra LX4380 266 180 130 1.80 7 57.8 17.4 301 5.8% ×5.2
iCORE 520 180 150 1.80 8 25.6 7.7 151 5.1% ×5.9
ARM 926EJ-S 200 180 130 1.80 5 64.1 19.2 244 7.9% ×5.9
ARM 1026EJ-S 540 90 50 1.00 6 61.7 18.5 278 6.7% ×4.5
ARM 1136J-S 400 130 80 1.20 8 52.1 15.6 307 5.1% ×5.9
ARM Cortex-A8 800 65 40 1.20 13 62.5 18.8 588 3.2% ×9.4  

Table 3.2 Custom design characteristics assuming 20% timing overhead [19][23][24][27] 
[29][30][31][35][39][41][48][49][51][55][60][66].  
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Alpha 21264 600 350 250 2.20 7 13.3 2.7 77 3.4% ×5.8
IBM Power PC 1000 250 150 1.80 4 13.3 2.7 45 5.9% ×3.4

Custom PCs
Athlon XP (Palomino) 1733 180 100 1.75 10 11.5 2.3 95 2.4% ×8.2
Athlon 64 (Clawhammer) 2600 130 80 1.50 12 9.6 1.9 94 2.0% ×9.8
Pentium III (Coppermine) 1130 180 100 1.75 10 17.7 3.5 145 2.4% ×8.2
Core 2 Extreme (Conroe) 2930 65 35 1.34 14 19.5 3.9 222 1.8% ×11.4

Custom ARMs
StrongARM 215 350 250 2.00 5 37.2 7.4 156 4.8% ×4.2
XScale 800 180 135 1.80 7 18.5 3.7 107 3.4% ×5.8
Halla (ARM 1020E) 1200 130 80 1.10 6 20.8 4.2 104 4.0% ×5.0  
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The total delay for the logic without pipelining was calculated from the 
number of pipeline stages, estimated pipelining overhead, and the FO4 delay 
for the process and operating conditions. For Table 3.1 and Table 3.2, the 
FO4 delay was calculated assuming worst case operating conditions and 
typical process conditions using Equation (2.2), except for the ARM cores in 
Table 3.1 where the process conditions were worst case and Equation (2.3) 
was used. The estimated FO4 delay for the custom processes may be more 
than the real FO4 delay in fabricated silicon for these chips, because of 
speed-binning, unreported process improvements, and better than worse 
case operating conditions. As a result, the custom FO4 delays/stage may be 
underestimated in Table 3.1 and Table 3.2. 

The following subsections estimate timing overhead; pipeline imbalance; 
instructions per cycle with number of pipeline stages for ASIC and custom 
designs; and discuss the power overhead for pipelining. We will look at a 
pipeline model incorporating these factors in Section 3.3. 

3.2.1 Timing overhead per pipeline stage for ASIC  
and custom designs 

The timing overhead specifies the delay for registers and synchronization 
of the clock signal to the registers. It includes the setup time during which 
the input to the register must be stable before the clock signal arrives; the 
delay for a signal to propagate from a register’s input to output; clock skew 
accounting for the clock signal arriving at different registers at different 
times; and clock jitter in the arrival time of the periodic clock signal. 

The timing overhead for an ASIC may be as much as 10 FO4 delays, but 
can be reduced to 5 FO4 delays if latches are used instead of D-type flip-
flops. We have used Design Compiler scripts to automate replacement of 
flip-flops by latches, achieving 5% to 20% speed increase in the Xtensa 
processor [12]. In comparison, the custom timing overhead can be as low as 
2.6 FO4 delays as detailed in Table 3.3. 

3.2.2 Pipeline imbalance in ASIC and custom designs 

The pipeline imbalance for an ASIC with flip-flops can range from  
10 FO4 delays down to 2.6 FO4 delays in a carefully balanced design. 
Unbalanced critical path delays in different pipeline stages can be addressed 
in several ways. ASICs may use automatic retiming of the register positions 
to balance critical path delays in different stages. Slack passing by using 
transparent latches or by useful clock skew is commonly used in custom 
designs. Useful clock skew tailors the arrival time of the clock signal to 
different registers by adjusting buffers in the clock tree, and can be used in 
ASIC designs [17]. Pipeline imbalance with different design techniques is 
summarized in Table 3.4. 
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From our experiments replacing flip-flops by latches in the 5-stage 
Tensilica Xtensa processor [12], we estimate that a typical ASIC may have 
imbalance of 15% of the clock period. The base configuration of the Xtensa 
has a maximum stage delay (clock period) of about 67 FO4 delays, of which 
15% is 10 FO4 delays. 

The imbalance between pipeline stages for a well balanced ASIC can be 
as low as 10% of the clock period. For example, the 8-stage iCORE has 
about 10% imbalance in the critical sequential loop through IF1, IF2, ID1, 
ID2, and OF1 back to IF1 through the branch target repair loop [52]. The 
iCORE has about 26 FO4 delays per pipeline stage, thus the imbalance is 
about 2.6 FO4 delays. 

Table 3.3 Comparison of ASIC and custom timing overheads, assuming balanced pipeline 
stages [13]. Alpha 21164 [7], Alpha 21264 [29] and Pentium 4 [42] setup times were 
estimated from known setup times for latches and pulse-triggered flip-flops. The pulse-
triggered latches in the Pentium 4 are effectively used as flip-flops rather than as transparent 
latches. Timing overhead for flip-flops was calculated from tCQ + tsu + tsk + tj. As there are two 
latches, positive and negative-edge triggered, per clock cycle, the timing overhead for latches 
was calculated from 2tDQ + tj multicycle, where multi-cycle jitter tj multi-cycle of 1.0 FO4 delays was 
assumed for ASICs. 
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Clock-to-Q delay t CQ 4.0 2.0 2.0
2× D-to-Q latch propagation delay (2×t DQ ) 4.0 2.6
Flip-flop setup time t su 2.0 0.0 0.0
Edge jitter t j 0.1 0.7
Clock skew t sk 0.7 0.3
Budget for clock skew and edge jitter t sk + t j 4.0 1.0
Timing overhead per clock cycle 10.0 5.0 2.6 2.8 3.0

ASICs Custom

 

Table 3.4 Summary of pipeline imbalance for ASIC and custom designs 

 

Pipeline Imbalance (FO4 delays)
Typical ASIC with flip-flops 10.0
Carefully balanced ASIC with flip-flops 2.6
Optimal design with flip-flops, no slack passing 1.0
Slack passing via latches or cycle stealing 0.0  
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Automated flip-flop retiming won’t typically achieve a pipeline imbalance 
of a single gate delay. Retiming is based on assumptions such as fixed 
register delay, fixed register setup time, and fixed gate delays. In reality, this 
depends on the drive strength and type of flip-flop chosen, and the gate loads 
which are changed by retiming. Additionally, the combinational gates and 
registers will usually be resized after retiming. Reducing the clock period by 
retiming may be limited by input or output delay constraints, such as reading 
from and writing to the cache [33]. These issues limit the optimality of auto-
mated retiming.  

Slack passing is not limited by the delay of a particular stage. Custom 
designers also have tighter control of gate delays, register positions, and 
better knowledge of wire loads that depend on layout – which is not known 
for retiming in the synthesis stage of an ASIC EDA methodology. Thus 
custom designs may be able to balance stages, whereas ASICs typically suffer 
some pipeline imbalance.  

With useful clock skew or transparent latches, slack passing between 
stages can eliminate pipeline imbalance. From the iCORE and Xtensa exam-
ples, a 10% to 15% reduction in clock period can be achieved by slack 
passing for ASICs with imbalanced pipeline stages.  

Table 3.5 Cycles per instruction (CPI) for various processors [16][18][34][43][52][54][72]. 
Processor # of Pipeline Stages IPC CPI Increase in CPI/stage, γ

ARM7TDMI 3 0.53 1.90 30.0%
ARM9TDMI 5 0.67 1.50 10.0%
ARM810 5 0.71 1.40 8.0%
DEC StrongARM 5 0.61 1.63 12.7%
Intel XScale 7 0.56 1.78 11.2%
STMicroelectronics iCORE 8 0.70 1.43 5.4%
Pentium 4 (Willamette) 20 3.0%
Pentium 4 (Cedar Mill) 31 0.54 1.84 2.7%

not known

 

3.2.3 Instructions per cycle versus number of pipeline 
stages  

Instructions per cycle (IPC) and its reciprocal cycles per instruction (CPI) 
are measures of how quickly instructions are executed after accounting for 
pipeline stalls due to hazards. Reductions in IPC can be caused by cache 
misses, waiting for data from another instruction that is executing, branch 
misprediction, and so forth. The CPI for a number of processors is summarized 
in Table 3.5. 

The CPI is very application dependent, as some applications have more 
branches and other hazards. For the Cedar Mill Pentium 4 with 31 pipeline 
stages, the CPI ranges from 0.64 to 7.87 for different benchmarks in the SPEC 
CINT2000 benchmark set. The geometric mean for Cedar Mill for the SPEC 
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CINT2000 benchmark set was 1.84 [18]. The 1.5GHz Willamette Pentium 4 
with 20 pipeline stages is 15% to 20% faster for integer applications than a 
1.0GHz Pentium III with 10 pipeline stages [34], which corresponds to a 
20% to 23% worse IPC. 

For a variety of benchmarks, the IPC for the five stage DEC StrongARM 
ranges from 0.30 to 0.83 [72], and the IPC ranges from 0.38 to 0.82 for the 
seven stage Intel XScale [16]. The geometric means of the IPC values were 
0.61 and 0.56 respectively.  

The IPC for the three stage ARM7TDMI was 0.5, whereas the 
ARM9TDMI with five pipeline stages had an IPC of 0.7 [54]. The higher 
IPC for the five stage ARM810 and ARM9 pipelines was achieved by 
adding static branch prediction, single cycle load, single cycle store, and 
doubling the memory bandwidth [43]. The eight stage STMicroelectronics 
iCORE also achieved an IPC of 0.7 by microarchitectural optimizations in 
an ASIC EDA methodology [52]. The ARM810 used standard cells for the 
control logic, but was otherwise full custom [43]. The ARM7TDMI and 
ARM9TDMI were full custom, but synthesizable versions of these proces-
sors were also created [21]. 

Without additional microarchitectural features such as data forwarding 
and improved branch prediction to maintain high IPC, the CPI increases 
approximately linearly with the number of pipeline stages as more pipeline 
stages are stalled when a hazard is encountered [32]. Assuming that an 
unpipelined design has an IPC of close to 1.0, which is somewhat optimistic 
as there may be cache misses and off-chip memory will take more than  
a cycle to read, the CPI increase per pipeline stage ranges from 30.0% to 
2.7%.  

3.2.4 Power overheads for pipelining 

The majority of the power overhead for pipelining is power consumption 
in the clock tree and registers. The registers and clock tree can consume 
from 18% to 36% of the total power, as shown in Table 3.6. Clock gating 
was used in these processors to reduce the power consumed by the registers 
and clock tree. 

Branch prediction, data forwarding and other microarchitectural tech-
niques to maintain a high IPC with deeper pipelines also take some power. 
We assume that these additional power overheads are small relative to the 
clock tree and register power, and do not explicitly include them in the 
pipeline power model in the same manner as [32] and [57]. 

The percentage of power consumed by registers and the clock tree 
depends on the application. For example, the clock tree accounts for 18% of 
the XScale for the DSP FIR benchmark, but it is 23% for the Dhrystone 
MIPS 2.1 benchmark [15].  
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Table 3.6 Register and clock tree power consumption in various processors. The StrongARM 
[47] and XScale [15] are custom embedded processors. The Alpha 21264 [26] and Itanium [1] 
are custom desk top processors. The MCORE [25] is a semi-custom processor, and the 16-bit 
CompactRISC ASIC [46] was synthesized. 

 

Registers and Clock Tree
Processor # of Pipeline Stages Power as % of Total Power

16-bit CompactRISC 3 34%
MCORE 4 36%
StrongARM 5 25%
XScale (DSP FIR filter) 7 18%
XScale (Dhrystone MIPS) 7 23%
Alpha 21264 7 32%
Itanium 8 33%  

In Motorola’s 0.36um 1.8V MCORE embedded processor with a four 
stage pipeline, the datapath and clock tree each contribute 36% of the total 
power, and control logic contributes the other 28% of the total power. If the 
custom datapath was instead synthesized, the datapath’s power would have 
been 40% higher [25].  

Few breakdowns of power data for synthesized processors are available. 
We expect register and clock tree power to consume a similar portion of 
the total power in ASICs. In a synthesized 0.18um 1.8V National Semi-
conductor 16-bit CompactRISC processor with a three stage pipeline, the 
register file consumed 34% of the processor core’s total dynamic power [46].  

We now examine a model that incorporates these pipelining overheads. 

3.3 PIPELINING POWER AND DELAY MODEL 

To build the pipeline power and delay model, we first calculate the 
minimum pipeline stage delay Tmin. Given some upper limit on the clock 
period, the actual clock period T can be anywhere between the upper limit 
and the minimum. We will discuss a simple experimental fit to determine the 
reduced power from voltage scaling and gate downsizing with timing slack 
(T – Tmin). We can then find the optimal number of pipeline stages and 
optimal amount of timing slack to use for power reduction in order to mini-
mize the power. 

3.3.1 Pipeline stage delay 

The number of pipeline stages n in a processor varies widely. For 
example the ARM7 architecture has a three stage pipeline comprising inst-
ruction fetch, instruction decode, and execute [22]; whereas the Cedar Mill 
Pentium 4 has 31 stages [37]. The total unpipelined delay tcomb total can range 
from about 50 to 300 FO4 delays, as was estimated earlier in Table 3.1 and 
Table 3.2.  
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If a pipeline with n stages is ideally balanced, the combinational delay 
per pipeline stage is 

  comb total
comb

tt
n

=  (3.6) 

The maximum delay of a pipeline stage, which limits the minimum clock 
period Tmin, is 

  
min  

comb total
imbalance timing overhead

tT t t
n

= + +  (3.7) 

where timbalance accounts for the pipeline stages being unbalanced, and ttiming 

overhead is the timing overhead. 
The clock period T that is used must be at least Tmin, but may be larger to 

provide slack for power reduction by voltage scaling and gate downsizing.  

3.3.2 Utilizing slack for voltage scaling and downsizing  
to reduce power 

We can reduce the dynamic energy per clock cycle and reduce the 
leakage power by reducing the supply voltage Vdd, increasing the threshold 
voltage Vth, and reducing the gate size. The impact of gate size, supply 
voltage and threshold voltage on the leakage power and dynamic power is 
detailed in Chapter 4. In this section, we are just interested in how the leakage 
power and dynamic power decrease as timing slack is used to downsize 
gates and scale the voltages.  

Increasing a gate’s size reduces the delay, but increases the load on 
fanins, requiring them to also be upsized. Consequently, at a tight delay 
constraint there is substantially higher power consumption with many gates 
having been upsized. To meet a tight delay constraint, the supply voltage 
will also be higher and the threshold voltage may be lower to reduce the 
critical path delay. The rapidly increasing power consumption as T appro-
aches the minimum delay Tmin results in the classic “banana” curve shape 
shown for dynamic power and leakage power in Figure 3.3. From a tight 
delay constraint, a small amount of timing slack can be used to significantly 
reduce the energy consumed per clock cycle. 

The power versus delay curves with gate sizing and voltage scaling for 
the dynamic power and leakage power versus clock period are fit well by 
hyperbolic functions of the form  

 

min

d

ba
T c

T

+
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (3.8) 

where a, b, c and d are experimentally fitted constants. We require that a ≥ 
0, so that the power does not become negative as T becomes large.  
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As the leakage depends exponentially on the threshold voltage, and the 
threshold voltage can be increased with increasing clock period, the 
accuracy of the fit to leakage power can be improved by including an 
exponential term: 

 
/ min

min

T T

d

bea
T c

T

λ

+
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (3.9) 

where exponent λ is also an experimentally fitted constant. 
Accurate fits for the dynamic and leakage power for a benchmark in 

0.13um technology are shown in Figure 3.3. The relative root mean square 
error is 0.5% for the dynamic power fit and 3.1% for the leakage power fit, 
where the relative root mean square (RMS) error is given by 
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Figure 3.3 Curve fits for the dynamic and leakage power for ISCAS’85 benchmark c880. The 
total power was minimized by choosing optimal gate sizes, single supply voltage, single 
NMOS threshold voltage and single PMOS threshold voltage by geometric program 
optimization [11]. The allowed range for the supply voltage was 1.3V to 0.6V. The allowed 
ranges for the threshold voltages were ±0.13V from the nominal threshold voltage. 
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The leakage power contributes from 5.9% to 11.8% of the total power. 
The maximum error in the total power is 0.7%. The fits are 

 2.704
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0.758( ) 0.0422

0.352
dynamicP T

T
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⎛ ⎞
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 (3.11) 
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 (3.12) 

where fitting coefficients have been shown to three significant figures, and 
Tmin for c880 was 1.69ns.  

With pipelining allowing higher clock frequency, the switching activity 
and hence dynamic power increases proportionally to the clock frequency, 
that is as 1/T. The dynamic power fit implicitly includes the dependence of 
switching activity on T.  

Glitching caused by spurious transitions from signals propagating through 
the logic at different speeds also affects the switching activity. Glitching 
depends approximately linearly on the logic depth [57], so pipelining reduces 
glitching by reducing the logic depth. Glitching only has a small impact on 
the power gap between ASIC and custom, so we do not consider it at this 
stage. Section 3.6.1 discusses the impact of glitching. 

We must also account for the power consumption of the registers and 
clock tree, as the number of registers varies with the pipeline depth. 

3.3.3 Power consumption of the registers and clock tree 

Deeper pipelines typically require more registers per pipeline stage, be-
cause balancing the stage delays may require the additional registers to be 
placed at cut points where there are more edges. To take into account the 
register and the clock tree power, Harstein and Puzak [32] use a power 
model from Srinivasan et al. [57], which has the form 

  
1

timing clock gating dynamic leakageP E P n
T

ηα β⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.13) 

where αclock gating is the fraction of time the pipeline is not clock gated; βnη is 
the additional fraction of power due to the registers and the clock tree; and η 
is a scaling factor – the “latch growth factor”. η takes into account how 
many additional registers are required as the pipeline depth increases. If η = 
1, the number of registers for per pipeline stage does not vary with the depth.  

Srinivasan et al. show that the latch growth factor η is about 1.7 for a 
floating point unit, and 1.9 for a Booth recoder and Wallace tree multiplier. 
Throughout most of their analysis they assume a value for η of 1.1 [57].  
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Harstein and Puzak also assume an η value of 1.1 [32]. For a fixed circuit 
with neither gate sizing nor voltage scaling, as the dynamic power consum-
ption is proportional to the switching activity and hence the clock frequency, 
the dynamic energy per clock cycle is independent of the clock frequency. 
Thus, they assume that the register and clock tree power is the only signi-
ficant change in the total power with the number of pipeline stages n, as the 
dynamic energy for the combinational logic is fixed.  

Voltage scaling and gate sizing can be used to reduce the power for the 
registers and clock tree, and we assume that their power scales in the same 
manner versus timing slack as the combinational logic. Including the combi-
national logic’s power consumption in Equation (3.13) gives 

  
1 (1 )total clock gating dynamic leakageP E P n
T

ηα β⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (3.14) 

Allowing timing slack (T – Tmin) for gate sizing and voltage scaling to 
help reduce the power, using the dynamic and leakage power models from 
Section 3.3.2 normalized to their value at Tmin, 

 ( )
 

min

min

min

( )
(1 )

( )1 (1 )
( )

( )

dynamic
clock gating leakage

dynamic
total

leakage
leakage

leakage

P T
k

P T
P T n

P TT
k

P T

η

α

β

⎛ ⎞
−⎜ ⎟

⎜ ⎟= +⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (3.15) 

where kleakage is the fraction of total power due to leakage at Tmin. Our 
dynamic and leakage power models account for the decrease in switching 
activity for T >Tmin, but we still require the 1/Tmin factor to account for 
switching activity varying with Tmin. The 1/Tmin factor also affects leakage, 
because the fraction of total power due to leakage at Tmin is determined 
versus the dynamic power without clock gating (αclock gating = 1). 

As in the earlier models, we will assume that a value for η of 1.1 is a 
reasonable estimate for the integer pipeline of a processor. Assuming a given 
value for η, we can calculate the value of β in Equation (3.15) from the 
number of pipeline stages and the percentage of register and clock tree 
power in a processor. From the register and clock tree power data for 
different processors in Table 3.6 and assuming η of 1.1, β ranges from 0.026 
to 0.15. We use a value for β of 0.05, which is typical for most of the 
processors of five to eight pipeline stages. 

We use Harstein and Puzak’s model for the clock gating factor [32],  
  ( ) 1/(1 )clock gating n nα γ= +  (3.16) 

where clock gating enables avoiding dynamic power consumption due to 
pipeline hazards by shutting off the clock to stalled pipeline stages. This is a 
reasonable assumption if there is no speculative execution. 
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We now look at using these models to choose the optimal number of 
pipeline stages and allocation of slack for voltage scaling and gate sizing. 

3.3.4 The pipeline power and delay model for optimization 

We now have the pipeline stage delay and can calculate the power redu-
ction from the timing slack used for voltage scaling and gate sizing. The 
number of clock cycles per instruction must be accounted for. Assuming one 
instruction would be executed per cycle if there were no hazards, and that 
the penalty for pipeline hazards increases linearly with the number of stages 
as discussed in Section 3.2.3, the average time per instruction is [32] 
 / instruction (1 )T T nγ= +  (3.17) 

where γ is the increase in CPI per pipeline stage due to hazards.  
Typical metrics that we wish to optimize include maximizing the perfor-

mance, minimizing the energy per operation, and minimizing the power for a 
given performance constraint. The numerical solution of these optimization 
problems will usually give a non-integer value for the number of pipeline 
stages n, though in a real circuit n must be integral. 

3.3.4.1 Maximum performance: minimum T/instruction 

The maximum performance is found by minimizing the average time per 
instruction in Equation (3.17), where T is given by Equation (3.7). Setting 
the derivative with respect to n to zero, the solution is 
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3.3.4.2 Maximum BIPSm/W: minimum Ptotal(T/instruction)m 

Minimizing the energy per operation is equivalent to maximizing BIPS/W 
(instructions per second per unit of power). The minimum energy per operation 
is found when there is substantial timing slack to reduce the dynamic and 
leakage power, and the pipelining power overheads are minimized. Conse-
quently, a single pipeline stage is optimal to minimize the energy per opera-
tion, as this minimizes the power overhead for registers. More than one 
pipeline stage is optimal to minimize energy per operation when glitching 
and additional power overheads are accounted for – see Section 3.6 for 
further discussion.  
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The solution for minimum energy per operation is not particularly inte-
resting from a circuit design viewpoint as most applications require higher 
performance than where the minimum energy per operation occurs. Thus 
the performance is usually more heavily weighted in the objective. The 
more general optimization problem is to maximize BIPSm/W by finding the 
optimal number of pipeline stages n and optimal clock period T in 
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where the dynamic and leakage power are fitted as in equations (3.11) and 
(3.12). m is typically 0, 1, 2, or 3. m of 0 minimizes power, regardless of 
performance. m=1 minimizes the energy per operation. The energy-delay 
product is given by m=2. Values for m of 2 or more emphasize minimizing 
delay over minimizing power. The optimization problem in Equation (3.19) 
can be solved easily with the Newton-Raphson gradient descent algorithm.  

3.3.4.3 Minimum power Ptotal at performance Trequired per instruction 

Many applications require a specific performance. To find the minimum 
power for a given required performance, or average time per instruction 
Trequired per instruction, we solve for n and T in 
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Table 3.7 This table lists parameters and variables used for pipeline modeling. The default 
values assumed for the parameters are listed. The excellent ASIC corresponds to an ASIC 
using latches, or faster pulsed flip-flops where needed and useful clock skew, to reduce the 
register delay and impact of clock skew, and to address imbalance in pipeline stage delays. 

Parameter for Design Typical Excellent
Style Overhead Represents ASIC ASIC Custom

t imbalance  (FO4 delays) unbalanced pipeline stage delay overhead 10 0 0
t timing overhead  (FO4 delays) timing overhead per pipeline stage 10 5 3

Parameter Represents Value
k leakage fraction of total power from leakage at T min 0.1

m
exponent for delay per instruction in the 
objective varies

T required per instruction  (FO4 delays) required delay per instruction varies
t comb total  (FO4 delays) total unpipelined combinational delay 180

β
coefficient for power due to registers and 
the clock tree 0.05

γ
increase in clock cycles per instruction 
(CPI) with pipeline stages due to hazards 0.05

η latch growth factor for increase in number 
of registers with pipeline depth 1.1

Optimization Variable Represents
n number of pipeline stages
T  (FO4 delays) clock period

Dependent Variable Represents
P dynamic dynamic power
P leakage leakage power
P timing power consumption of registers and clock
P total total power consumption
t comb  (FO4 delays) combinational delay per pipeline stage
T min (FO4 delays) minimum clock period
αclock gating fraction of time pipeline is not clock gated

Value for

 

We now use the solutions of Equation (3.20) to compare the minimum 
power for ASIC and custom designs for a given performance constraint. 

3.4 ASIC VERSUS CUSTOM PIPELINING 

We will now estimate the gap between ASIC and custom designs due to 
microarchitecture using the model in Section 3.3 with default values for 
parameters listed in Table 3.7, which correspond to an integer pipeline in a 
high performance ASIC processor and the custom equivalent. For other 
applications, different parameter values should be considered – the impact of 
varying the parameters is discussed later in Section 3.5. 
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Pipeline stage delay overhead has the greatest impact on the results, so 
we initially focus on the differences due to this. The total pipelining delay 
overhead for a typical ASIC is 20 FO4 delays due to slow D-type flip-flops 
and imbalanced pipeline stages, compared to 3 FO4 delays for custom. If an 
ASIC design uses latches, or faster pulsed flip-flops where needed and 
useful clock skew, then the pipelining delay overhead may be as low as 5 
FO4 delays. 

We wish to determine the impact of microarchitecture in the absence of 
other factors such as slower logic style, so we assume an unpipelined 
combinational delay of 180 FO4 delays which is reasonable for the custom 
processors in Table 3.2, though less than we estimated for the ASICs in 
Table 3.1. To reduce the clock period to 40 FO4 delays, at least nine pipeline 
stages must be used for our typical ASIC that has a pipeline stage delay 
overhead of 20 FO4 delays; whereas a custom design with a pipeline stage 
delay overhead of 3 FO4 delays needs only five pipeline stages. As a large 
portion of the ASIC’s clock period is devoted to the pipelining delay 
overhead, reducing the delay overhead is very important to improve ASIC 
performance. 

As was assumed by Srinivasan et al. [57] and Harstein and Puzak [32], 
we assume a value of 1.1 for the latch growth factor η for an integer 
pipeline. From this and the clock tree and register power in Table 3.6, we 
estimate the coefficient β for the clock and register power to be 0.05, which 
is typical for most of the processors of five to eight pipeline stages [11]. 

We assume that ASIC and custom designers can take the same advantage 
of data forwarding, branch prediction and other techniques to reduce the CPI 
penalty for deeper pipelines. A CPI penalty per stage of 0.05/stage for both 
ASIC and custom is assumed.  

The power-delay curve fits from geometric programming optimization of 
ISCAS’85 benchmark c880 will be used to estimate the power savings that 
can be achieved by voltage scaling and gate sizing. The dynamic power and 
leakage power are normalized as in Equation (3.15), and the minimum delay 
is set to the minimum stage delay from pipelining in Equation (3.7). When 
Vdd and Vth are chosen to minimize the total power consumption, leakage 
may be 8% to 21% of the total power consumption as discussed in Section 
4.6.1. We assume that leakage is 10% of the total power at the minimum 
delay, as may be typical for high performance circuits in 0.13um. 

We will first examine the maximum performance that can be achieved 
by ASICs and custom, and then look at metrics that include power consum-
ption as well as performance. Then we will compare the power gap between 
ASIC and custom at maximum performance and relaxed performance 
constraints. The results for different metrics are summarized in Table 3.8. 
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Table 3.8 This table compares the minimum of various metrics for ASIC and custom. Below 
the normalized comparison versus custom are listed the optimal number of pipeline stages n, 
clock period T, delay per instruction T/instruction, et al. to optimize each metric. Note that the 
numerical solution below for the optimization problem has a non-integer value for the number 
of pipeline stages n, though in a real circuit n must be integral. 

T /instruction P (T /instruction)3 P (T /instruction)2 Energy/operation
Typical ASIC 2.5 3.5 1.7 1.0
Excellent ASIC 1.2 1.3 1.1 1.0

Normalized versus custom

 

Minimum T /instruction (maximizing BIPS)

n T min
T  (FO4 
delays)

T /instruction 
(FO4 delays)

Power 
P

Energy / 
Operation

Typical ASIC 13.3 33.5 33.5 55.8 0.0356 1.987
Excellent ASIC 26.5 11.8 11.8 27.4 0.1174 3.220
Custom 34.2 8.3 8.3 22.4 0.1795 4.020

Minimum P (T /instruction)3 (maximizing BIPS3/W)

n T min
T  (FO4 
delays)

T /instruction 
(FO4 delays)

Power 
P

Energy / 
Operation P (T /instruction)3

Typical ASIC 8.5 41.1 64.6 92.2 0.0054 0.497 4225
Excellent ASIC 14.2 17.7 27.3 46.7 0.0143 0.668 1457
Custom 16.6 13.9 21.3 38.9 0.0192 0.747 1129

Minimum P (T /instruction)2 (maximizing BIPS2/W)

n T min
T  (FO4 
delays)

T /instruction 
(FO4 delays)

Power 
P

Energy / 
Operation P (T /instruction)2

Typical ASIC 6.5 47.8 139.2 184.3 0.0010 0.175 32.3
Excellent ASIC 9.6 23.7 69.6 103.1 0.0020 0.204 21.0
Custom 10.6 20.0 58.6 89.6 0.0024 0.214 19.2

Minimum energy/operation P (T /instruction) (maximizing BIPS/W)

n T min
T  (FO4 
delays)

T /instruction 
(FO4 delays)

Power 
P

Energy / 
Operation

Typical ASIC 1.0 200.0 892.2 936.8 0.0001 0.105
Excellent ASIC 1.0 185.0 825.3 866.5 0.0001 0.105
Custom 1.0 183.0 816.4 857.2 0.0001 0.105  

3.4.1 Maximum performance (minimum delay/instruction) 

The minimum delay per instruction is 22.4 FO4s for custom, 27.4 FO4s 
for an excellent ASIC, and 55.8 FO4s for a typical ASIC (see Table 3.8). 
The corresponding clock period is 8.3 FO4s for custom, 11.8 FO4s for an 
excellent ASIC, and 33.5 FO4s for a typical ASIC. These model results are 
comparable to the custom 3.466GHz 0.13um Gallatin Pentium 4 with clock 
period of 9.6 FO4s and the high performance, synthesized 520MHz 0.18um 
iCORE with clock period of 25.6 FO4s (from Table 3.1).  
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The typical ASIC with 20 FO4 stage delay overhead is about 2.5× slower 
than custom with 3 FO4 stage delay overhead, whereas the excellent ASIC 
with only 5 FO4 stage delay overhead closes the performance gap to 1.2×. 
These results correspond fairly well with our earlier analysis which estimated 
a performance gap due to microarchitecture and timing overhead of 2.6× for 
a typical ASIC to 1.4× for an excellent ASIC [13]. 

Maximizing performance leads to deep pipelines being optimal, from 34.2 
pipeline stages for custom to 13.3 stages for a typical ASIC. For a real world 
comparison, Intel’s Prescott and Cedar Mill Pentium 4 custom processors have 
31 integer pipeline stages [37] from Intel’s pushing to the extreme higher 
performance and higher clock frequency to compete with AMD; while ARM’s 
Cortex-A8 synthesizable processor has thirteen pipeline stages [6]. 

3.4.2 Maximum BIPSm/W with voltage scaling and gate 
sizing 

The optimal clock period increases and the optimal number of pipeline 
stages decreases when power is included in the optimization objective. 
We can maximize metrics of the form BIPSm/W with Equation (3.19), 
minimizing P(T/instruction)m. Results are listed in Table 3.8, except for 
minimizing power for which an infinite clock period is optimal to avoid 
dynamic power. 

A single pipeline stage is optimal to avoid the pipelining power overhead 
for more registers when minimizing the power (m = 0) or energy per operation 
(m = 1). More than one pipeline stage is optimal to minimize energy per 
operation when glitching and additional power overheads are accounted 
for – see Section 3.6 for further discussion. 

The optimal clock period of 816 FO4 delays for custom to 892 FO4 
delays for ASIC to minimize the energy/operation corresponds to a clock 
frequency of 31MHz and 28MHz respectively in 0.13um technology with 
0.08um channel length. Some applications such as the discrete cosine trans-
form (DCT) and its inverse (IDCT) [20][69][70] can be performed at such 
low clock frequencies via parallel datapaths, achieving low energy per opera-
tion. The DCT and IDCT cores do have more than one pipeline stage – 
pipelining is used to implement the algorithm and allow clock gating of units 
that are not in use to reduce the dynamic power. 

Many applications require higher performance, so metrics placing a greater 
weight on delay are commonly used. Comparing the inverse of BIPS3/W, a 
typical ASIC has 3.5× the P(T/instruction)3 of custom, while an excellent 
ASIC is only 1.3× worse. The gap is larger for BIPS3/W as the performance 
gap is multiplied. For both ASIC and custom, the ratio of T/Tmin is about 1.5 
to maximize BIPS3/W providing a significant amount of slack for voltage 
scaling and gate downsizing. 
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The optimal number of pipeline stages to maximize BIPS3/W is roughly 
half the number of stages to maximize performance, as inclusion of power 
consumption in the objective substantially penalizes very deep pipelines for 
their additional registers. To maximize BIPS3/W for custom, the optimal 
number of pipeline stages from the model is 16.6 and the optimal clock 
period is 21.3 FO4 delays, which is comparable to Intel’s Conroe Core 2 
Extreme with 14 pipeline stages and a clock period of 19.5 FO4 delays. 
Conroe’s predecessor, the Yonah Core Duo, was specifically designed to be 
more energy efficient than the Pentium 4 models with 31 integer pipeline 
stages that maximized performance and have 4.4× more energy per operation 
[28]. To maximize BIPS3/W for a typical ASIC, the optimal clock period of 
64.6 FO4 delays from the model is very similar to the clock period of a 
number of the ASICs in Table 3.1, though the number of pipeline stages for 
these ASICs ranges from 5 to 13. 

We now look at the minimum power for a given performance constraint. 

3.4.3 Minimum power for a given performance constraint 

A fixed performance constraint can be used instead of weighting perfor-
mance in the objective. The minimum power consumption to satisfy the 
performance constraint can be determined by solving Equation (3.20).  

The power gap between a typical ASIC and custom ranges from 5.1× at 
the maximum performance for the typical ASIC down to 1.0× depending on 
the performance constraint, as shown in Figure 3.4. If the pipeline stage 
delay overhead is reduced from 20 FO4 delays to 5 FO4 delays, the power 
gap is at most 1.9× at the maximum performance for the excellent ASIC. 
The corresponding optimal number of pipeline stages is shown in Figure 3.5. 
The optimal clock period for both ASIC and custom is very similar and 
varies almost linearly with the performance constraint [11].  

When the required average time per instruction is large, a typical ASIC 
has more pipeline stages than custom to get similar timing slack for power 
reduction. As the required performance increases, fewer stages are optimal 
for an ASIC due to the larger pipeline stage delay overhead. As the maximum 
performance is approached, the number of pipeline stages increases rapidly 
and the timing slack for power reduction approaches zero with the ratio of 
T/Tmin approaching one (see Figure 3.6).  

At a more relaxed constraint of 80 FO4 delays per instruction, the power 
gap between a typical ASIC and custom is only 2.8×, and the excellent ASIC 
is only 1.1× worse. At this point, the optimal clock period for the typical 
ASIC of 55 FO4 delays corresponds to about 450MHz in 0.13um with 
channel length of 0.08um. Typical low power embedded processors in 
0.13um are slower than this, indicating that the power gap between ASIC 
and custom is not that large in their lower performance market niche. 
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Figure 3.4 Minimum power relative to custom for the parameters listed in Table 3.7. 

 
Figure 3.5 Optimal number of pipeline stages n to minimize power. 
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Figure 3.6 The ratio of the clock period to the minimum pipeline stage delay T/Tmin 
approaches one as the performance constraint becomes tight. Consequently, there is 
substantially less timing slack (T – Tmin) for power reduction by voltage scaling and gate 
sizing, and the dynamic power and the leakage power increase significantly.  

Figure 3.7 The minimum energy per operation at different performance constraints. 

The minimum energy per operation for custom at maximum performance 
is 39× larger than the minimum energy per operation of 0.105 (see Figure 
3.7). The energy/operation for the combinational logic is 12× larger, but the 
power for the registers and clock tree has grown from 5% of the total power 
with a single pipeline stage to 71% of the total power with 34.6 pipeline 
stages. The number of registers has increased by a factor of 34.61.1 = 49.3.  
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3.5 OTHER FACTORS AFFECTING  

THE POWER GAP 

Our discussion has focused on the impact of the required performance 
and the pipeline stage delay overhead on the power gap. The difference in 
pipeline delay overhead is the most significant cause of the power gap 
between ASIC and custom with pipelining. 

We have examined the significance of other model parameters: glitching 
in complementary CMOS logic; increased CPI penalty per pipeline stage; no 
clock gating to avoid dynamic power during pipeline stalls; higher leakage 
power; and increased clock tree and register power [11]. While these factors 
can have a significant impact on the power consumption, they increase the 
power gap between ASIC and custom by at most 20%, assuming the same 
parameter values for both. The two other factors that have a larger impact on 
the gap are how much savings can be achieved with voltage scaling and gate 
sizing, and use of high performance logic styles in custom designs. 

The power savings with voltage scaling and gate sizing depend on how 
steep the power-delay curve is, which depends on the range of allowable 
supply and threshold voltages in the process technology and the range of 
gate sizes in the library. The power gap due to pipelining is only 1.6× with 
no voltage scaling nor gate sizing. Allowing timing slack to be utilized for 
gate sizing can increase the power gap by 1.6× and voltage scaling can 
increase the power gap by 3.2× [11].  

Custom designers can take advantage of domino logic or other high per-
ormance logic styles to reduce the combinational logic delay. For example, 
dynamic domino logic used for the 1.0GHz IBM PowerPC was 50% to 
100% faster than static combinational logic with the same functionality [50]. 
For our model, this corresponds to reducing the unpipelined combinational 
logic delay from 180 to 120 FO4 delays. If the combinational logic delay is 
reduced to 120 FO4 delays for custom, the power gap is 7.9× between 
custom and a typical ASIC at maximum performance for the typical ASIC, 
and the power gap is 3.9× between custom and the excellent ASIC at maxi-
mum performance for the excellent ASIC. Thus the impact of logic style on 
the power gap is 1.6× for the typical ASIC and 2.0× for the excellent ASIC, 
but we have not accounted for the additional power that may be required 
for high performance logic styles. 

3.6 OTHER FACTORS AFFECTING THE MINIMUM 
ENERGY PER OPERATION 

We concluded in Section 3.4.2 that a single pipeline stage was optimal to 
minimize energy/operation, but this is no longer the case when glitching and 
other power overheads are included in the pipeline power model.  
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Other causes of power consumption include the memory; off-chip 
communication; video display and other peripheral devices. These other power 
overheads do not affect the minimum power of a processor for a given 
performance constraint, and thus do not affect the power gap between ASIC 
and custom designs. However, the additional power does affect the energy 
per operation [11]. 

We will illustrate how other power overheads may be incorporated in the 
pipeline model by adding in glitching. 

3.6.1 Glitching in complementary static CMOS logic 

Different logic styles have different switching activity and some logic 
styles suffer from spurious signal transitions, glitches, propagating through 
the logic. Glitching increases the switching activity in complementary CMOS 
logic, but by construction glitches may not occur in dynamic logic. Glitches 
typically cause 15% to 20% of the switching activity in complementary 
CMOS logic [56]. 

Glitches do not propagate through edge-triggered flip-flops, providing 
the setup time is not violated, nor through level-sensitive latches when they 
are opaque. Thus pipeline registers reduce switching activity due to glitches. 

Based on experimental data from a dynamic circuit timing simulator, 
Srinivasan et al. modeled glitching’s contribution to the dynamic power of 
the pipeline’s combinational logic as depending linearly on the logic depth 
[57]. A generated glitch was assumed to have a high probability of propa-
gating through the combinational logic. While the glitching power may 
be fit reasonably well by a linear model over the range of pipeline depths 
considered by Srinivasan et al., glitching power data for pipelined 32-bit 
[53] and 64-bit [68] FPGA multipliers has sublinear growth with logic 
depth [11]. 

The growth of glitching with logic depth depends on a number of factors. 
Glitches from a gate’s output may propagate through the fanout logic gates. 
The glitch may not propagate if it is not the controlling input of a fanout 
gate. If the delay of paths through the logic are unbalanced, there is more 
glitching [44]. Some functional blocks have more glitching than others. For 
example, in an inverse discrete cosine transform (IDCT) core about 37% of 
the power consumption in the accumulators was due to glitches, whereas 
glitches accounted for only 14% of the power for the chip as a whole [102]. 
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Figure 3.8 Glitching overhead estimated by the linear and sublinear glitching models in 
equations (3.22) and (3.23) respectively versus logic depth. 

3.6.1.1 Glitching power model 

To account for glitching in complementary CMOS logic, as glitching 
only affects the dynamic power for the combinational logic, we use [11] 
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where αglitching(n) is the model for glitching as a fraction of the dynamic 
power due to non-spurious transitions. 

In the vein of Srinivasan et al. [57], we consider a linear model for 
glitching with logic depth, which is inversely proportional to the number of 
pipeline stages, 

 2( )glitching n
n

α =  (3.22) 

Based on fits to glitching in 32-bit and 64-bit FPGA multipliers, we also 
consider a model for glitching growing sublinearly with logic depth, 
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4

n
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nn eα −= − −  (3.23) 

The dynamic power overhead for the combinational logic estimated by these 
glitching models is shown in Figure 3.8.  
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The sublinear model in Equation (3.23) provides similar results to the 
linear model in Equation (3.22) for deeper pipelines, with less than 10% 
lower glitching for n = 14 and more pipeline stages. For shallower pipelines, 
the glitching estimated by the sublinear model is substantially less than that 
from the linear model: for a single pipeline stage, the glitching overhead is 
75% from the sublinear model, and 200% from the linear model.  

3.6.1.2 Impact of glitching 

The maximum performance for a typical ASIC was achieved with 13 
pipeline stages, by which point glitching accounts for only 15% of the dyna-
mic power for the combinational logic and only 6% of the total power. 
Moreover, the optimal number of pipeline stages for custom and ASIC designs 
are similar (this was shown in Figure 3.5), resulting in similar contributions 
from glitching. Consequently, glitching increases the power gap between ASIC 
and custom by at most 5%. 

For a single stage pipeline, glitches contribute a large percentage of 
the total power, and thus have a significant impact on the minimum energy 
per operation. More pipeline stages are optimal to prevent glitches propaga-
ting. For the linear glitching model in Equation (3.22), 5.3 pipeline stages 
minimizes the energy per operation. With the sublinear glitching model in 
Equation (3.23), 3.9 stages is optimal. The minimum energy/operation is 0.17 
and 0.16 respectively, about 60% more than without glitching. 

3.7 SUMMARY 

ASICs have a substantially higher pipelining delay overhead than custom 
circuits, which reduces the benefit of additional pipeline stages and sub-
stantially reduces the timing slack available for power reduction. With pipe-
lining to provide timing slack for power reduction, a typical ASIC with a 20 
FO4 pipeline stage delay overhead may have 5.1× the power of a custom 
processor with only 3 FO4 delay overhead at a tight performance constraint. 
The power gap is less at more relaxed performance constraints, reducing to 
4.0× at only 7% lower performance. The delay overhead in an ASIC can be 
reduced by using latches or faster pulsed flip-flops on critical paths with 
useful clock skew, instead of slower D-type flip-flops that don’t allow slack 
passing between unbalanced pipeline stages. If the ASIC pipeline stage 
delay overhead can be reduced to 5 FO4 delays, the gap is only 1.9×. 

The difference in pipeline delay overhead is the most significant cause of 
the power gap between ASIC and custom with pipelining. The impact of 
other factors such as glitching in complementary CMOS logic, increased 
CPI penalty per pipeline stage, no clock gating to avoid dynamic power 
during pipeline stalls, higher leakage power, and increased clock tree and 
register power is at most 20%.  
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Only custom designs can make use of high performance logic styles such 
as dynamic domino logic. If the custom design reduces the combinational 
logic delay with a high performance logic style, the ASIC may have up to 
2.0× larger power gap at maximum performance, ignoring additional power 
consumption of high performance logic styles. We attribute this factor to 
logic style rather than microarchitecture. 

Inclusion of voltage scaling and gate sizing in the pipeline model has a 
substantial impact on the power consumption. It is important to consider 
high level circuit techniques to provide timing slack along with these low 
level circuit techniques that can reduce power if there is timing slack. The 
improvements with gate sizing and voltage scaling depend greatly on the 
steepness of the power-delay curves, which depend on the range of allowable 
supply and threshold voltages in the process technology and the range of 
gate sizes in the library.  

Pipeline model parameters can be estimated from the particular micro-
architecture being considered for a design. For good estimates, the dynamic 
and leakage power with gate sizing and/or voltage scaling must be fit over  
a range of delay targets for representative circuit benchmarks in the target 
process technology for a design. 
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4.1 INTRODUCTION 

Scaling the supply voltage (Vdd) and threshold voltages (Vth) to an 
optimal point for a design can provide substantial power savings, particularly 
at a relaxed performance constraint. We will examine how Vdd, Vth and 
gate size affect the circuit delay, dynamic power and leakage power with 
analytical models. We compare these models to empirical fits for a 0.13um 
library characterized at different Vdd and Vth values. These models help us 
examine the trade-off between power and delay, and determine which power 
reduction techniques can provide the most benefit in different situations. 

In this chapter, we focus on use of a single supply voltage (Vdd) and a 
single threshold voltage (Vth). In Chapter 7, we will examine use of multiple 
supply and multiple threshold voltages in comparison to using a single Vdd 
and single Vth. Throughout this chapter, we assume that the NMOS and 
PMOS threshold voltages are of about the same magnitude, Vthn = –Vthp, and 
will generally refer to this value as the threshold voltage. 

Dynamic power is due to switching capacitances and short circuit 
power. Switching power consumption occurs when logic switches from 0 to 
1 and 1 to 0, and capacitances are charged and discharged. A short circuit 
current from supply to ground occurs in a gate when both the pull-up PMOS 
network of transistors and pull-down NMOS network of transistors are 
conducting. Signal glitches propagating also cause switching and short circuit 
power.  

Leakage power occurs when logic is idle, whether the circuit is in standby 
or simply not switching. Leakage power is primarily due to subthreshold 
leakage and gate leakage. 
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Table 4.1 Delay and total power consumption for ISCAS’85 benchmark c7552, using 
PowerArc characterized 0.13um libraries with 1.2V supply voltage, and threshold voltage of 
0.23V or 0.08V. Using the netlist delay minimized at 0.23V is sufficient to provide a delay 
minimized netlist when using the 0.08V library instead, but the power is about 10% higher. 

Total
Netlist Vdd (V) Vth (V) Delay (ns) Power (mW)

Delay minimized at Vdd=1.2V/Vth=0.23V 1.2 0.23 0.847 27.9
Delay minimized at Vdd=1.2V/Vth=0.23V 1.2 0.08 0.695 47.9
Delay minimized at Vdd=1.2V/Vth=0.08V 1.2 0.08 0.695 43.6

Delay & Power with

 

Delay and power data for different Vdd and Vth values was analyzed on 
ISCAS’85 benchmarks [2] with libraries characterized in PowerArc for 
STMicroelectronics’ 0.13um HCMOS9D process. The comparison was at 
the minimum delay achievable with the particular Vdd and Vth. The power 
and delay data were normalized to Vdd=1.2V/Vth=0.23V data, and then 
averaged across the netlists. There was little variation in the normalized data 
at the same Vdd and same Vth across the netlists [6]. To provide a range of 
Vth values for the characterization with PowerArc, the zero bias threshold 
voltage parameter vth0 [1] in the SPICE technology files was adjusted. 

The netlists were delay minimized in Design Compiler with the Vdd=1.2V 
and Vth=0.23V library. To minimize the delay, it was not necessary to resize 
the circuits when using different Vdd and Vth values, as illustrated in Table 
4.1. The wire loads were 3+2×#fanouts fF, and output port loads were 3fF 
excluding the load of the wire to the port. 

The delay dependence on Vdd and Vth is discussed in Section 4.2. We 
then examine switching power, short circuit power and leakage power in 
sections 4.3, 4.4 and 4.5. The net power consumption and how to choose 
Vdd and Vth to minimize it for a given delay constraint is detailed in Section 
4.6. These trade-offs are summarized in Section 4.7. 

4.2 DELAY  

The delay for an input transition to cause a transition at a gate’s output is 
due to the time it takes to charge or discharge the load capacitance and the 
gate internal capacitances. There are also wire RC delays, but these contribute 
less than 1% of the critical path delay for our small combinational benchmarks 
where wires are not that long. 

A simple model for the delay can be derived from the saturation drain 
current through a transistor. The saturation current dependence on input 
voltage can be modeled with the Sakurai-Newton alpha-power law [12] 

   ( )ox
saturation drain current in th

ox eff

WI c V V
t L

αε
µ= −  (4.1) 



Voltage Scaling 91
 
where c is a constant; µ is the charge carrier mobility; εox is the electric 
permittivity; tox is the gate oxide thickness; Leff is the effective transistor 
channel length; W is the transistor gate width (size); Vin is the driving voltage 
to the NMOS transistor gate; and α is the velocity saturation index which 
depends on the technology, and is between 1 and 2. A value for α of about 
1.3 is typical for today’s technologies. 

Using the saturation drain current from Equation (4.1), the delay d for 
charging a capacitance C from 0V to Vdd may be approximated as [14]  

   /
( )

dd
dd saturation drain current

dd th

CVd CV I k
W V V α= =

−
 (4.2) 

where k is a constant, and W is the width of the transistor through which 
current is flowing to charge the capacitor. From Equation (4.2), the delay 
scaling with Vdd and Vth is [14] 

 2 1 1
1 1 2 2

1 2 2

( )Delay scaling factor from &  to & =
( )

dd dd th
dd th dd th

dd dd th

V V VV V V V
V V V

α

α

−
−

 (4.3) 

A gate’s delay is reduced as its size increases, but increases as the size of 
fanout gates and thus their capacitance increases. A gate also has internal 
capacitances which contribute an additional “parasitic delay” as it is termed 
in “logical effort” delay models [14][15]. The delay also increases as the 
supply voltage Vdd is reduced and as the threshold voltage Vth is increased.  

Excluding the driving gate from analysis by using a fixed input voltage 
ramp, as a gate is upsized to reduce the delay, the reduction in gate delay is 
less for larger gate sizes due to the parasitic delay. The dynamic power for 
charging and discharging the internal capacitances increases linearly with 
gate size. This results in the classic power-delay “banana” curve shown in 
Figure 4.1. Including the driving gate in analysis results in a delay increase 
for larger gate sizes due to the load on the driving gate, as shown in Figure 
4.2. Thus if a gate is upsized, its fanins may also need to be upsized.  

By comparing the impact of gate size, threshold voltage, and supply 
voltage on delay and these power terms, we see that there are significant 
delay-power trade-offs that must be carefully analyzed. To minimize power, 
it is not clear that reducing supply voltage to reduce switching power, or 
increasing threshold voltage to reduce leakage power, is more important than 
reducing gate size. All of these choices increase the circuit delay, except for 
gate downsizing, which may increase delay or reduce delay as the reduced 
load on preceding gates reduces their delay. Optimization approaches which 
favor one technique, typically Vdd, over the others will be suboptimal in 
situations where the power-delay sensitivity to this technique is less. As 
noted by Brodersen et al. [3], reducing the threshold voltage or increasing 
the supply voltage, subject to process constraints, to provide slack for gate 
downsizing can sometimes give better overall power savings. 
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Figure 4.1 Power versus delay for inverter cells from the 0.13um PowerArc characterized 
libraries. The input signal was a ramp with 0.1ns slew. Each point on a curve is for a different 
gate size, and larger gate sizes have larger power consumption. The load capacitance was 8fF, 
and the switching frequency was 4GHz, where dynamic power dominates leakage power.  

Figure 4.2 Power versus delay for inverter cells from the 0.13um PowerArc characterized 
libraries. The driving gate was included in the power and delay analysis. In addition for the 
0.8V Vdd cells, there is a level converter flip-flop delay overhead of 80ps, but no power 
overhead, for voltage level restoration to drive the output at 1.2V. Each point on a curve is for 
a different gate size, and larger gate sizes have larger power consumption. The load 
capacitance was 8fF, and the switching frequency was 4GHz.  
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Table 4.2 This table lists the average error magnitude for the delay fits using the analytical 
model in Equation (4.3) and the empirical fit in Equation (4.4). Vth was 0.08V, 0.12V, 0.14V 
and 0.23V. 

Mean error magnitude vs. Mean error magnitude vs.
Delay Fit Vdd 0.8V & 1.2V delay data Vdd 0.5V, 0.8V & 1.2V delay data

Analytical model, α =1.30 7.3% 17.0%
Analytical model, α =1.66 1.5% 6.0%
Analytical model, α =1.83 4.8% 4.3%
Empircal fit, α =1.10 0.6% 0.8%  

4.2.1 Empirical fit to 0.13um delay data 

We will now discuss fitting the delay to 0.13um data at a range of Vdd 
and Vth values. Several cells were characterized incorrectly with Vdd of 
0.5V, so we present delay fits with and without the 0.5V Vdd library.  

The derivation of the analytical delay model in equations (4.2) and (4.3) 
ignores signal slew and other factors. Assuming α of 1.3 for today’s techno-
logies for the saturation drain current may be reasonable, but does not give a 
good fit with Equation (4.3) for the delay. The delay is underestimated by up 
to 19.4% at Vdd of 0.8V and by up to 52.3% at Vdd of 0.5V.  

A least squares fit of Equation (4.3) to the 1.2V and 0.8V Vdd delay data 
gives a value for α of 1.66. The α=1.66 fit underestimates the 0.5V Vdd 
delays by up to 24.4%. Including the 0.5V Vdd data in the least squares fit, 
gives a value for α of 1.83, but the fit errors are still up to 6.6%.  

Thus delay scaling with Equation (4.3) in [14] and other papers is at best 
somewhat inaccurate if α is fitted correctly, and otherwise wrong when a 
value for α of 1.2 to 1.3 is assumed typically. 

From analysis of the derivation in the Sakurai-Newton alpha power 
law delay model [12] and experimenting with different fits, the best fit to 
normalized delay was given by 

 10.587 0.241( )
( )

dd
dd th

dd th

Vd V V
V V

α
α+= + −

−
 (4.4) 

with a value for α of 1.101. This fit had an average error magnitude of 0.8% 
and the maximum error was only 2.1%. The accuracy of the fits is summarized 
in Table 4.2.  

As the supply voltage is reduced, if the threshold voltage is kept 
constant, the delay begins to increase rapidly. Whereas if both Vdd and Vth 
are scaled down, then the delay does not increase as much. This is illustrated 
in the graph of the normalized delay given by Equation (4.4) in Figure 4.3. 
For example at Vdd=0.8V/Vth=0.08V, the delay is only 10% worse than at 
Vdd=1.2V/Vth=0.23V.  
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Figure 4.3 Graph of the fit in Equation (4.4) for the minimum delay versus supply voltage 
and threshold voltage, normalized versus the circuit delays with Vdd=1.2V/Vth=0.23V. 

4.3 SWITCHING POWER 

As digital logic performs computations, logic transitions occur between 0 
and 1, charging circuit capacitances to a high voltage, or discharging them 
back to a low voltage. The switching power for charging and discharging a 
capacitance C to a voltage Vdd and back to 0V with switching frequency f is 

 21
2switching ddP CV f=  (4.5) 

Capacitances in the circuit include internal “parasitic” capacitances within 
each gate, capacitances of the input pins of each gate, and wire capacitances. 
In standard cell library characterization, switching power for the internal 
gate capacitances is included with the short circuit power in the “internal 
power” of a gate. A gate’s internal capacitances and input pin capacitances 
depend on the transistor width (i.e. the gate size).  

With the quadratic dependence of switching power on supply voltage Vdd 
in Equation (4.5), reducing the supply voltage is often seen as the most 
effective way to reduce dynamic power. However at a tight delay constraint, 
reducing gate sizes can provide a greater power reduction: as each gate loads 
its fanins, if a gate is upsized to reduce delay, then its fanins must in turn be 
upsized to prevent their delay increasing. Consequently, the gate sizes and 
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power increase rapidly as delay is reduced towards a tight delay constraint. 
Conversely, if timing slack is available near a tight delay constraint, reducing 
a gate’s size allows fanins to be reduced in size, and substantial power savings 
may be achieved. 

4.3.1 Empirical fit to 0.13um input pin capacitance 

In a combinational complementary CMOS circuit, the switching power is 
the power consumed charging and discharging the wire capacitances, output 
port capacitances and gate input pin capacitances. The power for (dis)charging 
gate internal capacitances is included in the internal power (see Section 4.4.1). 
Gate input pin capacitances vary with Vdd and Vth. 

By setting the wire loads and output port loads to zero, we determine that 
wire loads contribute 37% and the output ports contribute 1% of the switching 
power, excluding switching of gate internal capacitances, on average across 
the ISCAS’85 benchmarks with the Vdd=1.2V/Vth=0.23V library. The delay 
is also 25% more with wire loads versus no wire loads. We measured the 
switching power at the original clock frequency to factor out the delay 
change.  

Given the switching power due to the output port and wire loads, the 
remainder of the switching power is due to the gate input pin capacitances. 
We can then determine how gate input pin capacitance Cin varies with Vth 
and Vdd, by dividing by the Vdd

2 term in Equation (4.5). A least squares fit 
with a first order Taylor series gives 
 Normalized input pin capacitance 0.957 0.200 0.859in dd thC V V= + −  (4.6) 

where Cin was normalized to 1.0 at Vdd=1.2V and Vth=0.23V. This fit has 
an average error magnitude of 1.0% and maximum error of 2.6%.  

The increase in gate capacitance with decreases in Vth has been 
identified previously [13][17], but the dependence of Cin on Vdd has not 
generally been discussed in multi-Vdd optimization research. However, the 
reduction in Vth with increased Vdd due to drain induced barrier lowering 
(DIBL) [11] is well known from a process standpoint. In our 0.13um data, 
there was up to a 22% Cin increase if Vdd was increased from 0.5V to 1.2V, 
and up to a 20% increase in Cin if Vth was reduced from 0.23V to 0.08V [6].  

4.4 SHORT CIRCUIT POWER 

Short circuit power is dissipated when there is a current from supply to 
ground in a gate when both the pull-up PMOS network of transistors and 
pull-down NMOS network of transistors are conducting. In 1984, Veendrick 
[16] derived the short circuit current for an inverter without load. He 
assumed that the saturation drain current has the form in Equation (4.1) with 
α of 2, resulting in average short circuit current of [16]  
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1 ( 2 )ox
short circuit dd th in

ox eff dd

WI c V V s
t L V
ε

µ= −  (4.7) 

where c is a constant, and sin is the input slew.  
A value for α of about 1.3 is typical for today’s technologies to model 

the saturation drain current with Equation (4.1). Following a similar derivation 
to Veendrick, the short circuit power without load in terms of the optimization 
variables of direct interest to us is  
 1

 ( 2 )short circuit dd thP cfW V V α += −  (4.8) 

where c is a constant and f is the switching frequency.  
Consequently, the short circuit power is between quadratically and cubi-

cally dependent on the supply voltage, depending on the value of α. The short 
circuit power is linearly dependent on the gate size, and increases as the 
threshold voltage is reduced.  

The impact of slew is not included in Equation (4.8). As noted by 
Veendrick [16], the short circuit power contributes only a minor portion of 
the dynamic power when the input slews to the gate and the gate’s output 
slew are similar. This minimizes the duration when both PMOS and NMOS 
transistor chains are conducting. A circuit’s short circuit power is minimized 
if the input slews to a gate and its output slews are equal, and the short 
circuit power increases rapidly as input slew increases relative to output slew 
[4]. As input slews are usually similar to a gate’s output slew, short circuit 
power typically contributes less than 10% of the dynamic power [5]. However, 
this can be an underestimate for low threshold voltages. 

4.4.1 Empirical fit to 0.13um internal power data 

The internal power has two components: the short circuit power, and the 
switching power for internal “parasitic” capacitances. For a fit to the internal 
power, we expect terms of the form (Vdd – 2Vth)α for the short circuit power 
from Equation (4.8) and a Vdd

2 term for the switching power of the gate 
internal capacitances from Equation (4.5). A good fit was provided by 

 ( )
   

2 3.183 0.1620.413 0.958( 2 ) 0.039( 2 )
internal switching internal capacitances short circuit

dd dd th dd th

P P P

f V V V V V

= +

= + − + −
 (4.9) 

The fit has an average error magnitude of 0.4% and maximum error of 1.0%.  
The first Vdd

2 term in Equation (4.9) accounts for the switching of inter-
nal capacitances. Multiplying the Vdd

2 term by a first order Taylor series in 
Vdd and Vth to consider the dependence of internal capacitance on Vth and 
Vdd, in the manner of Equation (4.6), does not improve the fit substantially. 
This suggests that gate internal capacitance is independent of Vth and Vdd.  
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Figure 4.4 Graph of the short circuit energy (Vdd – 2Vth) terms in Equation (4.9), normalized 
versus the short circuit energy at Vdd=1.2V/Vth=0.23V. 

The second term in Equation (4.9) accounts for the majority of the short 
circuit power, while the last term provides a slight correction to the short 
circuit power. The fitted exponents for the short circuit power terms do not 
correspond to what we might expect from Equation (4.8), if α is about 1.3, 
but Equation (4.8) does not include the effect of input slew and load capa-
citance which introduce higher order terms.  

The short circuit energy is graphed in Figure 4.4. As the threshold 
voltage is reduced, the short circuit power grows significantly. The short 
circuit energy approaches zero as Vdd approaches 2Vth, as predicted by 
Veendrick [16], because at Vdd = 2Vth NMOS and PMOS transistors cannot 
be “on” (i.e. VGS > Vth) simultaneously, so there is no short circuit current. 
The short circuit power reduces substantially as Vdd decreases, by about a 
factor of 10× as Vdd is reduced from 1.2V to 0.6V at Vth=0.08V. The short 
circuit power is reduced by this large factor due to the smaller period of time 
when both pull-up and pull-down transistor chains are conducting. 

4.5 LEAKAGE POWER 

In deep submicron process technologies with low threshold voltages, the 
dominant sources of leakage power are subthreshold leakage and gate leakage. 
Subthreshold leakage occurs when the transistor gate-source voltage VGS is 
below the threshold voltage Vth, and the minority carrier concentration varies 
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across the MOSFET channel causing a diffusion current between drain and 
source. Gate leakage is due to a high electric field across the thin transistor 
gate oxide, which results in tunneling of electrons through the transistor gate 
oxide [11].  

An analytical model for the subthreshold leakage current is [7] 

( ) ( )
2

/ /0
 1q V V V V mkT qV kTox GS th b DS DS

subthreshold leakage
ox eff

W kTI c e e
t L q

γ ηε
µ − − + −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (4.10) 

where c is a constant; k is Boltzmann’s constant; q is the charge of an 
electron; T is the temperature; VDS is the transistor drain to source voltage; 
VGS is the transistor gate to source voltage; Vth0 is the zero bias threshold 
voltage, Vb is the body bias voltage; γ is the linearized body effect coeffi-
cient; m is the subthreshold swing coefficient; and η is the drain-induced 
barrier lowering (DIBL) coefficient.  

The subthreshold leakage increases rapidly as the temperature increases. 
At 25°C, The “ideal” subthreshold slope is ln(10)kT/q = 60mV/decade if m 
is 1 in Equation (4.10), though in real processes the subthreshold slope is 
worse (more) than this [10]. 

Simplifying the expression in Equation (4.10) to the optimization varia-
bles of interest to us, the subthreshold leakage power for an NMOS transistor 
in an inverter is approximately 

 ( )2 0
 1

c V Vth dd
subthreshold leakage ddP c V We η− +=  (4.11) 

where c1 and c2 are constants; the input voltage VGS = 0V when it is “off” 
and leaking; VDS = Vdd; and Vb = 0V assuming there is no body bias applied. 
The subthreshold leakage increases exponentially as the threshold voltage 
Vth is reduced. The subthreshold leakage increases linearly with gate size 
(transistor width W) and with the supply voltage Vdd. However, Vdd increases 
leakage further due to the drain-induced barrier lowering term. 

Gate oxide tunneling leakage current Iox can be modeled as [8] 

 
2.5 2.5( ) ( )bV cT bV cTGS ox GD ox

ox eff effI aL e aL e
− −− −= +  (4.12) 

where a, b and c are constants; Leff is the effective channel length; VGS is the 
gate to source voltage; VGD is the gate to drain voltage; and tox is the 
transistor gate oxide thickness. The gate leakage increases exponentially as 
the gate oxide thickness is reduced, and is significant in process technologies 
below 90nm, in some cases exceeding the subthreshold leakage.  

Both subthreshold leakage and gate leakage vary significantly depending 
on the input state to the logic gate. Subthreshold leakage is largest when the 
leakage current path from Vdd to ground has only one transistor that is off. 
This stack effect can be used to reduce the subthreshold leakage, for 
example with sleep transistors for power gating as discussed in Chapter 10. 
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The gate tunneling leakage is largest when VGS = VGD = Vdd, and decreases 
rapidly when VGS and VGD are reduced [8]. 

4.5.1 Empirical fit to 0.13um leakage power data 

In STMicroelectronics’ 0.13um HCMOS9D process, subthreshold leakage 
is by far the most significant component of leakage power, but gate leakage 
is also included in the technology models. The leakage power increases 
exponentially as the threshold voltage is reduced. For our 0.13um data, 
leakage increases by about 56× as Vth is reduced from 0.23V to 0.08V, and 
increases by about 3× as Vdd is increased from 0.6V to 1.2V [6].  

Fitting the analytical model for subthreshold leakage in Equation (4.11) 
to the leakage data normalized to the value at Vdd=1.2V/Vth=0.23V, we get  
 26.9 0.770158 V Vth dd

leakage ddP V e− +=  (4.13) 

This fit has an average error magnitude of 2.6% and a maximum error of 
6.0%. This is quite a good fit considering that the function is exponential.  

From the fitted Vth coefficient in Equation (4.13), we can determine the 
subthreshold leakage slope at 25°C 

 ln10Subthreshold leakage slope 86mV/decade
26.9

= =  (4.14) 

The subthreshold slope of 86mV/decade is about what we expect.  

4.6 0.13um DATA FOR TOTAL POWER  

From the empirical fits and the analysis of the components of switching 
energy and internal energy, we can determine the individual contributions to 
the total energy, as shown in Figure 4.5. The leakage power was normalized 
to about 1% of the total power at Vdd=1.2V/Vth=0.23V at the minimum 
delay. At high Vdd and high Vth, the majority of the energy is due to 
switching of capacitances and short circuit current. If Vdd is scaled down to 
reduce the dynamic power, Vth must be reduced to avoid excessive delay, 
but then the leakage power becomes large.  

The majority of the dynamic power is due to the switching power for 
the gate internal capacitances, gate input pin capacitances and wire loads. 
About 42% of the switching power is for (dis)charging the gate input pin 
capacitances, 32% is due to the gate internal capacitances, and 26% is due to 
the wire loads. These percentages vary up to ±3% with Vdd and Vth, as gate 
input pin capacitance varies with Vdd and Vth. Switching of the output ports 
contributes less than 1% of the switching power, as we assumed only a small 
output port load of 3fF. However in circuits with buses or chip outputs, these 
capacitances can be much larger and then I/O, receiving/sending input/output 
data, contributes a significant portion of the chip power.  
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Figure 4.5 This graph shows the normalized total energy per cycle at different supply and 
threshold voltages, with the breakdown into leakage, short circuit and switching energy.  

Leakage power is very significant at low threshold voltages. If threshold 
voltages are reduced too much, the majority of the power consumption is 
due to leakage, as leakage increases exponentially with reduction in Vth. 
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Short circuit power can be quite significant at high Vdd and low Vth – it 
contributes up to 27.2% of the total power at Vdd=1.2V/Vth=0.08V. Typically, 
circuit designers say that short circuit power contributes around 10% of total 
power, and a common assumption in optimization research to ignore the 
impact of short circuit power. However, our analysis indicates that it is 
important to include short circuit power when considering lower Vth. 

While the power savings by reducing Vdd and increasing Vth can be 
huge, the accompanying delay increase must also be considered. For 
example, there is a 20× power reduction going from Vdd=1.2V/Vth=0.14V 
to Vdd=0.6V/Vth=0.23V, but the delay increases by 3.3×. Assuming no 
delay constraint, the appropriate metric to use is the energy. There is only a 
6× energy reduction from Vdd=1.2V/Vth=0.14V to Vdd=0.6V/Vth=0.23V, 
as can be seen in Figure 4.5. Note that this comparison is somewhat 
simplistic as we haven’t considered power minimization with gate sizing yet. 
Instead of reducing Vdd and increasing Vth, the timing slack could be used 
for gate downsizing to reduce gate internal capacitances and gate input pin 
capacitances. Thus the actual benefits of Vdd=0.6V/Vth=0.23V may be 
significantly less.  

4.6.1 Optimal Vdd and Vth to minimize the total power 

We can now determine the optimal Vdd and Vth to minimize power 
consumption when meeting a given delay constraint from the delay and 
power fits for the 0.13um technology. Combining equations (4.4), (4.6), 
(4.9) and (4.13), we minimize the total power Ptotal with 
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where T is the critical path delay; Tmax is the delay constraint; Pleakage is the 
leakage power; Einternal is the energy/cycle from short circuit currents and 
switching of internal capacitances; and Eswitching is the switching energy of 
transistor gates (62%), wire loads (37%) and output port loads (1%). 
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While the optimal Vdd and Vth depend on the process technology, 
conventional wisdom based on theoretical analysis by Nose and Sakurai [9] 
suggests that leakage should contribute 30% of total power to minimize the 
total power consumption, independent of the process technology, switching 
activity and delay constraint. They ignored short circuit current, the depend-
ence of transistor gate capacitance on Vdd and Vth, and the impact of drain-
induced barrier lowering on leakage. The largest inaccuracy in their analysis 
was scaling delay with Equation (4.2) and α of 1.3, which underestimates 
delay by up to 50% at low Vdd (see Section 4.2.1). 

In contrast to Nose and Sakurai’s result, to minimize the total power for 
our 0.13um data, we find that leakage contributes from 8% to 21% of the 
total power depending on the delay constraint and how much leakage there is 
versus dynamic power. To model the effect of different activities and process 
technologies, thus the amount of leakage, we considered three scenarios for 
leakage power with 0.1×, 1× and 10× the leakage in Equation (4.15). For 
each order of magnitude increase in the weight on leakage, the optimal Vth 
averages 0.095V higher and the optimal Vdd averages 0.17V higher, reducing 
leakage by a factor of 9.0× which mostly cancels out the 10× weight increase, 
in exchange for a 40% increase in dynamic power on average (see Figure 
4.6). The total power consumption is also 40% higher. 

Leakage contributes more power at a tight delay constraint, as shown in 
Figure 4.7, because a lower Vth must be used to meet the delay constraint. 
As the delay constraint is relaxed, the timing slack enables an exponential 
reduction in the leakage power by increasing Vth. The minimum contri-
bution from leakage occurs at a delay constraint of about 0.9. When the 
delay constraint is relaxed further, Vdd is reduced faster than the increase in 
Vth (see Figure 4.8), because of the exponential dependence of leakage 
power on Vth. The contribution of leakage slowly increases as the delay 
constraint is increased beyond 0.9, because the switching activity decreases 
as 1/T, reducing dynamic power but not leakage. In the scenario where 
there is more leakage, at a tight delay constraint the percentage of leakage 
is larger because Vth must be lower, but at more relaxed delay constraints 
the percentage of leakage is less because Vdd is higher and there is more 
dynamic power.  

In sequential circuitry, the optimal portion of total power from leakage 
may be higher as dynamic power in idle units can be avoided by clock 
gating, but power gating and other leakage reduction methods can only be 
used in standby mode. 
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Figure 4.6 The leakage power and dynamic power versus the delay constraint. 

Figure 4.7 Percentage of total power due to leakage versus the delay constraint. 
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Figure 4.8 Optimal Vth and Vdd to minimize the total power versus the delay constraint. 

4.7 SUMMARY 

Having examined the power and delay trade-offs, let us summarize the 
power minimization approaches. Gate downsizing reduces the gate internal 
capacitances and gate input pin capacitances, thus reducing switching power. 
Reducing the gate size also gives an approximately linear reduction in leakage 
and short circuit power, due to the higher transistor resistances.  

Reducing the supply voltage provides a quadratic reduction in switching 
power, and also provides substantial reductions in short circuit power and 
leakage power. Increasing the threshold voltage exponentially reduces the 
leakage power and also reduces the short circuit power. In the 0.13um techno-
logy, the leakage at Vth of 0.08V is about 56× the leakage at 0.23V Vth, and 
the leakage at Vdd of 1.2V is about 3× the leakage at 0.6V.  

Both an increase in Vdd and a decrease in Vth increase the gate input pin 
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increases by 22% if Vdd is increased from 0.5V to 1.2V at Vth of 0.23V, 
and it increases by 20% if Vth is reduced from 0.23V to 0.08V at Vdd of 
0.5V. The dependence of Cin on Vdd has not generally been mentioned in 
other multi-Vdd optimization research, though it can be as significant as the 
effect of Vth on Cin. Other optimization research has noted the impact of Vth 
on Cin [13][17]. In contrast, we found that gate internal capacitances did not 
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depend significantly on Vth or Vdd. Thus reducing supply voltage and incre-
asing threshold voltage provide some additional power reduction by reducing 
the gate input capacitance. 

Except for gate downsizing in some situations, these power minimization 
approaches come with a delay penalty. If Vth is scaled with Vdd then delay 
is inversely proportional to Vdd. However, Vth scaling is limited by the 
exponential increase in leakage power as Vth is reduced. Thus the delay may 
increase substantially when Vdd is reduced. To avoid the delay penalty for 
low Vdd and high Vth, we can use high Vdd and low Vth on critical paths, 
and use low Vdd and high Vth elsewhere to reduce the power. Chapters 7 
and 8 will examine the power savings that can be achieved with use of multi-
ple supply voltages and multiple threshold voltages.  

Optimization researchers often exclude wire loads and short circuit 
power to simplify analysis; however, we found that wire loads can contribute 
24% of the total power, and short circuit power can account for up to 27% of 
the total power at high Vdd and low Vth. The wire loads also increase the 
critical path delay, by 25% on average with the Vdd=1.2V/Vth=0.23V 
library. Typically, circuit designers say that short circuit power contributes 
around 10% of total power. However, our analysis indicates that it is 
important to include short circuit power when considering lower Vth. 

From the empirical fits for the delay and power, the optimal Vdd and Vth 
to minimize the total power consumption can be determined. For example, 
the optimal Vdd is 1.0V and the optimal Vth is 0.14V for a delay constraint 
of 1.0; and the optimal Vdd is 0.86V and the optimal Vth is 0.15V for a 
delay constraint of 1.2, where delays have been normalized to the delay with 
Vdd of 1.2V and Vth of 0.23V in the 0.13um process technology.  

The analysis for the optimal Vdd and Vth does not consider that additional 
timing slack may be used for gate downsizing. In Chapter 7, we consider 
selection of Vdd and Vth with gate sizing, but Vdd is limited to 0.6V, 0.8V 
or 1.2V, and Vth is limited to 0.08V, 0.14V or 0.23V. Without gate sizing, 
our analysis would predict that Vdd of 1.2V and Vth of 0.23V are the best 
choice for delay of 1.0, and that Vdd of 0.8V and Vth of 0.08V are the best 
choice for delay of 1.2. The optimal Vdd is still 1.2V at a delay constraint of 
1.0, but the optimal Vth is lower, 0.14V (see Table 7.3), providing timing 
slack of 12% of the clock period for gate downsizing, compared to no timing 
slack with Vth of 0.23V. At a delay constraint of 1.2, the optimal Vdd and 
Vth remain respectively 0.8V and 0.08V (see Table 7.7 with 0.8V input 
drivers) as there is sufficient timing slack, 8% of the clock period, for gate 
downsizing.  

Conventional wisdom based on theoretical analysis by Nose and Sakurai 
[9] suggests that leakage should contribute 30% of total power when Vdd 
and Vth are chosen optimally to minimize the total power consumption, 
independent of the process technology, switching activity and delay constraint. 
Choosing Vdd and Vth optimally to minimize the total power with the 
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empirical fits to 0.13um data, we found that leakage contributes from 8% to 
21% of the total power depending on the delay constraint and how much 
leakage there is, thus depending on the process technology and switching 
activity. However, the possible Vdd and Vth values depend on the particular 
process technology and available standard cell libraries. For example for the 
delay constraint of 1.2 with the best library choice with Vdd of 0.8V and Vth 
of 0.08V, leakage contributed on average 40% of the total power. 
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We present a novel energy optimization methodology based on processor 

customization. Unlike previous approaches focused either on behavioral-
level optimization with approximate consideration for underlying hardware, 
or register transfer level (RTL), or gate-level power optimization with limited 
microarchitectural trade-offs, the new approach compiles cycle count reducing 
instruction extension description to synthesizable hardware and accurately 
estimates dynamic power at the register transfer level. For a sample set of 
digital signal processing (DSP) applications, we see energy reductions excee-
ding a factor of 10× compared to fixed instruction set processors. 

5.1 INTRODUCTION 

Power is an important design consideration for a range of battery-operated 
consumer electronic devices such as PDAs (personal digital assistants), cell 
phones, and digital cameras. To increase battery life during active use, the 
real metric to minimize is the energy of computation, i.e., the area under 
the power curve as a function of time. Secondly, these devices have bursty 
computation requirements during which a specific signal processing task is 
performed by a functional unit. Hence, it is important to effectively reduce 
the power dissipated by a functional unit when it is in the idle state. Finally, 
these devices must be programmable to cope with evolving standards require-
ments and provide feature evolution on the same hardware platform. 

The dissipated power consists of three components: switching power, 
short-circuit power, and leakage power. The switching component is power 
dissipated by charging and discharging circuit nodes. The short-circuit com-
ponent is due to short-circuit currents when both P-channel and N-channel 
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transistors are partially on during output signal transition. The leakage power 
is primarily due to gate leakage and subthreshold leakage. Although leakage 
power dissipation has received a lot of attention, the issue may be mitigated 
by process technology advances (multiple threshold voltages and high diele-
ctric constant gate oxide), ASIC design methodology changes [14], and non-
uniform scaling. Voltage scaling has been an effective technique to reduce 
the dynamic power (sum of switching and short-circuit power) with every 
new process technology due to quadratic dependence of power on the supply 
voltage. However, as the device geometries shrink further to 65nm and 45nm 
transistor gate lengths, the energy minimization will need to decrease its 
reliance on voltage scaling and will need to rely more on architectural and 
microarchitectural explorations, effective clock gating, and design methodo-
logy employing power rail shut-off techniques. 

The impact of architectural and microarchitectural changes on power 
requires accurate estimation of the dynamic power. At the minimum, the 
dynamic power that depends on switching activity in the circuit requires an 
RTL description to estimate the power with reasonable accuracy [15]. 
However, it is extremely difficult to explore major architectural and micro-
architectural changes while designing at the register transfer level. With 
time-to-market schedule constraints for a reasonably complex design, it is 
possible only to perform very limited design explorations. The previous work 
has focused on behavioral-level power optimization [1] with approximate 
consideration for the underlying hardware implementation and concomitantly 
inaccurate power estimates [7].  

Extensible processors [5][19] have been proposed as a solution to drama-
tically improve the application performance. Application-specific processors 
can be extended by adding custom instructions to efficiently implement 
algorithmic kernels. By customizing the processor for a specific application 
or class of applications, extensible processors are able to drastically reduce 
the cycle count for a range of application benchmarks [4]. 

In this chapter, we propose a new methodology to optimize the energy of 
computation based on customizing an extensible processor. The new approach 
compiles the instruction extension description into synthesizable hardware 
and uses RTL power estimation to accurately focus on the dynamic power 
dissipation. The new approach reduces the area under the power curve over 
time by dramatically reducing the cycle count and shuts off the power to 
instruction extension units when they are idle.  

The rest of the chapter is organized as follows. We define the problem 
and motivate the solution approach in Section 5.2. We present the energy 
minimization methodology in Section 5.3. We present the experiment results 
on a set of case studies in Section 5.4. Finally, we conclude the paper and 
provide directions for future research in Section 5.5. 
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5.2 PROBLEM DEFINITION AND SOLUTION 

APPROACH 

The objective is to minimize the energy of computation required to 
perform a specific processing task in a system context in the presence of 
possible area and speed constraints. Although it is possible to optimize 
power using the appropriate algorithm [10], the goal of this paper is to define 
a methodology that minimizes the energy of computation for a specific C/C++ 
description of the application.  

It is important to be able to accurately estimate dynamic power to optimize 
it [3][8]. In contrast to approaches that create a power model based on an 
estimate of switching capacitance in response to input transitions [13] or that 
estimate power based on parameters such as number and type of operations 
and number of edges in control/data flow specification [1][17], we measure 
the power on the generated RTL. RTL power estimation provides a better 
estimate of dynamic power by performing a quick logic synthesis and poten-
tially a quick physical synthesis to estimate wire capacitances. 

Instead of solving the energy optimization problem in general at a beha-
vioral or unconstrained architectural level, we focus our attention on the 
use of an extensible processor platform. As transistor densities increase in 
accordance with Moore’s law, an extensible processor may emerge as the 
fundamental building block that provides the next level of abstraction above 
RTL. We present a set of transformations that reduce the energy of compu-
tation in the context of extensible processors. 

In the system-on-chip context, energy optimization using an extensible 
processor compares favorably to a hardwired solution that implements the 
specific functionality. The energy dissipated by the datapath logic of a 
hardwired solution will be comparable to an execution unit added in the 
extensible processor. The advantage of hardwired logic decreases further 
when the energy requirement for address generation logic and control logic 
are taken into consideration. In the system context, a hardwired solution 
typically shares memory with the control processor, hence, one must also 
take into account the energy costs of additional ports on the memory or 
contention management logic.  

When viewed from the larger system perspective, the overhead of running 
the processor pipeline to execute specific functionality is outweighed by the 
design, verification, and integration complexities of the hardwired solution. 
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5.3 OPTIMIZATION METHODOLOGY 

The energy optimization methodology is shown in Figure 5.1. The 
methodology consists of the following four steps: 

 
1. Extraction of software kernels and design of custom instructions 

 
2. Hardware generation and software tool generation for custom instru-

ctions 
 

3. Creating hardware switching activity for the application software kernels 
 

4. Estimating RTL power using generated hardware and switching activity 
 

We describe below each of these steps in detail. 
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Figure 5.1 Energy optimization methodology 
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5.3.1 Instruction Set Extension 

The designer starts with a C/C++ description of the application. Based 
on intuition, prior experience, and software profiling tools, the designer 
extracts the computation kernels that dissipate a significant fraction of the 
total energy.  

Once these software kernels are identified, the designer defines new 
instructions that reduce the system energy. This aspect of design is based on 
the following transformation guidelines: 
 
• Data localization: When a large amount of computation is performed 

on a data set of moderate size, it is important to ensure that entire data 
set is resident in the processor register file. This ensures the loads and 
stores from local memories are minimized. Not only does this reduce the 
energy of computation for the processor, but it also reduces the data 
memory energy dissipation. 

 
• Combining basic instructions: By combining multiple instructions into 

a custom instruction that either uses the same hardware or adds a marginal 
amount of additional hardware, the power per instruction will grow only 
slightly. However, the cycle count reduction leads to reduction in the 
total energy. 

 
• Parallelization: The common parallelization techniques used are Single 

Instruction Multiple Data (SIMD) and multiple operations per instru-
ction word. Additional hardware leads to increased capacitance, so the 
power per custom instruction that uses parallelization techniques will 
increase. However, the same computation using the unaugmented hard-
ware would take proportionately longer to compute, where the instruction 
stream lengthening would be determined by SIMD vector length or the 
number of operations performed by the instruction word.  

 
For the above transformations, it is important to ensure that the area 

increase is within the specified budget. The extensible processor must support 
freely intermixed variable length instructions; any restriction that requires 
instructions to be the same width will be untenable due to an increase in the 
instruction memory cost and resulting instruction-fetch cost. Secondly, the 
transformations above rely on aggressive clock gating that shuts off the clock 
to the associated execution unit and register file during inactive phases. In 
fact, it is important to ensure that the execution unit is active only when the 
custom instruction is being executed in the pipeline and is switched off 
when a custom instruction retires or when custom instructions in the processor 
pipeline are killed due to an exception. 
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5.3.2 Hardware and Software Tool Generation 

The set of custom instructions are described in the Tensilica Instruction 
Extension (TIE) language [19] that is used to extend the Xtensa processor 
[5]. A TIE Compiler is used to generate the synthesizable hardware that 
implements execution units that correspond to the custom instructions. In 
addition to the hardware for custom instructions, the TIE Compiler generates 
appropriate components of the software tool chain; namely the compiler, 
assembler, and linker. 

The following features of the TIE Compiler are important in achieving 
the goal of energy minimization: 

 
• Clock gating: The clock to the execution unit is gated; the execution-

unit logic is activated only during the time when a custom instruction 
implemented by the execution unit is executing in the processor pipeline. 

 
• Register file: The TIE language enables the designer to specify an 

arbitrary size register file that can be used by the custom instructions.  
 
• SIMD instructions: The TIE language has the capability to implement 

SIMD instructions.  
 
• Multiple operation instructions: TIE can describe wide instructions of 

varying length which can be used to implement multiple operations in 
parallel. The varying length instructions can be freely intermixed without 
penalty. 

5.3.3 Hardware Switching Activity Generation 

The extracted software kernels are compiled into an instruction stream 
using the software tool chain. The instruction stream is converted into a 
memory image and simulated using the verification infrastructure. The hard-
ware switching activity information is determined from the simulation. 

5.3.4 RTL Power Analysis 

The RTL power analysis tool takes in the activity file, RTL description, 
and standard-cell library information to perform a quick logic synthesis. In 
power analysis, the wire capacitances are estimated using a wire load model 
(with capacitance estimated from the number of fanouts) provided with the 
standard cell library, which was selected as it gave the closest correlation 
between the RTL power estimate and post-layout power analysis. Capacitance 
estimates may be improved by performing a quick placement. The RTL 
power estimation includes clock power based on the type of clock tree. In 
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our experience, the RTL power estimate is within 15% to 20% of the power 
computed for the post-layout netlist with 2.5-D extraction1.  

5.4 EXPERIMENTAL RESULTS 

We present four case studies that demonstrate the reduction of energy of 
computation. These are dot product computation, Advanced Encryption 
Standard (AES) encryption computation [9], Fast Fourier Transform (FFT) 
computation, and Viterbi decoder computation. The kernels presented here 
are representative signal processing routines commonly found in consumer 
applications.  

The RTL power analysis is performed using Sequence’s PowerTheater 
Analyst tool [15], with an Artisan standard cell library for TSMC’s 0.13um 
low threshold voltage, FSG process2. For each of the examples, the design is 
simulated at the register transfer level and power is estimated assuming 
100MHz operation at the typical process corner and typical operating corner 
(25°C, 1.0V supply). Energy is calculated from power × number of cycles × 
cycle time, where the cycle time is 10ns at 100MHz. 

5.4.1 Dot Product 

This example consists of computing a dot product of two vectors, each 
with 2,048 16-bit entries, as shown in Equation (5.1).  
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1 2.5-D extraction is performed by Silicon Ensemble on a placed and routed 

netlist to determine the cross-coupling capacitance from looking at nearest 
neighbors on the same layer (the first two-dimensional parasitic extraction), 
then all wires that cross over or cross under (the second 2-D extraction). 
These capacitances are summed together to get the lumped cross-coupling 
capacitance to the victim net. 

2 FSG is fluorinated silica glass, with a dielectric constant k of 3.6, which is 
typically used in 0.13um processes. Its dielectric constant is lower than that 
of pure SiO2, which has k of 4.0 and used to be the standard dielectric that 
was used in earlier process technologies. The lower k value for the 
interlayer dielectric (ILD) reduces the wiring capacitance. 
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Table 5.1 Cycle count, power, and energy for dot product of two vectors with 2,048 16-bit 
entries on different configurations. The configurations are the Xtensa with a multiplier in the 
case of MaxMUL, with extensions of two multiply-accumulate blocks in the case of MAC-2, 
and four multiply-accumulate blocks in the case of MAC-4. 

 

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
MaxMUL 0.906 11,909 27.8 3.31
MAC-2 1.064 7,426 25.1 1.86
MAC-4 1.263 5,896 26.5 1.56  

The measurement results for the dot product computation are shown in 
Table 5.1. The table compares the energy of computation without the TIE 
and with TIE instruction extensions. The first column shows the configuration 
name. The second column is the area after logic synthesis. The third column 
shows the cycle count to execute the software corresponding to the dot 
product kernel. The fourth column shows the average power reported by the 
power estimation tool. And, the final column shows the calculated energy. 
Please note that the cycle count also includes a “reset” code sequence and 
other software overhead that is common among MaxMUL, MAC-2, and 
MAC-4 configurations.  

The MaxMUL configuration implements a multiplier but does not support 
a multiply-accumulate instruction. The MAC-2 and MAC-4 configurations 
extend the MaxMUL configuration by adding two and four multiply-accu-
mulate (MAC) units, each implementing 16×16 multiplication with 32-bit 
addition. The area increase is about 10,000 to 12,000 gates per MAC unit, 
assuming a NAND2 drive-strength-2 gate to be about 8um2 in 0.13um tech-
nology.  

The number of cycles decreases by about 4,500 for the MAC-2 confi-
guration. The reduction in the instruction count is due to merged loads and 
merged computation operations. For the MAC-2 configuration, two loads are 
merged into one instruction; two multiplications and two addition operations 
are performed in one instruction compared to four instructions required for 
MaxMUL. A 64-bit register is used, with one MAC putting results in the 
upper 32-bits of the register, and the second MAC unit putting its results in 
the lower 32-bits. The average power reported for the MAC-2 configuration 
is lower than MaxMUL, because the “reset” code sequence and other software 
overheads that dissipate much less power (than the load, multiply, and add 
instructions) constitute a large fraction of the total cycle count for the 
MAC-2 configuration. The energy of computation is reduced from 3.31uJ to 
1.86uJ.  

The addition of two more MAC units to give the MAC-4 configuration 
causes the cycle count to drop by 1,500 due to halving of loads and MAC 
instructions compared to the MAC-2 configuration. The energy decreases 
marginally from 1.86uJ to 1.56uJ. 
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Table 5.2 Cycle count, power, and energy for AES encryption on 55 16-byte blocks of 
plaintext. The configurations are the Small Xtensa (SX), and SX extended with TIE code to 
implement AES in hardware (SX+AES). 

 

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
SX 0.367 283,004 21.6 61.13
SX+AES 0.822 2,768 26.9 0.74  

5.4.2 Advanced Encryption Standard (AES) Encryption  

The advanced encryption standard (AES) works on one 128-bit (16-byte) 
block of plaintext at a time, and uses a 128-bit encryption key [9]. The 128-
bit encryption key is expanded to ten additional 128-bit keys, which together 
make up the “key schedule” of the algorithm. These keys can be generated 
before the core of the algorithm, or on the fly as necessary.  

The 16-byte block of plaintext is conceptually stored and operated upon 
in a 4×4 byte state array. There are four encryption steps performed on this 
4×4 byte array: SubBytes, ShiftRows, MixColumns, and AddRoundKey. 
This latter AddRoundKey step involves one of the eleven keys from the key 
schedule. These four encryption steps are performed eleven times on a given 
128-bit block of plaintext to arrive at the AES-encrypted ciphertext block.  

Implemented as standard C, the inner loop of four encryption steps plus 
key expansion takes hundreds of cycles. However, using TIE, and taking 
advantage of the ability to declare 128-bit wide buses and a custom register 
file, this can be reduced to a single TIE instruction that takes one cycle to 
compute. This single TIE instruction is called 11 times for a given plaintext 
block, and there are also 3 cycles of load/store operations, giving a final 
count of 14 cycles per 16-byte plaintext block. 

The power, cycle count, and energy of computation for AES are shown 
in Table 5.2. AES encryption is performed on 55 blocks of 16 bytes each. 
The total number of blocks is reduced from 1,663 to make disk space 
reasonable for gathering data for a Small Xtensa (SX) configuration. However, 
this results in a very small cycle count for the SX configuration augmented 
with AES TIE. As each block requires only 14 cycles for the SX+AES 
configuration, most of the 2,768 cycles is “reset” code. To report the power 
more accurately, the power for the SX+AES configuration is from the full 
1,663 block run, which takes about 38,000 cycles.  

For the AES example, the area increase due to custom instructions 
exceeds the size of the original processor configuration (124%). The cycle 
count decreases quite drastically. The average power does go up as expected, 
due to more computations per cycle. However, the increase in the computation 
power is offset by reduction in the load and store power. The cycle reduction 
is achieved by the use of wide loads, wide stores, a user-defined register 
file that localizes the data, and key manipulation instructions that are very 
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effectively performed in the extension unit hardware. Due to drastic reduction 
in the cycle count, the energy consumption of 0.74uJ is a small fraction of 
the 61.1uJ energy required without instruction extensions. 

For the SX+AES configuration, the amount of simulation cycles for the 
“reset” code is a significant fraction of the total cycles. The power dissipated 
as a function of time for the SX+AES configuration is shown in Figure 5.2. 
The figure demonstrates the effectiveness of clock gating that shuts off the 
clock to the AES execution unit during the “reset” code execution, reducing 
power by a factor of 2 during reset.  

Figure 5.2 This figure shows the effect of clock gating on AES during reset code execution, 
where the power is halved due to clock gating.  

5.4.3 Fast Fourier Transform 

The fast Fourier transform (FFT) covers a family of techniques for 
computing the discrete Fourier transform (DFT). The discrete Fourier 
transform of a sequence x of N points is given by 
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where k is from 0 to N–1. The inverse discrete Fourier transform is given by 
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We chose to implement an N-point radix-2 decimation-in-frequency FFT 
algorithm for complex input values [11]. Radix-2 refers to the FFT approach 
where a transform of length N is broken up into two transforms of length 
N/2, which are then subdivided in a similar manner, down to the complex 
butterfly computation shown in Figure 5.3. 
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Figure 5.3 The butterfly computation for the radix-2 decimation-in-frequency FFT, where r is 
an integer and depends on the particular stage of the computation.  

Table 5.3 Cycle count, power, and energy for fast Fourier transform. The comparisons are 
between C code on an Xtensa with a multiplier (MUL); C code on an Xtensa with a multiplier 
and extension with two multipliers for the radix-2 butterfly operation (MUL-BFLY); and 
hand-coded assembly on MUL-BFLY. 

 

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
MUL 0.421 325,506 17.4 56.64
MUL-BFLY 0.588 37,676 20.4 7.57
assembly coded 0.588 13,836 18.3 2.53  

There are many loops in this algorithm, all of which follow the basic 
sequence of load-compute-store operations on their respective data. Thus 
the first concern is how to best perform loop optimizations such that the 
compute portion of one iteration can be done while waiting to perform the 
load or store of an adjacent loop iteration. The Xtensa architecture allows for 
at most one load or store per processor cycle, however the computation 
portion can be written to occur in parallel, limited only by the amount of 
compute hardware available. The width of the processor interface (PIF) 
determines the throughput of the load/store instructions, and with a PIF 
width of 128 bits, a throughput of two sets of complex butterfly inputs in 
two cycles is achievable; the throughput of stores is the same. Through this 
method of loop unrolling and optimization, about one complex butterfly 
computation can be achieved per cycle. 

The cycle count, power, and energy of computation for a 256-point 
complex FFT are shown in Table 5.3. The table compares the following: a 
standard C routine running on an Xtensa configuration with a multiplier 
(MUL); a C routine on an Xtensa configuration with a multiplier and with 
two multipliers that are used to implement the radix-2 butterfly operation 
(MUL-BFLY); and hand-coded assembly for the MUL-BFLY configuration. 

Custom instructions fold multiple load instructions into a single load 
instruction, fold multiple store instructions into a single store instruction, and 
implement radix-2 butterfly operation. This significantly reduces the number 
of cycles in computation kernels. With hand-coded assembly for the MUL-
BFLY (assembly coded) configuration, it is possible to reduce the cycle 
count further by clever register allocation and inner-loop code reorgani-
zation. The additional hardware cost to implement the radix-2 butterfly is 
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about 21,000 gates. The reduction in the energy of computation is from 57uJ 
for the original approach to less than 3uJ. 

5.4.4 Viterbi Decoder 

Viterbi decoding is used to determine the maximum likelihood sequence, 
given a sequence of transmitted data which has some noise. The transmitted 
data is encoded with a convolution of the current input with a set number of 
earlier input bits and a masking polynomial. This can be represented by a 
state machine where only some state transitions are possible. This enables 
detection and correction of errors at the receiver, by excluding sequences of 
bits that could not have occurred or have low probability – i.e. by finding the 
maximum likelihood sequence.  

The core part of the Viterbi decoder that determines the throughput is the 
add-compare-select routine: 
 1 1 1 1

, , , ,,   (add)n n n n
i k i i k j k j j kp s b p s b− − − −= + = +  (5.4) 

 1 1
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where sk
n is a state metric (a value representing the likelihood of being in 

state k at time n); bi,k is a branch metric (a value representing the likelihood 
of transition from state i to state k); and pi,k

n-1 is a path metric, accounting for 
the probability of being in state i at time n–1 (si

n–1) then transitioning to state 
k at time n. A simple two-state trellis butterfly computation for the Viterbi 
algorithm is shown in Figure 5.4.  

The add-compare-select routine is the main target of TIE optimization 
for the Viterbi decoder. The Viterbi decoder implemented is for the GSM 
wireless communication standard, which has 16 states in every trellis column 
and requires eight butterfly operations to decode a single bit. The inner 
add-compare-select loop requires about 42 cycles on the base Xtensa. Two 
TIE instructions are created to optimize this process, one 128-bit wide 
load instruction into a state register, and one instruction that calculates the 
shortest arc into each state, stores these in state accumulators, and writes out 
16 binary encoded bytes which designates the most-likely arcs going into 
each subsequent state. With the TIE extension, the inner loop executes 64 
butterfly computations in 10 clock cycles – a speedup by about 270× for the 
inner loop. 
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Figure 5.4 The two-state trellis butterfly computation for the Viterbi algorithm. 
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Table 5.4 Cycle count, power, and energy for Viterbi decoder 

 

Configuration Area (mm2) Number of Cycles Power (mW) Energy (uJ)
Viterbi 0.522 279,537 23.5 65.69
Viterbi+TIE 0.595 7,632 26.2 2.00  

The data for the Viterbi decoder is shown in Table 5.4. The data consisted 
of six trials of 192 frames each, with two integer entries per frame. The power 
measurement for the Viterbi+TIE configuration is on ten trials, because cycle 
count for six trials is too low to make reset code negligible. The increase in 
hardware cost is less than 10,000 gates, and the cycle count reduces from 
280,000 to less than 8,000 cycles. 

5.5 SUMMARY 

We present a new approach to energy optimization at microarchitectural 
and architectural-level using extensible processors. Extensible processors 
offer an attractive alternative to hardwired logic as the potential energy inc-
rease from the use of a processor platform is more than compensated by 
the complexity of designing, verifying, and integrating hardwired logic. We 
present a methodology to optimize the energy that consists of designing custom 
instructions; generating hardware and software tools; generating hardware 
switching activity; and measuring power at the RT level. We obtain a drastic 
reduction in the energy of computation compared to fixed-instruction-set 
processors. 

Several approaches have been presented to automatically generate custom 
instructions for extensible processors [2][6][12][16]. For future work, it is 
promising to take the energy minimization objectives into account while 
automatically generating custom instructions from the application code. 
Also, it is interesting to look at ways to make the software compiler energy 
aware [18].  
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LINEAR PROGRAMMING FOR GATE SIZING 
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For many ASIC designs, gate sizing is the main low level design technique 

used to reduce power. Gate sizing is a classical circuit optimization problem 
for which the same basic method has been used for the past 20 years. The 
standard approach is to compute a sensitivity metric, for example for the 
power versus delay tradeoff for upsizing, and then greedily resize the gate 
with highest sensitivity, iterating this process until there is no further improve-
ment. Such methods are relatively fast, with quadratic runtime growth versus 
circuit size, but they are known to be suboptimal. The challenge has been to 
find a better approach that still has fast runtimes. 

Our linear programming approach achieves 12% lower power even on 
the smallest ISCAS’85 benchmark c17, as shown in Figure 6.1. The linear 
program provides a fast and simultaneous analysis of how each gate affects 
gates it has a path to. Versus gate sizing using the commercial tool Design 
Compiler with a 0.13um library, we achieve on average 12% lower power at 
a delay constraint of 1.1 times the minimum delay (Tmin), and on average 
17% lower at 1.2Tmin – in one case 31% lower. The runtime for posing and 
solving the linear program scales between linearly and quadratically with 
circuit size.  

6.1 INTRODUCTION 

We wish to find the minimum power for a circuit to satisfy given delay 
constraints. To limit the solution space, we consider a gate-level combi-
national circuit with fixed circuit topology. The circuit may be represented 
as a directed acyclic graph (DAG), where each node is a logic gate and 
edges are connections between gates. The logic gate at each node is fixed; 
we do not allow nodes to be inserted or removed, or graph edges to change – 
for example pin swapping is not allowed.  
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Figure 6.1 At a delay constraint of 1.2Tmin for ISCAS’85 benchmark c17, we achieve lower 
power than Design Compiler. The two shaded gates on the lower left circuit are suboptimally 
downsized by Design Compiler. In contrast, the linear programming approach downsizes four 
of the NAND2 gates and achieves 12% lower power. 

For each logic gate, there are a number of logic cell implementations that 
may be chosen from the available standard cell libraries. Each cell has 
different delay, dynamic power, and leakage power characteristics. These 
characteristics are determined by factors such as the gate oxide thickness, 
width, length and threshold voltage of transistors composing the logic cell; 
transistor topology – for example stack forcing [16] and alternate XOR 
implementations; and the supply voltage. We shall limit discussion in this 
chapter to gate sizing. However, the same delay and power tradeoffs need to 
be considered for all these factors, and the optimization problem does not 
fundamentally differ except in the case of gate supply voltage, where there 
can be topological constraints. Our objective is to minimize the power 
subject to a delay constraint, but the approach herein is equally applicable to 
minimize the area subject to a delay constraint. Using libraries with multiple 
supply and threshold voltages is a relatively new low power technique and 
will be discussed in chapters 7 and 8. 
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Figure 6.2 This simple example shows that greedily choosing the gate with the maximum 
sensitivity is suboptimal. If all the gates are initially size X2, the critical path is 2ns and power 
is 12mW. Consider a 3ns delay target. Picking the max power_reduction/delay_increase 
sensitivity results in sizing down the AND4 gate, giving total power of 10mW. If the four 
AND2 gates are sized down instead, the power is only 8mW. 

6.1.1 Gate sizing approaches 

Gate sizing algorithms have changed little in the past 20 years. In 1985, 
Fishburn and Dunlop proposed a fast method (TILOS) to minimize area 
and meet delay constraints, greedily picking the transistor with maximum 
delay_reduction/transistor_width_increase at each step [6]. Variants of this 
are still standard in commercial sizing tools.  

Approaches similar to TILOS can be used to minimize power when gate 
sizing. Srivastava et al. used max delay_reduction/power_increase to meet 
delay constraints, after reducing power by assigning gates to low supply 
voltage (Vdd) [22]. Downsizing a gate gives a linear reduction in the power 
to charge and discharge its internal capacitances and input pin capacitances, 
as the capacitance is proportional to the transistor widths in the gate. Leakage 
power is also reduced linearly as gate width is reduced.  

Greedy heuristics that pick the gate with the maximum sensitivity fail to 
consider the whole circuit and are suboptimal – for example see Figure 6.2. 
The challenge is to find a better approach with a global view of the circuit 
that has fast runtimes. 

Several groups have used convex optimization to find a globally optimal 
solution. Convex optimization requires convex delay and power models, 
such as linear or posynomial models. In our experience, linear models are 
inaccurate. Least squares fits of linear models versus gate size and load 
capacitance of 0.13um library data had delay inaccuracy of 19% to 30%, and 
least squares fits of piecewise linear models also has sizable error of 10% to 
30% [20]. The analysis in [20] assumed a fixed input slew of 0.07ns, so 
these errors will be even larger once variable slew is taken into account. 
Linear program (LP) solvers with linear models can scale to problems with 
millions of variables. Higher order convex models, such as posynomials 
[13], are at best accurate to within 5% to 10% [4][13][20][24]. The accuracy 
is limited because real data for delay and power is not a convex function of 
gate size – standard cell layouts change significantly as the gate width changes, 
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due to transistor folding for layout of larger cells and other cell layout 
concerns. Sacrificing delay accuracy is unacceptable, when a 10% delay 
increase can give 20% power savings (e.g. compare power at 1.1Tmin and 
1.2Tmin in Table 6.2). Optimization with posynomial models requires using a 
geometric program solver with runtimes that scale cubically [4]. Thus 
geometric programming optimization of circuits of tens of thousands of 
gates or more is computationally infeasible. In addition, convex models must 
assume at least a piecewise continuous range for optimization variables that 
are typically discrete, which introduces suboptimality when the resulting 
intermediate values must be rounded up or down in some manner to a 
discrete value – though this is less of an issue for a library with very fine-
grained sizes.  

It is possible to formulate a linear program to perform optimization at a 
global level with more accurate delay and power models. The basic approach 
is to use the linear program to specify the delay constraints, and the power 
and delay changes if the cell for a gate is changed. A heuristic is required to 
choose which cell change is the best to encode in the linear program, for 
example the cell that gives the best power_reduction/delay_increase. The 
solution to the linear program indicates which cells may be changed, or how 
much timing slack is available to change a cell to one that consumes less 
power. Cells with sufficient slack are then changed. This procedure of speci-
fying the best alternate cells in the linear program, solving it, and assigning 
cell changes is iterated.  

The linear program formulation requires some timing slack for the circuit 
to be downsized and upsized in an iterative manner to converge on a good 
solution. A 0.13um standard cell library was used. At a delay constraint of 
1.1 times the minimum delay (Tmin), we achieve on average 12% lower 
power by sizing than Design Compiler at the same delay constraint, and on 
average 17% lower at 1.2Tmin – in one case 31% lower. Design Compiler is 
the commercial EDA synthesis tool which is most commonly used in industry, 
and it is generally considered to produce high quality results compared to 
other EDA tools [8]. The timing and power results for the optimized netlists 
have been verified in Design Compiler.  

An overview of gate sizing approaches along the lines of TILOS is 
provided in Section 6.2. The linear programming formulation is detailed in 
Section 6.3. The optimization flow is detailed in Section 6.4. Section 6.5 
compares our gate sizing results versus gate sizing in Design Compiler, and 
then Section 6.6 discusses computational runtime. Section 6.7 concludes 
with a short summary of this gate sizing work. 

6.2 OVERVIEW OF TILOS GATE SIZING 

Starting with a circuit that violates delay constraints, TILOS aims to 
meet the delay constraints with the minimum increase in area. Transistors on 
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critical paths, that is paths that don’t satisfy the delay constraint, were analyzed 
with the following sensitivity metric [6]  

  reduce delay
dSensitivity
w

∆
= −

∆
 (6.1) 

where ∆d is the change in delay on the path and ∆w > 0 is the increase in 
transistor width. ∆d was determined from convex delay models for the 
distributed RC network representing the circuit. The total circuit area was 
measured as the sum of the transistor widths, so the aim was to get the best 
delay reduction with the minimum transistor width increase. The transistor 
with the maximum sensitivity was upsized to reduce the path delay. This 
greedy approach proceeded iteratively upsizing transistors with maximum 
sensitivity until delay targets are met, or there are no upsizing moves to further 
reduce delay [6].  

Dharchoudhury et al. used a similar approach for transistor-level sizing 
of domino circuits in 1997. By this time, distributed RC networks had fallen 
out of favor in industry due to inaccuracy and it was essential for timing 
accuracy to model individual timing arcs. The sensitivity to upsizing a tran-
sistor was computed by [5] 

  
_ min

1 l
reduce delay

l timing arcs l

dSensitivity
w Slack Slack k∈

∆
= −
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where Slackmin is the worst slack of a timing arc seen in the circuit; Slackl is 
the slack on the timing arc; ∆dl is the change in delay on the timing arc if the 
transistor is upsized (∆w > 0); and k is a small positive number for numerical 
stability purposes. The weighting 1/(Slackl – Slackmin + k) more heavily 
weights the timing arcs on critical paths.  

Srivastava and Kulkarni in [14] and [22] used a delay reduction metric 
similar to Dharchoudhury et al., for gate-level sizing to minimize power and 
meet delay constraints in their TILOS-like optimizer. The sensitivity metric 
was [22]  

  
_ min

1 l
reduce delay

l timing arcs l

dSensitivity
P Slack Slack k∈

∆
= −

∆ − +∑  (6.3) 

where ∆P > 0 is the change in total power for upsizing a gate. The same 
analysis was used in [21] for the delay versus leakage power trade-off. The 
timing slack on a timing arc through a gate from input i to output j is 
computed as  
         ( )arc ij required at output j arrival at input i arc ijSlack t t d= − −  (6.4) 

where trequired at output j is the time the transition must occur at gate output j for 
the delay constraint to be met on paths that include the timing arc;  
tarrival at input i is the arrival time at input i; and darc ij is the delay on the timing 
arc. The slack is the maximum increase in delay of the timing arc that will 
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satisfy the delay constraints, and it will be negative if a delay constraint is 
not met on a path through the gates with that timing arc. Note here that the 
impact on delay of slew changing is not included in Equation (6.3), and that 
for accuracy the delay change on the timing arc ∆dl should include the delay 
change of the gate that drives gate input i due to the change in input capaci-
tance of pin i as the gate is upsized. This TILOS gate sizing approach does 
not include gate downsizing, but that is not important as the starting point for 
the TILOS gate sizer is with all gates at minimum size. 

Similar metrics have been used for greedy power minimization appro-
aches. For example, for leakage reduction [25] 

  
leakage

reduce power

P
Sensitivity

d
∆

= −
∆

 (6.5) 

and for power reduction [22] 

  
l

reduce power
l timing_arcs l

SlackSensitivity P
d∈

= −∆
∆∑  (6.6) 

The worst case theoretical complexity of these TILOS-like sizers is 
O(|V||E|), as iteratively the gate with the maximum delay reduction is picked, 
then static timing analysis must be updated over the timing arc edges from 
gate to gate, and the number of size increases for a gate is limited. For our 
benchmarks, |E| ranged from 1.59× to 2.01×|V|. Consequently, the worst case 
runtime behavior is O(|V|2), as was observed in Section 6.6.2 for gate sizing 
with Design Compiler. 

The greedy approach of optimizing the gate with the greatest sensitivity 
is a peephole optimization approach. The optimizer considers only changing 
one gate at a time and only looks at the impact on the immediate neighbor-
hood. For example, reducing a gate’s delay will provide some timing slack 
there, but the primary output delay on that path may not be reduced as there 
may be other convergent paths that are timing critical. An approach with a 
global view is needed to consider multiple gates simultaneously and determine 
the overall impact of them changing. 

6.3 LINEAR PROGRAMMING FORMULATION 

Linear programming has been proposed previously for gate sizing with 
linear delay models [1][12]. As described above, linear delay models are very 
inaccurate for today’s technologies. Instead, we encode the delay constraints 
and the impact of cells changing in the linear program. The linear program 
formulation provides a global view of the circuit for optimization. 

The linear program gives a fast and simultaneous analysis of how changing 
each gate affects the gates it has a path to. From the LP solution, all the 
gates may be sized simultaneously, which avoids greedily sizing individual 
gates. 
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Figure 6.3 A combinational circuit for illustrating the delay constraints. Primary inputs are 
denoted i1 to i3, and the primary outputs are o1 and o2. 
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Figure 6.4 Directed acyclic graph (DAG) representation of the circuit in Figure 6.3. Primary 
inputs connect to the source, and primary outputs connect to the sink. The topological level is 
determined in a breadth first manner from the source which is level 0. Vertex names are noted 
inside the circle representing the node, and edge names are next to the edge. 

The idea for the linear programming approach came from the zero-slack 
algorithm, which determines a maximal safe assignment of additional delays 
to each node that avoids violating the delay constraints at the outputs, but if 
any further delay was added to a node then a delay constraint would be 
violated [15]. No timing slack remains in the resulting circuit, hence the 
name “zero-slack”. The essential idea is formulating a set of delay constraints 
that determine how delays along a path add up and what additional delays 
can be added at each node without violating output constraints. In this cons-
traint formulation, the delay constraints are linear. Our linear programming 
approach differs from [15], using the change in total power as the objective 
function, effectively a weighted sum over the additional delay at each node. 

A combinational circuit (Figure 6.3) is represented as a directed acyclic 
graph G(V,E) (Figure 6.4), where each gate is represented by a vertex in V, 
and edges in E between vertices represent wires. Assuming no gate drives 
more than one input on another gate, we can uniquely represent a directed 
edge from gates u to gate v, as uv; u is a fanin of v, and v is a fanout of u.  

For each gate v, we can determine the best alternate library cell that 
implements the same logic, by examining the following sensitivity metric: 

 Sensitivity metric for changing cell , where 0,  0v
v v

v

P P d
d

∆
= ∆ < ∆ >
∆

 (6.7) 
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where ∆dv and ∆Pv are respectively the change in delay and power if the cell 
is changed. The cell alternative with the minimum value for this metric is the 
best alternative, giving the largest power_reduction/delay_increase. If the 
only cell alternates have ∆Pv > 0 then the gate will not be changed.  

For each gate, the best cell alternative, if one exists that reduces power, 
is encoded in the linear program using a cell choice variable γv∈[0,1], which 
determines if it is changed. γ = 1 if the alternate cell is used, γ = 0 if not. The 
LP solution may give a γ value in-between 0 and 1, in which case appro-
priate thresholds must be chosen.  

The linear program’s objective function to minimize the total power is 
 minimize v v

v V
Pγ

∈

∆∑  (6.8) 

and there are constraints on the cell choice variables, 
 0 1,  for all v v Vγ≤ ≤ ∈  (6.9) 

These cell choice variables are the only “free variables”; they determine the 
delay constraint variables, tvw, on each vw between gates. The delay constraints 
on edges between gates are  
 , for all ,  ( ),  ( )vw uv v v vt t d d v V w fanout v u fanin vγ≥ + + ∆ ∈ ∈ ∈  (6.10) 

Namely, the arrival time at the output of gate v (tvw, on edge vw) is equal to 
the arrival time at the input of gate v on edge uv (tuv), plus the delay of gate 
v, plus the change in delay ∆dv of gate v if its cell is changed.  

For simplicity, we assume that all circuit paths are subject to the same 
maximum delay constraint, Tmax, noting that it is straightforward to encode 
different delay constraints in the linear program if so desired. A circuit sink 
node is added to V', such that all primary outputs of the combinational circuit 
connect to the sink and are subject to the constraint Tmax. Delay constraints to 
the circuit sink are 
 max ,  for all ( ) wSinkt T w fanin Sink≤ ∈  (6.11) 

Similarly, we add a circuit source to V', such that all primary inputs 
connect to the source, V' = V ∪ {Source, Sink}. We assume that arrival times 
from the circuit source are at t = 0, though it is trivial to specify individual 
arrival times by input if so desired, giving  
  0,  for all ( )Source ut u fanout Source= ∈  (6.12) 

where tSource u is the arrival time from the source to gate u. As there may be 
more than one connection from a gate to the circuit source or sink, to uniquely 
identify those edges we can use the primary input or output name.  

The complete linear program to minimize power, subject to delay cons-
traints, is 
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This was our initial formulation for the linear program [17]. The signal 
slew is not included, nor are rise and fall delays considered separately. This 
leads to significant delay inaccuracy. As the fanin delay impact due to 
changed input capacitance Cin is not modeled, gates can not be upsized to 
avoid increasing fanin delay. There is no method for reducing delay to fix 
violated delay constraints. With the help of Fujio Ishihara and Farhana 
Sheikh, we tested this approach on a 17,000 gate inverse discrete cosine 
transform block to implement dual supply voltages with a 0.13um library – 
the simplistic models resulted in a 24% increase in the clock period when 
measured in Synopsys Design Compiler, despite a tight delay constraint.  

6.3.1 Improving power and delay accuracy 

This subsection discusses how the linear program is accurately formulated 
using the data from incremental static timing and power analysis.  

Static timing and power analysis are performed using the standard cell 
libraries to determine gate delay, slew and power values used in the linear 
program. Considering alternate cells for a gate is a core part of the inner 
optimization loop for setting up the linear program, so it is essential that it be 
fast. In particular, when analyzing changing the gate for a cell, only a very 
limited range of interactions must be considered to minimize computational 
overheads. It is also important to be able to roll back this change and consider 
alternatives for another gate, without any additional overheads to recompute 
the original timing and power values.  

Software modules were written to perform incremental timing and power 
analysis, with the ability to store temporary alternative values when consi-
dering cell changes and to store the best alternatives found. Design Compiler 
was used as a reference to debug the software for timing and power analysis, 
and later validate the results for optimized netlists.  

The changes in delay and power determined by incremental analysis are 
encoded in the linear program. The LP remains limited in accuracy, because 
only first order changes, one gate’s cell changing at a time, can be encoded. 
Static timing and power analysis are performed after the linear program has 
been solved and cells have been changed, to more accurately determine the 
power of the new circuit and whether delay constraints have been met.  
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6.3.1.1 What variables must be modeled in the LP for accuracy? 

As outlined earlier, a central optimization issue is the accuracy of the 
delay and power models. The linear program constraints must model the 
impact on delay and power due to changing gate size, Vdd, or Vth.  

Consider changing a single gate’s cell. The input capacitance Cin of the 
gate’s input pins loads the fanin gates, affecting their delay and switching 
power. The gate’s drive strength affects its delay and output slew, which 
may increase the delay of paths the gate is on, and the internal power of 
fanouts may be affected by the change in output slew. If the gate’s voltage 
changes, that affects the switching power for the load it drives. The gate’s 
subthreshold leakage increases exponentially with decreasing Vth. The gate 
size primarily determines Cin, which affects the load on fanins. Size (transistor 
width), Vdd, and Vth all affect the gate drive strength.  

The impact of changing a gate on its power and delay and on that of 
neighboring gates was examined. Incremental timing analysis allowed exp-
loring what neighborhood of affected gates needs to be considered for 
accurate analysis. The fanin level of logic must be considered, as there can 
be substantial delay and slew changes due to changing the load capacitance. 
Analysis was also performed with one or two fanout logic levels, from both 
the gate that is changed and its fanins.  

More than 95% of the change in power occurs at the gate whose cell 
changes: switching power due to Cin; switching power of the load with Vdd; 
leakage power; and internal power. Slew changes affect the short circuit 
power of neighboring gates, but short circuit power is only a small part of 
the total power – typically less than 10% [3]. Usually 99% or more of the 
total power impact is accounted for at the gate, though in some cases it may 
be as low as 95%. Thus to determine with reasonable accuracy the change in 
power by changing a gate, we only need to consider the gate itself and can 
avoid computing the impact on other gates.  

In contrast, changing Cin and output slew significantly impacts the delay 
of neighboring gates. The impact of Cin is limited to the immediate fanins – 
the fanins of fanin gates do not see the change in load capacitance, as 
complementary static CMOS logic decouples this. However, the delay and 
slew changes of fanins and of the gate itself propagate forwards topologically. 
It is computationally expensive to calculate this impact over more than the 
fanin level of logic. Instead, we conservatively determine the worst case 
impact on the transitive fanout from the gate being changed and its fanins. 
This was sufficient to produce good power minimization results with fast 
computation time – though the impact of slew propagation to the fanouts 
must be considered as described in Section 6.3.1.2. Delay propagation is 
handled in the usual way for static timing analysis, with output arrival time 
constraints in terms of the arrival time at the inputs and delay of the gate. 
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To determine the impact of a gate x’s input capacitance changing on a 
fanin v, we assume the cell of the fanin gate has not changed and calculate 
the change in delay due to x changing, adding this to the delay constraint. 
For example, for the constraint on the arrival time of the rising output of gate 
v on edge vw is  
 , , , , , , ,

( ),
vw rise uv fall uv rise v uv rise v x uv rise x

x fanout v x w

t t d d dγ γ
∈ ≠

≥ + + ∆ + ∆∑  (6.14) 

where tuv,fall is the falling arrival time at v from gate u; duv,rise is the delay 
from the signal on uv to the output of v rising; and ∆duv,rise,x is the change in 
delay out of this timing arc if the cell of x changes. Here we have assumed 
gate v is of negative polarity, namely that a falling input may cause a rising 
output transition. Wire RC delays, for example on the edge from gate v to 
gate w, are also included in the delay calculations.  

6.3.1.2 Modeling the impact of signal slew propagation 

We will now address modeling the delay impact of signal slew in the linear 
program. For cells in our 0.13um libraries, ∆sout/∆sin ranges from –0.23 to 
0.67, where ∆sout is the change in output slew due to change in input slew 
∆sin. ∆d/∆sin sensitivity ranges from –0.32 to 0.54, where ∆d is the delay 
change due to ∆sin. Thus a slew change can significantly impact delay. 
Larger magnitude ∆d/∆sin values occur with larger NOR and NAND drive 
strengths, and when the input voltage swing exceeds the gate supply voltage, 
for example -0.29 in the case of Vin=1.2V and Vdd=0.6V. 

A simple approach was proposed in [19] to analyze the transitive fan-
out delay impact of slew on a given path. Their delay models were linear 
versus slew, and they did not consider rise and fall delay separately. So it is 
straightforward just to sum the delay impact along the path, giving, in our 
terminology, the transitive fanout delay/slew sensitivity β as 

 z z
uv vw

a a

d s
s s

β β∆ ∆
= +
∆ ∆

 (6.15) 

where a and z are respectively the input and output pins of gate v shown in 
Figure 6.3, which has output delay dz and output slew sz due to a signal on a 
with input slew sa; ∆dz/∆sa and ∆sz/∆sa are the gradients for gate delay and 
output slew from the linear models; and the path goes through the connected 
gates u, v and w in the order u→v→w. A slew change ∆s at the output of 
gate u increases the path delay by βuv∆s.  

Our approach to calculate the transitive fanout delay impact of slew 
considers multiple paths simultaneously and is more accurate, providing upper 
and lower bounds on the slew impact. To consider simultaneous changes, we 
account for gates in the transitive fanout changing by determining the worst 
case slew impact over all alternate cells available for a gate. In reverse 
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topological order, we then calculate the maximum and minimum transitive 
fanout delay/slew sensitivity β: 
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 (6.16) 

To conservatively bound the slew impact on delay, we multiply by βuv,min 
if the output slew of u decreases, and by βuv,max if it increases. We do model 
multiple outputs and separate rise/fall delays, but omit these in Equation 
(6.16) for clarity.  

A change in slew propagating may reduce the delay if the lower bound 
βuv,min > 0 and the change in input slew is ∆s < 0, as βuv,min∆s < 0. However, 
as the output slew is the maximum over the timing arcs, this decrease in 
delay may not propagate if the slew on this arc is not the maximum slew, 
even if this arc is on the critical path in terms of delay. Consequently,  
βuv,min > 0 may be optimistic. In practice, this does not appear to be a 
significant issue in most cases, but it might explain why delay reduction can 
perform poorly with more aggressive slew analysis, where βuv,min is typically 
around 0.1. 

Several approaches may be used when calculating β. Firstly, to be 
conservative and reduce computation time, β may be calculated over all 
the alternate cells for a gate, not just the current cell. Alternately, β may be 
calculated only for the current cell, which avoids re-computation after the 
best cell is chosen for each gate. β could also be calculated over the current 
cell and the best alternate cell. This last option was not tried, because it 
requires additional computation in the inner optimization loop that sets up 
the linear program.  

Secondly, we can conservatively calculate β over all alternate possible 
input slew and load conditions, or about the current input slew and load 
conditions only – optimistically assuming that they will not change subs-
tantially.  

In practice, it is not clear what the best approach to calculate β is. The 
results achieved with these different options typically vary within about 2% 
of the best solution, and no single approach is always best. Starting with a more 
conservative approach, calculating β over all alternate cells for a gate and over 
all possible load and input slew conditions, and then trying more aggressive 
settings, calculating β over only the cell for a gate and only the current load 
and input slew conditions, produces better results on average than starting 
with more aggressive settings. With the conservative settings, typical values 
are 0.0 for βmin and 0.3 for βmax. With the aggressive settings, typical values 
are 0.1 for βmin and 0.2 for βmax.  
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Adding the additional slew terms to Equation (6.14), we have  
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where ∆suv,rise,x is the change in slew out of this timing arc if the cell of x 
changes. Multiplying by βvw gives the worst case transitive slew impact on 
delay, where we use βvw,min if ∆suv < 0, or βvw,max if ∆suv > 0. The change in 
delay and slew of v due to the cell of w changing is included in the delay and 
slew changes for w, thus there is no γw(∆duv,rise,w+βvw∆suv,rise,w) term for tvw,rise.  

Comparing Equation (6.17) to Equation (6.10), there are additional terms 
here that consider the impact of slew, the impact of the cell of output gates x 
changing, and rise and fall timing arcs are considered separately.  

We examined the importance of including the transitive fanout delay 
impact of slew by setting β = 0 and performing optimization. The inaccuracy 
due to ignoring slew resulted in delay constraints violations and less power 
savings due to the timing inaccuracy and reduced timing slack available for 
power minimization [4]. This shows how important it is to account for slew 
both in static timing analysis and in the optimization formulation.  

6.3.2 Formulating cell changes 

Now that we have identified what is necessary for delay and power 
accuracy, we can again address identifying the best alternative cells for a 
gate. Instead of computing our sensitivity metric with a single value for the 
delay change in Equation (6.7), ∆Pv/∆dv, we must consider multiple timing 
arcs. To allow the linear programming approach to be used for delay 
reduction, we must allow ∆dv < 0 to be encoded in the LP. As discussed in 
Section 6.3.1.1, ∆Pv is determined by summing over the change in leakage 
power, change in internal power, change in switching power of the gate’s 
inputs, and change in switching power of the gate’s outputs if Vdd changes. 

When considering multiple timing arcs and ∆dv, there are two options 
that were considered. We could just use the worst change in delay and 
additionally the transitive delay impact of slew, or we could combine multiple 
timing arcs into the metric. The latter approach was performed by averaging 
the delay and transitive delay impact of slew over the timing arcs. Averaging 
the timing arcs is equivalent to the worst case if pull-up and pull-down drive 
strengths are balanced and individual timing arcs have similar delays. 
However, in practice this is not the case (e.g. see Figure 7.4 and Figure 7.5). 
Generally, the more conservative approach using the worst case delay change 
on a timing arc to determine ∆dv produces slightly better results, because this 
is less likely to result in a delay change that violates the delay constraint. A 
third possible approach, which has not been tried, would be to weight by 
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slack on each timing arc. Note that when ∆dv is calculated, it includes the 
impact of the cell changing on the delay and the slew of the fanins of v on 
timing arcs that propagate to v. 

The best alternative cell for a gate is chosen as follows. If a cell change 
reduces power and delay (∆P<0, ∆d<0), pick the cell which best reduces the 
objective, delay or power. Otherwise: to reduce power pick the cell with 
maximum power_reduction/delay_increase (min ∆P/∆d, ∆P<0, ∆d>0); to 
reduce delay pick the cell with the max delay_decrease/power_increase  
(max ∆P/∆d, ∆P>0, ∆d<0). Here, ∆d is the maximum delay change over its 
timing arcs, including the slew impact, or the average change over the timing 
arcs as discussed above. Note that for different gates we may encode cells 
that reduce delay or reduce power in the same linear program. For example 
when minimizing power, if a gate is already minimum size, then there may 
be no cell change that reduces power further, but if there is a size increase 
that reduces delay at the expense of power, we encode that in the LP to allow 
for the situation where other gates can better use the slack that would be 
created by upsizing the gate – the LP determines whether this is a worthwhile 
trade-off or not.  

The best delay and power cell alternatives for a gate are cached by its 
input slews, input arrivals and load capacitance values, and that of its fanins 
along with their supply voltages. Caching provides substantial speed ups for 
setting up the LP on later iterations. 

The LP solution gives values for the cell choice variables γv between 
zero and one. A threshold is used to determine when to change a cell: if a 
cell reduced delay and γv > 0.01, the alternate cell was used; if a cell reduced 
power and γv > 0.99, the alternate cell was used. A number of different 
thresholds were tried, these produced the best results. The philosophy behind 
using a threshold of 0.01 for delay is that if that gate’s delay needs to be 
reduced to meet delay constraints, then the alternate cell must be used. 
Conversely, a high threshold was set for power reduction, because if γv 
wasn’t close to 1, we couldn’t guarantee that delay constraints would be met 
if the cell was changed. In practice, this threshold approach produces very 
good power minimization results as described in Section 6.5.2.  

6.3.3 Input drivers 

An additional accuracy improvement is modeling the impact of gates 
loading the primary inputs, by including input drivers in the circuit repre-
sentation. The cell for the input drivers is user specified, and might be set to 
a drive strength X1 inverter for example. The switching power of the driver 
input pins is not included, nor is the internal power of the input drivers. The 
set of drivers is denoted D. As the cell for a driver v cannot change, γv = 0, 
the delay constraint on an input driver is 
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where dSource v,rise is the rise delay of the input driver. 

6.3.4 The linear program 

To minimize the total power, the complete formulation for the linear 
program formulation is 
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where tuv,fall is the falling arrival time at v from gate u; duv,rise is the delay 
from the signal on uv to the output of v rising; and ∆duv,rise,x and ∆suv,rise,x are 
the changes in delay and slew out of this timing arc if the cell of x changes. 
Multiplying by βvw gives the worst case transitive slew impact on delay, 
where we use βvw,min if ∆suv < 0, or βvw,max if ∆suv > 0. The change in delay 
and slew of v due to the cell of w changing is included in the delay and slew 
changes for w. This is why we don’t have a γw(∆duv,rise,w+βvw,rise∆suv,rise,w) term 
for tvw,rise for example. The LP with linear approximations cannot model the 
higher order delay impact of multiple cells changing (γvγx terms). Solving 
such higher order problems would be much slower.  

The delay constraints specified in Equation (6.19) assume that the gates 
have negative polarity, that is a rising input causes a falling output if there is 
a logical transition, or a falling input causes a rising output. Constraints for 
positive polarity and nonunate transitions can be handled similarly. Positive 
polarity means that a rising (falling) output is caused by a rising (falling) 
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input transition. A nonunate transition can be caused by both a rising input 
or a falling input, depending on the value of other inputs – for example for 
an XOR gate. Our software handles all timing arcs, including positive 
polarity and nonunate gates, and gates with multiple outputs. Wire delays are 
included in the timing analysis. The wire load model is specified in the 
library, or extracted post-layout wiring parasitics could be specified for each 
wire. 

We can also use the same LP formulation approach to reduce delay when 
T > Tmax . When reducing delay, the objective is 
 maxminimize max{ , } v v

v V
T T k Pτ γ

∈

+ ∆∑  (6.20) 

where k is a weight to limit the power increase when reducing delay, and 
τ limits the delay reduction. If the ratio of total power to the critical path 
delay is large, then k should be small to allow delay reduction. For our 
benchmarks, the best values were k of 0.01 and τ of 0.99, so that after delay 
reduction there is timing slack for further power minimization. In several 
cases to meet Tmax, k of 0.001 and τ of 0.98 were used.  

The complete formulation of the linear program for delay reduction with 
a weighting on power is  

 

max

 ,

 ,

, max

, max

minimize max{ , }

subject to 0,  for all 

0,  for all 
,  for all ( )
,  for all ( )

0 1,  

               

v v
v V

Source u fall

Source u rise

wSink rise

wSink fall

v

T T k P

t u D

t u D
t T w fanin Sink
t T w fanin Sink

τ γ

γ

∈

+ ∆

= ∈

= ∈

≤ ∈
≤ ∈

≤ ≤

∑

, , , , , , , ,

, , , ,

for all 
0,  for all 

For all ,  ( ),  ( ),  
timing arc constraints:

( ) 

               (

v

vw rise uv fall uv rise v uv rise v vw rise uv rise v

x uv rise x vw rise uv ri

v V
v D

v V D w fanout v u fanin v

t t d d s

d s

γ

γ β

γ β

∈
= ∈

∈ ∪ ∈ ∈

≥ + + ∆ + ∆

+ ∆ + ∆ ,
( ),

, , , , , , , ,

, , , , ,
( ),

)

( )

               ( )

se x
x fanout v x w

vw fall uv rise uv fall v uv fall v vw fall uv fall v

x uv fall x vw fall uv fall x
x fanout v x w

t t d d s

d s

γ β

γ β

∈ ≠

∈ ≠

≥ + + ∆ + ∆

+ ∆ + ∆

∑

∑

 (6.21) 

The next section describes how these delay reduction and power mini-
mization linear programs are used iteratively to reduce the circuit power 
consumption while meeting delay constraints. 
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Figure 6.5 Detailed optimization flow diagram.  

6.4 OPTIMIZATION FLOW 

The optimization flow is shown in Figure 6.5. We start with a combi-
national gate-level netlist (in a Verilog file), accompanying switching activity 
and leakage state probabilities (in a SAIF file), and standard cell libraries 
(Liberty .lib format). Input drivers or input slew and output port load capa-
citance are user specified. Power minimization is performed subject to a delay 
constraint. If delay constraints are violated after optimization, delay reduction 
with a weighting on power is performed. The optimization is iterated until 
the maximum number of iterations is reached.  

The starting point for optimization matters little providing that if a delay 
constraint is violated, for example after power minimization, we can reduce 
the delay to satisfy delay constraints. For example, multi-Vth experiments 
starting with all gates at low Vth rather than high Vth gave only marginally 
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better results after optimization. However, at a fairly tight delay constraint, 
such as 1.1× the minimum critical path delay, the delay reduction phase may 
have trouble reducing delay, in which case it is essential to start with a delay 
minimized netlist.  

Alternate cells for a logic gate are chosen by the best power/delay sensi-
tivity as described in Section 6.3.2; we set up the linear program constraints; 
and then the open source COIN-OR LP solver [7] is used to choose γ values 
to minimize the power subject to delay constraints. Gates with γ close to 1 in 
the LP solution are then changed – a threshold of γ > 0.99 generally worked 
best. If γ < 0.99 then there is insufficient slack in the circuit for the cell to be 
changed without violating a delay constraint, assuming that changing the cell 
results in a delay increase. 

Gates are changed simultaneously without fully considering the impact 
of other gate changes. If a gate is upsized increasing Cin and its fanin is 
downsized, then the fanin delay is larger than modeled in the LP which may 
lead to violating Tmax. If this occurs, we perform delay reduction to satisfy 
Tmax. For delay reduction, a threshold of γ > 0.01 worked well – if a gate has 
to be upsized to satisfy the delay constraint, we do so. 

Thus the solution converges iteratively to reduce power and satisfy Tmax. 
At a tight delay constraint, the delay reduction may fail to satisfy Tmax. 
Design Compiler with greedy delay_reduction/power_increase reduces delay 
better than our tool. The output of our optimization is the optimized Verilog 
netlist, for which the static timing and power analysis can then be verified in 
Design Compiler.  

As the solution converges, the power reduction that is achieved per itera-
tion decreases. To ensure that the solution is close to the optimal that can be 
achieved by the linear programming approach, several different parameter 
settings can be tried to see if any additional savings may be achieved.  

6.4.1 The importance of the delay reduction phase 

The importance of the delay reduction phase is illustrated by Figure 6.6, 
which shows the typical progress of the optimization flow. After a couple  
of iterations of power minimization, the timing slack in the initial delay-
minimized circuit has been used to perform gate downsizing. If cell changes 
were not allowed to cause the delay constraint to be violated, the optimi-
zation would stop at a solution with total power of about 5.9mW. Alter-
natively, we can allow the power minimization flow to make cell changes 
that may end up violating delay constraints, changing the cells of gates that 
have γ > 0.99 from the LP solution, without additional computational over-
heads to double-check that the delay constraints are not violated.  
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Figure 6.6 This graph shows the power and delay after each iteration of the optimization 
flow. This is for the c1355 benchmark at a delay constraint of 1.2Tmin for the Design Compiler 
delay-minimized netlist which is the starting point. The Vdd=1.2V/Vth=0.23V PowerArc 
characterized 0.13um library was used for this gate sizing optimization. 

After cells have been changed and static timing analysis reports a circuit 
delay that violates the delay constraint Tmax, we then perform delay reduction, 
but we add a weight on the power in the objective to ensure that the power 
does not increase too much. This helps ensure that power minimization 
phase steps have steeper ∆P/∆T than the delay reduction steps, thus multiple 
iterations of power minimization with delay reduction can achieve further 
power savings. In the example shown in Figure 6.6, a substantial 30% power 
savings are achieved beyond the 5.9mW point, with a minimum power of 
4.13mW at a point that meets the delay constraint. 

The delay reduction phase allows hill climbing, by allowing the Tmax 
constraint to be violated by power minimization to see if additional power 
savings are possible. The cell changes from delay reduction may be different 
to those performed in delay minimization of the initial netlist, thus providing 
some slack back into the circuit for power minimization, without reversing 
all the power minimization steps that resulted in violating Tmax.  

Unfortunately, the delay reduction phase can sometimes perform poorly 
at a tight delay constraint. For a delay constraint of 1.1Tmin, starting with 
TILOS-optimized netlists sized for 1.1Tmin results in 4.6% worse results on 
average than starting with delay minimized netlists [4]. Delay reduction can 
perform poorly for several reasons.  

0

1

2

3

4

5

6

7

8

9

10

0.77 0.82 0.87 0.92
Delay (ns)

Po
w

er
 fo

r 
c1

35
5 

at
 1

.2
Tm

in
 (m

W
)

~5.90mW

minimum power of 
4.13mW satisfying 
the delay constraint

30% power
savings

is 0.934nsmaxT



140 Chapter 6
 
Table 6.1 The functions performed by the ISCAS’85 benchmark circuits. The smallest 
benchmark, c17, wasn’t in [10]. 

 

Circuit Function
c17 not detailed in their paper
c432 27-channel interrupt controller
c499 32-bit single-error-correcting circuit
c880 8-bit ALU
c1355 32-bit single-error-correcting circuit
c1908 16-bit single-error-correcting/double-error-detecting circuit
c2670 12-bit ALU and controller
c3540 8-bit ALU
c5315 9-bit ALU
c6288 16x16 multiplier
c7552 32-bit adder/comparator  

Firstly, the weight on power in the delay reduction objective may prevent 
certain cell changes that are essential to reduce delay below Tmax, but cause 
too large an increase in power. This can be solved by reducing the weighting 
on power, and allowing additional delay reduction. Setting τ = 0.98 and  
k = 0.001 in Equation (6.20) is a parameter change that is tried to do this.  

Secondly, the aggressive slew analysis setting may underestimate the 
delay increase due to a slew increase and overestimate the delay reduction 
due to a slew decrease. In contrast, the conservative slew analysis setting is 
pessimistic and often provides better delay reduction results.  

Thirdly, in both phases of the optimization, all cells are changed simul-
taneously after the optimization. However, the linear program is a linear 
approximation, and there are no second order terms of the form γuγv to directly 
account for the delay impact of say a cell being downsized while its fanout  
is upsized. This case can result in delay actually getting worse after delay 
reduction is attempted. This is more difficult to solve without additional com-
putation overheads, as cells need to be sized individually. For example, a 
cell being downsized but its fanout upsized could be disallowed, though 
either one of these on its own would be acceptable, and analysis would be 
required to decide which of the two cells is better to resize.  

6.5 COMPARISON OF GATE SIZING RESULTS  

We shall compare our results versus the commercial synthesis tool Design 
Compiler [23], which is most commonly used in industry today and has a 
gate sizing approach that is based on TILOS. Design Compiler is generally 
considered to produce high quality results compared to other commercially 
available EDA tools [8]. Section 6.5.1 discusses the combinational bench-
marks on which we compare results. Section 6.5.2 compares our results 
versus Design Compiler, which performs gate sizing based on a TILOS sizing 
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approach. Section 6.5.3 then discusses how optimal the linear program sizing 
results are, and whether any additional improvements can be made. 

6.5.1 Benchmarks 

Two sets of circuit benchmarks were used in this chapter. The first set of 
benchmarks was the combinational ISCAS’85 benchmark set [2]. Besides 
these netlists being small, one of the criticisms of them has been that they are 
not realistic circuit benchmarks. In particular, what circuits they represent and 
how to stimulate them properly with input vectors is not detailed in the 
benchmark set. The ISCAS’85 benchmarks were reverse-engineered by 
Hansen, Yalcin and Hayes [10], and the functions that they determined for 
these circuits are listed in Table 6.1. The behavioral Verilog netlists for these 
reverse-engineered netlists are available [9], and they were synthesized and 
delay minimized using Design Compiler with the PowerArc characterized 
Vdd=1.2V/Vth=0.23V 0.13um library. Assignment statements and redundant 
outputs were removed manually in the synthesized netlists. These gate-level 
synthesized netlists were simulated with VCS using independent random 
inputs with equal probabilities of 0 or 1 to produce SAIF (Switching Activity 
Interchange Format) files with switching activity and gate input state proba-
bilities for power analysis. For comparison to our LP power minimization 
approach, the delay minimized netlists were then power minimized in Design 
Compiler restricted to sizing only changes.  

The second set of three benchmark circuits was provided by Professor 
Nikolić’s group at the Berkeley Wireless Research Center. The SOVA EPR4 
circuit is an enhanced partial response class-4 (EPR4) decoder [26]. There is 
also a Huffman decoder [18]. These are typical datapath circuits that appear 
on chips for communication systems. These circuits were mapped to the 
PowerArc characterized Vdd=1.2V/Vth=0.12V 0.13um library by Sarvesh 
Kulkarni and Ashish Srivastava, who provided the combinational gate-level 
netlists. The SOVA EPR4 and R4 SOVA benchmarks are substantially 
larger than the ISCAS’85 benchmarks.  

6.5.2 Comparison versus Design Compiler  

For results in this section, the PowerArc characterized 0.13um library at 
25°C with Vdd of 1.2V and Vth of 0.23V was used. The channel length was 
0.13um. This was characterized for STMicroelectronics 0.13um HCMOS9D 
process. The library consisted of nine inverter sizes; and four sizes of NAND2, 
NAND3, NOR2 and NOR3 logic gates. The output port load capacitance 
was set to 3fF, which is reasonable if the combinational outputs drive flip-
flops, and in addition there is a wire load to the port. The wire load model 
used was 3+2×num_fanout fF. The input slew was 0.1ns for the 1.2V input 
drive ramps – typical slews within the circuits ranged from 0.05ns to 0.15ns. 
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The same wire load, input slew, and load conditions were used in [14] and 
[22]. The switching activities used were directly from the SAIF files. Leakage 
was about 0.1% of total power, due to characterization at 25°C and high Vth. 
This avoids the problem with versions of Design Compiler before 2004.12 
where either dynamic power or leakage power had to be prioritized, rather 
than total power – as leakage is so small, prioritizing dynamic power is 
equivalent to total power, which is minimized by the linear programming 
approach. 

The starting point for LP optimization was the netlists that were synthe-
sized and delay minimized using Design Compiler, and that was also the 
starting point for sizing_only power minimization in Design Compiler. 
Results were verified in Design Compiler. 

The linear programming approach does better than Design Compiler in 
all cases, except for c880 at a delay constraint of 1.1×Tmin where the LP 
power is 2.4% higher (shown in bold in Table 6.2). This is not surprising as 
the LP approach is heuristic and may still get stuck in a local minimum. The 
LP approach performs better in most cases because it has a global view, 
rather than the greedy peephole approach of TILOS.  

Table 6.2 Here we compare our sizing results (LP) with sizing only power minimization 
results from Design Compiler (DC), at delay constraints of 1.1Tmin and 1.2Tmin, where Tmin 
(shown in column 7) is the critical path delay after delay minimization by Design Compiler. 
Circuit statistics such as the number of logic levels, the numbers of inputs and outputs, the 
number of gates, and the number of edges between gates in the circuit are also listed. The “LP 
then DC” results are discussed in Section 6.5.3. 

Netlist

# 
logic 
levels

# 
inputs

# 
outputs

# 
gates

# 
edges

Min 
Delay 
(ns) DC LP

LP 
then 
DC DC LP

LP 
then 
DC

c17 4 5 2 10 17 0.094 1.11 0.96 0.95 0.86 0.76 0.76
c432 24 36 7 259 485 0.733 2.78 2.21 2.18 2.22 1.74 1.70
c499 25 41 32 644 1,067 0.701 5.83 4.59 4.48 4.98 3.73 3.64
c880 23 60 26 484 894 0.700 3.37 3.45 3.13 2.83 2.60 2.54

c1355 27 41 32 764 1,322 0.778 6.88 5.42 5.26 5.97 4.12 4.04
c1908 33 33 25 635 1,114 0.999 3.26 3.08 3.01 2.67 2.40 2.36
c2670 23 234 139 1,164 1,863 0.649 9.23 8.42 8.28 8.08 6.87 6.79
c3540 36 50 22 1,283 2,461 1.054 6.69 5.79 5.70 5.60 4.64 4.53
c5315 34 178 123 1,956 3,520 0.946 10.39 9.48 9.15 8.82 7.81 7.66
c6288 113 32 32 3,544 6,486 3.305 6.91 6.07 5.89 6.08 4.69 4.61
c7552 31 207 86 2,779 4,759 0.847 18.02 16.65 16.34 15.60 13.44 13.23

Huffman 29 79 42 774 1,286 0.845 6.02 4.81 4.62 5.07 3.72 3.61
SOVA EPR4 110 791 730 15,686 27,347 3.039 17.07 15.82 15.61 15.28 13.89 13.73

R4 SOVA 144 1,177 815 33,344 59,178 4.811 24.26 21.81 21.22 20.82 19.16 18.69
Minimum power savings vs. Design Compiler: -2.4% 7.0% 8.0% 10.1%
Average power savings vs. Design Compiler: 12.0% 14.5% 16.6% 18.1%
Maximum power savings vs. Design Compiler: 21.4% 23.5% 30.9% 32.3%

Power (mW)

1.2T min1.1T min
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We achieved 12.0% and 16.6% average power savings versus Design 
Compiler at delay constraints of 1.1×Tmin and 1.2×Tmin respectively – see 
Table 6.2. We achieved lower power even on the smallest ISCAS’85 
benchmark, c17, as was illustrated in Figure 6.1. This illustrates the sub-
optimal choices made by greedy optimization approaches that only consider 
individual gates, rather than the whole circuit. These results were versus the 
2003.03 version of Design Compiler – version 2004.12 was also tried, but it 
produced worse power results on average. 

6.5.3 Post-pass cleanup with Design Compiler 

After our linear programming optimization returns the lowest power 
solution that satisfies the delay constraint, there is a little timing slack left, 
up to about 0.6% of the delay target, which can be used to further downsize 
individual gates. Each LP optimization pass sizes multiple gates, whereas  
to fully utilize the remaining slack, individual gates should be sized. A 
power_reduction/delay_increase sensitivity approach such as provided by 
Design Compiler’s sizer is appropriate for this.  

On average, a post-pass with Design Compiler on the LP power 
minimized netlists achieved another 2% to 3% power savings versus the LP 
results, as listed in the “LP then DC” columns in Table 6.2. Interestingly, for 
c880 where the LP results were worse than Design Compiler at 1.1Tmin by 
2.4%, the post-pass by Design Compiler improves the result by 9.3%, giving 
7% overall power reduction with “LP then DC” versus the Design Compiler 
result. After running Design Compiler, there is typically at most 0.001ns 
slack, i.e. less than 0.1% of the delay constraint. The average power savings 
of the “LP then DC” results versus Design Compiler were 14.5% and 18.1% 
at delay constraints of 1.1Tmin and 1.2Tmin respectively. 

It should be noted that multiple passes of power minimization sizing by 
Design Compiler on its own does not provide any significant benefit (<1%) 
over a single incremental power minimizing sizing compilation in Design 
Compiler. Design Compiler gets stuck in a local minimum where it has 
greedily downsized the wrong gates. 

6.6 COMPUTATIONAL RUNTIME 

This section examines the runtime for the linear program, and then com-
pares it to the TILOS-like sizing runtimes in Design Compiler.  

6.6.1 Theoretical runtime complexity and actual runtimes 

It is not straightforward to determine the theoretical worst case run-
time complexity. The open source COIN-OR LP solver [7] uses the simplex 
method to solve the linear program, which has exponential runtime growth 
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with problem size in the worst case. There are linear programming methods 
with guaranteed polynomial runtime; however, typically the simplex method 
is a fast method for solving linear programs.  

Each vertex in the directed acyclic graph representation has one “free” 
cell choice variable, and edges between vertices (i.e. wires between gates) 
determine the constraints. As a result, our linear program constraint matrix is 
sparse, because the number of edges is of similar order to the number of 
vertices (O(|E|) is O(|V| for our benchmarks). Thus we might expect that 
runtime growth with circuit size will be reasonable. 

To measure the actual runtimes, we need to consider when optimization 
should be terminated. The LP optimization flow consists of two approaches: 
power minimization subject to a delay constraint, and delay reduction with a 
weighting on power. In both of these, a linear program is posed and solved 
to determine which cells to change. These alternating optimization phases 
shift back and forth in the power-delay space about the delay constraint, as 
was illustrated in Figure 6.6. In addition, the more sophisticated optimization 
approach changes parameter settings if optimization progress is slow. Conse-
quently, there is no clearly defined optimization endpoint. However, the 
point at which any further power savings are minimal can be measured. To 
do this, we can run a large number of iterations, where each iteration refers 
to a run of setting up the LP, solving it, and changing cells, whether this is 
for power minimization or delay reduction.  

Table 6.3 Number of iterations for gate sizing with the LP optimization flow to find a solution 
that satisfies the delay constraint and is within 1% of the minimum power found in 40 LP 
iterations. Runtimes for 20 iterations at a delay constraint of 1.2×Tmin with the 0.13um 
Vdd=1.2V, Vth=0.23V library are listed. The number of iterations to get within 1% does not 
depend on the circuit size, whereas the LP solver runtime grows roughly quadratically. 

#
Benchmark gates At 1.1T min At 1.2T min Total LP Solver Total - LP Solver

c17 10 14 4 0.6 0.2 0.4
c432 259 15 21 28.2 8.8 19.4
c880 484 16 14 49.8 16.4 33.4
c1908 635 5 12 70.5 26.6 44.0
c499 644 21 14 63.7 23.7 40.0
c1355 764 13 15 79.4 30.5 49.0
Huffman 774 16 20 67.7 27.3 40.4
c2670 1,164 12 17 105.4 42.4 63.1
c3540 1,283 12 9 223.5 114.6 108.9
c5315 1,956 9 9 231.6 96.7 134.9
c7552 2,779 13 12 383.8 165.2 218.6
c6288 3,544 21 15 1,811.2 1,450.5 360.7
SOVA EPR4 15,686 8 7 3,427.1 2,106.1 1,321.0
R4 SOVA 33,344 5 5 20,078.2 17,679.1 2,399.0

# iterations to get within 1% Runtime for 20 iterations (s)
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Figure 6.7 Runtimes for the LP approach in Table 6.3 shown on a log-log scale.  

We examined the number of iterations required to get within 1% of the 
best solution found in 40 iterations. It appears that the number of iterations 
to get a good solution with gate sizing is not dependent on the circuit size or 
circuit depth in terms of logic levels. This is because gates are sized simul-
taneously on each iteration. From the data in Table 6.3, about 20 iterations  
is sufficient to get good results. Fewer iterations were required for the two 
largest benchmarks (SOVA EPR4, R4 SOVA). If fewer iterations are 
required for larger benchmarks, the growth of runtime with circuit size will 
be less. 

The runtime for twenty iterations for sizing the benchmarks on a 2GHz 
Athlon XP with 512KB of L2 cache is shown in Figure 6.7 on a log-log 
scale, as there is a wide range of circuit sizes, over three orders of magni-
tude. The runtime for static timing and power analysis, posing the LP, and 
changing cells using the LP solution grows linearly with the circuit size 
and dominates the total runtime for smaller netlists, below about 1,000 gates. 
The runtime for the linear program solver can grow quadratically with 
circuit size, and is the dominant portion of the total runtime for the larger 
circuits. 

The LP solver runtime is substantially larger at three points, benchmarks 
c3540, c6288 and R4 SOVA. The runtime for the LP solver grows between 
O(|V|) and O(|V|2), where |V| is the number of gates [4]. 
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Figure 6.8 Runtime for running power minimization in Design Compiler on the best solution 
found by linear programming, that is for the “LP then DC” Design Compiler run. These 
runtimes were on a 300MHz Sun Ultra II. Design Compiler’s runtimes grow faster than 
O(|V|), but slower than O(|V|2) [4]. 

6.6.2 Runtime comparison versus Design Compiler 

It is interesting to compare runtimes versus Design Compiler’s runtimes, 
run on a 300MHz Sun Ultra II, shown in Figure 6.8. This was for Design 
Compiler performing power minimization on the netlists after linear pro-
gramming optimization, where the analysis is similar to what occurs in a 
single iteration of linear programming power minimization. Accounting for 
the much slower computer used to run the benchmarks, power minimization 
in Design Compiler is about an order of magnitude faster than our runtimes. 
Our runtimes in Figure 6.7 and Design Compiler’s runtimes in Figure 6.8 
have quite similar shapes – performing faster on certain benchmarks and 
slower on others.  

There are several ways that the runtimes for the LP approach could be 
reduced. Firstly, the standard settings for the linear program solver have 
been used, which performs analysis with the simplex algorithm to converge 
to a precise local minimum. However, we don’t need the same degree of 
precision, and relaxing the accuracy requirement would reduce the number 
of simplex iterations and speed up the LP solver. Secondly, the first few 
LP iterations provide the biggest power savings. Later iterations tend to 
bounce around the optimal solution as too many gates are being changed 
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simultaneously. It may be possible to run fewer LP iterations and then use a 
TILOS sizing post-pass to clean up the result. Thirdly, additional analysis 
could be performed with the solution from the LP solver to avoid changing 
gates that would cause a delay constraint violation, or to use an alternate cell 
that reduces power but avoids the delay constraint violation. Lastly, a better 
delay minimization approach, getting closer to the delay constraint, may help 
speed up convergence. These latter suggestions have computational overheads 
too, so experiments are needed to see what benefit they offer.  

6.7 SUMMARY 

The gate sizing results in this chapter demonstrated that commonly used 
greedy TILOS-like circuit sizing approaches are suboptimal. It was known 
that this traditional approach to gate sizing could be suboptimal for small 
circuit examples, but it was not clear how to address the problem, nor whether 
there was significant suboptimality on typical circuits.  

Our linear programming optimization flow simultaneously optimizes all 
gates in the circuit. Comparing the LP approach to the commercial imple-
mentation of a TILOS-like sizer in Design Compiler, the power savings on 
average were 12.0% and 14.5% at 1.1×Tmin and 1.2×Tmin respectively. We 
achieved a power reduction of 31% on one circuit.  

Iterating cycles of reducing power then reducing delay to meet the delay 
constraint provides more power savings than stopping power minimization 
when the delay constraint is reached: further cycles of delay reduction then 
power reduction get out of this local minimum. Results also demonstrated 
the importance of having accurate delay and power analysis within the 
optimization formulation. In particular, it is important to consider slew and 
separate timing arcs, which much academic optimization research tends to 
avoid. 

The runtime for posing the linear program constraints and changing cells 
using the linear programming solution scales linearly with circuit size. The 
LP solver runtimes scale between linearly and quadratically with circuit size, 
so this approach is applicable for larger circuits. Some approaches that may 
be useful for reducing the runtime of the linear programming solver have 
been outlined. 

There are two improvements that may be made to our approach. (1) A 
traditional sizing tool, like Design Compiler, is better for pure delay minimi-
zation. This greedy, one gate at a time, optimization approach is also useful 
for a slight further improvement after our optimization. It was observed that 
a post-pass sizing individual gates with Design Compiler improved on the 
linear programming results by a further 2% to 3%. (2) If γ < threshold to 
change a gate’s cell, other cells which require less slack could be considered. 
In particular, the current linear programming formulation is not applicable 
for a tight delay constraint, as the delay reduction phase is incapable of 
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meeting a very tight delay constraint. In practice, this will not generally be a 
major issue when power is a significant constraint, as the delay constraint is 
usually relaxed a little to allow a more energy optimal solution, rather than 
many gates being upsized at a tight delay constraint.  

Given the computational complexity for this non-convex gate sizing 
optimization problem, it is not possible to compare the results found to the 
global minimum except for very small circuits. In comparison to other heuristic 
approaches, there was only one case where the linear programming approach 
was worse than Design Compiler. This was for c880 at 1.1×Tmin in Table 6.2, 
where the power was 2.4% higher than Design Compiler, and 11.4% worse 
than the result found by running the LP approach then Design Compiler. The 
best results were found by using the linear programming approach with a 
post-pass by Design Compiler, which averages 2% lower power than just 
using the LP approach. 

We did compare our LP results versus the equivalent integer linear pro-
gramming (ILP) formulation with the cell choice variables γv restricted to  
0 or 1. The integer problem is too computationally expensive to solve 
completely, except for the smallest benchmark c17. However, we compared 
ILP results from CPLEX’s solver with a 1,000s time limit per iteration to the 
LP results. The ILP results were not better on average than the LP results, 
and were worse than the LP results after a post-pass by Design Compiler [4]. 
Given the prohibitive computation times for ILP and negligible benefit, the 
LP relaxation of the ILP problem should be used. 

Our LP approach can be extended to a second order conic program 
(SOCP) to include the impact of process variation in the manner described in 
Chapter 12, taking advantage of the timing analysis accuracy improvements 
detailed in this chapter.  

This chapter focused on power minimization subject to a delay constraint, 
but our approach is equally applicable to area minimization subject to a 
delay constraint. 

Chapter 7 analyzes the power savings that can be achieved with use of 
multiple threshold voltages and multiple supply voltages versus the strong 
gate-sizing approach provided in this chapter. 
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Having provided a strong gate sizing benchmark using only a single 

transistor threshold voltage (Vth) and single supply voltage (Vdd) in Chapter 
6, we now examine the impact of additionally using multiple-Vth and dual 
Vdd to minimize power. Comparing cells with different Vth values is no diffe-
rent to comparing cells with different sizes, providing that the leakage is 
included in the total circuit power. Multiple supply voltages can also be 
handled similarly, with level converter overheads for restoring to high Vdd.  

Our dual-Vdd/dual-Vth/sizing results achieve on average 5% to 13% 
power savings versus the two alternate dual-Vdd/dual-Vth/sizing optimization 
approaches suggested in [6] and [10]. Importantly, the linear programming 
approach has runtimes that scale between linearly and quadratically with 
circuit size, whereas other algorithms that have been proposed for multi-
Vdd, multi-Vth and gate size assignment have cubic runtime growth. This 
chapter examines in detail optimization with multiple supply voltages and 
multiple threshold voltages. 

7.1 INTRODUCTION 

A high supply voltage and a low threshold voltage may be necessary to 
meet circuit delay constraints. However, using a lower Vdd can quadratically 
reduce the dynamic power, and using a higher Vth can exponentially reduce 
the leakage power. Thus it is possible to substantially reduce power while 
meeting delay constraints by using high Vdd with low Vth on delay critical 
paths, and low Vdd with high Vth where there is sufficient timing slack. 
There are significant design costs for using multiple supply voltages and 
multiple threshold voltages, so circuit designers are concerned about how 
much power saving multi-Vdd and multi-Vth can truly provide.  
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Figure 7.1 This diagram illustrates some of the differences between single Vdd and dual Vdd 
layout. Single Vdd layout is more compact as shown in (a). If the PMOS n-wells are 
connected to different supply voltages, then there are minimum spacing requirements as 
shown in (b). An alternative is to connect the n-wells of PMOS transistors in both VDDH and 
VDDL gates to VDDH, but this reverse biases the PMOS transistors in the VDDL gate as 
shown in (c). Note that the PMOS n-wells in (c) are all connected to VDDH.  

Each additional PMOS and NMOS threshold voltage requires another 
mask to implant a different density of dopants, which substantially increases 
processing costs. A set of masks costs on the order of a million dollars today 
and an additional Vth level increases the fabrication cost by 3% [8]. Each 
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additional mask also increases the difficulty of tightly controlling process 
yield, which strongly motivates manufacturers to limit designs to a single 
NMOS and single PMOS threshold voltage. From a design standpoint, an 
advantage of multiple threshold voltages is that changing the threshold 
voltage allows the delay and power of a logic gate to be changed without 
changing the cell footprint, and thus not perturbing the layout. 

Each additional supply voltage requires an additional voltage regulator 
and power supply rails for that voltage. The logic needs to be partitioned in 
some manner into voltage regions where a single supply is used. The regions 
of each supply voltage are not usually fully utilized and some spacing is 
required between them, increasing chip area. Wire lengths also increase bet-
ween cells in different Vdd regions. The area overhead for gate-level dual 
Vdd assignment in modules of a media processor was 15% [13].  

An alternative is to route the two supply rails along every standard cell 
row, which increases the cell height and has a similar area overhead. In bulk 
CMOS there are also minimum spacing issues between the PMOS n-wells at 
different biases to prevent latchup, as shown in Figure 7.1(b). The PMOS n-
wells in high Vdd (VDDH) gates cannot be connected to low Vdd (VDDL) 
as this forward biases the transistors, increasing leakage substantially, and 
can cause other problems. VDDL gates can have the PMOS n-well connected 
to VDDH as shown in Figure 7.1(c), but this reverse biases the transistors, 
making the VDDL gate even slower – though this can be compensated for 
by using a lower PMOS Vth for VDDL gates.  

Figure 7.2 This graph shows the impact of reverse biasing the PMOS substrate. Vs is the 
source voltage (the supply voltage for an inverter), Vb is the body bias, and the input voltage 
is fixed at 0V. The body is reverse biased when Vb > Vs, which increases the threshold voltage 
and reduces the current. The thicker lines show drain current without reverse biased PMOS 
substrate, and the thin lines show the drain current with substrate reverse biased at 1.2V. 
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If the substrate is reverse biased at 1.2V for PMOS transistors with 0.8V 
and 0.6V drain-source voltage, the drain current is 10% lower at 0.8V and 
26% lower at 0.6V, as shown in Figure 7.2. Even without being reverse 
biased, the PMOS transistor drain current is 55% and 78% lower respect-
tively than a PMOS transistor connected to a high supply voltage of 1.2V. In 
silicon-on-insulator (SOI) technology, the transistors are isolated and spacing 
between wells at different biases is not an issue.  

If the alternate supply voltage rails are routed on each standard cell row, 
it is much easier to change the supply voltage of cells without substantially 
perturbing the layout, simplifying post-layout optimization. It also makes it 
easy to connect to both power supply rails, which is needed for most voltage 
level restoration “level converters” [8]. When different supply voltages are 
routed next to each other, the second metal layer may be needed for internal 
wiring in logic cells, which creates blockages on metal layer two, reducing 
routing resources for wiring between cells. 

Whether using separate voltage regions or routing the supply voltages 
next to each other, using multi-Vdd increases the chip area, which lowers the 
yield per wafer and increases fabrication costs.  

Our optimization approach does not consider the increased area for 
multi-Vdd and the impact on yield of both multi-Vdd and multi-Vth approa-
ches, but clearly there must be significant power savings to justify the cost. 
Large power savings have been suggested by a number of researchers, but in 
some cases the delay and the power models were inaccurate, or the initial 
comparison point was poor, causing power savings to be overstated. To 
justify the use of multi-Vdd and multi-Vth, we must show substantial power 
savings versus a good choice of single supply voltage and single threshold 
voltage with power minimization by gate sizing. 

It is essential that gate sizing is considered with multi-Vdd and multi-
Vth, as gate sizing can achieve greater power savings at a tight delay 
constraint. We found that the power savings achieved with multi-Vdd and 
multi-Vth are in most cases less than the power savings achieved by gate 
sizing with the linear programming approach versus the TILOS-like opti-
mizers. 

While multiple threshold voltages do not complicate the optimization 
problem, using multiple supply voltages requires insertion of voltage level 
converters to restore the voltage swing to higher Vdd gates as described in 
Section 7.2. As there is yet no standard approach for multiple supply voltage 
and multiple threshold voltage optimization, Section 7.3 summarizes previous 
research in the area, discussing the limitations and advantages of the various 
optimization approaches. Few papers have considered trying to perform simul-
taneous optimization with assignment of multiple supply voltages, multiple 
threshold voltages, and gate sizes. How the voltage level converter power 
and delay overheads are handled with the linear programming approach is 
detailed in Section 7.4. 
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Figure 7.3 This diagram illustrates the need for voltage level restoration. The schematic 
shows an inverter with supply voltage of VDDH, being driven by an inverter of supply voltage 
VDDL. When the VDDL inverter output is high, the driving voltage is only VDDL, which results in 
a forward bias of VDDL – VDDH across the PMOS transistor of the VDDH inverter. The forward-
biased PMOS transistor is not completely off resulting in large static currents. 

Perhaps the best of the multi-Vdd/multi-Vth/sizing optimization methods 
proposed by other researchers are the two approaches proposed by Sarvesh 
Kulkarni, Ashish Srivastava, Dennis Sylvester, and David Blaauw in Chapter 
8 [6][10]. Under the same conditions, the linear programming approach for 
multi-Vdd/multi-Vth/sizing is compared versus their results in Section 7.5. 
On average, the linear programming approach reduces power 5% to 13% 
versus their results across a range of delay constraints. 

Having established that the linear programming approach performs well 
for supply voltage assignment and threshold voltage assignment as well as 
gate sizing, Section 7.6 examines how much power can be saved with multi-
Vth and multi-Vdd versus using a single Vdd and single Vth. Section 7.7 
discusses the impact of multi-Vdd and multi-Vth assignment in addition to 
sizing on the runtimes. Section 7.8 gives a summary of our results. 

7.2 VOLTAGE LEVEL RESTORATION  
FOR MULTI-VDD 

If a low Vdd (VDDL) input drives a high Vdd (VDDH) gate, the PMOS 
transistors are forward biased by VDDL – VDDH which results in static current. 
This is illustrated with two inverters in Figure 7.3. To avoid this, a voltage 
level converter is needed to restore the signal to full voltage swing, restoring 
the signal from 0V↔VDDL to 0V↔VDDH. A VDDH gate may drive a 
VDDL gate.  

Algorithms for gate level supply voltage assignment can be broadly sepa-
rately into two methodologies depending on where voltage level restoration 
may occur. Clustered voltage scaling (CVS) [12] refers to when voltage level 
restoration only occurs at the registers, to reduce the level converter power 
and delay overhead. All VDDL gates must either drive VDDL gates or drive 
a level converter latch. Hence there are distinct clusters of VDDL combina-
tional gates that have only VDDL combinational gates in their transitive 
fanout. A gate may only be changed from VDDH to VDDL if the fanouts are 
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all VDDL, or changed from VDDL to VDDH if the fanins are all VDDH. 
Extended clustered voltage scaling (ECVS) [14] additionally allows “asynch-
ronous” level converters to be placed between combinational logic gates, 
removing the restrictions on when a gate’s Vdd may be changed. In ECVS, 
VDDL gates are still clustered in order to amortize the power and delay 
overheads for the level converters. CVS and ECVS algorithms are detailed 
in Section 8.2 

Combining a level converter with a flip-flop minimizes the power over-
head for voltage level restoration. As typical level converter and flip-flop 
designs essentially include a couple of inverters acting as a buffer, the level 
converter can replace these in the flip-flop. The power consumed by an 
LCFF can be less than that of a VDDH flip-flop, particularly if a low-voltage 
clock signal is used [2]. An LCFF with high-speed pulsed flip-flop design is 
comparable in delay to a regular D-type flip-flop [4], thus avoiding the level 
converter delay overhead. The delay and power overheads for voltage level 
restoration are minimal in CVS.  

There has been concern about the noise immunity of asynchronous level 
converters [4]. The asynchronous level converters that we use for ECVS 
were shown to be robust and have good noise immunity [5].  

We now look at the algorithms that have been proposed previously for 
multi-Vth and multi-Vdd optimization. 

7.3 PREVIOUS MULTI-VDD AND MULTI-VTH 
OPTIMIZATION RESEARCH  

A number of researchers have explored use of multiple threshold voltages, 
and/or multiple supply voltages. Some papers report large power savings 
versus an initial configuration that is substantially sub-optimal. For example 
when starting with a circuit with high leakage power with all transistors at 
low threshold voltage, introducing a second higher threshold voltage will 
provide significant power savings, but the real question is how much power 
would be saved with dual Vth versus choosing a more optimal single thres-
hold voltage and sizing gates optimally. To address this, multi-Vth and multi-
Vdd results in Section 7.6 are compared versus the optimal sizing results 
with the best threshold voltage available from a choice of three Vth values – 
though if a finer granularity of Vth were available, that would no doubt 
provide some additional power savings. In particular, we generally look at 
dual Vth/sizing power savings versus sizing with a higher Vth library, as it is 
much more difficult to reduce power versus an initial configuration that is 
already low on leakage power that has gate sizes optimized to reduce dynamic 
power.  

Another major shortcoming of many academic papers is using simplified 
delay and power models that are inaccurate, such as ignoring slew and failing 
to use separate rise and fall timing arcs. Few algorithmic papers state the 
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accuracy of their models. In some cases, it is not clear how optimization 
approaches with such models can be extended to real circuits using full static 
timing analysis with standard cell libraries, as their algorithmic approach or 
computation speed depend on the underlying simplified models. Merging 
rise and fall delays halves the number of delay constraints in optimization. 
Simplified power and delay analysis that ignores slew and doesn’t use lookup 
tables for analysis, for example using linear interpolation versus load capa-
citance, can speed up analysis runtimes by an order of magnitude. This has a 
major impact on the total computational runtime as analyzing trade-offs is an 
essential portion of the inner loop of any optimizer. For example, runtimes 
reported for our initial linear programming approach [7] are about 10× faster 
with 0.18um simplified logical effort delay models and no internal power 
analysis versus interpolating 0.13um library data.  

Given the range of computers used to run benchmarks in different papers, 
it is difficult to directly compare runtimes across tools. For the purposes of 
sizing large circuits in industry, it is more interesting to compare the runtime 
complexity. It is essential that runtime complexity be less than O(|V|2), where 
|V| is the number of gates in a circuit, to run on circuits of any appreciable 
size [11].  

We summarize some of the better multi-Vth and multi-Vdd optimization 
approaches below.  

7.3.1 Summary of papers on optimization with multi-Vth  

TILOS-like optimizers have been used for multi-Vth assignment by a 
number of researchers, including Wei et al. [15]; Sirichotiyakul et al. [9]; 
and Wei, Roy, and Koh [16]. These optimizers proceed in a greedy manner, 
picking the gate with the best power or area versus delay tradeoff to change, 
and iterating. A number of other optimization heuristics have also been tried.  

Most threshold voltage assignment approaches concentrate on reducing 
leakage power, though Wei, Roy, and Koh minimized total power [16]. Power 
dissipation is a major constraint in today’s technologies, so minimizing total 
power is the more appropriate optimization objective. If so desired, total 
power could be minimized until a given constraint is reached, and then the 
objective could be set to reducing leakage power with constraints on both 
total power and delay. The only way to encode multiple objectives in an 
optimization is to weight the objectives according to their priority and include 
appropriate constraints, but it is generally best to find feasible solutions, for 
example satisfying the delay constraint, before focusing on a secondary 
objective. 

Sirichotiyakul et al. began with a high Vth circuit and iteratively assigned 
transistors to low Vth, with transistors prioritized in a TILOS-like manner 
for the delay reduction versus the increase in leakage power. After a transistor 
was assigned to low Vth, transistors in neighboring gates over three levels of 
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logic were resized. In the 0.25um process with supply voltage of 0.9V, their 
dual Vth approach reduced leakage by 3.1× to 6.2× with at most 1.3% delay 
penalty [9] compared to gate sizing with all gates at low Vth,. The circuit 
sizer was a TILOS-like sizer that provides a good baseline, but, as noted 
earlier, large savings can be achieved versus an all low Vth configuration. 
They did not consider the impact on dynamic power and the total circuit 
power consumption. Analysis of their algorithm indicates a theoretical com-
plexity of O(|V|2). 

Wei, Roy and Koh began with all gates at minimum size and high Vth. 
The sensitivity metric for gate upsizing or reducing a gate’s threshold voltage 
was –∆d/∆P. In a 0.25um process with Vdd of 1V and threshold voltages of 
0.2V and 0.3V with 0.1 switching activity, total power was reduced by 14% 
using dual Vth and gate sizing versus gate sizing with low Vth [16]. The 
theoretical worst case runtime complexity of this approach is the same as 
TILOS, O(|V|2). 

Wei et al. compared gate-level assignment versus stack-level, and versus 
assignment at the level of series connected transistors, and found that series-
level assignment provided 25% better power reduction than gate-level 
assignment [15]. Our work does not directly consider transistor-level Vth 
assignment, but if standard cell libraries are available with characterized 
cells of mixed-Vth, it is straightforward to use them in the optimization.  

These TILOS-like algorithms appear to be the best of the Vth assignment 
algorithms, as other multi-Vth research has not shown better results than 
TILOS. We do not compare the LP approach versus TILOS for gate-level 
threshold voltage assignment, as Chapter 6 has already shown that our linear 
programming approach produces better sizing results than TILOS.  

7.3.2 Summary of papers on optimization with multi-Vdd 

For multiple supply voltage assignment, the approach in common to 
many of the algorithms is starting with a VDDH netlist, and prioritizing 
assignment to VDDL, typically in reverse topological order. The approaches 
by Srivastava and Kulkarni (see Chapter 8) take this one step further by 
forcing additional VDDL assignment using slack gained from starting with 
all gates at low Vth and gate upsizing. Having changed as many gates as 
possible to VDDL in either a CVS or ECVS methodology, they pick the best 
multi-Vdd/low Vth configuration, then look at assigning gates to high Vth. 

Clustered voltage scaling (CVS) with voltage level restoration by level 
converters combined with latches was proposed in 1995 by Usami and 
Horowitz [12]. Their CVS algorithm proceeded in depth-first search manner 
from the combinational outputs, assigning VDDH gates to VDDL if they 
have sufficient slack and only VDDL or level converter latch fanouts. Assig-
ning gates to VDDL was prioritized by the gate load capacitance or the slack 
in descending order. For two benchmarks in 0.8um process technology, dual 
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supply voltages of 5V and 4V gave power savings of 9% and 18% when 
using a library with fine grained gate sizes [12]. Their delay models did not 
include slew nor separate rise/fall delays, and short circuit power was not 
included. The complexity of CVS is O(|V|2) (see Section 8.6.1). 

In 1997, Usami et al. proposed an ECVS algorithm with the delay 
constraint relaxed to allow all flip-flops to be set to LCFFs or VDDL [13]. 
The combinational gates were examined in reverse topological order. If a 
VDDH gate had all VDDL fanouts and there was sufficient timing slack, it 
was set to VDDL. If the gate had some VDDH fanouts, an asynchronous 
level converter must be inserted. However, one gate may be insufficient to 
amortize the power overhead for the level converter. Thus in addition to the 
reduction in power for the gate changing from VDDH to VDDL, the 
potential power reduction for changing the gate’s fanins to VDDL was 
estimated. They fabricated a dual supply voltage media processor chip in 
0.3um technology with VDDH of 3.3V. In the initial circuit, more than 60% 
of the paths had slack of half the cycle time, suggesting that the initial circuit 
was not sizing power minimized, thus giving larger power savings with dual 
Vdd. They achieved on average 28% power savings for the combinational 
logic with VDDL of 1.9V. The area overhead in the dual Vdd modules was 
15% due to level converters, additional VDDL power lines, and reduced cell 
density due to constrained placement on a VDDH row or VDDL row [13]. 
The theoretical runtime complexity for this heuristic is also O(|V|2).  

More recent optimization approaches have included gate sizing with 
CVS and ECVS multiple supply voltage assignment. The theoretical runtime 
complexity of these algorithms is O(|V|3) or worse, which is too slow given 
the typical size of circuits of interest to designers today.  

Chapter 8 details multi-Vdd assignment algorithms proposed by Kulkarni 
et al. that include gate sizing and threshold voltage assignment with O(|V|3) 
runtime complexity. Their GVS algorithm for ECVS-multi-Vdd/multi-Vth/ 
sizing gives 21.6% average power saving versus their TILOS-like gate sizer, 
but the average power saving is only 15.0% versus our better LP sizing 
results (see Table 7.1).  

Previous multi-Vdd algorithms have handled level converter power and 
delay overheads by iteratively changing gates to VDDL and choosing the 
best configuration found along the way, or by estimating the power savings 
of changing multiple gates to VDDL. Both of these approaches can be 
computationally expensive.  

We now examine how to account for the voltage level converter delay 
and power overheads with the linear programming approach that was detailed 
in Chapter 6. 
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7.4 OPTIMIZING WITH MULTIPLE SUPPLY  

AND THRESHOLD VOLTAGES 

Using multiple threshold voltages does not complicate our optimization 
approach. The different delay and power – particularly leakage power – must 
be accounted for, but this just changes the values in the corresponding 
lookup tables for the standard cell library. Static timing and power analysis 
do not otherwise change. The power and delay trade-offs for different cell 
sizes and different threshold voltages for a cell are considered when deter-
mining the best alternate cell for a gate to encode in the linear program. 
Then optimization proceeds normally. 

In contrast, using multiple supply voltages not only complicates optimi-
zation, but can hinder getting out of local minima. A voltage level converter 
must be inserted between low supply voltage and high supply voltage gates. 
The additional power and delay for level converters must be encoded in 
the linear program. The level converter overheads create a very “bumpy” 
optimization surface with many local minima, hindering gates changing 
from low Vdd to high Vdd or vice versa. 

We assume that level converters are placed by the driven input of the 
VDDH gate to avoid any additional wiring overheads. The same assumption 
is made in Chapter 8, which we shall compare our results to.  

With multi-Vth and multi-Vdd, the linear program and optimization 
parameters are the same as used for gate sizing, detailed in Section 6.3.4. 
The change for adding or removing a level converter as necessary for multi-
Vdd is included in the ∆P, ∆d and ∆s values encoded with the alternate cell 
choices in the linear program.  

7.4.1 Voltage level converter power and delay overheads 

If a gate is changed from VDDH to VDDL, it needs level converters to 
VDDH fanouts, and it no longer needs any fanin level converters. If a gate is 
changed from VDDL to VDDH, it needs level converters on any VDDL 
fanins, and no longer needs any fanout level converters. The level converters 
overheads are not represented directly in the linear program, to avoid adding 
unnecessary variables and unnecessary constraints. Instead the change in 
power for adding or removing level converters is added to the change in 
power for changing the gate’s cell, and the delay change is added to the 
gate’s delay change on the appropriate delay constraint edge.  

The overheads for level converter flip-flops and “asynchronous” level 
converters are shown in Figure 7.4 and Figure 7.5. This data is from exami-
nation of the cell alternatives for a particular gate before encoding the best 
alternative for each gate in the linear program. 
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Figure 7.4 These graphs show delay and power trade-offs for alternate cells for a gate, 
including the level converter flip-flop (LCFF) overhead. We assumed that LCFFs do not 
consume more power than a normal flip-flop, but that they do impose an 80ps delay penalty. 
The effect of the 80ps delay penalty is shown here on alternate cell choices for a size X4 
Vdd=1.2V/Vth=0.08V inverter that drives an output port in ISCAS’85 benchmark c17. Some 
power is saved by changing to VDDL and inserting the level converter flip-flop. Each point 
on a curve represents a different gate size – the largest gates consume the most power and 
have higher delay than the current cell with size X4 that is at the origin. 
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Figure 7.5 These graphs show delay and power trade-offs for alternate cells for a gate, 
including the asynchronous level converter overhead. These graphs show the alternate cell 
choices for a Vdd=1.2V/Vth=0.23V drive strength X12 inverter in ISCAS’85 benchmark 
c5315. The rise delay increases, because of the delay for a falling VDDH input to reach 
VDDL. In contrast, there is only a small increase in the fall delay. The power overhead for an 
asynchronous level converter is large, shown by the shift in the curves on the power versus 
delay graph, and cannot be amortized across a single gate. Each point on a curve represents a 
different gate size – the largest gates consume the most power. 

For level converter flip-flops at the VDDL outputs of combinational 
logic, we assumed that there is no power overhead. There is some delay 
overhead – typically about 2 FO4 delays [2], which corresponds to 80ps in 
our 0.13um process. The impact of the additional 80ps LCFF delay on VDDH 
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and VDDL cell alternatives is shown in Figure 7.4. The 80ps delay penalty  
is considerable compared to the inverter delay. The power savings by changing 
to VDDL are often less than by downsizing a gate, which argues against 
prioritizing assignment to low Vdd over gate downsizing. 

To analyze the ECVS approach, we used the strength 5 asynchronous 
level converter shown in Figure 7.6 [5]. This design is a higher speed and 
more energy efficient modification of a pass gate level converter. Transistor 
M1 is an NMOS pass gate that isolates the input from the level converter’s 
VDDH supply. Feedback from the inverter, composed of M2 and M3 
transistors, to transistor M4 pulls up a VDDL input to VDDH. The logic 
connected to the transistor gate of M1 serves to raise the transistor gate 
voltage to VDDL + 0.11V, ensuring that transistor M1 is still off when the 
input voltage is VDDL to isolate the input from VDDH, but improving the 
performance of M1 and reducing contention with the inverter’s feedback [5]. 
The two characterized drive strengths of the level converter have similar 
input capacitance and delay to a Vdd=1.2V/Vth=0.23V X2 drive strength 
inverter, but their leakage is about 30× more due to use of low Vth transistors 
and more leakage paths from Vdd to ground.  

A VDDH input to a VDDL gate reduces the fall delay, but increases the 
rise delay. For example, an inverter’s input falling from Vdd=1.2V, with 
slew of 0.15ns, only reaches 0.8V after 0.05ns, which delays when the 
inverter’s output starts to rise by at least 0.05ns. Compared to 0.8V input 
drivers, using input drivers of 1.2V to 0.8V gates generally reduces the fall 
delay more than the increase in rise delay for our 0.13um libraries, giving 
about 1% to 3% net reduction in circuit delay for most of the ISCAS’85 
benchmarks. The increased rise delay is apparent for Vdd of 0.8V in Figure 
7.5, which shows the VDDH and VDDL cell alternatives for an inverter with 
the overhead for inserting an asynchronous level converter at the output.  

VDDL

VDDH

M1

M3

M2
in

outM4M6

M5

Cbuf

 
Figure 7.6 The strength 5 asynchronous voltage level converter [5]. The NMOS transistors 
labeled with  have Vth of 0.11V. The other NMOS and PMOS transistors have Vth of 
0.23V and –0.21V respectively. VDDH is 1.2V and VDDL is 0.8V or 0.6V, with transistors 
and capacitance Cbuf sized appropriately. 
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Figure 7.7 An overview of the optimization flow for multi-Vdd with asynchronous level 
converters. The linear programming flow for each multi-Vdd power minimization run is the 
same as for sizing in Figure 6.5, with removal and insertion of level converters included when 
considering alternate cells for a gate. 

Changing more than one gate to VDDL is required to amortize the 
asynchronous level converter power overhead, as can be seen from the power-
delay trade-offs in Figure 7.5. This poses a significant barrier to our optimi-
zation formulation, as we pick the best cell alternative to encode in the linear 
program by considering only a single gate. 

7.4.2 Climbing the optimization barrier posed by level 
converter power overheads 

Linear programming CVS results showed some power savings versus 
only using gate sizing. LP results for ECVS, where asynchronous level 
converters were allowed, provided minimal (1%) or no additional power 
savings versus CVS [3]. The optimized circuits did not have asynchronous 
level converters, because the power overhead for a level converter was too 
high to amortize across a single gate.  

The LP optimization had no method of climbing the “hills” posed on the 
optimization surface by the power overhead for a level converter. In contrast, 
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iteratively forcing gates to VDDL enables hill climbing in an ECVS multi-
Vdd methodology, which is the approach taken with multi-Vdd in Chapter 8.  

We examined the power savings possible when the level converter power 
and delay overheads were reduced. With reduced level converter overheads, 
asynchronous level converters were used in the LP optimized circuits. From 
this came the idea of setting the level converter power overheads to zero, 
enabling use of the level converters, without violating the delay constraints. 

It was essential to not change the level converter delays for two reasons. 
Firstly, the linear programming optimization approach is not as good at 
delay reduction, which suggests that trading delay for power reduction, then 
trying to correct it later would be a mistake. Secondly, increased path delay 
with the delay overhead of a level converter has a major impact on optimi-
zation choices and the power, for example causing gates to be upsized. 

Setting level converter power consumption to zero, running the LP app-
roach, correcting the level converter power, then running the LP approach 
again provided good results and level converters were used [3]. The run with 
level converter power set to zero power results in using a larger number of 
level converters. The LP run with the correct level converter power then 
substantially reduces the number of level converters, but more gates remain 
at VDDL than in a CVS approach – that is VDDL regions are clustered. The 
ECVS multi-Vdd optimization flow is shown in Figure 7.7. A simplified 
example to illustrate what happens is shown in Figure 7.8.  

7.4.3 Climbing the optimization barrier posed by level 
converter delay overheads  

The delay overhead for level converters and larger rise delays when  
Vin > Vdd can still pose a significant barrier to achieving better results with 
multi-Vdd. To illustrate the severity of this problem, consider the circuit in 
Figure 7.8(e), but suppose that the delay overhead for an asynchronous level 
converter is 2 units of delay. The larger level converter delay causes the path 
delay from gate 3→2→5 to be 5 units, violating the delay constraint. We 
cannot change gate 5 to VDDL to remove the level converter, as this would 
introduce a level converter from gate 6 to gate 5 which is a critical path. 
Changing gate 2 to VDDH shifts the level converter to its input, which does 
not reduce the delay on the path. The solution is to change both gate 2 and 
gate 3 to VDDH, but as we determine the best alternatives to encode in the 
LP for a single gate at a time, we cannot find this solution.  

The problem with the multi-Vdd delay overheads can occur in situations 
where the best solution would be to change multiple gates to VDDH, or in 
situations where the best solution would be to change multiple gates to 
VDDL. For the example in Figure 7.8, if the combinational outputs can be 
driven at VDDL, setting all gates to VDDL would be the lowest power 
solution. Indeed, setting all gates to VDDL is a better solution in the case 
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described in Section 7.6.5.2, but it is not a solution that we can find without 
forcing all gates to VDDL in the first place. 
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Figure 7.8 This illustrates where level converters may be needed on a simple circuit. The 
legend at the bottom right lists the delay and power of gates for this example. Suppose we 
start in (a) with a circuit where all gates are at VDDH, and that the circuit delay constraint is 4 
units. We require that the outputs are driven at VDDH. Gate 1 may be changed to VDDL, if 
we use a level converter flip-flop at its output, shown in (b). The power overhead for an 
asynchronous level converter is too large to amortize over only a single gate. Thus we 
temporarily set the level converter power to zero to try and change more gates to VDDL. 
Changing gates 3 and 4 to VDDL give power savings of 3 each, and we insert level 
converters at their outputs in (c). Then in (d), we can propagate the level converter from the 
input of gate 2 to its output, to get additional savings. Now we restore the power overhead for 
the level converters, and find that it is best to change gate 4 back to VDDH, as shown in (e). 
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It might be possible to surmount the optimization barrier posed by the 
level converter delay overheads by temporarily setting the delay overhead to 
zero. Actually setting level converter delays to zero may be unacceptable, 
because the level converters then act as very effective buffers that can reduce 
delay by reducing the load on a gate. A better approach would be to set the 
net delay impact to zero, that is no change in delay of the fanin gate or on the 
timing arc where the level converter would be inserted. However, this will 
usually result in too many gates being at VDDL and thus slower, causing  
the delay constraint to be violated once correct delay overheads are used. 
Performing delay reduction to meet the delay constraints may then give a 
suboptimal power result where too many gates have to be upsized to reduce 
the delay. In particular, it would be helpful to have a better delay minimizer 
than the linear programming approach currently provides.  

Given a good delay reduction approach to fix violated delay constraints, 
relaxing the delay constraint would allow more gates to be assigned to VDDL, 
and then delay reduction could be performed to satisfy the tightened delay 
constraint. Thus the level converter delay penalty is not an optimization 
barrier to reducing power by assigning more gates to VDDL at a relaxed 
delay constraint.  

Another approach would be to find groups of gates to assign to VDDL or 
VDDH amortizing the delay penalty across them. However, this will be very 
expensive computationally.  

More gates could be forced to VDDL in the manner proposed in Chapter 
8, but prioritizing assignment to lower supply voltage over gate downsizing 
or increasing threshold voltage will be suboptimal, except in situations 
where there is greater power sensitivity to Vdd, which is often not the case. 
These approaches are also too computationally expensive as they are O(|V|3). 

It is not clear how to resolve this problem. Further optimization experi-
ments with the multi-Vdd delay overhead barrier require a better delay mini-
mizer than the linear programming approach. For now, we will also examine 
solutions where all gates are at the lower supply voltage, noting that there 
may be other intermediate multi-Vdd solutions that would be better that we 
cannot find due to the delay barrier. 

7.5 COMPARISON OF MULTI-VDD  
AND MULTI-VTH RESULTS 

We shall now compare the linear programming results versus the multi-
Vdd/multi-Vth/sizing CVS and ECVS results provided by Sarvesh Kulkarni 
and Ashish Srivastava in Chapter 8 for Vth values of 0.23V and 0.12V,  
and Vdd values of 1.2V, 0.8V and 0.6V. The gate delays with Vdd of 0.6V 
were estimated by scaling from 0.8V to 0.6V using Equation (4.4); the 
other libraries were characterized in PowerArc for STMicroelectronics’ 
0.13um HCMOS9D process. To provide a range of Vth values for the 
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characterization with PowerArc, the zero bias threshold voltage parameter 
vth0 [1] in the SPICE technology files was adjusted. 

We used the same libraries and conditions as they did. The port loads were 
3fF, excluding the additional wire load. The wire loads were 3+2×num_fanout 
fF, and slews were 0.1ns for the 1.2V input drive ramps. Switching activities 
were multiplied by a fraction such that leakage was about 20% of total 
power at Vdd=1.2V/Vth=0.12V. We used an 80ps delay overhead for level 
converter flip-flops, and used the two characterized sizes of the strength 5 
asynchronous level converter described in [5]. The ISCAS’85 and Huffman 
benchmarks for comparison were discussed in Section 6.5.1.  

There were twelve inverter cell sizes, and seven sizes for NAND2, 
NAND3, NOR2 and NOR3 logic gates1. For multi-Vdd with a low supply 
voltage of 0.8V or 0.6V, we encountered slews that were outside the cell 
input slew characterization range. To avoid input slews exceeding 1.02ns, 
the maximum cell capacitance was set to prevent a gate having an output 
slew of more than 1.02ns.  

The multi-Vth/multi-Vdd/sizing approaches in Chapter 8 start from a 
circuit where gates have been upsized from minimum size by their TILOS-
like sizer to meet the delay constraint with high Vdd and low Vth. They do 
not perform any gate downsizing, but may perform further gate upsizing to 
allow more gates to be changed to low Vdd and high Vth. As the linear 
programming approach outperforms their TILOS-like sizer, some power 
savings will be simply due to better gate sizing. Their multi-Vdd approaches 
climb the voltage level converter power and delay hills in the optimization 
surface by forcing as many gates as possible to VDDL. Despite lacking a 
global circuit view when assigning gates to VDDL, they may achieve lower 
power by assigning more gates to VDDL, as we do not have any method 
for climbing the level converter delay hills in the multi-Vdd optimization 
surface.  

The linear programming approach performs better if optimization starts 
with a delay minimized netlist. Thus, the netlists sized by the TILOS-like 
sizer for minimum delay (1.0×Tmin) with high Vdd and low Vth were the 
starting point for the LP runs. The logic gates in the netlists are the same, but 
the sizes differ from the starting point used for the University of Michigan 
optimization, which starts with the circuit sized to meet the particular delay 
constraint. 

The TILOS sizing power results were on average 7.6% worse than the 
LP sizing results, thus we use the LP sizing results to provide the sizing 
baseline with single Vdd and single Vth, as shown in Table 7.1.  

                                                      
1 The inverter gate sizes were X1, X2, X3, X4, X6, X8, X10, X12, X14, 

X16, X18 and X20. The other gate sizes were X1, X2, X4, X5, X6, X7 and 
X8. 
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Dual Vth with sizing in the LP approach is on average 13.7% lower 
power than the LP sizing baseline, which is not surprising given that leakage 
is 20% of the total power with single Vth of 0.12V at the delay constraint of 
1.1×Tmin. The LP CVS and ECVS Vdd=1.2V&0.8V/Vth=0.23V&0.12V 
results are respectively on average 17.4% and 21.7% lower power than the 
LP sizing results. The largest power saving is 37.6% for benchmark c7552. 
For the lower power ECVS results, using VDDL of 0.6V provides 2% or 
less power savings versus VDDL of 0.8V. As a lower supply voltage is less 
robust to noise and will have slower LCFFs, though we assume 80ps LCFF 
for both VDDL values in these results, VDDL of 0.6V is probably not 
worthwhile. The LP ECVS results are on average about 5% lower power 
than the LP CVS results, as shown on the right in Table 7.2. 

The University of Michigan sizing/multi-Vth/multi-Vdd results for 
netlists c432 and c1355 are worse than the LP sizing results, because multi-
Vdd is not particularly helpful for these netlists and their TILOS-like sizing 
results are more than 20% worse than the LP sizing results for these two 
benchmarks. The linear programming results are on average about 6% lower 
power than the University of Michigan CVS and ECVS results, as shown in 
Table 7.2.  

 

Table 7.1 This table shows the percentage power savings versus the sizing baseline provided 
with the linear programming (LP) approach with Vdd=1.2V/Vth=0.12V at 1.1×Tmin. 
University of Michigan (UM) results from Chapter 8 are reported in the last two columns for 
their CVS and ECVS approaches that include dual Vth and gate sizing (they refer to these 
respectively as VVS and GVS in Chapter 8). They found that using 0.6V for VDDL gave 
worse results for their multi-Vdd approaches, so those results are not included. 

TILOS CVS ECVS
0.23 0.23 0.23 0.23 0.23 0.23 0.23

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

0.8 0.8 0.8 0.8
0.6 0.6

Netlist
c432 -23.0% 0.0% 6.6% 4.5% 9.2% 6.6% 8.7% -7.4% -11.2%
c880 -1.4% 0.0% 15.9% 22.4% 21.9% 23.7% 22.6% 22.9% 26.3%
c1355 -21.4% 0.0% 5.7% 6.0% 6.7% 8.2% 8.0% -10.8% -9.9%
c1908 -8.9% 0.0% 9.8% 11.1% 11.2% 14.4% 13.8% 11.1% 7.4%
c2670 -1.8% 0.0% 17.7% 29.0% 31.8% 32.3% 33.1% 26.5% 27.9%
c3540 -3.9% 0.0% 15.1% 16.6% 17.0% 21.8% 20.9% 13.1% 11.7%
c5315 -1.7% 0.0% 15.2% 18.0% 19.5% 26.7% 28.1% 16.9% 25.3%
c7552 -2.1% 0.0% 21.8% 30.3% 28.0% 37.6% 37.1% 22.0% 33.1%
Huffman -4.4% 0.0% 15.8% 18.5% 19.3% 23.7% 23.9% 16.2% 24.1%
Average -7.6% 0.0% 13.7% 17.4% 18.3% 21.7% 21.8% 12.3% 15.0%

Vth (V)

Vdd (V)

LP UM

Power savings versus LP sizing

CVS ECVS
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Table 7.2 This table compares the linear programming CVS and ECVS results versus the 
University of Michigan CVS and ECVS results respectively, and compares our LP results 
with gate sizing and dual Vth for ECVS versus CVS.  

 

Vth (V) 0.23 0.23 0.23 0.23 0.23 0.23
0.12 0.12 0.12 0.12 0.12 0.12

Vdd (V) 1.2 1.2 1.2 1.2 1.2 1.2
0.8 0.8 0.8

0.6 0.6 0.6
c432 11.1% 15.4% 16.0% 17.8% 2.1% -0.5%
c880 -0.6% -1.2% -3.5% -5.1% 1.7% 0.9%
c1355 15.2% 15.8% 16.5% 16.3% 2.3% 1.5%
c1908 -0.1% 0.1% 7.6% 7.0% 3.8% 2.9%
c2670 3.3% 7.1% 6.1% 7.1% 4.7% 1.9%
c3540 4.1% 4.5% 11.4% 10.3% 6.2% 4.6%
c5315 1.4% 3.1% 1.9% 3.8% 10.6% 10.7%
c7552 10.6% 7.7% 6.8% 6.0% 10.5% 12.6%
Huffman 2.8% 3.7% -0.4% -0.2% 6.4% 5.7%
Average 5.3% 6.3% 6.9% 7.0% 5.4% 4.5%

LP savings versus UM LP ECVS savings
LP CVS LP ECVS versus LP CVS

 

In most cases the LP results are lower power, but they are up to 5.1% 
higher power for c880. In the few cases where the University of Michigan 
results are better, they were able to assign more gates to VDDL to achieve 
lower total power. This emphasizes the importance of level converter “delay 
hill” climbing in the optimization space, which our linear programming 
approach lacks. Several possible approaches to climbing these delay barriers 
between local minima with the LP approach were discussed in Section 7.4.3. 
It is a difficult non-convex optimization problem.  

We would expect that an optimization approach which uses only a subset 
of the optimization space (e.g. CVS with level converter flip-flops only) 
would provide suboptimal or at best equivalent results to approaches with 
additional options (e.g. ECVS which also has asynchronous level converters). 
This is not always the case as the optimization approaches are heuristic, with 
no guarantee of finding the global minimum, and they can get stuck in local 
minima. The benefits of multi-Vdd may be underestimated due to the diffi-
culty of assigning more gates to VDDL with the level converter delay penalty 
creating a nonconvex “bumpy” optimization space where it is difficult to get 
out of local minima.  

Our multi-Vdd/multi-Vth power savings of 28% or more versus sizing 
are sufficient to justify use of multi-Vdd and multi-Vth. We compare multi-
Vdd and multi-Vth results versus single Vdd and single Vth in more detail in 
the next section. In particular, we start with high Vth netlists for which 
leakage is 1% of the total power, from which it is more difficult to achieve 
substantial power savings with multi-Vth.  
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7.6 ANALYSIS OF POWER SAVINGS WITH  

MULTI-VTH AND MULTI-VDD 

Comparisons versus Design Compiler in Section 6.5.2 showed that 
the linear programming approach provided very good gate sizing results.  
In Section 7.5, we saw that the LP approach also provides good multi-Vdd/ 
multi-Vth/sizing results, averaging 5% to 7% lower power for both CVS and 
ECVS multi-Vdd methodologies. By comparison to the good gate sizing 
baseline with single Vdd and single Vth, we can now carefully analyze the 
power savings that may be possible with multi-Vdd and multi-Vth in addition 
to gate sizing. 

With the large amount of data presented in this section, we italicize the 
more significant results. 

7.6.1 General experimental conditions 

The starting gate sizes for multi-Vth and multi-Vdd optimization are 
the Design Compiler netlists that were sized to minimize delay with the 
Vdd=1.2V/Vth=0.23V 0.13um PowerArc characterized library. Using high 
Vdd and low Vth cells provides the minimum delay starting point for optimi-
zation (see Table 4.1 and accompanying discussion).  

We used fewer gate sizes for results in this section. There were nine 
inverter sizes, and four sizes for NAND2, NAND3, NOR2 and NOR3 logic 
gates1. Using more gate sizes did not significantly change the results from 
Design Compiler or our LP approach, as only the larger gate sizes were not 
included. Inclusion of the larger gate sizes does not change the results signi-
ficantly as the larger gates with substantial power consumption are seldom 
used in the power minimized netlists.  

For multi-Vdd with a low supply voltage of 0.8V or 0.6V, we encoun-
tered slews that were outside the cell input slew characterization range. 
These cell sizes were characterized with input slew of up to 1.8ns. To avoid 
input slews exceeding 1.8ns, the maximum cell capacitance was set to prevent 
a gate having an output slew of more than 1.8ns. 

As in the earlier analysis, the port loads were 3fF, not including the wire 
load, and wire loads were 3+2×num_fanout fF. Switching activities were 
multiplied by a fraction such that leakage was about 1% of total power at 
Vdd=1.2V/Vth=0.23V. Input slew was set to 0.1ns. The input drive ramps 
have voltage swing from 0V to 1.2V, except in Section 7.6.5 for the single 
0.8V Vdd results where we look at the impact of using 0.8V drivers. With 
multi-Vdd, the optimization is not allowed to set the input drivers to VDDL 
to further reduce power.  
                                                      
1 The inverter gate sizes were XL, X1, X2, X3, X4, X8, X12, X16 and X20. 

The other gate sizes were XL, X1, X2, X4. 
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7.6.2 Experimental conditions for multi-Vth comparison 

Power savings are compared at a tight delay constraint for high Vth to 
avoid exaggerating savings versus low Vth, where leakage and thus total 
power are substantially higher. Starting with all gates at low Vth, it is easy to 
reduce leakage by going to high Vth, as many gates are not on timing critical 
paths. The power savings are less when starting with all gates at high Vth, 
because using low Vth causes a substantial increase in leakage power that 
can only be justified by gate downsizing on timing critical paths, or using the 
resulting timing slack to reduce Vdd. 

We shall examine multi-Vth with three Vth values: 0.23V, 0.14V, and 
0.08V. The leakage at Vth of 0.14V and 0.08V is respectively about 10× and 
50× than at 0.23V, but they also provide a substantial delay reduction versus 
Vth=0.23V, ranging from 12% to 43% less depending on Vdd. There is 
minimal benefit for choosing Vth higher than a value that results in leakage 
being 1% of total power – the power savings are at best 1%, and in practice 
less due to the reduced slack for gate downsizing. Thus we consider a 
scenario with 1% of total power being leakage at high Vth.  

The delay constraints were 1.0×Tmin and 1.2×Tmin for multi-Vth results, 
where Tmin is the minimum delay for the Design Compiler delay minimized 
netlists at Vdd=1.2V/Vth=0.23V. Using a lower threshold voltage provides 
sufficient timing slack to get good multi-Vth results with the linear program-
ming approach at a delay constraint of 1.0×Tmin for Vdd=1.2V/Vth=0.23V. 
We expect that using a lower Vth may provide most benefit at the tight 
1.0×Tmin delay constraint, as the additional slack allows gates to be down-
sized, backing away from the sharp rise in dynamic power on the gate sizing 
power versus delay “banana” curves. Analysis is also performed at 1.2×Tmin, 
as this is where we found the greatest power savings with geometric pro-
gramming optimization of multi-Vdd and multi-Vth for benchmarks c499 
and c880, and where other researchers have performed multi-Vdd analysis 
[6][10]. 

7.6.3 Experimental conditions for multi-Vdd comparison 

We shall examine three possible supply voltages: 1.2V, 0.8V and 0.6V. 
Earlier multi-Vdd research suggested as a rule of thumb to use a low supply 
voltage of about 70% of VDDH, while some more recent research has 
suggested that VDDL should be 50% of VDDH [6]. Thus if VDDH is 1.2V, 
VDDL should be 0.8V or 0.6V. The gate delays with Vdd of 0.6V were 
estimated by scaling from 0.8V to 0.6V using Equation (4.3) with α = 1.66; 
the other libraries were characterized in PowerArc for STMicroelectronics’ 
0.13um HCMOS9D process. To provide a range of Vth values for the 
characterization with PowerArc, the zero bias threshold voltage parameter 
vth0 [1] in the SPICE technology files was adjusted.  
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There is a 50% delay increase when using Vdd=0.6V even with 
Vth=0.08V, though Vdd=0.6V/Vth=0.08V does reduce power by about 
65% versus Vdd=1.2V/Vth=0.23V from analysis without gate sizing in 
Chapter 4. In comparison, Vdd=0.8V/Vth=0.08V has only a 10% delay inc-
rease and reduces power by 28%. For multi-Vdd, the smaller delay penalty 
at VDDL=0.8V will allow it to be used for more gates in the circuit than 
VDDL=0.6V. A smaller VDDL delay penalty leaves more slack for power 
minimization by gate down sizing or increasing Vth.  

We used a delay constraint of 1.2×Tmin to look at the benefits of multi-
Vdd, where Tmin is the minimum delay for the Design Compiler delay 
minimized netlists at Vdd=1.2V/Vth=0.23V. There is sufficient slack for the 
linear programming approach to work well at Vth=0.23V. 10% to 20% 
relaxed delay constraints from the TILOS sized netlists were used in [6] and 
[10] to allow sufficient slack for good power savings with multi-Vdd. The 
Design Compiler delay minimized netlists average 22% faster than the 
TILOS delay minimized netlists that were used as a starting point in Section 
7.5. Thus, there may be significantly less timing slack at 1.2×Tmin for the 
Design Compiler netlists than for the TILOS netlists. However, it is difficult 
to compare the netlists as they differ because delay minimization in Design 
Compiler used both technology mapping and gate sizing, whereas TILOS 
was limited to gate sizing. Reducing Vth below 0.23V provides multi-Vdd 
scenarios with more timing slack. 

We must account for the delay and power overheads for restoring a low 
voltage swing signal. Compared to high speed flip-flops, a level converter 
flip-flop has a delay overhead of about 2 FO4 delays [2], which corresponds 
to 80ps in our 0.13um process. Making the same assumption for results in 
Section 7.6.4 as in Chapter 8, we assume an 80ps delay overhead for voltage 
level restoration with an LCFF and no power overhead.  

An LCFF delay overhead of 0ps is appropriate if comparing to the typical 
D-type flip-flops in an ASIC standard cell library [4], rather than high speed 
pulsed flip-flops. Results with 0ps LCFF delay overhead are discussed in 
Section 7.6.5. The additional timing slack permits lower power results with 
Vdd of 0.8V. With 80ps LCFFs, VDDH of 1.2V is required to meet the 
delay constraints with sufficient timing slack to reduce power. 

For ECVS, we used two characterized drive strengths of the strength 5 
asynchronous level converters [5]. This higher speed and energy efficient 
modification of a pass gate level converter was described in Section 7.4.1.  

We make the same assumption as made by Kulkarni and Srivastava et al. 
in [6], [10] and Chapter 8 that level converters are placed next to the input 
pin of the gate that they drive, and that there are no additional wiring over-
heads. This assumption is optimistic, unless there is a standard cell library 
with level converters incorporated into the logic cells. However, there are 
level converter designs incorporating additional logic, (e.g. see Figure 13.8), 
so this assumption may be reasonable. 



174 Chapter 7
 

The optimization approach is only a heuristic, so in some cases the results 
found given a larger possible state space, for example dual Vdd versus single 
Vdd, can be worse. Section 7.6.5 will dwell on multi-Vdd results with 0ps 
LCFF delay overhead that are substantially worse than using a single Vdd of 
0.8V. As we are interested in looking at the benefits of multi-Vdd and multi-
Vth, a suboptimal result obscures the benefits. Instead, if there was a better 
solution found with a subset of the Vdd or Vth values, that solution has been 
tabulated, except for the multi-Vdd results in Section 7.6.5 where their 
suboptimality is discussed. 

7.6.4 Results with 80ps level converter flip-flop delay 
overhead  

We begin analysis assuming an 80ps LCFF delay overhead for voltage 
level restoration at the outputs. This applies to the multi-Vdd results and to 
the single Vdd results where the supply voltage has been scaled to 0.8V. We 
have made the same assumptions as in Chapter 8 for comparison of our 
results to theirs. In Section 7.6.5, we analyze results with a 0ps LCFF delay 
overhead, which substantially improves the single Vdd=0.8V results. 

7.6.4.1 Impact of multi-Vth with single Vdd at 1.0×Tmin  

To examine the benefits of using multiple supply and threshold voltages, 
we must first provide a sizing only baseline with single Vdd and single Vth. 
At a delay constraint of 1.0×Tmin, the only possible choice of supply voltage 
if only a single Vdd is used is 1.2V, as the delay is too large otherwise. For 
Vth of 0.23V, there is no timing slack, and the linear programming approach 
cannot minimize power without violating the delay constraint. Thus the Design 
Compiler power minimization results are reported for Vth=0.23V at the 
1.0×Tmin delay constraint.  

The best single Vth gate sizing results at 1.0×Tmin are with Vth of 0.14V, 
reducing the power on average by 12.0% from the Vth=0.23V sizing results. 
The lower threshold voltage gives sufficient slack for gate downsizing to 
reduce the dynamic power without resulting in excessive leakage, unlike 
using Vth of 0.08V which is 19.7% higher power on average as listed in 
Table 7.3. 

The largest power saving with dual Vth versus the single Vth=0.14V 
baseline is 7.0% with Vth of 0.23V and 0.14V, and on average they provide 
5.2% power savings. The additional leakage with low Vth of 0.08V is too 
great to justify using it with dual Vth, though sparing use of it on the critical 
path for triple Vth provides up to 5.1% power savings versus dual Vth.  
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Table 7.3 This table compares dual Vth and triple Vth sizing power minimization results 
versus the best sizing only results with single Vth of 0.14V. The delay constraint was 
1.0×Tmin and Vdd was 1.2V for all these results. Results for single Vth of 0.23V are from 
Design Compiler (DC); the other results are from the linear programming approach (LP). 

Triple
0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08

Netlist DC
c17 -13.7% 0.0% -20.1% 7.0% -8.0% 0.0% 7.0%
c432 -19.6% 0.0% -17.9% 2.5% -5.6% 0.8% 3.3%
c499 -20.9% 0.0% -17.1% 7.0% -0.2% 2.8% 8.1%
c880 -4.2% 0.0% -20.8% 5.1% 4.6% 2.8% 10.0%
c1355 -26.1% 0.0% -17.2% 4.6% -1.8% 2.6% 5.9%
c1908 -11.1% 0.0% -19.9% 6.1% -1.6% 1.0% 6.1%
c2670 -13.5% 0.0% -23.5% 5.2% 0.5% 1.4% 7.1%
c3540 -17.4% 0.0% -20.9% 4.5% -1.7% 0.8% 5.9%
c5315 -6.4% 0.0% -24.1% 6.2% 0.0% 1.4% 6.8%
c6288 -12.7% 0.0% -16.9% 2.4% -3.5% 1.6% 3.8%
c7552 -8.0% 0.0% -18.3% 6.2% 0.8% 3.2% 7.6%
Average -14.0% 0.0% -19.7% 5.2% -1.5% 1.7% 6.5%

Power savings vs. Vdd=1.2V/Vth=0.14V

Single Dual

LP

 

7.6.4.2 Impact of multi-Vth with single Vdd at 1.2×Tmin  

With a relaxed delay constraint of 1.2×Tmin, in some cases single Vth of 
0.23V produced the best results for gate sizing and in other cases Vth of 
0.14V was the best choice, as shown in Table 7.4. The best single Vth/single 
Vdd/gate sizing results were with Vdd of 1.2V, though the relaxed delay 
constraint does allow Vdd of 0.8V with Vth reduced to 0.08V in some cases. 
The best of these gate sizing only results are used for a baseline to compare 
multi-Vth against.  

Dual threshold voltages of 0.23V and 0.14V with Vdd of 1.2V provide the 
best dual Vth power savings, except for benchmark c6288, averaging 5.0% 
lower power than the single Vth baseline. The leakage with Vth of 0.08V is 
too high to justify its use with Vdd of 1.2V. Triple Vth provides at most 
1.3% power savings versus dual Vth. 

Interestingly, optimization of c6288 with single Vdd of 0.8V and Vth 
values of 0.14V and 0.08V achieves the largest dual Vth power savings of 
7.8% versus the single Vth gate sizing baseline, and this result is 4.1% lower 
power than the multi-Vth results with Vdd of 1.2V. This is the only case 
where the multi-Vth results with Vdd of 0.8V achieve lower power. With 
Vdd of 0.8V, low Vth of 0.08V is essential to try and meet the delay 
constraint. For the single Vth results, using only Vth of 0.08V results in too 
much leakage and worse total power. For those gates with sufficient slack to 
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change to high Vth, the higher Vth of 0.14V provides about a 5× reduction 
in leakage power. The 80ps LCFF delay overhead is only 2% of the delay 
constraint for c6288, but for the other netlists it is 6% or more of the delay 
constraint, leaving less slack for gates to be downsized or changed to high 
Vth. This is why the results for c6288 with Vdd of 0.8V are different. 

For the Vdd=0.8V/multi-Vth results where the delay constraints were not 
violated, the delay reduction phase of the LP approach did manage to meet 
the delay constraint after iterations of the power reduction phase, which was 
not the case for the Vdd=0.8V/single Vth results. To reduce delay with Vth, 
a gate can be changed back to low Vth, which only slightly increases the 
capacitive load on fanin gates and doesn’t reduce their speed substantially. 
Whereas to reduce delay with sizing, a gate must be upsized, which sub-
stantially increases the capacitive load on the fanins and increases their 
delay. Thus the delay reduction phase can reduce delay better with multi-Vth 
than with gate sizing alone. 

 

Table 7.4 This table compares dual Vth and triple Vth sizing power minimization results 
versus the best sizing only results with single Vth. The delay constraint was 1.2×Tmin and 
input drivers were ramps with voltage swing from 0V to 1.2V. There was an 80ps LCFF 
delay overhead at the outputs for the Vdd=0.8V results. Vdd=0.8V results were not included 
if there was no power savings versus the baseline. All these results are for the LP approach.  

Triple Dual Triple
0.23 0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08 0.08 0.08

1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vdd (V) 0.8 0.8

Netlist
c17 -8.8% 0.0% -20.4% 5.0% -2.3% 0.0% 5.0%
c432 -3.5% 0.0% -24.3% 6.7% 1.0% 0.0% 6.7%
c499 -7.2% 0.0% -30.0% 1.8% -5.7% -3.7% 1.8%
c880 0.0% -3.1% -31.5% 5.0% 1.9% -2.3% 5.0%
c1355 -1.8% 0.0% -26.2% 4.5% -0.8% 0.0% 4.7%
c1908 0.0% -0.2% -29.3% 7.1% 3.3% -0.8% 7.7% -18.1% -8.3%
c2670 0.0% -2.8% -31.1% 4.3% 2.5% -2.8% 4.6%
c3540 -0.4% 0.0% -27.9% 6.9% 2.3% 0.8% 7.5% -8.8% -8.8%
c5315 0.0% -4.9% -36.0% 3.7% 1.4% -4.7% 3.9% -53.3% -53.3%
c6288 -1.0% 0.0% -24.9% 3.9% 1.5% 0.7% 5.2% 7.8% 7.8%
c7552 0.0% -1.3% -29.0% 5.6% 2.3% -0.9% 5.6%
Average -2.1% -1.1% -28.2% 5.0% 0.7% -1.2% 5.2% -18.1% -15.7%

failed delay constraint

failed delay constraint
failed delay constraint
failed delay constraint

failed delay constraint

Power savings vs. single Vdd/single Vth baseline

Single

failed delay constraint
failed delay constraint

Single Dual
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7.6.4.3 Summary of multi-Vth results with 80ps LCFF delay overhead 

Using dual threshold voltages provides only a power saving of up to 
11.4%, which does not justify the additional processing costs and yield impact. 
Using three different threshold voltages provides no significant additional 
benefits. However, we will revisit this with Vdd of 0.8V and 0ps LCFF 
delay overheads in Section 7.6.5, where dual Vth is found to provide larger 
power savings. 

In the next section we examine the power savings with multiple supply 
voltages at 1.2×Tmin. Then we look at using multiple supply voltages in 
conjunction with multiple threshold voltages in Section 7.6.4.5. We might 
anticipate that multi-Vth is more beneficial with multi-Vdd, as the lower Vth 
can help provide sufficient slack to change more gates to low Vdd. 

7.6.4.4 Impact of multi-Vdd with single Vth at 1.2×Tmin 

The largest power saving with ECVS dual Vdd versus the single Vdd 
baseline was 13.9% for c2670 with Vdd values of 1.2V and 0.6V and Vth of 
0.14V, as shown in Table 7.5. The largest power saving with CVS dual Vdd 
was 12.2% was for the same benchmark and Vdd values, but Vth was 0.23V. 
On average ECVS provides only 1.2% power savings versus CVS, though 
the maximum power saving is 7.3%. Dual Vdd with single Vth provided no 
power savings for c17 and c499. 

Comparing the best CVS dual Vdd/single Vth/sizing results against the 
baseline, CVS dual Vdd gives on average 2.5% power savings. The results 
with VDDL of 0.8V and 0.6V were quite similar, indicating a somewhat 
flat optimization space in terms of the choice for VDDL. In most cases, the 
best choice for a single Vth with dual Vdd was 0.14V, as it provides more 
slack for gates to change to VDDL than a Vth of 0.23V. The best ECVS dual 
Vdd with single Vth results versus the baseline give an average 4.1% power 
saving.  

The dual Vdd/single Vth results range from 6.6% better to 11.2% worse 
than the single Vdd/dual Vth results at 1.2×Tmin, and are 1% better on 
average. The power savings depend on the particular design and the opti-
mizer, for example the LP approach works well with multi-Vth but has 
problems in some cases with multi-Vdd. Depending on the power savings 
and the design cost, it may be preferable to use only dual Vth, only dual 
Vdd, or both. However, the maximum power savings of 7.8% with single 
Vdd/dual Vth and 13.9% with dual Vdd/single Vth are probably insufficient 
to justify the additional design cost. 

We now look at the benefits of multi-Vdd with multiple threshold voltages. 
Using a low Vth provides slack for greater use of low Vdd, and voltage level 
converter designs may utilize more than one threshold voltage. For example, 
the strength 5 level converters [5] use Vth of 0.23V and 0.11V. 
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Table 7.5 This table compares CVS and ECVS dual Vdd/single Vth/sizing power 
minimization results versus the sizing only baseline results in Table 7.4. At the bottom are 
shown the ECVS power savings versus CVS. 

 

0.23 0.23 0.23 0.23
0.14 0.14 0.14 0.14

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vdd (V) 0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6
Netlist

c17 -8.8% 0.0% -8.8% 0.0% -8.8% 0.0% -8.8% 0.0%
c432 -2.4% 0.6% -2.9% 0.0% -2.4% 0.6% -2.9% 0.0%
c499 -7.1% 0.0% -7.1% 0.0% -7.1% 0.0% -7.1% 0.0%
c880 2.3% 0.0% 3.0% 1.4% 2.3% 6.2% 3.0% 4.2%
c1355 -1.8% 0.0% -1.8% 0.0% -1.8% 0.8% -1.5% 0.0%
c1908 1.4% 2.2% 0.4% 2.6% 1.6% 3.4% 1.9% 3.6%
c2670 9.8% 7.8% 12.2% 11.3% 10.0% 10.4% 12.2% 13.9%
c3540 1.8% 2.1% 2.2% 1.9% 3.0% 7.6% 2.2% 5.5%
c5315 3.3% -0.1% 3.2% 0.4% 6.6% 7.1% 3.9% 7.7%
c6288 0.4% 1.3% -0.1% 1.2% 0.4% 1.3% -0.1% 1.2%
c7552 2.3% 0.6% 1.7% 0.7% 2.3% 3.7% 1.7% 3.2%
Average 0.1% 1.3% 0.2% 1.8% 0.5% 3.7% 0.4% 3.6%

Netlist
c17 0.0% 0.0% 0.0% 0.0%
c432 0.0% 0.0% 0.0% 0.0%
c499 0.0% 0.0% 0.0% 0.0%
c880 0.0% 6.2% 0.0% 2.8%
c1355 0.0% 0.8% 0.3% 0.0%
c1908 0.1% 1.2% 1.4% 1.0%
c2670 0.2% 2.8% 0.0% 3.0%
c3540 1.1% 5.6% 0.0% 3.7%
c5315 3.4% 7.2% 0.7% 7.3%
c6288 0.0% 0.0% 0.0% 0.0%
c7552 0.0% 3.1% 0.0% 2.5%
Average 0.4% 2.5% 0.2% 1.8%

Single

CVS dual Vdd ECVS dual Vdd

Vth (V)

ECVS power saved vs. CVS

Power savings vs. single Vdd/single Vth baseline

 

7.6.4.5 Impact of multi-Vdd with multi-Vth at 1.2×Tmin 

In most cases, the best Vdd values were 1.2V and 0.6V for dual Vdd/ 
dual Vth, and the best Vth values were 0.23V and 0.14V. The largest power 
saving seen with ECVS dual Vdd/dual Vth versus the single Vdd/single Vth 
baseline was 18.6%, as shown in Table 7.6, and the average power saving 
with the best dual Vdd/dual Vth results for each benchmark is 8.5%. The 
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best dual Vdd/dual Vth power saving versus single Vdd/dual Vth is 6.9%, and 
the results are 4.6% better on average. The best dual Vdd/dual Vth power 
saving versus dual Vdd/single Vth is 15.0%, and the results are 3.4% better 
on average. The largest power saving for dual Vdd/triple Vth versus dual 
Vdd/dual Vth was 2.3% for c5315.  

Table 7.6 This table compares CVS and ECVS dual Vdd/multi-Vth/sizing power 
minimization results versus the sizing only baseline results in Table 7.4. At the bottom are 
shown the ECVS power savings versus CVS. Suboptimal dual Vdd/dual Vth results with low 
Vth of 0.08V are omitted here. 

Dual Triple Dual Triple Dual Triple Dual Triple
0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vdd (V) 0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6

Netlist
c17 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
c432 6.9% 7.7% 7.5% 7.5% 7.0% 7.7% 7.5% 7.5%
c499 1.8% 1.9% 1.8% 1.8% 1.8% 1.9% 1.8% 1.8%
c880 6.9% 6.9% 7.0% 7.0% 10.4% 10.4% 7.3% 9.3%
c1355 4.7% 4.7% 4.8% 4.9% 4.7% 4.9% 4.8% 4.9%
c1908 8.4% 8.6% 10.2% 10.2% 9.4% 9.4% 10.2% 10.2%
c2670 13.8% 14.0% 16.7% 16.8% 15.1% 16.4% 18.6% 18.6%
c3540 8.1% 8.8% 8.5% 9.0% 10.6% 10.8% 10.4% 10.9%
c5315 6.6% 6.8% 6.7% 6.7% 11.0% 11.5% 11.9% 13.9%
c6288 4.7% 5.2% 5.1% 5.2% 4.7% 5.2% 5.1% 5.1%
c7552 6.2% 6.6% 6.8% 7.0% 6.9% 7.7% 8.1% 8.1%
Average 6.6% 6.9% 7.3% 7.4% 7.9% 8.3% 8.2% 8.7%

Netlist
c17 0.0% 0.0% 0.0% 0.0%
c432 0.1% 0.0% 0.0% 0.0%
c499 0.0% 0.0% 0.0% 0.0%
c880 3.8% 3.8% 0.3% 2.5%
c1355 0.0% 0.2% 0.0% 0.0%
c1908 1.0% 0.8% 0.0% 0.0%
c2670 1.5% 2.8% 2.3% 2.2%
c3540 2.7% 2.1% 2.1% 2.1%
c5315 4.8% 5.0% 5.5% 7.7%
c6288 0.0% 0.0% 0.0% 0.0%
c7552 0.8% 1.2% 1.4% 1.2%
Average 1.3% 1.5% 1.1% 1.4%

Power savings vs. single Vdd/single Vth baseline

ECVS power savings vs. CVS

CVS dual Vdd ECVS dual Vdd
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Results from these small benchmarks suggest that dual Vth with dual 
Vdd doesn’t provide substantial benefits over using single Vth with dual 
Vdd, and that the processing costs for additional mask layers would not be 
justified. An additional Vth value doesn’t provide much power saving: either 
by using a second higher Vth to reduce leakage, or a second lower Vth to 
provide more timing slack to reduce Vdd.  

Comparing ECVS versus CVS for the best dual Vth values of 0.23V and 
0.14V, ECVS provided up to 5.5% power savings. This may be insufficient 
improvement to justify use of asynchronous level converters, given that 
they are not as robust to noise as level converter flip-flops, and thus require 
tighter design constraints on voltage IR drop and more careful noise ana-
lysis. 

The gate sizing results for the LP approach in Chapter 6 had average 
power savings of 16.6% versus Design Compiler for the delay constraint of 
1.2Tmin. Thus LP gate sizing provides about twice the average improvement 
of 8.5% seen with dual Vdd/dual Vth/sizing, without any additional 
processing costs for multi-Vth or area overhead for multi-Vdd. Given the 
additional design costs, use of dual Vdd and dual Vth appear dubious. 

In the next section with 0ps LCFF delay overheads, we will examine 
how optimal these multi-Vdd results are, and see situations where multi-Vth 
can provide larger power savings. 

7.6.5 Results with 0ps level converter flip-flop delay 
overhead 

Thus far, an 80ps LCFF delay penalty has been assumed for voltage level 
restoration to 1.2V at the primary outputs if the driving gate has a 0.8V or 
0.6V supply. However, the delay of a level converter flip-flop is comparable 
to that of a typical D-type flip-flop in an ASIC standard cell library [4], 
though slower than fast pulsed flip-flops. Thus a 0ps delay penalty is appro-
priate if comparing to D-type flip-flops.  

The output signals may also not require voltage level restoration. For 
example, the whole circuit may use a 0.8V supply voltage. In this case, there 
will be some additional delay due to using registers with 0.8V supply. A 
typical D-type flip-flop used for a register in an ASIC has delay of 2 to 4 
FO4 delays, corresponding to 80ps to 160ps in this 0.13um process. Voltage 
scaling from Vdd=1.2V/Vth=0.23V to Vdd=0.8V/Vth=0.14V increases the 
delay by about 15%. So the flip-flops may be 12ps to 24ps slower, which is 
substantially less than an 80ps delay penalty. 

In this section, we look at LP results with single Vdd=0.8V and 0ps 
LCFF delay overhead. Then we will examine why optimization with multi-
Vdd has problems finding result as good as these. 



Linear Programming for Multi-Vth and Multi-Vdd Assignment 181
 
Table 7.7 This table compares single Vdd=0.8V results versus the baseline of the best sizing 
only results with 1.2V input drivers from Table 7.4 and the second column here. At the 
bottom left, the gate sizing results with Vdd of 0.8V are compared against the best gate sizing 
results from Table 7.4. The input drivers had voltage swing of 0.8V or 1.2V. At the bottom 
right are shown the power savings with 0.8V drivers versus 1.2V drivers. 

Single Triple Single Triple
0.23 0.23 0.23 0.23

Vth (V) 0.14 0.14 0.14 0.14
0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Netlist
c17 3.3% 3.3% 24.4% 24.4%
c432 -8.6% -8.7% 2.3% 3.4% 5.5% 6.0% 14.0% 16.0%
c499 -2.7% 0.7% 9.2% 10.1% 7.8% 10.0% 19.7% 20.7%
c880 -5.7% 8.9% 16.7% 16.7% 8.8% 19.5% 27.7% 27.7%
c1355 -15.5% -1.1% 6.7% 6.7% 7.5% 9.4% 18.2% 18.3%
c1908 -11.8% 7.8% 15.5% 16.5% 9.0% 15.1% 24.1% 24.6%
c2670 0.0% 9.4% 16.3% 16.6% 3.2% 22.2% 28.6% 29.5%
c3540 0.0% 9.2% 16.9% 17.3% 8.7% 17.8% 24.3% 25.4%
c5315 0.0% 14.0% 18.1% 18.6% 13.2% 21.4% 27.7% 28.9%
c6288 0.0% 2.6% 9.5% 9.5% 5.9% 5.9% 14.3% 15.0%
c7552 0.0% 10.5% 18.0% 18.5% 11.9% 18.1% 25.1% 26.0%
Average -4.4% 5.3% 12.9% 13.4% 7.7% 13.5% 22.5% 23.3%

Saved vs.Vdd=1.2V
Netlist single Vth baseline Netlist

c432 -8.6% c432 13.0% 13.4% 12.0% 13.0%
c499 -2.7% c499 10.3% 9.4% 11.6% 11.8%
c880 -5.7% c880 13.8% 11.6% 13.2% 13.2%
c1355 -15.5% c1355 19.9% 10.4% 12.2% 12.4%
c1908 -11.8% c1908 18.6% 8.0% 10.1% 9.6%
c2670 4.1% c2670 3.2% 14.1% 14.7% 15.4%
c3540 0.3% c3540 8.7% 9.5% 8.9% 9.8%
c5315 3.9% c5315 13.2% 8.7% 11.7% 12.7%
c6288 3.3% c6288 5.9% 3.4% 5.3% 6.0%
c7552 3.5% c7552 11.9% 8.4% 8.6% 9.2%
Average -2.9% Average 11.8% 9.7% 10.8% 11.3%

with 1.2V drivers with 0.8V drivers
Dual Dual

Saved vs. 1.2V drivers

Power savings vs. single Vdd/single Vth baseline with 1.2V drivers
failed delay constraint

 

7.6.5.1 Impact of multi-Vth with Vdd of 0.8V at 1.2×Tmin  

Vth of 0.08V is necessary with Vdd=0.8V to meet the delay constraint. 
With 1.2V drivers, the single Vdd=0.8V/Vth=0.08V results are up to 4.1% 
better than the Vdd=1.2V gate sizing baseline, but on average are 2.9% 
worse as shown in Table 7.7. The increased rise delay with 1.2V input swing 
to the 0.8V gates prevents the delay constraint being satisfied for c17, where 
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the 0.033ns for the input to fall from 1.2V to 0.8V (calculated from the 0.1ns 
input slew of the drivers) is 29% of the 0.112ns delay constraint. 

When voltage is scaled from Vdd=1.2V/Vth=0.23V to Vdd=0.8V/ 
Vth=0.08V, there is about a 26× increase in leakage, but the dynamic power 
is reduced substantially by about a factor of 2.2× from the analysis that 
excluded gate sizing in Chapter 4. As the dynamic power was 99% of the 
total power at Vdd=1.2V/Vth=0.23V, this trade-off can be worthwhile. In 
the absence of gate sizing, Vdd=0.8V/Vth=0.08V reduced power on average 
by 28% versus Vdd=1.2V/Vth=0.23V, but with gate sizing included the 
average power saving is only 10.4% with 0.8V input drivers. The extra 
timing slack at Vdd=1.2V/Vth=0.23V allows more gate downsizing, thus 
reducing Vdd provides less power savings. 

With 1.2V drivers, the Vdd=0.8V/dual Vth results with Vth values of 
0.14V and 0.08V are up to 18.1% lower power than the baseline, and 
average 12.9% less. In comparison for single Vdd of 1.2V at 1.2×Tmin, dual 
Vth was only 5.0% better than the baseline on average, and at best 7.1% 
better. Thus the dual Vth results at Vdd of 0.8V are much better. The low 
Vth of 0.08V provides sufficient slack for Vdd to be reduced to 0.8V, and 
the higher Vth of 0.14V is used where possible to reduce leakage. Comparing 
the Vdd=0.8V results, adding the high Vth of 0.14V allows power to be 
reduced by 16.5% on average versus the single Vth=0.08V results. This may 
be sufficient power savings to justify the additional process costs for dual 
Vth. At Vdd=0.8V, gates with Vth of 0.14V were only about 15% slower 
than at Vth of 0.08V, compared to Vth of 0.23V which had 50% larger 
delay. Consequently, Vth of 0.14V is a better choice for high Vth than 
0.23V. Comparing triple Vth and dual Vth results at Vdd=0.8V in Table 7.7, 
there is at most 2.3% power savings by using the third threshold voltage.  

Until now, we have assumed that the input drivers had voltage swing of 
1.2V. Using 0.8V input drivers reduces the dynamic power to switch 
capacitances driven by the primary inputs. The results with 0.8V input 
drivers average 10.9% lower power than the results with 1.2V drivers in 
Table 7.7. With 0.8V gates and 0.8V input drivers, the single Vth of 0.08V 
results average 7.7% lower power than the other gate sizing results. In 
comparison to these better gate sizing results, results for 0.8V gates and 
0.8V drivers with dual Vth of 0.14V and 0.08V average 16.0% lower power, 
and the maximum power saving is 26.2%. This shows the full extent of 
power savings that might be achieved by scaling Vdd from 1.2V to 0.8V. 
These savings are comparable to what we achieved with the gate sizing 
approach versus Design Compiler. 

The multi-Vdd results were restricted to having 1.2V input drivers, so it 
is not fair to compare them to Vdd=0.8V results with 0.8V drivers. With 0ps 
LCFF delay overhead and 1.2V drivers, we will compare the multi-Vdd 
results with single Vdd=0.8V results in the next subsection. 
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7.6.5.2 Multi-Vdd results are suboptimal versus using single 0.8V Vdd 

The ECVS multi-Vdd/multi-Vth results with 0ps LCFF delay overhead 
averaged 8.9% worse than Vdd=0.8V/Vth=0.14V&0.08V results with 1.2V 
drivers and 0ps LCFF delay overhead [3], excluding c17 where the delay 
constraint could not be met with Vdd=0.8V and 1.2V drivers. The multi-Vdd 
solutions with VDDL of 0.8V were clearly suboptimal as the single Vdd=0.8V 
solution is in a subspace of the multi-Vdd solution space.  

Several different approaches were tried to improve the suboptimal multi-
Vdd results [3]. The closest results started optimization with all gates at 
Vdd=0.8V and Vth=0.08V, for which the dual Vdd=1.2V&0.8V results were 
only 2.8% worse on average than the single Vdd=0.8V results.  

The multi-Vdd results are suboptimal because the delay overhead of 
the level converters creates barriers in the optimization space to iteratively 
changing all the supply voltages to 0.8V, as level converters have to be 
inserted at intermediate steps. The problem posed by the delay overhead 
of level converters was discussed in Section 7.4.3, along with possible ways 
of overcoming the barrier. Forcing more gates to VDDL and keeping track of 
the best solution found, as proposed in Chapter 8, may allow a better solution 
to be found. 

This concludes the analysis of using multi-Vdd and multi-Vth in comp-
arison to using only a single Vdd and single Vth. We saw some power savings, 
but they were not comparable to the power savings from sizing alone with 
the linear programming approach versus TILOS, except for Vdd=0.08V/ 
Vth=0.14V&0.08V with 0ps LCFF delay overheads. We now look at what 
additional computation time is required for multi-Vdd and multi-Vth optimi-
zation. 
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Figure 7.9 This log-log graph shows the runtime for 40 iterations of the LP solver. As 
illustrated with the lines showing O(|V|) and O(|V|2) runtime growth, the linear program solver 
runtimes grow between linearly and quadratically with circuit size.  

Figure 7.10 This log-log graph shows the runtime for 40 iterations, excluding the LP solver 
runtime. The runtimes excluding the linear program solver grow linearly with circuit size.  
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7.7 COMPUTATIONAL RUNTIMES WITH  

MULTI-VDD AND MULTI-VTH 

The LP solver runtimes in Figure 7.9 are not substantially affected by 
the number of Vdd and Vth values, as that does not affect the number of 
variables or constraints in the linear program. Rather, the net runtime for 
multiple LP solver iterations depends on the timing slack and Vdd and 
Vth values available, as this determines the number of iterations for power 
minimization versus delay reduction and power minimization with the LP 
solver typically takes twice as long as delay reduction.  

Excluding the LP solver, the CVS runtimes are not much worse than the 
single Vdd runtimes, as Vdd changes are considered only for gates on the 
VDDH to VDDL wavefront, that is gates with all fanouts at VDDL or 
primary outputs and all fanins at VDDH. The ECVS runtimes are up to 2.2 
times the CVS runtimes, as changing Vdd is considered for all gates, doubling 
the setup runtime to consider the different Vdd alternatives, and there are 
additional computation overheads for insertion and removal of level con-
verters. Considering alternate cells for a gate for multi-Vth can double setup 
runtimes for dual Vth and triple setup runtimes for triple Vth. The computation 
runtimes excluding the LP solver are shown in Figure 7.10. 

With a CVS multi-Vdd methodology, each iteration allows at most one 
additional level of logic to change from high Vdd to low Vdd, or vice versa. 
Thus for a very deep circuit, for example c6288 with 113 logic levels, more 
iterations can be required for CVS multi-Vdd. The number of iterations 
required to get within 1% of the best solution varies substantially depending 
on the Vdd and Vth values available and the corresponding timing slack. Up 
to about 40 iterations is necessary in a few cases to get within 1% of the best 
solution when there is substantial timing slack, for example with Vth of 
0.08V. For many cases 20 or fewer iterations are required, as for gate sizing.  

As the delay overhead for level converters is substantial, an ECVS 
multi-Vdd methodology can also take more iterations for Vdd changes to 
propagate. The number of iterations required to get within 1% of the best 
solution are in the same range for ECVS and CVS. However, for ECVS we 
start with zero power for the level converters, and then run further optimi-
zation iterations with the correct level converter power. Usually less than 20 
additional iterations are required to get within 1% of the best solution, as 
primarily gates on the boundary of the VDDH and VDDL regions change 
Vdd to reduce the number of level converters. 

Runtimes for the Huffman, SOVA EPR4 and R4 SOVA benchmarks are 
included in these figures. The larger benchmarks have longer runtimes, so a 
less exhaustive range of results were collated, and the limited multi-Vdd 
and multi-Vth results for them have not been included in this chapter. Bench-
mark c17 was omitted due to its small size and small runtimes.  
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In summary, the runtimes for setting up the linear program grow linearly 
with the number of alternate cells available. For sizing only runs in Chapter 
6, we saw that only about 20 iterations were necessary to find a good solution. 
However, with multi-Vth and CVS multi-Vdd there are cases where up to 40 
iterations were necessary to converge within 1% of the best solution, and 
ECVS may take up to 60 iterations in total. 

On smaller benchmarks, the Chapter 8 approaches for CVS and ECVS 
multi-Vdd with multi-Vth and gate sizing are substantially faster. However, 
as their runtime growth is O(|V|3) and our worst case runtime growth is 
O(|V|2), the LP approach was faster for c6288 and larger benchmarks. 

7.8 SUMMARY 

This chapter examined the power savings that the linear programming 
approach can achieve with single and multiple supply and threshold volt-
ages. In comparison to the best optimization approaches without major simpli-
fying assumptions that we know of for multi-Vdd/multi-Vth/sizing, our LP 
approach reduces power on average by 5% to 7%. The LP approach has 
runtime growth of O(|V|) to O(|V|2), rather than O(|V|3), so the LP approach is 
also more applicable to larger benchmarks.  

Scaling a single Vdd and single Vth optimally can provide significant power 
savings, reducing the power savings that may be found with multi-Vdd 
and multi-Vth. Versus the nominal Vdd=1.2V/Vth=0.23V, using Vdd=1.2V/ 
Vth=0.14V reduces power on average by 12.0% at 1.0×Tmin, and Vdd=0.8V/ 
Vth=0.08V reduces power by 10.8% on average at 1.2×Tmin assuming 0ps 
level converter flip-flop delay overhead and that input drivers are also scaled 
down to 0.8V.  

The optimal value of Vth depends greatly on Vdd. Vth of 0.08V provides 
a 22% speed increase at Vdd=1.2V versus Vth of 0.23V, but provides a 50% 
speed increase at Vdd=0.8V. In addition at Vdd=0.8V, the leakage is only 
about half the leakage at Vdd=1.2V. So the absolute increase in leakage 
power is less as Vth is reduced at Vdd=0.8V, reducing the penalty for using 
low Vth to reduce delay. Thus using a single Vth of 0.08V is acceptable at 
Vdd of 0.8V in the 1.2×Tmin scenario, but a poor choice with Vdd of 1.2V. 

The multi-Vdd/multi-Vth results were compared against the best single 
Vdd/single Vth results at a given delay constraint. Our gate sizing results 
provided a strong baseline to compare results against.  

In our detailed analysis of multi-Vdd and multi-Vth, the largest power 
savings were with Vdd=0.8V/Vth=0.14V&0.08V versus the optimal choice 
of Vdd=0.8V/Vth=0.08V at 1.2×Tmin assuming 0ps LCFF delay overhead 
and 0.8V input drivers. In this scenario, dual Vth reduced power on average 
by 16.0% and the maximum power saving was 26.2%. Triple Vth provided 
at most 5.1% power savings versus using dual Vth in the scenarios that we 
have considered, which is not sufficient to justify use of a third Vth. 
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Despite achieving better multi-Vdd/multi-Vth results than other known 
approaches, the LP multi-Vdd results with VDDL of 0.8V were suboptimal 
by up to 23.6% versus using a single Vdd of 0.8V with Vth values of 0.14V 
and 0.08V assuming 0ps LCFF delay overhead at 1.2×Tmin [3].  

The level converter delay and power overheads and larger rise delay 
when Vin > Vdd pose a significant barrier to optimization. Running optimi-
zation with the level converter power set to zero then running further iterations 
with the correct power did improve ECVS results substantially [3]. Experi-
ments with reducing the level converter delay overheads would require a 
better delay reduction approach to ensure the final netlist meets the delay 
constraints, as the intermediate netlist with zero level converter delays will 
violate the delay constraints. The linear programming approach is not as 
good as Design Compiler at delay minimization, so some combined approach 
with a TILOS-like optimizer would be helpful.  

The largest power saving with ECVS multi-Vdd versus single Vdd/single 
Vth at 1.2×Tmin assuming 80ps LCFF delay overhead and 1.2V input drivers 
was 13.9%, but the average power saving was only 4.1%. In that scenario, 
ECVS with asynchronous voltage level converters averages only 1.2% 
power saving versus CVS, where only level converter flip-flops are allowed, 
though the maximum power saving with ECVS versus CVS is 7.3%. 

We saw larger power savings with ECVS versus CVS and multi-Vdd/ 
multi-Vth versus single Vdd/single Vth in the comparisons to the University 
of Michigan results, but Vdd=1.2V/Vth=0.12V was not the optimal choice 
for single Vdd/single Vth in that scenario. 

There is no significant advantage for using VDDL of 0.6V versus 0.8V. 
The greatest saving for VDDL of 0.6V versus 0.8V was 4.2%, and the 
average saving was only 0.3%. We have not accounted for any additional 
LCFF delay for conversion from 0.6V to 1.2V compared to converting from 
0.8V to 1.2V, assuming 80ps delay for both. In correcting the Vdd=0.6V 
delays, the α=1.66 delay scaling with Equation (4.3) may still have been 
optimistic by 13% at Vth=0.23V to 6% at Vth=0.08V compared to the delay 
fit in Equation (4.4) that fit the Vdd=0.5V data as well. Lower Vdd cells also 
have other problems such as smaller voltage noise margins. These weak 
0.6V VDDL results argue against the conclusion in [6] and other papers that 
VDDL should be 50% of VDDH. The rule of thumb to use a value of about 
70% of VDDH for VDDL, that is 0.8V, provides sufficiently good results.  

The delay reduction phase of the LP approach performs better with 
multi-Vth, as changing a gate from high Vth to low Vth to speed it up only 
slightly increases the load on fanin gates compared to upsizing a gate.  

The multi-Vth power savings may be enough to justify the additional 
process costs for a second Vth. The weak multi-Vdd results do not justify 
use of multi-Vdd on these small benchmarks. More power savings may be 
available with multi-Vdd for an optimization approach that can overcome 
the optimization barrier posed by the level converter delay overheads.  
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For a larger sequential circuit with different delay constraints on portions 
of the circuit, different supply voltages may be justified. For example, Vdd 
of 1.2V at 1.0×Tmin and Vdd of 0.8V at 1.2×Tmin. In the event that multiple 
supply voltages are justified by use at a module level in this manner, our 
results suggest that another 5% to 10% power saving may be available via a 
gate-level CVS or ECVS multi-Vdd assignment methodology. 
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Multiple supply voltage design is an effective technique for power mini-

mization in CMOS circuits. Clustered Voltage Scaling (CVS) and Extended 
Clustered Voltage Scaling (ECVS) are the two major methodologies used for 
assigning the voltage supply to gates in circuits having dual power supplies. 
This chapter presents current state of the art approaches that combine CVS 
and ECVS with threshold voltage assignment and gate sizing to enable the 
maximum reduction in power dissipation. Later we also present a comp-
arison of achievable power savings using CVS and ECVS and point out that 
ECVS provides appreciably larger power improvements compared to CVS. 
However, ECVS rests on the availability of well designed asynchronous 
level converters. We also quantify the impact of the efficiency of level con-
version on power savings. 

8.1 INTRODUCTION 

Dynamic power dissipation in CMOS circuits is proportional to the 
square of the supply voltage (VDD). A reduction in VDD thus considerably 
lowers the power dissipation of the circuit. Dual- (or more generally multi-) 
VDD design is an important scheme that exploits this concept to reduce 
power consumption in integrated circuits (ICs) [5][30]. Since a reduction in 
VDD degrades circuit performance, in order to maintain performance in 
dual-VDD designs, cells along critical paths are assigned to the higher VDD 
(VDDH) while cells along non-critical paths are assigned to a lower VDD 
(VDDL). Thus the timing slack available on non-critical paths is efficiently 
converted to energy savings by use of a second supply voltage. However, 
level conversion (from VDDL to VDDH) becomes essential at boundaries 
where a VDDL driven cell feeds into a VDDH driven cell to eliminate the 
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undesirable static current that otherwise flows. This current flows since the 
logic “high” signal of the VDDL driven cell cannot completely turn off the 
PMOS pull-up network of the subsequent VDDH cell. 

The use of level converters is largely determined by the algorithm used 
in assigning VDD to gates. The two major existing algorithms used for VDD 
assignment are (1) Clustered Voltage Scaling (CVS) [30], and (2) Extended 
Clustered Voltage Scaling (ECVS) [10]. In CVS, the cells driven by each 
power supply are grouped (“clustered”) together and level conversion is 
needed only at sequential element outputs (referred to as “synchronous level 
conversion”). In ECVS, the cell assignment is more flexible, allowing level 
conversion anywhere (i.e., not just at the sequential element outputs) in the 
circuit. This is referred to as “asynchronous level conversion”. Since ECVS 
allows more freedom in VDD assignment, it has been suggested that it 
potentially provides greater power reductions than CVS [33]. 

Both CVS and ECVS assign the appropriate power supply to the gates by 
traversing the circuit from the primary outputs to the primary inputs in 
reverse topological level order. CVS is based on a topological constraint that 
only allows a single transition from a VDDH driven cell to a VDDL driven 
cell along any path from input to output (i.e., a VDDL driven cell may not 
feed into a VDDH driven cell). Depending on the design, this may greatly 
reduce the fraction of VDDL assigned gates and degrade the achievable 
power savings. Alternatively, ECVS relaxes this topological constraint by 
allowing a VDDL driven cell to feed a VDDH driven cell along with the 
insertion of a dedicated asynchronous level converter (ALC). However, 
since ECVS performs this assignment simply by visiting gates one at a time 
in reverse topological level order, it still assigns supply voltages in a funda-
mentally constrained manner. Noting these drawbacks, an algorithm that 
removes the “levelization” approach will be discussed in Section 8.3. Since 
level converters consume power and timing slack, it is important to consider 
their effect on the power savings. 

Techniques such as gate sizing and dual threshold voltage (Vth) assign-
ment can be combined with dual-VDD assignment in order to realize a more 
optimized design. Many different approaches have been proposed that use 
the variables of VDD/Vth/sizing for power optimization. In [34] the authors 
address the problem of power optimization using simultaneous VDD and 
Vth assignment. They propose two different approaches depending on whether 
a system is dynamic or leakage power dominated. The approach for dynamic 
power dominated systems fails to consider that assigning a gate to high Vth 
negatively impacts the extent to which other gates in the circuit can be 
assigned to VDDL and thus fails to consider the optimization of total power. 
The approach for leakage dominated systems assigns gates to high Vth in the 
order of their level from the outputs. Since Vth assignment does not impose 
any topological constraints as in the case of VDD assignment, this approach 
unnecessarily limits the achievable power savings. Recently, [21] proposed a 
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new method for slack redistribution to solve the leakage power optimization 
problem with dual-Vth and sizing by iteratively formulating and solving a 
linear program. However, the extension to dual-VDD assignment is formulated 
as an integer linear program resulting in unreasonable runtime complexity. 
Reference [7] uses a Lagrangian multiplier based optimization followed by 
heuristic clustering for dual-VDD and dual-Vth assignment. This is a general 
technique for solving optimization problems involving discrete variables, 
where the problem is initially solved while assuming the variables involved 
are continuous. This allows the problem to be solved in a computationally 
efficient manner (using well-known non-linear optimization techniques), and 
then heuristically clustering the obtained solution to the discrete domain 
[25][27][28]. The Lagrangian multiplier based approach is used to perform 
module level power optimization using path enumeration. The approach 
requires a power-aware partitioning of a circuit, which is a very difficult 
problem as acknowledged by the authors. The approach cannot be extended 
to perform gate-level power optimization due to its computational complexity 
and also does not consider other circuit issues such as level conversion. 
Reference [9] uses a genetic algorithm based approach to solve the problem 
of simultaneous VDD and Vth assignment with gate sizing, which is both 
computationally inefficient and performs poorly. 

References [4] and [36] address the power minimization problem using 
dual-VDD assignment and sizing. In particular, [4] uses maximum weighted 
independent sets to identify gates for downsizing or assignment to VDDL by 
identifying sets of gates which have independent timing slacks. This technique 
is severely limited by the amount of slack available in the original circuit as 
there are no means to create additional slack by sizing gates, only to consume 
it. In [36], the authors use a sensitivity-based technique to optimize power 
dissipation using dual-VDD assignment. Another work employs a delay 
balancing approach to solve the problem of VDD assignment [28]. There has 
been a large amount of work recently in power optimization using dual-Vth 
and sizing [12][14][21][22][24][35]. References [22], [24] and [35] use 
sensitivity-based approaches to direct the optimization, whereas [12] solves 
the problem using a Lagrangian relaxation based tool. Reference [14] employs 
a state-space enumeration based approach along with efficient pruning 
methods and demonstrates better power savings for tight delay constraints 
and better run-time compared to [24]. However, all these approaches fail to 
integrate all three design variables that are crucial to low-power design, 
namely sizing, threshold and supply voltages, in a computationally efficient 
manner. 

In Section 8.2 we describe the basic implementation of CVS and ECVS. 
In Section 8.3 we describe a recently developed algorithm (referred to as 
Greedy ECVS or GECVS) that avoids some of the pitfalls of the original 
ECVS. Section 8.4 presents power savings obtained using these algorithms.  
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In Section 8.5 we present techniques that extend CVS and GECVS by 
including Vth assignment and gate sizing to perform power optimization 
using all three (VDD, Vth and sizing) levers available to a designer. Finally, 
in Section 8.6 we present more results and conclude in Section 8.7. 

8.2 OVERVIEW OF CVS AND ECVS 

This section provides a comprehensive summary of the existing CVS 
and ECVS algorithms. For all the algorithms discussed, the starting point  
is a design having all cells assigned to VDDH and then VDDL is utilized 
according to the algorithm being applied. Both CVS and ECVS aim at using 
the available timing slack in a circuit by applying a lower supply voltage on 
gates that are off the critical paths. This results in reduced dynamic power 
dissipation and hence lowers system level power dissipation. However, they 
differ in the policies they follow in making this power supply assignment. 
As a result of this, the final structure of the resulting netlists after applying 
these algorithms differs. As stated in Section 8.1, voltage level conversion  
is required whenever a VDDL driven cell feeds a VDDH driven cell. An 
example of this is shown in Figure 8.1, where a VDDL driven inverter 
directly feeds into a VDDH driven inverter. The resulting DC current will 
result in extremely high static power dissipation without the use of level 
converters. 

CVS and ECVS differ in the way they address the issue of level conver-
sion. Since CVS does not allow VDDL driven cells to directly feed VDDH 
driven cells, level conversion is therefore implemented only at flip-flop (or 
sequential) boundaries. The level conversion functionality can be embedded 
into the flip-flop circuit [1][11] and such a flip-flop is referred to as a level 
converting flip-flop (LCFF). 

ECVS relaxes this topological constraint and allows a VDDL driven cell 
to feed a VDDH driven cell after its output has undergone level conversion. 
ECVS thus has more freedom in finding portions of the circuit that can be 
operated at the lower supply and can potentially lead to higher power savings. 
However, the asynchronous level converters impose penalties in terms of 
their delay, power and area. Fast and low power ALCs are thus important in 
mitigating these penalties. Figure 8.2 depicts the nature of the final topologies 
attained by CVS and ECVS when applied to a given circuit. From this 
figure, it is seen that CVS partitions a circuit into two clusters that can be 
ordered topologically – one having only VDDH cells and the other having 
only VDDL cells. The scenario in which a VDDL driven cell directly feeds a 
VDDH driven cell is clearly precluded in this partitioning. On the other 
hand, ECVS allows interspersing of VDDL and VDDH cells with insertion 
of any required ALCs. We now discuss the implementation of these algorithms 
in greater detail. 



Power Optimization using Multiple Supply Voltages 193
 

 

IN
VDDL swing

VDDL

VDDH

DC current

IN
VDDL swing

VDDL

VDDH

DC current

 
Figure 8.1 Demonstrating the need for level conversion. 
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(b) Extended Clustered voltage scaling (ECVS) – a VDDL  signal may 
go to a VDDH gate if an asynchronous level converter (ALC) is 
inserted. Here the logic cannot be partitioned into separate VDDH 
and VDDL portions that are topologically ordered.
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Figure 8.2 This illustrates the difference between the circuit structures after the application of 
ECVS and CVS. 
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CVS( ) { 
 minimum power found = power of initial VDDH circuit. 
 Best configuration = all VDDH assignment. 
 
 L = gates that only drive circuit primary outputs. 
 While L is non-empty { 
  STEP: “SET VDDL” –  
  Select candidate A from L.  
  Remove A from L. 
  Set the supply voltage of A to VDDL. 
   
  If A drives a primary output, insert an LCFF. 
   
  Check timing. 
  If circuit still meets timing constraints { 
   STEP: “CONSTRAINED TOPOLOGY” – 
   Add to L gates that fan into A but not into any VDDH gate. 
 
   Check power consumption. 
   If power < minimum power found { 
    minimum power found = power. 
    Best configuration = current VDDL assignment. 
   } 
  } else { 
   Remove any added LCFFs. 
   Set the supply voltage of A back to VDDH. 
  } 
 } 
} 

Figure 8.3 Pseudo-code for the CVS algorithm. 

CVS maintains a list (referred to as L) of candidate cells that can be 
assigned to VDDL. New cells continue to be added to this list as the algorithm 
proceeds. The elements of L are ranked according to a heuristic and the first 
element is chosen to be assigned to VDDL at each step of the algorithm. The 
initial implementation of CVS [30] used a heuristic which ordered the cells 
in L on the basis of their slack. L is initialized to the set of gates that drive 
the circuit primary outputs. Pseudo-code for CVS is shown in Figure 8.3. 

The step “CONSTRAINED TOPOLOGY”, guarantees that there will be 
no VDDL driven gate that feeds directly into a VDDH driven gate. However, 
this constraint acts to curtail many potential VDDL cell assignments as later 
results will demonstrate. 

ECVS (as earlier implemented in [10][31][32][33]) begins by levelizing 
the circuit from the primary outputs to the primary inputs. LCFFs are inserted 
when a cell driving a primary output is assigned to VDDL (as in the case of 
CVS). Similarly ALCs are inserted whenever a VDDL gate feeds into a 
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VDDH gate. ECVS is also executed in reverse topological order. Pseudo-
code for the ECVS algorithm is shown in Figure 8.4. 

Since ECVS subsumes CVS, it can theoretically attain a higher degree of 
VDDL gate assignments. ECVS, however, must consider the overheads 
imposed by the ALCs. Although ECVS has clear advantages over CVS, its 
policy of determining the VDD assignments is still constrained by levelization. 
An approach that avoids this constraint is described next. 

 
 

ECVS ( ) { 
 minimum power found = power of initial VDDH circuit. 
 Best configuration = all VDDH assignment. 
 
 L = gates that only drive circuit primary outputs. 
 While L is non-empty { 
  STEP: “SET VDDL” –  
  Select candidate A from L.  
  Remove A from L. 
  Set the supply voltage of A to VDDL.  
   
  If A drives a primary output, insert an LCFF. 
 
  For each gate B ∈ fanouts(A) { 
    If (supply of B = VDDH)  
   Insert an ALC on the path from A to B. 
  } 
 
  Check timing.   
  If circuit still meets timing constraints { 
   STEP: “LEVELIZED” – 
   Add to L gates that fan into A and only into other gates  
   that have already been considered or primary outputs. 
 
   Check power consumption. 
   If power < minimum power found { 
    minimum power found = power. 
    Best configuration = current VDDL assignment. 
   } 
  } else { 
   Remove any added LCFFs or ALCs. 
   Set the supply voltage of A back to VDDH. 
  } 
 } 
} 

Figure 8.4 Pseudo-code for the ECVS algorithm. Note the differences from Figure 8.3. 



196 Chapter 8
 
8.3 GREEDY ECVS: A NEW DUAL−VDD 

ASSIGNMENT ALGORITHM 

ECVS-style approaches are most effective when they are able to find 
‘groups’ or ‘clusters’ of connected gates that can be assigned to the lower 
supply. This is so since such a grouped assignment will require fewer ALCs 
and minimize their resulting overhead. A sensitivity measure that uses the 
information available in the slack distribution of the circuit and the power 
savings attainable before finalizing each VDDL assignment move can be 
used for this purpose. This avoids the problems inherent in ECVS, which 
merely traverses the circuit (after levelization) and makes the earliest seen 
feasible move. 

At each stage of the new algorithm, a sensitivity measure for all cells that 
are potential candidates for VDDL assignment is evaluated. Every VDDL 
assignment may call for either the insertion or removal of ALCs in the 
vicinity (at the inputs/output of the gate under consideration). This is 
because an ALC is required only when a VDDL driven gate needs to supply 
a VDDH driven gate. Since a levelized VDDL assignment (as in ECVS) is 
not followed here, this ALC removal is frequently required and is 
accomplished by the update_vicinity( ) sub-routine in the pseudo-code 
below. As a result of a move, the arrival time at the output of the gate being 
assigned to VDDL will change (arrival time at the output includes the arrival 
time at the output of any added level converters, if the move requires 
ALC/LCFF insertion). This changes the slack of various paths in the circuit. 
The overall power dissipation of the circuit will also change as a result of the 
move. A move assigning VDDL to a gate feeding a primary output requires 
inserting an LCFF and the LCFF delay must be included in the arrival time 
calculation in this case. The LCFF data used was obtained from [1][11]. 

The sensitivity for a move is determined from the change in total power 
∆P, change in arrival time at the gate output ∆D (summing the worst 
changes in rise and fall delay), and the sum of the worst rise and fall slacks 
of timing arcs through the gate (slack). The slack for a given rise or fall 
timing arc ij through a gate, Slackarc ij, is calculated as the difference of the 
delay of the arc (darc ij) and the difference of the required arrival time at the 
output node and the arrival time at the input node of the gate: 

         ( ) ,  where 

timing   is from gate input  to gate output .
arc ij required at output j arrival at input i arc ijSlack t t d

arc ij i j

= − −
 (8.1) 

The slack reflects the maximum possible increase in delay of the timing arc 
that still satisfies the timing characteristics of the overall design. The sensi-
tivity for the gate is defined as follows: 

   Sensitivity (set VDDL) = P slack
D

−∆ ×
∆

 (8.2) 
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where it is assumed that ∆D > 0. The code handles the case where ∆D ≤ 0, 
but this does not occur in practice for a VDDH to VDDL change with our 
benchmarks and libraries. 

Sensitivities for all gates that can undergo VDDL assignment are eval-
uated at every iteration of the algorithm, and the gate with the maximum 
sensitivity is selected. The state of the circuit is saved at this point and the 
algorithm proceeds to the next iteration. From the definition of sensitivity in 
Equation (8.2), observe that this algorithm allows negative moves to be 
taken, thus opening the possibility of uncovering better solutions in the long 
run. Essentially this sensitivity measure enables us to choose the move 
giving the best power savings per unit delay penalty. The slack term in the 
sensitivity computation acts as a weighting factor to encourage VDDL 
assignment for gates with more slack. Evaluating this sensitivity for a gate 
only requires the rise/fall transition and arrival times at the inputs of the gates 
that feed it. This sensitivity can thus be evaluated efficiently as a constant-
time operation. 

This algorithm, designated GECVS (Greedy-ECVS) [16], tends to group 
VDDL gates together inherently due to the nature of the sensitivity function. 
Since the ∆D and ∆P terms consider the ALC overheads associated with a 
particular VDDL assignment, the algorithm automatically guides itself 
towards building groups or clusters of VDDL gates. What is unique about 
GECVS is that these clusters can form at the beginning of a path, just as 
easily as they can at the end of a chain of combinational logic. This makes 
GECVS fundamentally more flexible than CVS or ECVS, which proceed 
with VDDL assignment using a backwards traversal. Since CVS and ECVS 
follow a backward traversal for VDDL assignment, they naturally tend to 
assign more gates near the primary outputs to the lower supply. As gates 
near primary outputs typically have low switching activity (on average) [20], 
this can also lead to degraded savings. GECVS avoids this levelized approach 
and does not suffer from this drawback. Pseudo-code for GECVS is shown 
in Figure 8.5. 

Various approaches for the physical design of dual-VDD circuits have 
been discussed earlier. In [15] and [19], the authors proposed the use of 
macro voltage islands where entire functional units operate at different 
supplies. Reference [23] proposed the use of a somewhat more fine-grained 
strategy that used voltage islands interfaced through level converters. A 
more fine-grained approach is presented in [33] that employs alternating 
rows of VDDH and VDDL cells – this is an ideal approach for designs that 
are highly performance critical as well as severely power constrained. The 
technique presented in [33] attempts to minimize the wire length between 
the VDDL cell and the ALC that it drives, for delay reduction. An opposite 
approach that places the ALCs directly at the input of the fanout gates rather 
than at the output of the driving gate improves the dynamic power consumed 
in switching the wire at the expense of additional delay.  
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The update_vicinity( ) step occurs over the local neighborhood of the 
gate: on the fanout side of the gate, the gate itself and any ALCs it might 
have induced; and on the fanin side, the fanin gates and any required ALCs. 

Determining feasible moves is done as follows. Before calculating the 
sensitivities of all gates, all timing information, such as arrival times and 
slacks, is calculated with static timing analysis and stored. Then when cal-
culating the sensitivities for each gate, these stored values are used and the 
new arrival times are found using only the gates in the immediate neigh-
borhood, as described for update_vicinity( ) above – if the slack can 
accommodate this increased delay, this gate is remembered. The vicinity 
calculations are not exact (as compared to static timing analysis over the 
transitive fanout from the gate’s fanins), but this filtering greatly reduces the 
number of gates to be tried in the final timing check. The final timing checks 
are with static timing analysis over the full affected region, to confirm that 
the delay target is met.  

 
 

GECVS ( ) { 
 minimum power found = power of initial VDDH circuit. 
 Best configuration = all VDDH assignment. 
 
 Do { 
  For each VDDH gate ‘A’ { 
   Set A to VDDL. 
   If A drives a primary output, insert an LCFF. 
   update_vicinity ( ) // insert or remove ALCs as necessary 
   Calculate sensitivity for A using Equation (8.2). 
   Set A back to VDDH 
   update_vicinity ( ) // insert or remove ALCs as necessary 
  } 
 
  Select the maximum sensitivity gate ‘B’ that meets timing. 
 
  Check power consumption. 
  If power < minimum power found { 
   minimum power found = power. 
   Best configuration = current VDDL assignment. 
  } 
 } 
 While there are feasible moves (i.e., moves meeting timing) 
} 

Figure 8.5 Pseudo-code for the GECVS algorithm. 
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Table 8.1 Comparison of power savings using CVS and GECVS versus the original design 
with all gates being at VDDH and low Vth.  

Circuit CVS GECVS CVS GECVS
c432 1.0% 1.5% 0.8% 0.8%
c880 8.2% 10.3% 15.0% 21.3%
c1355 0.0% 0.0% 0.0% 1.0%
c1908 4.3% 7.7% 3.4% 8.4%
c2670 21.1% 25.5% 16.5% 25.0%
c3540 3.2% 8.3% 2.9% 9.7%
c5315 7.6% 19.0% 8.3% 22.0%
c7552 14.9% 20.2% 22.0% 28.8%
Huffman 6.6% 12.7% 6.7% 14.4%

Average 7.4% 11.7% 8.4% 14.6%

VDDL = 0.6V VDDL = 0.8V

 

8.4 POWER SAVINGS WITH CVS AND GECVS 

The underlying process assumed is a 0.13um dual-Vth CMOS process. 
The higher (nominal) power supply VDDH is 1.2V and VDDL was either 
0.6V or 0.8V. Table 8.1 summarizes the dynamic power savings achieved by 
CVS and GECVS for the various benchmark circuits with VDDL = 0.6V 
and 0.8V. The delay target was set to be 10% slower than the fastest possible 
all-VDDH/low Vth design as found by a TILOS [8] based gate sizing 
algorithm. The algorithms were evaluated on circuits from the ISCAS’85 
benchmark set [3]. The data for LCFFs was adopted from [1]. This work 
shows that LCFFs impose a delay overhead which is about two FO4 delays 
in the target technology, or about 80ps in our studies. The ALC used was the 
circuit STR6 from [17] (shown in Figure 13.5(d)). This ALC has a delay of 
84ps and consumes 6.3fJ of internal energy per transition. The switching 
activity at each node was computed by simulating the design for 10,000 
cycles with independent random inputs with equal probabilities of logical 
value 0 and 1. The switching activity at each input was then scaled to so that 
approximately 20% of the overall power dissipation was due to leakage 
power. The wire capacitance is approximated by 
 3 2  fFwire wireC fanouts= + ×  (8.3) 

where fanoutswire is the number of gates to which the wire connects, exclu-
ding its driver. Equation (8.3) is based on the model used in [29] and provides 
a wire capacitance of 5fF for a gate with one fanout, corresponding to a wire 
length of approximately 25um in our technology.  

GECVS performs significantly better than CVS and provides approxi-
mately twice the power savings or more in some circuits. On average, circuits 
optimized using GECVS have about 6% lower power than those optimized 
with CVS (Table 8.1). The percentage of power consumed by ALCs under 
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GECVS is shown in Table 8.2. On average, ALCs consume 6% of the total 
power. Figure 8.6 compares the fraction of the total gates assigned to VDDL 
of 0.8V in the final design. GECVS enables more VDDL assignments com-
pared to CVS thereby reducing power.  

Table 8.2 Percentage of total power consumed by asynchronous level converters and their 
percentage gate count for the optimized GECVS results shown in Table 8.1. 

Circuit Logic depth ALC power ALC count ALC power ALC count
c432 23 1.1% 1.8% 0.0% 0.0%
c880 26 1.9% 2.3% 6.7% 7.2%
c1355 28 0.0% 0.0% 0.7% 1.6%
c1908 40 4.8% 5.1% 6.5% 9.3%
c2670 25 5.5% 7.2% 7.4% 9.0%
c3540 42 6.9% 12.6% 7.9% 12.7%
c5315 41 6.8% 10.3% 7.7% 9.1%
c7552 44 8.7% 10.1% 9.0% 8.5%
Huffman 47 9.0% 10.2% 12.8% 17.5%
Average 5.0% 6.6% 6.5% 8.3%

VDDL = 0.6V VDDL = 0.8V
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Figure 8.6 Comparison of achieved levels of VDDL assignment by CVS and GECVS, with 
VDDL of 0.8V. 
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8.5 GATE SIZING AND DUAL-VTH ASSIGNMENT 

All algorithms discussed to this point achieve power savings by simply 
changing the supply voltage of the gates in the design to the lower supply 
(VDDL) as frequently as possible. Techniques such as gate sizing and dual-
Vth assignment can be used to further reduce the power. In this section, we 
describe extensions to CVS and GECVS that incorporate these techniques. 

8.5.1 CVS Based Power Optimization Using Dual-Vth 
Assignment and Gate Sizing 

In this section we discuss a two stage sensitivity-based heuristic 
approach to minimize total power using dual-VDD assignment, gate sizing, 
and dual-Vth assignment for a standard cell library mapped design. All the 
gates in the design are initially assumed to be operating at the higher supply 
voltage and lower threshold voltage. Throughout the flow of the algorithm 
(which we refer to as VVS [26]) a “wave-front” is maintained located at the 
interface between the VDDL and VDDH gates (e.g. see Figure 8.8). Similar 
to CVS, level conversion within the logic itself is not allowed, and therefore 
we must strictly observe the topological constraint imposed in dual-VDD 
designs. The timing constraints on the design remain fixed throughout the 
flow of the algorithm.  

Initially, all gates are low Vth and with VDDH supply voltage. In the 
first stage of the VVS algorithm, called the backward pass, VDD assignment 
and sizing are combined to minimize total power while we move the front 
from the primary outputs towards the primary inputs. Threshold voltages are 
kept at low Vth in the backward pass. The second stage, or the forward pass, 
uses the optimal location of the front found in the first stage as the starting 
point for the optimization and then relies on both VDD and Vth assignment 
along with gate sizing to further reduce total power while the front is moved 
back towards the primary outputs. Thus all three design variables are used to 
perform concurrent VDD assignment, Vth assignment and gate sizing in the 
forward pass. 

8.5.1.1 Backward Pass 

To adhere to the topological constraint imposed by dual-VDD we define 
the backward front, the list L as defined in CVS( ), which consists of all 
gates operating at VDDH that do not fanout to any gate operating at VDDH. 
Thus, assigning any gate on the backward front to VDDL will not violate the 
topological constraint since all its fanout gates also operate at VDDL. This 
front is initialized to be the set of gates that drive the primary outputs of the 
design. A simple CVS( ) procedure is first used to assign gates on the front to 
VDDL as long as the circuit meets timing. 
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Backward Pass( ) { 
 CVS( ) 
 
 L = backward front (VDDH gates not fanning out to VDDH gates).  
 While list L is non-empty { 
  // Candidate selection based on predictive metric 
  STEP: “SET VDDL” –  
  Calculate predictive metric for all gates in backward front. 
  Select candidate A from L.  
  Remove A from L. 
  Set the supply voltage of A to VDDL. 
   
  If A drives a primary output, insert an LCFF. 
 
  STEP: “UPSIZING” – 
  While circuit fails timing and number of upsizing moves  
  is < 10% of total number of gates in the circuit) { 
   Calculate sensitivity of all gates to upsizing with Equation (8.4). 
   Upsize gate with maximum sensitivity to the next higher  
   size available in the library. 
  } 
   
  Check timing. 
  If circuit meets timing constraints { 
   STEP: “CONSTRAINED TOPOLOGY” – 
   Add to L gates that fan into A but not into any VDDH gate. 
 
   Check power consumption. 
   If power < minimum power found { 
    minimum power found = power. 
    Best configuration = current VDDL & sizing assignment. 
   } 
  } else { 
   Undo upsizing moves. 
   Remove any added LCFFs. 
   Set the supply voltage of A back to VDDH and flag A. 
  } 
 } 
} 

Figure 8.7 Pseudo-code for the backward pass of the VVS algorithm. 

At the end of CVS( ), none of the gates on the backward front can be 
assigned to VDDL without violating the timing constraints. Figure 8.8 shows 
the scenario at this stage. Gates 1 to 3 have been set to VDDL by CVS( ) and 
gates 4, 5, and 8 now form the backward front. Gate sizing is then employed 
to compensate for the delay increase arising from the assignment of a gate to 
VDDL. The pseudo-code for this stage is shown in Figure 8.7. 
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Figure 8.8 Backward “wave front” for an example circuit at the end of CVS. The gates in 
dark grey have been assigned to VDDL. Gates in light grey are candidates for being assigned 
to VDDL – the backward front. 

Specifically, after a candidate gate on the backward front is assigned to 
VDDL, a sensitivity measure to upsize gates to the next available size in the 
standard-cell library for all the gates in the circuit is calculated. This is used 
to identify gates to be upsized. Let ∆Darc represent the change in delay of  
a timing arc of the gate and ∆P the change in power dissipation due to 
upsizing a gate to the next higher size in the library. The sensitivity of each 
gate in the circuit to upsizing is computed as 

 
min

1Sensitivity arc

arcs arc

D
P Slack Slack K

∆
=
∆ − +∑  (8.4) 

where Slackmin is the worst slack of a timing arc seen in the circuit, and K is 
a small positive quantity for numerical stability purposes. Slackarc represents 
the slack associated with the particular timing arc of the gate as defined in 
Equation (8.1). 

The form of the sensitivity measure gives a higher value to gates lying 
on the critical paths of the circuit. The arcs represent the falling and rising 
arcs associated with each of the inputs of the gate. Thus, for a 3-input 
NAND gate the sensitivity measure will be obtained by summing over all six 
possible arcs. The ∆Darc computation for a gate (say G) is performed by 
upsizing the gate to the next higher size in the library. Since only gates 
which are the immediate inputs of G see a different load capacitance, only 
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these gates need to be re-simulated during sensitivity computation to 
calculate the new arrival time at the inputs of G which is used to calculate 
∆Darc at the output of G. Any change in delay due to slew changes in the 
fanout cone of G is considered to be second order and neglected for sensi-
tivity computation. Similarly ∆P can also be easily computed by considering 
only the immediate fanin of the gate, the gate itself, and the load capacitance 
(with switching voltage changing from VDDH to VDDL). The gate with the 
maximum sensitivity is then selected and sized up to the next available 
size in the library. It is important to note that the sensitivity calculation for a 
gate does not require a full circuit timing analysis or an incremental timing 
analysis (which would propagate the impact of the change through the 
fanout cone), which would otherwise make the runtime prohibitively large. 
Complete timing analysis is performed and this process is repeated until all 
slacks in the circuit become positive. While performing gate upsizing, delays 
and slacks of the gates that form the fanin and fanout cone are modified and 
hence we need to re-compute the timing information and sensitivities only 
for these gates. 

The number of upsizing moves allowed to meet timing is fixed to a 
constant large number (10% of the number of gates in the circuit) to avoid 
pursuing bad solutions that could also possibly result in overly large area 
increases. The choice of a 10% limit on the number of gates to be upsized is 
based on the observation that varying this percentage from 8% to 50% 
results in a very small change in the power dissipation achieved. The power 
dissipation for values less than 8% gradually increases as we reduce the 
maximum number of gates that can be upsized. This limit on the percentage 
of upsizing moves that provides the maximum reduction was not found to 
increase with circuit size (i.e. the absolute number increases linearly with 
circuit size). If the circuit fails to meet timing after the maximum number of 
upsizing moves, then the VDDL assignment and the associated upsizing 
moves are reversed and the gate assigned to VDDL is flagged so that it is not 
reconsidered for VDDL assignment. 

We do allow moves that result in a net increase of total power in an 
attempt to allow the flow of the algorithm to escape local minima. Due to the 
topological constraints imposed on VDDL assignment, if a gate is not 
assigned to VDDL then none of the gates in its input cone can be assigned to 
VDDL. Otherwise a steepest decent only approach is likely to get stuck in a 
local minimum that may be far from the global minimum. Consider the case 
where the path that goes through gates 7, 5 and 2 forms the critical path of 
the circuit in Figure 8.8. If gate 5 is not assigned to VDDL, gate 6 and other 
gates in its fanin cone (if present) cannot be assigned to VDDL. Thus a 
lower total power might be achieved if gate 6 can be assigned to VDDL, 
after having assigned gate 5 to VDDL with upsizing to meet delay constraints 
which resulted in an increase in power at that step.  
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Gates on the backward front are ordered using a predictive metric – a 
heuristic used to steer the flow of the algorithm in the right direction. The 
predictive metric can be used to identify the capacitance and the slack asso-
ciated with the fanout cone of a gate. The sum of the product of the capacitance 
and timing slack at each node in the fanin cone has been used as the predictive 
metric. 

The end of the backward pass is signaled when the list containing the 
gates on the backward front becomes empty or else none of the gates in 
the list can be assigned to VDDL without violating timing (even with the 
maximum allowed amount of upsizing). At all points during the backward 
pass the best-seen solution is saved and this solution is restored at the end of 
the backward pass. 

8.5.1.2 Forward Pass 

At the end of the backward pass, the circuit sizing and VDD assignments 
(the VDDH to VDDL “wave front”) which best minimized total power for 
the dual-VDD, single low Vth is chosen. The second stage, or forward pass, 
is then used to move the front forward towards the primary outputs in 
conjunction with high Vth allocation and possible gate upsizing to minimize 
the total power in a dual-Vth scenario.  

We now define the forward front, which consists of all gates that are 
operating at VDDL and have all of their fanins operating at VDDH. In 
Figure 8.8, assuming that upsizing in the backward pass allows us to further 
assign gates 4, 5 and 8 to VDDL, these same three gates would now form the 
forward front. Importantly, assigning a gate on the forward front to operate 
at VDDH will not lead to a violation of the topological constraint. We now 
calculate 1) a sensitivity measure for gates on the forward front with respect 
to VDDH operation, and 2) a sensitivity measure for all gates in the circuit 
with respect to upsizing to the next higher size in the library. Both these 
sensitivities are calculated as the ratio of the sum of the delay changes of all 
timing arcs to the change in power dissipation as a result of the corres-
ponding operation. An expression similar to Equation (8.4) is not used since 
this operation is not used to identify gates that are critical and is only used to 
generate additional timing slack in the circuit (to enable high Vth assignment). 
The gate with the maximum sensitivity is then either assigned to VDDH or 
upsized based on the operation to which the maximum sensitivity corresponds. 
Note that any gate in the circuit may be upsized whereas only gates in the 
forward front may be re-assigned to VDDH. 

Once a gate is upsized or reset to VDDH operation, timing slack has 
been created in the circuit. To exploit this slack and reduce total power, the 
next step begins by computing the sensitivity of all gates in the circuit with 
respect to operation at high Vth (recall that initially all gates are low Vth). 
This sensitivity is calculated as the ratio of the change in power to the change 
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in delay multiplied by the slack of the gate in order to identify gates that 
provide the maximum decrease in power for the minimum increase in delay 
and is expressed as  

 Sensitivity arc

arcs arc

SlackP
D

= ∆
∆∑  (8.5) 

Based on this sensitivity measure gates are assigned to high Vth as long 
as the timing constraints of the design are met. This set of moves (assignment 
to VDDH or upsizing a gate followed by the associated high Vth assignments) 
is then accepted if the total power is found to decrease. If the total power 
increases and the initial move was an upsizing move then all these moves are 
reversed, otherwise the moves are accepted in keeping with our approach to 
avoid local minima. In addition, if the initial move was an upsizing move 
then the gate is flagged so that it is not reconsidered for upsizing. The best-
seen solution is always maintained and restored at the end of the forward 
pass. The pseudo-code for this stage of the algorithm is shown in Figure 8.9. 

This two-stage VVS algorithm allows us to make intelligent choices to 
trade-off dynamic power for leakage power in order to obtain a reduction  
in the total power dissipation. The algorithm is effectively directed to auto-
matically provide either more leakage power or dynamic power reduction 
based on the initial design point. The two-stage algorithm can easily quantify 
the impact of setting a gate to high Vth on the extent to which other gates in 
the circuit can be assigned to VDDL. In other words, we can independently 
judge the impact of Vth and VDD assignment on total power, something that 
is difficult to achieve in a flow that simultaneously assigns VDDL and high 
Vth throughout the optimization or performs VDD and Vth assignments 
completely separately in two independent stages. The important capability of 
reassigning gates to VDDL leads to a reduction in the total power dissipation 
of the design in low activity cases (leakage power dominated designs) and 
steers the algorithm towards a proper low-power solution. In such cases an 
optimization approach where a dual-Vth and sizing optimization is followed 
by a dual-VDD and sizing optimization would result in highly sub-optimal 
results. 

8.5.2 GECVS Based Power Optimization Using Dual-Vth 
Assignment and Gate Sizing 

The GECVS algorithm can be extended to include gate sizing and dual-
Vth optimization. Two major heuristic modules are incorporated: the first 
module seeks to increase the VDDL assignment in the circuit (referred to as 
‘Assign−VDDL’), while the second seeks to increase the high Vth assignment 
(referred to as ‘Assign−High Vth’). The overall flow containing GECVS, 
dual-Vth and gate sizing is referred to as GVS. 
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Forward Pass( ) { 
 L = forward front (VDDL gates with only VDDH fanins).  
 While list L is non-empty { 
  // Sensitivities to upsizing and VVDH assignment calculated 
  Calculate sensitivity of gates in L to changing to VDDH. 
  Calculate sensitivity of all gates to upsizing. 
 
  Select candidate A with maximum sensitivity. 
  Upsize or assign A to VDDH based on maximum sensitivity. 
 
  If A is changed to VDDH { 
   Remove A from L. 
   Add to L gates that fan out of A but are not fanouts of any 
   VDDL gate. 
   If A drives a primary output, remove the LCFF. 
  } 
   
  Calculate sensitivity of all low Vth gates changing to high Vth. 
  While timing is not violated { 
   Set low Vth gate with maximum sensitivity (Equation (8.5))  
   to high Vth. 
  } 
 
  Check power consumption. 
  If power < minimum power found { 
   minimum power found = power. 
   Best configuration = current VDDL, high Vth &  
            sizing assignment. 
  } else if upsizing initiated move and total power increases { 
   Undo upsizing move. 
   Flag gate A not to be considered again for upsizing. 
   Undo associated high Vth assignment moves. 
  } 
 } 
} 

Figure 8.9 Pseudo-code for the backward pass of the VVS algorithm. 

8.5.2.1 Assign-VDDL 

At the end of GECVS, any slack remaining in the circuit is not sufficient 
to support additional VDDL assignments which provide power reductions. 
In other words, any further VDDL assignments will either cause the circuit 
to fail timing or increase power consumption. This heuristic attempts to 
increase the number of VDDL assignments by employing the technique of 
gate upsizing in order to create slack. Note that during this step, only those 
VDDH driven gates that do not have any VDDH gates in their fanouts are 
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considered as candidates for VDDL assignment (such gates are simply 
referred to as ‘candidates’ below). This condition is imposed since assigning 
such a candidate VDDH gate to VDDL will not require the insertion of 
ALCs and thus the overhead for changing to VDDL is less. This thinking is 
in line with the concept of building ‘groups’ or ‘clusters’ of VDDL cells as 
introduced in Section 8.3. This heuristic also serves to reduce the number of 
gates considered for VDDL assignment, which helps reduce the execution 
time. Figure 8.10 gives examples showing a gate that can be a candidate for 
VDDL assignment, gate A in Figure 8.10(a); and a gate that cannot be a 
candidate, gate E in Figure 8.10(b), in this step.  

After identifying the candidates for VDDL assignment we next evaluate 
the sensitivities as was done in standard GECVS using Equation (8.2). Once 
the sensitivities of all candidates have been evaluated, the gate with the 
maximum sensitivity is assigned to VDDL. No ALC insertion is needed at 
this point as none of the fanouts are at VDDH. Once the gate with the best 
sensitivity has been assigned to VDDL, the circuit no longer meets timing 
and we now upsize gates on critical paths to meet timing. In identifying 
gates to upsize we evaluate the sensitivities of all gates to upsizing using the 
following definition. This sensitivity was also employed in Section 5.1 by 
Equation (8.4) and is reproduced here for convenience. 

 
min

1Sensitivity arc

arcs arc

D
P Slack Slack K

∆
=
∆ − +∑  (8.6) 

where ∆Darc and ∆P are the change in delay and power dissipation due to 
upsizing (by one drive strength); Slackmin is the worst timing slack in the 
circuit; and K is a small positive quantity for numerical stability. The ‘arcs’ 
in Equation (8.6) are the falling and rising arcs associated with each gate 
input. The sensitivity has higher values for gates on critical paths and thus 
guides the algorithm towards upsizing the most beneficial gates [6]. 
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(b) In this case, gate E is not a potential 
candidate for VDDL assignment. Setting 
gate E to VDDL requires an ALC to be 
inserted since gate H is fed by VDDH.

(a) Gate A is a potential candidate for VDDL 
assignment. Setting gate A to VDDL does not 
require an ALC to be inserted since all fanout
gates (B,C,D) are fed by VDDL.  
Figure 8.10 Candidates for additional VDDL assignment during the ‘Assign−VDDL’ step. 



Power Optimization using Multiple Supply Voltages 209
 

Once sensitivities for all the gates are evaluated, the gate with the maxi-
mum sensitivity is selected and sized up. This sensitivity evaluation does 
not require a full circuit timing analysis and hence does not lead to large 
runtimes. This procedure is repeated until the circuit no longer fails timing. 
The number of upsizing moves is limited to a large number (10% of the total 
number of gates in the circuit) in order to stop pursuing bad moves that 
require too much upsizing (which would lead to a high area overhead and 
also smaller power improvements). We again allow moves that immediately 
result in increased power (after VDDL assignment and required upsizing 
moves) in order to include hill-climbing capability in the algorithm.  

The list of candidates to assign to VDDL is updated after each accepted 
move, since setting a gate to VDDL may create more candidates in its fanin 
cone. This procedure of VDDL assignment is continued as long as there are 
candidates remaining that can be set to VDDL without violating timing given 
upsizing. 

The pseudo-code for the assign VDDL step is shown in Figure 8.11.  

8.5.2.2 Assign-High Vth 

At the end of the ‘Assign−VDDL’ step, some slack may still remain in the 
circuit. We next attempt to convert this slack into power savings by conver-
ting gates from low Vth to high Vth. Although assigning a gate to high Vth 
will clearly slow it down, the gate input pin capacitances also reduce some-
what [24] (~8% in our technology), speeding up gates that fan into it. The 
approach used in GECVS (Figure 8.5) is again employed for the high Vth 
assignment – the only difference is that moves are from low Vth to high Vth 
here, rather than VDDH to VDDL as in GECVS. At the end of this step, no 
further gates can be set to high Vth without violating timing. Thus, in order 
to explore the possibility of increasing power savings by more high Vth 
assignment, we upsize certain gates or assign gates back to VDDH (thus 
creating slack). In order to identify the gates to be upsized or set to VDDH 
the following sensitivity measure is defined: 

 Sensitivity (upsizing/set-VDDH) = D
P

∆
∆

 (8.7) 

where, ∆D and ∆P are the change in delay and power dissipation. 
This sensitivity enables us to choose the gate giving the best delay imp-

rovement per unit power penalty. In considering gates to be set to VDDH, a 
heuristic analogous to the one followed in Assign-VDDL (Figure 8.11) can 
be followed. Specifically in the Assign-High Vth step while setting gates 
back to VDDH, we only consider gates that do not have any VDDL gates as 
their fanins. This ensures no ALC insertion will be required. Sensitivities of 
setting all such gates to VDDH are evaluated while sensitivities of all gates 
in the circuit with respect to upsizing (by one drive strength) are evaluated 
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using Equation (8.7). Once all sensitivities have been computed, the gate 
with the largest sensitivity is set to VDDH or upsized accordingly, creating 
slack. Once slack is created, more gates can be assigned to high Vth following 
the approach outlined above.  

 
Assign-VDDL( ) { 
 L = Candidate gates identified in Figure 8.10, i.e., VDDH gates not  
  fanning out to VDDH gates.  
 While list L is non-empty { 
  // VDDL assignment sensitivity calculated with Equation (8.2) 
  Calculate sensitivity of gates in L to changing to VDDL. 
 
  STEP: “SET VDDL” –  
  Select candidate A with maximum sensitivity from L.  
  Remove A from L. 
  Set the supply voltage of A to VDDL. 
   
  If A drives a primary output, insert an LCFF. 
 
  STEP: “UPSIZING” – 
  While circuit fails timing and number of upsizing moves  
  is < 10% of total number of gates in the circuit) { 
   Calculate sensitivity of all gates to upsizing with Equation (8.6). 
   Upsize gate with maximum sensitivity to the next higher  
   size available in the library. 
  } 
 
  Check timing. 
  Check power consumption. 
  If circuit meets timing and power increase < hill-climbing  
  tolerance { 
   STEP: “CLUSTERING” – 
   Add to L gates that fan into A but not into any VDDH gate. 
 
   If power < minimum power found { 
    minimum power found = power. 
    Best configuration = current VDDL, Vth & 
             sizing assignment. 
   }  
  } else { 
   Undo upsizing moves. 
   Remove any added LCFFs. 
   Set the supply voltage of A back to VDDH. 
  } 
 } 
} 

Figure 8.11 Pseudo-code for the Assign-VDDL algorithm. 
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Table 8.3 Power savings with the VVS algorithm, which adds dual-Vth and sizing to CVS. 
VDDL = 0.8V. High Vth = 0.23V. Low Vth = 0.12V.  

VVS
Circuit Leakage Switching Total Leakage Switching Total Savings
c432 43 155 198 22 151 173 12.7%
c880 61 250 310 31 205 236 23.9%
c1355 163 537 699 106 532 638 8.8%
c1908 89 339 428 36 313 349 18.4%
c2670 118 541 658 40 435 475 27.9%
c3540 161 570 731 82 529 611 16.4%
c5315 219 1017 1235 117 892 1009 18.3%
c7552 232 983 1215 196 732 928 23.6%
Huffman 68 310 378 25 278 303 19.7%

Average: 18.9%

Initial Power (uW)  VVS Power (uW)

 

8.6 POWER SAVINGS WITH VVS AND GVS 

Table 8.3 summarizes our results after applying the heuristics described 
above to CVS and GECVS. The initial power point is from delay minimization 
in the manner of TILOS (per Equation (8.6)), then backing off 10% from the 
minimum delay point (1.1×Tmin) with power minimization (per Equation 
(8.5)). The same 1.1×Tmin delay constraints are used for the results presented 
in Table 8.3 and Table 8.4 – i.e. comparing sizing/dual-VDD/dual-Vth 
results versus a sizing only/high VDD/low Vth initial point. Only results for 
VDDL of 0.8V are detailed here, as these results were better than for VDDL 
of 0.6V. From comparing the percentage improvements in Table 8.1 with 
those in the most right-hand column of Table 8.3 and Table 8.4, power 
savings can be improved significantly when sizing, VDD and Vth assignment 
are utilized together for reasonably large test cases – on average 10% addi-
tional savings vs. CVS, and 7% additional savings vs. GECVS.  

In contrast, approaches such as the genetic algorithm presented in [9] are 
expected to fail for larger benchmarks because of the increased problem size. 
We implemented the genetic algorithm and found about 15% power savings 
versus the initial power point for c17, but the genetic algorithm provided no 
power savings for the larger benchmarks in comparison to the initial point. 

Level converter performance has an important impact on achievable power 
savings. The asynchronous level converter we used was the circuit referred 
to as STR6 in [17]. This ALC has a delay of 84ps and consumes 6.3fJ of 
internal energy per transition. The LCFF data was based on [1][11] which 
show that LCFF delay overhead is about 2 FO4 delays, or about 80ps in  
our technology. The LCFFs have no internal power overheads and reduced 
switching power due to VDDL driving the input capacitance of the register.  
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Table 8.4 Power savings with the GVS algorithm, which adds dual-Vth and sizing to GECVS. 
VDDL = 0.8V. High Vth = 0.23V. Low Vth = 0.12V. 

 

GVS
Circuit Leakage Switching Total Leakage Switching Total Savings
c432 43 155 198 31 148 179 9.6%
c880 61 250 310 36 189 225 27.3%
c1355 163 537 699 119 514 633 9.5%
c1908 89 339 428 64 300 364 15.0%
c2670 118 541 658 74 391 466 29.2%
c3540 161 570 731 128 492 621 15.1%
c5315 219 1017 1235 147 760 907 26.5%
c7552 232 983 1215 135 662 797 34.4%
Huffman 68 310 378 41 234 275 27.3%

Average: 21.6%

Initial Power (uW) GVS Power (uW)
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Figure 8.12 Impact of level converter performance on system level power dissipation of 
benchmark c5315 with VDDL of 0.8V. 

 
By scaling the data for the level converters, we studied the possible power 

enhancements that can be obtained via further improved level converter 
circuits. Figure 8.12 shows the variation in the achieved power savings using 
VVS and GVS for an example case as level converter delay and power are 
varied, sweeping from the full power and delay (normalized to 1.0) to zero 
power and delay overhead. A reasonable sensitivity of power savings to 
level converter performance can be seen. 



Power Optimization using Multiple Supply Voltages 213
 
Table 8.5 This table compares the runtimes of CVS, GECVS, VVS, and GVS. The runtime 
complexity of the algorithms is summarized at the bottom.  

Number Logic
Circuit of Gates Depth CVS GECVS VVS GVS
c432 166 23 0.6 0.7 1.2 0.9
c880 390 26 2.7 4.6 5.4 8.4
c1355 558 28 6.1 6.4 13.6 7.4
c1908 432 40 3.6 4.0 9.1 5.3
c2670 964 25 16.8 21.9 56.1 57.4
c3540 962 42 24.5 31.8 65.1 51.4
c5315 1,627 41 68.8 119.9 229.9 386.6
c7552 1,994 44 110.6 286.7 222.9 889.9
Huffman 509 47 3.7 4.7 15.7 33.0

O(n 2) O(n 3) O(n 3) O(n 3)

Runtime (s)

Runtime Complexity  

8.6.1 Runtime and Complexity of the Multi-Vdd Algorithms 

The final runtimes of the CVS, GECVS, VVS and GVS algorithms are 
compared in Table 8.5, as measured on a computer with a 3GHz Pentium 
microprocessor and 2GB RAM. The worst case complexities of these 
algorithms in terms of the number n of gates are as follows.  

CVS can have at most all n gates assigned to VDDL. Each VDDL 
assignment needs one execution of the static timing analyzer (STA) to check 
if timing is met. Since the complexity of the STA is O(n), the worst case 
complexity of CVS is O(n2).  

In the case of GECVS, each potential VDDL assignment begins with the 
sensitivity calculation for all gates (Equation (8.2)). Since each sensitivity 
calculation takes O(1) time, this takes O(n) time. Once all sensitivities are 
calculated, finding the timing feasible gate with maximum sensitivity has a 
worst case complexity of O(n2) (since in the worst case an STA run is 
needed for each gate). Overall, since all gates can potentially be assigned to 
VDDL, we get a worst case complexity of O(n3) for GECVS. 

The worst-case run-time complexity of the VVS algorithm is O(n3). 
Static timing analysis has a run time complexity of O(n) and in the worst 
case we can make O(n2) moves in both the backward and forward passes. In 
the backward pass we can potentially attempt to assign O(n) gates to low 
Vdd and for each of these possible assignments we can maximally have O(n) 
upsizing moves in the circuit. The total number of upsizing moves (due to 
the size of the standard-cell library) is O(n), therefore the worst-case occurs 
when all upsizing moves are reversed. Thus the possible number of upsizing 
moves is O(n2), making the overall worst-case complexity of the backward 
pass O(n3). Similarly we can find the worst-case complexity of the forward 
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pass and hence of the overall approach to be O(n3). For the forward pass the 
worst-case complexity occurs only when we revert back to the original 
circuit after assigning O(n) gates in the circuit to high Vth. However, since 
the amount of slack generated in the circuit due to a single high Vdd 
assignment or gate upsizing is small, the number of possible high Vth 
assignments due to upsizing or high Vdd assignment of a single gate can be 
expected to be O(1), hence the average complexity of the forward pass can 
be expected to be O(n2). For the backward pass the complexity is actually 
given by O(n2s) where s is the number of gates on the boundary of low and 
high Vdd gates at the end of the backward pass. This boundary forms the 
cutset of the acyclic graph which represents the circuit network. The cutset 
size is relevant since we only undo the up-sizing associated with the gates 
that form the cutset. The number of upsizing moves associated with gates 
other than the ones forming the cutset is O(n) since we only have a fixed 
number of drive strengths for a given logic gate. In the worst-case s can be 
O(n) and this gives us the worst-case complexity of O(n3). 

The complexities of the Assign-VDDL and Assign High-Vth modules of 
GVS can be found as follows. In case of Assign-VDDL, we first need O(n) 
time to calculate the sensitivities (Equation (8.2)) of all gates. After choosing 
the gate with the maximum sensitivity, we need another O(n) time for calcu-
lating sensitivities to upsizing (Equation (8.6)) and an STA run for checking 
timing after the gate with maximum sensitivity is sized up. Since we allow 
O(n) number of upsizing moves per VDDL assignment, this takes O(n2) 
time. Finally, since all gates can potentially go to VDDL, the overall comp-
lexity for Assign-VDDL becomes O(n3). In case of Assign High-Vth, we 
first calculate the sensitivities of all gates to upsizing and VDDH assignment 
(Equation (8.7)). This takes O(n) time. Once the gate with maximum sensi-
tivity is upsized or assigned back to VDDH, we calculate sensitivities of  
all gates for high Vth assignment. As in the case of GECVS, selecting the 
timing feasible move with maximum sensitivity takes O(n2) time. Since every 
iteration of Assign-High Vth creates slack through one VDDH assignment or 
one drive strength upsizing, only a handful (typically less than 10) of gates 
can go to High Vth per iteration. And since we can have at most O(n) number 
of such iterations, the overall complexity of Assign-High Vth becomes 
O(n3). Hence, the complexity of GVS which includes GECVS, Assign-VDDL 
and Assign-High Vth is O(n3). 

8.7 SUMMARY 

This chapter overviewed some algorithms for supply voltage assignment 
in multi-VDD circuits. Heuristics for combining the three optimization 
techniques of gate sizing, multi VDD assignment and multi Vth assignment 
were also presented. We quantified the impact of level converters on system-
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level power dissipation, motivating further work in the development of fast 
and low-energy asynchronous level converters. 

The approaches discussed in this chapter are sensitivity based techniques 
which are able to accurately consider the impact of signal slews et al. on the 
timing of the design. Thus, these approaches are guaranteed to meet timing 
at the end of the optimization which is extremely important in an ASIC 
methodology. Moreover, the inherently discrete nature of Vth and VDD 
assignment problems does not allow direct application of traditional conti-
nuous optimization techniques, and combinatorial optimization techniques 
are extremely costly. Thus, efficient and intelligent heuristics that can consider 
the impact of a single Vth/VDD assignment on the final power savings are 
very useful. 

Other important considerations such as the physical design and power 
delivery also arise when implementing multi-VDD circuits. The problem of 
physical design can be handled by dividing the floorplan into islands of 
VDDL and VDDH cells. Alternatively, modifying the standard cell layouts 
to accommodate the multiple power supplies allows complete freedom in 
choosing which gates to operate at each of the supplies [2]. 

Robust power distribution grids need to be designed as cells supplied by 
lower supplies are very susceptible to power supply variations. This can be 
accomplished at no area or wire congestion overheads by recognizing that 
multi-VDD circuits operate at lower supply currents [18]. Efficient DC-DC 
converters for delivering power to multi-VDD chips are discussed in [13]. 
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9.1 INTRODUCTION 

Circuit placement is a well studied area of VLSI design. The logic ele-
ments in a circuit design must be transferred onto the silicon substrate – 
transistors are not allowed to overlap, and there are a variety of spacing and 
size constraints. In this chapter, we survey techniques to minimize power 
within a placement context. By “placement”, we mean a mapping of each 
logic element to a physical location. 

Minimization of power during circuit placement requires a delicate 
balance of constraints. There is always a trade-off between power and speed. 
If speed is not an issue, power can be reduced by operating at a low freq-
uency, increasing device threshold voltages, and down-sizing devices which 
reduces the layout area. However for modern circuits, it’s rare to have such 
low performance objectives. Rather, the challenge is to design a circuit that 
is both fast and low power. 

Early place and route power minimization methods focused on reducing 
the lengths of interconnect wires with higher switching activity. Minimization 
of the length of delay critical nets has also been a traditional concern. Recent 
focus has been on the integration of multiple supply voltages and multiple 
threshold voltages, so that circuit performance can be finely tuned.  

The traditional “wire length” objective in placement addresses power 
minimization by reducing the switching capacitance of the interconnect 
wires. Each wire has a capacitive load; charging and discharging this load  
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consumes power. In one recent study [41], for example, it was estimated that 
50% of the dynamic power consumption of a microprocessor designed in 
0.13um technology could be attributed to the switching capacitance of 
circuit interconnect. This percentage is from a highly optimized design – a 
poor quality circuit placement would have longer interconnect lengths, 
contributing an even greater share of the dynamic power. 

Reducing the length of delay critical nets is beneficial to power consum-
ption, as this makes achieving timing closure easier. If a long interconnect 
wire is on a delay critical path, the only way to meet a timing constraint may 
be to either insert buffers and/or to increase the size of gates along the path; 
each of these will increase power consumption.  

The physical locations of each circuit element determine the lengths of 
interconnecting wires, which in turn influences the need for gate sizing and 
buffer insertion. While interconnect length reduction is not the only objective 
in placement, it is an extremely important one 

There are three dominant algorithmic techniques in use for circuit 
placement: analytic methods, partitioning based placement, and simulated 
annealing. Most commercial placement tools rely heavily on analytic 
methods, but hybrids are common – each technique has its strengths and 
weaknesses. Circuit placements produced by current methods are known to 
be significantly suboptimal for even simple metrics [10]; for timing and 
power optimization, the suboptimality is likely even greater. Many placement 
researchers believe that significant improvements are possible, and that an 
algorithmic breakthrough would have tremendous benefit. 

The circuit placement is frequently broken into global and detailed 
placement steps. During global placement, only coarse estimates of wire 
length and wire delay are known. While there are techniques to gain rough 
estimates of interconnect lengths before placement [16][50], these methods 
lack the accuracy needed for fine tuning [49]. For modern high-performance 
design, a great deal of circuit optimization must be performed after global 
placement has been completed. 

In global placement, power minimization can be handled by biasing the 
solution such that there is a preference for shorter lengths on the most active 
signal nets. We discuss this biasing in the section on “net weighting”. As a 
placement algorithm converges towards a final configuration, estimates of 
individual net lengths become more accurate, and the true delay critical 
paths of the circuit begin to emerge. Biasing the nets such that those on the 
critical paths become shorter also benefits power: shorter nets require smaller 
drivers to meet performance constraints. 

During detailed placement, the circuit can be fine-tuned, with combi-
nations of gate sizing, buffer insertion, logic resynthesis, and small-scale 
placement modifications. Combinations of logic optimization and physical 
layout (both placement and routing) are generically known as physical 
synthesis. 
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Recent efforts to further minimize power consumption by using multiple 
supply voltages have presented new challenges. In particular, cells must be 
placed in rows (or portions of a row) with appropriate supply voltage and 
that level converters be placed such that they can access both supply voltage 
levels. This complicates placement legalization. 

It is important to note that the placement problem has been changing 
over the past few years. The number of available transistors has been incre-
asing exponentially, but the ability of designers to utilize them has lagged 
behind. In most cases, modern chips are “power and speed limited”, and not 
“device limited”. It is not uncommon for large designs to have a great deal 
of open space between blocks and logic elements – the capacity of each die 
exceeds the needs for the circuit. Thus, the “packing” nature of the problem 
that was a significant challenge in previous generations is now almost 
irrelevant – handling the abundance of “white space” has emerged as a new 
concern [2][6].  

The placement optimization problem and objectives for this are discu-
ssed in Section 9.2. Placement approaches and physical synthesis are detailed 
in Section 9.3, then Section 9.4 examines placement issues with multiple 
supply voltages. State of the art results for placement tools are examined in 
Section 9.5. We conclude in Section 9.6. 

9.2 PLACEMENT BASICS 

On the surface, circuit placement may appear to be a relatively simple 
problem. In Figure 9.1, we illustrate three types of common placement pro-
blems: standard cell placement, mixed size placement, and floorplanning. In 
standard cell placement, large numbers of relatively simple logic elements 
are arranged in horizontal rows – the elements frequently have the func-
tionality of basic Boolean operators. Mixed size placement problems contain 
both standard cells, and also larger and more complex circuit blocks; this is 
frequently referred to as the “boulders and dust” problem. At the highest 
level is floorplanning: large blocks of circuitry must be arranged such that 
they fit together, while minimizing wire length (or a variety of other objec-
tives).  

The input to a placement tool is generally a circuit net list, coupled with 
some constraints on the “core area” into which the circuit is to be embedded. 
A circuit net list contains a large number of logic elements – almost always 
rectilinear, and for standard cell design, rectangular with uniform height. 
These logic elements must be arranged within the core area such that they do 
not overlap.  

The set of logic elements in a circuit is typically denoted as C={c1,c2,…,cn}. 
C is the entire set of logic elements, while each ci corresponds to a single 
device (ranging from a simple logic gate to a macro block). Connecting the 
logic elements together are the signal nets N={n1,n2,…,nm}. Often, it is 
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useful to treat the circuit as a hypergraph, with the logic elements as vertices, 
and the signal nets as hyperedges. 

With a small amount of excess area, fitting logic elements into the space 
provided is usually relatively easy. Complicating the placement problem are 
wire length, power, and delay considerations. We will consider these briefly; 
detailed discussions of placement objectives can be found in [3][34][40]. 

9.2.1 Wire Length 

The most studied placement objective is wire length minimization. Consider 
a simplified placement problem: we will assume that each logic element is 
square, and that they are to be placed onto a two dimensional grid. Packing 
the elements in such a way that they do not overlap is trivial – so long as the 
number of grid spaces is at least equal to the number of logic elements. 

When one considers the interconnecting signal nets, however, the pro-
blem becomes NP-Complete [47]. If we have n logic elements, and an equal 
number of grid spaces, there are O(n!) different ways to embed them into 
the grid. 

Standard cell Mixed size

Floorplanning

Logic cellsRouting Channel

Macro block

Empty
space

Standard cell Mixed size

Floorplanning

Logic cellsRouting Channel

Macro block

Empty
space

 
Figure 9.1 Standard cell placement, mixed size placement, and floorplanning problems. We 
focus primarily on standard cell and mixed size placement.  



Placement for Power Optimization 223
 

cell A

cell B

cell C cell D

Circuit Netlist Circuit Placement

Half Perimeter Spanning Tree Steiner Tree

A

B

C

D

cell A

cell B

cell C cell D

Circuit Netlist Circuit Placement

Half Perimeter Spanning Tree Steiner Tree

A

B

C

D

 
Figure 9.2 Wire length estimation in placement. A half perimeter metric is normally used in 
global placement. For gate sizing and buffer insertion, however, it is preferable to have more 
accurate measures.  

For each signal net, the half perimeter of the bounding box is a rough 
estimate of the interconnect wiring needed for the net – for two and three pin 
nets, this is exact. Thus, a common objective is to minimize the sum of the 
half perimeters; HPWL (half perimeter wire length) is well known. 

Improving somewhat over the perimeter objective are minimum span-
ning tree (MST) and Steiner minimal tree (SMT) objectives. In some resp-
ects, these objectives are better than HPWL – but as they ignore the actual 
topologies found by global and detail routing, they are also inaccurate. We 
illustrate different methods for estimating the wire length of a net in Fig-
ure 9.2. 

9.2.2 Power 

The impact of placement on dynamic power consumption has been studied 
extensively. A typical formulation [41] to capture this is  

 2

  signal nets 

1
2 j j dd

j N
P a C V f

∈

= ∑  (9.1) 

where P is the total dynamic power consumption due to switching wire 
capacitances; aj is the switching activity factor for signal net j; Cj is the 
switching capacitance of the net; Vdd is the supply voltage; and f is the clock 
frequency. While the notation varies slightly, the basic equations remain the 
same; [44] utilized a similar formula in an early survey of power minimi-
zation. 
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Switching capacitance, Cj, depends heavily on the interconnect length. 
To accommodate this in placement optimization, it is possible to perform net 
weighting to bias the solution such that nets that switch frequently have 
reduced lengths. How net weighting for power is handled in the different 
placement approaches is discussed in detail in Section 9.3. 

9.2.3 Delay 

Delay minimization is the most elusive objective in placement, for a 
number of reasons. Even with a fixed placement, determining the longest 
delay path through a circuit is nontrivial.  

During placement, the locations of individual logic elements may change 
repeatedly. As wire lengths between logic elements change, the critical paths 
in a circuit change. If one uses an accurate delay analysis method during 
circuit placement, run times are unacceptable. Fast delay analysis methods 
are inaccurate, which can result in over optimization of non-critical paths, or 
in performance objectives being missed. 

Note that some “false” paths can’t actually affect the circuit delay; deter-
mining false paths is in principle a difficult problem. To impact the delay of 
a circuit, a path must be sensitized; this is effectively circuit satisfiability, a 
classic NP-Complete problem. Fortunately, circuit designers frequently have 
good insight into the nature of the true critical paths, and many false paths 
can be eliminated by heuristic methods.  

9.2.4 Routability 

While we consider this only briefly, it should be clear that the actual 
routing of a circuit has a great impact on interconnect length, and thus the 
power consumption of a circuit. In portions of many designs, the routing 
demand can be close to the available resources; these regions are “congested”. 
Routing congestion can be reduced through the introduction of routing 
detours; congested designs have increased numbers of vias between metal 
layers (which add to the capacitance of the nets), and an overall increase in 
interconnect length. 

There has been extensive work in routability-driven placement in recent 
years [37][59]. Generally, excess area in the design, the “white space”, is 
distributed within the placement region. In general, this has the effect of 
increasing half-perimeter wire length estimates; the routed wire lengths, 
however, are reduced due to reduced congestion with less routing detours.  

A primary challenge to routability-driven placement is accurately esti-
mating routing demand [38][39][58]. If the routing estimates do not match 
the actual behavior of the routing tools, space may be inserted where it is not 
required (increasing wire length), while areas that need space are overlooked 
(resulting in detours, or even routing failure). 



Placement for Power Optimization 225
 

 
Figure 9.3 A “congestion map” normally shows densely occupied regions with light colors. A 
routing detour may erase any improvements made by careful placement. If the design is 
congested, wire detours will increase the capacitance of interconnect nets, increasing 
switching power. Congested regions also have more net-to-net coupling capacitance, and thus 
wider variation in delay.  

Routing detours, as illustrated in Figure 9.3, may eliminate any gains that 
may have been expected from power and delay optimization – wire lengths 
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are unexpectedly higher than the estimates used by the optimization tools. 
For this reason, some have advocated a return to the “variable die” routing 
model [55]. Most modern design flows use a “fixed-die” routing model [59]. 
Variable die routing allows expansion between rows of standard cells to 
increase routing space, avoiding the introduction of routing detours. 

9.2.5 Problem Complexity 

Evaluating the “quality” of a given placement is difficult; compounding 
this is the inherent NP-completeness of placement. For n logic elements, 
there can be O(n!) different arrangements. There are no known optimal 
algorithms for even the simplest of metrics. 

While there is disagreement regarding the degree of suboptimality of 
current placement methods, there is general agreement that the degree is 
quite significant. It should be stressed that the methods discussed in the next 
section are all heuristic in nature. Current tools based on analytic methods, 
bisection, and annealing, produce similar results on some benchmarks, and 
widely differing results on others. On a set of synthetic benchmarks with 
known optimal configurations [10], wire lengths produced by modern tools 
were anywhere from 30% to 150% away from optimal—with some tools 
exhibiting pathological behavior. We speculate that in terms of average wire 
length, most methods are at least 50% away from optimality on “real” 
circuits. For delay optimization, we would speculate that results could be a 
factor of two or more away from optimality. 

9.3 PHYSICAL SYNTHESIS 

In this section, we first discuss general methods for net weighting and 
global placement. Most placement approaches first find a rough distribution 
of logic elements across the layout area, while addressing power and perfor-
mance objectives by weighting individual signal nets. 

Following global placement are legalization, gate sizing, and buffer 
insertion. It is during this phase that “physical synthesis” has departed most 
significantly from traditional placement. In early fabrication technologies, 
circuit delay was relatively independent of interconnect delay; device sizes 
could be fixed at an early stage, and nearly any reasonable placement would 
produce performance results close to those expected. With modern fabrication, 
interconnect delay is far more significant, and it is only at the last stages of 
physical design that performance can be accurately estimated.  

The amount of optimization to be performed may make design closure 
difficult. For example in one recent study [48], large numbers of repeaters 
were needed to meet performance targets. The insertion of repeaters into the 
design caused changes to the overall structure of the placement, making 
some optimizations ineffective.  
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Significant changes in area due to gate sizing and buffer insertion cause 
wire estimates to be inaccurate, which can require layout to be redone. 
Layout and sizing iterations may fail to converge on an acceptable solution 
and results can be unpredictable. This is essentially why traditional placement 
flows failed – wire load models were so inaccurate that the results were quite 
suboptimal in terms of area and power due to oversized cells to conservatively 
try and drive what might be long wires, but in the typical case were over-
estimated, also limiting the minimum delay that could be achieved. While an 
underestimate in the less common case of longer wires would lead to failure 
to satisfy delay constraints for paths with long wires after routing. 

The “stability” of a placement in this context is a key concern [7]. Some 
designs now contain a great deal of internal white space, so that insertion of 
buffers and gate sizing does not disrupt the placement structure. Logical 
effort [51] based optimization can be extremely effective, but can require a 
large overhead in terms of total wire length. 

9.3.1 Net Weighting 

At the core of almost all performance-driven placement techniques is a 
net weighting scheme. In a circuit, some nets are delay critical, or transition 
very frequently. By increasing the weight of a net in something as simple as 
a half perimeter wire length calculation, the results of a placement algorithm 
can be tuned towards better performance. Figure 9.4 shows a simplified 
example; if power is the only objective, one of first two arrangements might 
be acceptable. The third arrangement will minimize delay.  
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Fixed Fixed

A
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logic element A to the right.
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Fixed Fixed
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Figure 9.4 If nets have different switching activity, it may be beneficial to weight the nets so 
that their lengths are different after placement. In this figure, the first two arrangements 
optimize the length of n1 or n2; which is better depends on the switching activity. In practice, 
neither may be desirable: interconnect delay is roughly quadratic with net length, and a 
balanced arrangement may give better delay, and require less sizing of drivers.  
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Net weighting methods are not new. An early method was developed  
by Dunlop [19], and most current placement tools use something similar. 
Weights for individual nets are frequently based on the “slack allocation” 
methods of Frankle [22]. By traversing the circuit with a longest-path 
algorithm (easily done in a directed graph), it is possible to find long paths 
that may limit performance. Increasing the weight of nets along the path will 
result in the placement algorithm pulling the logic elements along the path 
together, reducing wire length. Decreasing the weight of non-critical nets 
also achieves this. Integrating switching activity into this approach is trivial. 

A common criticism of net weighting is that it addresses the nets indivi-
dually, but not the paths. As the placement changes, or gate sizing and buffer 
insertion are performed, the critical path can change repeatedly. Without 
frequent recomputation of net weights, it is likely that the placement tool 
will optimize non-critical portions of the circuit. 

It is important to note again that the longest path may not necessarily  
be relevant; it is not uncommon for a long path to be “false”. In practice, 
performance driven design is done by either focusing on a set of paths pro-
vided by the circuit designer, or by having a set of false paths to explicitly 
ignore. As placement and physical synthesis operations are performed, the 
timing of a circuit is updated repeatedly (usually with an incremental method 
to minimize computation overheads); net weights are recomputed, and optimi-
zation continues. 

9.3.2 Global Placement 

In current practice, there are three dominant placement techniques: ana-
lytic, recursive partitioning, and simulated annealing. 

9.3.2.1 Analytic Placement 

Analytic placement [21][33][46][54][56] is a generic term for methods 
that formulate the placement problem as a set of equations; the objective is 
to minimize the sum of the distances between connected logic elements. 
Figure 9.4 provides a simple example; the optimal position for element “A” 
can be formulated such that we minimize the distance, or the square of the 
distances. The position of the logic element would typically be represented 
as a pair of variables for the x and y location. Linear and quadratic programs 
can then be formulated, and individual connections can be weighted. 

The circuit in Figure 9.4 is trivial; the optimal solution can be found easily 
with a pencil and paper. For large circuits, one might expect the formulation 
to have tens of thousands of variables; there are many algorithmic techni-
ques to solve problems of this size quickly. Figure 9.5 illustrates pseudocode 
for a generic analytic approach; there are many variations (for example 
[21][33][54][56]).  
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optimization
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Figure 9.5 Flowchart for an analytic placement approach, with net weighting to address 
power and performance. There are many different ways to formulate the optimization 
objectives; the x and y optimization objectives are frequently computed independently. There 
are a variety of methods to remove overlap, and this is an active research area. 

In typical formulations, the signal nets ni connect the circuit elements 
cjck. The objective in this formulation is to minimize the sum of distances 
between circuit elements. Many analytic placement tools minimize the square 
of the distance between connected elements: this formulation is differentiable, 
which makes it relatively easy to solve. The quadratic formulation also 
captures a useful aspect of the placement problem somewhat naturally: if 
interconnect wiring is unbuffered, delay is approximately proportional to  
the square of the net length. In some sense, quadratic formulations can be 
viewed as minimizing the sum of net delays – not necessarily a bad objec-
tive. 

While squared distance formulations are easier to solve, linear objective 
functions are also common. Linear wire length more accurately models routed 
wire length, and a great deal of effort has gone into the development of 
efficient solution methods. 

With analytic methods, there is an “obvious” optimal solution to the set 
of equations; one in which all circuit elements are directly overlapping. 
While there are differences in how the equations are formulated or solved, it 
is in the handling of overlap where one sees the greatest variation between 
approaches. Methods based on partitioning [33][56], the introduction of 
additional forces [21], and cell shifting [54] have all been investigated.  

The natural integration of power and delay objectives, coupled with effi-
cient mathematical solvers, has made analytic placement extremely popular. 
There are many variations on this theme, and a majority of commercial place-
ment tools utilize some form of analytic placement. 
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move rejected

 
Figure 9.6 Flowchart for an annealing based placement approach. There are a variety of 
different cooling schedules and move strategies. To adjust the weights of interconnect nets, 
there are periodic calls to an algorithm that finds a set of long paths. 

9.3.2.2 Simulated Annealing 

A second common placement approach is simulated annealing, based  
on methods first described in [32]. In terms of wire length minimization, 
annealing can produce excellent results, but at the expense of high run times. 
The current academic tool Dragon [57], for example, produces leading results 
in terms of length, but has comparatively high run times. For industrial 
placement tools, annealing has fallen out of favor. 

As is done with analytic placement, power and delay optimization is 
integrated into annealing tools through net weighting. An early work to 
perform timing-driven placement was the academic tool TimberWolf [52]; 
we show pseudocode in Figure 9.6. 

In [52], a method by Dreyfus [18] was used to find a fixed number of the 
longest paths in the circuit. Slack-based methods were used to weight the 
nets. Throughout the annealing process, the set of long paths was repeatedly 
computed, and weights were reassigned. 
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Recently, performance driven placement within an annealing framework 
was revisited, with a surprising result [55]. Rather than attempting to optimize 
the circuit through weighting of nets, the objective was simply to minimize 
routed wire length. Delay and power considerations were then addressed 
through extensive gate sizing, and custom cell generation. Compared to com-
mercial tools, the approach produced far better results.  

The results in [55] pose an interesting question: namely, is timing driven 
placement (with net weighting) an essential part of timing driven design? 
The placement method used, while based on [52], simply optimized wire 
length – net weighting was entirely ignored. That superior results (in terms 
of both circuit delay and power consumption) were obtained by ignoring net 
weights is somewhat counter-intuitive. One way to interpret this is that a 
more complex (and perhaps accurate) formulation is also more difficult to 
optimize; the solution quality obtained for the simplified problem is thus 
better than the solution for the complex version. 

A second interesting outcome of the work is a reconsideration of the 
“fixed-die” routing model – the authors used a “variable die” formulation, 
which eliminated routing detours while also allowing very dense placement. 
In most current design methodologies, the spacing between rows of logic 
elements is fixed; the total area is also fixed. The variable-die methodology 
allows increased space between rows of logic elements, which provides 
needed routing resources and allows detours to be eliminated. 

9.3.2.3 Partitioning Based Placement 

A third popular placement approach is recursive partitioning (and most 
frequently, recursive bisection). The advent of strong multi-level partitioning 
algorithms [13][30] has made the basic methods outlined by Breuer [9] quite 
effective. With the terminal propagation techniques of Dunlop and Kernighan 
[20], modern bisection based placement tools can produce leading results on 
both standard cell [4] and mixed size [31] placements. We show a flowchart 
for a typical recursive bisection approach in Figure 9.7. 

However, in terms of performance optimization for power and delay, 
partitioning methods are at a bit of a disadvantage when compared to analytic 
or annealing methods. Partitioning methods approach the placement problem 
with a top-down perspective; subcircuits are treated as generic clusters of 
logic until fairly late in the placement process. Because net lengths within 
the cluster are not known, delay and power consumption estimates cannot be 
made accurately until fairly late in the placement process – frequently too 
late to make effective changes.  
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Figure 9.7 Flowchart for a recursive bisection placement approach. The fractional cut 
formulation greatly simplifies cut line insertion, and results in improved wire lengths. Most 
current tools are based around multi-level partitioning algorithms.  

One method to have some success was the approach of Ou and Pedram 
[43]. In bisection based methods, nets that are cut early in the placement 
process generally have higher length; if a net is cut repeatedly, it can be very 
long. To avoid having long nets, and in particular, long nets along a critical 
path, nets were weighted based on if they had been previously cut. 

9.3.3 Legalization and Detailed Placement 

We discuss placement legalization and detailed placement extensively, 
as these are key components of an effective physical synthesis flow. Even if 
the placement tool provides a legal solution initially (both bisection and 
annealing frequently can do this), it may become illegal – gate sizing and 
buffer insertion may change the size of logic elements, or introduce new 
ones. Thus, legalization must be an essential part of any successful optimi-
zation strategy. 

Traditionally, legalization has been most closely associated with analytic 
methods. Tools such as Kraftwerk [21], APlace [28][29], and FastPlace 
[53] are known to produce high quality results. Recently, partitioning based 
placement tools have made a great deal of improvement [4], and are making 
significant use of legalization techniques. Dynamic programming based 
legalization has been used [4][26], and a simple “tetris” method patented by 
Hill [23] has been adapted to handle mixed size designs [31]. 
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Logic elements are globally placed, but are 
not row aligned and can have overlaps.

Legalization shifts each element slightly, 
to remove overlap and align with rows.  

Figure 9.8 An example of placement legalization. A common objective is to minimize 
displacement.  

9.3.3.1 Traditional Legalization Methods 

An early approach to placement legalization was developed in the well 
known tool Domino [14], which uses a network flow approach to move cells 
from over congested areas to less congested regions. Flow-like techniques 
have been used in a number of other works (for example [15][25]). 

A recent version of the placement tool Capo has a single row dynamic 
programming based legalization approach [26]. It uses “cell juggling” to 
adjust the density of cells within a single row. The method uses a number of 
cost functions based on minimum perturbation, minimizing half perimeter 
wire length (HPWL), minimum maximum movements (legalizing a row by 
minimizing the maximum movement from the original locations), and an 
iterative modification of the minimum HPWL cost function. The approach 
needs prior assignment of cells to rows. [4] also uses dynamic programming 
legalization. 

For mixed size placement, [8] used both flow based techniques and dyna-
mic programming. The method was effective for large industrial designs. 

We illustrate the legalization problem in Figure 9.8. The general objective 
is to move logic elements that are not row-aligned, or are overlapping, to 
new positions that are both aligned and overlap free.  

While there are many complex methods, a remarkably simple “tetris” 
[23] based method has gained popularity. We show pseudocode for the method 
in Figure 9.9. In this method, all cells are first sorted by their horizontal 
positions. Each cell, in sorted order, is then placed into a legal position that 
minimizes displacement from the abstract position. APlace [28] [29] uses a 
variant of the tetris method. Feng Shui [31] extended it to handle mixed size 
placements. In most cases, the method produces excellent results. 
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TetrisLegalization( ) { 
 Sort all elements by their left edge location 
 Initialize all cell rows as empty 
 Initialize the right edge of each row 
 
 For each element in order { 
  Find a legal position in a row to minimize displacement 
  Move the element to that position 
  Update the right edge of the row 
 } 
} 

Figure 9.9 Pseudocode for the “tetris” legalization method by Hill. This is a simple greedy 
algorithm that processes the logic elements from left to right. Each cell is placed in the row 
that minimizes displacement. The method is extremely fast, and for uniformly distributed 
abstract placements, surprisingly effective.  

The tetris method does have some shortcomings, however. In placements 
produced by Feng Shui, the cells are closely packed. When cells are distri-
buted more widely (as is done with fixed-die placement methods), not all 
cells are properly legalized by this tool. The “tetris” method also has no way 
to handle out of core cells effectively, and “stacking” of cells or macro blocks 
can degrade results.  

In [1], it was observed that the placements for Feng Shui were illegal on 
some industrial benchmarks. When the abstract placement contains areas 
with significant overlap, solution quality of placements legalized by the 
Tetris method can degrade abruptly. Study of these placements showed that 
the increase in wire length came from only a subset of the nets – those 
connected to cells that had not only been displaced during legalization, but 
in particular to those in “pyramid” shaped areas of the legal placement. 
Figure 9.10 shows such an instance – in the center of the placement, there is 
a dark triangular shaped area of cells, with empty space in the surrounding 
regions.  

Considering the operation of the greedy legalizer reveals how the pyra-
mids are constructed. If there is little overlap, and the cells can be placed 
into legal positions with only small amounts of displacement, the process 
works extremely well. When there is overlap, however, cells must be displaced 
– and this displacement can occur horizontally or vertically. As an extreme 
case, consider a sample placement in which all logic elements are stacked on 
top of each other: each time an element is moved to a legal location, the 
position with minimum distance is at the perimeter of a growing “Manhattan 
circle.” 

The tetris method is attractive due to its simplicity. However for it to be 
effective, it is critical for the placement to not have areas with excessive 
demand. Methods to eliminate dense regions are discussed below. 
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Figure 9.10 The “pyramid” effect in that occurs in Tetris-based legalization where significant 
overlap is present.  

9.3.3.2 Detailed Placement 

After legalization, many tools commonly apply single and multiple row 
branch-and-bound optimizations to improve wire lengths. 

By simply passing a “sliding window” over the placement region, and 
enumerating the different permutations of cells within the window, wire length 
improvements can normally be obtained. While the number of permutations 
can be exponential, by keeping the window small – in most cases, from six 
to eight cells – this can be done with acceptable run times. 

A variety of other techniques are also available. For example, the “optimal 
interleaving” work of Hur and Lillis [25] has many applications. With minor 
modifications, it can be used to distribute open space within a row, and the 
legalization method of [4] has a number of similarities. 
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9.3.4 Integration with Logic Synthesis 

Many significant changes in the traditional design flow have occurred at 
the transition from detailed placement to routing. In earlier design flows, the 
typical sequence was logical synthesis, placement, and then routing. With 
the increased impact of interconnect on overall performance, logic synthesis 
optimizations are now frequently performed after detailed placement – and 
these optimizations must be incorporated into the layout. 

Other chapters consider in depth the types of optimizations normally 
performed. For simplicity, we will focus here on gate sizing – optimizations 
such as buffer and repeater insertion, or the wholesale modification of portions 
of the circuit net list, are handled in a similar manner. 

After the completion of placement, and possibly routing, one might find 
that the performance of a circuit could be improved by changing the size of a 
subset of gates. If sizes increase, cell overlaps can occur; we discuss methods 
to remove overlap here. After overlap removal is performed, the design can 
be made legal again, and the optimization process continues. 

9.3.4.1 White Space 

Many industrial designs contain a great deal of excess white space. For 
example, a recent set of benchmarks released by IBM [42] has a mixture of 
fixed macro blocks and standard cells. The space available for placement of 
the standard cells can be twice as large as the area of the cells themselves – 
there is a great deal of open space available. 

There can be many reasons for having large amounts of open space. For 
the example benchmarks, this space allows for the “logical effort” [51] 
approach to circuit optimization to be performed with relative ease. Logic 
gates can be sized extensively – with abundant space, overlaps are relatively 
small and can be removed easily. Furthermore, there is space available for 
the insertion of buffers and repeaters. 

9.3.4.2 Placement Transformation 

If there is abundant open space, cell sizing and buffer insertion can be 
done without disrupting the overall placement. Without extra space, the 
integration of logic synthesis and placement can be much more difficult and 
“straight-forward” legalization is likely to produce unacceptable results. As 
described above, the greedy legalization method by Hill exhibits a “pyramid 
effect”, and other legalization methods can also perform poorly. If the relative 
positions of logic changes significantly during legalization, the wire lengths 
anticipated during cell sizing don’t match the final placement, making the 
cell sizing suboptimal in terms of delay, area, and power. In general, a design 
with a great deal of overlap, or areas with high utilization, poses a significant 
challenge to legalization methods.  
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CutLineShifting( ) { 
 STEP: ‘SET INITIAL PLACEMENT REGION’ –  
 r1 = entire placement area 
 R = {r1} 
 Assign all moveable objects to r1 
  
 While (R contains a region with more than one element) { 
  For each ri in R { 
   // Aspect ratio determines cut direction 
   If (tall) { 
    Split the region at 50% horizontally 
    If the cell areas of the two subregions do not match {  
     Compress the larger region and expand the smaller 
     region vertically 
    } 
   } else if (wide) { 
    Split the region at 50% vertically 
    If the cell areas of the two subregions do not match { 
     Compress the larger region and expand the smaller 
     region horizontally 
    } 
   } 
   Remove ri from the set of regions 
   Add new smaller regions 
  } 
 } 
 // Now legalize the placement 
} 

Figure 9.11 Pseudocode for the cut line shifting method; the overall approach can be thought 
of as “fractional cut bisection” in reverse. If a portion of the placement is too dense, logic 
elements can be moved in a relatively stable and uniform manner.  

To simplify the legalization problem, recent research has focused on 
“placement transformation” techniques [36]. The objective of placement 
transformation is relatively simple: logic elements should be spread out by 
some combination of horizontal or vertical shifting, while avoiding large 
disruptions in interconnect lengths. 

Note that this is not in any sense a “minimum displacement” objective: if 
a group of logic elements shift in the same direction, their interconnecting 
nets do not change in length. A solution that has a great deal of displacement 
[7] may be perfectly acceptable. Stable net lengths will lead to small changes 
in circuit delay, and easier timing and power convergence.  

The “cut line shifting” method developed by Li [37] was shown to be 
effective in removal of overlaps, without introducing large changes in net 
lengths. The method is remarkably simple, and effective on placements 
produced by a variety of tools. The algorithm is outlined in Figure 9.11 and 
the operation of the approach is shown in Figure 9.12. 
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Lower region is still 
unbalanced

Cut line inserted vertically Left region contracts, 
right region expands  

Figure 9.12 An example of cut line shifting.  

We should note that there can be many ways of overlap removal, and 
methods developed as part of analytic placement can also be applied. For 
example, consider the “cell shifting” method used in the placement tool 
FastPlace [54]. The circuit is divided into horizontal or vertical strips; each 
strip is then divided into a set of bins. By adjusting the height or width of a 
band to adjust to cell area constraints, the degree of cell overlap can be 
minimized.  

The cell shifting technique, shown in Figure 9.13, is similar in spirit to 
cut line shifting. As such, it can achieve a similar effect. Both techniques are 
extremely fast, and can remove overlap while preserving the basic structure 
of the placement. 

9.3.4.3 Stability of New Placements 

Placement transformation is a relatively new development in physical 
design. To enable physical synthesis, “stability” of a placement algorithm is 
essential.  
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Figure 9.13 An example of cell shifting. Rather than the alternating cut lines of cut line 
shifting, this approach divides the circuit into horizontal or vertical stripes, and then adjusts 
the positions of elements within each stripe. 

For analytic methods, slight changes to a circuit net list (through the 
insertion of repeaters and buffers, or through the sizing of logic elements) 
have a modest impact on the overall structure of the placement solution [7]. 
By contrast, recursive bisection placement and annealing methods can 
produce wildly different placements from two different runs. The stability of 
analytic solutions is yet another reason the approach is preferred for industrial 
tools. In an industrial flow, a circuit net list may change repeatedly – if each 
new placement solution is fundamentally different than the prior one, effort 
spent on gate sizing and buffer insertion will have little effect. 

With the introduction of placement transformation, one can obtain 
stability within any global placement flow – provided that the degree of 
change to the circuit is relatively modest. We anticipate that there will be a 
great deal of progress in this area over the next few years, and that transfor-
mation will alter how many industrial groups perform logic synthesis. Rather 
than running a placement engine “from scratch” with each circuit modify-
cation, an existing placement may be adjusted with transformation, to meet 
the space requirements for gate sizing, buffer insertion, or small scale logic 
changes. 

9.4 MULTIPLE SUPPLY VOLTAGE PLACEMENT 

The techniques discussed in the previous sections can be viewed to a 
large degree as “enhancements” to traditional placement objectives. To mini-
mize power dissipation of high activity nets, or to shorten wire length of 
critical path nets, a simple net-weighting approach can be applied. These 
modifications do not make fundamental changes to the basic placement 
algorithms. 

Even the integration of gate sizing and buffer insertion has a relatively 
modest impact. If abundant white space is available, the “new” circuit can be 
legalized easily. Using recently developed techniques for placement trans-
formation, space can be made available without significantly disrupting the 
overall structure. 
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Figure 9.14 A simple diagram illustrating clustered voltage scaling. Clustered voltage scaling 
integrates level conversion within the latches. Downstream gates can switch to lower voltage, 
as long as this transition is monotonic because no additional voltage level converters are 
allowed between combinational logic in a clustered voltage scaling approach. (Low Vdd gates 
are shaded.)  

In this section, we focus on a recent trend in low power circuitry: the 
utilization of multiple supply voltages as a method to reduce total power 
consumption. Methods to determine appropriate supply and threshold voltages 
are covered in other chapters. Here we focus on methods to place and legalize 
a multiple voltage circuit netlist. In general, it is acceptable for a high-Vdd 
gate to drive a low-Vdd gate, but not vice-versa – a logic 1 low Vdd output is 
unable to fully turn off the PMOS transistors in the high Vdd gate, resulting 
in considerable leakage current. 

Multiple supply voltages impact the placement problem in a fundamental 
way. Firstly, construction of the power grid must be considered. If different 
voltages are scattered throughout the design, two complete power grids must 
be constructed, consuming valuable routing resources. The preferred method 
is to have logic with the same supply voltage clumped together spatially to 
some degree; the extent of aggregation required is an area of active research. 
Secondly, in bulk CMOS there are spacing requirements between regions 
with different supply voltages; the transistor wells must be separated1, and 
this again is a motivation for aggregation. Finally, when transitioning from 
low Vdd to high Vdd, voltage level converters must be inserted into the 
design, and they typically require access to both power levels, adding yet 
another placement constraint.  

 

                                                      
1 Otherwise the low Vdd gate PMOS n-wells must be connected to high Vdd. 

This reverse biases the well (vs. low Vdd), raising the PMOS transistor 
threshold voltage and reducing the pull-up drive strength, which is already 
substantially less due to operating at low Vdd (see Figure 7.2). 
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Figure 9.15 In some cases, supply voltages may be selected on a row-by-row basis. If a row is 
extremely long, this may constrain the solution significantly. The row-based restriction 
constrains placement, which may result in increased wire length and lower area utilization. 

For voltage assignments at the macro block level, the problem is relatively 
simple; the blocks are large enough that power routing is easy, and the loca-
tions of level converters can be planned. The situation with gate level assign-
ment is more interesting, and we focus on that here. 

9.4.1 Clustered Voltage Scaling 

The first approach to fine-grained voltage assignment was clustered 
voltage scaling [53]. With clustered voltage scaling, level converters are 
integrated with latches. The low voltage input is stepped up within the latch, 
which has a high output voltage. Cells connected directly to the latch can 
then be at either high or low Vdd. Different transition points between high-
Vdd and low-Vdd can be examined. At the circuit level, the voltage assign-
ment problem can be viewed as one of finding an appropriate logic “layer” 
to transition from high Vdd to low, as illustrated in Figure 9.14. A number of 
other methods have also been explored (e.g. [11][12] [17]).  

Placement constraints have been addressed by restricting entire standard 
cell rows to use only a single power level, as illustrated in Figure 9.15. The 
supply voltages for a given row may be determined in an iterative manner; 
first a rough placement is performed, and then supply voltages are assigned 
to logic elements. Once the total area of logic elements at a given voltage 
level is known, the number of rows needed to perform legalization can be 
determined. This is normally done in a fairly simple manner, with an attempt 
to make legalization possible without major disruptions in the placement. 
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After rows have been assigned power levels, the placement may be imp-
roved by (for example) low temperature simulated annealing. During optimi-
zation, there may be high voltage logic elements assigned to low voltage 
rows, and vice versa. This mismatch can be penalized; the annealing process 
can then move these elements to rows with appropriate power levels, while 
also optimizing wire length. 

9.4.2 Voltage Islands 

A concern with the “row-based” constraint is that it normally increases 
interconnect lengths significantly. In many cases, circuit elements must be 
moved a great distance to obtain a legal placement. 

There is growing interest in “voltage island” [24][35][45] configurations 
to address this problem. This approach is illustrated in Figure 9.16. Portions 
of a row may have different power levels. This requires increased spacing 
between some elements in a row, and can have an overhead in terms of the 
power grid wiring. The benefit is in reduced constraints on the placement, 
resulting in improved interconnect lengths and better area utilization. 

The minimum size of a power island depends a great deal on the circuit 
structure, performance requirements and so on. Block-level power assignments 
can be viewed as one end of the spectrum. How finely grained power should 
be is currently being investigated. 

We conclude this section by noting that there is active research on methods 
to legalize multiple Vdd designs. The added constraint can be integrated into 
the method by Hill [23] by simply restricting the rows (or portions of a row) 
that are considered. However, the restrictions may cause displacement, 
which can result in increased wire lengths. 

9.5 STATE OF THE ART 

In this section, we present experimental results of current academic 
placement tools on standard benchmarks. For some classes of problems, 
results of leading tools are similar; for others, results differ widely. 

The nature of public benchmarks illustrates many of the difficulties faced 
by both academic and industry research groups. Most leading-edge circuit 
designs contain valuable intellectual property. Thus, circuits that have been 
released to the public are commonly several years old, and are also relatively 
small. Furthermore, in almost all cases, the logical behavior of the circuit has 
been stripped. Without knowing the functionality of each logic element, it is 
impossible to perform timing or power analysis. 
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Voltage Islands  
Figure 9.16 A “voltage island” approach allows for fine-grained selection of voltages, with 
variation within a row. There are minimum lengths of a row to maintain a uniform power 
level, and there can be a spacing requirement between voltages.  

For academic research groups, these limitations prevent almost all mean-
ingful comparisons except for half perimeter wire length. Many commercial 
tools have restrictions against benchmarking as part of their license agree-
ments. One can assume that comparisons of tools are made within industry 
groups, but these results are not made public. 

9.5.1 Standard Cell Placement and Routability 

For the traditional standard cell placement problem, there has been some-
thing of a convergence of results for half perimeter wire length. The “Version 2 
IBM Place” benchmarks are widely used [57]. These are based on hyper-
graph partitioning benchmarks [5], which were mapped to a commercial 
standard cell library. The partitioning benchmarks were in fact derived from 
IBM circuits, with logical functionality stripped off to protect intellectual 
property. 

Note that only a subset of the eighteen hypergraph benchmarks has been 
converted into placement benchmarks; the numbering of these benchmarks 
corresponds to the hypergraphs that they are based on. 
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Table 9.1 Routed wire length results on IBM Place benchmarks; these designs use a 0.18um 
standard cell library. Half perimeter wire lengths are normally within a few percent of each 
other, with mPL-R frequently having the highest wire length. There is wide variation in the 
routed wire length, however; routing congestion results in wire length increases or outright 
routing failure. Successful routing results are shown in bold. The average routed wire length 
relative to mPL-R is shown at the bottom of the table. 

Benchmark # Cells # Nets Dragon Feng Shui mPL-R
ibm01 12,282 11,507 0.93 0.85 0.77
ibm02 19,321 18,429 2.18 2.37 1.89
ibm07 45,135 44,394 4.55 4.49 4.29
ibm08 50,977 47,944 4.78 5.19 4.58
ibm09 51,746 50,393 3.81 3.56 3.50
ibm10 67,692 64,227 7.46 7.02 6.84
ibm11 68,525 67,016 5.68 5.41 5.16
ibm12 69,663 67,739 10.61 10.47 10.52
Comparison ×1.09 ×1.08 ×1.00

Routed Wire Length

 

These benchmarks contain between 12,000 and 70,000 movable objects. 
This is extremely small in comparison to typical industrial designs, but repre-
sentative of small blocks within a larger design. 

In terms of wire length, the analytic placement tool mPL-R, the annealer 
Dragon, and the bisection based tool Feng Shui, all produce results within a 
few percent of each other. However, the results differ significantly after 
routing by a commercial tool: congestion results in routing detours, and the 
different placement tools have significantly different results. 

In Table 9.1, we show routed wire length results for each tool on each of 
the benchmarks. If routing is successful, the result is listed in bold face; 
despite having good half perimeter wire length results, both Dragon and 
Feng Shui frequently fail during routing. mPL-R, which frequently has the 
highest half perimeter wire length results, produces successful routings on 
all benchmarks – it utilizes the cut line shifting method to insert space into 
the design, thereby eliminating congestion. 

9.5.2 Mixed Size Benchmarks 

While there has been something of a convergence of results on standard 
cell half perimeter wire length results, there is greater variation in mixed size 
placement. Two main approaches are used. One is to first place the macro 
blocks, and then place the standard cells around them. The second and more 
effective approach is to place both large and small objects simultaneously. 
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Table 9.2 Half perimeter wire length comparisons of Capo, mPG, and Feng Shui on IBM 
Place benchmarks. By using a fractional cut representation and a relatively simple legalizer, 
Feng Shui obtained large improvements over prior methods for mixed size designs. The 
average half perimeter wire length relative to Feng Shui is shown at the bottom of the table. 

 

Benchmark #Cells #Nets Capo mPG Feng Shui
ibm01 12,282 11,507 3.1 3.0 2.4
ibm02 19,321 18,429 6.8 7.4 5.3
ibm03 22,207 21,621 10.4 11.2 7.5
ibm04 26,633 26,163 10.1 10.5 8.0
ibm05 29,347 28,446 11.1 10.9 10.1
ibm06 321,825 33,354 9.9 9.2 6.8
ibm07 45,135 44,394 15.3 13.7 11.7
ibm08 50,977 47,944 17.9 16.4 13.6
ibm09 51,746 50,393 19.9 18.6 13.8
ibm10 67,692 64,227 45.5 43.6 37.5
ibm11 68,525 67,016 29.4 26.5 20.0
ibm12 69,663 67,739 55.8 44.3 35.6
ibm13 81,508 83,806 37.7 37.7 25.0
ibm14 146,009 143,202 50.3 43.5 38.5
ibm15 158,244 161,196 65.0 65.5 52.1
ibm16 182,137 181,188 90.0 72.4 61.3
ibm17 183,102 180,684 89.2 78.5 70.6
ibm18 210,323 200,565 51.8 50.7 45.1
Comparison ×1.29 ×1.26 ×1.00  

Our bisection based placement tool Feng Shui, using the fractional cut 
approach and a legalization method based on Hill’s work, obtained improve-
ments of 26% or more on average over prior works. Results of experiments 
on the mixed size benchmarks (also derived from the partitioning bench-
marks), are shown in Table 9.2. Very recently, the analytic tool APlace [28] 
was able to match the results of Feng Shui, using the same legalization and 
detailed placement methods. 

9.5.3 Abundant White Space 

The most recently released set of benchmarks is the ISPD2005 place-
ment contest suite [43]. This set is unusual in many respects. Firstly, some 
circuits contain more than two million movable objects, substantially larger 
than other public benchmarks; these sizes are typical for current industry 
designs. Secondly, there is abundant white space: 50% to 85% of the space 
is open, making the effective handling of white space essential for good 
results. Finally, the macro blocks are fixed within the main placement area, 
creating obstacles that must be avoided. 
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Table 9.3 Results of the ISPD2005 placement contest. Large amounts of white space and 
fixed macro blocks caused poor behavior in some tools, resulting in a large gap in results. The 
average half perimeter wire length relative to APlace is shown at the bottom of the table.  

Benchmark # Cells # Nets APlace Dragon Feng Shui Kraftwerk
adaptec2 254,457 266,009 87 95 123 158
adaptec4 494,716 515,951 188 201 337 352
bigblue1 277,604 284,479 95 103 115 149
bigblue2 534,782 577,235 144 160 285 322
bigblue3 10,995,519 1,123,170 358 380 471 656
bigblue4 2,169,183 2,229,886 833 904 1040 1404
Comparison ×1.00 ×1.08 ×1.50 ×1.84  

From the experimental results shown in Table 9.3, it should be clear that 
some placement tools handle the constraints better than others. The best and 
worst performing tools were the analytic placers APlace [28] and Kraftwerk 
[21]. The tool Dragon [59], which is a hybrid of annealing and bisection, 
produced results that were on average 8% higher than APlace. The bisection 
based tool Feng Shui [31], which performs well on designs with movable 
macro blocks, produced results with 50% higher wire lengths due to inade-
quate handling of open space. 

9.6 SUMMARY 

There has been an upswing in academic placement research, illustrating 
the rising importance of the problem. Circuit designers are under intense 
pressure to minimize both power and circuit delay. The quality of a placement 
can make or break a design. The semiconductor industry is extremely com-
petitive, and there is very little margin for error.  

Poor placement can be very costly. Excess area increases the cost per die 
and reduces the yield. High power reduces battery life and can cause chip 
failure, or power may exceed design specifications rendering the chip unusable 
for its given task. Likewise worse delay may fail to meet design specifications, 
or cause incorrect functioning of the chip – which can also be caused by 
layout errors. Any of these problems increase time-to-market, and a product 
that is late or misses the market window can be extremely costly. Conse-
quently, engineers need tight control of the design flow from architecture to 
synthesis to placement and routing, including verification at all steps; and 
the design flow must be predictable and converge. 

While the problem has been studied for many years, the general consensus 
of the research community is that placement results are significantly sub-
optimal with respect to wire length objectives [10][27]. In [10], a set of 
synthetic benchmarks with known optimal configurations were created; place-
ments produced by leading academic and commercial tools were commonly 
50% or more away from optimal, and in some cases more than a factor  
of two away. While many disagree with the analysis, and argue that the 
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benchmarks are not representative of “real” circuitry, the magnitude of sub-
optimality was startling. 

Considerable improvement has been obtained. In a recent placement 
competition [42], the wire lengths produced by the older analytic placement 
tool Kraftwerk were almost a factor of two times the results from APlace. 
One can conclude that there has in fact been a great deal of progress, and 
that more improvement is to be expected. 

Wire length can be considered a relatively simple objective to capture. 
Power and delay objectives are much more complex, making it reasonable to 
assume that the magnitude of suboptimality may be even greater. 
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10.1 INTRODUCTION 

The demand for portable electronic devices is growing rapidly and, due 
in large part to the development of wireless communications, is expected to 
continue to grow. This demand has generated great interest in low power 
design, which initially focused on controlling dynamic power consumption. 
While this focus resulted in significant improvements in dynamic power 
efficiency, two issues subsequently arose which rendered this initial focus 
inadequate. The combination of these two issues has motivated the develop-
ment of leakage reduction techniques and related design automation. 

The first issue pertains to the operational characteristics of wireless 
devices – basically, their operation tends to be bursty. That is, relatively short 
periods of activity are followed by relatively lengthy periods of inactivity, 
and while the power consumption during the active period is dominated by 
dynamic power, the power consumption during the inactive period (known 
as standby or sleep mode) is dominated by leakage power. 

The second issue pertains to leakage power itself. Leakage is increasing 
exponentially with each new process generation due to the scaling of tran-
sistor threshold voltages [19]. 

This chapter will describe in detail the use of power gating for leakage 
reduction along with cell-based design automation methods employed by  
the CoolPower™ design tool, and is organized as follows. The next section 
briefly surveys different leakage reduction techniques, providing the moti-
vation for power gating. The subsequent sections describe design issues, 
CoolPower automation methods including analysis and optimization techni-
ques, and two different power gating application flows as well as results 
from using those flows. This chapter then concludes with a view to the future 
and likely new developments in power gating design. 
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10.2 LEAKAGE CONTROL TECHNIQUES 

This section briefly presents and compares several different leakage control 
techniques to enable the reader to understand the motivations for the deve-
lopment and deployment of MTCMOS power gating.1 

Leakage has several different components, however the largest comp-
onents are sub-threshold related [11]. The equation for sub-threshold leakage 
current is  

 ( ) / /
0 e (1 )V V nV V Vgs th T ds T

leakage sI I e− −= −  (10.1) 

where 
 2

0 ( / )s eff eff TI K W L V=  (10.2) 
 0th th bs dsV V V Vγ η= − −  (10.3) 

and Vgs is the transistor-gate to source voltage; Vds is the drain to source 
voltage; Vth0 is the zero bias threshold voltage; γ is the linearized body effect 
coefficient; Vbs is the source to body voltage; η is the DIBL (drain induced 
barrier lowering) coefficient; n is the subthreshold swing coefficient; VT is 
the thermal voltage; K is a process constant; Weff is the effective transistor 
width; and Leff is the effective transistor channel length. [7][15]  

Leakage control techniques focus on controlling one or more terms in 
these equations. The most prevalent techniques can be categorized as reducing 
Vgs, increasing Vth0, lowering Vbs, and reducing Vds. Several different methods 
for controlling these terms are described below along with how they relate to 
equations (10.1) to (10.3). 

10.2.1 Reverse Body Bias (RBB) 

Since leakage currents are a function of the device thresholds, one 
method for controlling leakage is to control Vth through the use of substrate, 
or body, bias. In this case, the substrate or the appropriate well is biased so 
as to raise the transistor thresholds thus reducing leakage. Since raising Vth 
also affects performance, the bias can be applied adaptively such that during 
active mode the reverse bias is small while in standby mode the reverse bias 
is more negative. Thus, reverse body bias reduces leakage by increasing Vth 
due to decreasing the γVbs term in Equation (10.3).  
                                                      
1 Multi-Threshold CMOS (MTCMOS) is commonly used as a synonym for 

power gating, since the most prevalent power gating implementations 
utilize multiple transistor thresholds. However, it has also been used to 
refer to the use of non-power gated CMOS circuits designed utilizing 
multiple transistor thresholds. In this chapter, MTCMOS will be used 
synonymously with power-gating, while multi-Vth denotes the use of multi-
ple transistor thresholds in otherwise conventional circuit design. 
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Use of body bias requires a substrate bias-generator to generate the bias 
voltage. This generator will consume some dynamic power, partially offsetting 
any gain from reduced leakage.  

However, a more significant issue with the use of substrate biasing for 
leakage reduction is that it is generally less effective in advanced techno-
logies [10]. The body effect factor γ decreases with advanced technologies 
[2], reducing the extent of the leakage control. Consequently, reductions of 
4× at 90nm and only 2× at 65nm have been reported [21]. 

10.2.2 Dynamic Voltage Scaling (DVS) 

One technique for reducing dynamic power, dynamic voltage scaling, 
can also be used for reducing leakage power. DVS works by reducing the 
power supply voltage Vdd when the work load does not require maximal 
performance.  

DVS can also be applied to inactive circuits for leakage reduction. In 
Equation (10.1), the reduction in Vdd is reflected in a smaller value for Vds 
which has an exponential effect on leakage. Power savings of 8× to 16× 
have been reported when scaling the voltage to the 300mV range, the lowest 
voltage at which state can be maintained [3]. 

However, DVS requires additional circuitry to monitor and predict the 
workload as well as a dynamic voltage regulator to dynamically adjust the 
supply voltage. Also, the timing analysis of DVS circuitry is complicated 
since proper operation must be validated over a number of additional voltage 
points. Nevertheless, DVS has been combined with RBB for even greater 
leakage reduction than either technique can achieve alone [16]. 

10.2.3 Multi-Vth Cell Swapping 

The most prevalent technique used to date for leakage reduction is multi-
Vth cell swapping, most commonly deployed with two different transistor 
thresholds (and hence known as dual-Vth cell optimization) [20][26]. In this 
technique, low-Vth cells are used on critical paths while high-Vth cells are 
used on non-critical paths. The low-Vth cells are fast but leaky, while the 
high-Vth cells are just the opposite. Thus, the multi-Vth technique can reduce 
leakage power without any performance penalty.  

A significant advantage of multi-Vth cell swapping is that it is generally 
footprint neutral. That is, no floorplanning or layout changes are required for 
implementation. High-Vth cells replace their low-Vth equivalents in exact 
positions in the layout, thus effectively changing only the implant mask.  

Leakage can typically be reduced by about 50% compared to a circuit 
implemented with all low-Vth cells although the reduction is heavily depen-
dent upon the amount of available slack in the original circuit [25]. However, 
the remaining low-Vth cells still consume significant amounts of leakage power. 
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Thus, this technique is usually insufficient for achieving large reductions in 
standby mode leakage power. For this reason, designers have turned to more 
aggressive leakage control design techniques such as MTCMOS power gating 
[23][24]. 

10.2.4 MTCMOS Power Gating 

MTCMOS power gating is a design technique in which a power gating 
transistor is inserted in the stack between the logic transistors and either 
power or ground, thus creating a virtual supply rail or a virtual ground rail, 
respectively. (In order to simplify the descriptions of power gated circuitry, 
the following text will refer to virtual grounds only, except in those cases 
where header switches or virtual supplies present issues that are different 
from those related to footers and virtual grounds.)  

Such configurations are shown in Figure 10.1. The logic block contains 
all low-Vth transistors for fastest switching speeds while the switch tran-
sistors, header or footer, are built using high-Vth transistors to minimize the 
leakage. Power gating can be implemented without using multiple thresholds, 
but it will not reduce leakage as much as if implemented with multiple 
thresholds.  

 MTCMOS refers to the mixture of the transistor thresholds in power 
gating circuits. The most common implementations of power gating use a 
footer switch alone to limit the switch area overhead. High-Vth NMOS footer 
switches are about half the size of equivalent-resistance high-Vth PMOS 
header switches due to differences in majority carrier mobilities. 

Power gating reduces leakage by reducing the gate-to-source voltage 
which in turn drives the logic transistors deeper into the cutoff region. This 
occurs because of the stack effect. The source terminal of the bottom-most 
transistor in the logic stack is no longer at ground, but rather at a voltage 
somewhat above ground due to the presence of the power gating transistor. 
Leakage is reduced due to the reduction of the Vgs term in Equation (10.1). 

Header
switch

Virtual
supply 

Logic
block Footer 

switch

Virtual
ground 

Logic
block

 
Figure 10.1 MTCMOS power-gating circuit topology 



Power Gating Design Automation 255
 

Power gating itself has several variants, such as Super Cut-off CMOS [9] 
and Zigzag Super Cut-off CMOS [17]. In Super Cut-off CMOS, instead of 
using high-Vth NMOS or PMOS switch transistors, low-Vth switch transistors 
are used. In standby mode, the switches are driven deeper into cut-off by 
applying a gate voltage below Vss for NMOS switches and above Vdd for 
PMOS switches, thus decreasing Vgs beyond what can be achieved with 
conventional gate voltages. In Zigzag Super Cut-off CMOS, both header and 
footer switches are used in an alternating fashion along logic paths in combi-
nation with Super Cutoff CMOS to reduce the amount of time required for 
the virtual rails to settle after turning on the switch transistors. 

Power gating can be combined with other leakage reduction techniques, 
such as those described above, to achieve even greater leakage reduction. 
When implemented alone, power gating can achieve 10 to 100× reduction in 
leakage. When implemented in combination with other techniques, such as 
reverse body bias on the switch, the reduction can be even larger. [13]  

While power gating can be implemented in either a custom design style 
or an ASIC cell based design style, the following section will describe issues 
and automation techniques for the ASIC cell based design style. 

10.3 POWER GATING DESIGN ISSUES 

The design of power gated circuits presents the designer with a number 
of issues that are not usually encountered in designing non-power gated 
circuits. This section briefly describes some of these issues to give some 
perspective on the design automation presented in subsequent sections. 

10.3.1 Power Gating Topologies 

Power gating can be implemented using several different topologies, 
such as global power gating, local power gating, and switch-in-cell power 
gating. Each of these topologies is primarily distinguished by the connections 
between the switches and the logic and, as can be expected, each has its own 
advantages and disadvantages.  

10.3.1.1 Global power gating 

Global power gating refers to a logical topology in which multiple swit-
ches are connected to one or more blocks of logic, and a single virtual ground 
is shared in common among all the power gated logic blocks. In this arran-
gement, illustrated in Figure 10.2, there is a single virtual ground for each 
sleep domain (a group of logic controlled by a particular sleep enable signal). 
This topology is effective for large blocks in which all the logic is power 
gated, but is less effective, for physical design reasons, when the logic blocks 
are small. It does not apply when there are many different power gated blocks, 
each controlled by a different sleep enable. 
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Figure 10.2 Global power gating topology 
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Figure 10.3 Local power gating topology 

10.3.1.2 Local power gating 

Local power gating refers to a logical topology in which each switch 
singularly gates its own virtual ground connected to its own group of logic. 
The key issue here is that a single switch cell is used for each logic group 
(with the single switch being shared among all cells in that group of logic), 
as opposed to using multiple, arrayed switch cells. This arrangement results 
in multiple segmented virtual grounds for a single sleep domain. Figure 10.3 
illustrates the connections for local power gating. Compared to global power 
gating (as illustrated in Figure 10.2), local power gating provides more 
flexibility in floorplanning since the various power gated blocks within a 
given sleep domain need not be physically contiguous.  

10.3.1.3 Switch-in-cell 

Switch-in-cell may be thought of as an extreme form of local power gating 
implementation. In this topology, each logic cell contains its own switch 
transistor, as illustrated with an inverter in Figure 10.4. 
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Figure 10.4 Switch-in-cell: a switch is included in each individual logic cell 

The switch-in-cell approach has several notable advantages and disadvan-
tages. Its primary advantages are that delay calculation is very straightforward 
(since each cell is timing characterized with its own, dedicated internal 
switch) and that it can be placed, generally without restriction, like any other 
standard cell. However, its disadvantages are significant, chief among them 
being that the area overhead is substantial (due to an additional transistor in 
the pulldown stack, and the need to size up the previously existing logic 
transistors to compensate for the additional device in the stack). And, given 
that each individual instance has its own switch, the aggregate input capa-
citance presented to the sleep signal is much larger than needed for shared 
switches requiring a larger than necessary amount of dynamic energy to 
open and close the switches. Additionally, since the size of the switch tran-
sistor is set during the design of each of the individual cells, the performance 
impact of the switch is also set at the time of the cell design, thus potentially 
limiting the applicability of the cells to either low-performance (small switches 
with a large performance impact) or high-performance (large switches with a 
small performance impact), but not both, unless of course two (or more) 
complete sets of logic cells are designed with each set utilizing different 
switch transistor sizes. 

10.3.2 Switch Sizing Tradeoffs  

All power gating topologies face the challenging tradeoff of switch 
sizing. A common switch sizing goal is to minimize the switch area, but this 
results in a larger virtual ground voltage which degrades switching perfor-
mance but produces a larger reduction in leakage currents. 

Sizing must respect one fundamental constraint: switches must be large 
enough to hold their virtual grounds sufficiently close to ground potential. 
That is, switches must limit “ground bounce” – the smaller the switch resis-
tance, the smaller the voltage on the virtual ground. 

However, achieving smaller switch resistance requires a physically larger 
switch. Unfortunately, the larger the switch the smaller the leakage reduction 
[4][13] since a larger switch, with smaller on resistance, reduces the body 
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effect on the logic transistors – the larger switch produces a smaller virtual 
ground voltage (logic transistor source voltage) which in turn results in a less 
negative γVbs term in Equation (10.3). 

On the other hand, the virtual ground voltage must be minimized to 
minimize its impact on performance. The larger the virtual ground voltage, 
the smaller the gate drive on the logic transistors and the slower the logic 
transistors will switch. Also, the logic transistors will not pull down as far, 
thereby slowing transitions on gates that they drive. 

Thus, we have a classic tradeoff: minimizing the performance impact of 
the virtual ground results in more area overhead and lesser leakage reduction 
due to larger switches. One method of reducing the area consumed by the 
switches is to share them, since using the switch-in-cell approach consumes 
relatively significant amounts of area. However, the use of shared switches 
complicates delay calculation and timing analysis. In any case, it is clear that 
switch sizing has a major impact on critical circuit characteristics and thus 
deserves careful attention. 

10.3.3 Delay Calculation and Timing Analysis 

Given that the size of the switches affects the voltage drop on the virtual 
grounds, and that the voltage drop impacts timing performance, we must 
consider how power gating affects delay calculation and timing analysis. 

There are two general methods for the timing analysis of power gated 
circuits. The first method uses conventional delay calculation and relies 
upon tightly controlling the virtual ground voltage drop. The second method 
uses back-annotated virtual ground voltages in the delay calculator to compute 
a set of instance-specific voltage-sensitive delay values. 

The first method is identical to the existing non-power-gated delay 
calculation method. All variations in supply voltages are assumed to lie 
within the voltage range for the cell library timing characterization. During 
timing characterization of the library logic cells, a non-zero voltage is asserted 
on the ground line to approximate the effects of the cell being connected to a 
non-ideal rail. If the voltage drop seen by the cell in-situ is less than the 
value used during characterization, then the cell is considered to be operating 
within the characterization limits, or guardbands. This common practice for 
the timing analysis of non-power gated circuits also applies to power gated 
circuits provided that the voltage drop on the virtual ground is constrained to 
be within the cell-library characterization limits. 

The second method, by contrast, places no a priori constraints on virtual 
ground voltages. Instead, post-route voltage drop analysis determines the 
virtual ground voltages. The delay calculator then computes the delays 
through each instance based on the particular virtual ground voltages seen by 
each instance. This flow requires a set of library timing models that accurately 
model voltage effects upon delay. 
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10.3.4 Power Gating Granularity 

Granularity refers to the size of each logic block controlled by a single 
switch or single sleep domain. This section describes the basic choices.  

10.3.4.1 Coarse Grained and Fine Grained Power Gating 

Consider two different chips, one that has a single sleep control that can 
power down the entire chip and a second chip that has multiple sleep control 
signals, each of which separately controls different logic functions such as 
an execution unit, memory controller, instruction decoder, etc. The former 
design is said to use coarse-grained power gating, since power is gated very 
coarsely, in this case either all or nothing. The latter design is said to use 
fine-grained power gating since power can be shut off to individual units 
without shutting off the power to other units at that time. 

The choice of granularity has both logical and physical implications. A 
power domain refers to a group of logic with a logically unique sleep signal. 
Each power domain must be physically arranged to share the virtual ground 
common to that particular group (except for the boundary case of the switch-
in-cell topology in which there are no shared virtual grounds). 

The motivation for fine-grained power gating is to reduce active mode 
leakage power, that is, the leakage power consumed during normal operation. 
While the coarse-grained example above will reduce leakage during standby, 
it will not affect active leakage since with a single sleep domain the power 
supply is either completely connected (active mode) or completely discon-
nected (standby mode). However, with fine-grained switching, portions of 
the design may be switched off while the other portions continue to operate. 
For example, in a VLIW processor with four execution units, if only three of 
the execution units are active, the fourth may be put to sleep until such time 
as it is scheduled to resume computation. 

10.3.4.2 Full and Selective Power Gating 

Chips, or modules, may be completely or partially power gated. With full 
power gating, all logic instances are power gated. With selective power gating, 
only a subset of the logic instances are power gated. 

Selective power gating typically combines fine-grained power gating 
with multi-Vth cell swapping. In this case, selective power gating refers 
specifically to the power gating of individual instances along a critical path. 
In this implementation style, all instances along the non-timing critical paths 
use high-Vth cells, while those instances along the critical paths use low-Vth 
cells to maintain performance but are power-gated to minimize leakage 
while not operating. 
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Figure 10.5 Selective power gating 

Figure 10.5 illustrates an example of selective power gating. The top 
schematic shows the results of a multi-Vth optimization in which only the 
instances along the critical path utilize low-Vth cells while all other instances 
are high-Vth cells. The bottom schematic shows the same circuit after power 
gating the low-Vth cells.  

Selective power gating minimizes the area overhead of the switches 
while maintaining fast switching speeds. Since only the low-Vth fraction of 
the logic instances are power gated, fewer switches are needed. However, 
placement and clustering issues present physical implementation challenges. 
Switch-in-cell libraries are often used in selective power gating applications 
since they eliminate the problem of sharing virtual grounds, although they 
still require routing of the sleep signals. 
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10.3.5 State Retention 

When state registers are power gated, they will lose their state unless 
particular measures are taken to prevent the loss of memory. Multiple methods 
exist for retaining state, including saving state to off-chip memory by scanning 
out the internal state prior to power-down and subsequently scanning it back 
in upon power-up, utilizing specially designed state retention registers that 
remember their state even when power gated [3], and not power gating state 
registers (only power gating combinational logic). 

Each of these methods has its own advantages and disadvantages. Scanning 
state in and out is relatively straightforward but takes time and consumes 
dynamic power in the process. Use of state retention registers simplifies the 
logic design, but requires complex circuit designs for the state retention 
registers and often impacts both area and performance. Power gating only 
the combinational logic resolves the issue of state retention, but requires 
circuitry to prevent the interface nodes from floating. 

10.3.6 Power Domain Interfacing 

When only a portion of a chip is power gated, the power-gated logic will 
drive some signals that are received by non-power gated logic. These signals 
are called interface or fence nodes and require special attention, as they will 
float when the driving logic is disconnected from the power rails. [14][27]  

When an interface node floats to an intermediate voltage, approximately 
Vdd/2, both the p-channel and the n-channel transistors in the receiving logic 
will conduct, drawing large amounts of current from the power supply. Not 
only does this negate the power savings from power gating, it can also cause 
reliability problems or outright failure due to electromigration, as the inter-
connect is not sized to support these types of currents.  

To prevent floating, the interface nodes can simply use float-prevention 
mechanisms, such as an isolation cell, as illustrated in Figure 10.6. Note that 
in the case of fine-grained power gating, outputs of power gated logic that 
drive other power gated logic must also be prevented from floating if the 
receiving logic is power gated by a logically different sleep signal. 

sleepN sleepN
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bufferPower

gated
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Power
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logic

Non-power
gated
logic
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Figure 10.6 Power domain interfacing 
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10.4 COOLPOWER DESIGN AUTOMATION 

To date, design automation for power gating has been narrowly focused 
and has not adequately addressed the issues of area overhead, performance 
impact, or overall cell-based design flows. However, it is essential that 
design automation address these issues holistically, since the use of switches 
complicates so many design facets. These facets include mixing power-gated 
and non-power-gated logic, current flow analysis, switch and virtual ground 
optimization, and worst case design, among others. For example, one approach 
simplified the design automation requirements by employing the switch-in-
cell structure described above [23]; since each cell contains its own dedicated 
virtual ground, no virtual ground sharing or routing is required. However, 
the area overhead of this approach is substantial, as much as 80% additional 
area per power-gated instance [4][23], driving up the per-die cost. Other 
approaches used shared virtual grounds [1][8], reducing the area overhead 
compared to the switch-in-cell approach but complicating the design auto-
mation. 

In all cases, the issue of switch sizing is central to the overall solution. 
Our overall approach embodied in CoolPower is similar to that of [1] and [8] 
in that we use shared virtual grounds and dynamic currents to size switches. 
However we overcome significant limitations of those approaches both in 
current calculation as well as in optimization. The switch network employs 
local power gating with a shared-switch architecture. Our current calculation 
solution computes current waveforms based upon an all-events static timing 
analysis. During optimization, we size the switches based not only on sink 
currents but also on virtual ground parasitic resistance. These optimizations 
are performed subject to user-specified constraints for peak transient voltage 
on the virtual ground, maximal distance between switches, and electromigra-
tion limits.  

CoolPower includes internal delay calculation, timing and signal integrity 
analysis and optimization, and incremental placement capabilities, but relies 
upon external routers to route signals, power and ground, as well as the virtual 
grounds. Operating at the cell level, CoolPower requires cell-level models 
for non power gated cells, power gated cells, and switch cells (LEF for place-
ment, Liberty for timing and power analysis), and netlist and placement files 
to describe the design (Verilog and DEF formats, respectively). CoolPower 
relies on a conventional standard-cell placement architecture which, coupled 
with its current calculation and switch optimization, enables completely 
automatic design of electrically robust power-gated MTCMOS circuits. It 
produces as output power-gated netlist and placement files (again, in Verilog 
and DEF formats, respectively). 

The following sections will describe CoolPower’s operation in more 
detail. 
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10.4.1 Design Transformation 

CoolPower begins implementation of a power-gated circuit by loading 
the design, including a list of modules to be power gated, and the names  
of the sleep signals for those modules. CoolPower inserts a virtual ground 
into the circuit and logically gates the specified logic module or group of 
cells. First, CoolPower replaces all specified non-power gated instances 
(without a virtual ground connection) with power gated instances (with a 
virtual ground connection). Next, CoolPower inserts switches to connect the 
power-gated instances, through the virtual ground connection, to the real 
ground and the switch input is wired to the specified sleep control signal. 
Additionally, CoolPower inserts interface cells on power-gated block outputs 
that drive non-power gated logic to prevent any floating inputs. Interface 
cells are also inserted on outputs from power-gated blocks that drive power-
gated logic that is controlled by different sleep signals, as there is no guar-
antee that the two power-gated blocks are put to sleep at the same time. 

State retention is handled during transformation by one of two methods. 
The first method gates the power to only the combinational logic and not the 
registers; the registers thus maintain state since they would be continuously 
powered. The second method uses specially designed state-retention registers 
in the input netlist such that even if the entire design is power gated, state is 
maintained in the retention registers. 

Finally, after these transformations are completed, CoolPower performs 
a timing analysis to ensure that no critical paths or timing parameters were 
violated during the transformation process. If any violations are found, Cool-
Power’s timing closure optimizations are run to repair the violations. 

These capabilities enable the pre-synthesis design phase to proceed with-
out modification, exactly as it would for non-power-gated circuits, since 
CoolPower performs all transformations, insertions, and connections needed 
for virtual grounds, switches, and interface cells. 

10.4.2 Analysis 

The analysis of current flow is an essential element in the design, optimi-
zation, and verification of virtual grounds and switch networks. Not only is it 
necessary to analyze the current flow, but its accuracy affects the optimization 
results in terms of both area and electrical integrity. 

10.4.2.1 Types of Current Analysis 

In early power gating implementations, an average current was computed 
under the assumption that the ratio of peak current to average current is app-
roximately constant, thus enabling design decisions to be based on average 
currents, [27] where the computation of the average currents could be based 



264 Chapter 10
 
upon average power values determined from simulation traces. While easy 
to implement, this approach is problematic in that peak currents can deviate 
substantially from simple multiples of average current due to issues such as 
clock skew, decoupling capacitance, and package inductance; each of these 
issues affects the peak current and voltage spikes but does not alter the 
average values. Thus the use of average currents to size virtual grounds and 
switches is risky, as the peak value of the dynamic voltage drop may be 
significantly underestimated. 

More recent work has suggested the use of dynamic, or time varying, 
currents for analyzing and optimizing virtual ground networks. [1] proposed 
the use of probabilistic analysis to produce expected dynamic discharge 
currents, which are calculated to be the product of the peak discharge current 
of the cell and the probability of its occurrence. However, this approach also 
has a very serious issue in that it is not a worst case calculation, and thus 
presents similar risks to the use of average currents since it cannot deter-
ministically account for worst case switching scenarios wherein multiple 
cells switch simultaneously. 

10.4.2.2 Static timing analysis based current analysis 

CoolPower addresses all of these problems by producing a worst case 
dynamic current waveform. A vectorless static timing analysis (STA) com-
putes the entire set of potential switching events [6] which is subsequently 
used to compute the dynamic currents. This set of switching events contains 
all of the potential events, both rising and falling, scheduled in time. This set 
is then filtered to remove redundant and don’t care events, such as those that 
cannot occur due to modal operation. This filtered set of switching events is 
used to compute a set of current events, from which a composite current 
waveform is created for each instance. The composite current waveform 
represents the maximum current consumed, at each point in time, by that 
particular instance. It includes current consumed by rising and falling output 
transitions, internal crowbar currents, as well as currents consumed by input 
only events. Thus, the composite current waveform may have numerous 
peaks, with each peak occurring at the time at which that cell is scheduled to 
switch. In this way, neither switching events nor current peaks are neglected 
as is the case for average current methods or probabilistic dynamic current 
methods. 

It should be noted that min-max timing analyses, which produce a range 
of switching times, are much too conservative. It is often the case that the 
range between minimum and maximum is quite lengthy such as for a two-
input NAND that has one very early arriving input and one very late arriving 
input. In our approach we use exact switching times to compute current 
events, thus avoiding the need to smear the current event from the earliest 
switching time to the latest switching time as in [1]. Variation is considered 
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by widening the calculated exact switching time to a small range for each 
event, as opposed to the overly generalized min-max approach. 

An example of a composite current waveform for one cell is shown in 
Figure 10.7. The multiple peaks in the current waveform correspond to diffe-
rent current events that could occur at different times due to different stimuli. 
For example, events 1 and 3 are output rising events while events 2 and 4 are 
output falling events. Thus the waveform represents the composite of all the 
cell’s current consuming events.  

10.4.3 Optimization 

The goals of switch optimization are to minimize area while meeting 
performance and electrical constraints in reasonable computation time. 

10.4.3.1 Optimization Constraints 

Switch transistor optimization has previously been treated primarily as 
that of a sizing problem [1][8] with the proper sizing being determined only 
by the voltage drop across the switch. The motivation for controlling the 
voltage drop is to control the impact of the virtual ground on the delay of the 
switching circuits connected to the virtual ground.  

One solution, switch-in-cell [23], involves no switch optimization as the 
sizing is handled during the design of each individual cell, so no sizing is 
required during chip assembly. However, for shared switches, block- or chip-
level virtual ground currents must be computed in order to properly size the 
switches. In [27], average currents are used for sizing, while [1][8] employ 
dynamic currents; [8] sizes the switches based on mutually exclusive switching 
and then merges the sizes into a single equivalent switch for a global power 
gating structure, whereas [1] sizes the switches for clustered groups of logic 
using local power gating. 
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Figure 10.7 Composite current waveform 
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While sizing is clearly a first order concern, it is not the only issue that 
optimization should address in the design of robust power gated circuits. In 
particular, capacitive coupling and electromigration effects can render unreli-
able an otherwise voltage compliant virtual ground design. 

Since the primary goal of optimization is to minimize area, switch resis-
tances are maximized subject to a voltage constraint. This resistance, along 
with the potentially lengthy route of the virtual ground net, makes the virtual 
ground subject to substantial coupling capacitance. Thus potential aggressor 
signals can couple to the virtual ground causing temporary, albeit substantial, 
voltage bounces. 

Electromigration becomes a concern because usually the area occupied 
by the virtual ground route is minimized by making the route width as narrow 
as possible. Since a route’s electromigration limit is proportional to width, 
minimizing the width reduces the electromigration limit.  

10.4.3.2 Current Scheduling 

Our solution for switch optimization has two components, the first of 
which is current scheduling – the waveshaping of virtual ground currents 
through the assignment of power gated logic instances to particular switches 
[5]. The goal of current scheduling is to assign logic instances to particular 
switches such that the currents due to those instances do not cause a voltage 
violation; that is, we schedule the currents for each switch subject to when 
the currents occur and how large they are. This is similar to the approach in 
[8] in that we do the assignments based on when the cells switch. However, 
by contrast, our implementation utilizes detailed timing information as opposed 
to unit-delays. Additionally, our approach is not limited to mutually exclusive 
switching; non-mutually-exclusive switching is allowed subject to a user 
specified constraint on overlapping current waveforms. This implementation 
is similar to that of [1], however that approach’s use of simulation based 
activities makes it susceptible to missing a worst case switching scenario. By 
contrast, our use of STA based composite current waveforms in optimization 
enables us to avoid that problem and produce switch networks suitable for 
worst case design. 

The assignments of logic instances to switch cells are made using a Bin 
Packing algorithm in which each bin is filled according to the amount of 
current consumed by each logic instance per time bin. The assignments are 
also subject to distance constraints and electromigration constraints. If a 
logic instance is beyond the specified distance limit for a particular switch, it 
is not considered as a candidate to be connected to that particular switch. If 
the logic instance is close enough to the switch, and its currents can be success-
fully bin packed but in so doing it would violate the specified electromigration 
limit, then that particular connection is discarded and another connection is 
evaluated. 
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10.4.3.3 Switch Sizing 

Once the logic instance to switch assignments have been made, the 
switches are individually sized according to the specified voltage constraint. 
The most appropriate switch size for each instance is determined by evalua-
ting the various switch sizes available in the library. CoolPower chooses the 
physically smallest switch that still meets the voltage constraint given the 
expected current flow established during the prior current scheduling optimi-
zation. 

 In contrast to previous approaches, our sizing is subject to the voltage 
drop across the virtual ground route in addition to the voltage drop across the 
switch itself. This is particularly significant given the aforementioned moti-
vation to minimize the width of the virtual ground route. Thus the critical 
evaluation metric during optimization is not the voltage drop across the 
switch, but rather the voltage seen by each individual logic instance’s virtual 
ground connection. 

The routing of the virtual ground affects not only the voltage seen by the 
power gated logic cells, but also the total area occupied by the switches – the 
larger the IR drop along the virtual ground route, the larger the switch must 
be in order to meet the voltage constraint at the connection to the logic 
instance. Thus the precise placement of the switches relative to the switching 
logic is critical as the sizing is dependent upon the placement. To enable 
correct simultaneous switch sizing and placement, CoolPower can move 
logic instances to create open space in the desired switch location. However, 
to prevent timing closure problems due to logic instance movement, Cool-
Power performs an internal trial timing analysis for each potential move. If 
the move under consideration would result in a timing or signal integrity 
violation, the move is discarded, the logic instance is left in its original 
location, and another instance movement is considered in order to free up 
placement space. However, if the trial timing analysis indicates that the 
contemplated instance movement would not adversely affect timing or signal 
integrity characteristics then the placement change is committed to the inter-
nal design database along with the switch insertion. These cell movement 
capabilities enable CoolPower to not only control the voltage drop on the 
virtual ground, but also to minimize the area overhead of the switches as  
the logic cell movement creates placement space for the switches in the 
precisely desired locations.  

The effects of virtual ground route length upon switch sizing is illus-
trated in Figure 10.8 and Figure 10.9 which plot data for a particular 130nm 
module optimized by CoolPower.  
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Figure 10.8 Number of inserted switch cells as a function of voltage Vvg_max and virtual 
ground length Lvg_max constraints 

Figure 10.8 shows the effects of the virtual ground route length and 
voltage constraints upon the number of switch cells inserted. As can be seen, 
the longer the route length, the fewer switches are needed – more logic cells 
can share a single switch than when the route length is constrained to be 
shorter. Similarly, when the dynamic voltage constraint is larger, fewer swit-
ches are needed because more logic cells can share a given switch without 
violating the voltage constraint. 

Figure 10.9 shows similar data, however here total switch cell area is 
plotted as a function of the virtual ground route length and voltage constraints. 
The overall shape of the surface is similar to Figure 10.8, but the switch cell 
area is a weaker function of the route length, because when switches must be 
placed closer together, less voltage drop builds up along the virtual ground 
route. Thus each of the switches may be sized smaller even though more 
overall switches may be required. 

10.4.3.4 Optimization in the Design Flow 

The optimizations described above are performed both prior to and after 
routing. Prior to routing, estimated parasitics are used for both timing analysis 
and power analysis, and the results of those two analyses are in turn used  
by the current scheduling and sizing routines. The objective of the pre-route 
optimizations is to not only size the switches, but also to place them effec-
tively, while the objective of the post-route optimizations is to adjust the 
design to account for any deviation from the pre-route estimated perfor-
mance. 
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Figure 10.9 Switch cell area vs. voltage Vvg_max and virtual ground length Lvg_max constraints 

10.5 APPLICATION FLOWS 

Power gating can generally be implemented in two different applications. 
The first, Full Power Gating, refers to power gating all the logic elements in 
a block or design. The second, Selective Power Gating, is used to power gate 
only portions of a block. Implementation flows using CoolPower for both 
types of power gating are described in this section. User inputs include the 
logic to be power gated along with the associated sleep control signal names, 
type of interface buffer to be used if any, and optimization constraints for 
maximum dynamic voltage drop and current density. In each case, the flow 
is completely automated and the switches are sized for worst case operation.  

10.5.1 Full Power Gating 

Full, or complete, power gating is just what the name implies – all logic 
instances are connected to power (ground) through a header (footer) switch. 
The implementation of full power gating suggests that state is not retained 
unless a particular mechanism, such as the use of state retention registers, is 
employed to save state.  

The design flow to generate a fully power gated chip is shown in Figure 
10.10. This flow is notable in that the up-front design of the logic generally 
need not consider any implications of the physical level power gating. 

The flow begins with the design of the register transfer level (RTL) code 
in the conventional manner; that is, no special considerations need be given 
to the fact that power gating circuitry will be inserted during a later step. One 
possible exception here is the sleep control signal – if the synthesized RTL 
code does not contain an explicit sleep control signal, then the RTL code 
must be modified such that the resulting synthesized netlist contains one. 
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Figure 10.10 Full power gating design flow 

As illustrated in Figure 10.10, CoolPower loads the initial netlist and 
placement and, as a first step, replaces all non-power gated logic instances 
with power gated versions. Next, unsized switches are inserted into the netlist 
and floorplan followed by an optimization step, during which the switches 
are clustered with associated logic and sized according to the algorithms 
described above in the current scheduling and sizing sections. The sizing 
optimization considers the availability of switch placement locations; if the 
desired switch size cannot be placed in the desired location, logic cells are 
moved in order to free up available space. At this point all the switch sizes 
and locations are known. The next operation buffers the fanout tree for the 
sleep signal, since the aggregate switch cell input capacitance can be signi-
ficant. Clock tree synthesis is also performed at this time, after which a new 
DEF file is produced containing the modified placement including the inser-
ted switches and interface cells. 
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The design is now routed, including signal, real supply, and virtual supply 
routing. After routing and subsequent parasitic extraction, the design is 
analyzed post-route to verify the electrical characteristics (voltage drop and 
electromigration), similar to post-route timing verification. If any violations 
are found, then post-route sizing operations can be employed to repair the 
violations. An ECO route would be needed to route any changes introduced 
by the post-route repair operations, however the number of changes intro-
duced at this step is minimal requiring few reroutes and no floor plan changes. 

10.5.2 Selective Power Gating 

In selective power gating only the selected instances are power gated and 
the un-selected logic remains ungated. While conceptually any portion of a 
design could be power gated while not gating the other portions, in practice 
selective power gating specifically refers to gating only those logic elements 
that are implemented with low-Vth logic cells. Thus, selective power gating 
is an extended version of the multi-Vth cell swapping technique described 
above [12][23] – logic on non-critical paths utilize high-Vth cells while the 
low-Vth cells on the critical paths are replaced with power gated cells. 
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Figure 10.11 Selective power gating design flow 

The Selective Power Gating flow is shown in Figure 10.11. This flow is 
a modification of the full power gating flow shown in Figure 10.10. More 
specifically, there are a couple of additional steps in the selective flow 
during which the low-Vth logic instances are identified for power-gating.  

10.6 RESULTS 

CoolPower has been used to implement and optimize both full and selec-
tive power gating in several different designs. Some results of these efforts 
are briefly described below. 
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Table 10.1 Full power gating results 

A D E
Process technology 90nm 130nm 90nm
Supply voltage 1.5V 1.5V 1.2V
Logic function 32-bit ALU 8-bit datapath multi-processor
Retain state in registers? yes yes no
# of instances 1,852 118 182,225
# of power-gated logic instances 1,388 80 181,809
# of switch instances 104 3 15,872
# of interface instances 206 10 0
Logic cell to switch cell ratio 13.3 26.7 11.5
Power-gated logic cell area (um2) 15,259 886 1,457,391
Switch cell area (um2) 2,565 114 136,545
Switch area overhead (%) 16.8% 12.9% 9.4%
Interface cell area (um2) 791 38 0
Interface cell area overhead (%) 5.2% 4.3% 0.0%
Original bounding-box area (um2) 977,725 3,483 22,156,698
New bounding-box area (um2) 977,725 3,483 22,156,698
Bounding-box area increase (%) 0.0% 0.0% 0.0%

Parameter Design

 

10.6.1 Full Power Gating 

Full power gating was implemented and optimized by CoolPower using 
footer switches in several different blocks of varying sizes at both 130nm 
and 90nm. The results of these implementations are shown in Table 10.1.  

 For designs A and D, all combinational logic was power gated; state 
retention was implemented by not power gating any of the registers, which 
necessitated the insertion of interface cells. However, for design E, all logic 
elements, including registers, were power gated; state was retained in on-
chip memories which were left continuously powered. In all cases, the maxi-
mum virtual ground dynamic voltage target was 100mV. 

The area overhead of the inserted power gating switches varied from 9% 
to 17%, with interface cells adding another 4% to 5% where utilized. The 
latter area could be reduced significantly by adding registers to the standard 
cell library that include the interface structure within the register cell. Never-
theless, CoolPower in all cases was able to physically insert all of these 
structures, using the cell movement facilities to precisely position logic cells 
and switches without increasing the bounding box of the design, thus achie-
ving zero net area overhead. 
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Table 10.2 Selective power gating results 

A B C E
Process technology 90nm 90nm 90nm 90nm
Supply voltage 1.5V 1.5V 1.5V 1.2V
Logic function 32 bit ALU 32 bit DSP 32 bit DSP multi-processor
Retain state in registers? yes yes yes yes
# of instances 1,808 148,879 226,259 182,225
# of power-gated logic instances 359 14,418 55,479 19,639
# of switch instances 55 1,005 2,057 4,060
# of interface instances 206 9,213 29,140 12,259
Logic cell to switch cell ratio 6.5 14.3 27.0 4.8
Power-gated logic cell area (um2) 6,136 248,173 218,846 143,563
Switch cell area (um2) 1,192 46,954 23,303 17,923
Switch area overhead (%) 19.4% 18.9% 10.6% 12.5%
Interface cell area (um2) 791 35,378 54,820 43,249
Interface cell area overhead (%) 12.9% 14.3% 25.0% 30.1%
Original bounding-box area (um2) 977,725 5,651,221 34,552,882 22,156,698
New bounding-box area (um2) 977,725 5,651,221 34,552,882 22,156,698
Bounding-box area increase (%) 0.0% 0.0% 0.0% 0.0%

Parameter Design

 

10.6.2 Selective Power Gating 

Selective power gating was implemented and optimized by CoolPower 
using footer switches in several different 90nm designs. The results for these 
designs are tabulated in Table 10.2. Designs A and E are the same designs 
used for full power gating in the preceding section. As above, the maximum 
virtual ground dynamic voltage target was 100mV.  

In each of these cases, selective power gating was implemented by first 
performing a multi-Vth optimization and then replacing the low-Vth instances 
with power gated instances. Interface cells were inserted on all nets driven 
by power gated instances and received by non-power gated logic. 

The area occupied by the switch cells varies from 11% to 19%; this 
variance is a function primarily of two factors. First, the number of power 
gated instances depends upon how many low-Vth instances were needed to 
meet timing in the multi-Vth optimized design, which in turn is determined 
by how much performance margin existed in the original design. Second, the 
number of switch instances is determined in large part by the degree of 
sharing achieved by the current scheduling algorithm; sharing is affected by 
the logic function and connectivity, the geographic distribution of the power 
gated logic instances, and the voltage constraint used for the optimization. 
For example, compared to the full power gating results, the area overhead 
for selective power gating is generally larger – with full power gating the 
geographic clustering is usually more effective since all logic instances in 
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the physical vicinity will be power gated leading to greater degree of sharing. 
Nevertheless, in all cases, the final area overhead was again zero since the 
logic cells were moved during the optimization process so as to insert the 
switch cells in the precisely desired positions. This capability, in the end, 
enabled CoolPower to avoid bloating the bounding box of the placed logic. 

10.6.3 Performance 

As described earlier, one of the issues with power gating is understanding 
and managing the performance impact of the virtual grounds. In order to 
determine the specific effects on a particular design, we studied the impact 
of switch sizing upon performance using a logic block power gated by Cool-
Power.  

In this case, we optimized the D block using the full power gating flow 
described above for a particular virtual ground voltage constraint. The design 
was then routed after which the critical path was extracted and simulated 
using HSPICE, for both rising and falling transitions under worst case 
conditions (slow-slow process, 1.4V, 100°C). This simulation included the 
effects of the switches and virtual ground parasitics. The switches were then 
resized for different voltage constraints and the resulting circuits were 
reanalyzed. The data from this study is presented below in Table 10.3. In 
this table, the Avg Vssv voltage and Max Vssv voltage columns reflect the 
average and maximum measured Vssv values, respectively. The top table 
reflects the performance of a rising edge propagating through the critical 
path, the bottom table a falling edge. Each row corresponds to a different set 
of switch sizings, however the sizings are identical for the two tables.  

As can be expected, the delay along the path increases as the maximum 
virtual ground voltage target is relaxed, although the magnitude of the delay 
increase is relatively small. Here the maximum virtual ground voltage reflects 
an instantaneous or dynamic effect, implying that not all of the cells along 
the path “see” or experience that maximum voltage when they switch. This 
effect can be confirmed by considering the relationship between the virtual 
ground average and maximum dynamic voltages. In this case the maximum 
dynamic voltage is six to eight times larger than the average voltage. This 
indicates that instances switching at times other than that of the peak voltage 
must experience a much lower dynamic voltage. 

The falling edge path delay increases more than the rising edge path 
delay, as expected. The falling edges in the path are directly affected by the 
virtual ground since the increased virtual ground voltage reduces the effec-
tive gate-to-source driving voltage on the n-channel pull-downs. However, 
the output rising edges of the power gated instances in the path are less 
affected since the virtual ground is not directly connected to the p-channel 
devices supplying the charging currents. 
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Table 10.3 Power gating delay effects 

Avg Vssv 
voltage 
(mV)

Max Vssv 
voltage 
(mV)

Critical 
path 
(ns)

Delay 
change 

(%)

Non-Power Gated n/a 0.0 0.994 n/a
2.89 22.9 1.003 0.92%
5.88 42.0 1.012 1.81%

11.81 74.8 1.020 2.67%
15.51 91.7 1.034 4.00%

Avg Vssv  
voltage 
(mV)

Max Vssv 
voltage 
(mV)

Critical 
path 
(ns)

Delay 
change 

(%)
Non-Power Gated n/a 0.0 1.073 n/a

4.55 22.7 1.087 1.33%
9.19 41.1 1.106 3.04%

18.86 74.5 1.137 5.97%
25.06 91.3 1.148 6.96%

Power Gated 

Design 

Rising Edge

Power Gated 

Design 

Falling Edge

 

Table 10.4 Leakage reduction results 

Design

Max        
Vssv        

voltage     
(mV)

Sleep     
Mode 

Leakage     
(uA)

Leakage 
reduction 

factor      
(X)

Non-Power Gated 0.0 2.170 n/a
22.9 0.035 62
42.0 0.021 102
74.8 0.011 195
91.7 0.009 235

Power Gated 

 

Leakage currents were also measured for each of the sizing sets used in 
Table 10.3. This data is presented in Table 10.4. It illustrates the tradeoff 
between virtual ground voltages and leakage reduction – the larger the 
allowed peak voltage on the virtual ground, the smaller the standby leakage 
current. Figure 10.12 overlays the delay results from Table 10.3 with the 
leakage results from Table 10.4 enabling us to see that small increases in 
delay are accompanied by large reductions in standby leakage. In round 
numbers, a two orders of magnitude reduction in leakage currents can be 
achieved with only a 3% delay push out due to virtual ground effects. Thus 
we can clearly see that the central design issue for the leakage reduction – 
area overhead – performance impact tradeoff is the careful sizing of the 
switch cells (the Vssv peak voltage acting as proxy for the switch sizing). 
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Figure 10.12 Critical path delay and standby leakage as a function of virtual ground voltage 

10.7 FUTURE WORK 

While power gating as a leakage control technique has been known for 
several years [18], few production designs have utilized it due to numerous 
design issues. This situation will change with the growing need to control 
the larger leakage currents in advanced technologies. Additionally, the deve-
lopment of power gating specific design tools such as CoolPower will reduce 
the difficulty and time required to implement power gating, thus enhancing 
its adoption. 

Nevertheless, both the complexity of power gating implementations and 
associated design automation will increase. For example, to reduce leakage 
currents during a chip’s active mode, dynamic fine grained power gating will 
be deployed wherein many relatively small blocks will be power gated 
independently of each other, much in the same manner as clock gating is 
implemented today. This will require more complex control logic as well as 
more attention to the transient characteristics of turning the switches on and 
off. In particular, the rush currents that flow when a switch is closed will 
need to be carefully controlled so as to induce only a minimal voltage bounce 
on the real and virtual rails. And, in a quest for even greater levels of leakage 
reduction, power gating will be combined more often with other techniques, 
such as RBB and DVS, although RBB is unlikely to be used with extreme 
fine grained power gating due to the mismatch in recovery times (RBB 
requires a much longer wake up time than power gating [22]). 
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As the logical and physical design issues become automated, more 
attention will be paid to run-time and compile-time software control of the 
switches. In the former case, the switches’ control logic will be designed for 
operating system control much in the way that high level clock gating is 
controlled today. Additionally, for programmable applications, compilers 
will optimize not only for execution speed and code density, but also for the 
length of time the power gated logic blocks can be kept continuously 
inactive so as to maximize the amount of leakage reduction. 

10.8 SUMMARY 

Leakage has become one of the most critical challenges facing integrated 
circuit designers and threatens to become even more so. Since part of the 
challenge is that advanced processes exacerbate leakage instead of mitigating 
it (as occurred in the past for other issues), the leakage challenge must be 
addressed largely in the design domain. 

MTCMOS power gating has emerged as an effective design technique 
for controlling leakage, however it has not yet been widely deployed due to a 
variety of unique design issues and a lack of effective design automation. 

We have presented in this chapter an answer for those issues – CoolPower, 
a fully automated solution for the efficient implementation of MTCMOS 
power gated circuits. We have outlined a number of critical design issues, 
such as switch sizing for worst case design and sleep domain interfacing, 
and described how CoolPower addresses those issues automatically. Finally, 
we presented detailed results of CoolPower’s automation demonstrating its 
viability and effectiveness. 
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11.1 INTRODUCTION 

Power management is an increasingly important aspect of system and 
integrated circuit (IC) design. As designers are learning more about power 
management techniques and incorporating them into their designs, they are 
left wondering how to verify that these new energy saving strategies haven’t 
created a flaw in the final implementation. Designs, which previously appeared 
functionally correct based upon assumptions that voltage levels were held 
constant across the logic portion of the design, may break when voltages in 
the design vary or during voltage shutdown or wakeup. New tools are needed 
to verify designs where voltages are no longer constant. 

The current state of electronic design automation (EDA) tools is largely 
built upon an underlying logical representation. The typical register transfer 
level (RTL) to GDSII flow starts with an RTL description. This RTL is pro-
cessed by a logic synthesis tool that produces a logical netlist that is then 
simulated by a logic simulator. This flow has worked across a number of 
CMOS generations based on the previously mentioned assumption that the 
voltages were held constant. As designers incorporate new voltage varying 
power management techniques in their designs, today’s tools fall short of 
meeting the challenge to adequately represent and handle the impact of 
designed-in voltage variance. 

The verification of a multi-voltage system on a chip (SOC) is analogous 
to a multi-level video game. Level 1 is just getting through the flow and 
making sure that all the islands and their interconnections are properly 
handled. Diagnostics written at this level ensure that each chip function is 
supplied with the appropriate voltage rails and that the correct protection 
devices are in place. In a sense, this is a verification of spatial partitioning. 
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Of course, this is not possible if you cannot express your voltage based 
partitions (islands) at the electronic system level (ESL), register transfer 
level (RTL), or gate-level netlist description.  

The second level entails ensuring that the whole sequencing of power 
management happens as desired. This is the verification of the temporal 
variation in voltage rails. It must be verified that the SOC can circulate 
through all the desired states and transitions. It must also be verified that the 
SOC does not get stuck in deadlock, transition into any illegal states, or 
perform a disallowed transition between legal states. This is indeed quite 
complicated. SOC designers need a lot of assistance from software/driver 
authors to come up with these vectors and vice versa. Typically, the SOC 
itself has finite state machines (FSMs) that induce transitions between states. 
It also has logic to monitor power, performance, temperature, or other 
metrics that feed into this FSM. Often these signals come from domains that 
are shut down leading to a “chicken and egg” situation. This is what makes 
verifying the sequence of state transitions so complicated. Sequences also 
need to be verified for the handshake between devices such as the SOC, 
voltage regulator module (VRM), battery, temperature sensor and software.  

Here is a simple rule to follow: All voltage related events must be visible 
to software and/or system electronics. Spatial elements (groups of cells) in a 
chip are resources to accomplish functions. Voltage control alters the availa-
bility, performance and load characteristics of these functions. Thus, it is not 
possible to do any meaningful voltage based control without coordinating 
with at least the software and the VRM. Hence the need to carefully step 
through power management states in a coordinated manner across devices 
and software. 

The third level involves ensuring that the desired power/energy savings 
are happening and better yet, that they are cost effective. Power management 
neither comes easily nor cheaply. Power management schemes typically 
impose new costs on layout area, performance and design effort. You may 
have to choose between multiple schemes. Table 11.1 presents a simple 
example of the flavor of some of the tradeoffs. After initial design estimates, 
these trade-offs need to tracked and updated as a chip is designed.  

Some of these costs may be surprising. The package cost of a five island 
AVS chip may rise due to the complicated routing of multiple rails and 
the steps needed to put in the necessary decoupling etc. This is highly case 
sensitive, which means that the IC design team must keep an eye on the impact 
of power management on schedule and cost overall. You may also be surprised 
by five island AVS possibly having very little battery life benefit over three 
island AVS, for a given class of applications.  

True verification of a power management system achieves all of these 
levels, as neglecting any level can cause a product to fail. Designers need to 
do this at every design step: There are so many tools and scripts that modify 
the design. Any of these can break a multi-voltage design at some level.  
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Table 11.1 A simple example of the relative power savings, design time, and cost trade-offs 
for different power schemes. Adaptive voltage scaling (AVS) refers to when island voltages 
are dynamically adjusted to meet performance requirements.  

Single Voltage 3 Island AVS 5 Island AVS
Average power 1.0 0.6 0.4
Package cost 1.0 0.6 0.7
Chip design time (man months) 1.0 1.5 3.0
Voltage regulator modules 1× 2× 6×
Heat sink Yes Yes, lower cost No
Fan with fan driver IC Yes No No
Die cost 1.0 ? ?
Test Cost 1.0 3.0 5.0
Debug cycle 1.0 3.0 5.0
Software development time (man months) 1.0 1.5 3.0  

For example after detailed routing, you might find that one or more 
islands have no space for decoupling capacitance. This will mean either an 
accommodation in the package or an external decoupling capacitor, both of 
which increase the cost. On the other hand, you may also decide to revisit 
the class of applications for which the decoupling capacitance is calculated, 
or even choose to transition voltages on the affected islands in a slower 
manner to reduce the decoupling capacitance needed. 

This chapter examines using multiple voltages and the impact it has on 
the functionality and correctness of a design from architecture to implemen-
tation. Logical netlists in EDA tools have long represented the logical 
connectivity of signals between gates with the underlying assumption being 
that supply voltage VDD and ground voltage VSS were non-varying and “always 
on”. Section 11.2 discusses different types of voltage techniques used to 
improve the energy efficiency of designs. Section 11.3 contains examples to 
illustrate several important multiple voltage issues and ways to address these 
issues. We conclude with a summary in Section 11.4. 

11.2 MULTIPLE VOLTAGE DEFINITIONS  
AND SCENARIOS 

One aim of power management is to increase the energy efficiency for a 
given design. Energy within an implementation is typically consumed by the 
charging and discharging of load capacitances and by leakage paths that 
cause unwanted electrical current to flow. The power P due to the charging 
and discharging of a capacitance C is 

 21 ( )
2 DD SSP fC V Vα= −  (11.1) 

where α is the switching activity factor, f is the clock frequency, and  
(VDD – VSS) is the voltage across the capacitor when it is charged.  
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Since the voltage term is squared, it is a popular target for reducing 
dynamic power. Studies have shown that the operating frequency for a given 
design scales approximately linearly with the voltage [8]. Therefore, if the 
voltage is scaled to match the operating frequency, there is roughly a VDD

3 
impact on the switching power (which can be derived from Equation (11.1), 
assuming VSS = 0V). This relationship has led designers to partition their 
designs into separate areas that run at the lowest necessary voltage to ensure 
proper operation of the design. This section will look at design partitioning 
to reduce power and establish a set of common terminology. 

11.2.1 Voltage Domains and Islands 

Traditional designs are greatly simplified by using a single voltage level 
to represent a logical “1” value. In fact, if it weren’t for the increasing 
demand for energy efficient designs it is doubtful that any designer would 
opt to so increase the complexity of a design by using multiple voltages. 
Most of the complexity of using multiple voltages shows up on the “boun-
daries”. The question is, on the boundaries of what? In this point, we need  
to be clear in our terminology. The boundaries that we will concentrate our 
attention on are “domains” and “islands”.  

Islands are defined as a set of cells, or a group of HDL (hardware descrip-
tion language) or ESL statements with common rail connections. These rail 
connections consist of supply voltages VDD {1..n}; ground voltage VSS; 
auxiliary supply rail voltage for sequential elements VRET; voltage to footer 
sleep transistors SLPN; voltage to header sleep transistors SLPP; NMOS body 
bias voltage VBBN; and PMOS body bias voltage VBBP. This is illustrated in 
Figure 11.1.  

Domains are defined by the driving voltage, VDD, that defines a logical 
“1” level. Note it is possible to have multiple “islands” within a “domain”. 
Many of the checks described later in this chapter rely on the classification 
of islands and domains.  

Wires that connect between two different islands are referred to as cross-
overs because the signal “crosses over” an island boundary. It is important 
that all wires are taken into consideration in this regard. It is not only signal 
wires communicating between blocks that need attention but also clocks, 
scan chains and other wires that may only be used in special modes (e.g. reset). 
The differences between the two islands will determine the necessary action 
that needs to be taken to ensure correct behavior. 
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Figure 11.1 Diagram (a) shows a voltage island as defined by the voltage rails and voltage 
signals that go to it; (b) illustrates this in more detail using a simple example of a NAND2 
gate with input and output registers. In contrast, diagram (c) shows the voltage rails that are 
used in typical static CMOS in ASICs – NMOS wells are tied to ground (i.e. VBBN = VSS = 
0V); PMOS wells are tied to VDD (VBBP = VDD); there are no sleep transistors for power 
gating; and there is no need for a separate retention voltage for the sequential elements as VDD 
is not power gated. 
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11.2.2 Level Shifting 

A signal may originate in one domain and then crossover into another 
domain with a different VDD level. There are two possibilities to consider: 1) 
the source VDD is greater than the destination VDD; or 2) the destination VDD 
is greater than the source VDD.  

In the first case, the signal may “overdrive” the input at the receiving 
end. For example on an inverter at the receiving end, this would typically 
cause the output fall times to decrease and the output rise times to increase (a 
common mistake is the assumption that both would decrease). This may be 
acceptable and the designer may choose not to insert any level shifting on 
this signal. If the design libraries have been characterized for this type of 
operating condition (i.e. characterized for VDD,in > VDD,gate, as well as  
VDD,in = VDD,gate), it is possible to handle these timing conditions during 
synthesis and the rest of the design implementation.  

In the second case, more attention is necessary. If VDD from the source 
(VDDL) is significantly lower than VDD in the destination domain (VDDH), a 
VDDL “1” signal will forward bias the PMOS transistors it connects to in the 
VDDH domain, increasing subthreshold leakage current (VDDL – VDDH > Vth,p, 
the PMOS transistor threshold voltage which is negative) or possibly leaving 
the transistor on (VDDL – VDDH ≤ Vth,p) and causing even more substantial 
short circuit current. Secondly, the noise margin on the VDDL signal is 
reduced, and it may not be able to drive the input strong enough to produce a 
valid output signal (VDDL less than the transition threshold).  

An example of a signal from a lower voltage domain driving a gate with 
a higher supply voltage is shown in Figure 11.2. Domain 1 uses a VDD of 
0.65V, while Domain 2 uses a VDD of 1.3V. In this case it is very likely that 
the output of Domain 1 isn’t strong enough to sufficiently drive gates in 
Domain 2. As the figure shows, this can also lead to internal short circuit 
paths being created in the gates in Domain 2.  
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Figure 11.2 This circuit shows a low supply voltage VDDL signal driving a high supply 
voltage VDDH gate. The PMOS transistor of the VDDH gate is forward biased sufficiently that it 
is on, resulting in short circuit current ISC. The VDDL “1” signal in the low supply voltage 
domain results in unknown “X” values in the high supply voltage domain. 
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In cases where the source domain won’t create output signals with suffi-
cient strength to properly drive the destination domain, or to reduce leakage 
of gates driven by lower voltage, it is necessary to insert voltage level shifters 
to properly drive the signal from the source to the destination. Voltage level 
shifters are essentially buffers that pass the same logical signal from input  
to output but scale the output to the necessary voltage for the logical signal 
in the destination domain. Designers can define a level shifter insertion 
threshold based on a percentage of the destination VDD to indicate when it is 
desirable to insert a level shifter into the destination. For example, if the 
source VDD is less than 0.8 of the destination VDD, a level shifter would be 
inserted. The threshold actually chosen would depend on desired circuit 
performance and the operating conditions characterized for the libraries. 

A possible third case also exists when the source and destination islands 
have independently varying VDD levels. In this case, it may at times be nece-
ssary to up level shift the voltage when the source VDD is lower than the 
destination VDD and down level shift when the source VDD is higher than 
the destination VDD. In these cases it is necessary to insert an up/down 
level shifter on each crossover signal to ensure the desired operating chara-
cteristics. 

11.2.3 Isolation (Shutdown/Sleep) 

Implementing domains with different voltages is a powerful technique 
for reducing energy consumption in active portions of the design. Reducing 
the voltage also reduces the leakage currents, but to a lesser extent than the 
savings to dynamic energy consumption. A significant penalty with leakage 
is that it occurs whether the circuitry is actively switching to perform useful 
work or just sitting idle. It can be viewed as wasted energy overhead that 
doesn’t significantly contribute to the work performed for useful compu-
tation.  

A way to significantly reduce leakage is to remove the circuitry from 
its power source. While this isn’t very helpful while the circuit is doing 
useful computation, it can be extremely beneficial when a block of logic 
isn’t being actively used. However, removing a block from its power source 
raises some serious issues about how the design will continue to operate 
properly. The first concern is whether the state of the block needs to be 
retained and if so, how to accomplish it. When a block is powered down 
there are three options for handling the state values: 1) scan the state out 
and store it in a memory external to the block that will remained powered; 
2) store the state locally with special circuitry that will remained powered; or 
3) if the state isn’t needed, throw it away and reinitialize if necessary when 
the block is powered back up again. Each option has its own set of advantages 
and disadvantages.  
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In the case of scanning out the state, it may be possible to reuse the test 
scan chains for accessing the state and restoring its value later. This may 
imply a small overhead in the control circuitry to implement this solution. A 
disadvantage of this approach is the extra time needed to scan the state out 
and then back in again. Extra energy is also spent to scan the state out and 
back. During this period, the block needs to retain power. In the case of 
scanning the state back in, it may delay the start of useful activity. The total 
cost of the solution may also need to include additional memory to store the 
state if the memory is otherwise not available. 

The second option entails the use of special registers to locally retain 
the state of the block. This has the advantage of keeping the state closely 
associated with its circuitry thus making it quicker to save and restore the 
state. Blocks using this type of implementation may have more power 
down opportunities than blocks using a scan approach. The downside of this 
approach is that the retention registers are significantly larger and higher 
power than non-retention based registers, and it may also be necessary to 
route a separate power source to the retention portion of the registers.  

The third option is the simplest and cheapest to implement. For some 
designs, every time a block is powered up it is initialized to the same state, 
making it unnecessary to store the previous state of the block. 

Another consideration when shutting down or sleeping blocks is the 
values that will be placed on the signals that are sourced from the block 
being shutdown. If the values are allowed to merely float as the turned off 
circuitry reaches some equilibrium point, there could be serious energy 
consequences at the destination blocks. As was shown in Figure 11.2 for 
the case of inserting level shifters between different voltage domains, it is 
possible to create short circuit paths at the receiving end if appropriate logic 
levels are not maintained on crossover signals. For blocks that are shutdown, 
placing isolation cells at the outputs ensures that the crossover signals that 
are sourced from the shutdown block will maintain valid logic values and 
not create energy robbing short circuits paths at the destinations. The isolation 
cells are of 3 basic types: 1) isolate to “0”, 2) isolate to “1”, or 3) retain the 
last value before shutdown. The signal to provide isolation can be either 
active low or active high depending on the application. Some ASIC libraries 
may contain cells to perform these functions while others need to have them 
created and incorporated. 

Isolation cells can be placed at the destination side with the appropriate 
control logic. If the isolation is to occur at the output of the source block 
then it is necessary to route the appropriate power to ensure that the isolation 
cell itself doesn’t get powered off with the rest of the source block.  

Shutting down the power to the cells of a block can occur internally or 
externally to the block. If the power gating switches (sleep transistors in 
Figure 11.1(b)) are placed in the block, then shutting off the power may be 
referred to as “sleeping” the block. In this case, there is a signal explicitly 
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sent to the block that will control whether power is available. Note that sleep 
signals are part of the island definition. For instance, two blocks that operate 
at the same VDD in the same domain, but have different controlling sleep 
signals, will form two separate islands both within the same domain. The 
sleep signal will control power gating switches that interrupt the flow of 
current either at the VDD rail, VSS rail or both. Figure 11.3(a) show an example 
of the power gating being controlled from the VDD rail. In this case, the 
power gating switch is referred to as a “header”. Likewise, Figure 11.3(b) 
shows a case where the power gating switch is on the VSS rail and is referred 
to as a “footer” switch. Generally, either a header or a footer sleep transistor 
is required to cut off the leakage current path from VDD to VSS. 
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VDD

…

(c)  
Figure 11.3 Different power-gating configurations are shown here. In (a) there is a shared 
header sleep transistor; in (b) there is a shared footer transistor; and in (c) each standard cell 
has a separate footer within it. 
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There is some voltage drop across the sleep transistor when it is on, so 
there is a trade-off between the area penalty and power up penalty for larger 
sleep transistors versus a larger voltage drop across a smaller sleep transistor. 
In some designs, a header and footer may both be used simultaneously with 
opposite polarity applied to the controlling sleep signals for the headers and 
footers respectively. In many layouts, the power gating switches are placed 
so that the rails that they control take the place of the usual VDD or VSS rails. 
In this case, the controlled rails are referred to as “virtual” rails.  

It is also possible to include the header or footer transistor directly into 
each cell as shown in Figure 11.3(c). An advantage to such an approach is 
that it simplifies the analysis and implementation for the design. The effects 
of the added transistor can now be incorporated directly into each cell’s 
characterization. Any additional delays incurred due to the header or footer 
transistors show up explicitly in the cell library’s timing tables. It also simp-
lifies the question of where and how often to place the power gating switches 
since they are now distributed directly into the cells. One downside to this 
approach is the increased area penalty that is incurred by the cells in the 
library to accommodate the extra transistor and cell input.  

A variation on this approach to gain back some performance is to add an 
additional voltage to the design [7]. Each cell incorporates a footer transistor 
that is a high performance low threshold voltage transistor. In order to reduce 
leakage, the cells are designed to have a voltage lower than VSS on the footer 
gate. This allows better performance and lower leakage with the additional 
cost of design complexity to provide a voltage lower than VSS to turn off the 
footers in each cell. 

On the other hand, using power gating switches (header or footer tran-
sistors) external to the cells allows the use of existing libraries. The overhead 
for the power gating transistors is typically less than that for the in-cell 
approach and the usual VDD and VSS connections to the cells are used. The 
downside is that analysis must be performed to ensure that the IR-drop on 
the virtual rails is within expected tolerances, otherwise the library has to  
be re-characterized for the reduced voltage swing. It may be necessary to 
place more power gating cells to guarantee that the IR-drop is adequately 
limited.  

11.3 DESIGN EXAMPLES 

This section describes increasingly complex design examples that demon-
strate proper checking for isolation and level shifting as well as dynamic 
simulations that show the impacts of varying the voltage under different 
implementations for the following designs.  
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Figure 11.4 Two different domains are used for the adder and isolation. The isolation is 
contained in the receiving domain (VAND). 

To demonstrate these concepts the first simple example, shown in Figure 
11.4, consists of an adder and a set of AND gates. The adder and AND gates 
are in separate voltage domains with the adder in Vadd and the AND gates  
in VAND. (Similar to the two inverters shown in Figure 11.2.) This is repre-
sentative of a block (the adder) that can be slept or shutdown and the isolation 
circuitry (AND gates) residing in the receiving domain. The adder is power-
gated by an nMOS footer transistor controlled by the Vfooter signal. When the 
Voltage on Vfooter drops below the threshold voltage of the footer transistor, 
the adder module is said to be in sleep mode.  

11.3.1 Sleep  

The example design in Figure 11.4 helps to demonstrate the importance 
of checking the dynamic sequencing of voltage controlling signals for beha-
vioral accuracy. The waveforms in Figure 11.5 show a typical RTL simulation 
that is unaware of any changes in the operation of power-gating transistors 
controlling a group of gates. The logic definition of the cells isn’t changed 
since the power-gating transistor, in this case a footer, isn’t part of the cell. 
As the voltage Vfooter drops to 0V, the logical outputs of the AND gate are 
computed as if the power-gating transistor didn’t exist. To accurately 
simulate the effects of the footer transistor, it is necessary to catch events 
on the Vfooter signal and properly assert correct values at the outputs of the 
effected cells.  

Today’s logic based simulators do not take into account the effects of 
changes on voltage rails or the impact of sleeping parts of the design. Figure 
11.5 shows a typical RTL simulation where the voltage on Vfooter drops from 
1.2V to 0.0V. The output waveforms show no impact from the adder going 
into sleep mode. This illustrates a risk in only performing a static check for 
isolation and not having a dynamic verification technique for checking the 
FSM controller sequences. 
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Figure 11.5 The effect of changing Vfooter to 0V is notably absent in this waveform diagram. 
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Figure 11.6 This waveform diagram shows the impact on add_out as Vfooter goes to 0V.  

 
The waveform diagram in Figure 11.6 shows the effects of applying 0V 

on Vfooter and sleeping the adder. Note that the when Vfooter changes to 0V 
that the output of the adder goes to a high impedance state “Z”. An error in 
the control sequencing now becomes readily apparent.  

It is important to note that a simple check for the existence of isolation 
circuitry is not sufficient to find this type of control sequencing error. A 
static check would “pass” indicating that the necessary isolation circuitry 
(AND gates) is present but would fail to detect the dynamic run time error.  
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Figure 11.7 This arithmetic logic unit (ALU) consists of an adder and multiplier that may be 
in different domains with different voltages. 

11.3.2 Shutdown 

Typically, shutdown involves forcing the driving voltage rail to VSS. This 
can be accomplished using an on-chip or off-chip voltage regulator. Shutting 
down a block eliminates any leakage current in that block but typically 
takes longer to bring back into operating mode. Other considerations include 
“in-rush” currents that may be excessive and have problematic peak power 
characteristics as well as reliability issues. Designers will often stage smaller 
portions of the design to ramp back up in sequence to avoid the issues around 
creating a large instantaneous current draw. 

There are two important types of verification to be performed. The first 
is to check that the connectivity has been properly handled in the design, and 
the second is to check that the signals are sequenced properly to ensure correct 
behavior. For example, once it has been determined that the necessary level 
shifting and isolation have been inserted, the controlling signals have to  
be properly asserted in time in order for the circuit to function correctly.  
A dynamic simulation of the sequencing of the control signals and voltage 
variations can demonstrate whether the circuit exhibits correct time based 
behaviors.  

To illustrate the points in this section, a simple example with multiple 
islands is used. A block diagram of the example is shown in Figure 11.7. 
The design is a simple ALU (arithmetic logic unit), consisting of an adder 
and a multiplier. The adder and multiplier are their own respective islands, 
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and based on their voltages may be in their own respective domains as well. 
There are two inputs to the ALU, A and B and one output Y. Note only one 
of the adder or multiplier is performing useful computation at any given 
time. Effectively, their inputs are transparently latched in the 1:2 demulti-
plexers (DEMUX) controlled by the “opcode”. The opcode also steers the 
appropriate module output via the 2:1 multiplexer (MUX) to the ALU output 
at Y. The following two waveform diagrams show the differences between 
using a typical RTL simulator and one that is multi-voltage aware.  
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Figure 11.8 Typical RTL simulation ran for the ALU that neglects any changes due to 
shutdown of the adder or multiplier in the circuitry in Figure 11.7.  
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Figure 11.9 Multi-voltage based RTL simulation ran for the ALU reflecting changes due to 
shutdown of the adder or multiplier in the circuitry in Figure 11.7.  
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A pure logic simulation without voltage information is shown in Figure 
11.8. Note that because of the register inserted at the inputs and outputs of 
the adder and multiplier that there is an additional delay from when the 
inputs appear at the adder and multiplier and when the output values change. 

11.3.3 System Level, Adaptive Voltage Scaling  

For this section, the example used in Figure 11.4 is again used to illus-
trate the main concepts. A necessary feature for AVS designs is the ability to 
control the voltage rails in an analog-like fashion.  

Figure 11.10 shows a diagram for a simple VRM. The output voltage (V) 
is controlled by the input powerState. A binary voltage indicator is used to 
signal when the requested voltage is stable at the voltage output. This model 
enables a continuous change in the voltage in simulation time. A new voltage 
level is requested by powerState and then the VRM will set the indicator  
to “0” and move the output voltage to the requested level. Once the new 
voltage level is reached, the indicator is set to “1”. This signal can be used 
by other power management circuitry to control the behavior of the design. 
One possible use is to have the indicator signal assist in any control in clock 
frequencies. If there is a request to raise the voltage and frequency for higher 
performance, typically the voltage will first be raised to the new value and 
then the clock frequency will be raised to its new value. The voltage indicator 
in this case could be used to signal that it is safe to increase the clock freq-
uency once the requested voltage has been achieved. 

The modification made to the design in Figure 11.4 is to use a VRM to 
control the driving voltage (Vadd) for the adder. Instead of using a footer to 
sleep the adder as in Section 11.3.1, the driving voltage is reduced to demon-
strate the effects of dynamically varying the power rail.  

This example brings into play more advanced concepts of multi-voltage 
design. One important aspect is the determination of good logic “1” and “0” 
values. If the driving voltage of a sending block drops below a certain level, 
the receiving block will not be able to recognize a valid “1” on the corres-
ponding input. For this example, a valid “1” is considered to be 70% of the 
receiving block’s Vdd. In this case, since all driving voltage rails except Vadd 
are at 1.2V, the output of the adder must be greater than or equal to 0.84V. If 
the Vadd drops below 0.84V then the other blocks will consider a “1” output 
from the adder module as an “X” at their input.  

 

PowerState VRM
Vindicator6

V(real type)  
Figure 11.10 Simple voltage regulator module (VRM).  
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Figure 11.11 Typical RTL simulation ran for the adder and isolation circuitry shown in 
Figure 11.4.  

Another concept covered here is the voltage at which a block still retains 
its state but no longer functions properly at speed, referred to as the “standby” 
voltage. In this case for the adder module, that voltage is set to 0.6V. In other 
words, at 0.6V the adder module retains its state, so that if the block is also 
clock-gated at that time and the voltage is then later raised and the clock 
re-enabled, the block will come back in a good operating state. If the block 
is clocked while the driving voltage is at 0.6V or below, the values could be 
corrupted.  

Figure 11.11 shows an RTL simulation where the driving voltage for the 
adder is varied between 1.2V and 0.6V. The signal Vadd_indicator is used to 
indicate when the VRM has reached the appropriate output voltage level. 
The powerState variable has a range of 0 to 32 and indicates 20mV incre-
ments above the baseline voltage of 0.6V. In this example, Vadd goes to 
standby voltage but no lower. Setting powerState = 30 (0x1E) corresponds 
to a requested voltage of 0.6V + (30 × 0.02) = 1.2V which is where the 
simulation starts. powerState is then set to 0 and Vadd starts to drop to 0.6V. 
After a period of time, powerState is again set to 30 and Vadd returns to 1.2V 
with the voltage indicator in both cases initially going to “0” and then retur-
ning to “1”. Since the RTL simulator isn’t multi-voltage aware, the outputs 
of the adder and AND gates are unaffected by the changes in the voltage 
level of Vadd. 
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Figure 11.12 Multi-voltage based RTL simulation ran for the adder and isolation circuitry 
shown in Figure 11.4.  

Figure 11.12 shows the same example this time simulated with a multi-
voltage based simulator. It is interesting to note that the output values of the 
AND gates go to “X” before the output of the adder module starts to produce 
any “X” outputs. In this case, the AND gates are sensitive to the voltage 
level of any incoming “1” signals. Since Vadd drops below 70% of 1.2V 
shortly after 50 time intervals in Figure 11.12, the output values of the AND 
gates start to go to “X”. Once Vadd drops to 0.6V and the inputs continue to 
change, the outputs of the adder also go to a value of “X”. As the voltage 
Vadd begins to increase, the adder once again starts to produce good logic 
outputs but it is not until Vadd reaches 0.84V that the AND gates again 
produce good logic output values. 

11.4 SUMMARY 

The push to more energy efficient designs is becoming more prevalent. 
Given a thermal envelope constraint defined by the package that an IC 
will reside in, more often it is becoming the case that the performance and 
operating frequency are defined by the power characteristics of the IC. In 
these cases, more effort is being placed on computational efficiency with 
respect to power. Witness the current de-emphasis in clock speeds and the 
move to multi-core designs for processors ranging from laptops and notebooks 
to high performance servers.  

One of the most promising variables that designers have at their disposal 
is the voltage. As designs with variable voltage, power gating and shutdown 
become more popular, there will be an increasing need for tools to help design 
and verify them. Dynamic simulation that accurately models the functional 
impact of varying the voltage in a design was described in Section 11.3. Tools 
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at this level need to handle voltage as a real variable in the design and be able 
to incorporate the effects of its dynamic variations. Inability to do so will 
leave holes in any chip’s verification strategy and lead to chips that will have 
costly errors that will only be found late in the design cycle and likely after 
tape out. 

The work described here can be extended to the gate level as well. The 
EDA industry will need libraries with power and timing information for a 
wider range of voltages versus the typical +/– 10% fast/slow corners usually 
available. The island definitions are valid throughout the flow but the libraries 
will need to include more data to accurately reflect the realities at lower levels 
of abstraction.  
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12.1 INTRODUCTION 

The growth of process variability in scaled CMOS requires that it is 
explicitly addressed in the design of high performance and low power ASICs. 
This growth can be attributed to multiple factors, including the difficulty of 
manufacturing control, the emergence of new systematic variation-generating 
mechanisms, and the increase in fundamental atomic-scale randomness – for 
example, the random placement of dopant atoms in the transistor channel. 
Scaling also leads to the growth of standby, or leakage power [7]. Importantly, 
leakage depends exponentially on threshold voltage and gate length of the 
device. The result is a large spread in leakage power in the presence of 
process variations. 

Recently, considerable research efforts have focused on developing 
statistical approaches to timing analysis, including the models and algorithms 
accounting for the impact of delay variability on circuit performance. These 
techniques concern themselves with eliminating the conservatism introduced 
by employing traditional worst-case timing models in predicting the timing 
yield of the circuit. In view of the importance of variability, new methods 
are needed to evaluate the power-limited parametric yield of integrated 
circuits and guide the design towards statistically feasible and preferable 
solutions. This can be achieved through the migration to statistical optimi-
zation techniques that account for both power and delay variability. 

In this chapter we examine the impact of variability on power, along 
with the strategies to counter its detrimental effect and improve performance 
and parametric yield. In Section 12.2 we provide an overview of process  
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variability trends and discuss their impact on power and parametric yield. 
Section 12.3 deals with analytical techniques for evaluating circuit parametric 
yield considering leakage and timing variability. Section 12.4 presents an 
overview of optimization strategies for yield improvement. In Section 12.5 
we discuss in detail, an efficient algorithm that targets power minimization 
under probabilistically specified timing and power constraints. 

12.2 PROCESS VARIABILITY AND ITS IMPACT  
ON POWER 

Several factors contribute to the growth in process variability [2][3][24] 
[34]. While the continued need for more performance necessitates rapid 
technology scaling, there are severe limitations to our capacity to improve 
manufacturing tolerances [22]. This is manifested in the rise of such effects 
as channel length variation due to the optical proximity effect [13][17]; 
systematic spatial gate length variation due to the aberrations in the stepper 
lens [38]; and variation in interconnect properties caused by non-uniform 
rate of chemical-mechanical polishing (CMP) in layout regions of different 
pattern density [10][39]. Scaling also brings about parameter uncertainty of a 
fundamental atomic-level nature. This is best exemplified by variability in 
transistor threshold voltage due to random dopant fluctuations (RDF). As 
transistors scale, the transistor channel contains fewer dopant atoms whose 
precise number and location cannot be controlled, while even small fluctua-
tions can impact threshold voltage significantly [8][16][42]. 

The patterns of variability are also changing: the intra-chip component of 
variation grows as a percentage of total variability in key process parameters 
such as channel length and threshold voltage [4][26]. It is this change that is 
largely responsible for the need to develop new approaches to timing analysis 
and optimization, as the traditional methods fail in the presence of uncorre-
lated intra-chip variability. 

The increase in leakage power with scaling, and the strong dependence 
of leakage on highly varying process parameters, raises the importance of 
statistical leakage and parametric yield modeling. There are several reasons 
for increased leakage power consumption. Supply voltage scaling requires 
the reduction in threshold voltage (Vth) in order to maintain gate over-
drive strength. Threshold voltage reduction causes an exponential increase 
in subthreshold channel leakage current. To make matters worse, aggressive 
scaling of gate oxide thickness leads to significant gate oxide tunneling 
current [41]. 

For transistors in the weak inversion region, the subthreshold current can 
be expressed as: 

 ( ) / /(1 )V V V V Vgs th thermal ds thermal
subI e eη− −∝ −  (12.1) 
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where Vgs and Vds are gate- and drain-to-source voltages, Vthermal is the thermal 
voltage, and η is the subthreshold slope coefficient [41]. For the purpose of 
statistical analysis, the exponential dependence of subthreshold current on 
process parameters is better captured by an empirical model in terms of the 
variation in effective channel length (∆L) and the variation in threshold 
voltage (∆V), taken to be stochastically independent of channel length [32]: 

 
2( ) /2 3 1L a L a V a

subI e− ∆ + ∆ + ∆∝  (12.2) 

 
where a1, a2, and a3 are process-dependent parameters. The gate tunneling 
current strongly depends on the oxide thickness (Tox) and can be described as 
[18]: 

 
2.5 2.5( ) ( )1 2 1 2c V c T c V c Tgs ox gd ox

oxI e e
− −− −∝ +  (12.3) 

where c1, c2, are the process-dependent fitting parameters, and Vgs and Vds 
are the gate-to-source and gate-to-drain voltages respectively. A simple 
empirical model captures the dependence of Iox on the variation in the oxide 
thickness (∆T) [32]: 
 /T b

oxI e−∆∝  (12.4) 

where b is the process-dependent parameter.  
The models indicate that both subthreshold and gate leakage currents are 

exponential functions of highly-variable process parameters, specifically 
effective channel length, threshold voltage, and oxide thickness. This strong 
dependence causes a large spread in leakage current in the presence of process 
variations (Figure 12.1), with subthreshold leakage depending primarily on 
Leff and Vth, and gate leakage depending on Tox. Historically, Tox has been a 
well-controlled parameter, and as a result, it had smaller impact on leakage 
variability. However, this is rapidly changing as technology approaches the 
limits of thin film scaling. While leakage power exhibits exponential depen-
dencies on process variables, chip frequency has a near-linear dependency 
on most parameters [32]. This difference in magnitude of variation is easily 
observed in measurements. Figure 12.1 shows that a 1.3× variation in delay 
between fast and slow die could potentially lead to a 20× variation in leakage 
current [3].  

Leakage power is inversely correlated with chip frequency. Slow die 
have low leakage, while fast die have high leakage (Figure 12.1). The same 
parameters that reduce gate delay – shorter channel length, lower threshold 
voltage, thinner gate oxide – also increase the leakage. Moreover, the spread 
in leakage grows as the chip becomes faster. In characterizing chips according 
to their operating frequency, it has been observed that a substantial portion 
of chips in the fast bins have unacceptably high leakage.  
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Figure 12.1 Exponential dependence of leakage current on 0.18um process parameters results 
in a large spread for relatively small variations around their nominal value. Figure courtesy of 
the authors of [3]. (© 2003 ACM, Inc. Included here by permission.)  

Figure 12.2 Inverse correlation between leakage power and frequency contributes to 
parametric yield loss. The maximum frequency of usable chips is reduced because chips in 
what would be the “fast” bin exceed power limits. This data was generated with a normal 
distribution for the clock frequency, and thus channel length [32], which exponentially affects 
leakage, and then a log normal distribution for leakage about these points. A scatter plot of 
leakage vs. frequency shows a similar distribution to Figure 12.1. In contrast, dynamic power 
increases linearly with clock frequency (i.e. switching activity). 
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In the absence of substantial leakage power, parametric yield is deter-
mined by the maximum possible clock frequency. Switching power is rela-
tively insensitive to process variation. When the leakage power typical of 
current CMOS technologies is added, the total power starts approaching 
the power limit determined by the cooling and packaging considerations. 
Crucially, the exponential dependence of leakage on process spread means 
that the total power may cross the cooling (power) limit well below the maxi-
mum possible chip frequency, since chips operating at higher frequencies 
have exponentially higher leakage power consumption. Thus, due to the 
inverse correlation between speed and leakage, yield is limited both by slower 
chips and chips that are too fast, because they are too leaky.  

This is further illustrated in Figure 12.2. The leakage-delay correlation 
and the resulting dual squeeze on parametric yield is one of the reasons why 
new methods that can simultaneously estimate timing-limited and power-
limited yield need to be utilized.  

12.3 PARAMETRIC YIELD ESTIMATION  

It is possible to get a fairly reliable estimate of the chip's parametric yield 
early in the design flow, at the design exploration phase, based on a very 
small number of chip parameters: the total chip area, the number of devices, 
the nominal and statistical technology parameters, and the supply and threshold 
voltages. The estimate can then be used to optimize the technology and design 
parameters before the design is fully specified. Both subthreshold and gate 
oxide leakage components can be accounted for [32].  

In the estimation of parametric yield, we can safely assume that chip freq-
uency is most strongly influenced by global channel length (Lg) variation. 
This assumption is validated by both simulation and by industrial practice 
where microprocessor speed binning is strictly correlated with the gate 
length variability [32]. Relying on Equations (12.2) and (12.4), the process 
parameters that impact leakage components are decomposed into their local 
(∆Ll, ∆Vl, ∆Tl) and global (∆Lg, ∆Vg, ∆Tg) contributions.  

Because the variation of path delay is primarily defined by the global 
∆Lg variation, when estimating yield, it is convenient to express Isub as an 
explicit function of ∆Lg. The impact of local and global variability on the 
leakage distribution is evaluated separately. The chip leakage variation due 
to local variability is a sum of current contributions from all devices on the 
chip. Because of that, the impact of local variability of all parameters on 
leakage can be captured by their impact on the mean leakage (at fixed values 
of global parameters). Specifically, the impact of local variability on leakage 
at a given value of Lg is to shift the mean of the distribution (due to ∆Vg, ∆Tg) 
by the amount that depends on the variance of local variability due to all 
components. For example, the increase of mean leakage caused by local 
variability ∆Ll is:  
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where λ1, λ2, and λ3 are process-dependent variables, and σL is the standard 
deviations of intra-die components Ll. It is easy to see that SL ≥ 1, and  
SL = 1, when local variation is absent. Similar expressions can be derived for 
scaling factors SV and ST that capture impact of local variation of ∆Vl and ∆Tl 
on the mean of the leakage. The total chip leakage, as a function of global 
variation terms, is obtained by weighting the leakage contribution of 
individual gates by their widths, W [32]: 

 
2( ( ) / ) ( / )0 02 3 1L a L a V a T bg g g g

total L V sub T gateI W S S I e S I e− ∆ + ∆ + ∆ −∆⎛ ⎞= +⎜ ⎟
⎝ ⎠∑  (12.6) 

where SL, SV, and ST are the scaling factors to capture the effect of local 
variability in Leff, Vth and Tox respectively; 0

subI and 0
gateI  are the nominal 

values of subthreshold and gate leakage respectively; and a1, a2, a3 and b are 
fitting coefficients. Here ∆Lg, ∆Vg, and ∆Tg are treated as independent 
normal random variables.  
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Figure 12.3 Monte Carlo scatter plot showing SPICE simulation of the circuit leakage for a 
64-bit adder with 100nm Berkeley predictive technology model [9]. Variability in Vg and Tg 
are responsible for “local” spread in leakage causing ~27% yield loss in the highest 
performance bin. Figure courtesy of the authors of [32]. (© 2004 ACM, Inc. Included here by 
permission.)  
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Consider the power and delay variability of an adder shown in Figure 
12.3. For each value Lg, which corresponds to a specific frequency bin, the 
spread of leakage is caused by the variation in Vg and Tg. A consequence of 
this spread is that even though the frequency of a chip confirms to speci-
fications, it may still contribute to parametric yield loss due to its unacceptably 
high leakage power consumption. The analytical framework developed above 
enables the estimation of the leakage yield corresponding to a specific leak-
age constraint, or the leakage current corresponding to any yield quantile. Be-
cause power yield can be computed for every specific value of ∆Lg, the 
estimate of joint timing-limited and power-limited yield can be thus easily 
found. 

12.4 OPTIMIZATION TECHNIQUES FOR YIELD: 
AN OVERVIEW 

The previous section considered analysis methods to evaluate chip-level 
and circuit-level parametric yield. We now discuss the optimization strategies 
that can be employed to improve parametric yield. Traditional circuit optimi-
zation techniques are insufficient for the purpose of parametric yield improve-
ment in nanometer scale integrated circuits. In the past, case-files have been 
used effectively with the traditional deterministic algorithms while guaran-
teeing a specific yield point. Typically, these case files would be worst case, 
nominal, and best case process corners combined with the worst case, nominal, 
and best case operating (voltage, temperature) corners. The effect of variability 
was captured in these case files by modifying the device SPICE model 
parameters to correspond to a specific percentile of the parameter distribution. 
Analyzing and optimizing the circuit with these parameters guaranteed that it 
would meet the performance constraints at a specific percentile of probability 
[25]. However, this approach works only when variability is predominantly 
inter-chip, causing differences in the chip-to-chip properties, with parameter 
variation in devices within a chip being neglected. In nanometer scale tech-
nologies, intra-chip variation is significant. Also, deterministic optimization 
makes the tacit assumption that circuit performances of different gates have 
identical sensitivities to the variation of process parameters. The highly 
non-linear and non-additive responses of performance variability make this 
premise untenable [28]. This results in the breakdown of the case-file based 
approach to handling variability in optimization as it becomes impossible to 
come up with a case file that will guarantee a specific yield point.  

Circuit-level variability is directly dependent on the decision variables: 
for instance, the standard deviation of threshold voltage depends inversely 
on the square root of transistor area [14]. Statistical algorithms that explicitly 
account for the variance of objective and constraint functions during optimi-
zation are expected to perform much better. In contrast, deterministic algo-
rithms lack the notion of parameter variance and parametric yield, preventing 
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design for yield as an active design strategy. An algorithm that does not 
comprehend the dynamic changes in performance variability arising from 
threshold voltage dependency on sizing is unlikely to be successful in para-
metric yield optimization. Instead, if a worst case process corner is assumed 
to ensure sufficient yield the circuit gets over-designed resulting in worse 
power consumption and lower performance. Thus, the introduction of rigorous 
statistical power-optimization has a potentially significant impact on circuit 
performance and parametric yield. 

Optimizing the parametric yield metric directly seems computationally 
very difficult because of its numerical properties (yield is an integral of the 
probability distribution function). For that reason, most yield-improvement 
strategies map yield into other metrics that are more convenient computa-
tionally. For the sake of discussion, the known optimization approaches for 
yield improvement can be classified into two categories: those that model 
the impact of variability on timing yield only, and those that consider timing 
and power limited parametric yield simultaneously.  

A variety of strategies has been proposed for considering the impact of 
variability on timing yield. One effect of variability on the behavior of high-
performance well-tuned circuits is the spreading among the timing paths 
from the “wall” of critical paths generated by circuit tuning [1]. The more 
the paths pushed against the wall, the bigger is the detrimental impact of 
variability in pushing out the performance. We could improve timing yield 
by reducing the height of the path delay “wall”, since it is simply an artifact 
of mathematical optimization, which is hard to justify considering the practical 
design limitations. A penalty function can be introduced in the circuit tuner 
to prevent such path build-up [1]. This is an indirect strategy for yield impro-
vement however, since the true path delay variance is not used to guide 
optimization.  

It is possible to formulate a general statistical gate sizing problem that 
can be described by analytical but non-linear functions and solve it directly 
using a general non-linear solver [15]. The objective and constraints are 
expressed as explicit functions of the mean and variance of gate delays. 
However, the techniques relying on non-linear optimization tend to be exces-
sively slow which would greatly limit the capacity for large-scale circuit 
optimization. In [33] an extension to the Lagrangian relaxation based app-
roach [11] is proposed. Here, the gate sizing problem is solved iteratively 
while updating the required arrival time constraint using information from a 
statistical timing analyzer. The notion of timing yield is incorporated by 
making the delay target be defined at a quantile value. More efficient formu-
lations based on geometric programming are also possible. In [29], the fact 
that sizing problems have fairly flat maxima is exploited by utilizing heuristic 
techniques to compute the “soft-max” of arrival times. Statistical static timing 
analysis is then used to guide the optimization in the right direction. The  
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algorithm based on geometric programming presented in [35] models 
parameter variations using an uncertainty ellipsoid, and proceeds to construct 
a robust geometric program, which is solved by convex optimization tools. 
Efficient algorithms based on the special structure of convex problems, such 
as conic programming, have also been used for statistical gate sizing [19].  

However, as we have argued earlier in the chapter, in the nanometer 
regime, parametric timing yield alone is not a sufficient metric as it ignores 
variability in leakage power. This necessitates the development of computa-
tionally efficient statistical optimization techniques to minimize parametric 
yield loss resulting from power and delay variability [24][20] [37]. The early 
work [37] extends to a statistical setting the well-known iterative coordinate-
descent algorithm, best exemplified in the electronic design automation area 
by TILOS [12]. Specifically, it performs leakage power minimization using 
the power-reduction potential provided by a dual-Vth technology and by gate 
sizing. In the deterministic approach, the initial configuration is one which 
meets timing constraints and has all gates set to low-Vth. Gates are subse-
quently swapped from low-Vth to high Vth based on the following sensitivity 
measure s: 

 ps
d
δ∆

=
∆

 (12.7) 

Here ∆p and ∆d are the changes in power dissipation and delay of the gate if 
it is swapped to high-Vth and δ is the slack of the gate (see Equation (6.4) in 
Section 6.2 for more details). If the timing constraints are violated after a 
swap is made, gates are upsized depending on their efficiency to convert the 
additional power accrued due to resizing to reduction in delay. 

In the statistical counterpart of this optimization strategy, statistical timing 
analysis is used to determine if timing constraints are met. Additionally, the 
first and second moments of sensitivities are used instead of nominal sensi-
tivity values. However, one major limitation of using a greedy sensitivity 
based approach described above, is that it may make sub-optimal decisions 
as it views one gate at a time. This is illustrated in a deterministic setting  
in Chapter 6, where larger power savings can be achieved by adopting a 
framework that has a global view of the circuit. 

The power savings enabled by this statistical algorithm, as compared 
to its deterministic counterpart, range from 15% to 35%. The algorithm is 
computationally expensive, however. While it is based on coordinate-descent 
algorithms that have proved their practical utility in gate sizing, the extension 
to the statistical setting causes the run-time to grow considerably. This may 
become a concern when using the algorithm on large circuits. The optimization 
approach discussed in the next section is about an order of magnitude faster 
than the approach in [37], due to the efficient statistical optimization problem 
formulation as a second order conic program (SOCP). 
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12.5 EFFICIENT STATISTICAL PARAMETRIC 

YIELD MAXIMIZATION 

The primary limitation of existing statistical CAD techniques is their 
high computational cost. This makes the application of such algorithms to 
industrial-size circuits a difficult task. In this section, we focus thoroughly 
on a statistical yield enhancement technique that achieves high computa-
tional efficiency, while treating both timing and power metrics probabilis-
tically [20].  

12.5.1 Power Minimization by Delay Budgeting  

In order to enable an efficient computational formulation, the problem of 
parametric yield maximization in this algorithm is converted into that of 
statistical leakage minimization under probabilistic timing constraints. It 
uses a two phase approach based on optimal delay budgeting and slack 
utilization, akin to [27]. The delay budgeting phase is formulated as a robust 
version of the power-weighted linear program that assigns slacks based on 
power-delay sensitivities of gates. The notion of variability in delay and power 
due to process variations is explicitly incorporated into the optimization, by 
setting up an uncertain robust linear program. The statistical (robust) linear 
program is cast into a second order conic program that can be solved effi-
ciently. The slack assignment is inter-leaved with the configuration selection 
which optimally redistributes slack to the gates in the circuit to minimize 
total power savings. 

Post-synthesis circuit optimization heuristics for sizing and dual-Vth 
allocation are effective in reducing leakage, and have been widely explored 
in a deterministic setting [27][36][43]. While relying on different implemen-
tation strategies, all these techniques essentially trade the slack of non-critical 
paths for power reduction by either downsizing the transistors or gates or 
setting them to a higher Vth.  

Since the joint sizing and dual-Vth assignment optimization problem is 
computationally hard, it is convenient to move into the power delay confi-
guration space as described below. The deterministic algorithm for power 
minimization is a two-phase iterative relaxation scheme. The input to the 
first phase is a circuit sized for maximum slack using a transistor (gate) sizing 
algorithm, such as TILOS [12], with all the devices set to low Vth.. This 
circuit has the highest possible power consumption of any circuit realization. 
The available slack is then optimally distributed to the gates based on the 
power-delay sensitivities: that is, the slack is allocated in a way that maximizes 
the power reduction. The second phase consists of a local search among gate 
configurations in the library, such that slack assigned to gates in previous 
phase is utilized for power reduction.  
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The idea of using power-delay sensitivity of a circuit as an optimization 
criterion is itself well known [21]. A linear measure of a gate’s power-delay 
sensitivity is power reduction per unit of added delay:  

 Ps
D
∂

= −
∂

 (12.8) 

The power reduction for gate i with an added delay d(i) 0≥  is then linearly 
approximated by s(i)d(i). A unit of added slack to a node with a higher 
sensitivity will lead to the greater power reduction. This concept is extended 
to efficient optimization based on large-scale linear programming by conver-
ting a power minimization problem into a power-weighted slack redistri-
bution. This is similar to the metric in [37], Equation (12.7), but instead of 
looking at each gate individually and greedily picking the gate with the best 
trade-off, a linear program is used to assign the added delays with a global 
view of the power savings that may be achieved. 

Let a gate configuration be any valid assignment of sizes and threshold 
voltages to transistors in a gate in the library. For any fixed load, a set of 
Pareto points in the power-delay space can be identified among all the 
possible configurations (Figure 12.4). A power optimal solution will contain 
only the Pareto-optimal gate configurations. The trade-offs between delay 
and both leakage and dynamic power can be captured in tables, parameterized 
by the capacitive load. For each of the Pareto-optimal gate configurations, 
the decrease in power consumption (∆P) and the change in delay (∆D) are 
calculated. For example, one may compute the sensitivity of changing the 
gate from all transistors having low Vth to the configuration where all tran-
sistors have high Vth.  

Using this framework, a linear program can be formulated to distribute 
slack to gates with the objective of maximizing total power reduction while 
satisfying the delay constraints on the circuit. This can be expressed as [27]: 
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Here ti is the arrival time at node i, Tmax is the required arrival time at the 
primary output, di

0 is the delay of the gate i in the circuit configuration 
obtained by sizing for maximum slack, di is the additional slack assigned, 
and δd is the maximum allowed slack increment.  
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(a) With a 5fF capacitive load and input slew 0.2ns.
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(b) With a 15fF capacitive load and input slew 0.2ns.
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(b) With a 15fF capacitive load and input slew 0.2ns.  
Figure 12.4 The power-delay space for a NAND2 gate driving two different capacitive loads. 
The Pareto frontier is depicted by the dashed gray lines. A power-optimal circuit will consist 
exclusively of Pareto-optimal gate configurations. The points on a curve correspond to the 
nine different gate sizes in the library. SPICE simulations were used for analysis with a 70nm 
process using the Berkeley Predictive Technology Model [9]. 
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Figure 12.5 Flowchart illustrating the iterative relaxation algorithm for power minimization.  

The algorithm is constructed as an iterative relaxation method. Its core is 
an interleaved sequence of (i) optimal slack-redistribution using linear 
programming, and (ii) the local search over the gate configuration space to 
identify a configuration that will absorb the assigned slack (Figure 12.5). It 
has been shown that when the configuration space is continuous, and delay 
is a monotonic and separable function, such a procedure is optimal for small 
increments of slack assignments δd [40]. As the sensitivity vector (si) is a 
first order linear approximation, it is only accurate within a narrow delay 
range, which also requires moving towards the solution under small slack 
increments.  

The library consists of two discrete threshold voltages (0.1V and 0.2V), 
and a continuous range of gate sizes, with piecewise linear interpolation of 
delay and power versus load capacitance from SPICE characterization. 
Assuming a continuous range of gate sizes is reasonable, given that good 
low power standard cell libraries should have finely grained gate sizes or use 
a “liquid cell” sizing methodology. Even though the configuration space 
generated by Vth assignments is discrete, the ability to size transistors in a 
continuous manner permits treating the delay range for a cell as continuous. 
This ensures that a configuration maximally utilizing the slack allotted in 
the slack assignment phase can be found. The value for δd is chosen heuris-
tically – as long as δd is small enough (relative to Tmax of the circuit), the 
approach produced good results. A typical value chosen for δd was 2% of 
the clock period Tmax. 
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Table 12.1 Low Vth devices exhibit a higher leakage spread, while high Vth devices exhibit a 
higher delay spread. 

Nominal 99th percentile Nominal 99th percentile
Low V th  (0.1V) 1.00 1.15 1.00 2.15
High V th  (0.2V) 1.20 1.50 0.12 0.20

Delay Leakage

 

12.5.2 Statistical Delay Budgeting using Robust Linear 
Programming 

We now describe how the statistical equivalent for the power minimi-
zation problem under variability is reformulated as a robust linear program. 
This will permit using interior-point methods that are highly efficient for 
solving convex optimization problems. In order to make the presentation 
specific, we assume that there are two primary sources of variability: effective 
channel length (Leff) and gate-length independent variation of threshold 
voltage (Vth). These parameters have significant impact on timing (Leff) and 
leakage power (Vth). In general, more sources of variation can be used. An 
additive statistical model that decomposes the variability, of both Leff and Vth, 
into the global and local variability components is used. For gate length the 
model is 
 0eff g lL L L L= + ∆ + ∆  (12.10) 

A similar model is used for Vth. Consistent with empirical data, both Leff and 
Vth are assumed to be Gaussian random variables. Under the leakage models 
described earlier in the chapter, the leakage power (Equation (12.6)) is a log-
normal random variable. In contrast, assuming a fixed clock frequency, it 
was observed that the dynamic power was only a weak function of process 
variability in Leff. It can be shown that and the sensitivity coefficient also 
follows a log-normal distribution. The modeling framework gives the ability 
to account for the different values of parameter variability in low-Vth and 
high-Vth gates: low-Vth gates exhibit higher variation in leakage, while high-
Vth gates exhibit higher delay variability. This is illustrated in Table 12.1 for 
a 70nm process.  

Robust optimization is concerned with ensuring the feasibility and opti-
mality of the solution under all permissible realizations of the coefficients of 
the objective and constraint functions [5]. The novelty of the described 
algorithm is that it sets up a rigorous statistical equivalent of the slack 
assignment using the notion of robust linear programming and explicitly 
incorporates uncertainty in a formulation that is amenable to highly efficient 
computation. When formulating a statistical power minimization problem, 
an equivalent formulation of Equation (12.9), which places the power weighted 
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slack vector into the constraint set, is more convenient. Suppose that Pmax is 
the initial maximum power, P̂  is the optimal power achieved by Equation 
(12.9) at a specific Tmax, and 1̂d  the vector of optimal allocated slacks. The 
following optimization problem is equivalent to Equation (12.9): 
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minimize
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That is, if 2d̂  denotes allocated slacks for Equation (12.11), it can be shown 
that 1 2

ˆ ˆ=d d , and 1 2
ˆ ˆ( )= ( )P d P d  is a minimum power solution at the specified 

Tmax. Equation (12.11) forces the linear program to place a premium on the 
total slack and assign more slack to gates with higher sensitivity in order to 
meet the power constraint. The statistical equivalent of Equation (12.11) is 
now formulated by probabilistically treating the uncertainty of the sensitivity 
vector and of timing constraints: 
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Here, the deterministic constraints have been transformed into probabilistic 
constraints, where Pr( ) denotes the probability of the expression inside the 
brackets. These probabilistic constraints set respectively the power-limited 
parametric yield η, and the timing-limited parametric yield ζ. Based on the 
formulation of the model of uncertainty, they capture the uncertainty due to 
process parameters via the uncertainty of power and delay metrics.  

The above probabilistic inequalities have to be reformulated such that 
they can be efficiently handled by available optimization methods. The 
challenge is to handle these inequalities analytically, in closed form. The 
probabilistic timing constraints in Equation (12.12) are transformed such that 
the resulting expression still guarantees achieving the specified parametric 
yield level using the quantile (percent point) function: 
 1

max( )i Di
D Tφ ζ σ−+ ≤  (12.13) 

where Di
σ  is the standard deviation of the ith path with delay Di at primary 

output i. In order to reduce the number of constraints and increase the 
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sparsity of the constraint matrices, the path-based constraints are further 
transformed into node-based constraints. A heuristic method of modeling 
the node delays with 1( )i di

d φ ζ σ−+0 0 , where 
di

σ 0  is the standard deviation of 

the gate delay, worked well in practice, but more sophisticated mappings 
can be introduced. This permits the formulation of the probabilistic timing 
constraint as: 

 
max

1

,  for all primary outputs

( ) ,  for all fanin( )
k

i j i idi

t T k

t t d d j iφ ζ σ−
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 (12.14) 

Using the fact that sensitivity is a lognormal random variable, the power 
constraint can be transformed into one which is linear in the mean and 
variance of sidi:  
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 (12.15) 

Here, η and ζ are the power and timing-limited parametric yields; 
( , )ss LN s Σ∼  is the log-normal sensitivity vector with mean s  and co-

variance matrix ∑s; and λ(η) and κ(η) are the fitting functions dependent on 
η. The mean, variance and covariance of leakage and delay are characterized 
via a Monte-Carlo simulation for all the cells in the library. The statistical 
properties of the power-delay sensitivity of the cell can then be computed 
analytically. 

The above problem has a special structure that can be exploited to per-
form very fast optimization. The reason is that the constraints are second-
order conic functions that can be efficiently optimized by interior point 
methods [31]. Because the second-order conic programs are convex [5], they 
guarantee a globally optimal solution to this slack redistribution formulation 
that considers variation. The reliance on interior-point methods means that 
the computational complexity of solving this non-linear program is close to 
that of linear programming, and this is confirmed by experiments. The 
second phase of the power minimization algorithm is linear in the number of 
alternatives in the gate configuration space. 
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12.5.3 Evaluating the Effectiveness of Statistical Power 

Optimization 

The above algorithm was implemented in C as a pre-processing module 
to interface with the commercial conic solver in MOSEK [23]. The bench-
mark circuits were synthesized to a cell library that was characterized for a 
70nm process using Berkeley Predictive Technology Model [9] .  

The gates present in the library are NOR2, NOR3, NOR4, NAND2, 
NAND3, NAND4 and inverter. Gates have eight discrete sizes, ranging from 
1× to 8× the minimum size, and were characterized for a fixed input slew of 
20ps. To permit treating the configuration space as continuous, an interpolating 
function was used to obtain the delay and leakage of gate sizes between the 
SPICE characterized sizes. Gate delay (average of worst case rise and fall 
delay) and internal power were specified by lookup tables for each value of 
load capacitance. Switching power was calculated as αfCLVdd

2, where α is the 
activity factor, f is the clock frequency, CL is the load capacitance, and Vdd is 
the supply voltage. The activity factors and state probabilities were deter-
mined by random simulation. Leakage power was computed for each input 
state and the state probabilities were used to obtain the average leakage. The 
delay analysis can be extended to include separate timing arcs and slews as 
in the linear programming formulation in Chapter 6. 

It is assumed that granularity of Vth allocation is at the NMOS/PMOS 
stack level. For NMOS (PMOS) transistors, the high threshold voltage is 
0.20V (–0.20V) and the low threshold voltage is 0.10V (–0.10V). Different 
levels of variability in Leff were explored ranging from 3% to 8% of σ/µ. 
Pelgrom’s model [30] is used to describe σVth dependence on transistor size. 
The assumed magnitude of Vth variability is σ/µ = 7%. An equal breakdown 
of variability into global and local components was used. Spatial correlation 
of local variability was not considered, but could be incorporated into the 
algorithm if needed.  

The fundamental reason for the reduction in power enabled by statistical 
optimization is the ability of the statistical algorithm to explicitly account for 
the variance of constraint and objective functions. Because of this statistical 
optimization allots slack more efficiently in that it penalizes allocation of 
slack to gates with high power variance. As a result, the spread of the leakage 
distribution is reduced and the mean is shifted towards lower values. Figure 
12.6 shows the probability distribution function of the static power obtained 
by Monte Carlo simulation of the circuit configurations produced by the 
statistical and deterministic optimizations. The figure indicates that the static 
power savings increase at higher percentiles. Another manifestation of the 
greater effectiveness of statistical optimization is the fact that it can assign 
more transistors to a high Vth. For example, for the c432 ISCAS’85 bench-
mark [6] optimized for a target delay of 0.55ns for 99.9% timing and power 
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yields, the number of transistors set to high Vth by the statistical algorithm is 
20% more than the corresponding number for the deterministic algorithm.  

The comparison of statistical optimization and deterministic optimization 
results is further illustrated in Figure 12.7. Under the same power and timing 
yield constraints (ζ = η = 99.9%), statistical optimization produces uniformly 
better power-delay curves. The improvement strongly depends on the under-
lying structure of physical process variation. As the amount of uncorrelated 
variability increases, i.e. the local component grows in comparison with the 
global component, the power savings enabled by statistical optimization 
increase. The power savings at the 95th percentile are 23%, and those at 99th 
percentile are 27% respectively. The ability to directly control the level of 
parametric power- and timing-limited yield permits choosing a “sweet spot” 
in the power-delay space.  

Figure 12.8 and Figure 12.9 show a set of power-delay curves for one of 
the benchmarks, c432. Figure 12.8 plots the total power vs. delay at the 
output obtained by running the statistical optimization for various timing 
yield levels (ζ ), with the power yield set at 99.9%. It can be observed that at 
tight timing constraints the difference in power optimized for different yield 
levels is significant. Figure 12.9 confirms that optimizing the circuit for a 
lower power yield will lead to higher total power consumption and longer 
delay. For the same yield, the trade-off between power and arrival time is 
much more marked at tighter timing constraints.  
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Figure 12.6 The probability distribution functions of static (leakage) power produced by a 
Monte Carlo simulation of the benchmark circuit (c432) optimized by the deterministic and 
statistical algorithms.  
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Figure 12.7 Power-delay curves for 99.9% timing and power yield. Statistical optimization 
does uniformly better. For the case of mixed inter- and intra-chip variability, an equal 
breakdown is assumed. 
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Figure 12.8 Power-delay curves at different timing yield levels for the c432 benchmark. At 
larger delay, the power penalty for higher yield is smaller. 
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Figure 12.10 Savings in total and leakage power enabled by the statistical algorithm across 
the benchmark circuits (the ISCAS’85 benchmark circuits [6] and IBM benchmarks courtesy 
of A. Devgan). Average savings of 33% in leakage power and 17% in total power are 
obtained. 

Figure 12.10 captures the savings in power obtained by employing the 
statistical optimization algorithm outlined in this section. The average leakage 
power savings are 33%, which can be achieved without the loss of timing  
or power yield by statistical optimization, as opposed to the deterministic 
approach.  

Figure 12.11 shows the run-time behavior of the algorithm. The chara-
cteristics of the circuits on which the algorithm was tested are shown in 
Table 12.2. The algorithm was run on a dual core 1.5GHz AMD Athlon 
workstation with 2GB of RAM. The optimization problems were solved 
using the interior point optimization package MOSEK [23]. A single SOCP 
optimization run of c6288 for slack assignment takes about 11 seconds. It 
can be seen that the run-time is roughly linear in circuit size making the 
algorithm scalable to large industrial blocks. Note that quadratic runtime 
growth has been observed by other authors for linear programming (LP) in 
some cases (see Section 6.6). 

The formulation of dual Vth assignment and gate sizing based on SOCP 
is more than an order of magnitude faster than a coordinate descent algorithm 
based on [37]. This speedup is obtained due to the special structure of the 
SOCP program, which is not available to general nonlinear problem solvers, 
enabling the optimization problem to be solved extremely efficiently. We 
observed that the constraint matrix of the SOCP formulation is quite sparse – 
this makes the solution of the SOCP problem quite efficient.  
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Table 12.2 Circuit characteristics and run time. 

Number Number Number
Circuit of gates of Inputs of Outputs Logic Depth Run Time (s)

sc_ivlogic 40 8 6 9 9
sc_inc12 78 16 9 8 10
sc_edcs1 258 28 12 8 30
c432 261 36 7 23 31
c499 641 41 32 23 52
c880 615 60 26 22 47
c1355 685 41 32 18 56
c1908 1,238 33 25 29 122
c2670 2,041 233 140 25 153
c3540 2,582 50 22 44 171
c5315 3,753 178 123 27 241
c6288 2,704 32 32 88 273  
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Figure 12.11 Run time behavior of the statistical total power optimization algorithm (SOCP). 
This is compared to the runtime for solving the deterministic linear programming (LP) 
problem. Runtime grows linearly with circuit size. 

12.6 SUMMARY 

In this chapter, we have analyzed the impact of variability on power and 
its impact on circuit performance and yield. In the recent past it was suffi-
cient to model the impact of variability on timing. With high-end designs 
experiencing a double-sided squeeze on parametric yield due to the power-
dissipation limits, power variability needs to be explicitly taken into account. 
This requires the adoption of new analysis and optimization methodologies 
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that incorporate the notion of power-limited parametric yield loss. While 
there are currently no commercially available CAD tools for parametric 
yield optimization, the area of parametric yield analysis and optimization is 
rapidly developing, and it can be expected that such tools will soon appear 
on the market. Continued progress in this tool development area will help 
ASIC designers deal with variability in a far more effective fashion.  
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Power dissipation is becoming the most challenging design constraint in 

nanometer technologies. Among various design implementation schemes, 
standard cell ASICs offer the best power efficiency for high-performance 
applications. The flexibility of ASICs allow for the use of multiple voltages 
and multiple thresholds to match the performance of critical regions to their 
timing constraints, and minimize the power everywhere else. We explore the 
trade-off between multiple supply voltages and multiple threshold voltages 
in the optimization of dynamic and static power. 

The use of multiple supply voltages presents some unique physical and 
electrical challenges. Level shifters need to be introduced between the various 
voltage regions. Several level shifter implementations are discussed. The 
physical layout needs to be designed to ensure the efficient delivery of the 
correct voltage to various voltage regions. More flexibility can be gained by 
using appropriate level shifters.  

To conclude this chapter, we present a semi-custom design methodology 
which illustrates the benefit of a subset of these low-power optimization 
techniques using a DSP (digital signal processor) chip for satellite communi-
cation. Chips for satellite communications have very stringent requirements 
on power dissipation but require significant processing capability. These 
classes of chips are therefore an excellent test for a methodology that brings 
many of the low power optimizations together.  
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13.1 INTRODUCTION 

Power efficiency is becoming an increasingly important design metric in 
deep submicron designs. ASICs have a significant power advantage over 
other implementation methods. A dedicated ASIC will have a significantly 
better power-performance product than a general purpose processor or 
regular fabrics such as FPGAs. For designs that push the envelope of power 
and performance, ASIC technology remains the only choice. However, the 
cost pressures in nanometer technologies are forcing designers to push the 
limits of design technology in order to fully exploit increasingly complex 
and expensive technology capabilities. In this chapter, we discuss technology, 
circuit, layout and optimization techniques to improve the power delay 
product. We focus on the issue of pushing ASIC performance in a power 
envelope by exploiting the use of multiple supply voltages (Vdd) and 
multiple device thresholds (Vth). In Section 13.2, we discuss the trade-off 
between multiple Vdd and multiple Vth options to optimize power. In 
Section 13.3, we present novel design techniques to physically implement 
fine-grained generic voltage islands for multiple-Vdd implementations. In 
the context of multi-Vdd implementation, we also present some novel level 
conversion circuits which can be used to implement very flexible voltage 
island schemes. Finally, we present a design case study to show the relative 
impact of some design techniques in a low-power ASIC methodology. 

13.2 POWER-PERFORMANCE TRADE-OFF  
WITH MULTI-VDD AND MULTI-VTH 

This section explores the trade-off between multiple supply voltages and 
multiple threshold voltages in the optimization of dynamic and static power. 
From a dynamic power perspective, supply voltage reduction is the most 
effective technique to limit power. However, the delay increase with reducing 
Vdd degrades the throughput of the circuit. Similarly, to reduce static power 
an increase in Vth provides exponential improvements, again at the expense 
of speed. To counter the loss in performance, dual Vdd [5][33] and dual Vth 
[22][25][34] techniques have been proposed. These approaches assign gates 
on critical paths to operate at the higher Vdd or lower Vth and non-critical 
portions of the circuit operate at lower Vdd or higher Vth, reducing the total 
power consumption without degrading performance (held fixed as a cons-
traint). These techniques have been successfully implemented, but most of 
the existing work focuses on one of these techniques in isolation as opposed 
to jointly.  

Previous work [11] estimates the optimal Vdd and Vth values to be 
used in multi-voltage systems to minimize either dynamic or static power 
respectively. They confirm earlier work [32] claiming that, in a dual Vdd 
system the optimal lower Vdd is 60-70% of the original Vdd. In general, 



Pushing ASIC Performance in a Power Envelope 325
 
[10][32] have found optimized multi-Vdd systems to provide dynamic 
power reductions of roughly 40-45%. In [29], it is shown that intelligently 
reducing Vth in multi-Vdd systems can offset the traditional delay penalties 
at low-Vdd with lessened static power consequences (due to both the reduced 
Vdd and the off-state leakage current levels). In order to explore the achie-
vable design envelope in a joint multiple Vdd and Vth environment, we 
abstract a generic CMOS network as a set of non-intersecting parallel paths. 
We then formulate a linear programming problem to minimize power by 
assigning capacitance (representing gates) on these paths to a combination  
of supply and threshold voltages (assuming a known initial path delay distri-
bution) [26].  

We perform a path-based analysis of a generic logic network to estimate 
the power improvement obtained by applying multiple supply voltages and 
multiple threshold voltages. To simplify the problem, we assume node and 
edge disjoint paths, as stated above. We also assume that it is possible to 
apply a combination of supplies and thresholds to any fraction of the total 
path capacitance. This is equivalent to stating that extended clustered voltage 
scaling (ECVS) is used, which allows for asynchronous level conversion 
anywhere along a path [32]. While we do not explicitly consider overhead 
due to level conversion in most of this work, we describe various level 
converter topologies and the impact of their power and delay penalties. 

Consider Vdd1 and Vth1 to be the supply and threshold voltages in a 
single Vdd/Vth system. If Ctotal is the total path capacitance of a path, then 
the total dynamic power dissipation is simply expressed as 
 2

1dynamic totalP fC Vdd=  (13.1) 

where f is the frequency of operation.  
Considering the same path implemented in an n-Vdd/m-Vth design, we 

define Ci,j as the capacitances operating at a supply voltage Vddi and 
threshold voltage Vthj. If we define the capacitance (Ci) to be the capacitance 
operating at a supply voltage Vddi, it can be expressed as 
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m

i i j
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C C
=
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The total dynamic power dissipation can now be expressed as  

 2 2
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The first term in Equation (13.3) corresponds to the capacitance operating at 
Vdd1 and is obtained by subtracting the sum of the capacitances operating at 
voltages other than Vdd1 from the total path capacitance C1,1. Now the ratio 
of the dynamic power dissipation to the original design, obtained by dividing 
Equation (13.3) by Equation (13.1), can be expressed as 
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The static power can be expressed similarly. If Wtotal is the total device 
width (both PMOS and NMOS), then the static power dissipation due to 
subthreshold leakage, with Vdd1 and Vth1 only, is of the form 
 /1

1 10 Vth S
static totalP kVdd W −=  (13.5) 

where S is the subthreshold swing (typically given in units of mV/decade), 
and k is a constant depending on device parameters and temperature. The 
reduction in static power in low-Vdd devices is due to: DIBL; the lower Vdd 
itself; and other complex device-related phenomena such as the relationship 
among doping, Vth, and S [15]. DIBL occurs because the drain bias (Vds) 
creates a large drain/substrate depletion region, leading to a reduced Vth. 
The typical model for DIBL is linear with Vds: 
 0 dsVth Vth Vη= −  (13.6) 

In this model η is the DIBL coefficient and is typically in the range of 60 to 
110mV/V, and Vth0 is the nominal long-channel threshold voltage in the 
absence of DIBL. Since Vds is Vdd in typical leakage scenarios, a reduction 
in Vdd for a given device leads directly to a rise in Vth and an exponentially 
smaller subthreshold leakage current. To capture these effects we assume 
that static power is proportional to the square of the supply voltage rather 
than the linear relationship expressed in Equation (13.5). If Wi,j is the device 
width (both PMOS and NMOS) at supply voltage Vddi and threshold voltage 
Vthj then in an n-Vdd/m-Vth design, the static power can be expressed as 

//2 21
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The gain in static power is given by 
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While our results use Equation (13.8) to reflect the relationship between Ioff 
and Vdd, experiments using a linear (Vddi/Vdd1) term rather than quadratic 
to represent static power gains showed only minor changes in the overall 
power reductions and optimal Vdd/Vth values.  

The change in delay D when Vdd or Vth is changed is estimated using 
the alpha-power law model [23]: 
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To obtain the minimum power dissipation condition we note that at the 
minima 

 ( ) 0d s d sP P P P
x x x

∂ + ∂ ∂
= + =

∂ ∂ ∂
 (13.10) 

where Pd is the dynamic power dissipation and Ps is the static power 
dissipation, and x represents a design variable such as Vdd or Vth. Let Pd0 
represent the dynamic power in the initial design and Ps0 represent the static 
power consumption of the initial design. If we minimize a weighted sum of 
the gains, where the gains are as expressed in equations (13.4) and (13.8), 
we obtain 

 0 0( ( / )) ( / ) 0d d s sK P P P P
x x

∂ ∂
+ =

∂ ∂
 (13.11) 

which can be expressed as 
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Comparing equations (13.12) and (13.10), we infer that if we minimize a 
weighted sum of the gains in power and define the weighting factor K as the 
ratio of dynamic and static power at the initial design point (i.e., K=Pd0 /Ps0) 
we minimize the total power dissipation as well.  

As shown in [11], the capacitance and transistor width along a path are 
largely proportional to the path’s delay. Hence the ratios of widths in 
Equation (13.8) can be replaced by ratios of capacitance. At this point the 
problem of power minimization for given voltages and thresholds can be 
formulated as a linear programming problem with the ratios of capacitances 
as the variables.  

For an n-Vdd/m-Vth design, there is a corresponding design space over 
the allowed range of values for these supply and threshold voltages other 
than the initial supply and threshold voltage. For example, for a 2-Vdd/3-Vth 
design, points are of the form (Vdd2, Vth2, Vth3), where Vddi∈[0.6V, 1.2V] 
and Vthi∈[0.08V, 0.3V], and we assume that Vdd1 is fixed at 1.2V and Vth1 
is fixed at 0.3V. For each of these design space points (step size 0.01V 
between points), the problem is formulated and the ratios of capacitance 
corresponding to different path delays are obtained as a solution of the linear 
program. The ratios of capacitance are then integrated over the path-delay 
distribution to obtain the total capacitance operating at each combination of 
Vdd and Vth. Again, we define the weighting factor K as the ratio of the 
dynamic to static power in the original single Vdd/Vth design (e.g., K = 10 
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implies that 10/11 of the total initial power was dynamic). As described 
above, total power minimization is achieved by minimizing a weighted sum 
of the static and dynamic power. Hence the goal of total power reduction can 
now be expressed as 

 ( ),
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which can be simplified to 
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where t is the original path delay normalized by the critical path delay (i.e.  
t ≤ 1). The constraint in Equation (13.13) is obtained by multiplying the 
delay contributed by the fraction of capacitance Ci,j by the factor (Di,j – 1), 
which reflects the increase in delay. This increase in delay is added to the 
original path delay to obtain the final path delay. The constraint forces the 
delay of each path to be less than the critical delay of the network (which is 
normalized to 1), thus we maintain the operating frequency of f. Since paths 
are independent of each other, minimizing the power dissipation on each of 
the paths will lead to the minimum power of the complete logic network.  

To determine the power savings that may be achieved, we weight the 
occurrence of paths by how often a given delay t occurs, p(t). Any generic 
p(t) can be used within this framework to estimate the achievable power 
reduction using multiple supply and threshold voltages. Note that p(t) plays a 
key role in the optimization procedure through the constraint in Equation 
(13.14), although it does not actually appear in either Gaindynamic or Gainstatic. 
These gain terms only serve to compute the power reductions for a given 
Vdd and Vth assignment; they do not consider the validity of each given 
assignment with respect to the timing constraint. See [26] for further details.  

This general framework is similar to [11], but enables several key 
enhancements: 1) minimizes total power consumption, defined as the sum of 
static and dynamic components, 2) simultaneously optimizes both Vdd and 
Vth to achieve this goal, and 3) considers DIBL (drain-induced barrier 
lowering), which strongly limits the achievable power reduction in a multi-
Vdd, single Vth environment. Our results indicate that the total power 
reduction achievable in modern and future integrated circuits is on the order 
of 60-65% using the dual Vdd/Vth technique (Figure 13.1 and Figure 13.2). 
A key factor when optimizing a multi-Vdd/Vth system is the parameter K 
which is the ratio of dynamic to static power in the original single Vdd/Vth 
design, i.e., K = Pdynamic / Pstatic.  
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Figure 13.1 Breakdown of total power savings into static and dynamic components with dual 
Vdd/dual Vth, where Vdd1 = 1.2V and Vth1 = 0.3V.  
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Figure 13.2 Power reduction as a function of the second Vdd and the second Vth. 
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Figure 13.3 Future devices may be more velocity saturated, resulting in lower power 
consumption. 

Larger K values push the optimization towards lower Vdd and lower Vth 
to address the dominant dynamic power. An important finding is that the 
optimal second Vdd in multi-Vth systems is about 50% of the higher supply 
voltage, in contrast with a lower Vdd value of 60%-70% of the higher Vdd 
for single Vth designs as found previously. An implication of this finding is 
that level converter structures must be capable of converting over a larger 
relative range. This seems feasible provided the level converters themselves 
leverage multiple threshold voltages. However, the delay associated with the 
level converters themselves limits the amount of achievable power reduction. 
The inclusion of level conversion delay penalties demonstrates the trade-off 
between allocating available slack to level conversion and achievable power 
reductions. Typically, one to two asynchronous level conversions per path 
are tolerable in designs with larger logic depths (30+ FO4 delays) with 
<15% power penalty. Also, continued aggressive channel length scaling 
(without commensurate supply voltage reductions) and new device structures 
such as strained-Si channels point to increasingly velocity saturated (α closer 
to 1 in Equation (13.9)) devices that are ideal for voltage scaling (Figure 
13.3), since the drive current of a gate, and hence the gate delay, becomes 
less sensitive to reduction in supply voltage.  
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Figure 13.4 Dual-Vdd/Vth provides better power/delay criticality trade-off than dual-Vdd for 
same power. 

Additionally, we note the relationship between power savings and critical 
path density (which is defined to be the fraction of paths within 5% of the 
critical path delay); this is important since a rapidly increasing number of 
critical paths combined with rising process variability increases design times 
and emphasizes a need for incremental statistical timing analysis tools. Dual 
Vdd/Vth offers better control of the slack-power trade-off compared to dual 
Vdd only as shown in Figure 13.4.  

In future designs that are both power and variability-constrained, the 
design space of Figure 13.4 may become crucial. For designs that do not 
demand ultra low power, designers can avoid the physical design issues 
associated with the use of multiple supply voltages on a chip by aggressive 
scaling of a single Vdd combined with multiple device threshold voltages 
(as illustrated by the case study in Section 13.4). For instance, the use of 
1.2V as Vdd for 130nm technologies is commonplace and assumed in the 
above discussion. However, the use of a single 0.9V supply with a small 
subset of gates using an ultra-low Vth to maintain speed may yield lower 
overall power. To investigate this possibility, we use the same design 
space exploration tool as above to look at the efficacy of single Vdd/multi-
Vth design. Again, we normalize power to the single Vdd, single Vth design 
point.  
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Table 13.1 This table shows the power consumption that may be achieved using single Vdd 
and dual Vdd with dual Vdd and dual Vth, compared to an initial design point with single 
Vdd of 1.2V and single Vth of 0.3V. The columns on the right hand side of the table show the 
optimal supply and optimal threshold voltages (where the first threshold voltage was fixed at 
0.3V) for the single Vdd results.  

 

Dual Vdd/ 
Dual-Vth

Single Vdd/ 
Dual-Vth

Single Vdd/ 
Triple-Vth

Single Vdd/ 
Dual-Vth

Single Vdd/ 
Triple-Vth

Single Vdd/ 
Dual-Vth

Single Vdd/ 
Triple-Vth

1 0.34 0.54 0.48 1.20 1.10 0.44 0.25, 0.42
5 0.45 0.67 0.62 0.93 0.87 0.19 0.16, 0.23

10 0.43 0.63 0.56 0.89 0.81 0.17 0.14, 0.21
15 0.42 0.61 0.52 0.89 0.75 0.17 0.12, 0.19
20 0.41 0.58 0.49 0.83 0.75 0.15 0.12, 0.19
50 0.36 0.50 0.41 0.77 0.69 0.13 0.10, 0.17

Optimal Threshold     
Voltages (V) for

K

Minimum achievable power 
(normalized to single Vdd/Vth)

Optimal Supply       
Voltage (V) for

 

In Table 13.1 we see that the potential improvements from a single 
Vdd/multi-Vth system can be quite substantial especially when K is large. 
For a reasonable K value of 10, a single Vdd system can provide 65-77% of 
the gains that dual Vdd/Vth shows depending on the number of threshold 
voltages used (2 or 3). Furthermore, the numbers for dual Vdd/Vth do not 
include level conversion penalties so can be considered as best-case power 
reductions. Contrary to the dual Vdd case, the inclusion of a third Vth when 
a single optimized (flexible) supply voltage is used provides appreciable 
gains beyond the dual-Vth system. Since each extra mask step for an addi-
tional Vth level increases the wafer fabrication cost by 3%, use of multiple 
supply voltages by itself remains a very attractive choice for power-reduction. 
In the following section, we discuss the electrical and physical design issues 
of multiple Vdd implementations.  

13.3 DESIGN ISSUES IN MULTI-VDD ASICS 

Design of ASICs with multiple supply voltages presents some unique 
electrical and physical design challenges. In this section, we present some 
novel solutions to these challenges.  

13.3.1 Circuit Design Issues 

Electrically, to avoid excessive static power consumption between the 
low and high voltage regions, voltage level converters need to be inserted. 
Minimizing the overhead of level converter insertion while meeting inter-
facing constraints presents a significant challenge. In this section, we describe 
some novel level converter circuits which not only provide efficient delay 
and power characteristics but also enable very flexible physical design of 
multi-Vdd schemes.  
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Figure 13.5 Different dual-supply voltage designs for level converters. Transistors and the 
inverter with  indicate low-Vth devices. 

We have developed several versions of the low-energy asynchronous 
pass-gate (PG) based level converter from [10]. Figure 13.5 shows the two 
existing level converters (DCVS and PG) and the new level converters (STR1 
and STR6) [18]. The first, STR1, relies on a known high-performance dynamic 
logic technique of splitting the keeper into two devices to minimize the capa-
citive load on the actual gate. STR6, while including the technique used in 
STR1, employs the threshold drop of M5 to create a higher gate voltage for 
the pass-transistor and effectively speed it up. Transistor M6 is added to 
ensure that the gate voltage of M1 does not exceed VddL + VthM1 which 
would yield reverse leakage current into VddL (where VddL is the lower 
Vdd). In comparison to the DCVS (Differential Cascode Voltage Swing) 
level converter, STR6 is up to 25% faster at the optimal delay point or 
consumes up to 60% less energy at fixed delay. STR1 has a simpler design 
and enables 30- 40% lower energy than DCVS and 15-30% lower energy 
than the PG structure. Furthermore, we investigated the use of STR1 for 
embedded logic functionality and found that it is 4% faster with 55% lower 
energy than a 2-input NAND DCVS gate when VddL is 0.8V (VddH=1.2V, 
where VddH is the higher Vdd).  

Maintaining robustness is an important concern when circuits are oper-
ated at low voltages. Also, the circuits discussed above have a pass transistor 
at the input. They may thus appear to have more susceptibility to noise because 
of the lack of input isolation. However, as we explain below, this is not the 
case with these circuits since the exposed pass transistor is always tied high. 
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The proposed circuits were found to be closely comparable in robustness  
to the DCVS circuit and other standard logic gates such as inverters. While 
typical pass-transistor circuits require input isolation as they may pass erro-
neous values that are sampled on the output, the PG-based level converters 
in this work only use their pass transistor to pass the input voltage to an 
internal node that is connected to the gate of another MOSFET. Since the 
pass transistor is always ON, there is no chance of a noisy signal being 
sampled (i.e., disconnected from the input) and stored on the internal node. 
Thus, from a noise perspective the circuit becomes similar to the case where 
the input is tied directly to the gate of the pull-up PMOS (e.g., M3 in PG in 
Figure 13.5(b)). In particular, the problematic ‘Pass 0’ noise source [4] 
where a negative noise pulse on the input can turn ON an NMOS device 
with 0V at its gate and mistakenly pass a 0 to the output, cannot occur here 
since the input to the pass transistor is tied high. We studied and compared 
the robustness of the various level converters by adopting the following 
methods to represent typical on-chip switching behavior.  
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Figure 13.6 Level converter supply and process variation sensitivity. s1 is the percent spread 
of delay at ±10% Vdd corners measured from the typical corner with 1.0×Vdd. s2 is the 
percent spread of delay at fast and slow process corners from the typical corner with 1.0×Vdd. 
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Figure 13.7 Circuits for voltage level converter robustness analysis.  

We first studied the performance of the level converters at different 
process corners and with varying power supply voltage and temperature. 
This study gives insight into the sensitivity of each of the circuits to such 
variations. Results using VddL = 0.8V are shown in Figure 13.6. We studied 
the delay of all level converters with ±10% DC supply noise on both VddL 
and VddH, at 25°C and the typical process corner; with nominal Vdd at 0°C 
and the 130nm fast process corner; and with nominal Vdd at 100°C and the 
130nm slow process corner. The delay variation is nearly the same for all 
level converters and shows acceptable spread. For comparison, the FO4 
inverter delay in this technology varies by 18% and 51% for ±10% Vdd 
variation and fast/slow process respectively with these numbers rising to 
20% and 56% at reduced voltages.  

In addition, triangular noise pulses with base width of 80ps (2 FO4 
inverter delays) and peak magnitude of 0.3V (25% of VddH and 37.5% of 
VddL in this case) were applied as inputs to each of the level converters 
when they were sized for optimal speed. In all cases, there was no output 
glitching whatsoever, implying that these asynchronous level converters are 
tolerant of substantial input noise. The static voltage transfer characteristics 
all show large gain in their transition regions which are within 50mV of 
VddL/2 in all cases.  

Since circuit robustness is expected to be worst for the lowest supply 
voltages (VddL = 0.6V), we further investigated the robustness at such low 
voltages. We applied more pessimistic triangular noise pulses of width 
equaling 120ps (twice the FO4 delay at VddL = 0.6V) and varied the 
amplitude (Vpk) until the circuit failed (i.e., the output reaches 0.5 × 
nominal_output_high_voltage; the nominal_output_high_voltage for the level 
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converters in our studies is 1.2V, while for the inverter being studied for 
comparison here, it is 0.6V). Figure 13.7(a) shows this setup. We compared 
the DCVS and STR6 level converters to an inverter (with similar input and 
output capacitance) and observed that the circuit robustness of these circuits 
compares closely to standard logic gates such as inverters. Table 13.2(a) 
reports our results for this study. Here we have only reported numbers for 
STR6, since STR6 is expected to be more susceptible to noise because of the 
raised pass transistor voltage.  

We also studied a scenario where the level converter is a part of a larger 
dynamic circuit (Figure 13.7(b)). The input of the circuit under test acts as 
the victim line (a dynamic node with a weak keeper) and a capacitively 
coupled aggressor (operating at VddH) is considered as the coupling noise 
source. For a fixed ground capacitance of the victim line (10fF), the coupling 
capacitance was increased until the circuit failed. Table 13.2(b) summarizes 
our results for this study. The capacitance reported in the table is the coupling 
capacitance at which the circuit failed. A higher capacitance thus implies 
superior robustness. Under this scenario too, we found the level converters 
to be at least as robust as the inverter (i.e., required a larger amount of 
coupling capacitance and hence coupled noise). 

The scenario described by Figure 13.7(a) was also examined in the pre-
sence of +10% DC supply noise on both VddH and VddL to test the circuits 
under even more aggravated noise conditions. Table 13.2(c) reports results 
for this study. Again, we observe that the level converters are comparable in 
robustness to the inverter. 

 

Table 13.2 Level converter robustness analysis with VddL of 0.6V, compared to an inverter. 
Glitch Type Inverter DCVS STR6

Positive-going (higher value means more robust) 0.48V 0.53V 0.53V
Negative-going (lower value means more robust) 0.06V 0.14V 0.16V  

(a) The failure voltage of the circuits is tabulated below for both polarities of noise glitches at 
the input (positive glitch starting and settling at 0V, e.g. 0V → 0.48V → 0V, and negative 
glitch starting and settling at VddL, e.g. 0.6V → 0.06V → 0.6V).  

Aggressor Swing Direction Inverter DCVS STR6
VddH to 0V (higher value means more robust) 6.5fF 5.8fF 7.6fF
0V to VddH (higher value means more robust) 9.4fF 11.2fF 10.2fF  

(b) The failure coupling capacitance is tabulated below for both swing directions (VddH to 
0V, and 0V to VddH) of the aggressor. 

Glitch Type Inverter DCVS STR6
Positive-going (higher value means more robust) 0.51V 0.56V 0.56V
Negative-going (lower value means more robust) 0.09V 0.18V 0.19V  

(c) The analysis in (a) above is repeated in the presence of +10% VddL and VddH variation.  
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(b) The same level converter design 
approach with embedded NAND2 
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Figure 13.8 Voltage level converters that require only a single VddH supply rail.  

Level converters presented above require both a high and low power 
supply for level conversion. This limits the physical placement of such level 
converters to the boundary of high and low voltage designs which restricts 
the physical design flexibility. To address this, we developed a novel asyn-
chronous level-converter, which requires only one supply (VddH) to convert 
the incoming low voltage signal to the higher voltage making its placement 
much more flexible [21] in the entire high voltage regions. In addition to the 
single supply advantage, this converter exhibits a significantly improved 
power dissipation compared to the traditional DCVS converter.  

Figure 13.8 shows the new voltage level converter that requires only  
a single supply rail. We utilize the threshold drop across the n-channel 
MOSFET n1 to provide a virtual low-supply voltage to the input inverter 
(p2,n2).  

Section 13.2 discussed the optimal low-supply voltage in a dual-supply 
design, which was generally found to be 40% below the high supply voltage. 
However, scaling of Vdd is limited to by how low Vth can be scaled – 
otherwise drive current is degraded (e.g. consider reducing Vdd in Equation 
(13.9) without reducing Vth – the delay gets worse). To maintain good CMOS 
performance characteristics, it is desirable to have the ratio of Vth/Vdd 
below 0.3 [31]. Scaling of Vth is limited due to exponentially increasing 
subthreshold leakage as Vth is reduced (see Equation (13.5)). To prevent 
excessive power consumption due to subthreshold leakage, the threshold 
voltage is limited to about 0.2V at 100°C [31]. Thus in sub-100nm techno-
logies, the supply voltage cannot be scaled much below 1V. Typically, the 
low supply in sub-100nm designs will be limited to 25-30% below the high-
supply voltage.  
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Figure 13.9 Comparison of the delay of the DCVS level converter with the single-supply 
level converter versus the voltage for the low supply. 
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Figure 13.10 Comparison of the total power of the DCVS level converter with the single-
supply level converter versus the low supply voltage, with a switching activity of 0.1 (where a 
switching transition is 0-1-0 or 1-0-1). 
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Figure 13.11 Comparison of the leakage power of the DCVS level converter with the single-
supply rail voltage level converter versus the low supply voltage value. 

Figure 13.9, Figure 13.10 and Figure 13.11 show that when compared to 
the traditional DCVS level converter (in 130nm Cu-11 technology with 
nominal Vdd=1.5V), the new converter achieves up to 5% less delay, and 
consumes approximately 50% less total power and 30% less leakage power, 
in the nominal operating range of the low-voltage supply. The biggest advan-
tage of this level converter is its flexible placement which enables efficient 
physical design of fine-grained voltage islands as discussed in the following 
section.  

13.3.2 Physical Design Issues 

Most of the previous work [35] in multi-Vdd designs has mainly focused 
on Clustered Voltage Scaling by Usami et al. [33]. Unfortunately, this metho-
dology enforces a rigid circuit row based layout of high and low voltage 
cells. This can be overly restrictive as it may require significant perturbation 
in location of timing critical cells thereby degrading performance. In this 
section, we present some physical implementation schemes based on voltage 
islands which have more flexibility in their layout.  

13.3.2.1 Macro based Voltage Islands 

Recently, a new voltage island methodology to enable multiple supply 
voltages in systems on chip (SoC) was introduced [19] which allows various 
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functional units of the ASIC/SoC to operate at different voltages. This voltage 
island methodology can be used in variety of designs. For example, in an 
SoC that integrates a processor core with memory and control logic, the 
performance critical processor core requires highest voltage to maximize  
its performance. However, the on chip memory and control logic may not 
require the highest voltage operation and can be operated at a reduced voltage 
to save significant active power without compromising system performance. 
In addition, voltage flexibility at unit level allows pre-designed standard 
components from other applications to be reused in a new SoC application. 
Voltage islands can also facilitate power savings in battery powered appli-
cations which are more sensitive to standby power. Traditionally, designers 
use power gating [16] to limit leakage current in quiescent states. The use  
of voltage islands at functional unit level in a SoC provides an effective 
physical design approach to gate the power supply of the entire macro in 
order to completely power it off. 

13.3.2.2 Fine-Grained Generic Voltage Islands 

The macro-based voltage island methodology is targeted towards an 
entire macro or functional unit being assigned to a different voltage. For 
designs that are highly performance critical as well as severely power cons-
trained, it is useful to have a finer grained control over the supply voltages 
for ASICs or even within a macro/core in an SoC. We propose a flexible 
physical design approach that allows generic voltage islands and enables a 
fine grained implementation of the dual-supply voltage assignment in a 
placement driven synthesis framework [6]. A generic voltage island structure 
with power grid is shown in Figure 13.12, where we can assign different 
voltages at both macro and cell levels. It has more freedom in terms of 
layout style by allowing multiple voltage islands within the same row. A 
generic design flow is built on top of IBM’s placement driven synthesis 
(PDS) design closure tool [8]. PDS integrates logic synthesis, placement, 
buffering, gate sizing, and multiple threshold voltage optimization [20].  

The overall flow with generic voltage islands is as follows. First, PDS 
timing closure is run with the entire circuit timed at VddH. For deep sub-
micron circuits, interconnect delay dominates the gate delay. Thus we need 
rough placement information to identify critical versus non-critical cells. 
Once PDS reaches a later stage of optimization, e.g., global placement is 
determined and timing is more or less closed, we can perform the generic 
voltage island generation, by assigning non-critical cells to a lower supply 
voltage. 
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Figure 13.12 Generic voltage island layout style. 

To minimize the physical design overhead, we consider two kinds of 
adjacencies during VddL macro/cell selection. One is the logic adjacency, 
i.e., the low voltage cells are as contiguous as possible in signal paths to 
minimize the number of level shifters. The other is the physical adjacency, 
i.e., low voltage cells are physically close to each other, so that it is easy to 
form voltage islands.  

Since the generic voltage islands are implemented within the framework 
of PDS, we can employ various optimization engines during voltage assign-
ment, e.g., to trade-off gate sizing with voltage assignment. After voltage 
assignment, low and high voltage cells are clustered to form the fine grained 
generic voltage islands. The clustering step requires the knowledge of power 
grid topology which is co-designed with this placement in order to enable a 
flexible placement of fine grained voltage islands. We first define the power 
grid patterns to facilitate the placement movement. They are computed based 
on the cell locations that are assigned to high and low voltage cells. Then we 
will move cells locally (while trying to maintain the original cell order) to 
form VddL and VddH islands.  
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Figure 13.13 A processor with generic voltage islands.  

Traditionally, a dual-supply DCVS level converter is used to interface 
signals across VddL and VddH voltage islands Since DCVS level converters 
require both VddL and VddH supplies, their placement is limited to the 
boundary of low and high voltage islands where both the supplies are easily 
available. To remove this placement restriction on level converter, we utilize 
the single supply voltage level-converter (Figure 13.8). Since this converter 
requires only VddH supply, it can be placed anywhere in the VddH voltage 
islands, thereby enabling much more flexible placement. This results in 
significantly smaller physical design overhead for level converter insertion 
as the converters can be inserted in uncongested regions. We have applied 
this generic voltage island approach to an IBM processor core in 130nm  
Cu-11 technology with approximately 50,000 cell instances with VddH = 
1.5V and VddL = 1.2V. Figure 13.13 shows the layout of this processor 
designed using generic voltage islands which resulted in 8% total power 
savings without any delay or area penalty.  

13.3.3 Issues in using multiple threshold voltages 

Using cells with multiple threshold voltages has power-performance 
benefits, as discussed in Section 13.2. Even though using multiple threshold 
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voltages in a design is relatively easy, it is not free by any means, and does 
require changes to library creation and the design flow. We discuss some of 
the issues in using multiple threshold voltages in this section.  

As has been mentioned in Section 13.2, each additional Vth level incre-
ases fabrication cost by 3%. Two to three Vth levels are common in today’s 
technologies. Cost sensitive ASICs often use two threshold levels, or even a 
single threshold level. Using three threshold levels is more common in high-
performance processor designs. A low threshold device in 90nm technology 
can have leakage more than 30 times the leakage of a regular threshold 
device with the same area but has only 15% better performance. Hence it 
should be clear that only a small percentage of the total devices in the design 
can be low threshold devices. 

From a design point of view, using multiple threshold voltages has only 
a small effect on the design flow, which is a big advantage, unlike voltage 
islands which require major changes such as modifying the power grid and 
the introduction of level converters. Mixing devices with different thresholds 
does introduce extra placement constraints between the devices. But the 
constraints are usually enforced during library design in the layout of the 
library cells. Hence no additional constraints need to be enforced in the rest 
of the design flow. 

Having multiple threshold devices increases the library size by 2× or 3×. 
Since a larger library increases runtimes of synthesis tools, a typical design 
flow will use only regular-Vth cells during the synthesis and placement 
phase even if multiple threshold voltage cells are available. A second reason 
for not using multiple thresholds during the initial synthesis phase is that 
most tools are not leakage aware. Allowing leakage-insensitive tools to use 
low Vth cells will lead to a design with high static power dissipation. Hence 
low threshold cells are usually used in a post-processing step by path-delay 
optimization tools which are leakage aware.  

It should be pointed out that an insensitive partitioning of the design flow 
into a first phase using only regular Vth cells and post-processing steps with 
low Vth cells may not be always wise. If the cycle time is aggressive, and 
only regular Vth cells are available, tools can increase the power by upsizing 
the regular Vth cells needlessly to try to achieve the cycle time in the first 
phase. A smarter modified methodology could be to use a less aggressive 
cycle time during the initial phase which uses only regular Vth cells, and 
pushing for the aggressive cycle time during the post-processing phase with 
low Vth cells.  

In the next section, we discuss a power and performance critical design 
for satellite applications that was designed using a semi-automatic design 
flow using two supply voltages and two threshold voltages. 
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Figure 13.14 The seven macros of the DEMOD ASIC chosen for the case study and their data 
flows. The ADC is the analog to digital converter; the FIR filters are finite input response 
filters; and FFT is the fast Fourier transform.  

13.4 CASE STUDY 

Modern communications satellites, as well as many military applications, 
require significant on-board digital signal processing (DSP) capabilities, 
enabled by application-specific integrated circuits (ASICs). Such systems 
are also driven by severe size, weight, and power constraints. For satellites, 
power is most critical due to limitations on generation and heat removal, as 
well as need for high reliability. Such systems are equally hard driven by 
cost and schedule.  

In this section, we focus on the application of semi-custom design tech-
niques for high-performance, yet power efficient DSP ASICs. We evaluate 
the feasibility of significant improvements over today’s state-of-the-art near 
custom chip performance with an ASIC-like cost and schedule. Specifically, 
we will discuss a synthesis and physical design methodology to reduce the 
performance (delay) × power metric for DSP ASICs.  

The classes of DSPs we are looking at are the fixed function, real-time, 
distributed (FRD) DSPs. In a FRD DSP, processing elements and memory 
are allocated exactly where needed to execute a fixed data flow algorithm. 
At the other extreme of DSP architectures is the software programmable 
DSP, with centralized compute and memory resources. Our experience, as 
well as studies by University of California Berkeley (UCB) [7], finds that 
the FRDs are about 50× more power efficient than the processors. While the 
ASIC designs investigated in this case study are “mission specific”, the 
design techniques are suitable for a wide range of applications. 

We identified a representative FRD DSP class circuit from existing 
Boeing communications satellite ASICs for intensive benchmarking of the 
semi-custom design methodology. Specifically, we chose a subset of the 
DEMOD ASIC, a critical component of the SPACEWAY™ communication 
satellite DSP unit [28]. The original chip is about 2.3 million gates in 
complexity and implemented in IBM’s 0.18um SA-27 ASIC technology. For 
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this work we decided to use IBM’s Cu-11 0.13um technology, and we 
focused on the critical seven-macro subset consisting of Hilbert Transform, 
FIR filter (3), and FFT (3) macros shown in Figure 13.14. The subset 
requires about 240,000 logic gates and 42 KB of register array —about 20% 
of the full DEMOD design. To ensure that the design optimization work was 
sufficiently challenging, we scaled the target clock rate from 83 MHz in SA-
27 to 175 MHz in Cu-11. After re-mapping the design to Cu-11, we ran the 
baseline flow, followed by application of a subset of the semi-custom 
techniques to optimize for low power.  

13.4.1 The Relative Power Performance Metric 

To evaluate the contribution of the various design steps on the quality of 
the design as well as evaluating the final design, we used the Relative Power 
Performance (RPP) metric. The Power Performance (PP) metric is defined 
as the product of the delay or performance of the design, and the power  
of the design, i.e., PP = power × performance. The initial design point has  
a RPP of 1.0, and any other design point has a RPP which is given by 
PPinitial_design_point/PPnew_design_point. A higher RPP implies a faster or less power-
hungry implementation, i.e. a more efficient implementation. 

To measure the delay, the netlist was placed and Steiner routing was 
performed. Thus realistic wire delay and load models were used for timing 
closure and for measuring the path delays. Accurate load calculation is 
important for selecting the sizes of the gates, and this in turn affects area, 
path delays and power consumption of the circuit.  

A power estimation methodology is fundamental to exploring power-
performance tradeoff. We consider both active and leakage power com-
ponents while estimating the power consumption. Active power dissipation 
depends on the total capacitance being switched, the switching factor, the 
clock frequency f and the operational voltage Vdd. The following equation 
gives the details of the power calculation: 

 
2

_ _
 _  _

( )

         

total dd logic nets net clk nets net
logic nets clk nets

macros leakage

P fV C C

P P

σ σ
∀ ∀

= +

+ +

∑ ∑
 (13.15) 

where 
 ( _ )

 _ _  _ _
net pin wire internal source gate

pins on net wires on net

C C C C
∀ ∀

= + +∑ ∑  (13.16) 

Cnet is the total capacitance of each net comprising of the pin capacitance 
Cpin, the wire capacitance Cwire, and the internal gate capacitance of the 
driver Cinternal(source_gate). σlogic_nets is the average switching factor of the logic 
nets, and σclk_nets is the average switching factor of clock nets. Pmacros is the 
average power of hard macros (e.g., arrays), and Pleakage is the leakage power. 



346 Chapter 13
 

In our ASIC design experience, Steiner tree length correlates relatively 
well to post-routing net length, especially when the same Steiner algorithm 
is used through various routing stages. Therefore we extracted detailed 
parasitics on the Steiner routing estimates to calculate total wire capacitance 
Cwire loading the gates.  

We assumed a value of 0.1 for the average switching factor of the logic 
nets σlogic_nets, and 1.0 for the average switching factor of the clock nets 
σclk_nets (in this chapter by switching activity we refer to a complete switching 
transition, i.e., 0-1-0 or 1-0-1). Since the focus is on exploring power-
performance tradeoffs, relative power comparisons among various design 
points are the primary focus rather than the absolute accuracy of total power. 
Thus using approximate values for the switching factors is justified.  

Since leakage power, Pleakage, increases exponentially with decreasing 
threshold voltages, this component plays a crucial role in deciding the 
amount of lower threshold voltage cells we could accept in the design in 
order to gain performance. The power numbers are computed at the worst 
case process corner for power which is not necessarily the worst case 
process corner for delay. We consider leakage power in our calculations by 
averaging over the input state space, i.e., for a two input gate, the average 
power over input values “00”, “01”, “10” and “11” is used.  

13.4.2 Baseline Flow 

We used a traditional flow to establish a baseline against which we could 
compare a semi-custom flow targeting low power implementations. For the 
baseline design flow we deployed IBM’s BooleDozer [27] logic synthesis 
system, Cplace [13] placement program and Xrouter [12] for routing. In this 
“traditional” baseline flow, synthesis and physical design are separate steps, 
interconnect estimation is based on wireload models during the synthesis 
stage, and there is no automated post-placement timing correction. The 
design was partitioned into seven regions for floorplanning based on the top 
level macros mentioned in Section 13.4. The floorplan is shown in Figure 
13.15. The design from the baseline flow can be run at a frequency of 
94MHz and dissipates 106mW (column 2 of Table 13.4).  

13.4.3 Semi-custom flow for low power designs 

The proposed semi-custom flow is illustrated in Figure 13.16. In the pre-
synthesis stage, bitstack components are inferred. Gain-based synthesis is 
used to take advantage of finer grained libraries, and to avoid the use of 
wire-load models during the synthesis stage. After logic optimizations in 
synthesis, the final netlist is placed and routed (using Steiner tree routes) by 
our Placement Driven Synthesis tool (PDS) [8]. PDS is IBM’s optimization 
tool that combines placement, synthesis and global wire optimization to 
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do timing-driven placement and synthesis. In the PDS stage advanced 
custom logic techniques such as low-Vth and voltage scaling were applied 
to minimize the area and power terms in the DAP metric. The various steps 
of the semi-custom flow are explained in more detail in the following sub-
sections. 

Figure 13.15 The placed design for the baseline flow. The seven macros are shaded gray or 
white alternately. Compare this figure with Figure 13.4. 

Figure 13.16 Semi-custom design flow for low power.  
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13.4.4 Arithmetic Optimizations 

A detailed study of the critical paths revealed many adders in series, 
often coming out of multiplier structures. The arithmetic expression optimi-
zations using the IBM behavioral synthesis tool Hiasynth [3], including tree-
height balancing and carry-save adder (CSA) implementations, resulted in 
significantly improved area and delay. The clock frequency increases from 
94 to 145MHz, as can be seen in column 3 of Table 13.4 (see Section 
13.4.10), due to the critical path reduction in the arithmetic trees. The area 
for the unoptimized and optimized arithmetic circuits is almost equal at the 
beginning of logic synthesis. But since the former has much longer paths, 
logic synthesis tries to meet the timing constraint for the former by using 
larger cells and larger buffers. A direct implication of using smaller sized 
cells and a smaller number of buffers for the arithmetic optimized circuit is 
that power consumption is significantly reduced, from 106mW to 86mW  
at 94MHz, but increases to 134mW at the best frequency of 145MHz 
(comparing columns 2 and 3 of Table 13.4).  

13.4.5 Semi-Custom Bitstacks 

Since the FRD DSPs have many adders and multipliers, we investigated 
fast implementations of such circuits including carry-lookahead adders and 
Wallace tree multipliers [14].  

However, bitstacked implementations (Figure 13.17) go one step further 
by paying attention not only to the number of levels of logic required to 
implement the operations, but also creating an implementation which can 
have a compact placement with very short wires. We mapped the adders and 
multipliers in the design to the bitstack implementations for IBM’s Cu-11 
technology. The bitstack generator also takes in an argument that controls 
the drive strength of the unit that is generated. The size chosen ensured 
that the output cells of the bitstacks have sufficient strength to drive the 
loads at the outputs of these bitstacks. By not applying synthesis on the bit-
stacks, we guarantee that the bitstacks can be placed exactly in their row/ 
column scheme. Bitstacking regular arithmetic units can have a significant 
impact on delay, area and power. Near zero slack was reached after inserting 
the bitstacks while power consumption at the higher frequency of 177 MHz 
was only 107mW compared to 134mW for the arithmetic optimized only 
design (columns 3 and 4 of Table 13.4). 

However we noticed several things about the DEMOD design which 
prompted us to optimize the bitstacks using synthesis though this involved 
sacrificing the built-in regularity of the bitstacks. Several bitstack compo-
nents had constant signals as inputs. Constant propagation would allow many 
gates to be optimized away. In addition, redundancy removal could use this 
information to optimize other portions of the design.  
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Secondly, the outputs of the bitstacks had significantly different loads. 
Selecting a bitstack component that would not cause any violation at any of 
its outputs leads to significant overdesign. To overcome the above sources of 
sub-optimality, we selected a small size implementation for all the bitstack 
components and did not protect them from synthesis. This allowed many 
gates to be optimized away due to constant propagation. It also allowed 
resizing to close on timing by automatically choosing the most optimal gate 
sizes. Even though the regularity was lost, PDS used the connectivity and 
timing constraints effectively to place the bitstacks in close regions as can be 
seen from the placement view shown in Figure 13.18. This improved the 
Relative Power Performance metric to 1.86 in column 4 of Table 13.4.  

Figure 13.17 An illustration of a bitstack layout. Logic in a bit is placed in a column. Several 
columns are stacked side-by-side from left-to-right. The control signals are routed vertically. 

 
Figure 13.18 Placement view with the darker regions showing compact placement of three of 
the bitstack components. 



350 Chapter 13
 
13.4.6 Fine-Grained Libraries 

In a full custom methodology, a designer has the option to size each 
transistor exactly to match the load that it is driving. This allows for delay 
and especially power and area optimization. In ASIC design using conven-
tional standard cell libraries, limited choices are available in cells sizes for 
each function. For example, an inverter is only available in four or five 
standard sizes. An oversized cell is typically chosen to drive a particular load 
in order to meet the delay and slew (rise time) constraints on the cell outputs 
since a smaller cell would violate these constraints. However, a large cell 
reflects a large load back to its inputs, requiring its input to be upsized as 
well. This works its way all the way back to the inputs of the synthesized 
partition and all gates are sized larger than necessary. One way to prevent 
this is to use a fine-grained library with many more sizes for each type of 
cell. Unfortunately, adding many cell sizes to a library slows down conven-
tional synthesis considerably since most synthesis algorithms resize by looping 
through all cell sizes and will be penalized with at least a linear slow down. 
Gain-based synthesis [2] avoids this problem, by using a single delay equation 
for all sizes of a particular cell type. Only in the final part of synthesis or 
after placement the actual size of a cell is calculated.  

Gain-based synthesis also addresses the wireload problem of traditional 
synthesis algorithms. In designs like the DEMOD, dominated by low fan-in 
and low fan-out arithmetic logic gates, the wireload models shipped with a 
technology which are design independent are on average too pessimistic. 
When designs are synthesized with overly pessimistic wireload models, 
large cells are chosen to satisfy the timing and slew constraints for the given 
wireload. Placement places these larger cells further apart, resulting in longer 
wires that need to be driven. A better approach therefore is to start with  
a design that is minimally sized, and leave the final sizing up to a design 
closure tool like PDS which is able to place and optimize the netlist simul-
taneously. Gain-based synthesis does not require wireload models for its 
delay calculations. Since the load has been removed from the delay equation, 
good delays can be predicted without the use of wireload models. This 
allows us to create a realistic sized design in synthesis before placement, and 
to obtain timing closure more quickly. Applying gain-based synthesis without 
wireload models to our DEMOD macros result in a final power of 93mW 
and a RPP of 2.15.  

13.4.7 Maximizing Frequency 

When positive slack is present in the design it can be traded off for 
power reduction through voltage scaling. To find out how much extra slack 
existed in the design we re-ran PDS to target the fastest possible design at 
1.2V. The fastest design we could obtain was at 193MHz (at a cost of 17% 
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more power) because of a register file to register file cycle limiting path as 
shown in column 6 (1.2V fast) in Table 13.4. 

13.4.8 Voltage Scaling 

Since the maximum frequency is significantly higher (193MHz compared 
to the required 177MHz), we had the opportunity to trade performance for 
power. To do this, we reduced the supply voltage from 1.2V to 1.1V. This 
produced a large number of negative slack paths. We then used PDS to re-
close timing at the original cycle time but at 1.1V. The 1.1V design, in 
column 7 of Table 13.4 uses approximately 16% less power at the target 
performance of 177 MHz compared to the 1.2V design in column 5. To 
study the effect of voltage scaling further, we reduced the voltage to 1.0V 
and 0.9V (the minimum voltage allowed in the Cu-11 technology). However, 
to keep the performance at 177MHz we had to apply Low Vth transform-
ations as will be discussed in the next section. 

13.4.9 Low-Vth Logic and Voltage Islands 

The use of lower threshold devices increases device performance along 
with increasing its sub-threshold current, i.e., leakage power. So, use of low 
Vth devices is restricted to timing critical paths in order to avoid excessive 
increase in leakage current, especially in mobile low power applications. In 
addition, the increase in quiescent current also interferes with IDDQ fault 
testing. IBM’s Cu-11 ASIC library includes a low Vth version of each cell. 
These elements have the same layout footprint but higher performance 
than their nominal Vth counterparts. We made use of these low Vth cells to 
recover some performance lost through voltage scaling with very little power 
increase by utilizing the low Vth optimization capability in PDS. PDS low 
Vth optimization substitutes cells on critical paths with their equivalent low 
Vth versions and dynamically updates the critical paths information. This 
substitution of low Vth cells is guided by the dynamic analysis of leakage 
power and can be constrained by a maximum limit on the leakage power 
increase.  

By applying the multi-Vth operations in PDS, we were able to keep the 
performance at 177MHz and reduce the power to 64mW at a 1.0V operating 
point compared to 78mW at 1.1V. The total power savings more than offsets 
the increase in leakage power (leakage increased from 0.24mW to 2.3mW). 
It should be pointed out that at smaller technology nodes, leakage will be a 
much higher percentage of total power, and leakage increase will require 
more attention. 

We also used PDS to further lower the supply voltage after selective low 
Vth substitution. This experiment had some interesting outcomes. PDS low 
Vth substitution allowed us to lower the supply voltage all the way to 0.9V 
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before any combinational path became critical. This allowed power to be 
reduced to a very low value of 46mW. However the register arrays demon-
strated large performance sensitivity to voltage reduction. The critical path at 
0.9V was a register array to register array path, which could not be tuned by 
PDS and which prevented us lowering the overall voltage to 0.9V while 
maintaining the desired frequency. In the future we will experiment with 
placing these sensitive arrays in separate voltage islands [19] which would 
allow the chip logic supply voltage to be scaled separately from the array 
supply voltage.  

13.4.10 Results  

To evaluate the relative contributions of the optimizations, all results are 
reported after place and route. We turn on the optimizations one-by-one and 
run the baseline flow for the remainder to get to a final design.  

The power consumption for the clock tree, flip-flop data and clock, 
random logic, and register array are listed in Table 13.3, with the leakage for 
the whole design. Most of the base line’s power (68%) is due to the random 
logic, but the power for the random logic is more than halved after the 
optimizations, and contributes all the power savings prior to voltage scaling. 

Table 13.4 summarizes a general improvement of the RPP metric that 
tracks the increasing sophistication of the semi custom flow. The final result 
of the voltage scaled gain-based PDS flow has a combined metric improve-
ment factor of 3.13. As can be seen from the table, for the case of a single 
voltage for the whole design, aggressive voltage scaling to 1.0V with multi-
Vth optimizations provides the best power-performance tradeoff with an 
RPP metric of 3.13. Allowing two voltage islands with the majority of the 
design at 0.9V and the register arrays at 1.0V improves the metric further 
to 3.47. 

The progression of the optimization steps can be summarized from a 
second viewpoint. To maximize performance and minimize power, the 
design was divided into two voltage islands. One voltage island had the 
register arrays operating at 1.0V. The second voltage island had the rest of 
the logic operating at 0.9V. To drive down the operating voltage of the 
voltage island with the logic from a 1.2V to 0.9V, aggressive synthesis and 
selective insertion of low Vth cells were used. The above approach towards 
design optimization represents a general optimization scenario for industrial 
designs. The design is split into a small number of voltage islands, usually 
two, and then each voltage island is optimized aggressively using a combi-
nation of low threshold devices and voltage scaling.  



Pushing ASIC Performance in a Power Envelope 353
 
Table 13.3 Distribution of power consumption (mW) in the design. 

Base Line Bit Stack

Finer 
Grained 
Library

Voltage 
Scaling 
(1.1V)

Clock 11.9 18.4 15.6 13.1
Flip-flop Data 9.3 17.5 14.6 12.2
Flip-Flop Clock 4.0 7.5 7.5 6.2
Logic 72.2 48.1 39.8 33.4
Register Array 7.9 15.0 15.0 12.5
Leakage 0.3 0.3 0.3 0.3
Total 105.7 106.8 92.7 77.7  

Table 13.4 Tracking the relative power performance (RPP) metric with the design 
optimizations.  

Base 
Line

Arithmetic 
Optimizations

Bit 
Stack

Finer 
Grained 
Library

fast 
1.2V 1.1V 1.0V 0.9V

Power (mW) 105.7 133.9 106.8 92.7 108.1 77.7 63.6 45.7
Performance (MHz) 94 145 177 177 193 177 177 141
Power Savings -26.6% -1.0% 12.4% -2.2% 26.5% 39.9% 56.8%
Relative Power 
Performance 1.00 1.22 1.86 2.15 2.01 2.56 3.13 3.47  

13.5 SUMMARY 

In this chapter, we explored the trade-off between multiple supply 
voltages and multiple threshold voltages in the optimization of dynamic and 
static power which can result in 60% power savings. Novel solutions to the 
unique physical and electrical challenges presented by multiple voltage 
schemes were proposed. We described a new single supply level converter 
that does not restrict the physical design. A power performance improvement 
of ×3.13 was obtained by applying some of these optimization techniques to 
a hardwired DSP test case. In this, electrical optimizations such as voltage 
scaling, multi-threshold optimization and the use of finer grained libraries 
enabled 1.7× improvement and the remaining 1.9× was enabled by high level 
arithmetic optimizations and bitstacking. 
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Figure 13.19 The placed design for the semi-custom flow. 
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14.1 INTRODUCTION 

Methodologies for ASIC design have been seen as lagging behind 
custom design methodologies for a long time. With process migration to 
90nm and below, ASIC design methodologies are fast catching up with 
custom design methodologies.  

An economic driver for ASICs is the increasing demand for mobile 
and consumer devices. These devices have smaller form factors. They are 
becoming part of everyday life with high usage, and need to be robust. 
For example, a device that combines cellular telephony with a PDA is used 
many times during the day without recharging. This is forcing designers 
to look at power as an important metric when they design chips for these 
devices. Such low power designs are becoming more and more common-
place.  

Low power has always been the forte of custom design methodologies. 
Whether in system design, process and logic selection or implementation, 
low power design was handled by specialist designers using custom tools. 
Increased demand for mobile and consumer applications with high device 
integration have pressured circuit designers to adopt faster, automated design 
approaches. Synthesizable application specific designs can meet these time-
to-market needs with moderate power consumption, but to achieve lower 
power custom design approaches must be adopted and automated.  

Many EDA companies are addressing this challenge to translate custom 
low power methodologies into a more generalized methodology. These metho-
dologies are validated through designing prototype chips. One such project 
was completed recently to validate a low power methodology including voltage 
scaling for controlling power. This chapter talks about this project and outlines 
the designer choices and the decisions as the project progressed. Emphasis 
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was given to getting maximum power reduction without changing the under-
lying architecture nor using a specialized process technology. 

14.2 PROJECT OBJECTIVE  

A variety of power management techniques have been developed and 
applied to date, but most of these would require extensive design expertise or 
manual implementation process. The team developed a design methodology to 
reduce power dissipation of a typical microprocessor, resulting in an easily 
adoptable power management solution that neither requires complex archi-
tecture nor expensive low power process technology. The team wanted to 
evaluate the power reduction from the design flow choices independent of 
any superior architecture or fancy process technology. Design description  

The integrated circuit that the team developed, which included an 
ARM1136JF-S microprocessor and related circuitry, was designed to func-
tion in an ARM system development board, ARM RealView® [1]. The major 
components of this chip include the microprocessor core; the ETB11 and 
ETM11 trace bus and memory functions; and a multi-level advanced high 
performance bus (AHB) at the chip level to connect the AHB Lite ports of 
the core for accessibility from the external pins of the device. The bus 
structure also allows access to the 128 KB on-chip RAM to enable data 
transfers from any four ports concurrently [4][6]. The test chip is shown in 
Figure 14.1. 

Blocks shown on the test chip on the left of the ARM1136JF-S in Figure 
14.1 are the ARM MBIST (memory built-in self test) logic for testing 
memories; JTAG (Joint Test Action Group) IEEE standard test access port 
(TAP) and boundary scan logic; external and internal clock muxing logic, 
and logic generating the reset signal; and coprocessors for validating the 
chip.  

In the ARM1136JF-S, the ARM11 core is an implementation of the 
ARMv6 running 32-bit ARM, 16-bit Thumb and 8-bit Jazelle instructions. 
The vector floating point coprocessor supports scalar and vector arithmetic 
on vectors with up to four double precision elements [4]. The TLB is the 
translation look aside buffer that caches which physical memory addresses 
corresponds to which virtual addresses. The DMA (direct memory access) 
logic supports peripherals transferring information directly with the memory.  

14.2.1.1 ARM1136JF-S Based System-on-Chip  
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Figure 14.1 ARM1136JF-S test chip block diagram.  

On the right of the ARM1136JF-S in Figure 14.1, are the embedded trace 
macrocell (ETM) for debug and trace and the embedded trace buffer (ETB) 
for capturing the ETM output and saving it to an on-chip buffer for later 
access; the vector interrupt controller (VIC) for handling interrupts; and the 
AHB bus logic. 

Two additional co-processors were included to exercise the ARM1136 
co-processor interface. These components along with the usual support logic 
required for manufacturing test and debug in a typical ARM system-on-chip 
(SoC) device were included at the test chip level. These test components 
with those detailed above form the main structure of the test chip. 

The entire design with the specific memory configuration was verified 
using the Cadence NC simulation environment with the binary validation 
testbench kit provided by ARM [2], which totals more than 700 test sets and 
required several days of run time. The simulation results were also captured 
in both VCD (Voltage Change Dump) and TCF (Toggle Count Format) for 
subsequent power optimization and detail power analysis in the flow. In 
particular, peak power and average power patterns were used as benchmark 
references for the simulated results and the final silicon measurement. The 
TCF was used by the RTL Compiler synthesis to better estimate the actual 
switching activities, to help produce better balanced dynamic power optimi-
zation and leakage state probability. The VCD file, being much larger in size 
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(about 4GB for one of the peak power test cases) to capture all relevant logic 
events, was used in the detail power analysis with Voltage Storm Power 
Meter™. 

As this was a test chip, a 388 pin BGA (ball grid array) package was 
used to ensure high availability of functional signals. The package was also 
defined by the requirements of the ARM1136 evaluation platform provided 
for application development. 

14.2.1.2 Technology and libraries 

To validate the broad applicability of our approach, a typical process 
technology was used, the TSMC 90nm G silicon process, and the ARM 
Artisan® general-purpose physical IP, including SAGE-X™ standard cell 
libraries and memory generators [5]. As described below, the standard cell 
libraries were augmented with extended voltage range characterization and 
cells aimed at enabling power reduction design techniques.  

14.2.1.3 EDA Tools and Methodology 

Version 4.1 of the Cadence Encounter digital IC design platform was 
used for implementation of this low power methodology, including RTL 
Compiler™ synthesis, CeltIC Nanometer Delay Calculator™, and Voltage-
Storm for power analysis. The tool flow used in this project is shown in 
Figure 14.2. The motivation behind the Encounter low power methodology 
is described in [9].  

14.2.2 Project strategy overview 

This design tackled three areas of power management challenges: leakage 
power; dynamic (or active) power; and power integrity of the design as a 
whole. This design also looked at developing and validating an integrated 
and effective flow as one of the desired goals. 

Leakage power optimization was mainly based on the usage of multiple 
threshold voltage (Vth) cells to balance between timing and power perfor-
mance. In addition, voltage scaling contributed to the overall reduction in 
leakage power. The key challenges with the traditional method of multiple-
pass synthesis or using post-processing scripts were the complexity added to 
the design flow, and uncertainty in whether or not the optimal balance of 
timing and leakage power had been achieved. Both challenges were solved 
in this design by using single pass-global optimization from Encounter RTL 
Compiler™ in the synthesis step, followed by SOC Encounter™’s post route 
leakage optimization to fine-tune the results with more detailed parasitic 
information. This single pass methodology can be used in a hierarchical 
design flow if the design capacity or implementation strategy requires it. 
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Figure 14.2 The power management design flow that was used. 

Minimizing the dynamic power focused on voltage scaling the design 
into different power domains based on their performance requirements, which 
the team refer to as a Multiple Supply Voltage implementation (MSV). This 
is essentially the voltage island approach proposed in [10]. 

An automated tool flow was critical to meet the four month netlist to 
tape-out schedule, with the peak engineering resource of four people, or an 
equivalent of about 12 person-months total. In this MSV flow, two power 
domains were used, one with 1.0V supply and the other with 0.8V supply. 
Voltage level shifters were automatically inserted, placed and routed (power 
and signal) for interface from the 0.8V domain to the higher voltage domain. 
Besides managing the complex power routing, this design also used SOC 
Encounter to ensure optimization, routing and analysis across the different 
operating voltages was performed with sufficient accuracy.  

Further reductions in dynamic power were achieved with aggressive 
implementation of clock gating where possible to reduce the switching 
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activities. The clock gating flow started with allowing Encounter RTL 
Compiler to automatically identify all opportunities for clock gating in the 
netlist. The clock gating was then moved automatically to the highest hierar-
chical starting point of the clock tree, and then the desired clock gating cells 
were inserted. This flow finished with power aware clock tree synthesis and 
clock skew balancing. Finally, the impact of traditional timing performance 
and design integrity challenges, such as signal integrity and IR drop (supply 
voltage drop due to current across resistance) were amplified due to the voltage 
scaling. These challenges were solved with the advancement in timing 
model and improved design practices. 

14.3 KEY DECISIONS AND IMPLEMENATIONS 

14.3.1 Dynamic power 

14.3.1.1 Voltage scaling decisions 

In this project, the design team first addressed dynamic power consum-
ption, which can be represented by the equation:  
 2

d ddP kfCV=  (14.1) 

where k is the toggle rate (the fraction of time that transistors are switching); 
C is circuit capacitance, including interconnect and transistor capacitance; 
Vdd is the supply voltage to cells; and f is the operating frequency. 

As Equation (14.1) indicates, power is proportional to the square of the 
supply voltage. Consequently, designers can save a significant amount of 
dynamic power simply by reducing the voltage – an approach called voltage 
scaling. On the other hand, lowering the supply voltage slows transistor 
switching speeds (as detailed in Section 4.2). Because this design needed to 
perform to 350MHz to meet the requirements of ARM’s development partners, 
the team had to be selective in determining which parts of the design could 
use the voltage scaling technique. 

To get a rough baseline for the design performance that can be achieved 
with the targeted technology, the team did a first pass synthesis check, using 
the Artisan 90nm SAGE-X library and zero wireload setting (i.e. assuming 
no wire loads). This information was then fed from Encounter RTL Compiler 
into SOC Encounter to perform floorplanning and partition exploration. 

In this case, the team created a multi-supply voltage (MSV) design, 
partitioning the design into separate “voltage islands” or “voltage domains”, 
where each domain operates at a different supply voltage depending on its 
timing requirement. 
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Figure 14.3 Test chip voltage domain layout, where the rectangle in the lower left corner is 
the low supply voltage domain and the remainder is the high voltage domain. 

Timing-critical blocks were put in the high Vdd domain, operating at the 
standard 90nm supply voltage of 1.0V. Blocks with less critical timing paths 
were aggregated into a second domain, anticipating that the supply voltage 
of these blocks would be scaled down to reduced the power. A floorplan of 
the chip is shown in Figure 14.3. At this step, determining the proper voltage 
required an analysis of the relationship of cell performance versus Vdd. 
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Figure 14.4 Supply voltage versus delay for a buffer in 90nm technology.  

For this particular technology, the safe operating range for the supply 
voltage of the cells was from about 0.7V to 1.2V, with the nominal voltage 
of 1.0V. However as shown in Figure 14.4, the delay impact of reducing the 
supply voltage by 30% could be on the order of 2.5×.  

In the initial timing exploration of this design, a 400MHz timing target 
was used to identify timing critical regions of the logic. This was perfor-
med without both wire loads and detailed floorplan for a quick analysis. 
Various memory accesses had surfaced as potentially timing critical, while 
the ARM1136JF-S core itself was able to meeting the timing requirements 
with some slack. This suggested a natural grouping of the design into two 
separate partitions. Though the design was not stressed to determine the 
maximum slack at 1.0V, the relative fast synthesis execution (about 1.5 
hours) and minimum negative slack paths observed seem to agree with conti-
nuation of the partitioning exercise. The low supply voltage of 0.8V was 
selected based on this analysis and with the design performance profile. 
With the low voltage partition scaled from 1.0V down to 0.8V, a 36% 
reduction in dynamic power for that portion of the design was expected (as 
per Equation (14.1)). 

Now that the voltages were selected, the next task was to characterize the 
standard cell libraries for these voltages. The characterization relied on the 
single physical footprint having two timing views: one for operation at 1.0V 
operation, and one for operation at 0.8V. The delay of a NAND2 gate at 
these two different supply voltages is shown in Figure 14.5. The characteri-
zation did not take a long time; approximately two days were used to rechar-
acterize the entire standard cell set of about 450 cells, as only two voltages 
were used inside the chip. This step could be slow and cumbersome if there 
were many voltage values for the power domains.  
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Figure 14.5 NAND2X1 cell delay with 1.0V and 0.8V supply voltage.  

A library characterized at many supply voltages is not only huge for 
analysis, but also can suffer in accuracy from the non-linear nature of the 
delay effects on power. A new characterization format called Effective 
Current Source Modeling (ECSM) avoids these problems by recognizing the 
current waveform of a device to compute the delay through the device. This 
format helps in analyzing not only timing in multiple voltage scenarios but 
also in multiple driver situations. ECSM is discussed in detail in Section 
14.3.1.4.  

14.3.1.2 Voltage level shifters  

Once the libraries are characterized for multiple supply voltages, the 
design team had to create voltage level shifters for signals crossing between 
these two blocks. A voltage level shifter translates the interface signal from 
one voltage level to another, e.g. from a low voltage swing of 0V to 0.8V to 
a full (high) voltage swing of 0V to 1.0V. 

Voltage level shifters were used for several reasons. Firstly, the crosstalk 
due to high Vdd (VddH) signals on low Vdd (VddL) signals can be significant, 
so it is best not to route VddH signals within the VddL domain. Secondly, a 
high Vdd gate driven by a low Vdd input has forward biased PMOS tran-
sistors which cause substantial leakage current. Thirdly, standard cell libraries 
are typically characterized assuming the same voltage swing on the inputs as 
the supply voltage for the cells, rather than say characterizing VddH gates 
with VddL inputs.  
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Figure 14.6 The basic design of the low Vdd to high Vdd voltage level shifter that was used. 
The supply rail for the level shifter is high Vdd, and the first inverter in the buffer used a low 
Vdd supply connection as well.  

In principal, a level shifter might be used for both the VddH → VddL 
direction and the VddL → VddH direction, where VddH is the high supply 
voltage and VddL is the low supply voltage. However, in practice, it is 
typically acceptable in CMOS design to “over-drive” the cells, with slight 
timing inaccuracy at the lower voltage sink node (i.e. using the low Vdd 
input to low Vdd cell characterizations for high Vdd input to low Vdd cells). 
For example, the switching threshold of a 1.0V signal to a gate operated at 
0.8V may cause the switching to be slightly faster in one direction. This 
induced inaccuracy has very small impact on the overall timing, especially if 
the boundary logic consists of synchronous registers as a general good 
design guideline in this project; level shifters were inserted only in the 
upshift direction, VddL → VddH.  

The level shifter that the design team created was that of a simple buffer 
function, as shown in Figure 14.6, and was four standard cell rows tall. The 
default power supply rail was 0.8V. The 1.0V supply connected to a pin of 
this cell. Both the 0.8V Vdd routing and 1.0V Vdd routing were done using a 
power router. Using a prescribed width for routing these different power 
supplies, the team eliminated any electro-migration failures in the design. 
The level shifter placement and power routing is shown in Figure 14.7. 

It is worth mentioning that to guard against higher risk of latch-up due to 
power ramp-up/ramp-down between the two voltage domains, the layout of 
the level shifters cells had additional n-well spacing – beyond what was 
minimally required by the specific 90nm technology from the foundry. 

This project used a prototype version of the voltage level-shifter cell. 
The level shifter cell was later optimized, as a result of this project, to a 
much more compact and efficient design in the Artisan Design Component 
Library. As it was, level shifters account for less than 5% of the overall chip 
area, and each level shifter consumed about the equivalent power of drive 
strength X8 buffer (Bufx8). As the level shifter was used to go between 
domain boundaries, sufficient drive strength of the same buffer equivalent 
(BufX8) was also maintained. 
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Figure 14.7 Level shifter placement and power supply rail routing.  

14.3.1.3 Level shifter insertion and placement 

As described in Section 14.3.1.1, this chip was partitioned into two power 
domains based on performance. Once the power domains were defined, the 
level shifters were automatically inserted for the signals going across the 
boundary from the low voltage domain to the high voltage domain. The place-
ment of these level shifters proved to be a challenge. Placement of level 
shifters needed to take several things in consideration: 

 
1. Level shifters needed to be placed along the natural signal path – any 

deviation can impact timing. 
 

2. Level shifters need access to both low Vdd and high Vdd – a long route 
of the alternate supply can result in electromigration violations. 
 

3. Level shifter placement should be isolated from normal standard cell 
placement – any interaction between low voltage and high voltage signals 
can increase signal integrity violations. 
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Typically, the design implementation of level shifters has been performed 
manually, and in an iterative fashion: first, the routing topology for the intra-
block signal’s optimal crossing is determined; then the level shifter cells 
are manually inserted; and then the proper power connection is manually 
designed. All these steps are labor intensive and error-prone. Especially 
considering the potential iterations of different floorplan explorations, this 
manual approach can have a significant impact on the design and its design 
time.  

Automating level shifter insertion and placement was one of the key 
aspects of this project. The resulting placement is shown in Figure 14.7. 

There were 3,300 signals crossing from the 0.8V domain to the 1.0V 
domain. Automating level shifter insertion became the key to meeting the 
project schedule, because these specialized cells had added implementation 
complexity with insertion, placement and power routing,. The level shifters 
needed to be placed along the boundary of the low voltage block where 
signals were output to eliminate any timing closure issues. Signal integrity 
was another concern as the high voltage signals can couple with a low 
voltage signal causing more cross coupling noise than normal. In addition, 
signal noise immunity depends on the voltage level. Signals at the higher 
voltage level have higher noise tolerance than those at a lower supply voltage. 
At the time of this project, a conservative noise threshold was used to ensure 
acceptable noise tolerance. The noise threshold was set to 25% of the lower 
of the two different supplies (i.e. 0.2V). This ensured tight signal integrity 
acceptance for the 0.8V signals, and a slight margin for the 1.0V signals. 
The tool was later updated to handle signal integrity issues between voltage 
domains automatically. At the interface between two blocks, the signals with 
1.0V and 0.8V co-exist, and even a moderate strength 1.0V signal can cause 
noise issues on a 0.8V signal net. To detect this situation, the signal integrity 
tool uses two techniques. Firstly, the noise tolerance may be different for 
different signals. For example, a 1.0V signal may have a 0.1V noise tole-
rance and a 0.8V signal may have 0.08V noise tolerance. Secondly, a SPICE 
like simulation of the noise waveform through the path using the transfer 
function of the cells (including level shifters) ensures accurate propagation 
of the noise waveform. With these two techniques, the signal integrity issues 
can automatically be analyzed and corrected. 

The concurrent placement of both the 1.0V and 0.8V domains included 
around 100,000 instances in the 0.8V region and 200,000 instances in the 
1.0V region.  

14.3.1.4 Timing analysis across power domains 

Timing paths crossing the power domains pose a challenge to the exis-
ting static timing infrastructure. To get around this issue, designers try either 
to artificially confine their power domains within synchronous boundaries 
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[11] or abstract various power domains for static timing analysis. The static 
timing analyzer built on Encounter tools allowed us to perform timing checks 
for paths crossing the power domains by loading up the correct libraries for 
the different power domains and using the timing information of the level 
shifters. The voltage differences are handled through modeling current as 
opposed to modeling voltage (which a traditional timing analyzer does). The 
newly developed Effective Current Source Modeling (ECSM) addressed this 
specifically and allowed an accurate estimate of the delay across the power 
domains [7].  

ECSM models were derived from looking at the cell characterization 
problem differently. There were two observations made during the characteri-
zation process: (1) Modeling the driver as a voltage controlled current 
source provided better accuracy than traditionally modeling it as a voltage 
controlled voltage source and (2) The Ceff (effective capacitance seen at the 
output of a driver) which is assumed as constant in the normal modeling 
actually varies during the transition. ECSM models take care of both these 
issues by storing an I/V characterization using a time quantized Ceff. Figure 
14.8 shows the characterization space for a given input slew rate.  

Modeling for multiple voltages is an easy task with ECSM. For multiple 
voltage scenarios, there are two ways that ECSM can help the designer: 

 
1. When used in a design with many power domains (many voltage values), 

in order to obtain accurate delay information, designers need to charac-
terize the timing views of the cells in the design at these various voltage 
values. This not only increases the characterization effort but also slows 
down the EDA tool that needs to read these characterized libraries. 
ECSM requires the cells to be characterized at a subset of voltage values 
and accurately interpolating the delays - with a bounded accuracy of 5% 
to SPICE – between these points. For example, a library that is charac-
terized at 0.8V, 1.0V and 1.2V using ECSM models could be used at any 
voltage point in between 0.8V and 1.2V. 
 

2. ECSM can also be used to compute additional delay due to IR drop on 
the nominal voltage supply. This additional delay can be used to perform 
meaningful delay-power trade-offs. 
 
To validate ECSM’s ability to provide continuous accurate delay coverage 

across the entire potential operating range of Vdd levels, a joint study was 
conducted with ARM Physical IP (Artisan). Delay analysis with the ECSM 
models and SPICE simulation was compared with five sampled cells, under 
different loading and slew rates, and a range of voltages from 0.7V to 1.2V 
[7]. The ECSM model was built with three characterization points of 0.70V, 
0.90V and 1.08V (nominal voltage) for each cell, and measured at six 
different voltage levels (0.70V, 0.80V, 0.90V, 1.00V, 1.08V, 1.20V) with 
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different input slew (0.04ns, 0.20ns, 1.50ns) and output loads (1.7fF, 20fF, 
170fF), to collect the comparison data. 
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Figure 14.8 ECSM characterization for a given input slew rate. 
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Figure 14.9 This figure shows the gate delay versus supply voltage for the ECSM models and 
SPICE simulation, which are in good agreement.  
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Figure 14.10 This graph shows the distribution of ECSM model error vs. SPICE. The mean 
error is about 0.5%, and the standard deviation is 0.6%. 

Figure 14.9 shows the ECSM and SPICE results at each comparison point 
with increasing voltage. From this graph, there is little difference between 
the ECSM prediction and the SPICE results. Looking at the deviation of the 
approximately 200 comparison points (see Figure 14.10), one sees that the 
average error of ECSM vs. SPICE is 0.5%, with a standard deviation of 
0.6%. This was a remarkable validation of the accuracy of the ECSM models, 
especially for multiple-supply voltage design. 

14.3.1.5 Clock gating  

One of the techniques to reduce the dynamic power is to reduce the 
switching activities (k in Equation (14.1)). As the clock signal transitions 
twice each clock cycle, one of the major strategies to reduce switching 
activity in synchronous digital design is to “turn-off” the clock while the 
logic or the “state” of the synchronous register is not expected to be changing. 
This is also known as “clock gating”. 

Traditionally, clock gating has been designed manually, as the designer 
would be familiar with which portions of the function can be stopped and 
when. However, not all opportunities for clock gating may be found this 
way; it may be time consuming, and may not be comprehensive in coverage. 
For this project, the team decided to implement clock gating wherever 
possible because of the significant reduction in switching power that can be 
achieved, and the cost of design implementation can be low. Encounter RTL 
Compiler was used to automate identification and insertion of clock gating 
functions, using ARM PIP’s integrated clock gating cells (ICG).  
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Figure 14.11 Pruning the number of clock gating cells in (a) by moving clock gating 
upstream hierarchically (as in (b)) for logic that can share the same clock enable logic. 

Automatically identifying clock gating opportunities is done by using the 
tool to examine the entire netlist, to determine which registers and latches 
can share the same clock enabling logic. 1,112 clock gating opportunities 
were identified, in addition to the clock gating that was already coded in the 
RTL design. 

After identifying these new clock gating opportunities, RTL Compiler 
was used to prune the number of clock gating cells by moving the gating 
function upstream hierarchically (shown in Figure 14.11). By gating at a 
higher level in the clock tree, more logic can be turned off. And by having 
less clock gating cells and branches, the design has a better starting point for 
clock tree generation. However, this process, also known as de-cloning, 
needs to be done with caution. Moving clock gating cells up the hierarchy 
can lead to needing to generate complex gating signals. This can also put 
undue burden on the setup time at the enable pin of the gating cell. If 
constrained within a few levels of hierarchy, this can give us an additional 
5% to 10% of clock power savings.  

14.3.2 Leakage power 

Leakage power has become a growing concern with advanced techno-
logy nodes of 130nm and below. Why is leakage power a problem? 

Power consumption of a CMOS gate has three major components:  
 total d sc lkP P P P= + +  (14.2) 

where Pd is the dynamic power, Psc is the short circuit power, and Plk is the 
leakage power. Before deep submicron processes, Plk was marginal relative 
to switching power. However, this leakage power grows from less than 5% 
of the total power budget at 0.25um to 20-25% at 130nm and to 30-40% at 
90nm [12]. Below 90nm, the chip could be dissipating almost as much 
power due to leakage as due to dynamic power.  
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Table 14.1 Leakage and saturation drain current in TSMC 90nm and 130nm processes, for the 
low, standard, and high transistor threshold voltage libraries. 

 

TSMC
Transistor threshold voltage Low Standard High Low Standard
Leakage current (pA/um) 100 10 1.5 10 0.25
Saturation drain current (uA/um) 755 640 520 590 535

90nm 130nm

 

Table 14.2 Threshold voltage value of the 1.0V cells. 
N-Channel P-Channel

Standard Vth 0.228V 0.165V
High Vth 0.354V 0.333V  

To deal with increasing subthreshold leakage currents, semiconductor 
foundries have added higher threshold voltage transistors that have lower 
leakage at the cost of greater delay. Standard cell designers can use those 
transistors to design the same functional gate with different leakage current, 
but maintaining the same cell footprint. This enables cell swapping to reduce 
leakage power without impacting the place and route floorplan. The trade-
off between leakage and drive strength (saturation drain current) for different 
Vth values in TSMC’s 90nm and 130nm processes is shown in Table 14.1. 
See Table 14.2 for the standard and high Vth values of this design’s libraries.  

The cost of this leakage optimization is reduction in speed: about a 25% 
increase in delay for 4× leakage power reduction at 0.8V supply comparing 
high threshold voltage and standard threshold voltage cells in Figure 14.12 
and Figure 14.13. In addition, there is the process expense for the additional 
implant required if two transistor threshold voltages are used.  

In this low power design, the complete RTL was synthesized with the 
newly developed global optimization synthesis technology, using two Vth 
libraries (standard and high) concurrently optimized for leakage power, timing 
and area in a single pass strategy. Gates in the high Vth library are lower 
leakage, but slower than gates in the standard Vth library. It was important to 
note that the balance between the different but equally important design 
targets, such as timing and power, routinely requires trade-offs in cell selec-
tion based on dynamic power, delay and leakage. Automation of that optimi-
zation in the synthesis tool simplified this design implementation. In the 
design, standard Vth cells were used in timing critical paths, whereas high Vth 
cells were used in other paths to optimize for power. 

Having a global view of the design with RTL Compiler helped optimize 
the entire design by trading timing slack for area/power effect during the 
initial mapping stage of synthesis. Cells on critical paths are mapped to fast 
cells that are low Vth and are narrow (few inputs) functional cells, which 
avoids slow pull-up or pull-down series transistor chains in a logic gate. To 
reduce power, other cells are high Vth to reduce leakage, and wide (more 
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inputs) to collapse instances and reduce net count – thereby reducing area 
and power. It was obvious that the bigger portion of the design the RTL 
Compiler can see, the better optimization can be realized. 

 
Figure 14.12 Leakage power for a NAND2XL (low power, small NAND2) cell at different 
supply Vdd and threshold voltages Vth.  

 
Figure 14.13 Delay for a NAND2XL (low power, small NAND2) cell at different supply and 
threshold voltages.  
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Table 14.3 Multi-Vth cell utilization in the low and high supply voltage domains. 8.5% of the 
cells in the low voltage domain were high Vth, and 97% of the cells in the high voltage 
domain were high Vth. 

Library Cell count Percentage of Total Cells
0.8V supply, high threshold voltage 16,210 5.4%
0.8V supply, standard threshold voltage 174,738 57.8%
1.0V supply, high threshold voltage 108,052 35.8%
1.0V supply, standard threshold voltage 2,710 0.9%  

Besides using multiple threshold voltages to reduce leakage, RTL com-
piler uses other optimization techniques to meet both the dynamic and leakage 
power design target. Such optimizations include logic restructuring, buffer 
insertion and removal, pin swapping and gate resizing. Cell sizing and buffer 
manipulations are aimed at optimizing the switching time, to reduce unne-
cessary switching activity due to glitching, and therefore reducing dynamic 
power and maintaining balanced performance. Pin swapping swaps functio-
nally identical input pins, so that the signal with higher switching activity 
connects to the gate input pin with lower input capacitance. Logic restruc-
turing minimizes the number of logic levels traversed by high switching 
activity signals to reduce the dynamic power. 

 The leakage power optimization does not occur only in the synthesis 
step. As the design went through detailed place and route, more accurate RC 
(wiring) parasitic information becomes available. This information was used 
to fine-tune the multi-Vth cell selection, balancing the performance goal with 
the power target. In this project, timing and area target were both fixed, but 
the power target was set aggressively to understand the potential limit of the 
power optimization tools. This was performed with SOC Encounter’s post 
route optimization stage, with optLeakagePower -postRoute –highEffort 
(example script command line). 

The overall mix of multi-Vth cells showed an expected profile between 
performance and power. 97% of all cells used in the 1.0V domain where 
high Vth cells, after the final optimization (see Table 14.3). Less high Vth 
cells were used in the 0.8V domain to ensure performance targets were met.  

14.3.3 Power Integrity Verification 

The sign-off power analysis tool based on the Encounter platform recog-
nized the power domains and gave us results per power domain. The analysis 
results took the level shifters into account, and the power nets were traced 
through the level shifters into the other domain. Figure 14.14(a) shows the 
results of power analysis on the shared ground (GND) net; Figure 14.14(b) 
shows the power analysis on the Vdd net for the 0.8V region; and Figure 
14.14(c) shows the power analysis on the Vdd net for the 1.0V region. The 
design’s IR drop was less than 22mV, or about 2% worst case.  
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Figure 14.14 This figure shows the IR drop effect (a) on the shared ground for the complete 
chip, (b) on the 0.8V domain supply voltage, and (c) on the 1.0V domain supply voltage. 
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The team also performed dynamic power analysis to assess the usage of 
decoupling capacitances and utilized the what-if capability of the tool to try 
out various combinations of decoupling capacitance placement. Though 
multiple supply voltage design does not have any direct impact on the place-
ment of decoupling capacitors, the dynamic power analysis was required to 
ensure the benefit from the decoupling capacitances would not be neutralized 
by the additional power penalty induced by these decoupling capacitances.  

For this design, an initial switching activity of 30% was assumed to get 
the early power estimate and budget. As the design implementation progre-
ssed, actual gate level functional simulation patterns (derived from the 
verification vector set described in [2]) for peak-power and typical power 
were executed to capture the needed VCD and TCF files for more accurate 
power analysis Since the static timing analyzer uses the absolute voltage 
value, it was very easy to translate the instance-based IR drop numbers for 
the placement into delays. Optimization was done to account for this delay 
and the team could thus trade-off power against timing and area.  

14.4 RESULTS 

14.4.1 Simulated Results at Tape-Out 

To compare and contrast the effectiveness of the power management 
strategies, this project implemented the same design in two different flows. 
One is with the traditional timing closure flow; the other is with the power 
management solution described so far. To make the comparison reasonable, 
both implementations used the same RTL design, same technology library, 
the same die size (4mm × 4mm), same floorplan, and most importantly, 
tapeout at the same target frequency of 355MHz. 

Tapeout analyses were done in both worst case corner (slow process, 
125°C, 0.9V) and best case corner (fast process, –40°C and 1.1V), with addi-
tional leakage power analysis done with fast process, 125°C and 1.1V for the 
potential worst case for power.  

The simulated results at tapeout corresponded well to our expectations. 
Table 14.4 compares the power savings obtained against the baseline imple-
mentation, normalized to the overall power from the baseline.  

Recall that the major strategies used to reduce dynamic power were 
voltage scaling and clock gating. The 1.0V domain has about 12% dynamic 
power savings due to additional clock gating and other logic optimizations, 
such as power aware cell selection, pin swapping, gate sizing, buffer insertion 
and removal, logic restructuring, and reduction of gate counts overall. Note 
that while power minimization was not performed specifically on the baseline 
implementation, area minimization was performed, which would have 2nd 
order effect on some power reduction. 
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The 0.8V power domain results show much higher dynamic power 
savings of 50.3%. With supply voltage reduced by 20%, a power saving of 
36% (= 1.02 – 0.82) was expected. The other 14% power savings was due to 
clock gating and logic optimization. 

The leakage power optimization also correlated well to estimates. As 
would be expected, the 1.0V domain has much higher performance margin 
to allow for use of high Vth. As noted previously, over 97% of cells used in 
this region were high Vth cells, and there was nearly 70% leakage power 
savings as expected. (As noted earlier, high Vth gives about a ×4 reduction in 
leakage current, so the team expect reduction in leakage power to 0.25 × 
0.97 + 0.03 = 27% of the original power, or 73% leakage power savings.) 

In the lower supply voltage domain, there was less opportunity to use 
high Vth as there was less timing slack available due to using low Vdd, and 
less savings were expected. However, leakage power is proportional to the 
current-voltage product (Plk α IlkVdd), so reducing Vdd does also reduce the 
leakage power. The 20% reduction in Vdd gives more than 20% reduction in 
leakage as there are also additional factors affecting subthreshold leakage 
such as drain-induced barrier lowering (DIBL) which is reduced at lower 
Vdd, and 8.5% of the cells were changed to high Vth, giving 33.5% leakage 
power savings in the 0.8V Vdd domain. 

The combined overall power saving of 40.3% was a great achievement 
using mainstream production tools, with a mature and general purpose process 
and library, and impacting neither the design architecture nor the design 
implementation flow.  

 

Table 14.4 Power savings of the multi-Vdd/multi-Vth design versus the baseline design, where 
both domains had single 1.0V supply and only the standard Vth. The total dynamic and leakage 
power savings were respectively 38.0% and 46.6%. 

Power
Baseline Low Power Reduction

1.0V domain Dynamic power 0.235 0.207 11.9%
(includes RAM) Leakage power 0.097 0.030 69.1%

Subtotal 0.332 0.237 28.6%

0.8V domain Dynamic power 0.501 0.249 50.3%
(no RAM) Leakage power 0.167 0.111 33.5%

Subtotal 0.668 0.360 46.1%

Total for both domains 1.000 0.597 40.3%

Normalized power
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Figure 14.15 Physical floorplan of the chip.  

The physical floorplan is shown in Figure 14.15. The die size is 4mm by 
4mm, with 360 I/O pads. There are about 300,000 cells in total. The area 
utilization is about 80%, with memories comprising approximately 60% of 
the total area. Overall, the area overhead for implementing multiple supply 
voltages was less than 5%. Note that the same floorplan was used for the 
baseline. As the cell footprints are the same, there was no significant change 
in area due to using multiple threshold voltages. There was minimal impact 
on the design flow and schedule due to our low power design approach com-
ared to the baseline timing closure implementation.  

14.4.2 Silicon Validation 

To validate the results and correlate to actual silicon behavior, the chip 
was fabricated (shown in Figure 14.16). The received silicon IC (integrated 
circuit) parts were packaged in a BGA package, then tested using Inovys 
Personal Ocelot tester under typical operating conditions (room temperature 
and nominal supply voltages). 
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Figure 14.16 Silicon image of the test chip. 

The IC achieved functional and electrical design validation with first 
silicon. Additionally, over 15,000 system-level validation tests have been 
completed successfully using ARM’s RealView® system validation board at 
speed. The fabricated ARM chip successfully runs the Linux (version 2.4), 
Windows CE, and SunOS operating systems. 

Basic parts screening included normal JTAG, Scan and Memory BIST 
(built-in self test). Functional patterns were also used to check minimum 
functionality of the devices. Finally, looping Dhrystone benchmarks were 
used to measure the power, at different combinations of system clock freq-
encies from 1MHz to 50MHz on the ATE (Automated Test Equipment) test 
fixture. The table below summarizes the simulated baseline results, the 
simulated low power implementation, the measured low power implemen-
ation, and a reference power measurement of the same ARM core in 0.13um. 
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Table 14.5 Active power of the chip for the Dhrystone 2.1 benchmark set, comparing power 
estimates (at 25°C, 90% of nominal supply voltage, and typical process corner) and measured 
power for the fabricated chip. 

Simulated 
Baseline 
(90nm)

Simulated 
Low Power 

(90nm)

Measured 
Low Power 

(90nm)

ARM published 
1136JF-S Power 

in 130nm
Core 0.28 0.14 0.10 0.60
Other 0.36 0.32 0.21
Total 0.64 0.46 0.31

Power Domain

Active Power Dissipation (mW/MHz)

 

The relationship between the simulated baseline and simulated low 
power implementation at tapeout was elaborated in the last section. The 
measured silicon results show the correlation between silicon and simulation 
are consistent, with the simulation being conservative by about 30% to 40%, 
due to assuming more severe operating conditions and process variances (see 
Table 14.5). For example, the simulated typical condition assumed 25°C and 
10% Vdd variance but the actual silicon measurement would deviate in both 
the temperature and voltage supply. However, in general the results were 
better than expected, as indicated by the 0.14mW/MHz estimate against the 
measured 0.10mW/MHz. 

 In addition to the implementation comparison, an ARM published 
power measurement of the ARM1136JF-S core [3] was used to draw refe-
ence against the silicon verified 0.1mW/MHz power performance. Though 
the published number of 0.6mW/MHz was for 130nm technology and under 
typical operating conditions, it served as a perspective of the power perfor-
ance achieved with this low power design.  

14.5 SUMMARY 

This power management project demonstrated the usability in an EDA 
flow of multiple supply and multiple threshold voltages to reduce power, 
along with more standard power minimization techniques. This strategy, 
when applied with EDA tools that can handle these approaches and automate 
them properly, can realize significant power savings without much impact to 
the design architecture or process. Voltage scaling and clock gating achieved 
38% dynamic power savings while maintaining a high clock frequency. 
Leakage power was reduced 47% by using multi-Vth cell libraries, again 
without impacting the timing performance. By creating a comprehensive low 
power design flow this project has provided mainstream system-on-chip 
designers the capability to effectively manage power. It is the conclusion of 
this project that adoption of these techniques should be easy for a main 
stream ASIC design. 
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