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Preface

Since its first edition, the ideas discussed in this book have expanded signif-
icantly as a result of very active research in the general domain of complex
systems. I have also seen with pleasure different communities in the geo-,
medical and social sciences becoming more aware of the usefulness of the
concepts and techniques presented here.

In this second edition, I have first corrected, made more precise and ex-
panded a large number of points. I have also added a significant amount of
novel material which I describe briefly below.

Chapter 1 has been expanded by inclusion of stricter and more in-depth
discussions of the differences between objective and subjective (Bayesian)
probabilities with, in particular, the addition of the Dutch book argument.
A presentation of the Gnedenko–Pickands–Balkema–de Haan theorem for the
distribution of peaks-over-threshold has been added, which derives the gen-
eralized Pareto distribution of the asymptotic distribution for independent
random variables from the extreme value distributions. I have also added
a formal treatment of the expectation of the sum over the maximum of
random variables, for fat-tailed and non-fat-tailed probability distribution
functions (pdf’s).

In Chap. 2, I have added a section on the extraction of model equations
from experimental data.

In Chap. 4, the explicit representation of stable Lévy distributions is given
in terms of Fox functions and the useful properties of the generalized Mittag–
Leffler exponentials and of Fox functions are described. Chapter 4 also con-
tains additional information on the expectation of the sum over the maximum
of random variables for fat-tailed pdf’s.

Chapter 5 contains a new section on the multifractal random walk
(MRW), a recently introduced stochastic process that generalized the frac-
tional Brownian motion by having an exact multifractal structure in the
continuous limit.

Chapter 6 contains a new section on conditional power law distributions
with application to “fractal plate tectonics” and a significant development on
Wilk statistics of embedded hypothesis testing to compare the relative merits
of power law versus stretched exponential distributions. A novel embedding
of the family of power law pdf’s within the family of stretched exponentials
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is presented and the general formulas for the covariance of the estimators are
given.

New figures have been added to Chap. 7 to clarify and enhance the dis-
cussion on the relevance of the concept of temperature to out-of-equilibrium
systems. Chapter 7 also contains a new section on the Beck–Cohen super-
statistics which provides a dynamical origin of non-extensive Tsallis-type
statistics.

Chapter 8 contains a new presentation of fractional diffusion equations,
their relationship with Lévy laws and the associated anomalous diffusion.

Chapter 10 contains applications of the critical precursors and critical
dynamics to explain for instance the way our internal hearing organ, the
cochlea, works.

Chapter 11 has been significantly expanded to include a section of func-
tional reconstruction of approximants based on renormalization group ideas,
which have been shown to be an improvement over the Padé approximants.
Chapter 11 also contains a new section on the Weierstrass and Weierstrass-
type functions and concludes with recalling Anderson’s message “more is
different.”

New figures have been added to Chap. 13 to clarify and enhance the
discussion of quasi-dynamical rupture models.

Chapter 14, already a favorite in the first edition, has been significantly
enhanced by including several other mechanisms for the generation of power
law distributions. The discussion of the Kesten process in terms of multi-
plicative noise has been expanded. A new section presents the class of growth
models with preferential attachment, which has a wide range of applications.
A new section discusses the superposition of log-normal pdf’s. Another sec-
tion presents the coherent-noise models and their limits for the application
to earthquakes.

Chapter 15 expands on the mechanism of self-organized criticality in terms
of the feedback of the order parameter onto the control parameter. A new sec-
tion also presents the linear fractional stable motions for extremal dynamics.

Chapter 16 contains a new section reviewing the fundamental Kol-
mogorov’s theorem on fragmentation models which played a fundamental
role in attracting the attention on the importance of log-normal distributions
for general multiplicative processes.

I would have liked to enrich this second edition much more and remain
frustrated by the limits of its achievements. Nevertheless, I hope that the
readers, and especially the “students” in the extraordinary rich fields of com-
plex dynamical systems, will find this new edition valuable.

In addition to the many collaborators and colleagues mentioned in the
preface of the first edition and who contributed to my understanding, this
second edition owes a lot to V.F. Pisarenko who provided numerous com-
ments and suggestions on the first edition, as well as detailed explanations
on subtle points in the field of mathematical statistics. The errors remain
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mine. T.P. O’Brien has been also very stimulating in his penetrative questions
and remarks. In addition to my colleagues saluted in the first edition, I ac-
knowledge inspiring exchanges with Y. Ageon, S. Gluzman, A. Helmstetter,
K. Ide, Y.Y. Kagan, T. Lux, Y. Malevergne, M.E.J. Newman, A. Saichev,
H. Takayasu, H.J. Viljoen, V.I. Yukalov, and W.-X. Zhou.

UCLA and Nice,
October 2003 Didier Sornette



Preface to the First Edition:
Variability and Fluctuations

Life is fundamentally risky, reflecting the pervasive out-of-equilibrium na-
ture of the surrounding world. Risk is synonymous with uncertainty about
the future, leading not only to potential losses and perils, but also to gains.
This uncertainty results from the numerous dynamical factors entering our
life, giving it spice and color as well as its dangerous flavor. Life consists
of a succession of choices that have to be made with often limited knowl-
edge and in a complex and changing environment. These choices result in
a sequence of often unpredictable outcomes, whose accumulation defines the
specific trajectory characterizing each individual, somewhat similar to the
apparent random trajectory of a leaf carried by a turbulent wind. The notion
of risk is probably one of the most general concepts pervading all the facets
of our life [285, 794].

Risk is a companion to most of our daily activities, professional or pri-
vate. Crossing a street or driving a car involves risk that is quantified by the
statistics of traffic accidents and police reports and which impacts on our
insurance premium. Staying at home is also risky: falling, burning, electrocu-
tion, plane crash, earthquakes, hurricanes, etc. Risk is present in the choice
of a career, in the selection of a college and university program as well as in
the effect of social interactions on the development of children. Any choice is
intrinsically risky, since the existence of a choice implies several alternatives
that are all thought to be possible outcomes, albeit with possibly different
likelihood. In industry, companies have to face a multitude of risks: R&D,
choice of a niche, capital, production, sales, competition, etc., encompassing
all types of risks that, ideally, have to be optimized at each instant. The
apparent random nature of price variations in both organized and emerging
stock markets leads to risky investment choices, with impact on the global
economy and our welfare (retirement funds).

The Earth provides its share of risks, partly overcome with the devel-
opment of technology, but hurricanes, earthquakes, tsunamis, volcanic erup-
tions and meteorites bring episodic destruction each year, constituting as
many Damocles’ swords over our heads. Neither is biological risk negligible,
with endemic epidemics and the emergence of novel diseases. Human soci-
ety, with its technical development and population growth, introduces new
risks: unemployment, strike, dysfunction of cities, rupture of sensitive tech-
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nological structures (hydroelectric dams, chemical plants, oil tankers, nuclear
plants, etc.). Scientific and technical development and the growing interac-
tion between the different organizational levels of human society introduce an
increasing complexity, leading often to an enhanced vulnerability. The weight
of human activity has developed to a point where there are growing concerns
about new planetary risks such as global warming, ozone-layer depletion,
global pollution, demographic overcrowding, and the long-term agricultural
and economic sustainability of our finite planet. Paling’s little book [715]
provides an interesting and stimulating synopsis in which a logarithmic scale
is used to quantify all the risks that we have to face, from the largest, which
are not always those we think about, to the smallest. This logarithmic scale
(similar to the earthquake magnitude scale) reflects the extremely large vari-
ability of risk sizes. The concept of risk thus covers the notion of variability
and uncertainty.

Our main goal in this book is to present some of the most useful modern
theoretical concepts and techniques to understand and model the large vari-
ability found in the world. We present the main concepts and tools and illus-
trate them using examples borrowed from the geosciences. In today’s rapidly
evolving world, it is important that the student be armed with concepts and
methods that can be used outside his/her initial specialization for a better
adaptation to the changing professional world. It is probably in the everyday
practice of a profession (for instance as an engineer or a risk-controler in
a bank) that the appreciation of variabilities and of the existence of methods
to address it will be the most useful.

These ideas are of utmost importance in the advancement of the tradi-
tional scientific disciplines and it is in their context that this book is pre-
sented. The notions of variability, fluctuations, disorder, and non-reprodu-
cibility, on a deep conceptual level, progressively penetrate the traditional
disciplines, which were initially developed using the concepts of averages, or
more generally, of representative elements (as in thermodynamics, mechanics,
acoustics and optics, etc.). Modern physics deals, for instance, with hetero-
geneous composite systems and new materials, chaotic and self-organizing
behaviors in out-of-equilibrium systems, and complex patterns in the growth
and organization of many structures (from that of the universe at the scale of
hundreds of megaparsecs to the minute branchings of a snowflake). It is clear
that these phenomena are all deeply permeated by the concepts of variability,
fluctuations, self-organization and complexity. In the context of natural evo-
lution, let us mention the remarkable illustrations (evolution and baseball)
presented by S.J. Gould [358], in which the full distribution (and not only
the average) of all possible outcomes/scenarios provides the correct unbiased
description of reality. This is in contrast with the usual reductionist approach
in terms of a few indicators such as average and variance.

The physical sciences focus their attention on a description and under-
standing of the surrounding inanimate world at all possible scales. They
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address the notion of risk as resulting from the intrinsic fluctuations ac-
companying any possible phenomenon, with chaotic and/or quantum ori-
gins. Mathematics has developed a special branch to deal with fluctuations
and risk, the theory of probability, which constitutes an essential tool in the
book. We begin with a review of the most important notions to quantify
fluctuations and variability, namely probability distribution and correlation.
“Innocuous” Gaussian distributions are contrasted with “wild” heavy-tail
power law distributions. The importance of characterizing a phenomenon
by its full distribution and not only by its mean (which can give a very
distorted view of reality) is a recurrent theme. In many different forms
throughout the book, the central theme is that of collective or coopera-
tive effects, i.e. the whole is more than the sum of the parts. This con-
cept will be visited with various models, starting from the sum of ran-
dom variables, the percolation model, and self-organized criticality, among
others.

The first six chapters cover important notions of statistics and proba-
bility and show that collective behavior is already apparent in an ensemble
of uncorrelated elements. It is necessary to understand those properties that
emerge from the law of large numbers to fully appreciate the additional prop-
erties stemming from the interplay between the large number of elements and
their interactions/correlations. The second part (Chaps. 7–15) discusses the
behavior of many correlated elements, including bifurcations, critical transi-
tions and self-organization in out-of-equilibrium systems which constitute the
modern concepts developed over the last two decades to deal with complex
natural systems, characterized by collective self-organizing behaviors with
long-range correlations and sometimes frozen heterogeneous structures. The
last two chapters, 16 and 17, provide an introduction to the physics of frozen
heterogeneous systems in which remarkable and non-intuitive behaviors can
be found.

The concepts and tools presented in this book are relevant to a variety
of problems in the natural and social sciences which include the large-scale
structure of the universe, the organization of the solar system, turbulence
in the atmosphere, the ocean and the mantle, meteorology, plate tectonics,
earthquake physics and seismo-tectonics, geomorphology and erosion, popu-
lation dynamics, epidemics, bio-diversity and evolution, biological systems,
economics and so on. Our emphasis is on the concepts and methods that
offer a unifying scheme and the exposition is organized accordingly. Concrete
examples within these fields are proposed as often as possible. The worked ap-
plications are often very simplified models but are meant to emphasize some
basic mechanisms on which more elaborate constructions can be developed.
They are also useful in illustrating the path taken by progress in scientific
endeavors, namely “understanding”, as synonymous with “simplifying”. We
shall thus attempt to present the results and their derivations in the simplest
and most intuitive way, rather than emphasize mathematical rigor.
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This book derives from a course taught several times at UCLA at the
graduate level in the department of Earth and Space Sciences between
1996 and 1999. Essentially aimed at graduate students in geology and geo-
physics offering them an introduction to the world of self-organizing col-
lective behaviors, the course attracted graduate students and post-doctoral
researchers from space physics, meteorology, physics, and mathematics. I am
indebted to all of them for their feedback. I also acknowledge the fruit-
ful and inspiring discussions and collaborations with many colleagues over
many years, including J.V. Andersen, J.-C. Anifrani, A. Arneodo, W. Benz,
M. Blank, J.-P. Bouchaud, D.D. Bowman, F. Carmona, P.A. Cowie, I. Dornic,
P. Evesque, S. Feng, U. Frisch, J.R. Grasso, Y. Huang, P. Jögi, Y.Y. Kagan,
M. Lagier, J. Laherrère, L. Lamaignère, M.W. Lee, C. Le Floc’h, K.-T. Le-
ung, C. Maveyraud, J.-F. Muzy, W.I. Newman, G. Ouillon, V.F. Pisarenko,
G. Saada, C. Sammis, S. Roux, D. Stauffer, C. Vanneste, H.-J. Xu, D. Zajden-
weber, Y.-C. Zhang, and especially A. Johansen, L. Knopoff, H. Saleur, and
A. Sornette. I am indebted to M.W. Lee for careful reading of the manuscript
and to F. Abry and A. Poliakov for constructive comments on the manuscript.

UCLA and Nice, Didier Sornette
April 2000
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4.1.4 The Lévy Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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1. Useful Notions of Probability Theory

The true logic of this world is in the calculus of probabilities.
James Clerk Maxwell

The theory of probability is an important branch of mathematics and our
goal is not to review it extensively but only to briefly present useful key
concepts and results.

1.1 What Is Probability?

1.1.1 First Intuitive Notions

The intuitive notion of a probability is clear in coin-tossing or roulette games:
the probability is defined by the relative frequency of a given outcome when
repeating the game, ideally, an infinite number of times. Probabilities reflect
our partial ignorance, as in the outcome of the coin-tossing game. Meteo-
rology (what the weather will be like tomorrow or in one week) and hazard
estimations of natural catastrophes such as earthquakes and volcanic erup-
tions also rely on probabilities. For instance, the working group on California
earthquake probabilities estimated an 80%–90% probability of a magnitude
m ≥ 7 earthquake within southern California between 1994 and 2024 [450].

This probability estimation is in fact not as obvious as it seems to be.
The usual frequency interpretation of probability would lead us to consider
ten planet Earths (a hundred or more would be better) carrying ten southern
Californias. Then, the probability statement would mean that only about one
or two out of the ten would not have an m ≥ 7 earthquake between 1994 and
2024. This is obviously nonsense because there is a single southern California
and there will be only two outcomes: either one or more m ≥ 7 earthquakes
will occur or none. In fact, what is underlying the statement of a probability,
in these circumstances where the “game” cannot be repeated, is that there
may be many paths leading to the same result and many other paths leading
to different outcomes. The probability of an outcome is then a statement
about the fraction of paths leading to this outcome.

A specific path involves, for instance, the sequence of smaller precursory
earthquakes redistributing stress in southern California as well as all other
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Fig. 1.1. Schematic representation of
possible paths or scenarios for the evo-
lution of the system leading to the out-
come of an earthquake of magnitude
larger or smaller than 7. Note the pos-
sible intricate interwoven nature of the
set of paths

facts that may have to bear on the outcome of an m ≥ 7 earthquake. It is
reasonable to assume that many such paths can lead to the presence of an
m ≥ 7 earthquake between 1994 and 2024. Many other paths will lead to
the absence of such an earthquake. The statement of probability is, thus, our
estimation of the fraction of those paths that lead to an m ≥ 7 earthquake
between 1994 and 2024 among all possible ones. It does not embody a hard
fact (such as a frequency) but rather our own limited understanding of the
possible scenarios and their degree of validity as well as the uncertainty in our
understanding of present conditions. The same comments hold for a state-
ment about the probability of the weather in the future. In all these problems,
the dynamical evolution of the stress field in the earth or the meteorologi-
cal variables in the atmosphere is governed by highly non-linear equations
exhibiting the property of sensitivity with respect to initial conditions. This
sensitivity is responsible for chaotic behaviors and justifies our description of
the time evolution in statistical terms.

Another example is the Gutenberg–Richter law, which gives the relative
fraction of earthquake magnitudes, in other words, the probability that an
earthquake is of a given magnitude. In this case, we measure many earth-
quakes (at least for the small and intermediate ones) and the Gutenberg–
Richter is a frequency statement.

The probability is a number between 0 and 1, where the two extremes cor-
respond to a certainty (i.e. impossible and true, respectively). A probabilistic
description is the only tool when we do not know everything in a process, and
even if we knew everything, it is still a convenient representation if the pro-
cess is very complicated. See the chapter on probability in Feynman’s Lecture
Notes in Physics [299] for an intuitive introduction to the use of probability.

1.1.2 Objective Versus Subjective Probability

The following discussion is based on suggestions by V.F. Pisarenko.
The notion of probability has two aspects: mathematical and applied. As

to the mathematical aspect, there is no disagreement among mathematicians.
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Fig. 1.2. Log–log plot of the
number of earthquakes with
seismic moment (approxi-
mately proportional to the
energy release) of the largest
shallow earthquakes (depth
< 70 km) in the Harvard
worldwide catalog. See [903]
for more information on the
Gutenberg–Richter distri-
bution and its domain of
validity

According to the Kolmogorov’s axiomatics [519], the probability is a non-
negative measure normalized to unity on a σ-algebra of elementary events.
But, with respect to the applied aspects of probability, there is no consensus
among experts. There are two main approaches (with many variations):

• the so-called “objective approach,” named sometimes “frequency ap-
proach,” see e.g. [186, 240, 292, 304, 631, 682], and

• the “subjective approach,” see e.g. [462, 524, 653, 813].

In the objective approach, using a probability requires an idealized model
of the experiment that can be, at least mentally, repeated an arbitrary num-
ber of times. The objective approach thus uses the notions of “population”
and of “ensemble of realizations,” and therefores excludes unique events au-
tomatically. For instance, it is difficult in the objective approach to interpret
what is the meaning of probability in the statement: “The probability that
our Universe was created as a result of the Big Bang approximately 14× 109

years ago equals 0.75.” The Universe was created by one or another unique
way. It is difficult to invent an “ensemble of realizations” here.

There are events that can be imbedded in an ensemble (e.g., the ensemble
of planets with living conditions close to ours), but such imbedding would be
empty if we are interested just in the unique member of the ensemble (the
Earth). In the introduction in Sect. 3 of his first volume [292], W. Feller de-
scribes the objective approach to the applied notion of probability as follows:
“We shall be concerned further not with methods of inductive conclusions,
but with such entities that can be called physical, or statistical probability.
Roughly speaking, we can characterize this notion by saying that our prob-
abilities refer to outcomes of a mental experiment, and not to opinions. In
our system, there is no place for hypotheses using the probability of sunrise
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tomorrow. Before speaking about such probability, we should stipulate that
some (idealized) model of experiment would exist. Such model could look as
follows: ‘We select in a random way one of an infinite ensemble of planet
systems.’ A little imagination is enough in order to construct such a model,
but it turns out to be both uninteresting and senseless.”

In the objective approach, the probability of some event is thought as
a stable frequency of its appearance in a long series of repeated experiments,
conducted in identical conditions and independently. It should be noted,
however, that some statistical conclusions can be inferred concerning unique
events or objects. Such conclusions are connected with so-called confidence
regions for unknown (and non-random) parameters. There is no contradiction
in such inference with the objective frequency approach since a confidence
region (in particular, a confidence interval for a one-dimensional parameter)
is a domain with random boundaries derived from a random sample. Thus,
the assertion “The parameter x has a confidence interval C with probability
1 − p” has a clear statistical meaning and the probability 1 − p corresponds
to some repeated experiment.

The objective frequency point of view on applied aspects of probability
was adopted by such eminent mathematicians as Kolmogorov, Feller, Doob,
Cramer, Mises, Fisher, Neyman.

In the subjective approach, a probability can be assigned to any event
or assertion. It expresses a measure of likelihood of occurrence of this event.
Such measure has often a subjective character [462] (see as well “personal”
probabilities introduced by Savage [813] and “intuitive” probabilities [524]).
This approach does not necessarily require ensembles, and probabilities can
be assigned to such events as e.g.: the city of Rome was founded by Romulus;
the Riemann hypothesis concerning non-trivial zeros of the ζ-function is true;
“the Iron Mask” was the brother of Louis XIV [186]; there exists an organic
life on the planet of Mars [186], etc.

Adherents of the frequency approach do not generally deny the possible
usefulness of subjective opinions with regard to the likelihood of unique events
of the type mentioned above, or with regard to the usefulness of the Bayes
theorem, discussed in the next section, that handles these opinions. Some-
times, these opinions are necessary for practical purposes, because there may
exist no corresponding device, or no objective measurement methods. An ex-
ample is found in sport gymnastic, in figure skating, in wine competitions
and so on. It is natural to use statistical methods (the Bayes theorem in par-
ticular) in treating personal marks in such cases. Let us mention for instance
the well-known practice of throwing out the highest and lowest marks be-
fore averaging the remaining marks given by referees in figure skating. This
approach is justified by the statistical theory of robust estimation.

However, unchecked use of subjective probabilities can lead sometimes to
misleading or false results because they reflect not only the objective reality of
a phenomenon under study but as well the level of knowledge of a particular
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group of experts. There is thus a “noise” or bias introduced by experts, and
sometimes it is difficult to estimate its level. Let us consider two possible sub-
jective estimations of probabilities. Perhaps, an “expert” opinion concerning
our solar system before Copernicus and Galileo would have assigned a prob-
ability, say 0.9999, to the assertion that the Sun turns around the Earth and
not conversely. Similarly, an “expert” opinion concerning mechanical motion
before Einstein would have assigned a probability, say 0.9999, to the possibil-
ity of relative speeds between two bodies larger than the speed of light. We
know now that both assertions turned out to be false.

It is difficult to delineate definitely the domains where subjective opinions
and probabilities are useful from those where they are dangerous. For in-
stance, the construction of such a boundary is a serious problem in medicine.
What can be asserted as a rule is that the use of a statistical terminology in
the subjective approach is more fuzzy and vague with often indefinite mean-
ing. Inferences based on subjective probabilities should not be regarded as
objective results confirmed by the theory of probability.

A.N. Kolmogorov defined the applied aspects of probability as follows
(see for more details [521–523]): “Probabilities are objective characteristics
of those phenomena which, due to some their inherent properties, possess
frequency stability; the probability of an event does not depend on any sub-
jective opinion.”

The subjective approach is based on Bayes’ theorem discussed in the next
sections. In the context of this general discussion, let us contrast the content
of Bayes’ theorem with the objective approach. Bayes’ theorem, or the Bayes’
formula of a posteriori probability, has as “input” an a priori distribution of
some parameter, which defines the hypothesis. As “output,” this theorem
provides an a posteriori distribution based on an observed sample. An a pri-
ori distribution can be sometimes suggested on the basis of past experiments.
The prior as it is called can in particular be constructed on some statistical
frequency estimates. However, in most cases, this a priori distribution is un-
known. In such cases, one has to set a priori distributions in an arbitrary
way in order to be able to apply Bayes’ theorem. One then refers to “equally
probable a priori chances,” or one uses “for the lack of the better” a uniform
distribution in some region whose choice is often arbitrary. Such references
are mostly ill-justified and unconvincing. The main fact justifying the ap-
plication of an arbitrary a priori distribution (continuous and positive in
the whole domain of definition) consists in a theorem of equivalence between
Bayesian estimates and maximum likelihood estimates (see Chap. 3, Sect. 53,
Theorem 1 in [103]). For the sake of fairness, it should be noted that the least
favorable a priori distribution in the Bayesian approach is quite reasonable
and can be justified from the point of view of the minimax criterion, which
minimizes the largest possible risk. This approach is related to the proba-
bility of a false decision in hypothesis testing and provides some measure of
deviation of parameter estimates from the true value.
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An inference or estimate based on subjective a priori distributions often
turns out to be quite sensible and useful. However, such an inference needs
very careful checking in practice. Let us finish with an exemplary histori-
cal case. The famous Maxwell–Boltzmann statistic of classical physics (see
Sect. 3.3 and Chap. 7) appears as the result of “natural” or “random” dis-
tributions of particles over phase space cells. However, when physicists tried
to apply this statistic to quantum mechanical systems, it was found that
no known particle or systems of particles did obey the Maxwell–Boltzmann
statistic. Thus, one had to replace the “natural,” random Boltzmann distri-
bution by the Bose–Einstein distribution (applied to photons and some other
boson particles), and by the Fermi–Dirac distribution (applied to electrons
and other fermion particles). In this case, an intuitively clear uniform distri-
bution of particles at the microscopic level failed when applied in quantum
mechanics.

Thus, there is no ground to oppose the Bayesian to the frequency ap-
proach, as well as to consider it as a more fruitful one. Both have value
when used carefully with full knowledge and appreciation of their domain of
application and limitations.

1.2 Bayesian View Point

1.2.1 Introduction

We take inspiration from [193] for this brief presentation. Traditionally, the
various contributions to uncertain knowledge are classified in terms of “sta-
tistical” and “systematic” uncertainties, which reflect the sources. Statistical
uncertainties vanish, in general, if the number of observations becomes very
large (except for certain systems said to possess non-averaging properties as
occurs in random media [622]; see Chaps. 16–17). On the other hand, it is
not possible to treat “systematic” uncertainties coherently in the frequence
framework, as there are no universally accepted prescriptions for how to com-
bine the “statistical” and “systematic” uncertainties (linear or nonlinear or
partial addition, etc.). The only way to deal with these and related problems
in a consistent way is to abandon the frequence interpretation of probabil-
ity introduced at the beginning of this century, and to recover the intuitive
concept of probability as degree of belief. Stated differently, one needs to as-
sociate the idea of probability with the lack of knowledge, rather than with
the outcome of repeated experiments. This has been recognized also by the
International Organization for Standardization (ISO) which assumes the sub-
jective definition of probability in its Guide to the Expression of Uncertainty
in Measurement [448].

The three different definitions of a probability are:

1. combinatorial – the ratio of the number of favorable cases to the number
of all cases;
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2. frequence – the ratio of the times the event occurs in a test series to the
total number of trials in the series;

3. Bayesian – a measure of the degree of belief that an event will occur.

Indeed, the concept of “probable” arises in reasoning when the concept of
“certain” is not applicable. When it is impossible to state firmly if an event
or proposition, relative to past, present or future, is true or false, we just
say that this is possible or probable. Different events may have different
levels of probability, depending on whether we think that they are more
likely to be true or false. This is the definition found in books on Bayesian
analysis [83, 212, 462, 747, 1023] and used in the ISO Guide to Expression of
Uncertainty in Measurement [448].

Bayesian statistics is based on the subjective definition of probability
as “degree of belief” and on Bayes’ theorem, the basic tool for assigning
probabilities to hypotheses combining a priori judgements and experimental
information. This was the original point of view of Bayes, Bernoulli, Gauss
and Laplace, and contrasts with later conventional definitions of probabil-
ities, which implicitly presuppose the concept of frequences, as we already
mentioned. The Bayesian approach is useful for data analysis and for assign-
ing uncertainties to the results of measurements. Let us summarize its main
properties.

• The Bayesian definition is natural and general, and can be applied to any
thinkable event, independent of the feasibility of making an inventory of
all (equally) possible and favorable cases, or of repeating the experiment
under conditions of equal probability.

• It avoids the problem of having to distinguish “scientific” probability from
“non-scientific” probability used in everyday reasoning.

• As far as measurements are concerned, it allows us to talk about the prob-
ability of the true value of a physical quantity. In the frequence frame, it is
only possible to talk about the probability of the outcome of an experiment,
as the true value is considered to be a constant.

• It is possible to make a general theory of uncertainty which can take into
account any source of statistical and systematic error, independently of
their distribution.

1.2.2 Bayes’ Theorem

We briefly sum up the most important rules for conditional probabilities
from which Bayes’ theorem can be derived and we give a few illustrations.
The expression of the conditional probability P (E|H) that event E occurs
under the condition that hypothesis H occurs is

P (E|H) =
P (E ∩H)
P (H)

(P (H) �= 0) . (1.1)
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Thus

P (E ∩H) = P (E|H)P (H) , (1.2)

and by symmetry

P (E ∩H) = P (H |E)P (E) . (1.3)

Two events are called independent if

P (E ∩H) = P (E)P (H) . (1.4)

This is equivalent to saying that P (E|H) = P (E) and P (H |E) = P (H), i.e.
the knowledge that one event has occurred does not change the probability
of the other. If P (E|H) �= P (E), then the events E and H are correlated. In
particular:

• if P (E|H) > P (E) then E and H are positively correlated;
• if P (E|H) < P (E) then E and H are negatively correlated.

Let us think of all the possible, mutually exclusive, hypotheses Hi which
could condition the event E. The problem is to determine the probability of
Hi under the hypothesis that E has occurred. This is a basic problem for any
kind of measurement: having observed an effect, to assess the probability of
each of the causes which could have produced it. This intellectual process is
called inference and is a fundamental building block of the construction of
scientific knowledge.

In order to calculate P (Hi|E), let us rewrite the joint probability
P (Hi ∩E), making use of (1.2) and (1.3), in two different ways:

P (Hi|E)P (E) = P (E|Hi)P (Hi) , (1.5)

obtaining

P (Hi|E) =
P (E|Hi)P (Hi)

P (E)
(1.6)

or
P (Hi|E)
P (Hi)

=
P (E|Hi)
P (E)

. (1.7)

Since the hypotheses Hi are mutually exclusive (i.e. Hi ∩Hj = ∅, ∀ i, j) and
exhaustive (i.e.

⋃
i Hi = Ω), E can be written as E ∪Hi, the union of E with

each of the hypotheses Hi. It follows that

P (E) = P

(
E ∩

⋃
i

Hi

)
= P

(⋃
i

(E ∩Hi)

)
,

=
∑

i

P (E ∩Hi) ,

=
∑

i

P (E|Hi)P (Hi) , (1.8)
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where we have made use of (1.2) again in the last step. It is then possible to
rewrite (1.6) as

P (Hi|E) =
P (E|Hi)P (Hi)∑
j P (E|Hj)P (Hj)

. (1.9)

This is the standard form of Bayes’ theorem. The denominator of (1.9) is
nothing but a normalization factor, such that

∑
i P (Hi|E) = 1.

• P (Hi) is the initial, or a priori, probability (or simply “prior”) of Hi, i.e.
the probability of this hypothesis with the information available before the
knowledge that E has occurred;

• P (Hi|E) is the final, or “a posteriori”, probability of Hi after the new
information;

• P (E|Hi) is called the likelihood .

1.2.3 Bayesian Explanation for Change of Belief

To better understand the terms “initial”, “final”, and “likelihood”, let us
formulate the problem in a way closer to the mentality of scientists, referring
to causes and effects : the causes can be all the physical sources which may
produce a certain observable (the effect). The likelihoods are – as the word
says – the likelihoods that the effect follows from each of the causes.

Let us assume that a natural catastrophe (a hurricane such as An-
drew [748]) occurs at a rate of once in 100 years, but there is a concern over the
possible effect of human impact, such as “global warming”, in modifying this
natural rate. Let us assume that the public and scientific community believes
a priori that the existence He and nonexistence Hne of the anthropogenic
effect is equally probable, that is P (He) = P (Hne) = 0.5. In the absence
of “global warming”, we assume that P (rate ≤ 1 per century|Hne) = 0.99
while P (rate > 1 per century|Hne) = 0.01. Suppose that we are able to es-
timate the impact “global warming” may have on the rate of hurricanes;
global warming is assumed to increase the likelihood of large hurricanes
to the value P (rate > 1 per century|He) that we take equal to 0.5. Thus,
P (rate ≤ 1 per century|He) = 0.5 also (these numbers are given only for
the sake of the example and do not represent genuine scientific calculations).
Suppose then that two catastrophic hurricanes of the magnitude of Andrew
occurred in our century. Then, (1.9) gives the probability for the hypothesis
that global warming is present:

P (He|rate > 1) =
P (rate > 1 per century|He)P (He)

P (rate > 1 per century|He)P (He) + P (rate > 1 per century|Hne)P (Hne)

=
0.5 × 0.5

0.5 × 0.5 + 0.01 × 0.5
≈ 98% . (1.10)
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With these numbers, the occurrence of just one additional catastrophic hur-
ricane would make the existence of “global warming” very plausible. The
public will not think that the second catastrophic hurricane was simply bad
luck. See [541] for other applications in engineering and [434] for a quantifi-
cation of how a skeptical belief (with prior belief of 10−3) can be turned into
an a posterior probability of 93%, given the evidence provided by the data.

1.2.4 Bayesian Probability and the Dutch Book

A very interesting view expounded in [150] is that Bayesian probabilities are
“consistent” subjective quantification of the degree of uncertainty on a sys-
tem. The following exposition borrows from Caves et al. [150]. The key idea is
to develop an operational definition of the degrees of belief or uncertainty by
Bayesian probabilities using decision theory [814], i.e., the theory of how to
decide in the face of uncertainty. The Bayesian approach captures naturally
the notion that probabilities can change when new information is obtained.
Recall that the fundamental Bayesian probability assignment is to a sin-
gle system or a single realization of an experiment. As we already stressed,
Bayesian probabilities are defined without any reference to the limiting fre-
quency of outcomes in repeated experiments. Bayesian probability theory
does allow one to make (probabilistic) predictions of frequencies. Rather, fre-
quencies in past experiments provide valuable information for updating the
probabilities assigned to future trials. Despite this connection, probabilities
and frequencies are strictly separate concepts.

The simplest operational definition of Bayesian probabilities is in terms
of consistent betting behavior, which is decision theory in a nutshell. Consider
a bookie who offers a bet on the occurrence of outcome E in some situation.
The bettor pays in an amount px – the stake – up front. The bookie pays out
an amount x – the payoff – if E occurs and nothing otherwise. Conventionally
this is said to be a bet at odds of (1 − p)/p to 1. For the bettor to assign
a probability p to outcome E means that he is willing to accept a bet at these
odds with an arbitrary payoff x determined by the bookie. The payoff can
be positive or negative, meaning that the bettor is willing to accept either
side of the bet. We call a probability assignment to the outcomes of a betting
situation inconsistent if it forces the bettor to accept bets in which he incurs
a sure loss; i.e., he loses for every possible outcome. A probability assignment
will be called consistent if it is not inconsistent in this sense.

Remarkably, consistency alone implies that the bettor must obey the stan-
dard probability rules in his probability assignment: (i) p ≥ 0, (ii) p(A∨B) =
p(A)+ p(B) if A and B are mutually exclusive, (iii) p(A∧B) = p(A|B)p(B),
and (iv) p(A) = 1 if A is certain. A ∨ B means A or B; A ∧ B means A
and B. Any probability assignment that violates one of these rules can be
shown to be inconsistent in the above sense. This is the so-called Dutch-book
argument [206, 259]. We stress that it does not invoke expectation values or
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averages in repeated bets; the bettor who violates the probability rules suffers
a sure loss in a single instance of the betting situation.

For instance, to show that p(A∨B) = p(A)+p(B) if A and B are mutually
exclusive, assume that the bettor assigns probabilities pA, pB, and pC to the
three outcomes A, B, and C = A∨B. This means he will accept the following
three bets: a bet on A with payoff xA, which means the stake is pAxA; a bet
on B with payoff xB and thus with stake pBxB; and a bet on C with payoff
xC and thus with stake pCxC . The net amount the bettor receives is

R =

⎧⎨
⎩
xA(1 − pA) − xBpB + xC(1 − pC) if A ∧ ¬B
−xApA + xB(1 − pB) + xC(1 − pC) if ¬A ∧B ;
−xApA − xBpB − xCpC if ¬A ∧ ¬B

(1.11)

¬B means non-B. The outcome A ∧ B does not occur since A and B are
mutually exclusive. The bookie can choose values xA, xB, and xC that lead
to R < 0 in all three cases unless

0 = det

⎛
⎝ 1 − pA −pB 1 − pC

−pA 1 − pB 1 − pC

−pA −pB −pC

⎞
⎠ = pA + pB − pC . (1.12)

The probability assignment is thus inconsistent unless p(A ∨ B) = pC =
pA + pB.

As scientists working in the natural or social sciences, it is important
to accept and embrace the notion that subjective probabilities receive their
only operational significance from decision theory, the simplest example of
which is the Dutch-book argument in which probabilities are defined to be
betting odds. In the Dutch-book approach, the structure of probability theory
follows solely from the requirement of consistent betting behavior. There is
no other input to the theory. For example, normalization of the probabilities
for exclusive and exhaustive alternatives is not an independent assumption,
so obvious that it needs no justification. Instead normalization follows from
probability rules (ii) and (iv) above and thus receives its sole justification
from the requirement of consistent betting behavior.

The only case in which consistency alone leads to a particular numerical
probability is the case of certainty, or maximal information. If the bettor
is certain that the outcome E will occur, the probability assignment p < 1
means he is willing to take the side of the bookie in a bet on E, receiving
an amount px up front and paying out x if E occurs, leading to a certain
loss of x(1 − p) > 0. Consistency thus requires that the bettor assign prob-
ability p = 1. More generally, consistency requires a particular probability
assignment only in the case of maximal information, which classically always
means p = 1 or 0.

Caves et al. [150] have used the Dutch book approach to show that, despite
being prescribed by a fundamental law, probabilities for individual quantum
systems can be understood within the Bayesian approach. This approach
quantifying the lack of knowledge may also be instrumental in the broad
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questions of model validation for decision making, as occurs for instance in
climate modeling (global warming or not?), reliability of a rocket (launch or
not?), or of a nuclear stockpile in the context of nuclear stewardship, to cite
a few example.

1.3 Probability Density Function

Consider a process X whose outcome is a real number. The probability den-
sity function (pdf) P (x) (also called probability distribution) ofX is such that
the probability that X is found in a small interval ∆x around x is P (x)∆x.
The probability that X is between a and b is given by the integral of P (x)
between a and b:

P(a < X < b) =
∫ b

a

P (x) dx . (1.13)

The pdf P (x) depends on the units used to quantity the variable x and has
the dimension of the inverse of x, such that P (x)∆x, being a probability
i.e. a number between 0 and 1, is dimensionless. In a change of variable, say
x → y = f(x), the probability is invariant. Thus, the invariant quantity is
the probability P (x)∆x and not the pdf P (x). We thus have

P (x)∆x = P (y)∆y , (1.14)

leading to P (y) = P (x)|df/dx|−1, taking the limit of infinitesimal intervals.
We will repeatedly use this expression (1.14).

By definition, P (x) ≥ 0. It is normalized∫ xmax

xmin

P (x) dx = 1 , (1.15)

where xmin and xmax are the smallest and largest possible values for x, respec-
tively. We will, from now on, take the upper and lower bounds as respectively
−∞ and +∞ by putting P (x) = 0 for −∞ < x ≤ xmin and xmax ≤ x < +∞.
We all know how to plot the pdf P (x) with the horizontal axis scaled as
a graded series for the measure under consideration (the magnitude of the
earthquakes, etc.) and the vertical axis scaled for the number of outcomes or
measures in each interval of horizontal value (the earthquakes of magnitude
between 1 and 2, between 2 and 3, etc.). This implies a “binning” into small
intervals. If the data is sparse, the number of events in each bin becomes
small and fluctuates making a poor representation of the data. In this case,
it is useful to construct the cumulative distribution P≤(x) defined by

P≤(x) = P(X ≤ x) =
∫ x

−∞
P (y) dy , (1.16)

which is much less sensitive to fluctuations. P≤(x) gives the fraction of events
with values less than or equal to x. P≤(x) increases monotonically with x from
0 to 1. Similarly, we can define P>(x) = 1 − P≤(x).
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For random variables which take only discrete values x1, x2, . . . , xn, the
pdf is made of a discrete sum of Dirac functions (1/n)[δ(x−x1 + δ(x−x2)+
. . . + δ(x − xn)]. The corresponding cumulative distribution function (cdf)
P≤(x) is a staircase. There are also more complex distributions made of con-
tinuous cdf but which are singular with respect to the Lebesgue measure dx.
An example is the Cantor distribution constructed from the Cantor set (see
Chap. 5). Such singular cdf is continuous but has its derivative which is zero
almost everywhere: the pdf does not exist (see e.g. [293], Chapt. 5, Sect. 3a).

1.4 Measures of Central Tendency

What is the typical value of the outcome of a chance process? The answer is
given by the so-called “central tendency”. There are three major measures
of central tendency. The mean or average noted 〈x〉 is obtained by adding all
the values and dividing by the number of cases, or in continuous notation

〈x〉 =
∫ ∞

−∞
xP (x) dx . (1.17)

The median x1/2 is the halfway point in a graded array of values, in other
words half of all values are below x1/2 and half are above:

P≤(x1/2) =
1
2
. (1.18)

For instance, the IQ median is 100. Finally, the most probable value or mode
is the value xmp that maximizes P (x):

dP (x)
dx

|x=xmp = 0 . (1.19)

If several values satisfy this equation, the most probable is the one with the
largest P (x).

Fig. 1.3. Distribution skewed to the right
with a thick tail, where xmp, x1/2 and 〈x〉
are represented
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For a unimodal symmetric pdf such as the Gauss distribution, all these
three quantities are equal. However, for a skewed pdf, they differ and all the
more so if the pdf exhibits a thick tail to one side. As an extreme illustration,
let us write the pdf of (normalized) earthquake energies as

P (E) = µE−(1+µ) , for 1 ≤ E <∞ , (1.20)

where µ is usually taken close to 2/3. Then, Emp = 1, E1/2 = 21/µ ≈ 2.8
and 〈E〉 = ∞, because µ < 1. The diverging average betrays the fact that
the average is controlled by the largest event ever measured and not by the
crowd of small events (see Chap. 4). For pdf’s which are skewed, say to the
right as in this example, we have in general xmp ≤ x1/2 ≤ 〈x〉. The difference
between xmp, x1/2 and 〈x〉 has an important significance: depending on the
type of measurement, the “typical” behavior will be different. For a few trials,
the most probable values will be sampled first and their typical value will be
not far from xmp. An average made on a few such measures will thus be close
to xmp. On the other hand, if many measurements are made, their average
will drift progressively to the true 〈x〉 as their number increases. A clear
discussion of this cross-over is given in [764] for the log-normal distribution
which is also discussed in Chap. 4. This evolution of the apparent average
as a function of the sampling size has obvious important consequences and
should be kept in mind.

1.5 Measure of Variations from Central Tendency

When repeating a measurement or an observation several times, one expects
them to be within an interval anchored at the central tendency (when well-
defined) of a certain width. This width is a measure of the variations. There
are several ways to measure the width of the variations. A first measure is
the average of the absolute value of the spread (Dabs) defined by

Dabs =
∫ ∞

−∞
|x− x1/2|P (x) dx . (1.21)

Dabs does not always exist, such as for pdf’s with thick tails decaying as (or
slower than) 1/x2 for large x.

The variance σ2 is the square of the standard deviation σ which provides
a second measure and is defined by the average of the square of the distance
to the mean:

σ2 = 〈x2〉 − 〈x〉2 =
∫ +∞

−∞
(x− 〈x〉)2P (x) dx . (1.22)

The variance does not always exist, such as for pdf’s with thick tails decaying
as (or slower than) 1/x3 for large x.
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1.6 Moments and Characteristic Function

The moments are defined by the average of the powers of x:

mn = 〈xn〉 =
∫ +∞

−∞
xnP (x) dx . (1.23)

The mean 〈x〉 is the first moment m1 and the variance is related to the
second moment: σ2 = m2 −m2

1. For this definition (1.23) to be meaningful,
the integral on the right-hand side must be convergent, i.e. P (x) must decay
sufficiently fast for large |x|.

A necessary condition for the existence of a moment mn of order n is
that the pdf P (x) decays faster than 1/|x|n+1 for x→ ±∞. This is trivially
obeyed for pdf’s which vanish outside a finite region.

Consider a pdf whose asymptotic shape for large |x| is a power law with
exponent µ,

P (x) ∼ C±
|x|1+µ

for x→ ±∞ . (1.24)

This pdf does not have moments of order n ≥ µ. For instance, this pdf does
not have a variance if µ ≤ 2 and does not have a mean if µ ≤ 1, as already
seen. Only positive µ’s need to be considered to ensure the normalization of
P (x).

Statisticians often work with moments (or cumulants, see below) because
they replace the difficult problem of determining a full functional behavior
(the pdf) with the estimation of a few numbers. In principle, the knowledge of
all the moments is (almost) equivalent to that of the pdf. This is not strictly
correct as there are examples where two different distributions have the same
moments. For instance, the pdf

1√
2π
x−1 exp

[
−1

2
(lnx)2

]
[1 + a sin(2π lnx)] ,

with −1 < a < 1, has exactly the same moments as the log-normal distribu-
tion

1√
2π
x−1e−(1/2)(ln x)2

(see [293], Vol. II, p. 227). This constitutes a warning that it is always
preferable to work with the complete pdf. The strict equivalence between
the knowledge of all the moments and the pdf is obtained under additional
analyticity conditions of the characteristic function in the neighborhood of
the origin [500]. Specifically, if the characteristic function (as defined in (1.25)
below) admits an expansion in integer powers of ik up to order q included,
then all moments up to order q and vice-versa [575].

The calculation of an increasing number of moments thus offers a succes-
sion of improving approximations for the determination of the pdf. In practice
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however, the determination of the moments of high order is generally unsta-
ble, which makes their use delicate for the description of empirical data. For
instance, the intermittent nature of hydrodynamic turbulence is often char-
acterized by calculating the moments of order smaller than 10, while higher
orders are found to be unreliable even for the largest available time series.

The Fourier transform of P (x) (in the continuous case) defines the char-
acteristic function P̂ (k):

P̂ (k) =
∫ ∞

−∞
exp (ikx)P (x) dx . (1.25)

Inversely, we have

P (x) =
1
2π

∫ ∞

−∞
exp (−ikx) P̂ (k) dk . (1.26)

The normalization condition on P (x) is equivalent to P̂ (0) = 1. The moment
of the pdf can be obtained from the successive derivatives of the characteristic
function at k = 0:

mn = (−i)n dn

dkn
P̂ (k)

∣∣∣∣
k=0

. (1.27)

Provided some analyticity conditions are obeyed and all moments exist, the
characteristic function reads

P̂ (k) =
∞∑
n

mn

n!
(ik)n . (1.28)

1.7 Cumulants

The probability of a set of independent events is the product of their prob-
abilities. It is thus convenient to work with lnP (x) (which is additive) and
define the analog of (1.27) and (1.28). This leads to the introduction of the
cumulants cn of a pdf, defined as the derivatives of the logarithm of its char-
acteristic function:

cn = (−i)n dn

dkn
ln P̂ (k)

∣∣∣∣
k=0

. (1.29)

In other words, we can write the characteristic function as

P̂ (k) = exp
[ ∞∑

n

cn
n!

(ik)n

]
. (1.30)

A cumulant cn is a combination of moments ml of orders l ≤ n, as can be
easily seen by expansion of the exponential in the right-hand side of (1.30).
We get for the six first cumulants [937]
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c1 = m1 , (1.31a)
c2 = m2 −m2

1 , (1.31b)
c3 = m3 − 3m2m1 + 2m3

1 , (1.31c)
c4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 , (1.31d)
c5 = m5 − 5m4m1 − 10m3m2 + 20m3m

2
1 + 30m2

2m1

−60m2m
3
1 + 24m5

1 , (1.31e)
c6 = m6 − 6m5m1 − 15m4m2 + 30m4m

2
1 − 10m2

3

+120m3m2m1 − 120m3m
3
1 + 30m3

2

−270m2
2m

2
1 + 360m2m

4
1 − 120m6

1 . (1.31f)

Cumulants enjoy remarkably useful properties. For instance, the cumu-
lants of the pdf of the sum of two independent random variables are just the
sum of the respective cumulants of the pdf’s of each variable. To derive this
result, take x = x1 + x2, where x1 and x2 are independent and distributed
with the pdf’s P1 and P2 respectively. Then, the pdf of x is given by

P (x) =
∫ ∞

−∞
dx1P1(x1)

∫ ∞

−∞
dx2P2(x2)δ(x− x1 − x2)

=
∫ ∞

−∞
dx1P1(x1)P2(x− x1) , (1.32)

showing that P (x) is the convolution of P1 and P2. Now, the Fourier trans-
form of the product of convolution is the product of the Fourier transform:

P̂ (k) = P̂1(k)P̂2(k). (1.33)

Using (1.30) in this expression and identifying term by term the coefficient
of kn, we get the announced result

cn = c(1)n + c(2)n . (1.34)

Another important property is that cumulants of order larger than two
offer natural measures of the deviation from normality, with an increasing
sensitivity to the largest fluctuations as the order n increases. Indeed, the
normal (or Gauss) law has all its cumulants of order larger than 2 identically
zero.

Normalized cumulants are defined by

λn ≡ cn
σn

. (1.35)

λ3 ≡ c3/σ
3 is called the skewness and

κ ≡ λ4 =
〈(x− 〈x〉)4〉

σ4
− 3 , (1.36)

is called the excess kurtosis. The (normal) kurtosis, defined as m4/m
2
2, is

simply κ + 3 for symmetric pdf’s. For symmetric distributions, κ quantifies
the first correction to the Gaussian approximation. A Gaussian pdf has zero
excess kurtosis and normal kurtosis equal to 3.
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1.8 Maximum of Random Variables
and Extreme Value Theory

Central values and typical fluctuations are not enough to characterize natural
systems which exhibit rare but extreme events often dominating the long term
balance:

• the largest earthquake in California accounts for a significant fraction,
maybe a third, of the total long-term energy released by the crust;

• a centenial or millenial flood has often by itself more impact on erosion and
landscape shaping than the cumulative effect of all other erosion mecha-
nisms;

• the largest volcanic eruptions bring in major meteorological perturbations
that may lead to important modifications of the biosphere;

• the largest hurricane (such as Andrews for the twentieth century in terms
of impact on human properties [748]) as well as a large earthquake in Los
Angeles or Tokyo may have a major impact on the economy of the country.

It is thus important to determine the statistical properties of such rare but
extreme events, with applications to the calculation of the largest risks that
insurance companies and governments must face, to the construction of wave
and tsunami barriers, to the definition of engineering building codes and so
on.

The theory of extreme events is called extreme value theory (EVT). The
two classic references are Gumbel [381] and Galambos [326]. A more recent
book [274] provides a synthetis of recent results on EVT, with application
to finance and insurance. We also refer to other general references of interest
that cover other developments and applications [148, 269, 327, 380, 504]. The
EVT evaluates the probable size of the largest event among a population, or
the probability of exceedance, i.e. that the size of the event be larger than
some value. The asumption of independence can be relaxed [274]. EVT has
also been worked out for processes both in discrete and continuous time,
with or without independence and/or stationarity assumptions (see [274] and
references therein).

Heterogeneous systems often exhibit large fluctuations and their physics
is often controlled by some rare and large fluctuations. There is a close link
between the different classes of extreme value distributions discussed below
and some of the techniques developed to calculate the properties of random
interacting systems as discussed in Chap. 16. For instance, Parisi’s “replica
symmetry breaking” scheme [622] needed to obtain the correct low temper-
ature properties of various random systems, such as spin glasses, can be
understood from the point of view of extreme value theory. Indeed, at low
temperature, a disordered system preferentially occupies its extremely low
energy states, which are random variables because of the disordered nature
of the systems. We refer to [114] for a first step in a categorization of the
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universality classes that appear in the physics of random systems and which
are analogous to classifications presented below.

In this section, we first show how to estimate the size of the largest value.
We then recall some important results on the stable laws of extreme event
distributions and how they can be derived. The exposition is non-rigorous in
order to provide an intuitive understanding.

1.8.1 Maximum Value Among N Random Variables

Definition and Properties. The N independent realizations of the same
random process can be for instance the observation of N earthquakes in
a given area, assumed independent as a first approximation. This assump-
tion of independence is known to be wrong in reality since, on the large time
scale, the earthquake must accomodate between themselves, and some possi-
ble creep, the global plate tectonic motion. This provides a constraint on the
first moment of the Gutenberg–Richter distribution. Also aftershocks and the
Omori law are the signature of short-time coupling.

By the law of large numbers which dictates that the sample average ap-
proximates the mathematical expectation and from the very definition of
a probability, an event whose probability is p occurs typically Np times. One
should thus expect to encounter in these N realizations only one event whose
probability is of the order of 1/N , while it would be surprising to see an event
with a probability much less than 1/N . This simple reasoning allows us to
get the estimation of the typical value of the largest value λ observed among
N realizations:

P≥(λ) = 1/N . (1.37)

It is possible to be more precise and specify the full pdf of the maximum
value among N observations. Consider N random independent identically
distributed (iid) variables Xi with pdf P (x). We define the random variable
Xmax = max{Xi; i = 1, . . . , N}. Its cumulative distribution Π<(λ), defining
the probability that Xmax < λ, is obtained from the fact that the maximum
of the Xi is smaller than λ if all variables Xi are smaller than λ. From the
condition of independence, the probability for this to occur is simply the
product of the probabilities:

Π<(λ) = [P<(λ)]N . (1.38)

This expression holds with no further restrictions on P (x). Replacing P<(λ)
by 1 − P≥(λ), we can write

Π<(λ) = [1 − P≥(λ)]N = exp {N ln [1 − P≥(λ)]} , (1.39)

which for large N yields

Π<(λ) � exp {−NP≥(λ)} . (1.40)
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We have expanded the logarithm for small values of P>(λ), which are the
only cases keeping the exponential appreciable for large N . The median of
Xmax is the value λ1/2 such that Π<(λ1/2) = 1/2, and is thus the solution of
the following equation in terms of the initial pdf P≥:

P≥(λ1/2) = 1 −
(

1
2

)1/N

� ln 2
N

. (1.41)

More generally, the value λp of the maximum which will not be exceeded
with probability p satisfies

P≥(λp) � ln(1/p)
N

. (1.42)

With these results, the intuitive formula (1.37) can be put on a firm basis.
This estimation of the maximum provided by (1.37) is the value that is not
exceeded with probability p = 1/e ≈ 0.37.

The median value of the largest among N variables depends on the pdf
P (x) only through its asymptotic behavior at large x. For a pdf with an
asymptotic exponential decay P≥(x) ∼ exp(−x/a), the maximum is typically

λ � a lnN (1.43)

which grows very slowly with N . This result can be refined using (1.42). For
instance, for an exponential pdf, we get

λ(p) ≈ a ln
N

ln(1/p)
. (1.44)

Let us take a symmetric pdf P (x) = (1/2) exp(−|x|) with standard deviation√
2. The median value of the maximum of 1000 variables is only 4.7 standard

deviations and for 10 000 it is 6.3 standard deviations. For “gentle” pdf’s (i.e.
decaying faster than any power law), the maximum is a slowly increasing
function of N . The Gaussian pdf is the archetype of a gentle function for
which the maximum grows like

√
lnN .

Table 1.1. Comparison of characteristic scales of the exponential e−x and power
law 1.5/x1+1.5 for x ≥ 1 distributions. Note that, notwithstanding their comparable
central values xmp, x1/2, and 〈x〉, their extreme fluctuations are very different: in the
exponential case, the maximum value λ(p) grows slowly (logarithmically) with the
number N of variables and with the confidence level p. In contrast, the maximum

value λ(p) grows like [N/ ln(1/p)]1/µ for a power law

P (x) xmp x1/2 〈x〉 λ(37%, N = 103) λ(37%, 104) λ(99%, 103) λ(99%, 104)

exp(−x) 0 0.69 1 6.9 9.2 11.5 13.8

1.5/x1+1.5 1 1.6 3 100 460 2150 10 000
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For pdf’s P (x) with asymptotic power law dependence (1.24), the situa-
tion is very different. In this case,

P≥(x) � C+

µxµ
, for x > 0 , (1.45)

and the typical value of the maximum is

λ ∼ (C+N)1/µ
. (1.46)

As a numerical example, take a pure power law defined between 1 and +∞
(i.e. with C+ = µ) with µ = 1.5. Then the largest value among 1000 or
10 000, that will not be exceeded with probability p = 1/e ≈ 37% is 100 or
460, respectively. For a larger confidence level of p = 99%, the largest value
among 1000 or 10 000 is 2150 or 10 000, respectively. These values must be
compared with xmp = 1, x1/2 = 21/µ = 1.6, and 〈x〉 = µ/(µ− 1) = 3. These
extremely large fluctuations are above all the measures of central tendency.
Intuitively, we now understand better why the variance has no meaning for
µ ≤ 2 (recall that we found it mathematically infinite) as fluctuations as large
as thousands of times larger than the mean can occur!

Another quantity of important use is the exceedance. Fix a threshold u
and estimate the size of the events beyond this level u. This is given from the
conditional probability P<(X−u ≤ x|X > u), i.e. the conditional probability
that, given that there is an event larger than u, the exceedance X − u is no
bigger than some level x. For sufficient data, an estimate of this probability is
obtained from the events X1 ≥ X2 ≥ . . . ≥ Xn ordered from the largest event
such that Xn ≥ u ≥ Xn−1. For insufficient data, we need to find a suitable
model or approximation for the pdf to calculate this conditional probability.
Formally, the mean exceedance

〈X〉|>u =

∫ +∞
u xdP<(x)∫ +∞
u dP<(x)

(1.47)

measures the expected value (conditionned to be above u) above u. It is
interesting to note that 〈X〉|>u−u is constant for an exponential distribution:

〈X〉|>u − u =
1
θ

for P<(x) ≈ 1 − exp
(
e−x/θ

)
with 0 ≤ x . (1.48)

This property is related to the absence of memory of the exponential Poisson
law. For a Gaussian distribution, 〈X〉|>u is very close to u showing that
the Gaussian pdf is characterized by small fluctuations. For power laws with
exponent µ > 1, 〈X〉|>u = (µ/(µ− 1))u and grows with u, a signature of the
absence of characteristic scales.

Relative Weight of the Maximum Xmax in a Sum X1 + . . . + XN .
A very natural question is to ask what is the relative importance of the largest
term Xmax in the sum X1+ . . .+XN . Is the largest value contributing a finite
fraction of the sum (a situation in which Xmax could be called a “king”)?
Or is its contribution of the same order 1/N as most of the others (a more
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“democratic” case)? The following presentation borrows from exchanges with
V.F. Pisarenko.

To answer this question, we again use the notation P (x) for the pdf of
the random variable X and P<(x) for its cumulative distribution. The pdf of
Xmax is

d[P<(x)]N

dx
= NP (x)[P<(x)]N−1 . (1.49)

The conditional pdf of X1 under fixed Xmax, denoted as P (x|Xmax) is

P (x|Xmax) =
1
N

δ(x−Xmax) +
(

1 − 1
N

)
P (x) H(Xmax − x)

P<(Xmax)
, (1.50)

where H is the Heaviside step-wise function. The first term in the r.h.s. of
(1.50) corresponds to the event X1 = Xmax which occurs with probability
1/N . The complementary event X1 < Xmax occurs with probability 1− 1/N
and the conditional pdf in this case is as shown in (1.50).

Now, the ratio X1/Xmax has the following cumulative distribution func-
tion denoted G(z):

G(z) = Pr{X1/Xmax < z}

=
∫ +∞

0

Pr{X1/Xmax < z|Xmax} d[P<(Xmax)]N

=
∫ +∞

0

Pr{X1 < zXmax|Xmax} d[P<(Xmax)]N . (1.51)

The corresponding pdf G(z) of X1/Xmax is obtained by differentiating (1.51):

G(z) =
∫ +∞

0

XmaxP (zXmax|Xmax) d[P<(Xmax)]N . (1.52)

We express P (zXmax|Xmax) using (1.50):

G(z) =
1
N

δ(z − 1) + (N − 1)
∫ +∞

0

dy yP (zy)P (y)[P<(y)]N−2 , (1.53)

for 0 ≤ z ≤ 1. Finally, the expectation of the ratio of the sum X1 + . . .+XN

divided by Xmax reads

E
[

X1 + . . .+XN

max{X1, . . . , XN}
]

= N

∫ 1

0

dz zG(z)

= 1 +N(N − 1)
∫ +∞

0

dy yP (y)[P<(y)]N−2

∫ 1

0

dz zP (yz) . (1.54)

Using the fact that
∫ 1

0 dz zP (yz) = (1/y)[P<(y) − T (y)] where

T (y) ≡ (1/y)
∫ y

0

duP<(u) , (1.55)
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we finally obtain

E
[

X1 + . . .+XN

max{X1, . . . , XN}
]

= N −N

∫ +∞

0

T (y) d[P<(y)]N−1 . (1.56)

This expression (1.56) is valid for any pdf of positive random variables. In
Sect. 4.2.1, we use this expression to discuss the case of pdf with power law
tails.

1.8.2 Stable Extreme Value Distributions

Under widely applicable conditions, the cumulative distribution of the largest
observation of an i.i.d. sample X1, X2, . . . , XN can be approximated by
a member of the following class of extreme value cumulative distributions:

Hξ,m,a(x) = exp
[
−
(

1 + ξ
x−m

a

)−1/ξ

+

]
, (1.57)

with the notation y+ = max(y, 0). This three parameter family of distribu-
tions Hξ,m,a(x) has

1. a location parameter −∞ < m < +∞,
2. a scale parameter a > 0,
3. a shape parameter −∞ < ξ < +∞.

• The Gumbel distribution is obtained from (1.57) by taking the limit ξ → 0:

H0,m,a(x) = exp
[
− exp

(
−x−m

a

)]
, (1.58)

defined for −∞ < x < +∞.
• The Fréchet distribution

Hξ>0,m,a(x) = exp

(
− 1

[1 + ξ(x −m)/a]1/ξ
+

)
, (1.59)

defined for m− a/ξ < x < +∞, is obtained for ξ > 0.
• The Weibull distribution

Hξ<0,m,a(x) = exp
[
−
(
m+ (a/|ξ|) − x

a

)1/|ξ|

+

]
, (1.60)

defined for −∞ < x < m + a/|ξ|, is obtained for ξ < 0. The Weibull
distribution has a finite right endpoint xF = m+ (a/|ξ|).
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Fig. 1.4. Comparison of the three sta-
ble distributions. The parameters are
m = 0, a = 1 and ξ = 1/2 for the
Fréchet, ξ = −1/2 for the Weibull dis-
tribution. The Gumbel distribution is
defined over −∞ < x < +∞. For
these parameters, the Fréchet distri-
bution is defined over −2 < x < +∞
and the Weibull distribution is defined
over −∞ < x < 2. Notice the long
power law tail of the Fréchet distribu-
tion and its slow convergence to 1

The remarkable result of EVT is that for any pdf of N random variables,
the distribution Π<(λ) of their maximum given by (1.38) tends asymptoti-
cally for large N to one of the three EV distribution Hξ,m,a(x) (1.58, 1.59,
1.60). The Gnedenko EV theorem states that, if, after an adequate centering
and normalization using two N -dependent parameters aN , bN , the distribu-
tion of λ converges to a non-degenerate distribution as N goes to infinity,
this limit distribution is then necessarily the Generalized Extreme Value dis-
tribution defined with a N -independent number ξ by

Π<(λ) →N→+∞ Hξ,m,a

(
λ− bN
aN

)
. (1.61)

The two N -dependent numbers aN and bN can be calculated explicitely as
a function of N and of the parameters of the pdf of the random variables. In
the same way as the Gaussian and Lévy stable laws for the sum of N random
variables, which will be discussed later on, the three EV distributions Hξ,m,a

have each their domain of attraction:

• Gumbel: any pdf with a tail falling faster than a power law will have its
EV distribution converging to the Gumbel distribution;

• Fréchet: any pdf with a tail falling as a power law X−1−µ for X → +∞
will have its EV distribution converging to the Fréchet distribution with
ξ = 1/µ;

• Weibull: any pdf with a finite right endpoint xF and with a dependence
close to this right endpoint proportional to (xF−x)1/|ξ| times a slowly vary-
ing function of x will have its EV distribution converging to the Weibull
distribution. The Weibull distribution is often used in engineering and ma-
terials science under different forms, as discussed in Chap. 6.

We now give two different heuristic derivations of this result for the case
of the Gumbel distribution, which has the largest domain of attraction since
it applies to all distributions with infinite domain of definition and which
decay asymptotically faster than power laws.
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1.8.3 First Heuristic Derivation
of the Stable Gumbel Distribution

Consider N realizations X1, X1, . . . , XN of a random variable and define

X̂
(1)
N ≡ max(X1, X2, . . . , XN ) . (1.62)

Denote P<(x) the cdf of the Xi’s, i.e. the probability to get a value less
than x. Then, the probability G<(x) that the maximum X̂

(1)
N is less than x

is obviously

G<(x) = [P<(x)]N , (1.63)

as the different realizations are assumed uncorrelated. Consider another set
of N realizations XN+1, XN+2, . . . , X2N and define

X̂
(2)
N ≡ max(XN+1, XN+2, . . . , X2N ) . (1.64)

Then obviously,

max(X1, X2, . . . , X2N ) = max(X̂(1)
N , X̂

(2)
N ) . (1.65)

This suggests that the distribution of the maximum value should obey some
kind of stability condition, which is usually stated as

[G<(x)]n = G<(x+ bn) . (1.66)

The same holds true for G>(x) = 1 − G<(x). We thus drop the index < or
> for the time being. Taking (1.66) to the power m yields

[G(x)]nm = [G(x + bn)]m = G(x+ bn + bm) , (1.67)

where the second equality is derived by applying (1.66) to [G(x+ bn)]m. But
applying (1.66) to the first term also gives

G(x+ bnm) = G(x + bn + bm) , (1.68)

and thus

bnm = bn + bm . (1.69)

The solution of (1.69) is

bn = θ lnn , (1.70)

where θ is an arbitrary constant. Now, taking the logarithm of (1.66) twice,
we write

lnn+ ln[− lnG(x)] = ln[− lnG(x+ θ lnn)] , (1.71)

where the minus sign have been inserted because the cdf G is smaller than
one and thus its logarithm is negative. Calling h(x) ≡ ln[− lnG(x)], we see
that h(x) is solution of

lnn+ h(x) = h(x+ θ lnn) , (1.72)
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whose solution is the affine function h(x) = h(0) + x/θ. This provides finally
the expression of the extreme value we were looking for:

G(x) = exp
(
−p0ex/θ

)
, (1.73)

where we have noted p0 = eh(0). For x > 0 large, G<(x) → 1 and for x < 0
with |x| large, G<(x) → 0. We thus have

G<(x) = 1 − exp
(
−p0ex/θ

)
. (1.74)

p0 has a simple interpretation when small. For x < 0, ex/θ < 1, we can thus
expand

exp
(
−p0ex/θ

)
= 1 − p0 exp (x/θ) , (1.75)

showing that p0 is simply the probability to get a negative value.

1.8.4 Second Heuristic Derivation
of the Stable Gumbel Distribution

We start again from (1.63) and use the following parameterization

P<(x) = 1 − e−f(x) , (1.76)

where f(x) goes from zero to +∞ when x goes from −∞ to +∞. This leads
to

G<(x) =
(
1 − e−f(x)

)N

= exp
[
N ln(1 − e−f(x))

]

≈ exp
(
−Ne−f(x)

)
, (1.77)

where the last expression becomes a better and better approximation as N
increases and x is larger so that e−f(x) becomes smaller and smaller.

The function exp
(−Ne−f(x)

)
is very small for small or negative x and

becomes very close to one for large x. This transition from 0 to 1 occurs more
and more abruptly when N increases. The location of this transition is at the
inflection point defined by d2G<(x)/dx2 = 0. For simplicity, we consider
unimodal pdf’s such that f(x) is monotonically increasing. This ensures the
existence of a unique inflection point x∗ of G<(x) given by

Ne−f(x∗) = 1 − f ′′
x=x∗

(f ′
x=x∗)2

, (1.78)

noting f ′ = df/dx and f ′′ = d2f/dx2. The right-hand side of (1.78) is very
close to 1 since, for distributions 1 − P<(x) which decay to zero for large x
faster than any power law, f ′′

x=x∗/(f ′
x=x∗)2 goes asymptotically to zero for
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large x. In contrast, for power law tails, this term approaches a constant for
large x. The typical interval ∆x over which the transition from 0 to 1 occurs
is such that

∆x
dG<(x)

dx
|x=x∗ ∼ 1 , (1.79)

leading to

∆x ∼ 1
(dG<(x)/dx)|x=x∗

. (1.80)

We verify that ∆x� x∗ as soon as f(x) � lnx, i.e. the tail of the distribution
decays faster than any power law. It is thus possible to expand f(x) around
this inflection point x∗ to derive the Gumbel distribution:

f(x) = f(x∗) + (x − x∗)f ′
x=x∗ +

1
2
(x− x∗)2f ′′

x=x∗ + . . . . (1.81)

This expansion is not valid for power laws which lead to the different (Fréchet)
stable distribution for extremes. The fundamental origin of this difference is
that the width ∆x is proportional x∗, which invalidates the expansion.

Inserting (1.81) in (1.77) yields

G<(x) = exp
{
−Ne−f(x∗) exp

[
−(x− x∗)f ′

x=x∗− 1
2
(x− x∗)2f ′′

x=x∗

]}

= exp
(
−Ne−f(x∗) exp

{
−(x− x∗)f ′

x=x∗

[
1+

1
2
(x− x∗)

f ′′
x=x∗

f ′
x=x∗

]})
. (1.82)

The Gumbel distribution corresponds to neglecting the term

1
2
(x − x∗)

f ′′
x=x∗

f ′
x=x∗

in the right-hand side of (1.82). This is justified for large N (leading to
large x∗) since x− x∗ is typically of order ∆x and thus

(x− x∗)
f ′′

x=x∗

f ′
x=x∗

≈ f ′′
x=x∗

(f ′
x=x∗)2

ef(x∗)

NG<(x∗)

= − d [1/(df/dx)]
dx

∣∣∣∣
x=x∗

ef(x∗)

NG<(x∗)
. (1.83)

The first order-of-magnitude equality is derived by using (1.80). The last
term in (1.83) decays to zero for large x∗, leading to the convergence of
the distribution of the maximum to the Gumbel distribution. It is possi-
ble to be more precise and control in a similar way all higher order terms
in the expansion (1.81) of f(x). For this, we refer first to the initial work
of R. Fisher and L. Tippet [?] which contains an heuristic derivation, lack-
ing however strict mathematic rigor. The first rigorous proof is due to the
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Russian statistician Boris Gnedenko. He published his paper in French dur-
ing the second World War [349]. A simplified proof of this result can be
found in [1011]. A half-page sketch of the proof can be found in [274],
pp. 121–122.

The speed of convergence, i.e. how well G<(x) is approached by the suit-
able normalized Gumbel distribution for a given N , is obtained by taking the
ratio of G<(x) to the corresponding normalized Gumbel distribution GG

<(x):

G<(x)
GG

<(x)
= [GG

<(x)]α , (1.84)

where

α = exp
[
−1

2
(x− x∗)2f ′′

x=x∗

]
−1 . (1.85)

Consider as an illustration the power-exponential pdf for which f(x) = xc

with c > 0. We find x∗ ∼ (lnN)1/c, ∆x ∼ (x∗)1−c, leading to ∆x/x∗ ∼ (x∗)−c

and α ≈ −c(c − 1)/2 lnN . This shows a very slow logarithmic convergence
of the EV distribution to the Gumbel law. In general, the rate of conver-
gence depends very much on the tail of the distribution of the random vari-
ables. For instance, Gaussian random variables have their EV distribution
converging to the Gumbel law only as O(1/ lnN) as above. For random vari-
ables distributed according to the exponential pdf, the convergence rate is
much faster, as O(1/N2). In addition, the situation is complicated by the
fact that the convergence rate depends on the precise choice of normalising
constants. This is much more complex and distribution dependent than the
situation for the convergence to the Gaussian for the sum of random numbers
as given by the central limit theorem discussed in Chap. 2. For the Fréchet
and Weibull laws, the convergence rates can be anything. See [214, 771]
for more informations on the rate of convergence: the general mathemat-
ical result is that the weak convergence is uniform whenever the limit is
continuous.

1.8.5 Practical Use and Expression of the Coefficients
of the Gumbel Distribution

For practical implementation, we do not recommend the determination of
the distribution of extreme values by using the EV distribution. This pro-
cedure which is often advocated does not in fact use the full data set. It is
preferable to determine the underlying pdf and use it in (1.38) or to use the
so-called “peak over threshold”, where one models the marked point process
of exceedances over high thresholds. This is also intimately related to the
rank-ordering method [326, 381, 903]. These methods work well for relatively
small samples (a few tens of measurements) as shown in [903].

It is interesting to express explicitely the constants m and a in (1.58) as
a function of the distribution P<(x) of the individual variables. It can be
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shown that a suitable choice is

a → P>[xn(γ)]
p[xn(γ)]

, (1.86)

m → xn(γ) − a

ln γ
, (1.87)

where p is the pdf of the individual variables and xn(γ) is defined by

{P<[xn(γ)]}n = e−γ , (1.88)

where γ is a positive real number. Optimizing γ will lead to a faster conver-
gence to the Gumbel distribution.

1.8.6 The Gnedenko–Pickands–Balkema–de Haan Theorem
and the pdf of Peaks-Over-Threshold

For practical applications, it is inconvenient to work with extremes. Indeed,
one has only a single largest event for each given series of random events.
Thus, in order to construct empirical statistics of extremes, the initial series
of N random variables must be partitioned into a possibly large number n
of groups (which become necessarily of rather small sizes N/n), of which
the largest element can be defined, yielding n samples of extreme values.
It is however obvious that this approach is suboptimal [518] compared with
the analysis in terms of the pdf of peaks-over-threshold, that we now de-
scribe.

The main relevant mathematical tool is the Gnedenko–Pickands–Bal-
kema–de Haan (GPBH) theorem which describes how the distribution of the
large events conditioned to be larger than some threshold can be character-
ized by the Generalized Pareto Distribution (GPD). The following borrows
from [738]. The GPD denoted as G(x/ξ, a) is derived from the distribution
Hξ,a(x) of the largest value given by (1.57), thus showing the link with Ex-
treme Value Theory:

G(x/ξ, a) = 1 + ln(Hξ,a(x)) = 1 −
(

1 + ξ
x

a

)−1/ξ

+

, (1.89)

where the two parameters (ξ, a) are such that −∞ < ξ < +∞ and a > 0. We
have dropped the position parameter m for notational simplicity. For ξ ≥ 0,
x ≥ 0 and for ξ < 0, 0 ≤ x ≤ −a/ξ. In order to state the GPBH theorem, we
define the right end-point xP of the cdf P<(x) as

xP = sup{x : P<(x) < 1} , (1.90)

which can often be considered to be infinite in many practical applications.
We also define the excess distribution Pu(x):

Pu(x) = Proba{X − u < x|X > u} , x ≥ 0 . (1.91)
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Gnedenko–Pickands–Balkema–de Haan theorem. Suppose P<(x) is
a cdf with excess distribution Pu(x), with u > 0. Then, for −∞ < x < +∞,
P<(x) belongs to the the Maximum Domain of Attraction of Hξ,a(x) if and
only if there exists a positive function a(u) such that

limu→xP sup0≤x≤xP−u |P̄u(x) − Ḡ(x/ξ, a(u))| = 0 . (1.92)

We use the standard notation P̄u(x) = 1 − Pu(x). Therefore, by definition,
P̄<(x) = 1−P<(x) = P>(x). Other names for P̄ and Ḡ are the “complemen-
tary cumulative” distribution or “survivor” function.

Intuitively, the statement (1.92) means that the tail P̄<(x) of the distri-
bution is asymptotically given by the GPD defined by (1.89) (to be precise,
by one minus the expression in (1.89)) as x approaches the very end of the
tail of the distribution. The strength of the GPBH theorem is that it is not
a statement only on the largest value of a data set, as is the case for the
Extreme Value Theory leading to the limit distributions (1.57). As already
mentioned, Knopoff and Kagan [518] showed that using Extreme Value The-
ory to constraint the shape of the tail of the distribution is sub-optimal as
one effectively discards a significant part of the data which leads to unreliable
results. In contrast, the analysis of the tail provided by the GPBH theorem
makes full use of all the data present in the tail.

Let us denote by nu the number of observations exceeding a threshold
u and by y1, . . . , ynu the observations decreased by u: yi = xj(i) − u where
xj(i) > u. The GPBH theorem yields an approximation to the tail P̄<(x) by
a GPD as a tail estimator:

P̄<(x) =
nu

N
Ḡ(x/ξ̂, â) . (1.93)

The estimates of the two parameters ξ̂, â can be obtained through the Max-
imum Likelihood estimation (ML). The log-likelihood L is given by

L = −nu ln a−
(

1 +
1
ξ

) nu∑
i=1

ln
(

1 +
ξyi

a

)
. (1.94)

Maximization of the log-likelihood lnL can be done numerically. The limit
standard deviations of the ML-estimates as nu → +∞ can be easily ob-
tained [274]:

σξ =
1 + ξ√
nu

; σa =
√

2(1 + ξ)/nu . (1.95)

In practice, one usually replaces the unknown parameters in (1.95) by their
estimates. One can also calculate the q-quantile estimator

xq = u+
â

ξ̂

((
nu(1 − q)

N

)ξ̂

− 1

)
, (1.96)

which is the value not overpassed by the random variable with probability q.
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The shape parameter ξ is of great interest in the analysis of the tails.
When x becomes large and ξ > 0, the tail of the cdf in (1.89) approaches the
power law

Ḡ(x/ξ, a) �
(
a

ξx

)1/ξ

. (1.97)

1/ξ is therefore the asymptotic exponent of the survivor distribution function.
It corresponds asymptotically to the exponent µ for the Pareto law. Thus,
the GPD is asymptotically scale invariant. For 1/ξ = 0, the power law tail is
replaced by an exponential decay ∼ exp(−x/a). We refer to [584, 738, 739]
for recent developments on these issues with applications to the distributions
of earthquake sizes and financial returns.

It should be noted that the scale parameter a = a(u) depends on the
threshold u, while the shape parameter ξ is in theory independent of u and
solely determined by the pdf P (x) of the data points. Thus, one can hope to
find a reasonable GPD fit to the tail if it is possible to take a sufficiently high
threshold u and to keep a sufficiently large number of excesses over it. Of
course, this is not always possible. The dependence a(u) can be illustrated in
the case of Weibull distributions discussed further in Chap. 6. For this family
of distributions, the conditional cdf P̄u(x) reads

P̄u(x) = exp (uc − (u+ x)c) . (1.98)

Then, the GPBH theorem states that

limu→∞ supx | exp (uc − (u+ x)c) − exp (−x/a(u)) | = 0 . (1.99)

Thus, for any u it is possible to find a value a(u) minimizing the difference
in (1.99). This minimal difference tends to 0 as u tends to infinity. To find
explicitly a(u) and the corresponding minimal difference is not easy but it is
possible to estimate these values using asymptotic expansions for transcen-
dental equations resulting from (1.99). What is perhaps counter-intuitive is
that (1.99) holds also for c < 1, for which the Weibull cdf has a fatter tail
than its corresponding asymptotic GPD.



2. Sums of Random Variables, Random Walks
and the Central Limit Theorem

Why do we care about sums of random variables? The answer is that every-
where around us the processes that we see often depend on the accumulation
of many contributions or are the result of many effects. The pressure in
a room, measured on a surface, is the sum of the order of 1023 momentum
exchanges between the air molecules and the surface. The large time tec-
tonic deformation is the (tensorial) sum of the deformation associated with
the myriad of earthquakes. Errors and/or uncertainties in measurements are
often the aggregation of many sources and are in many cases distributed
according to a Gaussian law (see below). In fact, it is hard to find an obser-
vation that is not controlled by many variables. Studying the sum of random
variables allows us to grasp the fundamental notion of collective behavior
without the need for further complications.

In general however, the different contributions may be correlated in a com-
plicated way, sometimes even showing wildly varying scales. It is useful to first
investigate the simplest case where the variables which constitute the sum
are uncorrelated and well-behaved. This will be a useful benchmark against
which all other processes can be compared.

2.1 The Random Walk Problem

Consider the 1D-problem of a random walker on a line [53]: starting at time
zero from the origin, the random walker is at x(t) at time t. It then makes
a random step of length l(t) between time t and t + τ to reach the position
x(t+ τ) at time t+ τ . We assume that l(t) is distributed according to a pdf
Π(l). The random walk is thus described by the equation

x(t+ τ) = x(t) + l(t) . (2.1)

It is assumed for the time being that the variables l(t) are i.i.d. (independent
identically distributed), i.e. 〈l(t)l(t′)〉 = δtt′〈l(t)〉2, with δtt′ = 1 if t = t′ and
zero otherwise. The equation (2.1) is a simple example of a discrete stochas-
tic equation. By using a procedure which amounts to applying the central
limit theorem (CLT) explained below, one can show that there is a unique
continuous limit of (2.1), which is called the Wiener process [1034]. By taking
the continuous limit, any infinitesimal increment dx can be decomposed into
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an infinite number of infinitesimal steps, and by the value of the CLT, this
shows that the distribution of the increments dx is Gaussian, whatever the
distribution of the infinitesimal increments one starts from to construct the
process. The miracle appears by taking the limit l → 0 together with τ → 0
while keeping constant the ratio l2/τ . The Wiener process is the simplest
example of what is known in physics as a Langevin equation [780].

Fig. 2.1. Construction of the
random walk in the space–
time representation in the
simple case where all step size
of the same length but with
random signs

The solution of (2.1) is obviously

x(t) = l(t− τ) + l(t− 2τ) + . . .+ l(τ) + l(0) , (2.2)

where t is taken as a multiple of the elementary unit time τ . The expression
(2.2) defines the variable x(t) as the sum of N ≡ t/τ random variables. Let
us describe a few properties of this sum and use it as a way to introduce
a number of concepts.

2.1.1 Average Drift

〈x(t)〉 =
N∑

i=1

〈li〉 = N〈l〉 , (2.3)

for i.i.d. variables, where we have denoted li ≡ l((i− 1)τ). 〈x(t)〉 represents
the average position taken over a large assembly of random walkers. The
expression (2.3) defines an average drift with velocity

v =
〈l〉
τ
. (2.4)

If the average step length 〈l〉 = 0, then the random walker remains on average
at the point where he started from.
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2.1.2 Diffusion Law

The variance 〈x(t)2〉− 〈x(t)〉2 of the position characterizes the typical size of
the excursion of the random walk around its average position vt:

〈x(t)2〉 − 〈x(t)〉2 =
t∑

i=1

t∑
j=1

[
〈lilj〉 − 〈li〉〈lj〉

]
=

t∑
i=1

t∑
j=1

Cij , (2.5)

where we denote

Cij = 〈lilj〉 − 〈li〉〈lj〉 , (2.6)

the correlation function of li and lj estimated at the same time. Since the li’s
are assumed uncorrelated, Cij = [〈l2〉 − 〈l〉2]δij and we get

〈x(t)2〉 − 〈x(t)〉2 = N [〈l2〉 − 〈l〉2] ≡ Nσ2 , (2.7)

where

σ2 = 〈l2〉 − 〈l〉2 (2.8)

is the variance of the pdf of the l-variables. Defining the diffusion coefficient

D ≡ σ2

2τ
, (2.9)

we get the well-known diffusion or Fick’s law relating the variance 〈(x(t))2〉−
〈x(t)〉2 of the sum of t/τ random i.i.d. variables to the individual variance
σ2:

〈(x(t))2〉 − 〈x(t)〉2 = 2Dt . (2.10)

Fig. 2.2. This figure shows
how the standard deviation√

〈x(t)2〉 − 〈x(t)〉2 =
√

2Dt of the
random walk position compares to
a constant drift 〈x(t)〉 = vt. The pa-
rameters are D = 1 and v = 0.1. Note
that for times t < t∗ = 2D/v2 = 200,
the diffusion is faster, meaning that
a constant drift will not be felt, while
at large times, the constant velocity
drift dominates

2.1.3 Brownian Motion as Solution of a Stochastic ODE

The usual description of continuous stochastic processes is based on the Brow-
nian motion W (t) written in mathematical terms as

W (t) =
∫ t

0

duW (u) , (2.11)
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with

〈dtW (t)〉 = 0 , (2.12)

and

Var [dtW (t)] = dt , (2.13)

where Var denotes the variance. W (t) is called a Wiener process. Alterna-
tively, W (t) can be defined as the solution of the following stochastic ordinary
differential equation (SODE):

dW (t)
dt

= η(t) . (2.14)

η(t) is a Gaussian noise, characterized by the following covariance

Cov [η(t), η(t′)] = δ(t− t′) , (2.15)

where δ designates the Dirac distribution and Cov denotes the covariance.
The expression (2.14) describes a particle at position W which is incessantly
subjected to random velocity impulses leading to random variations η of its
position. The solution of (2.14) is formally

W (t) =
∫ t

0

dv η(v) . (2.16)

This shows that dt η(t) is simply a notation for dtW (t), and, as usual, this has
mathematical meaning only under the integral representation. From (2.16),
we can calculate easily the covariance

Cov [W (t),W (t′)] =
∫ t

0

dv
∫ t′

0

dv′ Cov [η(v), η(v′)]

=
∫ t

0

dv
∫ t′

0

dv′ δ(v − v′) = Min(t, t′) . (2.17)

This result (2.17) expresses the fact that the correlation between W (t) and
W (t′) is due to the set of noise contributions {η} that are common to both
of them. We define dtW (t) as the limit of [W (t+ δt)−W (t)] when the small
but finite increment of time δt becomes the infinitesimal dt. Using (2.17),
we get Var [W (t+ δt) −W (t)] = δt which recovers (2.13) in the infinitesimal
time increment limit.

The definition of the Brownian motion as the solution of a SODE is very
useful to generalize to other processes. Maybe the simplest extension is the
well-known Ornstein–Uhlenbeck (O–U) process U(t) which can be defined as
the solution of the following SODE:

dU(t)
dt

= −κU(t) + η(t) , (2.18)

where κ is a positive constant. In addition to the random variations η of
the velocity, the Brownian particle is now subjected to a restoring force
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tending to bring it back to the origin (mean reversal term). The solution
reads

U(t) =
∫ t

0

dv η(v)e−κ(t−v) . (2.19)

Its covariance is

Cov [U(t), U(t′)] =
1
2κ

(
e−κ|t−t′| − e−κ(t+t′)

)
, (2.20)

which is essentially (1/2κ)e−κ|t−t′| at large times. We have used 2 Min(t, t′) =
t+ t′−|t− t′|. By adding more terms in (2.18), more complex stochastic pro-
cesses can be easily generated.

2.1.4 Fractal Structure

It is straightforward to generalize the random walk to a space of dimension d.
One can then show that (2.10) is transformed into

〈(x(t))2〉 − 〈x(t)〉2 = 2dDt , (2.21)

by the simple rule of additivity of the variance of each projection of the
random walk position over each dimension. The same square-root law for the
standard deviation holds in any dimension, only the prefactor is modified.
Note that this expression (2.21) expresses the fact that the line trajectory of
a particular random walk forms a very convoluted object of fractal dimension
exactly equal to 2 in any dimension.

As we will elaborate in Chap. 5, a fractal is an object which enjoys the
property of self-similarity, namely arbitrary sub-parts are statistically sim-
ilar to the whole provided a suitable magnification is performed along all
directions.

Fig. 2.3. A random walk of 103 steps
in a plane generated with step lengths
lx, ly along x and y uniformely taken
in the interval [−1, +1]. This random
walk started at the origin and arrived
at (−15.4, 22.5) at t = 1000. The ra-
dius of gyration equal to 25.5 quanti-
fies the typical excursion of the ran-
dom walk. One can observe the multi-
ple self-crossings which are character-
istic of a df = 2 fractal set embedded
in a plane
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By definition of the fractal dimension [291, 592], the “mass” M of an
object measured within a sphere of radius R with a resolution ε is

M ∝ εd
(
R

ε

)df

. (2.22)

This formula describes two ways for measuring the fractal (capacity) dimen-
sion df :

1. for a fixed resolution (or stick length) ε, the mass of an object of radius
of gyration R increases as Rdf ;

2. for a fixed object of macroscopic size R, the “observable mass” decreases
as εd−df when the resolution becomes better (ε→ 0). This simply reflects
the fact that the fractal object becomes more and more tenuous in com-
parison to the space of dimension d in which it is embedding, when its
dimension df is less than d.

This formula (2.22) is equivalent to the definition [592]

df =
lnN(r)
ln(1/r)

, (2.23)

where N(r) is the number of “elements” seen at the scale r, by the identifi-
cation r → ε/R and N →M/εd.

To apply these notions to a random walk and derive its fractal dimension,
one must define what one means by its “mass”. A natural measure is its length
〈l〉t/τ , for which one thinks of the step length as massive hard sticks. By
(2.21), this mass is the square of the typical radius of gyration of the random
walk, measured by its standard deviation

√〈(x(t))2〉 − 〈x(t)〉2. Therefore,
df = 2. For a random walk in one dimension, this means that the random
walk which is intrinsically a two-dimensional fractal object has been “folded”
many times to fit within a one-dimensional space. In other words, the random
walker comes back an infinite number of times on its previous steps. It does
so marginally within a plane and only a finite number of times in three and
higher dimensions.

Consider two objects of dimensions d1 and d2 imbedded in a space of
dimension d. It is a well-known result that the intersection of the two objects
has dimension d1 + d2 − d with probability one. For instance, two planes
in space intersect generically along a line (2 + 2 − 3 = 1). A plane and
a line in space intersect generically at a point (2 + 1 − 3 = 0). For a ran-
dom walk with df = 2, we thus see that we need to go to a space of di-
mension d = 4 for the number of intersections to constitute a set of zero
dimension, i.e. for the set of crossing to become almost vanishing. In other
words, in a space of four or more dimensions, a random walk has very little
chance to cross itself and this explains why four dimensions plays a special
role in theories of interacting fields, such as spin models that we will study
later on. At and above four dimensions, these theories are well-described
by so-called mean-field approaches while below four dimensions, the large
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number of crossings of a random walk make the role of fluctuations im-
portant and lead to complex behaviors. This results from the existence of
deep connections between these theories and problems of interacting random
walks [297].

2.1.5 Self-Affinity

The projections on the x and y axis of the random walk presented in Fig. 2.3
are shown in Fig. 2.4. These curves exhibit the property of “self-affinity” with
a self-affine exponent ζ = 1/2. Self-affinity is a generalization of the notion
of fractality, in which a subpart of the system is statistically similar to the
whole under a dual magnification by a factor λ for the time axis and a different
factor λζ along the other direction. Curves with ζ = 0 are essentially flat and
do not roughen as the magnification increases. Curves with ζ = 1 correspond
to tilted line with constant non-zero average slope, i.e. with a non-vanishing
drift.

Fig. 2.4. The random walk shown in
Fig. 2.3 is decomposed into its time
evolution x(t) and y(t) projected onto
the x and y axis. Since x(t) and y(t)
are independent, this graph gives an
intuition of the degree of variability of
random walks

Since the standard deviation of x and y grows as t1/2, as seen from (2.10),
this confirms the value ζ = 1/2 of the self-affine exponent of the curves x(t)
and y(t). Self-affinity describes approximately the one-dimensional transec-
tion of a mountainous landscape. It turns out that recent measurements on
mountains in the United States have found a value close to ζ = 1/2 [678,
918].

Let us now discuss the transition from fractality to self-affinity. If we
measure the fractal dimension of the random walk trajectory x(t) or y(t) in
the space–time diagram, we get df = 1. This is because the length of the
wiggly line in the space–time diagram is simply proportional to t/τ lengths
of the yard-stick used to measure it. This must be contrasted to the value
df = 2 of the random walk in space.

Let us now consider a generalization of the random walk trajectory. In
the previous random walk, we have

D ∼ cl , (2.24)
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where l is the step length (also called mean free path) and c is the ballistic
velocity between two successive changes of direction. Since

l ∼ cτ , (2.25)

where τ is the time step, i.e. the time interval between successive steps, we
get

D ∼ c2τ ∼ l2

τ
. (2.26)

The standard deviation of the random walk is then

σ(t) ∼
√
Dt ∼ l

(
t

τ

)1/2

. (2.27)

This recovers the characteristic distance travelled during τ is l, which is the
obvious definition of the step length.

We now generalize this problem to a curve y(t) such that we add a large
prefactor C � 1;

σ(t) ∼ Cl

(
t

τ

)1/2

. (2.28)

This is no longer a random walk but still a self-affine curve. The novel prop-
erty is that at small scales the curve becomes a genuine fractal in the following
sense.

To simplify the notation, we call σ0 ≡ Cl, so that expression (2.28) reads

σ(t) ∼ σ0

(
t

τ

)1/2

. (2.29)

Then, the unfolded length of the new random walk in the space–time diagram
can be estimated in order of magnitude by the arc length joining the starting
point to the ending point:

L ∼
√
t2 + [σ(t)]2 ∼ t

√
1 +

(σ
t

)2

. (2.30)

For t < σ2
0/τ , (σ/t)2 is much larger than one and

L ∼ t

√(σ
t

)2

∼ t

√
σ2

0

τt
∼ t1/2 . (2.31)

If we interpret t as the resolution ε in (2.22), then we get

df =
3
2
. (2.32)

At larger scales however, (σ/t)2 becomes much smaller than one, then L ∼ t
and

df = 1 . (2.33)



2.2 Master and Diffusion (Fokker–Planck) Equations 41

There are two lessons to get from this calculation.

1. The random walk problem can be seen in several ways with different
scaling laws and fractal properties.

2. A self-affine line (or more generally surface) of self-affine exponent ζ can
be interpreted as a fractal structure of fractal dimension d − ζ in an
embedding space of d dimensions, below a certain characteristic length
scale while, at large length scales, the dimension recovers the value d−1.

Generalizing, if L(t) ∼ tH for t small but H is unknown a priori and
one has access to the expansion L(t) ∼ t + α/t + O(t2) at large times,
the technique of construction of approximants by self-similar renormaliza-
tion [344–348, 1037–1040] allows one to determine H as a function of α (see
Chap. 11 for more on the self-similar renormalization method).

2.2 Master and Diffusion (Fokker–Planck) Equations

2.2.1 Simple Formulation

There is a general correspondence between stochastic (Langevin) microscopic
equations of type (2.1) with so-called Master and Fokker–Planck equations.
In contrast to the stochastic (Langevin) microscopic equation (2.1) which
describes the evolution of the position of a given random walker, the Master
and Fokker–Planck equations give the time evolution of the pdf P (x, t) of
the position of the random walker as a function of time, in other words, they
describe the behavior of a large population of walkers and the fraction of this
population at position x at time t.

The Master equation corresponding to (2.1) is

P (x, t+ τ) =
∫ +∞

−∞
Π(l)P (x− l, t)dl . (2.34)

It simply states that, in order to be at x at time t+ τ , a walker was at some
position x− l at time t and has then just made the step of the correct length l
and direction to reach x at time t + τ . The integral sums over all possible
scenarii. This expression uses the identity P (A and B) = P (A)P (B), i.e.
the probability for two uncorrelated events to occur is the product of the
corresponding probabilities.

Let us now consider the continuous limit where τ → 0 and the step
lengths l, in a certain sense to be described below, also go to zero. The
continous limit of the Master equation gives us the Fokker–Planck equation
which, in the context of the random walk problem, is nothing but the diffusion
equation. Let us expand P (x− l, t) up to second order

P (x− l, t) = P (x, t) − l
∂P

∂x

∣∣∣∣
(x,t)

+
1
2
l2
∂2P

∂x2

∣∣∣∣
(x,t)

+ O(l3) , (2.35)
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where O(l3) represents the higher order terms in powers of l. We also write
P (x, t+ τ) = P (x, t) + τ ∂P (x, t)/∂t+ O(τ2). Replacing in (2.34), we get

∂P (x, t)
∂t

= −〈l〉
τ

∂P

∂x

∣∣∣∣
(x,t)

+
1
2
〈l2〉
τ

∂2P

∂x2

∣∣∣∣
(x,t)

+ O
(
l3

τ

)
+ O(τ) . (2.36)

The continuous limit is taken such that 〈l〉/τ becomes a constant that we
call the velocity v and (〈l2〉 − 〈l〉2)/2τ also becomes a constant that we call
the diffusion coefficient D. Notice that these two limits can be taken with
no contradiction as they refer to two different aspects of the random walk
behavior, its average drift and the fluctuations around it. The two parameters
v and D are thus independent. We can thus write the coefficient 〈l2〉/2τ of
the second derivative of P in the r.h.s. of (2.36) under the form: D+ 〈l〉2/2τ .
Since 〈l〉 → vτ , this implies that 〈l〉2/2τ → v2τ/2 → 0 and 〈l2〉/2τ → D, in
the continuous limit. The expression (2.36) becomes

∂P (x, t)
∂t

= −∂j(x, t)
∂x

= −v ∂P (x, t)
∂x

+D
∂2P (x, t)
∂x2

, (2.37)

where v = 〈l〉/τ and D = (1/2τ)[〈l2〉 − 〈l〉2] are proportional to the first two
cumulants of Π(l). Notice that the continuous limit has a physical meaning
if the limits τ → 0 and the step sizes → 0 are taken such that [〈l2〉 − 〈l〉2]/τ
goes to a constant. Physically, this amounts to imposing that the diffusion
law (2.10) remains valid when the microscopic scale shrinks to zero. This
constraint implies that the characteristic scale of the fluctuation of the step
length is ∝ √

τ , ensuring that the higher order terms are of order or smaller
than

√
τ → 0 in the continuous limit. v is non-zero if 〈l〉 �= 0. In this case, it is

also easy to check that the higher order terms are negligible for distributions
Π(l) with a finite second moment. For a more systematic derivation, including
extensions in terms of the derivation of the Kramers–Moyal expansion, we
refer to Hänggi and Thomas [398].

Let us give an illustration and consider, for the sake of simplicity, the
Gaussian pdf translated from the origin

Π(l) =
1√
2πσ

e−(l−l0)
2/2σ2

. (2.38)

The continuous limit corresponds to taking l0 → 0 and σ → 0, with l0/τ = v
and σ2/τ = 2D fixed (when τ also goes to zero). Consider the third moment
appearing in the expansion (2.35):

〈l3〉 =
∫ ∞

−∞
dl Π(l)l3 =

∫ ∞

−∞
dX (X + l0)3

1√
2πσ

e−X2/2σ2

= 3σ2l0 + l30 . (2.39)

Thus,

〈l3〉
τ

→ 3v(σ2 + l20) → 0 (2.40)
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in the continuous limit, showing its consistency. The same check can easily
be made for the higher order terms.

j(x, t) is the flux of random walkers defined by

j(x, t) = vP (x, t) −D
∂P (x, t)
∂x

. (2.41)

The expression (2.37) states the conservation of probability. It can be shown
that this description (2.37) is generic in the limit of narrow Π distributions:
the details of Π are not important for the large t behavior; only its first
two cumulants control the results [780]. The parameters v and D introduce
a characteristic “length” x∗ = D/|v| as already discussed in Fig. 2.2.

The pdf P (x, t) for a set of random walkers obeys the same diffusion
equation as the temperature T or the concentration C of a chemical species
diffusing according to the heat equation and Fick’s law respectivity. The fun-
damental reason is that the variables T and C are the macroscopic manifesta-
tions of a large number of microscopic degrees of freedom undergoing random
walk motions. For the temperature, the microscopic degrees of freedom are
the phonons colliding with the surrounding heterogeneities which make them
follow a kind of random walk. For the concentration, the microscopic degrees
of freedom are the molecules undergoing a brownian motion.

The solution of the diffusion equation (2.37), for a population of random
walkers all at the origin at time 0, is called the Green function of the diffusion
equation, which takes the form of the Gaussian distribution

PG(x, t) =
1√
2π

1√
2Dt

e−(x−vt)2/4Dt . (2.42)

If P (x, t = 0) is given (and in general different from a delta function), the
solution of the diffusion equation reads

P (x, t) =
∫

dx′PG(x− x′, t)P (x′, t = 0) . (2.43)

The concentration of random walkers at a given point x at time t is the sum
of the diffusion resulting from all sources.

2.2.2 General Fokker–Planck Equation

In the presence of space varying forces, the most general expression of the
Fokker–Planck equation reads [780]

∂P (y, t)
∂t

= − ∂

∂y
(A(y)P ) +

1
2
∂2

∂y2
(B(y)P ) . (2.44)

The stationary solution of this equation is known:

P s(y) =
const
B(y)

exp
[
2
∫ y

0

A(y′)
B(y′)

dy′
]
. (2.45)
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Fig. 2.5. Distribution
PG(x, t) given by (2.42)
for three times t = 0.3, 1
and 10, with D = 1, v = 0

The functions A and B can be estimated from measurements as follows. Let
P (y, t|y0, t0) for t ≥ t0 be the solution which at t0 reduces to δ(y− y0). Take
a later time t = t0 + ∆t. The centered moments of y − y0 = ∆y are then

〈∆y〉
∆t

= A(y0) , (2.46a)

〈(∆y − 〈∆y〉)2〉
∆t

= B(y0) , (2.46b)

〈(∆y − 〈∆y〉)ν〉
∆t

= 0 , for all ν > 2 . (2.46c)

These properties suggest a strategy to construct the appropriate Fokker–
Planck equation in various contexts. Suppose that we observe some stochastic
process. Pick a time ∆t so small that y does not vary much. Compute 〈∆y〉y
and 〈(∆y)2〉y to first order in ∆t. This provides A(y) and B(y) in the Fokker–
Planck equation.

2.2.3 Ito Versus Stratonovich

This presentation borrows from exchanges with I. Procaccia. Consider the
stochastic differential equation that generalizes (2.1, 2.14), by introducing
a systematic position-dependent drift A(y) and a position-dependent step
length C(y):

ẏ = A(y) + C(y)η(t) . (2.47)

This equation as it stands has no meaning, and we do not know how to
associate to it a Fokker–Planck equation. The reason is that the δ-function
character of the correlation of η(t) causes jumps in y(t) such that the value of
y at time t is not defined. Accordingly C(y) is also not defined. Basically, the
problem comes from the fact that the equation does not specify what value of
C(y) should be used. Think of the discrete version of (2.47). We can evaluate
C(y) before, after or as a mean of the values before and after the jump. Which
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one is correct? This has important consequences for numerical simulations of
random walk equations with space-dependent force and diffusion coefficients.
There are two ways to give sense to (2.47), the Ito and the Stratonovich
interpretations.

The Ito Interpretation. In this interpretation, the value of y is taken
before the jump. Explicitly

y(t+ ∆t) − y(t) = A(y(t))∆t + C(y(t))
∫ t+∆t

t

η(t′) dt′ . (2.48)

From this, we can compute the first and second moment of ∆y, and read the
Fokker–Planck equation:

∂P (y, t)
∂t

= − ∂

∂y
(A(y)P ) +

1
2
∂2

∂y2

(
C2(y)P

)
. (2.49)

The Stratonovich Interpretation. In this interpretation, we take the
mean of y(t) before and after the jump:

y(t+ ∆t) − y(t) = A(y(t))∆t

+ C

(
y(t) + y(t+ ∆t)

2

)∫ t+∆t

t

η(t′) dt′ . (2.50)

The expectation of y(t+ ∆t) − y(t) is

〈y(t+ ∆t) − y(t)〉 =

[
A(y(t)) +

1
2
C(y(t))

∂C(y)
∂y

∣∣∣∣
y=y(t)

]
∆t . (2.51)

Expression (2.51) comes from the expansion

C

(
y(t) + y(t+ ∆t)

2

)
= C(y(t)) + y(t+ ∆t) − y(t)

2
∂C(y)
∂y

∣∣∣∣
y=y(t)

,

(2.52)

which introduces a term proportional to
∫ t+∆t

t
η(t′′) dt′′ which multiplies the

other term
∫ t+∆t

t η(t′) dt′ in (2.50). Then using 〈∫ t+∆t

t η(t′) dt′
∫ t+∆t

t η(t′′)
×dt′′〉 = ∆t, we obtain (2.51). The first moment of ∆y = y(t+∆t)−y(t) is thus
given by (2.51) and the second centered moment is [C(y(t))]2. Inserting these
two values in (2.46a) and (2.46b) gives, after some rearranging, a Fokker–
Planck equation different from that obtained in the Ito case:

∂P (y, t)
∂t

= − ∂

∂y
(A(y)P ) +

1
2
∂

∂y

(
C(y)

∂

∂y
(C(y)P )

)
. (2.53)

One notes that, under a nonlinear transformation ȳ = φ(y), the coefficients
of (2.53) transform like

Ā(ȳ) = A(y)
dφ
dy

, C̄(ȳ) = C(y)
dφ
dy

. (2.54)
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If one applies the same transformation to (2.47), one obtains the same trans-
formation laws. This means that the relation between (2.47) and (2.53) is
invariant to nonlinear transformations.

This is not so for the Ito interpretation. The same transformation applied
to (2.49) yields

Ā(ȳ) = A(y)
dφ
dy

+
1
2
C2(y)

d2φ

dy2
, C̄(ȳ) = C(y)

dφ
dy

. (2.55)

Relation Between Ito and Stratonovich. Given an equation like (2.47)
interpreted à la Ito, we can write another stochastic equation that under
the Stratonovich interpretation will give the same stochastic process. The
following is known: if we write the two equations in the two interpretations
as

dIYi = bIi dt+ σi dz , (2.56)

dSYi = bSi dt+ σi dz , (2.57)

then the condition for these two equations to describe the same stochastic
process is

bIi = bSi +
1
2
σj
∂σi

∂Yj
. (2.58)

This has important practical applications. Consider for example the mo-
tion of a Brownian particle subjected to a position-dependent diffusion coef-
ficient D(Y ) = σ(Y )2/2 and a constant position-dependent force F (Y ). The
dependence D(Y ) may stem for instance from a position-dependent friction
coefficient due to the presence of a wall. The random displacement �(Y ) of
a random walker along 0Y during a microscopic time interval τ is then the
sum of three terms [270]:

�(Y ) = ±
√

2D(Y )τ +
1
2

dD(Y )
dY

τ +
D(Y )
kBT

F (Y )τ . (2.59)

The first term in the r.h.s. of (2.59) recovers the usual definition 〈l2〉 = 2Dτ
of the variance of a random walk. The second term is the Ito correction
(2.58) which must be incorporated when performing a numerical simulation
in which the value of the step length is locally defined. The last term is the
drift term due to the systematic force. The second term may be intuitively
rederived by noting that the differential increment of the amplitude �0 of the
first term

d�0 ≡ d
[√

2D(Y )τ
]

= τ
dD
dY

dY
�0

(2.60)

is equal to the second term in the r.h.s. of (2.59) for dY = �0/2, which is
precisely the Stratonovich interpretation to consider the step length as the
average of the starting and ending point.
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Another way to state the same thing is to consider the differential of
a function F (W (t)) of the random walk W (t):

dF (W (t)) =
dF (W (t))

dW (t)
dW (t) +

1
2

d2F (W (t))
dW (t)2

Var [dW (t)] . (2.61)

Since, by definition, Var [dW (t)] = dt, we see that, up to first-order in dt, one
must keep the two terms in the r.h.s. of (2.61) to be consistent with usual
derivatives. This is the essence of Ito’s term.

2.2.4 Extracting Model Equations from Experimental Data

Let us present briefly a general data-driven method for formulating suitable
model equations for nonlinear complex systems [314], based on the Langevin
formalism. We thus consider the class of dynamic systems which can be de-
scribed by the following differential equation

d
dt

X(t) = g(X(t), t) + h(X(t), t)Γ (t) , (2.62)

where g (resp. hΓ ) represents the deterministic (resp. stochastic) part. X(t)
denotes the time dependent d-dimensional stochastic vector which charac-
terises the system completely. Γ (t) stands for terms of δ-correlated Gaussian
white noises and the d× d-matrix h fixes the dynamic influence of the noise
on the system. For the functionals g and h, no further assumptions have to
be made; g can be nonlinear, and therefore also deterministic chaos can be
formulated by (2.62). The question addressed here is to find the determin-
istic and stochastic laws solely by data analysis. If this only condition, the
describability of the system’s dynamics by an evolution equation like (2.62),
is given, no further assumptions or pre-knowledge have to be included in the
following analysis. Deterministic and noisy parts of the dynamics can be sep-
arated and quantified, and model equations for the dynamics can be set up
by the data-driven method.

The considered class of dynamic systems (2.62) is characterised by the ab-
sence of memory effects, i.e., for the time development of the system we need
to know only the state of one vector X(t) at a given time t and not its evo-
lution in the past. In other words, the system is Markovian. The conditional
probability density p(xn+1, t+ τ |xn, t;xn−1, t− τ ; . . .) describes the probabil-
ity of states xn+1 of the system’s variable X at time t+τ under the condition
that the system is in state xn at time t, has been in state xn−1 at time t− τ
and so on. The Markovian property of a system can be tested by comparing
the multiple conditional probability densities with the one-step conditional
probability densities p(xn+1, t + τ |xn, t). If both expressions agree, the time
development of the probability density depends only on the present state and
not on its evolution in the past. The assumed qualities of the driving noise
terms Γ as being Gaussian white noise functions can be validated, as well,
by looking at the conditional probability density distributions.
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The central ideas of the construction of the model equations consist in the
following. First, stationary dynamics shall be assumed, i.e., the deterministic
and stochastic parts g and h are not explicitly time dependent (this restric-
tion can be removed by using a moving window technique). Every time ti
the system’s trajectory meets an arbitrary but fixed point x in state space,
the localisation of the trajectory at time ti + τ is determined by the deter-
ministic function g(x), which is constant for fixed x, and by the stochastic
function h(x)Γ (ti) with constant h for fixed x and Gaussian distributed
white noise Γ (t). With these pre-requisites, the following relationships have
been proved in a strict mathematical way using Ito’s definitions for stochastic
integrals [780]:

g(x) = limτ→0
1
τ
〈X(t + τ) − x〉|X(t)=x , (2.63)

h(x)hT(x) = limτ→0
1
τ
〈(X(t+ τ) − x) (X(t+ τ) − x)T〉|X(t)=x .

(2.64)

Under the condition that the system’s trajectory meets the point x at time t,
i.e., X(t) = x, the deterministic part g(x) of the dynamics can be evalu-
ated for small τ by the difference of the system’s state at time t + τ and
the state at time t, averaged over an ensemble, or in the regarded stationary
case, averaged over all t = ti of the whole time series with X(ti) = x. The
limit τ → 0 can be reached by extrapolation. In a similar way, the stochas-
tic influences can be determined from the average of the quadratic terms as
shown in (2.64). For every point x in state space, that is visited statistically
often by the trajectory, deterministic and stochastic parts of the dynamics
can be estimated numerically. As final step, analytic functions can be fitted
to g and h in order to formulate model equations for the investigated sys-
tem (see [314] for applications to tremor data from patients suffering from
Parkinson’s disease).

2.3 The Central Limit Theorem

The central limit theorem is a fundamental result with broad applications
covering many fields, from statistical physics to signal processing.

2.3.1 Convolution

Consider X = X1 + X2 where X1 and X2 are two random variables with
pdf P1(x1) and P2(x2). The probability that X be equal to x (to within dx)
is given by the sum of all probabilities of the events that can give X = x,
and thus corresponds to all combinations of X1 = x1 and X2 = x2 with
x1 + x2 = x. Since X1 and X2 are assumed to be independent, the joint
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probability of X1 = x1 and X2 = x − x1 is the product of the respective
probabilities:

P (x) =
∫ ∞

−∞
dx1 P1(x1)

∫ ∞

−∞
dx2 P2(x2)δ(x− (x1 + x2))

=
∫ ∞

−∞
dx1 P1(x1)P2(x − x1) . (2.65)

The last term of the r.h.s. defines the convolution operation between P1(x)
and P2(x), that we note P = P1 � P2. For a sum of N independent random
variables

X = X1 +X2 + . . .+XN , (2.66)

with pdf Pi(xi) for variable Xi, we get the pdf of the sum as

P (x) =∫
dx1 P1(x1)

∫
dx2 P2(x2) . . .

∫
dxN PN (xN )δ(x− (x1 + x2 + . . .+ xN )) =∫

dx1 P1(x1)
∫

dx2 P2(x2) . . .
∫

dxN−1

×PN−1(xN−1)PN (x − x′1 − . . .− x′N−1) . (2.67)

The assumption of independence between the variables allows one to derive
the complete knowledge of the pdf of the sum from the sole knowledge of the
pdf of the individual variables.

It is convenient to use the characteristic function P̂ (k). Indeed, in the
Fourier representation, the convolution operation becomes a product: if P =
P1 � P2, then

P̂ (k) = P̂1(k)P̂2(k) . (2.68)

This is easily seen directly from (2.65) by the integration of the delta function.
Similarly, from (2.67), we get

P̂ (k) = P̂1(k)P̂2(k) . . . P̂j(k) . . . P̂N (k) =
(
P̂1(k)

)N

, (2.69)

where the last equality occurs for i.i.d. variables with P̂j = P̂1. In principle,
all is known of the pdf of the sum by taking the inverse Fourier transform of(
P̂1(k)

)N

. In practice, this may not be very illuminating!
Let us provide an intuitive approach to this analysis. It relies upon the

cumulant expansion (1.30) for the pdf P1(x) of the i.i.d. variables contributing
to the sum. Putting (1.30) in (2.69), we get

P̂ (k) = exp

{ ∞∑
n=1

Ncn
n!

(ik)n

}
. (2.70)

When N → +∞, the sum X goes to infinity with a drift ∼ N and a standard
deviation ∼ N1/2. Since the drift can be zero or can be put to zero by
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a change of frame moving with the drift velocity, we see that the relevant
scale is that of the fluctuations, namely the standard deviation ∼ N1/2. The
corresponding range of k is simply its inverse ∼ N−1/2, since x and k are
conjugate in the Fourier transform and thus have opposite dimensions.

As a consequence, the n-th term in the cumulant expansion (2.70) scales
as

Ncn
n!

kn ∼ N1−n/2 . (2.71)

We see that for n = 2, the exponent is zero and the cumulant of the pdf of the
sum remains invariant while all higher cumulants approach zero as N → +∞.
This shows that, asymptotically, only the second (and the first) cumulant
will remain, characterizing a Gaussian pdf. Alternatively, the same result is
obtained by studying the normalized cumulants that decay as λn ∝ N1−n/2

for n > 2. This is the essence of the central limit theorem.

2.3.2 Statement

The precise formulation of the central limit theorem is the following.

The sum, normalized by 1/
√
N of N random independent and iden-

tically distributed variables of zero mean and finite variance σ2, is
a random variable with a pdf converging to the Gaussian distribu-
tion with variance σ2. The convergence is said to hold in the mea-
sure sense, i.e. the probability that the above normalized sum falls
in a given interval converges to that calculated from the Gaussian
distribution.

The normalization by 1/
√
N ensures that the variable has a stationary

scale, since the characteristic scale of the fluctuations of the sum is of order√
N .
It is important to realize that the central limit theorem only applies in

the “center” of the distribution. Large deviations can occur in the tail of the
pdf of the sum, whose weight shrinks as N increases. In Chap. 3, we will
discuss the large deviation regime that refines the central limit theorem, for
which precise statement can be made. This large deviation regime is relevant
to the understanding of the distribution of intermittent velocity bursts in
hydrodynamic turbulence and in fragmentation processes, for instance.

2.3.3 Conditions

The main conditions under which the central limit theorem holds are the
following.

• The Xi’s must be independent. This condition can be relaxed and the CLT
still holds for weakly correlated variables. We will come back to this case
in Chap. 8, when we will investigate what types of correlations can modify
the distribution of the sum away from the Gaussian law.
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• The convergence of the sum to a Gaussian pdf also holds if the variables
have different pdf’s with finite variance of the same order of magnitude:
this is in order for one variable not to dominate, as the variance of the sum
is the sum of the variances.

• Strictly speaking, the central limit theorem is applicable in the limit of
infinite N . In practice, the Gaussian shape is a good approximation of the
center of the pdf for the sum if N is sufficiently large. How large is large
depends on the range of interest for the sum and on the initial pdf’s of the
contributing variables.

• The central limit theorem does not say anything about the behavior of the
tails for finite N . Only the center is well-approximated by the Gaussian
law. The center is a region of width at least of the order of σ ∼ √

N
around the average of X . This width depends on detailed properties of the
pdf’s of the constituting variables. For “gentle” pdf’s which have all their
cumulants finite, it is of size ∼ N2/3σ if c3 �= 0 and ∼ N3/4σ if c3 = 0 and
c4 �= 0 (see Chap. 3). For power law pdf’s with µ > 2, the size of the region
over which the Gaussian law holds can become as small as ∼ σ

√
N lnN .

• The condition that the variance of the pdf’s of the constituting variables be
finite can be somewhat relaxed to include the case of power laws with tail
exponent µ = 2, as defined in (1.20). In this case, the normalizing factor
is no longer 1/

√
N but can contain logarithmic corrections. Technically,

this generalization can be written as follows. A pdf belongs to the basin
of attraction of the Gaussian law if and only if the following condition
holds [350]:

lim
x→∞ x2 P<(−x) + P>(x)∫

|x′|<x
x′2P (x′) dx′

= 0 . (2.72)

This condition is always satisfied for a pdf with finite variance and it also
include marginal cases such as power laws with µ ≥ 2. Pdf’s decaying
slower than |x|−3 for large |x| do not converge to the Gaussian law but to
another class of stable distributions, called Lévy laws.

• We refer to [755] for a detailed description of the rate of convergence to
the normal pdf of the sum of i.i.d. random variables, with special emphasis
on the way the asymmetry of the initial pdf decays when the number of
variables in the sum increases.

2.3.4 Collective Phenomenon

“In fact, all epistemologic value of the theory of probability is based on this:
that large-scale random phenomena in their collective action create strict,
non random regularity.” B.V. Gnedenko and A.N. Kolmogorov [350].

The central limit theorem is the expression of a collective phenomenon.
It is the most basic among those that we will discuss in this book: the con-
tributions of many random variables lead to a global behavior of the sum
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which becomes both simple and universal. The individual details of the pdf’s
of the contributing variables are progressively washed out to give rise to this
universal Gaussian shape. The central limit theorem is very important as it
can be thought of as the cornerstone for understanding collective phenomena.
Indeed, the collective phenomena that we will study further in our exposi-
tion can be thought of as complications of this simple beautiful result. The
complications brought out by the study of natural systems involve correla-
tions, nonlinearity, external driving, etc., which modify the result in many
possible ways, but the surviving fact is the emergence of a macroscopic co-
herent behavior with, often but not always, well-defined universal behavior.
The importance of the Gaussian law also relies on the fact that we can often
use it as a starting point in the study of more complicated situations.

2.3.5 Renormalization Group Derivation

We will now derive the central limit theorem, using the technique of the
renormalization group (RG) theory. This theory has been invented to tackle
critical phenomena, a class of behaviors characterized by structures on many
different scales [1021] and power law dependences of measurable quantities
on the control parameters. In fact, the random walk (and equivalently the
sum of random variables) is a critical phenomenon, arguably the simplest of
all: up to time t, the standard deviation 〈[X(t)]2〉1/2 ∼ t1/2 of a symmetric
random walk scales as a power law of t, where the “control parameter” 1/t
can be interpreted as the distance to criticality. The only relevant scale of the
problem is ∼ t1/2 and all scales smaller than t1/2 are present with a relative
weight given by the scale free power spectrum ∼ k−2. In the limit of large
times, the random walk becomes a critical system (see [213] for a fruitful
exploitation of this idea in the context of polymers).

The RG analysis, introduced in field theory and in critical phase transi-
tions, is a very general mathematical tool, which allows one to decompose
the problem of finding the “macroscopic” behavior of a large number of inter-
acting parts into a succession of simpler problems with a decreasing number
of interacting parts, whose effective properties vary with the scale of ob-
servation. Technically, this is done as we will see in Chap. 11 by defining
a mapping between observational scale and distance (time) from the critical
point. The term “observational scale” usually refers to the physical size of
an observation. In the random walk context, the observational scale refers
to the number of terms in the sum. The RG approach works best when the
system possesses the properties of scale invariance and self-similarity of the
observables at the critical point. The purpose of the RG is to translate in
mathematical language the concept that the sum is the aggregation of an
ensemble of arbitrarily defined sub-sums, each sub-sum defined by the sum
of sub-sub-sums, and so on.

We can carry out this program for the sum (2.66) and perform the two
main transformation of the RG, decimation and rescaling.
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Decimation. The first step of the RG is to “decimate” the degrees of free-
dom to transform the problem into a simpler one, i.e. with fewer degrees of
freedom. Starting from (2.66), one way to do it is to group the terms in the
sum by pairs and rewrite it as

X = X ′
1 +X ′

2 + . . .+X ′
N/2 , (2.73)

where X ′
1 = X1+X2, X ′

2 = X3+X4, . . . , X ′
N/2 = XN−1+XN , with N = 2m.

This specific choice is not a restriction since we are interested in the limit of
large N and the way with which we reach this limit (in the present case by
taking m→ ∞) is of no consequence.

Fig. 2.6. Schematic representation of the dec-
imation procedure, consisting of grouping the
variables in pairs

The expression (2.73) is also a sum of random variables but with N/2 of
them instead of N . Obviously, the X ′

i are i.i.d. variables if the Xi are i.i.d
variables. If we can deduce their pdf P ′ from that of the initial pdf P of theXi,
the problem is now to determine the pdf of the sum X of N/2 i.i.d. variables
with known pdf P ′. If we apply successively m times the pairing process, we
will go from N variables in the sum to N/2, then N/4, . . . , 4, 2 and finally
only 1 final variable. This final unique variable cannot be anything else but
X itself. We have thus “climbed” up the “staircase” of scales to ascend from
the microscopic degrees of freedom to the macroscopic variable X . Now, this
decimation of the degrees of freedom comes with some practical difficulties in
its implementation, namely the calculation of the mapping allowing us to go
from P to P ′ and then to P ′′, . . . , P (n), P (n+1), . . . , to end with P (m) which
is indeed the pdf of the sum X . It is clear that this mapping is the same at
each generation since we use the same pairing algorithm. We already know
its expression from (2.65):

P (n+1)(x) =
∫ ∞

−∞
dx1 P

(n)(x1)P (n)(x− x1) , (2.74)

valid for i.i.d. variables. The characteristic functions thus obey

P̂ (n+1)(k) =
[
P̂ (n)(k)

]2

. (2.75)
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Using the cumulant expansion (1.30), we obtain a relationship between the
l-th cumulant of P (n+1)(x) and that of P (n)(x):

c
(n+1)
l = 2c(n)

l . (2.76)

One cannot think of a simpler result!
Since a pdf is completely determined from the knowledge of all its cumu-

lants (barring some special cases mentioned above), we can thus write

P (x,N, c1, c2, c3, . . . , cl, . . .) = P

(
x,
N

2
, 2c1, 2c2, 2c3, . . . , 2cl, . . .

)
.(2.77)

P (x,N, c1, c2, c3, . . . , cl, . . .) denotes the pdf of the sum X , characterized by
the cumulants c1, c2, c3, . . . , cl, . . . of the initial pdf of the N variables in the
sum. Since the sum does not depend on the way we group its individual con-
stituants, its pdf is the same if we look at it at two different scales, provided
we correctly scale the properties associated with these two different scales.

Rescaling. Inherent to a pdf is the notion of a scale, as exemplified by the
structure around xmp. When we form the pdf for the sum of two i.i.d. random
variables, its pdf may display differences to that of the pdf we started from.
We compensate for this by the scale factor s for the sum. This leads to the
second step of the RG, which is to rescale the X ′

i so that the problem involves
the same scale as the initial one. The idea of the RG is to decimate the degrees
of freedom, while rescaling so as to keep the same scale. We guess that this
involves changing X ′

i into X ′
i/s, where s is to be determined. It is useful

to make s = 2α and the problem is to determine the right choice for the
exponent α. We can intuitively infer what the correct value of α will be from
the diffusive behavior of the sum of random variables X(t) ∼ t1/2. For a sum
of t = 2 terms, this leads to s = 21/2 and thus α = 1/2. We will provide
a formal derivation of this guess.

With a rescaling of the Xi variables, the cumulants are also rescaled and
cl has to be multiplied by the factor 2−αl. This stems from the fact that cl has
the dimension k−l, i.e. the dimension of X l. Under this change of variable,
the conservation of probabilities p(y) dy = p(x) dx introduces a factor 2−α in
front of the pdf on the r.h.s. of (2.77). We thus obtain

P (x,N, c1, c2, c3, . . . , cl, . . .) =
1
2α
P

(
x

2α
,
N

2
, 21−αc1, 21−2αc2, 21−3αc3, . . . , 21−lαcl, . . .

)
. (2.78)

We see from (2.78) that the particular choice α = 1/2 makes the factor
21−2α of the second cumulant equal to 1, i.e. this choice keeps the pdf in
a frame with a constant width as N → ∞. In this limit, all higher cumulants
decrease to zero, while the first cumulant increases, reflecting its larger and
larger effect. If the first cumulant (equal to the average) is not zero, this
means that the sum is dominated by it and grows like N . The standard
deviation scales as N1/2. In the frame of scale where the standard deviation
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is constant, this implies that the mean of the sum scales itself as N1/2, hence
the factor 21−α = 21/2 in front of the first cumulant.

Iteration of the Decimation and Rescaling. Iterating the RG procedure
(involving both the decimation and rescaling) m times, (2.78) gives

P (x,N, c1, c2, c3, . . . , cl, . . .) =
1

2mα
P

(
x

2mα
,
N

2m
= 1, 2m(1−α)c1, 2m(1−2α)c2,

2m(1−3α)c3, . . . , 2m(1−lα)cl, . . .
)
. (2.79)

If α = 1/2, then for m→ +∞, (2.79) becomes

P (x,N, c1, c2, c3, . . . , cl, . . .) →
1√
N
P

(
x√
N
, 1, c1

√
N, c2, c3 = 0, . . . , cl = 0, . . .

)
, (2.80)

for N → ∞, which is a function only of N = 2m, c1 and c2. We have thus
obtained the asymptotic result that the pdf of the sum for N → ∞ has only
its two first cumulant non zero, hence it is a Gaussian law, thus recovering
the central limit theorem. Applying the Fourier transform on both sides of
(2.80) gives

P̂ (k,N) = exp
{
N

(
ikc1 − k2 c2

2

)}
, (2.81)

which is the Fourier transform of the Gaussian law of mean Nc1 and variance
Nc2.

This exercise has the merit of introducing the powerful RG concepts and
technique. It also shows explicitely the multiple scales involved in the sum of
a large number of random variables and thus its intrinsic critical nature. In
addition, it demonstrates the convergence to the Gaussian law, now under-
stood as the attractive fixed point of the RG process.

The RG has many applications, first of all in allowing the calculation of the
critical exponents (among other quantities) of magnetic and fluid systems at
their Curie point. It has also been applied to a large variety of problems, such
as, among others, material rupture, fragmentation, earthquakes, transport in
heterogeneous media (conductivity, permeability, elastic properties. . . ), in
the characterization of the transitions to chaotic behavior and in turbulence.
We will review some of these problems in Chap. 11.

2.3.6 Recursion Relation and Perturbative Analysis

We continue our strategy to expose modern methods and concepts using the
simple context of the sum of random uncorrelated variables. Here, we develop
a perturbation approach to the central limit theorem.

Instead of the “bottom-up” decimation of the degrees of freedom per-
formed in the renormalization group method, we now take a “top-to-bottom”
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approach which amounts to doubling the number of variables at each step of
a recursive process Nm = 2m → Nm+1 = 2m+1. The corresponding recursion
relationship of the pdf’s of the average x ≡ (x1 + x2 + . . .+ xN )/N is simply
obtained from (1.32):

Pm+1(x) = 2
∫ ∞

−∞
dx1 Pm(x1)Pm(2x− x1) , (2.82)

where Pm(x) denotes the pdf of the mean of Nm = 2m variables. The ex-
pression (2.82) is an operator transforming Pm(x) into Pm+1(x). The prop-
erties that we have analyzed previously translate themselves as follows in the
present description.

Fixed Point. The Gaussian law PG
m(x) =

(
1/

√
2πσ2

m

)
exp

(−x2/2σ2
m

)
is

a fixed point of this transformation (2.82) in the space of functions, i.e. it is

transformed into PG
m+1(x) =

(
1/

√
2πσ2

m+1

)
exp

(−x2/2σ2
m+1

)
, where σ2

m =

2−mσ2
0 using the addition rule on the variance leading to σ2

m+1 = (1/2)σ2
m.

Notice that, in order to call the Gaussian law a fixed point, we have to use
a reduced variable. This generalizes to the functional space the concept of
fixed points of the renormalization group flow of control parameters that we
will discuss in Chap. 11 for critical points.

Perturbation. A pdf which is close to the Gaussian law PG
m(x) can be

written as

Pm(x) = PG
m(x) +

ε

σm
φm

(
x

σm

)
, (2.83)

where the second term of the r.h.s. corresponds to a small perturbation turned
on by the small parameter ε and where the natural scale free variable x/σm

has been used. The choice of this scaling ensures that the perturbation has
a width comparable to that of the Gaussian law, i.e. that the relative size of
the perturbation is small over the whole x range.

It is useful to take the perturbation function φm(x) to be such that∫ +∞
−∞ dx xnφm(x) = 0 for n = 0, 1 and 2. This condition for n = 0 en-

sures that Pm(x) is still normalized to 1. The condition for n = 1 and n = 2
express the absence of trend and vanishing second moment. The perturbation
is thus acting on the higher cumulants which, as we have seen, distinguish
a pdf from a Gaussian.

Putting the expression (2.83) in the recursion relation (2.82) and keeping
only the terms proportional to ε (and assuming that higher order terms are
smaller), we arrive at

σm+1 =
1
2
σm , (2.84)

and

φm+1 = L (φm) , (2.85)
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where L is a linear operator which can be explicitely written:

φm+1(x) = 2
√

2
∫ +∞

−∞

dy√
2π
φm(x

√
2 − y)e−y2/2 . (2.86)

Taking the Fourier transform of (2.86) gives the form L̂ of the operator L in
Fourier space:

φ̂m+1(k) = 2φ̂m

(
k√
2

)
e−k2/4 . (2.87)

One verifies that the eigenfunctions of L̂, defined by φ̂(n)
m+1(k) = Enφ̂

(n)
m (k),

are the Hermite polynomials which in Fourier space are φ̂n
m(k) = kne−k2/2

with eigenvalues En = 21−n/2. This result shows that all En for n > 2
are less than 1. Therefore, upon iteration, the weight of the corresponding
eigenfunctions in the expansion of a perturbation on the eigenfunctions de-
creases approaching zero, like a decay. This ensures the convergence to the
Gaussian. This calculation precisely quantifies the rate of convergence to the
Gaussian law by specifially how the initial perturbation decays to zero upon
one convolution (corresponding to the application of the operator L once):
the application of L transforms

∑+∞
n=2 anφ

(n)
m into

∑+∞
n=2 anEnφ

(n)
m , where an

are arbitrary coefficients.
In a remarkable effort (see [487] and references therein), Jona-Lasinio

shows how to start from this approach valid for independent variables to show
that, very generally, the renormalization group has an interesting probabilis-
tic interpretation which clarifies the deep statistical significance of critical
universality.



3. Large Deviations

The central limit theorem states that the Gaussian law is a good description
of the center of the pdf of a sum of a large number N of random variables
with finite variance and that the weight (in probability) of the tail goes to
zero for large N . We now make more precise what is meant by the “center” of
the pdf. This section is slightly more technical than the previous ones, even
though we emphasize a non-rigorous intuitive presentation. The purpose of
this chapter is to show that there is a lot of “action” going on in the tails,
beyond the central Gaussian region. This must be kept in mind for practical
applications and data analysis.

3.1 Cumulant Expansion

If X is the sum of N random i.i.d. variables with average 〈x〉 and variance σ2,
we define the rescaled variable

z =
X −N〈x〉√

Nσ
, (3.1)

which, according to the central limit theorem, tends to a Gaussian variable of
zero mean and unit variance. The convergence also applies to the tail; more
precisely, for any z,

lim
N→∞

P>(z) ≡ g(z) (3.2)

where g(z) is the probability weight of the tail:

g(z) =
∫ ∞

z

dx√
2π

exp(−x2/2) =
1
2
erfc(z/

√
2) , (3.3)

and erfc(z) is the complementary error function. It is important to realize
that the convergence is not uniform as the minimum value of N for which
P>(z) � g(z) depends on z. In other words, for N fixed, this approximation
is valid only for |z| � z0(N).

It is possible to estimate z0(N) for gentle initial pdf’s, i.e. when the pdf’s
decay faster than any power law at large |x|. In this case, all cumulants
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exist and one can develop a systematic expansion in powers of N−1/2 of the
difference P>(z) − g(z) [350]:

P>(z) − g(z)

=
exp(−z2/2)√

2π

(
Q1(z)
N1/2

+
Q2(z)
N

+ . . .+
Qk(z)
Nk/2

+ . . .

)
, (3.4)

where Qk(x) are polynomials that are parameterized by the normalized cu-
mulants λn of the initial pdf defined in (1.35). For the sake of illustration, we
give the first two polynomials

Q1(x) =
1
6
λ3(1 − x2) , (3.5)

and

Q2(x) =
1
72
λ2

3x
5 +

1
8

(
1
3
λ4 − 10

9
λ2

3

)
x3 +

(
5
24
λ2

3 −
1
8
λ4

)
x . (3.6)

Obviously, if a pdf has all its cumulants of order larger than 2 identically
zero, then all the Qk(x) are also zero as the pdf P (x) is a Gaussian.

For an arbitrary asymmetric pdf, c3 is non-vanishing in general and the
leading correction is Q1(x). The deviation from the Gaussian law is negligible
for z of order 1 if this correction is small, i.e. if N � λ2

3. Since the deviation
increases with z, the Gaussian approximation remains valid if the relative
error remains small compared to 1. For large z, this relative error is obtained
by dividing (3.4) by g(z) � (1/z

√
2π) exp(−z2/2). We thus obtain the width

of the pdf over which the Gaussian law holds [293]:

λ3z
3 � N1/2 leading to |X −N〈x〉| � σλ

−1/3
3 N2/3 , (3.7)

using definition (3.1). The standard deviation of the sum scales as σN1/2 and
the “central” region in which the Gaussian law holds extends further up to
a distance ∼ N2/3.

A symmetric pdf has c3 ≡ 0 and the excess kurtosis κ = λ4 provides
the first leading correction to the central limit theorem. The Gaussian law is
valid if N � λ4 and

λ4z
4 � N leading to |X −N〈x〉| � σλ

−1/4
4 N3/4 , (3.8)

using definition (3.1). The standard deviation of the sum scales as σN1/2 and
the “central” region in which the Gaussian law holds extends to a distance
∼ N3/4.

3.2 Large Deviation Theorem

Our presentation is inspired from [316, 549]. The large deviation theorem
goes beyond the previous results and determines the probability for the sum
X of N random variables Xi, in the limit N → ∞, to take a value Nx, where
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x can be different from 〈x〉. It can be shown that this probability can be
expressed as

P [X � Nx] ∼ eNs(x) dx, for x finite and N → ∞ , (3.9)

where s(x) is the so-called Cramér function (also called “rate function”). It
is obtained from the characteristic function of the pdf of the initial variables
contributing to the sum and is given by the formulas (3.17,3.20) derived
below.

3.2.1 Quantification of the Deviation
from the Central Limit Theorem

The expression (3.9) contains the central limit theorem as a special case.
Indeed, a large class of functions are quadratic close to their maximum. Thus,
if xmax is the value of x that maximizes s(x), we can then write

s(x) = s(xmax) +
1
2
s′′(xmax)(x− xmax)2

+
1
3!
s′′′(xmax)(x− xmax)3 +

1
4!
s′′′′(xmax)(x− xmax)4 + . . . , (3.10)

where s′′, s′′′, s′′′′ are the second, third and fourth order derivative. For x
close to xmax, s(x) is quadratic and therefore P [X ] is essentially Gaussian
with small contributions from the higher order terms at large N .

The expression (3.9) allows us to recover the regime of validity of the
Gaussian law. The deviation from the Gaussian law is given by

P [X ] − PG[X ]
PG[X ]

= exp
(
N

[
1
3!
s′′′(xmax)

(
1
N
X − xmax

)3

+
1
4!
s′′′′(xmax)

(
1
N
X − xmax

)4

+ . . .

])
−1 . (3.11)

For a non-symmetric law, s′′′(xmax) �= 0, we find (P [X ] − PG[X ])/PG[X ] � 1
as long as |X − Nxmax| � N2/3. For a symmetric law, the term s′′′′(xmax)
dominates and one finds (P [X ] − PG[X ])/PG[X ] � 1 as long as |X −
Nxmax| � N3/4. We thus recover in a simple way the power law depen-
dences ∼ N2/3 of (3.7) and ∼ N3/4 of (3.8).

3.2.2 Heuristic Derivation of the Large Deviation Theorem (3.9)

Let us assume that the pdf of the initial variables decays faster than an expo-
nential for large |Xi|. This ensures the validity of the characteristic function,
which we now define with an imaginary k, such that ik = β is real

Z(β) ≡ 〈e−βXi〉 ≡
∫ +∞

−∞
dXi e−βXiP (Xi) . (3.12)
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In order to calculate the Cramér function s(x), we construct

Zn(β) =
〈

e−β
∑N

j=1
Xj

〉
, (3.13)

and take the limit of large N . If formula (3.9) is true,
∑N

j=1Xj = Nx with
a probability ∼ dx eNs(x). We can thus rewrite

ZN(β) ∼
∫

dx eNs(x)e−βNx . (3.14)

The Jacobian stemming from the change of variable Xi → x provides a pro-
portionality factor. The integral over x can be evaluated by the Laplace
method [69]. This method is sometimes referred to as “steepest descent”, an
inadequate terminology when f(x) is not analytic. This method here amounts
to have the integral determined by the value of its integrand in a small neigh-
borhood of x that maximizes F (x) = −βx + s(x), i.e. the value x which is
solution of the equation

s′(x∗) = β , (3.15)

where s′ denotes the first derivative of s. This approximation is valid if the
width of the maximum is small compared to its value. In this case, we obtain

ZN(β) ∼ eN(s(x∗)−βx∗) . (3.16)

Therefore, up to logarithmic corrections, s(x) is determined from the follow-
ing equations:

s(x) = lnZ(β) + βx , (3.17)

ds
dx

= β . (3.18)

These two expressions indicate that s(x) is the Legendre transform of lnZ(β).
Therefore, in order to determine the Cramér function s(x) from the calcu-
lation of the characteristic function Z(β), we must find the value β which
corresponds to a given x, knowing Z(β). First, we construct s′(x) by differ-
entiating (3.17) with respect to x:

s′(x) =
d lnZ(β)

dβ
dβ
dx

+ x
dβ
dx

+ β . (3.19)

Then, we use (3.18) and assume that dβ/dx is non-zero. This last condition
is correct when the saddle-node approximation is valid. Indeed, from (3.18),
one sees that s′′(x) = dβ/dx. If dβ/dx vanishes, 1/

√−s′′(x∗) diverges and
the condition for the validity of the saddle-node approximation is not obeyed.

We obtain the equation determining β(x) knowing lnZ(β) by putting
(3.15) into (3.19):

d lnZ(β)
dβ

= −x . (3.20)

This leads to s(x) = lnZ(β(x))+β(x)x, where β(x) is the solution of (3.20).
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3.2.3 Example: the Binomial Law

The binomial law is

P(j) =
(
N

j

)
pj(1 − p)N−j , (3.21)

and corresponds to the special case where the initial variables can take only
two values X1 and X2 with probability p and 1 − p respectively. The proba-
bility that, among a sample of N such random variables, j have the value X1

and N − j takes the value X2 is given by (3.21).
If X1 = tails and X2 = heads, with p = 1/2, expression (3.21) gives the

probability to observe j tails among N throws of a coin. In the random walk
problem in which a right and left step occur with probability p and 1 − p
respectively, (3.21) gives the probability that the walker has made j right
steps and N − j left steps. The position of the random walker, given by the
sum

∑N
i=1Xi, is then j − (N − j) = 2j −N .

The large deviation theorem can be obtained using the Stirling formula
applied to

(
N
j

)
. We give the expression for the case Xi = 1 (success) with

probability p and Xi = 0 (failure), with probability 1 − p, for which the
expression is the simplest:

P(j = xN) = eNs(x) , (3.22)

with

s(x) = x ln p+ (1 − x) ln(1 − p) − x lnx− (1 − x) ln(1 − x) , (3.23)

for 0 < x < 1,

s(x) = −∞ otherwise . (3.24)

Notice that s(x) reduces to

sp(x) = − (x− p)2

2p(1 − p)
(3.25)

close to its maximum x = p, a result which recovers the Gaussian law. How-
ever, one can observe large deviations from the Gaussian law for |x| different
from p, as seen in Figs. 3.1 and 3.2. Finite variations of x from p correspond
to the regime of large deviations as the sum has deviations of order N (ex-
actly (x− p)N) away from its mean, instead of the most probable deviations
of order

√
N according to the central limit theorem.

Consider the case shown in Fig. 3.2 where p = 0.95 (Xi = 1), correspond-
ing to a 5% probability to loose (Xi = 0). Take x = 0.9, corresponding to
a finite deviation from the most probable value 0.95 for the average. Expres-
sion (3.23) gives s(x) = −0.0206 while its parabolic approximation yields
sp(x = 0.9) = −0.0264. The corresponding probabilities are e−0.0206N ≈ 13%
for N = 100 using the Cramér expression and e−0.0264N ≈ 7% for N = 100
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Fig. 3.1. The Cramér function s(x)
given by (3.23) and its parabolic ap-
proximation sp(x) as a function of x
for p = 0.5

Fig. 3.2. The Cramér function s(x)
given by (3.23) and its parabolic ap-
proximation sp(x) as a function of x
for p = 0.95

in the Gaussian approximation. The Gaussian approximation thus under-
estimates by almost a factor of two the probability of such a large deviation
scenario. The difference becomes more overwhelming when N increases.

To sum up, it is not possible in general to capture the degree of uncertainty
in the estimation of the sum of N random variables by the single variance
parameter. It is the Cramér function which fully encodes this uncertainty.
Applications to finance and portolio theory in the presence of large risks can
be found in [882].

3.2.4 Non-identically Distributed Random Variables

When the variables constituting the sum are non-identically distributed, the
large deviation theorem still holds with expression (3.9) but the Cramér
function s(x) must now be expressed in terms of all the pdf’s Pj(Xj)
for j = 1 to N . Let us study the tail for large positive X , where we
use the capital letter X to describe the sum, generalizing the notation
X = Nx of the previous section. We construct the characteristic function
P̂X(Nβ) ≡ ∫∞

0 dX e−NβXPX(X). If we assume (3.9) to hold and use the
Laplace method, we obtain

P̂X(Nβ) ∝ exp[−N InfX(βX − s(X))] , (3.26)

where InfX(βX − s(X)) is the evaluation of this function at the value of the
argument X that minimizes it. From the property of convolution of pdf’s,
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P̂X(Nβ) can be written in the form P̂X(Nβ) =
∏N

j=1 P̂j(Nβ). Comparing
with (3.9), we obtain s(X) as a Legendre transform [316, 549]

s(X) = Infβ

(
1
N

N∑
j=1

ln P̂j(Nβ) + βX

)
. (3.27)

This result (3.27) with the expression (3.9) provides the general formula
for the pdf of arbitrary large values X , i.e. beyond the Gaussian approxi-
mation, which is recovered for small variations. This is seen by expanding
the Laplace transform P̂j(Nβ) in powers of β and truncating at the second
order in β. The minimization becomes quadratic in β and yields a quadratic
dependence in X and thus a Gaussian law is obtained for the pdf. Expression
(3.27) generalizes the expressions (3.17, 3.20) while recovering them when all
random variables are i.i.d.

It is also worthwhile to mention a more general limit theorem than
the central limit theorem, which is valid for the sum of independent but
not necessarily identically distributed stochastic variables. This limit the-
orem is due to Khintchine [350] and states that the sum of N indepen-
dent random variables converge in probability to a pdf belonging to the
class of infinitely divisible pdf’s [293]. An infinitely divisible pdf is defined
by a characteristic function P̂ (k) obeying the following functional equa-
tion

P̂ (k) = [P̂N (k)]N , for all N with P̂N (0) = 1 , (3.28)

and P̂N (k) continuous. As seen from (2.69), this simply means that a vari-
able taken from an infinitely divisible pdf can be viewed as the sum of an
arbitrary number N of contributions, with the pdf of the contributions de-
pending possibly on their number. The importance of infinitely divisible
pdf’s has been stressed in the development of statistical models of hydro-
dynamic turbulence [316, 837, 838]. The class of infinitely divisible stochas-
tic process is a much broader class than that of the stable distributions
(Gaussian and Lévy). In addition to the Gaussian and Lévy laws, Pois-
son and Gamma distributions are examples of infinitely divisible pdfs. The
class of infinitely divisible stochastic processes selects a subset of all pos-
sible stochastic processes. An example of a distribution outside this class
is the stretched exponential distribution. As we show below, the sum of
N variables, each distributed according to the same stretched exponential
distribution, is dominated for extreme deviations by the largest of the N
variables and is of the same order of magnitude. This prevents the ap-
plication of Khintchine’s theorem as well as of the extreme theorem dis-
cussed below. Indeed, Khintchine’s theorem relies essentially on the con-
straint that the N independent random variables summing up to the ran-
dom variable X must be infinitesimal (in the limit N → ∞), in other words
there is not a single stochastic variable among the N that dominates the
sum X .
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3.3 Large Deviations with Constraints
and the Boltzmann Formalism

3.3.1 Frequencies Conditioned by Large Deviations

For simplicity and convenience of notation, we now assume that each Xi can
take only a finite set of discrete values that we call v1, v2, . . . , vn−1, vn. For
the coin toss problem, n = 2 and in a game with a single die, n = 6. Taking
n→ ∞ recovers the limit of a continuous variable. This assumption does not
lead to a loss of generality.

The N realizations of a random variable are drawn from the pool of the n
possible values. So in N trials, there are nN conceivable outcomes. We use the
word “result” for a single trial, while “outcome” refers to the experiments as
a whole. Thus, one outcome consists of an enumeration ofN results, including
their order. For instance, five tosses of a die (n = 6, N = 5) might have the
outcome “65133”. Each outcome yields a set of sample numbers {Ni} and
relative frequencies {fi = Ni/N, i = 1, . . . , n}.

The classical law of large numbers states that the frequency with which
one measures a given value vl among n possible values of the same random
variable V converges towards its probability. This idea is in fact at the basis
of the notion of probability in the frequentistic approach.

In many situations, the outcome of a random experiment is not known
completely. One does not know the order in which the individual results
occurred, and often one does not even know all n relative frequencies {fi}
but only a smaller number m (m < n) of linearly independent constraints

n∑
i=1

Gi
a fi = ga , a = 1, . . . ,m . (3.29)

As an example of a constraint, suppose that the measured mean of these N
realizations deviates from the theoretical mean. In this limit of large N , we
consider a deviation of the mean which survives even in this limit. We are
thus in the large deviation regime of the previous sections.

What can we say about the frequencies of each value vl taken by the
N outcomes which created this deviation? As we will show, the answer is
that the frequencies of each value vl do converge to a well-defined number
in the limit of large N , but this number is different from its asymptotic
probability!

The fundamental reason for this is that there is a close relationship be-
tween the existence of the deviation of the mean from its theoretical value
and the existence of frequencies that are different from their theoretical prob-
abilities. The theory of large deviations allows one to compute precisely these
anomalous behaviors in the limit of large N . This provides an independent
signature of the existence of large deviations.
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To quantify these statements, recall that X ≡ ∑N
j=1Xj may also be

written

X = N

n∑
l=1

flvl , (3.30)

where fl = Nl/N is the observed frequency for the Nl times the value vl

was found in the N realizations. In this expression, the N realizations have
been partitioned into groups of identical values, the first group contains N1

variables each equal to v1, the second group contains N2 variables each equal
to v2, and so on, such that N1 +N2+ . . .+Nn = N . The law of large numbers
states that fl = Nl/N → P (vl) ≡ pl, when N → ∞, where P (vl) ≡ pl is the
probability of vl. For a large observed value of X/N = x, what can we say
about fl? More precisely, what are the values taken by fl, conditioned by the
observation of X/N = x?

The following exposition benefits from exchanges with V. Pisarenko.
A natural way to address this question is to use some functional R(P ;Px)
measuring the “distance” between the pdf P and the desired modified pdf Px.
Then, one can minimize this distance R(P ;Px) under the given conditions.
The problem is that there is a certain degree of arbitrariness in the choice of
the distance R(P ;Px), that lead to different solutions.

If one takes the Kullback Distance 1 representing average log-likelihood
ln[Px(v)/P (v)] of Px against P [535]

R1(P ;Px) =
∫

dv Px(v) ln[Px(v)/P (v)] , (3.31)

one gets directly (using the Lagrange multiplier method) the Gamma distri-
bution

Px(v) = P (v)ea−bv , (3.32)

where the constants a and b are determined by the constraints.
However, there are other “distances” that are a priori as justifiable as

the Kullback Distance 1 and which lead to different results. The Kullback
Distance 2 is the average log-likelihood of P against Px

R2(P ;Px) =
∫

dv P (v) ln[P (v)/Px(v)] , (3.33)

which leads to the modified solution

Px(v) =
P (v)
a+ bv

, (3.34)

where the constants a and b are again determined by the constraints.
Another example is the Kullback Distance 3, quantifying the “divergence”

between P and Px

R3(P ;Px) = R1(P ;Px) +R2(P ;Px) , (3.35)
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which leads to the following solution

Px(v) =
P (v)

G(a+ bv)
, (3.36)

where G(z) is the inverse function of g(z) = z + ln z.
Thus, as a consequence of the existence of some degree of arbitrariness

in the choice of distance R(P ;Px), this approach does not select the law
(3.32) as the unique solution of the two conditions 1 and 2 of the previous
section.

The approach that we now describe provides a natural way to avoid the
arbitrariness in the choice of distance between P and Px, based on fixing the
random sample mean of observed events. This constraint could be seen as
too restrictive, since it selects among all realizations of possible sequences,
only those where the sample mean is exactly equal to a specified value. Our
point is that this constraint can be fixed to a specific value by an independent
global measurement. As an illustration, think of the Gutenberg–Richter dis-
tribution of earthquakes in which the constraint on the average corresponds
to the cumulative strain obtained by geodetic or satellite techniques, thus
providing an estimation of the cumulative released moment (neglecting diffi-
culties associated with the tensorial nature of the problem). Thus, we propose
to condition the modified pdf on those specific random realizations that are
consistent with the global measurement. This rather specific constraint will
not apply in all circumstances.

3.3.2 Partition Function Formalism

The probability to observe f1, f2, . . . , fn from N realizations is simply

P (f1, f2, . . . , fn) =
N !

(Nf1)!(Nf2)! . . . (Nfn)!

n∏
l=1

[P (vl)]Nfl , (3.37)

where Nfl = Nl and (Nfl)! is the factorial Nfl(Nfl − 1)(Nfl − 2) . . . 4× 3×
2 × 1 of Nfl. Using the Stirling formula

x! ≈
√

2πxxxe−x , (3.38)

we find

P (f1, f2, . . . , fn) �
√

2πN∏n
j=1

√
2πfjN

eNH(f1,f2,...,fn) , (3.39)

where the “entropy” is defined by

H(f1, f2, . . . , fn) = −
n∑

l=1

fl ln
fl

pl
, with pl ≡ P (vl) . (3.40)

Montroll [645] has similarly discussed the appearance of the notion of entropy
in sociotechnical systems.
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Consider two different data sets leading to the two sets {fi} and {f ′
i}.

The ratio of their respective probabilities is given by

prob(f |p,N)
prob(f ′|p,N)

=

√∏
i

f ′
i

fi
exp[N(H(f1, f2, . . . , fn) −H(f ′

1, f
′
2, . . . , f

′
n))] . (3.41)

As the prefactor
√∏

i
f ′

i

fi
is independent of N , for large N and for closely

similar distributions f ′ ≈ f , the variation of prob(f |p,N)/prob(f ′|p,N) is
completely dominated by the exponential:

prob(f |p,N)
prob(f ′|p,N)

≈ exp[N(H(f1, f2, . . . , fn) −H(f ′
1, f

′
2, . . . , f

′
n))] . (3.42)

Hence the probability with which any given frequency distribution f is re-
alized is essentially determined by the entropy H(f1, f2, . . . , fn). The larger
this quantity, the more likely is the frequency distribution.

In the absence of constraints other than the normalization condition∑n
l=1 fl = 1 and for N large, the frequencies fl converge towards the values

that maximize H(f1, f2, . . . , fn). We thus recover the law of large numbers

fl →N→∞ pl . (3.43)

However, if we observe X/N ≡ ∑n
l=1 flvl = x, the frequencies are those

that maximize the function

H(f1, f2, . . . , fn) − λ1

(
n∑

l=1

fl − 1

)
− λ2

(
n∑

l=1

flvl − x

)
, (3.44)

where λ1 and λ2 are two Lagrange parameters determined by the constraint
of normalization and the observation of the large deviation x. Recall that the
technique of Lagrange multipliers is very useful in solving an optimization
problem in the presence of addition constraints. Briefly, the idea is to incorpo-
rate the constraints in the function to minimize, with multiplicative factors.
Then, the solution depends on these factors, which are then eliminated by
imposing the constraints on the solution. See [86] for further information.

The solution is

fl = P (vl)
e−βvl

Z(β)
, (3.45)

where β ≡ −λ2 is determined as a function of x by the equation (3.20) and
Z(β) is defined by (3.12) and reads

Z(β) =
n∑

l=1

ple−βvl . (3.46)

The expression (3.45) gives the frequencies of the values of the random vari-
ables, conditioned by the existence of a large deviation of the mean. Notice
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that for x = 0 (no deviation), we recover fl = pl asymptotically since then
β(x = 0) = 0.

It is not fortuitous that the expressions (3.45, 3.46) bear a strong similarity
with the statistical mechanics formulation [762] of systems composed of many
elements, where Z(β) is the partition function, β is the inverse temperature
and − lnZ(β) is proportional to the free energy. The fact that the constraint
is seen as a “high temperature” (β → 0) perturbation is clear: the constraint
is analogous to an “energy” added to the “free energy” − lnZ(β), which in
the absence of constraint is solely controlled by the “entropy” H , i.e. by
statistics. The relative importance of entropy and energy is weighted by the
temperature, with the entropy dominating at high temperatures.

The probability that N trials will yield a frequency distribution with n
values that satisfy the m constraints (3.29) and whose entropyH differs from
Hmax by more than ∆H is given for large N (N � s/∆H) by [762]

prob(H < (Hmax − ∆H)|m consts.)

≈ 1
Γ (s+ 1)

(N ∆H)s exp(−N ∆H) , (3.47)

where s = (n − m − 3)/2. One recognizes the Poisson formula p(k, λ) =
(λk/k!) e−λ, which gives for instance the probability of finding exactly k
events within a fixed interval of specified length [293]. As the number N
of trials increases, this probability rapidly tends to zero for any finite ∆H .
Thus, it becomes virtually certain that the unknown frequency distribution
has an entropy H very close to Hmax. Hence, not only does the maximal
point represent the frequency distribution that is the most likely to be re-
alized (cf. (3.42)), but in addition, as N increases, all other – theoretically
allowed – frequency distributions become more and more concentrated near
this maximal point. Any frequency distribution other than the maximal point
becomes highly atypical of those allowed by the constraints.

Another problem with important applications is to estimate the validity of
models from finite imperfect data. If we are given a particular family of para-
metric models (Gaussians, power laws or stretched exponentials for example),
the task of modeling the true distribution is reduced to parameter estimation,
which is a relatively well-understood, though difficult, problem. Much less is
known about the task of model family selection – for example, how do we
choose between a family of power laws and a family of stretched exponen-
tials as a model for the true distribution based on the available data? Several
recent works have addressed this question by building from the Bayesian ap-
proach and Jeffreys theory [462], a statistical theory similar to field theory,
from which systematic approximations can be obtained [4, 50, 87].

3.3.3 Large Deviations in the Dice Game

Let us roll a die N times. The probabilities fl, l = 1 to 6, correspond to the
frequencies with which each of the six faces of the die occurs. According to
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Fig. 3.3. The “inverse temperature” β is shown as a function of x in the allowed
range 1 ≤ x ≤ 6. Note that |β| → ∞ (zero “temperature” = perfect order) for
x → 1 and x → 6 which can only be attained when all draws are either 1 or 6. The
value β = 0 is recovered for x = (1/6) × 1 + (1/6) × 2 + (1/6) × 3 + (1/6) × 4 +
(1/6) × 5 + (1/6) × 6 = 3.5, which is the unconditional average

Fig. 3.4. The probabilities f1, f2, f3, f4, f5, f6 given by (3.45) are shown as a func-
tion of x in the allowed range 1 ≤ x ≤ 6. All fi’s are equal to 1/6 = 0.166 . . . only
when x is equal to the mean 3.5, where all curves cross. For x > 3.5, the proba-
bilities fi with i > x are increased above 1/6 while those with i < x are decreased
below 1/6. For x < 3.5, the probabilities fi with i < x are increased above 1/6
while those with i > x are decreased below 1/6

the law of large numbers, the six fl tend to 1/6 � 0.166 for large N and the
mean f1 + 2f2 + 3f3 + 4f4 + 5f5 + 6f6 tends to 3.5.

Let us now assume that we have observed a mean x = 4. The formula
(3.45) predicts that the frequencies that contributed to this deviation are not
the same anymore. We get f1 → 0.103, f2 → 0.123, f3 → 0.146, f4 → 0.174,
f5 → 0.207, f6 → 0.247 in the limit of large N . Observe that the large values
become more frequent, as can be expected since the outcomes are biased by
the observation of a large mean.

As another example, consider the problem of a loaded die [762]. Let us
assume that observations of die rolls have shown that 6 occurs twice as often
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as 1. Nothing peculiar was observed for the other faces. Given this information
and nothing else, i.e., not making use of any additional information that we
might get from inspection of the die or from past experience with dice in
general, all we know is a single constraint of the form (3.29) g1 = 0 with

Gi
1 =

⎧⎨
⎩

2 : i = 1
0 : i = 2, . . . , 5

−1 : i = 6
(3.48)

What estimates should we make of the relative frequencies {fi} with which
the different faces appeared? Taking the a priori probability distribution –
assigned to the various faces before one has asserted the die’s imperfection –
to be uniform, {pi = 1/6}, the best estimate for the frequency distribution
reads

fmax
i =

⎧⎪⎨
⎪⎩
Z−1 exp(−2λ1) : i = 1 ,

Z−1 : i = 2, . . . , 5 ,

Z−1 exp(λ1) : i = 6 ,

(3.49)

with only a single Lagrange parameter λ1 and

Z = exp(−2λ1) + 4 + exp(λ1) . (3.50)

The Lagrange parameter is readily determined from
∂

∂λ1
lnZ = −g1 = 0 , (3.51)

with solution

λ1 = (ln 2)/3 . (3.52)

This in turn gives the numerical estimates

fmax
i =

⎧⎪⎨
⎪⎩

0.107 : i = 1 ,

0.170 : i = 2, . . . , 5 ,

0.214 : i = 6 ,

(3.53)

with an associated entropy

Hmax = ln(1/6) + lnZ = −0.019 . (3.54)

This negative value of the entropy Hmax = −0.019 makes Hmax smaller than
zero, where zero is obtained for the unbiased priors fi = 1/6 = 0.166 . . . and
can be seen as a kind of organization resulting from the bias (the entropy is
smaller). In absence of the bias (3.48), the frequencies fmax

i given by (3.53)
would be observed with the probability (3.42)

prob(fmax
i |p = 1/6, N)

prob(f = 1/6|p = 1/6, N)
≈ exp

(
−N

52

)
. (3.55)

In absence of bias, these frequencies (3.53) would become very unlikely
for N � 50. This means that one cannot hope to detect the bias where
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the 6 appears twice a many times as the 1 when the number of die casts
is less than 50 or so. To establish the existence of the bias, one needs
to reject the null hypothesis according to which the anomalous obser-
vations could occur just by chance. Choosing the significant statistical
level of 95%, (3.55) implies that a sample of more than 150 die casts is
needed.

3.3.4 Model Construction from Large Deviations

We now present a summary inspired from [762] of Jaynes’ analysis of Wolf’s
die data, which illustrates vividly how hypotheses testing can be used itera-
tively by enlarging the set of constraints to improve the model [461].

Rudolph Wolf (1816–1893), a Swiss astronomer, had performed a number
of random experiments, presumably to check the validity of statistical theory.
In one of these experiments, a die was tossed 20 000 times in a way that
precluded any systematic favoring of any face over any other. The observed
relative frequencies {fi} and their deviations {∆i = fi−pi} from the a priori
probabilities {pi = 1/6} are given in Table 3.1. Associated with the observed
distribution is

∆H = −0.006769 . (3.56)

Our “null hypothesis” H0 is that the die is ideal and hence that there are
no constraints needed to characterize any imperfection (m = 0); the deviation
of the experimental distribution from the uniform distribution is supposed to
be merely a statistical fluctuation. However, the probability that statistical
fluctuations alone yield a ∆H-difference as large as 0.006769 is practically
zero. Using (3.47) with N = 20 000 and s = 3/2 (n = 6 and m = 0), we find

prob(∆H |H0 and no constraints) ∼ 10−56 . (3.57)

Therefore, the null hypothesis is rejected and the frequencies must be biased
in some way.

Similar results found in similar experiments [758] (see in particular the
random number experiments [820, 821, 925] and the ensueing controversy

Table 3.1. Wolf’s die data: frequency distribution f and its deviation ∆ from the
uniform distribution

i fi ∆i

1 0.16230 −0.00437

2 0.17245 +0.00578

3 0.14485 −0.02182

4 0.14205 −0.02464

5 0.18175 +0.01508

6 0.19960 +0.02993
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in Physics Today [76, 243, 244, 585, 926]) are sometimes put forward by
certain investigators to suggest that some parapsychological effect has thus
been discovered [76, 78, 161, 243, 244, 585, 926]. Belief in the “supernatural”
and/or in parapsychology is still widely spread in our modern society [374,
830], even among educated students [993], probably due to the complexity of
the psychology of the human mind [187, 931, 1001].

In addition to rigorous statistical hypotheses testing, the principle of Oc-
cam’s razor [959, 960] is particularly useful to distinguish between competing
hypotheses. This principle is attributed to the 14th century logician and
Franciscan monk William of Occam which states that “Entities should not
be multiplied unnecessarily.” The most useful statement of the principle for
scientists is “when you have two competing theories which make exactly the
same predictions, the one that is simpler is the better.” Occam’s razor is
used to cut away metaphysical concepts. The canonical example is Einstein’s
theory of special relativity compared with Lorentz’s theory that ruler’s con-
tract and clocks slow down when in motion through the Ether. Einstein’s
equations for transforming space–time are the same as Lorentz’s equations
for transforming rulers and clocks, but Einstein recognised that the Ether
could not be detected according to the equations of Lorentz and Maxwell. By
Occam’s razor, it had to be eliminated.

Thus, between the parapsychological hypothesis and the possibility that
the die has some defect leading to the observed systematic bias, we first
investigate the later as a potentially “simpler” explanation. Not knowing the
mechanical details of the die, we can still formulate and test hypotheses as
to the nature of its imperfections. Jaynes argued that the two most likely
imperfections are:

• a shift of the center of gravity due to the mass of ivory excavated from the
spots, which being proportional to the number of spots on any side, should
make the “observable”

Gi
1 = i− 3.5 (3.58)

have a nonzero average g1 �= 0;
• errors in trying to machine a perfect cube, which will tend to make one

dimension (the last side cut) slightly different from the other two. It is
clear from the data that Wolf’s die gave a lower frequency for the faces
(3,4); and therefore that the (3–4) dimension was greater than the (1–6)
or (2–5) ones. The effect of this is that the “observable”

Gi
2 =

{
1 : i = 1, 2, 5, 6

−2 : i = 3, 4
(3.59)

has a nonzero average g2 �= 0.

Our hypothesis H2 is that these are the only two imperfections present. More
specifically, we conjecture that the observed relative frequencies are charac-
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terized by just two constraints (m = 2) imposed by the measured averages

g1 = 0.0983 and g2 = 0.1393 . (3.60)

As a consequence, we can use the technique developed above to fit the
observed relative frequencies with the maximal distribution

f
max(H2)
i =

1
Z

exp

(
−

2∑
a=1

λa Gi
a

)
. (3.61)

In order to test our hypothesis, we determine

Z =
6∑

i=1

exp

(
−

2∑
a=1

λa Gi
a

)
, (3.62)

fix the Lagrange parameters by requiring
∂

∂λa
lnZ = −ga , (3.63)

and then calculate

Hmax(H2)
p = ln(1/6) + lnZ +

2∑
a=1

λa ga . (3.64)

With this algorithm, Jaynes found

Hmax(H2)
p = −0.006534 , (3.65)

and thus

∆HH2 = Hmax(H2)
p −Hp(f) = 0.000235 . (3.66)

The probability for such an Hp-difference to occur as a result of statistical
fluctuations is (with now s = 1/2)

prob(Hp < (Hmax
p − ∆HH2)|2 constraints) ≈ 2.5% , (3.67)

much larger than the previous 10−56 but still below the usual acceptance
bound of 5%. The more sophisticated model H2 is therefore a major im-
provement over the null hypothesis H0 and captures the principal features of
Wolf’s die; yet there are indications that an additional very tiny imperfection
may have been present.

Jaynes’ analysis of Wolf’s die data furnishes a useful paradigm for the
experimental method in general. Modern geophysical and astrophysical re-
search yield data in the form of frequency distributions over discrete “bins”
for each of the various measurements. The search for interesting signals in the
data (new mechanisms, new interactions, new correlations, etc.) essentially
proceeds in the same manner in which Jaynes revealed the imperfections of
Wolf’s die: by formulating physically motivated hypotheses and testing them
against the data. Such a test is always statistical in nature. Conclusions (say,
about the presence of life in Martian meteorites [612], or about the presence
of a certain imperfection of Wolf’s die) can never be drawn with absolute
certainty but only at some – quantifiable – confidence level.
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3.3.5 Large Deviations in the Gutenberg–Richter Law
and the Gamma Law

It is well-known that the Gutenberg–Richter power law distribution of earth-
quake seismic moment releases has to be modified for large seismic moments
due to energy conservation and geometrical reasons. Several models have
been proposed, either in terms of a second power law with a larger b-value
beyond a cross-over magnitude, or based on a “hard” magnitude cut-off or
a “soft” magnitude cut-off using an exponential taper. Since the large scale
tectonic deformation is dominated by the very largest earthquakes and since
their impact on loss of life and properties is huge, it is of great importance
to constrain the shape of their distribution as much as possible.

The above probabilistic theoretical approach provides a simple framework
to handle the constraints on global tectonic deformations. It is easy to show
that the Gamma distribution is the best model, under the two hypothesis
that the Gutenberg–Richter power law distribution holds in absence of any
condition and that one or several constraints are imposed, either based on
conservation laws or on the nature of the observations themselves. The se-
lection of the Gamma distribution does not depend much on the specific
nature of the constraint. This approach has been illustrated with two con-
straints [912], namely the existence of a finite moment release rate and the
observation of the size of a maximum earthquake in a finite catalog. The pre-
dicted “soft” maximum magnitudes compare favorably with those obtained
by Kagan [491] for the Flinn–Engdahl regionalization of subduction zones,
collision zones and mid-ocean ridges.

Fig. 3.5. Comparison between
the pure Gutenberg–Richter law
1/M1+2/3 and the Gamma distribu-

tion exp (−β(x)M) /M1+2/3, where
M are seismic moments normalized
in units of Mt = 5 × 1017 Nm
corresponding to a magnitude 5.8

Figure 3.5 shows the comparison between the pure Gutenberg–Richter law
1/M1+2/3 and the Gamma distribution exp (−β(x)M) /M1+2/3, whereM are
seismic moments normalized in units of Mt = 5× 1017 Nm corresponding to
a magnitude 5.8 (in other words, we consider large earthquakes of magnitudes
larger than 5.8). The global constraint can be expressed as

x =
Ṁ ∆ t

MtN
, (3.68)
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where Ṁ is the geological rate of deformation (in Nm/year) of the region
under consideration and N/∆t is the yearly number of earthquakes with
moments above the threshold Mt (taken from the Harvard catalog over
a time interval of ∆t = 18.5 years). Taking a typical value x = 40 yields
β(40) = 8.9 × 10−5 which corresponds to a characteristic magnitude of 8.5
controlling the cross-over from the power law behavior to the exponential
tail. A magnitude 8.5 corresponds to a “great” earthquake with an energy
release of about 3 × 1017 joules (to be compared with the energy 1012 joules
released by Hiroshima’s atomic bomb). Such a great earthquake typically
involves a fault slip of many meters over several hundred kilometers.

Figure 3.5 is typical of the cross-over from pure power law to exponential
decay, for most of the regions in the world that include subduction zones, col-
lision zones and mid-ocean ridges [491, 912]. We should stress however that
the most interesting (and difficult) problem is to go beyond this description
of the balance of deformations in terms of moment scalars towards the es-
timation of the probability distribution for displacements in brittle material
due to earthquakes, thus capturing the vectorial nature of the motion of the
Earth crust. For this, we need to consider multidimensional statistics and the
variables of interest are vector-valued or tensor-valued (displacement, strain,
stress) (see [489, 490] for pioneering work in this direction).

Interestingly, the distribution P (X1|S) of any single term X1 in the sum
S = X1 + . . .+XN conditioned on a fixed value of S is showing a behavior
quite different from the exponential taper shown in Fig. 3.5. According to
Bayes’ rule, we have

P (X1|S) =
PN (S|X1)P (X1)

PN (S)
, (3.69)

where PN (S|X1) is the pdf of the sum S conditioned on the value of X1

and PN (S) is the unconditional pdf of S. Now, PN (S|X1) = PN−1(S −X1)
by definition, for X1 < S. Thus, P (X1|S) ∼ PN−1(S −X1)P (X1) since the
denominator PN (S) can be included in the normalizing factor. For pdf’s with
heavy tails for which Nagaev’s theorem hold (see expression (3.100) below),
PN−1(S − X1) ∼ (N − 1)P (S − X1), for S − X1 > N1/2+ε with arbitrary
positive ε (which can also be read as X1 < S −N1/2+ε). This leads to

P (X1|S) ∼ P (S −X1) P (X1) , (3.70)

since we can include the factor N − 1 into the normalizing factor. The first
factor P (S−X1) is the result of the conditioning and can thus be considered
as a “taper” acting on the initial (unconditional) pdf P (X1). It is interesting
to find that for large X1 < S − N1/2+ε, the taper leads to an increase of
the probability for large X1. If we could use (3.70) in the whole interval
0 < X1 < S, then the conditional density (3.70) would take the form of
a symmetric U-curve with a minimum at X1 = S/2. Because of the restriction
on the argument X1 < S − N1/2+ε, the resulting product (3.70) looks as
a U-curve with unequal arms: the left arm is much higher than the right arm,
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since P (1|S) ≥ P (S −N1/2+ε|S) under the condition that S ∼ N . Thus, the
conditional pdf P (X1|S) given by (3.70) in the range 1 < X1 < S −N1/2+ε

(with S � constant ×N) behaves practically like the initial unconditional
pdf P (X1) with a small rising (!) taper P (S −X1). The difference between
expression (3.70) and the decreasing taper presented in Fig. 3.5 stems from
the fact that the later is obtained by looking simultaneously at all the terms
X1, X2, . . . , XN in the sum, constrained to sum to N . In other words, the pdf
shown in Fig. 3.5 is the pdf of the i.i.d. random variable Xi in the sum, while
(3.70) gives the pdf of one such random variables over many independent
realizations {X1, X2, . . . , XN} of the N variables.

3.4 Extreme Deviations

3.4.1 The “Democratic” Result

The Cramér theorem (3.9) describes large deviations of X/N away from the
mean in the limit N → ∞. There is another interesting regime, called extreme
deviation regime [318]. It corresponds to the different order of limits: N finite
and X/N → ∞. Our heuristic presentation borrows from [318], in which
a rigorous treatment is also given. See also [911] for an extension to non-i.i.d.
random variables.

We assume that the pdf P (Xi) can be represented as

P (Xi) = e−f(Xi) , (3.71)

where f(Xi) tends to +∞ with |Xi| sufficiently fast to ensure the normaliza-
tion of P (Xi). We rule out the case where f(Xi) becomes infinite at finite
Xi, which corresponds to a distribution with compact support for which the
extreme deviations would be trivial.

We get as usual the pdf of the sum of N random variables

PN (X) =
∫

dX1 . . .

∫
dXN exp

⎛
⎝−

N∑
j=1

f(Xj)

⎞
⎠ δ

(
X −

N∑
i=1

Xi

)
.

(3.72)

We also make the assumption of convexity: f ′′(Xi) > 0, which is essential
because it ensures that the minimum of

∑N
j=1 f(Xj) is obtained for X1 =

X2 = . . . = XN = X/N .
Stretched exponentials, for which f(Xi) � Xα

i with α < 1, are thus
excluded since f ′′(Xi) = α(α − 1)Xα−2

i is negative. This reflects the fact
that the tail of the sum SN of N stretched exponentially distributed variables
has the same order of magnitude as the tail of the maximum variable Xmax

N

among them:
Probability(SN ≥ x)

Probability(Xmax
N ≥ x)

→x→+∞ 1 . (3.73)
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This is rather remarkable considering that the typical values are very differ-
ent: SN ≈ N〈X〉 ∼ N is much larger, for large N , than the typical value of
the maximum Xmax

N ∼ (lnN)1/α. The proof goes as follows. We ask what are
the set of positive Xi’s such that

∑N
i=1X

α
i is minimum so as to make maxi-

mum the probability of this configuration, while the condition
∑N

i=1Xi > x

is obeyed. We see immediately that, since α < 1,
∑N

i=1X
α
i ≥ xα since∑N

i=1Xi ≥ x. To see this intuitively, take for instance Xi = x/N that realizes
the condition that the sum adds up to x. Then,

∑N
i=1X

α
i = xαN1−α > xα for

α < 1. The configurations that make
∑N

i=1X
α
i = xα are those such that all

Xi’s are very small (→ 0) except one being almost equal to x. The correspond-
ing probability is exp(−cxα) larger than any other configuration, where c is
a constant depending on the configuration of theXi’s. We thus see how (3.73)
emerges. This class of stretched exponential distribution is sometimes called
“sub-exponentials” in the mathematical literature or Weibull laws in the engi-
neering literature. The same phenomenon applies to Pareto distributions (any
pdfs with a heavy-tail). Thus, heavy-tails and stretched-exponentials (α < 1)
both correspond to the situation where, with overwhelming probability, only
one of the addends of the sum X1 + . . .+Xn contribute significantly to this
sum, while the contribution of most other addends is negligible.

We turn our attention to the exponential and “superexponential” cases
where f ′′(Xi) > 0. This corresponds to the regular Cramer case discussed
above (only in that case does the large deviation theorem holds). In this
case, the “democratic” condition X1 = X2 = . . . = XN = X/N realizes the
minimum of

∑N
j=1 f(Xj), in contrast to the sub-exponential case where the

minimum is realized for one of the terms completely dominating the others.
Indeed, let us set X̂i = Xi −X/N . Then, due to the convexity of f(Xi), we
have that

N∑
j=1

f(Xj) = f

(
X

N
+ X̂1

)
+ . . .+ f

(
X

N
+ X̂N

)
≥ Nf

(
X

N

)
, (3.74)

under the constraint X̂1 + X̂2 + . . .+ X̂N = 0.
The large-X behavior of (3.72) can be obtained by Laplace’s method.

Basically, this consists in taking the Taylor expansion of the l.h.s. of (3.74)
in powers of the X̂i’s up to second order, near its mininum at X̂1 = X̂2 =
. . . = X̂N = 0, to obtain

N∑
j=1

f(Xj)

= Nf

(
X

N

)
+

1
2

(
X̂2

1 + X̂2
2 + . . .+ X̂2

N

)
f ′′

(
X

N

)
+ O(X̂3

i ) , (3.75)

where O(X̂3
i ) stands for higher order terms. When this is substituted into

(3.72), the first term on the r.h.s. of (3.75) produces the leading-order
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contribution to PN (X), while the quadratic terms determine the widths
∆ ∼ [f ′′(X/N)]−1/2 of the Gaussian integrals. We want the Xi’s to be well
localized near the value X/N , that is, the width ∆ should be small com-
pared to X/N . Since we want this to hold for arbitrary values of N (and not
only large N as for the large deviation regime), we strengthen the convexity
condition into

f ′′(Xi) > 0 and X2
i f

′′(Xi) → +∞ for |Xi| → ∞ . (3.76)

This condition holds, for example, when for large |Xi| one has f(Xi) � C|Xi|γ
with C > 0 and γ > 1, or f(Xi) = AXi − BXm

i with A > 0, B > 0 and
0 < m < 1. As we look for large deviations, the convexity condition needs
only to hold for large positive or large negative values separately.

With the strengthened convexity assumption (3.76), we obtain the follow-
ing leading-order behavior for the pdf of the sum of N variables:

lnPN (X) � −Nf(X/N) = N lnP1(X/N) , (3.77)

for X → ∞ and N finite. The extreme tail behavior of the sum X of N ran-
dom variables comes mostly from contributions where the individual variables
in the sum are all close to X/N and the tail of the pdf is

∼ [P1(X/N)]N ∼ e−Nf(X/N) . (3.78)

Comparison of (3.9) with (3.77) shows that the Cramér function s(y)
becomes equal to −f(y) for large y. We can verify this statement by inserting
the form P1(x) = e−f(x) into (3.12) to get Z(β) ∼ ∫∞

−∞ dx e−βx−f(x). For
large |β|, we can then approximate this integral by Laplace’s method, yielding

Z(β) ≈ exp
(
−min

x
(βx + f(x))

)
. (3.79)

Taking the logarithm and a Legendre transform, we recover the identification
that s(y) → −f(y) for large y. Laplace’s method is justified by the fact that
|y| → ∞ corresponds, in the Legendre transformation, to |β| → ∞.

The large and extreme deviation régimes thus overlap when taking the two
limits N → ∞ and X/N → ∞. Indeed, the large deviation theory usually
takes N → ∞ while keeping X/N finite, whereas the extreme deviation
regime takes N finite with X → ∞. The above analysis shows that, in the
latter régime, Cramér’s result already holds for finite N . The true small
parameter of the large deviations theory is thus not 1/N but min(1/N,N/X).

3.4.2 Application to the Multiplication of Random Variables:
a Mechanism for Stretched Exponentials

Consider the product

Y = m1m2 . . . .mN (3.80)

of N independent i.i.d. positive random variables with pdf P (m). What fol-
lows can easily be extended to the case of signed mi’s with a symmetric
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distribution. Taking the logarithm of Y , it is clear that we recover the previ-
ous problem of the addition of N random variables with the correspondence
Xi ≡ lnmi, X ≡ lnY and −f(x) = lnP (ex) + x. Assuming again (3.76),
we can apply the extreme deviations result (3.77) which translates into the
following form for the pdf PN (Y ):

PN (Y ) ∼ [P (Y 1/N )]N , for Y → ∞ and N finite . (3.81)

This expression (3.81) has a very intuitive interpretation: the tail of PN (Y ) is
controlled by the realizations where all terms in the product are of the same
order; therefore PN (Y ) is, to leading order, just the product of the N pdfs,
with each of their arguments being equal to the common value Y 1/N .

When P (m) is an exponential, a Gaussian, or, more generally, ∝
exp(−Cmγ) with γ > 1, then (3.81) leads to stretched exponentials for
large N . For example, when P (m) ∝ exp(−Cm2), then PN (Y ) has a tail
∝ exp(−CNY 2/N ).

Stretched exponentials are remarkably robust as they exhibit a pseudo-
stability property: the pdf of the sum XN of N random variables distributed
according to a stretched exponential pdf with exponent c may be approxi-

Fig. 3.6. Pdf P2 of the sum
of two stretched exponential vari-
ables with c = 2/3 and the choice
c2 = 0.73 as a function of z ≡
Xc2

2 , so that a stretched exponen-
tial is qualified as a straight line.
(From [911])

Fig. 3.7. Pdf P4 of the sum of
four stretched exponential vari-
ables with c = 2/3 and the choice
c4 = 0.80 as a function of z ≡
Xc4

4 , so that a stretched exponen-
tial is qualified as a straight line.
(From [911])



82 3. Large Deviations

Fig. 3.8. Pdf P8 of the sum of
eight stretched exponential vari-
ables with c = 2/3 and the choice
c4 = 0.90 as a function of z ≡
Xc8

8 , so that a stretched exponen-
tial is qualified as a straight line.
(From [911])

Fig. 3.9. Pdf P20 of the sum of
twenty stretched exponential vari-
ables with c = 2/3 and the choice
c20 = 1.05 as a function of z ≡
Xc20

20 , so that a stretched exponen-
tial is qualified as a straight line.
The pdf P20 starts to deviate sig-
nificantly from a stretched expo-
nential form, as can be seen from
the curvature. (From [911])

mated by a stretched exponential pdf with an apparent exponent cN larger
than the exponent c over a rather broad interval of XN and for a rather large
set of N values.

We test this idea by the following synthetic tests. Let us choose c1 = 2/3
for the exponent of the stretched exponential pdf P1 of the variables consti-
tuting the sum XN . We construct the pdf PN of the sum of N variables by
taking the characteristic function of P1 to the N -th power and then taking
the inverse Fourier transform. Figures 3.6–3.9 plot the pdf’s PN as a func-
tion of z ≡ XcN

N so that a stretched exponential is qualified as a straight line
(dashed line on the plots). We show the cases N = 2, 4, 8 and 20 for which
the best cN are respectively c2 = 0.73, c4 = 0.80, c8 = 0.90 and c20 ≈ 1.05.
The other curves allow one to estimate the sensitivity of the representation
of PN in terms of a stretched exponential pdf as a function of the choice of
the exponent cN . These simulations confirm convincingly that a stretched
exponential distribution remains quasi-stable for a significant number of or-
ders of convolutions, once the exponent cN is correspondingly adjusted. We
observe on Figs. 3.6–3.9 that the stretched exponential pdf representation is
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accurate over more than five orders of magnitude of the pdf PN . Only for
the largest number N = 20, do we observe significant departure from the
stretched exponential representation.

3.4.3 Application to Turbulence and to Fragmentation

The result (3.81) has interesting applications in turbulence [316] and in frag-
mentation processes [167, 712, 765], where it is usually observed that the
distribution of velocity increments at small scales and of fragment sizes in
the small size limit have anomalously heavy tails of the stretched exponential
or power law kind.

There is no generally accepted mechanism explaining the origin of these
heavy tails and this is the subject of active investigations. The extreme devia-
tions régime provides a very general and essentially model-independent mech-
anism, based on the extreme deviations of products of random variables [318].

Turbulence. In fully developed turbulence, random multiplicative models
were introduced by the Russian school and have been studied extensively
since. Indeed, their fractal and multifractal properties provide a possible in-
terpretation of the intermittency phenomenon [316]. The pdf’s of longitu-
dinal and tranverse velocity increments clearly reveal a Gaussian-like shape
at large separations and increasingly stretched exponential shapes at small
separations as seen in Fig. 3.10.

Random multiplicative models cannot correctly account for all proper-
ties of increments. For example, they are inconsistent with the additivity of
increments over adjacent intervals. Indeed, the pdf of velocity increments δv

Fig. 3.10. Pdf of transverse velocity increments reduced by the r.m.s. velocity at
various separations in units of the Kolmogorov dissipation scale η. (From [695])
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cannot become much larger than the single-point pdf, as it would if the for-
mer were ∝ exp

(−|δv|β) with 0 < β < 2 while the latter would be close to
Gaussian. Nevertheless, stretched exponentials could be working in an inter-
mediate asymptotic range of not too large increments, where the controlling
parameter of this intermediate asymptotic is the separation over which the
increment is measured.

Fragmentation. This presentation is taken from [318]. Fragmentation oc-
curs in a wide variety of physical phenomena from geophysics, material sci-
ences to astrophysics and over a wide range of scales. The simplest (naive)
model is to view fragmentation as a multiplicative process in which the sizes
of children are fractions of the size of the parent. Neglecting the conservation
of matter and assuming that the succession of breaking events are uncorre-
lated, this leads to a distribution of fragment size X , conditioned by a given
generation rank N , which is log-normal in its center. Our above result (3.81)
applies for Y → 0, since the factors m1,m2, . . . ,mN are all less or equal to
unity. This is easily checked by taking the logarithm and noting that the tail
for Y → 0 corresponds to the régime where the sum of logarithms goes to
−∞. Although Y → 0, is not strictly speaking a “tail”, we shall still keep
this terminology.

In general, we expect a complicated functional dependence: for instance, if
P (m) ∼ exp (−cm−a) for small m, we obtain PN (Y ) ∼ exp

(−cNY −a/N
)
. In

contrast, most of the measured size distribution of fragments, not conditioned
by generation rank, display a power-law behavior

P (Y ) ∼∝ Y −τ (3.82)

with exponents τ between 1.9 and 2.7 clustering around 2.4 [969]. Figure 3.11
illustrates the robustness of the power law description which also applies to
the distribution of meteorite sizes and of debris sizes orbiting around the
earth at two different altitudes.

The straight line is the power law 1.45 × 10−6/Y 2.75. To quantify these
figures in absolute numbers, there are about about 8000 man-made space
objects, baseball-size (> 10 cm) and larger, orbiting Earth, each being indi-
vidually tracked by the Space Surveillance Network of USSPACECOM [972].
About seven percent are operational satellites, 15 percent are rocket bodies,
and about 78 percent are fragmented and inactive satellites.

Several models have been proposed to rationalize the observations of
power law distributions [167, 712, 765] but there is no accepted theoretical
description. The multiplicative model and extreme deviation régime offers
a simple and general framework to understand these observations. Consider
a fragmentation process in which, with a certain probability less than unity,
a “hammer” repetitively strikes all fragments simultaneously. Then, the gen-
eration rank corresponds to the number of hammer hits. In real experiments,
however, each fragment has suffered a specific number of effective hits which
may vary greatly from one fragment to the other. The measurements of the
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Fig. 3.11. Pdfs of meteorites and debris size Y orbiting around the earth at two
different altitudes of 950 km and 1500 km above ground. The debris are man-made
and are the remnents of rockets and satellites launched since the Soviets opened
the space age with the launch of Sputnik I. The pdf’s are given in terms of the
number of objects of a given size in centimeter crossing one square meter per year.
The straight line is the power law 1.45 × 10−6/Y 2.75. The data has been provided
by CNES, France

size distribution should thus correspond to a superposition of pdf’s which
are log-normal (see below) in their centers and of the form (3.81) in the tail
Y → 0.

We assume that the tail of the size distribution for a fixed generation rank
N is given by (3.81) and that the mean number N (N) (per unit volume)
of fragments of generation rank N grows exponentially: N (N) ∝ eλN with
λ > 0. It then follows that the tail of the unconditioned size distribution is
given by

Psize(Y ) ∼
∞∑

N=0

[P (Y 1/N )]N eλN ≈
∫ ∞

0

dN eN ln P (Y 1/N )+Nλ . (3.83)

Laplace’s method can now be applied to the integral since here N is assumed
to be a continuous variable. A critical (saddle) point is found at

N = − 1
α

lnY , (3.84)

where α is the solution of the transcendental equation

λ+ lnP
(
e−α

)
+ αe−αP

′(e−α)
P (e−α)

= 0 . (3.85)

The leading-order tail behavior of the size distribution is then given by

Psize(Y ) ∼ Y −τ , (3.86)
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with an exponent

τ =
1
α

[
lnP

(
e−α

)
+ λ

]
. (3.87)

This solution (3.86) holds for λ below a threshold λc dependent on the specific
structure of the pdf P (m). For instance, if P (m) ∼ exp

(−Cmδ
)

for m →
0, with δ > 0, we get λc = C. Consequently, this power-law structure is
very robust with respect to the choice of the distribution P (m), while the
exponent τ will vary. We notice that such a mechanism does not work if we
replace PN (X) by the log-normal form valid in the center of the distribution.

What happens for λ > C ? To find out, we return to the expression
(3.83) giving the tail of the unconditioned size distribution and find that the
exponential in the integral reads eN(λ−CY δ/N ). In the limit of small fragments
X → 0, the term Y δ/N ≤ 1, where the upper bound 1 is reached in the limit
N → ∞. Thus, λ − CY δ/N ≥ λ − C. Thus, for λ > C, the larger N is, the
larger the exponential is. This is in constrast with the case λ < C for which
there is an optimal generation number N, for a given size Y , given by (3.84).
For λ ≥ C, the critical value N moves to infinity.

Physically, this is the signature of a shattering transition occurring at
λ = C: for λ > C, the number of fragments increases so fast with the genera-
tion number N (as eλN > eCN) that the distribution of fragment sizes devel-
ops a finite measure at Y = 0. This result is in accordance with intuition: it
is when the number of new fragments generated at each hammer hit is suffi-
ciently large that a dust phase can appear. This shattering transition has first
been obtained in the context of linear mean field rate equations [119, 606].

Consider another class of pdf P (m) ∝ exp
(−Cm−δ

)
for m → 0, with

δ > 0. The pdf P (m) goes to zero faster than any power law as m → 0
(i.e. it has an essential singularity). The difference with the previous case is
that, as the multiplicative factor m → 0 occurs with very low probability in
the present case, we do not expect a large number of small fragments to be
generated. This should be reflected in a negative value of the exponent τ .
This intuition is confirmed by an explicit calculation showing that τ becomes
the opposite of the value previously calculated, i.e. τ/Cδ goes continuously
from −e ≈ −2.718 to −1 as λ goes from 0 to C.

In sum, we propose that the observed power-law distributions of fragment
sizes could be the result of the natural mixing occurring in the number of
generations of simple multiplicative processes exhibiting extreme deviations.
This power-law structure is very robust with respect to the choice of the dis-
tribution P (m) of fragmentation ratios, but the exponent τ is not universal.
The proposed theory leads us to urge for experiments in which one can con-
trol the generation rank of each fragment. We then predict that the fragment
distribution will not be (quasi-) universal anymore but on the contrary better
characterizes the specific mechanism underlying the fragmentation process.

The result (3.86) only holds in the “tail” of the distribution for very small
fragments. In the center, the distribution is still approximately log-normal.
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We can thus expect a relationship between the characteristic size or peak
fragment size and the tail structure of the distribution. It is in fact possible
to show that the exponent τ given by (3.87) is a decreasing function of the
peak fragment size: the smaller the peak fragment size, the larger will be the
exponent (the detailed quantitative dependence is a specific function of the
initial pdf). This prediction turns out to be verified by the measurements
of particle size distributions in cataclastic (i.e. crushed and sheared rock
resulting in the formation of powder) fault gouge [20]: the exponent τ of the
finer fragments from three different faults (San Andreas, San Gabriel and
Lopez Canyon) in Southern California was observed to be correlated with
the peak fragment size, with finer gouges tending to have a larger exponent.
Furthermore, the distributions were found to be a power law for the smaller
fragments and log-normal in mass for sizes near and above the peak size.

3.5 Large Deviations in the Sum of Variables
with Power Law Distributions

3.5.1 General Case with Exponent µ > 2

The results of the previous sections on large deviations do not apply if the
pdf P (Xi) decays as a power law for large Xi with an exponent µ. Here, we
consider the case where µ > 2 for which the sum converges in probability
towards the Gaussian law.

In this case, the cumulants of order larger than the exponent of the power
law are infinite and the expansion (3.4) looses its meaning. As a result, the
convergence to the Gaussian law is very slow. An interesting and concrete
case is when a power law is truncated at some large value beyond which the
pdf decays at least as fast as an exponential. Such laws obey the central limit
theorem but their kurtosis is very large (and a function of the cut-off) and
the criterion N � λ4 becomes very drastic.

A very instructive example is a pdf with an asymptotic power law tail
but of finite variance. Consider the following law:

P (x) =
2a3

π(x2 + a2)2
∼ 1

x1+µ
with µ = 3 for large x , (3.88)

where a is a positive constant. This normalized pdf has a power law tail with
µ = 3 (see the definition (1.24)). Therefore, all its moments and cumulants
of order larger or equal to 3 are infinite. However, its variance is finite and is
equal to a2. Its characteristic function is easy to evaluate exactly

P̂ (k) = (1 + a|k|)e−a|k| . (3.89)

The first terms of its expansion around k = 0 read

P̂ (k) � 1 − k2a2

2
+

|k|3a3

3
+ O(k4) . (3.90)
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Notice that the third order derivative of P̂ (k) is discontinuous at k = 0: the
first singular term in the expansion of P̂ (k) close to k = 0 is proportional to
|k|3. This is in agreement with the asymptotic behavior P (x) ∼ x−4 and the
divergence of the moments of order larger and equal to three.

The pdf obtained by N convolutions has the following characteristic func-
tion: [

P̂ (k)
]N

= (1 + a|k|)N e−aN |k| , (3.91)

which can be expanded around k = 0 as[
P̂ (k)

]N

� 1 − Nk2a2

2
+
N |k|3a3

3
+O(k4) . (3.92)

Notice that the singularity in |k|3, which is the signature of the divergence
of the moments ml for l ≥ 3, does not disappear upon convolution, even if
the pdf converges to the Gaussian law. The explanation is, as usual, that the
convergence to the Gaussian law occurs in the center of the law, while the
behavior in the tails is still described by the power law ∼ |x|−4 which makes
the higher moments diverge.

Since P (x) defined in (3.88) has a finite variance, the sum of N variables
is described by a Gaussian law of variance Na2 and zero mean:

PN (x) � g
(
x/a

√
N
)
≡ 1√

2πNa
exp

(
− x2

2Na2

)
. (3.93)

On the other hand, we have seen that the asymptotic power law behavior is
conserved upon convolution and that the scale parameter C is additive (this
will be elaborated further in Chap. 4). We can therefore write

PN (x) � 2Na3

πx4
for x→ ∞ . (3.94)

The equations (3.93) and (3.94) are not in contradiction. In fact, they
describe two different regimes for the pdf PN (x). For N fixed, there exists
a value x0(N) beyond which the Gaussian description becomes invalid and
where the pdf is correctly described by the asymptotic power law. The value
x0(N) is given approximately by matching the two regimes [115]:

1√
2πNa

exp
(
− x2

0

2Na2

)
� 2Na3

πx4
0

. (3.95)

We thus find

x0 � a
√
N lnN , (3.96)

neglecting subdominant terms for large N . In the rescaled variable y =
x/(a

√
N), y tends to a normal variable with unit variance. However, this

Gaussian description breaks down for y ∼ √
lnN or larger, and this value

increases very slowly with N . Even for N = 106, the Gaussian description
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Fig. 3.12. Illustration of the
cross-over from the Gaus-
sian regime holding for x <√

N ln N to the power law
regime for x 	 √

N ln N

of PN (x) breaks down for fluctuations larger than about 3–4 standard devi-
ations.

These results are not in contradiction with the central limit theorem,
which only states that PN (x) converges to the Gaussian law in probability.
This implies that the region where PN (x) is different from the Gaussian have
a probability weight which decays to zero. In our example, the probability
that X falls in the asymptotic region is given by

P<(−x0) + P>(x0) � 2
∫ ∞

a
√

N ln N

2a3N

πx4
dx =

4

3π
√
N ln3/2N

, (3.97)

which indeed goes to zero as N → ∞.
The cross-over from the Gaussian description in the bulk of the pdf to

the power law tail can actually be described precisely as follows:

P>,N

(
X1 + . . .+XN > axN1/2

)
� 1 −G(x) +

2
3π

√
N

1
x3

, (3.98)

where G(x) =
∫ x

0 g(u) du is the cumulative Gaussian pdf defined as the
asymptotic regime in the bulk in (3.93). This formula (3.98) is valid uni-
formely for all x ≥ 1 (not only for x > N1/2+ε for arbitrary positive power ε),
including all super-large values. The Gaussian term tends to zero very fast
for x > N ε, but for, say, x = 2 it has a finite non-negligible contribu-
tion.

All these results apply to any law whose asymptotic behavior is a power
law with µ > 2, i.e. whose variance is finite. In this general case, one finds
that the central limit theorem and the Gaussian description apply for |X | �
x0 � √

N lnN and the weight in probability of these tails is

P<(−x0) + P>(x0) � 1

Nµ/2−1 lnµ/2N
, (3.99)

which goes to zero as N → ∞. Notice however that when µ approaches 2
from above, the weight of the tails is more and more important. For µ < 2,
everything breaks down! The weight in the tails increases with N and there
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is no convergence to the Gaussian law. However, it turns out that such a pdf
does converge but to a different law, called a Lévy law.

The theorem by S. Nagaev generalizes the result (3.98). For i.i.d. ran-
dom centered variables normalized to have a unit variance, then, under some
(rather complicated) conditions that are fullfiled for the case of power-like
tails (in particular, for the Pareto distribution), the following relation is
true [660]:

P<,N(X1 + . . .+Xn > x) � NP>(X1 > x) , (3.100)

for N → ∞ and for x > N1/2+ε. The second term proportional to 1/x3 in
the right-hand-side of expression (3.98) is a direct consequence of Nagaev’s
theorem (3.100). The Gaussian term 1 − G(x) does not appear in Nagaev’s
theorem because it tends to zero very fast and does not contribute to the
asymptotic behavior.

3.5.2 Borderline Case with Exponent µ = 2

The borderline case (1.24) with µ = 2 is of special interest both from the point
of view of the central limit theorem and for geophysical applications. We have
seen in Chap. 2 that (2.72) is the general condition for the convergence of the
pdf of the sum of N random variables to the Gaussian law. Ibragimov and
Linnik [446] have reformulated (2.72) in a slightly different form

lim
X→∞

I(tX)
I(X)

= 1 for all t , (3.101)

where

I(X) =
∫ +X

−X

dxx2P (x) . (3.102)

They also give an equation to determine the standard deviation σN of the
pdf of the sum:

lim
X→∞

NI(εσN )
σ2

N

= 1 for some ε > 0 . (3.103)

Expression (3.103) assumes that the pdf P of the individual variables con-
stituting the sum has zero mean, which is the case of interest here. That
a formula like (3.103) is needed to get σN stems from the fact that the vari-
ance σ2

N is no longer equal to N times the variance of P , since the latter is
infinite!

This problem is encountered in the problem of advection of passive and
active tracers by two-dimensional systems of vortices, with applications to
ozone transport in the stratosphere, pollutant dispersal in the atmosphere
and the ocean, and plankton and salinity transport in the ocean. Consider
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an ensemble of many point vortices in two spatial dimensions, which capture
many of the features of two-dimensional turbulent flows. Then, the pdf of
vortex velocity has a power law tail with exponent µ = 2 [1010]. This can be
seen from the fact that the velocity u generated at a distance r by a single
vortex of circulation Γ is 2Γ/r. Choose the position of the velocity probe
at random. The probability of the probe to be at a distance between r and
r + dr from the vortex is proportional to 2πr dr, which gives

P (u) = P (r(u))2πr
dr
du

∼ 1
u3

. (3.104)

The power law is an example of the mechanism of a “power law change of
variable close to the origin” discussed in Chap. 14. In the presence of an
ensemble of N vortices, the velocity at the position of the probe is the sum
over the velocities created by the N vortices. We thus have to estimate the
pdf of the sum of N random variables distributed according to (3.104).

From (3.102), we find I(X) ∼ lnX . We verify that (3.101) holds and find
the standard deviation

σN ∼
√
N lnN , (3.105)

from (3.103). Thus, the pdf of the velocity field created by N random vortices
is a Gaussian of variance σ2

N ∼ N lnN up to a scale u ∼ σN . For larger
velocities, the pdf deviates from a Gaussian and keeps the asymptotic 1/u3

power law tail. Note that this border case µ = 2 is special in the sense that the
standard deviation becomes equal to the domain

√
N lnN of validity of the

Gaussian description shown in Fig. 3.12. This border case behavior has been
studied in details in [163]. Chavanis has also shown that, in a statistical sense,
the velocity created by a point vortex is shielded by the cooperative effects of
the other vortices on a distance ∼ N−1/2, the inter-vortex separation [162].
ForR � N−1/2, the “effective” velocity decays as 1/r2 instead of the ordinary
law 1/r recovered for r � N−1/2. These results give further support to
the observation that the statistics of velocity fluctuations are (marginally)
dominated by the contribution of the nearest neighbor.

Finally, we note that this mechanism for the generation of power laws
by an ensemble of sources with power law singularities of the field in their
neighborhood has first been investigated in the problem of Holtsmark’s grav-
itational force distribution created by an ensemble of stars in a random uni-
verse [293]. It has many other applications that we will cover in Chap. 17.
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4.1 Stable Laws: Gaussian and Lévy Laws

4.1.1 Definition

Summing N i.i.d. random variables with pdf P1(x), one obtains a random
variable which is in general a different pdf PN (x) given by N convolutions of
P1(x) with itself as given by (2.67).

Special pdf’s have the remarkable property that PN (x) has the same form
as P1(x). They are said to be “stable”. More precisely, this similarity between
PN (x) and P1(x) is required to hold, up to a translation and a dilation, which
are often needed to accomodate the additivity property of the mean and of
the measure of typical deviations from the mean:

PN (x′) dx′ = P1(x) dx where x′ = aNx+ bN , (4.1)

for some constants aN and bN .
Within the formalism of the renormalization group (RG) presented in

Chap. 2, a stable law corresponds to a fixed point of the RG process, which
we have seen to involve both a decimation and rescaling. Fixed points of the
RG usually play a very special role. Attractive fixed points, as in the present
case, describe the macroscopic behavior observed in the large N limit. The
introduction of correlations may lead to repulsive fixed points, which are
the hallmark of a phase transition, i.e. the existence of a global change of
regime at the macroscopic level under the variation of a control parameter
quantifying the strength of the correlations. This will be discussed in more
details in Chap. 11.

4.1.2 The Gaussian Probability Density Function

The best-known example of a stable law is the Gaussian law, also called the
normal law or the Laplace–Gauss law and is, as we have seen, indeed a fixed
point of the RG. For instance, the Binomial and Poisson distributions tend
to the Gaussian law under the operation of the addition of a large number
of random variables. It is often encountered and we have seen that a general
explanation is provided by the central limit theorem.
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The expression is

PG(x) =
1√

2πσ2
exp

(
− (x− x0)2

2σ2

)
defined for −∞ < x < +∞ . (4.2)

Deviations from the mean larger than a few standard deviations are rare
for the Gaussian law. For instance, deviations larger than two standard de-
viations occur with probability 4.45% (2.2% for deviations above x0 + 2σ
(resp. below x0 − 2σ), while deviations larger than 3σ have a probability
0.3%. A deviation larger than 5 (resp. 10) σ has a probability 5.7 × 10−7

(resp. 1.5 × 10−23), i.e. are never seen in practice.

4.1.3 The Log-Normal Law

Another pdf that is often encountered in natural sciences is the log-normal
law. A variable X is distributed according to a log-normal pdf if lnX is dis-
tributed according to a Gaussian pdf. The log-normal distribution is stable,
not under addition but under multiplication which is equivalent to the addi-
tion of logarithms. Therefore, the log-normal law is not a true stable law, but
it is so intimately related to the Gaussian law that it is natural to discuss it
here.

The change of variable x→ lnx in the Gaussian law gives the expression
of the log-normal pdf:

P (x) =
1√

2πσ2

1
x

exp
(
− ln2(x/x0)

2σ2

)
, (4.3)

defined for 0 < x < +∞. The variable x0 is a characteristic scale correspond-
ing to the median x1/2 as defined in (1.18). It has the property that

〈lnx〉 ≡ lnx0 . (4.4)

The variable σ is the standard deviation of the variable lnx. The most prob-
able value, defined in (1.19), is

xmp = x0e−σ2
. (4.5)

The mean 〈x〉 is equal to

〈x〉 = x0eσ2/2 (4.6)

and can be much larger than x0.
Notice that the knowledge of the moments does not allow us to determine

the log-normal unambiguously. Indeed, the pdf

1√
2π
x−1e−(1/2)(ln x)2 [1 + a sin(2π lnx)] , with − 1 < a < 1 (4.7)

has exactly the same moments as (4.3) [293].
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Fig. 4.1. Semi-log plot for x ≥ x0 of
the log-normal pdf (4.3) for x0 = 1
and three different values of σ = 1, 2
and 3. Notice how a relatively small
change in σ expands considerably the
range in x over which the log-normal
pdf is non-negligible

It is interesting to notice that the log-normal pdf can be mistaken locally
for a power law. This is an important remark for the analysis of data in
which the standard procedure is to qualify the existence of a power law using
double-logarithmic plots. Actually, as we are going to show, the log-normal
distribution can mimick a power law very well over a relatively large interval.
To see this, notice that

ea(ln x)2 = xa ln x . (4.8)

Using this equality, we can rewrite (4.3) as

P (x) =
1

x0

√
2πσ2

(x/x0)
−1−µ(x)

, (4.9)

with

µ(x) =
1

2σ2
ln

x

x0
. (4.10)

Since µ(x) is a slowly varying function of x, this form shows that the
log-normal distribution can be mistaken for an apparent power law with an
exponent µ slowly varying with the range x. This was pointed out in [646],
where it was noticed that for x � x0e2σ2

, µ(x) � 1 and the log-normal is
undistinguishable from the 1/x distribution, providing a mechanism for 1/f
noise. More generally, the larger σ is, the smaller µ is and the larger is the
range in x over which the log-normal mimicks a power law distribution with
a small exponent.

Fig. 4.2. log–log plot of the log-
normal pdf (4.3) for x0 = 1 and
three different values of σ = 1, 2
and 3. Notice the considerable range
over which the log-normal distribu-
tion extends for σ = 3. For the broad
range of scales represented in this fig-
ure, a downward curvature is clearly
apparent and distinguishes the log-
normal pdf from a power law
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Fig. 4.3. Magnification of Fig. 4.2
showing that the log-normal pdf’s
with σ = 2 and 3 are close to perfectly
linear over more than 4 decades both
in abcissa and ordinate. With some
additional noise, it would be difficult
to distinguish them from pure power
laws with constant exponent µ. Recall
that a straight line qualifies a power
law in such a log–log plot

The product of random variables is a generic mechanism for the creation
of log-normal distributions (see Chap. 16 for a presentation of the general
theorem by Kolmogorov on fragmentation processes and the log-normal pdf).
There are interesting non-asymptotic deviations that have been exposed ped-
agogically by S. Redner [764]. Finite sums of log-normal random variables also
exhibit a rich set of deviations from the asymptotic Gaussian pdf. Romeo et
al. [790] have obtained approximate formulae for the pdf of the sum of log-
normal variables valid for σ ≤ 4. For larger σ, one may apply the theorems
of Arous et al. [36] and of Bovier et al. [104]. The anomalous behaviour of
the typical sums can be related to the broadness of lognormal distributions.
For large enough shape parameter σ2, the behavior of log-normal sums corre-
sponds to that of broad distributions at small sample sizes and to properties
of narrow distributions at large sample sizes, with a slow transition between
the two regimes similar to that described for a truncated Lévy distribution
in Fig. 4.6. There are some counter-intuitive effects, such as the decrease of
the peak height of the sample mean distribution with the sample size and
the fact that the typical sample mean and its inverse vary in the same way
rather than in opposite ways as the sample size increases. These statistical
effects arising from the broadness of log-normal distributions have observable
consequences for physical systems of moderate size, such as in the electrical
current flowing through small tunnel junctions [790].

4.1.4 The Lévy Laws

Properties. The stable laws have been studied and classified by Paul Lévy,
who discovered that, in addition to the Gaussian law, there is a large number
of other pdf’s sharing the stability condition (4.1). One of their most inter-
esting properties is their asymptotic power law behavior. We refer to [810]
for a general presentation of their mathematical properties and to [456] for
their stochastic representations and illustrative numerical simulations.

A symmetric Lévy law centered on zero is completely characterized by two
parameters which can be extracted solely from its asymptotic dependence

P (x) ∼ C

|x|1+µ
for x→ ±∞ . (4.11)
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C is a positive constant called the tail or scale parameter and the exponent µ
is between 0 and 2 (0 < µ < 2). Clearly, µ must be positive for the pdf to
be normalizable. As for the other condition µ < 2, we have seen that a pdf
with a power law tail with µ > 2 has a finite variance and thus converges
(slowly) in probability to the Gaussian law. It is therefore not stable. Only
its shrinking tail for µ > 2 remains of the power law form. In contrast, the
whole Lévy pdf remains stable for µ < 2.

All symmetric Lévy laws with the same exponent µ can be obtained from
the Lévy law Lµ(x) with exponent µ, centered on zero and with unit scale
parameter C = 1, under the translation and rescaling transformations

P (x) dx = Lµ(x′) dx′ where x′ = C1/µx+m , (4.12)

m being the center parameter.
Lévy laws can be asymmetric and the parameter quantifying this asym-

metry is

β = (C+ − C−)/(C+ + C−) , (4.13)

where C± are the scale parameters for the asymptotic behavior of the Lévy
law for x → ±∞. When β �= 0, one defines a unique scale parameter C =
(C+ + C−)/2, which together with β allows one to describe the behavior at
x→ ±∞. The completely antisymmetric case β = +1 (resp. −1) corresponds
to the maximum asymmetry.

For 0 < µ < 1 and β = ±1, the random variables take only positive (resp.
negative) values.

For 1 < µ < 2 and β = +1, the Lévy law is a power law for x → +∞
but goes to zero for x→ −∞ as P (x) ∼ exp(−|x|µ/µ−1). This decay is faster
than the Gaussian law. The symmetric situation is found for β = −1.

An important consequence of (4.11) is that the variance of a Lévy law
is infinite as the pdf does not decay sufficiently rapidly at |x| → ∞ for
the integral in (1.22) to converge. When µ ≤ 1, the Lévy law decays so
slowly that even the mean (1.17) and the average of the absolute value of
the spread (1.21) diverge. The median and the most probable value still exist
and coincide, for symmetric pdf (β = 0), with center m. The characteristic
scales of the fluctuations are determined by the scale parameter C, i.e. they
are of the order of C1/µ.

There are no simple analytic expressions of the symmetric Lévy stable
laws Lµ(x), except for a few special cases. The best known is µ = 1, called
the Cauchy (or Lorentz) law,

L1(x) =
1

x2 + π2
for −∞ < x < +∞ . (4.14)

The Lévy law for µ = 1/2 is [649]

L1/2(x) =
2√
π

exp (−1/2x)
(2x)3/2

for x > 0 . (4.15)
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Fig. 4.4. Semi-log plot of the Lévy
laws L1(x) and L1/2(x) (made sym-
metric) compared to the Gaussian
with unit variance. These three distri-
butions have similar half-widths but
extraordinarily different tails

Fig. 4.5. Log–Log plot in the posi-
tive quadrant of the Lévy laws L1(x)
and L1/2(x) compared to the Gaus-
sian with unit variance. Notice the
asymptotic linearity of the plots for
the Lévy laws signaling their asymp-
totic power law dependence

This pdf L1/2(x) gives the distribution of first returns to the origin of an
unbiased random walk.

Lévy laws are fully characterized by the expression of their characteristic
functions. In the symmetric case (β = 0), the characteristic function reads

L̂µ(k) = exp (iγk − aµ|k|µ) , 1 < µ < 2 , (4.16)

where aµ is a constant proportional to the scale parameter C:

aµ =
π C

µ2Γ (µ− 1) sin(πµ/2)
for 1 < µ < 2 . (4.17)

A similar expression holds for 0 < µ < 1, while µ = 1 and 2 requires a special
form (see [350] for full details). For β �= 0 (and omitting the contribution iγk
that exists for µ > 1 in the non-centered case), we have

L̂β
µ(k) = exp

[
−aµ|k|µ

(
1 + iβ tan(µπ/2)

k

|k|
)]

for µ �= 1 . (4.18)

For µ = 1, tan(µπ/2) is replaced by (2/π) ln |k|.
The behavior of Lévy laws Lµ(x) is also of interest close to the origin

x→ 0, as this has been used to generate the stretched exponential relaxation
for instance seen in dielectric experiments and in the dynamics of supercooled
liquids [513]. Indeed, we can rewrite (4.16) using the Laplace transform in-
stead of the Fourier transform and obtain the characteristic function as

exp (−ctµ) =
∫ ∞

0

dγ Lµ,β=1(γ) exp (−γt) . (4.19)
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The dual of the argument γ of the Lévy law through the Laplace transform
is now interpreted as time t. The physical meaning of the right hand side of
(4.19) is that the relaxation rate is the superposition of normal exponential
relaxation rates with a weight given by the Lévy law Lµ,β=1(γ). From the
definition of Lévy laws by their characteristic function (4.16), we see that
this generates so-called anomalous Kohlrausch–Williams–Watts relaxation
exp (−ctµ). This is a stretched exponential for µ < 1. One is usually interested
in the long-time behavior of the relaxation. We see from (4.19) that the long-
time behavior is controlled by the contribution of exponentials in the right
hand side of (4.19) with small γ. In other words, it is not the tail of the Lévy
laws but their behavior close to zero that controls the Kohlrausch–Williams–
Watts relaxation rate in this model. Assuming that Lµ,β=1(γ) ∼ exp (−γc),
a saddle-node approximation of (4.19) gives

c = − µ

1 − µ
< 0 . (4.20)

Actually, the asymptotic expansion of the stable laws in the vicinity of zero
is known [1066] and reads

Lµ<1,β=1(γ) ≈ γa exp (−bγc) , (4.21)

where the exponent c is indeed given by (4.20), a = −(2 − µ)/2(1 − µ) < 0
and b = (1 − µ)/µµ/(1−µ) > 0. This shows that Lµ<1,β=1(γ) has an essential
singularity close to the origin (all its derivatives are zero at the origin).

Scaling. Gaussian and Lévy laws present similar scaling properties with
respect to the sum of random variables.

The pdf of the sum of N Gaussian i.i.d. random variables with mean 〈x〉
and variance σ2 is also Gaussian with mean N〈x〉 and variance Nσ2. Thus,
the rescaled variable

X −N〈x〉
σ
√
N

(4.22)

has exactly the same pdf as the initial variables, in other words, the pdf of
the rescaled variable is independent of N . This remark is useful in practice
because it provides a test for the Gaussian law: take different samples of dif-
ferent sizes N1, N2, .... Construct the rescaled variables (X −N1〈x〉)/σ

√
N1,

(X −N2〈x〉)/σ
√
N2, etc. Then, all these variables will exhibit the same pdf,

in other words all the data will collapse onto the same Gaussian curve.
A similar property holds for Lévy laws and for pdfs with power law tails

in their asymptotic regime.

• 1 < µ < 2. The pdf of the sum of N Lévy variables with the same ex-
ponent µ and distributed according to LC

µ,β(x), where we now make the
dependence on the three parameters µ, β and C explicit, can be rescaled
by the change of variable

X −N〈x〉
N1/µ

, (4.23)
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which is the same as (4.22) with the replacement 2 → µ. The pdf of the
sum can thus be written

PN (X) =
1

N1/µ
LC

µ,β

(
X −N〈x〉
N1/µ

)
. (4.24)

• 0 < µ ≤ 1. A similar result holds:

PN (X) =
1

N1/µ
LC

µ,β

(
X

N1/µ

)
. (4.25)

Notice that 〈x〉 does not appear as it is no longer defined.

Table 4.1. The similarities between the Gaussian and Lévy pdfs for sums of N
i.i.d. random variables are summarized

Property of each basin of attraction Gaussian Lévy

Tail decay µ ≥ 2 µ < 2

Characteristic fluctuation scale N1/2 N1/µ

Rescaled variable
X − N〈x〉√

N

X − N〈x〉
N1/µ for µ > 1

X
N1/µ for µ ≤ 1

Scale parameter σ2 C

Composition rule for the sum Σ2
N = Nσ2 CN = NC

of N variables

These properties provide a general strategy for testing for the existence
of Lévy laws and more generally for power laws. As for the Gaussian case,
the idea is to compare different data sets, for instance obtained from different
system sizes, and try to collapse the different pdfs onto a “universal” master
curve by varying the exponent µ. This finite size scaling technique [147, 752]
is one of the most powerful techniques to test and measure the exponents of
power law distributions. It is widely used in all the disciplines where power
laws are encountered.

When such a rescaling holds, one says that the quantity, here the pdf,
exhibits scaling properties. In a given numerical procedure, a suitable trans-
lation and a change of unit scale will allow one to define a variable which
remains described by the same law in different measurements. The concept
of scaling has been found to be widely shared by many systems. It is ob-
served in equilibrium systems at their critical points, as first discovered by
B. Widom in the late sixties, as well as in out-of-equilibrium systems which
are self-organizing in states with many differents scales.
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Convergence to a Lévy Law. We first state the main results in sim-
ple terms. Upon N convolutions and as N → ∞, the Gaussian pdf “at-
tracts” all the pdf’s decaying as or faster than 1/|x|3 at large |x|. Simi-
larly, upon N convolutions, all pdfs with exponent µ < 2 and scale pa-
rameter C = C+ = C− are attracted to the symmetric Lévy law with
exponent µ and scale parameter NC. If the initial pdf’s have different
scale parameters C− and C+, the convergence is to the asymmetric sta-
ble Lévy law with the same exponent, with the scale parameter NC and
with the asymmetry parameter β = (C− + C−)/(C+ + C−). If the ex-
ponents µ− and µ+ are different, the smallest one is the winner and the
convergence is to a completely asymmetric stable Lévy law with exponent
µ = min(µ−, µ+) and asymmetry parameter β = −1 for µ− < µ+ or β = 1
for µ− > µ+.

This generalized limit theorem applies under the same restrictions (except
for the finiteness of the variance) of independence and of large N . Roehner
and Winiwarther give an explicit calculation of the aggregation of indepen-
dent random variables distributed according to a power law [789].

Let us now state these results more rigorously. A pdf P (x) belongs to the
basin of attraction of the Lévy law Lµ,β if and only if

lim
x→∞

P<(−x)
P>(x)

=
1 − β

1 + β
, (4.26)

and for any r,

lim
x→∞

P<(−x) + P>(x)
P<(−rx) + P>(rx)

= rµ . (4.27)

This complicated expression essentially means that the asymptotic behavior
is

P<(x) � C−
µ|x|µ for x→ −∞ , (4.28)

and

P>(x) � C+

µxµ
for x→ ∞ . (4.29)

Such a law belongs to the basin of attraction of the Lévy law of exponent µ
and asymmetry parameter β = (C+ − C−)/(C+ + C−).

4.1.5 Truncated Lévy Laws

A Lévy or power law distribution measured in natural data sets or obtained
from numerical simulations will not extend indefinitely due to obvious finite
size limitations. For µ < 1, there are even more compelling reasons to cause
a cut-off in the power law behavior.
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Consider, for instance, the case of earthquakes and their Gutenberg–
Richter distribution. The Gutenberg–Richter magnitude–frequency law is of-
ten written as the cumulative distribution

log10N> = a− bMW , (4.30)

where N> is the number of earthquakes whose magnitudes are equal to or
greater than MW. MW is the moment magnitude, defined by

MW =
1
β

[log10(m0) − 9] . (4.31)

m0 is the seismic moment in Nm. β is generally taken to be equal to 1.5. If
we combine these two expressions, we get a power law distribution for the
number of earthquakes having a given seismic moment, which is identical to
(4.11) (with x ≡ m0), characterized by the exponent µ = b/β. For small and
intermediate magnitude earthquakes, b ≈ 1.0; thus µ ≈ 2/3.

Such a power law distribution, which holds for small earthquakes, cannot
be extended to infinity because it would require that an infinite amount of
energy be released from the Earth’s interior [518]: taking the energy dissi-
pated by an earthquake as proportional to the seismic moment, the average
energy dissipated per unit time in a given region is then proportional to 〈m0〉,
where the constant of proportionality contains the number per unit time of
earthquakes of any magnitude belonging to the Gutenberg–Richter law. But,
since the exponent µ < 1, the average is mathematically infinite, which is
clearly impossible since the earth is finite and cannot feed an infinite amount
of energy. As we will discuss in details below, the solution of this paradox is
that the average is essentially controlled by the largest event in the catalog.
The finiteness of the energy available to trigger earthquakes must therefore
correspond to a cut-off in the power law distribution, i.e. to the existence of
a typical largest possible earthquake. There must be a crossover or a rollover
to a second branch of the distribution. This second branch can for instance
be a power law, but with an exponent larger than 1 such that the mean is
defined [903], or an exponential or any other function decaying faster than
m−2

0 . In Chap. 3, a solution has been proposed using a global constraint
forcing the tail to bend down in the shape of an exponential.

Fig. 4.6. Schematic view of the initial ap-
parent convergence of the pdf of the sum to
the Lévy fixed point L, leaving place for N >
N∗(δ) to the asymptotic convergence to the
Gaussian fixed point G
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We now assume that the power law tail (4.11) holds up to a character-
istic scale δ. What will be the consequence for the pdf of the sum of such
N i.i.d. random variables? As long as all the variables are smaller than δ,
the cut-off is not felt and the pdf of the sum progressively approaches the
corresponding Lévy law, with the same exponent µ, as the number of terms
N in the sum increases. However, as N increases further, the largest single
value λN among the N variables increases according to λN ∼ (C+N)1/µ as
found from (1.46). This maximum value λN is thus bound to reach δ as N
increases. Equating λN with δ gives an estimate of the number of terms in
the sum needed for the convergence to the Lévy law to be perturbed by the
upper bound δ:

N∗(δ) � δµ

C+
. (4.32)

Figure 4.6 provides a schematic view of what happens: first, the pdf of
the sum starts to converge to the Lévy fixed point as N increases, but as
N becomes larger than N∗(δ), the sum starts to “feel” the effect of the
finite cut-off δ. In fact, due to the existence of this finite cut-off δ, the
variance is finite and proportional to ∼ C+δ2−µ. Having a finite variance,
the pdf of the sum converges eventually to the Gaussian stable law. The
abstract trajectory taken by the pdf in the “space” of pdf’s is shown in
Fig. 4.6.

It is possible to be more precise by considering an explicit tractable form
for the truncation, such as the so-called Gamma distribution, which in the
tails is a power law multiplied by an exponential:

P (x) = C±
e−|x|/δ

|x|1+µ
. (4.33)

For δ → +∞, the pure Lévy law is recovered. The characteristic function
(Fourier transform) of the sum of N i.i.d. random variables whose pdf’s are
Lévy laws truncated by an exponential as in (4.33) can be calculated ex-
plicitely [527, 598]:

ln P̂ (k) = −Naµ

[(
k2 + δ−2

)µ/2 cos
(
µ tan−1(δ|k|))− δ−µ

cos(πµ/2)

]
[
1 + i

k

|k|β tan
(
µ tan−1(δ|k|)

)]
, (4.34)

where aµ is given by (4.17). We should warn that this explicit formula (4.34)
is obtained by using an analytic continuation of (4.33) down to |x| → 0 (at
which P (x) of the form (4.33) would be non-normalizable). What is important
is that (4.34) recovers (4.18) for δ → +∞. This expression (4.34) captures the
cross-over from the Lévy form ln P̂ (k) ∼ −|k|µ for k � δ−1 to the Gaussian
form ln P̂ (k) ∼ −k2 for k � δ−1.

When δ is large and k is not very small, (k2 + δ−2)µ/2 ≈ kµ and P̂ (k)
has the form of a Lévy law. However, upon convolution (corresponding to
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increasing the number N of terms in the sum), the relevant values of k shrink
down to k = 0 since larger and larger values of the sum are sampled which
correspond to small wavenumbers. The cross-over from Lévy to Gaussian
after N convolutions is obtained by setting

N [(k2 + δ−2)µ/2 − δ−µ] � 1 , (4.35)

to obtain the typical values of k representing the typical excursions of the
sum. For N � δµ, one can safely neglect δ−2 compared to k2 and obtain
k � N−1/µ. Translated in the sum domain, this means that the characteristic
scales are of order N1/µ for the sum of N terms, which characterize an ideal
Lévy process. When on the contraryN � δµ, the relevant values of k become
much smaller than δ−1, and one finds

k ∼ N−1/2δµ/2−1 , (4.36)

and ln P̂ (k) ≈ −(µ/2)Nδ2−µk2, which are the results corresponding to the
usual central limit theorem for the convergence to a Gaussian. Hence, as
expected, a truncated Lévy distribution is not stable: it “flows” to an ideal
Lévy distribution for smallN and then to a Gaussian distribution for largeN ,
as schematically depicted in Fig. 4.6.

4.2 Power Laws

We follow Mandelbrot and contrast two broad classes of pdfs, the “mild”
as opposed to the “wild” ones, which can be illustrated by the following
questions.

• What is the probability that someone has twice your height? Essentially
zero! The height, weight and many other variables are distributed with
“mild” pdf’s with a well-defined typical value and relatively small vari-
ations around it. The Gaussian law is the archetype of “mild” distribu-
tions.

• What is the probability that someone has twice your wealth? The answer
of course depends somewhat on your wealth but in general, there is a non-
vanishing fraction of the population twice, ten times or even one hundred
times as wealthy as you are. This was noticed at the end of the last century
by Pareto, after whom the Pareto law has been named, which describes
the power law distribution of wealths [1043, 1046], a typical example of
a “wild” distribution. The Lévy laws are also sometimes called Pareto–
Lévy laws.

Wild pdf’s have been found to quantify the size–frequency distribution
of earthquakes (Gutenberg–Richter), hurricanes [686], volcanic eruptions,
floods, meteorite sizes and so on. The distribution of seismic fault lengths
is also documented to be a power law with exponent µ � 1. In the insur-
ance business, recent studies has shown that the distribution of losses due
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to business interruption resulting from accidents [1044, 1045] is also a power
law with µ � 1. These pdfs seem to characterize systems with very nonlin-
ear dynamics or with stochastic multiplicative amplification effects. We have
only a limited understanding of the physical origins of these behaviors. Sev-
eral scenarii have been proposed, some of which are reviewed in Chaps. 14
and 15.

4.2.1 How Does One Tame “Wild” Distributions?

The behavior of the sum X of N random variables with a power law pdf
with µ < 2, for which the usual central limit theorem does not apply, can
be qualitatively understood in simple terms. We follow [111] to recover in an
intuitive way the scaling behavior of the sum and of the variance as a function
of the number N of terms in the sum.

The main point to realize is that, even if the variance or the sum are
mathematically not defined (infinite), one can make sense of their finite-size
estimations to better understand and tame “wild” fluctuations occurring for
power law pdfs with exponent µ < 2. This comes about because, in a finite
number N of terms, there is always a maximum value λN determined by the
equation (1.37):

λN ∼ (C+N)1/µ . (4.37)

The probability to observe a value larger than λN in a typical series of N
variables is small. This distribution of λN can be made precise using (1.38)–
(1.42). The corresponding extreme value distribution is called the Fréchet
distribution (1.59). The sum of N variables is thus insensitive to values larger
than λN since this region is not sampled and this gives us the clue on how
to control “wild” pdfs.

Using the result (1.56) of Sect. 1.8.1, we can express in closed form the
expectation of the ratio of the sum X1 + ... + XN divided by λN (also
noted Xmax) in the case where the pdf of the i.i.d. variables is of the form
P (x) = µ/x1+µ for x ≥ 1. Then, P<(x) = 1 − 1/xµ and expression (1.55)
gives

T (y) = 1 − yµ

1 − µ
+

µ

1 − µ

1
y
. (4.38)

Using (1.56), we get

E
[
X1 + ...+XN

max{X1, ..., XN}
]

=
1

1 − µ
[1 −NB(N, 1/µ)] , µ �= 1 , (4.39)

=
n∑

k=1

1
k
, µ = 1 . (4.40)
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B(a, b) is the beta function. This expression (4.40) provides the following
asymptotic results (for N � 1):

E
[
X1 + ...+XN

max{X1, ..., XN}
]

=
1

1 − µ
, µ < 1 , (4.41)

=
Γ (1/µ)
1 − µ

N1−1/µ , µ > 1 , (4.42)

= 0.577...+ lnN , µ = 1 . (4.43)

In [737], V. Pisarenko extends these results to the case where N is itself
a Poissonian random variable with parameter 〈N〉. Then, taking the addi-
tional expectation with respect to the Poisson variable N yields

EN

(
EX

[
X1 + ...+XN

max{X1, ..., XN}
])

=
1

1 − µ

(
1 − 〈N〉1−1/µ γ(1/µ, 〈N〉)

)
, (4.44)

for µ �= 1. γ(a, x) =
∫ x

0 t
a−1e−t dt is the incomplete Gamma-function.

µ ≤ 1. In this case, the divergence of the average of the sum X can be
tamed by realizing that the integral in (1.17) must be truncated at λN :

X ∼ N〈x〉N ∼ N

∫ +λN

−λN

xP (x) dx . (4.45)

This yields

X ∼ N(N1/µ)1−µ = N1/µ µ < 1 , (4.46)
= N lnN µ = 1 . (4.47)

Expression (4.46) retrieves the characteristic scale N1/µ quantifying the typ-
ical size of the sum of N random variables with µ < 1. Note that, for µ < 1,
the sum X grows faster than linearly with N . This stems from the impact
of increasingly larger extreme values that are sampled as the number N of
terms increases.

Associated to this phenomenon, it is important to see that λN and X
scale in the same way as a function of N and thus the expectation of the
ratio λN/X

E
[
λN

X

]
→ 1 − µ (4.48)

goes to a constant for large N (see [293], p. 169 and (4.41)). The largest vari-
able accounts for a finite fraction of the total sum! For instance, take µ = 2/3
which is the exponent of the Gutenberg–Richter distribution for small and
intermediate earthquakes. Then, the largest earthquake in any given sequence
dissipates typically one-third of the total energy. When the next largest event
occurs, it has a major impact on the sum, thus leading to the faster-than-
linear growth (4.46). The results (4.41) and (4.48) provide the fundamental
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origin for the divergence of the average and contrasts from the behavior found
for “mild” pdf’s for which all terms in the sum contribute a similar amount.
The variance of the ratio λN/X can be obtained as the second order deriva-
tive of the Laplace transform (called ω(λ) in Feller’s exercise 20, Chap. XIII
of [293]). The variance of the ratio equals

µ(2 − µ)
(1 − µ)2

. (4.49)

Thus, the variance of the ratio λN/X of the largest term over the sum of N
random variables drawn from a heavy tailed pdf with exponent µ < 1 does not
tend to zero but converges to the finite constant (4.49). Typical realizations
of λN/X oscillate around 1−µ indefinitely as N tends to infinity. Thus, one
should be careful when speaking about an asymptotic relation between λN

andX . This absence of convergence is called lack of self-averaging in Chap. 16
and is often encountered in the physics of quenched random media.

Another interesting example has been studied by Pisarenko [737] who
finds that the cumulative sum X(t) of losses caused by floods worldwide
has been increasing with time approximately as t1.3 since 1964. Here, losses
are evaluated by the number of homeless caused by floods, since these data
are the most systematically reported. This t1.3 law is faster than the linear
growth expected for a stationary process and signals an increasing loss rate.

At the same time, the rate of floods and the distribution of losses ap-
pear to be stationary over the period of observation. A possible explana-
tion of this paradox comes from the fact that the distribution of losses
is a power law with exponent µ ≈ 0.75 ± 0.1 which is less than 1. Then
from (4.46), we expect the sum X(t) to behave as t1/µ ∼ t4/3, which is in-
deed very close to the observed time-dependence. As for the earthquakes,
the cumulative loss over a time interval [0, t] is determined in large part
by a single major event λt occurring during this period. This is confirmed
from the analysis of the database of losses caused by floods which indicate
that the largest loss amounts approximately to 45% of the total cumula-
tive loss over the 28 year period since 1964. This number is larger than the
most probable amplitude (1 − µ)X(t) [293] of the largest event, equal in the
present case to 25% of the total cumulative loss. The discrepancy is how-
ever well within the typical error bar equal to a factor of two found for the
largest event in a set distributed with a power law pdf [903], as described in
Chap. 6.

Another application is for earthquakes. Figures 1.2 and 3.5 illustrate the
well-documented fact that the pdf of the seismic moments or equivalently the
energies released by earthquakes is a power law with exponent µ ≈ 2/3. By
the mechanism just discussed above for floods, the cumulative energy released
by earthquakes in a given region should thus increase as ∼ t1/µ = t3/2, that is,
much faster than linear. This is actually observed. A good example of the non-
linear growth of the cumulative seismic energy can be found in [497], which
cites a paper by the seismologist J. Brune (1968) who studied the earthquakes
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in the region of Imperial Valley in California in the time window from 1934
to 1963. For this catalog, the ratio (4.41) is found equal to 2.6, giving the
estimation µ ≈ 0.61 in good agreement with the exponent of the pdf measured
independently. One can thus conclude that, for this catalog, the Gutenberg–
Richter pdf is a pure power law with no discernable truncation, implying
that the recurrence time for the largest earthquakes in Imperial Valley is
more than 29 years. Considering the same problem worldwide, a different
picture emerges. The growth of the cumulative seismic energy on a global
scale and on large time intervals, typically 1900–2000, is approximately linear
in time. This can be rationalized by the bend of the Gutenberg–Richter law
observed for the largest events, as discussed in Sect. 3.3.5. This provides
an indirect confirmation that one cannot model the distribution of seismic
moments only as a pure power law distribution with µ ≈ 2/3. Since the non-
linearity of the cumulative sum depends heavily on the very end of the tail
of the pdf, this provides a sensitive test of the existence of a truncation or
bend in the Gutenberg–Richter distribution as demonstrated from a similar
argument in Sect. 3.3.5. One can thus conclude that the recurrence time of
the largest typical event in the world is less than 100 years. Thus, the two
strongest earthquakes in the twentieth century (Chile, 22.05.1960, energy
released � 1.1×1026 erg), (Alaska, 28.03.1964, energy released � 4×1025 erg)
are already typical of the largest possible events compatible with the physics
of earthquakes and the finite length of the plate boundaries on which they
occur. This is notwithstanding the fact that these two earthquakes released
more energy by themselves that the average yearly seismic energy by all other
earthquakes, which oscillates around 3×1024 erg. For comparison, the largest
nuclear explosion till present (1961, Novaya Zemlya, former USSR) had an
estimated TNT equivalent of 58 Mt, corresponding to the energy 2.4 × 1024

erg. It should be noted that, for some small regions as in the above Imperial
Valley, the corresponding recurrence time can be much larger than for the
whole Earth.

In their statistical analysis of earthquake losses and casualties [786], Rod-
kin and Pisarenko have also observed a non-linear growth of cumulative ca-
sualties and losses, which cannot be explained neither by changes in the
occurrence of disasters nor by an incomplete reporting of casualties for ear-
lier periods. The non-linear growth in the cumulative numbers of casualties
and losses can mainly be explained by the presence of a heavy tail in the
respective distributions, as for the distribution of losses due to floods [737].
Non-linearities in the growth of earthquake-caused casualties and losses are
observed over time intervals less than 20–30 years. For longer intervals, the
size of the maximum disaster stops increasing owing to natural restrictions
on the amount of the maximum possible losses. As a consequence, the total
cumulative loss increases approximately linearly in time over time intervals
of 40–50 years or longer, due to the same mechanism as for the cumulative
energy released by earthquakes.
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Another famous domain of application of power laws with exponent µ ≤ 1
is provided by the St. Petersburg paradox [811]: for a fee, a player is given
the right to play a coin game in which heads in the first throw gives him $2
while tails makes him loose the fee. Having won in the first throw, he can
continue to play by putting his gain at risk and will win a total of $4 for heads
while tails make him loose everything. The game can continue indefinitely at
the player’s will such that, conditioned on having thrown n heads in a row,
the next throw gives him a total of $2n for heads while tails make him loose
everything. What should be the fee requested by the casino and the strategy
of the player? A good starting point is to calculate the expected gain of the
player:

1
2
× 2 +

1
4
× 4 + ...+

1
2n

× 2n + ... = 1 + 1 + ... = ∞ . (4.50)

The reason for this divergence is that the distribution of gains is a power
law with exponent µ = 1. Indeed, the probability to gain a sum larger than
or equal to g = $2n is 2/2n = 2/g. Therefore, a fair game condition would
require in principle that the casino should charge an infinite fee to cover
its potential loses. This makes the game unplayable. In practice, the casino
can make the game playable by limiting the maximum number of throws in
a given game to some finite value nmax. This limits the largest potential loss
of the casino to 2nmax and the mean becomes finite and equal to nmax. The
results discussed above on the slow convergence of a truncated power law to
a Gaussian law teach us that the casino would need a number of customers
much larger than nmax in order for the large fluctuations from one player
to the next to cross-over from the power law regime to the Gaussian regime
by aggregation over many games. In other words, from the perspective of
the casino, this game is potentially profitable only if the expected number of
players is much larger than nmax.

1 < µ ≤ 2. We follow the same strategy as for the mean in the previous
case µ ≤ 1 and obtain the typical value of the variance (X − 〈X〉)2 as

(X − 〈X〉)2 ∼ N〈(x− 〈x〉)2〉N ∼ N

∫ +λN

−λN

(x− 〈x〉)2P (x) dx . (4.51)

This yields

(X − 〈X〉)2 ∼ N(N1/µ)2−µ = N2/µ µ < 2, (4.52)
= N lnN µ = 2 . (4.53)

This recovers the result that, for 1 < µ < 2, the characteristic scale of the
fluctuation around the mean is of order N1/µ, i.e. larger than the Gaussian
case N1/2. The faster than

√
N rate of growth of the standard deviation is the

hallmark of the breakdown of the usual central limit theorem and explains
the non-convergence to the Gaussian law. Figure 4.7 presents a “Lévy walk”
compared to a standard random walk to illustrate the fast growth of typical
excursions in this regime.
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Fig. 4.7. Comparison between a Lévy walk and a random walk. The Lévy walk is
constructed by taking the running sum up to time t of random steps with random
signs and amplitudes distributed according to µ/x1+µ for x > 1 with µ = 1.5. The
typical size 100–200 of the excursion after 1000 time steps is in good agreement
with the prediction (4.52) giving 10001/µ = 100. In comparison, the random walk
is constructed by taking the running sum up to time t of random steps uniformely
distributed in [−1, +1]. The typical excursion is in good agreement with the pre-
diction of the standard deviation of the random walk after 1000 steps equal to√

1000/3 ≈ 18

2 < µ. The mean and variance converge when λN → ∞, and one recovers
a purely linear dependence on N for the mean and a

√
N dependence of

the standard deviation, which are characteristic of the convergence to the
Gaussian law for the sum of N variables.

Moments of order higher than or equal to µ will however diverge mathe-
matically and their divergence can be tamed exactly in the same fashion by
truncating the integrals at the largest value λN sampled among the N terms.

4.2.2 Multifractal Approach

As shown graphically in Fig. 4.7 and as seen from the scaling properties (4.46,
4.52), the sum of N random variables with a power law pdf has a self-similar
structure. This remark can be used quantitatively to recover the anomalous
(with respect to the usual random walk) scaling behavior (4.46, 4.52) for
µ < 2 from a multifractal view point. This view allows us to introduce in
a simple way the concept of multifractality [316] (see also Chap. 5) and to
link it to power law distributions.

We start from the remark that the variables constituting the sum are of
very different amplitude. The idea is then to class them into groups of similar
amplitude, for instance class 1 contains the variables between x1 and x2,
class 2 contains the variables between x2 and x3, etc. What is the best choice
of x1, x2, x3, ... for the classification and what is the corresponding cardinal
of each class in this optimal classification?

A clue comes from the remark that sums of power law variables are mainly
controlled by the largest variables, as we have seen in the derivation of (4.46,
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4.52). It is thus natural to start the classification from the larger values, which
are of order N1/µ. The cardinal of the set of variables among N of amplitude
N1/µ is very low, typically only a few variables are of this magnitude. On the
other hand, there are many variable of order N0 = 1.

This suggests the following classification in sets which contain variables
of typical amplitude of the order of Nα with α continuously spanning the
interval from 1/µ to 0. Each family is thus defined by its exponent α and
is the set of all the variables of size of the order of Nα. The family with
α = 1/µ corresponds to the few largest events in the sum and its cardinal is
of order 1 as we already pointed out. At the other extreme, the family α = 0
contains the crowd of small variables whose cardinal is proportional to but
less than N .

From the scale invariance explicit in the power law distribution, we can
guess that the cardinal of a family α is of order Nf(α), i.e. also a power
of N with an exponent which is a function of α. We already know that
f(α = 1/µ) = 0 and f(α = 0) = 1. To determine f(α) for intermediate
values, we ask how many variables have a size of order Nα. By definition of
the pdf, the answer is

Nf(α) � NP (x ∼ Nα)Nα , (4.54)

where the last factor Nα accounts for the width ∆x of the interval of the
variables of order Nα in the definition of the probability P (x) dx (the width
is simply proportional to the size, in order to conserve the scaling). We thus
get

f(α) = 1 − αµ . (4.55)

f(α) is often called the multifractal spectrum of exponents α. It provides
a natural classification of the self-similar structure of the variables in the
sum in terms of a hierarchical set of families of variables of the same order.
A power law pdf thus produces naturally a multifractal spectrum. Notice
however its linear dependence, which is a special case of the more general
convex form discussed in Chap. 5.

This classification allows us to avoid completely the complication brought
by the power law pdf: in each family α, the variables are comparable and in
each family the central limit theorem can be applied! For instance, the mean
is obtained by summing the contributions over all families, such that each
contribute by their cardinal Nf(α) times the typical size of their variables
Nα:

X ∼
1/µ∑
α=0

NαNf(α) =
1/µ∑
α=0

N1+α(1−µ). (4.56)

• For µ < 1, the sum is controlled by the largest value α = 1/µ and goes as
N1/µ.
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• For µ > 1, the sum is controlled by α = 0 and we recover the linear
dependence with N . In this case, the speed of the convergence is obtained
by applying the central limit theorem to each family individually: the error
in the sum of Nf(α) random variables is of order [Nf(α)]1/2. If each term
in the sum is of size ∼ Nα, the error on the mean due to these Nf(α) terms
is

NαNf(α)/2

N
∼ N−1/2+(α/2)(2−µ) . (4.57)

1. For 1 < µ ≤ 2, the error on the mean (X/N) is dominated by the effect
of the largest exponent α = 1/µ, corresponding to the largest events.
This leads to a slow convergence of the mean with fluctuations decaying
as N−(µ−1)/µ.

2. For µ > 2, the error in the mean is dominated by the family of the weak-
est variables with α = 0 and we retrieve the standard rate of convergence
N−1/2 as N → ∞ given by the central limit theorem.

A similar reasoning holds for the variance which can be expressed similarly
to (4.56) under the form

VN ∼
1/µ∑
α=0

N2αNf(α) =
1/µ∑
α=0

N1+α(2−µ). (4.58)

• For µ < 2, VN/N is controlled by α = 1/µ and the reduced variance
diverges with N as N2/µ−1.

• For µ > 2, VN/N is controlled by α = 0 and we recover the standard
convergence to a finite value. In order to study the convergence rate of
the variance in this regime, we can again apply the central limit theorem
within each family α: each family provides a contribution to the error on
the variance of order

N2αNf(α)/2

N
∼ N−1/2+(α/4)(4−µ) . (4.59)

We thus obtain

1. for 2 < µ ≤ 4, the error on the variance is controlled by the largest
exponent α = 1/µ, corresponding to the largest fluctuations and leading
to a slow convergence of the variance as N2/µ−1. This result shows that,
even for µ > 2, the variance can be difficult to estimate in practice.

2. for µ > 4, we recover the usual convergence of the variance as N−1/2.

4.3 Anomalous Diffusion of Contaminants
in the Earth’s Crust and the Atmosphere

Chemical transport in geological formations of the earth’s subsurface and in
the earth’s atmosphere is often observed to be anomalous, i.e. non-Gaussian.
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For example, in a large-scale field study carried out in a heterogeneous alluvial
aquifer at the Columbus Air Force Base (Mississipi), bromide was injected as
a pulse and traced over a 20 month period by sampling from an extensive 3D
well network (see [81, 82] for a quantitative analysis along the lines presented
here). The tracer plume was found to be remarkably asymmetric with a sharp
peak close to the injection point and a long tail, which cannot be explained
by classical Gaussian diffusion models.

The understanding and quantification of flow and contaminant transport
in fractured and heterogeneous structures is of considerable practical impor-
tance for the exploitation and preservation of aquifers, and for the assessment
of potential underground repository sites for the storage of radioactive and
industrial wastes. We now show that the anomalous diffusion of elements in
geological formations stems from the distribution of trapping times which is
generically a power law distribution [81, 82], with exponent µ less than one.
The resulting extremely broad range of time scales explains the anomalous
behavior. It is bad news because there is a significant amount of tracers that
can remain trapped for extraordinary long time scales. Thus, a pollutant may
reappear at the surface tens of years or centuries later than would have been
expected from the available Gaussian models.

4.3.1 General Intuitive Derivation

Suppose the distribution of trapping times is

P (τ) ∼ C

τ1+µ
, for large τ with µ < 1 . (4.60)

If N different trapping sites are encountered over the time t along the dif-
fusion path, the typical maximum trapping time is τmax(N) ∼ N1/µ. As
a consequence, the average trapping time is 〈τ〉N ∼ N1/µ−1. The interval of
time t is the sum (neglecting the time needed to jump from one trap to the
next)

t = τ1 + ...+ τN ∼ N〈τ〉N ∼ N1/µ , (4.61)

as shown in (4.45). Thus, the number N of traps encountered is proportional
to tµ. This retrieves the scaling behavior of the typical mean position and
standard deviation of the diffusing plume found in [81, 82] using the formalism
of continuous time random walks.

4.3.2 More Detailed Model of Tracer Diffusion in the Crust

Consider a source of contaminants at some spatial origin. To make the dis-
cussion simple, we model the space from the source to a typical measurement
point placed at a distance L away by a regular cubic network of tubes with
characteristic length a. At each node of this network, there is a crack, joint
or fault, in which the contaminant may be trapped such as in a dead end.
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It is well-documented that the distribution of fault lengths in the crust is
approximately a power law [892]

P (l) ∼ l−(1+µl) dl , with µl ≈ 1 . (4.62)

The typical time of residence of a diffusing chemical in a fault of length l
with diffusion coefficient D is

τl ∼ l2

D
. (4.63)

As a consequence of the diffusion in a the dead end of length l, a contaminant
may be trapped for a typical time τl before being released to diffuse to the
next site. From the distribution of fault lengths, we get the distribution of
trapping times as

P (τ) dτ = P (l) dl ∼ τ−(1+µτ ) dτ , with µτ =
µl

2
≈ 1

2
. (4.64)

The time needed to diffuse from the source to the detection point a dis-
tance L away involves two contributions:

1. the diffusion time

td ∼ L2

D
(4.65)

to cover the distance in a random walk fashion;
2. the trapping time tt which is the sum of all τl’s spent in the dead ends

at each visited site.

In order to estimate tt, we need to determine the number of sites which have
been visited by this random walk. It is of order N ∼ L2/a, from the definition
of the fractal dimension of the random walk in Sect. 2.1.4. The total time
spent in the traps can therefore be written as

tt = τ1 + ....+ τN , (4.66)

where the trapping times τi are distributed according to a power law with
exponent µτ ≈ 1/2 < 1. We are thus in a regime described in Sect. 4.2.1
where the average is mathematically infinite, therefore, tt � N ∼ L2 and
thus tt � td, implying that the trapping process is the dominating factor
which controls the time to diffusion to the receptor. In order to estimate tt,
we use the results above and find

tt ∼ N 1/µτ ∼ L2/µτ ≈ L4 . (4.67)

This result corresponds to an extremely slow diffusion (compare with the
usual diffusion law (4.65)). The complete space–time distribution of the con-
taminants can also be obtained [111]:

P (x, t) ∼t→∞ a−d
(τ0
t

)νd

f

(
τν
0

a

|x|
tν

)
, (4.68)
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where ν = µτ/2 ≈ 1/4 and τ0 is a microscopic time scale. The function f(u)
scales as

f(u) ∼u�1 e−u1/(1−ν)
= e−u4/3

. (4.69)

These results imply long anomalous tails: after the first significant signal
occurring a time td ∼ L2 after the injection of a tracer at the origin, the
contaminants will continue to be detected at a distance L from the source
over an exceedingly long time. The large deviations explored in the tail of the
power law pdf of the trapping times are reflected in this anomalous diffusion
behavior. Practically, the conclusion is not encouraging: a storage deposit may
pollute the environment over time scales that are much larger than naively
extrapolated from standard diffusion models.

4.3.3 Anomalous Diffusion in a Fluid

Anomalous diffusion processes can occur even in absence of a frozen distribu-
tion of traps [382]. Some interesting examples are treated in [111, 449, 802].

Let us briefly discuss the situation where a fluid is partitionned into con-
vective cells (think of a steady state of the atmosphere). Close to the ground,
the velocity of the wind has to vanish (“stick” boundary condition). For weak
wind conditions, we neglect the influence of turbulence and the velocity van-
ishes as dβ , where d is the distance to the ground. The exponent β = 1
for laminar flow with “stick” boundary condition. Other values for β can be
found to represent more complicated situations.

Consider a particle transported by the convective wind. Most of the time,
it is convected and thus remains trapped in a convective cell for some time.
But, when it approaches the boundary between two cells, it can cross this
boundary diffusively and then be carried away to the other cell. The motion
of such a particle is thus characterized by two types of motions and two
different time scales:

• the fast convective motion within a cell and
• the random walk-like behavior characterizing the cell crossing, leading to

diffusion behavior at large scales.

This picture must in fact be corrected due to the presence of large fluctua-
tions in the residence time in a given cell. This occurs due to the fact that the
particle can approach, due to diffusion, arbitrarily close to the ground and
thus take a very large time to be carried away by the flow, since the velocity
of the carrying flow vanishes close to the ground. The calculation can be done
explicitely (see [745]) to obtain the distribution of waiting times in a given
cell due to this effect. It is characterized by a power law with exponent

µ =
1 + β

2 + β
=

2
3

for β = 1 . (4.70)
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The previous derivation for diffusion in the crust in the presence of a large
distribution of trapping sites can be applied to the present problem, by replac-
ing µτ = 1/2 by 2/3. As a consequence, a particle will exhibit an anamalous
diffusion accross the set of convective cells with a very large distribution of
residence times. For further readings on this problem, consult [525, 526].

Finally, let us mention that Ferrari et al. [298] have called attention to the
fact that the tails of the distribution of particles in many dispersive processes
may not be described by the same functional law that applies to the central
part of the distribution. It is indeed in general true that, at long times,
the core of the concentration relaxes to a self-similar profile, while the tails,
consisting of particles which have experienced exceptional displacements, may
not be self-similar. This absence of self-similarity may lead to complicated
cross-over in the scaling of the moments of the concentration field. Ferrari et
al. [298] have illustrated these ideas on a stochastic model, that they call the
generalized telegraph model, and on a deterministic area-preserving map, the
kicked Harper map. For these models, moments of arbitrary orders can be
obtained from the Laplace–Fourier representation of the concentration.

4.4 Intuitive Calculation Tools
for Power Law Distributions

We conclude this chapter by providing a set of simple derivations to ma-
nipulate sums and products of variables distributed according to a power
law. We follow [115] and call µ-variable a variable with power law pdf with
exponent µ:

P (w) � C±
|w|1+µ±

w −→ ±∞ . (4.71)

Let us study the positive part of the distribution, that we write

P (w) =
C

w1+µ
for 1 ≤ w < +∞ . (4.72)

A useful tool is the Laplace transform. The Laplace transform plays the same
role for functions bounded on one side as the Fourier transform for functions
unbounded on both sides. The computation rules of the Fourier transform
thus extend straightforwardly to the Laplace transform. The Laplace trans-
form

P̂ (β) ≡
∫ ∞

0

dwP (w)e−βw (4.73)

of (4.72) is

P̂ (β) = C

∫ ∞

1

dw
e−βw

w1+µ
= µβµ

∫ ∞

β

dx
e−x

x1+µ
. (4.74)
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Denote l the integer part of µ (l < µ < l + 1). Integrating by parts l times,
we get (for C = µ)

P̂ (β) = e−β

(
1 − β

µ− 1
+ ...+

(−1)lβl

(µ− 1)(µ− 2)...(µ− l)

)

+
(−1)lβµ

(µ− 1)(µ− 2)...(µ− l)

∫ ∞

β

dx e−xxl−µ . (4.75)

This last integral is equal to

βµ

∫ ∞

β

dx e−xxl−µ = Γ (l+ 1 − µ)[βµ + βl+1γ∗(l + 1 − µ, β)] , (4.76)

where Γ is the Gamma function (Γ (n+ 1) = n!) and

γ∗(l + 1 − µ, β) = e−β
+∞∑
n=0

βn

Γ (l + 2 − µ+ n)
(4.77)

is the incomplete Gamma function [1]. We see that P̂ (β) presents a regular
Taylor expansion in powers of β up to the order l, followed by a term of the
form βµ. We can thus write

P̂ (β) = 1 + r1β + .....+ rlβ
l + rµβ

µ + O(βl+1), (4.78)

with r1 = −〈w〉, r2 = 〈w2〉/2, ... and, reintroduce C, where rµ is proportional
to the scale parameter C. For small β, we rewrite P̂ (β) under the form

P̂ (β) = exp

[
l∑

k=1

dkβ
k + dµβ

µ

]
, (4.79)

where the coefficient dk can be simply expressed in terms of the rk’s in a way
similar to the transformation from the moments to the cumulants. The ex-
pression (4.79) generalizes the canonical form (4.18) of the characteristic func-
tion of the stable Lévy laws, for arbitrary values of µ, and not solely for µ ≤ 2
over which Lévy laws are defined. The canonical form is recovered for µ ≤ 2
for which the coefficient d2 is not defined (the variance does not exist) and
the only analytical term is 〈w〉β (for µ > 1).

This expression (4.79) allows us to obtain interesting results on combina-
tions of power law variables in an economical way:

1. if wi and wj are two independent µ-variables characterized by the scale
factors C±

i and C±
j , then wi + wj is also a µ-variable with C± given by

C±
i + C±

j .
2. If w is a µ-variable with scale factor C, then p × w (where p is a real

number) is a µ-variable with scale factor pµC.
3. If w is a µ-variable, then wq is a (µ/q)-variable.
4. If wi and wj are two independent µ-variables, then the product x = wiwj

is also a µ-variable up to logarithmic corrections.
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Consider the sum of two µ-variables. The pdf of the sum is the convolution
of the two pdfs and the Laplace transform of the sum is the product of the
two Laplace transforms. Therefore, the term proportional to βµ is additive
and the scale coefficient for the tail is the sum of the two scale coefficients C
(property (1)).

Consider the variable wp ≡ p × w where p is some real number. Writing
P (wp) dwp = P (w) dw (invariance of the probability, a pure number, with
respect to a change of representation, i.e. variable), we get for large wp

P (wp) � Cpµ

|wp|1+µ
for wp −→ ∞ , (4.80)

yielding the property (2). The same argument applied to wq yields

P (wq) � C

q|wq|1+µ/q
for wp −→ ∞ , (4.81)

corresponding to the property (3).
Intuitively, the property (4) expresses the fact that x = wiwj is large when

either one of the factors is large and the other one takes a typical (small) value
in the central region of its pdf. This is the opposite to the “democratic”
rule found to hold in Sect. 3.4.1 for distributions decaying faster than an
exponential. The contributions where the two variables are simultaneously
large are negligible in probability. The pdf of x = wiwj is

P (x) ≡
∫ ∞ ∫ ∞

dwi dwj Pi(wi)Pj(wj)δ(x− wiwj)

=
∫ ∞ dwj

wj
Pj(wj)Pi

(
x

wj

)
. (4.82)

For large x, we find

P (x) ∝ Ci

x1+µ

∫ x

dwj w
µ
j Pj(wj) � CiCj lnx

x1+µ
(4.83)

which is the announced result (4).

4.5 Fox Function, Mittag–Leffler Function
and Lévy Distributions

This exposition is a synthesis of [57, 607, 619] and borrows significantly
from [619].

The Fox function is also referred to as the Fox’s H-function, the H-func-
tion, the generalised Mellin–Barnes function, or the generalised Meijer’s G-
function. The importance of the Fox function lies in the fact that it includes
nearly all special functions occurring in applied mathematics and statistics,
as its special cases. Even sophisticated functions like Wright’s generalized
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Bessel functions, Meijer’s G-function or Maitland’s generalized hypergeomet-
ric function are embraced by the class of Fox functions. The Fox function was
introduced in physics in the 1980s [84, 823, 824, 1030] as analytic represen-
tations for Lévy distributions in direct-space, and as solutions of fractional
equations. Bernasconi et al. [84] introduced them in the study of conductivity
in disordered systems. Schneider [823] demonstrated that Lévy stable densi-
ties can be expressed analytically in terms of Fox functions. Wyss [1030] and
Schneider and Wyss [824] uses Fox functions for the solution of the fractional
diffusion equation.

In 1961, Fox defined the H-function in his studies of symmetrical Fourier
kernels as the Mellin–Barnes type path integral [307, 607, 920, 921]:

Hp,q
m,n(z) = Hp,q

m,n

[
z

∣∣∣∣ (ap, Ap)
(bq, Bq)

]

= Hp,q
m,n

[
z

∣∣∣∣ (a1, A1), (a2, A2), ..., (ap, Ap)
(b1, B1), (b2, B2), ..., (bq, Bq)

]

=
1
2π

∫
L

ds χ(s)zs , (4.84)

with

χ(s) =
∏m

1 Γ (bj −Bjs)
∏n

1 Γ (1 − aj +Ajs)∏q
m+1 Γ (1 − bj +Bjs)

∏p
n+1 Γ (aj −Ajs)

. (4.85)

The last equality of (4.84) shows that χ(s) is nothing but the Mellin trans-
form of the Fox function Hp,q

m,n(z) since the path integral in this last equality
represents just the inverse Mellin transform of χ(s). According to [921], the
Fox functions have been known since at least 1868, and Fox rediscovered
them in his studies.

Due to the structure of the defining integral kernel χ(s) from (4.84), the
Fox functions fulfil several convenient properties.

Hp,q
m,n

[
z

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= kHp,q

m,n

[
z

∣∣∣∣ (ap, kAp)
(bq, kBq)

]
. (4.86)

xσHp,q
m,n

[
z

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
= Hp,q

m,n

[
z

∣∣∣∣ (ap + σAp, Ap)
(bq + σBq, Bq)

]
. (4.87)

The fractional differential and integral of the Fox function is a map into the
Fox function class:

0D
ν
z

(
zαHp,q

m,n

[
(az)β

∣∣∣∣ (ap, Ap)
(bq, Bq)

])

= zα−νHm,n+1
p+1,q+1

[
(az)β

∣∣∣∣ (−α, β), (ap, Ap)
(bq, Bq), (ν − α, β)

]
.

0D
ν
z is the Riemann–Liouville differential operator of fractional order ν, which

is defined in Sect. 8.4.3 with (8.49).
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An H-function can be expressed as a computable series in the form [607,
920]:

Hp,q
m,n(z) =

m∑
h=1

+∞∑
ν=0

∏m
j=1,j 	=h Γ (bj −Bj(bh + ν)/Bh)∏q

j=m+1 Γ (1 − bj +Bj(bh + ν)/Bh)

×
∏n

j=1 Γ (1 − aj +Aj(bh + ν)/Bh)∏p
j=n+1 Γ (aj −Aj(bh + ν)/Bh)

× (−1)ν z(bh+ν)/Bh

ν!Bh
, (4.88)

which is an alternating series with slow convergence. For large argument
|z| → ∞, Fox functions can be expanded as a series over the residues

Hp,q
m,n(z) ∼

∞∑
ν=0

res(χ(s)zs) (4.89)

to be taken at the poles s = (aj − 1 − ν)/Aj , for j = 1, ..., n.
The Mittag–Leffler function [276, 632, 633] is the natural generalisation

of the exponential function and is a special Fox function, often encountered
in anomalous diffusion problems. It is defined for α > 0 by

Eα(z) =
+∞∑
k=0

zk

Γ (αk + 1)
. (4.90)

Note that E1(z) = ez. Other specials cases are E0(z) = 1/(1 − z), E2(z) =
cosh(

√
z), E1/2(z) = exp(z2) [1 + erf(z)], where erf(z) is the error function.

The general Mittag–Leffler function is defined as

Eα,β(z) =
+∞∑
k=0

zk

Γ (αk + β)
, (4.91)

for α > 0, β > 0. Note that Eα,β=1(z) = Eα(z). Eα,β(z) satisfies∫ +∞

0

dt e−ttβ−1Eα,β(tαz) =
1

z − 1
, (4.92)

and ∫ +∞

0

dt epttβ−1Eα,β(atα) =
1
pβ

1
1 − ap−α

, (4.93)

with the conditions that the real part of p should be larger than |a|1/α

and the real part of β should be positive. This last relationship gives the
Laplace transform of the general Mittag–Leffler function Eα,β(z). Specifi-
cally, in terms of the Laplace transform, the Mittag–Leffler function Eα(z) is
defined by

Eα(−(t/τ)α) = L−1

[
1

p+ τ−αu1−α

]
, (4.94)

where L−1 denotes the inverse Laplace transform.
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For 0 < α < 1, tα−1Eα((t/τ)α) interpolates between 1/t1−α for t < τ
to the exponential ∼ exp(t/τ) for t > τ . The expression tα−1Eα(−(t/τ)α)
interpolates between 1/t1−α for t < τ to 1/t1+α for t > τ [411]. Such
a crossover describes the behavior of aftershocks of earthquakes according
to a so-called modified Omori’s law 1/t1−θ for t < t∗ to 1/t1+θ for t > t∗

found in [411, 864], where the cross-over time t∗ is controlled by the distance
of the model to a critical branching point. The occurrence of the Mittag–
Leffler function in this context reflects the anomalous diffusion associated
with cascades of earthquake triggering [412]. Such a behavior was also stud-
ied by Scher and Montroll [817] in a continuous-time random walk (CTRW)
with absorbing boundary condition to model photoconductivity in amorphous
semi-conductors As2Se3 and an organic compound TNF-PVK finding θ ≈ 0.5
and θ = 0.8 respectively. In a semiconductor experiment, electric holes are in-
jected near a positive electrode and then transported to a negative electrode
where they are absorbed. The transient current follows exactly the transition
1/t1−θ for t < t∗ to 1/t1+θ for t > t∗ mentioned above for the Omori law
for earthquake aftershocks. In the semiconductor context, the finiteness of t∗

results from the existence of a force applied to the holes. When the force goes
to zero, t∗ → +∞. A similar transition has been recently proposed to model
long-term time series measurements of chloride, a natural passive tracer, in
rainfall and runoff in catchments [816]. The quantity analogous to the func-
tion describing the decay of seismic aftershocks is the effective travel time
distribution h(t) which governs the global lag time between injection of the
tracer through rainfall and outflow to the stream. h(t) has been shown to have
a power-law form h(t) ∼ 1/t1−m with m between −0.3 and 0.2 for different
time series [507]. This variability may be due to the transition between an
exponent 1− θ at short times to 1 + θ at long times [816], where θ is the ex-
ponent of the distribution of individual transition times. Let us also mention
a deep connection between the seismic relaxation in aftershock sequences due
to cascades of earthquake triggering and continuous-time random walks [412].

The general Mittag–Leffler function Eα,β(z) can be expressed as follows
in terms of the Fox function:

Eα,β(z) = H1,1
1,2

[
z

∣∣∣∣ (0, 1)
(0, 1), (1 − β, α)

]
. (4.95)

Finally, the stable Lévy law defined through its characteristic function
(4.18) is given explicitely in terms of a Fox function for µ > 1 as [823]

Lβ
µ(x) =

1
µ
x2H1,1

2,2

[
x

∣∣∣∣ (1 − 1/µ, 1/µ), (1 − (µ− β)/2, (µ− β)/2)
(0, 1), (1 − (µ− β)/2, (µ− β)/2))

]
.

(4.96)

This expression (4.96) allows one to use the various known power expansions
of the Fox function for the Lévy law [607].



5. Fractals and Multifractals

5.1 Fractals

Clouds are not spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight line.

B.B. Mandelbrot [592]

5.1.1 Introduction

During the third century BC, Euclid and his students introduced the concept
of space dimension which can take positive integer values equal to the number
of independent directions. A smooth line has dimension 1, a smooth surface
has dimension 2 and our space (seen at large scales) has dimension 3.

In the second half of the nineteen century, several mathematicians started
to study the generalization of dimensions to fractional values. The concept of
non-integer dimensions was fully developed in the first half of the twentieth
century. The book [263] compiles some of the most important mathemati-
cal works. To capture this novel concept, the word “fractal” was coined by
Mandelbrot [592], from the Latin root fractus to capture the rough, broken
and irregular characteristics of the objects he intended to describe. In fact,
this roughness can be present at all scales, which distinguishes fractals from
Euclidean shapes. Mandelbrot worked actively to demonstrate that this con-
cept is not just a mathematical curiosity but has strong relevance to the real
world. The remarkable fact is that this generalization, from integer dimen-
sions to fractional dimensions, has a profound and intuitive interpretation:
non-integer dimensions describe irregular sets consisting of parts similar to
the whole. This generalization of the notion of a dimension from integers to
real numbers reflects the conceptual jump from translational invariance to
continuous scale invariance.

According to Mandelbrot [592], a fractal is a rough or fragmented geo-
metric shape that can be subdivided into parts, each of which is (at least
approximately) a reduced-size copy of the whole. Mathematically, a fractal
is a set of points whose fractal dimension exceeds its topological dimension.

There are many examples of (approximate) fractals in Nature, such as
the distribution of galaxies at large scales, certain mountain ranges, fault
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networks and earthquake locations, rocks, lightning bolts, snowflakes, river
networks, coastlines, patterns of climate change, clouds, ferns and trees, mam-
malian blood vessels, etc. Nowadays, the notion of fractality has so much
permeated all the scientific disciplines that there is even an excess in its
attribution to systems which may not be fractal. Maybe the most useful
achievement provided by the introduction of fractals is the epistemological
breakthrough of considering seriously and quantitatively complex irregular
structures.

It is useful to state at the outset some important limitations of fractals.
First, many systems present only an apparent but not a genuine fractal-
ity, which results from measurement and quantification artifacts [393, 711]
as we will discuss below. Second, most physical laboratory experiments,
which found evidence for fractal structures, have documented their claim
over a rather narrow range of typically 1.3 decade, i.e. over a range of scale
from 1 to 101.3 ≈ 20 [88, 89, 583, 593]. We will also come back to this ques-
tion related to the limited range of scales over which fractals appear: there
is always a lower length scale below which and an upper size beyond which
the fractal description breaks down.

Experience has shown that it is often difficult to be precise when defining
fractals. The definition based solely on dimension is too narrow and it is bet-
ter to view a fractal set as possessing a fine structure, too much irregularity
to be described in traditional geometric language, both locally and globally,
some form of self-similarity, perhaps approximate or statistical, a “fractal di-
mension” (somehow defined) which is greater than its topological dimension,
and a simple definition, usually recursive.

5.1.2 A First Canonical Example: the Triadic Cantor Set

Figure 5.1 shows the first five iterations of the construction of the so-called
triadic Cantor set. At the zeroth level, the construction of the Cantor set
begins with the unit interval, that is, all points on the line between 0 and 1.
This unit interval is depicted by the filled bar at the top of the figure. The
first level is obtained from the zeroth level by deleting all points that lie
in the middle third, that is, all points between 1/3 and 2/3. The second
level is obtained from the first level by deleting the middle third of each
remaining interval at the first level, that is, all points from 1/9 to 2/9, and
7/9 to 8/9. In general, the next level is obtained from the previous level by
deleting the middle third of all intervals obtained from the previous level.
This process continues ad infinitum, and the result is a collection of points
that are tenuously cut out from the unit interval. At the n-th level, the set
consists of Nn = 2n segments, each of which has length �n = 1/3n, so that
the total length (i.e. measure in a mathematical sense) over all segments
of the Cantor set is (2/3)n. This result is characteristic of a fractal set: as
n → +∞, the number of details (here the segments) grows exponentially to
infinity while the total mass goes to zero also exponentially fast. In the limit
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Fig. 5.1. The initial unit interval and the first
five iterations of the construction of the triadic
Cantor set are shown from the top to bottom

of an infinite number of recursions, we find the Cantor set made of an infinite
number of dots of zero size.

The topological dimension of the Cantor set is dt = 0 since its total
measure (length) is zero. We see that this notion of dimension is not very
useful since it does not distinguish between this rather complex set of elements
and a single point, which also has a vanishing topological dimension. To cope
with this degeneracy, mathematicians have introduced alternative concepts
of dimensions that give useful information for quantifying such sets. The
simplest non-trivial dimension that generalize the topological dimension is
the so-called capacity dimension, which in this context can be simply defined
as follows:

Dc = limn→+∞
lnNn

ln(1/�n)
=

ln 2
ln 3

≈ 0.63 . (5.1)

The fractal dimension Dc quantifies the rate at which the number Nn of
observable elements proliferate as the resolution 1/�n increases. There are
many other measures of dimension, for example the Hausdorff dimension and
the multifractal dimensions discussed below.

5.1.3 How Long Is the Coast of Britain?

In his founding paper [591], Mandelbrot revisited and extended the investi-
gation launched by Richardson [778], concerning the regularity between the
length of national boundaries and scale size. He dramatically summarized
the problem by the question written in the title of this subsection [591]. This
question is at the core of the introduction of “fractal” geometry. Figure 5.2
shows a synthetically generated coastline that has a corrugated structure
reminiscent of the coastline of Brittany in France.

Such a coastline is irregular, so a measure with a straight ruler, as in
Fig. 5.3, provides only an estimate. The estimated length L(ε) equals the
length of the ruler ε multiplied by the number N(ε) of such rulers needed
to cover the measured object. In Fig. 5.3, the length of the coastline is mea-
sured twice with two rulers ε1 and ε2 ≈ ε1/2. It is clear that the estimate
of the length L(ε2) using the smaller ruler ε2 is significantly larger than the
length L(ε1) using the larger ruler ε1. For very corrugated coastlines exhibit-
ing roughness at all length scales, as the ruler becomes very small, the length
grows without bound. The concept of (intrinsic) length begins to make lit-
tle sense and has to be replaced by the notion of (relative) length measured
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Fig. 5.2. Synthetic frac-
tal coastline (courtesy of
P. Trunfio)

at a given resolution. Then, the fractal dimension quantifies precisely how
the relative length changes with the resolution. The general relationship for
fractal coastlines is

L(ε) = Cε1−D , (5.2)

where C is a constant. For Great Britain, D ≈ 1.24 which is a fractional
value. In constrast, the coastline of South Africa is very smooth, virtually an
arc of a circle and D ≈ 1. In general, the “rougher” the line, the larger the
fractal dimension.

Fig. 5.3. Implementation of the ruler method consisting in covering the rough line
by segments of fixed size. As the ruler length decreases, finer details are captured
and the total length of the line increases

This expression (5.2) is a special case of the more general relationship

M(ε) = Cεdt

(
L

ε

)D

, (5.3)

where M(ε) is the mass of the object measured at the resolution ε, dt is the
topological dimension (equal to 1 for a line) and L is the linear size for the
object from one extremity to the other. This formula (5.3) shows that the
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measure (“mass”) of the object is dimensionally proportional to the resolution
raised to the power equal to the topological dimension. The multiplying factor
is the typical number L/ε of balls of linear size ε needed to cover the object,
that is raised to the powerD, thus defining the fractal dimension. Notice that
if D = dt, the dependence of the mass M on the resolution ε disappears as it
should for regular objects. This illustrates the striking and essential feature
of fractal sets, namely that their measures and properties become functions
of the scale at which they are observed.

As an illustration, let us consider the regular construction of a fractal
coastline, called the Koch curve. The six first iterations of its construction
are shown in Fig. 5.4 from bottom to top. At the n-th iteration, there are
4n segments, each of size 1/3n. The total length is thus L(n) = (4/3)n which
diverges as n → +∞. The total length L(n) = (4/3)n can also be written
L(n) = (1/3)1−D which defines the fractal dimension of the Koch curve

D =
ln 4
ln 3

. (5.4)

5.1.4 The Hausdorff Dimension

In the 1920s, the mathematician Hausdorff developed another way to “mea-
sure” the size of a set [286]. He suggested that we should examine the number
N(ε) of small intervals, needed to “cover” the set at a scale ε. This method is
illustrated in Fig. 5.5 for the case of a line that is covered by disks of radius ε.

The Hausdorff dimension is defined by considering the quantity

M ≡ limε→0 Infεm<ε

∑
m

εdm , (5.5)

which is constructed by summing the volumes εdm of balls of radii εm not
exceeding ε that cover the fractal set. The “Inf” means that all partitions
of balls of radius less than ε that cover the set are considered and the one
which gives the smallest possible value for the sum is kept. Hausdorff showed
that there is a special value DH for the exponent d, called the Hausdorff
dimension, such that

• for d < DH, M = ∞ because too much weight is given to the balls that
proliferate in number as ε→ 0;

• for d > DH, M = 0 as too little weight is given to the balls that proliferate
in number as ε→ 0;

This shows that the Hausdorff dimension DH is a metric concept.

5.1.5 Examples of Natural Fractals

In sum, a fractal is an irregular geometric object with an infinite nesting
of structure at all scales. In practice, the work “infinite” has to be replaced
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Fig. 5.4. Koch curve: start-
ing from the unit interval, we
divide it in three equal seg-
ments of length 1/3 and re-
place the central one by two
segments forming a tent-like
structure. This gives the first
iteration shown at the bottom
of the figure. The second iter-
ation is obtained by perform-
ing the same step on each of
the four segments of the first
iteration, namely divide each
of them in three sub-segments
of size 1/9 and replace the
central one of each by two
sub-segments to form a tent-
like structure. This is iterated
an infinite number of times.
The first six generations are
shown

Fig. 5.5. “Sausage” covering method
illustrating how a metric measure can
be defined by covering a rough line by
disks of different radii

by “large,” so that fractals are objects that exhibit a self-similar nesting of
structures over a large interval of scales, bounded from below by a microscopic
cut-off (for instance a building block) and from above by a macroscopic size
(for instance the linear size of the system).

Have you ever wondered why careful geologists always include a scale or
reference when taking a picture of geologic interest? The reason is that if
they did not, the actual size or scale of the object pictured could not be
determined. This is because most geoforms are self-similar, i.e., a fold 1 cm
long looks quite the same as if it were 10 m or 10 km long. This is illustrated
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Fig. 5.6. Two typ-
ical geological sedi-
mentary structures
sedimentary layers
with lens caps serv-
ing as scale reference

by Figs. 5.6 and 5.7, which provide probably one of the best pedagogical
demonstrations of self-similarity in the real world.

The same scale-free characteristics are observed for most fault systems,
layering, foliations, coastlines, topographic features, drainage patterns, etc.
Self-similarity characterizes many physical systems and seems to result gener-
ically from complex internal dynamics [251].

Fractal Fault Systems. The self-similar nature of fracture and faulting
is widely documented from the analysis of data from both field observa-
tions [60, 61, 826] and experiments [416, 862]. Figure 5.8 shows successive
magnification of a fracture network from the scale of 1 m to the scale of
400 km. Fractal geometry provides a first-order description of the complex-
ity of fault systems. In particular, it is well-adapted to the large range of
scales, from microns (microcracks) to thousands of kilometers (major mature
faults). These fault networks shown in Fig. 5.8 have been mapped in the
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Fig. 5.7. Same as
Fig. 5.6: the fin-
ger at the top and
the scientist at the
bottom examplify
the self-similarity of
sedimentary layers:
without a genuine
scale of reference,
the dummy lens
cap in the bottom
picture fools the
observer. Courtesy
of S.W. Wheatcraft,
Professor of Hy-
drogeology and
S.W. Tyler, Profes-
sor of Soil Physics,
University of Nevada,
Reno, California

Arabian plate, which was deformed during the Pan-African orogeny and is
covered by Phanerozoic platform deposits including sedimentary and volcanic
rocks. One of the most important features developed during the closing stages
of the Pan-African orogeny was a broad zone of strike-slip faults, called the
Nadj Fault System. These faults, striking WNW–ESE through the basement,
strongly influenced the fracture pattern of the platform. The plate is bounded
by the Taurus–Zagros collision zone to the north-northeast, the Gulf of Aden
and the Arabian sea to the south-southeast, and the Red sea spreading cen-
ter, Gulf of Aqaba and Dead Sea transform to the west-southwest. The plate
is estimated to have been displaced 105 km to the north along the sinistral
Dead sea transform fault since the Miocene.

A careful study of these different fault maps shows that different fractal
geometrical structures hold separately in distinct limited ranges, separated
by well-defined characteristic scales. This is shown by using a combination
of tools, from box-counting multifractal (see below) improved to correct for
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Fig. 5.8. Series of fracture networks sampled from the field (1 : 1) (plate I of
size about one meter across) to the continental scale (1 : 1, 000, 000) (plate VI
of size about 400 km accross), based on field mapping, interpretation (checked
on the ground) and digitization of photographs taken from a helicopter, classical
aerial photography and satellite images on the western Arabian plate. Reproduced
from [711]

irregular geometry of mapped domains and finite size effects and from local
wavelet analysis (adapted to the fault anisotropic) [711]. Fracture and faulting
can thus be better modeled as a hierarchical process, controlled in large
part by geometry and preexisting heterogeneity (vertical and/or horizontal).
Microscopic analysis of faults confirm a complex interplay of cracks acting
with different mechanisms and at different scales [985]. Thus, the pure fractal
description is too naive and more sophisticated quantifiers must be introduced
that reconcile the existence of structures at many scales giving an impression
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of fractality and the presence of characteristic scales that break down the
pure scaling.

Another example of a complex fractal fault system is shown in Fig. 5.9
showing one of the most spectacular cases of continental collisions, namely
the India–Asia collision occurring in the last fifty million years. One can see
on the figure the complex network of faults developing in Asia and extending

Fig. 5.9. Map of the main faults resulting from the collision between the India
and the Asia tectonic plates. The fat arrows represent the mean motion of India
penetrating within Asia and the corresponding extrusion of Asia to the East
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over more than 5000 km from the collision. Analog laboratory models of such
continental collisions using layers of granular media and silicon to represent
respectively the upper brittle crust and the lower more ductile crust and
mantle have shown that the fault network is fractal [863]. Different models
with varying rheologies have been analyzed which attempt to respect the
brittle–ductile stratification corresponding to the crust and mantle structure
in the Earth. Each experiment has been quantified by studying the strain
field and the fault pattern, as a function of the position of the penetrating
wedge within the system. The fractal dimension of the fault network was
found to be almost constant within experimental uncertainty (1.7± 0.1) and
thus appears rather insensitive to the particular chosen rheology [201, 862].
There exists a correlation between the generalized multifractal dimensions
and two exponents, the fractal dimension of the set of fault barycenters and
the exponent of the fault length distribution [202], that indicates that the
different scaling laws are not independent: the multifractality results from the
interplay between the fractal geometry of the positions of the faults and the
power law distribution of the fault lengths. This later distribution provides
a kind of self-similar weight decorating the fractal set of fault barycenter, in
agreement with a known mechanism for multifractality [391].

Fractal Systems of Earthquake Epicenters and Seismograms. A com-
plex spatial distribution of epicenters is shown in Figs. 5.10 (data from
http://quake.geo.berkeley.edu/cnss/maps/cnss-map.html) and 5.11 (data
from http://quake.geo.berkeley.edu/cnss/maps/cnss-map.html). To the
naked eye, the fractality corresponds heuristically to the existence of “holes”,
i.e. domains with no events, of many scales from the largest one equal to
a finite fraction of the total map to the smallest size given by the resolution
of the seismic network. The qualitative notion of fractals attributed to earth-
quake epicenters is related to the ubiquitous observation that earthquakes are
clustered in space: they tend to aggregate on or close to major fault struc-
tures. The fractal structure of earthquake epicenters is thus in part controlled
by the fractal nature of fault networks. The complex spatio-temporal dynam-
ics of earthquakes can engender additional clustering. Studying the interplay
between such pre-existing fault patterns and the earthquake dynamics is an
active field of research to understand the organization of earthquakes and
their predictability [666].

The first quantitative measurement of the fractal (correlation) dimension
of earthquake epicenters was performed by Kagan and Knopoff [492]. The
first extension to a multifractal analysis of the distribution of earthquake
epicenters is by Geilikman et al. [335].

An interesting practical application of the concept of fractals to seis-
mology has been developed by Tosi et al. [961], who propose a detection
algorithm with improved local and regional seismic signal recognition. The
method consists in calculating the fractal dimension of seismic records (vibra-
tion amplitude as a function of time), where the fractal dimension is related
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Fig. 5.10. Map of seismic-
ity for all earthquakes of
magnitude larger than 2 in
California from 1st April
to 30th June 1997. This
map has been prepared by
the CNSS, Council of the
National Seismic System.
One sees a complex and
irregular structure of epi-
centers, documented [492]
to be of fractal dimension
close to 1.2 (corresponding to
a dimension 2.2 in 3D)

to the exponent describing how the variogram of the signal scales with the
time interval separating pairs of points along the seismic signal. The method
of recognition of earthquakes is based on the difference between the frac-
tal dimensions of genuine seismic signals and of background noise. Results
from the comparison with standard methods show that the new method rec-
ognizes the seismic phases already detected by existing procedures and, in
addition, it presents a greater sensitivity to smaller signals, without an in-
crease in the number of false alarms. The efficiency of the method relies on
its multiscale nature, that is, on the fact that the fractal signature implies to
search for a relationship between the spectral amplitude of different frequen-
cies.

Fractal Structure of Craters. The fractal landscapes of craters on the
moon and other bodies in the solar system are the signature of the power
law distribution (3.82) of impactor sizes, whose small range limit distribu-
tions (from the micron scale to the ten centimeter scale) are depicted in
Fig. 3.11. Figure 5.12 shows the self-similar distribution of craters on Cal-
listo, Jupiter’s second largest moon. This portion of the surface of Callisto
contains an immensely varied crater landscape. A large, degraded crater dom-
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Fig. 5.11. Map of seismic-
ity for all earthquakes of
magnitude larger than 6 in
California from 1st January
1946 to 31st December 1996.
This map has been prepared
by the CNSS, Council of the
National Seismic System

inates the southern (bottom) portion of the image. There are fresh to highly
degraded craters at all sizes, but a relatively low number of small, fresh
craters.

River Networks and Fractal Topography. The transportation networks
for precipitated water are known to obey a series of approximately universal
scale-free distributions [788], which have mainly been obtained through anal-
yses of soil-height maps of the drainage basins of rivers. Figure 5.13 shows
such a typical river network. These networks are thought to result from self-
organizing mechanisms and a large number of models based on nonlinear
dynamical laws (with and without heterogeneity) or on energy minimization
principles have been proposed to account for their complex shapes and their
universal properties [237].

Observing the existence of self-similarity accross many scales, theories of
scaling can then be applied to unravel the origin of universal properties that
arise when the qualitative character of a system is sufficient to quantitatively
predict its essential features, such as the exponents that characterize scaling
laws. In the case of river networks, the empirical scaling laws follow from
three simple assumptions that (1) river networks are structurally self-similar,
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Fig. 5.12. Image of Jupiter’s second largest moon, Callisto with its craters from
Catalog PIA01630, mission Galileo, Spacecraft Galileo Orbiter, produced by JPL,
1998-10-13. North is to the top of the picture. The image, centered at 13.4 de-
grees north latitude and 141.8 degrees west longitude, covers an area approxi-
mately 61 km by 60 km. The resolution is about 85 m per picture element. The
horizontal black lines indicate gaps in the data received for this image. The im-
age was taken on September 17th, 1997 at a range of 8400 km by the Solid
State Imaging (SSI) system on NASA’s Galileo spacecraft during its tenth orbit
of Jupiter. From the Jet Propulsion Laboratory, (http://www.jpl.nasa.gov/galileo
and http://www.jpl.nasa.gov/galileo/sepo)

Fig. 5.13. Typical river network
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(2) single channels are self-affine, and (3) overland flow into channels occur
over a characteristic distance (drainage density is uniform) [238].

The power spectrum of linear transects of the earth’s topography is often
observed to be a power-law function of wave number k with exponent close
to −2, thus corresponding to an approximate self-affine random walk. An
aerial view of such a complex topography is shown in Fig. 5.14 (see [427] for
a collection of pictures). The simplest mechanism to obtain such structures
is to couple a simple diffusive erosion process, according to which the local
flux is proportional to the slope (Culing’s law), to a nonlinear process with
stochastic driving (embodying the many noise sources such as rain and rock
heterogeneity) [918]. The resulting fluctuations of landscape and of mountain
topography are found to be self-affine with an exponent in agreement with
observations. Many other models have been developed more recently that
capture more precisely the relationships between the fractal tree structure of
river networks and the self-affine nature of the topography.

Fig. 5.14. Fractal topography of moun-
tain range. From the internet document
http://daac.gsfc.nasa.gov/DAAC DOCS/
geomorphology/GEO HOME PAGE.html
in the chapter on Fluvial Processes.
Courtesy of J. Pelletier

“River networks” can also be obtained as mathematical solution of global
optimization problems. An example is provided by Fig. 5.15. It shows a se-
ries of magnifications of so-called random directed polymers (RDP) at zero
temperature [388]. The model is defined as follows. Consider a square lattice
oriented at 45◦ with respect to the x axis and such that each bond car-
ries a random number, interpreted as an energy. An arbitrary directed path
(a condition of no backwards turn) along the x-direction and of length W
(in this direction) corresponds to the configuration of a RDP of W bonds.
In the present version of the model, a given RDP minimizes the sum of the
W bond energies along it, while having its two end-points fixed at the same
ordinate y(x = 0) = y(x = W ). The set of lines shown in Fig. 5.15 cor-
responds to all the optimal conformations with minimal energy and fixed
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end-points spanning all possible values verifying y(x = 0) = y(x = W ). We
allow in this construction the superposition of conformations. The tree-like
structures with branches that proliferate close to the borders result from the
fact that RDP’s find optimal paths with minimum energy. Such paths are
organized in families with approximately W 2/3 elements per family [475].
A family is defined by the common ancestor, i.e. main trunk far from the
borders, from which all conformations branch out. This simple model, with
its much varied behavior, has become a valuable tool in the study of self-
similar surface growths [495], interface fluctuations and depinning [442], the
random stirred Burgers equation in fluid dynamics [496] and the physics of
spin glasses [91, 622], as well as complex fault networks self-organized by
earthquakes [627, 907]. The complexity of random directed polymers result
from the competition between the quenched energy that the RDP attempts
to optimize globally and the entropy quantifying the reduction of the natural
fluctuation of random walks. As a result of this competition, a hierarchical
structure of quasi-degenerate random directed polymers is found that can be
quantified by several universal scaling laws [388, 475, 495].

Fig. 5.15. A typical set of optimal configurations for a random directed polymer
of length W = 4096 whose end-points take all possible values 0 ≤ y(x = 0) =
y(x = W ) ≤ 1200. (a) global system; (b) magnification of the largest box in (a);
(c) magnification of the largest box in (b); (d) magnification of the box in (c). The
magnifications illustrate the self-affine structure of the RDPs and the self-similar
hierarchical pattern of the local branching structure. Reproduced from [475]
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Clouds. Figure 5.16 shows a picture of a cloud configuration taken from
high altitude. This picture shows a qualitative fractal coverage of earth by
clouds, as a large range of hole scales can be observed. This impression can be
quantified precisely [727] by measuring the cumulative frequency-area distri-
bution of tropical cumulus clouds as observed from satellite and space shuttle
images from scales of 0.1 to 1000 km. The cumulative distribution is found to
be a power-law function of area with exponent µ = 0.8. This result and the
fractal dimension of cloud perimeters can be interpreted from the fact that
the top of the convective boundary layer is a self-affine interface [727].

Fig. 5.16. Image of clouds illustrating their fractal nature. From the space shuttle
STS-67 series images. Courtesy of J. Pelletier

DLA and Fractal Laplacian Growth. The processes underlying the
formation of lightning, frost, coral, polymers, mineral crystallinity in ig-
neous rocks, dendrites in many chemical reactions and post-percolation coffee
ground clumps are now understood to fall under a general class related to
the simple model known as Diffusion Limited Aggregation (DLA) invented
in 1981 by Witten and Sander [1024]. Simply put, Diffusion Limited Aggre-
gation is an algorithm which simulates the formation of an aggregate. The
algorithm starts with some initial structure of “particles” and then adds to
this structure by sending a particle on a random walk far from the aggregate
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(this is the diffusion part of DLA), until the particle approaches sufficiently
close from the perimeter of the aggregate that some kind of binding condi-
tion is satisfied. Once this binding condition is satisfied, the random walker
is added to the aggregate and the process is repeated with a new particle.
The result of an off-lattice simulation is shown in Fig. 5.17. DLA clusters
are thought to be fractal with a dimension approximately equal to 1.7 in two
dimensions and 2.5 in three dimensions.

Intuitively, the complex fractal structure of DLA aggregates results from
two competing mechanisms. The tendancy for branches to branch out due
to the sticking of particles to the side is compensated by the screening from
large branches that grow faster at the expense of smaller branches [615]. This
results from the so-called Mullins–Sekerka instability, which is nothing but
the “lighting-rod-effect” in electrostatics (i.e. in the presence of a Laplacian
field, here the concentration of diffusive particles). The random behavior of
the random walking particles will cause small irregularities to develop on the
surface of the cluster. Particles diffusing randomly toward the cluster will
be more likely to stick to external perimeter sites than to those in the clus-
ter’s interior. The outer sites effectively screen particles from the interior. As
a result, small distortions in the cluster become large distortions, an effect
known as growth instability. The competition between branching and screen-
ing in the presence of these fluctuations leads to a hierarchy of branching and
screening instabilities resulting in a fractal structure.

There are many parameters in Diffusion Limited Aggregation which can
be varied to suit the need of modeling. For instance, the binding conditions
can be modified to simulate an aggregate composed of a type of molecule
with a limited number of binding sites. More than one species of particle can
be introduced. The random walk each particle undergoes can be made less
random with the introduction of repulsive and/or attractive forces between
particles. The introduction of new particles might be biased to favor a par-
ticular initial direction of incidence. Some sort of time dependence can be
added. In general, however, the resultant aggregate is typically a self-similar
structure which can be described mathematically as a fractal.

Fig. 5.17. Off-lattice DLA Cluster of 106

particles
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5.2 Multifractals

5.2.1 Definition

Many fractals arising in Nature have a far more complex scaling relation than
simple fractals, usually involving a range of scales that can depend on their
location within the set. Such fractals are called multifractals.

The multifractal formalism is a statistical description that provides global
information on the self-similarity properties of fractal objects [391]. A prac-
tical implementation of the method consists first in covering the system of
linear dimension L under study by a regular square array of some given mesh
size l. One then defines the measure or weight pn of a given box n: it is de-
fined as the sum of the measure of interest within the box. A simple fractal
of dimension α is defined by the relation

pn ∼ lα . (5.6)

Simply put, a multifractal is a generalization in which α may change from
point to point and is a local quantity. The standard method to test for mul-
tifractal properties consists in calculating the so-called moments of order q
of the measure pn defined by

Mq(l) =
n(l)∑
n=1

pq
n, (5.7)

where n(l) is the total number of non-empty boxes. Varying q allows one to
characterize the inhomogeneity of the pattern, for instance the moments with
large q being controlled by the densest boxes.

If scaling holds, then one has

Mq(l) ∼ l(q−1)Dq , (5.8)

which defines the generalized dimensions Dq. For instance, D0 (respectively
D1 and D2) corresponds to the so-called capacity (respectively information
and correlation) dimensions.

A monofractal has the same fractal dimension α in each box, which is
expressed by pn = Clα for all n’s. By normalization, we have

1 =
n(l)∑
n=1

pn =
n(l)∑
n=1

Clα =
(
L

l

)d

Clα . (5.9)

In the monofractal case, expression (5.7) leads to

Mq(l) =
(
L

l

)d

Clαq = l(q−1)α . (5.10)

The last equality is obtained by using (5.9). Comparing (5.10) with (5.8),
this shows that a monofractal has, as expected, all its dimensions identical
Dq = α.
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In multifractal analysis, one can also determine the number N(l) of boxes
having similar local scaling characterized by the same exponent α. Assuming
self-similar scaling, the expression

Nα(l) ∼ (L/l)f(α), (5.11)

defines f(α), called the multifractal singularity spectrum, as the fractal di-
mension of the set of singularities of strength α. The sum (5.7) can then be
rewritten

Mq(l) =
∑
α

Jpq
nNα(l) =

∑
α

Jlαq(L/l)f(α) , (5.12)

where J is the Jacobian of the transformation from the index of a given box
to the exponent α characterizing that box. To obtain f(α) as a function of the
Dq’s, we use a saddle-node estimation of the sum over α in (5.12). First, we
note that the Jacobian J does not exhibit a singular behavior for small l and
thus does not contribute to the leading behavior of the sum. The standard
saddle-node argument is that the sum over α is correctly estimated, with
respect to its dependence on l, by its leading term. This leader is such that
the exponent αq − f(α) of l is extremum with respect to α. By taking the
derivative of αq − f(α) with respect to α and putting to zero, this yields

q =
df
dα

∣∣∣∣
α∗

. (5.13)

For a given moment order q, this is an equation in the variable α whose
solution α∗(q) is the saddle node solution. The moment Mq(l) in (5.12) can
thus be estimated by

Mq(l) ∼ lα
∗(q)q−f(α∗(q)) . (5.14)

Comparing (5.14) with the definition (5.8), we find the general relationship
between the set of dimensions Dq and the multifractal spectrum. This rela-
tionship is expressed mathematically as a Legendre transformation:

f(α) = qα− (q − 1)Dq , (5.15)

where the ∗ has been dropped. Physically, expression (5.15) relies on (5.13),
which says in essence that one set of boxes characterized by the same sin-
gularity α provides the leading contribution to a given moment of order q.
Plotting lnMq as a function of ln l yields the exponent (q− 1)Dq. It can also
be shown [792] that the quantity Lq(l) =

∑n(l)
n=1 p

q
n ln pn is proportional to

Mq(l)α(q) ln l. Thus plotting Lq(l)/Mq(l) as a function of ln l yield α. f(α)
can then be obtained using the above Legendre transformation.

The multifractal spectrum f(α) given by (5.15) has several interesting
properties which have been studied in depth in the literature [391, 722, 792].
First, standard properties of the Legendre transform (5.15) with (5.13) imply
that f(α) is concave. In addition, expression (5.15) shows that df(α)/dα = q
(which is nothing but (5.13)): the slope of f(α) is thus given by the order
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q of the moment related to α via (5.13). The maximum of f(α) thus occurs
for α(q = 0) and is thus equal to the capacity dimension f(α(q = 0)) = D0,
using (5.15). Taking the derivative of (5.15) gives

α = Dq + (q − 1)
dDq

dq
. (5.16)

This expression relates the abscissa of the function f(α) to its slope q.
It is interesting to realize that multifractality imposes the existence of

a physical scale. Indeed, the multifractal scaling of moments is valid for the
resolution scale l going either to 0 or to infinity. In the former (resp. later)
case, the multifractal spectrum is concave (resp. convex). These two cases are
mutually exclusive. This implies that multifractality describes a self-similar
property starting either from a large length scale down to a vanishing length
scale or from a small finite length scale up to infinity.

Schertzer and Lovejoy [818, 819] have introduced the notion of universal
multifractals obtained by mixing of identical independent multiplicative pro-
cesses. This classification allows one a parsimonious description of different
multifractal processes in terms of very few exponents. When the mean flux is
conserved (corresponding to an average branching ratio 1, see Chap. 13), they
are described by only two exponents µ and C1. The first exponent 0 < µ < 2
is the Lévy exponent of the generator of the multiplicative process and quan-
tifies the deviation from monofractality: the monofractal case corresponds to
µ = 0 since, in this case, only the strongest singularity is seen as it com-
pletely dominates all other singularities; the lognormal model is obtained for
the other bound µ = 2 as it should since it corresponds to a multiplicative
process with Gaussian variables. The second exponent C1 is the codimension
of the mean inhomogeneity of the hierarchy of singularities constituting the
multifractal: the radius of curvature of f(α) at α = C1 is 22/3µ.

5.2.2 Correction Method for Finite Size Effects
and Irregular Geometries

The previous section described the standard method used widely in pratical
applications. However, one must realize that the exponents Dq and the f(α)
spectrum are very sensitive to the finite size and shape of the sampled sets.
For instance, in geological settings where one is interested in measuring the
fractal properties of faults, sediments cover some parts of the studied areas
and correspond to holes in the sampling which could wrongly be interpreted
as reflecting a genuine multifractality, whereas this only reflects the sampling
bias. An irregular border geometry may lead to similar effects. There is an
efficient method that can be used to correct for these biases [711]. One first
considers the natural measure and computes with the above method the
various sums Mq(l) and Lq(l). We then generate a synthetic system by taking
each element of the measure of the initial system and position it at random
(without changing its geometrical structure) in the sampling domain with its
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specific geometry. We then compute the sums M ′
q(l) and L′

q(l) for this system.
The artificial system has been constructed so that the “true” unbiased values
of the exponents are known: the random and uniform sampling procedure
ensures that all Dq and α are equal to the space dimension 2 (if we deal with
2D problems) in the absence of finite size effects. The corrected exponents of
the initial system are then given by representing Mq(l) as a function of M ′

q(l)
in a logarithmic plot. This generally yields a straight line of slope β(q). The
correct exponents of the initial system are then given by Dq = 2β(q) and
similarly for the α’s. Tests on well-controlled synthetic sets show that the
accuracy of the determined exponents is within 0.05. The gist of this method
is that the same distorsions apply to the two sets. Therefore, the correction
needed to correct the calculation on the real data set is determined from the
known synthetic data set.

Fig. 5.18. Illustration of the correction method presented in the text on the gen-
eralized set of multifractal dimensions Dq . The multifractal analysis is performed
on the fault system shown in panel I in Fig. 5.8. The direct application of the
box-counting method and the formula (5.7) gives a non-trivial monotonically de-
caying dependence of Dq as a function of q (black circles), which would qualify this
fault system as a genuine multifractal. The application of the correction method
described in the text shows that all Dq ’s are in fact equal to 2 and that the multi-
fractality is spurious and stems from finite size and boundary effects. Reproduced
from [710, 711]

A test of this method is shown in Fig. 5.18 on the fault system shown
in panel I in Fig. 5.8. In this case, the application of the correction method
shows that the apparent multifractality is spurious. Figure 5.19 shows the
multifractal spectrum f(α) for the two fault systems V and IV shown in
Fig. 5.8. In this case, the two fault networks exhihit a genuine multifractality.
As a bonus, the multifractal spectra that appeared different before correction
are found to be essentially identical after correction, showing a universal
behavior at these two sampling scales.
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Fig. 5.19. Illustration of the correc-
tion method presented in the text on
the generalized set of multifractal di-
mensions Dq. The multifractal analysis
is performed on the fault systems shown
in panels V and VI in Fig. 5.8. The
open circles and squares are the spec-
tra f(α) calculated before correction for
finite size and boundary effects, while
the black circles and squares represent
the spectra f(α) after correction. Taken
from [710, 711]

5.2.3 Origin of Multifractality and Some Exact Results

Heuristically, multifractality results when a “fractal measure” is defined on
a “fractal” geometrical object. In other words, multifractality stems from the
interplay between two sets of singularities [391, 722]. A particularly impor-
tant and general class is the classical potential, for instance the electrostatic
or diffusion field, near random fractal boundaries, whose self-similarity is re-
flected in a multifractal behavior of the potential. Generalizations include the
stress field in fractal networks of faults and its feedback on the fault orga-
nization [862]. The paradigm of this class of problems is Diffusion Limited
Aggregation (DLA), which produces fractal clusters, as shown in Fig. 5.17,
immersed in a concentration field (that of the incomming particles) which
has multifractal properties. The concentration field, also called the potential,
is termed the “harmonic measure” in mathematical terms. It actually deter-
mines the growth process and its scaling properties are intimately related to
those of the cluster itself [615].

The multifractal spectra describing the singularities of the potential,
or, equivalently, the distribution of wedge angles along the boundary, are
amenable to exact analytical treatments in two dimensions. A first exact ex-
ample contains the whole universality class of random or self-avoiding walks,
and percolation clusters, which all possess the same harmonic multifractal
spectrum [137, 253, 254]. Another exactly soluble case is the potential dis-
tribution near any conformal fractal in two dimensions, using the classical
method of conformal transformations to solve two-dimensional electrostatics
on Euclidean domains. The multifractal spectra of the potential singularities
on the perimeter of such fractal objects are found to depend only on the
so-called “central charge c”, a parameter which labels the universality class
of the underlying conformal field theory [255]. These results apply directly
to well-recognized universal fractals, like O(N) loops or Potts clusters. The
dimension f̂(θ) of the boundary set with local wedge angle θ is found to be
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given by f̂(θ) = π/θ − [(25 − c)/12]{(π − θ)2/[θ(2π − θ)]}, with c the cen-
tral charge of the model. As a corollary, the dimensions DEP of the external
perimeter and DH of the hull of a Potts cluster obey the duality equation
(DEP − 1)(DH − 1) = 1/4.

5.2.4 Generalization of Multifractality:
Infinitely Divisible Cascades

Infinitely divisible cascades (IDC) have been introduced in turbulence [144,
145] and applied in other fields such as in finance [34] and in network traffic
data on the Internet [982]. IDC generalize multifractals in a very interest-
ing way and rationalize the empirically observed extended self-similarity and
generalized scale-invariance (see the contributions in [251]).

Consider a decomposition of a signal X across several scales. The sig-
nal can be a time series X(t), a spatial function or a space–time recording.
A very efficient scale decomposition scheme is provided by the wavelet trans-
form [306, 586]. In a nutshell, a wavelet transform is a convolution of the
signal with a “mother” wavelet Ψ which can be translated and dilated at
will. It thus offers the flexibility of a genuine mathematical microscope that
can focus on details on the signal at arbitrary positions and scales. In the
case of a time signal X(t) for instance, the wavelet transform defines wavelet
coefficients given by

dX(b, a) ≡
∫ +∞

−∞
dtX(t)Ψ

(
t− b

a

)
, (5.17)

where a and b are the dilation and translation parameters. The knowledge of all
the wavelet coefficients is more than equivalent to the information contained in
X(t) and is in fact redondant. It is enough to estimate the wavelet coefficients
on a subset of scales, ordered for instance in powers 2j of two, where j spans
a set of integer values, and on a subset of the positions in order to have an infor-
mation that is equivalent to the initial dataX(t) [306, 586]. Let us thus consider
wavelet coefficients dX(j, k), where 2j is the scale and k is the time or position
at which the wavelet is centered and the coefficient is calculated.

A simple fractal corresponds to the case where

〈|dX(b, a)|q〉 ∝ exp
(
qH ln(2j)

)
, (5.18)

for any real q. The self-similarity is expressed in (5.18) which indicates that
all moments 〈|dX(b, a)|q〉 of the wavelet coefficients behaves as power laws of
the scale a = 2j, controlled by a single exponent, the self-similarity parame-
ter H . This simplicity contains its own limitation and this leads, as we have
seen above, to generalize (5.18) by allowing that the exponent H becomes
a function H(q) of the moment order q. This multi-scaling behavior is thus
defined by

〈|dX(b, a)|q〉 ∝ exp
(
H(q) ln(2j)

)
, (5.19)
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where H(q) is nothing but the exponent (q−1)Dq in the multifractal formal-
ism discussed above. The main limitation of this model is that the moments
must still exhibit power law dependences as a function of the scale a. Another
level of generalization is thus still possible which consists in writing

〈|dX(b, a)|q〉 ∝ exp
(
H(q)n(2j)

)
, (5.20)

where the function n(a) does not necessarily reduce to the logarithmic func-
tion. This expression (5.20) defines the infinitely divisible cascade (IDC)
model. The moments are not required to be power laws of the scale a; how-
ever, IDC maintains a fundamental feature common to exact self-similarity
(5.18) and multiscaling (5.19), namely the separability of the moment struc-
ture in the moment order q and the scale a = 2j.

IDC have been introduced in a different way [144, 145] through the rela-
tionship between probability density functions (pdf) P (d) of wavelet coeffi-
cients d measured at different scales:

Pa(d) =
∫
Ga,a′(lnα)Pa′(d/α) d lnα . (5.21)

The function Ga,a′ is called the kernel or propagator of the cascade. If Ga,a′

is a Dirac function Ga,a′(lnα) = δ (lnα−H ln(a/a′)), IDC reduces to exact
self-similarity with exponent H . This definition (5.21) shows that the pdf of
the log-coefficients ln |d| are related by a convolution:

Pa(ln |d|) =
∫
Ga,a′(lnα)Pa′ (ln |d| − lnα) d lnα

= (Ga,a′ ⊗ Pa′) (ln |d|) . (5.22)

Starting from the definition of a cascade between scales a′′ and a′ with prop-
agator Ga′′,a′ and between scale a and a′′ with propagator Ga,a′′ , the tran-
sitivity of the definition (5.22) shows that there is a cascade between scales
a and a′ with propagator Ga,a′ = Ga,a′′ ⊗ Ga′′,a′ . Infinite divisibility means
that any scale a′′ can be used between a and a′ as no scale plays any special
role. Infinite divisibility therefore implies that the propagator consists of an
elementary function G0 convolved with itself as

Ga,a′(lnα) = [G0(lnα)]⊗(n(a)−n(a′)) . (5.23)

Using the Laplace transform Ĝa,a′(q) of Ga,a′ , (5.23) becomes

Ĝa,a′(q) = exp[H(q)(n(a) − n(a′))] , (5.24)

with H(q) = ln Ĝ0(q) and a = 2j . This result allows us to recover (5.20)
which rationalizes the empirical observation of extended self-similarity: a mo-
ment 〈|dX(b, a)|q〉 plotted as a function of another moment 〈|dX(b, a)|q′ 〉 gives
a power law relationship

〈|dX(b, a)|q〉 ∝ 〈|dX(b, a)|q′〉H(q)/H(q′) , (5.25)
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and therefore a linear dependence in a log–log representation. This prop-
erty documented in many systems such as turbulence [74], diffusion-limited-
aggregation [756] and kinetic surface roughening [539] results from the sepa-
rability of the moment structure in the moment order q and the scale a = 2j.

5.3 Scale Invariance

5.3.1 Definition

The symmetry of “scale invariance” generalizes the geometrical concept of
fractals. Speaking about a (material or mathematical) object, scale invari-
ance refers to its invariance over changes of scales of observation (see [251]
for a general introduction). In a nutshell, scale invariance simply means re-
producing itself on different time or space scales. But what object are we
speaking about?

1. some people are talking about the invariance of their equations;
2. some are talking about one physical quantity;
3. Some people consider invariance in a statistical sense:

• geometrically, they are discussing fractal shapes;
• analytically, they are discussing the invariance of a probability distri-

bution function or a correlation function, or sometimes only the shape
of this function.

Some people use the word “fractal” in this broad sense, and not only for refer-
ing to the self-similar geometrical properties discussed above in this chapter.

Once the observable one wishes to study has been clearly identified, the
question is how this observable changes with the scale of observation. Pre-
cisely, an observable O which depends on a “control” parameter x is scale
invariant under the arbitrary change x → λx if there is a number µ(λ) such
that

O(x) = µO(λx) . (5.26)

Here, we implicitely assume that a change of scale leads to a change of control
parameter as in the renormalization group formalism discussed in Chap. 11.
More directly, x can itself be a scale.

Equation (5.26) defines a homogeneous function and is encountered in
the theory of critical phenomena, in turbulence, etc. Its solution is simply
a power law

O(x) = Cxα , with α = − lnµ
lnλ

, (5.27)

which can be verified directly by insertion. Power laws are the hallmark of
scale invariance as the ratio
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O(λx)
O(x)

= λα (5.28)

does not depend on x, i.e. the relative value of the observable at two differ-
ent scales only depend on the ratio of the two scales. This is only true for
a function of a single parameter. Homogeneous functions of several variables
take a more complex form than (5.26).

The equation (5.26) is the fundamental property that associates power
laws to scale invariance, self-similarity and criticality. Self-similarity is the
same notion as scale invariance but is expressed in the geometrical do-
main, with application to fractals. As discussed in Chaps. 8 and 9, criti-
cality refers to the state of a system which has scale invariant properties.
The critical state is usually reached by tuning a control parameter as in
liquid–gas and paramagnetic–ferromagnetic phase transitions. Many driven
extended out-of-equilibrium systems also seem to exhibit a kind of dynam-
ical criticality. This has been coined “self-organized criticality” [44] (see
Chap. 15).

The influence of scale symmetry on objects is reflected in the appear-
ance of power laws. Extending the concept of scale symmetry to physical
laws generalizes the concept of scale invariance to that of scale covariance.
This concept applies to laws (as opposed to observables or geometrical ob-
jects that we considered up until now) and requires the independence of
the shape of the laws with respect to changes of scales. This notion is more
general and actually encompasses the notion of scale invariance: solutions
of scale covariant laws can sometimes be scale invariant, i.e. power laws. In
general, however, boundary conditions, forcing or dissipation spoil this in-
variance, and the solutions are no longer power laws. The requirement of
scale covariance is then very useful to study the breaking of scale invari-
ance [251].

Historically, one of the first uses of the notion of scale covariance was
made in the framework of critical systems, via the Renormalization Group,
as explained in Chap. 11: the coarse-graining rescaling procedure alters the
hamiltonian (its coupling constants are different), but its shape remains the
same (up to irrelevant terms). This is an example of scale-covariance, i.e.
invariance of a law under a scale transformation. We refer to [251] and refer-
ences therein for other examples in open dissipative nonlinear systems.

Symmetries constitute the organizing principle for shaping our theories of
nature. In modern physics, fundamental symmetry principles dictate the ba-
sic laws of physics, control the structure of matter, and define the fundamen-
tal forces in nature. Symmetry is also an essential concept in mathematics,
chemistry, geology and biology. In 1905, Emmy Amalie Noether proved the
following theorem [126, 424, 708]: “for every continuous symmetry of the laws
of physics, there must exist a conservation law. For every conservation law,
there must exist a continuous symmetry.” This gives the following amazing
correspondences:
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1. The conservation law corresponding to space translational symmetry is
the Law of Conservation of Momentum.

2. The conservation law corresponding to time translational symmetry is
the Law of Conservation of Energy.

3. The conservation law corresponding to rotational symmetry is the Law
of Conservation of Angular Momentum.

4. The conservation law corresponding to the symmetry operation of a global
phase shift in quantum mechanics is the Law of conservation of electric
charge.

It is a natural question to ask what is the conservation law corresponding
to the scale invariance symmetry? To address this question, we notice the
following: since x → λx and O(x) → µO(λx) given by (5.26) are equiva-
lent to T ≡ lnx → T + lnλ and X(T ) ≡ lnO(T ) → X(T + lnλ) + lnµ,
an arbitrary scale transformation is simply a translation of “time” T associ-
ated to a translation of “position” X . Continuous scale invariance is thus the
same as a coupled continuous translational invariance expressed on the loga-
rithms of the variables. This kind of symmetry links a translation in “time”
to a translation in “space”: this is not the same as the first or second sym-
metry enumerated in the list above. It rather states that the system is seen
to move at a constant velocity α. Noether’s theorem does not apply to this
special case.

However, if we request that the system is invariant with respect to arbi-
trary translation of X , i.e. a change of units of O, Noether’s theorem leads
to dimensional analysis which we discuss below. Extending works of L. Not-
tale [689–694], B. Dubrulle and F. Graner have investigated the correspon-
dence between the three symmetries of translation in X and in T as well
as the Galilean invariance in the framework of scale invariance. They have
shown a deep analogy between scale symmetry and relativistic mechanics.
In this context, the change of frame leads to a change of moments quan-
tifying the fluctuations of a given statistical field (for instance turbulent
velocity) and the generalized Lorenz transformations relate different mo-
ments [248–250, 363].

5.3.2 Relation with Dimensional Analysis

A basic postulate in physics is the independence of the laws with respect to
changes of units: the physics should be the same for a French experimentator
recording in meters and kilograms, or for his English colleague thinking in
terms of inches and pounds. The invariance of a quantity under change of
units necessarily involves power laws. As a result, any physical quantity can
then be expressed in terms of monomials of a few “basic units” such as
meters, seconds or kilograms. The exponents appearing in these monomials
describe how the quantity varies with respect to unit changes. They define
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the “dimension” of the quantity. A quantity which remains invariant under
changes of units is called “dimensionless”.

Laws of physics must be such as to be expressed using only dimensionless
variables. This is a powerful statement, mathematically described by the fa-
mous Π theorem [54, 55]. It helps reduce the number of physically pertinent
parameters and shows the equivalence between similar systems of different
sizes. Fluid mechanics is notorious for its extensive use of similitude ratios,
such as the Reynolds number. A famous example is the prediction due to Kol-
mogorov in 1941, who proposed that, in a turbulent fluid, there exist a range
of scales called “inertial range” where the velocity u� of an eddy of size �
is only determined by the energy transfer rate ε = d(u2)/dt. Dimensional
analysis then tells you that u� = C(ε�)1/3. This simple reasoning predicts
that the turbulent spectral energy spectrum E(k) = u(k)u(−k) scales like
k−5/3 in the inertial range. This prediction has been checked in a variety of
turbulent flows and is extremely well satisfied [316].

Scale invariant quantities are power laws, and power laws are naturally
generated by dimensional analysis. Does it mean that any scale invariant sys-
tem can be studied by dimensional analysis? The answer is negative. This is
strictly true when you have only one scale, i.e. when you are dealing with an
isotropic problem or with a time scale, because power laws are the only homo-
geneous functions of one variable. As soon as you have more than one variable,
you must examine the homogeneous function describing your problem more
carefully. There are conspiracies, first discussed by Barenblatt [55], which can
drive a system away from a “dimensional” scaling (one then speaks about
“anomalous” scaling). These conspiracies involve additional non-dimensional
variables, which couple to the initial one. To understand this, let us take again
the case of turbulence. Consider the scaling law on the second order longitu-
dinal structure function which provides a quantification of the complexity of
turbulent flows:

〈(vr)2〉 = CK(ε̄r)2/3 . (5.29)

The equality is a prediction of Kolmogorov (1941). The variable r, which lies
in the inertial range, is the scale at which velocity differences are measured,
and ε̄ is the mean rate of energy dissipation per unit mass. Dimensional
analysis shows that

〈(vr)2〉 = (ε̄r)2/3F (�, r/L) , (5.30)

where F (x, y) is a universal function to be determined, L is the external or
integral scale. Kolmogorov’s assumption is that, for the Reynolds number
� → ∞ and r/L → 0, F (x, y) goes to a constant CK. This is the so-called
complete similarity of the first kind [55] with respect to the variables � and
r/L.

The existence of the limit of F (�, r/L → 0) has first been questioned
by L.D. Landau and A.M. Obukhov, on the basis of the existence of inter-
mittency – fluctuations of the energy dissipation rate about its mean value
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ε̄. Indeed, Barenblatt’s classification leads to the possibility of an incomplete
similarity in the variable r/L. This would require the absence of a finite limit
for F (�, r/L) as r/L→ 0, and leads in the simplest case to the form

〈(vr)2〉 = CK(ε̄r)2/3
( r
L

)α

, (5.31)

where α is the so-called intermittency exponent, believed to be small and
positive. If α is real, this corresponds to a similarity of the second kind [55].
In critical phenomena, this anomalous scaling is understood as the conse-
quence of fluctuations of the order parameter at all scales between the mi-
croscopic cut-off up to the macroscopic scale as discussed in Chaps. 8, 9
and 11. The renormalization group has provided the framework to systemat-
ically calculate the anomalous corrections to the mean field exponents. The
renormalization group has been shown [351] to explain the “similarity of sec-
ond kind” classified by Barenblatt and found in nonlinear partial differential
equations.

Incomplete self-similarity [56, 247] may stem from a possible �-dependence
of the exponents. The case where α is complex, leading to

〈(vr)2〉 = CK(ε̄r)2/3
( r
L

)αR

cos[αI ln(r/L)] , (5.32)

could be termed a similarity of the third kind, characterized by the absence of
limit for F (�, r/L) and accelerated (log-periodic) oscillations [881], discussed
more thoroughly in the next section. To our knowledge, Novikov has been
the first to point out in 1966 that structure functions in turbulence could
contain log-periodic oscillations [696]. His argument was that, if an unsta-
ble eddy in a turbulent flow typically breaks up into two or three smaller
eddies, but not into 10 or 20 eddies, then one can suspect the existence of
a prefered scale factor, hence the log-periodic oscillations. They have been
repeatedly observed in hydrodynamic experiments but do not seem to be
stable and depend on the nature of the global geometry of the flow and recir-
culation [30, 316] as well as the analyzing procedure. Demonstrating unam-
biguously the presence of log-periodicity and thus of discrete scale invariance
(see the next section) in turbulent time-series would provide an important
step towards a direct demonstration of the Kolmogorov cascade or at least
of its hierarchical imprint. For partial indications of log-periodicity in turbu-
lent data, we refer the reader to Fig. 5.1 p. 58 and Fig. 8.6 p. 128 of [316],
Fig. 3.16 p. 76 of [32], Fig. 1b of [948] and Fig. 2b of [146]. Freely decaying
2-d turbulence is a good candidate for a demonstration of discrete scale in-
variance and log-periodic signatures in the time-evolution of the merging of
vortices, in particular in the number of vortices, their radius and separation
as a function of time [483]. The log-periodicity could embody the punctu-
ated dynamics of vortices merging in the average scale-free time decay of
2D-turbulence.
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5.4 The Multifractal Random Walk

5.4.1 A First Step: the Fractional Brownian Motion

Starting with Hurst’s study of 690 time series records of 75 geophysical phe-
nomena, in particular river flow statistics, documenting the so-called “Hurst
effect” of long term persistence [441], many studies in the last decades have
investigated the existence of long memory effects in a large variety of systems,
including meteorology (wind velocity, moisture transfer in the atmosphere,
precipitation), oceanography (for instance wave-height), plasma turbulence,
solar activity, stratosphere chemistry, seismic activity, internet traffic, finan-
cial price volatility, cardiac activity, immune response, and so on.

Mandelbrot and Van Ness [594] introduced the fractional Brownian mo-
tion (fBm) as the unique possible extension of the memoryless continuous
time random walk which has an exact self-similarity with an arbitrary expo-
nent H which can be different from the value 1/2 for the standard random
walk. The standard memoryless continuous time random walk has a unique
specification described in Sect. 2.1.3 and, in mathematics, it is called the
Wiener process. The motivation for the fBm was to account for the Hurst
effect. From an initial value BH(0), the fBm is defined by

BH(t) −BH(0) =
1

Γ (H + (1/2))

∫ t

−∞
dτ η(τ)K(t− τ) , (5.33)

where dτ η(τ) = dWτ is usually taken as the increment of the standard ran-
dom walk with white noise spectrum and Gaussian distribution with variance
E[dWτ ] = dτ . The memory kernel K(t− τ) is given by

K(t− τ) = (t− τ)H−1/2 , for 0 ≤ τ ≤ t (5.34)

= (t− τ)H−1/2 − (−τ)H−1/2 , for τ < 0 . (5.35)

For H > 1/2, the fBm BH(t) exhibits long term persistence and memory,
since the effect of past innovations of dWτ is felt in the future with a slowly
decaying power law weight K(t−τ). For H < 1/2, the fBm is anti-persistent,
meaning that the fBm tends to come back more often to its past tracks than
would a memoryless random walk.

Fractional noise motion (fNm), which is defined as the time derivative of
BH(t), possesses the property of statistical stationarity. A fNm is defined by

A(t) =
∫ t

−∞
dτ η(τ)K(t − τ) , (5.36)

with

KfNm(t− τ) =
1

(t− τ)3/2−H
=

1
(t− τ)1−θ

, (5.37)
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for H = 1/2 + θ. Persistence 1/2 < H < 1 (respectively antipersistence
0 < H < 1/2) corresponds to 0 < θ < 1/2 (respectively −1/2 < θ <
0). Such a memory kernel describes also the renormalized Omori’s law for
earthquake aftershocks [411, 414, 864] and many other processes and has
important implications allowing to distinguish exogenous versus endogenous
shocks [897, 906].

Both the fBm and fNm exhibit simple scaling and are thus “monofractals.”

5.4.2 Definition and Properties
of the Multifractal Random Walk

Motivated by the structure (5.21) at different scales of probability density
functions and by the dependence properties of velocity increments in hydro-
dynamic turbulence and of financial returns, the multifractal random walk
(MRW) has been introduced by Bacry and Muzy as the unique continuous
time random walk that generalizes the fBm to exhibit exact multifractal
properties [41, 658]. The MRW is the continuous time limit of a random walk
with a stochastic variance such that the correlation in time of the logarithm
of the variance decays logarithmically. It possesses a nice stability property
related to its scale invariance property. For each time scale ∆t ≤ T , the
increment at time t of the MRW at scale ∆t, r∆t(t), can be described as
follows:

r∆t(t) = ε(t)σ∆t(t) = ε(t)eω∆t(t) , (5.38)

where ε(t) is a standardized Gaussian white noise independent of ω∆t(t) and
ω∆t(t) is a nearly Gaussian process with mean and covariance:

µ∆t =
1
2

ln(σ2 ∆t) − C∆t(0) (5.39)

C∆t(τ) = Cov[ω∆t(t), ω∆t(t+ τ)] = λ2 ln
(

T

|τ | + e−3/2 ∆t

)
, (5.40)

where σ2 ∆t is the variance of the increment at scale ∆t and T repre-
sents an “integral” (correlation) time scale. Such logarithmic decay of the
log-variance covariance at different time scales as been documented em-
pirically for financial returns in [34, 658, 659]. Typical values for T and
λ2 are respectively 1 year and 0.04. According to the MRW model, the
variance correlation exponent ν is equal to λ2 according to (5.48) be-
low.

It is important to stress that it is only for this specification (5.39) and
(5.40) that the process has a bona fide continuous limit. Rigorously, the
process (5.38) is defined such that the t-th realization of r∆t, defined as the
increment of the MRW between t and t+ ∆t, is obtained as
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r∆t = limδt→0

∆t/δt∑
k=1

εδt(k)eωδt(k) , (5.41)

where εδt and ωδt have the properties (5.39) and (5.40) (with ∆t replaced
by δt). For λ2 = 0, ωδt = 0 and expression (5.41) recovers the standard
construction of the Wiener process. In this later case, the stability property
is expressed by the fact that both the infinitesimal increments εδt(k) and
the increment r∆t at arbitrary finite time scales are distributed according to
Gaussian laws with variances in ratio ∆t/δt.

The MRW model can be expressed in a different form, in which the log-
variance ω∆t(t) obeys an auto-regressive equation whose solution reads

ω∆t(t) = µ∆t +
∫ t

−∞
dτ η(τ)K∆t(t− τ) . (5.42)

Here, η(t) denotes again a standardized Gaussian white noise and the memory
kernelK∆t(·) is a causal function, ensuring that the system is not anticipative.
The process η(t) can be seen as the information flow. Thus ω(t) represents
the response of the system to incoming information up to the date t. At time
t, the distribution of ω∆t(t) is Gaussian with mean µ∆t and variance V∆t =∫∞
0

dτ K2
∆t(τ) = λ2 ln(T e3/2/∆t). Its covariance, which entirely specifies the

random process, is given by

C∆t(τ) =
∫ ∞

0

dtK∆t(t)K∆t(t+ |τ |) . (5.43)

Performing a Fourier transform, we obtain

K̂∆t(f)2 = Ĉ∆t(f)

= 2λ2f−1

[∫ Tf

0

sin(t)
t

dt+O (f ∆t ln(f ∆t))

]
, (5.44)

where we have used (5.40). This shows that for τ small enough

K∆t(τ) ∼ K0

√
λ2T

τ
for ∆t� τ � T . (5.45)

This slow power law decay (5.45) of the memory kernel in (5.42) ensures the
long-range dependence and multifractality of the stochastic variance process
(5.38). Note that (5.42) for the log-volatility ω∆t(t) takes a form similar
to but simpler than the ARFIMA models usually defined on the (linear)
variance σ [43, 75].

The MRW has three parameters:

• σ2: variance of increments;
• λ2: intermittency coefficient;
• T : integral correlation time.
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For any ∆t ≤ T , the MRW is characterized by an exact continuous scale
invariance (multifractality) which takes the following form for q even:

〈|r∆t|q〉 ∼ (∆t)ζq , (5.46)

with

ζq =
(

1
2

+ λ2

)
q − λ2

2
q2 . (5.47)

Here, the scale l of (5.8) is the time scale ∆t. Note that the definition of multi-
fractaly differs slightly from that in (5.8) and the correspondence is ζq = qDq

rather than (q − 1)Dq due to the absence of a condition of normalization
in (5.46). For ∆t � T , ζq = q/2 which expresses the fact that the MRW
recovers a standard random walk structure. For q > q∗ = (1 + 2λ2)/λ2, ζq
becomes negative, implying that 〈|r∆t|q diverges for ∆t→ 0. The divergence
of the moments of order larger than q∗ implies that the probability density
function of r∆t has a heavy (power law-like) tail with exponent µ equal to q∗.
For turbulence or financial applications, λ2 ≈ 0.04 which gives q∗ ≈ 27. Such
large power law exponent would be very hard if not impossible to qualify
in practice. Lastly, the MRW predicts a very slow decay of the correlation
functions of the powers of the variances of the increments:

〈|r∆t(t)|q |r∆t(t+ τ)|q〉 ∼
( τ
T

)−λ2q2

, (5.48)

for q even.

5.5 Complex Fractal Dimensions
and Discrete Scale Invariance

Fractals have dimensions that are in general real numbers. As already pointed
out, the generalization from the set of integers to the set of real numbers
embodies the transition from the symmetry of translational invariance to
the symmetry of scale invariance. It is possible to generalize further and ask
what could be the properties of a set whose fractal dimension belongs to
the set of complex numbers. It turns out that this generalization captures
the interesting and rich phenomenology of systems exhibiting discrete scale
invariance, a weaker form of scale invariance symmetry, associated with log-
periodic corrections to scaling [878].

5.5.1 Definition of Discrete Scale Invariance

Let us start from the concept of (continuous) scale invariance defined by
(5.26). Discrete scale invariance (DSI) is a weaker kind of scale invariance
according to which the system or the observable obeys scale invariance as
defined above only for specific choices of λ (and therefore µ), which form



5.5 Complex Fractal Dimensions and Discrete Scale Invariance 157

in general an infinite but countable set of values λ1, λ2, ... that can be writ-
ten as λn = λn. λ is the fundamental scaling ratio. This property can be
qualitatively seen to encode a lacunarity of the fractal structure [592].

As we already mentioned, continuous scale invariance is the same as con-
tinuous translational invariance expressed on the logarithms of the variables.
DSI is then seen as the restriction of the continuous translational invariance
to a discrete translational invariance: lnO is simply translated when translat-
ing y by a multiple of a fundamental “unit” size lnλ. Going from continuous
scale invariance to DSI can thus be compared with (in logarithmic scales)
going from the fluid state to the solid state in condensed matter physics! In
other words, the symmetry group is no longer the full set of translations but
only those which are multiples of a fundamental discrete generator.

5.5.2 Log-Periodicity and Complex Exponents

We have seen that the hallmark of scale invariance is the existence of power
laws. The signature of DSI is the presence of power laws with complex expo-
nents α which manifests itself in data by log-periodic corrections to scaling.
To see this, consider the triadic Cantor set shown in Fig. 5.1. It is usu-
ally stated that this triadic Cantor set has the fractal (capacity) dimension
D0 = ln 2/ln 3, as the number of intervals grows as 2n while their length
shrinks as 3−n at the n-th iteration.

It is obvious to see that, by construction, this triadic Cantor set is geo-
metrically identical to itself only under magnification or coarse-graining by
factors λp = 3p which are arbitrary powers of 3. If you take another magnifi-
cation factor, say 1.5, you will not be able to superimpose the magnified part
on the initial Cantor set. We must thus conclude that the triadic Cantor set
does not possess the property of continuous scale invariance but only that of
DSI under the fundamental scaling ratio 3.

This can be quantified as follows. CallNx(n) the number of intervals found
at the n-th iteration of the construction. Call x the magnification factor. The
original unit interval corresponds to magnification 1 by definition. Obviously,
when the magnification increases by a factor 3, the number Nx(n) increases
by a factor 2 independent of the particular index of the iteration. The fractal
dimension is defined as

D = lim
x→∞

lnNx(n)
lnx

= lim
x→0

lnNx(n)
lnx

=
ln 2
ln 3

≈ 0.63 . (5.49)

However, the calculation of a fractal dimension usually makes use of arbitrary
values of the magnification and not only those equal to x = 3p. If we increase
the magnification continuously from say x = 3p to x = 3p+1, the numbers
of intervals in all classes jump by a factor of 2 at x = 3p, but then remains
unchanged until x = 3p+1, at which point they jump again by an additional
factor of 2. For 3p < x < 3p+1, Nx(n) does not change while x increases, so
the measured fractal dimension D(x) = (lnNx(n))/lnx decreases. The value
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D = 0.63 is obtained only when x is a positive or negative power of three.
For continuous values of x one has

Nx(n) = N1(n)xDP

(
lnx
ln 3

)
, (5.50)

where P is a function of period unity. Now, since P is a periodic function,
we can expand it as a Fourier series

P

(
lnx
ln 3

)
=

∞∑
n=−∞

cn exp
(

2nπi
lnx
ln 3

)
. (5.51)

Plugging this expansion back into (5.50), it appears that D is replaced by an
infinity of complex values

Dn = D + ni
2π
ln 3

. (5.52)

We now see that a proper characterization of the fractal is given by this set
of complex dimensions which quantifies not only the asymptotic behaviour of
the number of fragments at a given magnification, but also its modulations at
intermediate magnifications. The imaginary part of the complex dimension
is directly controlled by the prefered ratio 3 under which the triadic Cantor
set is exactly self-similar. Let us emphasize that DSI refers to discreteness in
terms of scales, rather than discreteness in space (like discreteness of a cubic
lattice approximation to a continuous medium).

If we keep only the first term in the Fourier series in (5.51) and insert in
(5.50), we get

Nx(n) = N1(n)xD

(
1 + 2

c1
c0

cos
(

2nπ
lnx
ln 3

))
, (5.53)

where we have used c−1 = c1 to ensure that Nx(n) is real. Expression (5.53)
shows that the imaginary part of the fractal dimension translates itself into
a log-periodic modulation decorating the leading power law behavior. Notice
that the period of the log-periodic modulation is simply given by the loga-
rithm of the prefered scaling ratio. The higher harmonics are related to the
higher dimensions Dn defined in (5.52) for n > 1.

It is in fact possible to directly obtain all these results from (5.26). Indeed,
let us look for a solution of the form O(x) = Cxα. Putting in (5.26), we get
the equation 1 = µλα. But 1 is nothing but ei2πn, where n is an arbitrary
integer. This leads to

α = − lnµ
lnλ

+ i
2πn
lnλ

, (5.54)

which has exactly the same structure as (5.52). The special case n = 0 gives
the usual real power law solution corresponding to fully continuous scale
invariance. In contrast, the more general complex solution corresponds to
a possible DSI with the prefered scaling factor λ. The reason why (5.26) has
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solutions in terms of complex exponents stems from the fact that a finite
rescaling has been done by the finite factor λ. In critical phenomena pre-
senting continuous scale invariance, (5.26) corresponds to the linearization,
close to the fixed point, of a renormalization group equation describing the
behavior of the observable under a rescaling by an arbitrary factor λ. The
power law solution and its exponent α must then not depend on the specific
choice of λ, especially if the rescaling is taken infinitesimal, i.e. λ → 1+. In
the usual notation, λ = eax� which implies that µ = eaφl and α = −aφ/ax is
independent of the rescaling factor � as ax and aφ are independent of �. In
this case, the imaginary part in (5.54) drops out.

As we have seen, going from integer dimensions to fractional dimensions
corresponds to a generalization of the translational symmetry to the scaling
symmetry. It may come as a surprise to observe that generalizing further
the concept of dimensions to the set of complex numbers is in constrast
reducing the scale symmetry into a sub-group, the discrete scale symmetry.
This results from the fact that the imaginary part is actually introducing an
additional constraint that the symmetry must obey. Chapter 11 expands on
the role played by complex fractal dimensions as being the critical exponents
emerging from renormalization group equations in hierarchical systems.

5.5.3 Importance and Usefulness of Discrete Scale Invariance

Existence of Relevant Length Scales. Suppose that a given analy-
sis of some data shows log-periodic structures. What can we get out of
it? First, as we have seen, the period in log-scale of the log-periodicity
is directly related to the existence of a prefered scaling ratio. Thus, log-
periodicity must immediatly be seen and interpreted as the existence of
a set of prefered characteristic scales forming all together a geometrical series
..., λ−p, λ−p+1, ..., λ, λ2, ..., λn, .... The existence of such prefered scales ap-
pears in contradiction with the notion that a critical system exhibiting scale
invariance has an infinite correlation length, hence only the microscopic ultra-
violet cut-off and the large scale infra-red cut-off (for instance the size of the
system) appear as distinguishable length scales. This recovers the fact that
DSI is a property different from continuous scale invariance. Examples where
complex exponents can be found are random systems, out-of-equilibrium situ-
ations and irreversible growth problems. In addition to the existence of a sin-
gle prefered scaling ratio and its associated log-periodicity discussed above,
there can be several prefered ratios corresponding to several log-periodicities
that are superimposed. This can lead to a richer behavior such as log-quasi-
periodicity, which has been suggested to describe the scaling properties of
diffusion-limited-aggregation clusters [899].

Log-periodic structures in the data indicate that the system and/or the
underlying physical mechanisms have characteristic length scales. This is ex-
tremely interesting as this provides important constraints on the underlying
physics. Indeed, simple power law behaviors are found everywhere, as seen
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from the explosion of the concepts of fractals, criticality and self-organized-
criticality [44]. For instance, the power law distribution of earthquake ener-
gies known as the Gutenberg–Richter law can be obtained by many different
mechanisms and a variety of models and is thus extremely limited in con-
straining the underlying physics. Its usefulness as a modelling constraint is
even doubtful, in contradiction with the common belief held by physicists on
the importance of this power law. In contrast, the presence of log-periodic
features would teach us that important physical structures, hidden in the
fully scale invariant description, existed.

Prediction. It is important to stress the practical consequence of log-
periodic structures. For prediction purposes, it is much more constrained
and thus reliable to fit a part of an oscillating data than a simple power law
which can be quite degenerate especially in the presence of noise. This re-
mark has been used and is vigorously investigated in several applied domains,
such as earthquakes [477, 808, 809, 910], rupture prediction [29] and financial
crashes [300, 479, 898, 900].

5.5.4 Scenarii Leading to Discrete Scale Invariance

After the rather abstract description of DSI given above, let us briefly discuss
the physical mechanisms that may be found at its origin. It turns out that
there is not a unique cause but several mechanisms which may lead to DSI.
Since DSI is a partial breaking of a continuous symmetry, this is hardly
surprising as there are many ways to break a symmetry. Some mechanisms
have already been unravelled while others are still under investigation. The
list of mechanisms and poorly understood example is by no mean exhaustive
and others will certainly be found in the future (see [878] and references
therein):

1. Built-in geometrical hierarchy,
2. Programming and number theory,
3. Newcomb–Benford law of first digits [425] and the arithmetic system,
4. Eigenfunctions of the Laplace transform,
5. Diffusion in anisotropic quenched random lattices,
6. Cascade of ultra-violet instabilities: growth processes and rupture,
7. Deterministic dynamical systems

• Cascades of sub-harmonic bifurcations in the transition to chaos,
• Two-coupled anharmonic oscillators,
• Near-separatrix Hamiltonian chaotic dynamics,
• Kicked charged particle moving in a double-well potential: physical

realization of Mandelbrot and Julia sets,
• Log-periodic topology in chaotic scattering,

8. Animals (configurations of percolation clusters),
9. Quenched disordered systems,
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10. Turbulence [483, 1058, 1059],
11. The bronchial tree of mammals,
12. Titius–Bode law,
13. Gravitational collapse and black hole formation,
14. Spinodal decomposition of binary mixtures in uniform shear flow,
15. Cosmic lacunarity,
16. Rate of escape from stable attractors,
17. Life evolution...

It is essential to notice that all the mechanisms involve the existence of
a characteristic scale (an upper and/or lower cut-off) from which the DSI can
develop and cascade. In fact, for characteristic length scales forming a geo-
metrical series to be present, it is unavoidable that they “nucleate” from
either a large size or a small mesh. This remark has the following important
consequences: even if the mathematical solution of a given problem contains
in principle complex exponents, if there are no such cut-off scales to which
the solution can “couple” to, then the log-periodicity will be absent in the
physical realization of the problem. An example of this phenomenon is pro-
vided by the interface-crack stress singularity at the tip of a crack at the
interface between two different elastic media [775, 776].



6. Rank-Ordering Statistics and Heavy Tails

6.1 Probability Distributions

Many physical and natural systems exhibit probability density functions
(pdf’s) that are different from the most commonly used Gaussian or log-
normal distributions. Many phenomena are in fact characterized by “heavy
tails”, i.e. larger probabilities for large event sizes compared to the prediction
given by a Gaussian or log-normal fit using the variance estimated from the
data. Even if less frequent, the large events often play an important if not
leading role. The largest earthquakes account for the majority of the tec-
tonic deformation in seismic regions as well as cause the largest damages, the
largest floods and largest storms provide major erosion boosts and so on. It
is thus of utmost interest and importance to characterize these large events
and their distributions. However, by definition, the statistics of rare events is
limited and the distributions are thus difficult to constrain.

There is a large literature on the empirical determination of distributions
that we barely skim here. One school advocates the use of cumulative distri-
bution which presents the advantage of not requiring binning. The problem
with binning is that bins become undersampled in the tail. On the other hand,
cumulative distributions suffer from systematic biais due to their cumulative
nature which introduces correlations in their fluctuations. Diverse regulariza-
tion methods can be introduced to deal with pdf’s (see for instance [28] with
an application on the distribution of velocity increments in turbulence), using
for instance “line” and “curvature energy” to smooth out the pdf, optimized
by guessing the functional form of the tail of the distribution. A simpler
but efficient approach consists in computing histograms with different bin
sizes, evaluate the pdf from each histogram and then combine those values
to form a completed pdf [563]. From a more theoretical point of view, recent
approaches have developed a field-theoretical point of view incorporating
Bayesian principles [87, 430].

It is important to stress that distributions are statistical objects and hence
should be discussed by using the language of the statistical science rather than
“deterministic” methods consisting in a more or less naive visual inspection
and fit of log–log plots. The method of least-square fitting of the log–log
plots grossly underestimates the standard errors of the slope (exponent) pa-
rameter and has other deficiencies in evaluating the parameters of statistical
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distributions. Vere-Jones ( [984], p. 287) remarks in regard to the estimation
of the b-value in the magnitude–frequency Gutenberg–Richter relation for
earthquakes: “Unweighted least squares should not be used; weighted least
squares, with weights proportional to the expected cell entries, should give
comparable values for the slope (although there is a problem with empty
cells) but still leads to spurious estimates of the standard error – in particu-
lar a perfect fit does not mean zero standard error estimate!”

The determination of power-law exponents of cumulative distributions
from a finite number of data may be extremely sensitive to the values of
the largest sampled values. A proper method to estimate the exponent is
to use a logarithmic transformation of the data, which converts the power-
law into an exponential distribution. The corresponding maximum-likelihood
technique [9, 422] allows one to evaluate the truncation point at large val-
ues [209, 536] and the possible consequences of incomplete data [699]. Let
us also mention Adler et al. [3] who review modern methods of statistical
analysis for the power-law distributions. The problem of truncation and cen-
soring effects has been addressed by many studies. In the geophysical con-
text, let us mention the abundant literature dealing with fracture distribu-
tions [174, 198, 551, 736]. In this case, the problem is made worse by that
fact that large fractures are only partially sampled, leading to a bad estima-
tion of both the density and cumulative distributions. Corrections have been
developed for instance in studies dealing with scaling properties of channel
network [188, 544] and faulting [710].

In the following, we touch on several of these issues by studying the rank
ordering technique [1065]. This approach presents the advantage of constrain-
ing the fit of empirical distributions by the large events. This is in contrast to
usual fits by density or cumulative distributions that are usually constrained
by the large majority of small and intermediate event sizes. A second advan-
tage is that it allows a simple and quantitative assessment of the statistical
significance of the fits. For instance, it turns out that it is possible to get a rea-
sonable estimation of the exponent of a power law from the measurement of
a few tens of data points [903]. We show how the rank-ordering technique
applies to the exponential, power law, Gamma law and stretched exponential
distributions. Motivated by the versatility of stretched exponential distribu-
tions [547] as intermediate between “thin tail” (Gaussian, exponential, ...)
and very “fat tail” distributions, we end this chapter by a review of calibra-
tion methods relevant to this class.

6.2 Definition of Rank Ordering Statistics

Consider N observations and let us reorder them by decreasing values

v1 ≥ v2 ≥ ... ≥ vn ≥ ... ≥ vN . (6.1)
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v1 is the largest observed value, v2 is the second largest one and so on.
The rank-ordering method consists in quantifying the dependence of the
nth value vn as a function of the rank n. This method is well-suited when
the data is naturally ordered. For instance, eonomic and business statis-
tics are often presented in this format (sales of the largest firms, incomes,
etc.).

The rank-ordering method is very close to the construction of the cumu-
lative distribution P>(v). Recall that P>(v) is defined as the probability to
find a value larger or equal to v:

P>(v) =
∫ ∞

v

p(x) dx , (6.2)

where p(x) is the pdf. The integer part of NP>(vn) is thus the expected
number of values larger or equal to vn. Equating it to n simply expresses
that vn is indeed the nth largest observed value:

NP>(vn) = n . (6.3)

The expression (6.3) provides a determination of vn knowing p(v) or P>(v).
Inversely, measuring vn, one can determine p(v). This reasoning ignores fluc-
tuations which appear in real data.

For any random variable v with continuous cumulative distribution P<(v),
the random value P<(v) has a uniform distribution on the interval [0, 1].
Thus, for ordered sample v1, ..., vN , the random variables P<(v1), ..., P<(vN )
are distributed as N uniform ordered random variables. The mean values and
variances of these random variables are easily calculated:

E[P<(vk)] =
k

N + 1
; Var[P<(vk)] =

k(N − k + 1)
(N + 1)2(N + 2)

. (6.4)

The expression (6.3) has a simple geometric interpretation: the rank-
ordering method simply consists in interchanging the (x = v, y = P (v))
axis into (x = NP (v), y = v). However, this interchange is not as inno-
cent as it seems a priori. In the first representation (x = v, y = P (v))
used for the cumulative distribution, the inherent statistical fluctuations
always present in finite data sets are decorating the ordinate P>(v) at
fixed v. In the second representation (x = NP (v), y = v) used in the
rank-ordering method, the fluctuations occur on the variable v itself at fixed
rank n.

For the large events where the data is sparse, the fluctuations of the
estimated P>(v) = n/N are controlled by integers added or subtracted from
small integers. This introduces a significant bias that is no present in the
fluctuations of the values at fixed rank. We will illustrate this point in what
follows.
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Let us now give the exact formula making (6.3) more precise. The proba-
bility F (vn) dvn that the nth value is equal to vn to within dvn reads [381]:

F (vn) dvn = (N − n+ 1)
(
N

n

)(
1 −

∫ +∞

vn

p(v) dv
)N−n

×p(vn) dvn

(∫ +∞

vn

p(v) dv
)n−1

. (6.5)

The term
(
N
n

)
is the number of combinations of n elements among N . The

term (1 − ∫ +∞
vn

p(v) dv)N−n is the probability that N − n values are smaller
than vn. The term p(vn) dvn is the probability for finding one value between
vn and vn + dvn. The last term [

∫ +∞
vn

p(v) dv]n−1 is the probability that the
n − 1 remaining values are larger than vn. These different terms contribute
multiplicatively to F (vn) dvn due to the assumed statistical independence
of the events. This expression (6.5) is valid for arbitrary pdf’s p(v). From
(6.5), we can get an estimate of the “typical” value vn: it is simply the value
that maximizes F (vn). Let us now illustrate this method by discussing a few
parametric examples.

6.3 Normal and Log-Normal Distributions

The log-normal distribution is defined by

p(v) dv =
1√
2πσ

e[ln(v/v0)]2/2σ2 dv
v
, (6.6)

where σ is the standard deviation of the variable ln v.
Maximizing the expression (6.5) provides, as we said, the most probable

nth rank vn, which is a solution of

e−x2
n√

πxn
=

n

N
, (6.7)

where

xn =
ln vn√

2σ
. (6.8)

This expression also applies to the determination of a normal (or Gaussian)
distribution since the variable xn is distributed according to a Gaussian pdf.
The leading term for large v’s is

xn �
√

ln
N

n
√

2π
, (6.9)
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which is correct up to terms of order ln ln v. Expanding (6.5) up to second
order around the maximum, we obtain the typical uncertainty ∆xn in the
determination of xn:

∆xn =
1√
2n

1
xn

. (6.10)

Translating these results to the log-normal case by inverting the formula
(6.8), we obtain vn as a function of xn. The main point to note is the large
amplitude of the fluctuations for the first ranks:

∆vn

vn
=

1√
lnN/(n

√
2π)

√
2σ2

√
n

≈ σ2

√
n
. (6.11)

For instance, take N = 4000 and σ = 2.7. This yields ∆v1/v1 = 3.7 and
∆v10/v10 = 1.4. These numbers of the order or larger than unity illustrate the
fact that the very largest number in a sample exhibits very large fluctuations.

6.4 The Exponential Distribution

It is defined by

p(v) = µe−µv , for 0 ≤ v <∞ . (6.12)

Applying the formula (6.3) yields the typical value

vn = − 1
µ

ln
n

N
. (6.13)

Thus, a straight line obtained by plotting vn as a function of lnn qualifies an
exponential pdf. The slope of the straight line gives 1/µ.

Expression (6.5) shows that the tail of the pdf of the largest value v1 is

F (v1) dv1 � Nµe−µv1e−(N−1)e−µv1
, (6.14)

in the limit of large N . As we have seen in Chap. 1, this law is known as
the Gumbel distribution for extremes [381]. The most probable value of the
largest value is given by

vmp
1 =

1
µ

ln
N

µ
, (6.15)

which is consistent with (6.13) but not exactly the same.1 The asymptotic
tail of (6.14) is an exponential Nµe−µv1 for v1 � vmp

1 . The fluctuations of v1

1 They are equivalent to within a factor µ in the logarithm: indeed, the typical
and most probable values are close but not exactly identical.
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for one realization of the N events to another are thus correctly estimated
by the standard deviation ∆v1, which is well-defined mathematically:

∆v1 =
1
µ
. (6.16)

The relative error ∆v1/v
mp
1 = 1/ ln(N/µ) decays very slowly to zero as the

size N of the data set increases.
The statistical literature is replete with estimators for µ. Before recalling

the main one, it is useful to stress how difficult it is in practice to estimate the
reliability of an estimator. It is recommended to use the graphical represen-
tation of the rank-ordering plots in order to get a qualitative insight on the
quality of the fit. A simple least-square fit of a rank-ordering plot provides
a fast and often reliable estimation of µ.2

The best known estimator for µ is obtained by the maximum-likelihood
approach [267]. The problem is to obtain the best estimate of µ from the
knowledge of the first n ranks v1 > v2 > ... > vn. Note that, as we have
already mentioned, proceeding in this way ensures that the estimation of µ is
controlled by the largest values. In order to simplify, consider vn fixed. The
probability to observe a value v conditioned on being larger than or equal to
vn is 3

pc(v) = µe−µ(v−vn) . (6.17)

The probability to observe n values v1, v2, ..., vn conditioned to be all larger
than or equal to vn is the product of n terms of the form (6.17)

pc(v1, v2, ..., vn) = µne−µn(〈x〉n−xn) , (6.18)

where 〈x〉n = (1/n)
∑n

i=1 xi. pc(v1, v2, ..., vn) is also called the likelihood. The
most probable value of µ maximizes pc(v1, v2, ..., vn), and is thus the solution
of dpc(v1, v2, ..., vn)/dµ = 0. The solution is

µ =
1

(1/n)
∑n

i=1(xi − xn)
. (6.19)

This is the Hill estimator [422, 423] obtained by maximizing the likeli-
hood function (6.18), hence the name “maximum likelihood estimator.” The
most correct estimator is obtained by relaxing the constraint on xn. Then,
pc(v1, v2, ..., vn) reads

pc(v1, v2, ..., vn) = µne−µ(1/n)
∑

n

i=1
vi (1 − e−µvn)N−n , (6.20)

2 In principle, a least-squares fit is not the best method as the fluctuations are
not expected to be independent and Gaussian, due to the cumulative nature of
the plot. In practice however, these effects are not strong and do not lead to
significant devations from other methods.

3 We make use of the identity that the probability of an event A conditioned on
an event B is the ratio of the two probabilities.
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where the additional factor is the probability that the N −n other variations
are smaller than vn. This equation (6.20) is nothing but another form of the
expression (6.5). Maximizing pc(v1, v2, ..., vn) with respect to µ yields

n

µ
−

n∑
i=1

ln vi + (N − n)
v−µ

n ln vn

1 − v−µ
n

= 0 . (6.21)

In principle, this estimator is better than the first (6.19). In practice, it turns
out to be worse! The reason is simply that it is quite rare that the whole set
of data is available with the same quality. In addition, if the tail is a power
law, the smaller events may have a different pdf shape. Taking them into
account as in (6.21) leads to a severe distortion. It is thus better to use Hill’s
estimator using data from the first to the nth rank and test its stability as n
is progressively increased.

A rigorous justification for Hill’s estimator can be obtained from the gen-
eral expression (6.5). Let us condition the observation vn as being the nth
largest one. By virtue of Bayes’ theorem, the pdf of vn which is conditionned
in this way reads

F (vn) dvn =
(
n

1

)
p(vn) dvn

(∫ +∞

vn

p(v) dv
)n−1

, (6.22)

where the factor
(
N
n

)(
1 − ∫ +∞

vn
p(v) dv

)N−n

stems from the condition. This

expression retrieves Hill’s estimator (6.19) by maximization.
The quality of Hill’s estimator is obtained from the typical amplitude of

the fluctuations

∆µ =
(

d2pc(v1, v2, ..., vn)
dµ2

)−1/2

. (6.23)

In the limit of large n, one gets

∆µ

µ
=

1
n1/2

. (6.24)

These expressions (6.23) and (6.24) are justified through the Fisher Informa-
tion, which states that the asymptotic variance of the estimator of µ is the
inverse of the Fisher information I = −E[d2 lnL/dµ2], where L stands for the
likelihood defined in (6.18) or (6.20). In the case where several parameters
exist, I becomes a hessian matrix.

One can do better and get the full distribution of µ: asymptotically, it
takes the shape of a Gaussian distribution with variance (∆µ)2. In the sta-
tistical literature, the determination of non-asymptotic corrections to the
Gaussian law is still open. In practice, this is a very important question since
most concrete applications involve typically a few tens to a few hundred data
points. By definition, the tails of distributions have few events.
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In [903], the leading non-asymptotic correction to the Gaussian law is
given in the case where only the first n ranks are used. If µ0 is the true value,
one finds that 1/µ has a Gaussian pdf with mean 1/µ0 and variance 1/nµ2

0:

P

(
1
µ

)
=

( n

2π

)1/2

µ0e−(1/µ−1/µ0)2nµ2
0/2 , (6.25)

leading to an asymmetric distribution P (µ):

P (µ) =
( n

2π

)1/2 µ0

µ2
e−[n(µ−µ0)2]/2µ2

. (6.26)

The most probable value is

µmp = µ0
2

1 + (1 + [8/n])1/2
, (6.27)

which converges to µ0 from below, as n → +∞. Thus, there is a systematic
bias since the most probable estimator is shifted from the true value. This
bias is not negligible in practice: for n = 25, µmp = 0.93µ0, corresponding to
an error of 7%.

6.5 Power Law Distributions

6.5.1 Maximum Likelihood Estimation

There is a huge literature on the identification of power laws [216, 252, 422,
423, 458, 573, 634]. As already discussed in Chap. 5, a power law distribu-
tion is endowed with a remarkable property, known as “self-similarity” or
“scale invariance”. Indeed, the ratio of the probabilities of two values is only
a function of the ratio of these variations:

p(va)
p(vb)

=
(
va

vb

)−µ

. (6.28)

In other words, the relative occurrence of the two values is invariant with
respect to a homothetic transformation on the two values. This self-similarity
is observed to hold approximately in many natural phenomena.

We now use expression (6.5) for this case parameterized by

p(v) �v→+∞
C

|v|1+µ
, (6.29)

where C is the scale factor. To simplify, we assume that (6.29) holds for the
interval 1 ≤ v ≤ ∞. The lower bound can always be rescaled to the value 1 by
dividing v by the minimum value. For concrete applications, it may be useful
to reintroduce the minimum value vmin. Then, the scale factor C becomes
Cvµ

min.
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The maximization of F (vn) provides the most probable vn:

vmp
n =

[
(µN + 1)C
µn+ 1

]1/µ

. (6.30)

Thus, vn � n−1/µ for 1 � n ≤ N . A plot of ln vn as a function of lnn gives
a straight line with slope −1/µ. Figure 6.1 shows a rank-ordering plot of
the distribution of earthquake moments worldwide documented in the Har-
vard catalog [258]. The main body of the distribution is well-described by
a pure power law distribution with an exponent close to µ = 0.7 while the
tail for the largest earthquakes exhibits a significant departure that can be
described convincingly by an exponential tail [491, 912]. The rank-ordering
representation emphasizes the tail region.

Fig. 6.1. Log–log plot of
the rank-ordered seismic
moments M (in units of
1019 Nm) of the largest
shallow earthquakes (depth
< 70 km) in the Harvard
catalog versus its rank. The
Harvard catalog we use for
this figure [258] spans the
time interval from 1977 to
1992 for earthquakes world-
wide. The straight line shows
the best fit for ranks n ≥ 100
by a power law M ∝ n−1/µ,
giving 1/µ = 1.38, i.e.
µ = 0.72

Note that for small µ, typically less than one, a distortion to the pure
power law dependence n−1/µ occurs that must be taken into account. This
introduces a curvature in the log–log plot that has nothing to do with a change
of regime but is intrinsic to the tail of the power law distribution. In the
cumulative plot, this is reflected in a downward sloping curve. It is important
to recognize this effect before concluding a change of regime. See [712] for an
illustration of this effect.

We now characterize the fluctuations of vn for n small. For µ < 2, the
variance is not mathematically defined (it diverges) and thus cannot charac-
terize the amplitude of the fluctuations. The expression (6.5) shows that the
distribution of v1 for v1 > (NC)1/µ is also a power law

p(v1) dv1 =
NC

v1+µ
1

dv1 =
(

v1
(NC)1/µ

)−(1+µ)

d
(

v1
(NC)1/µ

)
. (6.31)
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The last expression in the r.h.s. shows that the natural variable is v/(NC)1/µ.
Thus, the amplitude of fluctuations of v1 are of order (NC)1/µ, i.e. of the
small order as v1 itself. We can make this result more precise by expanding
F (vn) in (6.5) up to second order around its maximum:

F (vn) � F (vpp
n ) − 1

2
d2F (vn)

dv2
n

(vn − vpp
n )2 + ... (6.32)

The fluctuation |vn − vpp
n | which makes F (vn) equal to half its maximum

value is

|vn − vpp
n |

vpp
n

=
(

1
µ(nµ+ 1)

)1/2

. (6.33)

The relative fluctuation amplitude is independent of N for the largest ranks
and decreases when the rank n increases, i.e. when one goes to less extreme
values.

The maximum-likelihood estimation of µ as well as its full distribution
is easily obtained by the same procedure described for the exponential case.
A more direct approach is based on the remark that the change of variable
v = ex transforms an exponential distribution p(x) = µe−µx into a power law
distribution p(v) = µ/v1+µ. The most probable value for µ in the exponential
case is thus the most probable value for the exponent of the corresponding
power law pdf. We thus get [9, 422]

µ =
1

(1/n)
∑n

i=1 ln(vi/vn)
. (6.34)

The amplitude of the fluctuations and the full distribution of µ are given
by the formulas (6.24) and (6.26) that we now derive explicitely. Let µ0 be
the true value of the exponent. In order to derive the distribution of µ from
a finite data sample, we note that

〈lnE〉|E>E∗ =
∫ ∞

E∗
lnEP (E) dE = lnE∗ +

1
µ0

. (6.35)

The quantity 〈x〉|E>E∗ is the average of x with respect to its distribution,
for those samples with E having values larger than E∗. With (6.34), which
can also be written〈

1
µ

〉
|E>En = 〈lnE〉|E>En − lnEn , (6.36)

this yields〈
1
µ

〉
|E>En =

1
µ0

. (6.37)

Next, we note that

〈(lnE)2〉|E>E∗ = (lnE∗)2 +
2 lnE∗

µ0
+

2
µ2

0

, (6.38)
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which yields

Var[lnE] = 〈(lnE)2〉|E>E∗ − 〈lnE〉2|E>E∗ =
1
µ2

0

. (6.39)

With (6.34), we obtain

Var
(

1
µ

)
= Var

(∑n
i=1 lnEi − n lnEn

n

)
=

1
nµ2

0

. (6.40)

The central limit theorem states that the distribution of
∑n

i=1 lnEi will have
an approximate normal distribution for sufficiently large n. Thus, for known
µ0, 1/µ has an approximately normal distribution of mean 1/µ0 and variance
1/nµ2

0 and the distribution P (1/µ) is given by the expression (6.25), leading
to P (µ) given by (6.26). We note again that the distribution P (µ) is skewed
owing to the prefactor µ0/µ

2 in front of the exponential term.

6.5.2 Quantiles of Large Events

We now turn to the estimation of quantiles for the large events. A typical
question of interest for the purpose of risk assessment is the following: what is
the largest typical event size that is expected over a given period of time T ?
T can be ten years (the decadal storm), a century (the centenial flood),
a thousand years (the millenium wave), etc. The quantile vT over the period
T is defined by∫ +∞

vT

p(v) dv = ε , (6.41)

where ε = 1/T and p(v) has been normalized with respect to a suitable unit
time scale (for instance, the daily time scale). This equation (6.41) is nothing
but (6.3) with n = 1, which determines the typical value vT that appears
only once in the series over the time T . For a power law pdf with exponent µ,
we obtain

vT = v0ε
−1/µ , (6.42)

where we have reintroduced the scale factor v0.
Let us now quantify the effect brought by the uncertainty on the determi-

nation of the exponent µ on the estimation of the quantile. If µ is distributed
according to (6.26), we find that the quantile is distributed according to
a log-normal distribution:

p(vT ) =
1
vT

( n

2π

)1/2 1
ln(1/ε)

e−{nµ2
0/[2(ln ε)2]}[ln(vT /v0)ε

1/µ0 ]2 . (6.43)

The average of the logarithm of the quantile and its variance are given by〈
ln
vT

v0

〉
= ln(ε−1/µ) , (6.44)
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and

Var
(

ln
vT

v0

)
= σ2 =

(ln ε)2

nµ2
0

. (6.45)

The quantile corresponding to m standard deviations σ is:

v±mσ
T = v0ε

−(1/µ)(1±m/
√

n) . (6.46)

Table 6.1 gives the decadal quantile for daily measurements for two different
values of the exponent µ.

Table 6.1. Fluctuations of decadal quantiles in units of v0 at plus or minus two
standard deviations, for two values of the exponent µ. For µ = 3.7, which is such
that the mean and variance are defined while the fourth and higher order moments
are not defined, the largest daily event typically expected once every ten years is
estimated to lie between 6.2 and 11.1 times the characteristic scale v0. For a much
smaller exponent µ = 1.5 such that the mean is defined but the variance is not
defined, the largest daily event typically expected once every ten years is estimated
to lie between 89 and 382 times the characteristic scale v0. This shows that smaller
exponents µ gives wilder fluctuations for the largest possible events

µ
v−2σ
10
v0

v−σ
10
v0

v10
v0

v+σ
10
v0

v+2σ
10
v0

3.7 6.2 7.1 8.3 9.6 11.1

1.5 89 128 184 265 382

The estimations given in the table describe the fraction of the uncer-
tainty on vT stemming only from the imperfect determination of the expo-
nent. There is another important contribution coming from the fact that,
conditioned on a fixed exponent, the distribution of vT is itself a power law
(6.31).

6.5.3 Power Laws with a Global Constraint:
“Fractal Plate Tectonics”

Plate Tectonics. Plate tectonics is a relatively new theory (1968) that has
revolutionized the way geologists think about the Earth. According to the
theory, the surface of the Earth is broken into large plates. The size and po-
sition of these plates change over time. The edges of these plates, where they
move against each other, are sites of intense geologic activity, such as earth-
quakes, volcanoes, and mountain building. Plate tectonics is a combination of
two earlier ideas, continental drift and sea-floor spreading. Continental drift
is the movement of continents over the Earth’s surface and in their change
in position relative to each other. Sea-floor spreading is the creation of new
oceanic crust at mid-ocean ridges and movement of the crust away from the
mid-ocean ridges.
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According to the theory of plate tectonics, the outermost 100 km of the
solid Earth is composed of a relatively small number of internally rigid plates
(lithosphere) that move over a weak substrate (asthenosphere). The plate
sizes and positions change over time and are driven by the internal thermal
engine of the Earth that also drives mantle convection. DeMets et al. [210]
performed a global inversion to determine the relative rotation rates of the
12 largest plates (the NUVEL-1 model) later refined into the NUVEL-1A
solution [211]. These plate edges are not sharp narrow boundaries but are
often constituted of complex systems of competing faults and other geolog-
ical structures of width extending over several hundreds of kilometers for
transform and subduction boundaries and up to thousands kilometers for
continental collisions. It is now common lore to view such tectonic defor-
mation as possessing some kind of self-similarity or fractal properties [827],
or better a hierarchical structure [711]. In addition, several researchers have
repeatedly proposed to describe this multi-scale organization of faulting by
a hierarchy of blocks of multiple sizes [23, 336, 355]. In these models, blocks
slide against each other, rotate, lock at nodes or triple junctions which may
represent the loci of major earthquakes, in a way similar to (but at a reduced
scale compared to) the relative motion of the major tectonic plates. An ex-
ample of a complex network of faults is observed in the broad San Andreas
transform boundary between the Pacific and the North American plates in
California, for which Bird and Rosenstock [93] have suggested 21 possible
microplates within southern California alone.

Keeping in mind these ingredients of a few major plates at large scales on
one hand and a hierarchical self-similar organization of blocks at the bound-
ary scale on the other hand, the recent reassessment of present plate bound-
aries on the Earth by P. Bird [92] is particularly interesting: taking into
account relative plate velocities from magnetic anomalies, moment tensor so-
lutions, and/or geodesy, to the 14 large plates whose motion was described
by the NUVEL-1A poles, Bird’s model in PB2001 included 28 additional
small plates, for a total of 42 plates. In his latest revision, he has added ten
more even smaller plates leading to a total of 52 reported plates in [92]. Bird
suggests that the cumulative-number/area distribution for his model follows
a power-law for plates of less than 1 steradian of area [92].

Power Law Distribution of Plate Sizes. We summarize the results of
the analysis of the 42 plates of the PB2001 model, obtained in [909]. The
latest 10 additional plates are the smallest ones and P. Bird argues that these
population is not complete [92]. The statistical analysis of such a data set is
very difficult due to its small size N = 42 but is not impossible. Figure 6.2
shows the complementary cumulative number N(A) of plates as a function
of area A in steradians, i.e., the number of plates with an area equal to or
larger than A.

Most of the data except for a few largest plates follow a linear dependence
in the double log-scale of the figure. The slope of this straight line is close
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Fig. 6.2. Complementary cu-
mulative distribution of the
areas of tectonic plates in
the PB2001 model of P. Bird
(open circles) compared to
the fit with the formula (6.49)
for a power law (central long-
dashed line) with exponent
µ = 0.25 and a = 0.002.
The small-dashed line and
medium-dashed line provide
the 90% confidence interval.
Reproduced from [909]

to 0.25. We first compare this sample with a pure power law (the Pareto
distribution). For this purpose we use the rank-ordering method previously
discussed. We put the sample into descending order A1 ≥ A2 ≥ ... ≥ AN .
The probability density function (PDF) of the n-th rank, denoted φn,N (x),
is well-known and we rewrite (6.5) here for convenience

φn,N (x) = (N − n+ 1)
(
N

n

)
FN−n(x)(1 − F (x))n−1f(x) , (6.47)

where F (x), f(x) are the distribution function (DF) and PDF of the random
values in question. Putting the Pareto law F (x) = 1 − (a/x)µ, x ≥ a, into
(6.47), we get

φn,N (x) ∝ (1 − (a/x)µ)n−1
xµ(N−n+1)−1 . (6.48)

The mode Mn,N of the PDF (6.48) (i.e., the maximum of the PDF) is the
most probable value of the random variable An:

Mn,N = a

(
Nµ+ 1
nµ+ 1

)1/µ

, (6.49)

which is the same as (6.30). Besides, an interval around the mode contain-
ing some prescribed probability (say, 90%) can be derived from the density
φn,N (x). The dependence (6.49) with µ = 1/4 is shown as the long-dashed
line in Fig. 6.2. The two short-dashed lines represent the upper/lower lim-
its of the 90%-confidence interval. The data are well accounted for by the
power law, except, perhaps, for the three smallest ranks, i.e. the three largest
plates, the Pacific, the Antarctica, and the Africa plates, which fall outside
the confidence interval.
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“Finite-Size” Constraint on the Distribution of Plate Sizes. From
a visual inspection of Fig. 6.2, it might be argued that the deviation from the
power law prediction (6.49) occurs somewhat earlier, say, at rank n = 7, i.e.,
the seven largest plates with area more than 1 steradian belong to a differ-
ent population than the rest of the plates. Following this hypothesis that is
refuted in [909] (see below), one could argue that the largest continent and
ocean plates are commensurable with the size of the convection cells in the
upper mantle while the smaller plates appeared as a result of the interaction
and collision between the larger plates. The study of [909] provides a test
of the hypothesis [24] that a superficial self-organizing process is sufficient
for understanding the mosaic of plates, in contrast with the idea that the
lithosphere necessarily mirrors the planform of mantle convection.

The following analysis shows that the full distribution of the 42 plate sizes
can be fully accounted by assuming a power law distribution constrained by
the “finite-size” condition that the sum of areas over all plates must sum up
to 4π.

Fig. 6.3. Medians M1, ..., M42 (continuous line) and their corridor at the 95% con-
fidence level delimited by the two dotted lines of the conditional Pareto distribution
φ(x1, ..., x42|µ) given by (6.51) compared with the empirical cumulative distribu-
tion of the 42 plate areas (circles linked by straight segments), documented in the
PB2001 model of P. Bird. Reproduced from [909]

The distribution gN,C(x) of sample values x1, ..., xN conditioned by the
constraint

SN = x1 + ...+ xN = C , (6.50)

where C is a constant (4π for the plates) is modified from its unconditional
Pareto density expression f(x) = µaµ/x1+µ for x ≥ a and f(x) = 0 for
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x < a. The lower threshold (the minimum value) for the plate data is a =
0.00178 steradian and corresponds to the smallest documented plate in the
PB2001 model. Denoting the unconditional density of the sum Sk = x1 + ...+
xk, k = N − 1, N by sk(x), we have gN,C(x) = sN−1(C − x)f(x)/sN (C), for
a ≤ x ≤ C. Thus, the constraint (6.50) decreases the unconditional Pareto
density f(x) by a factor sN−1(C − x)/sN (C) which acts as a “taper.”

In order to use the Maximum Likelihood method for the estimation of
the exponent µ, we need the vectorial distribution of conditional sample to
take into account the interdependence between the different variables (areas
of the plates) x1, ..., x42 induced by the constraint (6.50). The corresponding
likelihood function is therefore

φ(x1, ..., x42|µ) =
δ(x1 + ...+ x42 − 4π)

s42(4π)
f(x1|µ)...f(x42|µ) . (6.51)

The resulting ML estimate is µ = 0.25 ± 0.05. With this value, we generate
an artificial sample of 1045 conditional 42-dimensional (42D) vectors with
the condition (6.50) with C = 4π. Rank-ordering each of these 1045 vectors,
we determine their sample medians M1, ...,M42, where Mj is the median of
the j-th rank. These conditional medians are slightly smaller than given by
(6.49) for the unconditional Pareto distribution. The conditional distribution
(6.51) allows us to construct a confidence domain for the 42D random vectors,
defined as a “corridor” of the form [cMj ; (1/c)Mj], the constant c = 0.244
being chosen such that 95% of vectors fall within this corridor. The medi-
ans M1, ...,M42 and their corridor are shown in Fig. 6.3. All samples of the
tectonic plates falls within the 95% confidence corridor, showing that (in
contrast with the “pure” Pareto used in Fig. 6.2) the Pareto model together
with the total area constraint (6.50) accounts satisfactorily for all the data,
including the largest plates [909].

Given this strength of the validity of the Pareto distribution for the 42
plates documented here, one can expect that it can be extrapolated beyond
this range to smaller yet undetected plates. Using the complementary Pareto
distribution (a/x)µ with a = 0.00178 steradian and µ = 0.25, this extrapo-
lation predicts 100 plates larger than 1.35 × 10−4 steradian (5, 500 km2 or
74× 74 km2) [92]. The total area needed to define another 58 plates ranging
from this size up to the smallest size in PB2001 would be only about 0.028
steradians, which could be taken from large plates like EU and NA without
materially affecting their areas. As discussed in [92], the places where ad-
ditional small plates are most likely to be recognized are within the zones
of distributed deformation identified in [92], which have total area of 0.838
steradians (6.7% of Earth).

This analysis [909] on a universal fractal character of plate fragmenta-
tion does not prevent the existence of some underlying distinctions. For in-
stance, P. Bird (private communication and [92]) proposes three main tectonic
origins for plates: plume-assisted rifting for the larger plates (ranks 1–8 in
Figs. 6.2 and 6.3), continental collision stress for the intermediate plate sizes



6.6 The Gamma Law 179

(ranks 8–20), and back-arc spreading for the smallest plates (ranks 21–42).
In Figs. 6.2 and 6.3, one can discern slightly different patterns of the tail
behavior of these three subgroups. However, any formal statistical analysis
of these possible distinctions would be, to our opinion, excessive due to the
extreme smallness of the data set.

This study suggests that the plate mosaic may be the result of a self-
organized process of fragmentation and aggregation (see Sect. 16.3.2 and [712,
909]), readily reorganized by stress changes. Thus, in contrast with the idea
that the lithosphere necessarily mirrors the planform of mantle convection,
the texture of tectonic plates may have simple and surficial explanations. This
suggests to revise the model of plate tectonics in terms of a dynamical model
of plates with creation, fragmentation and destruction that may occur at all
scales. At any given time, the plate sizes are somewhat arbitrary and chang-
ing according to an ever evolving dynamics. Acknowledging the robustness of
self-similar structures in general and of power laws in particular, we conjec-
ture that the present observation of a fractal structure of plates is a robust
property of plate tectonics that should be used to further our understanding
of plate self-organization through the super-continent cycle.

6.6 The Gamma Law

The Gamma law is defined by

p(v) dv =
vµ
0

v1+µ
exp

(
− v

vg

)
dv . (6.52)

For v < vg, the Gamma law reduces to a pure power law which becomes
progressively an exponential for v > vg. The Gamma distribution is found
in critical phenomena in the presence of a finite size effect or at a finite dis-
tance from the critical point. It is also expected more generally as a result of
constraints in the maximum-likelihood estimation of power law distributions.
The Gamma law has been advocated for the description of the Gutenberg–
Richter distribution of earthquake sizes [491]. The self-similarity holds up to
the value vg and is broken for larger values due to the appearance of this
characteristic scale.

The rank-ordering method allows us to determine this distribution (6.52).
In this goal, we express the cumulative distribution P>(v) =

∫∞
v dx p(x) dx

under a simple approximate form

Papp(v) � vµ
0

vµ
exp

(
− v

vg

)(
v

vg
+ (1 + µ)

(
1 − vg

v + (1 + µ)vg

))−1

.

(6.53)

The difference [Papp(v) − P (v)]/P (v), for vg = 1 and µ = 1.7 and for v
between 0 and 10, is no more than 4.6%. If a better precision is needed,
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a more complex formula can be written. Once the cumulative distribution
function (6.53) is obtained, this gives the rank n in the rank ordering plot.

6.7 The Stretched Exponential Distribution

It is useful to extend the toolbox of “fat tail” distributions that can be used
to describe the distributions of natural phenomena. The power-exponential
distribution is defined by

p(v) dv = α

(
v

v0

)(α−1)

e−(v/v0)α dv
v0

(v > 0) . (6.54)

This law introduces a characteristic scale v0 and is parameterized by the ex-
ponent α. The exponential is the special case α = 1. The power law with
µ → 0 is recovered for the special case α → 0. The smaller α is, the larger
is the probability to observe large values. The case where α < 1 is called
the stretched exponential. The stretched exponential provides an interesting
alternative for the description of fat tails, which is intermediate between the
exponential and the power laws. We have shown in Chap. 3 [318] that it nat-
urally occurs in the extreme regime of multiplicative processes. It has been
found to provide a reasonable and parsimonious description of many distribu-
tions in Nature and in the Economy [547]. In the next section, we describe its
properties and some generalizations and give a review of maximum likelihood
methods to estimate its parameters.

As we already said, the law (6.54) has all its moments finite. The first two
read 〈

v

v0

〉
=

1
α
Γ

(
1
α

)
(6.55)

and 〈(
v

v0

)2
〉

=
2
α
Γ

(
2
α

)
, (6.56)

where Γ (x) is the Gamma function Γ (x) =
∫∞
0
tx−1e−t dt reducing to (x−1)!

for integer x.
Proceeding as before for the other distributions, we obtain the expression

vn of the nth rank:

vα
n � −vα

0 lnn+B , (6.57)

where B is a constant. Thus, a plot of vα
n as a function of lnn gives a straight

line (up to logarithmic corrections) which qualifies the stretched exponential.
The slope gives an estimation of v0.

This is illustrated in Fig. 6.4 for the distribution of price variations: it plots
the n-th price variation taken to the power 0.7 for the French Franc expressed
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in German marks (in the period from 1989 to the end of 1994) as a function
of the decimal logarithm of the rank. The positive variations are represented
with square symbols and the negative variations represented with diamond
symbols. We observe an excellent description with straight lines over the full
range of quotation variations. We note that the exponent α is smaller than 1,
which corresponds to a “fatter” tail than an exponential, i.e. the existence
of larger variations. Note that the characteristic scales v0 of the positive
and negative exchange rate variations are different, characterizing a clear
asymmetry with larger negative variations of the Franc expressed in Marks.
This asymmetry corresponds to a progressive depreciation of the Franc with
respect to the Mark occurring in bursts rather than as a continuous drift. One
could have imagined that such a depreciation would correspond to a steady
drift on which are superimposed symmetric variations. We find something
else: the depreciation is making its imprints at all scales of price variations
and is simply quantified, not by a drift, but by a different reference scale v0.
For positive variations, we have 〈v〉 = 1.4v0 = 0.17% and v95% = 5.6v0 =
0.7%. The difference between the mean 〈v〉 and the 95%-confidence extreme
v95% clearly illustrates the wild character of the fat tail of the Franc–Mark
exchange rate variations. For negative variations, we have 〈v〉 = 0.2% and
v95% = 4.6v0 = 0.7%.

The maximum-likelihood method provides the following estimates for v0
and α

vα
0 =

1
n

n∑
i=1

vα
i − vα

n , (6.58)

and

1
α

=

(∑n
i=1 v

α
i ln vi − vα

n ln vn

)
∑n

i=1 v
α
i − vα

n

− 1
n

n∑
i=1

ln vi . (6.59)

The probability that the quantile vT is larger than or equal to v∗ is given
by

P (vT ≥ v∗) = 1 − [1 − e−(v∗/v0)α

]N � 1 − e−Ne−(v∗/v0)α

, (6.60)

where N is the number of measurements during the period T . If p is the
confidence level for the quantile vT , i.e. P (vT ≥ v∗) = p, we find

v∗ = v0

(
ln

N

ln(1/1 − p)

)1/α

. (6.61)

6.8 Maximum Likelihood and Other Estimators
of Stretched Exponential Distributions

In this section, we survey a large body of the literature to provide a syn-
thesis of useful methods for estimating the parameters of stretched expo-
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Fig. 6.4. Rank-ordering plot of the positive and negative exchange rates between
the French Franc and the German mark in the period from 1989 to the end of 1994.
Taken from [547]

nentials from a finite set of observations. This literature is scattered across
three essentially non-overlapping fields, mathematics concerned with “sub-
exponentials”, physics with stretched relaxation exponentials, and the largest
and most relevant body of literature found in the engineering and reliability
disciplines concerned with Weibull distributions.

6.8.1 Introduction

Definition and Applications. The two-parameter stretched exponential
(SE) complementary cumulative distribution is

P>(x) = e−(x/χ)c

, for x ≥ 0 . (6.62)

Its pdf is p(x) = −dP>(x)/dx :

p(x) dx = c

(
x

χ

)c−1

e−(x/χ)c dx
χ

(x ≥ 0) . (6.63)

Stretched exponentials are characterized by an exponent c < 1. The bor-
derline c = 1 corresponds to the usual exponential distribution. For c < 1,
the distribution (6.62) presents a clear downward curvature in a log–log plot
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while exhibiting a relatively large apparent linear behavior (that can thus be
mistaken for a limited power law regime) all the more so, the smaller the
shape parameter c is. The distribution (6.62) can thus be used to account
both for a limited scaling regime and a cross-over to non-scaling. When us-
ing the stretched exponential pdf, the rational is that the deviations from
a power law description is fundamental and not only a finite-size correction.

In a recent empirical study [547], we find that the stretched exponen-
tial (6.62) provides an parsimonious description of the distribution of radio
and light emissions from galaxies, of US GOM OCS oilfield reserve sizes, of
World, US and French agglomeration sizes, of the United Nation 1996 coun-
try sizes, of daily Forex US–Mark and Franc–Mark price variations, and of
the Raup–Sepkoskis kill curve in evolution. Even the distribution of biologi-
cal extinction events is much better accounted for by a stretched exponential
than by a power law. We also find that the distribution of the largest 1300
earthquakes in the world from 1977 to 1992 and the distribution of fault dis-
placements can be well-described by a stretched exponential. Similar results
are obtained for the temperature variations over the last 420 000 years ob-
tained for ice core isotope measurements and for the distribution of citations
of the most cited physicists in the world.

In condensed-matter physics, stretched exponential laws are familiar.
They are found to describe the rate dependence of anomalous relaxations in
glasses and in the Ising ferromagnet in two dimensions. The term “stretched”
reflects the fact that the relaxation is slower than exponential with a time
dependence tc in the exponential which is slower than t and thus corresponds
to an effective exponential time teff = tc such that t = t

1/c
eff is effectively

“stretched”.
There are several mechanisms that produce stretched exponentials. One

recently discovered is based on a generalization of the central limit theorem of
the tail of product of random variables [318]. In this scenario, the exponent c
is the inverse of the number of generations (or products) in a multiplicative
process.
Sub-Exponentials. The stretched exponentials are known in the literature
under other names. In mathematics, they belong to the class of so-called
“subexponentials” [274]. Technically, subexponential distributions P>(x) are
defined by the following property :

limx→+∞
1 − P ∗2

> (x)
1 − P>(x)

= 2 , (6.64)

where ∗ denotes the convolution product. P ∗2
> is thus the cumulative distri-

bution for the sum of two i.i.d. variables with cdf P>(x). In practice, this
means that the tail of the distribution of the sum has the same form as the
initial distribution. This property is thus similar to the stability condition for
Gaussian and Lévy laws, except that it survives only in the tail. The stretched
exponential with c < 1 belongs to this class (6.64). However, there are many
other functions in this subexponential class formally defined by (6.64).
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For the stretched exponentials, we can express (6.64) as follows : the tail
of the sum SN of N stretched exponential distributed variables has the same
order of magnitude as the tail of the maximum variable Xmax

N among the N
ones :

Probability(SN ≥ x)
Probability(Xmax

N ≥ x)
→x→+∞ 1 . (6.65)

This is rather remarkable considering that the typical values are very different
since SN ≈ N〈X〉 ∼ N is much larger, for large N , than the typical value of
the maximum Xmax

N ∼ (lnN)1/c. The proof goes as follows. We ask what are
the set of positive Xi’s such that

∑N
i=1X

c
i is minimum so as to make maxi-

mum the probability of this configuration, while the condition
∑N

i=1Xi > x

is obeyed. In this goal, we rewrite the constraint as
∑N

i=1 xi > 1 where
xi ≡ Xi/x. The minimum of

∑N
i=1X

c
i = xc

∑N
i=1 x

x
i is thus minimum for the

minimum of
∑N

i=1 x
c
i . We see immediately that, since c < 1,

∑N
i=1 x

c
i ≥ 1

derives from
∑N

i=1 xi ≥ 1. The configuration that makes the inequality as
the minimum one, i.e. transforms it into an equality are those such that all
xi’s are all very small (→ 0) except one almost equal to 1. The corresponding
probability is exp[axc] larger than any other configuration, where a is a con-
stant depending on the configuration of the Xi’s. We thus see how (6.65)
emerges.

Note that this property (6.65) on the tails is not in contradiction with the
fact that the expectation of ratio SN/XN tends to infinity when the sample
size N → ∞. This must be contrasted to the power law distribution with
exponent α < 1 which is such that the ratio SN/X

max
N goes to a constant

1/(1 − α) ( [293] in Chap. XIII). Notwithstanding this property that the
tail of the maximum is equivalent to the tail of the sum for subexponential
distributions, all the moments of stretched exponentials at all orders are
finite. This distinguishes the stretched exponential from power laws. The
law of large numbers and the central limit theorem are valid for the sum of
stretched exponential distributions.

The references [37, 175, 271–273, 275, 353, 515, 516, 656, 740, 951, 952,
1020] discuss mathematical properties of general subexponential distribu-
tions.

Weibull Distributions. In the field of reliability, the distribution (6.62)
is known as the Weibull distribution. It is widely used to fit distributions
of strengths of materials and of failure times. It has a long history starting
with Fisher and Tippet [305] who introduced a reduced from of the Weibull
distribution for extreme values, followed by [1006] to describe distribution
of material failure strengths. We refer to [386] for an historical review of
Weibull’s distribution.

For failure applications, the variable x in (6.62) can be the stress at failure
or the lifetime of the structure. c is called the Weibull shape parameter and
χ is the Weibull scale parameter.
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In these applications, an additional parameter is often added in the form

P>(x) = e−(x−b/χ)c

, for x ≥ b . (6.66)

b > 0 is the minimum stress or lifetime. Introducing the shift parameter b
may be of interest to describe the fact that the stretched exponential may
not describe accurately the very small values.

In reliability analysis, it is customary to use “Weibull” paper, similar to
the log–log paper, such that

ln[− lnP>(x)] = c ln
x− b

χ
(6.67)

is linear in x. The slope gives the exponent c directly.

6.8.2 Two-Parameter Stretched Exponential Distribution

Maximum Likelihood Estimation. Suppose we observe 0 < x1 ≤ x2 ≤
.... ≤ xn. The likelihood function is

L ≡
n∏

i=1

p(xi) . (6.68)

The log-likelihood is

lnL = n ln
c

χ
+ (c− 1)

n∑
i=1

ln
xi

χ
−

n∑
i=1

(
xi

χ

)c

. (6.69)

Maximizing lnL with respect to χ gives

0 =
∂ lnL
∂χ

→ χc =
1
n

n∑
i=1

xc
i . (6.70)

Maximizing lnL with respect to c gives

0 =
∂ lnL
∂c

→ 1
c

= h(c) , (6.71)

where

h(c) ≡
∑n

i=1 x
c
i lnxi∑n

j=1 x
c
j

− 1
n

n∑
i=1

lnxi . (6.72)

Note that the equation (6.71) with (6.72) involves c alone and can be
solved by iterative methods. Then, one substitutes the resulting value for c
in (6.70) to get χ.

Farnum and Booth [289] have shown that

1. h(c) is an increasing function of c for c ≥ 0.

2. limc→+∞ h(c) = lnxn − 1
n

n∑
i=1

lnxi ≡ V . (6.73)
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3. h(0) = 0.
4. V is always positive or zero and vanishes only when all xi’s are equal.
5. For V > 0 (interesting case), the solutions χ̂ and ĉ of (6.70) and (6.71)

are unique.
6. From the data, it is easy to calculate V . Then, we have the following

lower bounds

ĉ >
1
V

and χ̂ >

[
1
n

n∑
i=1

x
1/V
i

]V

. (6.74)

7. Thus, 1/V provides a possible initial value of the iterative solution of
(6.71) with (6.72).

8. Empirical tests [289] give a better starting point equal to 2/V for c in
the iterative solution of (6.71) with (6.72).

The computation may be based on Newton–Raphson or quasi-Newton
iterative method [853]. The Newton–Raphson method depends on evaluation
of the first- and second-order derivatives of the log likelihood in each iteration,
whereas the quasi-Newton methods require only the first-order derivatives
to be evaluated explicitely and use an approximation to the second-order
derivatives. In both case, it is advisable to incorporate checks to make sure
the log likelihood increases at each iteration (if not, use a shorter step length
or switch to the direction of steepest descent). It is usually recommented to
construct the probability plots to assess goodness of fit.

Qiao and Tsokos [757] have introduced an iterative precedure for esti-
mating the parameters c and χ that always converges and does not depend
on the initial point of the iteration. This method converges faster than the
popular Newton–Raphson method (which in addition depends on the initial
point and which does not always converge). Defining

s1(c) =
n∑

i=1

lnxi , s2(c) =
n∑

i=1

xc
i , (6.75)

s3(c) =
n∑

i=1

xc
i lnxi , s2(c) =

n∑
i=1

xc
i (lnxi)2 , (6.76)

the “simple iterative procedure” (SIP) invented by Qiao and Tsokos [757]
corresponds to iterate

ck+1 =
ck + q(ck)

2
, (6.77)

where

q(c) =
ns2(c)

ns3(c) − s1(c)s2(c)
. (6.78)

The convergence is at least at a geometrical rate of 1/2.
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Thomas et al. [958] have developed a genetic algorithm for Weibull param-
eter estimation. The method uses a simultaneous random search function by
integrating the principles of the genetic algorithm and the methods of max-
imum likelihood estimation. The results indicate that GA is superior to the
Newton–Raphson method. Its major advantage is being able to find opti-
mal values withoug requiring good initial estimates of the Newton–Raphson
method. This result is attributed to the GA’s ability to search multiple points
simultaneously over a wider search space. Use of GA methods may be recom-
mended for generalizations discussed below of the Weibull distribution with
a larger number of parameters.

Thoman et al. [956] have calculated the asymptotic covariance matrix of
the estimated parameters (χ̂, ĉ). We give here the square root of the elements
of the covariance matrix :

σχ

χ
=

1.053
c

1√
n
,

σc

c
= 0.780

1√
n
, σχ,c = 0.507

√
χ

n
. (6.79)

Cohen [176] gives the expressions of the second-order derivatives of the
logarithm of the likelihood function. They allow us to obtain the confidence
level on the values of the parameters since

lnL(θ, c) = lnL(θ̂, ĉ) +
1
2
(θ − θ̂)2

∂2 lnL
∂θ2

∣∣∣∣
θ̂,ĉ

+(θ − θ̂)(c− ĉ)
∂2 lnL
∂θ∂c

∣∣∣∣
θ̂,ĉ

+
1
2
(c− ĉ)2

∂2 lnL
∂c2

∣∣∣∣
θ̂,ĉ

+ h.o.t. , (6.80)

where h.o.t. means higher order terms. θ is defined by

θ = χc . (6.81)

We have [176]

− ∂2 lnL
∂c2

∣∣∣∣
θ̂,ĉ

=
n

ĉ2
+

1

θ̂

n∑
i=1

xc
i (lnxi)2 . (6.82)

∂2 lnL
∂θ∂c

∣∣∣∣
θ̂,ĉ

=
1

θ̂2

n∑
i=1

xc
i lnxi . (6.83)

− ∂2 lnL
∂θ2

∣∣∣∣
θ̂,ĉ

= − n

θ̂2
+

2

θ̂3

n∑
i=1

xc
i . (6.84)

Asymptotic Variance-Covariance of Maximum Likelihood Estima-
tors of the SE Parameters. Malevergne et al. [584] provide the asymptotic
variance-covariance of maximum likelihood estimators of the parameters of
the stretched exponential distribution (6.62). Actually, they consider a slight
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generalization of the stretched-exponential (SE) or Weibull parametric family
with complementary distribution function

F̄ = 1 − F (x) = exp
[
−

(
x

χ

)c

+
(
u

χ

)c]
x ≥ u , (6.85)

where c, χ are unknown parameters and u is a known lower threshold.
It is convenient to take a new parameterization of the distribution (6.85),

more appropriate for the derivation of asymptotic variances. It should be
noted that this reparameterization does not affect the asymptotic variance
of the form parameter c. In the new parameterization, the complementary
distribution function has the form:

F̄ (x) = exp
[
−v

((x
u

)c

− 1
)]
, x ≥ u . (6.86)

Here, the parameter v involves both unknown parameters c, d and the known
threshold u:

v =
(
u

χ

)c

. (6.87)

The log-likelihood L for sample (x1 . . . xN ) has the form:

L = N ln v +N ln c+ (c− 1)
N∑

i=1

ln
xi

u
− v

N∑
i=1

[(xi

u

)c

− 1
]
. (6.88)

The Fisher matrix Φ reads:

Φ =

(
E

[−∂2
vL

]
E

[−∂2
v,cL

]
E

[−∂2
c,vL

]
E

[−∂2
cL

]
)
. (6.89)

We find:
∂2L

∂v2
= −N

v2
,

∂2L

∂v ∂c
= −N 1

N

N∑
i=1

(xi

u

)c

ln
xi

u

N→∞−→ −NE
[(x
u

)c

ln
x

u

]
,

∂2L

∂c2
= −N

c2
−Nv

1
N

N∑
i=1

(xi

u

)c

ln2 xi

u

N→∞−→ −N
c2

−NvE
[(x
u

)c

ln2 x

u

]
.

After some calculations we find:

E
[(x
u

)c

ln
(x
u

)]
=

1 + E1(v)
cv

, (6.90)
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where E1(v) is the integral exponential function:

E1(v) =
∫ ∞

v

e−t

t
dt . (6.91)

Similarly we find:

E
[(x
u

)c

ln2 x

u

]
=

2ev

vc2
[E1(v) +E2(v) − ln(v)E1(v)] , (6.92)

where E2(v) is the partial derivative of the incomplete Gamma function:

E2(v) =
∫ ∞

v

ln(t)
t

e−t dt =
∂

∂a

∫ ∞

v

ta−1e−t dt
∣∣∣∣
a=0

=
∂

∂a
Γ (a, x)

∣∣∣∣
a=0

. (6.93)

The Fisher matrix (multiplied by N) is given by

NΦ =

⎛
⎜⎝

1
v2

1 + evE1(v)
cv

1 + evE1(v)
cv

1
c2

(1 + 2ev [E1(v) +E2(v) − ln(v)E1(v)])

⎞
⎟⎠
(6.94)

The covariance matrix B of ML-estimates (ṽ, c̃) is equal to the inverse of
the Fisher matrix. Thus, inverting the Fisher matrix Φ in equation (6.94) we
find:

B =

⎛
⎜⎝

v2

NH(v)
[1 + 2evE1(v) + 2evE2(v) − ln(v)evE1(v)] − cv

NH(v)
[1 + evE1(v)]

− cv

NH(v)
[1 + evE1(v)]

c2

NH(v)

⎞
⎟⎠

(6.95)

where H(v) has the form:

H(v) = 2evE2(v) − 2 ln(v)evE1(v) − (evE1(v))2 . (6.96)

Thus, the matrix (6.95) provides the desired covariance matrix.
We present here as well the covariance matrix of the limit distribution of

ML-estimates for the SE distribution on the whole semi-axis (0,∞):

1 − F (x) = exp(−gxc), x ≥ 0 . (6.97)

After some calculations by the same scheme as above we find the covari-
ance matrix B of the limit Gaussian distribution of ML-estimates (g̃, c̃):

B =
6

Nπ2

⎛
⎝ g2

[
π2

6
+ (γ + ln(g) − 1)2

]
gc[γ + ln(g) − 1]

gc[γ + ln(g) − 1] c2

⎞
⎠ (6.98)

where γ is the Euler number: γ � 0.577 215 . . .
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Testing the Pareto Model Versus the (SE) Model Using Wilks’
Test. Malevergne et al. [584] have discovered that the Pareto power law
distribution is a special limit of the Weibull or stretched exponential (SE)
family. Consider the parameterization (6.85) and the limit c→ 0 and u > 0.
In this limit, and provided that

c

(
u

χ

)c

→ β, as c→ 0 , (6.99)

the (SE) model goes to the Pareto model. Indeed, we can write

c

χc
xc−1 exp

(
−x

c − uc

χc

)

= c

(
u

χ

)c
xc−1

uc
exp

[
−

(
u

χ

)c ((x
u

)c

− 1
)]

,

� βx−1 exp
[
−c

(
u

χ

)c

ln
x

u

]
, as c→ 0

� βx−1 exp
[
−β ln

x

u

]
,

� β
uβ

xβ+1
, (6.100)

which is the pdf of the Pareto power law model with tail index β. This implies
that, as c → 0, the characteristic scale χ of the (SE) model must also go to
zero with c to ensure the convergence of the (SE) model towards the (PD)
model.

This shows that the Pareto model can be approximated with any desired
accuracy on an arbitrary interval (u > 0, U) by the (SE) model with pa-
rameters (c, χ) satisfying equation (6.99) where the arrow is replaced by an
equality. Although the value c = 0 does not give strickly speaking a Stretched-
Exponential distribution, the limit c→ 0 provides any desired approximation
to the Pareto distribution, uniformly on any finite interval (u, U). This deep
relationship between the SE and power law models allows us to understand
why it can be very difficult to decide, on a statistical basis, which of these
models fits the data best [547, 584].

We use this insight to show how to develop a formal statistical test of the
(SE) hypothesis f1(x|c, b) versus the Pareto hypothesis f0(x|b) on a semi-
infinite interval (u,∞), u > 0. Here, we use the parameterization

f1(x|c, b) = bucxc−1 exp
[
−b
c

((x
u

)c

− 1
)]

; x ≥ u (6.101)

for the stretched-exponential distribution and

f0(x|b) = b
ub

x1+b
; x ≥ u (6.102)

for the Pareto distribution.
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Theorem [585]. Assuming that the sample x1 . . . xN is generated from the
Pareto distribution (6.102), and taking the supremums of the log-likelihoods
L0 and L1 of the Pareto and (SE) models respectively over the domains
(b > 0) for L0 and (b > 0, c > 0) for L1, then Wilks’ log-likelihood ratio
W [761]:

W = 2

[
sup
b,c

L1 − sup
b
L0

]
, (6.103)

is distributed according to the χ2-distribution with one degree of freedom, in
the limit N → ∞.

This theorem is very interesting because it allows us to use the full ap-
paratus of statistical testing of nested-hypotheses. Without this theorem,
the comparison of the Stretched-Exponential versus the Pareto distribution
should in principle require that we use the methods for testing non-nested hy-
potheses [359], such as the Wald encompassing test or the Bayes factors [498],
which are much weaker. Indeed, the Pareto model and the (SE) model are
not, strictly speaking, nested. However, the Theorem shows that the Pareto
distribution is a limit case of the Stretched-Exponential distribution, as the
fractional exponent c goes to zero. In addition, it shows that we can use the
standard Wilks’ log-likelihood ratio [761] and corresponding statistics. We
refer to [584] for the proof of the theorem and for the empirical tests using
the Wilk procedure on empirical financial data.

Small Data Sets and Unbiasing Methods. General results on the prin-
ciples of likelihood imply that the maximum likelihood estimators of the
shape c and scale χ parameters based on independent and identically dis-
tributed sample of size n should be asymptotically unbiased, with variances
obtaining the appropriate Cramer–Rao bound: expressions for the asymptotic
bias in ĉ and χ̂ are both of order 1/n. Thus, for large samples, it is impossible
to outperform maximum likelihood estimators in terms of estimator accuracy
in any systematic way. However, we emphasize that these results are asymp-
totic. It is known that the bias observed for estimates calculated in small to
moderate samples need not be insignificant. This small-sample behavior has
prompted research into alternative methods for estimating the parameters of
the Weibull distribution.

The estimators of χ and c discussed above usually assume that the sam-
ple size is large and/or the observations include no outliers. However, real
data often contradict these assumptions; these estimators may then not al-
ways give desirable results. One answer is to get rid of outliers, but for small
sample sizes, elimination of data is difficult and not always a good idea. The
alternative is to find a robust estimation method when outliers are present.
A suitable solution is the bootstrap method [264]. In this method, the de-
termined distribution P̂>(x) in terms of the parameters χ̂ and ĉ is used to
generate many sets of n i.i.d. random variables obtained from the initial data
set by replacing about 1/e ≈ 37% of the points by duplicated data drawn
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from the distribution P̂>(x). On each of these n data points sets, the esti-
mation procedures for the parameters χ and c are applied. This allows one
to calculate the interval of uncertainty on the parameters. This bootstrap
method has been applied to the Weibull distribution in [831].

For small data sets (n < 20), unbiasing methods have thus been pro-
posed for the estimation of the Weibull parameters. In [129, 791], compar-
isons between several unbiasing methods have been performed. The following
unbiasing methods have been found to exhibit satisfactory performance, in-
dependently of the value of the shape parameter c and the sample size n. The
improved Ross method, valid for c, gives the unbiased ĉU as

ĉU = ĉML
n− 1.93
n− 0.6

, (6.104)

where ĉML is the maximum likelihood estimate given above. The modified
Harter and Moore algorithm, valid for χ, is applied to the expected value of
the sampling distribution of χ and reads

χ̂U = χ̂ML
n1/ĉΓ (n)
Γ (n+ 1/ĉ)

, (6.105)

where Γ (x) is the Gamma function equal to (x − 1)! for integer x. The es-
timates given by these two formulas do not differ significantly from the true
values.

Dubey [246] presents results of a Monte Carlo study on the problem of
the small sample properties of the moment and the maximum likelihood esti-
mators of Weibull parameters. He concludes that the moment and maximum
likelihood estimators of the Weibull parameters may not be found satisfactory
when the sample size is small.
Weighted Least-Square Linear Regression Method. Bergman [79] has
shown that the conventional least-square linear regression method can be
improved by using an appropriate weight function

Wi =
(
P>(xi) lnP>(xi)

)2

. (6.106)

This weight function is to be incorporated into the sum of squares of the
deviations of the data for the straight line fit. The weight function varies
strongly with P>(xi) and has a peak at P>(xi) = 1/e ≈ 0.37, where x is
equal to the characteristic value χ. This approach has been implemented by
Chandrasekhar [157] for the estimation of the Weibull parameters.

Jacquelin [454] gives the least square method estimations

ĉ =

n∑
i=1

lnxi

n∑
i=1

ln ln(1/P>(xi)) − n

n∑
i=1

lnxi ln ln(1/P>(xi))

( n∑
i=1

lnxi

)2

−n
n∑

i=1

(lnxi)2
,

(6.107)
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χ̂ = exp
(

1
n

n∑
i=1

lnxi − 1
nĉ

n∑
i=1

ln ln
1

P>(xi)

)
. (6.108)

P>(xi) can be estimated from the rank ordering of the xi’s : noting x1 ≥
x2 ≥ ... ≥ xn, we have P>(xi) ≈ i/n. Jacquelin [454] also gives extended
tables to evaluate the confidence bounds for the Weibull parameter estimates
in the cases of the mean square method, maximum likelihood and generalized
maximum likelihood methods. The range of sample sizes investigated is from
n = 3 to 100 and the computed confidence intervals range from 0.005 to
0.995.

Reliability. In the engineering literature, P>(x) is called the reliability. It
measures the probability that x will be exceeded. For finance application, x
is called a VaR (value-at-risk) which can be fixed at a given level, say a 5%
dayly loss. Then, P>(x) is the probability that this loss is exceeded in any one
day. Suppose we find P>(x) = 10−2. This means that we will see typically
one loss of this magnitude or larger every one hundred days.

There is an extensive literature to obtain accurate efficient estimators
for P>(x) for the Weibull distribution. One has indeed to realize that the
quality of the estimator of probability level P>(x) depends on the underlying
distribution. It is important to have reliable estimators tailored to the relevant
distribution (here the Weibull). The difficulty stems from the fact that the
parameters c and χ of the Weibull distribution are unknown a priori and
must be estimated from a finite sample. The question is then to find efficient
confidence bounds for the reliability or confidence level P>(x).

From (6.62), we obtain the 100p-th percentile of the Weibull distribution

xp = χ

(
− ln(1 − p)

)1/c

. (6.109)

Then the 100(1 − e−1) = 63.2-th percentile is x0.632 = χ for any Weibull
distribution. Therefore, we can obtain the estimate of the shape parameter c
from (6.109) by

ĉ =
ln[− ln(1 − p)]
ln(xp/x0.632)

, (6.110)

where 0 < xp < x0.632. From hundred of thousands of numerical simulations,
Wang and Keats [1005] find that a single approximately optimal value is
p = 0.15. The xp value is then found using the linear interpolation equation

xp = xr + (xr+1 − xr)
p− (1 − P>(xr))
P>(xr) − P>(xr+1)

, (6.111)

where xr is the r-th ordered (by increasing) value and 1 − P>(xr) is the
proportion of the data less than xr.

A problem concerns the reliability of the estimation of large risks from the
extrapolation of the stretched exponential using the estimated (and there-
fore uncertain) parameters χ̂ and ĉ. Let us call P̂>(x) the SE distribution
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expressed in terms of the estimated parameters (χ̂, ĉ) from a sample of n
data points. Thoman et al. [957] have shown that P̂>(x) is nearly a mini-
mum variance unbiased estimator of the true P>(x). In particular, one can
easily show that P̂>(x) depends on the true values of the parameters χ and
c only through P>(x). This property makes it possible to obtain confidence
intervals for P>(x) based on P̂>(x). This has important applications for the
estimation of the VaR (Value at Risk in financial applications).

The asymptotic variance of P̂>(x) is given by

σ2
P = σ2

χ

(
∂P>

∂χ

)2

+2σ2
χ,c

∂P>

∂χ

∂P>

∂c
+ σ2

c

(
∂P>

∂c

)2

. (6.112)

This allows one to get confidence intervals for P>(x) by assuming that P>(x)
is normally distributed with mean P>(x) and variance σ2

P .
In 1952, Halperin has shown that

√
n [P̂>(x) − P>(x)]√

V [P̂>(x)]
(6.113)

is asymptotically normally distributed with zero mean and unit variance. The
variance V [P̂>(x)] of

√
n [P̂>(x) − P>(x)] is given by

V [P̂>(x)]

=
(
P>(x) lnP>(x)]

)2 (
1 +

1
γ2 − γ2

1

[
1 + γ1 − ln ln

1
P>(x)

]2)
,

(6.114)

where γ1 =
∫ +∞
0 dy ln y e−y = −C ≈ −0.577... is the Euler constant and

γ2 =
∫ +∞
0 dy (ln y)2e−y = π2/6 + C2.

Improved estimators that are exact even for small sample sizes, i.e. attain
the desired confidence level precisely, are described in rather cumbersome
tables in [484].

6.8.3 Three-Parameter Weibull Distribution

Haan and Beer [383] first developed the equations that be solved to obtain
the maximum likelihood estimators for the three parameters of the Weibull
probability density function and constructed a numerical solution for these
equations.

We consider the distribution (6.66). The maximum likelihood approach
generalizes that of Sect. 6.8.2. The log-likelihood is

lnL = n ln
c

χc
− 1
χc

n∑
i=1

(xi − b)c + (c− 1)
n∑

i=1

ln(xi − b) . (6.115)

The three parameters are determined by the solution of the following likeli-
hood equations [717] :
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0 =
∂ lnL
∂b

=
c

χc

n∑
i=1

(xi − b)c−1 − (c− 1)
n∑

i=1

(xi − b)−1 . (6.116)

0 =
∂ lnL
∂χc

= − n

χc
+

1
χ2c

n∑
i=1

(xi − b)c . (6.117)

0 =
∂ lnL
∂c

=
n

c
+

n∑
i=1

ln(xi − b) − 1
χc

n∑
i=1

(xi − b)c ln(xi − b) . (6.118)

From (6.117), we get

χc =
1
n

n∑
i=1

(xi − b)c (6.119)

which may be substituted into (6.116) and (6.118) to yield two equations in
terms of the parameters c and b.

The solution of this system of nonlinear equations is difficult and several
iterative numerical schemes have been proposed. Panchang and Gupta [717]
state “Our experience with some of these algorithms has frequently been
frustrating. Thus a practitioner, who is anxious to obtain the appropriate
solutions rapidly, has no assurance of doing so even after investing consid-
erable time and effort in setting up and running the program for a chosen
algorithm. Frequently, it is found that a particular method does not work for
a given sample”. This provides a good warning. However, the situation is not
as bad as there is now a simple method that will definitely yield parameter
estimates that maximize the likelihood function for the sample [717]. This
method always works!

The idea is first to make use of the constraint that c > 0 and that all data
points xi’s are larger than b. Let us call xmin the smallest value : b < xmin.

1. The domain of b, which is 0 ≤ b ≤ xmin − ε where ε is a small number,
is divided into I intervals of size ∆b and b is sampled with the values
bi = (i− 1)∆b.

2. For a given value b = bi, (6.117) and (6.118) are solved to get χ = χi and
c = ci. This is equivalent to solving the two parameter Weibull maximum
likelihood problem, since xj − bj may be considered as another sample
point.

3. Instead of solving (6.116), lnL(bi, χi, ci) is next computed.
4. The above process is repeated for all bi’s and lnL is obtained as a function

of b. It is a simple matter to scan all the values of lnL to determine the
maximum.

Note that this method does not depend, like some other methods do, on
the choice of good initial estimates for its success. The computational effort
required is less than that of most other schemes. We refer to [717] for details,
implementation and examples of applications.
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6.8.4 Generalized Weibull Distributions

Bradley and Price [120] showed that generalized Weibull distributions nu-
merically fitted by nonlinear least-square or maximum-likelihood procedures
are comparable in performance to the fits of more traditional functions, such
as Johnson and Pearsonian function families. The generalized Weibull distri-
butions do not require the sometimes ambiguous evaluation procedures for
their selection. In addition, numerical methods provide a quick means of de-
termining the parameters and the inverse function has a closed form for easy
generation of random variates and for the problem of iterative treatment of
missing data.

Four-Parameter Weibull Distribution. The four-parameter generaliza-
tion of Weibull distribution is

P>(x) = 1 −
[
1 − e−((x−b)/χ)c

]γ

. (6.120)

For γ = 1 and b = 0, this expression retrieves the simple definition (6.62),
while, for γ = 1 and b �= 0, one retrieves (6.66). Bradley and Price [120]
introduces a further generalization of the Weibull function in terms of five
parameters. To fit these functions, numerical methods are used to determine
the parameters. Levenberg–Marquardt’s method for nonlinear least-square
estimates and pattern-search techniques for the maximum likelihood mea-
sures. The least-square estimates, under commonly used assumptions, are
consistent but not efficient. Maximum likelihood estimators are consistent
and efficient. Neither is unbiased asymptotically.

Generalized Gamma Distribution. The generalized Gamma distribution
is defined by

p(x) dx = dx
cxcα−1

χcαΓ (α)
e−(x/χ)c

. (6.121)

The case α = 1 recovers the two-parameter Weibull distribution (6.62), since∫ +∞
x

p(x) dx = e−(x/χ)c

. The likelihood function of the generalized Gamma
distribution is

L =
cn

∏n
i=1 x

cα−1
i

χncα[Γ (α)]n
e−

∑n

i=1
(x/χ)c

. (6.122)

Equating to zero the partial derivatives of lnL with respect to the three
parameters χ, α and c yields the following three equations

n∑
i=1

(
xi

χ

)c

= nα , (6.123)

c

n∑
i=1

ln
xi

χ
= nψ(α) , (6.124)
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where ψ(α) = ∂(lnΓ (α))/∂α is the digamma function, and

n

c
− nα lnχ+ α

n∑
i=1

lnxi −
n∑

i=1

(
xi

χ

)c

ln
xi

χ
= 0 . (6.125)

They can be manipulated to yield the equivalent and simpler equations

χ =
( 〈xc〉

α

)1/c

, (6.126)

ψ(α) − lnα =
1
n

n∑
i=1

ln
xc

i

〈xc〉 , (6.127)

1
α

=
1
n

n∑
i=1

(
xc

i

〈xc〉 − 1
)

ln
xc

i

n〈xc〉 , (6.128)

where

〈xc〉 =
1
n

n∑
i=1

xc
i . (6.129)

Wong [1025] implements a computer program (and gives its listing) to solve
this equation, using a Lanczos series to evaluate the Gamma function.



7. Statistical Mechanics: Probabilistic Point
of View and the Concept of “Temperature”

The concept of temperature is intuitive and constitutes an everyday experi-
ence. From a fundamental point of view, the notion of temperature is rig-
orously defined within the thermodynamic theory of systems at equilibrium,
as the inverse of the variation ∆S of the entropy with respect to a variation
of the energy ∆E, at fixed system volume. If the variation of entropy ∆S is
large for a given variation of energy ∆E, the temperature is small: the system
has few excited states and is quite ordered; a change of energy leads to the
activation of many states and thus to a large change of the entropy. If the
variation of entropy ∆S is small for a given variation of ∆E of energy, the
temperature is large: the system is sufficiently excited and disordered that
the entropy (which roughly quantifies the number of excited states) is almost
insensitive to the energy.

The extension of the notion of temperature to statistical mechanics allows
one to quantify the relative probability, given by the exponential Boltzmann
factor, that the system possesses a given energy. In a nutshell, the tempera-
ture measures the amplitude of the noise or of the fluctuations of the physical
variables around their average or most probable values. This can be seen for
instance in the writing of the dynamical evolution of a field Φ in a system
with a partial differential equation with a stochastic noise source [651, 1003]:

DtΦ = DxΦ+ F (Φ) − fΦ+ η(x, t) , (7.1)

where Dt is a time differential operator like ∂/∂dt, Dx is a space differential
operator like ∇2, f is a friction coefficient ensuring that Φ does not blow
up due to the noise source term η(x, t). η(x, t) is often assumed to be white
noise:

〈η(x, t)η(x′, t′)〉 = A T δ(t− t′) δ(x− x′) , (7.2)

which defines the temperature T as proportional to the variance of the noise.
The fluctuation–dissipation theorem ensures the proportionality between the
strength f of the dissipation and the variance T of the noise. Stochastic
partial differential equations such as (7.1) offer a convenient and powerful
formulation for a large class of problems involving in particular the interplay
between nonlinearity (in the function F (Φ)) and stochasticity (in the noise
source η(x, t)). Noisy hydrodynamics, stochastic surface growth processes and
stochastic diffusion-reactions are three among many examples of applications.
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The concept of temperature has been repeatedly applied to systems that
are out-of-equilibrium, in the hope that their variability and fluctuations
could also be captured by the simple Boltzmann factor. However, hidden
behind this thermodynamic description of systems at equilibrium is an im-
portant and non-trivial assumption which is examined in the next section.
This assumption is often not warranted quantitatively for out-of-equilibrium
systems. Notwithstanding these restrictions, attempts are still being made to
apply the concept of a temperature to out-of-equilibrium chaotic or turbu-
lent systems, using clever choices of variables and subtle analogies, as we will
summarize below. This is motivated by the hope that the thermodynamic for-
malism which has been so successful in equilibrium systems could help under-
stand and simplify the complexity of chaotic and turbulent systems [190, 191].
Here, we attempt to present the concepts and their derivations in the simplest
and most intuitive way, rather than emphasize mathematical rigor.

7.1 Statistical Derivation of the Concept
of Temperature

Consider a (small) system at equilibrium which can exchange energy with an-
other (large) system called a reservoir. The distinctive feature of this so-called
“canonical ensemble” is described by the probability theory of independent
events. We need two concepts, probability and energy. Let us consider two
subparts I and II of the system and call P (EIa) (P (EIIb)) the probability
to find the system I (II) in a given state a (b) of energy EIa (respectively
EIIb). By the assumption that these two subsystems are independent, the
joint probability P (E) for the systems to be simultaneously in the states a
and b respectively is equal to the product P (EIa) P (EIIb):

P (E) = P (EIa)P (EIIb) , (7.3)

where

E = EIa + EIIb (7.4)

is the sum of the two energies of the subsystems. We look for an expression
of the probability P (E) which is independent of the specific partition into
two subsets. The only functional form that satisfies (7.3) together with (7.4)
gives the so-called Boltzmann function

P (E) = CeαE , (7.5)

where C and α are constants. In this derivation, and in the equation (7.3),
we neglect the correlations and also the energy provided by the boundary
between the two systems. Indeed, in a system of volume Ld (for a cube of
linear size L in d dimensions), the boundary effect is of order Ld−1 and is thus
negligible in relative size for large L, provided the influence of the boundary
is short-ranged.
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The Boltzmann function (7.5) describes the probability to find a system
in any given state of energy E. This is not the same as the probability that
the system has an energy E. This latter probability is the sum of (7.5) over
all configurations that have this energy E. This leads to the multiplication
of (7.5) by the so-called density of state g(E) defined below, which is noth-
ing but the number of configurations that the system can take at a given
energy E.

Let us now connect this description with the mechanical description of
the world in which systems obey extremal principles corresponding for in-
stance to the minimization of the energy. This leads us to expect that the
probability P (E) is a decreasing function of E, hence α ≤ 0 and we note
it α = −β = −1/kBT , which defines the temperature T . kB is called the
Boltzmann constant (introduced so that kBT has the units of an energy).
Defining

Z(β) =
∑
E

e−βE , (7.6)

which provides the normalization of the probability P (E), we can write

P (E) =
e−βE

Z
. (7.7)

We have just derived the fundamental quantities of statistical physics! The
expression (7.7) gives the probability that the system be in a configuration
with the energy E while Z, called the partition function (because it is a sum
over the partitionning of the system into different energy states), is simply
the normalizing constant.

Fig. 7.1. Schematics of the temperature and
β scales

The “temperature” appears as a parameter quantifying the degree of
stochasticity of the system. If T → ∞, β → 0, and all states have the same
probability, independently of their energy. In this limit of infinite disorder,
no interaction is capable of ordering the system which takes all possible con-
figurations that are available with the same probability.

In the other limit T → 0, β → +∞, the system takes the only configu-
rations characterized by the minimum energy. Any other state with a larger
energy is infinitely less probable. This limit thus corresponds to the classical
non-disordered case where the system minimizes its energy.
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In between 0 < T < +∞, the system tends to have a larger probability of
being in states with less energy but can nevertheless explore configurations
with a higher energy, more so with larger temperature. We see clearly the
competition between the disordering effect of the stochasticity (measured by
the temperature) and the interactions determining the energies accessible to
the system.

The expression (7.7) gives the probability of finding the system in one
particular (macroscopic state) of energy E. The probability p(E) that the
system has an energy in a small range between E and E + dE is simply
obtained by summing the probabilities for all states whose energy lies in
this range. Since all these states are characterized by essentially the same
exponential factor e−βE, one thus simply needs to multiply this common
exponential factor e−βE by the number g(E)dE of states in this energy range
dE to get

p(E) dE = g(E)e−βE dE , (7.8)

g(E) is called the density of states [770]. Usually, it is a rapidly increasing
function of E as states proliferate at higher energies; the combination with
the fast decreasing exponential results in a maximum of g(E)e−βE, which
is all the sharper for larger systems as more states become available and
the law of large number starts to apply. For most situations, this product
converges to a Gaussian distribution as a consequence of the central limit
theorem. However, there are certain cases, that we will examine below, for
which long range correlations appear and lead to distributions which are not
Gaussian: they correspond to critical phase transitions. Other anomalous sit-
uations also arise from the competition between frozen disorder and ordering
interactions [622].

7.2 Statistical Thermodynamics

All the usual thermodynamic variables can be derived from these two funda-
mental expressions (7.6) and (7.7) if we add the definition of the entropy

S = −kB

∑
k

P (Ek) lnP (Ek) , (7.9)

where the sum is carried out over all possible configurations, with each con-
figuration k characterized by its energy Ek as well as by other defining vari-
ables Qk. This expression can be justified from purely statistical considera-
tions, using the Shannon definition of information. The constant kB is again
introduced for dimensionality reasons in order to connect this approach with
the classical thermodynamic approach.

Expression (7.9) has an intuitive meaning:

exp
(
−NS
kB

)
=

∏
k

[P (Ek)]NP (Ek)
, (7.10)
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where N is the total number of configurations that the system can take
and NP (Ek) is the number of configurations with energy Ek and defining
variables Qk. The r.h.s. of (7.10) is the product of independent probabilities
over all possible states and thus quantifies the probability for the system to
exist (in the corresponding so-called “macro-state”).

The average energy 〈E〉 of the system is defined by

〈E〉 =
∑
E

E
e−βE

Z
, (7.11)

which can also be written as

〈E〉 = −∂ lnZ
∂β

. (7.12)

The free energy is defined by

F = 〈E〉 − TS , (7.13)

which leads to

F =
∑
E

(
EP (E) − 1

β
P (E) lnP (E)

)
(7.14)

It is straightforward to verify that

F = −kBT lnZ . (7.15)

From these expressions, we can recover all the quantities usually measured
in thermodynamics: specific heat, susceptibility, enthalpy, etc. [131].

To summarize, if the dynamics of a system is sufficiently stochastic, either
due to its intrinsic nature or due to external factors, so that it is possible to
consider different parts of the system as independent, then the fundamen-
tal principles of thermal statistical physics can be derived in a simple and
general way from probabilistic considerations. The properties of a system are
completely embodied in the partition function Z, which is the fundamental
quantity to calculate and from which everything else derives. After having
defined a model for a given problem at equilibrium, the main task is thus to
calculate its partition function.

7.3 Statistical Mechanics as Probability Theory
with Constraints

7.3.1 General Formulation

We use the formalism of the previous section to establish a general rela-
tionship between the formulation of statistical mechanics and the theory of
constrained fluctuations described in Chap. 3. Our presentation is inspired
from [762]. In Chap. 3, we have seen the crucial role played by the entropyHp:
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the algorithm which yields the best estimate for an unknown frequency dis-
tribution is found from the maximization of Hp. Furthermore, we have seen
that hypotheses can be tested with the help of (14.101), i.e., by comparing
the experimental and theoretical values of Hp.

For complex systems with many degrees of freedom (like a fluid, a plasma
or a solid), the exact configuration of all degrees of freedom is usually not
known. It is therefore impossible to assign to the system a unique point in
phase space (classical) or a unique wave function (quantum). Instead one
must resort to a statistical description in which each point in phase space
characterizes a different state that the system may take. The system is de-
scribed by a classical phase space distribution ρ(π) or an incoherent mixture of
mutually orthogonal quantum microstates {|i〉} in the quantum regime. For
our purpose, the distinction between classical and quantum mechanics does
not matter and we shall use the generic symbol ρ. Probabilities must be real,
non-negative, and normalized to one. This implies the respective properties

ρ(π)∗ = ρ(π) , ρ(π) ≥ 0 ,
∫

dπ ρ(π) = 1 . (7.16)

In this statistical description, every observable A is assigned an expectation
value

〈A〉ρ =
∫

dπ ρ(π)A(π) . (7.17)

Typically, not even the distribution ρ is a priori known. Rather, the state
of a complex physical system is characterized by very few macroscopic data.
These data may come in different forms:

• as data given with certainty, such as the type of particles that make up the
system, or the shape and volume of the box in which they are enclosed.
We take into account these exact data through the definition of the phase
space in which we are working;

• as prescribed expectation values

〈Ga〉ρ = ga , a = 1, . . . ,m (7.18)

of some set {Ga} of selected macroscopic observables. Examples might be
the average total energy, average angular momentum, or average magneti-
zation. Such data, which are of a statistical nature, impose constraints of
the type (3.29) on the distribution ρ; or

• as additional control parameters on which the selected observables {Ga}
may explicitly depend, such as an external electric or magnetic field.

According to our general considerations of Chap. 3, the best estimate for
the macrostate, which takes into account these constraints, is a distribution
of the form (3.45)

ρ(π) =
1
Z

exp

(
lnσ(π) − 〈lnσ〉σ −

∑
a

λaGa(π)

)
(7.19)
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with

Z =
∫

dπ exp

(
lnσ(π) − 〈ln σ〉σ −

∑
a

λaGa(π)

)
. (7.20)

Here, σ denotes the a priori distribution. As we have seen, the auxiliary
quantity Z is referred to as the partition function. Readers already familiar
with statistical mechanics might be disturbed by the appearance of σ in the
definitions of ρ and Z. Yet, this is essential for a consistent formulation of
the theory, as seen for instance from the possibility of iterating the frequency
estimation algorithm described in Sect. 3.3.2. In most practical applications,
σ is uniform and hence lnσ − 〈lnσ〉σ = 0. The definitions of ρ and Z then
reduce to the conventional expressions.

The phase space integral for Z depends on the specific choice of the phase
space or Hilbert space; hence they may depend on parameters like the volume
or particle number. Furthermore, there may be an explicit dependence of
the observables {Ga} or of the a priori distribution σ on additional control
parameters. Therefore, the partition function generally depends not just on
the Lagrange multipliers {λa} but also on some other parameters {hb}. One
then defines new variables

γb ≡ ∂ lnZ
∂hb

. (7.21)

The {ga}, {λa}, {hb} and {γb} are called the thermodynamic variables of the
system; together they specify the system’s macrostate. The thermodynamic
variables are not all independent: Rather, they are related by (7.21), that is
via partial derivatives of lnZ. One says that hb and γb, or ga and λa, are
conjugate to each other.

Some combinations of thermodynamic variables are of particular impor-
tance, which is why the associated distributions go by special names. If the
observables that characterize the macrostate – in the form of precisely deter-
mined values given with certainty, or in the form of expectation values – are
all constants of the motion then the system is said to be in equilibrium to
which there is an associated equilibrium distribution of the form (7.19), with
all {Ga} being constants of the motion. Such an equilibrium distribution is
itself constant in time, and so are all expectation values calculated from it,
assuming that there is no time-dependence of the a priori distribution σ. The
set of constants of the motion always includes the Hamilton function, pro-
vided it is not explicitly time-dependent. If its value for a specific system, the
internal energy, and the other macroscopic data are all given with certainty,
then the resulting equilibrium distribution is called microcanonical; if just
the energy is given on average, while all other data are given with certainty,
it is called canonical; and if both energy and total particle number are given
on average, while all other data are given with certainty, it is called grand
canonical.
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Every description of the macrostate in terms of thermodynamic variables
represents a hypothesis: namely that the sets {Ga} and {hb} are actually
complete. This is analogous to Jaynes’ model for Wolf’s die discussed in
Sect. 3.3.4, which assumes that just two imperfections (associated with two
observables G1, G2) suffice to characterize the experimental data. Such a hy-
pothesis may well be rejected by experiment. If so, this does not mean that our
rationale for constructing ρ by maximizing Hσ under given constraints was
wrong. Rather, it means that important macroscopic observables or control
parameters (such as “hidden” constants of the motion, or further imperfec-
tions of Wolf’s die) have been overlooked, and that the correct description of
the macrostate requires additional thermodynamic variables.

7.3.2 First Law of Thermodynamics

Changing the values of the thermodynamic variables alters the distribution ρ
and with it the associated

Hmax
σ ≡ Hσ(ρ) = 〈lnσ〉σ + lnZ +

∑
a

λa ga . (7.22)

By virtue of (7.21), its infinitesimal variation is given by

dHmax
σ = d〈ln σ〉σ +

∑
a

λa dga +
∑

b

γb dhb . (7.23)

As the set of constants of the motion always contains the Hamiltonian, its
value for the given system, the internal energy U , and the associated conju-
gate parameter, which we denote by β, play a particularly important role.
Depending on whether the energy is given with certainty or on average, the
pair (U, β) corresponds to a pair (h, γ) or (g, λ) respectively. For all remaining
variables, one then defines new conjugate parameters

la ≡ λa/β , ma ≡ γa/β (7.24)

such that in terms of these new parameters the energy differential reads

dU = β−1 d(Hmax
σ − 〈lnσ〉σ)−

∑
a

la dga −
∑

b

mb dhb . (7.25)

A change in internal energy that is effected solely by a variation of the
parameters {ga} or {hb} is defined as work

δW ≡ −
∑

a

la dga −
∑

b

mb dhb . (7.26)

If, on the other hand, these parameters are held fixed (dga = dhb = 0),
then the internal energy can still change through the addition or subtraction
of heat

δQ ≡ 1
kBβ

kB d(Hmax
σ − 〈lnσ〉σ) , (7.27)

where kB is the Boltzmann constant, equal to kB = 1.381 × 10−23J/K.
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We retrieve the temperature

T ≡ 1
kBβ

(7.28)

and the entropy

S ≡ kB(Hmax
σ − 〈ln σ〉σ) (7.29)

and obtain δQ in the more familiar form

δQ = T dS . (7.30)

The entropy is related to the other thermodynamic variables via (7.22),
i.e.

S = k lnZ + k
∑

a

λa ga . (7.31)

Even though the entropy is related to measurable quantities, it is essentially
an auxiliary concept and does not itself constitute a physical observable. This
is also true for the partition function.

The relation

dU = δQ+ δW , (7.32)

which reflects nothing but energy conservation, is known as the first law of
thermodynamics.

7.3.3 Thermodynamic Potentials

Like the partition function, thermodynamic potentials are auxiliary quanti-
ties used to facilitate calculations. One example is the (generalized) grand
potential

Ω(T, la, hb) ≡ − 1
β

lnZ , (7.33)

related to the internal energy U via

Ω = U − TS +
∑

a

la ga . (7.34)

Its differential

dΩ = −S dT +
∑

a

ga dla −
∑

b

mb dhb (7.35)

shows that S, ga and mb can be obtained from the grand potential by partial
differentiation; e.g.,

S = −
(
∂Ω

∂T

)
la,hb

, (7.36)
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where the subscript means that the partial derivative is to be taken at fixed
la, hb. In addition to the grand potential, there are many other thermody-
namic potentials. In a given physical situation, it is most convenient to work
with that potential which depends on the variables being controlled or mea-
sured in the experiment. For example, if a chemical reaction takes place at
constant temperature and pressure (controlled variables T , {mb} = {p}), and
the observables of interest are the particle numbers of the various reactants
(measured variables {ga} = {Ni}), then the reaction is most conveniently de-
scribed by the free enthalpy G(T,Ni, p) well-known in thermodynamics [131].

When a large system is physically divided into several subsystems, then
in these subsystems, the thermodynamic variables generally take values that
differ from those of the total system. In the special case of a homogeneous
system, all variables of interest can be classified either as extensive – varying
proportionally to the volume of the respective subsystem – or intensive –
remaining invariant under the subdivision of the system. Examples for the
former are the volume itself, the internal energy or the number of particles;
whereas amongst the latter are the pressure, the temperature or the chem-
ical potential. In general, if a thermodynamic variable is extensive then its
conjugate is intensive, and vice versa. If we assume that the temperature and
the {la} are intensive, while the {hb} and the grand potential are extensive,
then

Ωhom(T, la, τhb) = τΩhom(T, la, hb) (7.37)

for all τ > 0 and hence

Ωhom = −
∑

b

mbh
b . (7.38)

This implies the Gibbs–Duhem relation

S dT −
∑

a

ga dla −
∑

b

hb dmb = 0 . (7.39)

The Gibbs–Duhem relation is nothing but the Euler property for an homoge-
neous function. For an ideal gas in the grand canonical ensemble, for instance,
we have the temperature T and the chemical potential {la} = {−µ} intensive,
whereas the volume {hb} = {V } and the grand potential Ω are extensive;
hence

Ωi.gas(T, µ, V ) = −p(T, µ)V . (7.40)

7.4 Does the Concept of Temperature Apply
to Non-thermal Systems?

7.4.1 Formulation of the Problem

How general is the applicability of this modeling strategy? Our understand-
ing of out-of-equilibrium spatially extended systems with many degrees of
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freedom is far from approaching that of systems at the thermodynamic equi-
librium for which the concept of a temperature is well-established. In this
latter case, a remarkable simplification occurs as we have just seen in that
the fluctuations can be embodied by a single parameter, the temperature
(∝ β−1), thus leading to the possible use of powerful statistical tools relying
on the Boltzmann distribution P (E) ∼ e−βE, based on the multiplicative de-
pendence of the number of microstates in the number of degrees of freedom
while the energy is additive.

Claims have been made in the past about the relevance of the Boltzmann
distribution and the analogy with a temperature in many systems: neural
networks [399], spatio-temporal chaos [134], turbulence [145] and granular
media [616, 815]. This quest to find equipartition of energy and Boltzmann
statistics from nonlinear dynamics was first initiated by Fermi, Pasta and
Ulam [296], who failed. More recent works (see for instance [569]) have shown
the subtlety of this problem. In their pioneering work, Fermi, Pasta, and
Ulam revealed that even in strongly nonlinear one-dimensional classical lat-
tices, recurrences of the initial state prevented the equipartition of energy and
consequent thermalization. The questions following from this study involve
the interrelations between equipartition of energy (Is there equipartition? In
which modes?), local thermal equilibrium (Does the system reach a well-
defined temperature locally? If so, what is it?), and transport of energy/heat
(Does the system obey Fourier’s heat law? If not, what is the nature of the
abnormal transport?). In sorting through these questions, it is important to
recall that the study of heat conduction (Fourier’s heat law), stating that
the heat flux is proportional to minus the gradient of the temperature, is
the search for a non-equilibrium steady state in which heat flows across the
system. However, this situation is usually analyzed, using the Green–Kubo
formalism of linear response [534], in terms of the correlation functions in the
thermal equilibrium (grand canonical) state. The surprising result of Fermi,
Pasta and Ulam has now been understood: under general conditions for clas-
sical many-body lattice Hamiltonians in one dimension, it has been shown
that total momentum conservation implies anomalous transport in the sense
of the divergence of the Kubo expression for the coefficient of thermal con-
ductivity [753]. The absence of equipartition is thus an anomalous feature of
one-dimensional systems.

We must also mention the emerging application of the theory of smooth
dynamical systems to nonequilibrium statistical mechanics, based on the
chaotic character of the microscopic time evolution, as reviewed in [328, 796].
In this dynamical approach, the emphasis is on non-equilibrium steady states
rather than on the traditional approach to equilibrium point of view of Boltz-
mann. The nonequilibrium steady states, in presence of a Gaussian thermo-
stat, are described by “statistics of the motion” measures, in terms of which
one can prove the Gallavotti–Cohen fluctuation theorem and prove a gen-
eral linear response formula not restricted to near-equilibrium situations. At
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equilibrium, this recovers in particular the Onsager reciprocity relations. This
formalism allows a quantitative definition of intermittency in statistical me-
chanics and in fluid mechanics.

7.4.2 A General Modeling Strategy

Kurchan [543] has shown that, in the limit of a large number of degrees of
freedom, slowly flowing granular media driven by both tapping and shearing
can still be described by thermodynamic concepts for the low frequency mo-
tion. The derivation uses the framework of glassy systems with driving and
friction that are generic and do not correspond to a thermal bath (whose
microscopic “fast” motion is hence not thermal). There is thus a well-defined
macroscopic temperature associated with the slow degrees of freedom.

We follow [543] for this presentation. For gently driven glasses, a picture
has emerged [1036] that involves multiple thermalisations at widely separated
timescales. In the simplest description and for any two observables A and B
belonging to the system, the correlation function is defined as

〈A(t)B(t′)〉 = CAB(t, t′) (7.41)

and the response of A to a field conjugate to B is
δ

δhB(t′)
〈A(t)〉 = RAB(t, t′) . (7.42)

For a pure relaxational (undriven) glass, the correlation breaks up into two
parts:

CAB(t, t′) = CF
AB(t− t′) + C̃AB

(
H(t′)
H(t)

)
(7.43)

where H is the same growing function for all observables A and B. If the
glass is gently driven (with driving forces proportional to, say, ε), we have:

CAB(t, t′) = CF
AB(t− t′) + C̃AB

(
t− t′

τo

)
(7.44)

where τo is a time scale that diverges as the driving forces proportional to ε
go to zero.

In the long time limit and in the small drive limit, the time scales become
very different. When this happens, the responses behave as:

RAB(t, t′) = β
∂

∂t′
CF

AB + β∗ ∂
∂t′

C̃AB . (7.45)

The fast degrees of freedom behave as if thermalised at the bath inverse
temperature β. On the other hand, the effective, system-dependent temper-
ature T ∗ = 1/β∗ indeed deserves its name: it can be shown that it is what
a “slow” thermometer measures, and it controls the heat flow and the ther-
malisation of the slow degrees of freedom. It is the same for any two ob-
servables at a given timescale, whether the system is aging or gently driven.
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Furthermore, it is macroscopic in the sense it remains non-zero in the limit
in which the bath temperature is zero.

If the system is not coupled to a true thermal bath but instead energy
is supplied by shaking and shearing while it is dissipated by some linear or
nonlinear friction, there is no bath inverse temperature β. What has been ar-
gued [543] is that even so, the “slow” inverse temperature β∗ survives despite
the fact that the fast motion is not thermal. Indeed, if we have correlations
having fast and slow components:

CAB(t, t′) = CF
AB(t, t′) + ĈS

AB(t, t′) , (7.46)

the response is of the form:

RAB(t, t′) = RF
AB(t, t′) + β∗ ∂

∂t′
ĈS

AB(t, t′) (7.47)

with the fast response RF
AB(t, t′) bearing no general relation with the fast

correlation CF
AB(t, t′).

7.4.3 Discriminating Tests

In order to qualify an analogy with thermal equilibrium, one should be care-
ful. Not only must the probability of an energy of the microscopic level be of
the form (7.7), but this holds true for the total system. Indeed, Boltzmann
statistics should also describe the bulk energy distribution of the system. We
need to be more precise and express the probability to find a system in a state
of energy E as Pβ(E) = g(E)e−βE , where g(E) is interpreted as the density of
microstates (number of configurations of the system having the same energy)
defined in Sect. 7.1.

To qualify Boltzmann statistics, the standard method is to take the ratio

Pβ1(E)
Pβ2(E)

, (7.48)

which is independent of the unknown ρ(E) and should be a pure exponen-
tial. To provide an additional test of Boltzmann statistics, one should also
verify the validity of the fluctuation–dissipation theorem according to which
the derivative of the average bulk energy with respect to the temperature
should be proportional to the variance of the energy fluctuations [934]. An-
other version of the fluctuation–dissipation theorem describes the probability
ratio of observing trajectories that satisfy or violate the second law of ther-
modynamics which in a nutshell states that the entropy of closed systems
is a non-decreasing function of transformations. Recent works show that the
fluctuation-dissipation theorem does not rely on the reversibility or the de-
terminism of the underlying dynamics and applies to thermostated deter-
ministic nonequilibrium as well as for a class of stochastic nonequilibrium
systems [829].
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Fig. 7.2. Pβ1(E)/Pβ2(E) for the
same system size and parameters
as in [798] with uniform breaking
strength. When the force on a site be-
comes larger than 1, the stress drop in
this site is reshuffled as 0.8+(1/β)ran,
where ran is a random number drawn
uniformely in the interval [0, 1] and β
is the inverse temperature. See [1031]
for details

For systems self-organizing through spanning “avalanches” such as in
models of self-organized criticality (which we will discuss later), we do not
expect Boltzmann statistics to hold, because the avalanches are the vehicle
of the correlations and of the self-organization. As a consequence, a system
cannot be partitionned without changing its organization: due to the effec-
tive long-range coupling induced by large avalanches, extensivity is no longer
present and the concept of temperature, if any, needs much more care to
be defined. The concept of a temperature and of Boltzmann statistics sug-
gested in [798, 799] for dynamical systems with threshold dynamics (sandpile
models) have been tested and the results are negative [1031], as shown in
Fig. 7.2. Boltzmann statistics should give a straight line in this representa-
tion. However, Boltzmann statistics may be retrieved in the limit of infinite
range interactions [799].

The generalization of the entropy and of the temperature by the so-called
non-extensive statistics [964] may provide a better description of the energy
distribution in these sandpile models (C. Tsallis, private communication). To
see this, let us use expressions (14.50, 14.51, 14.52) in Chap. 14 for the Tsallis
distribution for arbitrary q. In terms of energies E, we rewrite (14.50, 14.51,
14.52) as ∝ [1 − (1 − q)βE]1/(1−q). Thus, according to the Tsallis statistics,

Pβ(E) ∝ g(E) [1 − (1 − q)βE]1/1−q

∝ g(E) exp
(

1
1 − q

ln[1 − (1 − q)βE]
)

∼ g(E) exp
(
−βE − 1 − q

2
β2E2

)
, (7.49)

where g(E) is the density of states. Then

ln (Pβ1(E)/Pβ2(E))

= −(β1 − β2)E − (1 − q)
β2

1 − β2
2

2
E2 + O[(1 − q)2] . (7.50)

Expression (7.50) predicts a downward quadratic correction, as observed in
Fig. 7.2 (for β1 > β2 since the overall slope is negative), only if we take
q < 1, for which the distribution of energies has a compact support as seen
in expression (14.52).
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Simulations of the Bak–Tang–Wiesenfeld sandpile model [46] (see Chap.
15) with non-vanishing driving rate h (incoming sand flux) and dissipation
rate [59] have allowed the calculation of the susceptibility χ(t) and the cor-
relation function C(t) of the sandpile. They are defined as

∆ρa(r, t) =
∫
χ(t− t′) ∆h(r, t′) dr′ dt′ (7.51)

and

C(t) ≡ 〈ρa(r, t)ρa(r, 0)〉 − 〈ρa〉2 , (7.52)

where ρa(r, t) is the density of active site (i.e. above threshold) at point r
and at time t. A version of the fluctuation dissipation theorem would predict
that the response function χ(t) is proportional to the time derivative of the
correlation function C(t). Barrat et al. [59] find that this is not born out
by the data: both χ(t) and C(t) exhibit exponential relaxation behaviors but
with different time scales such that their ratio does not depend on driving and
dissipation rates. Simulations of a random neighbor sandpile model, described
by mean-field theory as in [798, 799], show that the fluctuation–dissipation
relation is not satisfied either.

7.4.4 Stationary Distribution with External Noise

In the next two paragraphes, we follow [51] and consider the motion of a par-
ticle of unit mass moving in potential V (x) and subjected to random forces of
both internal f(t) and external origin e(t) according to the Langevin equation

ẍ+
∫ t

0

γ(t− τ)ẋ(τ) dτ + V ′(x) = f(t) + e(t) , (7.53)

where the friction kernel γ(t) is connected to internal noise f(t) by the
fluctuation-dissipation relationship

〈f(t)f(t′)〉 = kBTγ(t− t′) . (7.54)

Both the noises f(t) and e(t) are stationary and Gaussian, their correlation
times may be of arbitrary decaying type and the external noise is independent
of the memory kernel and there is no corresponding fluctuation–dissipation
relation. In addition, f(t) is independent of e(t):

〈f(t)e(t)〉 = 0 . (7.55)

The external noise modifies the dynamics such that the equilibrium distribu-
tion of the particle is disturbed and no longer given by the standard Boltz-
mann distribution. This new stationary distribution must be a solution of
the generalized Fokker–Planck equation.

Linearizing the dynamics around a minimum of the potential up to
quadratic order, corresponding to a linear restoring force, the stationary prob-
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ability distribution which is the solution of the Fokker–Planck equation of the
problem is given by [51]

p0
st(x, v) =

1
Z

exp

[
− v2

2D0
− Ṽ (x)
D0 + ψ0

]
(7.56)

where x and v are the position and velocity of the particle and D0 and ψ0 are
functions of the memory kernel γ and the correlation functions of the internal
and external noises and Z is the normalization constant. Ṽ (x) is a renormal-
ized linearized potential with a renormalization in its frequency [51]. The
important point behind this result is that the distribution (7.56) is not an
equilibrium Botzmann distribution even if there are some similarities. This
stationary distribution for the open system plays the role of an equilibrium
distribution for the closed system which may be however recovered in the
absence of external noise terms. In this simple example, the steady state is
unique and the question of multiple steady states does not arise because the
potential Ṽ (x) has been chosen quadratic.

7.4.5 Effective Temperature Generated
by Chaotic Dynamics

In addition to recovering distributions of the Bolzmann form, some simple,
far-from-equilibrium, dissipative, extensively chaotic systems can recover the
equilibrium properties of ergodicity, detailed balance, partition functions,
and renormalization group flow at coarse-grained scales with the underlying
chaotic dynamics serving as a temperature bath. A well-studied case consists
in a coupled map lattice made of a set of scalar variables u(r, t) defined at
discrete integer times on a square two-dimensional spatially periodic L × L
grid with positions indicated by r. The rule for updating the variables from
time t to t+ 1 is

u(r, t+ 1) = φ (u(r, t)) + g
∑
rn(r)

[φ (rn(r), t)) − φ (u(r, t))] , (7.57)

where g indicates the strength of the spatial coupling and rn(r) denotes near-
est neighbors of site r. The local map φ(u) is chaotic and can be of several
forms. The case studied in [265, 626] corresponds to a zig-zag curve, made
of three linear segments. This coupled map lattice exhibits chaotic, spatially
disordered dynamics for values of g within the range [0, 0.25]. Miller and
Huse [626] reported that at gc ≈ 0.2054, this system undergoes a kind of
paramagnetic-to-ferromagnetic transition exhibiting a number of features in
common with the equilibrium transition in the Ising ferromagnet. Egolf [265]
has extended this observation and has shown that the long-wavelength be-
havior of this far-from-equilibrium system can be understood by using the
powerful tools of equilibrium statistical mechanics. This system possesses
however some important differences from true equilibrium systems, the more
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important one being that the effective noise strength (or temperature) is in-
ternally generated and dependent on the state of the system, rather than
imposed by an external temperature bath. This difference poses a challenge
for explorations of the second law of thermodynamics (entropy growth) in
these systems.

A natural extension for stationary out-of-equilibrium systems of the clas-
sical ergodic hypothesis introduced for systems at equilibrium is called the
chaotic hypothesis [332], which amounts to stating that the system is chaotic
enough so that typical initial data generate a unique stationary distribution
with several features of the so-called SRB (Sinai, Ruelle, Bowen) distribu-
tions [329, 795, 796]. In this case, the concept of entropy can be replaced by
the definition of a Lyapunov function defined as minus the divergence of the
equations of motion, which measures the phase space contraction rate. The
role of the Lyapunov function is to indicate which will be the final equilib-
rium state of an initial datum in phase space. Gallavotti [331] proposes to
define the “temperature” T of a mechanical thermostat in contact with an
out-of-equilibrium system by remarking that the Lyapunov function is pro-
portional to the work per unit time that the mechanical forces perform, the
proportionality constant being in general a function of the point in phase
space. Therefore, Gallavotti calls 1/T the time average of the proportionality
constant between the Lyapunov function and the work per unit time that
the mechanical thermostatting forces perform. The utility of such a notion
of temperature stems from the possible equivalence between a vast classes of
thermostats, deterministic or stochastic, in the sense that they produce mo-
tions which although very different when compared at equal initial conditions
and at each time have, nevertheless, the same statistical properties [329, 330].
One among the most striking examples of such equivalence is the equivalence
between the dissipative Navier Stokes fluid and the Euler fluid in which the
energy content of each shell of wave numbers is fixed (via Gauss’ least con-
straint principle) to be equal to the value that Kolmogorov’s theory predicts
to be the energy content of each shell at a given (large) Reynolds num-
ber [836].

In Chap. 13, we alluded to a simple 2D dynamical model of earthquake
in a tectonic plate with long range elastic forces and quenched disorder,
which captures both the spontaneous formation of fractal fault structures
by repeated earthquakes, the short-time spatio-temporal chaotic dynamics of
earthquakes, and the Gutenberg–Richter power law of earthquake size dis-
tribution [907]. This model is a deterministic self-organized critical model
(see Chap. 15) controlled by two parameters, the relative stress drop δσ
and the relative amplitude of the disorder ∆σ. Simulations have shown that
the stress drop parameter is similar to a temperature, in the sense that the
larger it is, the larger are the fluctuations of the various variables of the
problems, such as the elastic stress field, the strain field and the total elastic
energy stored in the whole system. As a function of time, the elastic energy
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Fig. 7.3. Evolution of the cumulative earthquake slip, represented along the vertical
axis in perspective in the white to black color code shown on the left of the picture,
at two different times: (a) early time and (b) long time. The system has a size of
90 × 90. The width of the distribution of stress thresholds at rupture is ∆σ = 1.9
which is must larger than the stress drop associated with each earthquake rupture
equal to δσ = 0.05 in reduced units. Reproduced from [627]

exhibits small fluctuations for small stress drop and larger and larger fluc-
tuations as the stress drop parameter increases. This is compatible with the
idea that the stress drop controls the degree of chaoticity of the model (the
Lyapunov exponent increases with the stress drop) and can thus be viewed
as a kind of effective temperature. Similarly to the coupled map lattice model
discussed above [265, 626], the temperature is generated dynamically by the
chaotic nature of the deterministic threshold dynamics. In this class of models
with thresholds, it is not possible to use the standard method involving the
linearized dynamics for the computation of the Lyapunov exponents, since
the time evolution cannot be written in terms of an explicit map. However,
one can follow the divergence of nearby trajectories, and thus determine the
maximum Lyapunov exponent. Following the procedure proposed in [189] for
a cellular automaton model of earthquakes, one finds [907] that, for a very
large range of disorder and stress drop parameters, the maximum Lyapunov
exponent is positive, indicating that deterministic chaos is a generic feature
of the model.

For stress drop comparable to but smaller than the disorder in stress
threshold for rupture, the earthquakes occur on several competing faults as
shown in Fig. 7.3. One fault system is typically active for very long peri-
ods of time until the locus of ruptures spontaneously switches to a different
fault and the previously active fault may become completely silent for a long
time. In some cases, the switch to another structure is brief. This feature of
alternate fault activity over long periods of time has been described in sev-
eral geological contexts and its origin is still a mystery. In this model [907],
these observations find a natural explanation within an analogy developed
with random directed polymers (see Chap. 5 and Fig. 5.15) by viewing the
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Fig. 7.4. Set of minimal directed paths in the same disorder landscape (i.e., with
exactly the same realization of the random numbers {σ(x, y)} characterizing the
rupture threshold) as Fig. 7.3. The paths shown here solve the following problem:
find the directed path connecting the left side to the right side at a same arbitrary
elevation such that the sum of the quenched random numbers {σ(x, y)} character-
izing each fault among the 90 × 90 fault elements of the network along the path is
minimum. This problem is also known as the random directed polymer problem at
zero temperature (see Chap. 5 and Fig. 5.15). The remarkable result shown here
is that the faults self-organize dynamically on these optimal paths which compete
as a function of time. The rupture stress drop δσ plays the role of a temperature
activating the earthquake dynamics that may jump from one optimal path to the
next. These optimal paths are in general widely separated. The numbers and arrows
indicate the ranks of some the main optimal paths (rank 1 corresponds to the path
with the absolute minimum of the sum of the random numbers; rank 2 is the second
minimum, and so on). Comparing with Fig. 7.3, one can see that the optimal path
with rank 1 is indeed the geometrical structure accumulating the largest amount
of slip over long times, and is thus activated more often than all the other faults.
Reproduced from [627]
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Fig. 7.5. Illustration of the
competition in time between
the seismic activity of two
faults. The horizontal axis is
the time. The vertical axis
gives the coordinate along
each competing faults. Ob-
serve the large distribution
of time spans over which
each fault is quiescent. Repro-
duced from [554]

stress drop as an effective temperature. Qualitatively, when several faults
have almost the same “energy” and are thus almost equally optimal, the
competition between them results from a slow exploration of these “energy”
minima in the presence of a non-zero “temperature”. The configurations of
the fault with minimum “energy” are shown in Fig. 7.4. The underlying
chaotic “earthquake” dynamics is similar to the thermal activation of the
motion of a polymer due to the coupling to a thermal bath at a non-zero
temperature T . If T = 0, the unique optimal path configuration is recovered
(a single fault is active). If T > 0, the polymer explores slowly a number of
other configurations with a probability governed by the Boltzmann factor. It
is a general property that when a random medium is subjected to a small
noise or a slow drift, the best path can undergo long period of stability and be
suddenly drastically alterned [124, 1056], due to the family-tree structure of
local optimal paths. In the present model, the small noise can be envisonned
to be due to the fluctuating nature of the release by earthquakes at short
time scales of the elastic energy stored in the system. The resulting competi-
tion between two faults is illustrated in Fig. 7.5. Reference [554] extends this
model to focus on fault competition and shows that the distribution of time
intervals between shifts of fault activation is a power law with an exponent
which is function of the coupling strength of the faults. The coupling strength
is itself determined by their distance and by the heterogeneity of the rupture
thresholds.

7.4.6 Principle of Least Action for Out-Of-Equilibrium Systems

In non-equilibrium statistical mechanics, Onsager pointed out that the mean
histories (or mean trajectories) of a system satisfy a “principle of least ac-
tion” [701, 702]. The so-called Onsager–Machlup action determines the prob-
ability of fluctuations away from the most probable state. Close to thermal
equilibrium, there is a standard fluctuation–dissipation relation and the ac-
tion has the physical interpretation of a “dissipation function”. Onsager’s
variational principle reduces then to a principle of least dissipation. This
principle of least dissipation has been revived by modern interest in the self-
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organizing properties of out-of-equilibrium systems, such as the formation of
complex river networks [447, 641, 779, 787, 788, 845, 939].

In its original form, Onsager’s principle was restricted to weakly noisy
systems and could not be applied to turbulence for instance, where fluc-
tuations are large. This concept has been generalized to deal with strongly
noisy systems [15, 282–284]: a similar “effective action” Γ [z] exists in strongly
stochastic out-of-equilibrium systems, such as in turbulent flows, for any ran-
dom variable z(t). This action functional has the following properties.

1. it is non-negative, Γ [z] ≥ 0,
2. it has the ensemble mean z(t) as its unique minimum Γ [z] = 0, and
3. it is convex,

Γ [λz1 + (1 − λ)z2] ≥ λΓ [z1] + (1 − λ)Γ [z2], 0 < λ < 1 . (7.58)

These are realizability conditions which arise from positivity of the underly-
ing statistical distributions. As a consequence, the ensemble-mean value z is
characterized by a “principle of least effective action”.

Just as Onsager’s action, this functional is related to fluctuations. For
example, in statistically stationary turbulence, the time-extensive limit of
the effective action, called the effective potential,

V [z] ≡ lim
T→∞

1
T
Γ [{z(t) = z : 0 < t < T}] , (7.59)

determines the probability of fluctuations in the empirical time-average

zT =
1
T

∫ T

0

dt z(t) (7.60)

over a finite time interval T away from the (time-independent) ensemble-
mean value z. According to (7.59), V [z] is thus an average of the action
functional over the realizations for which the variable z(t) visits the value z.
More precisely, the probability for any value z of the time-average zT to occur
is given by

Prob ({zT ≈ z}) ∼ exp (−TV [z]) . (7.61)

This agrees with the standard ergodic hypothesis, according to which, as
T → ∞, the empirical time-average must converge to the ensemble-mean,
zT → z, with probability one in every flow realization. Equation (7.61) refines
that hypothesis by giving an exponentially small estimate of the probability
at a large (but finite) T to observe fluctuations away from the ensemble-mean.
This result generalizes the large deviation theorem discussed in Chap. 3.

7.4.7 Superstatistics

We conclude this chapter by pointing out a novel direction for generaliz-
ing statistical mechanics for out-of-equilibrium systems. A particular class
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of more general statistics relevant for nonequilibrium systems, containing
Tsallis statistics (see Chap. 14) as a special case, has been termed ‘super-
statistics’ [63–65, 68, 965]. A superstatistics arises out of the superposition of
two statistics, namely one described by ordinary Boltzmann factors e−βE

and another one given by the probability distribution of β. This means
that the inverse temperature parameter β is assumed not to be constant
but to be fluctuating on a relatively large time scale or spatial scale. This
kind of approach is physically relevant for driven nonequilibrium systems
with fluctuations, rather than for equilibrium systems. Recent applications
of the superstatistics concept include fully developed hydrodynamic turbu-
lence, pattern formation in thermal convection states and the statistics of
cosmic rays [67].

Depending on the probability distribution of β, there are infinitely many
superstatistics. It has been shown that Tsallis statistics is a particular super-
statistics obtained under the assumption that β is χ2-distributed [62]. Various
other examples of superstatistics have been studied [68], among them super-
statistics of the log-normal type. A main result of [68] was that for small
E all superstatistics behave in a universal way, i.e., they generate probabil-
ity distributions close to Tsallis distributions. But for large E, the various
superstatistics can have quite different properties.

The idea behind the “superstatistics” concept is applicable to many sys-
tems, including turbulent systems. Consider a driven nonequilibrium systems
with spatio-temporal fluctuations of an intensive parameter β. This can e.g.
be the inverse temperature, or a chemical potential, or a function of the fluctu-
ating energy dissipation in the flow (for the turbulence application). Locally,
i.e., in cells where β is approximately constant, the system is described by
ordinary statistical mechanics, i.e., ordinary Boltzmann factors e−βE, where
E is an effective energy in each cell. To describe the system in the long-term
run, one has to do a spatio-temporal average over the fluctuating β. One ob-
tains a superposition of two statistics (that of β and that of e−βE), hence the
name ‘superstatistics’. One may define an effective Boltzmann factor B(E)
given by

B(E) =
∫ ∞

0

dβ f(β)e−βE , (7.62)

where f(β) is the probability distribution of β. For type-A superstatistics,
one normalizes this effective Boltzmann factor, obtaining the stationary prob-
ability distribution

p(E) =
1
Z
B(E) , (7.63)

where

Z =
∫ ∞

0

B(E) dE . (7.64)
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For type-B superstatistics, the β-dependent normalization constant is in-
cluded into the averaging process, obtaining

p(E) =
∫ ∞

0

f(β)
1

Z(β)
e−βE dβ , (7.65)

where Z(β) is the normalization constant of e−βE for a given β. Both ap-
proaches can be easily mapped into each other, by defining a new probability
density f̃(β) ∼ f(β)/Z(β). Type-B superstatistics with f is equivalent to
type- A superstatistics with f̃ .

A simple dynamical realization of a superstatistics can be constructed by
considering stochastic differential equations with spatio-temporally fluctuat-
ing parameters [62]. Consider the Langevin equation

u̇ = γF (u) + σL(t) , (7.66)

where L(t) is Gaussian white noise, γ > 0 is a friction constant, σ describes
the strength of the noise, and F (u) = −(∂/∂u)V (u) is a drift force. If γ and
σ are constant, then the stationary probability density of u is proportional
to e−βV (u), where β ≡ γ/σ2 can be identified with the inverse temperature
of ordinary statistical mechanics. Most generally, however, we may let the
parameters γ and σ fluctuate so that β = γ/σ2 has probability density f(β).
These fluctuations are assumed to occur on a long time scale so that the
system can temporarily reach local equilibrium. In this case, one obtains for
the conditional probability p(u|β) (the probability of u given some value of
β)

p(u|β) =
1

Z(β)
exp {−βV (u)} , (7.67)

for the joint probability p(u, β) (the probability to observe both a certain
value of u and a certain value of β)

p(u, β) = p(u|β)f(β) , (7.68)

and for the marginal probability p(u) (the probability to observe a certain
value of u no matter what β is)

p(u) =
∫ ∞

0

p(u|β)f(β) dβ . (7.69)

This marginal distribution is the generalized canonical distribution of the
superstatistics considered.

Beck has applied this formalism to Eulerian and Lagrangian turbulence
experiments and has found them well described by simple superstatistics
models [66]. Significant differences between different superstatistics only arise
for very large velocity differences (and large accelerations), where Tsallis
statistics predicts a power law decay of probability density functions, whereas
log-normal superstatistics yields tails that decay in a more complicated way.
It is indeed the tails that contain the information on the most appropriate
superstatistics for turbulent flows.



8. Long-Range Correlations

This chapter extends the results obtained in Chap. 2 by considering the
existence of correlations in the sum of random variables. This situation is ob-
viously the general situation and we will encounter it in different guises when
dealing with the collective behavior of systems made up of many interacting
elements. Studying the correlations and their consequences is an essential
part of the analysis of a system since the correlations are the signatures that
inform us about the underlying mechanisms.

In the presence of correlations, how is the central limit theorem discussed
in Chap. 2 modified? The answer to this question cannot be developed as
generally and precisely as in Chap. 2 because we do not have yet a full classi-
fication and understanding of all possible scenarii that can occur in the sum of
correlated random variables. Correlations can modify the results previously
presented in Chap. 2. The most obvious case is the extreme where all the
variables contributing to the sum are perfectly correlated and thus identical.
On the other hand, we can hope that sufficiently short-range correlations will
not modify the central limit theorem. What is thus needed is a criterion for
the relevance of the correlations. The presentation of this chapter is inspired
by [111].

8.1 Criterion for the Relevance of Correlations

Let us come back to the study of the sum of random variables li for which
we have defined the correlation function Cij by

Cij = 〈lilj〉 − 〈li〉〈lj〉 . (8.1)

We consider a stationary process, i.e. Cij only depends on the difference
n = j − i. We thus write

C(n) = 〈lili+n〉 − 〈li〉〈li+n〉 , (8.2)

In practice, C(n) can be estimated by taking the sum

C(n) =
1

N − n

N−n∑
i=1

lili+n −
(

1
N

N∑
i=1

li

)2

. (8.3)
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The conditions for C(n) to exist are the same as those ensuring the conver-
gence of the variance: the pdfs of the li must decay faster than l−(1+µ)

i with
µ > 2 at large li. For concrete applications, if 2 < µ < 4, large fluctuations
may still spoil a correct estimation of C(n) from finite samples, whose con-
vergence to its asymtotic value for large N remains very slow, as discussed
in Chap. 4.

To simplify notations, we assume 〈li〉 = 0 and rewrite the variance of the
sum x(t) defined by

x(t) = l(t− τ) + l(t− 2τ) + ...+ l(τ) + l(0) , (8.4)

as

〈(x(t))2〉 = tC(0) + 2
t−1∑
k=1

(t− k)C(k)

= t

(
C(0) + 2

t−1∑
k=1

C(k)
)
−2

t−1∑
kw=1

kC(k) . (8.5)

We have cut the double sum occurring in the calculation of 〈(x(t))2〉 into
three groups, (i) i = j, (ii) i < j and (iii) i > j. The first one gives t times
C(0). The second and third group are identical as i and j are dummy indices,
hence the factor 2 multiplying the second term.

It is clear that if
∑t

k=1 C(k) converges for large t to a finite number,
then 〈(x(t))2〉 ∝ t, which recovers the diffusive result obtained for a sum of
independent variables with finite variance presented in Chap. 2. In this case,
the existence of a correlation changes the numerical factor in front of the
t-dependence, i.e. it modifies the value of the diffusion coefficient so it will no
longer be given by D ≡ σ2/2τ in general (where σ is the standard deviation
of the i.i.d. variables constituting the sum).

The condition for this regime to exist is, as we said, that
∑t

k C(k) con-
verges. For large t, the discrete sum can be approximated, using the Poisson
formula, by the integral

∫ t

1 dk C(k). This integral converges absolutely (i.e.
the integral of |C(k)| converges) if C(k) � 1/k for large k. Thus, in order
for the standard diffusion regime to hold, the condition on the decay of the
correlation function is rather mild as it need only to decay faster than 1/k.
We refer to Ibragimov and Linnik [446] for a complete exposition of relevant
results and, in particular, on the importance of so-called mixing properties
that quantify the tendency for the random variables generated by the station-
ary process to take different values. It is important to stress that the proof
of validity of the Central Limit Theorem for a stationary process requires
restriction on its mixing properties [446].

Let us now examine the opposite situation where C(k) decays slower than
1/k, for instance as

C(k) ∼ 1
ky

with 0 ≤ y ≤ 1 . (8.6)
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In this case,
∑t

k C(k) ∼ t1−y for y < 1 and ∼ ln t for the border case
y = 1. We thus see that the second term

∑t
k=1(t − k)C(k) in the r.h.s. of

(8.5) behaves as t2−y for y < 1 and ∼ t ln t for the border case y = 1. This
dominates the first term in the r.h.s. of (8.5) and we thus get a super-diffusive
behavior1

〈(x(t))2〉 ∼ t2−y for y < 1 , (8.7)
∼ t ln t for y = 1 . (8.8)

Diffusion is thus enhanced by the long-range correlations and the typical
value of x(t) is of order t1−y/2 � t1/2 at large times. Notice that we recover
standard diffusion (up to logarithmic corrections for the border case y = 1)
while perfect correlations (y = 0) lead to an average drift with a finite velocity
(x(t) ∝ t).

As an interesting example of random walks with long-range correlations
with exponent y < 1, let us mention the structure of DNA. Analysis of non-
coding parts of DNA sequences have used the random walk analogy to test
for long-range correlations. The first step is to group the four constituant
bases of DNA into two families A and B characterized by similar chemical
structure with approximately the same fraction 1/2. The second step is to
imagine that time t corresponds to the length covered when counting the
bases in one direction along a DNA chain. When one encounters the family
A (B), the random walk is assumed to make a +1 (−1) step along a 1D-line.
If the correlations in the position of the bases decay faster than 1/k, the r.m.s.
(root mean square) of the displacement of this walker should be ∝ t1/2 while,
if long-range correlations exist, the r.m.s. will exhibit super-diffusive behavior
with an exponent larger than 1/2 (but less than 1). This analysis has indeed
shown [31, 601, 1000] that the non-coding parts of DNA seem to have long-
range correlations with an exponent y < 1. In contrast, the coding regions
seem to have short-range or no correlations. This might be interpreted by the
fact that a coding region must appear random since all bases contain useful
information. If there were some correlation, it would mean that it is possible
to encode the information in fewer bases and the coding regions would not be
optimal. In contrast, non-coding regions contain few or no information and
can thus be highly correlated. This paradox, that a message with a lot of
information should be uncorrelated while a message with no information is
highly correlated, is at the basis of the notion of random sequences. A truly
random sequence of numbers or of symbols are those that contain the maxi-
mum possible information, in other words it is not possible to define a shorter
algorithm which contains the same information [156]. The condition for this
is that the sequence be completely uncorrelated so that each new term carries
new information.

1 There can exist cases where the integral of |C(k)| does not converge but
∑t

k=1
(t−

k)C(k) remains of order t due to subtle cancellations that might occur if C(k)
is oscillating.
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8.2 Statistical Interpretation

There is an intuitive explanation for the effect of long-range correlations on
the behavior of the sum. The idea is that if the variables are strongly corre-
lated, many of them are similar to a given one and it is possible to rearrange
the sum in families of similar variables. If these families saturate their growth
as the number t of terms in the sum increases, we are left with of the order of
t different independent families with no correlation between them, on which
we can apply the central limit theorem and recover the previous results of
Chap. 2. On the other hand, if the size of the families grow with t, the prop-
erties of the sum will be modified. Let us give a quantitative foundation to
this heuristic explanation.

The sum

Nid(t) =
t∑

n=1

C(n)
〈l2〉 − 〈l〉2 , (8.9)

of the correlation function gives us, by its definition, a good estimation of
the number of variables in the sum that are similar to a given one. This is
because

〈l0ln〉 − 〈l0〉〈ln〉
〈l2〉 − 〈l〉2 (8.10)

measures the probability for ln to be “close” to l0.
Intuitively, this ratio gives the relative width of the joint probability to

find l0 and ln. We can be more specific in the special case where the correla-
tions have a Gaussian structure with pdf

P (l0, ln) = (det C)−1/2 exp
(−[C00−1 l20 + C−1

00 l
2
n + 2C−1

0n l0ln]
)
, (8.11)

where we have assumed symmetry: C00 = Cnn and C0n = Cn0. The coef-
ficients C−1

00 and C−1
0n are the elements of the inverse matrix of C. In this

case,

〈l0ln〉 − 〈l0〉〈ln〉
〈l2〉 − 〈l〉2 =

C0n

C00
, (8.12)

which can be compared to an explicit calculation of the probability that l0
and ln be equal to within a fraction η � 1 of their standard deviation

√
C00

Probability of l0 = ln to within η
√
C00 ≈

η
√
C00

∫
dl0

∫
dln P (l0, ln)δ(l0 − ln) ≈ η

√
C00

C00 − C0n
. (8.13)

If there are no correlations (C0n = 0), this probability is a constant that
represents the probability that one variable comes close to the other solely
by chance. Since this contribution is already taken into account in the
sum, this constant must be subtracted to obtain the effect of the cor-
relations. We thus obtain that the increase in probability that the two
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variables be close to each other due to their correlation is proportional
to √

C00

C00 − C0n
− 1 � C0n

C00
, for small C0n , (8.14)

thus confirming that (8.10) and (8.12) are proportional to the probability
that the two variables are similar due to their mutual correlations.

Building on this understanding, we use (8.9) to regroup the set {lk, 0 ≤
k ≤ t} into families of Nid(t) variables each. There are Nfam(t) = t/Nid(t)
such families which can be considered as statistically independent with re-
spect to the observable we are studied, namely the sum x(t). Each fam-
ily can now be seen as an effective variable Lk of scale Nid(t). Their sum
obeys the central limit theorem since they are essentially uncorrelated and
we get

x(t) ≈
Nfam(t)∑

k=1

Lk . (8.15)

The standard deviation of this sum is thus, according to Chap. 2 and using
〈Lk〉 � Nid(t),

x(t) ∼ Nid(t)[Nfam]1/2 ∼ (tNid(t))1/2
, (8.16)

which gives back (8.7) and (8.8) since Nid(t) ∼ constant if y > 1, ∼ ln t if
y = 1 and ∼ t1−y if y < 1. Note that, in defining the variables Lk, we have
replaced the long-range dependence into short-range or zero correlation be-
tween variables which have a rather special property: their sizes depend on
the global length t of the series.

• We stress that this approach contains the basic idea of the renormal-
ization group [351, 1021] that we will discuss in Chap. 11, which deals with
correlated variables by grouping them in such a way as to simplify the cor-
relations. In the present case, the grouping can be done in one step by
introducing the families of Nid variables. In this interpretation, a family
is a renormalized variable. Indeed, going from the initial variables to the
families has increased the “strength” or amplitude (up to ∼ Nid) of the
variables that are summed up, while their number has decreased accord-
ingly.

• The grouping of the correlated variables into families (or renormalized
variables) must not be taken literally. It is true only in a statistical sense.
However, from a correlation function decaying like Cij ∼ |i − j|−y, it is
possible to construct a time series where literally the probability to get each
variable li equal to the first one decays as |i− j|−y. We encounter here again
the dual interpretation of probabilities (and thus correlations) in terms of
frequency versus scenarii.
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8.3 An Application: Super-Diffusion in a Layered Fluid
with Random Velocities

Consider the simple model shown in Fig. 8.1 made of layers, each having a spe-
cific fluid velocity taken from a distribution with zero average [111, 112]. In
other words, the velocity field has a “quenched” randomness. This might rep-
resent an idealization of a porous medium in which permeability fluctuations
induce a random distribution of local flow velocities. Suppose that a chemical
molecule or a contaminant is diffusing with a diffusion coefficient D. There
are two components in this diffusion, one parallel to the layers and the other
perpendicular to them. In the parallel direction, we assume that the diffusion
can be neglected compared to the velocity drift carrying the molecule with
the flow. The relative strength of diffusion versus drift is measured by the
Péclet number Pe = Rv/D, which is the ratio of the diffusion time R2/D to
diffuse a distance R to the convection time R/v to cover the same distance
ballistically at the spead v. We thus assume a large Péclet number in the
direction parallel to the layers.

Fig. 8.1. Two-dimensional medium layered
along the y-direction with frozen velocity fields
as shown by the large arrows within each layer.
The thin curve from A to B represents a possi-
ble particle trajectory which is diffusive in the
y-direction and ballistic in the direction of the
arrow of each layer in the x-direction

Since there is no drift in the direction perpendicular to the layers, the
diffusive motion is the sole dynamics of the process (in the limit of vanish-
ing Peclet number) and makes the particle cross from one layer to another.
When present in a given layer, the particle is carried away horizontally in the
direction and at the velocity characterizing this layer. The vertical motion,
being purely diffusive, we can use the results of Chap. 2 and, in particular,
obtain that the probability that a given layer be revisited at time t after
having been visited at time 0 is ∼ (Dt)−(1/2). This is seen by putting v = 0
and y = 0 in the expression of the probability

PG(y, t) =
1√
2π

1√
2Dt

e−(y−vt)2/4Dt , (8.17)
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given in Chap. 2 for the particle to be at position y at time t after starting
at 0 at t = 0. When the particle comes back at time t to a layer already
visited, the horizontal velocity that it encounters is thus exactly the same as
at time 0, since we have assumed the velocity field to be frozen. This implies
that the correlation 〈V (0)V (t)〉 of the horizontal velocities is proportional to
(Dt)−(1/2), i.e. decays with t with an exponent y = 1/2 < 1. The total hori-
zontal displacement of the particle is the sum of the displacements travelled
while in each layer, each single displacement being the product of the velocity
in this layer by the time of sojourn in this layer. This time of sojourn is about
the same and approximately equal to the time necessary to diffuse across its
width. Different sojourn durations in each layer correspond to different times
taken by the particle to diffuse across them.

We thus obtain that the total horizontal displacement is proportional to
the sum of the velocities of the explored layers. We can thus put this problem
in the previous framework of a sum of random variables with long-range
correlations decaying as t−1/2 at long times t. Using (8.7), we get

x//(t) ∼ D−1/2 t3/4 , (8.18)

with an exponent 3/4 larger than 1/2, that characterizes a super-diffusion
process.

This mechanism, in terms of long-range correlations to generate super-
diffusion, is distinct from the mechanism discussed in Chap. 4 in which
super-diffusion results from the divergence of the variance of the uncorre-
lated variables contributing to the sum. In the present example, the variance
is finite and the super-diffusion stems from the existence of the long-range
correlations. Hence, when confronted with a super-diffusion process, one must
bear in mind that these two mechanisms can be present, possibly co-existing.

8.4 Advanced Results on Correlations

8.4.1 Correlation and Dependence

Absence of correlation is not synonymous of independence! More precisely,
the vanishing of the two-point correlation function Cij defined by (8.1) does
not necessarily imply that the two variables are independent. For this to be
true, all correlation functions that one can construct with arbitrary functions
of the two variables must be zero.

Consider, for instance, a random variable x with symmetric pdf P (x) =
P (−x). We construct the random variable y = x2. Obviously, y is not inde-
pendent of x. In fact, y is completely dependent on x, since the knowledge
of x fully determines that of y. However, the correlation between x and y
(noted cov{x, y}) is zero:

cov{x, y} = 〈xy〉 − 〈x〉〈y〉 = 〈x3〉 − 〈x〉〈x2〉 = 0 , (8.19)

because 〈x3〉 = 〈x〉 = 0 due to the symmetry of P (x).
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To generalize this result, we now construct a (non-stationary) random
process x(t) defined by

x(t) = f(x0)g(t) , (8.20)

where f is an even function, for instance f(x0) = x2
0 and g(t) is arbitrary

and independent of x0. We also assume that, for a given scenario, the initial
value x0 is taken randomly for a centered distribution (such that 〈x0〉 = 0).
Then, the correlation between x(t) and the initial value x0 calculated over
a statistical ensemble of possible scenarii is

C0,t = 〈x0x(t)〉 − 〈x0〉〈x(t)〉 = 〈x3
0〉〈g(t)〉 − 〈x0〉〈x2

0〉〈g(t)〉 = 0 , (8.21)

because 〈x3
0〉 = 〈x0〉 = 0 for a symmetric distribution of initial values x0.

A different class of systems exhibiting the same property is given by

x(t+ 1) = f(x(t)) , (8.22)

where f(x(t)) is decomposed onto the complete set of Hermite polynomials2

of order larger than or equal to 2. This series exhibits zero correlation, while
the process is completely predictable (deterministic) and x(t) depends only
on x0. One can show [260] that 〈x(t)x(0)〉 − 〈x(t)〉〈x(0)〉 = 0 for any t �= 0,
where the average is performed in a statistical sense, i.e. over all possible
initial values x0 distributed according to a symmetric distribution.

The fact that correlation and dependence are two distinct concepts is
further illustrated with the following nonlinear model with zero correlation
but non-vanishing dependence leading to significant predictability. Let us
construct a stochastic process x(t) according to the following rule:

x(t) = ε(t) + bε(t− 1)ε(t− 2) , (8.23)

where ε(t) is a white noise process with zero mean and unit variance and b
is a fixed parameter. For instance, ε(t) is either +1 or −1 with probability
1/2. The definition (8.23) means that the value of the variable x(t) at time t
is controlled by three random coin tosses, one at time t, one at time t − 1
and one of time t − 2. It is easy to check that the average E(x(t)) as well
as the two-point correlation E(x(t)x(t′)) for t �= t′ are zero and x(t) is thus
also a white noise process. Intuitively, this stems from the fact that an odd
number of coin tosses ε’s enter in these diagnostics whose average is zero
((1/2) × (+1) + (1/2) × (−1) = 0). However, the three-point correlation
function E(x(t−2)x(t−1)x(t)) is non-zero and equal to b and the expectation
of x(t) given the knowledge of the two previous realizations x(t−2) and x(t−1)
is non-zero and reads

E(x(t)|x(t − 2), x(t − 1)) = bx(t− 2)x(t− 1) . (8.24)

2 The Hermite polynomials form an orthogonal set of functions with respect to
the norm defined with the Gaussian distribution and are themselves directly
obtained by successive differentiation of the Gaussian law.
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This means that it is possible to predict the variable x(t) with better success
than 50% chance, knowing the two past values x(t − 2) and x(t − 1). Thus,
absence of correlation does not imply absence of predictability.

8.4.2 Statistical Time Reversal Symmetry

Description of the Problem. Assume that we are studying a time ordered
data sequence,

· · · , X−2, X−1, X0, X1, X2, X3 , · · · (8.25)

which is the realization of some stationary stochastic process. Is it possible
to discern a preferred direction of time such that the appropriate algorithm
indicates the presence of such a direction when (8.25) is reversed as in

· · · , X3, X2, X1, X0, X−1, X−2, · · · (8.26)

Pomeau [743] has introduced such an idea of testing for the time-reversal
symmetry in a statistical sense. If the fluctuations of a random variable
X(t) are stationary on average, then the usual two-point correlation function
C(τ) = 〈(X(t)−〈X〉)(X(t+τ)−〈X〉)〉 is an even function of τ : C(τ) = C(−τ).
If X(t) is recorded on a magnetic tape, its examination does not allow to dis-
tinguish between the two directions of reading the tape. Limiting the anal-
ysis of the time series to the calculation of C(τ) thus corresponds to a loss
of information since the signal X(t) can be symmetric or asymmetric sta-
tistically under time reversal but yet absent in the information contained
in C(τ).

It is in fact possible to construct correlation functions that test for the
statistical symmetry under time reversal. The simplest one is

C3(τ) = 〈X(t)[X(t+ 2τ) −X(t+ τ)]X(t+ 3τ)〉 . (8.27)

To understand the meaning of C3(τ), notice that it is equal to the difference
of 〈X(t)X(t + 2τ)X(t + 3τ)〉 and 〈X(t)X(t + τ)X(t + 3τ)〉. The first term
〈X(t)X(t+2τ)X(t+3τ)〉 corresponds to three signals shifted with respect to
t as 0, 2τ, 3τ , while the second term 〈X(t)X(t+ τ)X(t+ 3τ)〉 corresponds to
0, τ, 3τ . Upon time reversal, they respectively change into time shifts 0, τ, 3τ
and 0, 2τ, 3τ , i.e. they exchange their role. If the signal is time reversal invari-
ant, C3(τ) will thus be zero. If there is some statistical assymmetry under
time reversal, C3(τ) will be non-zero.

It can be shown that fluctuations of many-body systems at the thermo-
dynamic equilibrium are reversible in this sense while they are not time sym-
metric if the many-body system is out-of-equilibrium in a steady state. This
last case corresponds to chaotic phenomena, turbulence and self-organized
(critical or not) systems. An application of these ideas to turbulence can be
found [754] showing the importance of viscosity to break down the statistical
time symmetry.
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Examples and Qualifiers. We consider a simple analytically workable ex-
ample, the Kesten multiplicative process defined by

Xn+1 = anXn + bn, given X0 , (8.28)

where the stochastic variables an, bn are drawn with the pdfs Pa(an) and
Pb(bn). Although the model (8.28) appears to be an apparently innocuous
AR(1) (autoregressive of order 1) process, the random and positive multi-
plicative coefficient an lead to non-trivial intermittent behavior for a large
class of distributions for an. This model has been applied to a large variety of
situations, such as population dynamics with external sources, auto-catalytic
processes, epidemics where it provides a rationalization for observed power
law data, finance and insurance, immigration and investment portfolios and
the internet (see [879] and references therein). One of its interesting features
is that it provides a simple and general mechanism for generating power law
distributions [501, 561, 858, 891] (see Chap. 14). Figure 8.2 presents a typical
time evolution of Xn given by expression (8.28). For the parameters used in
this figure, 〈Xn〉 = 〈b〉/(1 − 〈a〉) = 25. Most of the time, Xn is significantly
less than its average, while rare intermittent bursts propel it to very large val-
ues. Qualitatively, this behavior arises because of the occurrence of sequences
of successive individual values of an that are larger than 1 which, although
rare, are always bound to occur in this random process. The persistence of
the temporal behavior has a decay which is exp[〈ln a〉τ ] on the average. The
inverse of the decay rate defines a correlation time 1/|〈ln a〉| = 14.8 governing
the impact of past innovations b(t− τ) on the present value Xn. The distri-
bution of Xn from a numerical realization with the properties above gives an
histogram characterized by a power law tail

P (X) ∼ X−(1+µ) , with µ ≈ 1.5 . (8.29)

It also contains a rolloff at smaller values of Xt, a result that is mandated by
the fact that as X(t) → 0 the process is dominated by the injection of new
stock 0 < b < 1, so that the population is repelled from a zero value.

Looking at Fig. 8.2, it is not obvious how to decide what is the arrow of
time in this rather complex stochastic time series. To answer this question,
we calculate the correlation function C3 proposed by Pomeau and write it as
C3 = C1 − C2 where

C1
def= 〈XnXn+1Xn+3〉 , (8.30)

C2
def= 〈XnXn+2Xn+3〉 , (8.31)

where the brackets define as usual ensemble averages. The calculations pre-
sented in this section have been performed in collaboration with P. Jögi.
These two expressions expands and simplifies to (assuming 〈un〉 = 〈u〉),
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Fig. 8.2. Time evolution Xn

of the Kesten variable de-
fined by (8.28) with an uni-
formly taken in the interval
[0.48; 1.48] and bt uniformly
taken in the interval [0; 1].
Notice the intermittent large
excursions

C1 =
(
〈b〉2 + 〈a〉〈b〉2 + 〈a〉2〈b2〉

)
〈X〉

+
(
〈a〉〈b〉 + 〈a〉2〈b〉 + 2〈a〉3〈b〉

)
〈X2〉 + 〈a〉2〈a2〉〈X3〉 , (8.32)

C2 =
(
〈b〉2 + 〈a〉〈b〉2 + 2〈a〉2〈b〉2 + 〈a〉〈b2〉 + 〈a〉〈a2〉〈b2〉

)
〈X〉

+
(
〈a〉2〈b〉 + 2〈a〉3〈b〉 + 2〈a〉2〈a2〉〈b〉

)
〈X2〉 + 〈a〉〈a2〉2〈X3〉 . (8.33)

We have

〈X〉 =
〈b〉

1 − 〈a〉 , (8.34)

〈X2〉 =
2〈a〉〈b〉2/(1 − 〈a〉) + 〈b2〉

1 − 〈a2〉 , (8.35)

〈X3〉 =
3〈a〉〈b〉〈b2〉/(1 − 〈a〉)

1 − 〈a3〉 (8.36)

+
3〈a2〉〈b〉

(
2〈a〉〈b〉2/(1 − 〈a〉) + 〈b2〉

)/
(1 − 〈a2〉) + 〈a3〉

1 − 〈a3〉 .

Note that, if b = 0, C1 = C2, qualifying the statistical time symmetry: this is
expected since the map (8.28) then becomes a simple multiplicative process.
We see that the additive term in the affine map (8.28) provides a powerful
source of time reversal asymmetry. To explore this statement further, consider
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the case 〈an〉 = An (i.e. no randomness on the multiplicative factor), for
which

C3 = C1 − C2 =
A4

(
2〈b〉3 − 3〈b〉〈b2〉 + 〈b3〉

)
1 +A+ A2

. (8.37)

This vanishes if b is a constant or for bn uniformly distributied, i.e. bn ∈
{Θ(bn) − Θ(bn − 1)}, since in this case we have 〈b〉 = 1/2, 〈b2〉 = 1/3
and 〈b3〉 = 1/4. However, for the simple two-step “staircase” distribu-
tion

Pbn(bn) = p (Θ(bn) −Θ(bn − 1))

+
1 − p

B − 1
(Θ(bn − 1) −Θ(bn −B)) (8.38)

(with B > 1), C3 = C1−C2 does not vanish and the time series is statistically
non-time-reversal invariant:

C1 − C2 =
A4 p (1 − p) (pB − 1)

4(1 +A+A2)
. (8.39)

The interesting condition that lets this expression vanish, B = 1/p, is exactly
the condition that makes the pdf, (8.38), uniform.

The fact that C3 = C1 − C2 vanishes for uniform distribution of the
additive variable bn does not necessarily imply that the property of statistical
time-reversal invariance holds. Indeed, other qualifiers will detect statistical
time-asymmetry. For instance, the qualifier

Qm = 〈(Xt+m −Xt)3〉/〈(Xt+m −Xt)2〉 (8.40)

has been proposed as a test for nonlinearities in time series [953]. It turns
out that it is first a test for statistical time-reversal symmetry. Applied to
the Kesten process with non-random an = A, we get

Q1 =
−3A (1 +A)

(
2〈b〉3 − 3〈b〉〈b2〉 + 〈b3〉

)
2 (1 +A+A2)

(
〈b〉2 − 〈b2〉

) , (8.41)

Q2 =
−3A2 (1 +A)

(
2〈b〉3 − 3〈b〉〈b2〉 + 〈b3〉

)
2 (1 +A+A2)

(
〈b〉2 − 〈b2〉

) , (8.42)

which have the same b moment polynomial already encountered in Pomeau’s
C3. Q1 and Q2 as well as the other higher orders are vanishing for a constant b
or for random b’s taken from a uniform distribution, while they are non-
zero for other more complex distributions of b. Notice that the so-called
nonlinear probes Qn can be non-zero and thus qualify the affine map (8.28)
as apparently nonlinear. It has indeed been noted that the affine map behaves
as an apparent nonlinear system [879].
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Another possible probe of statistical time reversal symmetry is the “cubic”
correlation measure

Km = 〈Xt+m
3Xt〉 − 〈Xt

3Xt+m〉 . (8.43)

Applied to Kesten’s process with constant an = A, we get

K1 = −6
A3 (1 +A)

(1 +A2) (1 −A3)
〈b〉4 − 3

A
(
1 − 3A2 − 4A3

)
(1 +A2) (1 −A3)

〈b〉2〈b2〉

+ 3
A

1 + A2
〈b2〉2 +

A
(
1 − 3A2 − 4A3

)
(1 +A2) (1 −A3)

〈b〉〈b3〉

− A

1 +A2
〈b4〉 . (8.44)

With this probe, even with bn ∈ {Θ(bn) −Θ(bn − 1)} uniform,

K1 =
A

120 (1 +A2)
> 0 , (8.45)

i.e. this probe detects a violation of the statistical time-reversal symmetry
even when C3 does not.

In general, if Pbn(bn) is sufficiently symmetric such that 〈b〉 = 〈b3〉 = 0,
we find

K1 =
A

1 +A2
(3〈b2〉2 − 〈b4〉) , (8.46)

which for a Gaussian pdf will be zero.
The introduction of a random component in the multiplicative term an

makes all these probes go even further from zero, showing that Kesten’s
process is not the same in general when interchanging the arrow of time. The
generic situation thus appears to be statistical time-reversal asymmetry.

While the conceptual impact of a breakdown of statistical time-reversal
symmetry is important, it is less clear how these measures provide a quanti-
tative and practical insight into the properties of stochastic time series. Only
a few works have addressed this question. The most studied application has
been to probe whether time asymmetry can be detected in fluid flows and
in particular in hydrodynamic turbulence. The outstanding question, still
largely unresolved, is whether the turbulent “cascade”, assumed to describe
the emergence of turbulence [316], is a genuine dynamical process which im-
plies a progression in time and thus a time arrow, for instance with increasing
delays when going from large scales to small scales. Such a time-correlation
structure accross scales has been documented in financial time series [34]. Al-
ternatively, is the cascade more an instantaneous spatial structure? Testing
for statistical time asymmetry may cast light on this fundamental question.
Only a few investigations have been performed [754, 974, 1035] and seem
to indicate that statistical time asymmetry is present and there is a time
arrow felt in the statistical properties. In turbulent flows, third-order two-
point triple correlations exhibit near antisymmetry in the time delay and
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their shapes determine the direction of energy transfer across the spectrum,
which is a sort of asymmetry or preferred direction. In isotropic turbulence,
the acceleration of the fluid has a positive skewness (more large positive val-
ues than large negative ones), associated (via Taylor’s hypothesis) with the
skewness of the gradient of the velocity field whose origin is vortex stretching
in three dimensional flows. One sided ramp-like structures in the signal can
lead to this behavior.

Another more recent domain of application is economy and finance. Ram-
sey and Rothman [760] have shown that economic time series exhibit statisti-
cal time-reversal asymmetry. As already mentionned, Arnéodo et al. [34] have
shown, by using wavelets to decompose the volatility (standard deviation) of
intraday S&P500 (the main US stock market index) return data across scales,
that two-point correlation functions of the volatility logarithms across differ-
ent time scales reveals the existence of a causal information cascade from
large scales to fine scales.

8.4.3 Fractional Derivation and Long-Time Correlations

Derivatives of fractional order provide a compact description of long-range
time correlations and memory in time series. Fractional-difference captures
parsimoniously long-run structures that decay very slowly [395]. Indeed, it
is always possible to account for long-range memories by introducing a high
order derivative or high-order lags in an auto-regressive model. But this in-
volves many parameters. The fractional derivative approach is solely defined
in terms of a unique parameter, the fractional order of the derivation. This
makes this approach an interesting candidate to fit time series with long-
range correlations. Fractional derivatives have also more recently emerged in
physics as generators of time evolutions of dynamical systems and as a tool
for classifying phase transitions in thermodynamics by generalizing the clas-
sification scheme of Ehrenfest. We borrow from and refer to [420, 421, 619]
for introductions and lists of useful references and for applications. Fractional
integrals and derivatives are convolution operators with a power law kernel.
This makes them natural tools in scaling theory.

Definitions. Consider a real function f that maps the interval [a, b] onto
the real axis. Recall that its n-th order integral is given by

(In
a+f)(x) =

∫ x

a

∫ y1

a

...

∫ yn−1

a

f(yn) dyn...dy1 (x > a)

=
1

(n− 1)!

∫ x

a

(x− y)n−1f(y) dy (8.47)

as is readily proven by induction. Generalizing (8.47) to noninteger n defines
the Riemann–Liouville fractional integral of order α > 0 as

(Iα
a+f)(x) =

1
Γ (α)

∫ x

a

(x− y)α−1f(y) dy , (8.48)
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for x > a and f being L1 integrable in the interval [a, b]. For 0 < a < 1, these
definitions are extended to the whole real axis for f being Lp integrable with
1 ≤ p < 1/α.

A natural approach to define a fractional derivative tries to replace α
with −α directly in the definition (8.48). However the resulting integral is
divergent and needs to be regularized as follows:

(∂α
+f)(x) =

d
dx

(I1−α
+ f)(x)

=
1

Γ (1 − α)
d
dx

∫ x

−∞
(x− y)−αf(y) dy

=
1

Γ (1 − α)
d
dx

∫ ∞

0

t−αf(x− t) dt

=
α

Γ (1 − α)

∫ ∞

0

f ′(x− t)
∫ ∞

t

1
z1+α

dz dt

=
α

Γ (1 − α)

∫ ∞

0

f(x) − f(x− t)
t1+α

dt (8.49)

where the last equality is obtained by an integration by parts and serves to
define (∂α

+f) for 0 < α < 1. f ′ denotes the first derivative of f with respect to
its argument. These definitions (8.48) and (8.49) introduce fractional differ-
entiation as an inverse operation to fractional integration, i.e. as integration
of order −α.

A more direct approach arises from the fact that derivatives are limits of
difference quotients. Let T h denote the translation by h:

(T hf)(x) = f(x− h) . (8.50)

The finite difference of order α is defined as

(∆α
hf)(x) = (1 − T h)αf(x) =

∞∑
k=0

(−1)k

(
α

k

)
f(x− kh) , (8.51)

with the identity 1 = T 0, and(
α

k

)
=

(−1)k−1αΓ (k − α)
Γ (1 − α)Γ (k + 1)

. (8.52)

It reduces to the familiar finite difference of integer order when α is an integer.
The Grünwald fractional derivative of order α is then defined as the limit of
a fractional finite difference quotient:

(∂α
±f)(x) = lim

h→+
h−α(∆α

±hf)(x) . (8.53)

Let us also mention the frequency approach to fractional derivative. In the
Fourier domain, a nth order differentiation of f(x) amounts to multiplying its
Fourier transform by (iω)n. Making n non-integer provides a Fourier equiva-
lent of Liouville’s definition (8.48) of fractional derivative. Thus, a fractional
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derivative of order α is obtained by first Fourier transforming f(x), then mul-
tiplying its Fourier transform by (iω)α. The last step is to take the inverse
Fourier transform.

A very readable short guide to fractional derivation is [619], which demon-
strates in details its application to anomalous diffusion and random walks
with long memory.

Phase Transitions. Fractional derivatives have been employed in thermo-
dynamics to generalize the Ehrenfest classification scheme for phase tran-
sitions discussed in Chap. 9. This generalization gives rise to a generalized
form of static scaling at the transition, with amplitudes and scaling expo-
nents which depend on the choice of the path C taken to reach the critical
point.

This analysis is interesting for two reasons. First, it provides a systematic
classification scheme that allows one to predict what cases can or cannot
occur and what to expect in the scaling behavior in new problems. This
approach complements the renormalization group theory of phase transitions
which does not provide an exhaustive classification of the “fixed points”,
the corresponding universality classes and exponents. Second, this analysis
leads to new predictions of scaling functions and amplitude ratios of static
macroscopic phenomena [420].

Time Evolution with Long-Term Memory. Let us also mention the
role of fractional derivation in the description of the time evolution of dy-
namical systems. Standard first-order time derivatives play a fundamental
role in the time evolution for dynamical systems. This raises the question
of the meaning and status of fractional time derivatives for the time evo-
lution of dynamical systems. The answer is that it is indeed possible to
use fractional derivatives as completely consistent generators of the time
evolution of dynamical systems. Fractional derivatives possess the semi-
group structure that is necessary for this purpose. Physically, they are
associated with algebraic decay in time. To see this, consider the equa-
tion

∂α
+µ(t) = 0 , (8.54)

describing the conservation of the phase space volume of a dynamical system
under a fractional time-dependent process. The solution of (8.54) is

µ(t) = C0 t
α−1 . (8.55)

This results from the fact that the fractional derivative of order α of xb−1 is
[Γ (b)/Γ (b − α)] xb−α−1, where Γ (x) is the Gamma function. Setting b = α
gives zero since Γ (b − α) → ∞ as b → α. Thus algebraic decay in time can
be a sign of stationarity for induced dynamics on subsets of measure zero.
The algebraic time decay shows that α plays the role of a dynamic scaling
exponent.
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Fractional Derivative of Fractals. The intuitive meaning of fractional
derivatives and the previous applications suggest that taking the fractional
integral of order D of a fractal function of dimension D may lead to non-
fractal objects. Rocco and West have given form to this intuition [785] by
showing that the fractional derivative (integral) of the generalized Weierstrass
function W (t) is another fractal function with a greater (smaller) fractal
dimension:

Dim[∂α
±W ] = Dim[W ] ± α . (8.56)

The Weierstrass–Mandelbrot fractal function is defined by

W (t) =
+∞∑

n=−∞

1 − eiγnt

γ(2−D)n
eiφn , (8.57)

with 1 < D < 2 and φn arbitrary. D is the Hausdorf–Besicovich fractal
dimension of the graph of W (t) (more precisely of the graphs of the real part
or imaginary part of W ). The result of Rocco and West [785] is that ∂α

±W (t)
takes the same form as (8.57) with D replaced by D ± α.

Fractional Diffusion Equation and Stable Lévy Laws. Diffusion mod-
els in physics describe the spreading of a cloud of tracer particles. In classical
diffusion, particles spread out at a rate proportional to t1/2 where t > 0 repre-
sents the time scale. Anomalous diffusion is characterized by a different rate of
spreading, tH , where H < 1/2 is subdiffusion and H > 1/2 is superdiffusion.
Although the partial differential equations for diffusion are deterministic,
they also govern the random particle jumps which are the physical cause of
the diffusion. Let X(t) be the position of a randomly selected particle along
a line at time t ≥ 0 and let P (x, t) be the density of X(t). If a sufficiently
large ensemble of independent particles evolves according to this model, then
P (x, t) also represents the relative concentration of particles at location x at
time t > 0. Saichev and Zaslavsky [806], Chaves [164] and Benson et al. [72]
introduced the following modeling equation to describe anomalous diffusion

∂P (x, t)
∂t

= −v ∂P (x, t)
∂x

+Bq
∂αP (x, t)
∂(−x)α

+Bp
∂αP (x, t)
∂xα

, (8.58)

where v ∈ R, B > 0, 0 ≤ p, q ≤ 1 and p + q = 1. ∂α/∂(±x)α are
fractional derivatives of order 1 ≤ α ≤ 2, which are most easily defined
in terms of Fourier transforms. Using the Fourier transform convention
f̂(k) =

∫
e−ikxf(x) dx, we specify as above these fractional derivative opera-

tors by requiring that ∂αf(x)/∂(±x)α has the Fourier transform (±ik)αf̂(k),
generalizing the familiar formula for integer order derivatives. Taking the
Fourier transform of (8.58), we obtain

dP̂ (k, t)
dt

= −v(ik)P̂ (k, t) +Bq(−ik)αP̂ (k, t) +Bp(ik)αP̂ (k, t) (8.59)
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so that, for the initial condition P̂ (k, 0) = 1, we get

P̂ (k, t) = exp [−vt(ik) +Btq(−ik)α +Btp(ik)α] . (8.60)

This initial condition corresponds to the assumption X(0) = 0 with proba-
bility 1. Using (ik)α = (eiπ/2 k)α = |k|α cos[πα/2]{1 + i sign(k) tan[πα/2]},
with −eiπ/2 = eiπ/2−iπ = e−iπ/2, we obtain

P̂ (k, t)
= exp [−vt(ik) +Bt|k|α cos[πα/2]{1 + iβsign(k) tan[πα/2]}] (8.61)

and recognize the Fourier transform of a stable density with index α, skew-
ness β = p − q, center vt and scale σα = −Bt cos[πα/2], as discussed in
Chap. 4. Hence P (x, t) is the density of an α-stable Lévy motion {X(t)}
with drift, where 1 ≤ α ≤ 2. If α = 2, then P (x, t) is a Gaussian density
and (8.58) reduces to the classical diffusion equation for Brownian motion
with drift, which was discussed in Chap. 2. In the symmetric case β = 0,
the fractional diffusion equation (8.58) was considered by Metzler et al. [621]
and Compte [178], and in the totally skewed case β = 1, (8.58) was treated
by Zaslavsky [1054] and Compte [179]. Benson et al. [71, 73] present several
applications of (8.58) in hydrology which illustrate the practical utility of the
model. Schumer et al. [828] give a physical derivation of (8.58) which justifies
the assumption α > 1.



9. Phase Transitions: Critical Phenomena
and First-Order Transitions

9.1 Definition

One of the most conspicuous properties of nature is the great diversity of
size or length scales in the structure of the world. An ocean, for example,
has currents that persist for thousands of kilometers and has tides of global
extend; it also has waves that range in size from less than a centimeter to
several meters; at much finer resolution, seawater must be regarded as an
aggregate of molecules whose characteristic scale of length is roughly 10−8

centimeter. From the smallest structure to the largest is a span of some 17
orders of magnitude.

In general, events distinguished by a great disparity in size have little
influence on one another: they do not communicate, and so the phenomena
associated to each scale can be treated independently. The interaction of
two adjacent water molecules is much the same whether the molecules are
in the Pacific Ocean or in a teapot. What is equally important, an ocean
wave can be described quite accurately as a disturbance of a continuous
fluid, ignoring completely the molecular structure of the liquid. The suc-
cess of almost all practical theories in physics depends on isolating some
limited range of length scales. If it were necessary in the equations of hy-
drodynamics to specify the motion of every water molecule, a theory of
ocean waves would be far beyond the means of 20th-century science.

A class of phenomena does exist, however, where events at many scales
of length make contributions of equal importance.... Precisely at the critical
point, the scale of the largest fluctuations becomes infinite, but the smaller
fluctuations are in no way diminished. Any theory that describes (a system)
near its critical point must take into account the entire spectrum of length
scales.

K.G. Wilson [1021]

The word “critical” is used in science with different meanings. Here, we use
it in the context of the critical phenomena studied in statistical physics in
connection with phase transitions. In this framework, it describes a system
at the border between order and disorder, which is characterized by an ex-
tremely large susceptibility to external factors and strong correlation between
different parts of the system. These properties result from the cascade of cor-
relations occurring at all existing scales in the system, in other words criti-
cality is characterized by a self-similarity of the correlations. Examples are
liquids at their critical point characterized by a specific value Tc of the tem-
perature and of the pressure pc and magnets at their Curie point at Tc under
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zero magnetic field, among many other systems. The interest in these critical
phenomena lies in the (initially surprising but now well-understood but still
fascinating) observation that simple laws acting at the microscopic level can
produce a complex macroscopic behavior characterized by long-range correla-
tions and self-similarity. Such critical behavior is fundamentally a cooperative
phenomenon, resulting from the repeated interactions between “microscopic”
elements which progressively “phase up” and construct a “macroscopic” self-
similar state. At the mathematical level, the challenge is to understand and
deal with the non-analytic behavior of the functions describing the response
of the system.

One must distinguish between two types of collective phenomena. The
existence of collective organizations is one of the first evidence when looking
at the macroscopic behavior of systems emerging from the intrinsic chaotic
motion of the atoms and molecules. The law of large numbers allows us
indeed to derive the law of a perfect gas, the hydrodynamic equations, etc.,
which are all expression of a large scale coherence emerging from chaos at
the atomic scale. However, the concept of criticality refers to a more subtle
case of collective phenomena in which it is not possible to identify a specific
correlation length above which averaging of the physical properties is possible,
as is done for instance in deriving the Navier–Stokes hydrodynamic or the
heat diffusion equations. This impossibility stems from the existence of a self-
similar structure adopted by the critical system in which many length scales
become relevant [1021].

We are interested in discussing the collective phenomena occurring in
critical systems because there has been stimulating suggestions about the
possible relevance of these concepts for natural phenomena, such as large
earthquakes, which could be a signature of a kind of critical point [14], faulting
with its hierarchical crustal fracture patterns [710, 711, 862], meteorology and
turbulence [102, 316, 992], up to the large scale structure of the universe [177,
726].

We first present an illustration of the long-range correlations present in the
organization of critical systems by reviewing some properties of spin systems
using the statistical language and tools introduced in the previous chapters.

9.2 Spin Models at Their Critical Points

9.2.1 Definition of the Spin Model

Spin models are among the best known and simplest models of interacting
elements which can exhibit critical phenomena. While apparently formulated
in terms unrelated to geological problems, spin models in fact are much more
general than their initial domain of definition as they incarnate the basic
competition between an ordering tendancy from the action of interactions
and the disordering influence of external stochastic noise. A spin represents
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the generic entity which can take only a finite discrete number of different
states, the simplest case being two states 0 and 1 (or −1/2 and +1/2 often
represented by an up and down arrows). You can thus think that a spin repre-
sents the local magnetization of anisotropic magnets, or the state “intact” or
“damaged” of a material that will eventually rupture [324, 572]. Spin models
have even been used to model the collective behavior of animal and human
communities, where the two states represent two different opinions (“adop-
tion” and “rejection”, “positive” and “negative” votes, etc.) [132, 706].

A spin model is defined by 1) the lattice on which the spins are positionned
(for instance at the nodes of a square or cubic lattice, or more generally of
some graph) and 2) by the interactions between the spins. The spin repre-
sentation can be used to model interacting elements or agents also subjected
to random influences. Consider a network of elements: each one is indexed
by an integer i = 1, . . . , I, and N(i) denotes the set of the elements which
are directly connected to element i according to some graph. For simplicity,
we assume that element i can be in only one of several possible states. In the
simplest version called the Ising model, we can consider only two possible
states: si ∈ {−1,+1}. We could interpret these states as ‘positive’ and ‘nega-
tive’, ‘occupied’ and ‘empty’, ‘intact’ and ‘broken’, etc. The general features
of the model, such as the existence of critical points, remain robust when the
number of states is modified. For q states where q is an arbitrary integer and
when the interaction between spins are only of two types (positive for identi-
cal spins and negative for dissimilar spins), the model is known as the Potts
model [1028]. This model has critical points for low values of q and exhibits
abrupt transitions for large values of q. This shows that there is a large set
of models and a broad range in parameter spaces for which critical behavior
occurs.

To be specific, let us consider the Ising model with only two states such
that the state of an element i is determined by:

si = sign

⎛
⎝K ∑

j∈N(i)

sj + σεi

⎞
⎠ (9.1)

where the sign(x) function is equal to +1 (to −1) for positive (negative) ar-
gument x, K is a positive constant, εi is independently distributed according
to the standard normal distribution and N(i) is the number of relatives with
whom the elements interacts significantly. This equation belongs to the class
of stochastic dynamical models of interacting particles [565, 566] (Liggett,
1985, 1997), which have been much studied mathematically in the context of
physics and biology.

In this model (9.1), the tendency towards imitation is governed by K,
which is called the coupling strength; the tendency towards idiosyncratic
behavior is governed by σ. Thus the value of K relative to σ determines
the outcome of the battle between order and disorder. More generally, the
coupling strength K could be heterogeneous across pairs of neighbors, and
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it would not substantially affect the properties of the model. Some of the
Kij ’s could even be negative, as long as the average of all Kij ’s was strictly
positive.

Note that (9.1) only describes the state of an element at a given point
in time. In the next instant, new εi’s are drawn, new influences propagate
themselves to neighbors, and elements can change states. Thus, the best we
can do is to give a statistical description of the states.

Many quantities can be of interest. The one that best describes the chance
that a large group of elements finds itself suddenly of the same sign is called
the susceptibility of the system. To define it formally, assume that a global
influence term G is added to (9.1):

si = sign

⎛
⎝K ∑

j∈N(i)

sj + σεi +G

⎞
⎠ . (9.2)

This global influence term will tend to favour state +1 (state −1) if G > 0
(G < 0). Equation (9.1) simply corresponds to the special case G = 0: no
global influence. Define the average state as M = (1/I)

∑I
i=1 si. In the ab-

sence of global influence, it is easy to show by symmetry that 〈M〉 = 0:
elements are evenly divided between the two states. In the presence of a pos-
itive (negative) global influence, elements in the positive (negative) state will
outnumber the others: 〈M〉 × G ≥ 0. With this notation, the susceptibility
of the system is defined as:

χ =
d(E[M ])

dG

∣∣∣∣
G=0

(9.3)

In words, the susceptibility measures the sensitivity of the average state to
a small global influence. The susceptibility has a second interpretation as
a constant times the variance of the average state M around its expectation
of zero caused by the random idiosyncratic shocks εi. Another related inter-
pretation is that, if you consider two elements and you force the first one
to be in a certain state, the impact that your intervention will have on the
second element will be proportional to χ.

An alternative definition of the Ising model is obtained by writing that
the energy of the system of spins is

E = −K
∑
<ij>

δ(σiσj) , (9.4)

where K is the coupling, the sum is taken over nearest neighbors and the
delta function equals one if σi = σj , zero otherwise (this corresponds to the
so-called Potts model [1028] which is equivalent to the Ising model when the
number of states taken by the spins is two). As we said above, for K > 0 (at-
tractive interaction), the interaction energy tends to make neighboring spins
identical (failure favors failure, healing promotes healing) since this configu-
ration minimizes energy. If the system is to obey an extremum principle so
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as to minimize its energy, it will take the configuration where all the spins
are in the same direction. But, this tendency is opposed by the coupling of
the system to the exterior and also by the presence of stochasticity. Usually,
this stochastic “force” is quantified by the concept of a temperature. We have
shown in Chap. 7 how general this concept is and have presented a general
derivation that suggests its potential application outside the realm of thermal
equilibrium systems, for instance to quantify more generally the stochastic-
ity of dynamical systems. We will use this framework in describing the spin
system.

Equation (9.4) gives the energy of a given spin configuration. The usual
assumption of thermal equilibrium means that the system is coupled to a ther-
mal bath and the spin configurations evolve randomly in time and space in
response to thermal fluctuations with a probability to be in a configuration
with energy E proportional to the Boltzmann factor e−βE, where β is the
inverse of the temperature (suitably dimensionalized by the Boltzmann con-
stant).

9.2.2 Critical Behavior

As the simplest possible network, let us assume that elements are placed
on a two-dimensional grid in a Euclidean plane. Each agent has four nearest
neighbors: one each to the North, South, East and West. The relevant param-
eter is K/σ which measures the tendency towards imitation relative to the
tendency towards idiosyncratic behavior. In the context of the alignment of
atomic spins to create magnetization, this model (9.1) is identical to the two-
dimensional Ising model which has been solved explicitly by Onsager [703].
The two formulations (9.1) and (9.4) underline different aspects of the model:
(9.1) stresses the dynamical view point while (9.4) emphasizes the variational
view point usually taken in textbooks [351].

In the Ising model, there exists a critical point Kc that determines the
properties of the system. When K < Kc, disorder reigns: the sensitivity to
a small global influence is small, the clusters of elements that are in alignment
remain of small size, and imitation only propagates between close neighbors.
Formally, in this case, the susceptibility χ of the system is finite. When K
increases and gets close to Kc, order starts to appear: the system becomes
extremely sensitive to a small global perturbation, aligned elements form
large clusters, and imitation propagates over long distances. These are the
characteristics of critical phenomena. In this case, the susceptibility χ of the
system goes to infinity. The hallmark of criticality is the power law, and
indeed the susceptibility goes to infinity according to a power law:

χ ≈ A(Kc −K)−γ . (9.5)

where A is a positive constant and γ > 0 is called the critical exponent of the
susceptibility (equal to 7/4 for the 2-d Ising model).
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9.2.3 Long-Range Correlations of Spin Models
at their Critical Points

In this section, we follow [111] to present the main characteristics of critical
phenomema within a probabilistic interpretation. The state of a spin sys-
tem can be characterized by various quantities. As we said, the simplest one
(called the magnetization) is

M =
Ld∑
i=1

Si , (9.6)

which is the sum of all spins in the system consisting of a cube of linear
size L. This magnetization is the result of a competition between the in-
teractions tending to decrease the energy and correlate the spins at long
distance (making them all the same) and disorder (quantified by the temper-
ature). At high temperature, the latter dominates and correlations between
spins are short-ranged. M is thus zero on average with fluctuations of or-
der

M =
Ld∑
i=1

Si ∼
√
Ld . (9.7)

More precisely, the central limit theorem applies in the usual Gaussian
form:

P (M) ∼ 1√
2πχLd

e−M2/2χLd

, (9.8)

with a variance proportional to the susceptibility χ, defined by χ =
(∂M/∂H)|T , where H is the external field. When present, the magnetic
field contributes to the energy (9.4) of the system by an additional term
−H∑

i Si.
In contrast, in the low-temperature phase, perfect correlations are favoured

(a finite fraction of all spins align parallel) and lead to a non-zero correlation
function at large separations, equal to the magnetization value m:

M =
Ld∑
i=1

Si ∝ Ldm±
√
Ld . (9.9)

The distribution P (M) for large L is again essentially a Gaussian law centered
at Ldm (by symmetry, the same results hold for −Ldm).

These two regimes (high and low temperatures) cross over from one to
the other at a critical point occurring at a special temperature Tc called the
critical (or Curie) temperature. At this point, the spin correlations decay
algebraically:

〈S0Sr〉 ∼ 1
rd−2+η

, (9.10)
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where the expression d − 2 + η is due to historical reasons. According to
Chap. 8 on long-range correlations, the system can be depicted as possessing
Nfam effective families of Nid almost perfectly correlated spins, with

Nid �
∫ L rd−1 dr

rd−2+η
∼ L2−η . (9.11)

This expression (9.11) is the straightforward generalization of (8.9) to multi-
dimensional sums. The fluctuations of the magnetization are thus of order

M ∼
√
LdNid ∼ (Ld)ν , with ν = (d+ 2 − η)/2d �= 1/2 , (9.12)

where the exponent ν refers to the common usage in critical phenomena [19,
351, 922]. Thus, at the critical point, the total magnetization follows an
anomalous power law as a function of the number of spins Ld with an anoma-
lous diffusion exponent ν. It is the variable M/(Ld)ν which has a limit dis-
tribution

P (M) =
1
Ldν

f

(
M

(Ld)ν

)
, (9.13)

where f(u) ∼ exp(−cua) for large u with a = 1/(1 − ν) ≈ 6 for d = 3 and
a = 16 for d = 2 (exact result).

This probabilistic framework provides some insights on the neighborhood
of the critical point Tc. The approach to the critical point is characterized by
power laws describing the behavior of the energy F , the magnetization m,
the correlation length ξ and the susceptibility χ, among other quantities:

F ∼ Ld|T − Tc|2−α , (9.14)

m ∼ |T − Tc|β , (9.15)

(the exponent β should not be confused with the inverse temperature)

ξ ∼ |T − Tc|−νth , (9.16)

and

χ ∼ |T − Tc|γ . (9.17)

Notice that the correlation length diverges as T → Tc. Close to Tc, the system
can be viewed as made up of regions of size ξ in the critical state. There are
(L/ξ)d such regions, which each contribute to the total free energy by an
amount of order kBT , hence

F/kBT � (L/ξ)d , (9.18)

which, using (9.14) and (9.16) gives the following relationship between the
critical exponents

2 − α = νthd . (9.19)
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The total magnetization can be estimated for T < Tc from (9.12) (replacing
L by ξ) as

M = (ξd)ν(L/ξ)d ∼ ξd(ν−1) . (9.20)

This leads to the relation

β = dνth(1 − ν) . (9.21)

For T > Tc, the fluctuations of the total magnetization (whose average is
zero) are

δM ∼ ξdν
√

(L/ξ)d , (9.22)

where the square root term is the expression of the central limit theorem and
the term ξdν is again obtained from (9.12) by replacing L by ξ. This expresses
the fact that the susceptibility to an external magnetic field is enhanced
by correlations measured by ξ. Since the susceptibility χ is proportional to
(δM)2, this yields another relationship between the critical exponents

γ = νth(2 − η) . (9.23)

These relations between the critical exponents are well-known [19, 922] and
have been derived here using purely statistical considerations.

9.3 First-Order Versus Critical Transitions

9.3.1 Definition and Basic Properties

Many transitions are not critical (continuous) but are abrupt. According
to Ehrenfest’s classification, they are called “first-order” phase transitions
because the first derivative of the free energy of the system with respect
to the temperature at fixed volume, i.e. the entropy, is discontinuous. This
discontinuity corresponds to the release or absorption of heat, called the
latent heat. In contrast, critical phase transitions have continuous entropies as
a function of the control parameter. Only the second or higher order derivative
exhibit singularities, usually in the form of a power law divergence at the
critical temperature.

The simplest parametric example of a first order transition is given by
the van der Waals equation of state for a fluid:(

p+
a

V 2

)
(V − b) = RT , (9.24)

where p and V are the fluid pressure and volume, T is the temperature and
R = 8.314 J mol−1 K−1 is the molar gas contant. The term a/V 2 is an
additional effective pressure contribution due to interactions between fluid
molecules. The interaction constant a can be negative (attractive case: leading
to a reduction of the effective pressure p+a/V 2) or positive (repulsion). The
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excluded volume term b > 0 accounts for the fact that one cannot compress
the fluid below a minimum residual volume. Figure 9.1 shows the pressure p
as a function of the volume V at fixed temperature RT = 1 for different
repulsive interaction strengths a = 0.02–0.04. One observes that for a <
0.033, the isotherm p(V ) is no longer monotonic: the part of the curve with
a positive slope dp/dV |T > 0, corresponding to a negative compressibility i.e.
the pressure increases as the fluid expands, is unstable and the fluid separates
into two coexisting phases, one with low density (large volume) and the other
with large density (low volume).

Figure 9.2 shows the pressure p as a function of the volume V at fixed re-
pulsive interaction strength a = 0.04 for different temperatures RT = 1−1.5.
For temperatures larger than RTc ≈ 1.2, the isotherms p(V ) are continuous
and no phase transition occurs. For smaller temperatures, the isotherms p(V )
exhibit a range of volumes over which the compressibility −(1/V )(dp/dv)|T
is negative, signaling an instability and a separation of the fluid into two
phases. Maxwell’s construction rule of equal areas fixes the volumes of the
two coexisting phases: as shown for RT = 1, the area in the domain A−B−C
is equal to the area in the domain C −D−E. This geometrical construction
reflects the equality of the chemical potential of the two phases. The locii of
points for which p(V ) is either a minimum or a maximum, i.e. for which the
compressibility vanishes, define the spinodal lines. The maximum of the spin-
odal line coincides with the maximum of the coexistence curve and is nothing
but a critical point, as described above. In the present case, this critical point
is positioned approximately at pc = 1.5, Vc = 0.032 and RTc = 1.2.

The hallmark of first-order transitions are the so-called van der Waals
loops in pressure p versus volume V plots, corresponding to the domain of

Fig. 9.1. Pressure p as
a function of the volume V at
fixed temperature RT = 1 for
different repulsive interaction
strengths a = 0.02–0.04. The
isotherms p(V ) are solutions
of (9.24)
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Fig. 9.2. Pressure as a func-
tion of the volume, at fixed
repulsive interaction strength
a = 0.04 for different tem-
peratures RT = 1–1.5. The
isotherms p(V ) are solutions
of (9.24)

volumes where three solutions exist for the volume given a fixed pressure. The
loop terminology comes from the hysteresis which is observed under a closed
circuit in pressure. The size of a van der Waals loops is exactly equal to the
free energy barrier for nucleation of the other phase. In large systems, van
der Waals loops are to be taken as signs of first-order transitions only if their
size vanishes in the thermodynamic limit as the inverse of the linear system
size L.

The situation is complicated by the fact that the amount of phase that
appears depends on the time-scale with which the experiment is performed.
Consider the case RT = 1 in Fig. 9.2. As long as the pressure is above the
pressure pA of point A, the system is in a dense phase. When the pressure
reaches pA, the light phase with specific volume VE starts to nucleate. The
nucleation is a slow activation process requiring the spontaneous formation
of sufficiently large droplets of the new phase. If the pressure is dropped suf-
ficiently rapidly, the nucleation will not have time to appear and the system
reaches point B which is a real instability: at this point, the dense phase un-
dergoes a so-called spinodal decomposition with rapid critical-like dynamics
without nucleation barriers. Similar behaviors occur when approaching the
coexistence curve or the spinodal line from the large volume limit or from
more tortuous paths in this phase diagram.

9.3.2 Dynamical Landau–Ginzburg Formulation

Upon entering the coexistence regime, a system witnesses the formation and
evolution of correlated regions separated by “walls”. Inside these regions,
an ordered phase exists which eventually grows to become macroscopic in
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size. We follow [118] for a brief presentation of the theoretical background to
describe these growth processes. The importance of these phenomena goes
beyond the application to thermodynamic phase transitions as interesting
analogies have been proposed between nucleation and abrupt rupture [416]
on one hand and spinodal decomposition and breakdown of disordered me-
dia [867, 870, 1049] and earthquake rupture [511, 800] on the other hand.

Two important time scales determine if the transition occurs in or out of
equilibrium:

• the relaxation time of long wavelength fluctuations (since these are the
ones that order the system) τrel(k) and

• the inverse of the cooling rate tcool = T (t)/Ṫ (t).

If τrel(k) � tcool, then these wavelengths are in local thermodynamical equi-
librium, but if τrel(k) � tcool these wavelengths fall out of thermodynamical
equilibrium, freeze out, and the phase transition occurs in a quenched man-
ner. These modes do not have time to adjust locally to the temperature
change and for them the transition from a high temperature phase to a low
temperature one occurs instantaneously.

Whereas the short wavelength modes are rapidly thermalized (typically by
collisions), the long-wavelength modes with wavenumber k � 1/ξ(T ), with
correlation length ξ(T ) (in the disordered phase), become critically slowed
down. As T tends to the critical temperature T+

c , the long wavelength modes
relax very slowly, fall out of local thermodynamic equilibrium and any finite
cooling rate causes them to undergo a quenched non-equilibrium phase tran-
sition. As the system is quenched from T > Tc (ordered phase) to T � Tc

(disordered phase), ordering occurs instantaneously. The length scale of the
ordered regions grows in time (after some initial transients) as the different
broken symmetry phases compete to select the final equilibrium state. A dy-
namical length scale ξ(t) typically emerges which is interpreted as the size
of the correlated regions. This dynamical correlation length grows in time to
become macroscopically large [550].

The phenomenological description of phase ordering kinetics begins with
a coarse grained local free energy functional of a (coarse grained) local order
parameter M(r) [550], which determines the equilibrium states. In Ising-like
systems, this M(r) is the local magnetization (averaged over many lattice
sites), in binary fluids or alloys it is the local concentration difference, in
fluid-gas transitions it is the difference in density or of its inverse, the molar
volume between the two phases, in rupture it is the local strain field, etc. The
typical free energy is (phenomenologically) of the Landau–Ginzburg form:

F [M ] =
∫

ddx
{

1
2
[∇M(x)]2 + V [M(x)]

}
, (9.25)

V [M ] =
1
2
r(T )M2 +

λ

4
M4 −HM ; r(T ) = r0(T − Tc) , (9.26)
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whereH is the field conjugate to the order parameterM . Notice that equating
to zero the derivative of V [M ] with respect to the order parameterM retrieves
the third order equation (9.24), as it should since this corresponds to taking
the mean field approximation.

The equilibrium states for T < Tc correspond to the broken symmetry
states with M = ±M0(T ) with

M0(T ) =
{

0 for T > Tc ,√
r0/λ(Tc − T )1/2 for T < Tc .

(9.27)

Below the critical temperature, the potential V [M ] presents a non-convex
region with ∂2V [M ]/∂M2 < 0 for

−Ms(T ) < M < Ms(T ) ; Ms(T ) =
√
r0
3λ

(T − Tc)1/2 (T < Tc) . (9.28)

This region is called the spinodal region which was already discussed in as-
sociation with (9.24). It corresponds to thermodynamically unstable states.

1. The line M0(T ) vs. T , given by (9.27), is known as the coexistence line.
When crossing this line from the single stable phase, the system becomes
metastable and starts to slowly nucleate to the other phase as metastable
droplets that eventually run away in size as they grow above a critical
value. The activated dynamics of the growth corresponds to that of an
effective random walk that has to cross the nucleation barrier [617].

2. The line Ms(T ) vs. T , given by (9.28) is known as the classical spinodal
line. When crossing this line from the previous metastable phase, the
system becomes unstable and undergoes spinodal decomposition, which
has similarities with dynamical critical phase transitions [428].

The dynamics of the phase transition and the process of phase separation
can be described by a phenomenological but experimentally successful de-
scription, involving the Time Dependent Ginzburg–Landau theory (TDGL)
where the basic ingredient is the Langevin dynamics [550]

∂M(r, t)
∂t

= −Γ [r,M ]
δF [M ]

δM(r, t)
+ η(r, t) , (9.29)

with η(r, t) a stochastic noise term which is typically assumed to be white
(uncorrelated) and Gaussian. It obeys the fluctuation-dissipation theorem:

〈η(r, t)η(r′, t′)〉 = 2TΓ (r) δ3(r − r′)δ(t− t′) ; 〈η(r, t)〉 = 0 , (9.30)

where the averages 〈· · ·〉 are over the Gaussian distribution function of the
noise.

There are two important cases to distinguish.

• Non-conserved order parameter: then, Γ = Γ0 is a constant independent of
space, time and order parameter, and which can be absorbed in a rescaling
of time.
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• Conserved order parameter: this leads to

Γ [r] = −Γ0 ∇2
r ,

where Γ0 could depend on the order parameter. In this case, the average
over the noise of the Langevin equation can be written as a conservation
law

∂M

∂t
= −∇ · J + η ⇒ ∂

∂t

〈∫
d3 rM(r, t)

〉
= 0 , (9.31)

J = ∇r

[
−Γ0

δF [M ]
δM

]
≡ ∇rµ , (9.32)

where µ is recognized as the chemical potential.

An example of a non-conserved order parameter is the magnetization in ferro-
magnets. A conserved order parameter could be the concentration difference
in binary fluids or alloys.

For a quench from T > Tc deep into the low temperature phase T → 0,
the thermal fluctuations are suppressed after the quench and the noise term is
irrelevant. In this situation, the dynamics is now described by a deterministic
equation of motion,

1. non-conserved order parameter:

∂M

∂t
= −Γ0

δF [M ]
δM

, (9.33)

2. for conserved order parameter:

∂M

∂t
= ∇2

[
Γ0

δF [M ]
δM

]
, (9.34)

which is known as the Cahn–Hilliard equation [550].

9.3.3 The Scaling Hypothesis: Dynamical Length Scales
for Ordering

The process of ordering is described by the system developing ordered re-
gions or domains that are separated by walls or other type of defects. The
experimental probe to study the domain structure and the emergence of long
range correlations is the equal time pair correlation function

C(r, t) = 〈M(r, t)M(0, t)〉 , (9.35)

where 〈· · ·〉 stands for the statistical ensemble average in the initial state (or
average over the noise in the initial state before the quench). It is convenient
to expand the order parameter in Fourier components

M(r, t) =
1√
Ω

∑
k

mk(t) eik·r
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and to consider the spatial Fourier transform of the pair correlation function

S(k, t) = 〈mk(t)m−k(t)〉 , (9.36)

known as the structure factor or power spectrum which is experimentally mea-
sured by neutron scattering (in ferromagnets) or light scattering (in binary
fluids) or sound scattering (in material breakdown). The scaling hypothesis
introduces a dynamical length scale L(t) that describes the typical scale of
a correlated region and proposes that

C(r, t) = f

( |r|
L(t)

)
⇒ S(k, t) = Ld(t)g(kL(t)) , (9.37)

where d is the spatial dimensionality and f and g are scaling functions. Ulti-
mately, scaling is confirmed by experiments and numerical simulations. The-
oretically, scaling emerges from a renormalization group approach to dynam-
ical critical phenomena which provides a calculational framework to extract
the scaling functions and the corrections to scaling behavior derived from
finite size effects, deviations from criticality and the existence of other rel-
evant perturbations [428]. This scaling hypothesis describes the process of
phase ordering as the formation of ordered “domains” or correlated regions
of typical spatial size L(t). For non-conserved order parameters, the typical
growth laws are L(t) ≈ t1/2 (with some systems showing weak logarithmic
corrections) and L(t) ≈ t1/3 for scalar and ≈ t1/4 for vector order parameters
in the conserved order parameter case [123].



10. Transitions, Bifurcations and Precursors

What do a gas pressure tank carried on a rocket, a seismic fault and a busy
market have in common? Recent research suggests that they can all be de-
scribed as self-organising systems which develop similar patterns over many
scales, from the very small to the very large. And all three have the potential
for extreme behaviour: rupture, quake or crash.

Are these events predictable?
The outstanding scientific question that needs to be addressed to guide

prediction is how large-scale patterns of catastrophic nature might evolve
from a series of interactions on the smallest and increasingly larger scales,
where the rules for the interactions are presumed identifiable and known.
For instance, a typical report on an industrial catastrophe describes the im-
probable interplay between a succession of events. Each event has a small
probability and limited impact in itself. However, their juxtaposition and
chaining lead inexorably to the observed losses. A commonality between the
various examples of crises is that they emerge from a collective process: the
repetitive actions of interactive nonlinear influences on many scales lead to
a progressive build-up of large-scale correlations and ultimately to the cri-
sis. In such systems, it has been found that the organization of spatial and
temporal correlations does not stem, in general, from a nucleation phase dif-
fusing accross the system. It results rather from a progressive and more global
cooperative process occurring over the whole system via repetitive interac-
tions.

For hundreds of years, science has proceeded on the notion that things
can always be understood – and can only be understood – by breaking them
down into smaller pieces, and by coming to know those pieces completely. Sys-
tems in critical states flout this principle. Important aspects of their behavior
cannot be captured knowing only the detailed properties of their component
parts. The large scale behavior is controlled by their cooperativity and the
scaling up of their interactions. In [883, 886], this idea has been developed in
four examples: rupture of engineering structures, earthquakes, stock market
crashes [887, 888] and human parturition.

The classification of crises as bifurcations between a stable regime and
a novel regime provides a first step towards identifying signatures that could
be used for prediction [29, 477, 479, 481, 482, 889, 900, 913, 916].
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10.1 “Supercritical” Bifurcation

The basic idea can be understood from the following simple analogy with the
Rayleigh–Bénard experiment of the buyancy driven convective instability rel-
evant to understanding mantle convection and atmospheric motion. Consider
a liquid placed between two horizontal plates, the top one being at a tem-
perature T0 smaller than that T0 + ∆T of the bottom plate. In a thermally
expansive fluid, any temperature difference creates a density difference. The
cold liquid, which is dense and located in the upper part of the system, tends
to fall, whereas the lower part, warmer and less dense, tends to rise. Still, as
long as the temperature difference ∆T remains small, no convective motion
appears, due to the stabilizing effects of fluid viscous friction and thermal
conductance. There is a critical value ∆Tc of the temperature difference at
which an instability occurs:

• below ∆Tc, the fluid is at rest on the average and only small local thermal,
density and velocity fluctuations occur;

• above ∆Tc, convection appears and the fluid motion becomes organized at
the macroscopic scale, with the formation of a regular structure of rolls [77].

Many different systems can be characterized in a similar way when close
enough to a transition between two regimes. This transition is called a bifur-
cation. For instance, parturition (the act of being born) can be seen in this
way [890, 895], in which the control parameter analogous to the temperature
difference ∆T is a maturity parameter (MP), roughly proportional to time,
and the so-called order parameter (the fluid velocity in the convection prob-
lem) is the amplitude of the coherent global uterine activity in the parturition
regime.

Fig. 10.1. Bifurcation diagram, near the
threshold µc, of a “supercritical” bifurcation.
The order parameter A bifurcates from a refer-
ence value 0 to a non-zero value ±As(µ) repre-
sented by the two branches as the control pa-
rameter crosses the critical value µc. The value
A = 0 represented by the dashed line becomes
unstable for µ > µc

This idea is summarized in Fig. 10.1, representing the “bifurcation” di-
agram near the threshold of a so-called “supercritical” bifurcation, which is
simply the mathematical counterpart of a critical phase transition discussed
in Chap. 9. The abcissa µ represents the control parameter. The ordinate A
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gives the average over time and space of the order parameter. Note the change
of behavior from the value of the order parameter A which is small or even
vanishing for µ < µc to a large value for µ > µc.

This simple view is in apparent contradiction with the extreme complex-
ity of typical natural systems. The basis of the bifurcation theory relies on
many works [384, 385, 428, 935] in a variety of domains (mathematics, hy-
drodynamics, optics, chemistry, biology, etc.) which have shown that a lot of
complex systems consisting of many nonlinear coupled subsystems or com-
ponents may self-organize and exhibit coherent behavior of a macroscopic
scale in time and/or space, under suitable conditions. The Rayleigh–Bénard
experiment is one of the simplest paradigms for this type of behavior [77].
The coherent behavior appears generically when the coupling between the
different components becomes strong enough to trigger or synchronize the
initially incoherent sub-systems.

Mathematicians have proved [35, 954] that, under fairly general condi-
tions, the local study of such bifurcations from a fixed point with a single
control parameter can be reduced to a few archetypes. More precisely, it is
proved that there exists reduction processes, series expansions and changes
of variables of the many complex microscopic equations such that, near the
fixed point (i.e. for A small), the behavior is described by a small number
of ordinary differential equations depending only on one parameter µ. The
result is non-trivial since a single effective number µ represents the values
of the various physical variables and a single order parameter is sufficient to
analyze the bifurcation instability.

This result applies both to bifurcation theory and catastrophe theory [35,
954], which are two areas within the field of dynamical systems. Both are
studies of smooth systems, focusing on properties that are manifestly non-
smooth. As we have seen, bifurcation theory is concerned with the sudden
changes that occur in a system when one or more parameters are varied.
Catastrophe theory became quite famous during the 1970’s, mostly because
of the sensation caused by applications of its principal ideas to other fields
of science. Catastrophe theory is accurately described as singularity theory
and its applications.

After having applied transformations that move the fixed point to the
origin, the equations of the dynamical system become one of the classical
“normal forms”. The diagram represented in Fig. 10.1 corresponds to the
pitchfork bifurcation of normal form given by [77]

dA
dt

= (µ− µc)A− A3

A2
s

. (10.1)

For µ < µc, A is attracted to zero and A goes to

A = As (µ− µc)1/2 , for µ ≥ µc , (10.2)

where As gives the characteristic scale of the amplitude of A. This square
root law predicts the rapid increase of the order parameter as the control
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parameter crosses its critical value. This law is very general in nature and
has been observed in many different systems undergoing a similar critical
transition from a quiescent state to a dynamical state. The exponent 1/2 is
called the “mean-field” value in the theory of critical phenomena, because
it corresponds to neglecting the spatial dependence of the order paramater
whose fluctuations may “renormalize” the exponent away from its mean-field
value (see for instance the expressions (9.27) and (9.28) in Chap. 9). For
larger µ, A is no longer described by (10.2) and instead saturates due to the
existence of other limiting factors.

10.2 Critical Precursory Fluctuations

Below the instability threshold µ < µc, the order parameter is zero on av-
erage. However, this does not mean that the system is completely quiescent.
It is in fact characterized by fluctuations in time and also in position within
its structure. The bifurcation model allows one to predict the manner with
which the amplitude of these fluctuations grows as µ approaches its critical
value from below. Furthermore, a direct result of the model is that the av-
erage spatial extent within the system that is excited by a fluctuation grows
according to a specific mathematical law that we now describe. The general
mathematical formalism is taken from [428, 687]. We start from (10.1) and
add a noise term f(t), embodying the different sources of incoherent activity
in the regime prior to the critical bifurcation:

dA
dt

= (µ− µc)A− A3

A2
s

+ f(t) , (10.3)

where f(t) is Gaussian white noise with variance D. The term f(t) is a ran-
dom function of time with zero average and short time correlation. Expres-
sion (10.3) is called a Langevin equation, already encountered, for instance
in (2.47).

Let us first neglect the nonlinear term. The solution of (10.3) is

A(t) =
∫ t

0

e−δ(t−τ)f(τ) dτ , (10.4)

where δ = µc − µ is taken positive (below the transition). From (10.4), we
see that A(t) is a linear sum of the random contributions f(τ) from zero to
time t. Then, as f(t) is a Gaussian noise, so is A(t) with the variance

〈[A(t)]2〉 =
∫ t

0

dτ
∫ t

0

dτ ′ e−δ(t−τ)e−δ(t−τ ′)〈f(τ)f(τ ′)〉 (10.5)

= D

∫ t

0

e−2δ(t−τ) dτ → D

2(µc − µ)
, (10.6)

for t → +∞. We could have guessed this result by realizing from expression
(10.4) that A(t) is the sum of order 1/δ uncorrelated random variables f(t)
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with variance D. Its variance is thus proportional to this number multipled
by the factor D. We recover the result (10.6) (apart from the numerical factor
1/2). The distribution p(A), measured over a large time interval, is

p(A) =

√
δ

πD
e−δA2/D . (10.7)

These calculations show that the average standard deviation of the fluctu-
ations of the order parameter diverges as the critical bifurcation point is
approached from below δ → 0− (µ → µ−

c ). 〈[A(t)]2〉 plays the role of the
susceptibility, already encountered in the theory of critical phenomena in
Chap. 9. This divergence of the susceptibility suggests a general predictabil-
ity of critical bifurcations: by monitoring the growth of the noise on the
order parameter, we get information on the proximity to the critical point.
This method has been used in particular for material failure [29, 333], hu-
man parturition [890, 895], financial crashes [479, 481, 482, 900] and earth-
quakes [116, 477, 910].

These results (10.6) and (10.7) hold for µc − µ ≥ √
D/2A2

s , i.e., not too
close to the bifurcation point, for which the nonlinear correction is negligible.
For µc−µ <

√
D/2A2

s , we need to take into account the nonlinear saturation
term. It can be shown [933] that, for µ < µc, the order parameter fluctuates
randomly around a zero average with a probability distribution p(A) given
by

p(A) ∼ exp
[
− 1
D

(
δA2 +

1
2
A4

A2
s

)]
. (10.8)

To get an intuitive feeling of the origin of this result, notice that (10.3) can
be written

dA
dt

= −dV
dA

+ f(t) , (10.9)

where the potential V (A) is defined by

V (A) =
1
2
(µc − µ)A2 +

A4

4A2
s

. (10.10)

As D is the variance of the noise, the standard result of statistical physics re-
called in Chap. 7 leads to a distribution p(A) proportional to the Boltzmann
factor ∼ exp[−V (A)/D], which indeed retrieves (10.8) up to a numerical
factor in the exponential. Expression (10.8) can also be obtained as the sta-
tionary solution of the Fokker–Planck equation associated with the Langevin
equation (10.3) (see Chap. 2). Close to or at the critical value µc, the variance
〈[A(t)]2〉 saturates to a value of order As

√
D. These are the general results

within the present “mean-field” approach.
Depending upon the nature of the coupling between these different ele-

ments of the system, the mean field exponent γ = 1 relating 〈[A(t)]2〉 ∼ δ−γ

to δ in (10.6) may be modified [428]. The global picture nevertheless re-
mains qualitatively the same: on the approach to the critical instability, one
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expects a characteristic increase of the fluctuations of the order parameter.
Other quantities that could be measured and which are somehow related to
the order parameter are expected to present a similar behavior. For instance,
if we are able to produce a small spatially and temporally localized pertur-
bation in the system, we expect that this perturbation may diffuse spatially
with a characteristic diffusion coefficient D increasing as a power law

D ∼ (µc − µ)−ε (10.11)

on the approach to the critical instability [556]. In the Rayleigh–Bénard case,
the exponent ε is equal to 3/2 and we can derive this result (10.11) simply as
follows [875, 876]. The order parameter is identified as the average convection
velocity and the fluctuations are associated with streaks or patches of non-
zero velocity v occurring below the critical Rayleigh number (the critical
Rayleigh value is such that a global convection starts off for larger control
parameter values). The divergence of the spatial diffusion coefficient D(ξ) of
the fluctuations can be understood as a consequence of the existence of the
power law relation (10.6) describing the amplitude of velocity fluctuations
prior to the instability. The diffusion coefficient is the product of an average
square velocity times a characteristic time scale τ(ξ):

D(ξ) ∼ α(ξ)〈v2〉 τ(ξ) , (10.12)

where ξ ∼ δ−ν is the correlation length, τ(ξ) ∼ ξz is the typical duration of
a fluctuation of spatial extension ξ (here z is the dynamical critical exponent)
and α(ξ) takes into account the viscous drag at the scale ξ. Using the previous
result 〈v2〉 ∼ δ−γ , we thus get

D(ξ) ∼ δ−(γ+zν) . (10.13)

Within mean field approximation which applies for the Rayleigh–Bénard su-
percritical instability, γ = 1, ν = 1/2 and z = 2 which gives γ + zν = 2.
For a hydrodynamic instability, one must also take into account the hydro-
dynamic drag which, from Stockes law, gives the correction α(ξ) ∼ ξ−1. We
thus recover the exponent 3/2 of (10.11). The enhancement of the sponta-
neous fluctuations near the instability produces a singular diffusion coefficient
that may be measurable [429, 940]. This singular behavior (10.11) reflects the
existence of very large fluctuations in the velocity field on the approach to
the critical point.

These results rely on the fact that the spatial extension ξ of the coherent
domains of the order parameter flickering activity has the power law depen-
dence

ξ ∼ (µc − µ)−ν , (10.14)

where we have already used the mean field value ν = 1/2. This behavior is
obtained by generalizing the above mathematical framework [428] to take
into account the interactions between the many degrees of freedom par-
ticipating in the dynamics of the order parameter. This law is crucial in
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the sense that it describes the progressive build-up of the cooperativity of
the elements of the system to finally give the global synchronized activity
at and above the critical threshold, at which the system acts coherently.
Linked to this increase of the spatial correlation of the system activity is
that of the susceptibility of the system with respect to external perturba-
tions.

These results suggest that the noise level and its structure can be pre-
dictors of impending failure, seen as a super-critical bifurcation. Indeed, the
variance of the fluctuations 〈[A(t)]2〉 exhibits a power law critical behav-
ior (10.6) on the approach to the bifurcation point µc. Similarly, the effec-
tive diffusion coefficient D diverges according to (10.11). If one measures
them and fits them to power laws, an approximate determination of µc can
be obtained. This idea is at the basis of the so-called time-to-failure ap-
proach [181, 657, 996–998] which describes and tries to predict rate-dependent
material failure, based on the use of an empirical power law relation obeyed
by a measurable quantity, with many applications to damage, failure and
even volcanic eruptions. Recently, these ideas have been applied to rup-
ture of composite pressure vessels and to earthquakes [29, 477, 910, 979],
with a generalization to include the possibility that the exponents possess an
imaginary part, reflecting a log-periodic behavior (see Chap. 5 and [878] for
a review).

We note that this idea on the possibility of using noise measurements in
the analysis and prediction of systems is often considered for other systems,
such as electronic devices and integrated circuits. The goals are to estimate
the device reliability, to select reliable devices, to predict the device failure
and to control and screen in order to provide the expected device quality and
reliability during manufacture and to diagnose defects and failures [473]. Let
us mention for instance the monitoring of electrical machines for the detection
of faults [512, 825]. When collective effects become important, similar critical-
like signatures may be expected and would be useful to look for as they
provide one of the clearest signatures of the impending rupture (see also
Chap. 13 on rupture of heterogeneous media).

A particularly interesting application of the above ideas has been sug-
gested to explain the way our internal hearing organ, the cochlea, works [266].
The cochlea exhibits remarkable and quite special properties: a nonlinear re-
sponse for arbitrary small amplitude of sollicitations, a compression of the
dynamic range when the amplitude decreases, infinitely sharp tuning at in-
finitesimal input, and generation of combination tones. These properties de-
rive naturally if the cochlea poises itself at a Hopf bifurcation, which then au-
tomatically maximizes tuning and amplification. The normal form for a Hopf
bifurcation is similar to (10.3) but require a complex amplitude to account
for oscillations:

dA
dt

= (µ− µc + iω0)A− |A|2A + F eiωt . (10.15)
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ω0 is the natural angular frequency of the oscillations and the last term in the
forcing with amplitude F and angular frequency ω. Exactly at the bifurcation
point µ = µc, one can easily show that A(t) is of the form Reiωt with

F 2 = R6 + (ω − ω0)2R2 . (10.16)

Thus, at resonance ω = ω0, R ∼ F 1/3, showing the intrinsic nonlinear-
ity of the response, no matter how small F is. In the case of the cochlea,
there is no audible sound soft enough not to evoke the nonlinear effects men-
tioned above. All the well-documented nonlinear aspects of hearing appear to
be consequences of this same underlying Hopf bifurcation mechanism [266].
A possible mechanism for maintaining the hair bundle in the cochlea at the
threshold of an oscillatory instability (self-tuned critical oscillations) involves
the combination of two mechanisms that are known to modify the ionic cur-
rent flowing through the transduction channels of the hair bundle [991]: (i)
a rapid process involves calcium ions binding to the channels and (ii) a slower
adaptation is associated with the movement of myosin motors.

10.3 “Subcritical” Bifurcation

“Subcritical” bifurcations are the mathematical analog of first-order phase
transitions described in Chap. 9.

Fig. 10.2. Bifurcation diagram of a “subcrit-
ical” (first-order) bifurcation. For µ < µm, the
only solution is A = 0. When µ reaches µm,
the solution A = 0 becomes metastable and
gives place to the thick branches under suffi-
ciently large perturbations. From the condition
of continuity of the behavior of the order pa-
rameter, the transition can be delayed up to
µ = µc, corresponding to a genuine instabil-
ity, at which the order parameter will abruptly
switch to the upper branch as in a spinodal de-
composition

A large class of observations seem to be left out from the description pre-
sented above, corresponding to the possible existence of abrupt transitions
(as opposed to the more continuous bifurcation of supercritical type) and
of hysteresis and delay. Indeed, a standard critical bifurcation of the type
shown in Fig. 10.1 cannot explain delayed transitions, which is more char-
acteristic of another class of bifurcations called sub-critical [77], shown in
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Fig. 10.2. In order to address this problem, we must enrich the theory and
introduce a second control parameter e, which takes into account the fact
that the system may present a delayed (subcritical) bifurcation as well as
a standard critical one, depending upon the value of the new control param-
eter e. This parameter e quantifies the tendency of the system to present
delays and abrupt behavior and embodies the variables which are at the ori-
gin of this phenomenon. Starting from the normal form (10.3), we generalize
it by allowing the coefficient of the A3 term to vary:

dA
dt

= (µ− µc)A− e
A3

A2
s

. (10.17)

As long as e remains positive, the previous scenerio and results are not mod-
ified: the cubic term A3 represents a non-linear feedback which tends to limit
and saturates the amplitude of the order parameter beyond the critical in-
stability. However, suppose that the variation in strength of an interaction
leads to a change of sign of e which now becomes negative. Then, the cubic
term A3 is no longer a limiting factor but amplifies the instability described
by the first term (µ−µc)A, for µ > µc. In order to get a physically meaningful
(i.e. bounded) result, one then needs to add the next term in the expansion
of the normal form giving dA/dt as a sum of powers of A:

dA
dt

= (µ− µc)A− e
A3

A2
s

+A5 . (10.18)

This equation is represented by the sub-critical bifurcation diagram shown
schematically in Fig. 10.2. For µ < µm, the only solution is A = 0. When
µ reaches µm, the solution A = 0 becomes metastable, i.e. corresponds to
a local minimum and not to the absolute minimum of the energy of the
system. If the system is shocked sufficiently hard, A can jump to a more stable
configuration represented by one of the two thick branches in Fig. 10.2. For
weak perturbutions, the system will however be quenched in its metastable
phase A = 0. This value µm represents the threshold for the “nucleation” of
the coherent phase represented by the two thick branches. It is the analog
of the coexistence point in first-order phase transitions discussed in Chap. 9.
In the absence of large external fluctuations, it follows from the condition of
continuity in the behavior of the order parameter that the transition will be
delayed up to µ = µc, corresponding to a genuine instability, at which point
the order parameter will abruptly switch to the upper branch. The threshold
is the analog of the spinodal point in first-order phase transitions discussed
in Chap. 9.

For such so-called “first-order” transitions, there are no evident precur-
sors of order parameter activity similar to the ones described above for
super-critical bifurcations. The system exhibits an abrupt jump from a no-
activity state to the active coherent one. In the range µm < µ < µc, the
system may be activated to its coherent active regime by “large” exter-
nal perturbations which produce the jump of A from 0 to the upper or
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lower branch represented in Fig. 10.2. We note that the case (µ = µc;
e = 0) corresponds to a so-called bifurcation of “co-dimension two” (two
control parameters are relevant simultaneously), in contrast to the critical
and sub-critical bifurcation of “co-dimension one” (only one control param-
eter is relevant for the transition). Simply stated, these special values of
the control parameters correspond to a system which “hesitates” between
the two different regimes (critical and sub-critical). There are specific signa-
tures of the spatial and temporal fluctuations of the order parameter, simi-
lar to, but different from those described above for the critical bifurcation,
which can help establish a diagnostic of the approach of this co-dimension-two
bifurcation.

10.4 Scaling and Precursors Near Spinodals

The transformation from one phase to another at a first-order phase tran-
sition usually occurs by a nucleation process. Nucleation near a spinodal
appears to be very different from classical nucleation. Droplets appear to be
fractal objects and the process of nucleation is due to the coalescence of these
droplets, rather than the growth of a single one [642].

The theoretical description of homogeneous spinodal nucleation is based
on the Landau–Ginzburg free energy of a spin system in the presence of an
external magnetic field [643]. When the temperature is below the critical
value, the free energy has the typical two-well structure. In the presence of
an external magnetic field, one of the wells is depressed with respect to the
other, which therefore represents the metastable state. The system must cross
a free energy barrier to relax into the stable phase. When the external field
is increased, this nucleation barrier decreases, eventually vanishing at the
spinodal, as seen in Fig. 9.2. Using this formalism, it has been shown that
the approach to the spinodal is characterized by scaling laws, analogous to
critical phenomena. The magnetization or the order parameter M scales with
the external field H as

M −Ms ∝ (H −Hs)1/2 , (10.19)

where Ms and Hs are, respectively, the order parameter and the field at the
spinodal. This law implies a divergence of the quasistatic susceptibility χ

χ =
dM
dH

∝ (H −Hs)−1/2 . (10.20)

The fluctuations in the order parameter can be related to suitably defined
clusters, whose sizes turn out to be power law distributed with an exponent
µ = 1/2, in mean-field theory. For finite-dimensional short-range models, this
mean-field picture is expected to fail, since the system will nucleate before
reaching the limit of metastability. On the other hand, mean-field behavior
is expected to be valid in the presence of long-range interactions, and it has
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been numerically verified in Monte Carlo simulations of the long-range Ising
model [763].

The limit of stability in a thermally activated homogeneous fracture has
been proposed to correspond to a spinodal point [1049, 1050]. One should
then be able to observe scaling laws consistent with those found in spinodal
nucleation.

10.5 Selection of an Attractor in the Absence
of a Potential

Let us generalize the problem, having in mind applications to meteorology,
oceanography or population dynamics. We consider the general dynamical
system

dx
dt

= F(x) + η(t) , (10.21)

which replaces (10.3) or (10.9). The quantity x is a d- dimensional vector
of the d degrees of freedom characterizing the state of the system at a given
time t. F is a generalized force which does not in general derive from a poten-
tial, in constrast to the previous situation (10.9) with (10.10). This situation
is usually termed “non-variational”. The noise source η(t) is a Gaussian vec-
tor satisfying:

〈ηi(t)ηj(t′)〉 = DQijδ(t− t′) , (10.22)

where Q is a symmetric matrix. The Langevin equation (10.21) is equivalent
to the following Fokker–Planck equation for the probability P (x, t) that the
system is in x at time t:

∂P (x, t)
∂t

= −∂[Fi(x)P (x, t)]
∂xi

− D

2
∂2[QijP (x, t)]

∂xi ∂xj
, (10.23)

where summation is performed over repeated indices.
In this general non-variational situation, the role of the potential is re-

placed by a so-called “pseudo-potential” S(x) defined by expressing P (x, t)
using a WKB approach

P (x, t) ≈ N(D) Z(x) e−S(x)/D , (10.24)

and using this expression in the Fokker–Planck equation (10.23). It is possible
to get an asymptotic result in the limit of small D in the general case: the
probability for the system to go from state xi at time 0 to state xf at time t
is

P (xf |xi, t) ∼ exp
(
− 1
D

minT

∫ 0

−t

dτ
[
pi

dxi

dt
−H(p,x)

])
, (10.25)
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where

H(p,x) = Fi(x)pi +
1
2
Qijpipj , (10.26)

and

pi ≡ ∂S(x)
∂xi

. (10.27)

In (10.25), the minimum is taken over all continuous trajectories x(t) with
x(−t) = xi and x(0) = xf . The transition from one attractor or one state
to another is thus controlled by the point on the domain separating the two
attractors, analogous to a saddle point in the potential case, where S(x) is
minimum. In the potential case, the theory describing the transition from one
state to another via the climbing of a potential barrier is known as reaction-
rate theory or as the Kramers’ problem [397, 617].

In the case where Q is the identity, the function S(x) of the path T {x(t)}
takes a simple form

S(x) =
∫

T

dt
∣∣∣∣dxdt − F(x)

∣∣∣∣
2

=
∫

T

dt |η(t)|2 . (10.28)

The last equality shows that the optimal trajectory is the one that needs the
smallest noise in order to go from the nearest deterministic trajectory to it.
This recovers the principle of least dissipation introduced by Onsager [701,
702, 704] and generalized to strong noise [15, 282–284] (see Chap. 7). We
refer to [155, 312, 360–362, 365, 499, 950] for the derivations and examples
of applications.

Smelyanskiy et al. [850] have analyzed the probabilities of large infrequent
fluctuations in nonadiabatically driven systems, i.e. when an external field is
varied with a characteristic time scale comparable to the natural frequency to
pass over the barrier. The change of the activation energy can be described in
terms of an observable characteristic, the logarithmic susceptibility defined as
the logarithm of the fluctuation probability. The change of activation energy
is linear in the field and can be estimated from an instanton-like calculation
using a field-perturbed optimal path approach as above [850]. The highlight of
this calculation is that the effect of an oscillatory field with radial frequency ω
is to lower the activation barrier, provided that ω exceeds the nucleation rate.
Reversing the argument, in the seismological context, this result sheds light on
why tides with a period of 12 h do not seem to exhibit noticeable correlations
with earthquakes [990]: the earthquake nucleation rate may occur over a time
scale smaller than 12 h!



11. The Renormalization Group

11.1 General Framework

Before presenting a specific model, we would like to revisit in more depth
and from a more general perspective the renormalization group (RG) formal-
ism previously introduced in Chap. 2. The RG analysis, introduced in field
theory and in critical phase transitions, is a very general mathematical (and
conceptual) tool, which allows one to decompose the problem of finding the
“macroscopic” behavior of a large number of interacting parts into a suc-
cession of simpler problems with a decreasing number of interacting parts,
whose effective properties vary with the scale of observation. The renormal-
isation group thus follows the proverb “divide to conquer” by organizing the
description of a system scale-by-scale. It is particularly adapted to critical
phenomena and to systems close to being scale invariant. The renormalisa-
tion group translates in mathematical language the concept that the overall
behavior of a system is the aggregation of an ensemble of arbitrarily defined
sub-systems, with each sub-system defined by the aggregation of sub-sub-
systems, and so on.

Technically, this is done as we will see by defining a mapping between the
observational scale and the distance |T−Tc| from the critical point. The term
“observational scale” usually refers to the physical scale of an observation.
In the spin context, the observational scale rather refers to the size of the
block of spins that one analyzes within the system. The usefulness of the RG
approach is based on the existence of scale invariance and self-similarity of
the observables at the critical point. The purpose of the RG is to translate
in mathematical language the concept that a critical point results from the
aggregate response of an ensemble of elements. In addition, the RG formalism
can be used as a tool of model construction [1021]. In this presentation, we
follow [808, 878].

Let us consider, for illustration, the behavior of the free energy F of
the spin system. This is a suitable quantity to characterize the organization
and cooperativity of the system of spins, which can also be measured (or its
derivatives can be measured) experimentally. Using the RG formalism on the
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free energy amounts to assuming that F at a given temperature T is related
to that at another temperature T ′ by the following transformations

x′ = φ(x) , (11.1)

F (x) = g(x) +
1
µ
F [φ(x)] , (11.2)

where x = |Tc − T | is the absolute value of the distance to the critical point.
The function φ is called the RG flow map. Here,

F (x) = F (Tc) − F (T ) (11.3)

such that F = 0 at the critical point and µ is a constant describing the
rescaling of the free energy upon the rescaling of the temperature distance to
its critical value. The function g(x) represents the non-singular part of the
function F (x). We assume as usual [351] that the function F (x) is continuous
and that φ(x) is differentiable.

The critical point(s) is (are) described mathematically as the value(s)
at which F (x) becomes singular, i.e. when there exists a finite k-th deriva-
tive dkF (x)/dxk which becomes infinite at the singular point(s). To remain
simple, we consider k = 1. The formal solution of (11.2) is obtained by con-
sidering the following definitions:

f0(x) ≡ g(x) , (11.4)

and

fn+1(x) = g(x) +
1
µ
fn [φ (x)] , n = 0, 1, 2, ... (11.5)

It is easy to show (by induction) that

fn(x) =
n∑

i=0

1
µi
g
[
φ(i) (x)

]
, n > 0 . (11.6)

Here, we have used superscripts in the form “(n)” to designate composition,
i.e.

φ(2)(x) = φ [φ (x)] ; (11.7)

φ(3)(x) = φ
[
φ(2) (x)

]
; (11.8)

etc. It naturally follows that

lim
n→∞ fn(x) = F (x) , (11.9)

assuming that it exists (for a more mathematical treatment, see for in-
stance [261]). Note that the power of the RG analysis is to reconstruct the
nature of the critical singularities from the embedding of scales, i.e. from the
knowledge of the non-singular part g(x) of the observable and the flow map
φ(x) describing the change of scale. The connection between this formalism
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and critical points comes from the fact that the critical points correspond to
the unstable fixed points of the RG flow φ(x). Indeed, the singular behavior
emerges from the infinite sum of analytic terms if the absolute value of the
eigenvalue λ defined by

λ = dφ/dx |x=φ(x) (11.10)

becomes larger than 1, in other words, if the mapping φ becomes unstable by
iteration at the corresponding (critical) fixed point. The fixed point condition
ensures that the same number appears in the argument of g(.) in the series
(11.6). In this case, the i-th term in the series for the k-th derivative of F (x)
will be proportional to (λk/µ)i which may become larger than the unit radius
of convergence for sufficiently large k since λ > 1, hence the singular behavior.

Thus, the qualitative behavior of the critical points and the corresponding
critical exponents can be simply deduced from the structure of the RG flow
φ(x). If x = 0 denotes a fixed point (φ(0) = 0) and φ(x) = λx + ... is the
corresponding linearized transformation, then a solution of (11.2) close to
x = 0 obeys

F (x) ∼ xm , (11.11)

with m a solution of
λm

µ
= 1 . (11.12)

This yields

m =
lnµ
lnλ

.

The exponent f is thus solely controlled by the two scaling exponents µ and λ.

11.2 An Explicit Example:
Spins on a Hierarchical Network

11.2.1 Renormalization Group Calculation

We now present a simple exact illustration of this general method, applied to
a spin system in which the spins are put at the nodes of a hierarchical diamond
lattice. The exposition is taken from [808]. The iterative rule to construct
to network is shown in Fig. 11.1. Starting with a bond at magnification 1,
we replace this bond by four bonds arranged in the shape of a diamond at
magnification 2. Then, each of the four bonds are replaced by four bonds in
the shape of a diamond and so on. At a given magnification 2p, one sees 4p

bonds, and thus (2/3)(2 + 4p) sites (and spins).
In the same way that the lattice appears different at different scales from

a geometrical point of view, one sees a different number of spins at different
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Fig. 11.1. First three steps of the iterative
construction of the hierarchical diamond lat-
tice

scales, and they interact in a scale dependent way as we will show. Suppose
that for a given magnification x = 2p, the spins we can see appear coupled
with an interaction energy given by

E = −J
∑
<ij>

δ(σiσj) , (11.13)

where J is a coupling term, the sum is taken over nearest neighbors and the
delta function equals one if arguments are equal, zero otherwise.

The full determination of the physical state of the system is found in
principle once the partition function Z

Z(β) =
∑
E

e−βE , (11.14)

as defined by (7.6), is calculated. We have shown that its logarithm gives
the free energy and, by suitable differentiation, all possible thermodynamic
quantities of interest. A priori, the calculation of Z constitutes a formidable
problem. However, since the spins are located at the vertices of the fractal
network shown in Fig. 11.1, it turns out to be possible to write down an exact
renormalization group equation and thus solve the problem exactly. We will
not compute Zp completely, but first perform a partial summation over the
spins seen at one scale and which are coupled only to two other spins. This
is how, in this particular example, one can carry out the program of the
renormalization group by solving a succession of problems at different scales.

Fig. 11.2. Representation of the “decimation”
process on an elementary diamond. Starting
from a partition function defined from a sum
over all possible configurations of all spins s1,
s2, σ1 and σ2, the partial sum over all possible
configurations of the spins s1 and s2 is per-
formed, leading to a novel partition function
defined solely as a sum over all possible con-
figurations of σ1 and σ2 with a “renormalized”
interaction
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Let us isolate a particular diamond, call σ1, σ2 the spins at the extremities
and s1, s2 the spins in between as in Fig. 11.2. The contribution of this
diamond to e−βE is

Kδ(σ1,s1)+δ(σ2,s1)+δ(σ1,s2)+δ(σ2,s2) , (11.15)

where we have defined K = eβJ . Since s1, s2 enter only in this particular
product, we can perform the summation over them first when we compute
Zp. The final result depends on whether σ1 and σ2 are equal or different:∑

s1,s2

Kδ(σ1,s1)+δ(σ2,s1)+δ(σ1,s2)+δ(σ2,s2)

= (2K +Q− 2)2, σ1 �= σ2 (11.16)
= (K2 +Q− 1)2, σ1 = σ2 , (11.17)

so we can write∑
s1,s2

Kδ(σ1,s1)+δ(σ2,s1)+δ(σ1,s2)+δ(σ2,s2)

= (2K +Q− 2)2
[
1 +

(
(K2 +Q− 1)2

(2K +Q− 2)2
− 1

)
δ(σ1, σ2)

]
= (2K +Q− 2)2K ′δ(σ1,σ2) , (11.18)

where we used the identity

K ′δ(σ1,σ2) = 1 + (K ′ − 1)δ(σ1, σ2) , (11.19)

and we set

K ′ ≡
(
K2 +Q− 1
2K +Q− 2

)2

. (11.20)

If we perform this partial resummation in each of the diamonds, we obtain
exactly the system at a lower magnification x = 2p−1. We see therefore that
the interaction of spins tranforms very simply when the lattice is magnified:
at any scale, only nearest neighbor spins are coupled, with a scale dependent
coupling determined recursively through the renormalization group map

Kp−1 =

(
K2

p +Q− 1
2Kp +Q− 2

)2

≡ φ(Kp) . (11.21)

This equation (11.21) provides an explicit realization of the postulated map
φ(x) given by (11.1) written in the exposition of the RG method, where the
coupling parameter K −Kc plays the role of the control parameter x.

The spins which are “integrated out” in going from one magnification to
the next simply contribute an overall numerical factor to the partition func-
tion, which is equal to the factor (2K +Q− 2)2 per edge of (11.18). Indeed,
integrating out the spins s1 and s2 leaves only σ1 and σ2 whose interaction
weight is by definition K ′δ(σ1,σ2), denoting K ′ the effective interaction weight
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Fig. 11.3. Flow map K′(K) given by
(11.21) for two cases, Q = 2 (Ising
spin model) and Q = 1 (Percolation
model)

at this lower magnification 2p−1. The additional numerical factor shows that
the partition function is not exactly invariant with the rescaling but trans-
forms according to

Zp(K) = (2K +Q− 2)2.4p

Zp−1[φ(K)] , (11.22)

since there are 4p bonds at magnification 2p. Now the free energy, which is
defined as the logarithm of the partition function per bond, reads

fp(K) =
1

4p+1
lnZp(K) . (11.23)

From (11.22), we deduce the following

fp(K) = g(K) +
1
4
fp−1(K ′) , (11.24)

where

g(K) =
1
2

ln(2K +Q− 2) . (11.25)

For an infinite fractal, the free energy for some microscopic coupling K sat-
isfies the following renormalization group equation

f(K) = g(K) +
1
µ
f(K ′) , where µ = 4 . (11.26)

We thus recover exactly the functional form (11.2) postulated in Sect. 11.1.
This explicit calculation makes clear the origin of the scaling for the free

energy: the interaction weights remain of the same functional form at each
(discrete) level of magnification, up to a multiplicative factor which accounts
for the degrees of freedom “left-over” when integrating from one magnification
to the next. This is the physical origin of the function g in (11.2).

In addition to the geometrical aspect according to which different numbers
of spins are seen at different magnifications, we now have a physical aspect:
the coupling appears different at different magnifications as seen in (11.21).
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There is still a fundamental difference between geometrical and physical as-
pects however. While the number of spins varies exponentially when one
changes the scale, the coupling varies in general in a much more complicated
way, which is represented in Fig. 11.3 for the particular case of spins with
two states (Q = 2) and for the percolation model (shown to be equivalent to
the Potts model in the mathematical limit Q→ 1; see Chap. 12).

11.2.2 Fixed Points, Stable Phases and Critical Points

Stable Phases: Stable Fixed Points of the Renormalization Group.
Consider the map K ′ = φ(K) given by (11.21). It exhibits 3 fixed points
[defined by K ′ = K = φ(K)] located respectively at K = 1,K = ∞ and
K = Kc where Kc is easily determined numerically, for instance Kc ≈ 3.38
for Q = 2 (see Fig. 11.3), and Kc ≈ 2.62 for Q = 1. That K = 1 and
K = ∞ are fixed points is obvious. The former corresponds to totally un-
coupled spins, the latter to spins which are forced to have the same value. In
both cases, the dynamics disappear completely, and one gets back to a purely
geometrical problem. Observe that these two fixed points are attractive. This
means that if we start with some coupling with say K > Kc deep down in the
system, that is for very large magnifications, when one diminishes the mag-
nification to look at the system at macroscopic scales, spins appear almost
always parallel and therefore are more and more correlated as one reduces
magnification. Similarly if we start with K < Kc, spins are less and less cor-
related as one reduces magnification. The condition K > Kc together with
the definition K = eβJ implies β > βc, i.e. this is to the low-temperature
regime dominated by the attractive energy. The physical meaning of the at-
traction of the renormalization group flow to the fixed point K = ∞, i.e. zero
temperature, means that the macroscopic state of the spins is ferromagnetic
with a macroscopic organization where a majority of spins have the same
value. Similarly, the condition K < Kc implies β < βc, i.e. it corresponds to
the high-temperature regime dominated by the entropy or thermal agitation.
The physical meaning of the attraction of the renormalization group flow to
the fixed point K = 0, i.e. infinite temperature, means that the macroscopic
state is completely random with zero macroscopic magnetization.

In summary, within the renormalization group formalism, attractive fixed
points describe stable thermodynamic phases. This is reminiscent of the be-
havior of the probability density function of the sum of N random variables
converging to the Gaussian law in the limit of largeN , where the Gaussian law
is nothing but the fixed point of the corresponding renormalization group de-
scribed in Chap. 2. Actually, generalizations of the probabilistic formulation
of the renormalization group clarify the deep statistical significance of critical
universality (see [487] and references therein). Technically, the problem is to
generalize the central limit theorem to the case of dependent variables. The
random fields appearing in these new limit theorems that apply to critical
phenomena have scaling properties and some examples had already appeared
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in the probabilistic literature. The new challenging problem posed by the
theory of phase transitions is the case of short range interactions producing
at the critical point long range correlations whose scaling behaviour cannot
be easily guessed from the microscopic parameters. A general theory of such
limit theorems is still missing and so far rigorous progress has been obtained
in situations which are not hierarchical but share with these the fact that
some form of scaling is introduced from the beginning [487].

Phase Transitions: Unstable Fixed Points of the Renormalization
Group. The intermediate fixed point Kc, which in contrast is repulsive,
plays a completely different and very special role. It does not describe a stable
thermodynamic phase but rather the transition from one phase to another.
The repulsive nature of the renormalization group map flow means that this
transition occurs for a very special value of the control parameter (the tem-
perature or the coupling K = Kc). Indeed, if we have spins interacting with
a coupling strength right at Kc at microscopic scales, then even by reducing
the magnification we still see spins interacting with a coupling strength right
at Kc! This is where spins must have an infinite correlation length (other-
wise it would decrease to zero as magnification is reduced, corresponding to
a different effective interaction): by definition, it is a critical point. Close to
Kc, we can linearize the renormalization group transformation

K ′ = φ(K) ≈ Kc + λ(K −Kc) , (11.27)

or

K ′ −Kc ≈ λ(K −Kc) , where λ =
∣∣∣∣ dφ
dK

∣∣∣∣
Kc

> 1 . (11.28)

For couplings close enough to the critical point, as we increase magnification,
the change in coupling becomes very simple; it is not the coupling that gets
renormalized by a multiplicative factor, but the distance to Kc.

It is worth discussing the meaning of this renormalization a little more.
We will restrict ourselves to the domain K < Kc here. The fact that Kc is
an unstable fixed point is expressed mathematically by the condition λ > 1.
Therefore what (11.28) tells us is that if the system at microscopic scales
looks “almost critical”, nevertheless at larger scales it looks less and less
critical since K moves away from Kc. This is natural since, being on one side
of the transition, the system is in a well-defined physical state characterized
macroscopically by the corresponding attractive fixed point towards which
the renormalization group flows. The meaning of the critical point is that
all these scales which are generally further from the singularity than smaller
ones can actually all become critical at the same coupling when K equals
Kc exactly. This is the reason and condition for long-range correlations to
develop and allows for the appearance of a macroscopic behavior. Beyond
this Kc fixed point, the system will be attracted to the other fixed point
characterizing the other disordered state.
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To summarize, the renormalization group theory is based on a sort of
double rescaling structure: when one changes scale in space, one also changes
the distance to criticality in coupling space (or in time).

11.2.3 Singularities and Critical Exponents

A critical point has other important properties. We go back to the renormal-
ization group equations (11.21) and (11.24). They can be solved for the free
energy and give, as we have already shown,

f(K) =
∞∑

n=0

1
µn
g[φ(n)(K)] , (11.29)

where φ(n) is the n-th iterate of the transformation φ (e.g. φ(2)(x) = φ[φ(x)]).
It is easy to show [220] that the sum (11.29) is singular at K = Kc. This
stems from the fact that Kc is an unstable fixed point. Thus, the derivative
of φ at Kc is λ which is larger than one. Therefore, if we consider the k-th
derivative of f in (11.29), it is determined by a series whose generic term
behaves as

(
λk/µ

)n which is greater than 1 for k large enough, so that this
series diverges. In other words, high enough derivatives of f are infinite at Kc.
Very generally, this implies that close to Kc, one has

f(K) ∝ (K −Kc)m , (11.30)

wherem is called a critical exponent. For instance if 0 < m < 1, the derivative
of f diverges at the critical point. Plugging this back in (11.24), we see
that, since g is regular at Kc as can be checked easily from (11.25), we can
substitute it in (11.24) and recover the leading critical behavior and derive
m solely from the equation (K −Kc)m = (1/µ)[λ(K −Kc)]m involving only
the singular part, with the flow map which has been linearized in the vicinity
of the critical point. Therefore, the exponent satisfies

λm = µ , (11.31)

whose real solution is

m =
lnµ
lnλ

. (11.32)

The remarkable result obtained from the RG is that the “local” analysis of
the RG flow map (captured in λ) and the rescaling of the observable measured
by µ is enough to determine the critical exponent. In all these examples, λ
is given by the slope of the renormalization group map at the unstable fixed
point, and µ is the ratio of the number of degrees of freedom at two different
scales connected by the renormalization group map. Intuitively, the critical
exponent quantifies the self-similar rescaling structure of the observable close
to the critical point which is completely determined by a local (in scale)
analysis of the self-similarity.
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We emphasize that g accounts for the degrees of freedom “left-over” when
integrating from one magnification up to the next. It is a non-singular func-
tion because it is fully determined by local properties and does not “see”
the building of long-range correlations. Remarkably however, g is all that is
needed – together with the mapping φ – to determine the final free energy.
The renormalization group analysis reconstructs the singularities from the
embedding of scales, i.e. from the knowledge of the non-singular part of the
observable and the flow map describing the effect of change of scale on the
control parameter. The singular behaviour emerges from the infinite sum of
analytic terms and corresponds to an infinite iteration of the local scaling
which allows for long-range fluctuation correlations.

11.2.4 Complex Exponents
and Log-Periodic Corrections to Scaling

In fact, there is a more general mathematical solution to (11.31):

mn =
lnµ
lnλ

+ in
2π
lnλ

. (11.33)

To get expression (11.33), we have used the identity ei2πn = 1. The existence
of complex exponents results from the property of discrete scale invariance,
captured mathematically by (11.24), which relates the free energy at two
different scales in the ratio of a power of 2, as seen from Fig. 11.1. This is
the same property discussed in Sect. 5.4 on complex dimensions of discretely
scale invariant fractals.

We thus find that a critical phenomenon on a fractal exhibits complex
critical exponents. Of course f is real, so the most general form of f close to
the critical point should be

f(K) ≈ (K −Kc)m

{
a0 +

∑
n>0

an cos[nΩ ln(K −Kc) + Ψn]

}
, (11.34)

where

m =
lnµ
lnλ

, Ω =
2π
lnλ

, (11.35)

hence exhibiting the log-periodic oscillations (corresponding to the cosine of
the logarithm. This is represented in Figs. 11.4 and 11.5.

This result should be somewhat obvious. The geometry exhibits dis-
crete scale invariance. Since, close to Kc, a rescaling in space corresponds
to a rescaling of the distance to the critical point K−Kc, physical properties
of the dynamics coupled to the geometry exhibit discrete scale invariance as
a function of K −Kc. A discrete geometrical scale invariance implies a dis-
crete scale invariance of the physical properties as a function of K−Kc giving
rise to log-periodic corrections. Although derived for the particular case of
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the diamond lattice, the previous results apply in principle to any fractal
exhibiting discrete scale invariance.

The mathematical existence of complex critical exponents and therefore
of log-periodic corrections were identified quite soon after the discovery of
the renormalization group [486, 667, 683]. Soon after, they were rejected
for translationally invariant systems, since a period (even in a logarithmic
scale) implies the existence of one or several characteristic scales which is
forbidden in these ergodic systems in the critical regime. In addition to their
possible existence in hierarchical geometrical systems, they can appear in
Euclidean systems possessing a quenched heterogeneity, such as in random
dipolar spin systems [6], in spin glasses [165], in critical phenomena with
random couplings [503] and long range correlations [117, 1009].

Recent works have documented evidence of log-periodic structures deco-
rating the main power law behavior in acoustic emissions prior to rupture [29]
and in the seismic precursory activity before large earthquakes [477, 910, 979].
Log-periodic oscillations have also been documented in the fractal structure
of arrays of cracks in geological media [712]. These log-periodic structures are
the expression of discrete scale invariance (DSI), the property of a system

Fig. 11.4. Function f given by expression
(11.34) truncated at the first oscillatory cor-
rection as a function of K − Kc on the left of
the critical point, with m = 0.3, a0 = 1, a1 =
0.2, an>1 = 0, Ψ1 = 0 and Ω = 2π cor-
responding to a prefered scaling ratio equal
to exp(2π/Ω) ≈ 2.7. The oscillations, which
have their local frequency accelerating with-
out bound when K − Kc → 0, are not visible
very close to the critical point due to lack of
resolution in the graphic. The dashed line cor-
responds to the pure real power law (K−Kc)

m

Fig. 11.5. Same as Fig. 11.4 in double log-
arithmic scale. The straight line corresponds
to the pure real power law (K − Kc)

m. The
horizontal scale is inverted compared to
Fig. 11.4 since one approaches the critical
point from right to left
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which is invariant under a discrete set of dilatations only.1 Unlike continuous
scale invariance which is very common in all the critical phenomena of nature,
until recently DSI was considered merely a man-made artifact or restricted
to discrete fractals or hierarchical constructions. It is not necessarily so. For-
mally, discrete scale invariance corresponds to complex critical exponents,
a situation which is actually possible in non-unitary systems like geometrical
systems with non-local properties (percolation, polymers and their generaliza-
tions), or in models with disorder (spin-glasses) in non-fractal lattices [807].
DSI has also recently been seen quite clearly in the mass-radius scaling re-
lationship of diffusion-limited-aggregation (DLA) clusters [899]. Log-periodic
structures have also be proposed for turbulence [30, 316, 696, 697, 881], in
biology [839, 1013] as well as in models of earthquake aftershocks [436, 555].

In growth and rupture phenomena, damage and precursory phenomena
occur at particular discrete times and not in a continuous fashion, and these
discontinuities reflect the localized and threshold nature of the mechanics of
rupture and faulting. It is this “punctuated” physics which gives rise to the
existence of scaling precursors modeled mathematically by the log-periodic
correction to scaling.

The renormalization group equations of the form (11.26) or (11.36) have
not been derived from first principles for growth, rupture and other out-of-
equilibrium processes alluded to above, even if there are various attempts to
develop approximate RG descriptions on specific models of these processes. It
may thus seem a little premature to use this discrete renormalization group
description for these systems. Actually, expressions (11.26) or more generally
(11.36) below can be obtained without any reference to a renormalization
group approach: as soon as the system exhibits a discrete scale invariance,
the natural tool is provided by q-derivatives [279] from which it is seen that
expression (11.36) is nothing but a Jackson q-integral [451–453, 955] of the
function g(x), which constitutes the natural generalization of regular inte-
grals for discretely self-similar systems [279]. The way the Jackson q-integral
is related to the free energy of a spin system on a hierarchical lattive was
explained in [278].

It is always a marvel to realize that mathematical structures initially
thought of as useless esoteric constructions of the intellect end up providing
new applications and new insights. The history of the development of human
science is full of such examples.2 This gives us a sense of wonder as Einstein
said: “How can it be that mathematics, being after all a product of human
thought independent of experience, is so admirably adapted to the objects of
reality?” E. Wigner emphasized [1015]: “The enormous usefulness of math-
ematics in the natural sciences is something bordering on the mysterious...

1 It is crucial not to confuse DSI with the existence of a discrete scale. For instance,
a square lattice is a discrete system, but does not have discrete scale invariance.

2 Negative masses have been interpreted correctly as anti-particles by Dirac, com-
plex (amplitude) probabilities lead to quantum interference, and so on.
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The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift, which we neither un-
derstand nor deserve.” The generalization of exponents to the complex plane
provides another example.

11.2.5 “Weierstrass-Type Functions”
from Discrete Renormalization Group Equations

Let us consider again expression (11.29) giving the formal solution of the
renormalization group equation (11.26). Around fixed points Kc solution of
φ(Kc) = Kc, the renormalization group map can be expanded up to first order
in K−Kc as φ(K) = λ(K−Kc). Posing x = K−Kc, we have φ(n)(x) = λnx
and the solution (11.29) becomes

f(x) =
∞∑

n=0

1
µn
g[λnx] . (11.36)

In principle, (11.36) is only applicable sufficiently “close” to the critical point
x = 0, such that the higher-order terms in the expansion φ(K) = λ(K −Kc)
can be neglected. The effect of nonlinear corrections terms for φ(K) have
been considered in [220, 223].

In the mathematical literature, the function (11.36) is called a Weierstrass-
type function, to refer to the introduction by K. Weierstrass of the func-
tion [1007]

fW(x) =
∞∑

n=0

bn cos[anπx] , (11.37)

corresponding to the special case µ = 1/b, λ = a and g(x) = cos[πx].
To the surprise of mathematicians of the 19th century, Weierstrass showed
that the function (11.37) is continuous but differentiable nowhere, provided
0 < b < 1, a > 1 and ab > 1 + 2/3π. Note that, in the context of the
renormalization group of critical phenomena, the condition a = λ > 1 im-
plies that the fixed point Kc is unstable. Hardy was able to improve later
on the last bound and obtain that the Weierstrass function (11.37) is non-
differentiable everywhere as soon as ab > 1 [402]. In addition, Hardy showed
that it satisfies the following Lipschitz condition (corresponding to self-affine
scaling) for ab > 1, which is much more than just the statement of non-
differentiability:

fW(x+ h) − fW(x) ∼ |h|m , for all x where m = ln[1/b]/ lna .

(11.38)

Note that for ab > 1, m < 1, expression (11.38) shows that fW(x + h) −
fW(x) � |h| for h → 0. As a consequence, the ratio [fW(x + h) − fW(x)]/h
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has no limit which recovers the property of non-differentiability. Continu-
ity is obvious from the fact that fW(x + h) − fW(x) → 0 as h → 0 since
m > 0. For the border case a = b discovered by Cellerier before 1850, fW is
not non-differentiable in a strict sense since it possesses infinite differential
coefficients at an everywhere dense set of points [847]. Richardson is cred-
ited with the first mention of the potential usefulness for the description
of nature of the continuous everwhere non-differentiable Weierstrass func-
tion [777]. Shlesinger and co-workers [440, 509, 648, 840] have previously
noticed and studied the correspondence between (11.36) and the Weierstrass
function.

Fig. 11.6. Quasi-Weierstrass function for m = 0.25, ω = 7.7, using N = 32 terms
to estimate the sum (11.45). Top-left panel (a): α = π/2 (genuine Weierstrass
function); bottom-left panel (b): α = 0.993π/2 = 1.56; top-right panel (c): α =
0.9π/2 = 1.414; bottom-right panel (d): α = 0. Reproduced from [343]
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If one is interested in the non-regular (or non-analytic) behavior only close
to the critical point x = 0, the regular part can be dropped and the analysis
of

f(x) =
1
µ
f(λx) (11.39)

is sufficient. It is then easy to show by simple verification that the most
general solution of (11.39) is (see [878] and references therein)

f(x) = xmP

(
lnx
lnλ

)
, (11.40)

where m is given by (11.35) and P (y) is an arbitrary periodic function of its
argument y of period 1. Its specification is actually determined by the regular
part g(x) of the renormalization group equation, as shown for instance in the
explicit solution (11.36). The scaling law f(x) ∼ xm implied by (11.40) is
a special case of (11.38) obtained by putting x = 0 and replacing h by x in
(11.38).

The Laplace transform fL(β) of f(x) defined by (11.36) also obeys a renor-
malization equation of the type (11.26). Denoting gL(β) the Laplace trans-
form of the regular part g(x), we have

fL(β) =
∞∑

n=0

1
(µλ)n

gL[β/λn] , (11.41)

and

fL(β) = gL(β) +
1
µλ

fL

(
β

λ

)
. (11.42)

The general solution of (11.42) takes the same form as (11.40):

fL(β) =
1

β1+m
PL

(
lnβ
lnλ

)
, (11.43)

where PL(y) is a periodic function of its argument y of period 1.
As an example, let us consider the regular part g(x) of the renormalization

group equation defined as

g(x) = e− cos(α) x cos (x sin(α)) , with α ∈
[
0,
π

2

]
. (11.44)

The parameter α quantifies the relative strength of the oscillatory structure
of g(x) versus its “damping”: for α = π/2, (11.36) with (11.44) recovers
the initial function (11.37) introduced by Weierstrass with b = 1/µ, a = λ
and cos(πx) replaced by cos(x); for α = 0, g(x) = exp[−x] has no oscillation
anymore and corresponds to a pure exponential relaxation considered in [620].

Plugging (11.44) in (11.36) gives

f(x) =
∞∑

n=0

1
λ(2−D)n

e− cos(α) λnx cos (λnx sin(α)) , (11.45)
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where

D = 2 −m = 2 − lnµ
lnλ

. (11.46)

The exponent D turns out to be equal to the fractal dimension of the the
graph of the Weierstrass function obtained for α = π/2. Recall that the
fractal dimension quantifies the self-similarity properties of scale invariant
geometrical objects. Note that 1 < D < 2 as 1 < µ < λ which is the condition
of non-differentiability found by Hardy [402] for the Weierstrass function.
The graph of the Weierstrass function is thus more than a line but less than
a plane. For α < π/2, f(x) is smooth and non-fractal (D = 1) and its graph
has the complexity of the line. Actually, there are several fractal dimensions.
It is known that the box counting (capacity, entropic, fractal, Minkowski)
dimensions and the packing dimensions of the Weierstrass function are all
equal to D [494] given by (11.46) for α = π/2. It is conjectured but not
proved that the Hausdorff fractal dimension of the graph of the Weierstrass
function obtained for α = π/2 is also equal to D given by (11.46). It is known
that the Hausdorff dimension of the graph of f(x) does not exceed D but
there is no satisfactory condition to estimate its lower bound [433].

Figure 11.6 shows the function (11.45) for α = π/2 = 1.5708 (pure Weier-
strass function), α = 0.993π/2 = 1.56, α = 0.9π/2 = 1.414 and and α = 0.
Reference [343] uses this example and many others to address the question
of the origin of the strength of log-periodic oscillations in certain systems.
For instance, for Ising or Potts spins with ferromagnetic interactions on hi-
erarchical systems, the relative magnitude of the log-periodic corrections are
usually very small, of order 10−5 [223]. In growth processes (DLA), rupture,
earthquake and financial crashes, log-periodic oscillations with amplitudes
of the order of 10% have been reported. The “technical” explanation for
this 4-order-of-magnitude difference is found in the properties of the “regular
function” g(x) embodying the effect of the microscopic degrees of freedom
summed over in a renormalization group approach leading to equations such
as (11.26). It is found that the “Weierstrass-type” solutions of the renormal-
ization group can be put into two classes characterized by the amplitudes An

of the power law series expansion obtained from a Mellin transform of (11.36).
These two classes are found to be separated by a novel “critical” point.

A known example of a system of the first class is the q-state Potts model
with antiferromagnetic interactions [220, 613]. Another example is the statis-
tics of closed-loop self-avoiding walks per site on a family of regular fractals
with a discrete scale-invariant geometry such as the Sieirpinsky gasket [725].
A known example of the second class is the q-state Potts model with ferro-
magnetic interactions [223].

Growth processes (DLA), rupture, earthquake and financial crashes thus
seem to belong to the first class and to be characterized by oscillatory
or bounded regular microscopic functions g(x) that lead to a slow power
law decay of An, giving strong log-periodic amplitudes. If in addition, the
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phases of An are ergodic and mixing, the observable presents self-affine non-
differentiable properties. In contrast, the regular function g(x) of statistical
physics models with “ferromagnetic”-type interactions at equibrium involves
unbound logarithms of polynomials of the control variable that lead to a fast
exponential decay of An giving weak log-periodic amplitudes and smoothed
observables.

11.3 Criticality and the Renormalization Group
on Euclidean Systems

The reader should not have the false impression that the renormalization
group works only on hierarchical or discrete scale invariant fractals. Hierar-
chical systems are the exceptions as physics is usually defined in Euclidean
space. It is true that hierarchical systems provide most of the examples which
can be solved exactly within the renormalization group formalism. However,
the renormalization group has initially been introduced as an efficient approx-
imation scheme for calculations of critical properties of Euclidean systems.

In these systems, one defines a change of scale by an arbitrary factor b > 1
and spins (or more generally degrees of freedom) are “integrated out” going
from magnification L to L/b, where L is the system size. In general, some
approximations are called for to carry on the renormalization group program
but the procedure and the end results are similar to those obtained above in
equations (11.21) and (11.24), with µ = bd, where d is the space dimension.
One can also show that the scaling factors λ of the relevant control parameters
are powers of the scale factor b. As a consequence, the real part of the critical
exponents, which involve the ratio lnµ/ lnλ are independent of the arbitrary
choice of b. However, from (11.24) with a finite µ = bd associated with a fixed
scale change b > 1, the critical exponents take an imaginary part, equal to
2π/lnλ, which depends explicitely on b (through λ). Thus, the associated
log-periodic corrections are created and controlled by the specific choice of
the scaling factor b. In a homogeneous Euclidean system, there is a priori no
preferable choice for b, therefore the period of the log-periodic corrections can
take any value, controlled by the corresponding choice of b. In other words,
the results of the renormalization group calculation for the critical exponents
must be independent of the choice of b since the physics is independent of it.
As a consequence, the imaginary part which depend explicitely on b is not
allowed. The coefficients an for n > 0 in (11.34) must be zero in this case.

This result can be retrieved from the previous analysis leading to (11.24)
by noting that, in a Euclidean system, the most natural choice for b is
b = 1 + dl, with dl infinitesimal, i.e. at each step of the renormalization
group, one integrates out an infinitesimal fraction of the degrees of freedom
(instead of half the spins as in the case of the diamond lattice). This choice
ensures that all b’s play the same role since any scaling factor B greater than
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Fig. 11.7. This figure illustrates the effect of renormalisation for K < Kc of the
Ising model, which corresponds to the disordered regime. The two discording states
are encoded in white and black. Starting from a square lattice with some given
configuration of spins on the left, two successive applications of the renormalisa-
tion group are shown on the right panels. Repeated applications of renormalisation
group change the structure of the lattice with more and more disorganization. All
the shorter range correlations, quantified by the typical sizes of the black and white
domains, are progressively removed by the renormalisation process and the system
becomes less and less ordered, corresponding to an effective decrease in the interac-
tion strength K. Eventually, upon many iteration of the renormalisation group, the
distribution of black and white squares becomes completely random. The system
is driven away from criticality by the renormalisation. The renormalisation group
thus qualifies this regime as disordered under change of scales

1 can be obtained by (lnB)/dl iterations of the infinitesimal scaling 1 + dl.
Then, the renormalization group discrete flow equation (11.21) becomes an
ordinary differential equation dK/dl = φ(K) and similarly for (11.26). The
modification from discrete equations to ordinary differential equations rule
out the existence of complex critical exponents if a technical condition is met,
namely the renormalization group relations may be represented by gradient
flows [1002]. This is usually born out for translational invariant systems, such
as homogeneous Euclidean systems.

The renormalization group has been applied to a variety of problems,
such as percolation (see Chap. 12), polymers, transition to chaotic behavior,
turbulence, and many out-of-equilibrium systems. It is also a fundamental
tool for theories of fundamental interactions and particle physics where it
was firsd developed with a different formulation [1008].

To illustrate how the renormalization group works for an Euclidean sys-
tem, let us consider a collection of spins, which each has one out of two
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possible states (up or down, 0 or 1, yes or no). The renormalisation group
then works as follows.

1. The first step is to group neighboring spins into small groups. For in-
stance, in a two-dimensional square lattice, we can group spins in clusters
of size equal to 9 spins corresponding to squares of side 3 by 3.

2. The second step is to replace the cacophony of spin states within each
group of 9 spins by a single representative spin, resulting from a chosen
majority rule. Doing this “decimation” procedure obviously lowers the
complexity of the problem since there are 9 times fewer spin states to
keep track of.

3. The last step is to scale down or shrink the super-lattice of squares of size
3 by 3 to make them of the same size as the initial lattice. Doing this,
each cluster is now equivalent to an effective spin endowed with a spin
representing an average of the spins of the 9 constitutive spins.

One loop involving the three steps applied to a given system transforms it
to a new system which looks quite similar, but is different in one impor-

Fig. 11.8. This figure illustrates the effect of renormalisation for K > Kc of the
Ising model, which corresponds to the ordered regime in which one spin state (white)
dominates (the two spin states are encoded in white and black). Starting from
a square lattice with some given configuration of spins, two successive applications
of the renormalisation group are shown on the right panels. We observe a progressive
change of the structure of the lattice with more and more organization (one color,
i.e., spin state, dominates more and more). All the shorter range correlations are
removed by the renormalisation process and the system becomes more and more
ordered, corresponding to an effective increase in the interaction strength K. The
system is driven away from criticality by the renormalisation. The renormalisation
group thus qualifies this regime as ordered under change of scales
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Fig. 11.9. This figure illustrates the effect of renormalisation for K = Kc of the
Ising model, which corresponds to the critical point. The two different spin states
are encoded again in white and black. Repeated applications of renormalisation
group leave the structure of the lattice invariant statistically. All the shorter range
correlations are removed by the renormalisation process, nevertheless the system
keeps the same balance between order and disorder and the effective interaction
strength remains unchanged and fixed at the critical value Kc. The system is kept
fixed at criticality by the renormalisation. The renormalisation group thus qualifies
this regime as critical, which is characterized by the symmetry of scale invariance.
In other words, the system of clusters of spins is fractal

tant aspect: the distribution and spatial organization of the spins have been
modified as shown in Figs. 11.7, 11.8 and 11.9.

Three situations can occur which are illustrated in the Figs. 11.7, 11.8
and 11.9. We use the context of a model of spins with positive interactions
tending to align the spins according to a coupling strength K. A large K
leads to strong organization where most of the spins have the same state.
A small K corresponds to a population which is split in half between the
two spin states such that the spatial organization of spins is disorganized.
In between, there exists a critical value Kc separating these two extreme
regimes at which the system is critical, i.e., scale invariant. The renormali-
sation group makes these statements precise as shown in the Figs. 11.7, 11.8
and 11.9.

Except for the special critical value Kc, the application of the renormali-
sation group drives the system away from the critical value. It is possible to
use this “flow” in the space of systems to calculate precisely the critical ex-
ponents characterizing the divergence of observables when approaching the
critical points. Critical exponents play the role of control functions of this
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flow, i.e., describe the speed of separation from the critical point. The spe-
cific calculations can be performed exactly in some special instances, as for
hierarchical lattices discussed above in this chapter. In most other cases, one
must resort to approximations, whose precision can however in general be
systematically controlled and improved [302, 1022].

11.4 A Novel Application to the Construction
of Functional Approximants

11.4.1 General Concepts

In the theory of condensed matter, in statistical physics, and particle physics
and in many other fields, one usually obtains physical quantities in the form of
expansions in powers of some parameters. The expansions assume that these
parameters are small. However, as a rule, the physically relevant regimes cor-
respond to values of these parameters which are not small and can even be
very large. Many popular expansions are asymptotic and lead to reasonable
results only in the low orders and then diverge at higher orders. Moreover,
they become wrong in the close vicinity of phase transition or, generally
speaking, when critical phenomena of different nature are involved, where
fractional indices appear instead of the integer ones, typical of those expan-
sions. When a number of terms in a divergent series is known, one may
invoke resumation techniques, such as Pade and Pade–Borel [49] ones. How-
ever, the knowledge of only a few first terms does not permit to use these
techniques.

Another method for extracting information from the perturbative series is
a renormalization-group approach [97, 1022]. Since renormalization group is
nothing but a kind of a dynamical system in which time is replaced by scale,
the approach can be formulated in the language of dynamical theory [1038],
where the (semi-)group property is expressed as a kind of a self-similarity
relation for the sought function conserving its form under the change of an
appropriately chosen group variable often expressing a coarse-graining oper-
ation. In such a dynamical system description, the role of time can be played
by momentum in the case of quantum field theory, or by space-scale as in
fractals.

In the case of the self-similar approximation theory [344, 345, 1038], the
role of time defined in discrete steps in the dynamical system description is
played by nothing else but the approximation number. Motion with respect
to this discrete time corresponds to transfer from one approximation to an-
other. This makes it possible to define a dynamical system whose trajectory
is bijective to the sequence of approximations. Such a dynamical system with
discrete time has been called the approximation cascade. Convergence of a se-
quence of approximations is equivalent to stability of a dynamical trajectory.
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The stability and, respectively, convergence are governed by control func-
tions. The fixed point of a trajectory defines the sought function. These ideas
result in a practical way of extrapolation also allowing to calculate critical in-
dices for various problems appearing in the context of the critical phenomena,
which is presented pedagogically in the next section. Recent works show that
this technique is in general far superior to competing methods such as the
Padé resummation [346, 347]. See also [21, 342, 344, 345, 348, 654, 1037–1041]
for a full exposition and for applications.

11.4.2 Self-Similar Approximants

The self-similar renormalization method discussed here defines effective sums
of asymptotic series or effective limits of iterative sequences. It is based on
the ideas of optimal control theory, renormalization group theory, and general
dynamical theory. The principal concepts of this approach are as follows.

• The first pivotal step is the introduction of control functions whose role is
to govern an optimal convergence of approximation sequences. This results
in the optimized perturbation theory which has been widely employed for
a variety of applications.

• The second idea is to consider the passage from one successive approxi-
mation to another as the motion on the manifold of approximants, where
the approximant order plays the role of discrete time. The recurrent re-
lations, representing this motion, are formalized by means of group self-
similarity.

• A dynamical system in discrete time, whose trajectory is bijective to an
approximation sequence, is called the approximation cascade. Embedding
the latter into an approximation flow makes it possible to derive differential
and integral equations of motion, whose fixed points represent self-similar
approximants to the sought function. The stability of the calculational
procedure is characterized by local multipliers.

• Another key point of the approach is the introduction of control functions
with the help of fractal transforms. This allows one to analyse asymptotic
series by transforming them into their fractal counterparts and then invok-
ing all the machinery of the self-similar approximation theory for the trans-
formed series. In this way, the approximants, possessing a nice self-similar
structure, were obtained, such as the self-similar exponential approximants
and self-similar root approximants.

Assume that we are interested in finding a function f(x) of a real variable
x ∈ (−∞,+∞). Without loss of generality, the function f(x) may be consid-
ered to be real, since the case of a complex function can be always reduced
to that of two real functions. Let perturbation theory give for the function
f(x) approximations pk(x) with k = 0, 1, 2, ... enumerating the approxima-
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tion number. The standard form of pk(x) is a series in powers, not necessarily
integer, of x. The algebraic transform is defined as

Pk(x, c) = xcpk(x) , (11.47)

with c real. This transform changes the powers of the series pk(x), changing
by this the convergence properties of the latter. Effectively, the approximation
order increases from k to k + c as a result of (11.47). The transform inverse
to (11.47) is pk(x) = x−cPk(x, c).

To construct an approximation cascade, we define the expansion function
x = x(f, c) by the equation P0(x, c) = f , where P0 is the first available
expression from (11.47). Substituting x(f, c) back into (11.47), we get

yk(f, c) ≡ Pk(x(f, c), c) . (11.48)

The left-hand side of (11.48) represents a point of the approximation-cascade
trajectory corresponding to approximation (11.47). The transformation in-
verse to (11.48) reads Pk(x, c) = yk(P0(x, c), c).

Consider the family {yk : k ∈ Z+} as a dynamical system in discrete time.
Since the trajectory of this dynamical system is bijective to the approximation
sequence {Pk}, this system is called the approximation cascade. In order to
simplify the consideration, let us pass from discrete time to continuous one.
To this end, embed the approximation cascade into an approximation flow,
which means that the trajectory {y(τ, f, c)} of the flow has to pass, when
τ = k = 0, 1, 2, ..., through all points y(k, f, c) = yk(f, c) (k = 0, 1, 2, ...) of
the cascade trajectory. The evolution equation

∂

∂τ
y(τ, f, c) = v(y(τ, f, c), c) (11.49)

for the approximation flow, where v(f, c) is the velocity field, can be inte-
grated for an arbitrary time interval, say, from τ = k − 1 to τ = k∗, which
gives ∫ y∗

k

yk−1

df
v(f, c)

= k∗ − k + 1 ; (11.50)

here yk = y(k, f, c), y∗k = y(k∗, f, c). The upper limit in (11.50) corresponds
to an approximation P ∗

k (x, c) = y(k∗, P0(x, c), c). The moment τ = k∗ is
chosen so that to reach the approximation P ∗

k by the minimal number of
steps. That is, we require that the right-hand side of (11.50) be minimal, τk ≡
min(k∗−k+1). Let us note that the differential form (11.49) of the evolution
equation, or its integral form (11.50), are equivalent to the functional relation

y(τ + τ ′, f, s) = y(τ, y(τ ′, f, s), s) . (11.51)

In physical applications, the latter is labeled as the functional self-similarity
relation, which explains the term we use. The self-similarity, in general, can
occur with respect to motion over different parameters. In our case, this is
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the motion over the steps of a calculational procedure, the number of steps
playing the role of effective time.

To find P ∗
k explicitly, we need to concretize in (11.50) the velocity field

v(f, c). This can be done by the Euler discretization of (11.49) yielding the
finite difference

vk(f, c) = yk(f, c) − yk−1(f, c) . (11.52)

Thus, using (11.52), the evolution integral (11.50) can be written as∫ P∗
k

Pk−1

df
vk(f, c)

= τk , (11.53)

where Pk = Pk(x, c), P ∗
k = P ∗

k (x, c). When no additional restrictions are
imposed, the minimal number of steps for reaching a quasifixed point is, ev-
idently, one, min τ∗k = 1. Unless τk is introduced explicitly, its value will
be set to one automatically. It is worth noting that the evolution equation
(11.53) is generally nonlinear and can have several different solutions leading
to different self-similar approximations. In such a case, to select a physically
meaningful solution, we need to involve additional conditions as constraints.
The role of the latter can be played, e.g., by properties of symmetry, by
asymptotic properties at x → 0 or x → ∞, or by some other physically im-
portant point such as sum rules or other relations containing some known
information on the character of the sought solution. Such additional con-
straints narrow down the set of possible solutions to a class with desired
properties.

In this way, the sole quantity that is not yet defined is the parameter c of
the transformation (11.47). Recall that the aim of the method is to find an
approximate fixed point of the cascade trajectory, a quasi-fixed point, which,
by construction, represents the sought function. Therefore, the power c of the
transform in (11.47) is to be chosen so as to force the trajectory of the approx-
imation dynamical system to approach an attracting fixed point. Therefore, c
is nothing but a kind of control function and can thus be defined by a fixed-
point condition. The definition of the fixed point would be to require the
velocity to be zero. After the stabilizer c is found from the condition on the
fixed point, we substitute it into expression for P ∗

k and, using the inverse
transformation (11.48), we obtain the self-similar approximation

f∗
k (x) = x−ck(x)P ∗

k (x, ck(x)) (11.54)

for the sought function. The procedure of calculating the self-similar approx-
imations (11.54), starting from a perturbative series pk(x) is now completely
defined. The power c one chooses, that is, the effective order we need to take
into account, is dictated by the condition on the fixed point, which selects the
most stable trajectory of the approximations cascade. In particular, it may
happen that c = 0, and one does not need to proceed further, or, vice versa,
one may have to go to the limit of c → ∞, thus having to take into account
all approximation orders. In each concrete case, the effective order one needs
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to reach depends on how good is the perturbative sequence {pk(x)} one start
with and also on how much information can be extracted from its first terms
by means of the self-similar renormalization.

As an illustration of the the self-similar renormalization method, consider
explicitly a perturbative series

pk(x) =
k∑

n=0

anx
n, a0 �= 0 , (11.55)

containing integer powers of x, although, as is mentioned above, the pro-
cedure works for arbitrary noninteger powers. This form is the most fre-
quently met in physical applications. Let us write the algebraic transform
Pk(x, c) =

∑k
n=0 anx

n+c of (11.55). As is seen, this transform corresponds to
an effectively higher perturbation order, k + c, as compared with the initial
series (11.55) of order k. The equation for the expansion function x(f, c) now
reads P0(x, c) = a0x

c = f , from where x(f, c) = (f/a0)1/c. Repeating now
all steps described above, after some straightforward calculations, the initial
perturbative expansion (11.55) is transformed into the self-similar approxi-
mation

f∗
k (x) = pk−1(x)

[
1 − kak

ca
1+k/c
0

xkp
k/c
k−1(x)

]−c/k

. (11.56)

The stabilizer c(x) is determined by the minimal difference condition

∆k(x, c) = f∗
k (x, c) − f∗

k−1(x, c) , (11.57)

or the minimal sensitivity condition: (∂/∂c)f∗
k (x, c) = 0. Asymptotically, as

x → 0, the behavior of pk(x) in (11.55) and f∗
k (x) coincides up to the linear

terms, while the higher order terms are renormalized.
There are several variants and extensions of the self-similar renormaliza-

tion method. In particular the method of “self-similar factor approximants”
is based on the self-similar approximation theory, with an additional trick
consisting in transforming, first, a series expansion into a product expansion
and in applying the self-similar renormalization to the latter rather to the for-
mer [347, 1040]. This results in self-similar factor approximants extrapolating
the sought functions from the region of asymptotically small variables to their
whole domains with improved efficiency. This provides a general methodol-
ogy for constructing crossover formulas and for interpolating between small
and large values of variables.

11.5 Towards a Hierarchical View of the World

Stretching the concept, the renormalization group can be thought of as a con-
struction scheme or “bottom-up” approach to the understanding and even to
the design of large-scale hierarchical structures. At a qualitative level, it can
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be thought of as an embodiement of the famous message of P.W. Anderson:
“More is different” [26], of which we reproduce the main message.

The reductionist hypothesis does not by any means imply a “construc-
tionist” one: the ability to reduce everything to simple fundamental laws
does not imply the ability to start from those laws and reconstruct the
universe. In fact, the more the elementary particle physicists tell us about
the nature of the fundamental laws, the less relevance they seem to have
to the very real problems of the rest of science, much less to those of soci-
ety. The constructionist hypothesis breaks down when confronted with the
two difficulties of scale and complexity. The behavior of large and complex
aggregates of elementary particles, it turns out, is not to be understood
in terms of a simple extrapolation of the properties of a few particles. In-
stead, at each level of complexity entirely new properties appear and the
understanding of the new behaviors requires research which I think is as
fundamental in its nature as any other. That is, it seems to me that one
may array the sciences roughly linearly in a hierarchy, according to the
idea: the elementary entities of science X obey the laws of science Y .

X Y
solid state elementary particle
many-body physics physics
chemistry many-body physics
molecular biology chemistry
cell biology molecular biology
. .
. .
psychology physiology
social sciences psychology

But this hierarchy does not imply that science X is “just applied Y .” At
each stage, entirely new laws, concepts, and generalizations are necessary,
requiring inspiration and creativity to just as great a degree as in the
previous one. Psychology is not applied biology, nor is biology applied
chemistry. In my own field of many-body physics, we are, perhaps, closer
to our fundamental, intensive underpinnings than in any other science
in which non-trivial complexities occur, and as a result we have begun
to formulate a general theory of just how this shift from quantitative to
qualitative differentiation takes place. This formulation, called the theory
of “broken symmetry”, may be of help in making more generally clear the
breakdown of the constructionist converse of reductionism.



12. The Percolation Model

Percolation [928] is a very simple but powerful model of heterogeneous me-
dia. It is more than half a century old, and thousands of papers as well as
several books have been written about it. Most of the recent progress has
occurred in applications, particularly in geophysics and transport of fluids in
porous media [803]. The basic foundations are well established but some key
results are still emerging with some surprises [927], notably in the number
of percolating clusters and their description by simple renormalization group
techniques.

12.1 Percolation as a Model of Cracking

To motivate the percolation model, let us consider a piece of rock which is
progressively altered as a consequence of the application of stress in the pres-
ence of water (corrosion) and possibly other processes. A qualitative physical
picture for the progressive damage of a system leading to global failure is
as follows: at first, single isolated microcracks appear, and then with the in-
crease of load or time of loading they both grow and multiply leading to an
increase of the density of cracks per unit volume. As a consequence, microc-
racks begin to merge until a “critical density” of cracks is reached at which
the main fracture is formed.

The basic idea is that the formation of microfractures prior to a major
failure plays a crucial role in the fracture mechanism. The simplest statis-
tical model containing these facts is the percolation model. The percolation
model is a purely static statistical model which assumes that microcracks
are uniformely and independly distributed in the system, for all crack con-
centrations. Each concentration of microcracks can then be characterized by
the distribution of microcrack cluster sizes and shapes for which many exact
results are known [225, 375, 928].

The connection between rupture and the percolation model is made by as-
suming that as the load or time increases, the density of cracks also increases
monotonically. However, in contrast to more elaborate theories of rupture
some of which are described in Chap. 13, it is assumed that new cracks ap-
pear in a random and uncorrelated manner in the system, so as to always
obey the rules of the percolation model.
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The percolation model exhibits a critical density at which point an infinite
cluster of microcracks appears which disconnects the system into at least two
pieces. This critical percolation point is identified with the global rupture
point.

The term “infinite” cluster refers here to the ideal situation where the
physical system is taken of infinite size, a situation often refered to as the
“thermodynamic limit”. In practice, systems are of finite size and the “infi-
nite” cluster acquires a size limited by that of the system.

This simple percolation model for rupture can be shown to be a correct
description of material breakdown in the limit of “infinite disorder”, for which
the effect of stress enhancement at the largest crack tips remains small com-
pared to the heterogeneity of the medium. In general however, the percolation
model is bound to become incorrect close enough to the global rupture when
stresses at the tip of the cracks (∼ √

L where L is the length of a given crack)
become larger than the typical scale of the strength of heterogeneities of the
system. Nothwithstanding this fact, the percolation model of rupture has
been at the basis of a significant theoretical effort to model material rupture
in general and earthquakes in particular.

The properties of percolation clusters are the following.

• Infinite percolation clusters have in general a complex form with bends
and hook-like configurations. As a consequence, global rupture requires
a higher density of cracks such that the infinite clusters are free of “locks”
preventing uncoupling. For instance in tension, the relevant percolation
threshold is that of so-called “directed percolation” (see [865] and [339] for
a discussion of this aspect as well as the application of percolation theory
to cracks put at random in a continuum as opposed to the discrete lattice
models generally used).

• As a consequence of the critical nature of the percolation point, one can rep-
resent experimental data on acoustic emission, dilatancy and other possible
precursors of rupture and of earthquakes using the power laws of percola-
tion theory. These power laws are special cases of power laws more gener-
ally associated with critical phenomena. They can be used for prediction
purposes; see for instance [14] for a general discussion and [325, 861, 904]
where this idea has been explicitely used for the case of telluric voltage
precursors [980, 981], using a percolation model of heterogeneous piezo-
electricity.

These power laws, which describe the behavior of various physical quan-
tities when the critical percolation point is approached, are based on the fact
that the correlation length ξ exhibits a power law behavior

ξ ∼ |p− pc|−ν
, (12.1)

(where ν is a critical exponent) and diverges at p = pc. The correlation length
roughly represents the typical size of the largest clusters in the system [928]
as shown in Fig. 12.1. As it becomes larger and larger as p→ pc, cooperative
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Fig. 12.1. Continuous percolation: disks are dropped at random on the square such
that the coordinates x and y of their centers are uniformely distributed between
0 and 1. This picture corresponds to a concentration of disks just below the per-
colation threshold. Notice the existence of large clusters of size comparable to but
smaller than the system size. For continuous percolation of disks, the product of the
concentration by the square of their radius defines a percolation threshold which
is independent of the disk radius and corresponds to a well-defined disk coverage
fraction

effects appear of pure geometrical origin. Notwithstanding the fact that these
correlations are purely geometrical and of statistical origin, the electrical or
mechanical behavior of a system close to the percolation point exhibits large
responses and a high susceptibility to perturbations. For example, the elastic
energy stored in the system at constant stress diverges as |p − pc|−τ , with
τ � 3.5 in three dimensions, as p → pc. This kind of behavior characterizes
essentially any physical quantity whose response depends on the connectivity
and the geometry of the large clusters.

A growing body of work has shown that the percolation model is suit-
able as a first approximation as soon as the property of connectivity is the
dominating mechanism. Many domains have been explored which include
flows in porous media with many geophysical applications, microemulsion
structures and mixed reverse micelles, phases transitions in high-energy nu-
clear collisions, structure and stability of foam, spin-glasses, biological pop-
ulation dynamics, conductivity of YBaCuO ceramics (used in high-Tc supra-
conductors), transport properties of metal-dielectric composites, transport in
doped polymers, photoluminescence of porous silicon, catalytic solid-phase
reactions, theory of liquid water, of city growth and of stock market price
fluctuations, oil recovery, etching of random solids, coarsening in epitaxial
thin film growth, modeling of geosphere–biosphere interactions and of habi-
tat fragmentation, solid state ionics, the human vasculature system, earth-
quake nucleation, rupture in random media, permeability of partially molten
upper mantle rock, diffusion and viscosity in silicate liquids, iceberg calv-
ing, model of magnetopause current layer in asymmetric magnetic fields and
many others.
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12.2 Effective Medium Theory and Percolation

When facing a situation where some heterogeneity is present, the natural ten-
dency is to try to average out the disorder and replace the disordered medium
with an effective homogeneous medium with similar “averaged” properties.
This is the strategy followed by methods known as “effective medium” theo-
ries, “homogeneous” approaches and “mean field” approximations [262, 868].
At the core of these approaches is the idea that a heterogeneous medium
can be seen as an equivalent homogeneous medium, i.e. its properties are the
same as those of a homogeneous medium. This strategy is valid for small dis-
order but is bound to fail at large disorder, for which the percolation model
becomes a good paradigm.

Let us illustrate this by considering the electric conductance of a random
network of conductances. Consider the simple case of a cubic lattice of electric
bonds. Each bond of the lattice carries a conductance g, taken at random from
a pdf P (g). For instance, we will use

P (g) = pδ(g − 1) + (1 − p)δ(g) , (12.2)

corresponding to a mixture of conducting bonds with unit conductance with
concentration p and of isolating (or ruptured) links with concentration 1− p.
The effective medium theory (also called more generally CPT for “coherent
potential theory” in the context of wave scattering [262, 868]), amounts to
replacing this system by a uniform network of conductances all equal to gm,
where gm is chosen so that the global properties of the random system is the
best mimicked. The strategy of the effective medium approach is to introduce
a single defect g on a bond of the effective medium and determine gm such
that the average of the perturbations brought by the single defect vanishes.

To solve the problem, we will use Thevenin’s theorem of electrokinetics:
the effect of the network as seen by the added conductance on a bond AB is
the same as an effective conductance G′

AB. This effective conductance G′
AB

can be calculated by inserting a current i0 at A (which flows away to infinity

Fig. 12.2. Use of Thevenin’s theorem to calculate the
equivalent conductance seen by the bond AB of an
infinite lattice of identical conductances surrounding
the bond AB
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in the plane) and by extracting a current out at B (coming from infinity)
along the bond on which we put a conductance gm, as shown in Fig. 12.2.
The superposition of these two currents cancel out at infinity and lead to
a closed electric circuit. Due to the square symmetry, the current inserted at
A gives a contribution equal to i0/4 in the bond AB. Another contribution
i0/4 comes from the current extracted at B, leading to a total current i0/2
in the bond AB. The potential drop VAB between A and B is thus

VAB =
i0
2
g−1
m ≡ i0

GAB
, (12.3)

where GAB is the total conductance seen between A and B. This gives
GAB = 2gm and the conductance G′

AB of the total lattice, excluding the
bond AB is thus

G′
AB = GAB − gm = gm . (12.4)

We can now put a conductance g between A and B. Using the equivalent
circuit of two conductance G′

AB and g associated in parallel and fed by a cur-
rent i0 entering in A and going out from B, we obtain

VAB =
i1
g

=
i0 − i1
G′

AB

, (12.5)

where i1 is the current flowing in the conductance g. This yields

i1(g) =
g

g +G′
AB

i0 . (12.6)

The current perturbation brought by replacing gm by g between A and B is
thus

i1(g) − i1(gm) =
1
2
gm − g

gm + g
. (12.7)

The effective medium conductance gm is then determined by the condition
that this perturbation is on average zero, i.e.∫

dg P (g)
gm − g

gm + g
= 0 . (12.8)

For P (g) given by (12.2), this gives

gm = 2
(
p− 1

2

)
. (12.9)

This calculation correctly predicts the existence of a “percolation” threshold
pc = 1/2 at which the conductance of the total network vanishes due to an
absence of connectivity. This non-trivial prediction turns out to be correct
quantitatively for the square bond lattice. In general, this is not the case for
other topologies: only the existence of the percolation threshold is correctly
predicted but its quantitative value is not often accurate. The linear depen-
dence of the effective medium conductance as a function of p−pc is incorrect
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sufficiently close to pc: it has been established that the global conductance
of the system goes to zero like (p − pc)t, with t ≈ 1.300 in two dimensions
and t ≈ 2.5 in three dimensions [688]. The effective medium theory is unable
to capture this non-analytic power law behavior, which reflects a critical be-
havior in which holes of all sizes are present as shown in Fig. 12.1 and which
modify the exponent t from its mean field value 1 to its true value larger than
one. The effective medium approach, being a “one-body” method, is unable
to capture these phenomena associated with a collective connectivity effect.
The problem is more severe for other lattices such as the triangular lattice,
for which the effective medium approach is even wrong in its prediction of pc.
We refer to [508] for a discussion and extension to other lattices in three
dimensions.

There is a huge literature on effective medium theories and homogeneiza-
tion approaches. For weak heterogeneities, corresponding to dilute inclusions
with a weak constrast of properties between the matrix and the inclusions,
these theories are in general quite precise and validated by many experiments.
The problems appear when the concentration increases and the contrast of
properties is strong. In this case, clusters of inclusions appear and the “one-
particle” approximation explicit in these methods become more and more
problematic. In this regime where percolation becomes relevant, it is bet-
ter to think of the properties of the heterogeneous system as resulting from
the contribution of many clusters of particles of various sizes and shapes.
As we will see, the theory of percolation makes precise statements on the
statistics of clusters as a function of the concentration of inclusions. This al-
lows one to develop quantitative methods to calculate the properties of such
systems [782–784]. We note that effective medium theories are, by construc-
tion, unable to take into account the possible existence of multiple modes
of deformation or propagation. Again, addressing the physical mechanisms
at the scale of the clusters allows one to make significant progress. These
cluster methods can be applied to the description of electrical, mechanical,
piezoelectrical and rupture properties of complex heterogeneous systems.

12.3 Renormalization Group Approach to Percolation
and Generalizations

Recall that the renormalization group (RG) method discussed in Chaps. 2
and 11, amounts basically to decomposing the general problem of finding the
behavior of a large number of interacting elements into a succession of simpler
problems with a smaller number of elements, possessing effective properties
varying with the scale of observation. It is based on the existence of a scale
invariance or self-similarity of the underlying physics at the critical point.

In the real-space version of RG which is the best suited for percolation,
one translates literally, in real space, the concept that rupture at some scale
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results from the aggregate response of an ensemble of ruptures at a smaller
scale. This idea is particularly clear in faulting for instance, where it is well-
known that large faults in the crust actually consist of anastomosed faults
(i.e. smaller interacting structures) with varying local arrangements.

Real-space RG is a particular implementation of the technique which usu-
ally requires the discretization of space into cells. The real-space RG consists
of replacing a cell of sites or bonds by a single super-site, provided that the
linear dimension l of the cell is much smaller than the correlation length ξ. Of
course one looses information, but since scaling relies on the fact that all cells
of size l are similar to each other, one should obtain the relevant information
for describing the critical point.

Quantitatively, one must specify the rules governing how this renormal-
ization of cells to sites is to be performed. Similar to the renormalization of
the coupling factor K in the Potts model studied in Chap. 11, the concen-
tration p′ of occupied supersites will in general be different from the con-
centration p of the original sites. Only right at the critical point do we have
p′ = p = pc, since the correlation length is infinite and the system is perfectly
self-similar implying that the geometry looks statistically the same after any
scale reduction.

12.3.1 Cell-to-Site Transformation

One should stress that, although intuitively clear and appealing, there is
no unique prescription for renormalizing in real space and a considerable
number of approximate renormalization techniques have been developped,
with varying degrees of success.

Fig. 12.3. A triangular lattice of nodes represented by small open circles is renor-
malized into another triangular lattice of sites represented by large open circles, by
grouping the three nodes of the same triangle into a single super-site. This con-
struction is such that each site of the initial triangle lattice belongs to one and only
one super-site. The lengths of the bonds of the renormalized triangular lattice are
equal to

√
3 times those of the initial lattice

Maybe the simplest model is to consider a triangular lattice with a frac-
tion p of its nodes occupied, defining the “site-percolation” model. Then,
a successful real space RG recipe is to replace each triangle with its three
nodes by a unique supersite at its center as shown in Fig. 12.3. We now ask
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for the probability p′ of such a supersite to be occupied, knowing the proba-
bility p for each of the triangle nodes to be occupied. The criterion that we
use is that the supersite is occupied if a spanning cluster exists. For a trian-
gle, this is the case if either all three sites are occupied (probability p3), or
if two neighbouring sites are occupied (probability 3p2(1 − p), the factor 3
stems from the three possible combinaisons). One obtains [772–774]:

p′ = M(p) ≡ p3 + 3p2(1 − p) . (12.10)

The mapping p′ = M(p) is shown in Fig. 12.4. Its fixed points (corresponding
to intersections with the diagonal) are 0, 1/2 and 1. Close to a fixed point,
one can linearize the mapping and get

p′ − pc � λ(p− pc) , (12.11)

where λ = dp′/dp = 3/2 at p = pc = 1/2. The fixed point 1/2 is thus
unstable, while the two other fixed points 0 and 1 are stable as can be seen in
Fig. 12.4. They correspond respectively to the empty and occupied phases.
Starting from some p < 1/2, the renormalized p flows towards 0 meaning
that, at larger and larger scales, the system is more and more similar to
an empty lattice. Inversely, starting from some p > 1/2, the renormalized p
flows towards 1 meaning that, at larger and larger scales, the system is more
and more similar to a completely occupied lattice. These two stable fixed
points thus represent stable phases while the unstable fixed point describes
the transition between these two stable phases. Note that pc = 1/2 is the
exact value for the two-dimensional triangular lattice.

Fig. 12.4. Renormalization group map-
ping represented by the thick line giving
the renormalized occupancy parameter p′

of the renormalized triangular lattice as
a function of the occupancy parameter p
of the initial lattice. The thin lines,
bouncing between the thick line, repre-
senting the mapping, and the diagonal,
corresponding to trajectories obtained
by iterating the decimation procedure,
exhibit the attractive property of the two
fixed points 0 and 1, and the repulsive
nature of the fixed point 1/2

The basic equation of the RG is

l|p′ − pc|−ν = |p− pc|−ν , (12.12)

which simply states that the correlation length ξ should remain physically
unaltered after one operation of the RG. If the bonds of the initial triangular
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lattice are of length one, we call l =
√

3 the bond length of the renormalized
triangular lattice shown in thick lines in Fig. 12.3. Taking the logarithm of
this RG equation yields

1
ν

=
ln(|p′ − pc|/|p− pc|)

ln l
=

lnλ
ln l

. (12.13)

Using the values of λ and l, we find

ν =
31/2

ln(3/2)
= 1.355 , (12.14)

which is very close to the exact value ν = 4/3 in 2D. One can proceed
similarly and obtain the critical behavior of other quantities.

Such “real space” RGs have been reinvented in the geophysical community
and have subsequently become popular. The percolation model and the real
space RG has been applied to a three dimensional cubic lattice [14]. In this
reinterpretation of the percolation model as a rupture model, p becomes the
probability for an elementary domain to be fragile as a consequence of the
increasing number of small cracks in response to an increasing applied stress.
A non-trivial (i.e. different from 0 or 1) fixed point is found with essentially
the same properties as shown in Fig. 12.4. The unstability of the mapping
p′ = M(p) at this fixed point illustrates the notion of the rupture instability: if
p > pc, p′ > p and by successive iteration of the RG (i.e. by going to larger and
larger scales), p converges to 1, describing the global rupture at large scales.
On the other hand, if p < pc, p′ < p and by successive iteration of the RG, p
converges to 0, corresponding to the undeteriorated phase: the RG sees the
partially damaged system, which however will not break, as fundamentally
undamaged at the macroscopic scale when the details are washed out.

12.3.2 A Word of Caution
on Real Space Renormalization Group Techniques

The probability R(p), that a lattice with Ld sites in d dimensions percolates
in the sense of having at least one cluster spanning from top to bottom, is
such that for large enough lattices R(p < pc) = 0, R(p > pc) = 1. Finite-size
scaling theory predicts and computer simulation confirms over more than two
decades [928] that, in a small transition region

∆p ∝ L−1/ν , (12.15)

the spanning probability moves from close to zero to close to one. One may
define a size-dependent pc(L) by the condition that the spanning probabil-
ity be 50%: R[pc(L)] = 1/2. As used above, small-cell renormalization the-
ory [772–774, 928] traditionally determines the critical point as a fixed point:
R(pc) = pc. If we insert the bulk threshold value pc, does this equation be-
come valid for large enough cells?
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It does not. Ziff [1061] showed numerically that in a special square lat-
tice case R(pc) is 1/2 and different from pc = 0.592746. More generally, it
differs from pc (and also from 1/2) in three to six dimensions and becomes
unity in seven (see [927] and references therein). Does this mean that all the
numerical works based on the now wrong idea R(pc) = pc were wrong? It
turns out that there is not a single estimate which needs to be revised. The
reason is that R(p) for L→ ∞ jumps from zero to one. Thus, any constant C
between zero and one can be used to define a size dependent pc(L) through
R[ p = pc(L)] = C; for large enough lattices this pc(L) converges to the
proper bulk threshold. The validity of the “wrong” standard renormalization
picture [772–774, 928] can be restored by just replacing cell-to-site renormal-
ization (from L to 1) by cell-to-cell renormalization (from L to L/2): then,
R(pc) for lattice size L agrees with R(pc) for lattice size L/2, provided L is
large enough [432].

Another recent result is also of interest in light of the central limit theo-
rem discussed in Chap. 2 and the effects of long-range correlations discussed
in Chap. 8. Until quite recently, it was still assumed that the derivative
dR(p)/dp approaches a Gaussian for large lattices. This derivative gives the
probability that a lattice starts to percolate at a concentration p. For a fixed
sequence of random numbers, there is a well-defined onset of percolation when
we increase p, and it is plausible that this onset follows a normal distribu-
tion for large systems. The width σ, defined as the standard deviation of this
distribution of the L-dependent thresholds,

σ2 = 〈p2
c〉L − 〈pc〉2L , (12.16)

varies as L−1/ν and is proportional to the shift 〈pc〉L − 〈pc〉∞. This is
a convenient numerical tool to determine the bulk pc by extrapolation
without assuming any critical exponent ν [977]. Again, the (unprecisely
defined) convergence to a Gaussian turned out to be poor when tested
numerically: the distribution has a finite skewness (third-order cumulant)
〈(pc−〈pc〉)3〉/〈(pc−〈pc〉)2〉3/2 which shows no intention in vanishing for large
lattices (see [927] and references therein). Mathematical theorems now estab-
lish that Gaussians are not correct. However, the determination of thresholds
and exponents ν by the Gaussian assumption did not give incorrect results
since σ ∝ L−1/ν remains valid and only the proportionality factor is influ-
enced by the deviations from a Gaussian.

The reason why the distribution of thresholds in a finite system does
not follow the usual central limit theorem and its Gaussian distribution is
that the property of spanning is a collaborative effort of the whole lattice
and not the sum of more or less independent contributions from smaller
parts of the whole lattice. Therefore, the number of sites in the just-spanning
cluster is not a self-averaging quantity with relative fluctuations vanishing
for L→ ∞.
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12.3.3 The Percolation Model
on the Hierarchical Diamond Lattice

We come back to the spin model on the diamond hierarchical lattice studied
in Chap. 11. Observe that, although the spin model we originally defined on
the diamond lattice makes sense for Q integer only (where Q is the number
of states that any spin can take), all equations involve Q as a parameter,
and therefore make sense for Q real as well. The value Q = 1, or more
precisely, the limit Q → 1, is of particular interest: it has been shown long
ago [1028] that this limit corresponds to the bond percolation problem, where
the probability of a bond to be occupied is

p = 1 − 1
K

. (12.17)

Rather than recall the proof of this statement, which is rather long, let us
focus on the renormalization equation (11.21). In the case Q = 1, it reads,
after taking the inverse of both sides and expanding the powers,

1 − 1
K ′ = 1 − 4

K2
+

4
K3

− 1
K4

. (12.18)

Fig. 12.5. The set of bond occupancies in an ele-
mentary diamond cell for which the global connec-
tivity from top to bottom is ensured

Now observe that a configuration where a bond is occupied at some mag-
nification corresponds at the next magnification to three possible situations
depicted in Fig. 12.5. Their respective probabilities are

lower left: p1 = p4 =
(

1 − 1
K

)4

(12.19)

four upper cases: p2 = (1 − p)p3 =
1
K

(
1 − 1

K

)3

(12.20)

two cases at the lower right: p3 = (1 − p)2p2

=
1
K2

(
1 − 1

K

)2

(12.21)
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and they have multiplicities 1, 4, 2. By direct calculation, we obtain

p′ = 1 − 1
K ′ = p1 + 4p2 + 2p3 , (12.22)

thus demonstrating that the general renormalization equation makes sense in
terms of percolation once the probability has been identified through (12.17).

It is easy to bridge our quite general discussion of the renormalization
group method presented in Chap. 11 with the problem of percolation [14].
The present problem maps exactly onto percolation where an occupied bond
occurs with probability p. The critical point corresponds to the appearance
of an infinite cluster of occupied bonds. It occurs at

pc = 1 − 1
Kc(Q = 1)

≈ 0.618 . (12.23)

A non-trivial (i.e. different from 0 or 1) fixed point is found with essentially
the same properties as discussed above and also in Chap. 11. The instability
of the mapping p′ = φ(p) at this fixed point illustrates the notion of the
percolation instability. If p > pc, p′ > p and by successive iteration of the
renormalization group (i.e. at larger and larger scales), p converges to 1,
describing the percolating (dense) phase. If p < pc, p′ < p and by successive
iteration of the renormalization group, p converges to 0, corresponding to
the non-percolating phase. The renormalization group sees the partially non-
percolating system, which is not connected at large scale, as fundamentally
empty at the macroscopic scale. Since Q = 1, the free energy f defined
in the context of the spin model of Chap. 11 is always zero. However, the
derivative of f with respect to Q at q = 1 is non trivial: it corresponds to the
average size of clusters [1028]. Since f = 0, one sees, by taking the derivative
of (11.24) with respect to Q, that the derivative satisfies the same type of
renormalization group equation but with a different function g. Hence all the
properties given in Chap. 11 apply, and in particular the power law properties.
Notice that, due to the discrete scale invariant structure of the hierarchical
diamond lattice, the average size of clusters as well as the distribution of
clusters possess log-periodic correction to scaling.

12.4 Directed Percolation

12.4.1 Definitions

Geometrical Definition. Among all critical phenomena, directed percola-
tion has been associated with an extraordinarilly large variety of phenomena.
Directed percolation is defined exactly as percolation discussed above except
that an additional condition is added, namely that the connecting paths must
be directed and must follow the direction of a prefered chosen direction as
shown in Fig. 12.6. In other words, in directed bond percolation, each bond
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Fig. 12.6. Top: a square lattice on which
a percolating cluster connects the left side to
the right side. Note that the cluster is not di-
rected, i.e. a walker following the backbone
(obtained by removing the dangling branches)
of the cluster will have to walk one step in
the direction opposite to the arrow indicat-
ing the prefered direction. This case corre-
ponds to a system above the (usual) percola-
tion threshold but below the “directed” perco-
lation threshold. Bottom: by adding one bond
(shown in thick line) to the figure at the top,
the percolating cluster now possesses a di-
rected backbone. This case thus correponds
to a system above the “directed” percolation
threshold

carries an arrow and directed percolation corresponds to the connectivity
between bonds mediated by oriented bonds such that one can walk accross
a connected directed percolation cluster by always following the oriented ar-
rows.

As shown in Fig. 12.7, below a certain threshold pc, all clusters are finite.
Above pc, some of the clusters may become infinite. Just at pc, there are only
finite clusters but the probability to generate a cluster of s sites decreases
slowly as a power law s−τ for large s.

Contact Processes. Another alternative definition is through the so-called
“contact processes” [565] defined as evolutionary rules on a population of
particles: each site of the d-dimensional cubic lattice, Zd, is either vacant
or is occupied by a particle. The transition rules are easily stated: a va-
cant site with n occupied nearest neighbors becomes occupied at the rate
λn/2d, while particles disappear at unit rate, independent of their surround-
ings. Evidently, the vacuum is absorbing, in the sense that the state with
zero particles remains with zero particles. The active phase, characterized
by a nonzero stationary particle density, exists only for sufficiently large
creation rate λ (and, strictly speaking, only in the infinite-volume limit).
There is a continuous transition from the vacuum to the active phase at
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Fig. 12.7. Typical directed percolation cluster starting from a single seed below,
at, and above the critical point pc. The preferred direction can be interpreted as
time. Reproduced from [426] with permission

a critical value λc, corresponding to the “directed” percolation threshold.
The intuition for this correspondence is that the spatial dimension along
the prefered direction in directed percolation can be interpreted as the time
axis. Then, the space representation of the clusters as in Fig. 12.6 in dimen-
sion D corresponds to the (d+ 1) space–time representation of the evolution
of the particle population. Thus, the d-dimensional contact process corre-
sponds to the geometrical definition of directed percolation in d + 1 dimen-
sions. In one space dimension (two “space-time” dimensions), λc � 3.2978
for a square lattice. This transition is said to belong to the universality
class of directed percolation, because the same exponents describe the two
processes.

12.4.2 Universality Class

The universality class covered by directed percolation is very broad and con-
tains many seemingly unrelated problems. This stems from the fact that there
are many interpretations to the preferred direction of the directed percolation
model:

• The prefered direction is a spatial direction. This was proposed to apply to
material and charge transport in disordered media under the influence of
external forces. It can also model the propagation of epidemics and forest
fires under some directional bias, e.g. strong wind.

• The preferred direction is time. Here, the primary interpretation could be
an epidemic without immunization, the so-called “contact process” [565]
or the “simple epidemic” [640].

• A very early application (even if it took rather long until it was understood
as such [136, 371]) was to “reggeon field theory”, a theory for ultrarela-
tivistic particle collisions popular in the seventies [652]. Here, the preferred
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direction is that of “rapidity”, while the directions transverse to it are pro-
vided by the impact parameter plane. This connection is interesting since
it was through it that the first precise estimates of critical exponents and
amplitudes were obtained for directed percolation [652].

• Another realization of the directed percolation transition occurs in simple
models of heterogeneous catalysis [11, 70, 464, 470, 1060, 1062].

• Surface reaction models provide another application [377, 472, 1062].
• Branching and annihilating random walks with odd parity have also been

shown to belong to the directed percolation class [465, 466, 943].
• Assorted multiparticle processes is another example [39, 40, 231, 233, 723].
• The transition from laminar to turbulence in boundary layer flows by in-

teractions between local subcritical bifurcations has also been argued to
be a critical phenomenon in the universality class of directed percola-
tion [159, 160, 744]. T. Bohr et al. [98] have shown that the transition
from laminar to active (spatio-temporal intermittent) behavior in chaotic
systems can in fact vary from a continuous transition in the universality
class of Directed Percolation with infinitely many absorbing states to what
appears as a first order transition due to finite lifetime “solitons.”

• The parallel (or annealed) version of the Bak–Sneppen model for extremal
evolution dynamics can be mapped exactly onto a site directed percolation
critical point [42, 372, 894], as will be shown in Chap. 15.

There is ample evidence for the suggestion [364, 459] that the universality
class of directed percolation contains all continuous transitions from a “dead”
or “absorbing” state to an “active” one with a single scalar order parameter,
provided the dead state is not degenerate and that some technical points
are fulfilled: short range interactions both in space and time, nonvanishing
probability for any active state to die locally, translational invariance [absence
of “frozen” randomness], and absence of multicritical points.

If the dead state is degenerate, for example with twofold degeneracy with
conservation laws which prevent some active states from dying, it is clear
that any transition – if it occurs at all – has to be in a different universality
class [366, 370, 943]. More generally, it seems that models can be generically
in the directed percolation class even if they have an absorbing state with pos-
itive entropy. The physical argument is that such a state is essentially unique
on a coarse scale, provided its evolution is ergodic and mixing and provided
it does not involve long range correlations (long correlations should be en-
tirely due to patches of “active” states). Since only coarse-grained properties
should influence critical behavior, this would suggest that such transitions
are in the directed percolation class. Recent simulations support this conjec-
ture [467–469, 471, 618]. Despite its theoretical success, no fully demonstra-
tive experiment or natural system is known to clearly reproduce the critical
exponents of directed percolation [426], probably due to the fact that, in Na-
ture, an absorbing state will often exhibit some residual fluctuation and will
not be fully absorbing.
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A typical contact process model is an interacting particle system charac-
terized by rules for elementary processes such as creation, annihilation, and
diffusion. Looking only at the rules, there is little to tell us what sort of critical
behavior to expect, nor why it is universal. The understanding of universality
emerges instead from the study of coarse-grained formulations which capture
the large-scale features essential to critical behavior. In such field theories,
the microscopic picture of particles on a lattice is replaced by a set of den-
sities which evolve via stochastic partial differential equations (SPDEs). At
this level, renormalization group methods may be applied. A basis for uni-
versality appears if one can show that the continuum descriptions for various
models differ only by irrelevant terms. At present, there are many models
known that have directed percolation critical behavior (as far as numerical
simulations can tell) but only a few have been confirmed rigorously to be-
long to the universality class of directed percolation using field theory. Useful
continuum descriptions of multiparticle processes, for example, have yet to
be devised.

12.4.3 Field Theory: Stochastic Partial Differential Equation
with Multiplicative Noise

Janssen [459] proposed a continuum description of the contact processes and
corresponding directed percolation models which reads as follows:

∂ρ(x, t)
∂t

= aρ(x, t) − bρ2 − cρ3 + · · · +D∇2ρ+ η(x, t) , (12.24)

where ρ(x, t) ≥ 0 is the coarse-grained particle density. The ellipsis represents
terms of higher order in ρ. η(x, t) is a Gaussian noise which respects the
absorbing state (ρ = 0), i.e. vanishes with ρ,

η(x, t)η(x′, t′) ∝ ρ(x, t)δ(x − x′)δ(t− t′) , (12.25)

and is delta-correlated in time and space.
This form can be justified by coarse graining the contact process, in the

limit of large bin size. Let ni be the number of particles in bin i, and ∆ni

the change in this number during a brief interval. The latter has expectation
∆ni ∝ a ni+O(n2

i ), (with a ∝ λ−1), and under the customary assumption of
Poissonian statistics for reaction systems, its variance equals ∆ni. For suffi-
ciently large bins, we may approximate the distribution of ∆ni by a Gaussian
law. Thus, since reactions in different bins are uncorrelated, coarse-graining
the original model leads to a stochastic field theory with Gaussian noise whose
autocorrelation is proportional to the local density. There is also noise due
to the fluctuating diffusive current. But diffusive noise does not affect the
critical behavior in the present case, so we shall ignore it in the interest of
simplicity. Since (12.24) involves multiplicative noise, one must decide upon
an interpretation (Ito versus Stratonovich, see Chap. 2). In the present case,
the Ito interpretation of (12.24) is demanded by physical considerations.
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Without noise, (12.24) is a reaction–diffusion equation, which exhibits
a mean-field critical point. It is perhaps surprising that driving a reaction–
diffusion equation with multiplicative noise leads to the proper exponents.
Of course the condition expressed in (12.25) is crucial in this regard.

In the mean-field approximation (the spatially uniform, noise-free version
of (12.24)), the vacuum becomes unstable when a = 0, and for a, b > 0 there
is an active state. When fluctuations are taken into account, the critical point
shifts to ac > 0, and the critical behavior is nonclassical. For example, the
stationary density scales as ∝ (a − ac)β , with β � 0.277 in one dimension,
while in mean-field theory, β = 1. Field-theoretic analysis [459] reveals that
the cubic and higher-order terms are irrelevant to critical behavior, so long as
b > 0. The situation is analogous to that in equilibrium critical phenomena,
where the Ising universality class is generic for models with a scalar order
parameter and short-range interactions.

12.4.4 Self-Organized Formulation of Directed Percolation
and Scaling Laws

There is a very different way to define the percolation model, which is rem-
iniscent of the correspondence between the Fokker–Planck formulation and
the Langevin equations of stochastic processes discussed in Chap. 2. Its phi-
losophy is to transform a probabilistic discrete process into a deterministic
continuous one, modulo the introduction of a random function. By discrete
and continuous, we refer to the ensembles in which the variables xi,t that are
attributed to each site i, t take their value: these variables live on a discrete
space–time lattice. To be equivalent to the site directed percolation on the
square lattice, we need an equation of evolution for the xi,t which can be eas-
ily connected to the directed percolation connectivity probability p belonging
to ]0, 1[. In this goal, we assume that a site i, t is wetted (resp. empty) if its
variable xi,t is less (resp. larger) than p.

Consider the three sites i + 1, t, i, t and i − 1, t which are connected to
site i, t + 1 in the lattice as shown in Fig. 12.8. The evolution equation is
a formula specifying xi,t+1 as a function of xi+1,t, xi,t and xi−1,t. The rules
are the following:

• if xi+1,t, xi,t and xi−1,t are all larger than p (empty), then the site i, t+ 1
must be empty according to the directed percolation (DP) rule, i.e. xi,t+1

must be larger than p;

Fig. 12.8. Three sites i + 1, t, i, t and i − 1, t
are connected to site i, t + 1 and control its
value
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• if xi+1,t, xi,t or xi−1,t or all are less than p (wetted), then the site i, t+1 is
wetted with probability p, i.e. xi,t+1 is smaller than p with probability p.

These rules are embodied in the following evolution equation:

xi,t+1 = max(ηi,t+1,min(xi+1,t, xi,t, xi−1,t)) . (12.26)

where the η’s are random numbers, independently drawn for each site i, t
from a uniform density between 0 and 1. Equation (12.26) provides the de-
sired stochastic equation of evolution, equivalent to the directed percolation
probabilistic model.

We have gained something in the construction process: indeed, notice
that p does not appear explicitely in the evolution equation (12.26)! It is thus
equivalent to directed percolation for an arbitrary p. In other words, following
the evolution (12.26) with arbitrary initial conditions allows one to simulate
directed percolation for all p’s at the same time! The same set of xi,t allows
one to reconstruct the cluster statistics for all p’s: for p < pc, only isolated
finite clusters of sites with xi,t < p exist (non-percolating phase), while for
p > pc, an infinite cluster of sites with xi,t < p appears (percolating phase).
This situation is remarkable in the sense that there is no control parameter for
the time evolution of the xi,t. The parameter p serves only as a threshold to
distinguish wetted from empty sites. This is completely analogous to the “sea-
level” formulation of (non-directed) percolation: a random number between 0
and 1 is attributed to each lattice site. One then introduces an arbitrary p (the
sea level) and selects all sites whose number is less than p. For p < pc (where
pc is the percolation threshold), only isolated finite lakes exist, whereas for
p > pc, an ocean bounded in extent only by the system size appears.

There is however an important difference between standard percolation
and directed percolation: in standard percolation, the xi,t are uniformely
distributed and do not provide any information on the critical properties;
in directed percolation corresponding to (12.26), the xi,t have a distribution
P (x) which is singular at the directed percolation threshold x = pc. The
evolution (12.26) thus describes the subtle long-range correlation which is
intrinsic to directed percolation.

A study of the distribution of xi,t gives important information on the
critical properties of DP. To see this fact, simply notice that

ρ(p) =
∫ p

0

P (x) dx , (12.27)

where ρ(p) is the density of DP growth sites. From the known singular proper-
ties of ρ(p) [367], we deduce that near pc we should have the scaling behavior

P (x) ≈ t1/ν‖−δg
[
(x− pc)t1/ν‖

]
, (12.28)

where ν‖ = 1.7336 and δ = 0.1596 in 1 + 1 dimensions, leading to

P (x) ≈ (x− pc)−(1−δν‖) ≈ (x− pc)−0.7233 for large t . (12.29)
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This stems from the relation

ρ(p) ≈ (p− pc)βF

(
(p− pc)t1/ν‖

)
≈ (p− pc)β (12.30)

for t large, together with the use of the scaling relation β = δν‖ [367]. Using
(12.27), we find pc = 0.7056±0.0003, in agreement with the value obtained by
much more painful series expansions in [280]. This evolution (12.26) provides
an extremely efficient method for a numerical estimation of pc and of critical
exponents. To conclude, all the results obtained above are not specific to
the 1+1 dimensional case discussed here and generalize straigthforwardly to
higher space dimensions.



13. Rupture Models

The damage and fracture of materials are technologically of enormous interest
due to their economic and human cost. They cover a wide range of phenom-
ena like the cracking of glass, aging of concrete, the failure of fiber networks
in the formation of paper and the breaking of a metal bar subject to an ex-
ternal load. Failure of composite systems are of utmost importance in naval,
aeronautics and space industries [769]. By the term composite, we refer to
materials with heterogeneous microscopic structures and also to assemblages
of macroscopic elements forming a super-structure. Chemical manufactur-
ing and nuclear power plants suffer from cracking due to corrosion either of
chemical or radioactive origin, aided by thermal and/or mechanical stress.

Despite the large amount of experimental data and the considerable ef-
forts undertaken by material scientists [564], many questions about fracture
have not yet been answered. There is no comprehensive understanding of
rupture phenomena but only a partial classification in restricted and rela-
tively simple situations. This lack of fundamental understanding is indeed
reflected in the absence of reliable prediction methods for rupture, based on
a suitable monitoring of the stressed system. Not only is there a lack of non-
empirical understanding of the reliability of a system, but the empirical laws
themselves have often limited value. What we need are models that incorpo-
rate the underlying physics to identify and use relevant precursory patterns.
Recent models developed to address this question are based on two key con-
cepts: the role of heterogeneity and the possible existence of a hierarchy of
characteristic scales.

Many material ruptures occur by a “one crack” mechanism and a lot
of effort is being devoted to the understanding, detection and prevention
of the nucleation of the crack [194, 301, 587, 602]. Exceptions to the “one
crack” rupture mechanism are heterogeneous materials such as fiber compos-
ites, rocks, concrete under compression and materials with large distributed
residual stresses. The common property shared by these systems is the ex-
istence of large inhomogeneities that often limit the use of homogeneization
or effective medium theories for the elastic and more generally the mechan-
ical properties. In these systems, failure may occur as the culmination of
a progressive damage involving complex interactions between multiple de-
fects and growing micro-cracks. In addition, other relaxation, creep, ductile,
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or plastic behaviors, possibly coupled with corrosion effects may come into
play. Many important practical applications involve the coupling between
mechanic and chemical effects with a competition between several charac-
teristic time scales. Application of stress may act as a catalyst of chemical
reactions [341] or, reciprocally, chemical reactions may lead to bond weak-
ening [1014] and thus promote failure. A dramatic example is the aging of
present aircrafts due to repeated loading in a corrosive environment [664]. The
interaction between multiple defects and the existence of several characteris-
tic scales present a considerable challenge to the modeling and prediction of
rupture. Those are the systems and problems that guide the modeling efforts
recapitulated in this chapter.

13.1 The Branching Model

13.1.1 Mean Field Version or Branching on the Bethe Lattice

The general class of branching models provides a simple and general tool for
describing the notion of a cascade that may either end after a finite number of
steps or diverge, depending upon the value of a control parameter known as
the branching probability. For instance, it has been applied to the description
of material failure and earthquakes, seen as resulting from a succession of
events chained through a causal connection. In this class of models, it is
supposed that a crack does not propagate in a single continuous movement
but through a series of steps or branches invading the elastic medium [983].
The branching model is also a mean-field version of the percolation model
discussed in Chap. 12. The meaning of “mean-field” refers here to the fact
that there are no loops, i.e. paths closing on themselves. This defines a so-
called Bethe lattice.

Let us consider the simplest version of the branching model. The general
case is easily obtained [404]. At each discrete step, the earthquake is assumed
to

• stop, with probability C0,
• propagate over a unit length (i.e. remain a single branch), with probabil-

ity C1,
• or develop two branches, with probability C2.

Fig. 13.1. Definition of the branching model:
starting from an existing branch, with probabil-
ity C0 the branch stops at the next step; with
probability C1, the branch continues to grow at
the next step; with probability C2, it develops
two branches
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Each branch is taken to describe the dissipation of a unit amount of elastic
energy. A cascade of such branches can develop into many generations to
create a large earthquake. In this model, the emphasis is put on the stochastic
character of the propagation of rupture, assumed to stem from the large
geometrical and material heterogeneity of the crust. From one generation to
the next, the number of branches on average increases by a factor C1 + 2C2.
The value C1 + 2C2 = 1 corresponds to a critical point:

1. if C1 + 2C2 < 1, the average number of generations is finite and all
earthquakes are finite. Their size distribution is an exponential.

2. if C1 +2C2 > 1, the probability to generate a “run away” (i.e. an event of
infinite size) becomes nonzero. This is similar to being above the thresh-
old in the percolation model presented in Chap. 12.

3. if C1 + 2C2 = 1, the system is critical and the size distribution of events
is a power law as we show below.

The critical condition C1 + 2C2 = 1 together with the normalization
C0+C1+C2 = 1 yields the condition C0 = C2. Using the theory of generating
functions, one can show [404, 983] that the probability P (E) that a branching
process releases an energy E is, for large E:

P (E) � Ae−aEE−(1+µ) , (13.1)

where

A =
(

2C0 + C1(C0/C2)1/2

4πC2

)1/2

, (13.2)

a � (C0 − C2)2

4C0
, (13.3)

and

µ =
1
2
. (13.4)

Equation (13.1) gives a power law distribution P (E) ∼ E−(1+µ) up to
a maximum size Emax ∼ 1/a ∼ |C0 − C2|−2, above which the distribu-
tion crosses over to an exponential (this distribution (13.1) is sometimes
known as the Gamma distribution (see Chap. 6) [491, 912]). Note that for
C1 + 2C2 − 1 ≡ C2 − C0 > 0 for which a run away occurs, P (E) describes
only the finite events.

Such branching processes has been proposed as “mean field” descriptions
of avalanches in sandpile models with self-organized criticality [16, 17]. The
value µ = 1/2 is the characteristic “mean field” exponent of the frequency–
size distribution of earthquakes and is found generally in such classes of mod-
els where the spatial dimensions are neglected or rather homogenized over.
Note that its value 1/2 is general and does not depend upon the details (for
instance the number of branches per generation) of the branching model.
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13.1.2 A Branching–Aggregation Model
Automatically Functioning at Its Critical Point

Consider a population of clusters with a distribution D(s, t) giving the nor-
malized number of clusters of size s at time t. Following [100], we think of
a cluster as a group of animals. Such groups are widespread throughout the
animal kingdom and are known as groups, herds, schools or flocks. The ques-
tion we address is what determines the distribution D(s, t) of their sizes. In
particular, one would like a simple explanation for the observation thatD(s, t)
is often a power law distribution with small exponent µ close to 1/2, with
a truncation or fast fall-off for the largest group sizes. A simple mean-field
model of the formation of animal groups is as follows [100].

Animal clusters can occupy N distinct discrete locations. When a cluster
of size s1 visits an occupied cluster of size s2, the two cluster merge to form
a larger cluster of size s1 +s2. Animal clusters of size s are injected randomly
on the N sites with a probability pinj(s). The probability for a cluster to
move to a specific site and fuse with its cluster is assumed to be 1/N . From
these ingredients, we get the following evolution equation for D(s, t):

D(s, t+ 1) =
N∑

r=0

(
N

r

)(
1
N

)r (
1 − 1

N

)N−r

×
∞∑

s1=0

...
∞∑

sr=0

∞∑
sinj=0

pinj(sinj)D(s1, t)...D(sr, t)δ(s− (s1 + s2 +...+ sr + sinj)).

The combinatorial factor accounts for the number of ways one can have r
clusters moving and merging together. The Dirac function ensures that the
merging of the r clusters together with the injection produce a cluster of
size s. In the spirit of mean-field theory, we take the limit N → ∞ and
r � N for which it is easy to verify that

(
N
r

)
(1/N)r(1−1/N)N−r → (1/e)/r!

and becomes independent of N . The characteristic function D̂(k, t) of D(s, t),
defined as

D̂(k, t) ≡
∞∑

s=0

D(s, t)eiks , (13.5)

then obeys the following equation

D̂(k, t+ 1) = p̂inj(k)
∞∑

r=0

1
er!

[
D̂(k, t)

]r

= p̂inj(k) exp
[
D̂(k, t) − 1

]
, (13.6)

where p̂inj(k) is the characteristic function of the injection probability pinj(s).
The characteristic function of the asymptotic distribution for large times is
thus solution of

D̂(k) = p̂inj(k) exp
[
D̂(k) − 1

]
, (13.7)
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Generically, p̂inj(k) can be expanded in powers of k as

p̂inj(k) = 1 + ik〈sinj〉 +O(k2) . (13.8)

Assuming a functional form for small k as

D̂(k, t→ ∞) = 1 −A|k|µ , (13.9)

we get from (13.7)

1 −A|k|µ = (1 + ik〈sinj〉) exp (−A|k|µ) . (13.10)

Expanding the exponential in powers of k, we find that we need to expand up
to second order in |k|µ, as the l.h.s. of (13.10) cancels out with the two first
term of the expansion of the exponential in the r.h.s. We finally get µ = 1/2
which recovers the result given in [73]. The determination of the scale fac-
tor A requires to take into account higher-order terms in the expansion (13.9).
From Chap. 4, we know that an expansion like (13.9) with µ = 1/2 corre-
sponds to a power law distribution D(s) ∼ s−3/2. It is noteworthy that, due
to the injection of new individuals, the process is non-stationary and the total
number of individuals increases without bounds, but this does not prevent
the existence of a well-defined limit distribution. Extension of this model
by inclusion of a splitting probability leads to the same power tail with the
addition of a cross-over at large sizes to a faster decaying law. Related mod-
els of coagulation and fragmentation, based on Smoluchowsky rate equation
including scale invariant break-up kernels give similar results [167, 765, 976].

13.1.3 Generalization of Critical Branching Models

These models can be extended in many different ways. A general descrip-
tion of critical branched structures is as follows [110]. We first assume that
the branched crack possesses a well-defined backbone on which branches can
grow and develop new branches. One can thus define the probability per unit
length that the backbone of the crack gives birth to a new offspring as 1/l1.
The probability that this new branch survives at least for a length r− r′ will
be denoted K(r − r′). The number of branches this new structure contains
will be denoted N(r− r′). If the whole structure is self-similar (i.e. the same
kernels K(r− r′) and N(r− r′) describe the branching processes everywhere
along the backbone), then the total number of branches after a length r is
given by

N(r) =
∫ r

0

dr′
1
l1
K(r − r′)N(r − r′) , (13.11)

which leads to the following differential equation for N(r):
dN(r)

dr
= K(r)N(r) . (13.12)

Now, if K(r) decays faster than 1/r, N(r) tends to a constant at large r. If
K(r) decays as r−α with α < 1, then N(r) grows very fast with r, as N(r) ∼
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exp(r1−α). Hence, α = 1 appears as a critical value where the branched
structure barely survives. Writing K(r) = l2/r, one finds

N(r) ∼ rl2/l1 . (13.13)

It is interesting to note that the exponent l2/l1 measures the ratio of two
important length scales: the typical length l2 of one branch and the distance l1
between branches.

Following a similar line of arguments, it is possible to derive the general
form for the probability P (z, r) that the point at coordinates (z, r) belongs to
the branched structure, knowing that (0, 0) does (r lies in the average plane
of the branched crack and z is the direction perpendicular to it). One finds

P (z, r) = r−ζF (z/rζ) , (13.14)

with F (u) ∼ u−1 implying that P (z, r) ∼ z−1 independently of r as soon as
rζ < z < zmax where zmax is the total width of the structure. The branched
crack has thus a self-affine backbone (with roughness exponent ζ � 0.8 in
three dimensions [110]), decorated by a density of branches decaying as z−1.
This geometrical structure is characteristic of the critical branching condition
K(r) ∼ r−1. It is also found analytically in various tree structures studied nu-
merically (see [110] and references therein). It is also recovered in the directed
percolation model, which can be considered as a minimal model for branch-
ing in two dimensions. Last but not least, this geometrical structure has been
successfully tested in various experiments on rupture in the laboratory [108].

The mechanism selecting the special kernel K(r) ∼ r−1 is not discussed
in these approaches and remains to be found. It probably involves some self-
organizing or feedback process of the types discussed in Chap. 15.

13.2 Fiber Bundle Models and the Effects
of Stress Redistribution

This class of models represents a significant improvement over branching
models in that the assumed stochastic rules of branching are now derived from
the mechanism of stress redistribution. In an elastic medium, when there is
a rupture somewhere, the stress elsewhere is modified according to the law of
elasticity. This can in turn trigger more ruptures later on, which can cascade
to the final failure of the system. As a first step, the fiber bundle models are
characterized by simple geometries and simple rules for stress redistribution,
thought to approximate or bound the real laws of stress redistribution derived
from elasticity. The interest in these models is the possibility to obtain exact
results, providing bounds and references for more involved modeling.

13.2.1 One-Dimensional System of Fibers Associated in Series

In order to put the problem in suitable perspective, let us first consider
the simplest possible case of a one-dimensional system composed of links
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associated in series with randomly distributed breakdown thresholds. Global
failure is then associated with that of the weakest link and can be described
mathematically using the theory of probability of extreme order statistics
discussed in Chap. 1.

Let us call X1 ≤ X2 ≤ ... ≤ XN the failure thresholds of the N links
forming the 1D-system, ordered in increasing values. We assume that they are
identically distributed according to the pdf P (X) dX giving the probability
for the rupture threshold of a link to be equal to X to within dX . We are
interested in determining the weakest threshold X1, which determines the
global rupture. The order of magnitude of X1 is easily obtained from the
equation N

∫ X1

0 P (X) dX � 1, expressing that there is typically one value
of X smaller than or equal to X1 out of the N links. If P (X) is a power
law P (X) dX = CXα−1 dX (with α > 0 to ensure normalization of the
probability for small X ’s), this yields X1 ∼ N−1/α, illustrating that the
system strength decreases as its size increases (a particular illustration of the
well-known size effect in rupture).

One can be more precise and derive the exact probability F (X1) dX1 that
the weakest rupture threshold be equal to X1 to within dX1:

F (X1) dX1 =
(
N
1

)[
1 −

∫ X1

0

P (X) dX

]N−1

P (X1) dX1 . (13.15)

If P (X) is a power law, the distribution of system strengths is a Weibull
distribution

F (X1) dX1 = NCXα−1
1 e−[C(N−1)/α]Xα

1 dX1 , (13.16)

with Weibull exponent α. In the mechanical literature, most Weibull ex-
ponents are found between 2 and 15. For α > 1, F (X1) presents a peak
at X∗

1 = ((α− 1)/(C(N − 1)))1/α, which recovers the announced scaling
X1 ∼ N−1/α. Around this maximum, F (X1) can be written as

F (X1) � F (X∗
1 ) − 1

2

∣∣∣∣d2F (X1)
dX2

1

∣∣∣∣ (X1 −X∗
1 )2 , (13.17)

allowing one to get an estimation of the dispersion of the rupture threshold
X1 through the calculation of ∆X1 ≡ 〈(X1 − 〈X1〉)2〉1/2. We obtain

∆X1

X∗
1

=
1√
α
, (13.18)

showing that the relative fluctuations of the system strength are of order 1
and do not decrease with the system size. This is characteristic of extreme
order statistics of power law distributions.

This simple calculation provides a mechanism for the existence of large
fluctuations based on the sensitivity of extremes to disorder realizations. This
should be kept in mind for the modelling of rupture and of earthquakes.
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13.2.2 Democratic Fiber Bundle Model (Daniels, 1945)

The “democratic fiber bundle model” (DFBM) represents the other extreme
case, in which the fibers are associated in parallel and not in series. The
fundamental assumption of the model is that, at all steps, the total load
is “democratically” shared between all the remaining unbroken fibers. This
can be considered as a mean-field model since all elements are coupled to
each other through the global stress applied to the system. We shall see that,
in contrast to the previous case, the rupture properties are not controlled
by extreme order statistics but by a central limit theorem (see Chap. 2),
indicating a cooperative behavior.

We introduce the cumulative probability

P<(s) =
∫ s

0

P (X) dX (13.19)

of finding a rupture threshold smaller than or equal to s. Under a total load F
applied to the system, by definition of the cumulative distribution, a fraction
P<(s = F/N) of the threads will be subjected to more than their rated
strength and will fail immediately. After this first step, the total load will
be redistributed by the transfer of stress from the broken links to the other
unbroken links. This transfer will in general induce secondary failures which
in turn induce tertiary ruptures and so on.

The properties of this rupture problem are obtained by noting that the
total bundle will not break under a load F if there are n links in the bundle
each of which can withstand F/n. In other words, if the first k − 1 weakest
links are removed, the bundle will resist under a force smaller than or equal
to Fk = (N − k + 1)Xk, since there remains N − k + 1 links of breaking
strength larger than or equal to Xk. The strength FN of the bundle is then
given by

FN = maxk Xk(N − k + 1) for 1 ≤ k ≤ N , (13.20)

which converges to

Nmaxx

{
x[1 − P<(x)]

}
, (13.21)

in the limit of very large system size N , as can be seen by replacing the
discrete variable Xk by x and (k − 1)/N by its continuous approximation
P<(x).

It can be shown [326] that FN obeys a central limit theorem according to
which the probability that the global failure threshold FN be equal to F is

PG(Fn = F ) � 1
(2πN)1/2x0

e−(F−Nθ)2/2Nx2
0 , (13.22)

and thus FN converges to Nθ where

θ = x0

[
1 − P<(x0)

]
(13.23)
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is the unique maximum of x [1 − P (x)] at x = x0. The strength does not
decreases as in the 1D-model but increases with the system size (the average
strength per fiber goes to a constant). The variable x has the physical meaning
of being the force per surviving fiber.

Many other properties of this model can be studied [733, 734, 832, 833,
867, 938]. For instance, as the applied stress s (i.e. force per fiber) is increased,
as long as it is smaller than θ, the system holds while having some of its
fibers break down simultaneously. Indeed, starting from a stable configuration
corresponding to some value Fk, a simultaneous rupture of∆ fibers, which can
be called an event or burst of size ∆, occurs if Fn < Fk for k+1 ≤ n ≤ k+∆
and Fk+∆+1 ≥ Fk.

The function Fk can be shown to undergo a kind of random walk excursion
as k increases. It turns out that this random walk model gives not only the
correct qualitative behavior but also enables one to get the quantitatively
correct exponents for the distribution of burst sizes [867, 870]. Using this
random walk picture, it is easy to obtain the probability that a burst of size∆
occurs after k fibers have been broken [400, 415, 514, 867]. This corresponds
to the probability p1(∆) of first return to the origin of a random walker. In
the absence of any bias, the probability to be found at the origin after∆ steps
decays as ∆−1/2 and the probability to return for the first time to the origin
is p1(∆) ∼ ∆−3/2. Thus, the local differential distribution d(∆) of bursts of
size ∆ is given by (see also Chap. 14)

d(∆) ∼ p1(∆) ∼ ∆−3/2 . (13.24)

This recovers the previously derived mean field exponent µ = 3/2 − 1 =
1/2. This power law distribution holds for ∆ ≤ ∆max(x), where ∆max(x) ∼
(x0−x)−2, due to bias of the random walk of Fk created by the slow increase
in the average strength as the weaker fibers fail.

This regime holds up to the global failure threshold, occurring after a finite
fraction kN = NP<(x0) of the fibers have failed. The remainingN [1−P<(x0)]
fibers break down suddenly in one sweeping run away event when s reaches
θ at which the stress x(s) per surviving fiber reaches x0. The DFBM is thus
not critical in the usual sense and ressembles a first-order phase transition,
characterized by fluctuations preceeding the abrupt rupture, followed by the
catastrophic growth of the instability beyond threshold. This is reminiscent
of the phenomenon of spinodal decomposition discussed in Chap. 9. Due to
the long range nature of the interaction between the fibers (resulting from the
democratic load sharing rule), the fluctuations (simultaneous fibers ruptures)
are distributed according to a power law. In the presence of a finite interaction
range, the power law will be truncated beyond this interaction range.

Note that the existence of ∆max(x) implies that an event of size ∆ may
occur only when ∆max(x) ≥ ∆, i.e. x0 − x ≤ ∆1/2. This is reminiscent of
Omori’s law for foreshocks often observed for real earthquakes, stating that
on the approach to a large earthquake, the rate of energy release increases.
In the DFBM, we find ∆max(x) ∼ (θ − s)−1.
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Due to this cut-off ∆max(x) going to infinity as the global rupture point
is approached, the total (over the whole stress history) differential number
D(∆) of bursts of size ∆ can be shown to be D(∆) ∼ ∆−5/2, with a larger
exponent than for the local distribution d(∆). This results from two ingredi-
ents:

• due to the cut-off ∆max(x), bursts of size larger or equal to ∆ occur only
when x is sufficiently close to x0, i.e. close to the global rupture;

• as the global rupture is approached, there are fewer and fewer bursts since
they are larger and larger.

It is remarkable to find the coexistence of a local d(θ) with an exponent
µd = 1/2 and a global D(θ) with an exponent µD = 3/2. Applied to earth-
quakes, this result suggests that there is no contradiction in observing a small
“b-value” (= β/2) in a restricted time interval (which necessarily samples only
relatively small earthquakes) and a larger “b-value” (= 3β/2) when the time
interval is extended up to the occurrence of the greatest earthquake. Here, β
is an exponent appearing in the conversion from ∆ to energy. This result may
also suggest a clue for the observed drift of b-values often observed before an
impending earthquake.

The DFBM can also be used to find the rate dE/dt of elastic energy release
as the run away event is approached. If the system is driven at a constant
strain rate, dE/dt goes to a constant at global rupture. If, on the other hand,
the system is driven at a constant stress rate, the rate of elastic energy release
diverges when approaching global failure: using the local distribution

d(∆) � ∆−3/2e−∆/∆max , (13.25)

we find

dE
dt

∼
∫ ∆max

1

∆d(∆) d∆ ∼ ∆1/2
max ∼ (θ − s)−1/2 . (13.26)

This corresponds to a marked average increase of rupture activity prior to the
run away analogous to Omori’s law for foreshocks and similar to the power
law acceleration of the susceptibility preceeding supercritical instabilites, as
discussed in Chap. 10. These results also underline the sensitivity of the
behavior with respect to the loading path. In most models of earthquakes,
a constant strain rate is chosen. It is not clear whether this is the case in
nature since a given fault is surrounded by an elastic medium deteriorated by
many other faults which interact, leading to ill-defined boundary conditions.
Therefore, the loading path of a real fault is probably intermediate to the pure
constant strain or stress rate, which might explain why increased foreshock
activity is not always observed before a main large earthquake.

A key parameter is the degree and nature of disorder. This was consid-
ered early by Mogi [637], who showed experimentally on a variety of materials
that, the larger the disorder, the stronger and more useful are the precursors
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to rupture. For a long time, the Japanese research effort for earthquake pre-
diction and risk assessment was based on this very idea [638]. The DFBM
exhibits an interesting transition as a function of the amplitude of disorder:
there exists a tri-critical transition [5], from a Griffith-type abrupt rupture
(first-order) regime to a progressive damage (critical) regime as the disorder
increases. This transition is also observed in other models with limited stress
amplification, such as in spring-block models with stress transfer over limited
range [22, 905].

Let us finally mention a series of works dealing with various arrangements
of fiber bundles [611, 851, 852], including local load sharing for which upper
bounds for the system strength have been derived [403, 540, 733, 734] and
where exact results were obtained in some specific versions [354].

13.3 Hierarchical Model

Hierarchical models can be thought of as self-similar mixtures of associations
of links in series and in parallel. We have already discussed the branching
problem on the Bethe hierarchical lattice. Many authors have studied hier-
archical models of rupture and earthquakes, because

1. they contain by construction a hierarchical scale invariance, thought to
be crucial to describe the failure of heterogeneous media as well as earth-
quakes in the brittle earth,

2. they are also by construction amenable to renormalization group methods.

Let us mention in particular the Russian school: in addition to developing
models for which the failure probability distributions can be obtained from
renormalization group recursion relationships, they also explored specific re-
alizations on discrete hierarchical systems or “trees” [662, 663, 841, 968].
Moreover, they compared in detail the model results with the scalings found
in earthquake catalogs.

13.3.1 The Simplest Hierarchical Model of Rupture

This model has been introduced by Shnirman and Blanter [842] to demon-
strate the crucial role played by heterogeneity. Consider a hierarchical system
with branching number n = 3 rather than n = 2 which has been shown in
Fig. 13.1. The fact that the branching ratio is at least three is crucial. If it
was two, the following results would not hold. If it is larger than three, the
results remain valid. Each element at the level l + 1 corresponds to a group
of three elements of the previous level l. Each element of the system can
take one of two states, either broken or unbroken. The state of an element
at the level l + 1 is determined by the number of broken elements in the
corresponding group of three elements at the previous level l. One assumes
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that each element is characterized by a critical number k such that when
the number of broken elements among the three elements at level l linked
to level l + 1 is larger than or equal to k, the element at level l + 1 is also
broken. If this number is less than k, the element at level l + 1 is unbroken.
The critical number k can be 1, 2 or 3. The new ingredient in this kind of
branching model is to introduce heterogeneity by distributing randomly and
independently the threshold values 1, 2 or 3 on all elements according to the
probabilities a1, a2 and a3 = 1 − a1 − a2.

The problem simplifies by looking solely for self-similar behavior of rup-
ture, which implies that the probabilities ak are the same at all levels l. The
density of broken elements at the level l + 1 is

p(l+ 1) = F [p(l)] , (13.27)

where F (p) denotes the probability to obtain a broken element at level l+1 if
the density of broken elements at level l is p. The assumption of self-similarity
is again invoked to assume that F is the same at all levels of the system. F (p)
is given by the explicit expression

F (p) =
3∑

k=1

akWk(p) , where Wk =
3∑

m=k

(
3
m

)
pm(1 − p)3−m. (13.28)

The term
(

3
m

)
pm(1 − p)3−m is the probability to have exactly m broken

elements in a group of three elements at the same level. Therefore, the sum
Wk over m from k to 3 expresses the condition that the number of broken
elements at level l in a group of three is larger than the critical value k. Then,
the sum over k weighted by the corresponding probabilities ak is carried over
all possible critical values k. This simple calculation uses the assumption of
independence of the rupture thresholds. We get explicitely

F (p) = 3a1p(1 − p)2 + 3(a1 + a2)p2(1 − p) + p3 . (13.29)

F (p) is the renormalization group flow for the density of broken bonds. As
explained in Chaps. 11 and 12, we can characterize the system by studying
its fixed points F (p) = p and the stability of these fixed points. As usual,
it is easy to check that p = 0 (no broken elements) and p = 1 (all elements
broken) are fixed points. Their stability is checked by calculating

dF
dp

∣∣∣∣
p=0

= 3a1 , (13.30)

dF
dp

∣∣∣∣
p=1

= 3a3 = 3(1 − a1 − a2) . (13.31)

This shows the existence of four cases summarized in the Fig. 13.2:

1. Stable: a1 < 1/3 and a3 > 1/3, i.e. a1 + a2 < 2/3; by iteration, p(l)
converges to p = 0. The system is stable and unbroken at large scale,
independent of the initial distribution of broken elements at the first
level [different from p(l) = 1].
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Fig. 13.2. The renormaliza-
tion group map p′ = F (p)
defined by (13.29) for differ-
ent parametric domains orga-
nized according to the values
(dF/dp)|p=0 and (dF/dp)|p=1

with respect to 1: Stable: a1 <
1/3 and a3 > 1/3; Unstable:
a1 > 1/3 and a3 < 1/3; Un-
stable critical: a1 < 1/3 and
a3 < 1/3; Stable critical: a1 >
1/3 and a3 > 1/3

2. Unstable: a1 > 1/3 and a3 < 1/3, i.e. a1 + a2 > 2/3; by iteration, p(l)
converges to p = 1. The system is unstable and broken at large scale
whatever the initial distribution of broken elements at the first level.

3. Unstable critical: a1 < 1/3 and a3 < 1/3; there is a third fixed point
0 < p∗ < 1 which is unstable (dF/dp)|p=p∗ > 1. This corresponds to an
unstable critical rupture. If p(1) < p∗, by iteration the system converges
to the unbroken state p = 0 at large scale, while if p(1) > p∗, the system
converges to the broken state p = 1. The transition at p = p∗ is a critical
phase transition as discussed in Chaps. 11 and 12. We retrieve qualita-
tively the same map diagram as for the Potts model and the percolation
transition.

4. Stable critical: a1 > 1/3 and a3 > 1/3; there is also a third fixed point
0 < p∗ < 1 but this time it is stable (dF/dp)|p=p∗ < 1. This corresponds
to a situation where, independently of the initial small scale distribution
of broken elements, the large scale structure is characterized by a non-zero
fraction of broken bonds. We can call this regime intrinsically heteroge-
neous and robust: it does not break fully but does not homogeneize either
as in previous cases. This is a disorder fixed point. Note that this situa-
tion occurs when there is enough disorder at the small scale, as seen from
the fact that the smallest (probability a1 > 1/3) and largest (probability
a3 > 1/3) threshold concentrations must be sufficiently large. The fact
that the critical point can be an attractor of the renormalization group
puts this case in the class of “self-organized critical” models [44, 46] (see
Chap. 15).

This very simple model recovers the finding [22, 889, 905], based on analy-
sis of the democratic fiber bundle model and of sliding and failing spring-block
models, that rupture becomes critical for sufficiently large heterogeneity. The
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importance of heterogeneity to control the nature of rupture processes seems
an ubiquitous property.

13.3.2 Quasi-Static Hierarchical Fiber Rupture Model

We now discuss extensions of the fiber bundle models to hierarchical geome-
tries. Exact results on the failure properties can also be obtained. Physically,
the hierarchical structure of the model is also intended to capture the pro-
posed fractal structure of fault patterns within the crust. One thus hopes to
study its mechanical consequences. Some caution must be exercised in the in-
terpretation of the results since a regular hierarchical model is bound to give
too strong an imprint of its regular geometry on the mechanical properties.
A better model would involve a random hierarchy.

First, we recall the definition of the model given in [679]. Consider an
assembly of blocks with no bonding or friction between them. We refer to
the individual blocks as blocks of order 0. Now suppose that these blocks are
grouped sequentially in groups of m blocks and consider each such group as
though it were itself a block, which we refer to as a block or group of order
1. Suppose in turn that these groups of order 1 are also grouped sequentially
in groups of m to form groups of order 2, and so on. In this way, one obtains
a hierarchical structure where a group of order n is made of mn individual
blocks.

One can reformulate this model so as to be more appealing from a geo-
logical point of view, by starting from the largest scale such as for a fractal
with a small magnification and then increasing this magnification. In this
approach, one would rather describe the group as made up of one block at
magnification 1 which turns out to be made of m blocks at the next magnifi-
cation, each of them in turn made of m blocks at the next magnification and
so on. Restricting to m = 4, we can consider a given source region as crossed
by 4 faults shown in Fig. 13.3. Each subregion can in turn be considered
to be crossed by 4 faults, and so on. The geometry of the faults is not of
crucial importance here, just the nested structure. The failure properties of
such systems can be solved recursively since at each iteration, a link at the
nth generation is replaced by a system involving an association in series and
in parallel of a finite number of bonds of the (n+ 1)-th generation.

We consider the hierarchical diamond lattice represented in Fig. 11.1 in
Chap. 11. Suppose that we have stopped its iterative construction at the N -th
generation. The lattice contains therefore L = 2N links in parallel between
the upper and lower nodes. Suppose that a force F is applied at the upper and
lower nodes and let us denote s = F/2N the stress on each link. Due to their
hierarchical association, we can solve for the failure probability distribution
for one element supporting the stress s′(= 2s) which is made up of 4 bonds
for the diamond hierarchical lattice. Then, the process can be repeated since
at the next level of the hierarchical lattice, the link at the n-th generation
becomes one of the 4 bonds of a link at the (n−1)-th generation. After n = N
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Fig. 13.3. Idealized hierarchical network of
faults. The thickest lines represent the original
four faults

successive iterations, we obtain a very simple system consisting of a single link
whose strength is obtained from N iterations of a recursion relation (13.32).
Then, the strength probability distribution of this single “renormalized” link
is exactly that of the hierarchical lattice made up of 2N links.

Let us denote pn(s) the probability that the link does not break under s,
i.e. that a rupture in a link at the n-th generation occurs at a stress value
larger than s. We then have the following exact recursion relation:

pn−1(s) =
[
pn

(s
2

) ]4

+2
[
pn(s)

]2{
1 −

[
pn

(s
2

) ]2}
. (13.32)

The first term of the r.h.s of (13.32) is the probability that all four bonds do
not break under s/2 and the second term is the probability that two bonds
along a line hold under s while one of the bonds of the other line has failed
under s/2. This recursion relation (13.32), which is nothing but a renormal-
ization group equation, is a mapping in the space of probability distribution
functions p(s). From a given function p(s), (13.32) gives a new function p′(s).
The space in which the renormalization flow occurs is a space of functions,
instead of being a space of coupling parameters of finite dimensionality as
was the case in the usual critical phenomena that we have discussed in the
percolation model in Chap. 12. Such a situation is in fact the general case:
under application of the renormalization group, one has in general an infinite
number of new “coupling” coefficients appearing. What is remarkable is the
fact that, in general, the critical behavior is completely controlled by only
a few of them. These coefficients are said to be “relevant”, while the other
parameters are “irrelevant” in the large scale limit.

It is not clear a priori whether such an exact renormalization group equa-
tion (13.32) will present non trivial fixed points, associated with genuine
critical behavior. A certain number of authors [848, 849, 866, 971] have used
different approximations to solve the renormalization group equation (13.32).
These approximations led to the prediction of the existence of a rupture crit-
ical point: in the limit of large systems, there would be a well defined stress
threshold above which the system breaks down, and below which the system
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is stable. It turns out that this picture is slightly incorrect: there is no transi-
tion because subtle logarithmic corrections appear which produce a universal
scaling relationship [679] giving the stress at rupture

s ∼ 1
lnN

∼ 1
ln ln Mass

, (13.33)

where N is the total number of iterations of the construction of the hierar-
chical lattice and Mass ∼ eaN is the total number of fibers. This exact result
shows that the average strength per fiber always decreases and goes to zero
in the large size limit. But it does so extremely slowly, as 1/ ln ln Mass. This
may explain why an exact treatment was called for since any approximation
may destroy this subtle law. Furthermore, it turns out that this scaling law
is preserved for any hierarchical organization of fiber bundles.

13.3.3 Hierarchical Fiber Rupture Model with Time-Dependence

All the previous models are quasistatic with no time dependence. Recently,
Newman et al. [680, 681] have generalized the previous hierarchical model
to encompass dynamical effects. They assume that, under an arbitrary stress
history (as long as the stress remains non vanishing), all fibers must break
eventually given sufficient time due to a kind of stress corrosion or “fatigue”.
The fundamental determinant of failure is the integral over time of some
measure of the stress-dependent rate of corrosion. Due to the sequence of
ruptures, each fiber possesses its own load history s(t′), t′ ≥ 0. Then, they
assume that this fiber possesses a random failure time t distributed according
to

P0(t) ≡
∫ t

0

p0(t′) dt′ = 1 − exp
{
−κ

∫ t

0

[σ(t′)]ρ dt′
}
. (13.34)

The stress intensity factor κ(s) is taken to be a power law with positive ex-
ponent ρ. An exact Monte Carlo calculation of the probability distribution of
failure times of hierarchical systems indicates that the distribution of failure
times becomes a staircase (or jumps from 0 to 1) at a well-defined non-zero
critical time t∗. In contrast to the static case, the exact renormalization group
gives a non-trivial critical point. If it had not been the case, this would have
meant that the time-to-failure of a larger system would have converged to
zero asymptotically for very large systems.

It turns out that it is possible to explicitely write a renormalization group
equation for this problem [808]. We consider the probability of a given bundle
to fail betweem time t and t+ dt. For simplicity, consider a hierarchical tree
with m = 2 branches at each successive iteration, as in Fig. 13.4.

We can then use a key identity given in the appendix of Newman et al.
[522] that can be derived easily as follows. Let us consider quantitatively the
effect of the rupture of one fiber at time t1 on the other fiber which would
have broken at time t2 without this additional load transfer. For a population
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Fig. 13.4. Idealized hierarchical tree structure

of such pairs of fibers, the distribution of the time-to-failure for the remaining
fiber is obtained from (13.34) by taking the failure function equal to σ up to
t1 and equal to 2σ from t1 up to the second rupture:

P0(t) = 1 − exp {−κσρ[t1 + 2ρ(t− t1)]} . (13.35)

Doing this calculation for the ensemble, the population of fibers must be
the same since the population is homogeneous at this level and P0(t) should
therefore also be equal to 1 − exp (−κσρt2). Identifying this expression with
(13.35), we get the fundamental result that the time-to-failure of a fiber is
modified from its initial value t2 to an earlier time t12 by the influence of the
other fiber which has failed at the earlier time t1, according to:

t12 = t1 + 2−ρ(t2 − t1) . (13.36)

The inequality 2−ρ ≤ 1 (for ρ > 0) ensures that t1 ≤ t12 ≤ t2. This corre-
sponds to a genuine cooperative process as the time-of-failure of the second
fiber is decreased by the load transfer from the first fiber. Expression (13.36)
was first proven by Newman et al. [522]. This remarkable result holds for
any realization of the stochastic process. Let us stress that t1 and t2 are the
lifetimes of the two uncoupled bundles and (13.36) describes the effect of the
rupture of the first bundle on the second one which gets an additional loading
at time t1.

Now, we consider the model starting from the last order, say N (so there
are initially 2N fibers). The hierarchical bundle is made of two bundles of
order N − 1. The crucial ingredient of the demonstration is that these two
bundles are completely decoupled, no matter what occurs within each of
them, as long as both withstand the applied stress and do not fail completely.
It is only at the time when one of the bundles breaks down that the other
one gets a load increase of a factor 2. Call pN−1(t) the probability density
for such a bundle to fail between t and t+ dt if it were not bundled with the
other one. Then from (13.36), one has

pN(t) = 2
∫ t

0

dt1
∫ ∞

t1

dt2pN−1(t1)pN−1(t2)δ[t− t1 − α(t2 − t1)]

=
2
α

∫ t

0

dt1 pN−1(t1)pN−1

(
t− (1 − α)t1

α

)
, (13.37)
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where the factor 2 occurs because either of the two bundles of order N−1 can
fail first. Note that this equation (13.37) fully takes into account the modifi-
cation of the distribution function of the surviving bundle by the increase in
load that has occurred as a result of the failure of the first bundle.

Of course, each bundle of orderN−1 is made of two bundles of orderN−2
and we can now write a similar recursion relation with N replaced by N − 1,
and so on. So we conclude that N does not play any special role in (13.37),
which is therefore nothing else but the renormalization group equation for
the probability of failure of the whole hierarchical fiber bundle. Starting with
P0 given in (13.34), we obtain the corresponding rupture probability for the
whole hierarchical system by N iterations of (13.37).

A critical point – that is a rupture of the bundle – corresponds to pN (t)
converging to a delta function as N becomes large since this means that
a well-defined lifetime exists for the system in the large size limit:

pN(t) → p∞(t) ≡ δ(t− tc) as N → ∞ . (13.38)

The existence of this limit has in fact been proven rigorously (W.I. Newman,
private communication; [808]), for instance by showing that the Delta func-
tion is a solution of the renormalization group equation, in other words, it is
a “fixed point”. The critical time tc can also be obtained [808].

The case α = 1/2 is particularly simple to discuss since (13.36) becomes
t12 = (t1 + t2)/2, which when iterated over N levels of the hierarchy gives the
time t2N to rupture the 2N fibers as the average of the time-to-failure of the
individual fibers. This implies that t2N obeys the central limit theorem and
converges to 〈ti〉 with a standard deviation going to zero as 1/

√
2N . Similar

results hold for the more general case α < 1/2.
The existence of such a critical point at a finite time has possibly impor-

tant implications for failure and earthquake predictions because criticality
is always associated with some precursory phenomena such as an increasing
susceptibility or specific foreshock patterns, as we observed in Chap. 10. We
believe that the conclusions reached for these hierarchical models may have
a broader domain of applications: the crucial condition is that the stress
released by failed units be redistributed over regions of comparable size (hi-
erarchical systems automatically obey this condition). In nature, faults are
more complicated but it is possible that different mechanisms may conspire
to make this property hold approximately.

13.4 Quasi-Static Models in Euclidean Spaces

A vast class of quasi-static models have been invented and studied since 1985
in the statistical physics community, hoping to unravel some (if they exist)
universal feature of rupture in random media [158, 416]. These works have
allowed a partial classification of some possible different regimes of rupture
and in particular have illuminated the links between the physics of fracture
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and fractal growth phenomena [923], thus providing new insight into this
field.

Rupture properties of inhomogeneous media are difficult to determine
due to the complex interplay between the role of the quenched (i.e. fixed)
disorder and the growth aspects of the rupture controlled by the long range
elastic interactions [204, 896]. This last aspect depends upon the existence of
screening and enhancement effects occurring on large defects and which can
have a long range [340]. A complete unifying picture of the failure properties
of random systems does not yet exist but an important step is to recognize
that the study of breakdown problems can be roughly divided into two main
areas:

• the statistics and statistical mechanics of breakdown in random media,
• the geometrical patterns emerging in rupture related to crack growth and

fractal branching.

In the first area, which is the one on which most of the works have been
focused on, the question of the behavior of the strength S of the system as
a function of its size and disorder is very important theoretically and also for
obvious practical applications. In this respect, only very partial results exist,
either based on numerical simulations [203, 416], or on bounds obtained from
local configurations analysis with extreme order statistics [256, 257, 493, 577]
or also from studies of special systems which can be exactly solved but which
are far from being realistic. Some of these models have been described above.

The models we describe below can be thought of as an improvement over
the percolation and hierarchical models already discussed in that they incor-
porate the correlated growth of cracks induced by the elastic interactions. We
shall not review the vast literature but only point out the most important
points.

The basic motivation, in this class of studies, is to explore the nature of the
organization of the damage leading eventually to global failure, when putting
together the long-range elastic forces (be it scalar or tensorial) with initial
quenched disorder, and to ask whether there could exist universal aspects of
rupture. Dynamical effects are neglected for simplicity. Putting together dis-
order and elasticity in rupture produces already a very rich behavior, whose
exploration turns out to be quite involved. These studies can thus be seen as
first attempts to explore the wealth of phenomena associated with rupture,
including the realistic euclidean connectivity and the long range elasticity.

A typical numerical simulation goes as follows. In a two-dimensional sys-
tem, each link represents an element possessing an ideal brittle rheology,
either a clamped bar or beam, a spring or an electrical fuse. Each element
is characterized by its spring coefficient and rupture threshold, one or both
being distributed according to a distribution p(x). After the set of elastic
coefficients and rupture thresholds have been chosen once for all at the be-
ginning of the computation, the algorithm consists of solving for the force
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field on each element of the network and determining the link closest to its
rupture threshold. Then, an increase of the load so that only this most critical
element fails is followed by a recalculation of the force field on all remain-
ing elements, excluding the one that has failed which can no longer carry
any stress. Then, one iterates until complete rupture (qualified by the fact
that the network cannot support any load). The results, obtained by aver-
aging over many different initial disorder configurations, refer to the global
characteristics (force, displacement) of the network, the local quantities such
as the force on each link as well as the geometrical structures (number of
cracks, their size, their geometry. . . ). One of the major interests is in the
characterization of size effects of rupture.

The major result is the observation of a progressive statistical growth of
damage preceeding the impending rupture. In general, this damage is first
diffuse and uncorrelated, reflecting the geometrical structure of the initial
quenched disorder. Then, it organizes itself into larger structures present-
ing specific long-range correlations. These observations can thus be seen as
reflecting a type of organization akin to that observed in percolation mod-
els, except that here the growth of cracks becomes progressively not random
but rather reflects in itself the progressive geometrical organization of the
damage. It is thus a kind of bootstrap mechanism in which the growth is
controlled by the geometry which itself evolves due to the damage evolution.
In the language of statistical physics, in a homogeneous medium, rupture is
an abrupt, first order transition, whereas, loosely speaking, it is a “critical
point” in a heterogeneous system. By “critical”, we mean that the correla-
tion length (corresponding to the largest crack sizes) increases and important
“critical” fluctuations of various quantities (such a jumps in the elastic coef-
ficient or acoustic emissions...) are observed on the approach to the “critical”
rupture. In this vain, it has been proposed [804] that there could exist only
a limited number of different classes for this critical behavior, each charac-
terized by a well-defined universal ratio of its elastic modulii, independent of
microscopic features of the system. One could use the convergence towards
the universal ratio on the approach to the critical rupture point to predict it.
These facts have important consequences on the nature of the localization of
the damage eventually leading to the global rupture (“localization criterion”)
on the one hand, and to the possible identification of precursory phenomena
on the other.

Most importantly, effort has been made in attempting to classify the dif-
ferent scaling laws observed in the statistics of rupture [401]. The concept
of a singularity (of strength 1/2 which is the exponent characterizing the
divergence of the stress at the crack tip) of the stress field at a crack tip in
a homogeneous medium has been generalized using the statistical multifrac-
tal analysis. In a disordered system, the stress field becomes scale dependent
and develops a continuous set of singularities when the critical rupture point
is approached from below, each of them being characterized by the fractal
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dimension of its geometrical set. The experimental or numerical analysis of
the multifractal spectrum allows a clear classification of scale effects in frac-
ture in terms of simple characteristics of the disorder medium. We refer to
Chap. 5 which has presented the general multifractal formalism.

The existing classification of the different classes of rupture based on
the multifractal method goes as follows. Suppose first that we deal with
a scale-independent distribution p(x). Such a distribution can nevertheless be
characterized by the multifractal method, which, as we shall show, exhibits
the statistics of the field extremes. This will be useful in order to compare
with the multifractal analysis of the stress field just before complete rupture.
Suppose that

p(x) ∼ xφ0−1 for x→ 0 , (13.39)

and

p(x) ∼ x−(1+φ∞) for x→ +∞ . (13.40)

Then, the probability that, out of N trials (independent of any scale), x is of
the order of

x ∼ Nα , (13.41)

is of the order of

p(x ∼ Nα)Nα , (13.42)

where the second term Nα stems from the fact that, in an x-interval propor-
tional to x, the same scaling x ∼ Nα holds approximately. From the definition
of

f(α) =
ln

[
Np(x ∼ Nα)Nα

]
lnN

(13.43)

as the ratio of the logarithm of the number of trials which gives x ∼ Nα to
the logarithm of the total number of trials, we get the so-called multifractal
spectrum

f(α)|α>0 = 1 − φ∞α . (13.44)

A similar calculation yields

f(α)|α<0 = 1 + φ0α . (13.45)

The singularity spectrum f(α) is thus piecewise linear. This result shows
clearly the meaning and use of the multifractal method in classifying the
extreme events of a distribution since f(α) reflects the structure of the tails
of the p(x) distribution.

Applied to the stress field associated with the singularity at a crack tip
in a two-dimensional system, an extension of the previous discussion yields

f(α)|α>0 = 2 − 4α , (13.46)
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showing that the capacity dimension of the set of points with non-singular
stress is 2, the space dimension, and that there is a single point (the crack
tip) of maximum strength singularity 1/2 [whose fractal dimension is thus
f(α = 2) = 0].

Similarly, a diffuse damage in a weakly heterogeneous system would yield

f(α) = dδ(α) , (13.47)

where δ(α) is the Dirac function, d is the space dimension and N = Ld is
replaced by the linear scale L of observation, showing that all points are
non-singular (α = 0). Of course, we do not learn anything by applying the
multifractal technique to these previous cases, but this is useful as a way of
comparison and of classification of the various regimes.

In contrast to these examples, the stress field prior to complete rupture
in a heterogeneous system is no longer scale independent but varies with the
size of the system. The multifractal method allows the characterization of
the scale dependence by defining a singularity strength α by

α =
ln s
lnL

, (13.48)

where s is the stress at some point and L is the system size. The rupture
threshold involves the ratio s/sc, where sc is the stress threshold, which can
be represented by the difference α − αc, where αc = ln sc/ lnL corresponds
to the singularity of the stress threshold. This suggests to examine the mul-
tifractal singularity spectrum f(αc) of the distribution of rupture thresholds
and expect that the nature of the rupture could be classified according to the
structure of the initial quenched disorder described solely in terms of f(αc).

This turns out to be the case [401]. From numerical simulations and per-
turbation expansions, three main regimes have been unravelled. There exists
two critical values φc

0 and φc
∞ for the exponents φ0 and φ∞ describing the

tails sc → 0 (resp. sc → +∞) of the distribution of rupture thresholds.

1. Weak disorder: for φ0 > φc
0 and φ∞ > φc

∞, all the systems have simple
scaling laws: the number of broken elements at the stress maximum does
not increase with the system size (N∗ ∼ L0), the number of broken bonds
just before complete rupture is Nf ∼ L and the maximum stress does not
increase or decrease with the system size (s∗ ∼ L0).

2. Rupture controlled by the weak elements: for φ0 ≤ φc
0 and φ∞ > φc

∞,
N∗ ∼ Lγ with γ � 1.75 in two dimensions, Nf ∼ Lγ and s∗ ∼ L−β,
with β � 0.25, implying an important size effect. The damage is diffuse
but presents a structure at large scales. The stress-strain characteristics
becomes system size independent when written in terms of the reduced
variables NL−γ and sLβ.

3. Rupture controlled by the strong elements: for φ0 > φc
0 and φ∞ ≤ φc

∞,
N∗ ∼ L2 in two dimensions,Nf ∼ L2 and s∗ ∼ L0. Cracks are nucleated at
defects as in the weak disorder case, but are stopped by strong barriers.
The final damage is diffuse and the density of broken elements goes to
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a non-vanishing constant. This third case is very similar to the percolation
models of rupture discussed above, as it should, since we have seen that
percolation is retrieved by taking the limit of very large disorder.

These results control the level of precursory damage prior to the large
event. It is very low in the weak disorder case, and all the larger when the
intrinsic disorder increases. For earthquakes and for rupture in heterogeneous
media, this implies that the larger the heterogeneity, the stronger and more
numerous the precursory phenomena will be: we are led to the rather para-
doxical conclusion that the more complex the system is, the more predictable
it should be.

The stability of these results with respect to the incorporation of a genuine
dynamics is an open question and constitutes possibly the most important
problem in this area of research.

In the next section, we present what may be the simplest genuine dynam-
ical extension to this class of statistical models of rupture and show that the
situation may be much more complicated. In particular, delay and relaxation
effects become important and give birth to a wealth of behaviors with fractal
crack patterns whose structure depends continuously on the damage law. For
instance, we find N∗ � Ldf , with df going from 1.9 to 1, even for bound
rupture threshold distributions (φ0 → +∞ and φ∞ → +∞) as the damage
exponent b defined in (13.49) goes from 0 to +∞. The above classification is
thus not robust against certain dynamical perturbations. Incorporating the
full elasto-dynamic solution, in addition to quenched disorder in an extended
system, remains an open and computationally demanding problem.

13.5 A Dynamical Model of Rupture
Without Elasto-Dynamics: the “Thermal Fuse Model”

The model is essentially the same as the models described in the previous
section, apart from one essential ingredient [889, 913, 914, 916, 978]: it is not
the element which has the largest s/sc which is brought quasi-statically to
failure. Instead, in addition to a force and displacement variable, each element
n is also characterized by a damage variable Dn, reacting dynamically to the
force applied on this element according to the following equation:

dDn

dt
=

1
gn
sb

n − aDn . (13.49)

b is a damage exponent describing the sensitivity of the damage to the applied
stress, the larger is b, the more catastrophically the damage reacts to an
increasing stress. The second term −aDn describes a form of healing or a work
hardening term. Thus, if the stress on an element is reduced, the damage rate
dD/dt can become negative. In this case, the element becomes less likely to
rupture as time goes on unless the stress level is increased once again. In the
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context of earthquakes, this law (13.49) stems from water-assisted corrosion
and recrystallization for instance.

As long as all elements have their damage variable below 1, the net-
work geometry is not changed and the stress field is not modified. Thus, the
same force remains constant in the damage equation (13.49) written for each
element, as long as no link reaches the failure threshold. When, for some
element, Dn reaches 1, this element fails. As a consequence, it is not able
to support any load and the stress must redistribute to all other surviving
elements according to equilibrium elasticity. This model does not make use of
elastodynamics. Its simplicity stems from the fact that elasticity and failure
are coupled only through the modification of the network geometry occurring
after each bond failure. This model, while presenting a genuine dynamics, still
uses the static formulation for the elasticity. This relies on the fundamental
assumption that the relaxation of the stress field occurs on a much shorter
time scale than the time scales involved in the time evolution of the damage
variable. There are two important time scales, in addition to the possible
time scale of the driving load at the system borders:

• the characteristic damage times, gn/s
b
n, which are functions of the local

loads on each element,
• the healing time 1/a.

The interesting consequence of the competition between these two time
scales is that failure often occurs, not instantaneously on the most stressed
element (such that sn is maximum) but, on the element whose stress history
has maximized its damage. This model mimics progressive damage in a ma-
terial subjected to a contant stress, leading to failure at sub-critical stress
levels if stressed for long enough, as shown in Fig. 13.5. The surrounding
material responds to the rupture of an element in an elastic fashion on short
time scales. The redistribution of elastic stresses can bring other elements to
rupture although only after some time delay required for damage to accumu-
late.

There are similarities between this model and the time-dependent hierar-
chical models studied by Newman et al. [679] (see our above discussion), in
which it is assumed that the fundamental determinant of failure is the inte-
gral of time of some measure of the stress-dependent rate of failure. In both
models, rupture is also found to be a “critical” point, in the sense that the
rate of elastic energy stored in the system at constant applied stress increases
as a power law of the time to failure (∼ |tf − t|−α) as shown in Fig. 13.6.
Furthermore, the crack patterns upon rupture are found to be self-similar.
Both the exponent α and the fractal dimension of the crack patterns are con-
tinuously dependent upon the damage exponent b. These power laws result
naturally from the many-body interactions between the small cracks forming
before the impending great rupture.

Low values of the exponent b tend to smooth out the effect of the hetero-
geneity of the stress field and thus of the stress enhancement effects on the
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Fig. 13.5. Typical crack patterns at three
characteristic times of the rupture dynamics
(13.49) of the same system for b = 2 in
a square lattice of size 180 × 180 tilted
at 45◦. For clarity of the figure, only the
broken bonds are displayed. A anti-plane
(mode III) shear stress is applied at the
top and bottom bus bars at time t = 0 and
the system is then let to evolve towards
global rupture under this constant stress.
The coefficients gn are uniformly sampled
in the interval [0.9, 1.1]. (a) Fraction of
ruptured elements equal to 50% of the total
number (3423) needed to complete the
global rupture (t/tr = 0.9912 where tr is
the time of global rupture). One observes
essentially isolated independent breakdown
events leading to a continuously increasing
damage of the system. One may however
notice the existence of a few relatively large
clusters of broken elements which tend to
dominate the rupture in the continuing
rupture process. Note that the damage
occurs rather late in the dynamics. For
instance, the first element breaks down at
t/tr = 0.886, the second one at t/tr = 0.895
and so on. (b) Fraction of ruptured elements
equal to 80% of the total number needed to
complete the global rupture (t/tr = 0.9982).
Many large cracks are competing and, from
their observation, it is very difficult to
predict where will be the chosen path of
the macroscopic rupture. A small change in
the initial disorder realization may drasti-
cally change the final rupture pattern. (c)
System at complete rupture (100% broken
elements needed to deconnect the system in
two pieces and t/tr = 1). The main crack
which cuts the network in two pieces is
represented by thick bonds. Reproduced
from [978]
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Fig. 13.6. Log–log plot of the time dependence of the integral over time of the total
elastic energy stored in the system as a function of (tr−t)/tr, where tr is the time of
macroscopic rupture of the network for b = 2 and a = 0. Each curve corresponds to
a different value of the range ∆g of disorder of the coefficients gn which are drawn
uniformly at random in the interval [1 − ∆g/2, 1 + ∆g/2]. The lowest (respectively
highest) curve corresponds to ∆g = 0.1 (respectively ∆g = 1.6). Each curve is
the ensemble average over 25 realizations with the same parameters of the model.
The average slope of the curves in their linear portion in the log–log plot gives the
exponent α− 2 ≈ 0.3, where α is defined in the text as the exponent characterizing
the power law dependence of the rate of energy released as a function of time. In
a real experiment, the rate of energy release corresponds to the rate of the acoustic
emission energy. Reproduced from [916]

damage evolution. In the presence of quenched disorder, the dynamics is then
controlled by the heterogeneity of the coefficients gn. In the limit b = 0, one
can show [889, 913, 914, 916, 978] that the rupture dynamics is spontaneously
attracted to the critical state of the bond percolation model. In this limit,
both the geometrical fractal properties of the set of broken bonds and the
dynamical exponent describing the time evolution of the elastic modulus of
the network can be predicted exactly, using percolation theory. Their values
are in good agreement with direct numerical estimations. On the contrary,
large values of b tend to favor the rupture of those bonds which present the
largest stress. In the limit b→ +∞, the model recovers the quasi-static rup-
ture model described in the preceeding section. The fractal dimension of the
connected macroscopic crack which disconnects the network into at least two
pieces varies continuously and monotonically from the 2D percolation value
1.9 (b = 0) to 1 (b→ +∞) as the damage exponent b is varied. Similarly, the
exponent α describing the behavior of the global elastic energy stored in the
network varies continuously and monotonically from α = t+ 1 � 2.3 (b = 0)
in two dimensions, where t is the conductivity percolation exponent, to 1
(b→ +∞). Note that the exponent α is independent of the amount of initial
disorder within a broad interval. In the language of the classification of the
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previous section, these results have been obtained for a weak disorder regime
defined by φ0 ≥ 1 (constant or vanishing probability to get a zero threshold)
and φ∞ → +∞ (existence of a finite upper bound for the thresholds). The
dependence of the crack patterns on the exponent b is illustrated in Fig. 13.7.

Let us mention the particular case b = 1 and a = 0, which turns out
to present exceptional properties. Integration of (13.49) yields that rupture
occurs on a given element after a time tr such that the integrated stress
over this time tr reaches a constant, characteristic of this element. Since
the integrated stress over this time tr is simply proportional to the elastic
displacement accumulated over this time tr, the rupture criterion simplifies
to a threshold criterion on the cumulative elastic displacement u. Then, it
is easy to show [121, 122, 1029] that the average time-to-failure 〈Tf〉 is ex-
tremely well approximated by 〈Tf〉 � n(Γs)t0, where 〈 〉 denotes an average
over initial disorder configurations, n(Γs) is the number of elements compos-
ing the shortest (in some metric) crack or path Γs cutting the system into
two pieces (for instance, if the initial disorder corresponds to dilution, n(Γs)
is just the number of bonds along the shortest path Γs). The characteris-
tic time t0 is defined by t0 = u0/S, where S is the total force applied on
the system and u0 is the displacement threshold for rupture. In this case,
there is a clear geometrical interpretation to the fractal and scaling behav-
iors close to rupture: it is related to the geometrical structure of minimal
paths within a certain metric. Minimal paths in random systems are related
to the rich statistical physics of optimal manifolds in random media, ran-
dom directed or non-directed polymers in random media and to the physics
of spin glasses [388]. Remarkably, this same concept of optimal paths have
been found to apply to fault structures in a simple 2D dynamical model
of a tectonic plate with long range elastic forces and quenched disorder. In
this model, the interplay between long-range elasticity, threshold dynamics,
and the quenched featureless small-scale heterogeneity allows one to capture
both the spontaneous formation of fractal fault structures by repeated earth-
quakes, the short-time spatio-temporal chaotic dynamics of earthquakes, and
the Gutenberg–Richter power law of earthquake size distribution. The faults
are mapped onto a minimal interface problem, which in 2D corresponds to
the random directed polymer problem and are thus self-affine with a rough-
ness exponent 2/3 [185, 627, 907]. The geometrical configurations of these
optimal directed polymers are given in Fig. 5.15 in Chap. 5.

13.6 Time-to-Failure and Rupture Criticality

13.6.1 Critical Time-to-Failure Analysis

Most of the recently developed mechanical models [681, 805, 913, 1050, 1055]
and experiments [29, 333] on rupture in strongly heterogeneous media (which
is also the relevant regime for the application to the earth) view rupture
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Fig. 13.7. Final rupture patterns in the limiting case a = 0 (i.e., for very large
applied stresses or no healing), for (a) b = 0, (b) b = 0.1, (c) b = 0.5, (d) b = 1,
(e) b = 2, (f) b = 4 and (g) b = 8. The coefficients gn are uniformly sampled in the
interval [0.9, 1.1]. As in Fig. 13.5, only the broken bonds are displayed. The main
crack which deconnects the network is outlined in thick lines. As discussed in the
text, the pattern of broken bonds for b → 0 retrieves the percolation model. In the
other limit b 	 1, the system breaks by a single crack running away, with no diffuse
damage. The different morphologies of the crack patterns can be quantified by
fractal dimensions. The capacity fractal dimension of the main crack deconnecting
the system in two pieces changes from the percolation value D ≈ 1.9 of the infinite
cluster in two dimension for b → 0 to the value D = 1 of a straight line for b large.
Reproduced from [978]
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as a singular “critical” point [22]: the cumulative damage D, which can be
measured by acoustic emissions, by the total number of broken bonds or
by the total surface of new rupture cracks, exhibits a diverging rate as the
critical stress σc is approached, such that D can be written as an “integrated
susceptibility”

D ≈ A+B(σc − σ)z , (13.50)

The critical exponent 0 < z < 1 is equal to 1/2 in mean field theory [870, 1050]
and can vary, depending on the amplitudes of corrosion and healing processes.
In addition, it has been shown [29, 478, 899] that log-periodic corrections dec-
orate the leading power law behavior (13.50), as a result of intermittent am-
plification processes during the rupture (see Chaps. 5 and 11). They have also
been suggested for seismic precursors [910]. This log-periodicity introduces
a discrete hierarchy of characteristic time and length scales with a prefered
scaling ratio λ [878]. As a result, expression (13.50) is modified into

D ≈ A+B (σc − σ)z + C (σc − σ)z cos (2πf ln (σc − σ) + φ) , (13.51)

where f = 1/ ln(λ). Empirical [29], numerical [478, 899] as well as theoretical
analyses [878] point to a prefered value λ ≈ 2.4 ± 0.4, corresponding to
a frequency f ≈ 1.2±0.25 or radial frequency ω = 2πf ≈ 7.5±1.5. The value λ
close to 2 is suggested on general grounds from a mean field calculation for
an Ising or Potts model on a hierarchical lattice in the limit of an infinite
number of neighbors [878]. It also derives from the mechanisms of a cascade
of instabilities in competing sub-critical crack growth [434, 899].

This hypothesis that rupture of heteregeneous systems is a critical phe-
nomenon has been tested on real composite structures in engineering [29].
This critical behavior may correspond to an acceleration of the rate of en-
ergy release or to a deceleration, depending on the nature and range of
the stress transfer mechanism and on the loading procedure. Based on the
above general considerations on the nature of the experimental signatures
of critical rupture, the power law behavior of the time-to-failure analy-
sis should be corrected for the presence of log-periodic modulations [29].
This method has been tested extensively by the French Aerospace com-
pany Aérospatiale on pressure tanks made of kevlar-matrix and carbon-
matrix composites carried aboard the European Ariane 4 and 5 rockets.
The method consists of recording acoustic emissions under constant stress
rate. The acoustic emission energy as a function of stress is fitted by the
log-periodic critical theory, as shown in Fig. 13.8. One of the parameters
is the time-to-failure and the fit thus provides a “prediction” without the
sample being brought to failure in the first test [29]. Unpublished improve-
ments of the theory and of the fitting formula were applied to about 50
pressure-tanks. The results indicate that a precision of a few percent in
the determination of the stress at rupture is obtained using acoustic emis-
sion recorded up to 20% below the stress at rupture. This success has war-
ranted the selection of this non-destructive evalution technique as the de-
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Fig. 13.8. Analysis of the acoustic emissions recorded during the pressurisation of
spherical tanks of kevlar or carbon fibers pre-impregnated in a resin matrix wrapped
up around a thin metallic liner (steel or titanium) fabricated and instrumented by
Aérospatiale-Matra Inc (now EADS). These experiments are performed as part of
a routine industrial procedure which tests the quality of the tanks prior to ship-
ment. Eight acoustic emission recordings of eight pressure tanks are shown here,
together with their fit with (13.51). All pressure tanks were brought to rupture. The
acoustic emission rates all exhibit clear acceleration in agreement with a power law
“divergence” expected from the critical point theory. In addition, there is strong
evidence of log-periodic corrections that quantify the intermittent succession of ac-
celerating bursts and quiescent phases of the acoustic emissions on the approach to
rupture. The log-periodic oscillations allow to account for an accelerating rate of
bursts on the approach of the rupture. Reproduced from [480]



13.6 Time-to-Failure and Rupture Criticality 343

facto standard in the industrial fabrication process. This is a nice exam-
ple of the direct relevance of an abstract theoretical concept in a concrete
real-life engineering context. Numerical simulations [478, 805] have recently
confirmed that, near the global failure point, the cumulative elastic energy
released during fracturing of heterogeneous solids follows a power law with
log-periodic corrections to the leading term. A recent experimental study in
a well-controlled situation has also confirmed the existence of critical precur-
sors [333].

13.6.2 Time-to-Failure Behavior in the Dieterich Friction Law

A critical time-to-failure behavior similar to (13.50) also describes the early
stage of sliding motion between two solid surfaces preceding the elasto-
dynamic rupture instability, as for instance applied to earthquakes [235]. In
a sense, this regime is similar to the critical nucleation discussed in [1049].
This comes from the dependence of the solid friction coefficient µ on the slip δ
and the slip velocity δ̇. There are several forms of rate/state-variable consti-
tutive laws that have been used to model laboratory observations of solid
friction. The version currently in best agreement with experimental data,
known as the Dieterich–Ruina or slowness law, is expressed as

µ = µ0 +A ln
δ̇

δ̇0

+B ln
θ

θ0
, (13.52)

where the state variable θ is usually interpreted as the surface of contact
between asperities of the two surfaces. µ0 is the friction coefficient for a sliding
velocity δ̇0 and a state variable θ0. The state variable θ also evolves according
to

dθ
dt

= 1 − θδ̇

Dc
, (13.53)

where Dc is a characteristic slip distance, usually interpreted as the typical
size of asperities. We note that (13.53) can be rewritten

dθ
dδ

=
1
δ̇
− θ

Dc
. (13.54)

After a sufficiently long time in the accelerating phase such that the frictional
velocity δ̇ has become significantly larger than Dc/θ, one can neglect the first
term 1/δ̇ in the right-hand-side of (13.54). This yields

θ = θ0 exp (−δ/Dc) , (13.55)

which means that θ evolves towards an ever diminishing state, correspond-
ing to a renewal of contacts between asperities, as the total slip distance δ

increases.
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We start from the usual Coulomb solid friction law τ(t) = µσ, expressing
that the shear stress τ is proportional to the normal stress with a coefficient
of proportionality defining the friction coefficient:

τ(t) − kδ

σ
= µ0 +A ln

δ̇

δ̇0

− Bδ

Dc
, (13.56)

where we have inserted (13.55) into (13.52). We have also substracted the
stress kδ due to fault slip in the presence of a shear elastic coefficient k.

Consider the simple situation where the load τ(t) increases linearly with
time τ(t) = τ0 + τ̇ t. Equation (13.56) then implies that δ̇ is proportional to
the exponential of δ. As a consequence, δ explodes to infinity in finite time
as

δ(t) ∼ ln
t0

tc − t
, (13.57)

and the sliding velocity diverges as

δ̇(t) ∼ t0
tc − t

, (13.58)

where t0 and tc are constant of integration determined from the initial con-
ditions and the physical constants of the friction process. Of course, this
divergence does not unravel completely as the elasto-dynamic sliding insta-
bility will take over when δ̇(t) reaches a finite fraction of the shear wave
velocity. For the application to earthquakes, since δ̇(t) starts from a typical
value of about 10−9 m/s (corresponding to the tectonic loading velocity of
a few centimeter per year) and the shear wave velocity in the crust is about
3 km/s, we see that (13.57) and (13.58) apply over a large range of velocities
and time scales.
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Power law distributions are ubiquitous statistical features of natural systems
and are found in many different scientific disciplines. Indeed, many natu-
ral phenomena have power law size distributions reading, in the notation of
Chap. 4,

P (x) ∝ 1
x1+µ

(14.1)

up to some large limiting cut-off [7, 592, 781]. In expression (14.1), P (x) dx
is the probability to observe the variable in the range between x and x+ dx.
Power laws seem to also describe a large ensemble of social and economic
statistics [33, 288, 590, 599, 600, 718, 1004, 1065].

The specific statistical properties of power law distributions have been
studied in Chap. 4. The question we address here is a theme recurring again
and again in the scientific literature: what is(are) the mechanism(s) respon-
sible for power laws in nature and the social sciences?

A somewhat related question concerns the ubiquitous observation of 1/f
noise (“one-over-f noise”, occasionally called “flicker noise” or “pink noise”)
in nature, which is a type of noise whose power spectra P (f) as a function
of the frequency f behaves like P (f) = C/fa, where the exponent a is close
to 1. It has been found in electronic devices, biology, network traffic and traffic
flows, music and speech, astronomy, economics and financial markets, ecolog-
ical systems, magnetic systems, granular flow, texture images, geophysical
records, dynamical systems, etc [562]. Many different mechanisms can lead
to 1/f noise [1012].

In a similar vain, the ubiquitous observation of power law distributions
in nature suggests that an underlying universal mechanism could be found.
The goal of this chapter is to present several reasonable mechanisms that
can lead to similar power law distributions. By getting an understanding
of the main possible mechanisms, it will then be possible for the reader to
identify which is the one most relevant to a given problem. This chapter
is thus intended as a dictionary of mechanisms to refer to when in con-
tact with a given observation. This chapter must be read as both an intro-
duction to and a complement of Chap. 15, which describes the concept of
self-organized criticality introduced as a universal mechanism for the ob-
served power law distributions in nature [44, 46]. However, the more we
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learn about complex out-of-equilibrium systems, the more we realize that
the concept of universality developed from critical phenomena at equilib-
rium has to be enlarged to embody a more qualitative meaning: the crit-
ical exponents defining the universality classes are often very sensitive to
many (but not all) details of the models [324]. In addition, as this chapter
shows, there are many physical and/or mathematical mechanisms that gen-
erate power law distributions and self-similar behavior. Understanding how
a mechanism is selected by the microscopic laws constitute an active field of
research.

The set of mechanisms presented below must be complemented by mech-
anisms relying on collective effects, such as in percolation, criticality and
self-organized criticality. Already, the random field Ising model discussed be-
low illustrates an interplay between frozen randomness at the microscopic
scales and interactions between flipping spins that may result in a large dis-
tribution of avalanches. Apart from this special case that finds its place in
the present chapter because it relies on “plain old criticality” rather than
on self-organizing principles, the other mechanisms involving collective ef-
fects are treated in other chapters: critical phenomena in Chap. 9 and some
of its applications to rupture models in Chap. 13, percolation in Chap. 12
and self-organized criticality in Chap. 15. We refer to Sect. 13.1 for a gen-
eralization of the branching model which is automatically tuned at its crit-
ical point and thus exhibits a power law distribution of cluster sizes with
mean field exponent µ = 1/2. Here, we focus on mechanisms that are sim-
pler but are often underestimated as possible sources of power law distribu-
tions.

14.1 Temporal Copernican Principle
and µ = 1 Universal Distribution of Residual Lifetimes

Suppose that there is a phenomenon that has a beginning, or birth, at time t0
and an end, or death, at time t0 + T , where T is the duration of the phe-
nomenon which is distributed according to some prior density distribution
w(T ). Knowing that the phenomenon is in progress but being ignorant of
the duration tp already spent since the beginning, we show below that the
probability that the remaining lifetime tf is larger than Y tp, is given by the
universal Gott’s law

P (tf > Y tp) =
1

1 + Y
. (14.2)

This problem has been proposed by Caves [149] to correct the previous in-
correct proposal by Gott [357] that a temporal version of the Copernican
principle would allow one to predict future longevity based on present age of
essentially any possible cases, such as the longevity of individuals, of journals
or of the human species.
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The probability P (tf > Y tp) that the remaining lifetime tf is larger than
Y tp, conditioned on knowing that the process is in progress but not knowing
tp, is given by

P (tf > Y tp) =
∫ +∞

0

dtp
∫ +∞

Y tp

dtf p(tp, tf |I) , (14.3)

where p(tp, tf |I) is the distribution of tp and tf conditioned on the fact that
the phenomenon is in progress. From the definition of w(T ), we can guess
that

p(tp, tf |I) = Cw(tp + tf) , (14.4)

where C is a normalizing constant such that∫ +∞

0

dtp
∫ +∞

0

dtf p(tp, tf |I) = 1 . (14.5)

Solving for this normalization equation gives C = 1/〈T 〉 = 1/
∫∞
0
Tw(T ) dT ,

leading to

P (tf > Y tp) =
∫ +∞

0

dtp
∫ +∞

Y tp

dtf
w(tp + tf)∫∞

0 Tw(T ) dT
. (14.6)

This result can be obtained directly from a Bayesian analysis using Bayes’
theorem derived in Chap. 1, as shown in [149]. As explained by Caves [149],
the expression for p(tp, tf |I) used in (14.6) is the mathematical embodiment
of the temporal Copernican principle for the phenomenon known to be in
progress: if you know that the phenomenon is in progress but do not know its
present age, the temporal Copernican principle imposes to treat equivalently
the past duration tp and future lifetime tf . This amounts to split uniformly the
total duration T into past and future. This means that the same probability
w(T ) is assigned to all possible ways of splitting T into past and future.

Performing the change of variable tf → tp + tf in the second integral of
(14.6) and integrating by part leads to the universal result (14.2) indepen-
dently of the prior lifetime distribution w(T ). Note that, to get this result
(14.2), it is essential that one does not know the present age tp: technically,
this implies that P (tf > Y tp) is calculated by integrating also over all possi-
ble values of tp as seen in (14.3). It is this summation over all possible ages
(i.e. time scales) that gives the scale-free power law (14.2).

If we are able to measure the present age tp, the distribution p(tp, tf |I) is
changed from

w(tp + tf)∫∞
0
Tw(T ) dT

(14.7)

to
w(tp + tf)∫∞
0 w(T ) dT

. (14.8)
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This can be seen from the fact that, again, we expect the distribution of
remaining lifetimes, that we now denote ptp(tf) to stress that tp is known, to
be proportional to w(tp + tf) but with the different normalization condition∫ +∞
0

dtf ptp(tf) = 1. This last situation has been analyzed in details in [902]
where a general classification is given according to the question whether it
is true or not that “The longer it has been since the last event, the longer
the expected time till the next?.” The Poisson exponential distribution is the
unique fixed point of the transformation w(T ) → ptp(tf), expressing its ab-
sence of memory. Distributions with fatter (resp. thinner) tails give a positive
(resp. negative) answer to the question.

Another deceptively simple example is given by the distribution of car
platoons driving on a single lane: the probability that a cluster contains N
or more than N cars is exactly 1/N , giving a power law pdf with exponent
µ = 1 [292, 672]. In a nutshell, a car platoon forms when a slow car is in the
front. Among N cars, the probability that the slowest one is in the front is
1/N .

14.2 Change of Variable

A simple and powerful mechanism to generate power law distributions relies
on the fundamental identity

P (x) dx = P (y) dy , (14.9)

expressing the conservation of probability under a change of variable x→ y:
in other words, the objective estimation of the probability of an event is
invariant under a change of mathematical description of this event.

14.2.1 Power Law Change of Variable Close to the Origin

Therefore, if

y = x−1/α , (14.10)

then

P (y) = α
P (x(y))
y1+α

. (14.11)

Suppose for instance that P (x) goes to a constant for x→ 0, then the distri-
bution of y for large y is a power law (14.1) with a tail exponent

µ = α . (14.12)

The uniform fluctuation of x close to zero lead to scale-free and arbitrarily
large fluctuations of its inverse power y. The power law form is kept obviously
(with a modification of the value of µ) if P (x) itself goes to zero or diverges
close to the origin as a power law.
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Continuous Percolation, Holtsmark’s Distribution and Vortices.
There are many physically relevant situations where this mechanism occurs.
For instance, the distribution of transport coefficients such as conductance,
permeability and rupture thresholds and of necks between random holes or
random cracks, are power laws generated by this mechanism [294, 387, 865].
Another example encountered in Chap. 3 is the pdf P (u) of velocities u
due to vortices given by the expression (3.104): P (u) ∼ 1/u3. The Holts-
mark’s distribution of gravitional forces created by a random distribution of
stars in an infinite universe is a stable Lévy law with exponent 3/2 and
its power law tail results directly from the inversion mechanism (14.10),
where y is the force and x is the distance from the measurement point
to the closest start (see Chap. 17 for a detailled discussion). This result
generalizes and applies to any other field with a suitable modification of
the exponent, such as electric, elastic or hydrodynamics, with a singular
power law dependence of the force as a function of the distance to the
source.

Distribution of the Relative Changes of Magnetization in the Ising
Model. A nice illustration of the inversion mechanism (14.10) has been pro-
posed by Jan et al. [455]. It also exemplifies the widespread and misled belief
that power laws are equivalent to critical behavior. For instance, the Ising
model right at the critical temperature T = Tc has a distribution P (M) of
magnetization, not with a power law tail but, with very “thin” exponential
tails of the form (9.13)

P (M) ∝M (δ−1)/2 exp(−const Mδ+1) (14.13)

with δ + 1 ≈ 5.8 for the 3D Ising universality class [127]. The central part
of the distribution P (M) is extremely well represented by the following
ansatz [967]

P (M) ∝ exp

[
−

(
M2

M2
0

− 1
)2 (

a
M2

M2
0

+ c

)]
. (14.14)

This ansatz (14.14) is motivated by the observation that the effective poten-
tial in the 3D Ising universality class can be in many cases well approximated
by a polynomial consisting of M2, M4 and M6 terms. This is exactly what
appears in the exponent in (14.14). In addition, the distribution of changes
∆M of the magnetization M under a fixed number of Monte Carlo steps per
site is a Gaussian at T = Tc [90, 929, 966]. However, the distribution of the
relative changes X ≡ ∆M/M is a power law with exponent −2 [455].

The reason for this last result is the following. The distribution of
∆M = Mi − Mf is Gaussian, where Mi and Mf are the initial and final
magnetisations over a time interval from 2 to 500 Monte Carlo steps per site.
We are interested in P (X → ∞), and large values of X come from the limit
M → 0 rather than ∆M → ∞. The probability P (M) is a constant δ for
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M → 0, while ∆M can be approximated by the width ∆ of the Gaussian;
thus:

P (X) dX = P (∆M/M) d(∆M/M) = P (M) dM ≈ const dM (14.15)

and

P (X) = P (M)/(dX/dM) = const/[d(∆/M)/dM ] ∝ 1/X2 (14.16)

in agreement with the simulations (Metropolis or Heat Bath) of Jan et
al. [455]. The 1/X2 power law is in fact not restricted to the critical point and
is very general since it results simply from the inversion mechanism (14.10).
However, in practice, the power law distribution of ∆M/M is clearly seen
only near the critical point.

Student’s Distribution. A related mechanism involves the fluctuations
close to zero of the estimated standard deviation S in a denominator. Small
values of S then lead to large fluctuations that turn out to be distributed
according to the Student’s distribution which possesses a power law tail. The
Student’s distribution with µ degrees of freedom has the following density
function [485]

Pµ(w) =
Γ ((µ+ 1)/2)√
µπ Γ (µ/2)

1/s[
1 + (w/s

√
µ)2

](1+µ)/2
, (14.17)

and is defined for −∞ < w < +∞. The Student’s distribution Pµ(w) has
a bell-like shape like the Gaussian (and actually tends to the Gaussian in
the limit µ → ∞) but is a power law C/w1+µ (see Chap. 4) for large |w|
with a tail exponent equal to the number µ of degrees of freedom defining
the Student’s distribution and with a scale factor given by

Cµ =
Γ ((µ+ 1)/2)√
µπ Γ (µ/2)

µ(1+µ)/2sµ . (14.18)

The parameter s represents the typical width of the Student’s distribution.
If x1, x2, . . . , xn are independent random variables with the same normal

distribution with mean 〈x〉 and standard deviation σ, then
√
n(x̄ − 〈x〉)/σ

with x̄ = (1/n)
∑n

j=1 xj has a centered normal distribution with unit vari-
ance. This statistics is often used in the construction of tests and confidence
intervals relating to the value 〈x〉 if σ is known. If σ is not known, it is rea-
sonable to replace it by the estimator S = [(n− 1)−1

∑n
j=1(xj − x̄)2]1/2 and

study the statistics of

T =
√
n(x̄− 〈x〉)

S
=

√
n(x̄− 〈x〉)

[(n− 1)−1
∑n

j=1(xj − x̄)2]1/2
. (14.19)

In 1908, Student has derived the distribution of T as given by (14.17) with
w = T , µ = n− 1 is the number of degrees of freedom and s = 1.
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Here is a simple argument that retrieves the power law shape C/w1+µ with
µ = n − 1 of the tail of Student’s distribution (14.17). A value of T larger
or equal to X typically arises when all terms |xj − x̄| in the denominator of
(14.19) are smaller than a value proportional to 1/X . The probability that
this occurs is proportional to the integral of their probability density from
0 to 1/X for each of the variable. As the Gaussian part of the distribution
goes to a constant for 1/T → 0, the probability that |xj − x̄| be smaller than
1/X is only controlled by the width of the interval and thus proportional to
1/X . Since there are only n − 1 independent variables in the sum defining
the denominator S, the probability that T is larger than X is proportional
to 1/Xn−1, hence the power law tail with exponent µ = n− 1.

−7/2 Power Law pdf of Density in the Burgers/Adhesion Model
and Singularities. The mechanism to generate power law distributions by
a change of variable close to the origin also operates in the determination of
the tail behavior of the pdf of mass density within the one and d-dimensional
Burgers/adhesion model used, e.g., to model the formation of large-scale
structures in the Universe after baryon–photon decoupling [317, 502]. Here,
we attempt to give the flavor of the derivation for the 1d case by follow-
ing [317] who have shown that large densities are localized near singularities
(preshocks or nascent shocks in 1d and extremities of shock lines in 2d).

The Lagrangian coordinate is denoted by a, the velocity by u, the ran-
dom initial velocity is u0(a) = −dψ0(a)/da (where ψ is the velocity potential)
and the deterministic and uniform initial background density is ρ0. At reg-
ular points (outside of shocks), the Eulerian velocity and density are given
implicitly by

u(x, t) = u0(a) , ρ(E)(x, t) =
ρ0

∂a x
, (14.20)

x = a+ tu0(a) . (14.21)

From (14.20) and (14.21) we have, at regular points,

ρ(E)(Lta, t) =
ρ0

1 − t d2ψ0(a)/da2
, (14.22)

where Lta is the Lagrangian map. Large values of ρ(E) are thus obtained
in the neighborhood of Lagrangian points with vanishing Jacobian, where
d2ψ0(a)/da2 = 1/t. The only points with vanishing Jacobian at the boundary
of regular regions are obtained at preshocks, that is when a new shock is just
born at some time t∗. Such points, denoted by a∗, are local negative minima
of the initial velocity gradient, characterized by the following relations

d2ψ0

da2
(a∗) =

1
t∗
,

d3ψ0

da3
(a∗) = 0 ,

d4ψ0

da4
(a∗) < 0 , (14.23)

as well as by an additional global regularity condition that the preshock
point a∗ has not been captured before t∗ by a mature shock. By Taylor
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expanding the Lagrangian potential and the Lagrangian map near the space-
time location (a∗, t∗), one obtains the following “preshock normal forms”

ϕ(a, t) � τa2

2
+ ζa4 , (14.24)

x(a, t) � −τa− 4ζa3 , (14.25)

J(a, t) � −τ − 12ζa2 , (14.26)

where

τ ≡ t− t∗
t∗

, ζ ≡ t∗
24

d4ψ0

da4
(0) < 0 . (14.27)

From (14.26) we see that the density ρ0/J has a a−2 singularity in Lagrangian
coordinates at t = t∗ (τ = 0). Since, by (14.25), the relation between a and
x is cubic at τ = 0, the density ρ(E)(x, t∗) ∝ |x|−2/3 which is unbounded. For
any t �= t∗ the density remains bounded, except at the shock location. For
τ < 0, this follows immediately from (14.26), which implies ρ(E) ≤ ρ0/|τ |. For
τ > 0, the exclusion of the shock interval requires |a| > a+. Hence, ρ(E) ≤
ρ0/(2τ). It is clear that large densities are obtained only in the immediate
neighborhood of the preshock. More precisely, it follows from (14.25) and
(14.26) that ρ(E) > ρ requires simultaneously

|τ | < ρ0

ρ
and |x| < (−12ζ)−1/2

(
ρ0

ρ

)3/2

, (14.28)

which become very small intervals around the spatio-temporal location of
preshocks when ρ is large.

The cumulative probability to have a large density at a given Eulerian
point x and a given time t is defined by

P>(ρ;x, t) ≡ Prob
[
ρ(E)(x, t) > ρ

]
. (14.29)

In the random case, each preshock has a random Eulerian location x∗, occurs
at a random time t∗ and has a random ζ < 0 coefficient. Only those real-
izations such that x∗ and t∗ are sufficiently close to x and t will contribute
large densities. Denoting by p3(x∗, t∗, ζ) the joint pdf of the three arguments,
which is understood to vanish unless ζ < 0, we have

P>(ρ;x, t) =
∫

ρ(E)(x,t)>ρ

p3(x∗, t∗, ζ) dx∗ dt∗ dζ . (14.30)

Because of the very sharp localization near preshocks implied by (14.28), for
large ρ’s, we may replace p3(x∗, t∗, ζ) by p3(x, t, ζ). Using then, in a suitable
frame, the normal forms (14.24)–(14.26), we can rewrite (14.30) as an integral
over local Lagrangian variables a and τ and obtain

P>(ρ;x, t) �
∫

D

t (−τ − 12ζa2) p3(x, t, ζ) da dτ dζ . (14.31)
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Here, the domain D is the set of (a, τ, ζ) such that

τ

−4ζ
< a2 <

1
−12ζ

(
ρ0

ρ
+ τ

)
. (14.32)

The right inequality of (14.32) expresses that the density exceeds the value ρ,
while the left one excludes the shock interval ]a−, a+[. In (14.31), the factor
−τ − 12ζa2 is a Jacobian stemming from the change to Lagrangian space
variables and the factor t stems from the change of temporal variables. The
integration over a and τ yields

P>(ρ;x, t) � C(x, t)
(
ρ0

ρ

)5/2

, (14.33)

C(x, t) ≡ At

∫ 0

−∞
|ζ|−1/2p3(x, t, ζ) dζ , (14.34)

where A is a positive numerical constant. Thus, for any x and t, the cu-
mulative probability of the density follows a ρ−5/2 law. Hence, the pdf
p(ρ;x, t) ∝ ρ−7/2, as ρ → ∞, which establishes the −7/2 law. The 2d case
follows a similar treatment.

Berry’s “Battles of Catastrophes”. Berry’s “battles of catastrophes” [85]
involves similar contributions but from other singularities. Berry considers in-
tegrals of the type

I(t) =
∫ ∫

dxdy δ [t−H(x, y, {Ci})] , (14.35)

whereH(x, y, {Ci}) is a function which depends on a certain set of parameters
{Ci}. Expression (14.35) determines the dependence of I

I = f ({Ci}) (14.36)

as a function of the set of parameters {Ci}. As {Ci} vary, I develops strong
variations, especially when the function H is such that singularities appear.
These strong variations have power law dependence of I as a function of the
distance in the {Ci} space to the catastrophe, similar to (14.10). As a con-
sequence, following a similar reasoning as above, Berry has shown that, for
unrestricted functions H , the density distribution P (I) has a generic heavy
tail decaying as a power law with exponent µ = 8. This result is obtained
by using a scaling argument involving Arnold’s classification of catastrophes.
If H is only quadratic in y, µ = 9. If the integral defining I in (14.35) is
one-dimensional, µ = 2. If it is three-dimensional, the limited available clas-
sification of all known catastrophes and singularities provides only a bound
µ < 47. The probability distribution of dI/dt decays generically as a power
law with µ = 1. This last result comes from the fact that the generic saddle
contributes a logarithmic divergence to I so that dI/dt diverges as the in-
verse to the distance to the saddle point, corresponding to the case α = 1 in
(14.10), where I plays the role of y and x is the distance to the saddle node.
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The motivation for investigating the distribution of a quantity like I de-
fined in (14.35) comes from the fact that it can represent circulation times
of fluid particles in the plane, orbital periods or semi-classical densities of
states for one-dimensional Hamiltonian systems, spectral densities for two-
dimensional crystals, or the strength of a wave pulse produced by the prop-
agation of a deformed step discontinuity [85].

14.2.2 Combination of Exponentials

Consider the exponential distribution P (x) = e−x/x0/x0, for 0 ≤ x < +∞,
with average and standard deviation equals to x0. Let us assume that y is
exponentially large in x:

y = ex/X , (14.37)

where X is a constant. Then by (14.9), we get

P (y) =
µ

y1+µ
, with µ =

X

x0
for 1 ≤ y < +∞ . (14.38)

The exponential amplification (14.37) of the fluctuations of x compensates
the exponentially small probability for large excursions of x.

A simple statistical implementation of this mechanism is the following.
Let ξ be a binomial random value:

ξ = d < 1 , with probability 1 − p (14.39)
ξ = D > 1 , with probability p . (14.40)

Let us construct the process X = ξκ where κ is a discrete random variable
with geometrical pdf:

P (κ) = aκ−1(1 − a) , κ = 1, 2, 3 . . . , 0 < a < 1 . (14.41)

The tail of the distribution of X is then given, for large z, by

P>(X > z) = (1 − p)P>(dκ > z) + pP>(Dκ > z)
∼ pP>(Dκ > z) = pP>(κ > ln z/ lnD)

� p
+∞∑
k=M

(1 − a)ak−1 , (14.42)

where M is the integer part of ln z/ lnD. This yields P>(X > z) ∼ 1/zµ with
µ = ln(1/a)/ lnD. Miller [625] used this type of processes to demonstrate that
the power law behavior of word frequency arises even without the underlying
optimization problem proposed by Mandelbrot [589] (see Sect. 14.11.1). In the
thought experiment imagined by Miller [625], a monkey types randomly on
a keyboard with n characters and a space bar. A space is hit with probability
q; all other characters are hit with equal probability (1−q)/n. A space is used
to separate words. Then, by an argument very similar to that just given, the
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frequency distribution of words is a power law. This provides another warning
to the recurrent theme of this chapter: just because one finds a compelling
mechanism to explain a power law does not mean that there are not other,
perhaps, simpler explanations.

Consider a population of agents who, from birth to death, accumulate
wealth with an average growth of their fortune described by an exponential
law F = F0 exp(t/T1), where F0 is the initial endowment taken uniform over
all agents (to simplify the exposition). Let us assume that the death rate of
these agents is a constant 1/T2, implying that the fraction of fortunes older
than t is exp(−t/T2). Then, the distribution of wealth is a power law with
exponent µ = T1/T2. Indeed, the probability to find a fortune larger than F
is

Prob>(fortune > F ) = Prob>(F0 exp(t/T1) > F )
= Prob>(t > T1 ln(F/F0))
= exp (−[T1 ln(F/F0)]/T2)
= 1/(F/F0)T1/T2 . (14.43)

A fit to the wealth distribution of households in the United Kingdom gives
a power law distribution with exponent T1/T2 ≈ 2.2. If fortunes grow at
the rate of 3% per year (T1 = 34 years), we obtain the estimate T2 = 15
years. Interestingly, this mechanism was originally proposed by Fermi [295]
in his theory of cosmic radiation. Fermi introduced a model for cosmic ray
acceleration in terms of the motion of a ball bouncing between a fixed and
an oscillating wall. The ball could be heated to very high energies by the
impact of the oscillating wall up to a random time of escape. Fermi’s theory
also gave way to the realization that while the motion of the ball is chaotic
at low energies, the phase space has an intricate fractal structure and there
is an adiabatic limit to the heating.

The mechanism of the combination of exponentials operates in the prob-
lem of the thermal crossing times for random barriers (activated escape of
a system from a well in the case where the well may have many different
heights) [975]. This belongs to the classical Kramers’ problem [397, 617] (see
Chap. 10) for which it is well-known that the typical residence time of a ran-
dom walking particle scales as

τ ∝ τ0eβ ∆E , (14.44)

where β is the inverse temperature defined in Chap. 7 and ∆E is the height of
the barrier to cross. Expression (14.44) is known as the Arrhenius activation
law.

Now, assume that the system can be prepared initially in many differ-
ent wells, with an initial distribution of barrier heights given by the Poisson
distribution P (E) ∝ e−∆E/E0 . The result (14.38) implies a power law distri-
bution of residence times P (τ) ∝ τ−1−µ, with µ = 1/βE0. The cooler the
system, the larger the inverse temperature β, the smaller the exponent µ
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and the “fatter” the tail of the power distribution of residence times. A good
example of this situation occurs in magnetic systems with quenched random
impurities exhibiting the phenomenon of “aging” [109].

In this class of systems, the inverse temperature βg at which µ = 1 can
be interpreted as a glass transition, since lower temperatures correspond to
smaller exponents such that the average residence time becomes infinite (see
Chap. 4). This infinite average residence time implies non-stationarity and
“aging”. To see this, let us calculate the cumulative number m(t) of transi-
tions from one well to another during a time interval t. Consider m successive
transitions separated in time by τi, i = 1, . . . ,m, where

τ1 + τ2 + . . .+ τm = t = m〈τ〉 , (14.45)

By definition,

〈τ〉 ∼
∫ τmax

dτ
τ

τ1+µ
∼ τ1−µ

max . (14.46)

Since the maximum residence time τmax among m trials is typically given by

m

∫ ∞

τmax

dt′

t′1+µ
∼ 1 , (14.47)

we have τmax ∼ m1/µ. Thus t = m〈τ〉 ∼ m1/µ, i.e. m ∼ tµ, which is valid for
µ < 1. For µ > 1, we recover m ∼ t. Thus, for µ ≤ 1, the rate of transitions
is non-stationary as m/t is not constant and decays with time. Because of
the self-similarity embodied in the power-law distributions, we can state that
the longer since the last transition, the longer the expected time till the
next [902]. In other words, any expectation of a transition that is estimated
at any given time depends on the past in a manner which does not decay.
This is a hallmark of aging.

14.3 Maximization of the Generalized Tsallis Entropy

As we have seen in Chap. 2, the Gaussian distribution plays a special role
because it is the attractor of a large class of distributions under the repetitive
action of the convolution operator, expressing the central limit theorem for
the sum of random variables. The Gaussian distribution possesses another
remarkable property of “parsimonious” description of uncertainty: knowing
only the mean and variance of a random variable, the Gaussian distribution
is the solution of an optimization process, namely it maximizes the entropy
defined by −k ∫ +∞

−∞ dx p(x) ln p(x). This expresses that the Gaussian distri-
bution assumes the minimum amount of information in addition to that given
by the mean and variance. Conditioned on the sole knowledge of the mean
and the variance, it is therefore the best choice to represent the distribution
of random variables.
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In this spirit, it is interesting to find that power laws naturally emerge
under a similar entropy maximization principle [13, 746, 963, 964], where
the entropy is generalized in the following way. In this brief exposition, we
follow [963]. Consider the generalized entropy Sq defined by [962]

Sq[p(x)] = k
1 − ∫∞

−∞(dx/σ) [σp(x)]q

q − 1
, (14.48)

where x is a random variable and σ > 0 is the characteristic length of the
problem. Note that, for q → 1, Sq[p(x)] →q→1 −k ∫ +∞

−∞ dx p(x) ln p(x), i.e.
recovers the standard definition of the entropy.

We optimize (maximize if q > 0, and minimize if q < 0) Sq with the
normalization condition

∫∞
−∞ dx p(x) = 1 as well as with the constraint

〈〈x2〉〉q ≡
∫∞
−∞ dx x2 [p(x)]q∫∞
−∞ dx [p(x)]q

= σ2 . (14.49)

Note that 〈〈x2〉〉q recovers the definition of the variance for q = 1, as it should.
The following distribution is obtained:
if q > 1:

pq(x)

=
1
σ

(
q − 1

π(3 − q)

)1/2

(14.50)

× Γ (1/(q − 1))
Γ ((3 − q)/(2(q − 1)))

1
(1 + (q − 1)/(3 − q)(x2)/(σ2))1/(q−1)

.

If q = 1:

pq(x) =
1
σ

(
1
2π

)1/2

e−(x/σ)2/2 . (14.51)

If q < 1:

pq(x)

=
1
σ

(
1 − q

π(3 − q)

)1/2
Γ ((5 − 3q)/(2(1 − q)))
Γ ((2 − q)/(1 − q))

(14.52)

×
(

1 − 1 − q

3 − q

x2

σ2

)1/(1−q)

,

if |x| < σ[(3 − q)/(1 − q)]1/2 and zero otherwise.
The case (14.51) recovers the standard result mentioned above that the

Gaussian law maximizes the usual entropy, given the variance. The two other
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Fig. 14.1. The distributions pq(x) for typical values of q. The q → −∞ distribution
is the uniform one in the interval [−1, 1]; q = 1 and q = 2 respectively correspond
to Gaussian and Lorentzian distributions; the q → 3 is completely flat. For q < 1
there is a cut-off at |x|/σ = [(3 − q)/(1 − q)]1/2. Reproduced from [963]

cases for q �= 1 extend this result. We see that the support of pq(x) is compact
if q ∈ (−∞, 1) while pq(x) becomes a power-law tail for q > 1, with

pq(x) ∼ (σ/x)2/(q−1) (14.53)

in the limit |x|/σ → ∞.
We can also check that 〈〈x2〉〉1 = 〈x2〉1 =

∫∞
−∞ dxx2pq(x) is finite if

q < 5/3 and diverges if 5/3 ≤ q ≤ 3 (the normalization condition cannot be
satisfied if q ≥ 3). It is interesting to observe that the Gaussian solution for
q = 1 is recovered in both limits q → 1+ and q → 1− by using the q > 1 and
the q < 1 solutions given respectively by (14.50) and (14.52). This family of
solutions is illustrated in Fig. 14.1.

Tne nonextensive Tsallis statistics has been applied to systems for which
the standard Boltzmann–Gibbs statistical mechanics and thermodynamics
present serious difficulties or anomalies. Examples are (see [963] and refer-
ences therein) point systems involving long-range interactions (e.g., d = 3
gravitation), long-range microscopic memory (e.g., nonmarkovian stochastic
processes, and conservative (e.g., Hamiltonian) or dissipative systems which
in one way or another involve a relevant space–time and phase space which
has a (multi)fractal-like structure (pure-electron plasma two-dimensional
turbulence, Lévy anomalous diffusion, granular systems, phonon–electron
anomalous thermalization in ion-bombarded solids, solar neutrinos, peculiar
velocities of galaxies, inverse bremsstrahlung in plasma and black holes),
etc.

A wealth of works has shown that the nonextensive statistical mechan-
ics retains much of the formal structure of the standard theory and many
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important properties have been shown to be q-invariant. Among them, we
mention (i) the Legendre transformations structure of thermodynamics, (ii)
the H-theorem (macroscopic time irreversibility), (iii) the Ehrenfest theo-
rem (correspondence principle between classical and quantum mechanics),
(iv) the Onsager reciprocity theorem (microscopic time reversibility), (v)
the Kramers and Wannier relations (causality), (vi) the factorization of
the likelihood function (Einstein’ 1910 reversal of Boltzmann’s formula),
(vii) the Bogolyubov inequality, (viii) thermodynamic stability (i.e., a def-
inite sign for the specific heat) and (ix) the Pesin equality. In contrast, the
following quantities depend on q: (i) the specific heat, (ii) the magnetic
susceptibility, (iii) the fluctuation–dissipation theorem, (iv) the Chapman–
Enskog expansion, the Navier–Stokes equations and related transport co-
efficients, (v) the Vlasov equation, (vi) the Langevin, Fokker–Planck and
Lindblad equations, (vii) stochastic resonance, (viii) the mutual informa-
tion or Kullback–Leibler entropy. Various theoretical tools have been de-
veloped in this nonextensive statistical framework, which include (i) Linear
response theory, (ii) perturbation expansion (iii) Variational method (based
on the Bogoliubov inequality), (iv) many-body Green functions, (v) path
integral and Bloch equation, (vi) quantum statistics and those associated
with the Gentile and the Haldane exclusion statistics, (vii) simulated anneal-
ing and related optimization, Monte Carlo and Molecular dynamics tech-
niques.

14.4 Superposition of Distributions

14.4.1 Power Law Distribution of Widths

General Case. Consider the situation where the variable y, conditioned on
a characteristic width σ, is distributed according to the “bare” distribution

Pσ(y) = C1e−f(y/σ) , (14.54)

where f(y/σ) → 0 sufficiently fast for large y/σ to ensure the normalization
of the distribution. Let us now assume that one measures a set of realizations
of the variable y which is a mixture of different values of σ. This could result
from a drift of the system or various other causes. Let us call

Σ(σ) ≡ C2e−g(σ) (14.55)

the distribution of widths σ. Then, the observed distribution of y is the
following mixture of distributions

Pren(y) =
∫ ∞

0

dσ Σ(σ)Pσ(y) = C1C2

∫ ∞

0

dσ e−f(y/σ)−g(σ) . (14.56)
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We ask what should be the form of g(σ) in order for Pren(y) to be asymp-
totically of the form (14.1) for large y. For such large y, the integral can be
evaluated by the saddle-node method [69], which yields

Pren(y) ∼ 1√
F ′′[σ∗(y)]

e−F [σ∗(y)] , (14.57)

where

F (σ) ≡ f(y/σ) + g(σ) (14.58)

and σ∗(y) is the solution of the saddle-node condition
y

σ
f ′(y/σ) = σg′(σ) . (14.59)

Here, the primes indicate the derivative of the functions with respect to their
argument. The only solution of (14.59), such that Pren(y) is asymptotically
proportional to y−1−µ can be shown to be σ∗(y) ∝ y, which implies from
(14.57) and by solving (14.59) that g(σ) must be of the form

g(σ) = (2 + µ) ln y + const . (14.60)

Therefore, the distribution of the widths must be an asymptotic power law
distribution with an exponent larger than the required one by one unit, due
to the effect of the 1/

√
F ′′σ∗(y) factor in (14.57):

g(σ) ∼ 1
σ2+µ

. (14.61)

This mechanism holds as long as Pσ(y) falls off faster than a power law at
large y. This ensures that large realizations of y correspond to large width
σ ∝ y occurrences.

Superposition of Exponential Distributions. Let us consider the expo-
nential distribution h(x) = exp(−x/λ) and ask what should be the form of
the fluctuations of the parameter 1/λ such that, upon averaging, the expo-
nential h(x) is transformed into

H(x) =
(

1 +
x

λ0

1
α

)−(1+µ)

, (14.62)

which has a power law tail with characteristic exponent µ. We adopt the
parameterization (14.62) because it has the form introduced by Tsallis (see
the previous section) in his non-extensive statistics [962, 964] as a general-
ization of Boltzmann statistics discussed in Chap. 7 to account for long tail
distributions occurring in many systems in nature. Tsallis’ approach has been
applied to many problems, from astrophysics to biological systems.

The central formula introduced by Tsallis is the following power-like dis-
tribution:

Hq(x) = Cq

[
1 − (1 − q)

x

λ

]1/(1−q)

, (14.63)
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which is just a one-parameter generalization of the Boltzmann–Gibbs ex-
ponential formula to which it converges for q → 1: Hq=1 = h(x) =
c exp(−x/λ). Expression (14.63) gives (14.62) with the definition

1 + µ =
1

q − 1
. (14.64)

When Hq(x) is used as a probability distribution of the variable x ∈ (0,∞),
the parameter q is limited to 1 ≤ q < 2. For q < 1, the distribution Hq(x) is
defined only for x ∈ [0, λ/(1− q)]. For q > 1, the upper limit comes from the
normalization condition for Hq(x) and from the requirement of positivity of
the resulting normalisation constant Cq. However, if one demands in addition
that the mean value of Hq(x) is well defined, i.e., that 〈x〉 = λ/(3− 2q) <∞
for x ∈ (0,∞), then q is further limited to 1 ≤ q < 1.5 (corresponding to
µ > 1).

Our aim is thus to deduce the form of the distribution g(1/λ) of the
fluctuations of the parameter 1/λ of the exponential h(x) with mean value
1/λ0, which transforms it into the distribution:(

1 +
x

λ0

1
1 + µ

)−(1+µ)

=
∫ ∞

0

exp
(
−x
λ

)
g

(
1
λ

)
d
(

1
λ

)
. (14.65)

From the representation of the Euler gamma function, we have(
1 +

x

λ0

1
1 + µ

)−(1+µ)

=
1

Γ (1 + µ)

∫ ∞

0

dξ ξµ exp
[
−ξ

(
1 +

x

λ0

1
1 + µ

)]
.

Changing variables under the integral in such a way that (ξ/λ0)(1/(1+µ)) =
1/λ, one immediately obtains (14.65) with g(1/λ) given by the following
Gamma distribution in terms of the variable 1/λ

g

(
1
λ

)
=

(1 + µ)λ0

Γ (1 + µ)

(
(1 + µ)λ0

λ

)µ

exp
(
− (1 + µ)λ0

λ

)
, (14.66)

with mean value〈
1
λ

〉
=

1
λ0

(14.67)

and variation〈(
1
λ

)2
〉

−
〈

1
λ

〉2

=
1

1 + µ
λ2

0 . (14.68)

The distribution (14.66) is found to be exactly of the power law form
(14.61) by noting that g(1/λ) ∼ 1/λµ for large λ and that the distribution of
λ is (1/λ2)g(1/λ) ∼ 1/λ2+µ.



362 14. Mechanisms for Power Laws

14.4.2 Sum of Stretched Exponentials (Chap. 3)

A related but less trivial mechanism has been discussed in Chap. 3, in relation
to the regime of “extreme deviations” and its application to fragmentation.
In this mechanism, the distribution of fragments is a superposition similar
to (14.56) but where the sum over the widths is replaced by a sum over the
number N of fragmentation generations (3.83), Pσ(y) is replaced by stretched
exponentials with exponent inversely proportional to N and Σ(σ) is replaced
by the exponentially large number of fragments generated as a function of
the generation order N . The interplay between the sub-exponential decay
at a fixed generation number N with the exponential growth of the number
of fragments as a function of N results in a power law distribution with an
exponent determined from a transcendental equation (3.85).

14.4.3 Double Pareto Distribution by Superposition
of Log-Normal pdf’s

We now discuss a variation on the multiplicative generative model which also
yields a power law behavior. Recall that in the simplest version of a mul-
tiplicative model, if we begin with some value X0 and every step yields an
independent and identically distributed multiplier from a lognormal distri-
bution, then the resulting distribution Xt after t steps is lognormal. Actu-
ally, Kolmogorov was able to show that the log-normal distribution appears
asymptotically as the consequence of a much more general class of multiplica-
tive processes, as discussed in Chap. 16.

Suppose, however, that instead of examining Xt for a specific value of the
number t of multiplications, we examine the random variable XT where T
itself is a random variable. As an example, when considering income distribu-
tion, in seeing the data, we may not know how long each person has lived. If
different age groups are intermixed, the number of multiplicative steps each
person may be thought to have undergone may be as a random variable. This
effect was noticed by Montroll and Schlesinger [646, 647]. They showed that
a mixture of lognormal distributions based on a geometric distribution would
have essentially a lognormal body but a power law distribution in the tail. In
the case where the time T is an exponential random variable, the resulting
distribution of XT has an asymptotic power law distribution [438, 439]. This
is easily seen from the formula

P (X) =
∫ +∞

0

dT
X0

σ0X
√

2πT
e−(ln(X/X0))2/2σ2

0T e−T/T0

∼ 1
X1+µ

, (14.69)

with

µ = σ0

√
2
T0

, (14.70)
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as seen from a saddle-node argument. Huberman and Adamic suggest that
this result can explain the power law distribution observed for the number
of pages per site in the World Wide Web [438, 439]. As the Web is growing
exponentially, the age of a site can roughly be thought of as distributed like
an exponential random variable. If the growth of the number of pages on
a Web site follows a multiplicative process, the above result suggests a power
law distribution. Variations of the distribution of T away from the exponen-
tial pdf, incomplete sampling or finite-size effects may then provide mech-
anisms for empirical distributions that are found between log-normal and
power laws.

The change of variable T = u2 allows us to rewrite the integral in (14.69)
as

P (X) =
2X0

T0σ0X
√

2π

∫ +∞

0

du e−(ln(X/X0))2/2σ2
0u2

e−u2/T0 . (14.71)

Let us recall the useful identity∫ +∞

0

dz e−az2−b/z2
=

1
2

√
π

a
e−2

√
ab . (14.72)

Comparing (14.71) with (14.72), in the exponent 2
√
a b of the identity, we

have b = (ln(X/X0))2/2σ2
0 . Because of this, there are two different behaviors,

depending on whether X/X0 ≥ σ0 or X/X0 < σ0. For X/X0 ≥ σ0, P (X)
is a power law ∼ 1/X1+µ with exponent µ already given in (14.70). For
X/X0 < σ0, P (X) has also a power law branch ∼ 1/X1−µ with µ also
given in (14.70). This double Pareto distribution seems to fit better empirical
distribution of incomes [766–768]. Similar double Pareto distributions have
been advocated to account for the distribution of earthquake energies, but
with both exponents of the pdf larger than 1 [903].

14.5 Random Walks: Distribution of Return Times
to the Origin

On motivation for studying the distribution of return times of random walks
is that many self-organized critical (SOC) models discussed in Chap. 15,
including the minimal model of Bak and Sneppen [48], can be mapped in
the limit of infinite space dimension onto a critical branching process. As
a consequence, this allows us to relate the exponent describing the fluctuation
distribution (see Chap. 15 for definitions) to the first return time of a one-
dimensional random walk [48]. The result is that we expect these models to
possess an event size distribution characterized by an exponent of value 3/2
for all dimensions above some upper critical dimension, and lower exponent
values for dimensions below this.
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14.5.1 Derivation

Taking into account all possible walk trajectories, the probability density for
an unbiased random walker starting at the origin to be found at the position x
along a line after a time t is given by (2.42) with v = 0. Thus, the probability
density to return to the origin at time t (without excluding that previous
returns to the origin might have occurred before) is

PG(t) =
1√
2π

1√
2Dt

∼ t−1/2 , (14.73)

where D is the diffusion coefficient.
The probability F (t) to return to the origin for the first time at time t

after starting from the origin at time 0 is given by the relationship

PG(t) = δ(t) +
∫ t

0

dt′ PG(t′)F (t− t′) . (14.74)

The first term δ(t) of (14.74) expresses the fact that the walker is at the origin
at time zero with certainty and thus corresponds to the initial condition. The
integral quantifies the fact that, in order to be found at the origin at time t,
the walker can follow any trajectory that brings him back to the origin at
a time t′ earlier or at most equal to t and then come back at most once to
the origin after an additional interval of time t − t′. All possible scenarios
with all possible intermediate t′ are to be considered. The integral in (14.74)
is a convolution. Since there is an initial time t = 0, it can be dealt with by
taking the Laplace transform P̂G(β) ≡ ∫∞

0 dt PG(t)e−βt, yielding

P̂G(β) = 1 + P̂G(β)F̂ (β) , (14.75)

where we have used the fact that
∫∞
0 dt

∫ t

0 dt′ =
∫∞
0 dt′

∫∞
t′ dt, as can be

checked graphically in the plane (t′, t). The solution of (14.75) is

F̂ (β) =
P̂G(β) − 1
P̂G(β)

, (14.76)

whose inverse Laplace transform yields F (t). To go further, we need to esti-
mate P̂G(β). We are interested in the form of F (t) for large waiting times t,
which corresponds to small conjugate variables β. The regime of small β’s is
thus controlled by the large t for PG(t) which is given by (14.73). Thus,

P̂G(β) ≈β→0

∫ ∞

tmin

dt
e−βt

√
4πDt

≈ 1
Cβ1/2

, (14.77)

where 1/C =
∫∞
0

dxe−x/
√

4πDx is a constant. Inserting (14.77) in (14.76)
gives

F̂ (β) ≈β→0 1 − Cβ1/2 ≈ e−Cβ1/2
. (14.78)
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Using the results of Sect. 4.4, its inverse Laplace transform has a tail

F (t) ∼t→∞ t−3/2 . (14.79)

An exact calculation gives

F (t) =
C√

2πt3/2
e−C2/2t . (14.80)

Expression (14.80) is nothing but the stable Lévy distribution with exponent
µ = 1/2 discussed in Chap. 4. The tail behavior (14.79) can be retrieved by
a direct examination of (14.74) upon remarking that the integral for large t is
controlled by the behavior of the integrand for t′ small for which it reduces to
∼ ∫

0 dt′ (t− t′)−α, where we have assumed a power law dependence of F (t) ∼
t−α. Then, the integration around the lower bound 0 retrieves (14.79), i.e.
α = 3/2, by the condition that the integral is proportional to PG(t) ∼ t−1/2.
The method of images also allows us to recover this result. It amounts to
introducing an anti-source of walkers a small distance a from the origin which
anihilates all walks crossing 0 before t. It is easy to see that this leads to

F (t) ∼ ∂PG(x, t)
∂x

∣∣∣∣
x=a

, (14.81)

corresponding to a dipole source of walkers.

Fig. 14.2. Definition of the return
times t1, t2, t3, . . . to the origin of
a random walk

The function F (t) given by (14.79) and (14.80) is nothing but the distri-
bution of waiting times to return to the origin. Consider the situation where
a random walker is launched from the origin and we measure the time he
takes to return for the first time to the origin. When this occurs, we continue
to monitor his trajectory and measure the time needed to again cross the
origin, and so on, as shown in Fig. 14.2. The distribution of the return times
t1, t2, t3, . . . is exactly given by expression (14.80).

14.5.2 Applications

The fact that the exponent µ = 1/2 of this distribution is smaller than one has
an important consequence, namely the average return time 〈t〉 =

∫∞
0 dt tF (t)
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is infinite. Physically, this means that it is controlled by the largest return
time sampled in a given time span. Practically, this has a number of con-
sequences. For instance, this implies a long-memory and thus anomolous
aggregation effects as discussed in Chap. 8. Anecdotically, this also allows
the rationalization of the overwhelming despair of frustrated drivers in dense
highways that neighboring lanes always go faster than their lane because they
often do not see a car return that was previously adjacent to them: assuming
that we can model the differential motion of lanes in a global traffic flow by
a random walk, this impression is a direct consequence of the divergence of
the expected return time!

Fig. 14.3. Strength Fk of a bundle of N fibers
as a function of the number k of broken fibers;
the magnified view of the dependence of Fk

illustrates the random walk in the space of
forces Fk, the role of time being played by k

An interesting application of this distribution of return times to the origin
is the distribution of rupture bursts in the democratic fiber bundle model
discussed in Sect. 13.2.2. When looking at the fiber scale, simultaneous failure
of many fibers can occur due to “small scale” fluctuations in the strength of
bundle subsets. Indeed, the sequence {Fk} of external loads at which the
fibers would fail do not form a monotonically increasing sequence as shown
in Fig. 14.3. The random variables defined as the fiber rupture thresholds Xk

are indeed put in increasing order but they are multiplied by a monotically
decreasing factor (N + 1− k) of unfailed fibers, as k increases. Starting from
a stable configuration corresponding to some value Fk, a simultaneous rupture
of ∆ fibers, which can be called an event or burst of size ∆, occurs if Fn < Fk

for k+1 ≤ n ≤ k+∆ and Fk+∆+1 ≥ Fk. Since the set of failure thresholds Xk

are independent random variables, the function Fk undergoes a random walk
where the displacement is Fk and the time is k (see Fig. 14.3). This random
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walk is biased by a drift equal to 〈Fk+1−Fk〉 which vanishes at the instability
threshold. The bias is large far away from the instability threshold and only
small bursts occur there. As the global rupture is approached, 〈Fk+1 − Fk〉
goes to zero and the fluctuations completely dominate the burst occurrence.
In the random walk picture, it is easy to obtain the probability that a burst
of size ∆ occurs after a total of k fibers have been broken, i.e. at some
value Fk. This corresponds to the probability F (∆) of first return to the
origin of a random walker (see Fig. 14.3). In the absence of any bias, we
find that the local differential distribution d(∆) of bursts of size E is given
by [400, 415, 514, 867]

d(∆) ∼ ∆−3/2 . (14.82)

This law holds sufficiently close to the global rupture point so that the bias in
the random walk is not felt. Cumulating the measurements of the bursts over
the entire rupture history, we have shown in Chap. 13 that the distribution
d(∆) is renormalized by the effect of the changing bias as one approaches
rupture with an apparent exponent 5/2 instead of 3/2 [867, 870].

14.6 Sweeping of a Control Parameter
Towards an Instability

This mechanism has been pointed out to show that several claims [133, 730]
about evidence of self-organized criticality could be actually explained by
the simpler mechanism of the slow sweeping of a control parameter towards
a critical point [834, 835, 875, 876]. The idea is best illustrated in the context
of material rupture.

In a typical experiment where one brings a material to rupture, a “con-
trol” parameter is varied which progressively stresses the system up to its
global rupture. As the stress increases, the number and amplitude of acous-
tic emissions is usually found to increase. It has been known for decades in
the engineering literature that the resulting distribution of energies of the
acoustic emission bursts, measured over a complete experiment up to failure,
is a power law with exponent µ close to one [741]. This phenomenon has been
rediscovered in the physics literature [29, 133, 236, 333, 431, 994] and has be-
come fashionable due its apparent connection with fractals and self-organized
criticality.

In fact, the origin of the power law probably lies elsewhere. Notice that
a typical system is subjected to an increasing stress or strain until it fails irre-
versively and is thus not in a stationary state. Rather, it undergoes a sweeping
of its control parameter up to the critical rupture value. Systems are also of-
ten brought to rupture under constant stress due to some kind of corrosion
mechanism, plastic deformation or aging. A plausible first-order description
of these observations is as follows [553, 555]. Stressed elements undergo stress
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corrosion with exponent α that lead to a continuous decay of their thresh-
old. When a threshold reaches the stress level, an abrupt rupture occurs
with a stress drop ratio γ and with a partial (non-conservative) distribution
of stress to neighboring elements with dissipation factor β and the threshold
heals. The model is thus of the class of sandpile models discussed in Chap. 15
with absence of conservation and in addition dynamical thresholds coupled
to the stress variable. Numerical simulations in 1d, 2d and 3d lattices and
a mean-field approximation [555] determine that the average stress decays in
a punctuated fashion, with a characteristic Omori’s power law one-over-time
dependence, with in addition events occurring at characteristic times increas-
ing as a geometrical series with multiplicative factor λ = [1−γ+γ(1−β)]−α

which is a function of the stress corrosion exponent α, the stress drop ratio γ
and the degree of dissipation β. This behavior is independent of the discrete
nature of the lattice and stems from the interplay between the threshold dy-
namics and the power law stress relaxation. This discrete geometrical series
can lead to observable log-periodic signatures.

Let us examine more generally this phenomenon of “sweeping” of a control
parameter towards a “critical” point, or towards a global bifurcation, as it
provides a robust mechanism for the appearance of power law distribution of
events. Indeed, this can be traced back to the cumulative measurements of
fluctuations, which diverge at the approach of the critical instability.

Consider the simplest possible examples of the Ising model or the per-
colation model. These models are among the simplest archetypes leading to
a critical transition reached by finely tuning the temperature (Ising) or the
concentration (percolation) to their critical values. As criticality is reached
for some value of the control parameter, they are not self-organized. The ther-
mal Ising problem and geometrical bond percolation are closely related since
they can be put in one-to-one correspondence, using Coniglio and Klein’s
recipe [180]. For a given value of the control parameter p, spontaneous fluc-
tuations occur. These fluctuations in both models correspond to the clusters
defined by a connectivity condition [510]. These fluctuations can be visualized
as spatial cooperative domains of all sizes between the microscopic scale up to
the correlation length ξ in which the order parameter takes a non-zero value
over a finite duration depending on the domain size. Their size distribution
is given by [928]

Pp(s) ds ∼ s−af

(
s

s0(p)

)
ds , (14.83)

with

a = 2 +
1
δ

(= 2.05 with δ = 91/5 in 2D percolation) . (14.84)

The size s is the number of spins or sites belonging to a given cluster. s0(p)
is a typical cluster size given by

s0 ∼| pc − p |−1/σ , (14.85)
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with Fisher’s notation
1
σ

= γ + β . (14.86)

s0(p) must be distinguished from the mean cluster size 〈s〉(p), which scales
as

〈s〉(p) ∼ |pc − p|−γ . (14.87)

γ is the susceptibility exponent defined by the number of spins which are
affected by the flip of a single spin, which corresponds to, in the language of
percolation, the mean cluster size. β is the exponent characterizing the way
the order parameter goes to zero as |pc − p|β as p→ pc. The scaling function
f(s/s0(p)) decays rapidly (exponentially or as an exponential of a power law)
for s > s0. Thus, the cluster or fluctuation size distribution is a power law
Pp(s) ds ∼ s−a for s < s0(p) and Pp(s) is negligibly small for s > s0(p).

Now, suppose that one monitors the fluctuation amplitudes (i.e. cluster
sizes) as the control parameter p is swept across its critical value pc, say
from the value p = 0 to p = 1. The results below remain true if the interval
is reduced to [pc − c1; pc + c2], with c1 and c2 both positive or zero. This
sweeping can be done for instance by increasing the applied stress. The total
number of clusters of size s which are measured is then proportional to

N(s) =
∫ 1

0

Pp(s) dp , (14.88)

which can be written as

N(s) =
∫ pc

0

Pp(s) dp+
∫ 1

pc

Pp(s) dp . (14.89)

In writting this expression, we have used the fact that the full distribution
Pp(s) of fluctuations can be sampled for each value p of the control parame-
ter. In other words, the evolution of the control parameter is adiabatic. The
change of variable p→ s0(p) in the above integral gives

N(s) = s−a

∫ +∞

1

s
−σ(1+1/σ)
0 f

(
s

s0(p)

)
ds0

� s−a

∫ +∞

s

s
−(1+σ)
0 ds0 , (14.90)

using the fact that f [s/s0(p)] is negligible for s0(p) < s. Here, the symbol ∼ is
taken as meaning the leading behavior in decreasing powers of s. This finally
yields the power law

N(s) � s−(a+σ) , (14.91)

as its leading behavior. Note that we have not restricted p to stop at its
critical value pc but have allowed for a spanning of an arbitrary interval
containing pc.
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This expression (14.91) demonstrates that a continuous monitoring of
events or fluctuations up to and above a critical point yields a power law
even if a similar measurement for a fixed value of p would only give a trun-
cated power law (with a smaller exponent). Thus, by varying the temperature
(Ising) or concentration (percolation), say, linearly in time from a value below
the critical point to a value above the critical point and by integrating over
all fluctuations observed during this entire time interval, one gets a power law
in the distribution of fluctuations. Since only right at the critical point, large
clusters exist, one gets a power law without cut-off for the time-integrated
cluster number even if we do not stop at the critical point. Note the value
of the renormalized exponent a + σ, stemming from the relatively smaller
weight of large clusters which are found only in a narrow interval of the
control parameter.

This mechanism works for the Democratic Fiber Bundle model just dis-
cussed above and in Chap. 13. As we have seen, this model exhibits a “lo-
cal” differential power law distribution of bursts of size ∆ with an exponent
a = 3/2, with a cut-off exponent σ = 1, and a power law distribution of the
total number of bursts of size ∆ with an exponent a+σ = 5/2, in agreement
with the above derivation. The exponent 5/2 reflects the occurrence of larger
and larger events when approaching the total breakdown instability. The
mechanism of “sweeping a control parameter towards an instability” applies
more generally to rupture phenomena and many other systems whose condi-
tions vary with time. The relevance of this mechanism to a variety of models
and experiments has been discussed in [875] such as in the Burridge–Knopoff
model of earthquakes, foreshocks and acoustic emissions, impact ionization
breakdown in semiconductors, the Barkhausen effect, charge density waves,
pinned flux lattices, elastic strings in random potentials and real sandpiles.

14.7 Growth with Preferential Attachment

The mechanism for the generation of power laws often refered to as “preferen-
tial attachment” has a long and interesting history. It has been rediscovered
many times in several disciplines. A flurry of activity and rediscovery oc-
curred recently in computer science in which power law distributions are also
found to be pervasive. For instance, computer file sizes are believed to be
governed by a power law distribution. Consider the World Wide Web, which
can naturally be thought of as a graph, with pages corresponding to vertices
and hyperlinks corresponding to directed edges. Empirical work has shown
that indegrees and outdegrees of vertices in this graph obey power law distri-
butions. Recall that the indegree (resp. outdegree) is the number of inward
(resp. outward) directed graph edges from a given graph vertex in a directed
graph. Most models of random graphs developed to understand these ob-
servations are variations of the following theme, whose presentation borrows
from a recent review by M. Mitzenmacher [635].
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Let us start with a single page, with a link to itself. At each time step,
a new page appears, with outdegree 1. With probability p < 1, the link for
the new page points to a page chosen uniformly at random. With probability
1− p, the new page points to a page chosen proportionally to the indegree of
the page. This model exemplifies preferential attachment: new objects tend
to attach to popular objects. In the case of the Web graph, new links tend to
go to pages that already have links. A simple argument deriving the power
law distribution of page degrees follows. Let Xj(t) be the number of pages
with indegree j when there are t pages in the system. Then, for j > 1, the
probability that Xj increases is

pXj−1

t
+

(1 − p)(j − 1)Xj−1

t
. (14.92)

The first term is the probability that a new link is chosen at random and
chooses a page with indegree j − 1. The second term is the probability that
a new link is chosen proportionally to the indegrees and chooses a page with
indegree j − 1. Similarly, the probability that Xj decreases is

pXj

t
+

(1 − p)jXj−1

t
. (14.93)

Hence, for j > 1, the growth of Xj is approximated by

dXj

dt
=

1
t

[p(Xj−1 −Xj) + (1 − p) ((j − 1)Xj−1 − jXj)] . (14.94)

This intuitively appealing use of a continuous differential equation to describe
what is clearly a discrete process can be justified more formally using mar-
tingales [542, 1026]. The case of X0 must be treated specially, since each new
page introduces a vertex of indegree 0:

dX0

dt
= 1 − pX0

t
. (14.95)

In the steady state limit, we can look for a solution of the form Xj(t) =
cj t, defining cj as the steady-state fraction of pages with indegree j. Then,
we can successively solve for the cj . Equation (14.95) becomes dX0/dt =
t(dc0/dt) + c0 = 1 − pc0, which yields c0 = 1/(1 + p). More generally, using
the equation for dXj/dt, we obtain for j ≥ 1,

cj(1 + p+ j(1 − p)) = cj−1(p+ (j − 1)(1 − p)) . (14.96)

This recurrence can be used to determine the cj exactly. Asymptotically for
large j, we obtain

cj
cj−1

= 1 − 2 − p

1 + p+ j(1 − p)
∼ 1 − 2 − p

1 − p

1
j
. (14.97)

Expression (14.97) implies the power law distribution

cj ∼ C

j1+µ
, with µ =

1
1 − p

, (14.98)
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for some constant C. Interestingly, the exponent µ is a function of the “pref-
erential attachment” parameter 1 − p: the larger is the preferential bias (the
larger is 1 − p), the smaller is µ, up to a point when, in the limit of very
strong preferential attachment, µ tends to 1.

Although the above argument was described in terms of degree on the
Web graph, this type of argument is very general and applies to any sort of
preferential attachment. In fact, the first similar argument dates back to at
least 1925. It was introduced by Yule [1042] to explain the distribution of
species among genera of plants, which had been shown empirically by Willis
to satisfy a power law distribution. Mutations cause new species to develop
within genera, and more rarely mutations lead to entirely new genera. Mu-
tations within a genus are more likely to occur in a genus with more species,
leading to the preferential attachment. A clearer and more general devel-
opment of how preferential attachment leads to a power law was given by
Simon [844] in 1955. Simon listed several applications of this type of model
in his introduction: distributions of word frequencies in documents, distri-
butions of numbers of papers published by scientists, distribution of cities
by population, distribution of incomes, and distribution of species among
genera.

The mechanism of “preferential attachment” can also be invoked to ratio-
nalize very early observations of power law distributions, such as the Pareto
distribution of income distribution in 1897 [718]. The first known attribution
of the power law distribution of word frequencies appears to be due to Estoup
in 1916 [281], although generally the idea (and its elucidation) are attributed
to Zipf [1063–1065]. Similarly, Zipf is often credited with noting that city sizes
appear to match a power law, although this idea can be traced back further
to 1913 [38] (see [322] for a modern account). Lotka (circa 1926) found in
examining the number of articles produced by chemists that the distribution
followed a power law [571] (see [547] for an alternative viewpoint); indeed,
power laws of various forms appear in many places in informetrics [101].

In graph theory, the preferential attachment argument has been devel-
oped as part of the study of random trees. Specifically, consider the following
recursive tree structure. Begin with a root node. At each step, a new node
is added; its parent is chosen from the current vertices with probability pro-
portional to one plus the parent’s number n of children. This is just another
example of preferential attachment; indeed, it is essentially equivalent to the
simple Web graph model described above with the probability p of choos-
ing a random node equal to 1/2, since there exists a factor f such that
f(1 + n) = p+ n(1 − p) only for p = 1/2 [578, 854].

Modern works on random graph models have led to many new insights.
Perhaps most important is the development of a connection between Simon’s
model, which appears amenable only to limiting analysis based on differential
equations as shown above, and purely combinatorial models based on random
graphs [99, 578, 854]. Such a connection is important for further rigorous anal-
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ysis of these structures. Also, current versions of Simon’s arguments based on
martingales provide a much more rigorous foundation. More recent work has
focused on greater understanding of the structure of graphs that arise from
these kinds of preferential attachment model [241, 242]. It has been shown
that in the Web graph model described above where new pages copy existing
links, the graphs have community substructures [542], a property not found
in random graphs but amply found in the actual Web. See also [537, 538] for
exact results on the pdf of cluster sizes and other applications.

14.8 Multiplicative Noise with Constraints

14.8.1 Definition of the Process

Consider the simple multiplicative recurrence equation

xt+1 = a(t)x(t) , (14.99)

where a(t) is a stochastic variable with probability distributionΠ(a). With no
other ingredient, expression (14.99) generates an ensemble of values x(t) over
all possible realizations of the multiplicative factors a(0), a(1), a(2), . . . , a(t),
which is distributed according to the log-normal distribution [8, 350, 764] in
the large t limit. Indeed, from the logarithm of (14.99), we see that lnx is
the sum of t random variables. As seen in Chap. 2, we get, for large times t,

P (x) =
1√

2πDt
1
x

exp
[
− 1

2Dt
(lnx− vt)2

]
, (14.100)

where v = 〈ln a〉 ≡ ∫∞
0

da ln aΠ(a) and D = 〈(ln a)2〉 − 〈ln a〉2.
As we have seen in Chap. 4, expression (14.100) can be rewritten

P (x) =
1√

2πDt
1

x1+µ(x)
eµ(x)vt , (14.101)

with

µ(x) =
1

2Dt
ln

x

evt
. (14.102)

Since µ(x) is a slowly varying function of x, this form shows that the log-
normal distribution can be mistaken for an apparent power law with an expo-
nent µ slowly varying within the range x which is measured. However, notice
that µ(x) → ∞ far in the tail x � e(v+2D)t and the log-normal distribution
is not a power law.

One needs additional ingredients to transform (14.101) into a genuine
power law distribution [205, 215, 501, 561, 858, 879, 880, 891, 944].

• The first ingredient is that the random map (14.99) must be contracting
on average, i.e. x(t) → 0 for large t if there is no other constraint, which is
equivalent to the condition v ≡ 〈ln a〉 < 0.
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• The second condition prevents this contraction to zero by ensuring that
x remains larger than a minimum value x0 > 0, or at least exhibits finite
fluctuations even for t → +∞. One way to ensure this condition is to
introduce an additive term in (14.99) leading to the Kesten process, already
discussed in Sect. 8.4.2.

M. Mitzenmacher [635] discusses further the close relationship between the
log-normal and power law distributions, which an emphasis on applications
in computer science.

14.8.2 The Kesten Multiplicative Stochastic Process

Let us consider the process defined in (8.28), Xn+1 = anXn + bn, where
the stochastic multiplicative an and additive bn variables are drawn with
the pdf’s Pa(an) and Pb(bn). Such processes have been analyzed in depth
by Kesten [501], Vervaat [986], and Goldie [352] and have recently found
some interest in physics because of the intermittent character of the ensu-
ing fluctuations [879, 880, 891, 944]. Very general and important results on
the statistical behavior of solutions of stochastic difference equations of the
form (8.28) with multiplicative stochastic coefficients are already obtained
in [501], Proposition 5. Let us summarize the essential results from the papers
by Kesten, Vervaat, and Goldie. The latter sections provide simple physical
derivations and extensions.

Theorem (Kesten, Goldie):

• if an and bn are i.i.d. real-valued random variables and if 〈an〉 < 0, then
Xn converges in distribution and has a unique limiting distribution.

• If, additionally, bn/(1− an) is nondegenerate (that is, bn is not a constant
times (1 − an)), and if there exists some µ > 0 such that

1. 0 < 〈|bn|µ〉 < +∞,
2. 〈|an|µ〉 = 1, and
3. 〈|an|µ ln+ |an|〉 < +∞,

then the tail of the limiting distribution of Xn is asymptotic to a power law
P>(Xn > x) � c/xµ.

The available theory on multiplicative random processes thus ensures
power law behavior for a large class of stochastic processes under relatively
mild and general conditions. Intuitively, the time-varying multiplicative co-
efficient an yields some sort of intermittent amplification which leads to the
heavy power law tails of the distribution while the additive noise term bn
preserves the motion from dying out in the course of events. Note that the
existence of a stationary distribution does not hinge on existence of the second
or even first moment as µ may assume arbitrary positive values depending on
the process under study and only moments of P>(Xn > x) of order smaller
than µ do exist.
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As an extension of this theorem, let us consider the situation in which
the tail of P>(Xn > x) is now controlled by the additive variable bn. This
occurs when Pb(bn) is a power law ∼ Cb/b

1+µb
n with 0 < µb < µ, where

µ is the real positive solution of 〈|an|µ〉 = 1. In this case, the condition 1.
0 < 〈|bn|µ〉 < +∞ is violated. Then, P>(Xn > x) can be shown to remain
a power law, as in Kesten’s theorem, but the exponent of its tail is now µb.
To see why, let us first consider the very simple case where the multiplicative
factors an are no more stochastic and are all equal to some constant a < 1.
Iterating (8.28), we obtain

Xn = bn + a bn−1 + a2bn−2 + a3bn−3 + . . . (14.103)

From the calculation tools on power laws given in Sect. 4.4, we obtain imme-
diately that

limn→+∞ P>(Xn > x) � C

xµb
, with C =

Cb

1 − aµb
. (14.104)

This result (14.104) shows that the origin of the power law pdf of Xn is
no more to be found in the intermittent stochastic multiplicative amplifica-
tion but results from the power law pdf of the additive terms bn. The auto-
regressive nature of (8.28) has solely the effect of renormalizing the scale
factor from Cb to C by the factor 1/(1 − aµb).

Let us now consider the case where the positive an’s are random with
〈|an|µb〉 < 1 (this is true if 0 < µb < µ). Then, expression (14.103) is replaced
by

Xn = bn + anbn−1 + anan−1bn−2 + anan−1an−2bn−3 + . . . (14.105)

We can use Breiman’s theorem [125] which states that, for two independent
random variables φ and χ > 0 with Prob(|φ| > x) � c/xκ and 〈χκ+ε〉 < +∞
for some ε > 0, the random product φχ obeys Prob(|φχ| > x) � 〈χκ〉×
Prob(|φ| > x) for x → +∞. This generalizes the results on the calculation
tools on power laws given in Sect. 4.4.

The distribution of each term Ai ≡ anan−1 . . . an−i+1bn−i in (14.105)
is thus P>(Ai > x) � 〈aµb

j 〉iCb/x
µb , where we have used the property of

independence between the ai’s. For a finite number n of terms in (14.105),
the distribution of Xn is thus

P>(Xn > x) � Cb

xµb

n−1∑
i=0

〈aµb

j 〉i . (14.106)

Rigorous bounds show that we can extend this reasoning for n → +∞
(X. Gabaix and H. Kesten, private communications), which leads to expres-
sion (14.104) with aµb replaced by 〈aµb

j 〉.

14.8.3 Random Walk Analogy

To intuitively understand the effect of the interplay between the average
contraction 〈a(t)〉 < 0 of the multiplicative process and the barrier preventing
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complete collapse to 0 (for instance by the action of the additive term in
the Kesten process), let us use the variables y(t) = lnx(t) and l = ln a.
Then, (14.99) defines a random walk in y-space with steps l (positive and
negative) distributed according to the density distribution Π(l) = elΠ(el).
The distribution of the position of the random walk is similarly defined:
P [y(t), t] = ey(t)P (ey(t), t).

For v ≡ 〈l〉 < 0, for which the random walk drifts towards the barrier,
the qualitative picture is represented schematically in Fig. 14.4: steady-state
(t → ∞) establishes itself and is characterized by the property that the net
drift to the left is balanced by the reflection at the barrier. The random
walk becomes trapped in an effective cavity of size of order D/v with an
exponential tail e−µy with µ ≈ |v|/D (see below). Its incessant motion back
and forth and repeated reflections off the barrier and diffusion away from it
lead to the build-up of an exponential probability profile. The exponential
profile must be distinguished from the usual Gaussian distribution found for
a non-constrained random walk. y is the logarithm of the random variable x
and one then obtains a power law distribution for x of the form ∼ x−(1+µ).

Let us derive this result following [891]. In this goal, we write the master
equation, which is equivalent to the random walk process y(t+1) = y(t)+l(t),
as

P(y, t+ 1) =
∫ +∞

−∞
Π(l)P(y − l, t) dl , (14.107)

which gives the probability P(y, t) to find the walker at position y to within dy
at time t. As seen in Chap. 2, the exact master equation can be approximated
by its corresponding Fokker–Planck equation. Usually, the Fokker–Planck
equation becomes exact in the limit where the variance of Π(l) and the time
interval between two steps go to zero while keeping a constant finite ratio
defining the diffusion coefficient [780]. In our case, this corresponds to taking

Fig. 14.4. Exponential
steady-state profile of the
probability density of the
position of the random walk
with a negative drift and
a reflecting barrier. Taken
from [891]
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the limit of very narrow Π(l) distributions. In this case, we can expand P(x−
l, t) up to second order

P(y − l, t) = P(y, t) − l
∂P
∂x

∣∣∣∣
(y,t)

+
1
2
l2
∂2P
∂x2

∣∣∣∣
(y,t)

(14.108)

leading to the Fokker–Planck formulation

∂P(y, t)
∂t

= −∂j(y, t)
∂y

= −v ∂P(y, t)
∂y

+D
∂2P(y, t)
∂y2

, (14.109)

where v and D have been defined above and are the leading cumulants of
Π(ln a). j(y, t) is the flux defined by

j(y, t) = vP(y, t) −D
∂P(y, t)
∂y

. (14.110)

Expression (14.109) is nothing but the conservation of probability. It can be
shown that this description (14.109) is generic in the limit of very narrow Π
distributions: the details of Π are not important for the large t behavior; only
its first two cumulants control the results [780]. v and D introduce a char-
acteristic “length” ŷ = D/|v|. In the overdamped approximation, we can
neglect the inertia of the random walker, and the general Langevin equation
m d2y/dt2 = −γ dy/dt+ F + Ffluct reduces to

dy
dt

= v + η(t) , (14.111)

which is equivalent to the Fokker–Planck equation (14.109). η is a noise of
zero mean and delta correlation with variance D. This form illustrates the
competition between drift v = −|v| and diffusion η(t).

The stationary solution of (14.109), ∂P(y, t)/∂t = 0, is immediately found
to be

P∞(y) = A− B

µ
e−µy , (14.112)

with

µ ≡ |v|
D
. (14.113)

A and B are constants of integration. Notice that, as expected in this approx-
imation scheme, µ is the inverse of the characteristic length ŷ. In absence of
the barrier, the solution is obviously A = B = 0 leading to the trivial solution
P∞(x) = 0, which is indeed the limit of the log-normal form (14.100) when
t → ∞. In the presence of the barrier, there are two equivalent ways to deal
with it. The most obvious one is to impose normalization∫ ∞

x0

P∞(y) dy = 1 , (14.114)
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where y0 ≡ lnx0. This leads to

P∞(y) = µe−µ(y−y0) . (14.115)

Alternatively, we can express the condition that the barrier at y0 is reflec-
tive, namely that the flux j(y0) = 0. Let us stress that the correct boundary
condition is indeed of this type (and not absorbing for instance) as the rule
of the multiplicative process is that we return x(t) to x0 when it becomes
smaller than x0, thus ensuring x(t) ≥ x0. An absorbing boundary condition
would correspond to killing the process when x(t) ≤ x0. Substituting (14.112)
in (14.110) with j(y0) = 0, we retrieve (14.115) which is automatically nor-
malized. Reciprocally, (14.115) obtained from (14.114) satisfies the condition
j(y0) = 0.

There is a faster way to get this result (14.115) using an analogy with
a Brownian motion in equilibrium with a thermal bath. The bias 〈l〉 < 0
corresponds to the existence of a constant force −|v| in the −x direction.
This force derives from the linearly increasing potential V = |v|y. In ther-
modynamic equilibrium, a Brownian particle is found at the position x with
probability given by the Boltzmann factor e−β|v|y. This is exactly (14.115)
with D = 1/β as it should from the definition of the random noise modeling
the thermal fluctuations.

Translating in the initial variable x(t) = ey, we get the power law distri-
bution

P∞(x) =
µxµ

0

x1+µ
, (14.116)

with µ given by (14.113):

µ ≡ |〈ln a〉|
〈(ln a)2〉 − 〈ln a〉2 . (14.117)

More generally, consider a linear or nonlinear multiplicative noise process

dx
dt

= f(x) + g(x)η(t) , (14.118)

where η is a i.i.d. white noise. Then, the change of variable x → y =∫ x du/g(u) transforms (14.118) into the following additive noise process [396]

dy
dt

= h(y) + η(t) , where h(y) =
f(x)
g(x)

∣∣∣∣
x(y)

. (14.119)

14.8.4 Exact Derivation, Generalization and Applications

In the case where the barrier is absent, we have already pointed out that
the random walk eventually escapes to −∞ with probability one. However,
it will wander around its initial starting point, exploring maybe to the right
and left sides for a while before escaping to −∞. For a given realization,
we can thus measure the rightmost position ymax it ever reached. What is
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the distribution Pmax[Max(0, ymax)]? The question has been answered in the
mathematical literature using renewal theory ( [293], p. 402) and the answer
is

Pmax(Max(0, ymax)) ∼ e−µymax , (14.120)

with µ given by∫ +∞

−∞
Π(l)eµl dl =

∫ +∞

0

Π(λ)λµ dλ = 1. (14.121)

The proof can be sketched in a few lines [293] and we summarize it because it
will be useful in the following. Consider the probability distribution function
M(y) ≡ ∫ y

−∞ Pmax(ymax) dymax, that ymax ≤ y. Starting at the origin, this
event ymax ≤ y occurs if the first step of the random walk verifies y1 = Y ≤ y
together with the condition that the rightmost position of the random walk
starting from −y1 is less or equal to y− Y . Summing over all possible Y , we
get the Wiener–Hopf integral equation

M(y) =
∫ y

−∞
M(y − Y )Π(Y )dY . (14.122)

It is straightforward to check that M(y) → e−µy for large y with µ given by
(14.121). We refer to [293] for the questions of uniqueness and to [315, 651]
for classical methods for handling Wiener–Hopf integral equations.

How is this result useful for our problem? Intuitively, the presence of the
barrier, which prevents the escape of the random walk, amounts to reinject-
ing the random walker and enabling it to sample again and again the large
positive deviations described by the distribution (14.120). Indeed, for such
a large deviation, the presence of the barrier is not felt and the presence of the
drift ensures the validity of (14.120) for large x. These intuitive arguments
are exact for a broad class of processes.

Let us now generalize (14.99) with the barrier at x0 into

x(t+ 1) = ef(x(t),{a(t),b(t)...})a(t)x(t) , (14.123)

where f(x(t), {a(t), b(t) . . .}) → 0 for x(t) → ∞ and f(x(t), {a(t), b(t) . . .}) →
∞ for x(t) → 0.

The model (14.99) is the special case f(x(t), {a(t), b(t) . . .}) = 0 for
x(t) > x0 and f(x(t), {a(t), b(t) . . .}) = ln(x0/a(t)) for x(t) ≤ x0. In general,
we can consider a process in which at each time step t, after the variable a(t) is
generated, the new value a(t)x(t) is readjusted by a factor ef(x(t),{a(t),b(t)...})

reflecting the constraints imposed on the dynamical process. It is thus reason-
able to consider the case where ef(x(t),{a(t),b(t)...}) depends on t only through
the dynamical variables a(t) (in special cases, there is another variable bt).

The existence of a limiting distribution for x(t) obeying (14.123), for
a large class of f (x(t), {a(t), b(t) . . .}) decaying to zero for large x and going
to infinity for x→ 0, is ensured by the competition between the convergence
of x to zero and the sharp repulsion from it. We shall also suppose in what
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follows that ∂f (x(t), {a(t), b(t) . . .}) /∂x → 0 for x → ∞, which is satisfied
for a large class of smooth functions already satisfying the above conditions.
It is an interesting mathematical problem to establish this result rigorously,
for instance by the method used in [315, 561, 858]. Assuming the existence
of the asymptotic distribution P (x), we can determine its shape, which must
obey

V ≡ axe−f(x,{a(t),b(t)...}) , (14.124)

where {a, b, . . .} represents the set of stochastic variables used to define the
random process. The expression (14.124) means that the l.h.s. and r.h.s. have
the same distribution. We can thus write

PV (V ) =
∫ +∞

0

daΠ(a)
∫ +∞

0

dxPx(x)δ(V − ax)

=
∫ +∞

0

da
a
Π(a)Px

(
V

a

)
. (14.125)

Introducing W = lnV , y ≡ lnx and l ≡ ln a, we obtain

P (W ) =
∫ +∞

−∞
dlΠ(l)Px(W − l) . (14.126)

Taking the logarithm of (14.124), we have W = y − f(y, {a, b, . . .}), showing
that W → y for large y > 0, since we have assumed that f(y, {λ, b, . . .}) → 0
for large y. We can write P (W ) dW = Py(y) dy leading to

P (W ) =
Py[y(W )]

1 − ∂f(y, {a, b, . . .})/∂y → Py(W ) , for y → ∞ . (14.127)

We thus recover the Wiener–Hopf integral equation (14.122) yielding the
announced results (14.120) with (14.121) and therefore the power law distri-
bution (14.116) for x(t) with µ given by (14.121).

This derivation explains the origin of the generality of these results for
a large class of convergent multiplicative processes repelled from the origin.

Let us now compare the two results (14.117) and (14.121) for µ. It is
straightforward to check that (14.117) is the solution of (14.121) when Π(l)
is a Gaussian, i.e. Π(a) is a log-normal distribution. The expression (14.117)
can also be obtained perturbatively from (14.121): expanding eµl as eµl =
1+µl+(1/2)µ2l2+. . . up to second order, we find that the solution of (14.121)
is (14.117). This was expected from our previous discussion in Chap. 2 of the
approximation involved in the use of the Fokker–Planck equation.

An interesting example of the class (14.123) is given by the map already
discussed in Chap. 8, representing for instance the population of fishes in
a lake: consider the number of fish Xt in a lake in the t-th year and let Xt+1

be related to the population Xt through

Xt+1 = a Xt + b, (14.128)
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where a = a(t) > 0 and b = b(t) > 0 are drawn from some probability
density function. The additive contribution b ensures the repulsion from the
origin and thus allows for intermittent bursts distributed according to the
power law distribution (14.116). The growth rate a depends on the rate of
reproduction and the depletion rate due to fishing or predation, as well as
on environmental conditions, and is therefore a variable quantity. The quan-
tity b describes the input due to restocking from an external source such as
a fish hatchery in artificial cases, or from migration from adjoining reservoirs
in natural cases; b can but need not be constant. In addition to the model-
ing of population dynamics with external sources, multiplicative maps of the
type (14.123) and in particular (14.128) can be applied to epidemics in iso-
lated populations [879], to finance and insurance applications with relation
to ARCH(1) processes [215], immigration and investment portfolios [879],
the Internet [2, 12, 437, 438, 879, 946, 947, 1019] and directed polymers in
random media [684].

In Chap. 16, we present a fragmentation model which produces a power
law distribution of fragment sizes. The mechanism also involves a multiplica-
tive process; strictly speaking, there is not repulsion from the origin as dis-
cussed above; however, the fact that fragments can become unbreakable plays
a similar role. We can thus consider the fragmentation model in the same
class as the models discussed in this section. This is confirmed by the fact
that (16.51) for the fragment distribution has exactly the same structure as
(14.125).

To sum up, power law distributions are generated from multiplicative
noise if

• the distribution of the amplitudes of the noise allows for intermittent am-
plification while being globally contracting and

• there is a “reinjection” mechanism of the variable to a non-vanishing value,
so that it remains susceptible to the intermittent amplifications.

14.9 The “Coherent-Noise” Mechanism

Another class of models with a simple and robust mechanism for producing
power law distributions has been introduced by Newman and Sneppen [677].
These so-called “coherent-noise” models consist of a large array of sites or
elements which are forced to reorganize at each time step under an externally
imposed random stress that acts on all agents at the same time. In their sim-
plest form, there are no interaction between the elements, which makes the
coherent-noise mechanism fundamentally different from self-organized crit-
icality discussed in Chap. 15. While they are self-organized, coherent-noise
systems are not critical. The self-organization stems from the competition be-
tween two processes described below which leads to a statistical steady-state.
Notwithstanding the absence of criticality, these models exhibit a power-law
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distribution of event sizes, each event corresponding to the reorganization
of the stress thresholds of the elements under the action of the externally
imposed stress. There is a wide range of different exponents [856], depending
on the special implementation of the basic mechanism. Moreover, coherent-
noise models display power-law distributions in several other quantities, e.g.,
the life-time distribution of the agents. These models have been suggested
to be relevant to earthquakes [677], rice piles [677], and biological extinc-
tion [673–675, 1017].

The model is defined as follows. Consider a system consisting of N units.
Every element i has a threshold xi again external stress. The thresholds are
initially chosen at random from some probability distribution pthresh(x). The
dynamics of the system is as follows:

(i) A stress η is drawn from some distribution pstress(η). All agents with
xi ≤ η are given new random thresholds, again from the distribution
pthresh(x).

(ii) A small fraction f of the agents is selected at random and also given new
thresholds.

(iii) The next time-step begins with (i).

The most common choices for the threshold and stress distributions are a uni-
form threshold distribution and some stress distribution that is falling off
quickly, like the exponential or the Gaussian distribution. Under these con-
ditions (with reasonably small f), it is guaranteed that the distribution of
reorganization events that arises through the dynamics of the system will be
a power law.

In this simplest version of the model, the elements are entirely non-
interacting. This is why step (ii) is necessary to prevent the model from
grinding to a halt. Without this random reorganization, the thresholds of the
agents would after some time be well above the mean of the stress distri-
bution and the average stress could not hit any agent anymore. This model
is quite similar to the Bak–Sneppen model [48] discussed in Chap. 15, and
especially to its parallel version presented in Sect. 15.4.4. The difference is
essentially in the nature of the driving: infinitesimal increments in the Bak–
Sneppen model versus random imposed stresses in the coherent-noise model.
The later produces power law pdf’s without need for interactions between ele-
ments in the coherent-noise model. If interactions are introduced, for instance
between nearest neighbors, step (ii) can be omitted because the interactions
ensure that elements with large thresholds will become destabilized.

There are indeed several possibilities for extending the model to make it
more general, without loss of the basic features. Two extensions that have
been studied by Sneppen and Newman [856] are the following.

• A lattice version where the agents are put on a lattice and, with every
agent hit by stress, its nearest neighbours undergo reorganization even if
their threshold is above the current stress level.
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• A multi-trait version where, instead of a single stress, there are M dif-
ferent types of stress, i.e. the stress becomes a M -dimensional vector η.
Accordingly, every element carries a vector of thresholds xi. An element
has to move in this model whenever at least one of the components of the
threshold vector is exceeded by the corresponding component of the stress
vector.

• Another extension is to biological evolution and to the dynamics of mass
extinctions [1017], in which the number of elements (species in this case)
is not kept constant because species go extinct or are created by mutation.

To show how power law distributions of event sizes emerge, we follow
Sneppen and Newman [856]. First, one solves for the mean (time-averaged)
distribution ρ̄(x) of the threshold variables xi. In any small interval [x, x+dx]
of stress thresholds, the rate at which elements are reorganized is the sum
of two contributions: (1) the random selection process with rate f ρ̄(x); (2)
the stress event with rate given by ρ̄(x) times the probability that the stress
level η will be greater than x, which is

pmove(x) =
∫ ∞

x

pstress(η) dη . (14.129)

The total rate ρ̄(x)(f + pmove(x)) of reorganization in any small interval
[x, x+dx] is equal to the average rate of repopulation, equal to a constant A
independent of x and determined by normalization, giving

ρ̄(x) =
A

f + pmove(x)
. (14.130)

To give a concrete example, consider the simple case where the stress η
is restricted to non-negative values, pthresh(x) is uniformly distributed over
the interval between 0 and 1 and pstress(η) is the normalized exponential
distribution

pstress(η) =
1
σ

exp(−η/σ). (14.131)

In this case, pmove(x) = exp(−x/σ) and

ρ̄(x) =
A

f + exp(−x/σ)
, (14.132)

with

A =
f

σ

[
log

f exp(1/σ) + 1
f + 1

]−1

. (14.133)

Numerical simulations confirm this prediction (14.132) with good accu-
racy [856].

ρ̄(x) given in (14.130) has the shape of a smooth step, centered at
a value xc such that the two terms in the denominator of (14.130) are equiv-
alent: pmove(xc) = f . For x > xc, ρ̄(x) is dominated by the constant term f
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in the denominator, so that ρ̄(x) goes to a constant for large x. Below xc, the
second term pmove(x) dominates, leading to

ρ̄(x) ≈ A

pmove(x)
. (14.134)

In the exponential example, this becomes ρ̄(x) ≈ A exp(x/σ). As we will see,
it is this part of the distribution of stress thresholds which is responsible for
the power-law distribution of event sizes in the model.

The size of the event which corresponds to a stress of magnitude η is
simply given by (for positive stresses)

s(η) =
∫ η

0

ρ(x) dx . (14.135)

In general, the threshold distribution at any particular time t differs from the
time-averaged distribution ρ̄(x). In order to solve analytically for the event
size distribution, we make the approximation that ρ(x) is close to its time
average ρ̄(x). Expression (14.135) thus gives

s(η) =
∫ η

0

ρ̄(x) dx =
∫ η

0

dx
A

f + pmove(x)
. (14.136)

Then, the pdf of event sizes s is given by the standard change of variable

pevent(s) = pstress(η)
dη
ds

=
pstress(η(s))
ρ̄(η(s))

, (14.137)

where we have calculated dη/ds by differentiating expression (14.136). The
function η(s), which is the stress required to produce an event of size s, is
given by the functional inverse of (14.136).

As we mentioned above, the power-law emerges due to the low-x part
below xc of the threshold distribution. In this regime, expressions (14.134)
together with (14.129) and (14.137) lead to

pevent(s) = (1/A)pstress(η(s))
∫ ∞

η(s)

pstress(x) dx . (14.138)

Making the same approximations in (14.136), we get

s(η) =
∫ η

0

Adx∫∞
x
pstress(η′) dη′

. (14.139)

Between them, these two equations (14.138) and (14.139) define the event
size distribution.

The crucial condition, which must be fulfilled to obtain power law distri-
butions of event sizes, is that the value of pstress(η) in the tail should fall off
fast enough that the integral of pstress(η) from η to ∞ should be dominated
by the value of the function near η. A sufficient condition is∫ ∞

η

pstress(x) dx ∼ [pstress(η)]α . (14.140)
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Substituting this condition into (14.138) and (14.139), we get

pevent(s) ∼ [pstress(η(s))]α+1, (14.141)

and

s(η) ∼
∫ η

0

[pstress(x)]−α dx =
∫ 1

pstress(η)

[pstress]−α dx
dpstress

dpstress

∼ 1
pstress(η)

, (14.142)

where we have employed (14.140) to evaluate the derivative. Combining
(14.141) and (14.142) gives

pevent(s) ∼ 1/s1+α . (14.143)

For most choices of pstress(x),
∫∞

η pstress(x) dx ∼ pstress(η) up to sub-
dominant corrections, which implies α ≈ 1. This is true in general for
pstress(x) ∼ exp[−(x/σ)c] with arbitrary c > 0, including exponential, Gaus-
sian and stretched exponential pdf’s. If pstress(x) is a power law ∼ 1/xγ , we
obtain α = 1 − 1/γ. Of course, some stress distributions may not satisfy
(14.140), such as any distribution which does not have a tail (we say that
the pdf has a compact support), in which case the pdf of event sizes is not
a power law. As long as the pdf of stresses has no finite upper limit, we can
expect a power law event size distributions. The prediction (14.143) is verified
accurately by numerical simulations [856].

The coherent-noise model also predict the occurrence of “aftershocks,”
somewhat similarly to earthquakes [856], characterized by power law distri-
butions of event rates as a function of the time since a large event [1016, 1018].
This power law Prelax(t) ∼ 1/tp of the relaxation of the event rate looks quite
similar to the Omori law for earthquake aftershocks [973]. Together with the
power law pdf of event sizes which is similar to the Gutenberg–Richter law,
this has led these authors to suggest that the coherent-noise model might
have value in modeling earthquakes. However, in the coherent-noise models,
the exponent p of Prelax(t) is found to decrease with the size of the mainshock
and to be a function of the lower magnitude cut-off of the aftershocks. These
two properties are not observed in real seismic catalogs, in which a remarkable
self-similarity is observed: the Omori law is characterized by approximately
the same exponent p for all earthquake magnitudes between 3 and 7 [410, 413]
(there is not enough data for larger magnitudes and the catalogues are incom-
plete for lower magnitudes). The coherent-noise model is able to reproduce
both the Gutenberg–Richter distribution of earthquake magnitudes and the
Omori law of aftershock rate decay, which are both one-point statistics. How-
ever, it predicts two-point statistics which are in strong disagreement with
empirical data. There is an interesting lesson here on the danger to qualify
a model solely on the basis of its one-point statistical properties; higher-order
statistics are very important and the dependence between multiple events in
general reveal more.



386 14. Mechanisms for Power Laws

14.10 Avalanches in Hysteretic Loops
and First-Order Transitions with Randomness

In many first-order phase transitions, one observes hysteresis loops. An hys-
teresis loop is the graph of the response (say, the magnetization M of the
material) which lags behind the force (say, an external magnetic field H). In
many materials, the hysteresis loop is composed of small bursts, or avalanches,
which cause acoustic emission (crackling noises); in magnets, they are called
Barkhausen noise. These bursts result from some kind of inhomogeneity or
disorder in the material that pins the deformation within it. In many systems
where the heterogeneity is found at the microscopic scale size of a grain, the
observed bursts are nevertheless observed over a wide range of sizes, from
over three to six decades in size in a typical experiment (see [195, 196, 229,
730–732, 834] and references therein). Since the grains in the material do not
come in such a variety of sizes, one can conclude that many grains must be
activated at once, coupled together in a kind of avalanche.

Having events of all sizes has a profound meaning: if the coupling between
grains is weak compared to the disorder, the grains will tend to flip indepen-
dently, leading to small avalanches; if the coupling is strong, a grain which
flips will give a large kick to its neighbors, likely flipping several of them,
which will flip several more, thus leading to one large avalanche. In real ex-
periments and in the following model, this is precisely what happens. The
large range of avalanches is associated with a critical value of the disorder Rc

relative to the coupling: when the avalanches can not decide whether to be
huge or small, they come in all sizes!

The classic model for a first order transition [303, 751] is the Ising model
in an external field H at T < Tc: as H passes through zero, the equilibrium
magnetization reverses abruptly. This model is in sharp contrast with real
first-order transitions as studied by materials scientists and metallurgists:
solid material which transforms from one crystalline or magnetic form to
another under the influence of temperature, external stress, or applied field
often has no sharp transition at all and hysteresis becomes the dominating
phenomenon. The ingredient added by Sethna et al. [195, 196, 229, 730–732,
834] to this idealized Ising model is disorder. This is performed by adding
a random field fi at each site of the Ising model

H = −
∑
ij

Jijsisj −
∑

i

(fisi +Hsi) . (14.144)

The rule of the model is that, as the external field H is changed, each spin
will flip when the direction of its total local field

Fi ≡
∑

j

(Jijsj + fi +H) (14.145)

changes. The deterministic dynamics corresponds to taking the limit of zero
temperature. The random local fields fi are taken from a Gaussian distribu-
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tion P (f) with zero mean and variance R2. R is thus the control parameter
quantifying the amount of disorder. Let us vary the disorder and the field to
demonstrate the existence of a critical point induced by the disorder.

For small R, an infinite avalanche occurs. For sufficiently large R, only
finite avalanches are seen due to the dominating effect of the local fields.
On raising the field from the down state, there is a field Hu

c (R) at which an
infinite avalanche occurs and this transition at Hu

c (R) is abrupt for R < Rc.
On the other hand, as one approaches the critical field Hu

c (Rc) at the criti-
cal disorder Rc, the transition appears to be continuous: the magnetization
M(H) has a power-law singularity, and there are avalanches of all sizes. As
one approaches this “endpoint” at (Rc, H

u
c (Rc)) in the (R,H) plane, we find

diverging correlation lengths and universal critical behavior.
We now recall how these critical properties can be exactly solved within

mean-field theory [834]. Suppose every spin in (14.144) is coupled to all N−1
other spins with coupling J/N . The effective field acting on a site is JM +
fi +H , where M =

∑
i si/N is the average magnetization. Spins with fi <

−JM −H will point down, the rest will point up. Thus, the magnetization
M(H) is given implicitly by the expression

M(H) = 1 − 2
∫ −JM(H)−H

−∞
P (f) df . (14.146)

This equation has a single-valued solution unless R ≤ Rc (which in the case
of a Gaussian distribution corresponds to P (0) ≥ 1/2J), at which point
hysteresis and an infinite avalanche begin. Near the endpoint, the jump in
the magnetization ∆M due to the avalanche scales as rβ , where r ≡ (Rc −
R)/Rc. As one varies both r and the reduced field h ≡ [H − Hu

c (Rc)], the
magnetization scales as

M(h, r) ∼ |r|βM±(h/|r|βδ) , (14.147)

where ± refers to the sign of r. In mean-field theory, β = 1/2, δ = 3
and M± is given by the smallest real root g±(y) of the cubic equation
g3 ∓ (12/π)g − (12

√
2/π3/2Rc)y = 0.

The avalanche size distribution near the critical point shown in the inset
of Fig. 14.5 can be obtained within this mean-field approach. The probabil-
ity D(s, t) of having an avalanche of size s, where t ≡ 2Jρ(−JM −H) − 1
measures the distance to the infinite avalanche, is found as follows [834]. To
have an avalanche of size s triggered by a spin with random field f , one must
have precisely s − 1 spins with random fields in the range {f, f + 2Js/N}.
The probability for this to happen is given by the Poisson distribution. In
addition, they must be arranged so that the first spin triggers the rest. This
occurs with probability precisely 1/s, which one can see by putting periodic
boundary conditions on the interval {f, f + 2Js/N} and noting that there
would be exactly one spin of the s which will trigger the rest as a single
avalanche. This leads to the avalanche size distribution
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Fig. 14.5. Varying the Disorder: three H(M) curves for different levels of disorder
for a 603 system. The estimate of the critical disorder is Rc = 2.16J [835] (J is set
equal to 1 in the figure). At R = 2 < Rc, there is an infinite avalanche which seems
to appear abruptly. For R = 2.6 > Rc, the dynamics is macroscopically smooth,
although of course microscopically it is a sequence of sizable avalanches. At R = 2.3,
near the critical level of disorder, extremely large events become common. Inset:
Log–Log Plot of the avalanche-size distribution D(s) vs. avalanche size s for the 603

system at R = 2.3 for 1.3 < H < 1.4, averaged over 20 systems. Here D(s) ∼ s−1.7,
compared to the mean-field exponent τ of 3/2. Reproduced from [834]

D(s, t) =
ss−2

(s− 1)!
(t+ 1)s−1e−s(t+1) . (14.148)

To put this in a scaling form, we must first express t as a function of r and h:
t ∼ r

[
1 ∓ (π/4)g±(h/|r|3/2)2

]
. Using some simple expansions and Stirling’s

formula, one obtains D in the scaling form

D(s, r, h) ∼ s−τD±(s/|r|−1/σ, h/|r|βδ) , (14.149)

where the mean-field calculation gives τ = 3/2, σ = 1/2, and the universal
scaling function

D±(x, y) =
1√
2π

e−x[1∓(π/4)g±(y)2]2/2 . (14.150)

Extraction of the critical exponents both numerically and via ε-expansion
has been performed in [195, 196, 229, 730–732]. The results on the distribution
of avalanches seem to be confirmed in real experimental magnetic systems.

In summary, the random field Ising model under a varying external mag-
netic field at zero temperature offers an attractive understanding of why the
noise pulses in magnets and in other systems can span a large range of scales:
the reason is that they are probably near a critical point where the hysteresis
loop develops a jump. This model rationalizes the experimental observation
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of power laws as resulting from an anomalously large “critical domain”: un-
like more traditional phase transitions, this model has a large critical range:
4% away from the critical point, one observes six decades of scaling, and
a factor of two away one still has two decades. In this approach, one does
not need mechanisms to tune a system precisely to the critical point as in
self-organized criticality (see Chap. 15). Here, due to the broadness of the
critical region of the disorder critical point, it seems likely that the exper-
imentalists could pick their sample inside this large range without tuning.
The physical mechanism for the existence of such a large critical range is not
obvious. Three contributing factors have been proposed [835]:

1. The critical exponent ν = 1.42 in the random field Ising model, while
it is 0.63 in the three-dimensional Ising model. Thus, getting twice as
close to Rc makes the length spanned by an avalanche grow by a factor
of 2.7, whereas getting twice as close to Tc for the Ising model makes the
correlation length grow only by a factor of 1.55.

2. The size S of an avalanche is more like a volume than a length. Six decades
of scaling in S should be thought of as roughly two decades in length scale.
Actually, since the avalanches are not space filling in three dimensions, the
volume scales as S ∼ ξ1/σν ∼ ξ2.6, so that six decades in size S gives 2.3
decades in the length scale ξ.

3. Three dimensions is “close” to two dimensions. The behavior in three
dimensions is far removed from the mean-field behavior of the model in six
and higher dimensions. The fluctuations are extremely important; in two
dimensions, one believes that they almost completely dominate, perhaps
even preventing an infinite avalanche from ever occurring.

The mechanism has been applied to the breakdown of disordered media
in [1049, 1050].

14.11 “Highly Optimized Tolerant” (HOT) Systems

The acronym HOT stands for highly optimized tolerance and refers to a mech-
anism for generating power law distributions which involves a global opti-
mization principle [140]. It is motivated by optimization processes developed
in engineerings and may also apply to some biological problems. In a nut-
shell, the idea is that an input with characteristic scales may lead to power
law statistics of outputs after a global optimization of the system yield has
been performed. The importance of the global optimization is reminiscent of
the role played by a global conservation law in some version of self-organized
critical models (see Chap. 15). Possible domains of applications are biology
and epidemiology, aeronautical and automotive design, forestry and environ-
mental studies, the Internet, traffic, and power systems.
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14.11.1 Mechanism for the Power Law Distribution of Fire Sizes

To illustrate the HOT global optimization mechanism, let us first formu-
late the simplest possible collective optimization problem. Consider a vari-
able X taking different values x1, . . . , xN with arbitrary but fixed probabil-
ities p1, . . . , pN . Let us assume that X is a function of another parameter r
through the relation

X = Cr−β , (14.151)

where C and β are two constants. The optimization problem consists in
minimizing

L =
N∑

i=1

pixi(ri) (14.152)

with respect to the ri variables, with the constraint
N∑

i=1

ri = κ . (14.153)

Using the method of Lagrange multipliers to solve this optimization problem
with constraint leads to

pi =
D

x
1+1/β
i

, (14.154)

where D is a constant. The global optimization together with the power law
dependence (14.151) leads automatically to a power law distribution with
exponent µ ≡ 1/β. In other words, for a fixed set of probabilities pi’s, the
optimization “compresses” the variables ri’s so that the variables xi’s are
stretched just enough to automatically adjust to a power law with exponent
1/β. In contrast, replacing (14.151) by X = C ln r leads to an exponential dis-
tribution pi ∝ exp (−cxi), where c is a constant. We thus see that the global
optimization together with the power law dependence (14.151) is responsible
for the generation of the power law distribution.

This mechanism is reminiscent of Mandelbrot’s classical result on the
distribution of the length of words in an optimum language [589]. Suppose
that you want to design the optimum language, that is, the optimum set of
frequencies f1, f2, . . . , fn assigned to n words. In an alphabet of d letters, for
instance if we think of English text, the cost of a word might be thought of
as the number of letters plus the additional cost of a space. Hence, a natural
cost for using the i-th word is lnd i ∼ ln i (the logarithm appears by the
mechanism that the number of digits to represent a given number is close to
its logarithm in base 10). The optimum language is expressed by optimizing
the information transmitted, which is the entropy −∑

i fi ln fi of the set
of frequencies, divided by the expected transmission cost

∑
i fi ln i taken as

the average of the lengths of the words. Mandelbrot’s result [589] is that
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frequencies that achieve the optimum correspond to a power law pdf of the
lengths i. Notice that this mechanism is based on two key assumptions: (i)
the cost of the i-th word is assumed to be propotional to ln i and (ii) the use
of the entropy function involving logarithms of the frequencies fi. Thus, the
underlying mechanism involves a combination of logarithms, in the spirit of
the combination of exponentials discussed in Sect. 14.2.2.

Let us now consider a forest fire problem in which spontaneous ignition
(sparks) occurs preferentially in some part of the forest, in other words the
spatial distribution of sparks is not homogeneous. This heterogeneity is an
essential ingredient to obtain power laws as we shall see. To a given geomet-
rical structure of firewalls corresponds a specific size and spatial distribution
of tree clusters. When a spark falls on a tree, the whole connected cluster
of trees delimited by the firewalls bounding it burns entirely. The optimal
management of the forest consists in building firewalls in such a way that
the yield after fires be maximum, in other words that the average destructive
impact of a fire be minimum.

In the presence of an heterogeneous spatial probability density ρ of sparks,
it is clear that the density r of firewalls should not be spatially uniform:
more firewalls are needed in sensitive regions where the sparks are numerous.
The density r of firewalls will thus not be constant after the optimization
process but will adjust to the predefined distribution ρ of sparks. This spatial
distribution ρ of sparks determines the probability pm that a spark ignites
a fire in a given domain m bounded by the fire walls: pm is the sum of ρ over
the cluster. Consider a patch of sm trees whose boundary is a firewall. We
define the average spark density on this cluster by ρm = pm/sm. ρm is thus
the average probability per unit area that a spark falls in any tree of this
patch, burning it to the ground. Conversely, the total probability for a fire
to be ignited over the area sm is pm = ρmsm. Since the typical linear size of
the patch is ∼ s

1/2
m in two dimensions and ∼ s

1/d
m in the more general case of

a d-dimensional space, the length of the surrounding firewill is proportional
to s(d−1)/d

m . Let us also denote c the cost per length (in 2D) or unit area (in
higher dimensions) to construct the firewall. In units where the total area of
the forest is one, the total yield is given by

L = 1 −
N∑

m=1

(ρmsm)sm − c
N∑

m=1

s(d−1)/d
m , (14.155)

N is the total number of clusters defined by the firewalls, which is of course
a function of the firewall configuration. Maximizing the yield L amounts
to find the cluster sizes sm such that ∂L/∂sm = 0, which gives (with the
condition

∑
m sm = 1)

ρm ∼ 1/s1+1/d
m . (14.156)

This result can be interpreted as the probability distribution of a fire of
size sm to occur. A subtlety has to be taken into account: since we deal
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with discrete sizes and because ρm is a power law of sm, expression (14.156)
is actually proportional to the probability for a fire to have a size between
sm and sm + ∆sm, where ∆sm is proportional to sm to ensure a correct
correspondence between a discrete distribution of sizes and the continuous
power law distribution. This gives the interpretation that expression (14.156)
is proportional to the complementary cumulative distribution of fire sizes to
be larger than sm. In the notation of this book, this corresponds to µ =
1 + 1/d. Newman et al. [676] uses a different argument to obtain the same
result, based on a mixture of discrete and continuous notations.

Fig. 14.6. Sample configurations on a 32 × 32 lattice for (a) the random case
near the percolation threshold pc, (b) a HOT grid, and HOT states obtained by
evolution at (c) minimal loss, and (d) a somewhat lower density. Unoccupied sites
are black, and clusters are gray, where darker shades indicate larger clusters. The
designed systems are generated for an asymmetric spatial distribution of hitting
probabilities with Gaussian tails, peaked at the upper left corner of the lattice. If
a spark hits an unoccupied site, nothing burns. When the spark hits an occupied site
the fire spreads throughout the associated cluster, defined to be the connected set
of nearest-neighbor occupied sites. The yield Y is defined as the difference between
tree density and average fire size. Reproduced from [140]

The optimization process with power law cost function provides robust
performance despite the uncertainties quantified by the probabilities ρm’s.
In the forest fire example, the optimal distribution of spatial firewalls is the
result of the interplay between our a priori knowledge of the uncertainty in
the distribution of sparks and the cost resulting from fires. The solutions are
robust with respect to the existence of uncertainties, i.e. to the fact that we
do not know deterministically where sparks are going to ignite; we only know
their probability distribution. In contrast, the spatial geometry of optimal
firewalls is not robust with respect to an error in the quantification of the
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probabilities pi’s. It is not the uncertaintly that is dangerous but errors in
quantifying this uncertainty: a different set of pi’s will lead to the same overall
power law distribution (14.154), but with a very different spatial distribution
of firewalls.

14.11.2 “Constrained Optimization with Limited Deviations”
(COLD)

Newman et al. [676] have shown that the optimal solution (14.156) does not
protect from rare and very large fires that may be disastrous. The reason is
similar to the classic gambler’s ruin, for which optimizing total return leads
to ruin with probability one. To address this issue of the impact of the very
large fires in the tail of their size distribution, as well as to cure the fragility
with respect to mispecification of the probabilities pi, Newman et al. [676]
borrow the concept of “risk aversion” from economic theory. Technically, this
amounts to changing the cost of a fire of size sm from a value proportional
to 1− sm as in (14.155) to a negative utility function u(sm) which decreases
faster than linearly with sm. A convenient mathematical form is u(sm) =
(1 − sm)α/α. The total function to maximize becomes

L(α) =
N∑

m=1

(ρmsm)u(sm) − c

N∑
m=1

s(d−1)/d
m . (14.157)

For α < 1 which expresses risk-aversion, the power law distribution (14.156)
of fire sizes is found to be truncated at large sm. For α < 1, this distribution,
which maximizes L(α < 1) does not maximize evidently L(α = 1) which is
the real yield (in terms of trees): this means that one pays a cost for risk
aversion in terms of yield. This concept of a compromise between return and
risk is at the core of the theory of financial risks and of portfolio theory [605].

14.11.3 HOT versus Percolation

Finally, it is useful to contrast the organizations of trees obtained by the HOT
optimization process and by the standard percolation described in Chap. 12.
In the percolation model, one imagines that trees are planted randomly in
space and, as a function of time, the density p of trees increases. As long as
the density is smaller than the critical value pc at which percolation occurs,
there are only finite clusters of connected trees and any spark falling on
a tree has a minor effect as it destroys only the cluster of trees connected to
the ignited tree. For a density of trees above pc, the trees form spontaneously
a large cluster connecting the different borders of the system. This connecting
cluster is often called the “infinite” percolation cluster. When a spark falls on
one of the trees of this infinite percolating cluster, this has a significant effect
because this cluster contains a finite fraction P∞(p) of the total number of
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trees in the system. This fraction P∞(p) plays the role of the order parameter
of the percolation transition and is characterized by

P∞(p) = 0 , for p < pc , (14.158)
P∞(p) ∝ (p− pc)β , for p ≥ pc , (14.159)

where 0 < β < 1 is the standard notation for the critical exponent of the
order parameter of a critical transition. Thus, for p > pc, there is a probability
proportional to P∞(p) that a spark will trigger a fire which will burn out the
infinite percolation cluster, leading to a yield equal to p − P∞(p) per unit
surface. Since 0 < β < 1, p − P∞(p) has a cusp-like maximum at p = pc.
Thus, if trees are planted according to percolation theory and if the firewalls
are just the boundaries of percolation clusters, we see that the maximum yield
is obtained by the system functioning exactly at the critical point p = pc.
This suggests in passing another mechanism to attract the dynamics of the
percolating system exactly to its critical point, in the sense of Sect. 15.4.2.

The optimal yield p − P∞(p) of the percolation solution should be con-
trasted with the result of the HOT optimization process, which allows the
system to function at a density of trees significantly higher than pc by opti-
mizing the firewalls in response to the density of sparks.
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15.1 What Is Self-Organized Criticality?

15.1.1 Introduction

The study of out-of-equilibrium dynamics (e.g. dynamical phase transitions)
and of heterogeneous systems (e.g. spin-glasses) has progressively made pop-
ular the concept of complex systems and the importance of systemic ap-
proaches: systems with a large number of mutually interacting parts, ex-
changing energy, matter or information with their environment, self-organize
their internal structure and their dynamics with novel and sometimes sur-
prising macroscopic (“emergent”) properties. The complex system approach,
which involves “seeing” inter-connections and relationships i.e. the whole pic-
ture as well as the component parts, is nowadays pervasive in modern control
of engineering devices and business management. It also plays an increasing
role in most of the scientific disciplines, including biology (biological net-
works, ecology, evolution, origin of life, immunology, neurobiology, molecular
biology, etc), geology (plate-tectonics, earthquakes and volcanoes, erosion
and landscapes, climate and weather, environment, etc.), economy and so-
cial sciences (including cognition, distributed learning, interacting agents,
etc.).

A central property of a complex system is the possible occurrence of
coherent large-scale collective behaviors with a very rich structure, result-
ing from the repeated non-linear interactions among its constituents: the
whole turns out to be much more than the sum of its parts. Punctuated dy-
namics seems to be an essential dynamical process for systems that evolve
and become complex, with a specific behavior that is strongly contingent
on its history. The punctuations correspond to rare and sudden transitions
that occur over time intervals that are short compared to the characteris-
tic time scales of their posterior evolution. Such large events express more
than anything else the underlying “forces” usually hidden under almost per-
fect balance. They provide the potential for a better scientific understand-
ing of complex systems. These crises have important societal impacts and
range from large natural catastrophes such as earthquakes, volcanic erup-
tions, hurricanes and tornadoes, landslides, avalanches, lightning strikes, me-
teorite/asteroid impacts, catastrophic events of environmental degradation,
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to the failure of engineering structures, crashes in the stock market, social
unrest leading to large-scale strikes and upheaval, economic drawdowns on
national and global scales, regional power blackouts, traffic gridlocks, dis-
eases and epidemics, etc. It is essential to realize that the long-term behav-
ior of these complex systems is often controlled in large part by these rare
events.

Self-organized criticality (SOC) views these large events as belonging to
the natural non-linear organization of complex systems. Large events are seen
to result from

• the long-range power law decay of spatial and temporal correlations and
• the heavy tail power law distributions of even sizes.

Such properties are also shared by equilibrium systems at a critical phase
transition [44].1 The burst events in the self-organized critical state are
critical in the sense of a nuclear chain reaction process. In a supercrit-
ical system, a single local event, like the injection of a neutron, leads
to an exponentially exploding process. A sub-critical process has expo-
nentially decaying activity, always dying out. In the critical state, the
activity is just able to continue indefinitely, with a power law distribu-
tion of stopping times, reflecting the power law correlations in the sys-
tem, exactly like the branching process at its critical value discussed in
Chap. 13.

Self-organized criticality describes complex systems that are situated at
the delicately balanced edge between order and disorder in a self-organized
critical state. Only at the critical state, does the compromise between order
and fluctuations exist that can qualify as truly complex behavior. Due to very
large correlations, the individual degrees of freedom cannot be isolated. The
infinity of degrees of freedom interacting with one another cannot be reduced
to a few, which is what makes critical systems complex.

In the literature, the term “self-organized criticality” has not always been
used with the same meaning and, in some cases, it has been misused. To
be useful, this concept must be specified accurately and related to a well-
defined situation based on physical mechanisms rather than on observations.
In particular, a system is not self-organized critical solely because it exhibits
a power law distribution of event sizes, since many other mechanisms lead to
such signatures as discussed in Chap. 14. Systems which have been proposed
to result from a self-organized critical dynamics include fault networks and
seismicity, river networks, propagation of forest fires and biological evolution
processes [44, 463]. It is still a debated question whether SOC indeed ap-
plies to any of these systems and what are the specific underlying physical
mechanisms.

1 For a different view point combining SOC with the concept that the largest
extreme events are potentially predictable outliers, see [435] and the contribution
of the author in [666], [883] and [884]).
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15.1.2 Definition

In the broadest sense, SOC refers to the spontaneous organization of a system
driven from the outside into a globally stationary state, which is characterized
by self-similar distributions of event sizes and fractal geometrical properties.
This stationary state is dynamical in nature and is characterized by statistical
fluctuations, which are refered generically to as “avalanches”.

The term “self-organized criticality” contains two parts. The word “crit-
icality” refers to the state of a system at a critical point at which the corre-
lation length and the susceptibility become infinite in the infinite size limit
(see Chap. 9). The label “self-organized” is often applied indiscriminately
to pattern formation among many interacting elements. The concept is that
the structuration, the patterns and large scale organization appear spon-
taneously. However there is some fuzziness in what is meant by “sponta-
neously”. In an Ising system, the magnetization appears at the large scale
from the interactions between the individual spins. Nevertheless, we do not
refer to this situation as self-organized while it is in a sense. The notion of
self-organization is thus relative to the absence of control of parameters that
are considered artificial and thus depends to some degree on both the histor-
ical maturation of the scientific field and on the level of understanding of the
underlying mechanisms. In SOC, there is a greater specificity as the emphasis
is put on the mechanisms that maintain the system in a critical state.

Many different views have been expressed on SOC since the introduc-
tion of the sandpile model by Bak, Tang and Wiesenfeld in 1987 [46]. There
is no consensus because the lack of a general understanding prevents the
construction of a unifying framework. It is the opinion of the present au-
thor that the search for a degree of universality similar to the one found
for thermal critical phase transitions is illusory and that the richness of out-
of-equilibrium systems lies in the multiciplicity of mechanisms generating
similar behaviors. Even for the same model and within the same mechanism,
authors sometimes diverge with respect to the identification of the relevant
variable or mechanism, which may reflect the fact that there are several pos-
sible descriptions of a self-organizing system (see below the parallel version
of the Bak–Sneppen model for which we propose to see the sand flux h as
an “order” parameter [894, 901] while Vespignani et al. use it as a control
parameter [168, 169, 234, 655, 987–989]).

What may turn out to be “universal” is the resulting hierarchical orga-
nization, involving many scales, common to complex systems. In addition,
all scales do not play the same role; a set of special discrete levels often
play special roles in the global hierarchy. Examples are found in meteorology
(dust devils, tornadoes, cyclones, large-scale weather systems), in the tec-
tonic crust (joints, small faults, main faults, plate boundaries), in economy
(traders, companies, countries, currency blocks), etc. In artificial intelligence,
this is used in the development of hierarchical computational strategies. In
Statistical Physics, hierarchies have been shown to appear dynamically due
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to a spontaneous breakdown of continuous scale invariance into discrete scale
invariance [878].

15.2 Sandpile Models

15.2.1 Generalities

The concept of Self-Organized Criticality (SOC) was introduced by Bak, Tang
and Wiesenfeld in 1987 [46] using the example of a sandpile. If a sandpile is
formed on a horizontal circular base with any arbitrary initial distribution
of sand grains, a sandpile of fixed conical shape (steady state) is formed by
slowly adding sand grains one after another (external drive). In the steady
state, the surface of the sandpile makes on the average a constant angle with
the horizontal plane, known as the angle of repose. The addition of each
sand grain results in some activity on the surface of the pile: an avalanche
of sand mass follows, which propagates on the surface of the sandpile. In
the stationary regime, avalanches are of many different sizes and Bak, Tang
and Wiesenfeld argued that they would have a power law distribution. If
one starts with an initial uncritical state, initially most of the avalanches are
small, but the range of sizes of avalanches grows with time. After a long time,
the system arrives at a critical state, in which the avalanches extend over all
length and time scales [44, 227, 463].

Laboratory experiments on sandpiles, however, have not in general found
evidence of criticality in sandpiles due to inertial and dilatational effects [661],
except for small avalanches [409] or with elongated rice grains [313, 588] where
these effects are minimized: indeed, small avalanches have small velocities and
thus negligible kinetic energy and they activate only the first surface layer of
the pile; elongated rice grains slip also essentially at the surface as a result of
their anisotropy, thus minimizing the dilatational effects; they also build up
scaffold-like structures which enhance the threshold nature of the dynamics.

Theoretically, a large number of discrete and continuous sandpile models
have been studied. Among them, the Abelian sandpile model is the simplest
and most popular [46, 226]. Other variants include Zhang’s model which
has modified rules for sandpile evolution [1057], a model for Abelian dis-
tributed processors and other stochastic rule models [227], the Eulerian Walk-
ers model [749] and the Takayasu aggregation model [941, 942].

15.2.2 The Abelian Sandpile

In the abelian sandpile model, each lattice site is characterized by its height h.
Starting from an arbitrary initial distribution of heights, grains are added one
at a time at randomly selected sites n: hn → hn +1. The sand column at any
arbitrary site i becomes unstable when hi exceeds a threshold value hc and
topples to reduce its height to hi → hi − 2d, where d is the space dimension
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of the lattice. The 2d grains lost for the site i are redistributed on the 2d
neighbouring sites {j} which gain a unit sand grain each: hj → hj + 1. This
toppling may make some of the neighbouring sites unstable. Consequently,
these sites will topple themselves, possibly making further neighbors unstable.
In this way, a cascade of topplings propagate, which finally terminates when
all sites in the system become stable. Figure 15.1 shows a particular example
of an avalanche on a square lattice of size 3×3 with open boundary conditions
and with hc = 4. When this avalanche has stopped, the next grain is added
on a site chosen randomly. This condition is equivalent to assuming that the
rate of adding sand is much slower than the natural rate of relaxation of
the system. As we said above, the large separation of the driving and of the
relaxation time scales is usually considered to be a defining characteristic of
SOC. Finally, the system must be open to the outside, i.e. must dissipate
energy or matter for instance. An outcoming flux of grains must balance the
incoming flux of grains, for a stationary state to occur. Usually, the outcoming
flux occurs on the boundary of the system: even if the number of grains is
conserved inside the box, it loses some grains at the boundaries. Even in a very
large box, the effect of the dissipating boundaries are essential: increasing the
box size will have the effect of increasing the transient regime over which the
SOC establishes itself; the SOC state is built from the long-range correlations
that establish a delicate balance between internal avalanches and avalanches
that touch the boundaries [623].

Fig. 15.1. An avalanche of the abelian sandpile model, generated on a 3×3 square
lattice with open boundary conditions and hc = 4. A sand grain is dropped on
a stable configuration at the central site. The avalanche created has size s = 6, area
a = 6, life-time t = 4 and radius r =

√
2. Reproduced from [596]

The simplicity of the abelian model is that the final stable height config-
uration of the system is independent of the sequence in which sand grains
are added to the system to reach this stable configuration [226] (hence the
name “abelian” refering to the mathematical property of commutativity). On
a stable configuration C, if two grains are added, first at i and then at j, the
resulting stable configuration C′ is exactly the same as in the case where the
grains were added first at j and then at i. In other sandpile models, where the
stability of a sand column depends on the local slope or the local curvature,
the dynamics is not abelian, since toppling of one unstable site may convert
another unstable site to a stable site. Many such rules have been studied in
the literature [488, 595].
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As shown in Fig. 15.1, an avalanche is a cascade of topplings of a number
of sites created by the addition of a sand grain. The strength of an avalanche
can be quantified in several ways:

1. size (s): the total number of topplings in the avalanche,
2. area (a): the number of distinct sites which toppled,
3. life-time (t): the duration of the avalanche and
4. radius (r): the maximum distance of a toppled site from the origin.

These four different quantities are not independent and are related to
each other by scaling laws. Between any two such measures x, y belonging to
the set {s, a, t, r}, one can define a mutual dependence by the scaling of the
expectation of one quantity y as a function of the other x:

〈y〉 ∼ xγxy . (15.1)

These exponents are related to one another, e.g.,

γts = γtrγrs . (15.2)

For the abelian sandpile model, it can be proven that the avalanche clusters
cannot have any holes and in addition that γrs = 2 in two dimensions, i.e.

〈s〉 ∼ r2 . (15.3)

It has also been shown that γrt = 5/4, i.e. [581]

〈t〉 ∼ r5/4 . (15.4)

A better way to estimate the exponents γtx is to average over the inter-
mediate values of the size, area and radius at every intermediate time step
during the growth of the avalanche [596]. One can calculate all the criti-
cal exponents for the directed version of the model in all dimensions. For
the undirected case, the model is related to the Q → 0 limit of the Potts
model [226], where Q is the number of states that the Potts spin can take
(see Chap. 11). Recall that the limit Q → 1 maps the Potts model onto
the percolation model as recalled in Chap. 12. This shows a deep relation-
ship between certain SOC models and standard criticality [894, 901]. This
mapping to the Q → 0 limit of the Potts model enables exact calculation
of some exponents in two dimensions, and there are some conjectures about
others [226].

It was also shown that every recurrent configuration of the abelian model
on an arbitrary lattice has a one-to-one correspondence to a random spanning
tree graph on the same lattice. A spanning tree is a sub-graph of a lattice,
having all sites and some bonds of that lattice. It has no loop and therefore,
between any pair of sites, there exists a unique path through a sequence of
bonds. There can be many possible spanning trees on a lattice. These trees
have interesting statistics in a sample where they are equally likely. There
are exactly the same number of distinct spanning trees as the number of
recurrent Abelian sandpile model configurations on any arbitrary lattice [581].
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Given a stable height configuration, there exists a unique prescription to
obtain the equivalent Spanning tree. This is called the Burning method [581].
A fire front, initially at every site outside the boundary, gradually penetrates
(burns) into the system using a deterministic rule. The paths of the fire front
constitute the spanning tree. A fully burnt system is recurrent, otherwise it
is transient.

Spanning trees exhibit remarkable properties. Let us randomly select such
a tree and then randomly pick up one of the unoccupied bonds and occupy
it. It thus leads to the formation of a loop of length �. It has been shown
that these loops have the length distribution D(�) ∼ �−1−µ, with µ = 3/5.
Similarly, if a bond of a spanning tree is randomly selected and deleted,
then the spanning tree is divided into two fragments. The sizes of the two
generated fragments follow a probability distributionD(a) ∼ a−1−µ with µ =
3/8 [597]. This is an illustration of the fact that geometrical objects defined
from simple connectivity rules often embody a non-trivial scale invariant
structure. A similar situation occurs in the percolation model close to the
critical point (Chap. 12).

Quite generally, the finite size scaling form for the probability distribution
function for any measure x ∈ {s, a, t, r} is

P (x) ∼ x−τxfx

( x

Lσx

)
. (15.5)

The exponent σx determines the variation of the cut-off of the quantity x
with the system size L. Scaling relations like γxy = (τx − 1)/(τy − 1) connect
any two measures. The scaling assumptions (15.5) for the avalanche sizes
have not been demonstrated and may be open to doubt [488]. It has been
argued that a multifractal distribution is better suited [217, 949] due to the
dominance of rare outflowing avalanches. This seems to be due to the effect
of rare large avalanches dissipating at the border which strongly influence the
statistics.

Many different sandpile models have been studied. However, the precise
classification of various models into different universality classes in terms of
their critical exponents is not yet available. Exact values of all the critical
exponents of the most widely studied Abelian model are still not known
in two dimensions. Some effort has also been made towards the analytical
calculation of avalanche size exponents [96, 533, 750]. Numerical studies for
these exponents are found to give scattered values. Not much work has been
done to study the version of sandpile models with threshold dynamics acting
on their slopes or the curvature. Another still unsettled question is whether
the conservation of the grain number in the toppling rules is a necessary
condition to obtain a critical state. A difficulty that plagues this question
is that extremely long transients occur during which numerical estimates
give the impression of stationarity while, in reality, the system is still slowly
evolving.



402 15. Self-Organized Criticality

15.3 Threshold Dynamics

15.3.1 Generalization

An important sub-class of SOC is constituted by out-of-equilibrium systems
driven with constant rate and made of many interactive components, which
possess the following fundamental properties:

1. a highly nonlinear behavior, namely, essentially a threshold response,
2. a very slow driving rate,
3. a globally stationary regime, characterized by stationary statistical prop-

erties, and
4. power distributions of event sizes and fractal geometrical properties (in-

cluding long range correlations).

The threshold plays a crucial role as a local rigidity which allows for
a separation of time scales and, equally important, produces a large num-
ber of metastable states. The dynamics takes the system from one of these
metastable states to another. It is believed that separation of time scale and
metastability are essential for the existence of scale invariance in this class
of systems. These concepts will be illustrated in details below with specific
models.

The importance of the threshold dynamics (which is however not nec-
essary to observe SOC in some systems, see below) is exemplified by the
mapping of the stochastic critical forest-fire model [245] into a determinis-
tic threshold model presenting the same statistical properties [846]. In the
initial definition of the forest-fire model, no threshold appears explicitly and
the separation of time scales is put in by hand by tuning the rates of two
stochastic processes which act as driving forces for the model. The forest-
fire [245] is defined on a d-dimensional square lattice. Empty sites are turned
into “trees” with a probability p per site in every time step. A tree can catch
fire stochastically when hit by “lightning”, with probability f at each time
step, or deterministically when a neighbouring site is on fire. The model is
found to be critical in the limit p→ 0 together with f/p→ 0. This model is
a generalization of a model first suggested by Bak, Chen and Tang [47] which
is identical to the present model [245] except that it does not contain the
stochastic ignition by lightning. The Bak, Chen and Tang system is not crit-
ical (in less than three dimensions). Thus the introduction of the stochastic
lightning mechanism appeared to be necessary, at least in two dimensions,
for the model to behave critically.

This model can be recast into a deterministic auto-ignition model. This
model is identical to the model of [245], except that the spontaneous ignition
probability f is replaced by an auto-ignition mechanism by which trees ignite
automatically when their age T after inception reaches a value Tmax. Choos-
ing this value suitably with respect to p gives a system with exactly the same
behavior and statistical properties as the stochastic forest fire model [245].
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Thus, one stochastic driving process has been removed and a threshold intro-
duced, while maintaining the SOC state; this model also displays explicitly
the relationship between threshold dynamics and the separation of time scales
so much needed for the SOC state.

The auto-ignition model can be turned into a completely deterministic
critical model by eliminating the stochastic growth mechanism. In the de-
terministic model, called the regen FF in [846], each cell is given an integer
parameter T which increases by one at each time step. If T > 0, the cell
is said to be occupied, otherwise it is empty (or regenerating). The initial
configuration is a random distribution of T -values and fires. Fires spread
through nearest neighbours and the auto-ignition mechanism is again oper-
ative so that a tree catches fire when its T reaches Tmax. However, in this
model, when a tree catches fire, the result is a decrement of Tregen from its
T -value. Note that when Tregen < Tmax, a cell may still be occupied after it
has been ignited. The parameters Tmax and Tregen can be thought of as hav-
ing a qualitatively reciprocal relationship with f and p respectively (in terms
of the average “waiting time” for spontaneous ignition and tree regrowth),
though this is less straightforward in the latter case because trees are not al-
ways burned down by fire. It is evident that Tregen also sets, and allows direct
control of, the degree of dissipation of the T -parameter in the system. The
forest-fire model, that was thought to belong to a different class, is now seen
not fundamentally different from other threshold models discussed below.

Despite the many complexities concerning their initiation and propaga-
tion, real forest fires have been found to exhibit power-law frequency–area
statistics over many orders of magnitude [582]. A simple forest fire model of
the class discussed above exhibits similar behavior [582]. One practical im-
plication of this result is that the frequency–area distribution of small and
medium fires can be used to quantify the risk of large fires, as is routinely
done for earthquakes. However, there are interesting differences in different
parts of the world that we mention briefly. In many areas around the world,
the dry season sees numerous large wildfires, with sometimes deaths of fire-
fighters and people, the destruction of many structures and of large forests.
It is widely accepted that livestock grazing, timber harvesting, and fire sup-
pression over the past century have led to unnatural conditions – excessive
biomass (too many trees without sufficient biodiversity and dead woody ma-
terial) and altered species mix – in the pine forests of the West of the U.S.A.,
in the Mediterraneen countries and elsewhere. These conditions make the
forests more susceptible to drought, insect and disease epidemics, and other
forest-wide catastrophes and in particular large wildfires [356]. Interest in
fuel management, to reduce fire control costs and damages, has thus been
renewed with the numerous, destructive wildfires spread across the West of
the U.S.A. The most-often used technique of fuel management is fire sup-
pression. Recent reviews comparing Southern California on one hand, where
management is active since 1900, and Baja California (north of Mexico) on
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the other hand where management is essentially absent (“let-burn” strategy)
highlight a remarkable fact [628, 650]: only small and relatively moderate
patches of fires occur in Baja California, compared to a wide distribution of
fire sizes in Southern California including huge destructive fires. The selective
elimination of small fires (those that can be controlled) in normal weather in
Southern California restricts large fires to extreme weather episodes, a pro-
cess that encourages broad-scale high spread rates and intensities. It is found
that the danger of fire suppression is the inevitable development of coarse-
scale bush fuel patchiness and large instance fires in contradistinction with
the natural self-organization of small patchiness in left-burn areas. Thus,
more work is needed before extrapolating naively the power-law frequency–
area statistics, which may give a misleading sense of simplicity while in fact
hiding the fact that it may result from mixing many different regions. The
implications for policy management of forests as well as the lessons that can
be learned for other complex systems, including stock markets, are discussed
in [887].

15.3.2 Illustration of Self-Organized Criticality
Within the Earth’s Crust

It has been noticed early after the introduction of the concept of SOC by Bak,
Tang and Wiesenfeld [46] that the earth’s crust is one of the best systems
that obeys the four conditions 1–4 stated above [45, 373, 860, 869, 893, 917]
and has since then often been proposed as a paradigm of SOC (see [579, 869]
for reviews).

• The threshold response can be associated with the stick–slip instability of
solid friction or to a rupture threshold thought to characterize the behavior
of a fault upon increasing applied stress.

• The slow driving rate is that of the slow tectonic deformations thought
to be exerted at the borders of a given tectonic plate by the neighboring
plates and at its base by the underlying lower crust and mantle. The large
separation of timescales between the driving tectonic velocity (∼ cm/yr)
and the velocity of slip (∼ m/s) makes the crust problem maybe the best
natural example of self-organized criticality. It is important to realize that
these two ingredients must come together.
Let us imagine in contrast a system composed of elements with threshold
dynamics, but which is driven at a finite rate compared to the typical time
scale of its response. In the earthquake problem, this would correspond to
plates moving at a velocity which is not much smaller than the rupture front
velocity of brittle failure. In this case, the crust would rupture incessantly
with earthquakes which could not be separated and which would create
an average rapid plastic deformation flow of the crust. The frequency-size
distribution would disappear and the system would not be in a SOC state
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but rather in a kind of plastic turbulence. Artificial block–spring models
of rapidly driven seismicity can be used to illustrate this idea [128, 141].
Alternatively, consider a system driven very slowly, with elements which do
not possess a threshold but only a strong, continuous, nonlinear response
without hysteresis or jump behavior. Due to the very slow driving at a given
instant, only a small increment is applied to the system which responds
adiabatically without any interesting behavior such as earthquakes with
brittle rupture (“slow” earthquake regime? [567]).
It is thus the existence of the threshold that enables the system to accu-
mulate and store the slowly increasing stress until the instability is reached
and an earthquake is triggered. In turn, the slow tectonic driving allows
for a response which is decoupled from the driving itself and which reflects
the critical organization of the crust.

• The stationarity condition ensures that the system is not in a transient
phase and distinguishes the long-term organization of faulting in the crust
from, for instance, irreversible rupture of a sample in the laboratory and
thus distinguishes SOC from the mechanism of avalanches associated with
first-order transitions in disordered systems discussed in Chap. 14.

• The power laws and fractal properties reflect the notion of scale invariance;
namely, measurements at one scale are related to measurements at another
scale by a normalization involving a power of the ratio of the two scales.
These properties are important and interesting because they character-
ize systems with many relevant scales and long-range interactions, which
probably exist in the crust.

SOC is remarkable in the way it emerges. The spatial correlations be-
tween different parts of the system do not appear to be due to a pro-
gressive diffusion from a nucleus as in standard critical phase transitions
but result from the repetitive action of rupture cascades. In other words,
within the SOC hypothesis, different portions of the crust become corre-
lated at long distances by the action of earthquakes which “transport” the
stress field fluctuations in the different parts of the crust many times back
and forth to finally organize the system. This physical picture is substanti-
ated by various numerical and analytical studies of simplified models of the
crust [45, 166, 184, 185, 907, 1057].

Actually, the existence of long-range height–height correlations in sandpile
models are not necessary ingredients for the existence of a power law pdf of
avalanche sizes. This can be seen from the fact that mean-field approaches
to SOC [168, 169, 987] have no explicit reference to the correlation of the
height or slope fields. In addition, the simple directed sandpile model in any
dimension d studied by Dhar and Ramaswamy [228] has a power law pdf
of avalanche sizes but no correlations in heights. Furthermore, a mean-field
theory of a sandpile on a directed Bethe lattice does not give any height
correlations, since the steady-state has a product measure [729].
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15.4 Scenarios for Self-Organized Criticality

15.4.1 Generalities

Self-organized criticality was initially introduced with the hope of provid-
ing a universal and unifying mechanism for power laws and 1/f noise in
nature. It is now clear that SOC may result from several distinct physical
mechanisms. Similarly to the existence of many different mechanisms for the
generation of power laws discussed in Chap. 14, the mechanism by which an
open system self-organizes into a state with no characteristic scales is not
unique. We are going to discuss several important mechanisms which have
been studied in the literature. It is now understood qualitatively that there
is a class of models exhibiting SOC as a result of the tendency for their el-
ements to synchronize [105, 172, 182, 183, 338]. This tendency is however
frustrated by constraints such as open boundary conditions [105, 172, 182,
183, 290, 338, 368, 457, 623, 857] and quenched disorder [908] which lead to
a dynamical regime at the edge of synchronization, the SOC state. Another
class, the so-called extremal models, exhibits SOC due to the competition be-
tween local strengthening and weakening due to interactions [713]. In a third
class of models, SOC results from the tuning of the order parameter of a sys-
tem exhibiting a genuine critical point to a vanishingly small, but positive
value, thus ensuring that the corresponding control parameter lies exactly at
its critical value for the underlying depinning transition [894, 901]. Another
class consists of multiplicatively driven systems, such as spring–block models
driven by temporally increasing spring coefficients [558, 559]. Due to its mul-
tiplicative driving, criticality occurs even with periodic boundary conditions
via a coarsening process, similar to spinodal decomposition (see Chap. 9).
The observed behavior should be relevant to a class of systems approaching
equilibrium via a punctuated threshold dynamics. Conservation laws have
also been conjectured to be essential for a class of SOC systems [378, 857]. In
some systems [46, 139, 170, 488], the scale invariance can be shown to follow
from a local conservation law (sand grains are conserved except at the bound-
aries of the pile) [581]. In this sense, the origins of long range correlations
in SOC systems with conservation are well understood, though not all expo-
nents have been calculated analytically. Let us also mention the intringuing
suggestion by Obukhov [698] that SOC can be seen to result from non-linear
interactions between Goldstone modes. Recall that Goltstone modes are the
low-frequency and long-wavelength transverse fluctuations of a system that
attempts to restore a broken symmetry such as a global translational or ro-
tational invariance. As a consequence, the Goldstone modes usually exbibit
scaling properties. If they interact non-linearly with scale free interactions,
they can lead to self-similar spatial and temporal behavior. Let us finally
mention the proposal that SOC results from a diffusive dynamics in which
the diffusion coefficient exhibits a singular behaviorD ∼ (hc−h)−φ. As a con-
sequence of the acceleration of diffusion close to hc, the field h is attracted
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to hc and the diverging D leads to a broad distribution of fluctuation ampli-
tudes [139]. Actually, one can also view the problem with the reverse logic:
when a system exhibits SOC, its phenomenological description at large scales
in terms of a diffusive field necessitates a singular behavior of the effective
diffusion coefficient. This scenario thus has more descriptive than explanatory
power.

15.4.2 Nonlinear Feedback of the “Order Parameter”
onto the “Control Parameter”

Maybe the simplest idea to begin understanding SOC is through the pro-
cess of artificially forcing standard critical transitions into a self-organized
state [311, 872]. In Chap. 9, we have recalled that a critical phase transition
is characterized by a so-called “order parameter” (OP), say the magnetization
in a magnetic or Ising spin system, as a function of a “control parameter”
(CP), the temperature. A critical phase transition is characterized by the
existence of a critical value CPc of the control parameter, such that the OP
goes continuously from zero above CPc to a non-zero value below CPc. Right
at CPc, the system is critical, i.e., it exhibits fluctuations at all length scales
which are reflected into a singular behavior of thermodynamic properties. One
has thus to tune the CP close to CPc to observe this self-similar structure.

At any given time, a system undergoing a critical phase transition has
a fixed CP. In order to transform such a critical phase transition into a SOC
state, the idea is to introduce a genuine dynamics on the CP and OP such
that the OP exerts a non-linear feedback on the CP, this feedback being cho-
sen such that the CP is attracted to the special critical value CPc. How is it
possible to recognize CPc in a natural way and make it attractive? Indeed,
CPc is a number whose value depends on arbitrary units. One thus needs an
absolute measure of the distance to the critical point. The trick is to realize
that, at CPc, the correlation length describing the typical spatial size of the
fluctuations of the OP diverges. The susceptibility also diverges and thus of-
fers another probe of the approach of the critical point. The idea is to imagine
a feedback process of the OP on the CP whose amplitude is controlled by
the spatial correlation length ξ or the susceptibility χ. This program has led
to thought-experiments in which the correlation length is measured by some
probing radiation by scattering methods or some electronic feedback using
a microprocessor or analog device which push the temperature or analog con-
trol parameter to that value where the susceptibility or the correlation length
is a maximum. The practical realization of the feedback thus corresponds to
an optimization of the response of the system under the action of a probe
or a disturbance. Possible implementations are for liquid–vapor and binary
demixing critical points, the 4He superfluid transition, magnetic systems, and
superfluid transitions [311].

A clever independent implementation of this idea defines the “self-or-
ganized branching process” (SOBP) introduced by Zapperi et al. [1048]. In
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the mean-field description of the Bak–Tang–Wiesenfeld sandpile model, one
neglects correlations, which implies that avalanches do not form loops and
hence spread as a branching process. In the SOBP, an avalanche starts with
a single active site, which then relaxes with probability p, leading to two new
active sites. With probability 1 − p, the initial site does not relax and the
avalanche stops. If the avalanches does not stop, the procedure is repeated for
the new active sites until no active sites remain. The parameter p is thus the
probability that a site relaxes when it is triggered by an external input. For
the SOBP, there is a critical value pc = 1/2 such that for p > pc the proba-
bility to have an infinite avalanche is nonzero, while for p < pc all avalanches
are finite. Thus, p = pc corresponds to the critical case, where avalanches
are power law distributed. However, this fine-tuning of the control parame-
ter p in the branching model cannot be the explanation of the occurrence of
SOC, where the critical state is approached dynamically without the need
to fine-tune any parameter. In order to resolve this paradox, Zapperi et al.
introduce a feedback of the order parameter on the control parameter p. As
shown in Sect. 15.4.4 and in Fig. 15.2, it is natural to think of the order
parameter as the flux J(t) of grains out of the sandpile, that is, the number
of grains leaving the system at time step t. The idea of Zapperi et al. [1048]
is that, if J(t) = 0, the control parameter p should increase as more grains
are stored, making the system more prone to local instabilities. In contrast,
if J(t) > 1, the system looses grains to the outside, make it more stable; this
should lead to a smaller p(t + 1). This concept is captured by the following
equation:

p(t+ 1) = p(t) +
1 − J(p(t), t)

N
, (15.6)

where N is the total number of sites. The notation J(p(t), t) reminds us that
the flux of grains is also dictated by the instantaneous value of the control
parameter. Using the branching model on a tree with n generations, we have
N = 2n+1−1. The statistical average of the flux is simply 〈J(p(t), t)〉 = (2p)n

(one factor 2p per generation equal to the probability p to branch times
the number 2 of new branches per generation as shown in Sect. 13.1). We
can thus write J(p(t), t) = (2p)n + η(p, t), where the “noise” η describes
the fluctuations around the average. Taking the continuous limit of (15.6)
gives

dp
dt

=
1 − (2p)n

N
+
η(p, t)
N

. (15.7)

By linearizing this expression, it is easy to see that the fixed point pc = 1/2
is attractive and stable, thus rationalizing SOC in this SOBP as due to the
feedback of the order parameter J onto the control parameter p. The distri-
bution of avalanche sizes can then be calculated by standard techniques in
branching processes using generating functions [404]. Not surprisingly, mean-
field exponents are found, such as τ = 3/2 for the pdf of avalanche sizes:
P (s) ∼ 1/sτ [1048].
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Several previous works [560, 774] have used a method to determine the
critical percolation concentration which uses a similar feedback procedure
(D. Stauffer, private communication): occupy a lattice with some probabil-
ity p and check if it percolates. If yes, decrease p by δp, if not increase p by
δp. Then, occupy the lattice again using the same sequence of random num-
bers and the new p. Then check and decrease δp by a factor 2, and change
p again by the new δp. Thus, in a square site problem (pc = 0.593...), one
may obtain the sequence (starting with p = 1/2, δp = 1/4): p = 1/2, no;
p = 3/4, yes; p = 5/8, yes; p = 9/16, no... This is an exponentially efficient
iteration to determine pc for one fixed configuration. The method has been
called “Hunting the Lion” by A. Aharony: you move in the direction where
you hear the lion roar, the lion being here the “infinite” percolating cluster.

Solomon et al. [859] have recently introduced a self-organized critical dy-
namics that converges to the percolation critical point, which is similar to the
feedback method [311, 872]. The model intends to describe the organization
of social imitative processes, such as in the decision to go see a new movie.
The decision by a person i to go see the movie is supposed to depend on
two variables: the quality q of the movie and the viewer’s preference pi; if
pi ≥ q, the person goes to see the movie and does not go otherwise. In their
Monte Carlo simulations of L × L square lattices, pc = 0.593, and they re-
strict themselves to the simplest dynamics: the quality of the movie increases
by δq if no cluster spans from top to bottom, while it decreases by δq oth-
erwise. The viewer’s preference pi, initially distributed randomly between 0
and 1, changes by ±δp depending on whether agent i went to the movie or
skipped it. For δp = 0, δq > 0, the quality q moves to the usual percolation
threshold. For δp > 0, δq = 0, the pi distribution drifts towards a single
peak centered on the fixed q value, taken equal to 0.5 (no spanning cluster)
or 0.593 (some spanning clusters). If both δp and δq are positive, pi and q
drift towards pc = 0.593, even if the initial q was 0.5. Thus, generalizing
invasion percolation, this dynamic percolator shows self-organized critical-
ity: whereas in usual percolation, one has to put in 0.593 as the percolation
threshold, the present social percolation model drifts towards this critical
point automatically via the global feedback process. This model is offered
as a possible explanation for the alternation of hits and failures rather than
a featureless distribution of partial successes in certain markets such as toys,
gadgets, movies industries, but also in the adoption of technological changes,
of political and economical measures, and in the political arena.

15.4.3 Generic Scale Invariance

Hwa and Karder [443–445] and Grinstein et al. [376, 378] have used the
field theoretical approach to model sandpiles and more generally a class of
SOC systems that have eventually been coined as exhibiting “generic scale
invariance”. The philosophy of field theory is to search for the optimal repre-
sentation of the system to be studied in which scale transformations used in
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the renormalization group approach (Chap. 11) become the simplest. Field
theory makes strong use of the concept of “universality” according to which
most microscopic details are not important in determining the large scale
properties. From the very beginning, field theory gets rid of such details as
the microscopic network structures, complicated interactions and so on, by
keeping only a few relevant interactions. The price to pay is that, by construc-
tion, one looses all information on those ingredients that are not “universal”
and the mathematical treatment that ensues is usually limited to some kind
of perturbative approach in terms of one or a few interaction coupling terms.

In this spirit, the field theoretical approach to sandpiles consists in iden-
tifying the relevant coarse-grained dynamical parameter, namely the altitude
h(x, t) at point x and at time t. The simplest approach consists of modeling
the coupling between neighboring sites by a diffusion process described by

∂h

∂t
= −1

τ
h+ ν∇2h+ η(x, t) , (15.8)

where η(x, t) is a Gaussian noise without correlations

〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′) , (15.9)

and the current is j = −ν∇h. The criticality in this system is reached when
1/τ = 0, i.e. when there is no local damping and the relaxation occurs globally
by diffusing over the whole system. In this case, the susceptibility of the
system in the Fourier space is defined by

χ(k) ≡ 〈|ĥ(k, t)|2〉 ∼ k−2 , (15.10)

leading to the standard dependence 1/xd−2 of the Green function in d di-
mensions of a diffusive system. Simple diffusion with white noise driving is
scale invariant.

A sandpile or any other system with a threshold relaxation has a highly
non-linear behavior. In field theory, the idea is to replace the specific relax-
ation rules with thresholds by effective non-linear terms that are introduced
in (15.8). The mathematical form of these terms are determined by prin-
ciples of simplicity and symmetry. Hwa and Kardar [443–445] have shown
that the leading non-linear term in increasing powers of the field h(x, t) in
an anisotropic sandpile presenting a prefered direction e for the sand flow is
∇‖(h2), which is the gradient of h2 with respect to the direction parallel to
the prefered flow. Generalizing (15.8) in the critical state 1/τ = 0 to account
for anisotropy and to include the leading non-linear correction leads to

∂h

∂t
= ν‖∇2

‖h+ ν⊥∇2
⊥h− λ

2
∇‖(h2) + η(x, t) , (15.11)

corresponding to a flux current

j = −ν‖∇‖h− ν⊥∇2
⊥h+

λ

2
(h2)e . (15.12)
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Sornette and Virieux [917] have used this framework to obtain a relation
between deformations at large time scales (Million years) and deformations at
small time scales (seconds to hundred years) in the earth’s crust, replacing h
by the strain field. The first term of the r.h.s. of (15.11) corresponds to strain
diffusion, the second one represents the non-linear rheological behavior of the
lithosphere2 and the noise term η(x, t) accounts for the fact that tectonic de-
formations are locally irregular. The theory builds on the general conceptual
framework that geological deformations and fault structures are the long term
trace, or memory, of the cumulative short term fluctuations in earthquakes
and perhaps other processes, and that the latter can be described as a “high
frequency” noise for the former. This approach can be justified from the fact
that the lithosphere is in a “critical” state of marginal mechanical stability,
characterized by long-range correlations and power laws.

If one ignores the possible long-range noise correlation and its power law
distribution, the Langevin equation (15.11) can be solved using the dynamical
renormalization group and the general solution takes the homogeneous scaling
form [443–445]

h
(
x‖, x⊥, t

)
= Bχh

(
x‖/B, x⊥/Bζ , t/Bz

)
, (15.13)

where B is an arbitrary scaling factor. The exponents χ, ζ and z, which define
how the field h scales with space and time, are given exactly by z = 6/(7 − d)
(= 3/2 in 3D), χ = (1− d)/(7− d) (= −1/2 in 3D) and ζ = 3/(7− d) (= 3/4
in 3D).

The noise term η(x, t) represents the sources of the field fluctuations
around its long term trend which are not described by the continuous evo-
lution. A Langevin equation indeed contains two main contributions: (1)
a continuous one describing the long term average evolution and (2) short
time fluctuations around the average evolution. For instance, the Langevin
equation, describing the motion of a Brownian particle falling through a gas,
contains both the average effect of the colliding molecules, i.e. a smooth drag
term proportional to the particle velocity, but also the instantaneous effect
of these collisions which create a fluctuating force at very small times compa-
rable to the molecule–particle collision time and which is responsible for the
erratic motion of the Brownian particle. In the case of tectonic deformations,
the driving forces at the origin of plate motions are the analog of gravity.
The lithosphere heterogeneity, fault roughness and the resulting stick–slip
friction rheology are at the origin of the earthquakes which are the analog
of the molecular collisions which create erratic motion and fluctuations. Av-
eraged over long times, the particle appears to be falling through a viscous
medium while fault motions and continental deformations appear to be con-
trolled by a smooth friction. The noise term η(x, t) thus describes the effects

2 The lithosphere is the outmost 100 km of the crust and upper mantle which is
relatively rigid (as seen from the propagation of seismic waves) and lies on top
of a softer layer about 400 km thick called the asthenosphere.
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of deformations at short times away from the long term trend. This noise
term must thus describe the effect of all events on the fluctuations around
the long term trend occurring at time scales much smaller than that at which
the averaging over the strain is valid. Therefore, η(x, t) must describe the ef-
fect of the various heterogeneous modes of deformations at short times, such
as creep, silent and slow earthquakes, as well as genuine earthquakes of all
sizes. Whereas the strength of the molecular collisions can be described in
terms of a mean and standard deviation, earthquakes are known to follow
a power law size distribution. Therefore, the noise η(x, t) should be char-
acterized by a probability distribution which is a power law given by the
Gutenberg–Richter distribution.

By taking into account the power law nature of the noise term and as-
suming that the strain field is on average scale independent (i.e. that the
exponent χ is zero), one obtains a self-consistent determination of the expo-
nent b the Gutenberg–Richter distribution [917]: b = 1 for small earthquakes
for which their energy or seismic moment is proportional to the third power
of the linear size of the rupture (3D rupture propagation) and b = 1.5 for
larger and great earthquakes for which their energy or seismic moment is pro-
portional to the second power of the linear size of their rupture (2D rupture
propagation). These predictions are consistent with recent observations for
large (MW ≥ 7) earthquakes worldwide.

In the case where the noise term obeys exactly the conservation law cor-
responding to

〈η(x, t)η(x′, t′)〉 = 2
(
D⊥∇2

⊥ +D‖∇2
‖
)

δ(x− x′)δ(t− t′) , (15.14)

the susceptibility reads

χ(k) =
D⊥k2

⊥ +D‖k2
‖

ν|k|2 , (15.15)

where |k|2 = k2
⊥ + k2

‖. The Fourier transform of χ(k) gives the Green func-
tion [376, 378]

G(x) ≡ 〈h(x, t)h(0, t)〉 . (15.16)

• In the anisotropic case, D⊥ �= D‖, detailed balance is violated and

G(x) ∼ x−d (15.17)

correspond to self-similarity and thus criticality [376, 378]. Recall that
detailed balance is a sufficient (but not necessary) condition for an equi-
librium (time independent) probability distribution P to exist. It reads
P (A, t)w(A → B) = P (B, t)w(B → A), where w(A → B) is the transition
rate of the system from state A to state B. A clear exposition of the re-
lationship between detailed balance and the diffusion and Fokker–Planck
equations presented in Chap. 2 can be found in [398].
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• In the isotropic case, D⊥ = D‖, the next higher order term in (15.8) is
necessary to obtain a meaningful description leading to

∂h

∂t
= ν1∇2h+ ν2(∇2)2h+ η(x, t) . (15.18)

The corresponding Green function is

G(x) ∼ e−x/ξ , where ξ ∝ (ν2/ν1)
1/2

. (15.19)

The system is no longer scale invariant as isotropy together with noise
conservation leads to the introduction of a characteristic scale ξ.

To sum up, in the field theory, scale invariance results from the existence
of conservation laws and may disappear or reappear depending on the in-
terplay between anisotropy and conservation of the driving noise [376, 378].
Another interesting scenario involves the non-linear terms added in the dif-
fusion equation which create a novel fixed point in the renormalization group
flow [376].

The problem with this field theoretical approach is that the essential
threshold dynamics is not captured by the “weak” and perturbative non-
linear terms added to the diffusive equation. In addition, avalanches, which
constitute the hallmark of these systems, are not described and the origin
of the self-organization is not really explained other than by the existence of
a conservation law and its competition with anisotropy. As we said, this is
due to the fact that the threshold dynamics is replaced by a “weak” pertur-
bative nonlinear term. Furthermore, the driving occurs on a fast time scale
(stochastic noise) in contrast with the very slow driving common to sand-
pile SOC models, whereas the order parameter exhibits slow diffusion-like
relaxations similar to critical slowing down [428], in opposition with the fast
relaxation induced by the avalanches. A physical system which exemplifies
these features is provided by earthquakes which relax the stress accumulated
over centuries during time scales of tens of seconds.

Recognizing the crucial role played by the threshold dynamics and the
necessity to take it into account explicitely in a continuum formalism, several
authors [52, 130, 230, 574, 874] have modeled the threshold nature of the dy-
namics by either a discontinuous or singular diffusion coefficient [52, 130, 574],
or by series expansion of the heaviside function and its derivatives [230]. This
kind of approach still contains an ad hoc discrete component and cannot
thus be considered fully continuous. Furthermore, the very slow driving con-
dition is rarely imposed except in [574]. A notable attempt to incorporate the
threshold behavior in a continuous formalism has been done in [135] using
the macroscopic phenomenological Coulomb solid friction law. It turns out
that this law does not yield any SOC but only a large avalanche regime due
to the linear growth of the state variable derived from the Coulomb law.

Gil and Sornette [338] have proposed a more microscopic and fundamental
description which can both display SOC and the large avalanche regime, and
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furthermore provides a good model of solid friction [142]. This model provides
a general correspondence between SOC and synchronization of threshold os-
cillators (see below). The basic idea is that the order parameter presents mul-
tistability and hysteresis captured by a subcritical bifurcation between two
states. This ensures the threshold dynamics. In addition, it can be shown
that a local hysteretic reponse qualifies as a microscopic model of solid fric-
tion [142], which is a key property of dry sand. Another important ingredi-
ent is to incorporate the dynamics of an order parameter (OP) and of the
corresponding control parameter (CP) in order to understand why the CP
self-organizes to a critical value. Within the sandpile picture, the CP ∂h/∂x
is the slope of the sandpile, h being the local height, and the OP S is the
state variable distinguishing between static grains (S = 0) and rolling grains
(S �= 0). Therefore, the sand flux is proportional to S. Coupling these two
parameters is physically natural.

In the fully continuous Landau–Ginzburg sandpile model [338], SOC is
identified as the regime where diffusive relaxation along the sandpile oc-
curs faster than the instability growth rate transforming a static grain into
a rolling one. The wide distribution of avalanches sizes can be seen to re-
sult from an effective negative diffusivity, favoring the unstability of small
avalanches which are in competition with the tendency for synchronization
leading to large avalanches. Indeed, in the other limit of slow diffusion,
avalanches comparable to the system size become dominant but coexist with
a power law pdf of avalanche sizes for small avalanches. The pdf is thus
a power law for small avalanche sizes and develops a bump at large sizes
corresponding to the characteristic avalanches sweeping the whole system.
A qualitatively similar phenomenology has been found in sandpile models
with stress-dependent stress drops [208].

15.4.4 Mapping onto a Critical Point

General Framework. Consider a “standard” unstable critical phase tran-
sition, such as the Ising ferromagnet or bond percolation. Here, a spin, up
or down, is assigned to each site with an exchange coupling constant J .
Furthermore, one defines two nearest neighbor sites to be connected with
a probability p = 1 − e−2J/kBT if both have spin up. For zero external field,
this defines a critical temperature Tc or bond-density ρc below which the or-
der parameter m0, the magnetization or the probability of an infinite cluster,
is zero above Tc and behaves as m0 ∝ (Tc − T )β below Tc. The transition is
further characterized by a diverging correlation length ξ ∝ (T − Tc)−ν and
susceptibility χ ∝ (T − Tc)−γ as Tc is approached, quantifying the spatial
fluctuations of the order parameter.

Suppose that it turns out to be natural for the system under consideration
that, instead of controlling T , the “operator” controls the order parameter
m0 and furthermore one takes the limiting case of fixing it to a positive but
arbitrarily small value. The condition m0 → 0+ is equivalent to T → T−

c .
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Fig. 15.2. Sandpile model in the rotating cylinder geometry, inspired from ex-
periments and suitable for the mapping discussed in this section: the cylinder axis
is horizontal and coincident with the rotation axis. The cylinder is partially filled
with “sand” presenting an initially flat horizontal interface below the axis. Suppose
that the axis of the cylinder is held to a fixed frame by a torsion spring on which
one can exert a controlled torque T (CP). If T = 0, the cylinder takes the position
such that the surface of the sand is horizontal, i.e. the rotation angle θ = 0. If one
starts to exert a non-vanishing T , the cylinder rotates up to an angle θ such that
the torque exerted by the tilted sandpile balances exactly the applied T . Increasing
T , one finally reaches a critical value Tc at which the sandpile reaches its slope θc

of instability corresponding to the triggering of sand flow J , whose magnitude in-
creases with T > Tc. In contrast, controlling the order parameter (the flux J of
sand or the rotational velocity dθ/dt) to a vanishingly small but non-zero value
ensures the convergence to the SOC state

In other words, the system is at the critical value of the unstable critical
point and must therefore exhibit fluctuations at all scales in its response.
This is nothing but the hallmark of the underlying unstable critical point.
This scenario applies most naturally to out-of-equilibrium driven systems.

In other words, some systems exhibiting SOC present a genuine critical
transition when forced by a suitable control parameter, often in the form of
a generalized force (torque for sandpile models, stress for earthquake models,
force for depinning systems). Then, SOC appears as soon as one controls or
drives the system via the order parameter of the critical transition (it turns
out that in these systems, the order parameter is also the conjugate of the
control parameter in the sense of the mechanical Hamilton–Jacobi equations).
The order parameter hence in general takes the form of a velocity or flux.
The condition that the driving is performed at M → 0+ illuminates the
special role played by the constraint of a very slow driving rate common to
all systems exhibiting SOC: this is the exact condition to control the order
parameter at 0+ which ensures the positioning at the exact critical value of
the control parameter.

This general idea applies qualitatively and, in some cases, quantitatively
to the sandpile models (Fig. 15.2), the earthquake models (Fig. 15.3), pinned–
depinned lines or Charge-Density-Wave models, fractal growth processes and
forest-fire models [42, 372, 894, 901] and has been shown experimentally to



416 15. Self-Organized Criticality

Fig. 15.3. Model of a tectonic plate on which a shear force F is imposed at its
border. As the applied force F increases, the plate (which can contain pre-existing
damage such as cracks and faults) starts to deform increasing the internal damage.
For sufficiently low F , after some transient during which the system deforms and
adjusts itself to the applied force, the system becomes static and nothing happens:
the strain rate or velocity v of deformation becomes zero in the stationary state
(here we are neglecting any additional creep or ductile behavior). As F increases, the
transient becomes longer and longer since larger and larger plastic-like deformations
will develop within the plate. There exists a critical plasticity threshold Fc at which
the plate becomes globally “plastic”, in the sense that it starts to flow with a non-
zero strain rate v ≡ dε/dt under fixed F . As F increases above Fc, the shear strain
rate v increases. F is the control parameter and v = dε/dt qualifies as the order
parameter (dε/dt = 0 for F < Fc and dε/dt > 0 for F > Fc). However, driving the
plate at a constant and slow deformation rate v ensures SOC at F close to Fc

apply to the superfluid transition in Helium in the presence of a slow applied
heat flux [636]. In this last example, when 4He becomes superfluid, it can
transport heat without any temperature gradient. The heat flux can thus
be seen as a kind of order parameter directly related to the standard order
parameter, namely the superfluid condensate wave function, which becomes
non zero at the critical temperature (the control parameter). By establishing
a small controlled heat flux Q, the system is driven by its order parameter
and, close to the lambda point, the temperature gradient self-organizes itself
to become independent of Q. Fulco et al. have implemented this mapping
concept operationally by using a recursive relation [320]: once the order pa-
rameter is properly chosen, the recursion drives the physical system sponta-
neously to the value of the control parameter associated with such a choice;
in particular, if the order parameter is set to a small value, the system is
driven towards the critical point. Fulco et al. have shown that this method
provides efficient estimations of critical properties, including critical points
and exponents [320]. For Ising spin systems, and despite the small lattice
sizes used, it yields critical temperatures and exponents in good agreement
with those available in the literature.

The role of driving in sandpile models and numerical simulations at non-
vanishing driving rates have been reported by Hwa and Kardar [445], Mon-
takhad and Carlson [644] and Barrat et al. [59]. “Self-organized” criticality is
recovered in the double limit of infinitely slow driving and small dissipation
rates [59].
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Extremal Version of the Bak–Sneppen Model as the Zero Temper-
ature Limit of a Spin Glass Model. The one-dimensional version of the
Bak–Sneppen model of evolution [48] is defined as follows: each of the N sites
on a line array is filled with independent random numbers pi, i = 1, 2, . . . , N ,
drawn from a uniform distribution between [0, 1]. At each time step, the small-
est pi is selected and replaced by a new random number p′i still in [0, 1]. At
the same time, we update its two nearest-neighbors pi−1, pi+1 with two new,
independent random numbers. Periodic boundary conditions are enforced.

Note that the choice of a uniform distribution is by no way restrictive since
what really matters is the non-decreasing character of the (cumulative) prob-
ability distribution function for any probability density. Bak and Sneppen [48]
argued that their model is to be thought of as a model for darwinian biological
evolution: each pi represents the “fitness” of the species i, i.e. its adaptativity
to changes and mutations. The species with the lowest pi dies and its extinc-
tion affects its nearest neighbors pi−1, pi+1 in the ecological nest, which must
respond with an instantaneous mutation. Numerical evidence indicates that,
in the long-time and large-N limits, the probability density of sites is strictly
zero for all pi < pc and constant above pc = 0.66702± 0.00008 [713]. In the
context of statistical mechanics, a more appealing interpretation is to think of
the Bak–Sneppen model as a model for self-organized depinning [388], where
the interface undergoes a local rearrangement where the force fi = 1 − pi is
maximal. This was the original formulation of the Sneppen model [855].

In the Bak–Sneppen model, one usually defines avalanches in the following
way: starting from a given pmin at time t, the duration t0 of an avalanche is
the minimum number of time steps t′ required for pmin(t + t′) to be greater
than pmin(t). At the time t+1, among the three new random numbers, one at
least can be smaller than pmin(t) and the smallest one of all three will initiate
subsequent topplings which follow the same rule at each subsequent time step.
The avalanche terminates when all sites are above pmin. Then, an avalanche
starts elsewhere, nucleating from the next minimum site, until a steady-state
is reached where an infinite avalanche develops: the toppling of the minimal
site will eventually trigger an infinite number of topplings among spatially
connected sites in a system of infinite extent. The size of an avalanche is
defined as the number of topplings. However, the avalanches in this extremal
model are spatially but not necessarily spatio-temporally connected. This is
due to the extremal nature of the dynamics in which an avalanche spreads
out only from the minimal site and its two neighbors at all time steps, while
other sites with fitnesses smaller than the pmin which initially triggered the
avalanche are left unactivated, until eventually they get modified when the
avalanche returns to them.

The Bak–Sneppen model has recently been shown [407] to implicitly as-
sume that a single positive temperature-like parameter T is set arbitrarily
close to zero. For finite T , the model is no longer critical. The underlying
mechanism is the existence of a hierarchy of time scales that become separated
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as T → 0+, allowing extremal dynamics to be realised as the limiting case
of a system with strictly local driving. To see this, we follow [407] and con-
sider a system consisting ofN elements, each of which is assigned a barrier Ei,
i = 1, . . . , N . The values of the barriers are drawn from the time-independent
prior distribution ρ(E), which is assumed to have no delta-function peaks so
that there is a vanishing probability of two different elements having the same
value of E.

The system evolves according to two rules. Firstly, each element becomes
activated at a rate e−Ei/T where the constant parameter T > 0 has the same
units as E. An activated site i is assigned a new barrier Ei drawn from ρ(E),
corresponding to a shift to a new metastable state with a new barrier height.
Secondly, for every activated element, z other elements are chosen and also
assigned new barrier values. The system behaviour changes qualitatively as
the single parameter T > 0 is varied:

• T → 0+: In the limit of infinitesimal T , the activation rates e−Ei/T for
different Ei diverge relative to each other. The element with the small-
est barrier will become active on one timescale, the one with the second
smallest barrier becomes active on another, much longer timescale, and so
on. Thus, with probability one, the first element to become active will be
that with the smallest barrier (which is always unique for a finite set of
non-degenerate {Ei}). This is the way in which the Bak–Sneppen model is
usually defined.

• T small but finite: The strict separation of time scales is lost for finite
T and every element has a non-vanishing probability of being the first to
become active, so the dynamics are no longer extremal. The model is not
critical in this regime. This claim is supported by the results of numerical
simulations [407] and the following mean field analysis.

For N → ∞, the proportion P (E, t) of elements with barriers in the range
between E and E+dE evolves according to the following continuous master
equation:

∂P (E, t)
∂t

= − e−E/T∫∞
0

e−E′/TP (E′, t) dE′P (E, t)

−z P (E, t) + (z+1)ρ(E). (15.20)

According to this equation, P (E, t) decreases when an element changes
its barrier value, which occurs either when it becomes active, or when it
is selected as one of the z interacting elements. These two processes are
described by the first and second terms on the right hand side of (15.20),
respectively, where the prefactor to the first term is the probability for an
element to be activated. Conservation of probability is ensured by the third
term, which corresponds to the z + 1 new barriers drawn from ρ(E). For the
uniform ρ(E) in the limit t→ ∞, one gets [407]

P (E,∞) ≈ z + 1
z

(
1 + e−(E−Ec)/T

)−1

, (15.21)
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with Ec = 1/(z + 1). As T → 0+, the exponential in (15.21) either blows up or
decays depending on whether E is less than or greater than Ec, respectively.
Thus P (E,∞) converges to the step function (z + 1)/z θ(E − Ec), in accord
with the known solution of the mean field Bak–Sneppen model. However,
there is no such discontinuity for finite T and P (E,∞) is smoothly varying
for all 0 < E < 1.

Mapping Directed Percolation onto the Parallel Bak–Sneppen
Model. The parallel Bak–Sneppen model [42, 372, 894] is the same as the
initial extremal version recalled above except that all sites which have their
numbers below pmin (the value from which an avalanche started) and not
solely the smallest one (which is of course smaller than pmin) see their val-
ues and those of their neighbors replaced by new random numbers in [0, 1].
This model self-organizes to a critical point. To see this, let us introduce the
tuned parallel Bak–Sneppen model, which consists in updating at a given
time step all sites which are smaller than p and their (respective) left and
right nearest-neighbors, where p is an externally controlled parameter chosen
in ]0, 1[. The updating is again done in parallel for all unstable sites, and any
site neighbored by two toppling sites is updated once and only once. p plays
the role of a control parameter. In this model, the system does not self-
organize but rather ajusts itself in response to the imposed value p. In fact,
this second model is indistinguishable from the directed percolation (DP)
model discussed in Chap. 12, which exhibits a genuine critical transition at
a specific value pc.

Note first that, in contrast to the extremal Bak–Sneppen version, ava-
lanches are both spatially and spatio-temporally connected, as in DP. It is
natural to view the time-evolution as a two-dimensional lattice (i, t), pi(t)
being the value of the fitness at (discrete) time t of the i-th site. To each
site of the 2d-lattice, we associate a spin-like variable ni,t equal to 0 if
pi(t) > p, and +1 if pi(t) ≤ p. In words ni,t = 0 if pi(t) is stable, and
+1 if it is unstable. By the definition of the model, the value of ni,t+1 just
depends on the values of ni−1,t, ni,t, ni+1,t: as soon as at least one among
these three sites is unstable, the central site pi(t) will be updated. Since we
redraw each site from an uniform distribution between 0 and 1, pi(t + 1)
will be smaller than p and thus unstable with probability p, and stable with
probability 1 − p. This rule determines 14 out of the 24 = 16 local condi-
tional probabilities P (ni,t+1|ni−1,t, ni,t, ni+1,t), the last two probabilities be-
ing P (0|0, 0, 0) = 1 and of course P (1|0, 0, 0) = 1 − P (0|0, 0, 0) = 0: if a site
and its two nearest-neighbors are stable, it will remain stable with probability
1. This last condition shows that the tuned parallel Bak–Sneppen model is
not fully probabilistic: according to the conventional terminology, the phase
formed of 0 spins is called an absorbing phase [505, 797]. The existence of
an absorbing phase is a strong indication that the model should be in the
DP universality class [369] (see Chap. 12). We are going to prove that this is
indeed the case.
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Fig. 15.4. 2d lattice on which the
parallel Bak–Sneppen model is de-
fined. By slightly bending the lat-
tice, we get triangular plaquettes, al-
though the connectivity is still that of
a square lattice

• For the sake of pedagogy, we first consider a one-sided model where just one
neighbor of an unstable site is updated at the next time step, the central
site being also modified at the next time step. This is the topology of the
original Sneppen model. By innocuously bending the lattice as shown in
Fig. 15.4, we obtain triangular “plaquettes”. Here, the local conditional
probabilities of the tuned parallel Bak–Sneppen model read: P (0|1, 0) =
P (0|0, 1) = P (0|1, 1) = 1 − p and P (0|0, 0) = 1 (supplemented, of course,
with P (0|n1, n2) = 1−P (1|n1, n2) for any n1, n2). These local conditional
probabilities are defined on every other triangular “plaquette” – say the
up-pointing ones if time is running upward as in Fig. 15.4, which connects
spins between two successive time slices.

• Now imagine that we call 0 spins dry sites and 1 spins wet sites; the rules
of the directed site–bond percolation model are that sites have probabil-
ity ps to be wet and that up-pointing bonds (the diagonal edges of a trian-
gle) have probability pb to conduct fluid. This is just a generalized mixed
bond–site percolation problem (a particular case of the Domany–Kinzel
automaton), where the local conditional probabilities are straightforward
to write down [239, 337, 505]:

P (1|0, 0) = 0
P (1|1, 0) = P (1|0, 1) = pspb

P (1|1, 1) = ps[pb
2 + 2pb(1 − pb)] = pspb(2 − pb) . (15.22)

We can now readily proceed to the correspondence.

1. The two models (tuned parallel Bak–Sneppen model and directed perco-
lation model) defined on the same lattice have the states and the same set
of transitional probabilities P (ni,t+1|ni−1,t, ni+1,t).

2. By identification, we obtain the correspondence between p for the tuned
parallel Bak–Sneppen model and the ps and pb of the directed percolation
model: p = pspb and p = pspb(2 − pb) so that p = ps and pb = 1.

The one-sided tuned parallel Bak–Sneppen is thus completely isomorphic
to directed site percolation on a square lattice. The two models have a singular
behavior at the critical value pc = 0.705489 ± 0.000004 [280] for the site
directed percolation model on a 2d square lattice. The equivalence between
the two models generalizes readily to the original (three sites) tuned parallel
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BS model, i.e. one has: P (1|1, 0, 0) = pspb, P (1|1, 1, 0) = ps[p2
b + 2pb(1 −

pb)] = pspb(2 − pb) and P (1|1, 1, 1) = ps(p3
b + 3p2

b(1 − pb) + 3pb(1 − pb)2) =
ps(1−(1−pb)3). Identifying with P (1|1, 0, 0) = P (1|1, 1, 0) = P (1|1, 1, 1) = p
gives again ps = p and pb = 1.

From the definition of the tuned parallel Bak–Sneppen model, the control
parameter p can be imposed to be larger than the DP threshold, correspond-
ing to the depinned regime, where the fraction v of unstable or active sites
(i.e. those with pi < p) becomes non-zero. v is the order parameter for this
depinning transition: v ∝ (p− p′c)β , where β = 0.2764± 0.0008.

• The Self-Oganized Parallel Bak–Sneppen Model Converges to the Critical
Point of the Directed Percolation Model

As already asserted, the DP critical state can be reached either by tuning
a control parameter as in the tuned parallel BS model or by going to a very
small rate of evolution, since all that really matters is how avalanches are
defined. We now show that the parallel BS model converges indeed to the
DP critical point [894].

Let us denote the gap by pmin(t), i.e. the smallest number in the lattice
at time t. There are two questions to address: (1) does pmin(t) converge to
a well-defined value p∞ at long times? (2) if yes, what is this value p∞?

Let us first assume that the answer to the first question is positive and
then show that p∞ = pc of directed percolation. Our demonstration is made
by “ad absurdum” reasoning.

• Suppose that p∞ is larger that the DP critical value pc. Consider a time t0
at which an avalanche starts with pc < pmin(t0) < p∞. Since the avalanche
develops according to the parallel updating rule, nothing distinguishes its
time evolution from the dynamics of the tuned parallel Bak–Sneppen model
with p fixed to pmin(t0). However, since the tuned parallel Bak–Sneppen
model is strickly equivalent to DP, the condition pc < pmin(t0) = p im-
plies that there is a finite probability that the avalanche is infinite. As
a consequence, pmin(t0) cannot be less than p∞, in contradiction with the
hypothesis.

• Suppose conversely that p∞ < pc of DP. Let us consider an avalanche start-
ing at pmin(t) = p∞. Again, since the avalanche develops according to the
parallel updating rule, nothing distinguishes its time evolution from the dy-
namics of the tuned parallel Bak–Sneppen model with p fixed to p∞. Since
p∞ is supposed smaller than the critical value pc of directed percolation,
the activity must die after a finite number of time steps, in contradiction
with the starting hypothesis pmin(t) = p∞, which is such that arbitrarily
large avalanches can appear by the very definition of the critical point.

We are thus led to the conclusion that if p∞ exists, it is equal to the critical
threshold pc of directed percolation.

We now return to the first question of the existence of the limit p∞.
We first note that the gap pmin(t) is a monotonic non-decreasing function
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of time, by the very definition of the model. Being bounded by 1, pmin(t)
either converges to a finite value p∞ and within our demonstration, the fi-
nal result follows, or pmin(t) could shift infinitely slowly upwards towards
the limiting value 1 without definite convergence. However, the latter can-
not be: indeed, suppose pmin(t) drifts above pc; then, by the fact that an
avalanche develops according to the parallel updating rule and has therefore
the same time evolution as an avalanche of the tuned parallel Bak–Sneppen
model and therefore of directed percolation, there is a finite probability that
this avalanche is infinite and never stops. If it never stops, this means that
the smallest fitness (also called “gap”) is stuck for ever at this value pmin(t)
at which an infinite avalanche has been triggered. This outcome can oc-
cur as soon as pmin(t) becomes larger than pc, by the definition of pc. This
shows that pmin(t) cannot grow above pc because, in an infinite system, as
soon as there is a non-zero probability for an infinite avalanche to occur,
it will occur and thus block forever the evolution of the gap. Is it possi-
ble for pmin(t) to drift very slowly without ever converging to p∞? This
is ruled out by the “gap” equation (15.28) discussed more extensively be-
low, derived for the usual extremal Bak–Sneppen model [713], which also
holds for the parallel Bak–Sneppen model. The gap equation quantifies the
mechanism of approach to the self-organized critical attractor, whatever it
might be. In words, the gap equation expresses the fact that pmin(t) in-
creases by finite increments as long as it is smaller than p∞ due to the
finiteness of the avalanches. This is the last piece of reasoning needed to
conclude that pmin(t) converges to a finite value less than or equal to pc.
With our previous “ad absurdum” reasoning, we conclude that the paral-
lel BS model self-organizes spontaneously onto the critical point of directed
percolation.

15.4.5 Mapping to Contact Processes

In a series of papers, Vespignani, Zapperi and co-authors [168, 169, 234, 655,
987–989] have developed a description of sandpiles and other SOC models
such as the forest-fire model in terms of contact processes. A contact process
is such that one state (the vacuum or inactive state) is absorbing, i.e. the
system cannot escape spontaneously from it. An example is the directed
percolation model discussed in Chap. 12. In order to obtain the mapping
onto contact processes, they introduce additional control parameters, namely
a non-vanishing driving rate h (incoming sand flux) and dissipation rate ε.
The central idea is to distinguish three populations of sites.

• stable [σi = s of coarse-grained concentration ρs(r, t)]: stable sites are those
that do not relax (become active) if sand is added to them by external fields
or interactions with active sites.

• critical [σi = c of coarse-grained concentration ρc(r, t)]: critical sites be-
come active with the addition of sand.
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• active [σi = a of coarse-grained concentration ρa(r, t)]: active sites are those
transferring sand; they are interacting with other sites (usually nearest
neighbors).

The approach of Vespignani, Zapperi and co-authors is reminiscent of the
“mapping of SOC onto criticality” discussed in the previous section. However,
there are important differences, in particular, their interpretation of the sand
flux h as a control rather than an order parameter and the density ρa(r, t) of
active sites as the order parameter. The correspondence to contact processes
to which the directed percolation model belongs make the two approaches
even more similar. A value of Vespignani, Zapperi and co-authors’ approach
is that they have been able to develop further their theoretical description
and obtain good predictions for the exponents.

In order to interpret the three populations of sites, we note that SOC
indeed refers generally to systems in which the only state that generates
dynamical evolution is the active one; i.e. stable and critical sites can change
their state only because of external fields or by interacting with an active
nearest neighbor. Therefore, SOC models correspond to three state cellular
automata. This description is only approximate, since a certain amount of
information is lost in grouping together stable sites. For instance, in the Bak,
Tang and Wiesenfeld model, one observes several energy levels which pertain
to a stable site. The three state description is exact for instance in the forest-
fire model [245].

Coarse-graining the dynamical evolution rules, Vespignani, Zapperi and
co-authors obtain the following set of mean-field equations for ρs(r, t), ρc(r, t)
and ρa(r, t) by neglecting higher orders in h and ρa

∂

∂t
ρa(t) = −ρa(t) + hρc(t) + (g − ε)ρc(t)ρa(t) + O(hρa, ρ

2
a) , (15.23)

∂

∂t
ρs(t) = ρa(t) − uhρs(t) + u(g − ε)ρs(t)ρa(t) + O(hρa, ρ

2
a) , (15.24)

where g is the number of sites involved in the dynamical relaxation process
(= 2d in the Bak, Tang and Wiesenfeld model), and u (= 1 for three level
models) takes into account the presence of several height levels of the sandpile
and can be determined self-consistently in multilevel models by using the
conservation of sand. ρc is determined by

ρc = 1 − ρa − ρs . (15.25)

The mean-field character of these equations stems from the fact that there is
no space dependence, i.e. the concentrations are assumed to be homogeneous.
The mapping onto contact processes is now clear by inspection of (15.23)
which shows that, in the absence of the external field h, a state with no
active site ρa = 0 remains stable for ever.

These equations have been used to study the subcritical regime as well
as the critical regime when both h and ε go to zero with h/ε → 0 at the
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same time, such that the density of active sites also vanishes in this limit,
ensuring criticality. Scaling laws relating spreading critical exponents and
avalanche exponents can thus be obtained in these kinds of systems with
absorbing states [655]. This allows one to improve the precision of exponents
of some well-known models of contact processes, such as directed percolation
and dynamical percolation in different spatial dimensions.

Dickman et al. [232] propose the following recipe to obtain SOC. Starting
from a system with a continuous absorbing state phase transition at a critical
value ρc of a density ρ, interpret this density ρc as the global value of a local
dynamical variable conserved by the dynamics. To this conservation con-
strain, add two processes: (1) one for increasing the density in infinitesimal
steps ρ → ρ + dρ when the local dynamics reaches an absorbing configu-
ration; (2) the second process decreases the density at an infinitesimal rate
while the system is active. The basic ingredients of this recipe [232] are an
absorbing state phase transition and a method for forcing the model to reach
its critical point by adding or removing particles when the system is frozen
or active.

15.4.6 Critical Desynchronization

Out-of-equilibrium driven systems with threshold dynamics exhibit a strong
tendency for synchronization [417, 935, 936]. After some transient regime,
collective synchronization is characterized by coherent oscillatory activity
of the set of coupled oscillators. This effect has attracted much interest in
biology for the study of large scale rhythms in populations of interacting
elements [936]. The south–eastern fireflies, where thousands of individuals
gathered on trees flash together in unison, is the most cited example [930].
Other examples are the rhythmic activity of cells of the heart pacemaker and
the emergence of synchronization in globally coupled Integrate and Fire (IF)
oscillators. Synchronization occurs under broad conditions on the properties
of the oscillators and is stable against a frozen disorder of the oscillator
properties [75].

Beside synchronization, another form of collective organized behavior is
known to occur in large assemblies of elements with pulse interactions: Self-
Organized Criticality. In some of these models, the external drive acts glob-
ally and continuously on all the lattice sites [700], until one of them reaches
the threshold, in which case it relaxes to zero: each site is therefore a re-
laxation oscillator. These are the stick–slip-like models which may or may
not be deterministic. When the driving is performed at each time step by
the increment of a unique site, sites are not oscillators: this case covers the
sandpile-like models [46].

Consider the mean field model of N relaxation oscillators Oi with state
variable Ei = E(t) ∈ [0, Ec = 1], monotonically increasing in time with
period 1. The interaction between these relaxation oscillators is that, when
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Ei ≥ 1, it relaxes to zero and increments all the other oscillators by a pulse
α/N :

Ei ≥ 1 ⇒
{
Ei → 0
Ei	=j → Ej + α/N

(15.26)

where α ∈ [0, 1] is a dissipation parameter. The model is taken into the slow
drive limit by assuming that any avalanche of firings, i.e. any succession of
firings triggered by the relaxation of one oscillator, is instantaneous. Imme-
diately after their relaxation, oscillators within the same avalanche are not
incremented by the pulses resulting from the successive relaxations in the
avalanche.

The theorem of Mirollo and Strogatz [630], that applies to this model,
states that, for a convex function Ei = E(t), the system synchronizes com-
pletely but for an exceptional set of initial conditions (technically of zero
Lebesgue measure). In practice, for all physically interesting situations, the
system can be shown to synchronize even for a linear and a range of concave
functions E(t) [105]. To show this, we follow [105].

The set of ordered distinct values E(j)
1 < E

(j)
2 < . . . < E

(j)
mj = 1 of the

state variables present in the system just before the (j + 1)-th avalanche
defines a configuration. To each E(j)

i corresponds a group of N (j)
i oscillators

at this value (
∑mj

i=1N
(j)
i = N). The time necessary for all the mj groups to

avalanche exactly once is called a cycle. To trace the evolution of the system,
it is useful to follow, cycle after cycle, the gaps s(j)i = E

(j)
i+1 − E

(j)
i between

the values of successive groups. If one of these gaps s(j)i becomes smaller
than the value αN (j)

i+1/N of the pulse of the (i+ 1)-th group, then the (i)-th
group gets absorbed by the (i+1)-th group. For a linear E(t), an elementary
calculation shows that the gap between a group (i + 1) and a smaller one
(i) is reduced during one cycle by δsi = |α(Ni − Ni+1)/N |. Therefore large
groups unavoidably absorb the smaller ones that follow them and become
larger and larger: it is this positive feedback that leads to synchronization.
Introducing frozen disorder in the natural relaxation frequencies in general
yields complete or partial synchronization depending on the couplings.

As mentioned above, besides synchronization or quasi-synchronization,
lattice models of pulse-coupled oscillators may display SOC, which appears
when a system is perturbed, which otherwise should synchronize totally or
partially [172], or which should be periodic [368]. The most striking example
is the Olami–Feder–Christensen (OFC) model [700] which consists of oscil-
lators Ei on a square lattice, that relax to zero when they exceed a given
threshold Ec, thus incrementing their nearest neighbors by a pulse which is
α (α ≤ 1/4) times their value:

Ei ≥ Ec ⇒
{
Ei → 0
Enn → Enn + αEi .

(15.27)
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With open boundary conditions, this model seems to show SOC, while the
Feder and Feder (FF) model [290], which is identical except for the incre-
ment, which is a constant that can be seen as the mean of αEi (pulse of the
FF model = ∆ = αEi), shows partial synchronization [172]. This means that
the randomness of the initial conditions, which is dynamically eliminated in
the FF model while it is maintained via the increment in the OFC model,
changes the behavior of the system from partial synchronization to apparent
SOC. Furthermore, different kinds of perturbations, incompatible with a pe-
riodic behavior, change periodically ordered states for SOC. If, for instance,
a random noise is added to the increment in the FF model, synchroniza-
tion disappears and the system becomes apparently SOC [172]. On the other
hand, if instead of open boundary conditions, periodic conditions are used,
SOC disappears in favor of a periodic state, the period being the number of
sites of the lattice. It seems to reappear if one inhomogeneity is introduced
on the lattice [368].

A random neighbor version of the OFC model has been studied analyt-
ically [154]: avalanches are found with finite size for all values of α up to
the conserving limit αc equal to the inverse of the number of neighbors (1/4
in the 2D square lattice). However, their mean size 〈s〉 grows exponentially
fast as exp[C/(αc − α)], for α → αc, so fast that 〈s〉 becomes rapidly larger
than the system size, giving the false impression of a diverging quantity at
α < αc. This might explain the false appearance of SOC in some numerical
models [568] and serve as a cautionary note about similar numerical evidence
obtained for other claimed SOC models.

The importance of heterogeneities in desynchronizing otherwise synchro-
nized oscillators of relaxation has also been exempliflied in a simple model
of self-organization of faults and earthquakes [184, 185, 627, 907, 908]. The
model describes brittle ruptures and slip events in a continental plate and its
spontaneous organization by repeated earthquakes in terms of coarse-grained
properties of the mechanical plate. It simulates anti-plane shear (i.e. scalar)
deformation of a thin plate with inhomogeneous elastic properties subjected
to a constant applied strain rate at its borders, mimicking the effect of neigh-
boring plates. Rupture occurs when the local stress reaches a threshold value.
Broken elements are instantaneously healed and retain the original mate-
rial properties, enabling the occurrence of recurrent earthquakes. The most
startling feature of this model is that ruptures become strongly correlated
in space and time leading to the spontaneous development of multifractal
structures [184] that gradually accumulate large displacements. The forma-
tion of the structures and the temporal variation of rupture activity is due to
a complex interplay between the random structure, long range elastic inter-
actions and the threshold nature of rupture physics. The spontaneous forma-
tion of fractal fault structures by repeated earthquakes is mirrored at short-
times by the spatio-temporal chaotic dynamics of earthquakes, well-described
by a Gutenberg–Richter power law. The fault structures can be understood
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as pure geometrical objects [627], namely minimal manifolds which in two-
dimensions correspond to the random directed polymer (RDP) problem. This
mapping allows one to use the results of many studies on the RDP in the
field of statistical physics, where it is an exact result that the minimal random
manifolds in 2D systems are self-affine with a roughness exponent 2/3 [388]
(see Fig. 5.15).

The competition between the disordering effect of frozen heterogeneity
and the ordering effect of elastic coupling leads to a phase diagram in the
space (β,∆σ), where β is a measure of the coupling between faults (propor-
tional to the stress drop associated with a rupture) and ∆σ quantifies the
amount of quenched disorder. A synchronized regime is found for small dis-
order or large coupling and coexists with a SOC regime for larger disorder
or smaller couplings. This suggests to view SOC as a critical “desynchroniza-
tion”, i.e. a regime where the system is marginally desynchronized. In other
words, in these classes of SOC, the system attempts again and again to syn-
chronize, leading to large avalanches but never completely succeeds due to the
desynchronization resulting from the competing factors, such a heterogene-
ity, boundary conditions, etc. The self-similar distribution of avalanche sizes
reflects the failure of the system to achieve large synchronized avalanches in
the system.

Middleton and Tang [623] confirm this picture by studying the SOC model
without conservation [700]. They find that the homogeneous system with pe-
riodic boundary condition is periodic and neutrally stable. A change to open
boundaries results in the invasion of the interior by a “self-organized” re-
gion spreading from the boundaries. The mechanism for the self-organization
is closely related to the synchronization or phase-locking of the individual
elements with each other.

15.4.7 Extremal Dynamics

Definition. Inspired by the metaphoric picture of biological evolution pro-
posed by S. Wright (for a review, see [1027]), who introduced the idea of
species evolving over a rugged fitness landscape with random mutations and
relative selection towards higher fitness, Bak and Sneppen introduced a sim-
ple model of extremal dynamics [48] that we have already mentioned above.
Its generalization to M traits (the case M = 1 is the Bak–Sneppen model)
is defined as follows [96, 714]: a species is represented by a single site on
a d-dimensional lattice. Each species possesses a collection of M traits rep-
resented by a set of M numbers in the unit interval. The dynamics consists
of mutating, at every time step, the smallest number λ in the entire sys-
tem by replacing it by a new (possibly smaller) number that is randomly
drawn from a uniform distribution in the unit interval. Choosing the small-
est random number mimics the Darwinian principle that the least fit species
mutates [197]. The dynamical impact of this event on neighboring species is
simulated by also replacing one of the M numbers on each neighboring site
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with a new random number. Which one of the M numbers is selected for such
an update is determined at random. The interaction between the fitnesses of
species leads to a chain reaction of coevolution. Such a chain reaction leads
to avalanches: an avalanche starts at a novel increase of the minimum fitness
λ and stops when the next one starts, i.e. when the minimum λ first becomes
greater than the starting value.

This concept has been found to provide a common language for describing
such diverse physical situations such as roughening of a crack front in frac-
ture [822], wetting front motion on heterogeneous surfaces [277], the dynamics
of a ferromagnetic domain wall driven by an external magnetic field [1047],
motion of vortices in type-II superconductors (for a review, see T. Giamarchi
and P. LeDoussal in [1036]), fluid invasion in porous media [793], solid fric-
tion [945] or, as we said, biological evolution [713].

In these different systems, the dissipative behavior of the system is ex-
plained by the competition between an elastic restoring force and a nonlin-
ear, randomly distributed, time-independent, pinning force. In the case of the
spreading of a partially wetting liquid for example, the pinning force is due to
surface chemical heterogeneities or roughness, and the elastic restoring force
is a result of the surface tension at the liquid/vapor interface. For strong
pinning, the wetting front displays local instabilities that force it to advance
quasistatically in a jerky motion with jumps punctuating phases of stress
build up [474]. In the stationary regime, the main contribution to the global
displacement is from jumps of local parts of the chain resulting from these
instabilities [945]. To describe this sort of evolution, Tanguy et al. [945] have
proposed an extremal model: only the site closest to its instability threshold
advances. After a jump, the instability thresholds of all the sites are modified
by the (elastic) couplings between sites. More precisely, in their model, the
interface of size L is defined on a discrete lattice (x, h). Initially the front
h(x) = 0, and the pinning forces fp(x, t = 0) = f0(x, h = 0) are assigned
independently from a flat distribution f0(x, y). The site x0 subjected to the
minimum pinning force (and hence closest to its instability threshold) ad-
vances first, thus h(x0) → h(x0) + ∆h. At this new position, a new random
pinning force is encountered fp(x0, t+ δt) = f0(x0, h(x0)+∆h). The external
loading F on the system, and interactions along the front, produce a local
driving force on each site x proportional to f(x, t) = F

∫
G(x − y)h(y, t) dy

where the kernel G(x) ∝ |x|−1−b accounts for long range interactions medi-
ated by the medium. The loading F is then adjusted so that only one site
depins f(x, t) = fp(x, t); the others remain trapped since f(y, t) ≤ fp(y, t)
for y �= x. The dynamics of advancing the minimum site and readjusting the
others is continued indefinitely.

In this spirit, a wide class of extremal models have already been studied
extensively by Paczuski et al. [713]. These models include the Bak–Sneppen
evolution model [48] and the Sneppen Interface Model [855]. All these models
try to explain driven motion under strong pinning by means of a discrete,
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deterministic dynamics. Only one site is active at every instant of time. How-
ever the “time” is only a way to index the sequence of events. Further the
extremal condition can be thought of as a way to retain the information of
the spatially quenched heterogeneities that determine the evolution of the
front. All the information in this sort of dynamics is clearly contained in the
“activity” map: a space–time plot of where the front is active at every instant
of time.

Self-Organization and the “Gap Equation”. The self-organization of
Bak–Sneppen model stems from the competition between two opposing
forces:

• Selecting the smallest number and replacing it by a new random number
tends to increase λ. By itself, this rule leads eventually to put all traits
equal to the maximum value 1.

• By replacing one of the M numbers on each neighboring site with a new
random number, one can select by chance a large number and replace it
by a small one. This limits the growth of the fitness.

This selection process is captured by the so-called gap equation [713]:

dλ
ds

=
(1 − λ)/MLd

〈s〉|λ , (15.28)

where s is time. The numerator (1−λ)/MLd is the average distance between
successive numbers corresponding to MLd traits arranged in the interval
1 − λ. It is thus equal to the average increment of λ from one avalanche
to the next. The denominator 〈s〉|λ is the average duration of an avalanche
when the minimum fitness is λ, and is thus the time necessary for λ to
be incremented by (1 − λ)/MLd. The gap equation (15.28) shows that, if
and when 〈s〉|λ → ∞, the evolution becomes stationary since dλ/ds → 0.
This equation thus contains the essential physics of the SOC phenomenon in
extremal models.

Hierarchical Structure of Avalanches. Consider the case where, at a cer-
tain time, the smallest random number in the system has the value λ.
A λ-avalanche by definition consists of all subsequently generated random
numbers which are below λ. The λ avalanche, that started at s, ends at s+s′

when the smallest random number in the system is larger than λ. All of the
random numbers that are below the threshold value λ at any one instant in
time are called “active” because they make up the λ avalanche.

Consider the sequence of minimal values λmin(s) comprising any λ ava-
lanche. Each value λmin(s) has a parent value λmin(s−s′) preceding it within
the λ avalanche. This parent is the value that introduced the particular ran-
dom number into the system that became the minimum at time s. Obviously,
the parent of the λmin(s) value also has its own parent. One can therefore
place all of the barrier values within a given avalanche onto a tree as shown
in Fig. 15.5. The distance on the tree between any two active barrier values
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at a given time is determined by the most recent common ancestor of the two
values. This distance is ultrametric [759].

Fig. 15.5. Ultrametric tree structure. At any given
time, indicated by the vertical axis, all of the active
sites below threshold have an ancestry which forms
a tree. The ultrametric distance between any pair is
the distance back in time to the first common ances-
tor. Taken from [96]

Figure 15.6 shows a part of the sequence of minimal random numbers
in an avalanche starting at time s with minimum value λc avalanche in the
case M = ∞. This clearly illustrates the hierarchical structure of avalanches.
Considering the infinite, critical avalanche, one can regard every update as
a starting point of a sub-avalanche labeled by λmin(s) which ends at the
first time when λmin(s′) > λmin(s) for a s′ > s. Clearly, a λmin(s) avalanche
can only end when all of its sub-avalanches with λmin(s′′) < λmin(s) for
all s < s′′ < s′ have ended. And a λc avalanche can only end when
all of its sub-avalanches have ended, and so on. Thus, a picture of hier-
archically constrained dynamics emerges in which faster degrees of free-
dom block slower ones, similar, as pointed out in [96], to the phenomeno-
logical description of slow relaxation in glassy systems [716]. The similar-
ity with spin glasses is clear: the fitnesses can be thought of as barriers
against further action, i.e. the barriers that atoms have to traverse in or-
der to get to a better energy minimum. Once the atom jumps, the bar-
riers of neighboring atoms are affected. The duration of avalanches in the
self-organized critical state is found to be broadly distributed, following
a power law, as a mark of this constrained hierarchical relaxation pro-
cess.
The Cascade Equation and Main Results. Consider the probability
Fλ(r, s) for a λ-avalanche to survive precisely s steps and to have affected
a particular site of distance r from its origin. Boettcher and Paczuski [96]
have found a cascade equation which can be reduced to separate equations
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Fig. 15.6. Plot of a part of the sequence of minimal random numbers λmin(s)
chosen for an update at time s in a λc avalanche for M = ∞. The durations of
a hierarchy of λ avalanches is indicated by forward arrows, where λ = λmin(s).
Longer avalanches with larger values of λ contain many shorter avalanches which
have to finish before the longer avalanche can terminate. Note that an update
punctuates any λ avalanche with λ ≤ λmin(s). Taken from [96]

for spatial and temporal correlations. In the continuum limit, they showed
that the avalanche dynamics can be described in terms of a Schrödinger
equation with a nonlocal potential. Its solution yields a non-Gaussian tail in
the distribution with an avalanche dimension D = 4 (r ∼ t1/D), signaling
subdiffusive behavior for the spread of activity.

Consider first the probability Pλ(r, s) that the λ avalanche dies precisely
after s updates and does not affect a particular site r away from the origin
of the avalanche. The quantities Pλ(r, s) and Fλ(r, s) are related by

Pλ(r, s) = Pλ(r = ∞, s) − Fλ(r, s) , (15.29)

where Pλ(r = ∞, s) = Pλ(s). Since an avalanche begins with a single active
barrier at r = 0 and s = 0, then Pλ(r = 0, s) ≡ 0 for all s ≥ 0, and
Pλ(r, s = 0) ≡ 0 for all r. The remaining properties of a λ avalanche can be
deduced from the properties of avalanches that ensue after the first update. It
will terminate with probability (1−λ)2 after the first update when the update
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does not produce any new active barriers. Thus, Pλ(r, s = 1) ≡ (1− λ)2. For
avalanches surviving until s ≥ 2, one finds for r ≥ 1 [96]

Pλ(r, s) = λ(1 − λ) [Pλ(r − 1, s− 1) + Pλ(r + 1, s− 1)]

+λ2
s−1∑
s′=0

Pλ(r − 1, s′)Pλ(r + 1, s− 1 − s′) . (15.30)

The first update may create exactly one new active barrier with probability
λ(1 − λ) either to the left or to the right of the origin (i. e. one step towards
or away from the chosen site of distance r). In this case, the properties of the
original avalanche of duration s are related to the properties of an avalanche
of duration s− 1 with regard to a site of distance r− 1 or r+ 1, respectively.
Furthermore, the first update may create two new active barriers with prob-
ability λ2 to the left and the right of the origin. Then, the properties of the
original avalanche of duration s are related to the properties of all combina-
tions of two avalanches of combined duration s− 1. Both of these avalanches
evolve in a statistically independent manner for M = ∞. Since only one of
these avalanches can be updated at each time step, their combined duration
has to add up to s− 1 for this process to contribute to the avalanche of du-
ration s. For any such combination, the probability not to affect the chosen
site of distance r from the origin is given simply given by the product of
the probabilities for the two ensuing avalanches not to affect a chosen site of
distance r − 1 or r + 1, respectively.

The equation governing Fλ(r, s) is obtained by inserting (15.29) into
(15.30). It is Fλ(0, s) ≡ Pλ(s), Fλ(r, 0) ≡ 0, Fλ(r ≥ 1, s = 1) = 0, and
for s ≥ 1, r ≥ 1,

Fλ(r, s+ 1) = λ(1 − λ) [Fλ(r − 1, s) + Fλ(r + 1, s)]

+λ2
s∑

s′=0

Pλ(s− s′) [Fλ(r − 1, s′) + Fλ(r + 1, s′)]

−λ2
s∑

s′=0

Fλ(r − 1, s′)Fλ(r + 1, s− s′) . (15.31)

Focusing on the spatiotemporal correlations at the critical point λc, for
sufficiently large values of r and s, Fλ(r, s) goes to 0 for r → ∞ sufficiently
fast such that we can neglect the nonlinear term in (15.31). The continuum
limit yields

∂F (r, s)
∂s

∼ 1
2
∇2

rF (r, s) +
1
2

∫ s

0

V (s− s′)F (r, s′) ds′ , (15.32)

which is a “Schrödinger” equation in imaginary time, with a nonlocal memory
kernel V (s) = P (s) − 2δ(s), where P (s) ∼ t−α with α = 3/2 [96] is the
avalanche size distribution and δ(s) is the usual Dirac δ function. Note that
it is the statistical independence of the avalanches that gives V (s) in terms
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of the probability distribution of avalanche sizes. The memory in the system
is characterized solely in terms of this distribution. The dependence P (s) ∼
t−3/2 results from the fact that the length of an avalanche is the same as the
first return to the origin of a random walk [96].

Using the Laplace transform, F̃ (r, y) =
∫∞
0

dt e−ytF (r, t), (15.32) turns
into an ordinary second-order differential equation in r,

∇2
rF̃ (r, y) ∼

[
2y − Ṽ (y)

]
F̃ (r, y) , (15.33)

where Ṽ (y) is the Laplace transform of V (t); Ṽ (y) ∼ yα−1 for small y. In
the limit of large times, the effect of the history-dependent potential domi-
nates over the time derivative in (15.32), signaling the deviation from simple
diffusive behavior. The solution of (15.33) which decreases for large r is

F̃ (r, y) ∼ exp
(
−A ry(α−1)/2

)
, (15.34)

where A is a constant. The inverse Laplace transform can be estimated by
the saddle-point approximation and finally yields

F (r, t) ∼
√

24
π
t−3/2

(
r4

t

)1/3

e−(3/4)(r4/t)1/3 (
r4 � t � 1

)
. (15.35)

This anomalous tail in the probability distribution for the activity in SOC
is also characteristic of glassy systems. For example, the directed polymer in
a random media, which contains many features of frustrated random systems,
also has a non-Gaussian tail for G(x, t) [388]. While this model is inherently
dynamical with no quenched disorder, the difference between frozen disorder
and dynamically generated ones has been shown to be less than thought
previously: both may lead to glassy dynamics with long-range memory and
aging [113, 603].

Linear Fractional Stable Motion for Extremal Dynamics. We stressed
above in the definition of extremal dynamics that all the information in this
sort of dynamics is contained in the “activity” map, defined as a space–time
plot of where the front is active at every instant of time. Previous studies
regarding extremal models [557, 945] have shown that most of the relevant
information is actually contained in the probability density function (pdf) of
the activity map. In the stationary regime, assuming that the activity was
located at x0 at time t0, the probability that it is at x at time t is:

p(|x− x0|, t− t0) = (t− t0)−1/zφ

( |x− x0|
(t− t0)1/z

)
(15.36)

with

φ(r) ∝
{
r−1−α for r � 1
r0 for r � 1 .

(15.37)

While the exponent α controls the asymptotic behavior of the time-indepen-
dent function φ, z controls the propagation of the activity along the system
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as a function of time and is therefore known as the “dynamical exponent.”
The above distribution is self-affine and therefore its temporal evolution is
completely defined through the exponents z and α.

The Linear Fractional Stable Motion [810] has been used by Krishna-
murthy et al. [532] to combine the effect of long range time correlations with
a fat tail distribution of jump sizes. Let x denote a process generated in the
following manner:

x(t) =
∑

f(t, u)η(u) , (15.38)

where η(u) is an uncorrelated noise with a symmetric distribution p(η = x) ∼
|x|−1−α. For stationary processes, it is natural to assume f(t, u) = f(t− u).
The definition above implies basically that x consists of a sum of uncorrelated
Lévy jumps weighted in time by f(t − u). This weight function therefore
controls the time dependence of the statistical properties of x. It is easy to
show that the sum in (15.38) can be performed much as for independant Lévy
flights and the random variable X = x(t) (given that X = 0 at t = 0) has
a probability density function

p(X, t) =
∫

exp(ikX) exp(−σα
t |k|α) dk/2π . (15.39)

where (σt)α =
∑t

u=0 |f(t − u)|α. For the Linear Fractional Stable Mo-
tion [810], the function f(t, u) reads:

f(t, u) = (t− u)d , (15.40)

where the parameter d satisfies −1/α < d < 1 − 1/α. The Linear Fractional
Stable Motion [810] is thus a self-similar process with stationary increments.
One can define a Hurst exponent H describing the self-similarity of this pro-
cess through the definition

〈|x(t) − x(t′)|q〉1/q ≈ |t− t′|H for q < α . (15.41)

H accounts for possible temporal statistical dependence between jumps. For
the process (15.38) giving (15.39), H = d+ 1/α and [532]

σα
t = σα

1 |t|αH . (15.42)

The Linear Fractional Stable Motion offers the following prediction for
the exponents α and z defined in the scaling form (15.36) obtained for an
extremal model. From (15.39) and (15.42), the pdf p(|x− x0|, t− t0) satisfies
the scaling form (15.36) with z = 1/H . This prediction is verified with high
accuracy in numerical simulations [532].

The analytical expression (15.39) for the space–time plot of the activity
provides new predictions, as shown by Krishnamurthy et al. [532]. Consider
the two-point function P (l1, l2), which is the probability of having a jump
l1 and l2 at two consecutive instants. Using (15.39), the expression of this
function in Fourier space is just ∼ ∫

exp(ik(l1 + l2)) exp(−|2|αH |k|α) dk. In
real space, this corresponds to the function 1/(l1 + l2)α+1, asymptotically.
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The conditional probability P (l2|l1) – the probability of having a jump of
length l2 at time t = 2 given that there was a jump l1 at time t = 1 – can be
calculated using P (l2|l1) = P (l1, l2)/P (l1). This gives

P (l2|l1) ∼ 1/(1 + l2/l1)α+1 , (15.43)

confirming the numerical evidence presented in [530, 531]. This reasoning
can be generalized to the full n-point function P (l1, l2, l3, . . . , ln) (discussed
in [530, 531]) of having a jump of length l1 at time t = 1, a jump of length l2
at time t = 2 and so on till t = n. Systematic expansions can be obtained for
the conditional probabilities just as for the two-point function and can also
be verified numerically on the models.

Another interesting consequence of the definition of the Linear Fractional
Stable Motion for extremal dynamics is the following equation for the front
propagation under this dynamics. Defining the height h(X, t) of an interface
at time t at a spatial location X as simply the accumulated activity there up
to time t, we get

h(X, t) = ∆h

∫ t

0

δ(X − x(t′)) dt′. (15.44)

Let us perform the scale transformation commonly used for self-affine sur-
faces: X → bX , t → bzt and h → bχh, where χ is the so-called roughness
exponent for the height. A power counting on both sides of this equation gives
the relation χ = z − 1, known to hold for extremal dynamics [713, 945].

15.4.8 Dynamical System Theory of Self-Organized Criticality

Blanchard, Cessac and Krüger [94, 151] have developed a dynamical system
theory for a certain class of SOC models (like the Zhang’s model [735, 1057]),
for which the whole SOC dynamics can either be described in terms of It-
erated Function Systems, or as a piecewise hyperbolic dynamical system of
skew-product type where one coordinate encodes the sequence of activations.
The product involves activation (corresponding to a a kind of Bernoulli shift
map) and relaxation (leading to to contractive maps).

Following [95], let us first recall briefly the rules of Zhang’s model, de-
fined in a connected graph Λ, with nearest neighbors edges. The boundary
of Λ is the set of points in the set complementary to Λ at distance 1 from Λ.
N is the cardinality of Λ. Each site i ∈ Λ is characterized by its “energy”
Xi, which is a non-negative real number. The “state” of the network is com-
pletely defined by the configuration of energies. Let Ec be a real, positive
number, called the critical energy, and M = [0, Ec[N . A configuration is
“stable” if it is in M and “unstable” or “overcritical” otherwise. If the con-
figuration is stable, then we choose a site i at random with probability 1/N ,
and add to it the energy δX . Since the physically relevant parameter is the
local rigidity Ec/δX [735], one can investigate the cases where Ec varies, and
where δX is a constant. If a site i is overcritical (Xi ≥ Ec), it loses a part
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of its energy in equal parts to its 2d neighbours. Namely, we fix a parame-
ter ε ∈ [0, 1[ such that, after relaxation of the site i, the remaining energy
of i is εXi, while the 2d neighbours receive the energy (1 − ε)Xi/2d. In the
original Zhang’s model [1057], ε was taken to be zero. If several nodes are
simulaneously overcritical, the local distribution rules are additively super-
posed, i.e. the time evolution of the system is synchronous. The sites of the
boundary have always zero energy (dissipation at the boundaries). The suc-
cession of updating leading from an unstable configuration to a stable one
is an avalanche. Because of the dissipation at the boundaries, all avalanches
are finite. The structure of an avalanche can be encoded by the sequence
of overcritical sites A = {Ai}0≤i where A0 = {a}, the activated site, and
Ai = {j ∈ Λ|Xj ≥ Ec in the i-th step of avalanche} , i > 0. The addition of
energy is adiabatic. When an avalanche occurs, one waits until it stops before
adding a new energy quantum. Further activations eventually generate a new
avalanche, but, because of the adiabatic rule, each new avalanche starts from
only one overcritical site.

Since the avalanche after activation of site a maps overcritical to stable
configurations, one can view this process as a mapping from M → M where
one includes the process of activation of site a. One can hence associate
a map Ta with the activation at vertex a. This map usually has singularities
and therefore different domains of continuity denoted by Mk

a where k runs
through a finite set depending on a. Call T k

a = Ta|Mk
a
. The dynamical system

approach is especially suited to study the properties of the family of mappings
{T k

a } and to link these properties to the asymptotic behavior of the SOC
model.

Several deep results from the theory of hyperbolic dynamical systems
can then be used in this framework, having interesting implications on the
SOC dynamics, provided one makes some natural assumption (like ergodic-
ity). With this dynamical approach, a precise definition of the SOC attractor
can be obtained. Within this approach, one can readily show that the SOC
attractor has a fractal structure for low values of the critical energy. The
dynamical system approach defines the structure of the dynamical SOC at-
tractor in a natural way, which is nothing but the natural invariant measure.
The Lyapunov exponents, the geometric structure of the support of the in-
variant measure (Hausdorff dimensions), and the system size are related to
the probability distribution of the avalanche size via the Ledrappier–Young
formula [552] which relates the Kolmogorov–Sinai entropy to the Lyapunov
exponents: if hµ is the Kolmogorov–Sinai entropy of the invariant measure
defined by the map dynamics and λ+

i ’s are the positive Lyapunov exponents,
for ergodic measures the Ledrappier–Young formula is [552]

hµ =
∑

i

λ+
i σi , (15.45)

where σi is the transverse dimension of the measure on the sub-manifold i de-
fined such that the contraction (resp. the expansion) on this sub-manifold is
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governed by the Lyapunov exponent λi. By using the ergodic theorem, on gets
the log-average volume contraction which is also the sum of Lyapunov expo-
nents and thus relates the local volume contraction to the average avalanche
size. It connects therefore microscopic dynamical quantities (Lyapunov ex-
ponents) to a macroscopic observable (average avalanche size). In particular
it allows to establish a link between the Lyapunov spectrum and the critical
exponents of the avalanche size distribution. This relationship reads

∑
i

λ−i = (ln ε)
SN∑
s=1

sPN (s) = (ln ε) s̄ , (15.46)

where s̄ is the average avalanche size and sN the maximal avalanche size.
Blanchard, Cessac and Krüger [94, 151] have noticed that the dynamics

of the Zhang’s model is essentially equivalent to a graph probabilistic It-
erated Function System (IFS) [58, 287], namely, a set of quasi-contractions
Fi randomly composed along a Markov graph admitting a unique invariant
measure µ∗. Note that IFS are usually defined for true contractions, however,
in the present case, any finite composition along the graph is a contraction,
hence the classical theory of graph directed Iterated Functions Systems ap-
plies and allows one to obtain interesting results with respect to the geomet-
rical structure of the invariant set. Note that this connection to IFS which are
not everywhere contracting provides a bridge with the multiplicative random
maps discussed in Chap. 14, which have been shown to produce power law
distributions as a result of intermittent amplification.

The dynamical system approach also predicts an interesting phase transi-
tion which is similar to the synchronized–SOC transition found numerically
as a function of the ratio disorder over coupling strength between threshold
oscillators of relaxation [908]. The gist of the argument is as follows [95].
Domains of continuity Mk

a are bounded by hyperplanes, which are moving
when Ec varies. In general, a small variation in Ec does not lead to structural
changes in the dynamics, if all these hyperplanes are intersecting the inte-
rior of M. In this case, the structure of the transition graph is not modified.
Moreover, the corresponding mapping T k

a does not change under this mo-
tion. More precisely, changes in Ec just change the shape of Mk

a but not the
matrix of the mapping T k

a . However, for some Ec values, some hyperplanes
have intersection only with the boundary of Mk

a. This implies that a small
change in Ec can push these hyperplanes outside M. Hence the correspond-
ing transition graph changes in structure. Since the asymptotic dynamics and
therefore the invariant distribution is dependent on the graph structure, one
expects changes in the SOC picture when crossing these critical Ec values.
It is easy to see in particular that the limiting cases Ec → ∞ and Ec → 0
are completely different. For Ec → ∞, relaxation events are more and more
seldom. One obtains a kind of frozen state where the energy increases (on
average) monotonously with some rare (but large) avalanches. Moreover, the
asymptotic energy distribution is sensitive to the initial conditions (loss of
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ergodicity). Furthermore, the attractor has a large Haussdorf dimension. On
the other hand, for Ec → 0, each activation generates a very large avalanche
(that has to reflect many times on the boundary before it has lost enough
energy to stop). This implies larger and larger contraction, and therefore the
sum of Lyapunov exponents decreases to −∞. As a corollary of Ledrappier–
Young formula, the partial fractal dimensions have to go to zero in order to
maintain the product equal to lnN .

Explicit formula for the transport modes that appear as diffusion modes in
a landscape where the metric is given by the density of active sites have been
established [152]. Finite size scaling can then be used for the Lyapunov spec-
trum which allows one to relate the scaling exponents to the scaling of quan-
tities such as avalanche size, duration and density of active sites. The gener-
ating functions of probability distributions in the generalized Zhang model
have also been found to exhibit a Lee–Yang phenomenon [1033]. Namely,
their zeros pinch the real axis at z = 1, as the system size goes to infinity.
This establishes an additional link between the classical theory of critical phe-
nomena and SOC. A scaling theory of the Lee–Yang zeros has been proposed
in this setting [153], which allows one to calculate the critical exponents.
This approach also reveals artificial biases in the distributions obtained by
numerical simulations.

15.5 Tests of Self-Organized Criticality
in Complex Systems: the Example of the Earth’s Crust

What are the possible observable consequences of the SOC hypothesis in the
Earth’s crust? This discussion is taken from [373].

A hypothesis cannot be tested by the empirical evidence that served to
shape it. We thus exclude the Gutenberg–Richter power law as well as the
fractal geometrical structure of the earthquake epicenters and fault patterns.
In the present discussion, we address two novel properties/predictions that
derive naturally from detailed numerical studies of simplified models of the
crust.

The first one is the most obvious for geologists but we nevertheless ad-
dress it as some confusion might exist, probably seeded by the statisti-
cal physics community. It concerns the localization of earthquake activity
on faults. When elasticity is correctly incorporated, SOC (defined by the
four conditions given in the definition at the beginning of this Chapter) is
found to coexist (and is, in fact, deeply intertwinned) with a spontaneous
organization of a fault structure on which the earthquake activity is clus-
tered [184, 185, 408, 576, 627, 907, 915]. SOC is thus not synonymous with
a diffuse “avalanche” activity covering uniformly all the available space, as
extrapolations from sandpile models would imply [45, 166, 173, 700].

The incorporation of elasticity in models of SOC, in fact, leads to an en-
richment of the concept, since fault structures are found to be geometrical
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objects themselves subjected to the self-organizing principles and which can
be perceived as self-organized structures solving a global optimization prob-
lem as defined by Crutchfield and Mitchell [192]. The most interesting aspect
of SOC is probably in its prediction that the stress field exhibits long-range
spatial correlations as well as important amplitude fluctuations. The exact
solution of a simple SOC model [226, 228, 580] has shown that the spatial
stress-stress correlation of the stress fluctuations around the average stress
is long range and decays as a power law. A similar conclusion on the related
strain field fluctuations has been obtained within a general mathematical for-
malism [917]. The conclusion we can draw from the understanding brought
by these conceptual models is that the stress fluctuations not only reflect but
also constitute an active and essential component of the organizing principle
leading to SOC.

A substantial fraction of the crust is close to rupture instability. Together
with the localization of seismicity on faults, this leads to the conclusion that
a significant fraction of the crust is susceptible to rupture, while presently
being quiescient. The quantitative determination of the susceptible fraction
is dependent on the specificity of the model [735, 907, 1057] and cannot thus
be ascertained with precision for the crust. What is important, however, is
that the susceptible part of the crust can be activated with relatively small
perturbations or by modification of the overall driving conditions. This re-
mark leads to a straighforward interpretation of induced seismicity by human
activity [373].

If a finite fraction of the crust is susceptible and can easily be brought to
an unstable state, not all the crust is in such a marginal stability state. In
fact, the complementary finite fraction of the crust is relatively stable and
resistant to perturbations. The assertion often found in the SOC literature
that “the crust is almost everywhere on the verge of rupture” is simply wrong,
as found in the simplified SOC models. For instance, numerical simulations
show that in discrete models made of interacting blocks carrying a continuous
scalar stress variable, the average stress is around 0.6 times the threshold
stress at rupture [735]. In these models, the crust is far, on the average, from
rupture. However, it exhibits strong fluctuations such that a subset of space
is very close to rupture as already pointed out. The average is thus a poor
representation of the large variability of the stress amplitudes in the crust.
In Chap. 17, we show in fact that the distribution of the stress induced by
a random distribution of dislocation sources is a stable Lévy law (Chap. 4).
The power law tail is in practice rounded off by the strength of the rocks.



16. Introduction to the Physics
of Random Systems

16.1 Generalities

Quenched (frozen) randomness may bring qualitative novel behaviors. Disor-
der has traditionally been addressed as a perturbation, a nuisance, leading to
distorsions without much surprise. The methods known as homogeneization
theory [80] and effective medium theories [171] exemplify this by starting
from the concept that an heterogeneous medium can be replaced for all its
relevant observables by an effective and equivalent homogeneous medium.

However, a large amount of work has shown that there are many situa-
tions where this conclusion is incorrect. A first milestone can be traced back
to Anderson who showed in 1958 that sufficiently strong quenched disorder
can trap or localize waves in the multiple scattering regime [25, 27, 877]. In
this goal, he recognized that a suitable representation of the variability of
measurable quantities is not provided by the variance but by the full prob-
ability distribution. Other important discoveries are the breaking of ergod-
icity (the average over an ensemble of realizations may not be the same as
the average over time evolution) and the rugged-multi-valley structure of the
energy landscape of Ising models, in other words optimization problems in
the presence of quenched disorder (or competing or frustrated constraints)
have exponentially many solutions (in the number of degrees of freedom)
with about the same cost functions [622]. The two behaviors turn out to be
intimately linked: the existence of many competing minima of the energy of
a system leads to the trapping of its dynamics over long times in certain
narrow regions of phase space and prevents the exploration of all possible
configurations, hence breaking ergodicity.

The present chapter is necessarily naive in its presentation as the field
has developed tremendously in the last thirty years. Here, we survey rather
superficially some key concepts and results with the view point of providing
hints to the reader that the novel concepts developed in this field are worth
studying and will certainly be useful for applications to many other fields
which are still in their infancy.

The paradigms of quenched disorder systems are the spin glass sys-
tems [91]. The term “spin glass” derives from condensed matter applications
in which ferromagnetic systems (iron for instance) are corrupted by non-
ferromagnetic impurities (gold atoms!). For sufficiently strong concentrations
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of impurities, the system looses its ferromagnatic properties even at very
low temperature and enters a novel “spin glass” phase. The two main physi-
cal ingredients controlling this regime are the existence of “frustration” and
frozen disorder. Frustration is the concept that not all constraints can be
satisfied simultaneously. For instance, consider a triangle whose nodes each
carry a spin. If the coupling constants K defined in (9.1) or (9.4) are negative
(antiferromagnetic) such that two neighboring spins “prefer” to anti-align, it
is clear that at least one pair is not in its optimal configuration, as shown
in Fig. 16.1. Such frustration occurs even in absence of disorder. It is at the
origin of the coexistence of several states with the same energy as shown in
Fig. 16.1. The addition of frozen (also refered to as “quenched”) disorder
often multiplies the number of states with equivalent energy.

Fig. 16.1. Illustration of the con-
cept of “frustration”: each spin at the
nodes of a triangle can only take two
states, up or down. The − signs on
the bonds indicate that the energy
of a configuration of two neighboring
spins is −1 if they are anti-parallel
and +1 if they are parallel. This corre-
sponds to an anti-ferromagnetic cou-
pling. In contrast to the ferromag-
netic case where the configuration
with minimum energy is only two-
fold degenerate (all spins up or down),
there are six states with minimum en-
ergy equal to −1 that are shown in the
figure

Spin glasses constitute a well-studied but still only partially understood
paradigm of the physics of systems with frozen disorder. In the context of
thermodynamics systems, their specific behavior that makes them apart from
other systems is as follows.

• If we cool the system below some temperature (the so-called glass transition
temperature Tg), its energy and other thermodynamic variables depends
on the cooling rate in a significant way as well as on the previous thermal
history of the system.

• No thermodynamic anomaly is observed: the entropy (extrapolated at very
slow cooling) is a linear function of the temperature in the region where
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such an extrapolation is possible. For a finite value of the cooling rate, the
specific heat is nearly discontinuous. Data are consistent with the possibil-
ity that the true equilibrium value of the specific heat is also discontinuous
at a temperature Tc lower than Tg.

• The relaxation time τ (and quantities related to it, e.g. the viscosity) di-
verges at low temperature. In many glasses (the fragile ones), the experi-
mental data can be fitted by the so-called Vogel–Fulcher law [319, 995] :

τ = τ0eβB(T ) (16.1)
B(T ) ∝ (T − Tc)−β , (16.2)

where τ0 is a typical microscopic time, Tc is near the value at which we
could guess the presence of a discontinuity in the specific heat and the
exponent β is of order 1.

The mechanism of combination of exponentials for power laws studied in
Chap. 14 provides a simple and intuitive understanding of the glass transi-
tion [109]. Indeed, if the distribution of energy barriers between states is an
exponential with average x0, the trapping or waiting time τ to cross over
a given energy barrier is given by the exponential Arrhenius factor as in
(14.37) where y is replaced by τ and X is the temperature T . As shown in
Chap. 14, the combination of these two exponentials give a power law distri-
bution for the trapping times with exponent µ = T/x0. For T ≤ x0, µ ≤ 1
for which the average trapping time 〈τ〉 is infinite. The value Tg = x0 thus
corresponds to the glass transition temperature. The mechanism of the glass
transition is the occurrence of arbitrary large trapping times (responsible for
the divergence of 〈τ〉) in a complex hierarchical system of energy barriers.

We can imagine many applications to natural systems of this rich phe-
nomenology. As the physics of spin glasses is still in its infancy and under
active construction, the concepts and methods have not yet really penetrated
many other fields, except for biology (neural networks [418], theory of the
brain, physics of protein folding) and computation of (or in) complex sys-
tems [622]. For instance, sequential reordering dynamics in the reordering of
proteins after a “proteinquake” follows a hierarchy of protein substates that
are arranged in a Bethe tree manner [308–310].

From a theoretical point of view, the mean field theory of spin glasses has
been developed to a high degree of sophistication [604, 622], using the so-
called replica symmetry breaking approach. Technically, the problem results
from the fact that precise theoretical predictions can only be performed for
observables such as the free energy that are averaged over many realizations of
the disorder, i.e. over many equivalent system realizations. A way to perform
this is to use the replica method which involves an analytic continuation from
integer to non integer values of the number of replicas of the physical system
under study. The breaking of the symmetry between replicas refers to the
fact that the true energy minima of the system are found when one breaks
the equivalence between all replicas [719–721] and organize them in a specific
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hierarchical (ultrametric) structure [759]. The concept of replica symmetry
breaking has become a crucial tool in the study of frustrated disordered
systems and there are no doubts that it describes correctly what happens in
infinite range models. On the contrary, its correctness in the case of short
range models remains controversial.

An alternative tool is the so-called cavity approach [622], in which one
starts by assuming that, in a finite volume, the decomposition in pure (mini-
mum energy) states is possible and has some suitable properties [604]. Then,
one compares a system containing N spins to a system with N + 1 spins: in
the limit of N large, the probability PN+1[w] that the system be in a given
state w can be written in explicit form as function of PN [w]. Symbolically,
one gets

PN+1 = R[PN ] . (16.3)

The probability P∞, which is at the heart of the replica approach, can be
obtained by solving the fixed point equation

P∞ = R[P∞] . (16.4)

The probability distribution (embedded with an ultrametric structure) which
was found by using replica theory turns out to be a solution of this fixed point
equation. Alas, it is not known if it is the only solution.

“Chaoticity” has been found to be a very important property of spin
glasses and more generally of frustrated disordered systems. It amounts to
say that if one considers a finite system and adds to the total Hamiltonian
a perturbation δH such that

1 � δH � N , (16.5)

the unperturbed and the perturbed system are as different as possible.
Chaoticity can also be formulated by saying that the states of the perturbed
systems have minimal overlap with the states of the system in absence of the
perturbation. Examples are found with respect to a random energy pertur-
bation, a change in the application of the external (magnetic) field or of the
temperature or when changing the number of spins (known in this case as
“chaotic volume dependence”). A simple case of chaotic dependence on the
volume is the one of an Ising ferromagnet in presence of a random symmetric
distribution of magnetic field at low temperature. The total magnetization is
well approximated by

sign

⎛
⎝ ∑

i=1,N

hi

⎞
⎠

(where the hi are the random fields) and this quantity changes in a random
way when N goes to infinity. There is no central limit theory for such quantity
and usual notions discussed in Chap. 2 has to be revised.
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16.2 The Random Energy Model

The random energy model (REM) [218] is the simplest model illustrating
this kind of phenomenology. Many of the main features of the model are
present in more sophisticated versions, if the appropriate modifications are
done. The idea is that randomness with frustration will create many states
with complicated and almost random energies. It is thus natural to take the
limit where these energies can be completely random.

Specifically, the model is defined as follows. There are N Ising spins (σi,
i = 1, N) which may take values ±1; the total number of configurations is
equal to M ≡ 2N and they can be identified by a label k in the interval
1, ...,M . The spins here encode a boolan parameterization of the system and
can be thought to describe systems other than magnetic. For instance, active
and inactive, intact or ruptured, etc.

Usually, one writes an explicit expression for the energies Ek of a system
as function of the specific spin configuration as in (9.1) or (9.4). On the
contrary, in the REM, one assumes that the values of the Ek are random,
with a probability distribution n(E) taken Gaussian:

n(E) =
1√
πJ N

e−E2/JN . (16.6)

J plays the role of an interaction strength and the normalization with a vari-
ance proportional to N ensures, as we will see, the correct extensive depen-
dence with the size N of the system. n(E) is also called the average density
of states.

Based on pure statistical considerations, we have seen in Chap. 7 that the
probability that the system is found in a state of energy E, given a constraint
on the average energy of the system, is given by the Boltzmann factor (3.45)

P (E) = n(E)
e−βE

Z(β)
, (16.7)

where the partition function is simply given by

Z(β) =
∑

k=1,M

exp(−βEk) =
∫

dE ρ(E) exp(−βE), (16.8)

ρ(E) ≡
∑

k=1,M

δ(E − Ek) . (16.9)

ρ(E) dE is the number of levels between E and E + dE such that 〈ρ(E)〉 =
n(E). The inverse “temperature” β is the Lagrange multiplier ensuring the
validity of the constraint (see Chaps. 3 and 7). We have seen that all quan-
tities of interest can be derived from the knowledge of the partition function
Z(β). The value of the partition function and of the free energy density
f = − lnZ/Nβ depends on all the values of the energies Ek. Z(β) is also
nothing but the characteristic function of the distribution of the energies.
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Notice that, as the distribution of the energies is Gaussian, the distribution
of the factors exp(−βEk) is log-normal with a tail which becomes heavier
and heavier as β increases (the “temperature” decreases). Since Z(β) is the
sum of log-normal variables, as β becomes large, the extreme fluctuations
of the log-normal variables will dominate the sum. The problem is thus re-
lated to the extreme value distributions discussed in Chaps. 1 and 3 (see
also [114]).

This density of states ρ(E) satisfies{ 〈ρ(E)〉 ∼ exp
{
N

[
log 2 − (E/N)2

]}
〈n(E)2〉 − 〈n(E)〉2 ∼ 〈n(E)〉 ,

(16.10)

so that two different energy regions can be identified:

1. If |E| < Nεc, with εc = (log 2)1/2, then the number of states N (E) is much
greater than one and its fluctuations are small, so for a typical sample we
will have

N typ(E) = 〈ρ(E)〉 + ηE〈ρ(E)〉1/2 , (16.11)

where ηE is a random number of order 1.
2. On the other hand, if |E| > Nεc, then the number of states is exponentially

small meaning that a typical sample will have no levels in this region

N typ(E) = 0 . (16.12)

The partition function for a typical sample will then be

Ztyp = A+B , (16.13)

with

A =
∑

|E|<Nεc

〈ρ(E)〉e−βE (16.14)

and

B =
∑

|E|<Nεc

ηE〈ρ(E)〉1/2e−βE . (16.15)

The calculation of A may be done by the steepest descent method

A ∼ 2N

∫ +εc

−εc

de exp{−N(e2 + βe)} . (16.16)

When the integration limits lay on opposite sides of the saddle point e =
−β/2, we can write∫ +εc

−εc

=
∫ −∞

−εc

+
∫ +∞

−∞
+

∫ +εc

+∞
(16.17)
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and A has contributions both from the saddle point and from the integration
limits for large N . This happens if |β| < βc where

βc = 2εc =
J

2
(log 2)1/2 (16.18)

and we get

A ∼ exp(Nβεc) + exp {N [log 2 + (β/2)2]} , (16.19)

whereas, if |β| > βc, the two steepest descent paths run from the integration
limits down to infinity on the same side of the saddle point so it does not
contribute and we have∫ +εc

−εc

=
∫ ±∞

−εc

+
∫ +εc

±∞
(16.20)

A ∼ exp(Nβεc) . (16.21)

The contribution B of the fluctuations can be calculated for large N .
Owing to the randomness of ηE , B is not the integral of an analytic function
so the steepest descent method is no longer applicable. On the other hand,
the ηE are uncorrelated for different values of E so the term with the largest
modulus will dominate the sum in (16.15). We can then estimate the modulus
of B as

|B| ∼ max
−Nεc≤E≤Nεc

|〈n(E)〉1/2e−βE | . (16.22)

It is easily seen that when |β| < βc/2, the maximum is in between the limits
so

|B| ∼ exp
[
N

2
(log 2 + β2)

]
, (16.23)

while if |β| > βc/2, one of the limits dominates and

|B| ∼ exp[N |β1|εc)] . (16.24)

For the free energy, one thus finds

F

N
= − ln 2

β
− J2

4
β , for β < βc , (16.25)

F

N
= −J (ln 2)1/2 , for β > βc . (16.26)

The average energy is given by

〈E〉 = −d lnZ
dβ

=
d(βF )

dβ
, (16.27)



448 16. Introduction to the Physics of Random Systems

i.e.

〈E〉 = −J
2

2
β , for β < βc , (16.28)

and

〈E〉 = −J (ln 2)1/2 β , for β > βc . (16.29)

The entropy is proportional to −dF/dβ and is positive at high tempera-
ture 1/β, decreases with 1/β (decreasing temperature) and vanishes exactly
at β = βc (glass transition) at which a small number of states dominate the
behavior. It follows that, in the high temperature region, an exponentially
large number of configurations contributes to the partition function (usual
case) while, in the low temperature region, the probability is concentrated on
a finite number of configurations.

As soon as we enter in the low temperature (large β) region, the proba-
bility of finding two equal configurations is not zero. The transition is quite
strange from the thermodynamic point of view.

• It looks like a critical (second-order) transition because there is no latent
heat. It is characterized by a jump in the specific heat (which decreases
going toward low temperatures).

• It looks like a first order transition. There are no divergent susceptibilities
coming from above or below (which within mean field theory should imply
no divergent correlation length).

These strange characteristics can be summarized by saying that the tran-
sition is of order one and half, because it shares some characteristics with
both the first order and the second order (critical) transitions. The thermo-
dynamic behavior of real glasses near Tc is very similar to the order one and
half transition of REM. This behavior is typical of the mean field approxi-
mation to glassy systems.

The random energy model assumes that the energy is completely upset
by a single spin flip, i.e. it assumes the property of chaoticity to hold strongly.
Refinements of the REM can be developed in terms of the so-called p-spins
models [334, 379], in which the energies of nearby configurations are also
nearby. Energy density (as function of the configurations) is not a continuous
function in the REM while it is continuous in the p-spins models, in the
topology induced by the distance. In this new case, some of the essential
properties of the REM are valid but new features are present.

The Hamiltonian one considers in p-spins models [334, 379] depends on
some control variables J , which have a Gaussian distribution and play the
same role of the random energies of the REM, and on the spin variables σ.
For p = 1, 2, 3 the Hamiltonian is respectively

H1
J(σ) =

∑
i=1,N

Jiσi , (16.30)
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H2
J(σ) =

′∑
i,k=1,N

Ji,kσiσk , (16.31)

H3
J(σ) =

′∑
i,k,l=1,N

Ji,k,lσiσkσl ,

where the primed sum indicates that all the indices are different. The vari-
ables J must have a variance of O(N (1−p)/2) in order to have a non trivial
thermodynamical limit.

It is possible to prove by an explicit computation that, if we send first
N → ∞ and later p→ ∞, one recover the REM. Indeed the energy differences
corresponding to one spin flip are of order p for large p (they are of order N in
the REM), so that in the limit p→ ∞ the energies in nearby configurations
become uncorrelated and the REM is recovered.

16.3 Non-Self-Averaging Properties

16.3.1 Definitions

The question of self-averaging arises in disordered models when one considers
the statistical fluctuations of a given thermodynamic or statistical extensive
property X of the model. Suppose we have a certain system of size N (under
“size” can be considered the linear dimension of the system as well as the
number of parts forming it, or equally a measure of its phase space, such as
the number of its possible configurations) in which disorder is represented
by some quenched random variables. For finite N , X is sample-dependent,
in the sense that to each sample of the system, namely to each realization of
the quenched disorder, corresponds a unique value of X , and the ensemble
average 〈X〉 of X is obtained by averaging over all possible realizations of the
quenched disorder. The sample-to-sample fluctuations of X are described by
the normalized variance

DN (X) =
〈X2〉 − 〈X〉2

〈X〉2 , (16.32)

which clearly depends on N and is non-zero for finite N . If DN (X) → 0 in
the thermodynamic limit N → ∞ then X is said to be self-averaging and
a sufficiently large sample is a good representative of the whole ensemble. But
if DN (X) tends to a finite positive value, then X remains sample-dependent
even in the thermodynamic limit, and an evaluation of X made on an arbi-
trarily large sample is not significant of the value of X on other samples. If
this is the case, X is said to be non self-averaging.

The appearance of non self-averaging effects in the low temperature
phase has been the most interesting outcome of the replica approach to spin
glasses [622]. It has later been recognized that such effects are present in
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a large class of even simpler models ranging from condensed matter theory
to population biology [419], to dynamical systems’ theory [222] and mathe-
matics as well (see [219] for a review of some of them). In the low tempera-
ture spin glasses, phase space can be thought of as if it was decomposed into
infinitely many pure states α, the weights Wα of which remain sample de-
pendent even in the thermodynamic limit [219]. This results in non-vanishing
sample-to-sample fluctuations of the weights Wα even in the thermodynamic
limit, so that any sample, no matter how large, is never a good representa-
tive of the whole ensemble. Furthermore, one may find finite-weighted pure
states in each sample, something which sounds strange since the normalizing
condition∑

α

Wα = 1 (16.33)

must always be satisfied. The same holds for many other models. In some
cases, the expression obtained for the fluctuations of the weights coincides
with that obtained for spin glasses in particular limits (as pointed out
in [219]), so that it looks as if the spin glass problem, at least in its mean field
version, belongs to a larger class of problems, and it would be interesting to
develop a more general theory to treat them.

By now, the standard method to detect non self-averaging effects (i.e.
breaking of ergodicity) is to study the quantity

Y =
∑
α

W 2
α . (16.34)

It is possible to show (see [219] for applications) that, if both the ensemble
average 〈Y 〉, and the variance var(Y ) = 〈Y 2〉− 〈Y 〉2 of Y are non zero in the
thermodynamic limit so that the probability density Π(Y ) remains “broad”
when the system’s size goes to infinity, then Y and consequently the weights
Wα are non self-averaging. 〈Y 〉 is the average of Y over all possible samples,
that is over all possible realizations of disorder, represented by a number of
quenched random variables. For the REM, one finds

〈Y 2〉 =
〈Y 〉 + 2〈Y 〉2

3
, (16.35)

〈Y 3〉 =
〈Y 〉 + 〈Y 〉2

3
, (16.36)

〈Y 4〉 =
2〈Y 〉 + 3〈Y 〉2 + 〈Y 〉3

6
. (16.37)

Similar results hold for boolean networks and random map models [222] and
for simple models of evolution [224]. These results derive from the fact that,
in many disordered models, in the thermodynamic limit the system’s phase
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space appears broken into infinite basins: (i) such breaking is sample depen-
dent; (ii) for each breaking, there are finite sized basins; (iii) the sizes of the
basins are non self-averaging quantities.

16.3.2 Fragmentation Models

Broken objects are perhaps the most intuitive and simplest models showing
the same non-self-averaging behavior. Consider fragmenting a given object
of size 1 into an infinite number of pieces of sizes Wα according to a given
breaking process. A sample corresponds to a specific rupture, hence to par-
ticular values of a set of quenched random variables on which the process
depends. For some processes, one finds that the sizes of the pieces lack of
self-averaging, that is they remain sample dependent despite of the fact that
the number of pieces is infinite and that

∑
αWα = 1. This is the case of

Derrida and Flyvbjerg’s randomly broken object [221], where the breaking
process depends on an infinite number of quenched random variables. Not
all breaking processes lead to non self-averaging effects. Suppose for exam-
ple that the object is broken uniformly into N basins of size Ws ∼ 1/N
each; then Y ∼ 1/N , and both Ws and Y would go to zero in the N → ∞
limit.

Kolmogorov’s Log-Normal Fragmentation Model. Before giving ex-
amples where lack of self-averaging occurs, one cannot speak of fragmen-
tation without refering to Kolmogorov’s famous paper on the log-normal
distribution law of particle sizes in fragmentation processes [520], which we
now briefly summarize. I acknowledge exchanges with V.F. Pisarenko on this
problem.

Let N(r, t) be the number of particles with sizes ρ ≤ r at times t =
0, 1, 2, ..., for 0 ≤ r < +∞. Let pn be the probability for the generation of n
particle-progenies from a given particle-progenitor in the unit time interval
[t, t + 1[. Let Fn(a1, ..., an) = P{k1 ≤ a1, ..., kn ≤ an} be the conditional
distribution function of the ratios ki = ri/r of children particle sizes to the
mother size (under condition of fixed n). No mass conservation is imposed.
The only condition is that children have sizes not exceeding the mother’s
size, that is, 0 ≤ k1 ≤ ... ≤ kn ≤ 1. In addition, the degenerate case when all
children have the mother’s size r with probability one is excluded. Finally, let
Q(k) be the expectation of the number of children particles of sizes ρ ≤ kr,
where r is the mother’s size. Since k measures the ratio of a child’s size to
the mother’s size, it does not depend on the later. Thus, it is important to
realize that the model expresses a condition of self-similarity. The additional
assumptions of the model are:

1. Particles act independently.
2. Both pn and Fn do not depend on the absolute size of the mother particle

and on its past history;
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3. Q(1) > 1. This last condition means that there are more than one child
generated by a given mother particle, on average. This ensures that, as
t→ +∞, infinitely many particles are created.

4. The following integral is finite:∫ 1

0

| ln k|3 dQ(k) < +∞ . (16.38)

This last condition is not very restrictive and is similar to the assumption
in the Lyapunov’s proof of the Central Limit Theorem (CLT) for the sum
of random variables in which the finiteness of the third statistical moment
of addends is sufficient (but not necessary) for the validity of the CLT
(see Chap 2).

Let us note

A =
1

Q(1)

∫ 1

0

ln(k) dQ(k) ;

B =
1

Q(1)

∫ 1

0

(ln(k) −A)2 dQ(k) . (16.39)

Then, the fundamental result of Kolmogorov, which launched the interest
in the log-normal distribution for fragmentation, is the following. Under the
above conditions and, if B is strickly positive (that is, the degenerate case
when all children have the same size is excluded), and callingN(t) the number
of all particles at time t, then the random ratio N(ex, t)/N(t) quantifying the
relative number of particles with sizes ≤ ex tends in probability at large times
to the integral

N(ex, t)
N(t)

d=
1√

2πBt

∫ x

−∞
du exp

[
− (u−At)2

2B2t

]
. (16.40)

The symbol d= means that the cumulative distribution of N(ex, t)/N(t) is
equal to the right-hand-side of (16.40). Notice that the asymptotic result
(16.40) is similar to a central limit theorem on the logarithm of the particle
size.

It is important to stress that Fn(a1, ..., an) does not appear in (16.40): the
limit distribution of the fragment sizes at long times does not depend neither
on the mother size nor on the specific past history of the fragmentation
process. This is true because of the self-similarity of the fragmentation process
outlined above. Kolmogorov’s theorem is very general indeed and covers many
fragmentation schemes and branching processres schemes with all possible
types of fragmentation (branching).

An important question is how useful if the asymptotic result (16.40) in
practical cases. For instance, let us consider the simple case where only frag-
ments of sizes larger than δr occur, such that Q(k < δ) = 0;Q(k ≥ D) =
constant, with Q(k) varying continuously between k = δ and D. Then, the
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convergence to the log-normal law (in its central part) is very fast. After
about 7–10 generations (7–10 random factors), the distribution of fragment
size is well-approximated by the log-normal law. Away from the central part
of the distribution, large deviations occur along the lines discussed in Chap. 3
but which are more difficult to predict for such classes of multiplicative pro-
cesses, in contrast with the case of additive processes for which the situation
is clear [268, 812]. Let us also mention in this vein that Molchan has recently
stressed the important role of the log-normal distribution in multiplicative
(Mandelbrot) cascades see [639], proposing a novel view of the emergence of
multifractality.

The Simplest Fragmentation Model. In the following example, we follow
De Martino [207] and consider an object of size 1 and break it according to
the following process: given a real number p ∈ [0, 1], we tear the object in
two pieces of sizes 1 − p and p respectively; then we do the same thing with
the piece of size p, obtaining two pieces of sizes (1 − p)p and p2 respectively,
plus the one of size 1− p obtained at the first breaking step. If we repeat the
same procedure with the pieces of sizes p2, p3, . . . that are obtained at the
second, third, . . . breaking steps, keeping the pieces of sizes (1−p)p, (1−p)p2,
. . . obtained at the same steps, we finally have a set of pieces of sizes

W1 = 1 − p

W2 = (1 − p)p
. . . (16.41)
Ws = (1 − p)ps−1

. . . ,

where Ws denotes the size of the piece kept at the s-th step. Clearly,∑
sWs =

∑∞
s=1(1 − p)ps−1 = 1. Note that the sizes of the resulting pieces

form a geometric sequence. Now suppose that p is a random variable with
probability density ρ(p). In this case, we can imagine that a breaking sample
is produced by choosing a random value of p from ρ(p) and fix it during
each fragmentation history, so that averaging over all samples means simply
averaging over all possible values of p.

Let again Y =
∑

sW
2
s . The value of Y for a single sample is given by

Y =
∑

s

(1 − p)2p2(s−1) =
(1 − p)2

1 − p2
=

1 − p

1 + p
, (16.42)

and the ensemble average of Y is simply

〈Y 〉 =
∫ 1

0

1 − p

1 + p
ρ(p) dp . (16.43)

When ρ is uniform, we obtain the value

〈Y 〉 = log 4 − 1 � 0.386 . . . . (16.44)



454 16. Introduction to the Physics of Random Systems

The probability density Π(Y ) over the samples may be calculated from
the relation Π(Y )dY = ρ(p) dp expressing the conservation of probability.
From (16.42), we get p = (1 + Y )−1(1 − Y ) and thus

Π(Y ) =
∣∣∣∣ dp
dY

∣∣∣∣ρ
(

1 − Y

1 + Y

)
, (16.45)

namely

Π(Y ) =
2

(1 + Y )2
ρ

(
1 − Y

1 + Y

)
. (16.46)

Y ’s ensemble average is given by 〈Y 〉 =
∫ 1

0
Y Π(Y ) dY and one can verify

that, for a uniform ρ, the value (16.44) is recovered using∫
2Y

(1 + Y )2
dY = 2

(
log |1 + Y | + 1

1 + Y

)
+ const . (16.47)

The second moment 〈Y 2〉 =
∫ 1

0 Y
2Π(Y ) dY may also be calculated easily for

a uniform ρ. Using∫
2Y 2

(1 + Y )2
dY

= 2
[
− Y 2

1 + Y
+ 2

(
1 + Y − log |1 + Y |

)]
+ const , (16.48)

we obtain 〈Y 2〉 = 3 − log 16 � .227 . . . �= 〈Y 〉2. The variance of Y is finally
given by

Var(Y ) = 〈Y 2〉 − 〈Y 〉2 � 0.078 . . . . (16.49)

The fact that Y has a non-zero variance in the thermodynamic limit which,
for this model, is represented by the infinite number of pieces in which the
object is broken, proves that Y , and consequently the sizes Ws, lack of self-
averaging for a geometrically broken object.

Another Recursive Fragmentation Model. We follow Krapivsky et
al. [529] and define the following recursive fragmentation process. Starting
with the unit interval, a break point l is chosen in [0, 1] with a probabil-
ity density pl(l). Then, with probability p, the interval is divided into two
fragments of length ratios l and 1 − l, while with probability q = 1 − p, the
interval becomes “frozen” and never fragmented again. If the interval is frag-
mented, we recursively apply the above fragmentation procedure to both of
the resulting fragments.

The probability density P (x) of fragments of length x averaged over many
different realizations (corresponding to a mean field theory) is given by

P (x) = qδ(x− 1) + 2p
∫ 1

0

dl pl(l)
∫ 1

x

dy P (y)δ(ly − x) . (16.50)
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The first term corresponds to no fragmentation occurring. The second term
indicates that a fragment of size x can only be obtained from a larger fragment
y ≥ x under the application of the breaking process with length ratio l. The
factor 2 accounts for the creation of two segments per fragmentation step.
Integrating over y to get rid of the delta function, we get

P (x) = qδ(x− 1) + 2p
∫ 1

0

dl
pl(l)
l
P
(x
l

)
. (16.51)

Equation (16.51) can be solved by introducing the Mellin transform

P̂ (s) =
∫ +∞

0

dxxs−1P (x) . (16.52)

Equations (16.51) and (16.52) yield

P̂ (s) =
q

1 − 2pp̂l(s)
, (16.53)

where p̂l(s) is the Mellin transform of pl(l). Simple poles of P̂ (s), i.e. simple
solutions of

2pp̂l(s) = 1 , (16.54)

give power laws by the inverse Mellin transform. This can be seen directly
by assuming a power law solution and replacing in (16.51). This retrieves
the equation (16.54). Note that, in general, there will be solutions in the
variable s of (16.54) with imaginary parts. For instance, take p(l) = δ(l− l0),
corresponding to an exact self-similar fragmentation process. Then, p̂(s) =
ls−1
0 and the solutions of (16.54) are

s∗n = − ln (2p/l0)
ln l0

+ i
2πn
ln l0

. (16.55)

The complex exponents s∗n signal the existence of log-periodic corrections to
the pure power laws and reflect a discrete scale invariance created by the
multiplicative fragmentation process [712] with the reduction factor l0. This
kind of phenomena has been discussed in Chap. 5. The existence of these log-
periodic corrections are robust with respect to the presence of disorder [476,
712], i.e. remain for a large set of choice for p(l) which can become broad.

However, when the disorder becomes too large, as for a uniform pl(l) = 1,
the distribution of fragment sizes becomes a pure power law, as seen from
the existence of a single simple pole:

P̂ (s) = q

[
1 +

2p
s− 2p

]
. (16.56)

The inverse Mellin transform of (16.56) gives

P (x) = q
[
δ(x− 1) + 2px−2p

]
. (16.57)

Apart from the obvious δ-function corresponding to the process where frag-
mentation stopped at the first step, the average length density distribution
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is a purely algebraic function. In particular, the fragment distribution di-
verges algebraically in the limit of small fragments. The mechanism for this
power law distribution results essentially from the multiplicative structure of
the fragmentation model together with the fact that fragments can become
unbreakable. This mechanism is similar to that discussed in Chap. 14, in re-
lation to multiplicative processes repelled from the origin. This is confirmed
by the fact that (16.51) has exactly the same structure as (14.125) obtained
for multiplicative models with repulsion from the origin.

The recursive fragmentation process can be generalized to higher dimen-
sions. In two dimensions, we start with the unit square, choose a point (x1, x2)
with a uniform probability density, and divide, with probability p, the origi-
nal square into four rectangles of sizes x1 × x2, x1 × (1 − x2), (1 − x1) × x2,
and (1 − x1) × (1 − x2). With probability q, the square becomes frozen and
we never again attempt to fragment it. The process is repeated recursively
whenever a new fragment is produced. This model of fragmentation also leads
to a power law distribution of fragment sizes, as measured by their surface
(volume in the higher dimensional case).

The recursive fragmentation processes described above thus exhibit a num-
ber of features that arise in other complex and disordered systems, such as
non-self-averaging behavior and the existence of an infinite number of sin-
gularities in the distribution of the largest fragment. These features indicate
that even in the “thermodynamic limit”, sample to sample fluctuations re-
main, and that knowledge of first order averages may not be sufficient for
characterizing the system.



17. Randomness
and Long-Range Laplacian Interactions

17.1 Lévy Distributions from Random Distributions
of Sources with Long-Range Interactions

We now present another aspect of quenched randomness that occurs in re-
lation to long-range interactions. Our exposition is non-rigorous and empha-
sizes the underlying physical mechanisms. For a rigorous presentation, we
refer to V. Zolotarev on “Model of Point Sources of Influence” (see [1066],
Chap. 1, Sect. 1.1). V. Zolotarev provides in particular a general formula
(number (1.1.9) of his book) for the characteristic function of random fields
generated by randomly distributed (Poissonian) point sources. The corre-
sponding distribution is always an infinitely divisible distribution. There are
numerous examples of such fields with power-like tails (gravitational fields
of stars, temperature distribution in nuclear reactors, strain fields in crystals
generated by random imperfections, magnetic fields generated by elementary
magnets, some problems in communication theory, and so on). We also men-
tion the problem of the sum of impulsive sources in signal analysis: many
of the natural and man-made impulsive interferences may be considered as
the results of a large number of spatially and temporally distributed sources
that produce random noise sources of short duration. Nikias and Shao [685]
present a derivation of symmetric stable Lévy distributions to model the
first-order statistics of such impulsive noise. The stable Lévy distributions
can be derived from the standard filtered-impulse mechanism of the noise
process under the condition that the spatial and temporal distributions of
noise sources as well as the propagation properties are scale invariant and
characterized by power laws [321, 624].

17.1.1 Holtsmark’s Gravitational Force Distribution

A classic problem in astronomy is as follows: consider a universe of identical
pointwise stars of unit mass distributed at random leading to an average
uniform density ρ for the universe. Take a point at random in the universe:
you will measure a gravitational pull. At another point, the pull will probably
be different. Dropping measurements at random, what is the distribution of
the components of the gravitational forces created by the random distribution
of stars?
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If the density was not concentrated at stars but uniformely distributed
in gas clouds evenly spread within the universe, the gravitational force will
be exactly zero in an infinite universe due to the exact cancellation of the
pulling force exerted by all pairs of points symmetric to each other with
respect to the measuring point. A non-trivial phenomenon appears solely
due to heterogeneity as we show below. Thus, replacing a random system by
an average homogeneous system is very misleading. This is an example where
homogeneization or effective medium theories do not apply.

This problem has been solved first by the astronomer Holtsmark. Let us
give two derivations that illuminate the relationship between this problem
and the stable Lévy laws studied in Chap. 4 and with the statistics of large
fluctuations described in Chap. 3.

First Intuitive Derivation. If the density is ρ and the stars have unit
mass, then the typical distance between stars is r∗ ∼ (3/4πρ)1/3. However,
if we drop a measurement point at random, it will sometimes fall very close
to a star and will thus feel a strong attraction. Due to the uncorrelated
randomness of the star position, the probability, that the closest star is at
a distance between r and r+dr to the measurement point taken at the origin,
is

P (r)dr ∼ ρrd−1 dr for r small . (17.1)

The factor rd−1 stems from the spherical geometry of finding a star at a dis-
tance r in a space of dimension d. For d = 3, rd−1 = r2 falls to zero quite
rapidly for r < r∗. According to the law of gravitation, the corresponding
pull due to a neighboring star at a distance r is

F ∼ r−2 , (17.2)

for all components of the force. Assuming that the contribution of the other
stars that are further away do not contribute significantly compared to the
closest star, we get the distribution P (F ) dF of the forces F . It is such that
P (F ) dF = P (r) dr, which yields

P (F ) dF ∼ dF
F 1+µ

, (17.3)

for F large, with µ = d/2 = 3/2 in our 3D space. This simple reasoning
retrieves the result by Holtsmark that the distribution of the forces in a ran-
dom universe is very broad, with no variance since µ < 2 (see Chap. 4). This
derivation uses the mechanism of power law or inversion change of variable
(14.10) presented in Chap. 14 to generate a power law distribution.

Lévy Distributions. Let us now discuss the assumption that the contribu-
tion of the other stars that are further away do not contribute significantly
compared to the closest star. This will lead us to an argument borrowed from
Feller [293]. We consider a ball of radius r centered at the origin (measurement
point) which contains N pointwise stars of unit mass placed independently
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and randomly. Call Xi the x-component of the gravitational force created
by the i-th star at the origin. The same reasoning applies to the other force
components along y and z. Then, the total force along x is

SN =
∑
i=1

Xi . (17.4)

We are interested in the limit r → ∞, N → ∞ and
4π
3
r3N−1 → 1

ρ
, (17.5)

where ρ is the average large scale star density. Then, the distribution of SN

tends to the symmetric stable Lévy distribution with characteristic exponent
µ = 3/2. To see this result, let us consider the density ρ as a free parame-
ter. Consider two clusters of stars with density ρ1 and ρ2 respectively and
the corresponding force S(1)

N and S
(2)
N that they exert at the origin along x.

Because the distribution of stars in each cluster is random and uncorrelated,
these two clusters may be combined to form a new cluster of density ρ1 + ρ2

which exerts a total force along x equal to ST = S
(1)
N + S

(2)
N . In probabilis-

tic terms, the sum of two independent variables S(1)
N and S

(2)
N should have

the same distribution as ST. This requires that the distribution of SN in
(17.4) be one of the stable distributions, either the Gaussian law or one of
the Lévy laws. To determine which of these to choose, consider a change of
density from 1 to ρ. Since density is mass per unit volume, this change of
density amounts to a change of length from 1 to ρ−1/3. As the gravitational
force varies inversely with the square of the distance, we see that SN must
have the same distribution as N2/3S1, as seen from (17.5). In other words,
SN/N

2/3 must have the same distribution as S1. From the scaling law (4.24)
that characterizes Lévy laws, this implies that the distribution of SN in the
limit of large N is the Lévy distribution with exponent µ = 3/2.

Specifically, the probability density of the force F is given by

P (F ) =
H(β)
F0

(17.6)

where

F0 = (4/15)2/3(2πGM)ρ2/3 (17.7)

is the normalizing force (ρ is the average density of sources, M is the mass
of each point source and G is the gravitational constant), β = F/F0 is a di-
mensionless force and

H(β) =
2
πβ

∫ ∞

0

dx exp[−(x/β)3/2]x sin(x) . (17.8)

The main result is that, in the thermodynamic limit (V → ∞ with ρ con-
stant), the force distribution has a finite first moment and an infinite variance.
As we already stressed, this divergence is due to the possibility of being ar-
bitrarily close to a source. The approximate solution given by the nearest
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neighbor approximation (i.e. by considering only the effect of the nearest
neighbor source) and the exact Holtsmark’s distribution (17.8) agrees over
most of the range of F as shown in Fig. 17.1. The region where they differ
mostly is when F → 0. This is due to the fact that a weak force arises when
there is an almost perfect cancellation of the pulls from all the stars: this
case involves a collective effect for which the nearest neighbor approximation
fails.

This result (17.6)–(17.8) extends and makes more precise the previous
asymptotic result (17.3) which is valid only in the tail of the distribution for
very large forces. The Lévy stable distribution describes the full distribution
of the gravitational pulls, in the suitable limit of an infinite volume V and
an infinite number N of stars with a finite ratio N/V .

Fig. 17.1. Force distribution due the nearest neighbor contribution (crosses) and
due to all the field sources (diamonds) for an homogeneous sample with ρ = N/V =
2.39 × 104 in three dimensions. The dotted line represents the force distribution
W (F ) computed by the nearest neighbor approximation, while the dashed line is
the Holtsmark’s distribution (17.6). The agreement is quite satisfactory at strong
field while there is a deviation at weak forces F . Reproduced from [323]
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The gravitational force distribution arising from a fractal set of sources
must take into account the fluctuations in the position of the sources [323].
In the case of real structures in finite samples, an important role is found
to be played by morphological properties and finite size effects. For fractal
dimensions df smaller than d − 1 where d is the space dimension, the con-
vergence of the net gravitational force is assured by the fast decaying of the
density, while for fractal dimension df > d− 1, the morphological properties
of the structure determine the eventual convergence of the force as a function
of distance.

The probability density of the absolute value F (generalized Holtsmark’s
distribution) of the field intensity is equal to

H(β, df) =
2
πβ

∫ ∞

0

dx exp[−(x/β)df/2]x sin(x) . (17.9)

In this case F0 = (4/15)2/df (2πGM)(dfB/(4π))2/df , where B is a constant
characterizing the average mass in the unitary sphere and β = F/F0. The
main change due to the fractal structure is that the scaling exponent in (17.9)
is df/2 rather than 3/2. In this case, the tail of the probability density has
a slower decay than in the homogeneous case shown in Fig. 17.1. This means
that the variance of the force is larger for df < 3 than for the d = 3. The
case df < 2 is rather well described by (17.9): this is not the case for df > 2
where the n-th point correlations must be taken into account in the case of
real structures [323]. An important limit is the strong field one (F → ∞). In
this case, it is possible to show that the force distribution of (17.9) can be
reduced to the one derived under the nearest neighbor approximation:

Pnn(F ) dF

=
dfB

2
(GM)df/2F−(df+2)/2 exp

[
−B(GM)df/2F−df/2

]
dF . (17.10)

The nearest neighbor approximation is good for F � F1, where F1 = (B)2/df ·
GM . In the fractal case, as in the homogeneous one, the divergences of the
force moments (the second for df ≤ 3 and the first for df ≤ 2) are due only to
the fact that a source field can be arbitrarily close to the measurement point.

17.1.2 Generalization to Other Fields
(Electric, Elastic, Hydrodynamics)

Consider more generally a field f that depends on the distance r from a point-
wise source as (17.2) but with an exponent s different from 2:

f ∼ r−s . (17.11)

Let us again assume that the sources are randomly and uniformely distributed
in space. Then, the probability, that the distance from a given point to the
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closest source is r, is again given by (17.1) for small r. Using the conservation
of the probability under a change of variable P (f) df = P (r) dr, we have

P (f) df ∼ df
f1+µ

for f large , with µ =
d

s
. (17.12)

This result (17.12) describes the tail of the distribution for large forces con-
trolled by the closest approach to a source. The same reasoning as for the
gravitational force above shows that the full distribution is the symmetric
stable Lévy law with characteristic exponent µ = d/s, when one takes the
limit of an infinite number of sources in an infinite volume with finite density
of sources.

This derivation applies to many situations as soon as the forces depend on
r as in (17.11) for small r, because randomness and defects are ubiquitous.
Let us mention the case of electrostatics and the electric field distribution
from random dipole sources as in electrorheological fluids [389, 390, 392],
interactions between vortex lines in superconductors and in fluids [629, 919]
and strain and stress fields in solids with impurities or defects [18, 528]. In this
last application, there are many cases to consider that give different stable
distributions.

• For straight parallel dislocations in a solid, we have s = 1 and d = 2 leading
to the stable Lévy law with characteristic exponent µ = 2.

• For small dislocation loops or elastic point defects, we have s = 3 and d = 3,
leading to the stable Lévy law with characteristic exponent µ = 1. This
situation applies to relatively small earthquakes, for which the rupture
mechanism is equivalent to the introduction of a dislocation loop in the
crust [10, 885]. Zolotarev [1067] has shown that, for the spatially uniform
distribution of defects (faults) in an elastic medium, the stress distribution
is the stable Lévy law with µ = 1, called the Cauchy law. The characteristic
function for the random stress distribution can be written

ln P̂ (k) =
∫ ∞

0

dr r2
[
eikσ/r3 − 1

]
, (17.13)

where σ is the normalized (for r = 1) stress Green function of a defect. The
r−3 term expresses the decay with distance of the stress due to a defect in
3D.

• Kagan [490] has shown that, assuming that earthquakes form a fractal set
with dimension df < 3, the stress distribution should follow a stable law
with an exponent µ = df/3 less than 1. This result is simply obtained from
our derivation given above, by replacing d by df in (17.12). This derives
from the fact that d must be replaced by df in (17.1) as a result of the
definition of a fractal set with (capacity) dimension df (see Chap. 5). The
interesting and challenging consequence is that we cannot talk anymore
about an average stress or a stress correlation function: these quantities are
not defined for stable distributions with µ ≤ 1, as we have seen in Chap. 4
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(see also [685, 810]). In such case, instead of averages and correlations, we
should use quantiles and codifferences. Moreover, stress is a tensor, not
a scalar, with enormous complications ensuing.

• For parallel dislocation dipoles, we have s = 3 and d = 2 leading to the
stable Lévy law with characteristic exponent µ = 2/3.

17.2 Long-Range Field Fluctuations
Due to Irregular Arrays of Sources at Boundaries

17.2.1 Problem and Main Results

“Self-screening” of periodic assemblies of elements whose individual influence
is long-range is well-known. Consider for instance a periodic column or plane
of electric dipoles. Even though the field of each individual dipole decays
as 1/(distance)3, the total field decays exponentially. This is due to the al-
most exact cancellation between the angular structure of the dipole fields.
This effect is also well-known for periodic arrays of dislocations [548] and
for periodic boundary conditions with applications to gravity and thermal
anomalies [970].

An interesting question, relevant to real-life situations, is the robustness of
this cancellation in the presence of disorder. The main results are as follows.

• For weak disorder around an average periodicity, the ensemble average field
still decays exponentially. However, the standard deviation σ2 or second
moment of the field, which quantifies the amplitude of its fluctuations,
decays only algebraically as (distance)−3:

σ ∼ z−3/2 . (17.14)

This slow power law decay (17.14) of the field fluctuations is due to the
breakdown of the almost exact cancellation of the sources at all multi-
pole orders. Because of the disorder, Fourier components of arbitrarily
large wavelengths in the power spectrum of the source array appear and
are responsible for the slow decay of the field fluctuations. Since small
random fluctuations around a periodic modulation are always present in
nature, the slow decay as (distance)−3/2 of the typical field fluctuations
must be ubiquitous in nature. For instance, it probably explains the ex-
perimental observations of attraction and dissolution of precipitates by
migrating grain boundaries [107]. In electro- and magneto-rheological flu-
ids [389, 390, 392], chains are found to interact more strongly that predicted
from a naive prediction based on a regular periodic necklace structure. Sim-
ilarly, intermediate wavelength magnetic and gravity anomalies measured
at various heights above the ocean crust may sometimes arise from the ran-
dom structure of geological polarity reversals. Another interesting domain
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of application is the problem of sedimentation of suspensions and perme-
ability of porous media. One is interested for instance in characterizing
the sedimentation of a cloud of heavy particles in a fluid. The fluctua-
tions of particle speeds around the average speed of the sedimenting cloud
involves taking correctly into account the renormalization and screening
effects of all other particles on a given test particle, a problem which is
still unsolved in general. The formalism presented below allows one to
obtain the velocity fluctuations once the configuration of the particles is
known.

• For strong disorder (to be made precise below), expression (17.14) is mod-
ified into

σ ∼ z−1/2 . (17.15)

• One needs also to account for other intermediate disorder strengths and for
the various types of constitutive elements, including dislocations, dipoles,
quadrupoles or more complex entities.

17.2.2 Calculation Methods

Three different mathematical methods have been used to obtain these results:

• a perturbation approach in conjunction with the Poisson summation for-
mula [106, 801, 873, 1051–1053],

• brute force calculations of the standard deviation of the field expressed as
an infinite series [389, 390, 392, 669–671],

• a spectral method [801, 873].

All of them are consistent in the weak disorder regime and confirm the
validity of (17.14). In the strong disorder regime, the first method in terms of
the Poisson summation formula does not hold since it relies upon a perturba-
tive expansion of the disorder around the perfect periodic structure. The two
other methods are in principle applicable to arbitrary situations, the spectral
method being however the most general and powerful.

In what follows, we show how expression (17.14) is obtained and specify
the meaning of “weak” disorder. Then, we present the very general form of
the solution of a general problem within the spectral method framework [801,
873]. This allows us to recover simply all previous results including the result
(17.15) for the large disorder regime and furthermore to derive a series of
results for various types of constitutive elements. The value of the exponent
of the power law controlling the decay of the variance σ2 of the field, which
determine the “universality class”, is controlled by two properties:

1. the power spectrum of the disorder at low wavenumber,
2. the local structure of the constitutive elements determining their multi-

polar order.
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Derivation of the Power Law Decay and Meaning of “Weak Disor-
der”. Consider the simple problem of a Laplacian field V obeying Laplace’s
equation

∆V = 0 (17.16)

in a semi-infinite medium bounded by a frontier, with imposed boundary
values or sources at the boundary. We take the boundary to be the plane
(0x, 0y). The semi-infinite medium extends from z = 0 to +∞. An alternate
distribution of sources (+) and (−) of strength ±S0 are arranged spatially in
the plane (0x, 0y). We study first a two dimensional version of the problem
and shall return later to the three-dimensional case. The set of sources (+)
and (−) are assumed to be spatially disordered around an average periodic
modulation:

(+) x+
n = nλ+ d+

n (−) x−n = (2n+ 1)λ/2 + d−n , (17.17)

where d+
n and d+

n are random variables which are independent from site to
site with zero average

〈d±n 〉 = 0 (17.18)

and a variance

〈d±n d±m〉 = 0 if n �= m and = 〈[d±n ]2〉 for n = m . (17.19)

λ is the average period of the modulation. We assume furthermore that
V (x, z → ∞) → 0. The problem is thus to solve the Poisson equation

∆V = −4πS0δ(z)
+∞∑

n=−∞
[δ(x− x+

n ) − δ(x− x−n )] , (17.20)

where δ is the Dirac’s δ function. This formulation encaptures different
boundary conditions, for instance the cases when the distribution of sources
is replaced by the knowledge of the field V at the boundary. This mathe-
matical formulation, which has the advantage of simplicity, already describes
various problems of gravity, magnetic, temperature and resistivity anomalies
and will constitute the backbone of our simple derivation.

When the disorder is absent (d±n = 0 for all n), we replace the set of
sources by the boundary condition obtained by taking the first term in its
Fourier series expansion:

V (x, z = 0) = λS0 cos
(

2πx
λ

)
. (17.21)

The method of separation of variables

V (x, z) = Z(z) cos
(

2πx
λ

)
(17.22)
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satisfies automatically the boundary condition. Substitution in (17.16) yields

d2Z

dz2
− 4π2

λ2
Z = 0 (17.23)

whose solution obeying V (x, z → ∞) → 0 is

V (x, z) = λS0 cos (2πx/λ) e−2πz/λ . (17.24)

We thus retrieves the classical result [970] that the field disturbance intro-
duced by the boundary condition (17.21) decays exponentially with depth in
a distance proportional to the horizontal wavelength λ.

When the disorder is present, we use the Green function method. In 2D,
the solution of the equation

∆V = −4πδ(x− x0)δ(z − z0) with V (x, z → ∞) → 0 (17.25)

is [651]

G(x, z) = − ln[(x − x0)2 + (z − z0)2] . (17.26)

Using this expression for the Green function, the general solution of (17.20)
reads formally

−V (x, z)
S0

=
+∞∑

n=−∞
f+(n+ d+

n /λ) −
+∞∑

n=−∞
f−(n+ d−n /λ) , (17.27)

where

f+(t) = ln[(x−tλ)2+z2] f−(t) = ln[(x−(2t+1)λ/2)2+z2] . (17.28)

Note that for d±n = 0 for all n, the series can be summed up using the theory
of analytical functions ( [651] Tome II, p. 1236) and yields

−V (x, z)
S0

= | ln[tan(2π(x+ iz)/λ)]|2 (17.29)

which reduces to (17.24) for large z � λ.
In order to estimate V (x, z) given by (17.27), we expand each term f±(n+

d±n /λ) up to second order in d±n /λ, since the disorder is assumed to be small:

f±(n+ d±n /λ) = f±(n) +
d±n
λ

df±(n)
dn

+
1
2

(
d±n
λ

)2 d2f±(n)
dn2

+ . . . (17.30)

The average 〈V (x, z)〉 over the disorder reduces to

−〈V (x, z)〉
S0

=
+∞∑

n=−∞
f(n) + (1/2)

〈(
d
λ

)2
〉

+∞∑
n=−∞

d2f(n)
dn2

+ ... (17.31)
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with

f(n) = f+(n) − f−(n) . (17.32)

To obtain (17.31), we have used the conditions (17.18) and (17.19). Using
Poisson’s summation rule which reads

+∞∑
n=−∞

f(n) =
+∞∑

k=−∞

∫ +∞

−∞
f(t)e2iπkt dt , (17.33)

we separate the k = 0 contribution which allows one to write expression
(17.31) as

−〈V (x, z)〉
S0

=
∫ +∞

n=−∞
dt

[
f(t) +

〈(
d
λ

)2 〉 d2f(t)
dt2

+ . . .

]

+2
+∞∑

k=−∞

∫ +∞

−∞
dt

[
f(t) +

〈(
d
λ

)2 〉 d2f(t)
dt2

+ . . .

]
cos(2πkt) . (17.34)

Averaging the Laplacian field amounts essentially to recovering the periodic
case with a small perturbation proportional to the second moment 〈(d/λ)2〉
of the disorder. For f(t) given by (17.32) with (17.28), the first integral in the
r.h.s. of (17.34) is identically zero since f+(t) and f−(t) cancel exactly. The
leading behavior of V (x, z) is thus given by the first (k = 1) term in (17.34)
which can be shown, after some tedious calculations, to recover expression
(17.24). The fact that the zero wavevector k = 0 contribution vanishes is
the mathematical expression of the mutual screening at all multipole orders
of the field produced by each source in the periodic case. Thus, averaging
the Laplacian field would seem to imply that the effect of fluctuations are
negligible.

In fact, the effect of fluctuations are quantified by the second moment σ2

of V (x, z) defined by

σ2 ≡ 〈[V (x, z)]2〉 − 〈V (x, z)〉2
S2

0

=

〈(
d

λ

)2
〉

+∞∑
n=−∞

(
df(n)

dn

)2

+ . . . (17.35)

Applying again Poisson’s summation rule to the sum in (17.35), we find that
the k = 0 term is now proportional to 〈(d/λ)2〉 ∫ +∞

−∞ [df(t)/dt]2 + ... which is
no longer vanishing. This term is at the origin of the long-range power law
decay (17.14) as found from a direct calculation:

σ ∼ C

〈(
d

λ

)2
〉1/2 ( z

λ

)−3/2

+ O(z−2) , (17.36)
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where C is a numerical factor of order unity. The strength of the disorder
affects only the prefactor of the power law decay and not its power law
dependence.

General Spectral Formulation and Solution of the Random Source
Problem. We now consider a general problem, electric, elastic or other,
characterized by the value of the Green function G(x− x′, z) giving the field
at position (x, z) created by a unit element placed at (x′, 0). The Green
function G(x− x′, z) fully characterizes the given problem. The element can
be a single source, a dipole, a multipole, or a dislocation among others. The
distribution of element sources in the plane z = 0 is described by the function
r(x′). We do not need to specify if it is periodic, weakly random or otherwise.
Then, the formal solution of the field is given by

V (x, z) =
∫
r(x′)G(x − x′, z) dx′ . (17.37)

This expression consists of a convolution between the distribution of sources
and the Green function which depends on the depth z of the source layer
beneath the observation plane. Convolution in the space domain becomes
a multiplication in the Fourier domain, so that we have

V̂ (k, z) = r̂(k)Ĝ(k, z) , (17.38)

where k is the wavenumber in the x-plane. Note that the Fourier transform
Ĝ(k, z) of the Green function is nothing but the field V created by a periodic
array of elements with periods 2π/kx and 2π/ky respectively in the x and y
directions. For suitable elements, such as dipoles, dislocations, etc., G(k, z)
decays exponentially with z as

Ĝ(k, z) ∼ e−kz , (17.39)

where k = |k|, thus recovering the general self-screening property of peri-
odic systems of dipoles or dislocations discussed above. By inverse Fourier
transform, expression (17.38) transforms into

V (x, z) = R
∫
r̂(k)Ĝ(k, z)eikx dk , (17.40)

where R means that we take the real part of the expression on the r.h.s.
The ensemble average field and the second moment of the field are given

respectively by

〈V (x, z)〉 = R
∫
〈r̂(k)〉Ĝ(k, z)eikx dk (17.41)

and

σ2 = R
∫ ∫

〈r̂(k)r̂∗(k′)〉Ĝ(k, z)Ĝ∗(k′, z)ei(k−k′)x dk dk′ , (17.42)

where the symbol ∗ stands for the complex conjugate. Consideration of these
two equations allows us to recover previous results with ease.
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• For periodic systems, 〈r(k)〉 = r0δ(k − k0), which together with (17.39),
yields the exponential decay

V (x, z) >∼ e−k0z cos(k0x) , (17.43)

characteristic of the self-screening property. Note that we have excluded
the case where the spatial average yields a non-zero contribution at k = 0,
implying a non-vanishing source density in the continuous limit, i.e. a non-
vanishig total charge. Our discussion applies only to the contributions at
finite wavevectors, the k = 0 contribution being easily taken into account
in the continuous limit.

• For weak disorder such that the power spectrum of the distribution is given
by

〈r̂(k)r̂∗(k′)〉 = r20k
2δ(k − k′) , (17.44)

we obtain (17.14) at distances z � k−1
0 . The z-dependence of the field

and of its fluctuations at large distances z is controlled by the behavior of
these integrals in the small wavevector domain. Note that the x-dependence
disappears in the ensemble averaging due to the assumed absence of cor-
relations of the density of sources, in other words due to the property
of average translational invariance (average uniform spatially distributed
disorder) in an infinite system.

• These considerations allow us to give the general rules controlling the de-
cay of the standard deviation σ of the fluctuations of the field. If a given
physical problem is such that the power spectrum of the disorder is given
by

〈r̂(k) r̂∗(k′)〉 ∼ ka δ(k − k′) , (17.45)

and the field created by a periodic array of elements of wavevector k is
given by

Ĝ(k, z) ∼ kbzce−kz , (17.46)

where a, b and c are in general positive but possibly negative exponents,
then from expression (17.42), we immediatly get from power counting

σ2 ∼ z−α , where α = 1 + a+ 2(b− c) . (17.47)

The universality class describing the fluctuation of the field is determined
entirely by three exponent a, b and c, defined by

1. the spectral content of the disorder at low wavenumber given by expression
(17.45) which gives the value of exponent a,

2. the structure of the constitutive elements (which controls the order of the
multipole) and the nature of the physical problem, which determines the
kernel structure given by (17.46) and which gives the exponents b and c.
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It is clear that the characteristic decay length of a source of spectral
component with wavenumber k is of the order of k−1. Thus, the power law
decay of σ2 can be traced back to the existence of very low wavenumbers in the
power spectrum of the disorder. Disorder destroys the exact cancellation of
all multipoles and introduces a continuous spectrum down to k → 0. A given
value of α does not need to correspond to the same physics, since there are
many combinations of a, b and c for a given value of the decay exponent α.
For instance, the case α = 3 is obtained for a = 2 and b = c = 0, which
corresponds to a system of planar dipoles in electrostatics. The same value
α = 3 is also obtained for a planar lattice of dislocations in the elasticity
problem for which a = 2 and b = c = 1. More generally, we expect that the
decay exponent α may be modified either due to a change of the spectral
content of the disorder or due to the multipole nature of the constitutive
elements in the source array.

For very large disorder, where each constitutive element could take any
position within the plane, the power spectrum of the disorder has a white
noise structure corresponding to the exponent a = 0. In the two previous
examples, this changes the decay exponent to α = 1.

A fractal disordered source network is characterized by a non-integer
power law spectrum with exponent a = 2 − β with 0 ≤ β ≤ 2. The cor-
responding decay exponent is α = (3 − β)/2 in the case of simple elements
(b = c).

The domain of validity of these results is typically for distances z larger
than the average period in the weak disorder case around an average period-
icity. In the strong disorder case, it is valid in an ensemble average sense over
many disorder configurations.

Distribution of the Field Strengths at Fixed Distance z from the
Sources and Relation to Holtsmark’s Distribution. We have derived
the dependence of the average and variance of the field as a function of the
distance z to the sources. Can we say more and obtain the full distribution
of V (x, z) at fixed distance z? The question is also motivated by the analogy
between this problem and Holtsmark’s distribution.

All the information is contained in the expression (17.40) together with
(17.45) and (17.46). Expression (17.45) tells us that r̂(k) is a delta-correlated
noise with variance proportional to ka, i.e. its distribution is a Gaussian with
a variance proportional to ka. Equation (17.40) shows that V (x, z) is a linear
sum of random Gaussian variables. From the central limit theorem discussed
in Chap. 2, V (x, z) is therefore also a Gaussian variable with variance equal
to the sum of the variance of the individual variables. Its variance is thus
given by (17.42) and (17.47). Thus, in contrast to Holtsmark’s power law
distribution, the distribution of the field created by a random array of sources
at a boundary is Gaussian! The reason for the difference is clear: the point
of measurement (x, z) is at a finite bounded distance from all sources, with
a minimum distance z. There is thus no possibility for the occasional close
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approach to a source, which is the phenomenon at the origin of Holtsmark’s
power law distribution.

Let us finally give the spatial correlation along x of the field V (x, z) at
fixed distance z:

〈V (x, z)V (x′, z)〉 = R
∫∫

〈r̂(k)r̂∗(k′)〉Ĝ(k, z)Ĝ∗(k′, z)eikx−ik′x′
dk dk

= R
∫

dk k2b+az2ce−2kzeik(x−x′)

∼ R z2c

[2z − ik(x− x′)]1+2b+a
. (17.48)

For instance, for b = c = 0, we get

〈V (x, z)V (x′, z)〉 ∼ 1
8z3

1 − 3((x− x′)/2z)2

[1 + ((x− x′)/2z)2]3
. (17.49)

The correlation function at fixed z along the direction parallel to the source
boundary is thus long-range with a power law decay 1/((x− x′)/2z)4 at large
x − x′ with a characteristic range proportional to z. It is interesting to note
that the correlation changes sign for |x − x′| > (2/

√
3)z showing an anti-

correlation at large horizontal distances.

17.2.3 Applications

The above calculations suggest that the effect of heterogeneity and disorder
at scales that are unresolved may contribute a significant distorsion to large
scale averages and thus may be misinterpreted as an anomaly which does not
exist.

• The question we ask is the following: what would be the amplitude Aper of
a periodic modulation of period λ that would give the same field amplitude
as the one created by a disorder with amplitude r0 as defined in expression
(17.44)? The answer is given by comparing the solution (17.43) to the
standard deviation amplitude (17.36) due to the noise:

Apere−2πz/λ ≈ r0

(
λ

z

)3/2

. (17.50)

The exponential term in the l.h.s. provides a strong amplification. Suppose
for instance that z = 3λ. This yields Aper ≈ 3 × 107 r0. Thus, even a very
small noise amplitude may lead to a strong apparent anomaly. There is no
real surprise: this stems from the exponential filter of the Green function
(17.46), which makes the problem ill-conditionned with respect to noise.
It is notorious that the inversion problem of getting the source from the
field measurement is ill-conditioned. This can be seen to result from the
form of the eigenfunctions and eigenvalues of the Laplace transform and
the similar dilationally invariant Fredholm integral equation [614, 709].



472 17. Randomness and Long-Range Laplacian Interactions

• Another question also relevant to the spurious anomaly problem is what
would be the amplitude Aano of a localized source perturbation that could
give the same field amplitude at a distance z as the one created by a dis-
order with amplitude r0 as defined in expression (17.44)?
In 2D, the field created by a localized source is controlled by the Green
function (17.26), which also gives the field created by an extended line
charge in 3D. A dipole along z at (x = x0, z = 0) of unit charge and
distance l between the positive and negative charges gives the following
field

l
∂G(x, z)
∂z

= − l

2π
z

(x − x0)2 + z2
. (17.51)

For the worst case x = x0, this dipole field decays as (1/2π)(l/z) which
must be compared to the standard deviation decay (d/λ)(λ/z)3/2 created
by a random noise decorating the periodic array of sources. We have used
the parameterization r0 = d/λ in (17.50). This yields

l = 2π

√
λ

z
d . (17.52)

The equivalent localized dipole source is thus at worst of the order of
magnitude at the amplitude d of the disorder and becomes weaker and
weaker for larger distances z � λ. Thus, this is not a strong effect. If we
consider the same question for a localized quadrupole source, the effect
is stronger and actually increases with z since the corresponding Green
function decays as z−2, faster than z−3/2.

Flow Induced by Randomly Vibrating Boundaries. Let us consider
the case of a planar boundary that is being vibrated parallel to its own plane.
For an infinite solid boundary located at z = 0, and an incompressible fluid
that occupies the region z > 0, the Navier–Stokes equation and boundary
conditions are

∂tu = ν ∂2
zu , (17.53)

u(0, t) = u0(t) , u(∞, t) <∞ , (17.54)

where z is the coordinate normal to the boundary, u(z, t) is the x component
of the velocity, and u0(t) is the prescribed velocity of the boundary. The solu-
tion for harmonic vibration u0(t) = u0 cos(Ωt) was given by Stokes [932]. It is
a transversal wave that propagates into the bulk fluid with an exponentially
decaying amplitude

u(z, t) = u0e−z/δS cos(Ωt− z/δS) , (17.55)

where δS = (2ν/Ω)1/2 is the Stokes layer thickness.
Volfson and Vinals [999] have derived the solution of this problem for the

case where the boundary motion is white noise. They introduce the retarded,
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infinite space Green’s function corresponding to (17.53), with boundary con-
ditions (17.54),

G(z, t|z′, t′) =
1

[4πν(t− t′)]1/2

(
e−(z−z′)2/4ν(t−t′) − e−(z+z′)2/4ν(t−t′)

)
,

for t > t′ and G(z, t|z′, t′) = 0 for t < t′. If the fluid is initially quiescent,
u(z, 0) = 0, one finds

u(z, t) = ν

∫ t

0

dt′ u0(t′) (∂z′G)z′=0 , (17.56)

with

(∂z′G)z′=0 =
z

[4πν3(t− t′)3]1/2
e−z2/4ν(t−t′) . (17.57)

Equations (17.56–17.57) determine the transient behavior for any given u0(t).
If u0(t) is a Gaussian white noise process, the ensemble average of (17.56)

yields 〈u(z, t)〉 = 0. The corresponding equation for the variance reads

〈
u2(z, t)

〉
= 2Dν2

∫ t

0

dt′ [(∂z′G)z′=0]
2 =

2Dν
πz2

(
1 +

z2

2νt

)
e−z2/2νt .

The variance of the induced fluid velocity propagates into the fluid diffusively.
Saturation occurs for t� z2/2ν, at which point the variance does not decay
exponentially far away from the wall, but rather as a power law.〈

u2(z,∞)
〉

=
2Dν
πz2

. (17.58)

Long-range random flows can thus be induced by local boundary vibration.
The mechanism is the same as discussed previously in this chapter, namely
the fact that white noise is the superposition of all possible monochromatic
vibrations: the power law decay is the superposition of all the exponential de-
cays with the continuous spectrum of Stokes layer thicknesses δS = (2ν/Ω)1/2

corresponding to all possible angular frequencies Ω. Volfson and Vinals [999]
show in addition that a breakdown from planarity leads to a continuous com-
ponent, i.e. a steady streaming of the ensemble average. These results have
applications for instance for experiments carried out under low level random
acceleration fields that are typical of microgravity environments. Another
possible application is to oceanic currents induced by turbulent winds.

Satellite Gravity Altimetry. Radar altimeter measurements of the ma-
rine geoid gives the possibility of uncovering the gravity field over all the
ocean basins. The combination of two high-density data sets obtained by
ERS-1 during its geodetic mapping phase (April 1994–March 1995) and the
Geosat altimeter data from the U.S. Navy provided the first global view of
all the ocean basins at a wavelength resolution of 20–30 km. There are many
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physical limitations of satellite altimetry that limit the resolution to wave-
lengths of about 10 km and to amplitudes of 10 mGal [394, 1032]. The report
of the National Research Council [665] explores the scientific questions that
could be addressed with a better global gravity field, and in particular the
new access to dynamical properties of earth processes, as in ocean dynamics,
continental water variation, sea-level rise and glaciology, solid-earth processes
and the dynamic atmosphere.

Can satellite-derived gravity measurements be improved using more mea-
surements or better processing? How well does satellite-derived gravity com-
pare with more accurate local surveys, especially near land? Because the
range in crustal density contrasts is fairly limited (500 kg/m3), the effects
are generally below the resolution limit of standard gravity measurements.
The effect of disorder is also a factor that has to be taken into account.

In a series of papers, Maus and Dimri [608–610] have performed calcu-
lations of the theoretical power spectrum of the three-dimensional potential
field caused by an arbitrary three-dimensional source distribution, with appli-
cations to gravity and magnetic data. These calculations are similar to those
presented above with the spectral method. Starting from a scale-invariant
source density with spectrum ∝ k−β, they find that the power spectrum of
the gravity and magnetic field is anisotropic and that a specific scaling expo-
nent exists only for lower-dimensional cross-sections of the fields. The scaling
exponent of the density distribution and of the gravity field are related by

β3D
dens = β2D

dens + 1 = β1D
dens + 2 (17.59)

= βxy
field − 1 = βx

field = βy
field = βz

field . (17.60)

The relationship between the scaling exponents of the susceptibility distribu-
tion and the magnetic field reduced to the pole can be stated as

β3D
susc = β2D

susc + 1 = β1D
susc + 2 = βxy

field + 1 (17.61)
= βx

field + 2 = βy
field + 2 = βz

field + 2 . (17.62)

In [609, 610], Maus and Dimri propose a method for inverting the power
spectrum of gravity and magnetic data and they test it on aeromagnetic
and borewell data from the German Continental Deep Drilling Project. They
model the sources of the potential field by a random function with scaling
properties with spectrum ∝ k−β, defined on a half-space with its top at
a specified depth beneath the observation plane. Comparing the theoretical
power spectrum for this model with the power spectrum of the measured data,
they obtain the best values for the depth to source and the scaling exponent
as a global minimum of the misfit function. The most important result is
that the low-wavenumber part of the power spectrum can be dominated by
the scaling properties of the source distribution and not by the depth to
some kind of reference level. It is found that the scaling exponent of the field
varies with the type of surface geology and Maus and Dimri conjecture that
the scaling exponent could be used to identify different types of geological
structures.
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Magnetic Field of the Earth. In 1981, Harrison and Carle [405] and Shure
and Parker [843] presented two opposing interpretations of the power spec-
trum of the magnetic field of the earth. The spectra they discussed were
calculated from data collected along three long ship traverses in the Pacific
and Atlantic Oceans. Harrison and Carle argued that the observed spectra
contained additional intermediate wavelength (400–4000 km) energy not pre-
dicted by a crustal model that only contains the sea-floor spreading magneti-
zation polarity reversal pattern. Shure and Parker argued that this additional
intermediate wavelength energy is an artifact of the fact that the ship pro-
files provide only a 1-D sample whereas the profiles may well have traversed
2-D structures obliquely. LaBreque et al. [545, 546] tried to avoid the prob-
lems identified by Shure and Parker [843] by using data from many profiles
with different orientations. They showed that intermediate wavelength en-
ergy does exist and they suggested that additional crustal sources needed to
be considered to explain the spectra as Harrison and Carle had proposed in
1981. From the above analysis, the random component in the structure of
a source layer can be important in the interpretation of structures. It can
lead to the appearance or enhancement of longer wavelengths in the field.
This may lead to either an error in the location or in the strength of the
source. See [138, 724].
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32. Arnéodo, A., Argoul, F., Bacry, E., Elezgaray, J. and Muzy, J.-F. (1995)
Ondelettess, multifractales et turbulences (Diderot Editeur, Arts et Sciences,
Paris).
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York).

955. Thomae, J. (1869) Beitrge zur Theorie der durch die Heinesche Reihe.,
J. reine angew. Math. 70, 258281.

956. Thoman, D.R., Bain, L.J. and Antle, C.E. (1969) Inferences on the parameter
of the Weibull distribution, Technometrics 11, 445–460.

957. Thoman, D.R., Bain, L.J. and Antle, C.E. (1970) Maximum likelihood esti-
mation, exact confidence intervals for reliability, and tolerance limits in the
Weibull distribution, Technometrics 12, 363–371.

958. Thomas, G.M., Gerth, R., Velasco, T. and Rabelo, L.C. (1995) Using real-
coded genetic algorithms for Weibull parameter estimation, Computer & In-
dustrial Engineering 29, 377–381.

959. Throburn, W.M. (1915) Occam’s razor, Mind, 297–288.
960. Throburn, W.M. (1918) The Myth of Occam’s razor, Mind, 345–353.
961. Tosi, P., Barba, S., De Rubeis, V. and Di Luccio, F. (1999) Seismic signal

detection by fractal dimension analysis, Bull. Seism. Soc. Am. 89, 970–977.
962. Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics,

J. Stat. Phys. 52, 479–487; for updated bibliography on this subject, see
http://tsallis.cat.cbpf.br/biblio.htm.

963. Tsallis, C. (1999) Nonextensive statistics: Theoretical, experimental and
computational evidences and connections, Brazilian Journal of Physics 29, 1–
35.

964. Tsallis, C., Levy, S.V.F., Souza, A.M.C. and Maynard, R (1995) Statistical-
mechanical foundation of the ubiquity of Lévy distributions in Nature, Phys.
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