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PREFACE 

Is it possible to write an entire book on the subject of clocked storage elements: 
latches and flip-flops? We certainly did not think so and we are sure many 
people today share this view. Indeed, this work started as a simple consulting 
project for Hitachi America Laboratories in the late 1990s that was not intended 
to last longer than six months. The objective was to examine several proposed 
and existing clocked storage elements and decide which one should be used 
in the new generation of microprocessors Hitachi had on the drawing board 
at that time. We finished this work, comparing several existing structures and 
recommending some improved solutions. However, the answers we provided 
raised many more questions and left us wondering. Now we feel that there are 
even more unanswered questions. Thus, we decided to collect our experience 
into a book and make it available to design engineers, practitioners, academics, 
managers, and anyone else interested in this aspect of high-performance and 
low-power digital system design. 

Clocking is an important aspect and a centerpiece of digital system design. 
Not only does it have the highest positive impact on performance and power, 
but also the highest negative impact on the reliability of an improperly designed 
system. This is becoming more important, as the clock frequency keeps increasing 
dramatically as it has been in the last decade. The higher the frequency, the more 
important are the clock system and clock storage elements, because their effects 
do not scale proportionally with other features that are benefiting from the rapid 
technological advances of the past fifty years. In this book we treat synchronous 
systems, which we assume will continue to progress in this direction. In reality, 
we do not know how long this progress will continue. Other ways of timing 
digital systems are possible, but they have not demonstrated sufficient progress 
to become a mainstream solution. We do not pretend to know what the timing of 

xiii 
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digital systems will be in the future, but we hope to provide sufficient analysis 
and possibly set the stage for the new approaches that will evolve. 

This book is divided into nine chapters. In Chapter 1 we provide an overview 
of clocking and how the clocked storage elements fit into the whole picture. 
The presentation tends to be historic, as we wish to put the development of 
clocking and clocked storage elements into needed perspective. Some basic def- 
initions are provided and we tie the clock storage elements into the entire digital 
system, most particularly into clock generation, distribution testability, and con- 
trol. Chapter 2 describes clocked storage elements and provides definitions and 
a clear classification of basic clocked storage elements used in digital systems 
today. It shows the systematic derivation of flip-flops and sets the stage for the 
discussion of advanced structures and their performance and energy aspects. The 
Chapter 3 introduces the timing and energy parameters of the clocked storage 
elements. Since the speed required for the operation can always be traded for 
less energy (and vice versa), it is important to tie the two together and place 
the analysis of performance and power in perspective. Also defined in this chap- 
ter is when the data should arrive so that the system operates reliably, as well 
as the various parameters which affect the power consumption of the system, 
such as switching activity, voltage scaling, and design style. Chapter 4 provides 
a rigorous quantitative analysis of clocking. The choice of the clocked storage 
elements requires a particular analysis of its effects, and the chapter provides 
various performance and design trade-offs. The quantitative analysis and deriva- 
tion of the timing parameters for optimal system performance are also presented, 
starting with the simple flip-flop-based systems and ending with the complex 
dual clock-edge clocked systems. This chapter should provide the reader with 
the mathematical tools for determining the optimal system parameters for the 
design. In order to make these points clear, the chapter ends with examples of 
two advanced clocking techniques: one for high-performance, and other oriented 
toward the low-power system. Chapter 5 is dedicated to the issues encountered in 
designing high-performance systems. Due to the increased effect of clock uncer- 
tainties, dealing with the clock skew and jitter and the ability to absorb those 
unavoidable effects is one of the most important issues in high-performance sys- 
tem design. Since the time boundaries between the stages are more difficult to 
control precisely, the data from one pipeline stage may take some amount of time 
from the following one. This subject, also known as time borrowing is analyzed, 
and its relation to clock uncertainty absorption is shown. Chapter 6 is dedicated 
to low-power system design. It treats the energy issues, in particular, energy 
reduction. Various ways of achieving low energy per operation, such as supply 
voltage scaling, reduced signal swing clocking, clock gating, and capturing the 
data on each transition of the clock signal - dual-edge triggering -are described 
in this chapter. Clocked storage elements designed with features that minimize 
energy consumption, such as conditional clocking and conditional precharging, 
are described and analyzed. Chapter 7 describes simulation techniques and opti- 
mization methods used to properly size the transistors. It discusses the use of the 
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logical effort technique, and it shows how it is applied to the problem of opti- 
mizing clocked storage elements. Most importantly, in this chapter we describe 
the evaluation setup that should be used in providing a fair comparison between 
different clocked storage elements and all the miscellaneous issues that affect this 
comparison. We provide a script used to simulate clocked storage elements in the 
Appendix to Chapter 7. This script should serve as a starting point for an engineer 
who is embarking on this elaborate and tedious undertaking, and we hope it will 
be useful. In Chapter 8 we compare the various clocked storage elements that 
are commonly known or used in systems with outstanding features, such as high 
performance or low power. This chapter should provide the reader with a feel for 
the current state of the art in clocked storage elements and present the designer 
with possible choices for his or her designs. Finally Chapter 9 describes clocking 
techniques and clocked storage elements used in representative and well-known 
microprocessors. It also illuminates various techniques used by microprocessor 
designers, as well as various design styles and approaches used by different com- 
panies that may not be widely known. This chapter summarizes all the knowledge 
presented in this book and shows the reader how this knowledge is applied by 
various practitioners in this highly competitive field. 

We hope this book will help in achieving even higher microprocessor per- 
formance than that available today and set the stage for a number of successful 
future designs. 

VOJIN G. OKLOBDZIJA 
VLADIMIR M. STOJANOVIC 

DEJAN M. MARKOVIC 
NIKOLA M. NEDOVIC 

Berkeley, California 
October 2002 
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CHAPTER I 

INTRODUCTION 

Clocking is one of the single most important decisions facing the designer of 
a digital system. Unfortunately much too often it has been taken lightly at the 
beginning of a design and that viewpoint has proven to be very costly in the 
long run (Wagner 1988). Thus, it is not pretentious to dedicate an entire book 
to this subject. However, this book is limited to the even narrower issue of 
clocked storage elements (CSE), widely known as flip-flops and latches. The 
issues dealing with clock generation, frequency stability and control, and clock 
distribution are too numerous to be discussed in depth in this book and so they 
are covered only briefly. The interested reader is referred to the other books 
dealing with those issues, such as the one by Friedman (1995). 

The importance of clocking has become even more emphasized, as the clock 
speed is rising rapidly, doubling every three years, as seen in Fig. 1.1. However, 
the clock uncertainties have not been scaling proportionally with the frequency 
increase, and an increasingly large portion of the clock cycle has been spent on 
the clocking overhead. The ability to absorb clock skew or to make the clocked 
storage element faster is reflected directly in the enhanced performance, since the 
performance is directly proportional to the clock frequency of a given system. 
Such performance improvements are very difficult to obtain using traditional tech- 
niques on the architecture or microarchitecture levels. The difficulties are caused 
by the overhead imposed by the CSE delay, and the clock uncertainties. Thus, 
setting the clock to the right frequency, and utilizing every available picosecond 
of the critical path, is increasingly important. It is our opinion that traditional 
clocking techniques will reach their limit when the clock frequency reaches the 
5 to 10 GHz range. Thus, new ideas and new ways of designing digital systems 
are needed. We do not pretend to know what the future trend in clocking should 

1 
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be, but we feel that some of the ideas discussed in this book can provide a good 
path to follow. 

Computers built in the past were large and filled several electronic cabinets 
in large air-conditioned rooms that occupied entire A oors. They were built from 
discrete components or used a few large-scale integration (LSI) chips in the 
later models. Those systems were clocked at frequencies of about one or a few 
tens of megahertz, as shown in Table 1.1. The first electronic computer, ENIAC 
(Electronic Numerical Integrator and Calculator), for example, operated at the 
maximal clock frequency of 18 kHz. Given the low scale of integration, it was 
possible to "tune" the clock. This was achieved by either adjusting the length 
of the wires that distributed the clock signals, or by tuning the various delay 
elements on the cabinets or the circuit boards, so that the clock signal arrived at 
every circuit board at approximately the same time. With the advent of very large- 
scale integration (VLSI) technology, and increased integration levels, the ability 
to tune the clock has been greatly diminished. The clock signals are generated 
and distributed internally within the VLSI chip. Therefore, much of the burden 
of absorbing clock signal variations at various points on the VLSI chip has fallen 
on the clocked storage element. 

1 .l. CLOCKING IN SYNCHRONOUS SYSTEMS 

The notion of clock and clocking is essential for the concept of synchronous 
design of digital systems. The synchronous system assumes the presence of the 



CLOCKING IN SYNCHRONOUS SYSTEMS 3 

Table 1.1 Clock Frequency of Selected Historic Computers and Supercomputers 

Nominal Nominal 
Clock Clock 

Date Period Frequency 
System Introduced Technology Class (ns) ( M W  

Cray-X-MP 1982 MSI ECL Vector processor 9.5 
Cray- 1S,- 1 M 1980 MSI ECL Vector processor 12.5 

CDC Cyber 1985 ECL Mainframe 16.0 

IBM 3090 1986 ECL Mainframe 18.5 
Amdahl 58 1982 LSI ECL Mainframe 23.0 
IBM 308X 1981 LSI TTL Mainframe 24.5, 26.0 
Univac 1100/90 1984 LSI ECL Mainframe 30.0 

MIPS-X 1987 VLSI CMOS Microprocessor 50.0 
HP-900 1982 VLSI CMOS Micromainframe 55.6 
Motorola 68020 1985 VLSI CMOS Microprocessor 60.0 
Bellmac-32A 1982 VLSI CMOS Microprocessor 125.0 

Source: Wagner 1988. 

180/990 

outputs (Y) + 
Y= Y(X, S,) 

105.3 
80.0 

62.5 

54.1 
43.5 

40.8,38.5 
33.3 

20.0 
18.0 
16.7 
8.0 

Figure 1.2. The concept of finite-state machine. 

storage elements and combinational logic, which together make up a finite-state 
machine (FSM). The changes in the FSM are in general the result of two events: 
clock and input signal changes, as illustrated in Fig. 1.2. 

The next state, &+I ,  is a function of the present state, S,, and the logic value 
of the input signals: S,+l = & + I ( & ,  X,) .  The remaining question is: When in 
time will FSM change to the next state, &+I .  This change is determined by the 
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type of clocked storage elements used and the clock signal. The function of the 
clock signal is to provide a reference point in time when the FSM changes from 
the present, S,,, to the next state, 

In Fig. 1.3, we have implicitly assumed that the moment when the state 
changes from S,, to S,,+l is determined by the change in the clock signal from 
logic “0” to logic “1.” In fact, this change is determined by the type of clocked 
storage element and its functionality. We will be discussing this point in detail 
later in this book. For the purposes of this discussion, we observe that without 
the clock signal, the change from S,, to Sn+l could not be precisely determined. 
There are digital systems where this change is not caused by the presence, or 
more precisely, by a change in the clock signal, but by a change of the data signal, 
for example. Such systems are known as asynchronous systems, because they do 
not require the presence of the clock signal in order to effect an orderly transition 
from S,, to S,,+l. A great deal of research in defining a workable asynchronous 
system has been done in the last several decades. Recently a microprocessor 
was designed to operate in an asynchronous manner, and it has been claimed 
that some small advantages in power consumption were obtained (Woods et al. 
1997). In spite of that, the practicality and advantage of the asynchronous design 
has yet to be proven (Furber et al. 2001). In this book, we limit our discussion 
to synchronous systems. 

If we extend the FSM state diagram in time, we obtain an illustration of the 
pipeline design (Fig. 1.3). In many cases, when dealing with the synchronous 
design, the delay throughout the logic block is excessive and the signal change 
cannot propagate to the inputs of the clocked storage elements in time to effect 
the change to the next state. In that case, the machine has not met the “critical- 
path requirement.” Such an FSM will fail in its functionality, because the changes 

This process is illustrated in Fig. 1.3. 

@ Time 

Figure 1.3. State changes in the finite-state machine. 
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initiated by the input signals will have no effect. This is because the time allowed 
to change to the next state, & + I ,  is too short and the input signal change does not 
have sufficient time to propagate. In technical jargon this is known as critical-path 
violation. Critical path is defined as the chain of gates in the longest (slowest) 
path through the logic, which causes a signal to take a certain length of time 
to propagate from the input to the output. Often times, an additional state (or 
states) is inserted to assure that every transition proceeds in an orderly and timely 
fashion. This is known as pipelining. A diagram of a pipelined system is shown 
in Fig. 1.4. 

Several clock cycles may be needed in order for the signal to propagate through 
various stages of a computer system. In general, execution of an instruction may 
require several machine cycles, where machine cycle is defined as the time inter- 
val necessary for one atomic operation to execute an instruction. One machine 
cycle normally takes several clock cycles. The machine cycle is often designated 
by a waveform defining its own cycle. This is especially true if microcode is used 
to control the machine. In the past, microcoding was a popular concept and it was 
used extensively in Complex Instruction Set Computers (CISC). In those cases, 
a process of executing an instruction required several machine cycles. During 
each machine cycle one microinstruction was executed. It normally took several 
microinstructions to execute an instruction. Each machine cycle required one or 
several register transfers or passes through several pipeline stages. That in turn 
required one or more clock cycles, or multiple phases of the clock. Thus, the 
clocking was quite complex and encompassed several levels of hierarchy. This 

Figure 1.4. Diagram of a pipelined system. 
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Machine cycle. 

- 

Figure 1.5. Machine execution phases with respect to the clock cycles. 

is illustrated in Fig. 1.5, where three distinct machine cycles, Instruction Fetch, 
Dependency Resolution, and Instruction Issue, are shown. Dependency resolu- 
tion can be quite a complex operation, requiring several register transfers, which 
means several clock cycles are necessary to complete this operation (as shown in 
Fig. 1.5). The machine would normally scan the cache block for several instruc- 
tions and try to resolve any data dependencies. At the end of this cycle, operands 
will be fetched and placed in the corresponding registers (reservation stations) of 
the execution units. 

In microcoded machines a large disparity existed between the speed of the 
clock and the speed of logic. It could take several clock cycles or even several 
tens or hundreds of clock cycles to execute one instruction. A more complex 
instruction required many more clock cycles. There could be tens of logic levels 
in the critical path, and 40 to 50 were not uncommon. Thus, the time associated 
with the clock and clocking was not as critical as it is today. 

As the level of integration increased, combined with the increased speed of 
today’s machines, the number of logic levels in the critical path started to diminish 
rapidly. Today’s high-speed processors are either implementing Reduced Instruc- 
tion Set Computer (RISC) architecture, or are running CISC code. However, to 
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be able to efficiently implement superscalar execution cores, even CISC com- 
puters are translating their instructions into simple RISC-type operations called 
ROPs (RISC operations). Their microarchitecture can execute one or several 
ROPs in place of one CISC instruction. Therefore, the concept of microcod- 
ing has disappeared, as did the concept of machine cycle when implementing 
a particular machine architecture. The instructions (or ROPs) are executed in 
one cycle, which is usually driven by a single-phase clock. In other words, one 
instruction (or one ROP) is executed in every clock cycle. The levels of hierarchy 
that existed between the clock cycle and instruction execution no longer exist. 
In addition, the number and depth of pipeline stages keeps increasing in order 
to accommodate the trend toward increasing speed. As a result, the number of 
logic stages between the two CSEs keeps decreasing. Today 10 levels of logic 
in the critical path are more common. This number is still decreasing, as illus- 
trated in Fig. 1.6. Any overhead associated with the clock system and clocking 
mechanism directly and adversely affects machine performance and is therefore 
critically important. 

With this introduction we should be able to understand the function of the 
clock signal before we proceed with other definitions. The function of the clock 
signal is comparable to the function of the metronome in music. Similarly, in the 
digital system the clock designates the exact moment when the state is changing, 
as well as when the next state is to be captured. Also, all of the logic operations 
have to finish before the tick of the clock, because their final values are being 
captured by that clock event. Therefore, the clock provides the time reference 
point, which determines the flow of the data in the digital system. 

Figure 1.6. Increase in the clock frequency and decrease in the number of logic levels 
in the pipeline. (Borkar 1999), Copyright 0 1999 IEEE. 
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1.2. SYSTEM CLOCK DESIGN 

The clock system is usually divided into two distinct categories: clock genera- 
tion and clock distribution. However, this classification should be extended by 
adding CSEs as an additional category, because the nature of the clocked storage 
elements is intimately connected to the clock system generation and distribution, 
and it is the nature of clocked storage elements that dictates the requirements 
imposed on the clock system. This relationship is best illustrated by the choice 
of clocking scheme, as shown in Fig. 1.7. The clock system can consist of a 
single-phase, a two-phase, or a multiple-phase clock. Transfer of data between 
CSEs in the system is usually accomplished by using an active phase of the 
clock. Thus, the clock phase controls the transfer of the information among the 
CSEs in the system. To prevent data from moving further then desired (achieving 
nontrunsparency), the clock phases are separated in time. This is referred to as 
nonoverlupped clock phases. In high-performance systems various phases of the 
clock can be overlapped in order to increase total system performance. 

In the older systems it was more common to use multiple-phase clocks 
(Siewiorek et al. 1982). Transparent latches or flip-flops triggered by short pulses 
were used as storage elements. As the frequency of the operation kept increasing, 

(c) 

Figure 1.7. System clocking schemes: (a) single-phase clock; (b) two-phase clock; 
(c) multiple-phase clock. 
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it became exceedingly difficult to control various phases of the clock and their 
relationship to each other. 

The two-phase clock is a robust scheme and is compatible with the design 
for testability, a desired feature of a complex computer system. Such a scheme, 
which incorporates a test mode, has been used in generations of IBM mainframe 
computers as a part of level-sensitive scan design (LSSD) methodology (LSSD 
1985). The two nonoverlapping phases of the clock assure a robust clocking 
system that can tolerate manufacturing and process-parameter changes. 

Given the continuing search for more speed and increased level of integra- 
tion, even the two phases of the clock became difficult to control on the VLSI 
chip. This led to the widespread adoption of the single-phase clock in use today. 
Although two-phase clocking is still used, it is a single-phase clock that is dis- 
tributed throughout the system, allowing the two necessary phases to be generated 
locally. This technique achieves two goals: (1) necessary amplification of the 
clock signals and ability to drive a large row of storage elements (register, for 
example), and (2) generation of two clock phases and compatibility with scan 
methodology. A scheme used for local two-phase clock generation from a single- 
phase clock distributed on the chip is shown in Fig. 1.8. Such a scheme is also 
capable of supporting the test and debug mode. The two phases of the clock, 
C1 and CZ, are generated from the global clock CLKG. Specialized circuitry 
was added to allow for edge shifting at the cycle boundary (Sigal et al. 1997). 
Enabling and disabling of the clock phases is used to switch from normal oper- 
ation to the scan mode that is used for testing. 

1.2.1. Global System Clock Generation 

Clock generation begins on a system board, where the global system clock 
reference is generated from a “crystal” oscillator. This is a circuit that uses 

F 
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C1 \ c 
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B C L K  

CLKG 
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Figure 1.8. Local generation of two-phase clocks as used in IBM Y390 G4. (Sigal et al. 
1997), reproduced by permission. 
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Temperature 

a piezoelectric quartz crystal or some other ceramic material as a mechanical 
representation of an electrical inductance-capacitance-resistance (LRC)  series 
resonant circuit. Piezoelectric effect in a material occurs with the exchange of 
energy between the mechanical forces and applied electric field. In quartz crystal, 
the physical dimensions of the lattice can very precisely determine the oscilla- 
tion frequency. One excellent property of such resonators is their extremely high 
Q-factor, typically 1000-10,000. By attaching a nonlinear element (such as an 
NFET) to the resonator, the series resistance of the resonator is canceled by the 
negative resistance of the nonlinear element and “lossless” oscillations are main- 
tained. Due to the high-quality Q-factor, the variation of the resonant frequency 
of the oscillator is only a few parts per million (ppm). Two realizations of the 
clock oscillator are shown in Fig. 1.9a and 1.9b. 

System clock is set to directly correspond to the speed of data busses on the 
system board, that is, from 66 MHz, 100 MHz, 133 MHz, 266 MHz, and higher, 
in PC boards, to a few hundred MHz in specialized systems. However, the on- 
chip clocks operate at frequencies that are in the GHz range. Even if the on-board 
clock signal of the same frequency as the on-chip clock could be generated, it 
would be very hard to bring it on-chip because of large parasitic capacitances 
and inductances in the package and bond-wireshalls that connect to the die. For 
these reasons, the low-frequency system clock is first brought on-chip and then 
frequency multiplication is performed to achieve the desired on-chip clock rate. 

The time difference between the external clock and the internal clock, called 
insertion delay (shown in Fig. l . l O ) ,  increases relative to the clock period with 
the increase in the clock frequency. Input data are synchronized with the external 
clock, but can be stored directly in the storage elements clocked by the inter- 
nal clock. Any insertion delay between the external and internal clocks directly 

Control 
voltage 

I vDD 
--r- 

i . out 
-0 

(a) (b) 

Figure 1.9. (a) Crystal oscillator. (b) Temperature-compensated crystal oscillator. 
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Figure 1.10. On-chip clock insertion delay. 

impacts the cycle time of the processor. The insertion delay is caused by the on- 
chip clock-driver delay, with the inverter chain representing the equivalent of the 
clock-driver tree, and clocked storage elements representing the total clock load. 
Several nF of the clock load are routinely encountered in modem microprocessor 
designs (Young et al. 1992). The clock-driver tree requires five or more fan-out 
of 4 (F04) delays, which easily accounts for over 50% of the processor cycle 
time. Moreover, due to process and environmental variations, the delay of the 
clock driver may vary, causing an unknown phase relationship of the external 
and internal clocks. 

The problem of external and internal clock alignment can be solved by using 
the phase-locked loop (PLL). The main task of the PLL is to align the external 
reference clock with the on-chip internal clock at the end of the clock driver, 
thus effectively removing the driver delay. 

1.2.2. On-Chip Clock Generation 

There are two main types of PLLs. In the first type, the PLL has its own 
voltage-controlled oscillator (VCO) that generates the internal clock, which is 
then aligned to the external reference clock by the virtue of negative feedback, 
as shown in Fig. 1.11. The phase difference between the external reference clock 
and the internal distributed clock is detected with the phase detector (PD), and 
low-pass filtered (LP), to create the control voltage for the VCO, steering the 
oscillation frequency in order to align the external and internal clocks, ideally 
achieving a zero phase difference. At this point, a so-called phase lock is achieved 
(Gardner 1979). This type of PLL was introduced first, and so historically it kept 
the name PLL. One example of the PLL operation is shown in Fig. 1.1 1, where 
the output of the phase detector is the XOR of the external clock reference and 
the internal clock, producing pulses, p ,  that are then low-pass filtered to pro- 
duce the slowly changing control voltage, cv, which changes the frequency of 
the VCO, and hence the internal clock. At first, the external and internal clocks 
have a phase difference of 135", but after the phase difference is detected and 
the frequency of the internal clock changes, the phase difference is decreased 
to 45". 

The other type of PLL is delay-line based or delay-locked loop (DLL). As 
shown in Fig. 1.12, the VCO in the PLL is replaced by the voltage-controlled 
delay line (VCDL), which delays the external clock, feeding the clock driver, 
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until the internal clock becomes aligned with the external clock, at which point 
the control voltage of the VCDL become steady and the loop stays in lock. An 
example similar to that in Fig. 1.11 is given in Fig. 1.12. The main difference 
between the examples is that, unlike in Fig. 1.1 1, the internal clock in Fig. 1.12 
does not change frequency over time, but is delayed in order to achieve phase 
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alignment. The key point to understand is that alignment is possible in both 
PLL and DLL, because both the external and internal clocks are periodic, which 
delays them by an integer number of cycles with respect to each other, resulting 
in cancellation of the phase difference. Otherwise, it would not be physically 
possible to eliminate this delay. It is only possible to add more delay until the 
total delay becomes an integer number of clock cycles. 

In addition to clock alignment, PLLs can perform frequency multiplication. 
Figure 1.13 shows a general block diagram where the VCO operates at fvco = 
f e x t  x B x C I A ,  and the frequency of the internal clock is fint = f vco /B.  Typi- 
cally, the value of B is two, to guarantee a 50% duty cycle of the internal clock, 
and the value of A is one. The value of C is set to the ratio between the desired 
internal-clock frequency and the external (system) -clock frequency (Young et al. 
1992), which is always conveniently set to be an integer value, preferably base 
two. There are, however, cases where multiple values of A ,  B ,  and C are used 
in the power-up sequence to avoid excessive supply noise on large chips, like 
Alpha 21264 (von Kaenel et al. 1998). 

From the standpoint of noise performance, the VCO (VCDL) is the most crit- 
ical part of the PLL (DLL). It is therefore illustrative to compare most common 
design styles and discuss the possible trade-offs. VCO is built either as a ring 
oscillator topology, Fig. 1.14, or an inductance-capacitance (LC)  tank oscil- 
lator, Fig. 1.15. Ring-oscillator-based VCOs are relatively easy to implement, 
and require much less area than LC tank oscillators. By regulating the supply, 

PL L 
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Clock 
driver 7 is -- PO - 7 - vco - 

LP 1 Cload 
~- 

- 

Figure 1.13. PLL frequency multiplication. 

Figure 1.14. Ring-oscillator-based VCO, with CMOS inverters as delay elements. 



14 INTRODUCTION 

T T 

I I I 

* 
Figure 1.15. LC tank-based VCO, equivalent ac circuit model and current waveform. 

inverter delay is controlled, and so is the oscillation frequency. The minimum 
number of stages needed to sustain oscillations is three, since it provides suf- 
ficient delay, while typical numbers range from three to seven or more stages, 
(Hajimiri 1998). 

With the increase in clock frequency and the use of on-chip spiral induc- 
tors, both feasible with today's technology, LC tank-based VCOs are becoming 
increasingly popular due to superior phase-noise performance. However, LC tank 
oscillators do not always perform better than ring oscillators. This largely depends 
on the dominant source of noise and the number of stages in the output buffer and 
ring oscillator (Hajimiri 1998). A typical LC tank VCO is shown in Fig. 1.15, 
with an equivalent small-signal model and frequency characteristic as a function 
of applied cv. 

A VCDL can be built from the same delay elements as the ring-oscillator 
VCO. The delay elements most often used are differential pairs, which provide 
good power-supply rejection, and the recently popular inverters with a power- 
supply regulator that performs power-supply filtering and effectively shields the 
inverters from any power-supply noise (von Kaenel et al. 1998; Sidiropoulos 
et al. 2000). For details on other PLL and DLL building blocks, see, among 
others, Gardner (1979), Kim et al. (1994), and Razavi (1996). The following 
section briefly describes some of the most important noise sources and trade- 
offs involved in PLL and DLL design, and gives a comparative analysis of PLL 
versus DLL performance. 

1.2.3. Noise Sources and Loop Bandwidth 

For the purposes of high-level analysis, we divide the noise sources into three 
main categories: (1) noise of the reference clock, (2) noise induced in the VCO 
(or VCDL), and (3) noise induced on the clock during distribution from the 
PLL (DLL) to the CSE, here defined as clock driver noise. Since these noise 
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sources are introduced into the loop at different locations, the transfer functions 
to the output are different for each of them. For example, input reference noise 
is low-pass filtered at the output of the PLL, with the filter bandwidth set by the 
bandwidth of the PLL. On the other hand, input reference noise passes directly 
through the VCDL to the output of the DLL, without any filtering. Noise induced 
in the VCO is fed back to the VCO input (in ring-oscillator implementation) and 
"accumulated" over time (Kim et al. 1994). Any noise induced in the VCO or 
VCDL is tracked and rejected by the loop, up to the loop bandwidth. Therefore, 
the transfer function of noise from the VCO (VCDL) to the output is high-pass, 
contrary to the one from the input reference to the output, which is low-pass. 
This immediately points to the possible trade-off between the amount of input 
reference noise and VCO noise at the output of the PLL. Indeed, the optimal 
bandwidth at which these two noise sources are balanced exists and minimum 
total noise is achieved (Lim et al. 2000; Mansuri and Yang 2002). In summary, 
DLLs perform better in cases where the reference clock is not the main source 
of clock uncertainty and most major noise comes from the noise induced in the 
VCDL line. PLLs are, however, better in cases where the input reference noise 
is dominant, and typically worse in cases where the major noise is induced in 
the VCO, due to the noise accumulation effect, given that compared VCOs and 
VCDLs are implemented using the same type of delay element. 

The preceding analysis is somewhat blurred in modern systems, due to the 
noise induced in the clock driver. While VCOs and VCDLs are typically imple- 
mented using three to seven delay stages, because of the increasing amount of 
clock load, clock driver depth has increased from generation to generation, and 
is now over five stages in modern processors. Given that sensitivity of the delay 
elements in VCO or VCDL is typically an order of magnitude better than that of 
inverter, which has a 1 % delay variation for a 1 % power supply variation, it can 
be easily seen that the overall noise of the distributed on-chip clock is usually 
dominated by the noise induced in the clock driver tree. 

1.2.4. Design Considerations 

Regarding the design of the PLLs and DLLs, PLLs are typically harder to design, 
due to stability issues (PLL is a second-order system due to the integrating func- 
tion of the VCO), but offer more flexibility than DLLs, that is, wider locking 
range and, frequency multiplication. DLLs are simpler to design, given that they 
are first-order systems (unconditionally stable), but offer limited lock range. How- 
ever, it is true that more complicated DLLs that offer similar flexibility to PLLs 
are also very complex systems (Sidiropoulos and Horowitz 1997). 

PLLs are mostly used in modern processors to multiply the frequency of the 
external system clock and reject any existing high-frequency reference clock 
noise. DLLs have recently found application as deskewing elements in high- 
performance processors, synchronizing different clock domains on a die to the 
global clock reference from the PLL (Rusu and Tam 2000; Xanthopoulos et al. 
2001). It should be noted, however, that these approaches only deal with the DC 
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portion of the noise on the clock (skew), while AC portion of the noise (jitter) is 
not eliminated. The jitter induced in the clock driver by power supply variations 
still presents the dominant source of noise in the on-chip clock distribution and 
needs to be budgeted for in any clocking methodology. 

1.3. TIMING PARAMETERS 

It is appropriate at this point to consider the clock distribution system and define 
the clock parameters that will be used throughout this text. For the purposes of 
definition we should start with the Fig. 1.16, which shows the timing parameters 
for a single-phase clock. 

The clock signal is characterized by its period, T ,  which is  inversely pro- 
portional to the clockfrequency, f .  The time during which the clock is active 
(assuming logic 1 value) is defined as clock width, W .  The ratio of WIT is 
defined as clock duty cycle (w). Usually, the clock signal has a symmetric shape, 
which implies a 50% duty cycle. This is also the best we can expect, especially 
when distributing a high-frequency clock. Another important point is the abil- 
ity to precisely control the duty cycle. This point is of special importance when 
each phase of the clock is used for logic evaluation, or when we trigger the clock 
storage elements on each edge of the clock (as we will see later in the book). 
Some recently reported work demonstrates the ability to control the duty cycle 
to within f0.5% (Bailey and Benschneider 1998). 

There are two other important timing parameters that we need to define: clock 
skew and clock jitter. 

1.3.1. Clock Skew 

Clock skew is defined as a spatial variation of the clock signal as distributed 
through the system. The clock skew is measured from some reference point in the 
system: the clock entry point to the board or VLSI chip, or the central point from 
where the clock distribution starts. Because of the various delay characteristics 
of the clock paths to the various points in the system, as well as different loading 

W - W &  - T c T 
; w =  - -Duty cycle 

Figure 1.16. Clock parameters: period, width, rise, and fall times. 
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of the clock signal at different points, the clock signal arrives at different points 
at different times. This clock skew is defined as the difference between the 
reference point and the particular destination CSE. Further, we can distinguish 
global clock skew and local clock skew. We define global clock skew as the 
maximal difference between two clock signals reaching any of the two storage 
elements on the chip, or in the system, that exchange data under the control of the 
same clock. Our definition of the clock skew describes global clock skew. Clock 
skew occurring between two adjacent CSEs represents local clock skew. If the 
two adjacent clock storage elements are connected with no logic in-between, the 
problem of data race-through can occur. Characterizing a maximum local clock 
skew is therefore important. These clock skew definitions are equally important 
in high-performance system design. 

1.3.2. Clock Jitter 

Clock jitter is defined as temporal variation of the clock signal with regard 
to the reference transition (reference edge) of the clock signal, as illustrated in 
Fig. 1.17. Clock jitter represents edge-to-edge variation of the clock signal in 
time. As such, clock jitter can also be classified as long-term jitter and cycle- 
to-cycle (or edge-to-edge) jitter. Edge-to-edge clock jitter is the clock signal 

Figure 1.17. Clock parameters: period, width, clock skew, and clock jitter. 
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variation between two consecutive clock edges. In the course of high-speed logic 
design, we are more concerned about cycle-to-cycle clock jitter, because it is this 
phenomena that affects the time available to the logic. Long-term jitter represents 
clock-edge variation over a large number of clock cycles (long-term). While 
short-term jitter is dependent on the type and quality of the clock generator, long- 
term jitter is a result of the accumulated effects. Long-term jitter usually affects 
communication and synchronization between various blocks within a system that 
are same distance apart and need to operate in synchrony. 

1.4. CLOCK SIGNAL DISTRIBUTION 

1.4.1. Historical Overview 

Usually a clock signal was generated using a quartz-crystal-controlled oscilla- 
tor that provides an accurate and stable frequency. Given the size limitation of 
the quartz crystal, the frequency of such a generated clock signal cannot be 
very high, and frequencies in excess of 30-50 MHz are rarely generated using 
a quartz crystal. The clock signal is then conditioned and amplified to reach 
desirable driving strength before it is applied to the outside pins of a VLSI chip, 
from which it drives an internal PLL or DLL. Before reaching the boundaries 
of the VLSI chip, adjustments to its shape and form are possible. In contrast, in 
older computer systems, which consisted of several electronic cabinets distributed 
over the computer floor, and which contained a number of printed circuit boards, 
adjustments to the clock signal were made at each level. Thus, the clock signals 
were distributed over longer distances and over several levels, including the cab- 
inet, printed circuit boards, and internal modules. Those separate entities entered 
by the clock signal were referred to as “logic islands,” a term introduced by 
Amdahl (Flynn and Amdahl 1965; Kogge 1981). The concept of logic islands is 
illustrated in Fig. 1.18. 

Figure 1.19 shows that further tuning and delay adjustment of the clock signal 
is possible at the point where the clock enters the board or cabinet (called an 
island). Those elements are usually called tuning points. The positioning of tuning 
points in the system is illustrated in Fig. 1.19. Various clock shaping, forming, 
and tunable delay elements are employed, and some of them are illustrated in 
Fig. 1.20. These elements make it possible to control the timing of the leading 
as well as the trailing edge of the clock signal, and to produce an early as well 
as late clock signal with reference to the nominal clock. 

By adjusting the clock delay and subsequently shaping the edges of the clock 
signal, it is possible to create early, nominal, and late clocks, as shown in 
Fig. 1 .21~.  Those clocks then can be routed to various points on the board. 
Older systems had much greater control of the clock signal than what is possible 
today, because once the clock reaches the boundary of the LSI chip, tuning and 
shaping the clock is not possible. This is because it is much more difficult to tune 
on the chip due to the lack of external control and greater parameter variations 
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Figure 1.18. The concept of logic islands. (Wagner 1988), Copyright 0 1988, IEEE. 

on the chip. It is also difficult to build tuning elements such as inductors on the 
chip and to make adjustments from outside. 

With the advent of integration, the systems have shrunk dramatically in size. 
Today, it is quite common for a processor to have several levels of cache memory 
contained entirely on a VLSI chip. The chip’s capacity for hundreds of millions 
of transistors makes it possible to integrate not only one processor but also a 
multiprocessor system onto a single chip. The inability to introduce tuning ele- 
ments on the chip further aggravates the problem of distributing the clock signals 
precisely in time, since it is not possible to make further manual adjustment to 
the clock signal once it has crossed the boundaries of the VLSI chip. Therefore, 
careful planning and design of the on-chip clock distribution network is one of 
the most critical tasks in high-performance processor design. 

1.4.2. Clock Distribution in Modern Microprocessors 

Typically, the clock signal has to be distributed to several hundreds of thousands 
of the clocked storage elements (flip-flops and latches) on a complex processor 



20 INTRODUCTION 

Tuning delay - 

System oscillator I I 

Tune-point level 1 

Clock divider/buffer - observation point 0 :: 
Delay element 0 

(i Delay in clock-waveform manioulation -f 
cable delay to on-board kput Y x -  

I I I Tune-point level 2 I I I 

Clock-control chip 
clock gating + clock-chopping delay r - 5  

Clock-distribution chip * *, Tuning delay- 

I I Tune-point level 3 I I '  
I I 

Clock-distribution chip 
Clock-powering delay 

On-chip delay 

I ' I  
Bistable-element 
clock-input delay 

Figure 1.19. Clock tuning points. (Wagner 1988), Copyright 0 1988 IEEE. 
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Figure 1.20. Various clock shaping elements and obtained clock signals. (Wagner 1988), 
Copyright 0 1988 IEEE. 

chip. Therefore, the clock signal has the largest fan-out of any node in the design, 
which requires several levels of amplification (buffering). One consequence of 
imposing such a load on the clock signal is that the clock system by itself can 
use up to 40-50% of the power of the entire VLSI chip (Gronowsky et al. 
1998). However, power is not the only problem associated with the distribution 
of the clock signals. Since we are dealing with synchronous systems, we must 
assure that every clocked storage element receives the clock signal at precisely 
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Figure 1.21. (a) Clock distribution network within a system, (b) on the board, and 
(c) tuning of the clock. (Wagner 1988), Copyright 0 1988 IEEE. 

the same moment. The clock signal traverses different paths on the VLSI chip, 
while tracing its path from its origin, the entry point to the VLSI chip, to different 
clocked storage elements receiving it. Those paths can differ in several attributes, 
such as the length of the path (wire), the physical properties of the material along 
different paths, the differences in clock buffers on the chip as a consequence of 
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the process variations. The negative effect of these variations on the synchronous 
design is that different points on the chip will receive the clock signal at different 
moments, which results in a further increase in both local and global clock 
uncertainties. 

There are several methods for the on-chip clock signal distribution that attempt 
to minimize the clock skew and to contain the power dissipated by the clock 
system. The clock can be distributed in several ways, two of which are worth con- 
sidering here: (1) resistance-capacitance (RC)  matched tree shown in Fig. 1.22a, 
and (2) the grid shown in Fig. 1.22b. 

An RC matched tree is a method of assuring (to the best of our abilities) that 
all the paths in the clock distribution tree have the same delay, which includes 
the same RC of the wire, as well as the same number of equal-size buffers on the 
clock signal path to the storage element. There are several different topologies 
used to implement an RC matched tree. The common objective is to do the 
best possible in balancing various clock signal paths across the various points 
on the VLSI chip. An example of four different topologies, as taken from Bailey 
(Chandrakasan et al. 2001), is shown in Fig. 1.23. 

If we had superior computer-aided design (CAD) tools, a perfect and uniform 
process, and the ability to route wires and balance loads with a high degree of 
flexibility, a matched RC delay clock distribution (Fig. 1.23) would be prefer- 
able to grid (b) as shown in Fig. 1.22b and Fig. 1.24. However, none of that 
is true. Therefore the grid is used when clock distribution on the chip has to 
be very precisely controlled, which results in higher clock power, as is the case 
in high-performance systems. This is not difficult to understand given that in 
a grid arrangement a high-capacitance plate is driven by buffers connected at 
various points. 

Figure 1.22. Clock distribution methods: (a) an RC matched tree, and (b) a grid. (Bailey 
and Benschneider 1998), Copyright 0 1998 IEEE. 
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Figure 1.23. RC delay matched clock distribution topologies: (a) a binary tree (b); an H 
tree; (c) an X tree; (d) an arbitrary matched RC matched tree. (From Bailey in Chan- 
drakasan et al. 2001), Copyright 0 2001 IEEE. 

Figure 1.24. Clock distribution grid used in a DEC Alpha 600-MHz processor. (Bailey 
and Benschneider 1998), Copyright 0 1998 IEEE. 
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One such example is the DEC Alpha processor, which was the fastest processor 
for several generations of microprocessors starting with the first 200-MHz design 
introduced in 1992 and ending with the 600-MHz design in 1998 (Dobberpuhl 
et al. 1992; Benschneider et al. 1995; Gieske et al. 1997). A picture of the clock 
distribution grid is shown in Fig. 1.24. 

With an increased number of transistors, local variations in device geometry 
and supply voltage become a more important component of the clock uncertainty, 
which cannot be compensated for by layout (Schutz and Wallace 1998). A more 
sophisticated clock distribution than simple RC -matched or grid-based schemes 
is therefore necessary. One such example will be described in Chapter 9 of this 
book. The active schemes with adaptive digital deskewing typically reduce clock 
skew of the simple passive clock networks by an order of magnitude, allow- 
ing for more tightly controlled clock period and higher clock rates. The digital 
deskewing circuit for clock distribution evens out the static components of skew 
(load, interconnect, and device mismatches). Additionally, it compensates for the 
dynamic variations in temperature and voltage gradients during all phases of 
active microprocessor operation. 



CHAPTER 2 

THEORY OF CLOCKED STORAGE 
ELEMENTS 

The function of a clocked storage element is to capture the information at a 
particular moment in time and preserve it for as long as it is needed by the 
digital system. Having said this, it is not possible to define a storage element 
without defining its relationship to a clocking mechanism in a digital system, 
which is used to determine discrete time events. This definition is general and 
should include various ways of implementing a digital system. More particularly, 
the element that determines time in a synchronous system is the clock. 

2.1. LATCH-BASED CLOCKED STORAGE ELEMENTS 

The simplest storage element consists of an inverter followed by another inverter, 
which provides positive feedback, as shown in Fig. 2.la. The information bit at 
the input is thus locked due to the positive feedback loop, and it can be only 
changed “by force” (i.e., by forcing the output of the feedback inverter to take 
another logic value). This configuration is used very frequently, and is also known 
as the keeper, a circuit that keeps (preserves) the information on a particular node. 

If we were to avoid the power dissipation associated with overpowering (forc- 
ing) the keeper to change its value, we must introduce nodes that will help us in 
changing the logic value stored in the feedback loop. For that purpose we are free 
to use logic NAND or NOR gates, as shown in Fig. 2.1. Of particular interest is 
a simple modification of the diagram that emphasizes the sum-of-products (SOP) 
nature of this logic topology. We start with a simple cross-coupled inverter pair, 
which is unrolled to better illustrate the existing positive feedback (Fig. 2. la). 
In the second step we replace the inverters with NAND gates, which enables us 
to control the variable inside the loop and to selectively set it to 1 or 0 using 
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Figure 2.1. Latch structure: (a) keeper; (b) S - R  latch; (c) SOP latch. 

the input that controls the S and R gates in this case (as shown in Fig. 2.1b). 
Finally we apply De Morgan rules, which allows us to transform this structure 
into AND-OR topology. It is well known in digital design that this topology 
represents SOP, which is a general expression for any Boolean function. The 
existence of this topology leads to the Earl’s Latch (Earl 1965). 

It is easy to derive a Boolean equation to represent the behavior of the pre- 
sented S - R  latch. The next output, en+,, is a function of the Q n ,  S, and R 
signals. Later in this book we will use those simple dependencies in order to 
design improved clocked storage elements. The S - R  latch can change the out- 
put, Q ,  at any time. In order to make the latch compatible with the synchronous 
design, we will restrict the time when Q can be affected by introducing the clock 
signal that gates the S and R inputs. If the data input, D, is connected to S and 
the property of the S-R  latch, which makes S and R mutually exclusive, is 
applied, the resulting D-latch is shown in Fig. 2.2a. The related timing diagram 
of a D-latch is shown in Fig. 2.2b. The latch is transparent during the period of 
time the clock is active, i.e., assuming logic 1 value. 

A latch can be built in a SOP topology (Fig. 2 .1~) .  This tells us that it is pos- 
sible to incorporate logic into the latch, given that the SOP is one of the basic 
realizations of the logic function. This leads to the construction of Earl’s Latch, 
which was introduced during the course of the development of a well-known IBM 
S360/91 machine (Earl 1965; Flynn 1966; Amdahll964; Anderson et al. 1967). The 
basic Earl’s Latch configuration is shown in Fig. 2.3a, (Earl 1965), while a latch 
implementing the Carry function is shown in Fig. 2.3b (Halin and Flynn 1972). 

Figure 2.2. (a) Clocked D-latch; (b) timing diagram of clocked D-latch. 
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Figure 2.3. (a) Basic Earl’s Latch; (b) implementing the Carry function. 

In order to avoid the transparency feature introduced by the latch, an arrange- 
ment is made in which two latches are clocked back-to-back with two nonover- 
lapping phases of the clock. In such an arrangement the first latch serves as a 
Master by receiving the values from the data input, D, and passing them to the 
Slave latch, which simply follows the Master. This is known as a Master-Slave 
latch (MSL) (or LI-Lz latch, in IBM), as shown in Fig. 2.4. This is not a flip- 
flop, as we will explain later in this book. A very common VLSI implementation 
of MSL is the Transmission-Gate MSL, used in PowerPC (Gerosa et al. 1994), 
as shown in Fig. 2.4d. 

In a M-S arrangement, the slave latch can have two or more masters acting 
as an internal multiplexer with storage capabilities. The first master is used for 
capturing data input, while the second master has other uses and can be clocked 
with a separate clock. One arrangement that utilizes two masters is the well- 
known IBM level-sensitive scan design (LSSD 1985) shown in Fig. 2.5. 

In systems designed with LSSD compliance (Fig. 2.5), the system is clocked 
with clocks C and B during the normal operation and the storage elements act as 
standard MSLs. However, all storage elements in the system are interconnected 
by the alternate master in a long shift register. The input and the output of this 
shift register are routed to the external pins. In the test mode, the system is clocked 
with the A and B clocks, which act as a long shift register so that the state of 
the machine can be scanned out of the system andor a new state scanned in. 
This greatly enhances the controllability and obsewability of the internal nodes 
of the system. LSSD is a mandated standard practice of all IBM designs, and it 
has become known in the industry as boundary scan (IEEE Standard 1149). 

2.1 .l . True-Single-Phase-Clock Latch 

The true-single-phase-clock (TSPC) latch (Fig. 2.6), developed by Yuan and 
Svensson (1989), is a fast and simple structure that uses a single-phase clock. 
This latch was constructed by merging CMOS Domino and CMOS NORA 
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Figure 2.4. Master-slave latch with (a) nonoverlapping clocks; (b) single external clock; 
(c) timing diagram; (d) as used in PowerPC 603 (Gerosa, JSSC 12/94), Copyright 0 1994 
IEEE. 

logic (Goncalves and De Man 1983). During the active clock (Clk = l), CMOS 
Domino evaluates the input in a monotonic fashion (only a transition from logic 0 
to 1 is possible) while NORA logic precharges. Alternatively, during the inactive 
clock (Clk = 0), Domino is being precharged (and so is nontransparent) while 
NORA is evaluating its input. The combination of NORA and Domino logic 
stages results in a nontransparent MSL that only requires a single clock. Hence 
the name given to it was true-single-phase-clock M-S latch. The clock system 
based on the TSPC M-S latch is described in Afghahi and Svensson (1990). 
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Figure 2.5. IBM LSSD compatible storage element. 

Figure 2.6. True-single-phase-clock (TSPC) M-S latch introduced by Yuan and Svensson 
(1989), Copyright 0 1989 IEEE. 

Operation of the TSPC M-S latch is illustrated in Fig. 2.7. When Clk = 0, 
the first inversion stage, L I ,  is transparent and the second half, L2, of the TSPC 
is precharged. Thus, at the end of the half-cycle, during which CZk = 0, the input 
D is present at the input of the Domino block as its complement, B. When the 
clock switches to logic 1 (CEk = l), Domino logic evaluates and the output, a, 
either stays at logic 0 or makes the transition from 0 to 1, depending on the 
sampled input value, B. This transition cannot be reversed until the next clock 
cycle. In effect the first inverter connected to the input acts as a master latch, 
while the second (Domino) stage acts as a slave latch. The transfer from the 
master latch to the slave latch occurs as the clock changes its value from logic 
0 to logic 1. Thus, the TSPC MSL behaves as a leading-edge triggered flip-flop. 
It is also frequently called a flip-flop, though by the nature of TSPC operation, 
this classification is incorrect. 

Due to its simplicity and speed, the TSPC MSL was a very popular way of 
implementing a clocked storage element. However, the TSPC MSL was sensitive 
to glitches created by the clock edges. One of these glitches occurs on the output 
with a logic value of 1, while the input is receiving D = 0. 
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Figure 2.7. TSPC M-S latch operation. 

2.1.2. Pulse Register Single Latch 

Because of the high cost of the M-S latch design and the potential signal- 
race hazards introduced by the single-latch design, an idea for a single-latch 
design clocked by locally generated short pulses evolved. The idea is to make 
the clock pulse very short, and thus reduce the time window during which the 
latch is transparent. However, there is a possibility that a “short path” may be 
captured during the same clock. Given that the clock pulse is short, the chance 
of this hazard happening is reduced, and it is also possible to pad the logic (add 
inverters) in those paths so that they would not be a problem. Such a short clock 
pulse cannot be distributed globally because the clock distribution network would 
absorb it. There is an additional danger, because due to the process variations, 
the duration of that clock pulse will vary locally on the chip, as well as from 
chip to chip. In order to mitigate these problems, the pulse clock is generated 
locally, and it usually drives a register consisting of several such single latches 
that are physically located very close to each other. This method would lose 
its advantages of simplicity and low power if every single latch would require 
separate clock generator, as seen in Fig. 2.8a and 2.8b (Kozu et al. 1996). 

The clock produced by the local clock generator must be wide enough to 
enable the latch to capture its data. At the same time, it must be sufficiently 
short to minimize the possibility of critical race. Those conflicting requirements 
make the use of this single-latch design hazardous by reducing the robustness and 
reliability of the design. Nevertheless, this design has been used because of the 
critical need to reduce the high costs imposed by the clocked storage elements. 
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Figure 2.8. Pulse latch: (a) local clock generator; (b) single latch (Kozu et al. 1996); 
(c) clock signals, Copyright 0 1996 IEEE. 

Figure 2.9. Pulse latch: Intel’s explicit pulsed latch. (Tschanz et al. 2001), Copyright 0 
2001 IEEE. 

Intel’s version of the pulsed latch is shown in Fig. 2.9. One benefit of this 
design is low power consumption due to the common clock signal generator and 
a simple structure of the latch. In order to obtain the desired short clock pulse, 
the pulse generator used in Intel’s pulsed latch uses the principle of reconvergent 
fan-out with nonequal parity of inversion. 
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2.2. FLIP-FLOP 

The main feature of the flip-flop is that the process of capturing data is related 
to the transition of the clock (from 0 to 1 or from 1 to 0), thus the flip-flop is not 
transparent. Therefore flip-flop-based systems are easier to model, and the timing 
tools find flip-flop-based systems simpler and less problematic to analyze. The 
precise point in time when data are captured is determined by the clock event 
designated as either the leading or trailing edge of the clock. In other words, the 
transition of the clock from logic 0 to logic 1 causes data to be captured (it is 
the 1-to-0 transition in the trailing edge-triggered the flip-flop). In general, the 
flip-flop is not transparent, since it is assumed that the clock transition is almost 
instantaneous. As we will see later, even the flip-flop can have a very small 
period of transparency associated with the narrow time window during which the 
clock changes, as will be discussed later. In general, we treat the flip-flop as a 
nontransparent clocked storage element. Given that the triggering mechanism of 
a flip-flop is the transition of the clock signal, there are several ways of deriving 
the flip-flop structure. To better understand its functionality, it helps to look at an 
early version of a flip-flop, shown in Fig. 2.10, that was used in early computers 
and digital systems (see Siewiorek et al. 1982). The pulse, which causes the 
change, is derived from the triggering signal (also referred to as trigger) by 
using a simple differentiator consisting of a capacitor C and resistor R .  One 
can also understand a glitch introduced by the flip-flop. If the triggering signal 
transition is slow, a pulse derived in this way may not be capable of triggering 
the flip-flop. On the other hand, even a small glitch on the trigger line can cause 
a false triggering. 

To further our understanding of the flip-flop, it is helpful to start making the 
distinction between the flip-flop and the latch-based CSE. 

The flip-flop and the latch operate on different principles. While the latch is 
“level-sensitive” meaning it is reacting on the level (logical value) of the clock 
signal, the flip-flop is “edge sensitive,” meaning that the mechanism of capturing 
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Figure 2.10. (a) Early version of a flip-flop; (b) PDP-8 direct set-reset sequential ele- 
ment. 
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Figure 2.11. (a) General flip-flop structure; (b) general M-S latch structure. 

the data value on its input is related to the changes in the clock signal. Level 
sensitivity implies that the latch captures the data during the entire period of time 
when the clock is active (logic l), which means the latch is transparent. The two 
are designed from a different set of requirements, and so consist of inherently 
different circuit topologies. 

The general structure of the flip-flop is shown in Fig. 2.11a. The differ- 
ence between a flip-flop structure and the M-S latch, shown in Fig. 2.11b, is 
as follows: 

A flip-flop consists of two stages: a pulse generator (PG) and a pulse capturing 
latch (CL). The PG generates a negative pulse on either the lines, which 
are normally held at logic 1. The resulting pulse is a function of data and clock 
signals, and should be of sufficient duration to be captured in the pulse CL. The 
duration of the pulse produced by the PG stage can be as long as half the clock 
period, or it can be as short as one inverter delay. 

On the other hand, the MSL consists of two identical clocked latches and its 
nontransparency is achieved by phasing clocks C ,  and C2, which are clocking 
the master latch, L I ,  and the slave latch, L2. 

In spite of the different topologies for the flip-flop and MSL, it may seem that 
because their outward appearance is the same, there is no difference between the 
two. In addition, the reader may believe that the distinction between the flip-flop 
and MSL is artificial and only of academic interest. Figure 2.12a shows the black- 
box view of the flip-flop and MSL. It appears that the MSL behaves identically 
to the trailing-edge-triggered flip-flop, so there is no apparent difference between 
the two. However, if the rise (or fall) time of the triggering edge of the clock 
increases, there will be a time at which the flip-flop will fail. This is illustrated 
in Fig. 2.12b, where the leading-edge-triggered flip-flop and MSL are compared. 
The MSL will continue to operate correctly, because the capturing mechanism 

or 
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Figure 2.12. (a) Black-box view of the flip-flop and M-S latch; (b) experiment causing 
the flip-flop to fail while the M-S latch is still operational. 

of both Master and Slave latches is related to the clock level, not to the rate of 
change. However, there are several reasons why the flip-flop may fail: 

1. Degradation of the rate at which the clock signal changes (clock edge 
degradation) can diminish the level and duration of the internally produced 
pulse that sets the CL. 
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2. The difference in threshold levels of the gates used (due to the process vari- 
ation) can cause the timing difference to behave differently than expected, 
resulting in no pulse being produced. 

3 .  Any spurious glitch on the clock signal can cause false triggering of the 
flip-flop. 

The experiment shown in Fig. 2.12 demonstrates the difference between the 
flip-flop and the MSL. This sensitivity of the flip-flop to the rate of the triggering 
edge makes the flip-flop potentially hazardous and a reliability problem in the 
systems where we cannot guarantee that the clock signal will suffer no degrada- 
tions. This is particularly important where clock-edge degradation and noise on 
the clock signal lines are concerned. 

Purely digital implementation of a flip-flop is far more intricate. For that 
analysis, the reader is referred to the commonly used SN7474 D-type flip-flop 
introduced by Texas Instruments and shown in Fig. 2.13 (Texas Instruments 
1984). The analysis of the SN7474 flip-flop is particularly interesting because 
even a brief analysis reveals that the operation of this particular flip-flop is based 
on the races in time inside the first stage of this flip-flop. 

The PG stage of the SN7474 is shown in Fig. 2.14, which may be helpful 
in the analysis of its operations and its failure modes. In order to behave as 
a flip-flop (to be sensitive to the change in the raising edge of the clock), an 
intricate race is introduced in the PG block that prevents any change on the 3 
and lines after the clock has moved from logic 0 to logic 1 (Oklobdzija 1999). 
Figure 2.14a is used to aid in the analysis of the PG block of the SN7474. Delay 
mismatch that can occur due to the process variations may result in this flip-flop 
malfunctioning, as shown in Fig. 2.14b. In the particular example shown, a race 
occurred between the 3 and signals, which should be both stable at 1 after 3 

Clk 

Figure 2.13. Texas Instruments SN7474 flip-flop, 
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N2 I" 1 s" 

has made a brief transition to 0 following the capture of D = 1 on the raising 
edge of the clock. Signal should have stayed at 1 the whole time. In this 
particular case, the large difference in delay (due to the process variations) from 
one gate to another was the cause of this race. 

signals with respect to the Data ( D )  and Clock 
(Clk) signals can be expressed as 

The relationship of 3 and 

_ -  
S,, = ClkR(D + S) and R, = ClkS(D + R )  (2. I )  

- ~- P 
S 

These expressions were derived strictly from the logic topology of the SN7474 
flip-flop, shown in Fig. 2.13. The expressions for the next value of the set signal, 
S, (as well as reset signal, R,), provide a quick and simple insight into the 
functioning of the PG block of this flip-flop. Simply stated in words, the equation 
for S, tells us: The next state of this flip-flop will be set to 1 only at the time the 
clock becomes 1 (rising edge of the clock), the data at the input are 1, and the 
flip-flop is in the steady state (both S and R are 0). The moment the flip-flop is 
set (S = 1, R = 0), no further change in data input can affect the flip-flop state, 
data input will be "locked" to S, = 1 by ( D  + S) = 1, regardless of D, and reset 
R, would be disabled (by S = 1). This assures the edge sensitivity, that is after 
the transition of the clock and setting the S, or R, signal to the desired state, the 
flip-flop is locked. No changes can occur until the clock transition to 0 (making 
both S = R = 0), thus enabling the flip-flop to receive new data. 

- 81 
R I 
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Flip-Flop Derivation Given the set of specifications that describe the flip- 
flop property given earlier, we can undertake the process of deriving the logic 
equations for the flip-flop. We know that the flip-flop consists of (1) a PG and 
(2) a pulse CL (Fig. 2.11a). The CL is a simple cross-coupled NAND (or NOR), 
set-reset (S-R) latch. We will see later how this CL can be designed in a very 
efficient way (Oklobdzija and Stojanovic 2001). The PG stage is specified by its 
expected behavior. The value of the PG outputs, S and R ,  after the clock makes 
its transition from 0 to 1 (triggering edge) is a function of the Clock, Data and 
the previous values of S and R .  A description of S,, is given in the previous 
section. For clarity, we will repeat it specifically for the required next value of 
the S,, signal: The next state of the flip-flop should be set to 1 only at the time the 
clock becomes 1 (triggering edge of the clock), the data at the input are 1, and 
the flip-flop is in the steady state (both S and R are 0). The moment the flip-flop 
is set ( S  = 1, R = 0) no further change in data input can affect the flip-flop state. 
Therefore, S, should become 1 when the clock becomes 1 and data is 1. When 
this event occurs, S,, stays at 1 and it cannot revert back to 0, even if the data 
signal changes back to 0. 

It is quite simple to show these functional specifications on a Karnaugh map, 
as shown in Fig. 2.15. Now we can derive logic equations from the functional 
specifications given in the Karnaugh map; these equations are equivalent to the 
ones shown in Eq. (2.1). 

If we use the equations obtained this way to construct a PG of the flip-flop, it 
will result in the circuit topology shown in Fig. 2 .16~.  Combining the PG stage 
obtained with the improved second-stage CL invented by Stojanovic (Oklobdzija 
and Stojanovic 2001) results in a superior flip-flop that was later implemented 
and further enhanced by Nikolic et al. (1999). This flip-flop is in the leading 
group of high-performance flip-flops in terms of speed and energy delay product. 

Figure 2.15. Karnaugh map showing derivation of the pulse-generating stage of a flip-flop 
(only the Sn signal is shown). 
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Figure 2.16. (a) Pulse generator stage of the sense-amplifier flip-flop. (Madden and 
Bowhill, (1990); (b) Improvement for floating nodes. (Dobberpuhl 1997; Montanaro 
et al. 1997) (c) Pulse generator stage improvement by proper design. (Nikolic and 
Oklobdzija 1999). Copyright 0 1990, 1997 IEEE. 

It is interesting to note that engineers had to make several attempts before they 
found the right circuit topology for this flip-flop. The flip-flop used in the third 
generation of Digital Equipment Corporations 600-MHz Alpha (Gronowski et al. 
1998) processor is a version of the flip-flop introduced by Madden and Bowhill, 
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which was based on the static memory cell design (Madden and Bowhill 1990). 
This particular flip-flop is known as a sense-amplifier flip-flop (SAFF) (Matsui 
et al. 1994). The development of the PG block of this flip-flop is illustrated 
in Fig. 2.16a-2.16~. 

The behavior of the SN7474 flip-flop is identical to that of Alpha’s SAFF. 
When setting the flip-flop, both of them hold the s (or x) line at logic 0 for the 
duration of the clock active (logic 1) and reset them to logic 1 once the clock 
returns to 0 (inactive state). 

One of the objectives of this book is to clarify the confusion that exists in 
understanding and properly classifying various types of clocked storage elements. 
In the next section we will show another way (used in practice) to create a flip- 
flop. In the SN7474, disabling the D input is done after the short delay necessary 
to set S (or R )  to the next value, thus achieving the edge property. This short 
delay is essential and cannot be avoided. It is reflected in the parameters of the 
setup and hold times of the flip-flop, which will be discussed later in the book. 

2.2.1. Time Window-Based Flip-Flops 

Derivation Digital circuits are based on discrete events. Not only are the logic 
signals a set of discrete voltage levels, but the time is also based on either the 
clock (leading or trailing edge) or some other finite delay based on the signal 
propagation through one or more of the logic elements. Determining when to 
shut the flip-flop off is also based on a discrete time event with reference to 
the clock, or one or more inverter or gate delay units following the transition 
of the clock. This method is illustrated in Fig. 2.17, where one buffer delay 
serves as a time reference for shutting the flip-flop off. Thus, the clock edge is 
created to last during a time interval (window) from Clk to Clkl, during which 
the flip-flop may be transparent. When D = 1 and Clk = 1, Sn+l changes to 0 
and immediately back to 1 as soon as Clkl = 1. At this point any change in 
D has no effect on because any further input transition is blocked. This 
describes the following flip-flop property: S,+l = Clk + Clkl D + ClkIS ,  which 
means that Sn+l = 0 only for the short period of time until Clkl = 1; afterwards 
the state is maintained by the term C l k l s ,  while data can have no effect because 
Clk D = 0. Thus, nontransparency is assured after the clock edge. 

The usual technique for generating the time reference is to create a short pulse 
using the property of reconvergent fan-outs with nonequal parities of inversion. 
This arrangement, which uses the clock signal and three inverters with both paths 
reconverging as inputs of a NAND gate, is shown in Fig. 2.9. The trailing edge 
of this pulse is used as a time reference for shutting off the flip-flop. Depending 
on the particular implementation, a short transparency window can be introduced. 
This transparency window has been a source of confusion in classifying these 
flip-flops. One example is a flip-flop introduced under the name “Hybrid-Latch 
Flip-Flop” (HLFF). The existence of a short transparency window caused its 
inventor to treat it as a latch, but since its behavior was not that of a latch, it 
was given its dual name (Partovi et al. 1996). The HLFF is shown in Fig. 2.18. 

~ - - _  



42 THEORY OF CLOCKED STORAGE ELEMENTS 

Figure 2.17. Method of creating the time reference points for opening and shutting the 
flip-flop. 

....., 

Signal at 
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Figure 2.18. Hybrid-Latch Flip-Flop (HLFF) introduced by Partovi et al. (1996). Copy- 
right 0 1996 IEEE. 
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D =  0 

Figure 2.19. Logic representation of Partovi’s flip-flop (HLFF). 

Detailed analysis shows that the number of transistors has been reduced from 
the original specifications, which resulted in imperfections in the behavior of 
this flip-flop. A logic representation of this flip-flop shows two NAND gates 
connected in series (Fig. 2.19). The first NAND gate creates the pulse if D = 1. 
Here, the data signal serves as a pulse enabler or pulse inhibitor, depending on 
the value of D. 

The problem with this structure is that its second stage is incomplete, which 
serves as a clockless CL. In order to avoid an excessive number of p-MOS 
transistors and obtain latch functionality, the second NAND gate is not fully 
implemented and its output node floats when the output node X (from the first 
NAND) is at logic 1 after the pulse has ended. In essence, this node (X) rep- 
resents the s signal from the pulse generator. The absence of the signal, 
due to the single-ended implementation of this flip-flop, hinders the ability to 
completely realize the flip-flop function. This is not a case of complete SAW 
implementation (Nikolic and Oklobdzija 1999). The floating output node of the 
HLFF is susceptible to glitches and even the slightest mismatch of clock signals 
between the first and second stages. When data input D = 1, the leading edge of 
the clock sets X = 0 (precharged node), but only after some propagation delay 
caused by the time it takes to make X = 0 (set operation). All three inputs of 
the second NAND gate will be at 1 for a short time after the leading edge of 
the clock. This will cause a glitch in the output, a problem that is inherent in the 
HLFF structure. 

Figure 2.20 shows a systematic approach to deriving a single-ended flip-flop. 
The flip-flop shown in Fig. 2.20 has three time reference points: (1) leading edge 
of the Clk signal; (2) trailing edge of the Clk signal after passing through three 
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First Stage 

Clk Second Stage 

(b) 

Figure 2.20. Systematically derived single-ended flip-flop: (Nedovic and Oklobdzija 
2000a) (a) circuit diagram: (b) logic representation. Copyright 0 2000 IEEE. 

inverters, Invl-3; (3) leading edge of the Clk signal after passing through two 
inverters, Znvl-2. The clock signal Clk is designated Clkl after two inversions, 
and CZk I after three inversions. The logic representation of this flip-flop is shown 
in Fig. 2.20b. 

The model for this leading edge triggered flip-flop uses three time reference 
points. Equations (2.2)-(2.4) describe the behavior of this flip-flop. 

Pull-down path is the implementation of 
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The pull-up path is implemented using: 

- 
S = (Clk + Clki)(Clkl + S )  (2.3) 

This enhances performance a little (by reducing the capacitance on node 3) 
without significant degradation in reliability. The second stage (capturing latch) 
is implemented as: 

Q = S(CIk1 +e> (2.4) 

Clock signal Clkl delays capture of the value on until node 3 stabilizes. 
This eliminates the hazard encountered in the HLFF (Partovi et al. 1996) and 
SDFF flip-flops (Klass et al. 1998). In addition, a systematically derived flip-flop 
(Nedovic and Oklobdzija 2000a) exhibits better speed when compared to the 
HLFF and SDFF. 



CHAPTER 3 

TIMING AND ENERGY PARAMETERS 

This chapter deals with the timing and energy parameters of CSEs. We dis- 
cuss the various definitions of timing parameters and provide insight into energy 
consumption in clocked storage elements. 

3.1. TIMING PARAMETERS 

Latches and flip-flops have different timing characteristics in general. However, 
it is possible to establish some common parameters for both. These parameters 
are based on timing relations between data and clock inputs that ensure correct 
circuit operation. We define basic timing parameters using a flip-flop and extend 
the analysis to a latch. 

3.1 .I. Clock-to-Output Delay, fCQ 

The clock-to-output delay is the delay measured from the clock triggering edge 
to the output. It is a function of the arrival of data and clock signals, the slope 
of these signals, the supply voltage, temperature, process parameters, and the 
output load. 

Basic timing diagrams of flip-flops are illustrated in Fig. 3.1. The flip-flop 
samples data, D ,  at the clock triggering edge (leading edge in this example) 
and generates the appropriate output after the propagation delay, tCQ,LH if output 
undergoes a 0- 1 transition or tCQ,HL if output undergoes a 1-0 transition. The 
transitions occur between two consecutive clock edges, provided there is no 
violation of timing constraints between the data and clock inputs. Fundamental 
timing constraints between data and clock inputs are quantified with setup time, 
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Figure 3.1. Basic timing diagrams in flip-flops. 
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Figure 3.2. Setup and hold time behavior as a function of clock-to-output delay. 

U ,  and hold time, H .  Data have to be stable at least setup time before and hold 
time after the active clock edge, as illustrated in Fig. 3.1. 

Having defined basic timing relationships related to the setup and hold times, 
question about the failure mechanism of the clocked storage element remains. If 
we establish an experiment in which we set the data arrival closer to the clock, 
we see that at first the Clk-Q delay of the storage element will start to increase 
before the capturing mechanism fails. Something similar happens at the other 
end when the next data arrival gradually approaches the current clock edge. This 
is not an abrupt process, as the definition of the setup and hold times implies. 
This behavior is shown in Fig. 3.2. Obviously we do not want to allow the data 
to come too close to the failing region for fear that we may have an unreliable 
design. However, keeping the data too far from the failing region takes away 
precious cycle time, which impacts the performance negatively. This creates a 
need for more precise definitions of the setup and hold times. 

3.1.2. Setup Time, U 

Although there are various definitions of the setup time, they all relate to the 
same fundamental mechanism-degradation of Clk-Q delay due to a change in the 
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relative arrival time of data and clock signals, described in the previous section. 
The value of the setup time depends on the distribution of the internal clock 
signal inside a CSE, and can be both positive and negative. MSL typically have 
a positive setup time, while pulsed latches and flip-flops usually have a negative 
setup time, often accompanied by the soft-edge property (Partovi et al. 1996). 

To fully understand the impact of the setup time on the overall system cycle 
time, one needs to consider the setup time in conjunction with the Clk-Q delay. 
The sum of the two is the only true measure of the CSE delay relative to the 
overall cycle time. Therefore, the setup time that is based on minimum an achiev- 
able data-to-output delay is the optimum setup time from the perspective of the 
impact of the CSE delay on cycle time (Stojanovic and Oklobdzija 1999). This 
is illustrated in Fig. 3.3, which shows that when D arrives later relative to Clk, 
D-Q delay initially decreases because D still arrived more than one setup time 
before Clk, which is still early enough so that no significant increase in Clk-Q 
delay can be observed. When D is further delayed, then at one point the increase 
in Clk-Q grows larger than the absolute decrease in the D-Clk delay, so the 
overall D -  Q delay starts increasing, until the capturing mechanism fails. There- 
fore, minimum D - Q  delay exists. Data arrival resulting in the minimum D - Q  
delay would therefore be the optimal setup time, corresponding to a 45" slope 
on the Clk-Q characteristics (Fig. 3.3). Optimally tuning the data arrival close to 
this point is a hard task in general, because the arrival times of D and Clk are 
not easy to control due to variations in logic delay and clock skew. However, if 
the CSEs are spatially close, which is the case in critical paths, these variations 
would be reduced, and the designer would be able to fine-tune the logic and CSE 
delays to achieve almost optimal clock frequency. This approach is applicable 
to custom, high-performance designs, where achieving peak performance is the 
ultimate goal. 

Another method for quantifying the setup time is based solely on the Clk- 
Q delay. It is defined as the D-Clk delay that corresponds to some specified 
increase in the Clk-Q delay, relative to the nominal Clk-Q delay. The nominal 
Clk-Q delay is defined as the Clk-Q delay when D arrives early before the Clk 
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Figure 3.3. Setup time behavior as a function of data-to-output delay. 
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Figure 3.4. D - Q  and Clk-Q delay as a function of D-Clk offset. 

so that there is no degradation in the Clk-Q delay. This method for obtaining 
U is illustrated in Fig. 3.4, where a 5% increase in the Clk-Q delay is used 
(Markovic et al. 2001). The setup time obtained using this approach does not 
necessarily coincide with the min D-Q setup time, which makes it suitable for 
designs where performance is not the primary concern. This is typically the case 
in standard cell-based synthesized systems. 

Neither of these definitions is preferred over the other. Our goal was to present 
both approaches and hint at their applicability. Either of the two definitions 
presented here can be used, depending on the application, available design tools, 
and preference of the designer. Additionally, the designer should always keep 
the worst-case reliability conditions in mind and back off in time in order to 
tolerate process-voltage-temperature variations, and be sure that the CSE will 
operate correctly, because the failure region does not occur until after the setup 
time point. 

3.1.3. Hold Time, H 

While the setup time can be obtained either by using D-Q or the Clk-Q delay, 
there is no such ambiguity in the definition of the hold time. This is simply 
because the D-Q delay does not capture the region of the hold time viola- 
tion, as shown in Fig. 3.4. Instead, the hold time is obtained from the Clk-Q 
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versus D-Clk characteristics. It is typically determined to be the D-CZk offset 
corresponding to some specified increment in Clk-Q delay from its nominal 
value. As an illustration, Fig. 3.4 defines hold time as a 5% increase in the 
CZk-Q delay. In addition, Fig. 3.4 also defines optimal hold time, Hopt, as the 
Clk- Q delay increment corresponding to the optimal setup time, U,,, . 

The hold time is equally important in both high-performance and low-energy 
designs. It relates to early data arrival, where timing violations due to critical 
races can occur. This directly translates into the clock-skew budget. 

The sum of the setup time and hold time defines a minimal data width, the 
time during which data must remain stable. Setup and hold times are different in 
flip-flops and latches. 

Setup and Hold Times in Flip-Flops For purposes, of illustration, setup 
time, U ,  hold time, H ,  sampling window, and clock width, w, for a flip-flop are 
shown in Fig. 3.5. Setup and hold times are therefore related to the triggering 
edge of the clock, in this case, the leading edge. 

Setup and Hold Times in Latches The situation with the latch is different, 
as illustrated in Fig. 3.6. The setup time for the latch starts from the trailing edge 
of the clock signal, because closing the latch is an action that would capture the 
last data present in the latch. In addition, there are two delay times defined tcQ 
(as in the flip-flop) and ~ D Q  because of the two possible scenarios: (1) data being 
present and waiting for the clock to open the latch, and (2) data arriving while 
the latch is open. 

It would be appropriate to observe that the failure mode of the flip-flop does 
not necessarily follow the failure mode of the latch as a result of the violations of 
the setup or hold times. Depending on the flip-flop implementation, violation of 
the setup or hold times can lead to oscillations in the pulse generator stage of the 
flip-flop, as discussed in Chapter 2. As a result, once the oscillation occurs the 
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C 

Figure 3.5. Setup time, hold time, sampling window, and clock width in a flip-flop. 
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Figure 3.7. Illustration of a data path. (Markovic et al. 2001), Copyright 0 2001 IEEE. 

output value, Q ,  cannot be predicted. These oscillations in the flip-flop usually 
occur abruptly. as opposed to the more gradual delay increase encountered with 
the latch. Therefore one needs to be more careful with the flip-flop than with the 
latch-based design. 

Having defined setup and hold times, the next step is to illustrate their signif- 
icance in a true data-path design, as shown in Fig. 3.7. In order to accomplish 
this, we introduce the concept of early and late data arrival. 

3.1.4. Late Data Arrival and Time Borrowing 

From the graph in Fig. 3.3 we see that in spite of Clk-Q delay increasing, we are 
still gaining in terms of D-Q delay, because the time taken from the cycle is 
reduced. In other words, the increase in the storage element delay is still smaller 
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Figure 3.8. Time Borrowing in a pipelined design. 

than the amount of time for which data is delayed, thus allowing more time in 
the cycle for the useful logic operation. Thus, we are encountering some new 
phenomena: time borrowing, cycle stealing, and slack passing. We will use the 
term time borrowing later in the text. In order to understand the full effects 
of delayed data arrival, we have to consider a pipelined design where the data 
captured in the first clock cycle is used as input data in the next clock cycle, as 
shown in Fig. 3.8. 

As can be seen in Fig. 3.8, the data-to-output time window, d2, moves around 
the time axes. The parameter d2 is defined by the latest data arrival and by valid 
CSE output. As the data arrive closer to the clock, the size of the d2 shrinks (up 
to the optimal point). The data in the next cycle will then arrive later compared 
to the case where the data in the previous cycle were ready well ahead of the 
setup time. The amount of time for which the T C R ~  was augmented did not come 
for free. It was simply taken away (stolen or borrowed) from the next cycle T c R ~ .  
As a result of late data arrival in Cycle-1, there is less time available in Cycle-2. 
Thus the boundary between the pipeline stages is somewhat flexible. This feature 
not only helps accommodate a certain amount of imbalance between the critical 
paths in the various pipeline stages, but it helps in absorbing the clock skew 
and jitter. Thus, time borrowing is one of the most important characteristics of 
high-speed digital systems. 

3.1.5. Early Data Arrival and Internal Race Immunity 

The maximum clock skew that a system can tolerate is determined by the clock 
storage elements. To quantify this timing measurement, internal race immunity 
R is introduced. If the Clk-Q delay of storage element A is shorter than the hold 
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time of storage element B in Fig. 3.7, and there is no logic in-between, a race 
condition can occur. In other words, there is a minimum delay restriction on the 
Clk-Q delay given by Eq. (3.1). Internal race immunity, R,  of a clocked storage 
element is given by Eq. (3.2): 

(3.1) 

(3.2) 

Internal race immunity, R ,  of a clocked storage element is the difference 
between its Clk-Q delay and hold time, H .  If it is greater than the maximal clock 
skew, we do not have to worry about minimal delay restrictions. The internal race 
immunity is a helpful measurement that aids in the analysis of timing failures 
due to short paths (races). In addition, it relates to the maximum clock skew a 
CSE can tolerate. 

3.1.6. Minimum Data Pulse Width 

The minimum width of the data pulse is the minimum time during which data 
are required to be stable to ensure correct operation of a clocked storage element. 
It defines the sampling window, and it is approximately equal to the sum of the 
setup and hold times. The minimum data pulse width over a range of supply 
voltages is illustrated in Fig. 3.9. The minimum pulse width widens with scaling 
of the supply voltage, meaning that an extra margin has to be included to achieve 

2.0 

1.5 
B 
7 1.0 
v) 
I 

0.5 

2.5 

Figure 3.9. Impact of supply voltage on the minimum data pulse width. 
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sufficient robustness in the design. In addition, the relative arrival of D and 
CZk shifts with scaling the supply voltage. This is a direct consequence of the 
delay scaling. 

3.2. ENERGY PARAMETERS 

The battery life in portable devices is proportional to their energy consumption. In 
high-performance designs, energy consumption has a large impact on the design 
and may limit performance. It is therefore imperative to design the digital circuits, 
used in consumer products, that consume the minimum amount of energy for a 
given task. In order to accomplish this, designers need to understand energy 
consumption in the various circuits used in the implementation. In analysis of 
energy consumption in the clock subsystem, the designs should look specifically 
at the energy consumed in the clocked storage elements. 

3.2.1. Components of Energy Consumption 

Total energy consumption in a CSE during one clock period is obtained using 

where t is the time point chosen in a way that includes all relevant transitions: 
arrival of new data, clock pulse, and output transition. This energy has four 
components: switching, short circuit, leakage and static energy, which are briefly 
explained in this section: 

E = Eswitching + Eshortcircuit + Eleakage $. Estatic (3.4) 

Switching Energy The switching component of energy is defined as: 

N 

Eswitching C~o-l(i) ' ci . vqwing(i)  . ~ 0 0  (3.5) 
i=l 

where N is the number of nodes in a circuit; Ci is the capacitance of the node 
i ;  WO- 1 ( i )  is the probability that energy-consuming transition occurs at the node 
i ;  Vswing(i) is voltage swing of the node i ;  and VDD is the supply voltage. The 
switching component of energy is the main contributor to the overall energy 
consumption when the switching activity is high. Since the switching component 
contributes to the total energy the most, energy can be best reduced if each of 
the terms in the product expression is minimized. This becomes a simple design 
guideline for energy reduction in digital circuits where the switching component 
is the dominant component. 

Short-circuit Energy The short-circuit component of energy arises from the 
short circuit (crowbar) current. The short-circuit current occurs when both pull-up 
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Figure 3.10. Short-circuit current in an inverter during: (a) pull-up; (b) pull-down 
operation. 

and pull-down paths conduct current at the same time. To illustrate this, let’s 
examine the simple case of a CMOS inverter, where due to the finite rise and 
fall times of the input waveform when Vr, < V,, < VDD - I VQ 1, both the n-MOS 
and p-MOS transistors are on, which causes short-circuit energy consumption. 
During the pull-up operation, as shown in Fig. 3.10a, it is desirable that all pull- 
up current of the p-MOS transistor be delivered to C L ,  in which case the current 
of the n-MOS transistor is short-circuit current. Similarly, for the pull-down 
operation, current of the p-MOS transistor represents the short-circuit current, as 
shown in Fig. 3.10b. 

The short-circuit energy component is typically less than 10% of the total 
energy. However, it becomes much greater when the slope of the input signal is 
large in comparison with the slope of the output signal. The input signal slope 
defines the time interval during which both pull-up and pull-down devices are 
simultaneously on. In a well-designed system, the input and output slopes are 
balanced, with the output slope always being nearly as fast as the input slope, 
thus minimizing short-circuit current. 

Leakage Energy The leakage component of energy comes from two types 
of leakage currents: (1) reverse-bias diode leakage at the transistor drains, and 
(2) subthreshold leakage through the channel of a device that is off. 

The diode leakage occurs when a transistor is off, and the drain-bulk or source- 
bulk diode is reverse-biased so that it conducts current. The leakage current of 
the reverse-biased diode is given by 

(3.6) 

where V is the diode voltage. When the diode is reverse-biased, its current is 
approximately equal to the reverse saturation current. This component is typically 
negligible compared to the subthreshold leakage component. 

The subthreshold leakage component is due to carrier diffusion between the 
source and drain when the channel-to-substrate surface potential @s is given 
by @B < 4s  < 24B, which corresponds to the moderate inversion region, (Wolf 
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1995). The term 4~ represents the Fermi potential. The drain-to-source current 
in the subthreshold region is exponentially proportional to the gate-to-source 
overdrive, VGS - VTH, as given by Eq. (3.7): 

For VDS >> V, = k T / q ,  the last term is approximately equal to 1, and IDS 
is independent of VDS, which typically happens for VDS larger than 0.1 V 
(Chandrakasan 1994). This current is becoming increasingly important with the 
scaling of CMOS technology, because the subthreshold slope increases due to 
the increase in gate-to-drain overlap capacitance (Wolf 1995). 

Energy consumption due to leakage currents is increasing in importance with 
the technology scaling. As an illustration, Fig. 3.11 shows projected off currents 
in four consecutive deep-submicron technology generations (Chandrakasan et al. 
2001). 

Assuming a 50% increase in the total transistor width per technology genera- 
tion, the total leakage current would increase by about 7.5 times, corresponding 
to a 5 x increase in the total leakage power. Furthermore, for constant die size, 
the active power remains constant, indicating that the leakage power will soon 
become a significant portion of the total power consumption in modem micro- 
processors. 

Static Energy The component due to static currents appears in two cases: 
(1) reduced voltage levels driving CMOS circuits, and (2) circuits with DC 
current (e.g., pseudo-n-MOS circuits). Both of these cases rarely occur in 
CSE circuits. 

3.2.2. Energy Breakdown 

Understanding the energy breakdown inside clocked storage elements is the key 
to energy-efficient design. A system-level designer, for instance, may be par- 
ticularly interested to know how much energy is consumed in the clocking of 
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Figure 3.11. Projected off currents. (Chandrakasan et al. 2001), Copyright 0 2001 IEEE. 
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a storage element with the objective of minimizing the energy of the clocking 
subsystem. Additionally, it is important to understand where the energy goes 
inside the storage element to be able to minimize other components of its energy 
consumption. This motivates the idea of finding the energy breakdown between 
(1) internal clocked nodes in storage elements, (2) internal nonclocked nodes in 
storage elements, (3) data and clock input load, and (4) output load. 

Energy per transition measurement, which is introduced later in this section, 
aids in the calculation of energy breakdown in CSEs. Briefly, energy breakdown 
is the total energy consumed by a CSE during one of the four possible input 
data transitions. Table 3.1 summarizes energy breakdown in CSEs based on the 
energy-per-transition. The fields marked with both letters Y and N denote that the 
specific component is optional depending on the circuit structure. For example, 
energy ECxt, which is dissipated in charging the external load, is contained in 
Eo- 1 in noninverting CSEs, and in El -0 in inverting CSEs. 

lnternal Clocking Energy Clocking energy of a storage element is the energy 
consumed in its internal, clocked nodes. The total energy consumed by a CSE 
is consumed only in internal clock nodes when input data do not change. The 
clocking energy is therefore simply evaluated as Eo-0 or El - I .  In general, Eo-0 
and E l  are not equal, depending on the circuit structure. There are two cases to 
consider: (1) storage elements without precharge nodes, and (2) storage elements 
with precharge nodes. 

Storage Elements without PreCharge Nodes Clocking energy in storage 
elements that do not have precharge nodes is equal to the total energy consumed 
by the CSE. This is valid only when input data undergo 0-0 or 1 - 1 transition. 
Examples of this class of CSEs are the conventional MSL circuits (Suzuki et al. 
1973; Gerosa et al. 1994). Provided that there are no precharge nodes, all energy 
is consumed only in the internal clocked nodes. For this reason, the energy 
consumed during 0-0 and 1 - 1 input transitions is the same: 

Storage Elements with Precharge Nodes Storage elements with precharge 
nodes spend extra energy for precharging these nodes. Energy consumed in the 
internal clocked nodes is therefore not necessarily equal to the total CSE energy. 

Table 3.1 
age Elements 

Energy Breakdown in Clocked Stor- 

Eo-0 Eo- 1 El-o El-I 

EC/k YIN Y Y Y/N 
Elm YIN Y Y Y/N 
E,,, N Y/N YIN N 
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The HLFF and SDFF are good examples of this class of circuits (Partovi et al. 
1996; Klass 1998). In both of these designs, Eo-0 and El-1 are different because 
of the precharge energy required during 1-1 input transition. The precharge 
node, however, remains precharged during the 0-0 input transition, in which 
case all energy is consumed in the internal clocked nodes, Eq. (3.9). The differ- 
ence between El-1 and Eo-0 is therefore equal to the energy consumed in the 
precharge node, Eq. (3.10): 

(3.9) 

(3.10) 

In some CSEs with precharge nodes, however, it is not possible to separate 
the clocking energy from the precharge energy. This is the case, for example, in 
SAFFs (Matsui et al. 1994). Because of its differential nature, both 0-0 and 1 - 1 
input transitions require that the internal nodes be precharged, in which case Eo-0 
and El-1 represent the total energy consumed in both the precharge operation 
and in charging the internal clocked nodes. 

Data and Clock lnput Energy Data input energy is simply the energy 
required to charge the capacitance of the data input. As shown in Fig. 3.12, 
this is the energy taken out of supply, V00-0, excluding the energy dissipated in 
driving the parasitic capacitance of the shaded inverter. Similarly, the external 
clock energy dissipated in driving the clock input of the CSE is the energy taken 
out of supply VDo-nk. 

Energy in Internal Nonclocked Nodes To calculate the energy consumed in 
the CSE’s internal, nonclocked nodes, we need to identify the input data transition 
that results in energy consumption in these nodes. In the case of a noninverting 
CSE, this occurs during input transition 1-0. The total energy, E l - 0 ,  is then 
dissipated in charging the internal clocked and nonclocked nodes. To capture the 
average energy dissipated in the internal nodes, we need to consider the other 
transition as well, and subtract the clocking energy and energy dissipated in 
driving the load, C L ,  Eq. (3.11). The energy consumed in charging the internal 

Figure 3.12. CSE test setup. 
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precharged nodes can be either lumped into Eint or separately calculated as in 

(3. I I )  

Energy in Output Load Energy is delivered to the external output load when 
output undergoes the 0-1 transition. This energy can be obtained as the energy 
drawn from the separate supply voltage (not shown in Fig. 3.12) that powers the 
output stage of the CSE. 

3.2.3. Energy per Transition 

A useful energy measurement for system designs is the energy per transition. 
The energy per transition is the total energy consumed in a CSE during one 
clock cycle for a specified input data transition (0-0, 0-1, 1-0, or 1-1) from 
the energy transition diagram; Fig. 3.13. This measurement is extremely cru- 
cial because it yields significant insight about circuit energy without the need 
for complex and intricate mathematical formulas. We can obtain this informa- 
tion empirically by running only one simulation to compute Eo-0, En- I ,  E I  -0, 
and El-1. Subsequently, these four values can be used to calculate the CSE 
energy consumption for any given input data pattern, as in Eq. (3.12), where 
p l - ,  represents the probability of the i - j  input transition: 

By inspecting the node activity in a CSE for different input data transitions, 
the energy per transition can be utilized to obtain the energy breakdown between 
clocked nodes, internal nodes, and the external output load. This is a good basis 
for studying alternative circuit techniques that deal with internal clock gating. The 
energy breakdown information also offers valuable information about the trade- 
offs associated with reduced clocking energy and the energy penalty incurred by 
the clock-gating logic, thus providing a better understanding of the optimization 
goals for the overall design. 

3.2.4. Glitching Energy 

In this section we analyze the energy consumed by dynamic hazards that 
are generated by the unintended transitions propagating from the fan-in gates, 

Po-1Eo-I 
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Figure 3.13. Energy transition diagram. 
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Figure 3.14. Types of glitches in CSEs. 

often called propagating glitches (Hashimoto et al. 1998). Glitches produced by 
nonglitch transitions at the inputs, called generated glitches, are not covered in 
our discussion. 

There are four types of glitches in CSEs, all of which can be represented 
as shown in Fig. 3.14. Average CSE glitching energy is determined by the 
glitching probability and the energy that the CSE consumes during glitching 
as in Eq. (3.13). 

4 

Eavg-glitch = pi ' E ,  (3.13) 
i = l  

In our analysis, we used simplified transition diagrams for regular and glitching 
transitions. More formal methods for calculating energy consumption due to 
regular transitions and glitches using state-transition diagrams can be found in 
(Zyuban and Kogge 1999). 

3.3. INTERFACE WITH CLOCK NETWORK AND COMBINATIONAL 
LOGIC 

The clocked storage element measurements described thus far considered the 
entire CSE, implicitly assuming that the data and clock inputs were supplied by 
drivers with sufficient drive strength. The input clock and data capacitances are 
important interface parameters for the clock network and logic design. The clock 
network designer and logic designer need to be aware of these capacitances in 
order to design circuits that drive storage elements. 

3.3.1. Interface with Clock Network 

The timing specifications of the clock distribution network that affect the clocked 
storage element parameters are clock skew and clock slope. The important energy 
parameter is the total load of the clock distribution network, which is defined by 
the input capacitance of the clock node and the number of storage elements on 
a chip. 

An increase in clock slope results in degradation of the storage element per- 
formance, so the clock network designer has to know what slopes the storage 
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elements can tolerate. This is especially important if flip-flops are used. The 
clock slope also affects the clock distribution network's energy consumption. If 
larger clock drivers with smaller fan-out are used, the clock edges are sharper 
and the storage element performance better, at the expense of an increase in 
energy consumption by the clock network. Optimal trade-off is achieved when 
the least amount of energy is consumed in delivering the desired storage element 
performance. 

As discussed earlier in this chapter, the clocking energy in a clocked storage 
element is the amount of clocking energy expended in clocking the internal nodes 
of the CSE. To evaluate the total clocking energy per clock cycle in the entire 
clock subsystem, one needs to add the energy consumed in the clock distribution 
network. The energy consumed in the clock distribution network depends on the 
total switched capacitance, which is determined by the total number of clocked 
storage elements on a chip and the input capacitance of their clock inputs, the 
total wiring capacitance, and the total switched capacitance of clock drivers, as 
given by Eq. (3.14): 

The first term in Eq. (3.14) is constant for a given selection of storage ele- 
ments. The last two terms depend on the buffer insertion/placement strategy, and 
should be minimized. The shorter the total wire length, the smaller the wiring 
capacitance, Cwire. If the wire lengths from clock drivers to clock sinks are not 
equal, there will be a clock skew. The absolute value of insertion delay from 
the root of the clock tree to the clock sinks is not so important, but it is very 
important that these delays are balanced within the clock-skew specification. This 
imposes a limit on how much extra wiring cost one has to incur in order to keep 
the clock skew within a given margin. In addition, there is an energy-performance 
trade-off between wide wires driving heavy nets and narrow wires with buffer 
repeaters. Therefore, the lower limit on clock distribution energy consumption 
per clock cycle is imposed by Cdistrib-net and by the targeted clock slope at the 
inputs of the storage elements. 

3.3.2. Interface with Combinational Logic 

As in driving the clock input of a storage element, one needs the parameters 
relevant for driving the storage element data input. The skew between the data 
inputs is not relevant as long as the data input signals arrive within setuphold 
time specification. The parameters relevant to the combinational logic designer 
are therefore the CSE input data slope and input data capacitance. The data slope 
affects the performance and energy consumption of both the driving logic and 
the storage elements. Clock and data slopes are generally not equal. 



CHAPTER 4 

PIPELINING AND TIMING ANALYSIS 

4.1. ANALYSIS OF A SYSTEM THAT USES A FLIP-FLOP 

In order to properly analyze the timing parameters associated with the clocked 
storage elements, we need to analyze the timing situation in a pipelined system. 
We should start first with the simplest case of a flip-flop and the single clock 
used in the design. This situation is illustrated in Fig. 4.1. Much of the discussion 
presented here was taken from the paper by Unger and Tan (1986), with some 
minor changes in notation. 

There are two events that we need to prevent: 

1. The data arrive too late to be captured reliably in the next cycle. There are 
two possible scenarios here: either the data arrived far too late and are 
completely missed in the next cycle, or they are just sufficiently late to 
be violating the setup time requirement of the storage element, thus not 
assuring reliable capture. 

2. The data arrive too early (during the same cycle), thus violating the hold 
time requirement for the flip-flip. 

4.1 .l. Late Data Arrival Analysis 

We cannot assure that the data will be properly captured in either of the cases 
discussed in the last section, and therefore we are not able to guarantee reliable 
operation of the system. In order to perform a simple analysis of this system, 
let us assume that the clock skew and jitter together can cause the maximum 
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Combinational 

Figure 4.1. Timing in a digital system using a single clock and flip-flops. 

deviation of the clock’s leading edge for TL amount of time from the nominal 
time of arrival (and TT for the trailing edge). If we set the time reference to 
t = 0 for the leading edge of the clock for the Cycle 1, than we have a following 
relation for the latest data arrival: 

In equations throughout this chapter, D~Q,,, represents the minimal clock-to- 
Q (output) delay of the flip-flop and D L ~  represents minimal delay through 
the logic (as opposed to the use of index M ,  where DCQM and DLM represent 
maximum delays). 

The latest possible arrival of the data in the next cycle, t D L N ,  occurs under the 
following circumstances: (1) data were captured at the latest possible moment 
due to the clock skew and jitter, which is TL; (2) the flip-flip that captured the 
data was the slowest possible (keep in mind that flip-flop delays will vary due 
to the process variations); ( 3 )  these data traveled through the longest path in the 
logic, taking t L  = tCR (critical path): 

The clock’s leading edge in the next cycle arrived at the earliest possible moment, 
P-TL.  However, in order to capture the data reliably, the data should arrive at 
least for the setup time, U ,  before the leading edge of the clock. This leads to 
the following inequality: 

P - TL - U 1 TL + DCQM + ~ C R  (4.3) 

A constraint for the clock period, P (speed of the clock), is derived from this 
equality: 

(4.4) p ? ~ T L  f u 4- DCQM + t c R  
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tCR 5 P - ~ T L  + u + DCQM (4.5) 

This is one of the fundamental equations. Basically, it shows that the time 
available for information processing is equal to the time remaining in the clock 
period after the clock uncertainty is subtracted for both edges and the time data 
spent traveling through the storage element. 

4.1.2. Early Data Arrival Analysis 

A common misconception is that the flip-flop provides edge-to-edge timing and 
is thus easier to use, compared to the latch-based system, because it does not 
need to be checked for fast paths in the logic (hold time violation). This is not 
true, and the simple analysis that follows demonstrates that even with the flip-flop 
design, the fast paths can represent a hazard and invalidate the system operation. 

If the clock controlling the flip-flop releasing the data is skewed so that it arrives 
early, and the clock controlling the flip-flop that receives these data arrives late, 
a hazard situation exists. This same hazard situation is present if the data travel 
through a fast path in the logic. A fast path is the path that contains very few to no 
logic blocks. Referring to Fig. 4.1, this hazard, which is also referred to as critical 
race (or race-through) can be described with the following set of equations: 

Equation (4.6) represents the time of the early arriving signal, tDEArr, which 
should not be earlier than the time described by Eq. (4.7), otherwise there will be 
a hold-time violation of the data-receiving flip-flop. This condition is represented 
by the inequality (4.8): 

Equation (4.8) gives us a limit on the fast paths, that is, no signal in the logic 
should be taking a time shorter than DLB, otherwise, there will be hold-time 
violation in the circuit. 

Furthermore, the clock has to be active for some minimum amount of time (in 
order to assure reliable capture of data): 

(4.10) 
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Equations (4.5), (4.9), and (4.10) provide timing requirements for the reliable 
operation of a system using flip-flops. 

4.2. ANALYSIS OF A SYSTEM THAT USES A SINGLE LATCH 

A system using a single latch is more difficult to analyze than a flip-flop-based 
system. This is because a single latch is transparent while the clock is active and 
the possibility for a race-through exists. However, this analysis is still much sim- 
pler than a general analysis of a system using two latches (MSL-based system), 
shown in Unger and Tan (1986). The use of a single latch represents a hazard 
due to the transparency of the latch, which introduces a possibility of races in the 
system. Therefore, the conditions for the single-latch-based system must account 
for critical race conditions. As the previous analysis shows, the presence of the 
storage element delay decreases the useful time in the pipeline cycle. Therefore, 
in spite of the hazards introduced by this design, the additional performance gain 
may well be worth the risk. This will be discussed in the following chapters. 

Some well-known systems, such as the CRAY-1 supercomputer, use a single 
latch (Cray Research 1984). This decision was made for performance reasons. The 
second-generation Digital Corporation Alpha WD2 I 164 processor uses single- 
latch-based design as well (Benschneider et al. 1995). One difference between 
Alpha and CRAY-1 is the way a single latch has been used in the pipeline. 
Two ways of structuring the pipeline with the single latch are shown in Fig. 4.2. 
Figure 4.2a shows a straightforward way of using a single latch. Here all the 
latches in the system are transparent while the clock is active (logic 1) and all 
the latches are opaque (nontransparent) when the clock is inactive (logic 0). 

We will base the analysis of the single-latch-based design on the well-known 
paper by Unger and Tan (1986). Case ( I )  is easier to analyze, while case 
(2) becomes more complex. Case (2), also known as a split-latch design, will 
be explained by the example at the end of this chapter. 

4.2.1. Late Data Arrival Analysis 

In the case of a latch, the input signal needs to arrive at least a setup time, U ,  
before the trailing edge of the clock (the edge that closes the latch). However, 
this edge could arrive earlier because of the clock skew. Therefore, the latest 
arrival of data that assures reliable capture after period P has to be 

(4.11) 

Data captured at the end of the clock period could be the result of two events 
(whichever is the later): 

1. The data were ready, clock arrived at the latest possible moment, TL,  and 
the worst-case delay of the latch, namely, DCQM, was incurred. 
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Figure 4.2. Two ways of using a latch in a single-latch-based system: (a) Case 1 ,  
(b) Case 2. 

2. The clock was active and the data arrived at the last possible moment, 
which is a setup time, U ,  and clock skew time, TT, before the trailing edge 
of the clock. 

In both cases (1) and (2) the path through the logic was the longest path DLM . 
Thus in the worst scenario (either (case 1) or (case 2 ) )  the data to be captured 

in the next cycle have to arrive in time to be reliably captured in the next 
cycle: 

This gives us a limit for the clock speed in terms of the duration of the period, P :  
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This inequality breaks down into two inequalities, (4.14) and (4. IS): 

I I 

Equation (4.15) shows the minimal bound for Pm, which is the time it takes 
to traverse the loop, which consists of the maximum delay of the data passing 
through the latch and through the longest path in the logic. In other words: 
“Starting” from the leading edge of a clock pulse, there must be time, under 
worst case, before the trailing edge of the clock in the next cycle, for a signal 
to pass through the latch and the logic block in time to meet the setup time 
constraint” (Unger and Tan 1986). 

The value of P = Pm determines the highest frequency of the clock under 
which that particular system can operate reliably. However, this does not come 
without a price. Given that the loop through the logic and the latch is open, 
we have to be sure that any of the “fast paths” that may exist in the logic do 
not arrive sooner than the next period of the clock. This leads to the following 
analysis for fast paths. 

4.2.2. Early Signal Arrival Analysis 

The fastest signal traveling through the fastest path in the logic should arrive at 
least a hold time after the latest possible arrival of the same clock: 

There are two possible scenarios for the early arrival of the fast signal: (1) it 
was latched early and it passed through a fast path in the logic, or (2) it arrived 
early while the latch was transparent and passed through the fast latch and a fast 
path in the logic. This is expressed in Eq. (4.17): 

The earliest arrival of the clock tCEL happens when the leading edge of the clock 
is skewed to arrive early at -TL. Thus, the condition for preventing race in the 
system is expressed as: 

The earliest possible arrival of the clock, plus clock-to-output delay of the latch, 
has to occur earlier than the early arrival of the data (while the latch is transpar- 
ent), plus data-to-output delay of the latch. Thus, Eq. (4.18) becomes: 
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D~rn > D L ~ B  2 W + TT + TL + H - DcQm 

which gives us a lower bound on the permissible signal delay in the logic: 

(4.20) 

Thus the conditions for the reliable operation of a system using a single latch are 
described by Eqs. (4.14), (4.1.9, and (4.20), which are repeated here for clarity: 

Pm = P 2 DLM + DCQM + TL + TT + U - W (4.21) 

P 2 DLM + DDQM 

D L ~  > D L ~ B  ? W + TT + TL + H - D C Q ~  

(4.22) 

(4.23) 

One can see from Eq. (4.21) that an increase in the clock width, W ,  can be bene- 
ficial for speed, but it increases the minimal bound for the fast paths, Eq. (4.23). 
The maximum useful value for W is obtained when the period P is minimum, 
Eq. (4.15). Substituting P from Eq. (4.22) into Eq. (4.21) yields the optimal 
value of W: 

Wop = TL + TT + u + DCQM - DDQM (4.24) 

If we substitute the value of the optimal clock width, Wopr, into Eq. (4.21), then 
we will obtain the values for the maximum speed Eq. (4.25), and the minimum 
signal delay in the logic Eq. (4.26) that have to be maintained in order to satisfy 
the conditions for optimal single-latch system clocking: 

Equation (4.25) tells us that in a single-latch system, it is possible to make the 
clock period, P ,  as small as the sum of the delays in the signal path: latch and 
critical path delay in the logic block. This can be achieved by adjusting the clock 
width, W, and assuring that all the fast paths in the logic are larger in their 
duration than some minimal time, D ~ B .  In practice, the optimal clock width, 
Wop, is very small and can support the use of pulsed-latches. 

It might be worthwhile thinking about the meaning of Eq. (4.25) and (4.26). 
What Eq. (4.26) tells us is that under ideal conditions, if there are no clock skews 
and no process variations, the fastest path through the logic has to be greater than 
the sampling window of the latch ( H  + U )  minus the time the signal spends 
traveling through the latch. If the travel time through the latch, DDQM is equal 
to the sampling window, than we do not have to worry about fast paths. This is 
the case of the race immunity, R > 0. Of course, in practice, we do have to take 
care of both fast and slow paths in the logic. 
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4.3. ANALYSIS OF A SYSTEM WITH A TWO-PHASE CLOCK 
AND TWO LATCHES IN AN M-S ARRANGEMENT 

A particular version of the use of two latches in the M-S configuration is the 
most commonly used technique in digital system design. It is also a robust and 
reliable technique compatible with the design for testability (DFT) methodol- 
ogy. We will start by describing the most general arrangement, consisting of two 
latches clocked by two separate and independent clocks 41 and 42, as shown in 
Fig. 4.3. 

Analysis of a system using a two-phase clock is much more complex compared 
to the system using a single clock, because we are introducing skew on the second 
clock. Therefore the set of parameters includes clock skew on both the leading 
and trailing edges of the first clock 41, T,L and T l ~ ,  and on the second clock 42, 
T ~ L  and T ~ T .  In addition, the overlap, V,  between 41 and 42 is to be taken into 
account as are the corresponding widths of the clock pulses, W1 and W2. 

This analysis tends to be tedious and complex. It is therefore suggested that 
the interested reader give the paper by Unger and Tan (1986) a detailed reading. 
Without going into the details of that analysis, we present only a qualitative 
analysis and final derivations. 

Several conditions can be derived from the latest signal arrival analysis. First, 
we need make sure there is an orderly transfer into latch L2 (slave) from latch 

Combinational 
logic 
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Figure 4.3. System using two-phase clock and two latches in M-S arrangement. 
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L1 (master), even if the signal arrives late (at the last possible moment) in the 
latch L1 (master). This analysis yields the following two conditions: 

These conditions assure the timely arrival of the signal in the latch L2, and thus 
an orderly L1 -L2 transfer (from master to slave). 

The analysis of the latest arrival of the signal into the latch L1 in the next 
cycle (critical path analysis) yields Eq. (4.29), (4.30), and (4.31): 

(4.29) 

Equation (4.29) gives us the highest frequency at which the system can operate. 
In other words, the minimum period of clock P has to be of sufficient duration 
to allow the signal to traverse the loop consisting of latch L l ,  latch L2, and the 
longest path in the logic, DLM: 

w1 ? - p  + DlCQM f D2DQM + u1 + DLM + TIL + TIT 1 (4.30) 

The condition specified in Eq. (4.30) assures the timely arrival of the signal that 
starts on the leading edge of 41, traverses the path through L2, which is the 
longest path in the logic, and arrives to Ll before the trailing edge of 41, in time 
to be captured. 

If the signal, starting from the leading edge of 4 2  (prior to the end of q!q) 
traversing L2 and the longest path in the logic, is to be captured in time in L I ,  

then the condition Eq. (4.31) needs to be satisfied. 

(4.31) 

Equation (4.31) shows that the amount of overlap, V,  between clocks 4,  and 
452 has some positive effect on speed. The overlap, V ,  allows the system to run 
at greater speed. Conversely, if we increase V,  we can tolerate a longer critical 
path, D L M .  Thus, the increase in V is beneficial to the system. However, the 
increase in the clock overlap has its negative effects and its limitations. One of 
the negative consequences is that overlapping clocks introduce the possibility of 
race conditions, thus requiring a fast-path analysis. The analysis of fast paths (or 
critical races) makes the timing analysis much more complex, and CAD tools 
generally do not perform this analysis very well. For that reason one would sac- 
rifice some performance for reliability and ease of design. In a robust design that 
avoids fast paths, nonoverlapping clocks are used. Those nonoverlapping phases 
of the clock are usually generated locally, to avoid the difficulty in distributing 
two phases of the clock throughout the system. One commonly used clocking 
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methodology is to use MSLs ( L I - L ~ )  with the locally generated 4 2  clock. Such 
an arrangement, show in Fig. 4.4, assures reliability, since the $1 and 4 2  clocks 
are not overlapped. Thus, for the vast majority of practical cases it eliminates the 
need for critical race analysis. The apparent flip-flop-like behavior of this config- 
uration has caused the term “flip-flop” to be widely used, although the structure 
is actually an MSL ( L I - L ~ ) .  

High-performance systems are designed with the objective of maximizing 
performance. Therefore, clocks 41 and 4 2  are commonly overlapped, thus leading 
to the critical-race analysis (again, the reader is referred to the Unger and Tan 
paper). The analysis suggests limiting the minimum signal delay in logic D L ~ B  
in order to prevent the critical race: 

Clk, ’ 

Equation (4.32) tells us that any amount of time we have added to the upper 
bound of the critical path, giving us more time in the logic, will have to be 
added to the minimal bound for the short paths, which increases the limit on 
the short path. This may force us to add some padding to the short paths (insert 
inverters in order to increase the delay) in order to meet the constraint (4.32). 

It is interesting to know the maximal amount of overlap, V,  that can be used. 
This is obtained by solving the timing equations Eqs. (4.29) and (4.31) (Unger 
and Tan 1986), leading to Eq. (4.33): 

t ,  I Critical path 
I 4 tz 

In summary, when using a two-phase clock with MSLs ( L I - L ~ ) ,  a conserva- 
tive design would eliminate the need for analysis of the fast paths (critical race 
condition). This design is arrived at by using nonoverlapping clocks 41 and 42. 
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However, this reliability is achieved at the expense of performance. When max- 
imum performance is the objective, it is possible to adjust the clock overlap, V ,  
by phasing clocks 41 and 4 2  so that the system runs at the maximum frequency. 
Maximum clock frequency is reached when Pfin is equal to the sum of the delays 
incurred when traversing the path consisting of the maximum logic delay and 
delays in latches L1 and L2. 

Example: Analysis of the First-Generation Alpha Processor (WD21064) 
An appropriate example of the optimal clock parameters of a system using a 
single latch is the first-generation Alpha processor, Fig. 4.5a and 4.5b. 

A description of the system is presented in the paper by Dobberpuhl et al. 
(1992). We will use notation adopted from Unger and Tan (1986) and assume 
the following system parameters for the sake of an example: 

Clock skew: T, = TT = 20 ps, for both edges of the clock. 
Latch L1 parameters are clock-to-Q delay DCQM = 50 ps; DCQ, = 30 ps; 

D-to-Q delay DDQM = 60 ps; setup time U = 20 ps; hold time H = 30 ps. 
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Figure 4.5. (a) Timing arrangement used in the first-generation Alpha processor. 
(b) Latches used in the first-generation Alpha processor. (Dobberpuhl et at. 1992), 
Copyright 0 1992 IEEE. 
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Latch L2 parameters are: DCQM = 60 ps; D C Q ~  = 40 ps; DDQM = 70 ps; 
U = 30 PS; H = 40 PS. 

The structures of the Ll and Lz latches used in the second generation of the 
Alpha processor are shown in Fig. 4.5b. 

The critical paths in logic Sections I and 2 are D L ~ M  = 200 ps and D L ~ M  = 
170 ps. 

For the given clock setup, V = 0 and, clearly, P = W1 + Wz. 

With the nominal time, t = 0, set at the leading edge of the clock, we obtain 
the latest allowed data arrival times into latches L1 and L2, respectively: 

(4.34) 

(4.35) 

The latest arrival time of the data into latch L2 is limited by the time at which 
latch L releases the data into the logic stage Logic I : 

Combining Eq. (4.34), Eq. (4.35), and Eq. (4.36), we obtain 

W1 - TT - UI + D I D Q M  + D L I M  i P - TL - U2 

TL + D I C Q M  + D L I M  5 P - TL - U2 

(4.37a) 

(4.37b) 

Rearranging Eqs. (4.37a) and (4.37b), we obtain a set of bounds for W2 and P :  

Because of the symmetry of the clocking scheme, moving the reference point 
from the clock's leading edge to its trailing edge will give us the same equations 
with indexes interchanged. To check this, start from the equation analogous to 
Eq. (4.36): 

Combining Eq. (4.34) and Eq. (4.39) and rearranging, we obtain a set of bounds 
for W 1  and P :  
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Combining Eq. (4.38a) and Eq. (4.40a) we obtain a third and often the most 
critical bound for the clock period: 

p = wi + w2 2 DIDQM + D L I M  + &DQM + DLZM (4.41) 

Substituting the values into Eqs. (4.38), (4.40), and (4.41), we obtain: 

W2 2 270 PS 

P 2 320 ps 

W1 >_ 230 PS 

P 2 270 ps 

and the most critical bound for P ,  

P = W1 + W2 2 500 PS 

Thus the minimum clock period is P,i, = 500 ps, and the maximum frequency 
at which this system can run is fmax = 2 GHz. 

4.4. ANALYSIS OF A SYSTEM WITH A SINGLE-PHASE CLOCK 
AND DUAL-EDGE-TRIGGERED STORAGE ELEMENTS 

A dual-edge-triggered storage element (DETSE) is so named because it captures 
its data at both clock edges. The timing parameters of this storage element are 
defined for both clock edges, and have the same meaning as those for the single- 
edge-triggered storage element. 

Since DETSE is an edge-sensitive storage element, the analysis of dual- 
edge triggered system with a single-phase clock is similar to that described in 
Section 4.1. A diagram of a system using DETSE is shown in Fig. 4.6. The 
single-phase clock is specified by its period, P ;  duty cycle (clock pulse width rel- 
ative to period), w; clock pulse width, W, which is equal to w* P ;  and maximum 
clock uncertainty for leading and trailing clock edges, TL and TT,  respectively. 
For each storage element, DCQM,L, D c Q ~ , L ,  U L ,  H L ,  DCQM,T, D c Q ~ , T ,  U T ,  and 
H T ,  designate maximum and minimum clock-to-output delay, setup time, and 
hold time, where indices L and T stand for leading and trailing edge of the clock, 
respectively. Nonclocked logic blocks between storage elements have maximum 
and minimum delays, DLM and DL,, respectively. Note that when CSE 1 releases 
data at the leading edge of the clock, CSE2 captures it at the trailing edge, and 
vice versa. Therefore there are two scenarios for each of the two clock edges 
that have to be prevented. 

1. Data reaches the destination storage element too late to be captured. This 
scenario is prevented if the data are scheduled to arrive at the destina- 
tion storage element at the latest at a setup time prior to the capturing 
clock edge. 
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Figure 4.6. Digital system using a single-phase clock and dual-edge triggered 
storage elements. 

2. Data reaches the destination storage element early enough to corrupt the 
safe capture with the same edge that released the data. This scenario is 
prevented by ensuring that data arrives to the destination storage element 
a hold time after the clock edge. 

The setup and hold time requirements for the two clock edges provide 
four basic conditions that assure safe operation in dual-edge clocking 
systems (Nedovic and Oklobdzija 2001). We will examine each of these 
conditions closely. 

4.4.1. Late Data Arrival 

First, data from source CSE at the leading edge of the clock must arrive to 
destination CSE early enough to be safely captured by the trailing edge of the 
clock. This requirement must be met even with the worst storage element and 
logic delay, and clock uncertainty. Safe capture of the data occurs only if the 
data arrive at the input of the destination CSE at the latest setup time before the 
trailing edge of the clock. From Fig. 4.6, we see that the arrival of the trailing 
edge of the clock is delayed from the releasing clock edge for as long as the 
clock is at its high level: 

T L  + DCQM,L + DLM + TT + UT 5 wp  (4.42) 

Similarly, if the data are released at the falling edge and captured at the rising 
edge of the clock, a similar relation holds: 
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~ 

P 2 Pm = max 
TL + DCQM,L + DLM + UT + TT TT + DCQM,T + DLM + UL + TL 

W 1 - w  

Equations (4.42) and (4.43) determine the minimum clock period for the given 
duty cycle: 

It is not always possible to control clock duty cycle. Therefore an important 
special case for all practical purposes is the symmetric clock (w = 0.5). Use of 
the symmetric clock simplifies clock generation and reduces clock uncertainties. 
In the case where w = 0.5, Eqs. (4.44) and (4.45) become: 

In the general case, an optimum point can be found by using clock duty cycle 
w,  which minimizes P and satisfies both Eq. (4.42) and Eq. (4.43): 

The corresponding minimum achievable clock period is: 

Again, if the clock period, P ,  is specified and the goal is to find maximum logic 
delay, Eqs. (4.48) and (4.49) become Eqs. (4.50) and (4.51): 

DCQM,L - DCQM,T + UT - U L  
P 

W,pt = - 2 

The corresponding maximum logic delay is: 

(4.50) 
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This analysis shows that in the general case the clock needs to be asymmetric 
(w f 0.5) for optimum operation. The measure of this asymmetry is the differ- 
ence in the costs of DETSE in two half-periods of the clock, Eqs. (4.48) and 
(4.50). Since the optimum duty cycle does not depend on the logic delay, it is 
the same for all the paths in the system. 

Equations (4.48) and (4.50) also indicate how to achieve optimum operation 
with the arbitrary clock duty cycle. As mentioned earlier, we are mainly interested 
in the symmetric clock (w = 0.5). From Eq. (4.48), the condition for wofll = 0.5 
leads to: 

DCQM.L + UT = DCQM,T + U L  (4.52) 

Thus, a requirement for a good design of DETSE with symmetric clock is to 
closely comply with Eq. (4.52). In order to obtain most performance out of 
DETSE, it is necessary to minimize both sides of Eq. (4.52), as both present the 
timing overhead of the storage element. 

4.4.2. Early Data Arrival 

In addition to the preceding, it must be certain that the data arrive at the destina- 
tion CSE late enough to prevent its hold-time violation. Correct operation must 
be set even for the earliest allowed arrival of the releasing clock edge, which is 
minimum clock-to-output and logic delay, and the latest arrival of the capturing 
clock edge. Since releasing and capturing clock edges occur simultaneously, this 
failure mechanism is the same as with the single-edge-triggered storage elements 
described in Section 4.1. For the leading edge of the clock: 

Similarly, for the following relation has to be satisfied for the trailing edge of 
the clock: 

(4.54) -TT + D C Q ~ , T  + D L ~  3 TT + HT 

Equations (4.53) and (4.54) determine the minimum logic delay in the stage to 
avoid a hold-time violation: 

Thus, for a given clock period and duty cycle, Eqs. (4.45) and (4.55) provide a 
set of requirements for reliable operation. 

Example The following example illustrates the use of the dual-edge clocking 
strategy in a pipelined system and shows how to maximize performance. For 
the two-stage dual-edge-triggered system shown in Fig. 4.7, the timing param- 
eters of the storage elements used are clock-to-output delay DCQM,L  = 150 ps, 

HL = 100 ps, HT = 40 ps. The clock uncertainty is T, = 20 ps for the leading 
D ~ Q , ~ . L  = 80 PS, DCQM.T = 200 PS, D c g n z , ~  = 150 PS, U L  = 50 PS, UT = 0, 
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Figure 4.7. Two-stage dual-edge-triggered system. 

edge of the clock, and TT = 40 ps for trailing edge of the clock. The delays of 
the critical paths in the two logic blocks are D L M ~  = 900 ps and D L M ~  = 950 ps, 
respectively. The goal is to find the minimum logic delays and minimum clock 
period that still allow safe operation, both for duty cycle w = 50% and for the 
optimum duty cycle. 

In order to meet the hold-time requirement for storage element CSE,, 
Eq. (4.55) must be satisfied: 

If the duty cycle is 50%, the minimum clock period that allows safe operation 
must satisfy Eq. (4.46). For Stage 1 :  

P 2 2(max(150 + 0,200 + 50) + 900 + 20 + 40) 

= max(2220,2420) = 2420 ps (4.57) 
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For Stage 2: 

P 2 2(max(150 + 0,200 + 50) + 950 + 20 + 40) 

= max(2320,2520) = 2520 ps (4.58) 

The minimum clock period is imposed by the setup-time requirement for the 
leading edge of the clock at CSEl . With this clock period, the latest data arrival 
with respect to the trailing edge of the clock is still 100 ps prior to setup time. 
Thus, CSEl is not optimal to use with the symmetric clock, since a lag of 100 ps 
exists that is used by neither the logic nor the storage element. One way to use 
this lag and further reduce the clock period is to reduce the duration of the high 
level of the clock and to keep the duration of the low level of the clock the same. 
According to Eqs. (4.48) and (4.49), the optimum duty cycle and minimum clock 
period achieved in this way are 

150 + 0 + 950 + 20 + 40 
U’O/?t = ~ 

150 + 200 + 50 + O  + 2 . 9 5 0 +  2 . 2 0 +  2 . 4 0  

1160 

2420 
= 47.9% -- - (4.59) 

P,,, = 150 + 200 + 50 + 0 + 2 .950 + 2 ‘ 2 0  + 2 . 4 0  = 2420 PS (4.60) 

Thus, tuning the duty cycle is a way of neutralizing the imbalance in the 
storage element timing parameters for the leading and trailing edge of the clock. 
Figure 4.8 shows the achievable clock periods versus duty cycle for the example 
from Fig. 4.7. If the duty cycle and the clock period are in the allowed region, 
the setup-time requirement for both clock edges is met. For the low duty cycle, 
the clock period must be increased in order to meet the setup requirement for 
the trailing edge of the clock. Similarly, if the duty cycle is higher than optimal, 

U 

1.7 i 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Clock Duty Cycle w 

Figure 4.8. Allowed clock period as a function of the clock duty cycle in the 
dual-edge-triggered system of Fig. 4.7. 
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the clock period must be increased so that the setup requirement for the leading 
edge of the clock is met. 

Another, more practical way to increase the allowable time in the logic is to 
keep the clock symmetric and redesign the storage elements so that Eq. (4.52) is 
satisfied. This can be achieved by transistor resizing or changes in the topology 
of the DETSE. In this example, if it is possible to reduce DCQM,T to 150 ps at 
the expense of increasing DCQM,L to 200 ps, the optimum duty cycle would be: 

= 0.5 (4.61) 
200 + 0 + 950 + 20 + 40 

200 + 150+ 50+0 + 2.950 + 2 . 2 0  + 2 . 4 0  Wopt = 

The minimum achievable clock period is the same as that achieved by tuning of 
the duty cycle: 

200 + 0 + 950 + 20 + 40 150 + 50 + 950 + 20 + 40 = 2420 ps 

(4.62) 
Thus, both tuning the duty cycle and optimal design of the storage elements 
allow the clock period to be minimized. In this example, the system can run at 
the maximum frequency of f = 413 MHz. 

( 0.5 0.5 1 P > max 



CHAPTER 5 

HIGH-PERFORMANCE SYSTEM ISSUES 

Clocking in high-performance digital systems is most seriously affected by dock 
skew and clock jitter. In the past, clock skew was the dominant factor. Recently, 
however, clock jitter has started gaining dominance over clock skew. Here we 
will treat both of them as dock uncertainties. With the recent trend in frequency 
scaling, the number of logic gates per stage decreases and the pipeline becomes 
deeper, so that the portion of the clock cycle budgeted for clock uncertainty 
increases. In addition, production and distribution of the high-frequency clock 
to the increasing number of storage elements becomes progressively difficult 
due to various issues, such as load mismatch, power supply and substrate noise, 
and temperature variations. As a result, clock uncertainties occupy an increasing 
portion of the cycle time. The ability to reduce the impact of these uncertainties 
is one of the most important properties of the high-performance system. 

The second important issue in high-performance digital systems is variation 
of the signal delays and the ability to absorb the delay of a signal that stretches 
beyond the time allotted to it by the pipeline stage. The ability of the pipeline to 
be flexible, thus allowing the extra delay to be absorbed by subsequent pipeline 
stages, without disrupting the correct operation is essential. 

5.1. ABSORBING CLOCK UNCERTAINTIES 

The clock uncertainties were of little consequence in the 1970s and 1980s, but 
in modern designs they are a limitation to further performance scaling (Heald 
et al. 2000a; Hofstee et al. 2000; Harris and Horowitz 1997). As an illustration, 
the time budget allotted to clock uncertainties is typically on the order of one to 
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two F04 inverter delays in modern microprocessors. This usually accounts for 
more than 10% of the entire clock cycle. 

It is common practice in the VLSI circuit design to consider the clock uncer- 
tainties as an inevitable timing cost. In this approach, the only way to reduce 
the impact of the clock uncertainties is to either reduce the clock speed or to 
reduce the uncertainties themselves. There are several methods that can be used 
to minimize the jitter or skew components of clock uncertainties. Typically, jitter 
is minimized using better clock generators, or by reducing the noise in the power 
supply of the clock buffers, while skew is reduced with careful clock distribu- 
tion or active deskewing. Alternatively, the impact of clock skew is minimized 
when all the critical paths are placed in the same clock domain. However, these 
techniques become increasingly difficult because of poor scaling of the clock 
uncertainty. 

The useful time available for computation within each clock cycle is nominally 
reduced by the CSE overhead. This overhead changes as a function of clock 
uncertainty. The change is smaller than the clock uncertainty itself. This decrease 
in uncertainty defines an important property named clock uncertainty absorption. 

A recent flip-flop design, controlled by a narrow, locally generated clock pulse, 
with negative setup time, exhibits some degree of clock uncertainty absorption 
(Partovi et al. 1996). This is shown by the relationship between the clock Clk and 
the output Q, in the presence of clock jitter, as illustrated in Fig. 5.1. The variation 
in the arrival time of the clock is somewhat absorbed by the flip-flop, resulting 
in a smaller variation in the time at which the output changes. This behavior can 
be explained as follows. If the capturing pulse is sufficiently wide, the flip-flop is 
briefly transparent to the data signal, resembling latch behavior, and its timing is 
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Figure 5.1. Output of a flip-flop in the presence of clock jitter. (Partovi et al. 1996.), 
Copyright 0 1996 IEEE. 
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less sensitive to the clock arrival. This short transparency period is also known 
as the soft clock edge. With the increased importance of clock uncertainties, the 
practical use of the clocked storage element in high-performance systems will 
depend, to a large extent, on its ability to absorb them. 

Typically, clock uncertainty absorption can be achieved with a level-sensitive 
clocking strategy. By definition, an edge-sensitive clocking strategy is based on 
CSEs triggered with a fixed ("hard") clock edge, and is not suitable for clock 
uncertainty absorption. However, an edge-sensitive clocking strategy using flip- 
flops with a soft clock-edge property allows a certain level of clock uncertainty 
absorption. In the rest of this section we discuss the clock-uncertainty absorption 
of the soft clock-edge flip-flops. The clock absorbing properties of level-sensitive 
clocking using transparent latches is addressed in Section 5.3. 

5.1 .l. Clock-Uncertainty Absorption Using Soft Clock Edge 

The clock uncertainties are manifested as a variation in the arrival time of the 
clock edge. Typically, clock uncertainties are illustrated by using a time window 
that captures the occurrence of the clock edge. A clocked storage element absorbs 
uncertainties when the time of the output transition is not significantly affected 
by the variations in the arrival of the triggering edge of the clock. 

To understand the effect of clock uncertainties, one should analyze the delay 
characteristic of the clocked storage element defined in Chapter 3. This char- 
acteristic represents data-to-output delay as a function of clock arrival time for 
a fixed data arrival time, as shown in Fig. 5.2. By observing how the output 
changes when the clock uncertainties are present, we are able to see how the 
uncertainties affect the delay of the storage element. 

Figure 5.2. Data-to-output characteristics in the presence of clock uncertainty. 
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Figure 5.2 shows data-to-output delay versus clock arrival time when the data 
arrival time is constant. When no clock uncertainties are present, the clock is 
scheduled to arrive so that D - Q  delay (toem) is smallest, in order to minimize 
the cost introduced by the clocked storage element. 

Any variation in the clock arrival time increases the D- Q delay. Given some 
maximum allowed D-  Q delay (DDQM) ,  we can use the delay characteristic of the 
CSE to find the corresponding clock uncertainty window, as shown in Fig. 5.2. 
The points at which DDQM intersects with the delay characteristic determine the 
earliest and latest clock arrival times that are allowed. The ratio of the maximum 
variation of D-  Q delay ( DDQM - Doem) and width of the allowed clock uncer- 
tainty window tCu illustrates the clock absorption property of the CSE. Since 
clock uncertainties are typically symmetric, we can also find the new optimum 
clock arrival time as the mean of the earliest and latest allowed clock arrival 
times. Using this methodology, the clock uncertainties are incorporated in the 
delay of the CSE. The D - Q  delay can be expressed as DDQ = D ~ ~ ( t c u ) ,  and 
clock-to-output delay as DCQ = D c ~ ( t c u ) ,  where t ~ u  is the clock uncertainty. 

The key role of a CSE is to minimize the propagation of clock uncertainty 
to the CSE output. This can be characterized by the marginal increase in the 
D-Q delay with respect to the amount of clock uncertainty. For data arriv- 
ing at the nominal time, we find the worst-case D - Q  delay when the clock 
is allowed to arrive anywhere in the uncertainty window. This is illustrated in 
Fig. 5.3 where the worst-case delay is the maximum of the D - Q  delays over 
all clock arrivals. As in Fig. 5.2, the earliest and latest clock arrivals within the 
clock uncertainty window cause the latest change in the output Q of the CSE, as 
shown in Fig. 5.3. The maximum D - Q  delay, DDQM, is defined at some optimal 
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Figure 5.3. Dependence of data-to-output delay on clock arrival. 
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data arrival with respect to the nominal clock. This optimal data arrival, or opti- 
mal setup time, Uopt,  is the data-to-nominal-clock delay that yields the smallest 
worst-case D- Q delay over all clock arrivals in the uncertainty window, that is, 
minimizes Eq. (5.1) (Saint-Laurent et al. 2002): 

Consequently, 

Note that the setup time and minimum D-Q delay, D D Q ~ , ,  as defined in Sec- 
tion 3.1.2, are special cases of Eqs. (5.1) and (5.2) when tCU = 0. The increase 
in D- Q delay due to the presence of the clock uncertainties is generally smaller 
than the amount of the uncertainty itself (Figs. 5.2 and 5.3). We express clock- 
uncertainty absorption, acu, of a storage element as the portion of the total clock 
uncertainty not reflected at the output: 

The relationship between DDQM and D D Q ~  , and thus a c u ,  is determined by 
tCU and the D -  Q characteristic, DDQ ( DD-CLK). As shown in Fig. 5.4, both clock 
uncertainty absorption and optimal setup time are largely dependent on the clock 
uncertainty. For small values of the clock uncertainty, it is possible to set the data 
arrival so that D-Q delay does not change significantly regardless of the clock 
arrival. Equivalently, clock uncertainty absorption is high and optimal setup time 
is small, as illustrated in Fig. 5.4a. As the clock uncertainty increases, the D-Q 
delay increases slowly, as long as the clock arrives within the relatively flat region 
around DDQ,, as shown in Fig. 5.2. As the clock arrives outside this region, DDQ 
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Figure 5.4. Total delay versus clock uncertainty. 
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increases more rapidly. Eventually, the clock arrivals enter the region where the 
delay characteristic has a slope of unity, that is, where the clock-to-output delay 
is constant. In this region, any uncertainty of the clock arrival directly propagates 
to the output Q .  As a result, clock-uncertainty absorption, acu, decreases and 
the optimal setup time increases, as shown in Fig. 5.4b. The clock-uncertainty 
absorption is the most effective in the case where the clock arrivals can be 
contained in the window where the D-Q characteristic is relatively flat. 

5.1.2. Timing Analysis with Clock-Uncertainty Absorption 

Late Data Arrival Clocked storage elements that have the clock-uncertainty 
absorption property need to have a transparency window of a certain width. In 
level sensitive systems, this window is slightly smaller than half the clock period, 
while in edge-triggered systems with the soft-edge property, the transparency 
window is much shorter. Timing analysis of any system with a transparency 
window has to include data arrivals from multiple pipeline stages. Detailed timing 
analysis of a level sensitive system will be given in Sections 5.2 and 5.3. 

In order to illustrate the impact of the clock-uncertainty absorption to the cycle 
time, we consider a simple case where equal clock uncertainty, tcu,  applies to 
identical flip-flops in all pipeline stages. Because the flip-flops have a soft-edge 
property, the timing analysis can be performed in a similar way to the single 
latch-based system in Chapter 4. Using the result of that analysis, Eq. (4.13, the 
following holds: 

(5.4) DDQM + DLM < P 

The maximum D-Q delay, DDQM, is determined by Eq. (5.3) in terms of the 
effect of the clock uncertainty, tcU. Expressing DDQM from Eq. (5.3) yields 

where D p ~ ( t c u )  is D - Q  delay when the clock uncertainty, tcu, exists, and 
D D Q ~ ~  is the minimum D -  Q delay when there is no clock uncertainty. Assuming 
that the worst-case logic delay, D L M ,  is the same in every stage, combining 
Eq. (5.4) and Eq. ( 5 . 3 ,  we obtain the requirement for the minimum clock period 
in a system that uses flip-flops with soft clock edge: 

By comparing Eq. (5.6) to the case without the uncertainties, it can be seen that 
the only difference is in the factor (1  - a c u ) t c ~ .  Therefore, the total impact 
of the clock uncertainty on the clock cycle time is (1 - acu)tcu. In order to 
reduce the overall timing cost of the storage element, it is desirable to minimize 
D u a ( t ~ u ) ,  that is, maximize acU, for a given clock uncertainty. 

Early Data Arrival At this point it is worth mentioning that any problem 
with a long path delay can be fixed by reducing the clock frequency. Unlike the 
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case of late data arrival, if the data arrives too early to be captured safely, 
the clocked system fails to operate correctly at any frequency. This is why 
assuring that the data arrives late enough to secure correct operation (meet- 
ing the fast path requirement) is one of the most critical issues in the design of 
any synchronous system. As expected, clock uncertainties make this task even 
harder. 

When the clock uncertainties are present, the clock may arrive early at the 
source storage element of the pipeline stage and late at destination storage element 
(Fig. 5.5). Consequently, the data released from the source stage can arrive at the 
destination stage early enough to corrupt the previously captured data, creating 
a hold-time violation. The net effect of clock uncertainty is that the minimum 
delay of the fast paths in the logic has to be increased even further. 

The impact of the clock uncertainty on early data arrival is illustrated on 
the example of the pipeline stage shown in Fig. 5.5. Clocks Clks and Clkc are 
generated from the common clock ClkA. The timing of the early-arriving data is 
associated with the same clock edge at both the source and destination storage 
element. Actual clock uncertainty that affects the path is the delay between the 
early arrival of Clks and late arrival of Clkc. Consequently, any clock uncertainty 
of ClkA affects both Clks and Clkc in the same way, and thus has no influence 
on the fast path. 

In order to avoid the hold-time violation, the sum of the minimum clock-to- 
output delay of the source storage element and logic delay must be greater than 
the hold time, under the most pessimistic assumption on clock uncertainty: 

\ 

Figure 5.5. Critical race in the presence of clock uncertainty. 
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where Deem and DL,,, are minimum clock-to-output delay and minimal logic 
delay, respectively, H is the hold time of the destination storage element, and 
~ C U  is the clock uncertainty between the clocks at the source and destination 
storage elements. 

Components of the clock uncertainty that affect the fast paths are clock skew 
and clock distribution jitter generated within the clock domain that contains both 
of the path storage elements. We refer to this component of the clock uncertainty 
as local clock skew and local clock distribution jitter. Assuming the clock at 
both the source and destination storage elements are supplied by the same clock 
generator, clock generator jitter does not affect fast paths. Therefore, placing 
the source and destination storage elements on the path within the same clock 
domain is beneficial both in terms of minimizing skew impact on the slow-path 
requirement and skew and jitter impact on the fast-path requirement. In practice, 
it is hard to characterize local clock distribution jitter for all fast paths, so total 
jitter of the clock generator and clock distribution system, or clock distribution 
jitter only, can be used instead. 

5.1.3. Clock-Uncertainty Absorbing Considerations 

In order to achieve high clock-uncertainty absorption, the D -  Q delay character- 
istic of the storage element should be as constant as possible Wut) in the clock 
uncertainty window, as shown in Fig. 5.6. The nominal clock and data arrival 
times are 0 ps and -30 ps, respectively. If the clock triggering edge arrives 
-30 ps and 30 ps within the nominal clock arrival time, the output, Q ,  will not 
be affected. The output, Q, will still be generated 238 ps after the nominal data 
arrival (268 ps after nominal clock). In such a case, the output is not affected by 
the clock uncertainties. 

The question is: How does one design a storage element with a flat data- 
to-output delay characteristic? This can be achieved by expansion of the time 
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window during which the storage element is transparent (transparency window). 
Widening the transparency window is equivalent to increasing the separation 
between the two reference events in time: one that opens and other one that closes 
the CSE. In effect, the storage element behaves like a transparent latch for a short 
amount of time after the active clock edge. The wider the transparency window, 
the wider the flat region of the D-  Q characteristic, as described in Section 2.2.1. 
Widening the transparency window can be done by intentionally creating a wider 
capturing pulse of the flip-flops and pulsed latches, or overlapping the master and 
slave clocks of the MSLs. 

A consequence of increasing the transparency window is that the failure region 
of the D-Q characteristic is moved away from the nominal clock edge. This 
results in a decrease in setup time (larger negative values) and an increase in hold 
time of the storage element. While decreasing the setup time has no significant 
effect to the system timing as long as the D-Q delay is constant, a long hold 
time makes the fast-path requirement harder to meet (Eq. (5.7)). Thus, the design 
for clock-uncertainty absorption is often traded for a longer hold time. In many 
cases, however, these two requirements are not contradictory, since a different 
type of storage element is used in the fast and slow paths. 

5.2. TIME BORROWING 

In a pipeline with level-sensitive clocking, the data input to the latch nominally 
arrives when the latch is transparent. A beneficial property of such a system 
is that a stage can use more time than nominal to produce its outputs, as long 
as this is compensated for by the subsequent (faster) stages. The technique of 
exploiting this property is called time borrowing (cycle stealing, slack passing) 
(Partovi et al. 1996; Harris and Horowitz 1997; Harris et al. 1996; Lin et al. 
1992; Sakallah et al. 1992). A benefit of this technique is that the maximum 
clock frequency is obtained as an average of all stage delays, rather than the 
maximum delay of the largest stage delay, as with a pipeline with an edge- 
sensitive clocking. This level-sensitive clocking property avoids the increase in 
the cycle time caused by unbalanced logic delays between the pipeline stages. In 
this book, the type of time borrowing where the time borrowed is determined by 
the logic delays in the pipeline stage is called dynamic time borrowing. 

The essential condition for logic in one pipeline stage to borrow time from 
another pipeline stage is that there are no "hard" boundaries between stages, 
that is, the storage elements are transparent at the time when data arrive. This 
transparency occurs in two clocking styles, level-sensitive and soft-edge clocking. 
Dynamic time borrowing is first discussed in Section 5.2.1 in the example of 
level-sensitive system using transparent latches. Then, in Section 5.3, we address 
the potential of using soft clock-edge flip-flops for dynamic time borrowing. 

Another type of time borrowing is when the clock is intentionally delayed by 
inserting delay between the clock inputs of the clocked storage elements. The 
clock delays are scheduled so that the critical paths obtain more time to evaluate 
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(the destination storage element captures data later), which takes time away from 
the faster paths. This technique is called opportunistic skew scheduling, and it 
is described in Section 5.2.2. Opportunistic skew scheduling statically assigns 
the maximum evaluation time to a stage by allowing for fixed additional time 
between the releasing and receiving clock. In this book we classify opportunistic 
skew scheduling as static time borrowing. 

5.2.1. Dynamic Time Borrowing 

A pipeline using two-phase level-sensitive latches is shown in Fig. 5.7a. Stages 
la  and 2b are the logic blocks positioned between latches Ll-Ls.  The latches 
are clocked by nonoverlapping clock phases and @ 2 .  Timing diagrams for 
two stages of the pipeline are shown in Fig. 5.7b. Labels dl and d2 represent the 
data flowing through the pipeline. Each logic stage alters the data according to 
pipeline functionality, and the labels only intend to show the signal propagation, 

L I + stage 1 a < P/2 - 

Total borrowed 
time at node f 

Figure 5.7. Timing of two-phase level-sensitive pipeline with time borrowing. 
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not the actual values. We assume that the latches are transparent on the “high” 
level of the controlling clock phase. 

The borrowed time of a stage is the time difference between the actual and 
nominal stage delay. The total (or accumulated) borrowed time at any latch input 
is the time difference between the actual and nominal arrival of the latch input. 
We assume that the data nominally arrive at the input of a latch in the middle of 
the transparency period of the latch. 

In the case of ideal logic partitioning, the delay of each stage should be half 
a clock cycle minus the delay of the latch. However, it is not always possible to 
partition the logic perfectly. In this example, Stages l a  and 2b have a delay that 
is smaller than ideal, Stages l b  and 2a have a delay that is larger than ideal, and 
the input data to the pipeline arrive prior to the leading edge of the clock, @*. 
Stage l a  receives the data after the leading edge of the clock, @ I ,  and produces 
an output before the leading edge of the clock, @ 2 .  Consequently, signal c does 
not change until the arrival of the leading edge of @ 2 .  Since Stage l b  introduces 
a delay larger than half the clock period, signal d arrives during the transparency 
period of L3, resulting in signal e (after propagating through L3). Even though 
Stage Ib  takes more time than nominally assigned, signal d still arrives prior 
to its nominal arrival. Thus, Stage l b  borrows time from Stage l a ,  but the total 
borrowed time at signal d is negative. Stage 2a borrows time from both Stages 
l b  and 2b, so that signal f arrives after the middle of the transparency period 
of Lq. The borrowed time is “returned’ the (total borrowed time is negative at 
signal h )  in Stage 2b and signal h arrives before its nominal arrival time. If the 
delay of Stage 2a were larger than shown in Fig. 5.7, the setup time of latch L4 

may have been violated and the pipeline would not operate correctly. 
The preceding example illustrates several key issues of time borrowing: 

0 The maximum throughput is not determined by the worst-case delay of the 
slowest logic block (Stage l b  and Stage 2a) ,  but rather by the average delay 
of all of the pipeline stages. 

0 Only the stages that receive or deliver data through a transparent latch 
participate in time borrowing. The time between the arrival of signal b and 
the moment latch L2 becomes transparent is not used from the perspective 
of time borrowing (Fig. 5.7). 

0 The borrowing cannot continue indefinitely; in any event, the data must 
arrive early enough to be captured by the subsequent latch. At any latch 
input in the pipeline, accumulated borrowed time must not exceed the value 
at which the setup time of the latch is violated. Thus, for the nominal data 
arrival in the middle of the transparency period, the maximum accumulated 
borrowed time is half the transparency period reduced by the setup time of 
the destination latch of the stage. 

Timing Analysis with Time Borrowing 

Late Data Arrival For any latch in the system that exploits time borrowing, the 
data must arrive in time to be properly captured. The data arrival at the latch is 
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a function of the delays of all previous pipeline stages. Timing of all the stages 
that share a logic path with a pipeline stage must be calculated in advance in 
order to obtain worst-case data arrivals for that stage. The cases where loops 
exist may require complex iterative procedures, since no data arrivals are known 
initially. All this makes slow-path analysis more complex than that of a pipeline 
synchronized by flip-flops. 

In order to see how time borrowing affects minimum clock cycle time, consider 
a system of N pipeline stages, each divided by transparent latches into two logic 
blocks, as shown in Fig. 5.7a. The latches are controlled by clock phases and 
@2. All logic blocks are used in time borrowing, that is, worst-case data arrival 
occurs only when the latch is transparent. Thus, the arrival time of the input at 
the subsequent latch, t D , l + l  is equal to the sum of the arrival times of the input 
to the preceding latch, t D , , ,  the D - Q  delay of the latch, D D Q . ~ ,  and the logic 
delay, DLM., ,  of the current stage: 

The arrival of input at the (2N  + 1)-th latch (input at the ( N  + 1)-th stage) is 

We assume that the after N stages, the pipeline produces data at the same 
point in the clock-phase, @ I ,  transparency period at which the input data was 
acquired in the first clock cycle. Therefore, t n , 2 ~ + 1  - tD.1 is equal to N clock 
periods P :  

tD.2N+I - t D , 1  = N P  (5.10) 

Combining Eq. (5.9) and Eq. (5.10), we obtain the requirement for the minimum 
clock period under late data arrival: 

(5.11) 

Equation (5.11) shows that the minimum clock cycle time of the pipeline is not 
determined by the delay of the slowest stage in the pipeline. It is rather the 
average delay of the logic and latches through all stages. Thus, the speed-up can 
be achieved by giving slow stages more time to evaluate at the expense of faster 
stages. Note that Eq. (5.1 1) is valid only if the data arrive at the latch during the 
time it is transparent. This important constraint has to be true for all latches on 
the path, and is summarized in the following equation: 
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where it is assumed that the first leading edge of @ I  occurs at time zero, and 
Ui and D c Q , ~  represent the setup time and clock-to-output delay of latch i ,  
respectively. 

€ar/y Data Arrival In a time-borrowing system, fast paths can cause the pipeline 
to operate incorrectly. When the destination latch is still transparent during the 
time the source latch becomes transparent, a short path in the logic can cause 
the latching of the data from the same clock cycle. The clock uncertainties make 
the system more vulnerable to hold time failures. In order to ensure the correct 
operation of the pipeline, it should be provided that the minimum stage delay 
exceeds some specified value. 

In order to illustrate the effect of time borrowing on the fast paths, we refer 
to Fig. 5.8, which is an excerpt of Fig. 5.7. Signal d changes while L3 is still 
opaque. When @I rises, L3 becomes transparent and signal e changes after a 
latch delay. The change in signal e propagates to signal f after the delay of 
Stage 2a. In the case where the sum of the L3 delay and the delay of Stage 2a 
are larger than the sum of the overlap of going high to @z going low and 
the hold time of L4, the data will race through both L3 and L4 in one phase 
of the clock, causing a functional failure. Thus, the time-borrowing technique 
does not help alleviate fast-path hazards, so these hazards should be treated as 
discussed in Chapter 4, that is, assuming no time is borrowed between the stages. 
The only remedy to the fast-path problem is either to make @I and @2 strictly 
nonoverlapping, or to pad every fast path in the pipeline with extra logic to 
guarantee some minimum required logic delay. 

Stage 2a 1 @ l  0 2  

2 

e 

I H I  
late arrival due to 

I 
earliestarrival, 7 j 

no time borrowing, - time borrowing, 
hold-time violation DCQ no hold time 

violation 

Figure 5.8. Fast-path hazard. 
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Clk - 

Figure 5.9. Forwarding path in a pipeline. 

LOOP Requirement In time-borrowing systems, the timing of signals in the 
loops (feedbacks), which are commonly employed in the pipelines, should be 
treated separately from other paths. An example of such a loop is the forwarding 
path that feeds the data from the output of the execution stage back to its input 
in order to prevent the pipeline hazards (Fig. 5.9). If the overall propagation 
delay through the loop consisting of N stages exceeds N P  (where P is the clock 
period), the arrival time may occur later with each cycle, finally resulting in a 
setup time violation. More generally, any signal loop that borrows time from 
itself will eventually cause a timing violation. 

5.2.2. Static Time Borrowing 

The static time-borrowing technique, often referred to as opportunistic skew 
scheduling or optimal skew scheduling (Fishburn 1990; Friedman 1993, exploits 
intentional delay insertion between clock inputs of different storage elements. In 
this way, evaluation time per stage can be better distributed by giving additional 
time to slow stages at the expense of the fast ones. This technique is applicable 
to the systems in which there are stages that use less time for computation than 
allocated by the clock cycle. 

A typical opportunistic skew scheduling scheme is shown in Fig, 5.10. Each 
clocked storage element, CSE, , in the system receives the reference clock, delayed 
by time A , .  The clocks are distributed in such a way that the storage elements 
preceding the longest paths in combinational logic receive the early clock, and 
the storage elements following the longest paths receive the delayed clock. For 
example, Clk;? in Fig. 5.10 is delayed for A with respect to Clkl, so that slower 
Stage 1 is allocated more time at the expense of faster Stage 2 .  Consequently. 
the system can be clocked at a higher rate than what would otherwise be dictated 
by the delay of the slower Stage 1. 

A benefit of static time borrowing is that it can operate with conventional 
flip-flops. In addition, it places fewer constraints on the circuit design, allowing 
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Figure 5.10. Opportunistic skew scheduling scheme. 

longer critical paths where necessary. This very appealing concept of static time 
borrowing has a few disadvantages. It increases the complexity of the clock 
distribution system. In particular it is hard to control the inserted delays over 
process, supply, and temperature variations. Also the analysis of clock skew 
is complicated in this asymmetric clock distribution network. While all these 
difficulties make this technique impractical on a large-scale level, it is nonetheless 
very useful in localized critical paths where every improvement directly increases 
the system clock rate. 

In conclusion, it is important to notice the difference between dynamic and 
static time borrowing. In dynamic time borrowing, the transparency of the stor- 
age element itself is exploited and the time is borrowed based on the actual 
differences in the stage delays. Consequently, the amount of borrowed time 
depends on the delay of the logic blocks in the stages. Also, the clock can 
be distributed uniformly. 

5.3. TIME BORROWING AND CLOCK UNCERTAINTY 

Both the clock-uncertainty-absorption and dynamic-time-borrowing techniques 
use the storage-element property to reduce the effect of indeterminate data-to-clock 
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delay to data-to-output delay. This single property can be interpreted in two 
apparently different ways. While for clock-uncertainty absorption, indeterminate 
data-to-clock delay is caused by the uncertainty of clock arrival, for time borrowing 
it is caused by uncertain data arrival. In both cases, the transparency of the storage 
elements is used to suppress the input uncertainty (either that of the clock or the 
data). Thus, clock-uncertainty absorption and time borrowing are essentially equiv- 
alent properties. If a clocking strategy allows dynamic time borrowing between the 
stages, it will also be capable of absorbing the clock uncertainty, and vice versa. 
In Section 5.3.1, we address this analogy by describing the uncertainty-absorbing 
capability of a level-sensitive latch-based system, whose time-borrowing property 
is discussed in Section 5.2. Subsequently, in Section 5.3.2 we show that the soft- 
clock-edge property of the flip-flops, which is responsible for clock uncertainty 
absorption (Section 5.1), can be used for time borrowing between the stages. 

5.3.1. Level-Sensitive Clocking 

In Section 5.2 we saw that time borrowing exploits the data arrivals in the latch 
transparency period to allow more time for logic evaluation. Equivalently, if 
the data arrive during the latch transparency period, the actual moment of clock 
arrival does not affect the timing of the signals in the pipeline. This means that 
the slow-path timing relation in the pipeline stage and minimum clock period are 
immune to the clock uncertainties. If we are able to keep all data arrivals in the 
middle of the transparency period of the capturing latch, all pipeline stages, and 
therefore the system as a whole, would be immune to the clock uncertainty (up 
to about half of the latch transparency period). 

The essential condition for allowing the pipeline to absorb the clock uncer- 
tainty is that the data arrive at the latch input while the latch is transparent. For 
example, if the @ 2  clock controlling latch L4 in Fig. 5.7 arrives a little earlier or 
later than shown in Fig. 5.7b, the rest of the timing diagrams will not change. 
This is because the data arrive while latch L4 is transparent. However, this is not 
true for latch L2, since it must wait for the clock in order to release data c to 
the subsequent stage. Consequently, any fluctuation in the arrival of clock @ 2  is 
passed onto signal c. 

Timing Analysis 

Late Data Arrival To determine the level of clock uncertainty tolerable to the 
latch-based time-borrowing system, we refer to Fig. 5.1 1. The figure illustrates 
the timing relationship between clock ( @ I )  and the data ( D )  input to the latch 
that is part of the time-borrowing pipeline (Fig. 5.7). It is assumed that the latch 
is transparent during the high level of the clock and that the nominal duration of 
the high level of the clock is W .  The latch input arrives later than the clock for 
the amount of time t D .  This is equivalent to time borrowing of tg = t D  - W/2 at 
signal D, assuming the nominal arrival of D is in the middle of the transparency 
period of the latch. We use TL and TT to denote the maximum uncertainties of the 
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t =  0 t = tA(D) t 

Figure 5.11. Clock uncertainty immunity in the pipeline with level-sensitive clocking. 

leading and trailing edges of the clock, respectively. The clock-to-output delay 
and D - Q  delay of the latch are DCQ and DDQ, respectively. Signal arrival with 
respect to the nominal arrival of the clock is designated t A .  

As long as the leading edge of the clock arrives early enough so that the latch 
is still transparent at the time the data arrive, the latch output and the rest of the 
signals in the pipeline do not change. The latest arrival of the leading edge of 
the clock that does not affect the pipeline timing is determined by Eq. (5.13): 

~ A ( @ I )  + DCQ > ~ A ( D )  + DDQ (5.13) 

Since the leading edge of the clock nominally arrives at time t = 0, its latest 
arrival time is TL. Consequently, the bound for the uncertainty of the clock's 
leading edge is 

TL 6 tg + DDQ - DCQ + W / 2  (5.14) 

Any value of the late clock arrival time smaller than the bound in Eq. (5.14) 
does not affect the timing of the output of the latch. 

An increase in early arrival of the trailing edge of the clock does not have an 
effect on the pipeline timing, as long as the data arrive at setup time, U ,  before 
the trailing edge of the clock: 

where DD-clk is the time between data arrival and the trailing edge of the clock. 
From Fig. 5.1 1, this D D - c ~ ~  is equal to W / 2  - t g .  Thus, 
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As long as the clock uncertainty satisfies the inequalities Eqs. (5.14) and 
(5.16), the maximum throughput is not affected, because Eq. (5.11) holds and 
the time borrowing can be exploited. The effect of the clock uncertainty on time 
borrowing can be observed by rewriting Eq. (5.16): 

Equation (5.17) shows that the early arrival of the trailing edge of the clock 
caused by the clock uncertainty reduces the maximum allowable amount of time 
borrowing. Similarly, Eq. (5.14) shows that the late arrival of the leading edge 
of the clock reduces the time that the stage can accumulate for later borrowing 
(if the nominal data arrival time is less than W/2) .  Thus, we are trading off time 
borrowing for tolerance to the clock-edge uncertainty. 

Ideally, time borrowing should be extended to all pipeline stages so that the 
input to each latch arrives when the latch is transparent. However, this cannot be 
accomplished for all stages. For example, the time when the latch in front of the 
first stage of the pipeline receives its input is specified at the system level and it 
cannot be chosen by the circuit designer. We can estimate the overall effect of the 
clock uncertainties on the pipeline if we observe a multicycle critical path shown 
in Fig. 5.12. The path starts from latch L1 and ends at latch L7. Latches L2 -Lh 

receive their inputs around the middle of their transparency period. Therefore, 
the setup time of latches L2-Lh is satisfied and the clock uncertainties of clock 
phases @ I  and @z have no effect on timing. Since latch L1 waits for @ I  to release 
the data, the clock uncertainty of @ I  reflects on Ql and propagates through the 
critical path to the end of Stage 3. The setup time margin of latch L7 is reduced 

3 P +  w-  tC" 

Figure 5.12. Impact of clock uncertainties on the critical path in the pipeline with time 
borrowing. 
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if the trailing edge, edge8, of clock @ I  arrives early. In order to meet the setup 
time requirement of latch L7, the following must hold: 

~ C U  + D C Q ~  + D(D1 -+ 0 7 )  + U < 3 P  + W (5.18) 

Equivalently, 

In Eqs. (5.18) and (5.19), DCQI is the clock-to-output delay of L1 and D(Q1 +. 
0 7 )  is the delay of the path from Ql to D7. The clock uncertainty, t c ~ ,  is the 
uncertainty of the trailing edge of the clock at L7 with respect to the leading edge 
of the clock at L1. Equation (5.19) shows that the impact of the clock uncertainty 
on the minimum clock period is reduced by being divided among the number 
of stages that the critical path goes through. The source latch and destination 
latch of the critical path (latches L I  and L7 in Fig. 5.12) are normally placed 
in the same clock domain, thus reducing the clock skew between them. Note 
that, since several clock edges occur during the evaluation of the critical path, 
the clock jitter between edge1 and edge8 is larger than the cycle-to-cycle clock 
jitter used in single-stage analysis. This observation is true for all systems that 
absorb the clock uncertainties, since in all such systems the timing in a pipeline 
stage depends on the data arrivals from previous clock cycles. 

Early Data Arrival The direct effect of the clock uncertainties on the fast-path 
requirement in the multiphase level-sensitive pipeline is that the overlap between 
the phases increases. If, for example, in Fig. 5.12 the leading edge of clock phase 
@ I  arrives early, andor the trailing edge of clock phase @ 2  arrives late due to 
the uncertainty, the overlap between the phases is the sum of the two clock 
uncertainties. As this overlap increases, the fast path, discussed in Section 5.2, 
can cause erroneous operation. The earliest arrival of the clock’s leading edge 
and the latest arrival of the clock’s trailing edge that the system can tolerate are 
set by the hold time requirement: 

In Eqs. (5.20) and (5.21), TL,Q, and TT,@* designate the early arrival of leading 
edge of clock @I  and the late arrival of the trailing edge of clock @ 2 ,  respectively, 
and V is the nominal overlap between @ 1  and @ 2 .  Equation (5.21) provides a 
conservative rule for making the fast paths robust to the clock uncertainties. 

In summary, the influence of the clock uncertainties on the timing in a time- 
borrowing system is in: 
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0 Decreasing of the margins for time borrowing. Both the minimum allowed 
path delay and the maximum allowed time borrowing are reduced by the 
clock uncertainty. 

0 The pipeline absorbs the uncertainties for the data that arrive during the 
latch transparency period. 

0 The effect of the uncertainties is reduced to an average uncertainty over all 
stages in the path. 

5.3.2. Soft-Edge-Sensitive Clocking 

The clock uncertainty absorption, acu, defined in Section 5.1.1, shows how the 
propagation delay of a flip-flop is changed if its clock timing is uncertain. Apply- 
ing this clock uncertainty to a flip-flop is equivalent to keeping its clock arrival 
fixed and allowing data arrival to change. Thus, more generally, the parameter 
acu quantifies the degradation of the D-Q delay for uncertain data-to-clock 
delay. As such, it can be used to describe the timing of the flip-flop if it is 
used in time borrowing in exactly the same way it is used for clock-uncertainty 

Stage 1 Stage 2 

Figure 5.13. Time borrowing with uncertainty-absorbing clocked storage elements. 
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absorption. In this perspective, high CYCU (soft clock edge) designates a storage 
element whose output follows both the early and late input arrivals, allowing 
slower stages to borrow time from the subsequent faster stages. 

The time-borrowing capability and the clock-uncertainty absorption are not 
mutually exclusive. In fact, they can be traded off for each other. Figure 5.13 
illustrates a case where a wide transparency window, denoted as a flat D - Q  
characteristic, is used to both absorb the clock uncertainties, tCu, and borrow 
time, t g ,  from the surrounding stages. Combinational logic of Stage 1 takes more 
time than nominally assigned, and it borrows a portion of the cycle time from 
Stage 2. In general, the storage element may not be completely transparent (i.e., 
the D-Q characteristics are not completely flat). According to the definition of 
clock-uncertainty absorption, the combination of clock uncertainty, t C U ,  and time 
borrowing, t g ,  causes an increase in the D - Q  delay of the flip-flop, A D D Q :  

where IXCU is a function of t g  + t C u .  The delay increase, AD,,, is the same 
either when the clock uncertainty is t g  + tCU with no time borrowing, or when 
the borrowed time between stages is t g  + t,-u and there is no clock uncertainty. 

It should be noted that the practical values of the total borrowed time are 
similar to the width of the transparency window, and in any event are shorter 
than the hold time. Better absorption and time-borrowing capability can be 
obtained by widening the transparency window (see Section 5.1.3). However, 
if the transparency window is widened, the hold time increases and the short- 
path requirement becomes harder to meet. Therefore, use of a wide transparency 
window is a trade-off between time borrowing and uncertainty absorption on 
the one side and the hold time on the other side. In cases where sufficient min- 
imum delay in the logic path can be assured, making this window wider can 
be beneficial. 
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A large portion of the energy consumption in modern microprocessor designs 
is in the clock subsystem, including clock generation, distribution, and the final 
clocked storage-element load. Due to increasing frequency, low skew require- 
ments, and deep pipelining, this clocking energy has been increasing with each 
processor generation, requiring a more energy-conscious design of the clock 
subsystem. In this chapter we describe some widely used methods for energy 
reduction that include supply-voltage scaling, minimizing switched capacitance, 
minimizing switching activity, and the use of low-swing-circuit techniques. These 
conventional principles are then applied to the design of alternate topologies of 
clocked storage elements as well as a general clock distribution network. 

A common design approach for minimizing energy consumption in VLSI sys- 
tems is to concentrate on reducing the switching component of energy, given by 

where N is the number of nodes in the system, Ci is the capacitance at node 
i, a0-1 (i) is the probability that the energy-consuming transition occurs at node 
i, Vswing is the voltage swing of node i, and Voo is the global supply voltage. 
Based on this simple formula, the guidelines for reducing energy consumption 
are simply to minimize each of the terms in the product expression. The most 
efficient way to minimize energy, as should be obvious, is aggressive voltage 
scaling, because the energy has, to the first order, a quadratic dependency on the 
supply voltage. 
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Supply-Voltage Scaling Energy consumption is a quadratic function of the 
supply voltage, so operating at reduced supply voltages leads to significant sav- 
ings in energy consumption. In digital systems that deal with supply voltage 
scaling (Burd et al. 2000), it is desirable that this scaling be used to preserve 
important timing relationships. In particular, it is important that delays of both 
the clocked storage elements and combinational logic scale in the same way to 
maintain the timing constraints imposed by the fast and slow paths without any 
changes in the design. While further slowing down the slow paths only affects 
the maximum clock rate, speeding up the fast paths in order to avoid critical 
races is not acceptable. Figure 6.1 illustrates the delay and internal race immu- 
nity of representative MSLs, flip-flops, and locally gated latches and flip-flops 
(Markovic et al. 2001). 

In general, flip-flops (HLFF, SDFF, M-SAFF) are desirable circuits for critical 
paths at reduced supply voltage because the delay of these elements becomes 
shorter at lower supplies, relative to the delay of a static CMOS F04  inverter, 
as illustrated in Fig. 6.la. This is because of the favorable scaling of the stack 
transistors in this particular technology, as illustrated in the example of the two- 
input NAND gate. With scaling down the supply voltage, the equivalent threshold 
voltage of the NAND gate decreases, due to the reduced impact of the body 
effect. This outweighs the threshold increase due to DIBL effect at reduced 
supply voltage, resulting in overall relative speed-up. However, this behavior is 
dependent on the underlying technology, and should not be taken as a general 
rule. Circuits with transistor stacks (HLFF, SDFF) showed behavior similar to 
that of the NAND gate, while M-SAFF had the largest speed-up due to its cross- 
coupled differential structure with positive feedback circuits. Unlike the delay, 
the internal race immunity of these latch and flip-flop topologies does not change 
with supply voltage relative to an F04  inverter (Fig. 6.lb), indicating that the 
same fast-path constraints apply across a range of supply voltages. This is because 
Clk-Q delay and hold-time scale in a fashion similar to that of a CMOS inverter, 
due to the nature of the circuits that define Clk-Q delay and hold time. 

Minimizing Effective Switched Capacitance In order to obtain maximum 
energy savings, the goal is to minimize all the effective switched capacitance 
internal to the clocked storage element, for a given external load capacitance. 
The total effective capacitance at some node inside the circuit is a product of the 
physical capacitance of that node and probability of the energy-consuming transi- 
tion. Physical capacitance includes clocked transistor capacitance and capacitance 
of nonclocked internal nodes. Reduction of the total physical clocked capacitance 
is more important because it is switched every clock cycle, as opposed to the 
capacitance of the nonclocked nodes, which is switched only when the output 
changes. In dynamic circuits, however, only a portion of the nonclocked capaci- 
tance - the total capacitance excluding the capacitance of the precharge/evaluate 
nodes -is switched when the output changes. 

Circuit Sizing One advanced issue in minimizing energy consumption in 
clocked storage elements pertains to the circuit sizing that provides an optimal 
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Figure 6.1. Impact of Vdd on (a) delay, and (b) internal race immunity (0.25 pm, 
light load). (Markovic et al. 2001), Copyright 0 2001 IEEE. 

energy-performance trade-off for a given output load capacitance. Ideally, 
we would like to have the lowest possible energy and the highest level of 
performance, but the two requirements conflict. Intuitively, clocked nodes should 
be made minimum size in order to compensate for the increased switching 
activity. The total circuit area ultimately depends on the size of the load that it 
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needs to drive, implying that larger loads may need a design of larger proportions 
to maintain acceptable driving strength. However, it is not desirable to size 
transistors in such a way that they are overly robust. This means that a circuit 
with transistors of fixed size cannot optimally drive various output loads, and that 
the extra area spent in designing them to support the largest load capacitance is 
really wasted, since the performance upgrade here serves only to alleviate an 
issue that may manifest itself infrequently. It is more important from an energy 
standpoint that circuits are sized to satisfy the constraints in the most common 
cases, which often happens to be approximately a fourfold increase over standard 
inverter load. Typically, one “standard load” corresponds to the input capacitance 
of a “1 x”  buffer from the standard cell library. In more advanced VLSI designs 
today, the output loads are even lower 80% of the time. 

Minimizing the physical capacitance by downsizing the transistors is often 
limited by the requirements for circuit noise immunity. For this reason, for 
example, standard cell libraries typically do not contain minimum-sized transis- 
tors at the inputs of logic gates. It is important to optimize the size of a clocked 
storage element for minimal energy that just meets the performance goal. There 
is no type of storage element that is optimal for all paths. Performance critical 
paths require fastest operation, which results in sizing for peak performance, and 
thus large energy consumption. Storage elements in noncritical paths allow much 
less aggressive sizing due to the available timing slack. Circuit-size optimization 
thus depends on the topology of a clocked storage element and is discussed in 
more detail in Chapter 7. 

Circuit Topology Other efficient ways to minimize the overall energy are 
lowering clock signal swing and reducing clock frequency. Selection of a cir- 
cuit style that has inherently low switching activity in the internal nodes or a 
small number of clocked nodes could also be a good way of reducing energy. 
For example, in most cases, static circuits have smaller energy consumption than 
dynamic circuits, because the dynamic circuits need prechargeldischarge opera- 
tion of the dynamic nodes in each clock cycle. In addition, effective switching 
activity can be reduced by clock gating or dual edge-triggering on every clock 
transition that halves the frequency of the global clock. 

6.1. LOW-SWING CIRCUIT TECHNIQUES 

Clocked storage elements sometimes operate with different input- and output- 
signal logic levels. For example, in static random-access memories (SRAM), a 
low-swing wordline signal is amplified by sense amplifiers to produce a full 
swing at the bus output. If the data and clock loads are similar, then it is much 
more beneficial from the energy standpoint to have a low-swing clock. This 
is because of the high proportion of the clock energy to data energy due to 
the high switching activity of the clock. Another low-swing approach is there- 
fore the reduced-swing clock operation, which targets savings in the clocking 
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energy. The low-swing clock can be generated with the help of reduced-swing 
clock drivers or by powering up the clock buffers with a separate supply voltage 
(Kawaguchi and Sakurai 1998). The aim of the reduced-swing clocking technique 
is to save energy in the clock network. The reduced-swing clock operation slows 
the circuit down and consequently increases the cycle time. This technique is 
therefore effective only in VLSI systems where an increase in the clock cycle 
is allowed. Since supply voltage has a stronger effect on the delay than circuit 
sizing, upsizing the circuit that operates with reduced-swing signals usually can- 
not average out the performance loss experienced from the low-swing operation. 
Therefore, there is always some delay penalty associated with reduced-swing 
signals. Low-swing clocking can be implemented either with conventional CSEs 
and specially designed clock drivers, or with specially designed CSEs that are 
capable of receiving the reduced-swing clock. 

6.1 .I. Conventional CSEs with Reduced-Swing Clock Drivers 

When used with conventional CSEs, low-swing clocking requires a special design 
for the clock drivers to support the reduced-swing clock operation. As an example, 
consider the clock driver proposed by Kojima et al. (1995). It provides separate 
clock signals for p-MOS and n-MOS transistors, as shown in Fig. 6.2. Capaci- 
tances Cpl , Cp2 represent p-MOS loads on the driver, and C,1 and Cn2 represent 
n-MOS loads on the driver. Capacitors C A  and C B  are externally connected or 
fabricated on-chip, to optimally set voltage at node H-VDD to vDD/2: 

V D D  (Clk is high) 
c p 2  f CA 

c p 2  f CnI + CA f CB 
V(H-VDD) = 

When C p l ,  Cp2, C,I and Cn2 are made equal, then the node H-VDD is at V D D / ~  
and the external capacitors CA and C B  are not needed. Otherwise, CA and Cg 
can be made large in a way that makes variations in C,1, C,2, C,,, and Cn2 
insignificant and sets H-VDD close to V D D / ~ .  Each of the clock buffers in Fig. 6.2 
would provide a half-swing clock signal for p-MOS or n-MOS transistors. This 

vOD 

GND 

voo 
CA 

H-VD, vthpl 
cB vthn 

GND 

Clk *-c+ 
Figure 6.2. Clock driver for half-swing clocking. (Kojima et al. 1995), Copyright 0 1995 
IEEE. 
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way, both phases of the clock are provided and conventional topologies of clocked 
storage elements can be used. 

Eliminating any cost in the clock driver associated with charging C A ,  C B  and 
generating both phases of the clock, half-swing clocking ideally provides 75% 
reduction in the clocking energy. In reality, additional resizing of n-MOS clocked 
transistors is performed to balance C,1 -Cn2. As a result, smaller energy savings 
are achievable. For example, the sixteen-stage shift register reported in Kojima 
et al. (1995) saves 67% of the clocking energy, 8% less than the theoretical 
result. This technique is limited only to those cases where a half-swing operation 
is required. Alternate techniques dealing with redesign of the clocked storage 
elements allow an arbitrary value of the reduced clock swing to be used and 
more flexibility in optimizing the overall system energy. 

6.1.2. CSE Redesign 

Kawaguchi and Sakurai (1998) took a different approach to low-swing clock- 
ing. They supplied a globally reduced-swing clock to all clocked transistors, 
with extra body bias applied to all p-MOS clocked transistors. This is because 
they do not fully turn off when the Clk is high. Their study was based on the 
example of a sense-amplifier-based flip-flop (SAFF), modified for the reduced- 
swing clock operation, as shown in Fig. 6.3. Operational behavior of the reduced 
clock swing flip-flop (RCSFF) is very similar to the behavior of the SAFF. The 
RCSFF example is particularly interesting because the new circuit did not require 
any topological change, but rather the use of an extra bias voltage to bias wells 
of the precharge p-MOS transistors as a way of suppressing their leakage current 
when the clock is high. 

Figure 6.3. Reduced clock-swing flip-flop. (Kawaguchi and Sakurai 1998), Copyright 0 
1998 IEEE. 
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The reduced-swing clock can be either globally distributed or it can be gen- 
erated locally. Kawaguchi and Sakurai proposed several low-swing clock drivers 
that reduce the output signal swing by stacking up n n-MOS transistors to gen- 
erate an output swing of VDD - nV,h, as shown in Fig. 6.3. However, a more 
effective method is to design a clock distribution network comprising standard 
buffers and globally reduced clock supply voltage. This is because particular 
schemes with stacked transistors result in increased pull-up resistance, and hence 
require some area overhead to maintain sharp clock edges and provide energy 
saving in the clock distribution network. Schemes (a) and (b) in Fig. 6.3 are less 
energy efficient than scheme (c), because the energy is effectively pulled out of 
V D ~  and not V D D - V ~ ~ ,  so the energy benefit is not quadratic, as with the scheme 
in (c). 

Compared to the conventional MSL in Kawaguchi and Sakurai (1998), RCSFF 
provided 63% savings in the clocking energy for the same Clk-Q delay. We 
must note here that comparison with the conventional M-S topology is not quite 
appropriate because the M-S configuration is inherently slower than the SAFF. 
A fairer comparison would be with a SAFF that issues full-swing clocks, but 
whose Clk transistors are downsized such that the delay is equal to that of the 
RCSFF. Here, the RCSFF just serves to illustrate one of the few reduced-swing 
clock design options. 

6.1.3. N-Only CSEs with Low-Supply-Operated Clock Drivers 

The low-swing clock techniques discussed thus far are suboptimal. The tech- 
nique presented in Section 6.1.1 that provides two different low-swing clocks 
for conventional flip-flops (Kojima et al. 1995) inherently increases the phys- 
ical capacitance of the clock network. An approach with a separate well bias 
(Kawaguchi and Sakurai 1998) increases the layout complexity. A more effec- 
tive technique is to use conventional clock drivers with a globally reduced supply 
voltage and CSEs containing only n-MOS-clocked transistors that are capable of 
receiving the low-swing clock. One such latch circuit is shown in Fig. 6.4. 

This straightforward implementation is obtained by simply removing p-MOS 
clocked transistors from the conventional MSL. A design for robustness and speed 
involves adding extra n-MOS transistors N 1  -N4 to help the pull-up transition on 
the latch state nodes SM and SS. 

Do 

Figure 6.4. N-Only clocked M-S latch. 
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6.2. CLOCK GATING 

Clock gating is an efficient way of reducing the overall energy consumption in 
digital systems where energy in the clocking subsystem is a significant part of 
the overall system energy, or when data input of the CSEs have little switching 
activity. The mechanism behind clock gating is to allow clocking of a CSE only 
if new arriving data are different from the current output of the CSE, which 
effectively eliminates switching of the clocked transistors when output does not 
transition. This way, unnecessary activity of the internal nodes is eliminated. 

The clock gating can be global when the gating logic is shared between several 
CSEs, or locul when the gating logic is embedded in each CSE. In both cases, the 
design of the clock-gating control logic needs to be carried out carefully so that 
the savings in the clocking energy are greater than the overhead incurred by the 
clock-gating logic, for the given input data statistics. Generally, extra caution has 
to be taken in the design of systems with gated clocks, because timing analysis 
becomes more complicated when the clock is gated (Baeg and Rogers 1999). 

6.2.1. Global Clock Gating 

Sometimes designers need to control which data are loaded into registers. To 
achieve this, an extra signal is needed to control the loading of new data into the 
registers. This kind of functionality can be essentially performed in two different 
ways: by employing a free-running clock and multiplexing (gating) the data, 
or by gating the clock signal. The standard way of recirculating data is shown 
in Fig. 6.5a. The circuit has a free-running clock and a "wrap-up" multiplexer 
that selects either the value stored at output Q or new input In. The selection 
is regulated by control signal Load, which represents the gating condition. The 
clock signal, Clk, triggers the register REG in each clock cycle. This is the more 
common approach, used in the LSSD methodology, and it prohibits insertion on 
the clock. 

The principle of clock gating is illustrated in Fig. 6.5b. The circuit sends 
clock signal Clk to the register only when signal EN is active high. In this 
circuit, signal EN must not transition when signal Clk is high in order to assure 
capturing the input In at the edge of the clock signal Cfk rather than at the edge 

In 

Load (a) Clk m __ REG EN 
Clk 

Figure 6.5. (a) Nongated clock circuit, (b) gated clock circuit. (Kitahara et al. 1998), 
Copyright 0 1998 IEEE. 
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of the enable signal E N .  In addition, there is always some extra insertion delay by 
the clock-gating logic. For these reasons, timing analysis in designs that employ 
global clock gating is more complicated than the timing analysis of conventional 
designs. This is a more energy-efficient method than the LSSD. 

6.2.2. Local Clock Gating 

Unlike globally gated designs, locally gated designs can be simply analyzed just 
like the conventional designs in which the clock-gating logic is lumped into a 
CSE. The main feature of this circuit family is a mechanism for predictive turn-off 
of the internal clock when the input and output data are equal. The local clock- 
gating technique can be applied to any CSE topology. The local clock gating in 
most cases incurs an extra delay penalty that effectively limits its applicability 
only to those CSEs that are outside performance-critical paths, such as in data- 
transition look-ahead latch (DTLA-L). However, there are cases when the control 
logic is outside the critical path of the CSE, in which case there is almost no 
penalty in the CSE delay. One example of such a design is the conditional capture 
flip-flop. 

Example: Data-Transition Look-Ahead Latch The DTLA-L proposed by 
Nogawa and Ohtomo (1998) is shown in Fig. 6.6. In the original paper, this 
circuit is called “flip-flop.” The circuit is derived from a conventional-based 
MSL. It consists of the MSL, pulse generator, data-transition look-ahead, and 
clock control logic that enable the clock pulse to propagate inside the latch. 
The circuits in the figure that are enclosed with dashed lines show the overhead 
associated with the internal clock gating. The functionality of each of these blocks 
is detailed below. 

The DTLA logic compares the new input, D ,  with the existing output, Q. 
It essentially performs an XNOR function on D and Q. When D = Q, the 

D 

Clk 

Q 

, Clock Control 

Figure 6.6. Data-transition look-ahead latch. (Nogawa and Ohtomo 1998), Copyright 0 
1998 IEEE. 



114 LOW-ENERGY SYSTEM ISSUES 

DTLA circuit produces a logic 1 at its output, P I ,  thus disabling generation of 
the internal clock {CP,  -1. When D # Q ,  PI evaluates low and the clock- 
control (CC) circuit enables generation of ( C P ,  -), that is, the global clock, 
CPI, is allowed to propagate inside the latch. 

The pulse-generator (PG) circuit generates a pulse, CPZ, at every rising edge 
of the external clock, Clk. The CPZ signal then triggers the latch if D # Q. The 
pulse generator is essential for the operation of this circuit. If there were no pulse 
generator, this latch could be triggered by data instead of the clock. For instance, 
if D # Q and the CPI high arrives, then clock pulse, CP, is generated and Q 
changes. However, if D changes again while the clock is still high in such a way 
as to become different from Q ,  this also would generate pulsed pulse CP, and 
the latch would actually be triggered by the data. This is prevented if the Clk 
width is approximately equal to the CP pulse width, because then the master 
would be opaque while Clk is high. The pulse generator in this circuit is shared 
by a register of latches in order to reduce energy overhead with pulse generation. 
The downside of this approach is the distortion of the pulse that may occur in 
the clock distribution to multiple latches. 

Example: Conditional Capture Flip-Flop As an example of CSE with inter- 
nal clock gating, we consider the conditional capture flip-flop (CCFF) proposed 
by Kong et al. (2000). The CCFF is shown in Fig. 6.7. It is a positive edge- 
triggered differential-input differential-output flip-flop. The CCFF is similar to 
the modified SAFF (M-SAFF) proposed by Oklobdzija and Stojanovic (2001). 
However, there is no more push-pull positive feedback, since the two coupled 

T T 

Figure 6.7. Conditional capture flip-flop. (Kong et al. 2000), Copyright 0 2000 IEEE. 
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inverters in the M-SAFF preamplifier stage are replaced by keepers. The main 
difference is in the input stage where NOR gates are used to generate signals 
N and w. These two signals regulate generation of the set and reset signals for 
the second-stage latch. The output stage is very similar to the output stage of 
the M-SAFF. The only difference is that the keepers are implemented as pass 
transistors instead of the full-CMOS implementation in M-SAW. 

This flip-flop operates as follows. When Clk is low, the flip-flop is in the 
precharge phase, 9 and are precharged high, and the S- R latch is disabled. 
At the rising edge of Clk, the behavior of the CCFF depends on the incoming 
data value - if new data are different from the previously recorded output data, 
one of the outputs of the NOR gates is high, enabling pull-down of s or F.  The 
transparency period of the differential pair is equal to the sum of two inverter 
delays and delay of the NOR gate. This is because N and both go low when 
Clkl is high. During this short transparency period, new data are latched by the 
S-R latch at the output. 

It is interesting to observe that, in general, the conditional capture flip-flops 
have the logic function of the J - K flip-flop. The CCFF is actually a J -  K flip- 
flop internally, where outputs Q and a condition the flip-flop inputs. Inputs J 
and K are defined as 

- 
S’ = D . Clk . Q + Clkl = D . Q .  (Clk . C l k l )  = J . (Clk . Clkl) 

R’ = Z;j. Clk . Q + Clkl = D .  Q . (Clk . C l k l )  = K . (Clk . Clki) 

(6.3) 

(6.4) 
- 

where the term Clk ‘ Clkl defines the window of time during which inputs J 
and K are captured. The switching activity of the internal nodes is reduced by 
conditioning the inputs. 

6.3. DUAL-EDGE TRIGGERING 

A dual-edge-triggered clocked storage element is a storage element that captures 
the value of the input at both clock edges. The reason for using the DETSE 
is to save energy in clock generation and distribution by halving the clock fre- 
quency while achieving the same throughput. Considering the increasing trends in 
clock frequency and clock-related energy consumption, the choice of the DETSE 
appears a viable method for energy reduction in the clocking subsystem. 

One important consideration in the design of DETSEs is that these devices 
are more sensitive to the timing of the clock signal than are the single-edge- 
triggered clocked storage elements (SETSEs). In particular, the uncertainty of 
the duty cycle and the uncertainty of both clock edges become the most impor- 
tant design parameters. Additionally, the fact that the DETSE is more complex 
than the SETSE may result in longer delays and higher energy than in the cor- 
responding SETSE. 

The DETSE can be built using several techniques. Depending on the technique, 
we classify DETSEs as a latch-mux (LM), a pulsed-latch (PL), or a flip-flop (FF). 
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These classes of DETSE exhibit distinctive behavior. As discussed in Chapter 4, 
DETSEs have the same basic timing parameters as single-edge-triggered designs 
(setup time, hold time, clock-to-output delay), but applied to both clock edges. 
Generally, the basic timing parameters are not the same for the opposite edges, 
since they may be the result of different capturing mechanisms andor different 
input-to-output critical paths. In the following sections, we describe in more detail 
the principles on which each of the techniques for building a DETSE is based. In 
the end, in an example of a clocking subsystem, we discuss the potential energy 
savings using DETSE. 

6.3.1. Latch-Mux Design 

The latch-mux structure is shown in Fig. 6.8. It consists of two latches con- 
nected in parallel that are transparent on opposite levels of the clock, and a 
muhiplexer (mux) that selects the output of the nontransparent latch at all times. 
This structure is equivalent to a typical MSL design, but has two master latches 
working in parallel, and a mux functioning as a slave latch. Any MSL is therefore 
transferable to the corresponding latch-mux topology. 

Example: Dual-Edge-Triggered Latch-Mux The dual-edge-triggered latch- 
mux (DET-LM) proposed by Llopis and Sachdev (1996) is shown in Fig. 6.9 as 
an example of the latch-mux design. It is the dual-edge counterpart of the widely 
used single-edge MSL proposed by Gerosa et al. (1994). The basic building 
blocks (latches and a multiplexer) can easily be identified on the schematic. 
The latches are implemented with transmission gates and clocked feedback. The 
multiplexer is also implemented with transmission gates. This latch-mux has two 
equally critical paths, somewhat shorter than the critical path of the MSL (the 
delay of a multiplexer versus the delay of a latch in the second stage). 

D j  D Q  

Clk 

Figure 6.8. Dual-edge-triggered latch-mux design. 
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Figure 6.9. Dual-edge-triggered latch-mux circuit. (Llopis and Sachdev 1996), Copy- 
right 0 1996 IEEE. 
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Figure 6.10. Dual-edge-triggered pulsed-latch design. 
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6.3.2. Pulsed-Latch Design 

A conceptual diagram of a PL design is given in Fig. 6.10. It consists of a pulse 
generator that produces a short pulse on every edge of the clock (both leading 
and trailing) and a D-latch that is transparent for the duration of the pulse and 
opaque otherwise. Practical designs usually employ two pulse generators, one 
for each clock edge, and combine them in front of the output latch, as shown 
in Fig. 6.10. 

Example: Dual-Edge-Triggered Pulsed Latch As an illustration of a PL 
design, consider dual-edge-triggered pulsed-latch (DET-PL) of Fig. 6.1 1 .  It con- 
sists of a set of input pass-gates that define the transparency window, buffer 
inverters, and keepers in the feedback path that keep the value stored in the 
PL when the latch is opaque. The transparency window is defined by the clock 
delay line of the four inverters. There are two timing windows when the latch 
is transparent-one determined ___ by the overlap of the clock (Clk) and the clock 
delayed by the three inverters (Clk l ) ,  with another one determine by the first and 
fourth delay of the clock (signals Clk and Clkz). This design is derived from 
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Figure 6.11. Pulsed-latch: (a) single-edge-triggered; (b) dual-edge-triggered 

the corresponding single-edge design by simply adding a transmission-gate that 
enables latch triggering at the trailing clock edge. Extra transmission gates in the 
feedback path control the keepers. 

This structure does not strictly follow pulse generation and latching. The pulse 
generator is implicit (local to the latch), and the generated pulse is used to trigger 
the transmission-gate-based latch. However, the functionality of a PL still exists 
in terms of' the pulse generation synchronously, with the clock and latching in 
the second stage. 

6.3.3. Flip-Flop 

A conceptual diagram of a DET flip-flop design is given in Fig. 6.12. It consists 
of two pulse-generating latches and a capturing latch (CL). The top latch creates 
a pulse at the leading edge of the clock, and the bottom latch creates pulse at the 
trailing edge of the clock Clk. The pulses are conditioned on data D. The CL is 
a nonclocked latch that captures pulses generated by the pulse-generating latches 
and stores the result at outputs Q ,  a. 
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Figure 6.13. DET symmetric pulse-generator flip-flop. 

Example: DET Symmetric Pulse-Generator Flip-Flop The DET symmet- 
ric pulse-generator flip-flop (SPGFF) proposed in Nedovic et al. (2002) is shown 
in Fig. 6.13 as an example of DET flip-flop design. The circuit has a narrow, 
transparent data window and clockless output multiplexing scheme. The first 
stage is symmetric, consisting of two pulse-generating (PG) latches. This stage 
creates the data-conditioned clock pulse on each edge of the clock. The clock 
pulse is created at node SX on the leading and node S y  on the trailing edge of 
the clock. The second stage is a two-input NAND gate. It effectively serves as 
a multiplexer and a latch, implicitly relying on the fact that nodes SX and Sr 
alternate between being precharged high while the clock is low and high, respec- 
tively. This type of output multiplexing is very convenient because it does not 
require clock control. The clock energy is mainly dissipated by pulse generation 
in the first stage. 

6.3.4. Clock Distribution 

Both the clock distribution and CSEs have to be considered when the overall 
energy benefit of dual-edge-based versus single-edge-based clocking is eval- 
uated. The best way to illustrate this is to study power savings in the clock 
distribution network of a single- versus dual-edge-triggered system. Generally, 
the dual-edge-triggered design is always a better choice than the single-edge- 
triggered design if its input CSE clock load is less than roughly twice that of the 
latter design. In addition, in systems with a significant potential wire load saving 
from the dual-edge-triggered scheme are even larger. This is illustrated in the 
following example. 

The example is adapted from Nedovic et al. (2002). The crucial parameter for 
comparison is the total switching load, due to the storage elements, clock buffers, 
and wires, for the single- and dual-edge-triggered system. In this example, we 
find this load by estimating the load of an H-tree clock distribution network with 
L levels, in a microprocessor die of size (s x s) with M storage elements, as 
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e= Storage Element 
s12L-I 

elements 

Figure 6.14. H-tree clock distribution network. 

shown in Fig. 6.14. Each level-L driver supplies the clock to an area of . ~ / 4 ~ - '  
(local domain) containing M/4L-' storage elements. In the local domain, the 
clock is distributed as shown in the shaded region of Fig. 6.14, where cw and 
CC/k-CSE are the wire capacitance per unit length and clock capacitance of a 
storage element, respectively. We neglect the wire resistance, so that the width, 
and thus capacitance, of the wires do not depend on the storage-element clock 
load. Under these assumptions, it can be shown that the total load in the H-tree, 
including the clock load of the storage elements, is 

The first item on the right-hand side of this equation is CH-CSE,  the portion of 
the H-tree capacitance that depends on the clock load of a storage element. It 
can be approximated to 4 .  M c C / k - C L y E / 3  if 4L >> 1. The second item in the 
same expression is C H - W ~ ~ ~ ,  the total wire capacitance. This part of the clock 
distribution load is dependent only on the geometry of the H-tree, not the CSE 
clock load. If M >> 4L >> 1, then C H - W , ~ ~  SY 4cw . s . M / ( 3  . 2L-1) ,  and the total 
capacitance of the H-tree becomes 

To estimate the power savings of dual-edge clocking, we assume that the 
number of the clock buffer levels in the H-tree is the same in dual-edge and single- 
edge systems. In the real design, the optimal number of levels depends on the CSE 
clock load, and it can be different in the two cases. However, in practical cases, 
the wire load dominates the CSE clock load. As a result, the optimal number of 
buffers is mostly affected by the wire load, rather than by the CSE clock load. 
Thus, the assumption of an invariant number of clock buffer levels provides a 
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r plo 0.2 

0.0 

good approximation while simplifying the analysis. In addition, comparison with 
the same number of buffers provides approximately the same insertion delay and 
clock uncertainty of the clock distribution network. We define the coefficient, a, 
as the ratio of the clock distribution switching power consumption of the dual- 
and single-edge-triggered systems, assuming that dual-edge-triggered systems run 
at half the clock frequency of single-edge-triggered systems: 

CC/KSE,DET/CC/~-CSE,SET 
I t 1  -0-2 +-3] 

-- 

where Cwire-~ = CW . ~ / 2 ~ + '  is the average capacitance of the wire needed 
to route the clock signal from the level L buffer to a storage element, and 
indices DET and SET correspond to dual-edge- and single-edge-triggered clock- 
ing, respectively. 

In a typical design in today's technologies, C H - W ~ ~ ~ ( W )  is usually much larger 
than CH-CSE (CCI~-CSE) ,  in which case the power savings are nearly 50% greater. 
For example, in a five-level H-tree on a 12 x 12-mm die fabricated in 0.1l-km 
CMOS technology, the clock distribution power saving obtained by replacing 
a single- by a dual-edge-triggered storage element is around 40%. The plot 
illustrating relative power savings in the clock subsystem of the dual- versus 
single-edge-triggered CSE with respect to the ratio of the CSE clock capacitance 
to wire capacitance is shown in Fig. 6.15. The clocking power includes clock 
distribution, wire load, and CSEs. The savings are shown for different ratios of 
the clock capacitance in DET-CSE and SET-CSE. 

The curves indicate that the dual-edge-triggered design is always a better 
choice if it maintains a clock load capacitance less than roughly twice that of the 
single-edge-triggered design. It should be noted that in most high-performance 
designs, wire load is even more pronounced than in the H-tree, design, for 
example, in a clock grid, so there is a larger potential saving from the dual- 
edge-triggered scheme. 
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Figure 6.15. Clocking power in single- and dual-edge-triggered systems. 
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6.4. GLITCH ROBUST DESIGN 

An interesting observation is that the best CSEs in terms of energy efficiency and 
large internal race margins are also the most susceptible to propagating glitches. 
For example, for very low input data-transition probabilities (typically less than 
0.1) and relatively high glitching probabilities (greater than 0. l), the energy 
glitching component in the clock-gated transmission-gate MSL can become equal 
or even greater than the switching component. In the different CSE topologies 
that cover a wide range of energy consumption, rankings in energy consumption 
due to glitches are exactly the opposite from the rankings in spurious-free energy 
consumption. Specifically, conventional MSLs exhibit lower switching energy 
consumption than do pulse-triggered designs. However, pulse-triggered designs 
are less prone to glitches, which ultimately affect the robustness of the design. 
It is therefore important to consider the possible degradation in signal integrity 
because of glitches. 

CSE glitch sensitivity depends on its structure. In general, the flip-flops (SDFF, 
HLFF, M-SAFF) exhibit greater glitch immunity than do M-S latches (MSL, 
C2MOS) (see Fig. 6.16). This is because internal nodes in the flip-flops are cou- 
pled with D input only during the narrow period when a flip-flop samples input 
data, whereas in MSLs, the master latch, when transparent, is sensitive to glitches 
during the whole transparency window. Circuits with internal clock gating are 
susceptible to glitches the most, because the glitches affect both their internal 
nodes and the nodes inside the clock-gating logic. 

As an illustration of glitching energy consumption, Fig. 6.16 contains a 
comparison of the average glitching energy in various CSE topologies. In this 

4.0 

3.5 , , 

glitching activity, p 
Figure 6.16. Comparison of average glitching energy in CSEs. (Markovic et al. 2001), 
Copyright 0 2001 IEEE. 
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Figure 6.17. Glitching energy as a percentage of switching energy in representative CSEs 
showing the greatest glitch sensitivity of the gated designs. 

example, it is assumed that each of the four glitches discussed in Chapter 3 occurs 
with equal probability: 81 = 82 = 83 = 8 4  = 8/4. Flip-flop circuits (SDFF, 
HLFF, M-SAFF) consume the smallest input glitch energy because of their 
narrow sampling time. M-S latches (MSL, C2MOS) are more susceptible to 
glitches, particularly during the half-period when the master stage is transparent. 
The highest glitch energy consumption of the gated designs (COD-PL, G-MSL) 
is due to the fact that the clock-gating logic continuously compares D and Q 
and propagated glitches regardless of the clock level. 

Figure 6.17 shows glitching energy in a representative flip-flop, MSL, and 
clock-gated latch, relative to their switching energy. The figure indicates that the 
glitch energy is the smallest portion of the useful (glitch-free) energy in flip-flops 
(SDFF example), has more impact on M-S latches (MSL example), and is the 
most significant in designs with internal clock gating (G-MSL example). 



CHAPTER 7 

SIMULATION TECHNIQUES 

Results and conclusions about the performance of different CSEs depend 
significantly on the simulation setup and evaluation environment. CSE is just 
one of the elements in the pipeline, and has to be sized in such a way that the 
optimum performance for a given output load is achieved. The CSE output loads 
vary a lot across the processor core, depending on the level of parallelism in each 
unit and also on whether the CSE is on the critical path or not. 

In modern data paths CSEs experience a heavy load due to the parallel execution 
units and increase in interconnect capacitance. It is the performance of these CSEs 
on the critical path that has the highest impact on the choice of processor cycle time. 
Hence, in high-speed designs, the design and evaluation of CSEs is focused on the 
elements on the critical path and often implicitly assumes such conditions during 
performance comparisons. On the other hand, there are a lot of CSEs that are placed 
on noncritical paths with relatively light loads. While these CSEs do not directly 
impact the performance of the processor, careful design of these elements can 
significantly reduce energy consumption and alleviate clock distribution problems. 

The purpose of this chapter is to recommend simulation techniques that design- 
ers can use to evaluate the performance of CSEs, depending on the desired 
application. Most importantly, we try to build an understanding of the issues 
involved in creating a simulation environment for the CSE, such that the reader 
can use the information to tailor his or her own setups to the specific application. 
There is no universal setup that is good for every CSE application. 

7.1. THE METHOD OF LOGICAL EFFORT 

The method of logical effort is an easy and intuitive approach to the gate- 
sizing problem (Sutherland and Sproull 1991). This method is especially useful 

125 

Digital System Clocking: High-Performance and Low-Power Aspects 
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic 

Copyright 0 2003 John Wiley & Sons, Inc. 
ISBN: 0-471-27447-X 



126 SIMULATION TECHNIQUES 

in getting the initial design point right and helps to build intuition about the 
performance of different circuit topologies. In this section we introduce the 
methodology of logical-effort and describe how it can be applied to CSE siz- 
ing optimization. The logical effort methodology and reasoning are used heavily 
throughout this chapter, so we start with an explanation of the basic princi- 
ples that will help us define the proper simulation setup and CSE performance 
evaluation later. 

The logical-effort approach is based on an equivalent RC circuit model. The 
RC delay model describes delays caused by the capacitive load that the logic 
gate drives and by the topology of the logic gate. Inverters, as simplest logic 
gates, drive the loads most efficiently. More complex logic gates often require 
more transistors, some of which are connected in series, making them poorer 
drivers as compared to inverters. For example, a NAND gate introduces more 
delay than an inverter with similar transistor sizes, while driving the same load. 
The method of logical effort quantifies these effects in order to simplify delay 
analysis for individual logic gates and complex multistage logic networks. 

The delay of a logic gate has two components: (1) a fixed component called 
the parasitic delay, p ,  and ( 2 )  a component that is proportional to the gate’s 
output load called the effort delay or stage effort, f .  The total delay defined in 
Eq. (7.1) and measured in units of technology-dependent time constant, is the 
sum of the effort delay and parasitic delay: 

The effort delay is a product of logical and electrical efforts, Eq. 7.2, which 
depend on the load and on the properties of the logic gate driving the load: 

The logical effort, g, describes the effect of the logic gate’s topology on its 
ability to produce output current. It is independent of the size of the transistors 
in the circuit. The electrical effort, h ,  characterizes the load and describes how 
the size of the transistors in a gate affects its driving capability: 

where Cour is the total output load capacitance, and Ci, is the input gate capaci- 
tance, implicitly representing the size of the gate. 

7.1 .I. Multistage Logic Networks 

In multistage logic networks, the method of logical effort computes the optimal 
number of stages and the minimum overall delay by balancing the delay among 
the stages. The notions of logical and electrical effort can be generalized from 
individual gates to multistage paths. 
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The logical effort, G, along a path is the product of the logical efforts of all 
the logic gates along the path. The electrical effort, H ,  of a multistage logic 
network is the ratio of the load capacitance at the last stage in the path to the 
input capacitance of the first logic gate in the path. A new kind of effort, named 
branching effort, is introduced to account for fan-out within a logic network. The 
branching effort, b, at the output of a logic gate is defined as 

(7.4) 

where Con-path is the load capacitance along the analyzed path and Coff-parh is the 
capacitance of connections that lead off that path. If the path does not branch, 
the branching effort is equal to one. The branching effort, B ,  along the entire 
path is the product of the branching efforts of all the gates along the path. 

As with the stage effort of individual logic gates, the path efSort, F ,  is defined 
in the multistage logic networks as the product of the logical, electrical, and 
branching efforts: 

F = G . B . H  (7.5) 

Minimum delay along an N-stage logic network is achieved when each of the 
stages in the path bears the same stage effort. The minimum delay is achieved 
with the stage effort: 

f = g . . h . - F 1 ” ,  I I -  V i = l ,  ..., N (7.6) 

where subscript i denotes the ith stage on the path. The minimum path delay 
is then 

(7.7) D = N ‘ F‘IN i- P 

where P accounts for the total parasitic delay along the path. If N = 1, this 
equation reduces to Eq. (7.1). 

All stages have the same effort delay, from Eq. (7.6), so once the effort delay 
is determined, the transistors in each logic stage are sized accordingly. Starting 
at the end of the path and working backwards, the input capacitance, Cin(i), of 
each logic gate is determined from the capacitance transformation: 

(7.8) 

and appropriately distributed among the transistors in the gate connected to 
the input. 

7.1.2. Logical Effort of Logic Gates Commonly Found in CSEs 

By definition, a static inverter has the logical effort of one. The logical effort 
of other gates depends on their current-driving ability, with respect to that of an 
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inverter, for the same input capacitance. Correspondingly, logical effort can be 
stated as the ratio of the gate to inverter input capacitance when both the gate 
and the inverter are sized so that they have the same drive current. A two-input 
static NAND gate with the same drive characteristics as the inverter in Fig. 7.la 
is shown in Fig. 7.lb. Since the two pull-down transistors are in series, each 
must have twice the conductance of the inverter pull-down transistor. The input 
capacitance of such a static gate is 413 times bigger than that of the inverter 
with the same current-driving capability. This ratio exactly represents the logical 
effort of the static NAND gate with respect to the static inverter, which serves 
as a reference. Similarly, the pull-up transistors of a two-input static NOR gate 
must have twice the conductance of an inverter pull-up transistor, as shown in 
Fig. 7 . 1 ~ .  Hence the input capacitance of the static NOR gate is 5/3 times larger 
than that of the reference inverter for the same current drive. By analyzing the 
static-gate topologies, one concludes that any type of static logic gate will have 
a greater logical effort than the reference inverter. This, however, is not true 
for other circuit styles when compared to static CMOS. For example, a domino- 
style inverter has 2/3 times the capacitance of the static inverter for the same 
current drive (Fig. 7.ld). The logical effort of the domino-style inverter is 2/3 
when compared to a static inverter. In the example derivations in Fig. 7.1, logical 
effort was calculated based on RC pull-down delays relative to that of a static 
inverter. In general, each input of the gate has a pull-down and pull-up logical 
effort, and the two are equal only if the pull-down and pull-up paths are balanced, 
that is, have the same current drive. Gates with unequal pull-down and pull-up 
logical efforts are often used to improve the performance in circuits where the 
logical function of the gate allows this technique to be used, that is, where one 
logic value is needed sooner than the other one. These gates are called “skewed’ 
gates. An example of a skewed gate is the output inverter of a domino gate where 
the precharged input falling to the output of the rising inverter is the time-critical 
transition, requiring a good pull-up inverter drive. The pull-down inverter path 
is not so important, so the size of the n-MOS transistor can be decreased, which 
leads to a smaller total input capacitance with a constant p-MOS transistor current 
drive. In this way, the logical effort of the pull-up path decreased at the expense 
of the logical effort of the pull-down path. 

Besides regular gates, some other structures, such as transmission gates or 
pass-transistor logic, are frequently encountered in CSE topologies. These types 
of logic are much harder to analyze in the context of logical effort, since their 
delay depends on the structure driving such a gate. The logical-effort method- 
ology assumes that a gate is isolated from the preceding gate by its input 
capacitance. One easy way to include the pass gate into the logical-effort frame- 
work is to treat the pass gate and its driving gate as one complex circuit. In 
this context, the pass gate increases the logical effort of the resulting complex 
gate with respect to the driving gate alone. This occurs because of the additional 
series resistance of the pass gate added to the signal path. In CSE circuits it is 
often the case that the clock and its complement control the pass-gate transistors, 
as in Fig. 7.2. The resulting complex gate has two inputs, the data, A, and the 
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RCA,gatel RcA,gate2 - 3 
gA,gateZ = RC - - 

A,inv A,mv * 
FICA inv gA,inv= A = 1 
RcA,inv gA,gatel = RC = 

(a) (b) (c) 

Figure 7.2. Logical effort of gate driving a transmission gate: (a) reference inverter, 
(b) slow-data input, (c) fast-data input sizing. 

clock, Clk and Clk. Depending on the transistor sizing, each input can have a 
different logical effort. For example, in Fig. 7.2b, transistors are sized in such 
a way that half the resistance on the current path is due to inverter transistors 
and half is due to the pass-gate transistors. In this arrangement input A has a 
logical effort of 2, while the logical effort of CZk input is 2/3, when compared 
to the comparable inverter in Fig. 7.2a. It is possible to speed up the data input 
by increasing the size of the pass-gate transistors, as shown in Fig. 7.2c, where 
logical effort is 3/2 for data input and 4/3 for Clk input. The increase in the 
size of the pass-gate transistors results in a delay decrease on the data path, but 
quickly reaches the point of diminishing returns. In addition to that, the parasitic 
capacitance at the output node increases, making this technique effective only 
in the cases when the load is much bigger than the parasitic capacitance of the 
transmission gate. Despite the limitations just described, this trade-off technique 
is heavily used in CSEs that are placed in critical paths. There, the extra clock 
power is often traded for a decrease in the CSE delay. 

Although the logical effort is a useful tool, some modifications are needed in 
order to use it efficiently in the design of real submicron circuits. To simplify 
matters, the preceding analysis was based on a long-channel MOSFET model, 
suitable for back-of-the-envelope calculations. In reality, the logical effort of 
stacked devices is lower because of the short-channel (velocity saturation) effect, 
and is usually extracted from simulations. The RC delay model also fails to 
capture the effects of variable signal slopes on delay. However, the signal slopes 
tend to be equal in well-designed circuits with equal-effort delay. 

7.2. ENVIRONMENT SETUP 

Setting up the simulation environment is the key task of every performance compar- 
ison. The simulation setup has to be organized so that it provides the conditions for 
a fair comparison of different structures, yet addresses their intended application. 
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Several recent studies used somewhat different simulation setups, addressing 
different aspects of the CSE applications. We will describe some of the important 
concepts that these studies have addressed and present a global simulation setup 
framework that can be fine-tuned further for the particular application intended. 
The environment setup for comparing the CSEs in Stojanovic and Oklobdz- 
ija (1999) used a single-size load, chosen in a way that resembles the typical 
situation in a moderately to heavily loaded critical path in a processor with lots 
of parallelism. All the CSEs were sized so as to achieve optimum data-to-output 
delay for the given output load while driven from the fixed-size inverters. In 
most practical situations, the CSEs are designed in a discrete set of sizes, each 
optimized for a particular load. Hence, it is very useful to examine the perfor- 
mance of the CSE for a range of loads around the load for which the CSE was 
optimized. This technique is illustrated in Nikolic and Oklobdzija (1999), where 
different CSEs are initially sized to drive a fixed load, and the load is then var- 
ied. In this setup, the delay of a CSE will exhibit linear dependence on the load, 
with the slope of the delay curve illustrating the logical effort of the driving 
stage of the CSE, and the zero-load crossing illustrating the parasitic delay of 
the driving stage together with the delay of the inner stages of the CSE. As we 
will see in the remainder of this section, this is not the optimal behavior of the 
CSE delay curve, but is the best that can be achieved when there are only a few 
CSE sizes available in the library. In the case where the CSE can be reoptimized 
for each particular load, further speedup can be achieved, since the effort can 
be shared between stages rather than relying solely on the output stage. This 
approach was illustrated by Heo and Asanovic (2001). However, contrary to the 
conclusions in that paper, in the case where the general performance of a CSE 
needs to be assessed, the proper approach is to optimize the CSE for the most 
important application that determines the performance of the whole system, not 
the most frequent application. In high-speed systems, the most important are the 
elements on the critical path, which is typically moderately to heavily loaded due 
to branching to parallel execution units and wire capacitance. The small number 
of critical paths in a processor does not decrease their importance, since it is 
their delay that determines the clock rate of the whole system. The performance 
of a large number of lightly loaded CSEs that are placed off the critical path is 
of concern only if it can be traded for energy savings. 

The simulation approach should attempt to approximate the actual data-path 
environment. The number of logic stages in a CSE and their complexity are 
very dependent on a particular circuit implementation, which leads to differences 
in logical effort, parasitic delay, and energy consumption. Every CSE structure 
needs to be optimized to drive the load with the best possible effort delay. 

A general simulation setup is illustrated in Fig. 7.3. The size of the data input 
is fixed for all CSEs in order to exclude the impact of pipeline logic on the 
CSE comparison. The data signal has a signal slope identical to that of an F04 
inverter, which is the case in a well-designed pipeline. This setting is typical in 
designs where delay and energy requirements are balanced. On the other hand, in 
the high-speed design methodology of Intel, Sun Microsystems, and the former 
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Figure 7.3. General simulation setup. 

Digital Corporation, F03 inverter metric is more common than F04 because of 
a more aggressive design style. 

The size of the clocked transistors is set to the size needed in order not 
to compromise the speed of the whole structure. As discussed in the previous 
section, a direct trade-off exists between the CSE delay and clock energy (size of 
clocked transistors), as some of the clocked transistors are always on the critical 
path of the CSE. An increase in the sizes of the clocked transistors on a critical 
path results in diminishing returns, since data input is fixed. Depending on the 
CSE topology, some structures can trade delay for clocked transistor size more 
efficiently than others, so we allow this to happen up to a certain point. Our goal 
here is to examine CSEs that are used on a critical path, hence the assumption 
that the designer might be willing to spend a bit more clock power to achieve 
better performance. Differences in clock loads ( C ~ l k )  among devices illustrate 
potential drawbacks in terms of clock power requirements, and serve as one of 
the performance metrics. Clock inputs have a signal slope that is identical to 
that of an F04 inverter. This can be changed depending on the clock distribution 
design methodology. 

The question of how to compare differential and single-ended structures has 
always been one of the key issues among the people characterizing and designing 
CSEs. The immediate answer, the most fair, and at the same time the easiest 
one, is that differential and single-ended structures should not be compared with 
each other, due to the cost that single-ended structures incur in generating the 
complementary output. We have decided to follow the other approach, and not 
require that single-ended structures generate both true and complementary values 
at the output. 

The worst-case analysis requires that the CSE generate the output that has 
worst data-to-output delay. However, it is also beneficial to measure both the 
D - Q  and D - e  delay. Any imbalance between the two can lead to big delay 
savings in cases where proper logic polarity manipulation in the stages preceding 
or following the CSE can change the polarity requirement of the CSE, and hence 
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...... 

its data-to-output delay. The load model always consists of several inverters in 
a chain to avoid the error in delay caused by Miller capacitance effects from the 
fast switching load back to the driver. 

The logical-effort framework offers analogy between the CSE and a simple 
logic gate. At light load, the logic gate is dominated by its parasitic delay, that 
is, self-loading. At high load, the effort delay becomes the dominant factor. 
Similarly, at light load, delay of a CSE with large number of stages is entirely 
dominated by parasitic delay. However, at high load, more stages are beneficial in 
reducing the effort delay, which then dominates over parasitic delay. Therefore, 
the performance of the CSE is best assessed if it is evaluated in a range of output 
loads of interest for the particular application. 

CSE evaluation can either be performed using some representative critical-path 
load or a set of loads can be used, in which case the CSE has to be reoptimized 
for each load setting. Depending on the choice of the output load size, some 
CSE structures with an inherently small number of stages and high logical effort 
may require additional buffering in order to achieve the best-effort delay. This 
is shown in Fig. 7.4, where for some fixed Gin, the output load C,,, is optimally 
driven by the CSE with logical effort G C ~ E  and K stages, and additional N-K 
levels of inverters. 

Now, for each CSE we need to find the optimal effort per stage and number 
of stages to drive the required load, as shown in Eqs. (7.7)-(7.9) 

CSE 
0 ...... p...D. ........... -1 

Clk clk f 

Starting from total electrical fan-out, H ,  the optimal number of stages, N, 
is obtained by rounding the logarithm of the total path effort (assuming gl,, 
is unity). The logarithm is of base 4, since a stage effort of 4 is a target for 
optimal speed. Once the integer number of stages is obtained, an updated value 



134 SIMULATION TECHNIQUES 

of the stage effort is found from Eq. (7.9). After the stage effort is obtained, 
CSE internal stages have to be resized for the new stage effort as well as for the 
external inverters, if there are any. 

This sizing approach is optimal even in the case where no additional inverters 
are required, since it will serve to distribute the effort between the internal stages 
of the CSE. We now illustrate the CSE sizing in examples of two widely used 
flip-flops. 

7.2.1. HLFF Sizing Example 

In this example we observe the change in minimum data-to-output ( D - Q  or 
D - e )  delay as the output load of the CSE increases. Before we start investigating 
the effect of different loads on the sizing of the HLFF, let us show how the logical 
effort can be calculated for the given sizing, as shown in Fig. 7.5. It is relatively 
easy to see that the HLFF is made up of a three-input static NAND gate as the 
first stage and a domino-like three-input NAND gate in the second stage. Minor 
variations from standard static NAND sizing for equal logical effort on all inputs 
are needed to speed up the data input and enable the first stage to evaluate before 
the transparent window closes. There is a similar situation in the second stage. 
This HLFF sizing example also illustrates the application of logical effort to 
skewed gates (gates in which one output transition is faster than the other) and 
gates with keepers. 

The critical path of the HLFF is exercised with a 0-to-1 transition at data 
input. The first stage of the HLFF is a skewed NAND gate. This is because one 
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Figure 7.5. HLFF sizing example. 
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of the inputs to the NAND gate is the clock, which precharges the output of the 
first stage before data can go through the first stage. Thus, the role of the data- 
controlled p-MOS transistors is that of a keeper in case the data start changing 
from 1-to-0 within the transparency window, that is, after the rising edge of the 
clock. The logical effort and stage effort of the first stage are calculated as shown 
in Fig. 7.5, for a 0-to-1 transition at data input. The logical-effort calculation of 
the second stage is slightly more complicated because of the keeper-inverter pair. 
A keeper sinks a portion of the current that is sourced by the p-MOS transistor 
to node Q. Therefore, it can be considered as negative conductance. In Fig. 7.5, 
this negative conductance is found by subtracting the conductance of the n-MOS 
transistor (1) of the shaded keeper inverter from the conductance of the driving 
p-MOS transistor (10/2). For the particular load given in Fig. 7.4, efforts per 
stage were calculated to be 4.7 and 4.25, which is near the optimum value of 
4, indicating that this example sizing is nearly optimal. The reader is cautioned, 
however, that the sizing in this example is somewhat simplified, because the 
short channel stack effect has not been taken into account and the logical-effort 
values for the n-MOS transistor stack are somewhat pessimistic. Once the logical 
effort of each stage is known, it can be used to adjust the sizing of each stage 
as the load is increased or decreased. The alternative method is to use one of 
the automated circuit optimizers; however, we do not recommend it as the initial 
method, simply because it is essential that the designer gets to know the circuit 
through manual sizing and logical-effort estimation. This builds intuition about 
the circuit and the ability to verify optimizer results. 

The performance of three different sizing solutions versus the electrical effort 
(fanout) is given in Table 7.1, where the data-to-output delays are normalized to 
the F04 inverter delay. While there is only one optimal solution for each load 
size, in this example we examine only three cell sizes in order to illustrate the 
principle in a simple manner. 

When the load is relatively small, just adjusting the size of the internal stages 
and balancing the stage effort can achieve speedup, as with cell sizes A and B. 
For large loads, an additional inverter stage is needed to bring the stage effort 
close to four. The optimal delays are set in bold in Table 7.1 to illustrate the 
change in the optimal sizing selection with the increase in electrical effort. An 
interpolated version of these data is shown in Fig. 7.6, where all three sizing 
cases are illustrated along with the best sizing versus fanout curve. According 

Table 7.1 
for Different HLFF Cell Sizes 

HLFF Delay (normalized to F04 inverter delay) vs. Fanout 

Fan-out 4 16 42 64 128 

Load size (# stages) 
Small-A (2) 1.60 2.06 3.11 4.19 7.80 
Medium-B (2) 1.80 2.06 2.59 3.05 4.62 
Large-C (2 + 1) 2.27 2.44 2.14 2.96 3.56 
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Figure 7.6. Sizing versus load, HLFF example: (a) linear, (b) log4 scale. 

to the logical-effort theory, the optimal delay versus fanout curve should have 
logarithmic shape, which indeed holds for the “best sizing vs. load curve” in 
Fig. 7.6a. Similarly, the optimal delay is a linear function of the logarithm of the 
electrical effort (fanout), as shown in Fig. 7.6b. The logarithmic fan-out scale 
makes it really easy to see if the stage effort is properly determined. Recall that 
from Eq~(7 .6 )  and (7.9) delay is a linear function of the stage effort and the 
number of stages. The logarithm of the electrical effort approximately illustrates 
the required number of stages, and if the delay checks out to be a multiple of 
the number of stages and F04  delay, then the optimal effort per stage is chosen. 
This is the case in Fig. 7.6b with all the curves that are best in a certain range 
of loads. 

Although it is interesting to evaluate the behavior of a CSE for a wider range 
of loads, most often it is required that the CSE operates well in a much narrower 
range. Typically, high-performance CSEs are placed in critical paths with a rela- 
tively high average load. Thus, in that case, a one-point performance comparison 
can be made for some preselected value that describes the average load of the 
CSE on a critical path. In this book, all the comparisons have been made using 
the moderately high electrical effort of 42 (third column in Table 7.1) 

While the application of logical-effort analysis is applied to HLFF in a straight- 
forward fashion due to the easily recognizable circuit topology, it can also be 
applied to more exotic circuits, such as M-SAFF, that contain sense amplifiers 
and other structures not covered in the introductory section on logical effort. It 
is important to note that logical effort can be calculated or simulated for any 
circuit topology. 

7.2.2. M-SAFF Sizing Example 

In this problem we also observe the minimum D - Q  delay as the output load 
of the CSE increases. The performance of three different sizing solutions is 
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Table 7.2 

Fanout 4 16 42 64 128 

M-SAW Delay vs. Fanout for Different M-SAFF Cell Sizes 

Load size (# stages) 
Small-A (2) 2.33 2.60 3.11 3.53 4.70 
Medium-B (2) 2.35 2.59 3.01 3.34 4.24 
Large-C (2 + 1) 3.06 3.15 3.31 3.44 3.83 

illustrated versus the electrical effort, normalized to the delay of the F04 inverter, 
in Table 7.2. 

The sizing is done in a way similar to that described in the HLFF example. The 
only caveat with the M-SAFF structure is to recognize that the logical effort of 
the input stage is very small, better than that of an inverter, because of the small 
input capacitance. This implies that the sizing changes will mostly be located 
in the output stage since the input stage can accommodate larger load variations 
without needing to be resized. While it was relatively easy to find different sizes 
that perform better at certain loads in the case of HLFF, this is not so in the case 
of M-SAFF. The small logical effort of the whole structure enables it to cover 
a huge range of loads, with a single size achieving relatively good performance. 
This is the case with the structure of size B in Table 7.2. In Fig. 7.7 size A is only 
slightly better than size B, and only for a very light load of F04; subsequently 
the size B device takes the lead all the way up to the F064, after which an 
additional inverter is needed to prevent excessive delay. 

7.2.3. Energy Measurements 

While so far we have been mostly concerned about the performance aspects of 
the simulation setup, it is very important to prepare the simulation environment 
correctly, so that the energy parameters of the CSE are measured accurately. 
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fanout 

0 20 40 60 80 100 120 140 1 1.5 2 2.5 3 3.5 

(a) (b) 

Figure 7.7. Sizing versus load, M-SAFF example: (a) linear, (b) log4 scale. 
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We only need to set the measurements to capture the energy for each of four 
possible binary transitions. Accurate average energy estimates can be made with 
these values, based on the statistics of the incoming data. Using state-transition 
diagrams (Zyban and Kogge 1999), more formal methods can be used to exactly 
evaluate the effect of regular transitions and glitches in the total switching energy 
of the CSE. In line with energy breakdown in Chapter 3, in order to measure 
different energies, it is essential to provide separate supply voltages for different 
stages of the CSE. 

7.2.4. Automating the Simulations 

The delay versus load CSE evaluation described in the preceding examples can 
be implemented automatically. Here we outline the procedure for creating such 
an automated simulation environment. The authors suggest Perl as one of the 
most convenient scripting languages today. 

For each CSE, we need to determine the logical effort of every stage based 
on its topology (e.g., two NAND-like stages, one inverter stage, would be 4/3, 
4/3, l), or better yet, exact logical-effort values obtained from the simulation. A 
very good starting point can be the Perl script that characterizes logical effort, 
F04  delay, and much other data for a given technology process, freely available 
from Sutherland et al. (1999). The product of the logical efforts of all the stages 
should equal the total logical effort of the CSE. After the total logical effort is 
found, the optimal number of stages and updated stage effort can be calculated 
from Eqs. (7.7)-(7.9). Now, with stage effort and logical efforts having been 
obtained from the topology of the CSE, taking the data input of a fixed size, and 
assuming that the clock is on (i.e., treating the structure as a cascade of logic 
gates), transistor sizes for every stage can be calculated, progressing from the 
data input to the final load in the simulation setup. 

When a library of CSEs is created, a presimulation should be run for each 
environment parameter setup. This run should include various process corners 
and supply voltages, in order to determine the F04 inverter slope and set that 
value as the rise/fall time of signals that drive the data and clock into the CSE. 
A simulation of the flow is given in Fig. 7.8. 

For each device in the library, D - Q ( G )  delay and Clk-Q(G) delay are stored 
in each run, decreasing the delay between the edge of the input data and clock 
edge (setup time). The script should check for the setup/hold time failure (i.e., 
when the CSE fails to pass the input value to the output). This is typically 
detected by the long Clk-Q delay (i.e., the measurement target occurred in the 
next cycle) or failure to measure the delay if only one cycle is simulated. The 
script automatically finds the minimum delay point at all the specified outputs. 
The whole procedure is repeated for a range of loads and the best sizing curve 
is found, as shown in Figs. 7.6 and 7.7. The following appendix of this book 
contains an example script written in Perl that can serve as the basis of a more 
sophisticated tool for CSE characterization. In addition to the script, we also 
provide example spice decks for HLFF and M-SAFF used in this example. These 
files are a good start for a designer who wants to evaluate various CSE topologies. 
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Figure 7.8. CSE flow simulation. 

7.3. APPENDIX 

This appendix contains a few useful scripts for characterization of the CSEs. A 
list of the files is given below: 

1. Per1 script for CSE characterization; 
2. Parameterized spice deck for F04 inverter delay extraction (called by the 

3 .  Parameterized spice deck for CSE characterization; 
4. Example spice circuit decks for HLFF and M-SAFF. 

CSE characterization script); 

7.3.1. The CSE Characterization Script 

# ! / u s r / l o c a l / b i n / p e r l  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# charCSE.pl 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# 
# The s c r i p t  expects  you t o  pass the  nominal  o p e r a t i n g  

vo l tage,  va lue  f o r  lambda, 
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# and p a t h  t o  t h e  hsp ice  models l i b r a r y .  
# 
# Usage: 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

charCSE.pl VDD lambda p r o c e s s f i l e  

# Load L i b r a r i e s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# 
r e q u i r e  " c t i m e .  p1"  ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# S t a r t  S c r i p t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# Check f o r  p roper  number o f  arguments and e x t r a c t  a rgs  
i f  ($#ARGV !=2) {#$#ARGV i s  number o f  command l i n e  

arguments minus 1 
p r i n t  STDERR "Usage: $0 VDD LAMBDA m o d e l s f i l e \ n " ;  
#$0 i s  s c r i p t  
p r i n t  STDERR "ex  : \n $0 2.5 0.151.1 opCondi t ions 
. l i b \ n "  ; 
e x i t ;  

1 

$VDD = $ARGV[O]; 
$LAMBDA = $ARGV[l]; 
$ p r o c e s s f i l e  = $ARGV[2]; 
$ d i f f w i d t h  =5; # lambda w i d t h  o f  d i f f u s i o n  f rom g a t e  

# s e t  t h e  min-max temperature and v o l t a g e  parameters 

$THIGH = 100; 
$TNOM = 75; 
$TLOW = 0; 
$VHIGH = I . l *$VDD; 
$VLOW = 0.9*$VDD; 

here o r  i n  t h e  l i b r a r y  c a l l  

# S t a r t  t i m e r  
$ t ime = t ime ;  
$a = 0; 
$b = 0; 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# Run S i m u l a t i o n s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# S e l e c t  t h e  a p p l i c a b l e  s im  o r  r u n  them a l l  
( l = y e s ,  O=no) . 

$ r u n a l l =  0; 
$ run1  = 0; # I n v e r t e r :  De lay  v s .  FANOUT 
$ run2  = 1; #FF d e l a y  v s .  FANOUT, FF r e s i z e d  f o r  each 

FANOUT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# P a r t  ( 1 ) :  I n v e r t e r  d e l a y  v s .  f a n o u t  ( r e f e r e n c e )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# 
BcasesINV = ( ’ R i s e ’ , ’ F a l l ’ , ’ A v g ’ ) ;  
@fanoutsINV=(2,4,6,8) ;  
i f  ( $ r u n a l l  1 1  $ r u n l )  { 

f o r e a c h  $ f a n o u t  (@fanou ts INV)  { 
f o r e a c h  $case (BcasesINV) { 

$resultINV[$fanout]{$case} = &runsim 
( “ s i m I n v ”  , “d$case”  , “ !TEMP! ” ,$THIGH, 

$VLOW, ” !FANOUT! ‘I, $ f a n o u t )  ; 
“!CORNER!”, “ T T ” ,  “ !VOLT!“ ,  

1 
1 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# P a r t  ( 2 )  : FF sims vs .  f a n o u t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# s p e c i f y  d e s i r e d  measurement parameters 
#BcasesDUT = (’cqRise’,’cqFall’,’cqbRise’,’cqbFall’, 

#BcasesDUT = (’dqr’,’dqbf’,’dqf’,’dqbr’); 
BcasesDUT = (’dqr’,’dqf’);#(’dqbf’,’dqbr’); 

’ setupQRQbF’ , ’setupQFQbR’) ;  

# s p e c i f y  CSE name f r o m  t h e  l i b r a r y  o f  s i z e s  and CSE 

$nameDUT=’hl f f4 ’ ;  
BfanoutsDUT = (4,16,42,64,128);  #va lues  o f  t h e  f a n o u t  

$dclk-p=50e-12; $dclk-n=Oe-12; #dc l k -s tep=5e- l2 ;  

t y p e s  

sweep 
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# s t a r t ,  end and s t e p  o f  D -C lk  sweep 
$dqmax=le-9; # d - q  d e l a y  f a i l - c h e c k  v a l u e  
# i n i t i a l i z e  de lays  
fo reach  $ fanou t  (@fanoutsDUT) { 

f o r e a c h  $case (@casesDUT) { 
$ d e l a y [ $ f a n o u t ]  {$case}=$dqmax; 

1 
} 

$j=O; 
if ( $ r u n a l l  1 1  $ run3)  { 

foreach $fanout (PfanoutsDUT) { 
f o r  ($dc lk=$dclk-p;  $dclk>=$dclk-n;  $dc l k=$dc lk  

-$dc l k -s tep )  { 
foreach $case (PcasesDUT) { 

$tmpDUT[$case] = &runsim( " s i m " ,  "$case" ,  " 
!TEMP! " , $THIGH, 

" !CORNER! ' I ,  "TT" , 
" ! VOLT ! " , $VDD , 

" ! DUT ! " , $nameDUT, " ! FANOUT ! " , 
$fanout ,  " !SETUP! " , $ d c l k )  ; 

p r i n t  "$tmpDUT[ $case] ' I  ; 
if ( $ d e l a y [ $ f a n o u t ]  {$case} > $tmpDUT 

[$case1 ) { 
i f ($tmpDUT[$case] z 0 ) {  

$ d e l a y [ $ f a n o u t ]  {$case} = $tmpDUT 
[$case]  ; 

1 
1 
p r i n t f  (STDOUT "%2.Of \n" ,  l e l 2 * $ d e l a y  

[ $ f a n o u t ] { $ c a s e } ) ;  
1 

$ j = $ j + l ;  
1 

} 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# F i n i s h  t i m e r  

$date = &ctime(time);chop($date); # g e t  c u r r e n t  d a t e  

$ t ime  = t i m e  - $ t i m e  ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# P r i n t  R e s u l t s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

and s t r i p  new l ine  



APPENDIX 143 

# T h i s  s e c t i o n  p r i n t s  o u t  a l l  t h e  r e s u l t s .  
open (PRINTOUT, " > c o n d . o u t " )  ; 
p r i n t  PRINTOUT " \n * * *  Process C h a r a c t e r i z a t i o n  R e s u l t s  

p r i n t  PRINTOUT "Process F i l e  : $p rocess f  i l e  \ n "  ; 
p r i n t  PRINTOUT "VDD: $VDD LAMBDA: $LAMBDA \ n " ;  
p r i n t  PRINTOUT " O p e r a t i n g  C o n d i t i o n s  : $ o p c o n d i t i o n s  \ n "  ; 
p r i n t  PRINTOUT "Dev ice  l e n g t h s  minimum s i z e .  \ n "  ; 
p r i n t  PRINTOUT "Run completed $da te  i n  $ t i m e  seconds 

c l o s e  (PRINTOUT); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if ( $ r u n a l l  1 1  $ r u n l ) {  
open (PRINTOUT, " > i n v . o u t " )  ; 
f o r e a c h  $ f a n o u t  (@fanou ts INV)  { 

p r i n t f  (PRINTOUT "%2. O f " ,  $ f a n o u t )  ; 
f o r e a c h  $case (OcasesINV) { 

{ $ c a s e } * l  e l  2 )  ; 

* * * \n \n "  ; 

\n\n I' ; 

p r in t f (PRINT0UT " %3 .2 f  ' I ,  $ r e s u l t I N V [ $ f a n o u t ]  

1 
p r i n t f  (PRINTOUT " \ n " )  ; 

1 
c l o s e  (PRINTOUT); 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# 
i f  ( $ r u n a l l  I I $ r u n 2 ) {  
open (PRINTOUT, ">dut$nameDUT . o u t "  ) ; 

fo reach  $fanout  (@fanoutsDUT) { 

f o r e a c h  $case (@casesDUT) { 

{$case} * 1 e l  2 )  ; 

p r i n t f  (PRINTOUT " % 2 . O f " ,  $ f a n o u t ) ;  

p r i n t f (PRINT0UT " %3 .2 f  ' I ,  $ d e l a y [ $ f a n o u t ]  

1 
p r i n t f  (PRINTOUT " \ n " )  ; 

1 

c l o s e  (PRINTOUT); 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# S u b r o u t i n e s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# 
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# The s u b r o u t i n e s  p r o v i d e  a q u i c k  way t o  s t a r t  

# 
# sub runs im 
# 
# T h i s  s u b r o u t i n e  t a k e s  t h e  name o f  t h e  HSPICE deck 

# parameter v a l u e  t o  e x t r a c t  as i n p u t s .  
# I t  s u b s t i t u t e s  t h e  va lues  o f  VDD and p r o c e s s f i l e  you 

# f o r  t h e  v a r i a b l e s  !VDD! and ! L I B !  i n  t h e  HSPICE 

# a l s o  handles any o t h e r  s u b s t i t u t i o n s  you passed. 

# runs HSPICE and e x t r a c t s  t h e  va lue  o f  t h e  parameter 

# by a .measure s tatement  i n  t h e  deck. 

s i m u l a t i o n s  and e x t r a c t  t h e  r e s u l t s  f rom SPICE. 

and a measured 

p r o v i d e  

deck and 

I t t h e n  

you s p e c i f i e d  found 

sub runs im { 
$olddeckname = $deckname; 
$oldmear = $measure; 
@old = @subs; # save o l d  arguments 
@subs = @-; # Grab l i s t  o f  arguments t o  s u b s t i t u t e  

$deckname = s h i f t ( @ s u b s ) ;  # Grab deckname passed 

$measure = s h i f t ( @ s u b s ) ;  # Grab parameter t o  measure 
t o  runs im 

p r i n t  " E x t r a c t i n g  $measure f rom $deckname w i t h : \ n  " ;  
f o r  ($i=O; $i<=$#subs; $ i+=2)  { 

3 
p r i n t  " \ n "  ; 

# If old arguments a re  t h e  same as new ones, 

$ r e c y c l e  = 1;  
f o r  ($ i=O; $i<=$#subs; $ i + + )  { 

p r i n t  " $ s u b s [ $ i ]  = $ s u b s [ $ i + l ]  " ;  

r e c y c l e  o l d  r e s u l t s  

if ( ( $ o l d [ $ i ]  ne $ s u b s [ $ i ] )  I I ($olddeckname ne 
$deckname)) { 

# ($oldmear ne $measure)) { 
$ r e c y c l e  = 0; 

1 
3 
i f  ( $ r e c y c l e  !=  1 )  { 

# Open t h e  s p i c e  deck and a temporary o u t p u t  f i l e  
open(DECK, $deckname. " . h s p " )  

1 I d i e ( " C a n ' t  open $deckname.hsp: $ ! \ n " ) ;  
open(OUT, " >  tmp-deck.hsp") I I d i e ( " C a n ' t  open 

tmp-deck.hsp: $ ! \ n " ) ;  
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# Read each l i n e  o f  t h e  deck, s u b s t i t u t e  VDD 8, 

w h i l e  (<DECK>) { 
s/!SUP!/$VDD/g; 
s/!LAMBDA!/$LAUBDA/g; 
s / ! L I B ! / $ p r o c e s s f i l e / g ;  
f o r  ($i=O; $i<=$#subs; $ i+=2)  { 

p r o c f i l e ,  w r i t e  o u t  

s/$subs[$i]/$subs[$i+l]/g; # r e p l a c e  a l l  
occurrences 

1 
p r i n t  OUT $-; 

1 
p r i n t  "Not r e c y c l i n g \ n "  ; 
# Close f i l e s  
c lose (0UT) ;  
close(DECK); 

# Run HSPICE s i m u l a t i o n  
# Close STDERR w h i l e  r u n n i n g  t o  a v o i d  messages p r i n t e d  

open (SAVEERR, ">&STDERR" ) ; 
close(STDERR); 
sys tem( "hsp ice  tmp-deck.hsp > tmp-deck.out" ) ;  
open(STDERR, ">&SAVEERR") ; 
close(SAVEERR); 

by SPICE 

1 
# E x t r a c t  r e s u l t  f rom o u t p u t  f i l e  
open(RESULT, " tmp-deck.out")  I I d i e (  " C a n ' t  open 

$ r e s u l t  = " " ; 
w h i l e  (<RESULT>) { 

tmp-deck.out: $ ! \ n " ) ;  

i f  ( A * e r r o r / )  { # HSPICE produced an e r r o r  
p r i n t  STDERR "$-" ; 
$next  = <RESULT>; 
d i e  ( " $ n e x t "  ) ; 

1 
i f  (r\s*$measure\s*=\s*(\S+) / i )  { # Search f o r  

$measure = xxx 
$ r e s u l t  = $1; l a s t ;  # and r e c o r d  xxx 

1 
1 
i f  ( $ r e s u l t  eq " " )  { 

1 
r e t u r n  $ r e s u l t ;  

d i e  ( " C o u l d n ' t  f i n d  $measure\n") ; 

11 
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7.3.2. Simulation Bench for F04 Inverter Delay Extraction (simlnv.hsp) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Set supply  and l i b r a r y  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*The s c r i p t  r e p l a c e s  !L IB !  w i t h  t h e  u s e r - s p e c i f i e d  

*It a l s o  s e t s  t h e  o p e r a t i n g  c o n d i t i o n s  and process 
l i b r a r y .  

c o r n e r .  

. p r o t e c t  *Don ' t  p r i n t  t h e  c o n t e n t s  o f  

. l i b  ' o p C o n d i t i o n s . l i b '  TT *Load t h e  l i b r a r y  f o r  

. u n p r o t e c t  "Resume p r i n t i n g  SPICE deck 

l i b r a r y  

process c o r n e r  

.temp !TEMP! 

.param Supply=!VOLT! *Set c h a r a c t e r i z a t i o n  v o l t a g e  

.op t  scale=!LAMBDA! *Set lambda 

.param c t  = 10n * c y c l e  t i m e  f o r  t h e  c l o c k  p u l s e  source 

.param r t  = 0.111 * r i s e  t i m e  f o r  t h e  p u l s e  source 

*Save r e s u l t s  o f  s i m u l a t i o n  f o r  v i e w i n g  
. o p t i o n s  p o s t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*De f ine  power supp ly  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. g l o b a l  Vdd Gnd 
Vd d Vdd Gnd ' Supply ' *Supply i s  s e t  by 

. l i b  c a l l  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*De f ine  S u b c i r c u i t s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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.SUBCKT inv in out WP=16 LP=2 WN=8 LN=2 
M-0 out in Gnd Gnd NMOS W=WN L=LN GEO=l 
+ AS=’(WN)*6.1’ AD=’(WN)*3.85’ 
+ PS=’3.00*(WN)+2*6.1’ PD=’2.00*(WN)+2*3.85’ 
+ NRD=’3.85/(WN)’ NRS=’3.85/(WN)’ 
M-1 out in Vdd Vdd PMOS W=WP L=LP GEO=1 
+ AS=’(WP)*6.1’ AD=’(WP)*3.85’ 
+ PS=’3.00*(WP)+2*6.1’ PD=’2.00*(WP)+2*3.85’ 
+ NRD=’3.85/(WP)’ NRS=’3.85/(WP)’ 
.ENDS $ inv 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* Top level simulation netlist 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

xl In Inb inv *set appropriate slope 
x2 Inb Inv inv M=’!FANOUT!’ *drive real load 
xll Inv Dml inv M=’!FANOUT!*!FANOUT!’ *real load 
xdl Dml DD1 inv M=’!FANOUT!*!FANOUT!*!FANOUT!’ 

*load on load-important 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* Stimulus 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Format of pulse input: 
*pulse v-initial v-final t-delay t-rise t-fall 

t-pulsewidth t-period 

Vin In Gnd pulse 0 ’Supply’ Ins ’rt’ ’rt’ ’ct/2-rt’ 
’ct ’ 

*Set Initial Conditions to insure no false transitions 

*initialization 
during 

.IC V(Inb)=’Supply’ V(Inv)=O V(Dml)=’Supply’ V(DDl)=O 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Measurements 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.measure dRise 
+ TRIG v(1nb) VAL=’Supply/2’ FALL=I 
+ TARG v(1nv) VAL=’Supply/2’ RISE=l 
.measure dFall 
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t TRIG v (1nb)  VAL=’Supply/2’  RISE=1 
+ TARG v ( 1 n v )  VAL=’Supply/2’  FALL=l 

.measure dAvg p a r a m = ’ ( d R i s e + d F a l l ) / 2 ’  

. t r a n  .001ns 12ns 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*End o f  Deck 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.end 

7.3.3. CSE Simulation Bench in SPICE (sim.hsp) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Set supp ly  and l i b r a r y  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*The s c r i p t  r e p l a c e s  ! L I B !  w i t h  t h e  u s e r - s p e c i f i e d  

*It a l s o  s e t s  t h e  o p e r a t i n g  c o n d i t i o n s  and process 
l i b r a r y .  

c o r n e r .  

.param Sup=!SUP! 

. p r o t e c t  *Don ’ t  p r i n t  t h e  c o n t e n t s  o f  

. l i b  ’ o p C o n d i t i o n s . l i b ’  !CORNER! *Load t h e  l i b r a r y  

.unp ro tec t  “Resume p r i n t i n g  SPICE deck 

.temp !TEMP! 

.param Supply=!VOLT! *Set  c h a r a c t e r i z a t i o n  v o l t a g e  

. o p t  scale=!LAMBDA! *Set lambda 

l i b r a r y  

f o r  process co rne r  

.param cc = 2n * c y c l e  t i m e  f o r  t h e  c l o c k  p u l s e  source 

.param cd  = ’ 4 * c c ’  * c y c l e  t i m e  f o r  t h e  d a t a  p u l s e  source 

.param rt = O . ln  * r i s e  t i m e  f o r  t h e  p u l s e  source 

*Save r e s u l t s  o f  s i m u l a t i o n  f o r  v i e w i n g  
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. o p t i o n s  p o s t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*De f ine  power supp ly  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. g l o b a l  Vdd Gnd 
Vdd Vdd Gnd ’ S u p p l y ’  *Supply i s  s e t  by . l i b  c a l l  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

“De f ine  S u b c i r c u i t s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
.SUBCKT i n v  i n  o u t  WP=16 LP=2 WN=8 LN=2 
M-0 o u t  i n  Gnd Gnd NMOS W=WN L=LN GEO=1 
+ AS=’(WN)*6.1’ AD=’(WN)*3.85’ 
+ PS=’3.00R(WN)+2*6.1’ PD=’2.00*(WN)+2*3.85’ 
+ NRD=’3.85/(WN)’ NRS=’3.85/(WN)’ 
M-1 o u t  i n  Vdd Vdd PMOS W=WP L=LP GEO=1 
+ AS=’(WP)*6.1’ AD=’(WP)*3.85’ 
+ PS=’3.OO*(WP)+2*6.1’ PD=’2.00*(WP)+2*3.85’ 
+ NRD=’3.85/(WP)’ NRS=’3.85/(WP)’ 
.ENDS $ i n v  

. i n c l u d e  ’ !DUT!.hsp’  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Top l e v e l  s i m u l a t i o n  n e t l i s t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.param nstages=2 
*xD D D 1  i n v  wp=4 wn=4 m=’FO-1’ 
*xDdum D 1  Dldum i n v  wp=4 wn=4 m=’FO*(FO-1)’ 
*xDb Db D b l  i n v  wp=4 wn=4 m=’FO*(FO-1)’ 
*xDbdum D b l  Dbldum i n v  wp=4 wn=4 m=’FO*(FO-1)’ 

xDUT C l k  D Db Q Qb !DUT! 
xQ Q Q1 i n v  wp=16 wn=8 m=’!FANOUT!’ 
xQdum Q1 Qldum i n v  wp=16 wn=8 m=’4*!FANOUT!’ 
*xQb Qb Q b l  i n v  wp=16 wn=8 m=’!FANOUT!’ 
*xQbdum Q b l  Qbldum i n v  wp=16 wn=8 m=’4*!FANOUT!’ 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*St imulus 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Format o f  p u l s e  i n p u t :  
“pu lse  v - i n i t i a l  v - f i n a l  t -de lay t - r i s e  t - f a l l  

t -pu lsewid th  t - p e r i o d  

Vd D Gnd p u l s e  0 ’Supply ’  ’cc-!SETUP!’ ’ r t ’  ’ r t ’  

Vdb Db Gnd p u l s e  ’Supp ly ’  0 ’cc-!SETUP!’ ’ r t ’  ’ r t ’  

Vc lk  C l k  Gnd p u l s e  0 ’Supp ly ’  0 ’ r t ’  ’ r t ’  ’ c c / 2 - r t ’  ’ c c ’  

’ c d / 2 - r t ’  ’ c d ’  

’ c d / 2 - r t ’  ’ c d ’  

*Set I n i t i a l  C o n d i t i o n s  t o  i n s u r e  no f a l s e  t r a n s i t i o n s  

* i n i t i a l i z a t i o n  
. I C  V(xDUT.Q)=O V(xDUT.Qb)=’Supply’ 

d u r i n g  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*Measurements 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.measure cqRise 
+ T R I G  v(C1k) VAL=’Supply/2’  RISE=2 
+ TARG v ( Q )  VAL=’Supply/2’  RISE=I 
.measure c q F a l l  
+ T R I G  v(C1k) VAL=’Supply/2’  RISE=4 
+ TARG v ( Q )  VAL=’Supply/2’  FALL=I 

.measure cqbRise 
+ T R I G  v(C1k) VAL=’Supply/2’  RISE=4 
+ TARG v(Qb) VAL=’Supply/2’  RISE=1 
.measure c q b F a l l  
+ T R I G  v(C1k) VAL=’Supply/2’ RISE=2 
+ TARG v (Qb)  VAL=’Supply/2’  FALL=I 

.measure setupQRQbF 
+ T R I G  v(D)  VAL=’Supply/2’  RISE=I 
+ TARG v(C1k) VAL=’Supply/2’  RISE=2 

.measure setupQFQbR 
+ T R I G  v(D) VAL=’Supply/2’  FALL=I 
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+ TARG v(C1k) VAL=’Supply/2’ RISE=4 
.measure dqr PARAM=’cqRise+setupQRQbF’ 
.measure dqbf PARAM=’cqbFall+setupQRQbF’ 
.measure dqf PARAM=’cqFall+setupQFQbR’ 
.measure dqbr PARAM=’cqbRise+setupQFQbR’ 

.tran .001ns ’ 5 * c c ’  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*End of Deck 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.end 

7.3.4. Example HLFF Deck (hllfl6.hsp) 

*FILE: hlffl6.hsp 
*SPICE netlist for “hlff” 
*start main CELL hlff 

.SUBCKT hlffl6 Clk D Db Q Qb 
Xinv145 Q Qb inv WP=8 LP=2 WN=4 LN=2 
Xinv152 Qb Q inv WP=8 LP=2 WN=4 LN=2 
Xinv159 Clk net-1 inv WP=8 LP=2 WN=4 LN=2 
Xinv264 net-2 Clkbbb inv M=4 WP=8 LP=2 WN=4 LN=2 
MnD net-3 D net-4 Gnd NMOS W=8 L=2 GEO=l M=2 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
Xinv399 net-1 net-2 inv M=4 WP=8 LP=2 WN=4 LN=2 
MpClk X Clk Vdd Vdd PMOS W=4 L=2 GEO=1 
+ AS=’(4)*6.1’ AD=’(4)*3.85’ 
+ PS=’3.00*(4)+2*6.1’ PD=’2.00*(4)+2*3.85’ 
+ NRD=’3.85/(4)’ NRS=’3.85/(4)’ 
MpClkbbb X Clkbbb Vdd Vdd PMOS W=4 L=2 GEO=l 
+ AS=’(4)*6.1’ AD=’(4)*3.85’ 
+ PS=’3.00*(4)+2*6.1’ PD=’2.00*(4)+2*3.85’ 
+ NRD=’3.85/(4)’ NRS=’3.85/(4)’ 
MnClk X Clk net-3 Gnd NMOS W=8 L=2 GEO=I M=4 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
MnClkbbb net-4 Clkbbb Gnd Gnd NMOS W=8 L=2 GEO=1 M=4 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
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+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’  NRS=’3.85/ (8) ’  
MpD X D Vdd Vdd PMOS W=8 L=2 GEO=l 
+ AS=’ (8 ) *6 .1 ’  AD=’(8)*3.85 ’  
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’  NRS=’3.85/ (8) ’  
MpoutQ Q X Vdd Vdd PMOS W=8 L=2 GEO=1 M=20 
+ AS=’ (8 ) *6 .1 ’  AD=’(8)*3.85 ’  
+ PS=’3.00*(8)+2*6.1 ’  PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/ (8) ’  NRS=’3.85/ (8) ’  
MnoutQclk Q Clk  net-5 Gnd NMOS W=8 L=2 GEO=1 M=4 
+ AS=’ (8 ) *6 .1 ’  AD=’ (8 ) *3 .85 ’  
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’  NRS=’3.85/ (8) ’  
MnoutQx net-5 X net-6 Gnd NMOS W=8 L=2 GEO=l M=4 
+ AS=’ (8 ) *6 .1 ’  AD=’(8)*3.85 ’  
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/ (8) ’  NRS=’3.85/(8)’  
MnoutQclkbbb net-6 Clkbbb Gnd Gnd NMOS W=8 L=2 GEO=1 

+ AS=’ (8 ) *6 .1 ’  AD=’(8)*3.85 ’  
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’  NRS=’3.85/ (8) ’  
.ENDS $ h l f f  

M=4 

.GLOBAL gnd vdd 

*assumed parameters 
*hdi f=3.85 hd i f2=6.1  c jga te=2.0  resSD=l 

7.3.5. Example M-SAFF Deck (saffl6.hsp) 

*FILE: s a f f l 6 . h s p  

*SPICE n e t l i s t  f o r  “ s a f f ”  
* s t a r t  main CELL s a f f l 6  
.SUBCKT s a f f l 6  C lk  D Db Q Qb 
Mrst preQ Clk  preQb Vdd PMOS W=16 L=2 GEO=3 
+ AS=’(16)*3.85’  AD=’(16)*3.85’  
+ PS=’2.00*(16)+2*3.85’ PD=’2.00*(16)+2*3.85’ 
+ NRD=’3.85/(16)’  NRS=’3.85/(16)’  
MinM nP Db t a i l  Gnd NMOS W=8 L=2 GEO=1 
+ AS=’ (8 ) *6 .1 ’  AD=’(8)*3.85 ’  
+ PS=’3.00*(8)+2*6.1 ’  PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’  NRS=’3.85/ (8) ’  
Mlmn preQ preQb nP Gnd NMOS W=8 L=2 GEO=1 
+ AS=’ (8 ) *6 .1 ’  AD=’(8)*3.85 ’  
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+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
Mtail tail C l k  Gnd Gnd NMOS W=16 L=2 GEO=1 
+ AS=’(16)*6.1’ AD=’(16)*3.85’ 
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’ 
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’ 
MinP nM D tail Gnd NMOS W=8 L=2 GEO=1 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
Mlpn preQb preQ nM Gnd NMOS W=8 L=2 GEO=1 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
Mlpp preQb preQ Vdd Vdd PMOS W=8 L=2 GEO=I 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
MrstM preQb C l k  Vdd Vdd PMOS W=16 L=2 GEO=1 
+ AS= ’ ( 16) *6.1’ AD= ’ ( 1 6) *3.85 ’ 
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’ 
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’ 
MrstP preQ C l k  Vdd Vdd PMOS W=16 L=2 GEO=1 
+ AS=’ (16) *6.1’ AD=’ (16) *3.85’ 
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’ 
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’ 
Mlmp preQ preQb Vdd Vdd PMOS W=8 L=2 GEO=l 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
MnoutQ Q nQ Gnd Gnd NMOS W=8 L=2 GEO=l M=2 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
MpoutQ Q preQb Vdd Vdd PMOS W=16 L=2 GEO=I M=2 
+ AS=’(16)*6.1’ AD=’(16)*3.85’ 
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’ 
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’ 
MpoutQb Qb preQ Vdd Vdd PMOS W=16 L=2 GEO=I M=2 
+ AS=’(16)*6.1’ AD=’(16)*3.85’ 
+ PS=’3.00*(16)+2*6.1’ P0=’2.00*(16)+2*3.85’ 
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’ 
MnoutQb Qb nab Gnd Gnd NMOS W=8 L=2 GEO=l M=2 
+ AS=’(8)*6.1’ AD=’(8)*3.85’ 
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’ 
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’ 
Xinv235 preQ nQ inv WP=12 LP=2 WN=4 LN=2 
Xinv242 preQb nab inv WP=12 LP=2 WN=4 LN=2 
Xinv249 Q Qb inv WP=16 LP=2 WN=8 LN=2 
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Xinv256 Qb Q i n v  WP=16 LP=2 WN=8 LN=2 
.ENDS $ s a f f l 6  
.GLOBAL gnd vdd 
*assumed parameters 
*hd i f=3 .85  hd i f2=6.1  c jga te=2.0  resSD=l 



CHAPTER 8 

STATE-OF-THE-ART CLOCKED 
STORAGE ELEMENTS IN CMOS 
TECHNOLOGY 

This chapter presents clocked storage elements used in state-of-the-art micropro- 
cessors. MSLs, pulsed latches, and flip-flops represent the fundamental structures 
that are used as a baseline for derivation of circuits with extra features, such as 
internal clock gating, low-swing clock, or double-edge triggering. The design 
style and operation of each circuit implementation is discussed in detail. The 
chapter ends with a comparison, and general design and application recommen- 
dations of each circuit topology. 

8.1. MASTER-SLAVE LATCH EXAMPLES 

8.1 .l. Derivation of Master-Slave Latch 

Most commonly the MSL is built from two transmission-gate (TG) latches. There 
are several latch circuits that can be used in the implementation. The simplest 
one is the latch shown in Fig. 8. la. The problem with this latch is that its storage 
node, S, appears dynamic because there is no pull-down transistor, which makes 
the latch susceptible to noise. A basic static version of this latch is shown in 
Fig. 8.lb, where a pull-down n-MOS device is added to the latch of Fig. 8.la. 
The TG n-MOS transistor is a weak pull-up device, since a logic 1 has reduced 
swing, VDD - V ~ H .  Also, there is a conflict between the TG n-MOS transistor 
and the feedback transistors during both pull-up and pull-down on the node S. 
These problems are remedied in the circuit shown in Fig. 8 . 1 ~ .  An extra TG in 
the feedback avoids the simultaneous pull-up/down problem, while an additional 
p-MOS transistor of the input TG enables good, full-swing, pull-up on node S. 
The latch’s robustness to noise in Fig. 8.lc is therefore traded off for an increase 
in clocking energy. 

155 

Digital System Clocking: High-Performance and Low-Power Aspects 
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic 

Copyright 0 2003 John Wiley & Sons, Inc. 
ISBN: 0-471-27447-X 



156 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY 

* 
(b) 

Figure 8.1. Transmission gate latches. 

- Q  

Figure 8.2. MSL with unprotected input. (Gerosa et al. 1994), Copyright 0 1994 IEEE. 

T 

Clk P 

f' Removed 

Figure 8.3. MSI, with input gate isolation. (Markovic et al. 2001), Copyright 0 2001 
IEEE. 

Usually, the conventional MSL shown in Fig. 8.2 is obtained from the latch 
shown in Fig. 8 . 1 ~ .  The energy consumption of this MSL can be reduced if the 
wire connecting the drains of the top p-MOS and bottom n-MOS transistors is 
removed, as shown in Fig. 8.3. 

Circuit Operation When the clock (Clk)  is low, the TG of the master latch 
is transparent and input data D are stored on the master's latch storage node, 
SM. The output eM of the master latch follows S M  and stores its inverse. The 
feedback of the master latch is turned off, while the feedback of the slave latch 
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is turned on, holding the previously stored value at the slave’s storage node, S s .  
When Clk goes from low to high, the TG of the master latch becomes opaque, 
the master latch’s feedback closes up, keeping the stored value of &. The slave 
latch is transparent, and the output of the master latch, eM, is passed to the 
slave latch and stored on its storage node, Ss. This newly stored value of SS is 
inverted and passed to the output Q of the latch. 

Noise Robustness The master latch of the circuit in Fig. 8.2 is susceptible 
to the input charge injection. Noise sources that affect the latch state node are 
illustrated in Fig. 8.4. 

The latch in Fig. 8.2 is dominantly sensitive to the first noise source. If the wire 
driving the line is long, the neighboring line can capacitively couple to the latch 
input wire and introduce a negative spike (below ground) that will turn on the 
master TG that is nominally off, and the value stored in the master latch will be 
lost. This can be overcome by the input gate isolation as shown in Fig. 8.3. In the 
figure it is shown as an inverter, although it can be any logic gate that is close to 
the latch input. The noise sources arising from unrelated signal coupling (cross 
talk) and power-supply noise are attenuated by the latch feedback that makes 
S M  pseudostatic. There is an additional inverter at the output of the circuit in 
Fig. 8.3 for noninverting operation (shaded inverter). The complementary output 
can be easily generated by the addition of one extra inverter, as shown in Fig. 8.3 
(dashed inverter). 

Starting from the MSL in Fig. 8.2, a number of improvements can be made, 
resulting in the structure shown in Fig. 8.3. Removal of the wire allows for a 
more efficient layout due to the reduction of contact holes when the TGs are 
replaced with series-connected switches (Suzuki et al. 1973). The slave latch 
has the same structure as the master latch with the addition of an extra inverter 
that drives the output and prevents loading of the feedback loop by the output 
capacitance. A similar circuit was proposed by Gerosa et al. (1994). 

Distant 
driver 

D - 6  
@ noise on input 

@ leakage 

@ a-particle and cosmic rays 

@ unrelated signal coupling 

@ power supply ripple 

Figure 8.4. Sources of noise affecting the latch state node. (Partovi in Chandrakasan 
et al. 2001), Copyright 0 2001 IEEE. 
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8.1.2. C2MOS Master-Slave Latch 

The C’MOS MSL, (Suzuki et al. 1973) is based on the C’MOS latch shown in 
Fig. 8.5b. The C’MOS latch is obtained from the TG latch in Fig. 8.5a when the 
wire that connects the drains of the top p-MOS and bottom n-MOS transistors is 
removed from the TG latch. The addition of a weak gated feedback enables the 
pseudostatic operation of the C2MOS MSL, as shown in Fig. 8.6. 

The critical D - Q  path of the C’MOS MSL is shortened by placing the feed- 
back loop outside the path from D to Q. This makes this latch faster than a 
conventional MSL with input gate isolation. 

8.1.3. Comparison 

Figure 8.7 shows the comparison of the timing and energy parameters in the 
MSL and C2MOS latches. In this particular example, the C’MOS latch had 
larger clocked transistors, resulting in energy that is twice as large, as illustrated 

T 

Removed 

(b) 

Figure 8.5. Dynamic latches with gate isolation: (a) transmission gate, (b) C’MOS. 

T 7- 

Figure 8.6. C’MOS latch (C2MOS). (Suzuki et al. 1973), Copyright 0 1973 IEEE. 
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Figure 8.7. Comparison of MSLs: (a) timing, (b) energy. 

in Fig. 8.7b (transitions 0-0 and 1 - 1). The larger clocked transistors resulted in 
reduced Clk-Q delay, which led to both shorter delay and shorter internal race 
immunity of the C2MOS latch. Figure 8.7a shows that the MSL has about 40% 
better internal race immunity and about 20% worse delay for this particular sizing. 
Both of these circuits have moderate delay, which is a general property of MSLs, 
so they are suitable for noncritical paths. In this particular study, MSL would be 
favorable due to larger internal race immunity and smaller energy consumption. 
Both latches were loaded with a small load, corresponding to approximately eight 
minimum-sized inverters. The comparison results can change if the size of the 
clocked transistors is fixed or the latches optimized for a different output load. 

8.2. FLIP-FLOP EXAMPLES 

8.2.1. Hybrid-Latch Flip-Flop 

The HLFF by Partovi et al. (1996) is shown in Fig. 8.8. It is a single-input single- 
output, positive edge-triggered flip-flop. Its derivation is explained in depth in 
Chapter 2. This design initiated a whole series of similar devices, representing 
the limited comeback of flip-flop-based clocking, because the CSEs required 
very low overhead and because of the increasing importance of clock uncer- 
tainty absorption. 

Circuit Operation Prior to the rising edge of Clk, the circuit is in the precharge 
- _ .  . . .  . .. . . .  - . _ .  

phase, node S is precharged to high, and the output inverters hold the previously 
stored logical value on D, which is decoupled from 3 because the second stage 
is off. 

At the rising edge of Clk, the pull-down side of both the first and the second 
stage is enabled for a period of time defined by the three-inverter delay chain. 
During this period the flip-flop is transparent and D can be sampled into the 
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a c'kEEk D 

Figure 8.8. Hybrid-latch flip-flop. (Partovi et al. 1996), Copyright 0 1996 IEEE. 

flip-flop. If D is high in this period, node 3 goes low, forcing a low. If D is 
low, 3 goes high and goes to high. Once Clkl goes low, node 3 is decoupled 
from D and is held at high or the P-MOS device that is driven by Clkl begins 
to precharge it to high. The falling edge of Clkl is the latching edge for the 
pull-down path of the second stage, while 3 rising is the latching edge for the 
pull-up path of the second stage. At the falling edge of Clk, node 3 is precharged 
to high by the p-MOS transistor that is driven by Clk, and remains high as 
long as the Clk stays low. 

8.2.2. Semidynamic Flip-Flop 

The semidynamic flip-flop (SDFF) by Klass (1998), is shown in Fig. 8.9. It is 
a single-input single-output, positive edge-triggered flip-flop. The domino-style 
front end allows for efficient embedded combinational logic and reduces the load 
on the data network. 

Circuit Operation The SDFF is composed of a dynamic front end and a 
static back end. When Clk is low, the circuit is in the precharge phase. Node 
S is precharged high and node Q is decoupled from the first stage. The output 
inverters hold the previous values of Q and a. The evaluation phase begins at 
the rising edge of Clk. If D is low, 3 remains high, driving Q low and high. 

- 

+ 
Figure 8.9. Semidynamic flip-flop. (Klass 1998), Copyright 0 1998 IEEE. 
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With D high, will discharge, driving Q high and a low. Three gate delays 
after the rising edge of Clk, the output, I ,  of the NAND gate goes low, preventing 
discharge of node 3 by subsequent late 0- 1 transitions on D. The narrow capture 
pulse makes this circuit appear edge-triggered. It is worth noting that a glitch 
occurs at Q when D = Q = high, as shown in Fig. 8.10. This problem also 
occurs in the HLFF design. If proper caution is not exercised during transistor 
sizing, this glitch can cause the output latch to change the state. The glitch also 
increases power consumption. 

A more systematic approach in derivation of the structure through Karnough’s 
maps eliminates this problem, as shown by the full realization of SDFF in 
Chapter 2. 

8.2.3. Sense-Amplifier-Based Flip-Flop 

The SAFF (Matsui et al. 1994; Montanaro et al. 1996) is shown in Fig. 8.11. 
It is a differential-input differential-output, positive edge-triggered flip-flop. It 
consists of a pulse-generating stage implemented as a precharged sense-amplifier 
and S- R latch implemented with two cross-coupled NAND gates. Although the 
pulse-generating stage was discussed in detail in Chapter 2, we will address some 
of the issues of this particular implementation in this section. Then we will focus 
on this flip-flop’s speed bottleneck, and show the series of proposed methods to 
improve the speed of this device. 

Circuit Operation This flip-flop operates in the precharge/evaluate mode. 
When Clk is low, the flip-flop is in the precharge phase, the input differential- 
pair is off, and the cross-coupled NAND gates ( S - R  latch) in the output stage 
hold the previously stored logic value at Q and a. 

Time 

Figure 8.10. Illustration of SDFF output glitch. 
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Figure 8.11. Sense-amplifier-based flip-flop. (Montanaro et al. 1996), Copyright 0 1996 
IEEE. 

At the rising edge of Clk, the differential pair senses complementary inputs, D 
and 0, and generates a low pulse on either 3 or x. The S - R  latch captures the 
logic values of the differential inputs and holds them until the next rising edge 
of the Clk. During the evaluation phase, either the 3 or i? is low, discharged 
by the pull-down path conditioned by the Clk and D or 0. If the data value 
changes after the pulse was generated, the pull-down path can be turned off, 
leaving the discharged node (or x) floating. In order to prevent the floating 
node from being charged by the leakage or coupling noise, the alternate pull- 
down path is provided with the addition of the weak n-MOS pass gate, shown in 
dotted lines in Fig. 8.11. The primary role of this pass-gate is to staticize nodes 
S or x when there is a glitch on the data inputs that follows the rising edge 
of the clock (Montanaro et al. 1996). It also helps equalize the voltage values 
of the two differential branches during precharge and minimizes the effect of 
the previously evaluated data values on the following evaluation. The alternate 
methods of providing static operation and enhancements to the pulse-generator 
stage, including its formal derivation, are covered in detail in Chapter 2. 

- 

Evolution of the S-R Latch in the Second Stage The pulse-generating 
stage exhibits a very small delay and setup time, due to its sense-amplifier imple- 
mentation, which incorporates positive feedback. Two cross-coupled NAND gates 
in the S-R  latch present the speed bottleneck of this flip-flop. In the worst case, 
the signal has to propagate through both NAND gates until it reaches the output 
of the flip-flop. More precisely, the falling transition on any of the outputs is 
slower than the rising transition by one NAND gate delay. As the overhead of 
the CSE became more and more important in the devices used on critical paths, 
the SAFF was seen as a structure with great potential for low overhead, due to 
the fast input-sensing stage. The NAND-based S - R  latch was identified as the 
main bottleneck and became the focus of the efforts to improve the speed of this 
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flip-flop. In Fig. 8.12 we have summarized the S- R latch modifications proposed 
over the years. 

The first modification to the classic cross-coupled NAND stage, shown in 
Fig. 8.12a, was accomplished using symmetric push-pull logic (Gieseke et al. 
1991), to implement a symmetric S - R  latch stage. A flip-flop with this output 
stage was used in the critical paths of an Alpha 21264 processor (Partovi in Chan- 
drakasan et al. 2001). One of the major drawbacks of this all-n-MOS push-pull 
scheme are the n-MOS source-followers that have a weak pull-up capability, rely- 
ing on the keeper (cross-coupled inverters at the output) to finish charging the 
output node once the state is changed. The second modification, using a comple- 
mentary push-pull scheme (Oklobdzija and Stojanovic 2001), achieves significant 
speed improvement over the first one by decoupling the role of the push-pull driver 
from that of the keeper. In the circuit in Fig. 8.12b, the 3 and R signals directly 
drive the p-MOS drivers, while S and R are generated from skewed inverters (S 
and R rising much faster than falling). Transistors should be sized such that the 
delay of the p-MOS driver is equal to that of the skewed inverter plus the n-MOS 
driver. In this arrangement drivers are capable of fully switching the output signal 
from rail to rail, without needing help from the keeper. The third modification 
(Nikolic et al. 1999), shown in Fig. 8.12c, introduced the gated keepers in order 
to prevent the conflict between the driver and the keeper during the switching of 
the output. This can potentially speed up the S- R latch, but slows down the first 
stage because of the additional control ports on the keeper that load the first stage 
directly. Depending on the size of the keeper device, the S- R latch versions with 
and without the gated keeper result in better performance. 

8.2.4. Modified Sense-Amplifier-Based Flip-Flop 

The mismatch between rising and falling Clk-Q delays of the SAFF is solved 
using a symmetric S- R latch, as discussed in the previous section. The M-SAFF, 
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Q -  

Figure 8.13. Modified sense-amplifier-based flip-flop. (Nikolic et al. 1999), Copyright 0 
1999 IEEE. 

shown in Fig. 8.13, is composed of the sense-amplifier pulse-generating stage and 
the symmetric S-R  latch with a gated keeper. 

Circuit Operation The overall circuit operation is identical to the operation of 
the SAFF. Inputs and are the set and reset inputs of the S- R latch, respec- 
tively. The low level at both of these inputs is not allowed, which is ensured 
by the sense amplifier. In this implementation of the S - R  latch circuit, both Q 
and a change simultaneously, unlike in the cross-coupled NAND version. The 
inverter-like drivers directly drive the output load, while the output keeper invert- 
ers are gated. This arrangement prevents transient energy dissipation between the 
driver and the keeper inverters. During the precharge phase, the driver is dis- 
abled by the sense-amplifier signals and and the keeper retains the state at 
the output of the flip-flop. There exists a the trade-off in keeper sizing, between 
the delay of the flip-flop affected by the parasitic load of the keeper and the 
length of the wire that the structure can drive due to the requirement to absorb 
coupling noise without a change in state. 

8.2.5. Comparison 

Now that the principles of operation have been explained, the representative 
structures can be compared in terms of delay and energy. The minimum D-Q 
performance is illustrated in Fig. 8.14 for some average CSE load, as explained in 
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Figure 8.14. CSE delay comparison (0.18 km, high load). 

Chapter 7. Delay is expressed in terms of the F04 inverter delay, which is shown 
to be relatively independent of technology scaling. The typical clock-cycle over- 
head due to CSE is 2-4 F04s. The performance advantage of flip-flops (HLFF, 
SDFF, SAFF, M-SAW) over MSLs (MSL, C2MOS) is due to the negative setup 
time of the structures with a transparency window when compared to the pos- 
itive setup time of M-S elements. Due to internal pulse generation, flip-flops 
can have a narrower capturing pulse than externally Pulsed Latches (PLs). These 
latches cannot have an arbitrarily wide clock pulse (hence large negative setup 
time), due to the hold-time restrictions, so in delay performance they are close 
to well-designed flip-flops. It is worth noting that these are just some of the 
state-of-the-art designs that are chosen to illustrate some of the key points in 
high-performance CSE design, and not necessarily to represent the fastest/lowest 
energy structures available. 

In modern processor design, the energy of the CSEs is a very important 
parameter. Following the energy breakdown definitions in Chapter 3.2, Fig. 8.15 
illustrates different components of energy dissipation, which illustrate advan- 
tages/weaknesses in the design of the representative CSEs. There are several 
very important conclusions that we can draw from the illustrated energy com- 
ponents. For one, the MSLs are inherently two-phase elements, and the energy 
needed to generate the second clock phase is either attributed to the external 
clock energy (the energy parameter illustrating the load on the clock distribution 
network) or to the circuitry inside the CSE (internal clock energy). In the case of 
SDFF and HLFF, energy is dissipated in every clock cycle in the pulse generator 
circuitry. Differential structures using precharge dissipate the energy charged in 
the majority of nodes in every clock cycle, such as SAFF or M-SAFF. 

In low-power designs, the performance of a CSE is properly assessed only 
if the structure is evaluated versus supply-voltage scaling, since that is one of 
the most significant ways to save energy. It is important that CSE performs well 
and has robust behavior for a range of supply voltages. Figure 8.16 presents a 
comparison of minimum D-Q delay and internal race immunity, R ,  of flip-flops. 
It is interesting that the relative flip-flop circuit delay analyzed in this example 
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Figure 8.15. CSE energy breakdown (0.1 8 wm, high load). 
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Figure 8.16. Flip-flop Comparisons: (a) delay, (b) internal race immunity (0.25 Lm, 
light load). 

reduces the supply voltage with scaling. This is because of the favorable scal- 
ing of stack transistors with reduced body effect at lower supplies, as in HLFF 
and SDFF, or because of the positive-feedback cross-coupled differential circuits 
in M-SAFF. All of these circuits show a very small race margin, but this is 
usually not a concern, since the fast flip-flop circuits are placed on the criti- 
cal paths. Aggressive clock-skew specification requires careful clock distribution 
and deskewing circuits leading to the increased energy consumed in the clock 
distribution network. 

In low-energy systems, energy is the primary concern. Figure 8.17 shows a 
comparison of energy-per-transition in representative MSLs and flip-flops opti- 
mized for a light output load. All the results are under scaled supply voltage, 
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Figure 8.17. CSE energy-per-transition (0.25 pm, light load). (Markovic et al. 2001), 
Copyright 0 2001 IEEE. 

VDD = 1V in 0.25 k m  technology. The results are different from the case when 
the same set of circuits is optimized for high output load and at a nominal supply 
voltage provided by technology. Most notably, SAFF and M-SAFF optimized 
for light load exhibit higher energy consumption than any of the MSLs, con- 
trary to the high-load case shown in Fig. 8.15. MSLs exhibit the lowest energy 
consumption among the circuits analyzed in this particular example. The MSLs 
are therefore the preferable CSEs in low-energy applications. If the performance 
is not the most important goal, MSLs can be used on the critical paths as, for 
example, in the PowerPC 603 (Gerosa et al. 1994). 

High-performance applications need greater speed and are forced to accept the 
fast CSE structures with high-energy requirements. In low-energy applications 
or in noncritical paths, MSLs are preferred over flip-flops, because the MSLs 
have better internal race immunity and require lower energy consumption, at the 
expense of a small increase in delay. In the following sections, techniques are 
presented that further reduce the energy dissipated in CSEs. 

8.3. CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING 

This technique attempts to minimize the amount of internal clock energy dis- 
sipated in the CSE, which was shown in Fig. 8.15 to be one of the larger 
components in energy breakdown. The gating mechanism turns the internal clock 
off when input and output data are equal. Since there is a cost associated with 
local clock gating, the use of these CSEs is justified for low switching activities 
of the input data. The internal clock-gating technique can be applied to all circuits 
introduced thus far. 
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8.3.1. Master-Slave Latch with Local Clock Gating 

The internal clock gating is applied to MSL, with the idea of further reducing its 
energy consumption and maintaining its good internal race immunity. The gated 
MSL (G-MSL) with internal clock gating is shown in Fig. 8.18 (Markovic et al. 
2001). This latch is derived from MSL. The circuitry for internal clock gating, 
which is similar to the clock gating circuitry presented by Strollo et al. (2000), 
is surrounded by dashed lines in Fig. 8.18. 

Circuit Operation Comparator (comp) performs an XNOR operation on D 
and Q. The comparator is implemented in the complementary pass-transistor logic 
(CPL) technique by Yano et al. (1990), taking advantage of the freely available 
true and complementary signals. This reduces the transistor count of the clock 
gating circuitry. When D # Q ,  output of the comp is low and enables external 
Clk to propagate through the internal clock generation circuits that generate 
internal clocks Clk and Clk 1. 

The pull-up side of the input clock inverter is chosen to be gated because 
the CPL realization of an XNOR has better pull-down, allowing for faster gen- 
eration of the internal clocks than if the pull-down side of the input inverter 
was gated. Weak feedback is added around the inverter that outputs Clkl for the 
pseudostatic operation. 

Compared to the conventional MSL (CMSL), the circuit of Fig. 8.18 achieves 
lower energy consumption when the switching activity of the data input is less 
than 0.3, as shown in Fig. 8.19b. The logic for internal clock gating incurs delay 
cost, which is reflected in the increased setup time of the gated latch, as shown 
in Fig. 8.19a. Internal race immunity in general is not affected by the gating 
operation because of similar variations in the Clk-Q delay and hold time. 

Figure 
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Gated MSL. (Markovic et al. 2001), Copyright 0 2001 IEEE. 
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Figure 8.19. Gated vs. conventional TG MSL: (a) timing, (b) energy. 

8.3.2. Data-Transition Look-Ahead Latch 

The DTLA-L by Nogawa and Ohtomo (1998) is shown in Fig. 8.20. It is a 
noninverting PL. 

Circuit Operation The data-transition look-ahead (DTLA) circuit performs an 
XNOR function on D and Q. When D = Q ,  the DL circuit produces a logic 0 
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D 

Clk 

Figure 8.20. Data-transition look-ahead latch. (Nogawa and Ohtomo 1998), Copyright 0 
1998 IEEE. 

at PI and generation of the internal clock ( C P ,  e} is disabled. When D # Q, 
Pj is low and the CC circuit enables generation of { CP , -1. 

The PG circuit generates a short pulse, CPZ, at every rising edge of the external 
clock, Clk. Internal clock pulse CP then triggers the latch if D # Q. The PG 
is essential for the operation of the latch. If there were no pulse generator, this 
latch could be triggered by data instead of the clock. For example, if D # Q 
and the rising edge of CPZ arrives, then the clock pulse CP is generated and Q 
changes. However, if D changes again while the clock is still high and becomes 
different from Q ,  then another internal clock, pulse CP, would be generated and 
the CSE would be actually triggered by the data. 

Analysis of DTLA-L In order to evaluate the benefit of clock gating, it is 
essential to find the energy cost associated with the internal clock gating circuitry. 
For that purpose, a portion of the DTLA-L circuit shown in Fig. 8.21 is analyzed. 

When the energy-per-transition of the circuit in Fig. 8.20 is subtracted from 
the energy-per-transition of the circuit in Fig. 8.21, the energy cost in data look- 
ahead, clock control, and pulse generator is obtained. This only applies to 0-1 
and 1-0 input transitions, because only then are all subcircuits in Fig. 8.20 and 
Fig. 8.21 active. For 0-0 and 1-1 input transitions, the internal clock (shaded 
inverters) is activated in the circuit of Fig. 8.21 and deactivated in the circuit 
in Fig. 8.20. 

C@ CP 

D Q 

Figure 8.21. DTLA-L without gating. 
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Figure 8.22. Pulse generator. 

The PG is commonly shared among several latches, so further energy break- 
down is needed to understand exactly where the energy goes. The energy con- 
sumed by the PG is estimated by simulation of a stand-alone PG loaded with 
capacitance Ci,,(CC) that CPZ sees when looking into the CC circuit, as shown in 
Fig. 8.22. The PG consumes energy regardless of what input transition occurs. A 
portion of the PG’s energy dissipation is attributed to each CSE through external 
clock energy parameter. 

Energy Efficiency of DTLA-L The energy saving capabilities of DTLA-L 
depend on two parameters: (1) number of latches, N ,  driven by a single PG, 
and (2) input data-transition probability. The energy consumed per latch during 
one clock cycle, when D = Q ,  is given by: 

The energy consumption when D undergoes a 0- 1 or 1-0 transition is given by 
Eqs. (8.2)-(8.3): 

Comparison with M-S Latch Assuming there is no glitching at input D ,  the 
probability of 0-1 and 1-0 transitions is equal: a,0-1 = a,1-0 = a/2,  where a, is 
data-transition probability. Under this postulation, the average energy consump- 
tion of the DTLA-L and the conventional MSL CMSL are: 

In Eq. (8.5), Ec, is the energy consumed in switching the C i n ( C / k )  of the MSL. 
This term represents the energy consumed by the simple clock buffer that drives 
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Figure 8.23. Energy comparison of DTLA-L and CMSL. 

Cin(~lk) and is included for a fair comparison with the DTLA-L where E p c ( N ) / N  
represents the energy consumption in PG per latch. 

Figure 8.23 shows comparison of energy consumption in DTLA-L and MSL 
as a function of N and a. The figure shows that DTLA-L has better energy 
efficiency than the MSL for N > 2 and a < 0.25. 

8.3.3. Clock-on-Demand Pulsed Latch 

The clock-on-demand PL (COD-PL) by Hamada et al. (1999) is shown in 
Fig. 8.24. It is a positive edge-triggered, noninverting PL. The circuits enclosed 
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Figure 8.24. Clock-on-demand PL. (Hamada et al. 1999), Copyright 0 1999 TEEE. 

with dashed lines show the cost associated with pulse generation and data- 
transition look-ahead. 

Circuit Operation As in the DTLA-L, the data-transition look-ahead circuit 
also performs an XNOR function on D and Q. When D = Q ,  XNOR = 0 and 
CP is disabled. When D + Q, the PG circuit generates a short pulse, CP, at 
every rising edge of the external clock, Clk. The pulse ends only when XNOR 
changes to high, which means that its duration is proportional to the delay of the 
transmission gate, inverter, XNOR, and the PG logic. 

Unlike the DTLA-L, the COD-PL has its local pulse generation. As pointed out 
by Hamada et al. (1999), this helps avoid problems with distortion of the pulse 
in the clock distribution and the power penalty of the pulse clock generator. The 
clock control function is integrated in the internal pulse generator of the COD- 
PL, as opposed to the DTLA-L. This reduces the area cost of the COD-PL and 
promises better energy efficiency than in the DTLA-L. 

Energy-Efficient Pulse-Generator Careful optimization of PG is the key to 
the minimization of the energy overhead associated with internal clock gating. 
If the PG circuit were implemented in complementary CMOS, there would be 
energy consumption in the PG even when D is idle, as illustrated in Fig. 8.25. 
In order to avoid this unnecessary energy consumption, AND and NOR circuits 
are implemented as a single compound gate, as shown in Fig. 8.26. 

Comparison with MSL The framework used in the analysis of the energy effi- 
ciency presented in the DTLA-L example is also applied to COD-PL. Extending 
our analysis here a step further and exploring the impact of circuit sizing on 
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Figure 8.25. Straightforward implementation with CMOS gates (energy inefficient). 

Clk 

Figure 8.26. Energy-efficient implementation with compound AND-NOR gate. 

the energy efficiency, we conclude that the internal clock gating technique is 
rarely effective in low-energy designs. This is illustrated in the example of the 
COD-PL where the transistor sizes are optimized for two cases: high-speed and 
low-energy. The sizes of the MSL are optimized accordingly as well. Figure 8.27 
shows energy consumption in COD-PL relative to the energy consumed by 
the MSL versus transition probability a ,  where ao-1 = a1-0 = a / 2 .  Since in 
high-performance circuits clock transistors are large (4 x sizing), this technique 
promises to save energy. as shown in Fig. 8.27. This is because the clock gating 
logic represents a small portion of the overall circuit area. However, in low- 
energy CSEs ( 1  x sizing) with small clock transistors this technique is not as 
effective as depicted in Fig. 8.27. 

8.3.4. Conditional Capture Flip-Flop 

The CCFF by Kong et al. (2000) is shown in Fig. 8.28. It is a positive edge- 
triggered differential-input differential-output flip-flop. As discussed in Chapter 6, 
this circuit is in essence a J - K flip-flop. 

Circuit Operation The CCFF uses the capturing latch of the M-SAFF (Oklob- 
dzija and Stojanovic 2001), in addition to the internal clock gating in the PG stage. 
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Figure 8.27. Impact of circuit sizing on the energy efficiency of COD-PL. (Markovic 
et al. 2001), Copyright 0 2001 IEEE. 
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Figure 8.28. Conditional capture flip-flop. (Kong et al. 2000), Copyright 0 2000 IEEE. 

When Clk is low, the flip-flop is in the precharge phase, s and are precharged 
high, and the S - R  latch is disabled. At the rising edge of Clk, the behavior of 
the CCFF depends on the incoming data value - if the new data are not equal to 
the previously recorded output data, one of the outputs of the NOR gates is high, 
enabling pull-down of or x. The transparency period of the differential pair is 
the sum of two inverter delays and one NOR gate delay long because N and 
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both go low when Clk, is high. During this short transparency period, new data 
are latched by the S - R  latch at the output. 

8.3.5. Comparison 

The delay o f  the gated MSL G-MSL is increased relative to the conventional 
latch, as discussed before, due to an increase in setup time. As in the G-MSL, 
in the DTLA-L and COD-PL, setup and hold times are affected by the delay of 
internal gating logic and also by the width of the internal clock pulse, resulting in 
the delay increase in these CSEs. For example, G-MSL has about a 2F04 larger 
delay than standard MSL, as shown in Fig. 8.29a. It should be noted, though, that 
internal clock gating does not always result in delay degradation. This is in cases 
where the internal clock-gating logic is outside the Clk-Q path, as in CCFF. The 
simulation results for this circuit were not available to us at the time of writing. 
Figure 8.29b contains a comparison of the internal race immunity of the gated 
and the conventional MSL. The G-MSL has an even better internal race margin 
than the conventional MSL because of its increased Clk-Q delay. Figure 8.29b 
also confirms the general trend: flip-flops and PLs have the smallest internal race 
immunity, R ,  MSLs have large R,  and MSLs with internal clock gating have the 
largest R. 

The average energy consumption of the CSEs with internal clock gating as 
a function of input data activity is shown in Fig. 8.30a. Since it is not fair to 
compare flip-flops and MSLs in terms of energy efficiency because the flip-flops 
have a higher performance, a comparison of the energy-delay product is given 
in Fig. 8.30b. From Fig. 8.30b it appears that the DTLA-L is the best latch for 
a E [0.03,0.23]. The MSL offers better energy-delay trade-off than G-MSL for 
a > 0.12. 

5.0 7'- G-MSL , 7 ' .  - . - ,  

4.5 - . - - . _ , _ . _ . _ . _ . -  

4.0 CODPL 

;::I I , I I I , I ,I 
0 
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 

Vdd [V] 
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0.5 
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 
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Figure 8.29. Timing parameters in latches and flip-flops with local clock gating. 
(Markovic et al. 2001), Copyright 0 2001 TEEE. 
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Figure 8.30. Energy and EDP in latches and flip-flops with local clock gating. (Markovic 
et al. 2001), Copyright 0 2001 IEEE. 

The alternative approach to internal clock gating is to minimize the external 
clock energy component. A low-swing clock is distributed to specially designed 
CSEs. This is the topic of the next section. 

8.4. LOW-SWING CLOCK STORAGE ELEMENTS 

A reduced-swing clock CSE technique targets the energy savings in the clocking 
of a CSE. The most effective way to employ reduced-swing clocks is to use 
CSEs that can operate with reduced-swing clock input and that do not require any 
redesign of the clock driver. This class of CSEs has n-only clocked transistors, 
with the clock network simply operating under the reduced supply voltage. 

Standard clocked storage elements cannot be used with a low-swing clock, 
since any clocked p-MOS transistor will not fully turn off, causing static cur- 
rent and reduced robustness. It is therefore imperative to design storage elements 
amenable to low-swing clocking, in order to identify the topology that enables 
maximum energy reduction while incurring minimum delay penalty and degrada- 
tion of robustness to clock noise. Reduced-swing clocking allows energy reduc- 
tion at the expense of some cycle-time increase. As the clock voltage is reduced, 
the consumption of energy also becomes smaller, but with diminishing returns 
as the clocking power becomes much less than the data switching power. 

8.4.1. CSE Examples 

The operation of these latches is much like the conventional topologies they are 
derived from by eliminating p-clocked transistors (e.g., the latch in Fig. 8.31a) 
or adding additional transistors to improve pull-up of the state node (e.g., latch 
in Fig. 8.31d). 

For noncritical paths, the N-only static MSL (N-MSL, Fig. 8.31a) is obtained 
from the standard MSL (Tschanz et al. 2001) by removing the clocked p-MOS 
transistors and allowing gating of only the pull-down keepers. 
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Figure 8.31. N-only clocked latches: (a) conventional TG MSL, (b) pulsed-latch, 
(c) conventional PL, (d) push-pull PL. 

For the performance-critical paths, explicitly pulsed latches are used that allow 
sharing of the pulse generator. N-FF (Fig. 8.31b) is a simple flip-flop (Tschanz 
et al. 2001). N-PL (Fig. 8 .31~)  is derived from the transmission gate-based PL 
presented in Tschanz et al. (2001). An n-only push-pull clocked cycle latch (N- 
PPL, Fig. 8.31d) is constructed from N-PL by adding N1 and N2 for faster 
pull-up operation. 

8.4.2. Comparison 

The framework presented by Tschanz et al. (2001) is used for latch and flip-flop 
optimization in a 130-nm technology, with a 50-fF load at the output for all 
low-swing clock CSEs. A global optimizer is used to determine the sizes of all 
transistors that minimize the energy consumption of the CSE (for data activity 
of 0.1) for different delay targets. CSE delay is the sum of the worst-case Clk-Q 
delay and worst-case setup time, considering both logic polarities in the critical 
paths. The maximum input capacitance of the clock and data drivers is limited 
to 12.5 fF. It is assumed that the input driver is located adjacent to each CSE for 
robust operation. 

Energy-delay comparisons of CSE designs at single high-VDD and with low- 
swing clock (Fig. 8.32) show that while PL offers the best performance at high- 
VDD (Tschanz et al. 2001), PFF is the preferred design for low-swing clocking. 
Assuming that the target delay for performance-critical CSEs is equal to 1.5 x 
F03 (1.2 F04) inverter delays, the low-swing N-PL can achieve 1.8 x F03 (1.4 
F04) inverter delays-20% CSE delay degradation. For noncritical CSEs, MSL 
is the most robust and energy-efficient at high-VDo (Tschanz et al. 2001), while 
N-PPL is best for low-swing clocking. 
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Figure 8.32. CSE energy and delay: (a) high-vdd and (b) low-swing Clk. 

Another important consideration in a design with a low-swing clock is the 
impact of clock noise on CSE delay (Fig. 8.33). We quantify it by measuring the 
increase in Clk-Q delay when the clock swing is reduced by the amount of noise. 
Among the high-performance CSEs considered here, N-FF provides the highest 
robustness against clock noise. All latches fail as clock noise approaches 12% of 
the clock voltage. Nevertheless, N-FF offers the best clock noise rejection. 

N-FF’ and N-PPL circuits are the most energy-efficient choices for 
performance-critical and noncritical parts of a microprocessor with a low-swing 
clock. They also offer better robustness against clock noise than N-CL. Full-chip 
energy savings of low-swing clocking are greater than those from simple Voo 
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Figure 8.33. Effect of clock noise on low-swing clock latch delay. 
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lowering only when the power of the clocking subsystem is more than 30% of 
the total power. 

8.5. DUAL-EDGE-TRIGGERED CLOCKED STORAGE ELEMENTS 

Dual-edge-triggered (DET) CSEs sample their inputs and update their outputs on 
both the rising and falling edges of the clock. With this approach, the maximum 
toggle frequency of the clock is identical to the maximum toggle frequency of 
the data. In contrast, conventional single-edge-triggered clocked storage elements 
require twice as high clock frequency for the same data throughput. Thus, a migra- 
tion from single- to dual-edge triggered clocking strategy to a first approximation 
halves the clock energy. 

8.5.1. DET Latch-mux 

DET Latch-mux (LM) by Llopis and Sachdev (1996), shown in Fig. 8.34, is 
the dual-edge counterpart of single-edge MSL by Gerosa et al. (1994). The 
basic building blocks, latches and the multiplexer, can be easily identified on 
the schematic. The latches are implemented using pass gates and are staticized 
by clocked feedback. The multiplexer realization is pass gate as well. Two-phase 
clocking is used in order to compare the DET-LM to the single-edge MSL and 
to draw some conclusions on the usefulness of the latch-mux arrangement as an 
alternative to the single-edge designs. 

Circuit Operation During the Clk high phase, the upper master latch is trans- 
parent and data are stored at the input of the second pass-gate stage. When Clk 
goes low, the stored upper master data updates the node Q. At that time the input 
pass gate of the upper master latch is turned off, disabling any further updates to 
the Q via the upper master path. Similarly, the lower master stage is transparent 

Q 

clk clk Clk 

Clk +-EK 
Figure 8.34. DET Latch-mux circuit. (Llopis and Sachdev (1996), Copyright 0 1996 
IEEE. 
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during Clk low. The upper and lower paths work in push-pull fashion, alternating 
the data flow from the upper to the lower path in each clock phase. It is worth 
noting that this particular implementation of the slave-mux carries a certain risk 
with it. Suppose that the capacitance at node Q is much bigger than that at the 
input to the slave-mux pass gate. In that case, when the pass gate is turned on by 
the Clk high for the upper path, charge sharing from Q back through the pass 
gate can flip the feedback in the master latch before the master’s information 
is passed forward through the pass gate. This is of special concern in this type 
of design where the capacitance of Q is easily much bigger than at the output 
of the master, due to the parasitic capacitance of the mux pass gates and the 
output inverter. 

8.5.2. DET C2MOS Latch-mux 

DET-C2MOS-LM by Gag0 et al. (1993), Fig. 8.35, is a dual-edge version of the 
C’MOS MSL, Fig. 8.4. The latch design is conventional clocked CMOS, with 
some clock transistors shared by different stages. The multiplexer consists of two 

N4 “k ’ T N 2  , 

I 
N3 

Figure 8.35. C2MOS Latch-mux. (Gago et al. 1993), Copyright 0 1993 IEEE. 
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clocked CMOS inverters and the output buffer inverter. The second clock phase 
is generated locally. 

Circuit Operation During the Clk high phase, data are passed through the 
upper C2MOS master gate with nodes N 4 ,  N5. At the same time, the latch in 
the lower path keeps the previous state and actively drives node Q. When Clk 
goes low, the upper latch becomes transparent and passes the data from the upper 
C’MOS to Q. The upper and lower latches become opaque, while lower gate 
becomes transparent, enabling the data to be updated in the next clock phase. 

The charge-sharing problem, present in DET-LM, is also present in this design. 
Consider the situation where initially Clk is high, Q is low, and the output of the 
upper latch is low. When Clk goes low, and Clk goes high, it is possible for Q to 
flip the input to the latch and not get updated, thereby loosing the information at 
the input of the latch. The feedback speed has to be carefully adjusted, optimizing 
the setup time of the latch and the overall CSE overhead. Another parasitic effect 
deserves to be mentioned. It is possible for data to feed through to the state 
node, Q ,  from the latch through the Miller capacitance of the tristated latch. For 
example, if the lower latch is transparent and the upper latch is opaque, the data 
can feed through the opaque latch via the Miller capacitance to induce noise on 
the Q state, which has to be absorbed by the lower transparent latch. 

8.5.3. DET Pulsed-Latch 

The PL has a very simple structure, consisting of the set of pass gates that define 
the transparency window, buffer inverters, and weak feedback path to keep the 
value stored in the PL output at the end of the transparency window. The clock 
delay line of four inverters defines the transparency window. There are two timing 
windows when the latch is transparent. The first is determined by the overlap 
of the clock, Clk, and the clock delayed by the three inverters, C l k l ,  and the 
second, is determined by the first and fourth delay of the clock, Clk and Clk2 
(Fig. 8.36b). 

The original design by Stroll0 et al. (1999) is semistatic, that is, the feedback 
keeper was implemented for only the high level of the output, Q ,  and the pass- 
gate forward path was implemented using n-MOS transistors only. The design is 
modified by the addition of the complementary feedback and full transmission 
gate (Fig. 8.36). Without the modifications, the original structure exhibited a 
large delay for low-to-high transition, which caused the delay to be twice as long 
compared to any other design. 

Circuit Operation Let us first discuss the operation of the single-edge- 
triggered PL, Fig. 8.36a. At the rising edge of the Clk, both pass gates are turned 
__ on in the duration of three inverter delays-from Clk going low-to-high to 
Clk I going high-to-low. At the same time, the feedback is disengaged, allowing 
for rapid propagation of the input signal to the output. After this transparency 
window of three inverter delays, Clkl, goes low and the first pass gate is turned 
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Figure 8.36. Pulsed-latch: (a) single-edge, (b) dual-edge triggered. 

off, making the latch opaque, while the feedback is engaged to preserve the state 
of the latch. 

The exact operation is a bit more complicated because the input data low has 
a transparency window of three inverter delays from Clk to Clkl, since the signal 
passes through n-MOS pass gates, while the input data high has a transparency 
window of three inverters from Clk to Clkz, which is shifted in time by one 
inverter delay. This causes the setup and hold times to be different for the data 
high or low. The setup time is shorter and the hold time is longer for the input 
high case, since the pass gate turns off one inverter delay later for the input high. 

The dual-edge counterpart is shown Fig. 8.36b, with the upper pass-gate pair 
transparent for three inverter delays after the rising edge of the Clk and the lower 
pass-gate pair transparent for three inverter delays after the falling edge of the 
Clk. As in the single-edge-triggered case, the position of the transparency window 
is data dependent, and the transparency window for the upper pass-gate pair is 
one inverter delay later for the D high than that for the D low. The situation is 
reversed for the lower pass-gate pair, where the transparency window occurs one 
inverter delay later for the D high than that for the D low. 

8.5.4. DET Symmetric Pulse Generator Flip-Flop 

The DET symmetric pulse generator flip-flop (DET-SPGFF) by Nedovic et al. 
(2002) is a novel flip-flop design, featuring a narrow data transparency window 
and clockless output multiplexing scheme. The circuit schematic is shown in 
Fig. 8.37. The first stage is symmetric and creates the data-conditioned clock 
pulse on each edge of the clock (at node Sx on the rising and S y  on the falling 
edge of the clock). The second stage is a two-input NAND gate that effectively 
serves as a multiplexer, implicitly relying on the fact that nodes Sx  and SY 
alternate in being precharged high, while the clock is low and high, respectively. 
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Figure 8.37. DET symmetric pulse generator flip-flop. 

This type of output multiplexing is very convenient, because it does not require 
clock control. The clock energy is mainly dissipated for pulse generation in the 
first stage. 

Circuit Operation Let us examine the operation of the DET-SPGFF in more 
detail, considering the stage topology described in the previous section. Assume 
that the Clk is initially, low and D ,  a, S X ,  and S y  are high. When the Clk 
goes high, Clkl is still high for the length of three inverter delays, enabling the 
discharge of node SX since input D is high. As SX goes low, it pulls a low, 
since the second stage is a NAND gate with inputs S X  and S y .  The event of SX 
going low disables the pull-up path for S X  via the feedback inverter in the first 
stage, so Sx remains static low, even if D changes or the main signal path is 
disabled by Clkl going low three inverter delays after the Clk went high. Node 
Sx is pulled down by the path enabled with the Clk and the feedback inverter. 
When the Clk goes low, node SX is precharged, enabling the node S y  to pass its 
value to the output a in a similar fashion as the node S X  in the previous phase 
of the clock. 

8.5.5. Comparison 

The comparison of the DET-LM and corresponding MSL schematics reveals 
the behavior and performance relationship between MSLs and latch-muxes, in  
general. It is seen that the latch-mux has two equally critical paths that are 
somewhat shorter than that of the MSL (the delay of a multiplexer versus the 
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delay of a latch in the second stage). As with the MSL, the activities of the 
internal nodes in the latch-mux are found to be directly proportional to the activity 
of the input. This indicates good power-consumption scaling with the activity, 
and preservation of the beneficial power-consumption features of the MSL. The 
advantage of the DET-C2MOS-LM design at the circuit level compared to both 
DET-LM and single-edge C2MOS is in the efficient multiplexer realization and 
sharing the clock transistors, which reduces overall clock load and clock power 
consumption. In contrast to latch-mux implementations, DET-PL requires that 
a large number of transistors be added and/or that the cell size be increased 
in order to obtain dual-edge functionality. This easily offsets the clock energy 
savings from halved clock frequency. The DET-SPGFF makes very fast operation 
possible with good power savings, yielding an overall best energy-delay product. 

The delay comparison of single- and dual-edge-triggered devices is illustrated 
in Fig. 8.38. The advantage of latch-mux topologies is in the smart imple- 
mentation of the latch-mux arrangements, DET-LM and DET-C2MOS-LM. The 
PL structures are more complex, and their straightforward implementations are 
shown to increase both the delay and power. The DET-SPGFF benefits from both 
design approaches and results in the best delay. 

Power consumption is compared in Fig. 8.39, at an average data activity of 
50%, with single- and dual-edge clocks at 500 MHz and 250 MHz, respectively. 
The main conclusion is that although a potential for clock power savings exists 
due to the halved clock frequency, usually the latch capacitance switched by the 
clock is doubled to facilitate the multiplexing operation. This leaves the total 
CSE clock power roughly unchanged. With a smart design, it is possible to save 
some amount of the clock power dissipated inside the latch. 

The energy-delay product, as an adequate measure of overall performance, is 
illustrated in Fig. 8.40. These data confirm that some savings are possible with a 
smart and efficient design of the latch-mux implementations, while pulsed latches 

Figure 8.38. Delay comparison, SET vs. DET. 
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Figure 8.39. Power consumption comparison, SET vs. DET (0.18 bm, high load). 

Figure 8.40. EDP comparison, single vs. dual-edge triggered clocks (0.18 km, high load). 

suffer from increased complexity and it is much harder for a designer to depart 
from their straightforward implementation. 

Although the comparative analysis of energy dissipation in single-edge- 
triggered CSEs versus their dual-edge-triggered counterparts is interesting, it does 
not completely illustrate the benefit of using the dual-edge-triggered CSEs. It is 
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indeed hard to design dual-edge-triggered structures that would consume less 
power (especially the clock power) than their single-edge-triggered counterparts. 
The true savings, however, are in the power consumed by the clock distribution 
network. The clock distribution example in Section 6.3 best illustrates the 
advantages of the halved clock frequency, despite the potential increase in total 
clock load, when dual-edge-triggered CSEs are used. The main conclusion is that 
the dual-edge-triggered design is always a better choice as long as it maintains 
the clock load capacitance at less than roughly twice that of the single-edge- 
triggered design. 

8.6. SUMMARY 

The choice of the CSE topology depends on the target application. CSE delay 
overhead is still the most dominant parameter in high-speed systems, although 
the energy consumption, especially the clocking component, is of increasing 
concern. Pulsed-latches and flip-flops offer the smallest data-to-output delays, due 
to negative setup time or the fast direct-path property, respectively. In addition to 
the small delay, these structures offer some degree of clock and data uncertainty 
absorption, which is of increasing importance in modern high-speed systems. 
This property, however, does not come for free and is traded for increased risk 
of hold time failure. 

In low-energy applications, CSEs based on MSL pairs in general have several 
advantages over those based on PLs. MSLs tend to have better race immunity at 
the expense of increased delay. PLs and flip-flops generally dissipate more energy, 
and therefore practical applications where low energy is of primary concern would 
involve M-S topologies. MSLs are likewise preferred over PLs and flip-flops 
when performance is not the main design goal. It is important to note that not all 
of the parts of the processor are on the critical path, and low-energy, conservative 
MSLs can be used in these blocks to reduce the overall energy dissipation and 
alleviate global clock load requirements. 

From the examples presented, we can summarize some of the main methods 
used in the design process to achieve low-energy consumption in clocked stor- 
age elements. The preceding examples have indicated that low-energy design can 
be accomplished to a certain degree in a systematic fashion, implying that the 
designer still has various degrees of freedom. Low-energy designs can be effec- 
tively concocted with methods that employ clock gating, reduced swing clocking, 
or dual-edge triggering. While the principles of operation of CSEs are different, 
the guidelines used to optimize them are essentially the same, differing only in 
the physical realization and in the resulting trade-offs made with regard to circuit 
delay and internal race immunity. 



CHAPTER 9 

MICROPROCESSOR EXAMPLES 

The purpose of this chapter is to recapitulate the material presented in this book 
through various examples. It also presents the state of the art in microprocessor 
design from the standpoint of clocking and clocked storage elements. In this 
chapter we analyze the clocking techniques and clocked storage elements used in 
four leading microprocessor design houses: the Intel Corporation, Sun Microsys- 
tems Inc., the Digital Equipment Corporation (unfortunately, this latter company 
is not in existence any longer as of the writing of this book) and the IBM Cor- 
poration. We have chosen to emphasize different aspects each time we describe 
the techniques and designs used, and to go into depth on different solutions for 
clocking of high-performance and low-power systems. 

In the section describing clocking techniques used in Intel@ microprocessors 
we describe an active clock deskewing technique that was used in Pentiurn@ 
processors. This discussion supplements the subject of clock distribution that 
was only briefly touched on in Chapter 1. We do not place much emphasis on 
the clocked storage elements used in Intel microprocessors in this section for two 
reasons: first, Intel never explicitly published the CSE topologies used in their 
microprocessors, and second, we have presented those CSE topologies known to 
us in the previous chapters. 

The section describing techniques used by Sun Microsystems Inc. presents 
an overview of the development of the semidynamic flip-flop from its inception 
(described in patents filed by Sun Microsystems) to the final circuit used in their 
latest RISC processor, Ultra-Sparc-III@. This type of flip-flop represents one of 
the fastest single-ended flip-flops today and presents an interesting discussion 
on flip-flops with a “soft-edge’’ property that are capable of time borrowing and 
absorption of the clock uncertainties. 
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The section on Alpha@ processors, developed by the Digital Equipment Cor- 
poration, describes various methods of microprocessor clocking. The Alpha pro- 
cessor is particularly interesting because it was a performance leader through 
the last decade of the last century. It is interesting not only from the point of 
view of the CSEs used, but in showing how this decision affected the clock- 
ing strategy used. The first generation of Alpha (WD21064) used single-clock 
latches, which are very similar to TSPC latches (Yuan and Svensson 1989). In the 
second-generation Alpha (WD21164), a pass-gate latch design was chosen. These 
latches also demonstrated the importance of incorporating logic into the CSE in 
order to accommodate the demand of shorter pipeline stages. The third generation 
Alpha (WD2 1264) used a sense-amplifier flip-flop (SAFF) (Madden and Bowhill 
1990). Development of this flip-flop and its evolution into its final form (Oklob- 
dzija and Stojanovic 2001; Nikolic and Oklobdzija 1999) were described in the 
previous chapters. This particular flip-flop is still among the fastest and most 
energy-efficient CSEs today. In order not to limit the performance of the proces- 
sor, a hierarchical clock grid was introduced in the third and fourth generations 
of this processor. 

Finally, in the section dedicated to the IBM Corporation, we describe design 
for testability techniques, specifically IBM LSSD, and IBM’s particular prac- 
tice of using latches and not flip-flops. We describe four recent microprocessors 
designed by IBM: the IBM 9390  G4; the experimental IBM PowerPC (the first 
one to break the 1-GHz barrier); a low-power champion PowerPC 603; and the 
IBM Power4. The interesting aspect of IBM designs is the ability to tune the 
edges of the clock, thus operating the processor in two modes: high-speed, and 
test and debug. The emphasis on diagnostic and machine bring-up is particu- 
larly important in a robust and high production-quality design. Various ways of 
incorporating logic and the scan function into the latch are of a particular interest. 

This chapter brings together all the techniques described in this book and 
shows their relevance by describing the ways those techniques were incorporated 
into the most advanced microprocessors as of this writing. 

9.1. CLOCKING FOR INTEL MICROPROCESSORS 

Table 9.1 lists the key design parameters of the three generations of Intel micro- 
processors for desktop PCs (source: Microprocessor Report Journal, online: 
http://www.mdronline.com/mpr/). Consumer PCs based on the Pentium I1 pro- 
cessor featured new technologies such as DVD players and AGP graphics. The 
Pentium 4 was the first microprocessor to break the 2-GHz mark in clock speed. 
It features an increased number of pipeline stages, relative to its predecessors. 
Fabricated in 0.18 km 6-metal-layer technology, it had almost double the number 
of transistors compared to Pentium 111, and dissipated up to 67 W of power. 

This section describes clock generation and distribution for some of the recent 
generations of Intel microprocessors. The emphasis of this section is on clock 
distribution and active deskewing circuits that have tight control of the clock 
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'able 9.1 Intel Microprocessor Features 

Pentium I1 Pentiurn 111 Pentium 4 

/IPR issue 
:lock speed 
'ipeline stages 
kansistors 
:ache (IDL2) 
lie size 
C process 
vlax power 

June 1997 
266 MHz 

12/14 
7.5 M 

203 mm2 
0.28 pm, 4 M 

27 W 

16 W16 W- 

April 2000 
1 GHz 
12/14 
24 M 

16 W16 W256 K 
106 mm2 

0.18 km, 6 M 
23 W 

Dec 2001 
2 GHz 
22/24 
42 M 

12 W8 W256 K 
217 mm2 

0.18 wm, 6 M 
67 W 

ikew. An adaptive digital deskewing technique applied to the IA-32 Pentium Pro 
'amily is described first, followed by the clock generation and distribution in the 
irst IA-64 microprocessor. The section concludes with the clocking scheme used 
n the Pentium 4 microprocessor. The examples and circuit diagrams presented 
n this section are adapted from the Intel papers presented at the International 
Solid-state Circuits Conference (ISSCC) over the last five years. The examples 
;how detailed implementation of the clocking circuits reported in these papers. 

9.1 .l. IA-32 Pentium Pro 

4n adaptive digital deskewing technique is employed in the 450-MHz IA-32 
Pentium Pro (P6 family) microprocessor (Schutz and Wallace 1998). The global 
skew for the clock distribution network in this 7.5 M transistor 0.25-pm tech- 
nology microprocessor design is only 15 ps, down from more than 60 ps with 
the deskewing circuit inactive. The clock deskewing scheme used in the Pentium 
Pro is described in detail below, as presented by Geannopoulos and Dai (1998). 

Clock skew is managed by the adaptive digital deskewing circuit. The deskew- 
ing circuit equalizes two clock distribution spines by compensating for delay 
mismatch in the Ieft and right spines of the microprocessor clock network. The 
circuit is composed of delay lines in both spines, a phase detection circuit, and 
a controller, as illustrated in Fig. 9.1. The phase-detection circuit determines the 
phase relationship between the two spines and generates an output based on 
this phase relationship. The controller takes the phase-detection information and 
makes a discrete adjustment to one of the delay lines, minimizing the clock skew 
between the two spines. The main building blocks of the deskewing circuit are 
described next. 

Figure 9.2. is a block diagram of the delay line and the delay shift register. 
The tunable digital delay line is implemented with two inverters in series, each 
loaded with a bank of eight capacitive loads. The content of the delay shift register 
determines the capacitive loads for the two inverter outputs. Both n-MOS and 
p-MOS transistors are used to make each of the capacitive loads, in order to 
reduce the signal slope and balance the rising and falling edge of the inverters. 
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Figure 9.1. Clock distribution network with deskewing circuit. (Geannopoulos and 
Dai 1998), Copyright 0 1998 IEEE. 

In I 
I Delay Line D. 

Load <1:15,2> -oad c0:14,2> 

P 
Out - 

Delay Shift Register 

Figure 9.2. Delay shift register. (Geannopoulos and Dai 1998), Copyright 0 1998 IEEE. 

Capacitive loads are designed to allow 17 monotonic discrete steps of delay, with 
the average delay per step of 12 ps. The capacitive loads are added alternately 
to the two inverter outputs. The use of two inverters allows the load to be split 
between two drivers and also provides noninverting delay. 

The phase-detection circuit is shown in Fig. 9.3. It consists of two symmetrical 
PDs and an adaptive noise-band filter. Each PD is designed with four S- R latches 
in a pipelined configuration to reduce the probability of metastability propagating 
into the control logic as shown by Geannopoulos and Dai (1998). 

Each PD has one of the sampled clock signals delayed by a controlled amount, 
An,  of discrete time units. In PD1, the clock signal from the left spine is delayed 
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Figure 9.3. Phase detector. (Geannopoulos and Dai 1998), Copyright 0 1998 IEEE. 

jy An, and then compared to the nondelayed clock signal from the right spine. 
ikewise, in PD2, the clock signal from the right spine is delayed by An and 
:ompared to the nondelayed clock signal from the left spine. Outputs of PDs 
ndicate which of the clock signals arrives earlier. The possible combinations 
Ke: left is leading right, right is leading left, and both left and right are within 
he noise-band delay, &An, where the discrete time step was nominally 12 ps. 
4daptive filtering reduces latency and allows the system to correct for AC power- 
,upply-related components of skew variation. 

The clock distribution network in a 7.5 M, 0.25-km technology IA-32 P6 
Bmily microprocessor design (Schutz and Wallace 1998) has >60 ps of skew 
?om left to right with the deskewing circuit inactive. With the deskewing circuit 
ictive, the skew was reduced to 15 ps. The digital deskewing circuit for clock 
listribution cancels out the skew (load, interconnect, and device mismatches). It 
ilso compensates for the dynamic variations of temperature and voltage gradients 
Tetween the two spines during all phases of active microprocessor operation. 

3.1 -2. First IA-64 Microprocessor 

The clock generation and distribution in the first IA-64 microprocessor is very 
much like that in the IA-32 Pentium Pro described in previous section. The IA- 
54 achieves a low skew through distributed programmable deskew units (Rusu 
and Tam 2000). The microprocessor is supplied by an external differential clock 
running at the system bus frequency. A PLL takes this clock and generates 
the high-frequency internal clock running twice as fast. The clock distribution 
architecture for IA-64 has three main components: (1) a balanced global clock 
tree, (2) multiple deskew buffers with balanced tree structures that drive the 
regional clock grids, and (3) multiple local clock buffers tapping these regional 
grids. In addition to the global clock, a separate reference clock is distributed 
along with the global clock to complete the deskew architecture. A block diagram 
of a clock distribution topology is shown in Fig. 9.4. 

The global clock (the core clock and the reference clock) is distributed as 
a balanced H-tree. The core clock and the reference clock from the PLL are 
distributed to eight deskew clusters, each holding up to four deskew buffers that 
drive regional clock grids. Due to a high-frequency operation, the interconnect 
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Figure 9.4. Clock distribution topology. (Rusu and Tam 2000), Copyright 0 2000 IEEE. 
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Figure 9.5. Deskew buffer architecture. (Rusu and Tam 2000), Copyright 0 2000 IEEE. 

model includes inductive effects. The placement of the intermediate buffers and 
the H-tree structure in order to provide minimal overall delay of the global clock 
is optimized according to a detailed RLC interconnect model. In addition, all 
the clock routing is fully shielded for the best noise immunity and good ground 
return paths. This special shielding and routing of the reference clock made 
it a better clock than the other clock signals, and it was therefore used as a 
reference. 

The block diagram of a deskew buffer is shown in Fig. 9.5. It consists of a PD, 
a state machine, and a digitally controlled analog delay line. The PD compares 
the timing of the reference clock and a sampled feedback clock from the regional 
clock grid. A digital low-pass filter is used to eliminate variations from the phase 
comparison. The low-pass filter tracks the result of the last four PD comparisons 
and makes an adjustment if all of the last four measurements are identical. The 
delay of the digitally controlled analog delay line is adjusted in accordance with 
the phase-comparison results. A state machine controls deskew. The digitally 
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Figure 9.6. Digitally controlled delay line. (Rusu and Tam 2000), Copyright 0 2000 
IEEE. 

controlled analog delay line shown in Fig. 9.6 supports 20 linear settings that 
cover a deskew range of 170 ps with an average step size of 8.5 ps. 

Deskew is based upon a single reference clock that has the same delay relative 
to all the regional feedback clocks. This is achieved by inserting an average 
regional clock delay at the central reference clock generator. In the clocking 
topology the skew caused by distribution mismatches from the global clock to 
the regional clock, and the load mismatches at the regional clocks are replaced 
by the skew of the reference clock and the uncertainty of the PD. The skew 
of the reference network can be controlled due to its reduced span (about half 
the span of the normal clock), balanced topology, and fixed predictable loading 
(Rusu and Tam 2000). 

The output of each deskew buffer is routed through a balanced tree to the 
distributed regional clock drivers, which drive a uniform clock grid that is used 
to achieve easy access from the underlying blocks. For power reduction, the 
clock grid is distributed only over active circuit areas. Each regional clock grid 
is independent. Independent regional clock grids make it possible for skew due to 
loading differences between the regions to be explicitly accounted for, because 
a single reference clock is used. If the design were implemented with only a 
single or a couple of grids, it would result in excessive skew (Geannopoulos and 
Dai 1998). Figure 9.7 plots the simulated clock skew for the worst-case region 
using extracted layout parasitics. The skew within a regional clock grid is less 
than 25 ps. 

In this design, several types and sizes of local clock buffers are available 
as standard cells, including support for the delayed clocks used by the time- 
borrowing domino and clock gating for power reduction. The timing analysis 
tools model the delay of the local clock buffers, so designers can add skew to the 
local clocks as long as they meet the cycle-time and hold-time constraints (Rusu 
and Tam 2000). Figure 9.8 shows the experimental clock-skew measurement 
results. The worst skew of all regional feedback clocks between all deskew 
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Figure 9.7. Simulated regional clock-grid skew. (Rusu and Tam 2000), Copyright 0 
2000 IEEE. 
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Figure 9.8. Measured regional clock skew. (Rusu and Tam 2000), Copyright 0 2000 
IEEE. 

buffers is 28 ps. The equivalent skew without this deskew mechanism would 
have been more than 110 ps. 

9.1.3. Pentium 4 

The clock network for the Pentium 4 microprocessor is an example of a multi- 
GHz clock network. The clock network topology has three separate core and three 
input/output (UO) bus frequencies, for a total of six clock frequencies running 
concurrently. 

A PLL synthesizes the core and I/O clocks from a differential off-chip refer- 
ence clock that is used to achieve maximum common-mode noise rejection. A 
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inbound strobe glitch 
clocksgen - protection and C 

state machine detection 

two-stage double-differential clock receiver converts the low-swing differential 
clocks to a single-ended reference clock. The receiver is optimized to reduce 
input reference jitter due to signal, power supply, and temperature variations 
(Kurd et al. 2001). 

In this multi-GHz design, the common, address, and data I/O busses operate at 
three different frequencies. The common clock bus operates at the same frequency 
as the system bus frequency; the address bus operates twice as fast; and the 
data bus operates at four times the system bus frequency. Figure 9.9 contains a 
block diagram of the core and I/O clock generation. The common and address 
clocks, and the feedback to the core PLL are generated using a programmable 
divider. The clock-enable divider generates enable signals to select the desired 
edges of the core clock. This allows logical verification of all clocks, avoids 
multiple global clock trees, and simplifies the interface with the core (Kurd 
et al. 2001). 

In order to generate a centered strobe for all bus-to-core frequency ratios with- 
out compromising the outbound data timing margin, the data strobes that operate 
at four times the system bus frequency are generated by a separate PLL. The 
deskew synchronization state machine ensures sufficient setup/hold to account 
for any phase error and jitter. This comes at the expense of one cycle of latency 
for all the signals crossing the core-UO clocking domains. The inbound data are 
latched using clocks derived from the received strobes. For proper data integrity, 
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Figure 9.9. Core and I/O clock generation. (Kurd et al. 2001), Copyright 0 2001 IEEE. 
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differential strobes with a glitch-protectioddetection circuit are used. The filtered 
strobes clock the inbound clock-generator counter to generate clocks to latch 
the data in the eight deep inbound buffers. The data are then read out from 
these buffers using another counter that is clocked with the core clock (Kurd 
et al. 2001). 

The global core clock distribution consists of a modified binary tree spanning 
multiple clock spines along the width of the die. The global distribution tree 
terminates in 47 domain buffers, producing 47 independent clock domains. Each 
domain buffer consists of a programmable delay stage controlled by a 5-b domain 
deskew register that determines the edge timing for the domain clock. The default 
value for the domain deskew register is loaded from a programmable fuse array at 
power-up, but can also be overridden though the test access port (TAP) for debug. 
This gives a convenient way to debug interdomain speed paths. A four-stage 
hierarchical network of phase detectors provides the means for comparing the 
rising edge clock timings of all domain clocks. Domain buffers can be disabled 
to power-down large functional units to save power (Kurd et al. 2001). 

The clock repeaters in the global distribution network use an RC-filtered 
power supply to suppress clock jitter due to supply switching noise. The RC 
filtering provides 12-dB noise attenuation from the core power supply, reducing 
the cycle jitter by a factor of 4. Figure 9.10 is a logical diagram of the clock 
distribution network. 

Systematic sources of skew (design convergence tolerances, layout mismat- 
ches, etc.) and random skew sources (within-die variation) are compensated by 
a static clock-deskewing scheme that employs the delay adjustment feature of 
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Figure 9.10. Logical diagram of core clock distribution. (Kurd et al. 2001), Copyright 0 
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the domain clock. An interdomain clock skew of t 2 0  ps is achieved, and silicon 
data have shown up to 10% frequency improvement due to skew compensation. 
There is an additional flexibility to intentionally skew the domain clocks to 
maximize operating frequency. According to Kurd et al. (2001), up to one speed 
bin improvement was achieved in early silicon samples of the Pentium 4. 

High microarchitectural performance is achieved by operating critical seg- 
ments ( e g ,  ALU) of the Pentium 4 at double the core clock frequency. On 
the other hand, to conserve power, area and design effort, noncritical segments 
of the die operate at half the core frequency. The multiple clock frequencies 
are generated at the local clock macro level, without any additional clock skew 
penalty in the frequency-domain interface signals. The double-frequency clock is 
a pulsed clock created on both the rising and falling edges of the domain clock. 
The pulsed clock allows simple latches to be used as MSLs, reducing power and 
layout area, so the pulsed clock usage is extended to all frequency domains. To 
compensate for the extra inversion needed to provide high-going pulses from the 
falling edges of the clock compared to the rising edge of the clock, the duty cycle 
of the clock coming out of the PLL is designed so that the rising edge is one 
inversion delayed from the 50% duty cycle point. A special divide-by-two circuit 
produces the non-50% duty cycles of the clock from the VCO output of the PLL. 
The pulse widths of the pulsed clocks can be modified through control register 
setting. Figure 9.11 shows the logical implementation of the different types of 
local clock macros. 

In addition to the ability to use the clock compensation to support timing 
debug, on-die clock stretchkhrink (ODCS), duty cycle adjust, and bypass modes 
are supported. In ODCS, the clocWduty cycle injected into the network is manip- 
ulated deterministically to uncover speed path problems (Rusu and Tam 2000). 
The data-clock duty cycle is adjusted in a similar way at the I/O PLL to stress 
out the timing between sending and sampling data at the receiving agent. The 
bypass mode provides the ability to inject arbitrary clock waveform directly to 
the core, bypassing the PLL. The skew-measure circuit measures the phase differ- 
ence between the feedback clocks to ensure that the skew and jitter between the 
two clocking domains are within the tolerance designed in the outbound deskew. 

With ever increasing clock speeds and microprocessor die size, balancing the 
clock skew in large designs using simple RC trees is becoming less effective. The 
increased die size often times results in the insertion delay of the clock network 
of about 7-8 F04 inverters, comparable to the clock period. In addition, due to 
process, voltage, and temperature (PVT) variations across large dies, clock skew 
is becoming a larger portion of the useful clock period. Another important issue 
associated with the gigahertz frequencies is the inductive effects, where a simple 
RC model is not valid anymore and should be replaced with a more accurate RLC 
model, due to the increased importance of parasitic inductance at high frequen- 
cies. Controlling the clock skew using simple RC -based methods is therefore not 
effective anymore. The active deskewing circuits used in the clock distribution 
in Intel microprocessors are a good solution to the increasing skew problem, 
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Figure 9.11. Example of local clock buffers generating various frequency, phase, 
types of clocks. (Kurd et al. 2001), Copyright 0 2001 IEEE. 

and 

because the deskewing circuits reduce the effects of PVT variations and parasitic 
inductance by actively tracking the temporal variations of these parameters. 

9.2. SUN MICROSYSTEMS ULTRASPARC-Ill CLOCKING 

Sun Microsystems has delivered three generations of high-performance Ultra- 
SPARC microprocessors over several years (Charnas et al. 1995; Lev et al. 1995; 
Greenhill et al. 1997; Lauterbach et al. 2000; Heald et al. 2000b, c). UltraSPARC 
microprocessors are based on 64-b SPARC V9 architecture extension of 32-b 
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Table 9.2 UltraSPARC Family Characteristics 

UltraSPARC-I UltraSPARC-I1 UltraSPARC-I11 

Year 
Architecture 
Die size 
Number of transistors 
Clock frequency 
Supply voltage 
Process 
Metal layers 
Power consumption 

1995 
SPARC V9, 4-issue 
17.7 x 17.8 mm2 
5.2 M 
167 MHz 
3.3 v 
0.5-km CMOS 
4 (All 
t30 W 

1997 
SPARC V9, 4-issue 
12.5 x 12.5 mm2 
5.4 M 
330 MHz 
2.5 V 
0.35-km CMOS 
5 (‘41) 
t30 W 

2000 
SPARC V9, 4-issue 
15 x 15.5 mm2 
23 M 
1 GHz 
1.6 V 
0.15-pm CMOS 

t80 W 
7 (AU 

RISC instruction set. They are designed for process scalability while maintaining 
the main architectural features and backward compatibility. An overview of the 
characteristics for UltraSPARC family is given in Table 9.2. 

Due to the reduction in the number of logic levels in the pipeline stage, 
tripled clock frequency with respect to its predecessor, and the increased impact 
of the clock uncertainties, clocking has become a major issue in the design 
of the UltraSPARC-111. This section reviews the system-level and circuit-level 
challenges and solutions applied in this processor. 

9.2.1. Clocking 

The targeted high clock frequency of the UltraSPARC-111 (600 MHz originally, 
1 GHz reported in Heald et al. (2000b)) requires high-quality, low-uncertainty 
clock generation and distribution. A dual-loop PLL (Bhagwan and Rogers 1997) 
is used to generate a high-frequency on-chip global clock from an external ref- 
erence. The PLL is capable of switching from 1/32 to 1 of its VCO frequency, 
allowing for low-power and full functionality in the standby operation. Measured 
PLL jitter was 62 ps peak-to-peak. 

In order to minimize clock skew, the global clock is distributed using a bal- 
anced clock network (tree), and then terminated by a global metal grid that serves 
as an equalizer for the arrival times of the clock signals that drive each major 
block (domain) on the chip. The global grid is locally buffered in order to achieve 
the uniform grid loading. The local buffers are also used for purposes of testa- 
bility. The second level of the clock distribution is the local grid within each of 
the blocks, which is terminated by the clock buffers. 

The large number of clock terminals (nearly 80,000 storage elements) imposes 
a large nonuniform load on the clock distribution network. In addition, the aggres- 
sive dimension scaling (the wires are taller than they are wide) gives rise to the 
crosstalk-injected noise. This is why the clock tree and the clock grid metal lines 
are shielded and their dimensions kept as uniform as possible. 
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Figure 9.12. Clock distribution delay in UltraSPARC-111. (Heald et al. 2000a), Copy- 
right 0 2000 IEEE. 

Simulated clock grid delay, or the portion of the total skew caused by 
imbalanced loads and path lengths, is shown in Fig. 9.12 as a function of the 
location on the chip. The total clock skew, which also stenis from the supply 
voltage, temperature, and the process variations, was 80 ps (Heald et al. 2000b). 

9.2.2. Storage Elements 

With the aggressive circuit design applied in UltraSPARC-III in order to meet 
the targeted clock frequency, the number of logic levels per pipeline stage was 
reduced to eight. This increases the relative clocking overhead to the clock cycle, 
and the storage-element design becomes critical. UltraSPARC-I11 design uses 
the fast edge-triggered flip-flop family (Klass et al. 1999), with either static or 
dynamic consecutive logic driven by both static and monotonic dynamic output. 

The basic flip-flop, SDFF (Klass 1998; Mass et al. 1999), is shown in Fig. 9.13. 
It consists of two functional stages: the first stage is a dynamic evaluation stage, 
and the second stage is a dynamic-to-static latch, found in the TSPC MSL (Yuan 
and Svensson 1989). The operation of SDFF is based on the local generation of 
an implicit clock pulse, first introduced in Partovi et al. (1996). There is a short 
period of time (transparency window) following the leading edge of the clock, 
during which a change in the state of the flip-flop is allowed. This approach allows 
fast switching of the flip-flop, since the critical path is short compared to MSLs, 
which makes it more suitable for high-speed applications. However, the hold time, 
determined by the moment the transparency window closes, is long. In addition, 
due to the high switching activity of the internal signals, the power consumption 
is large. 

is precharged high (transistor 
M p l  is on). The output level is maintained by the back-to-back inverters Znvs and 
1 m 6 .  The flip-flop is transparent during the short time window after the leading 

When the clock is at the low level, the node 
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Figure 9.13. Semidynamic flip-flop. (Klass 1998), Copyright 0 1998 IEEE. 

edge of the clock, which is determined by the delay through inverters Znvl and 
- Znvz and the NAND gate. If input D is high during that period, internal signal 
S evaluates to low (transistors M N ~ ,  M N ~ ,  and MN3 in Fig. 9.13 are on), which 
turns transistor Mp2 on and pulls the node Q to the high level. If the flip-flop 
input D is low during this transparency window, the node 3 remains at the high 
level, and there will be no other opportunity for 3 to fall until the next clock 
edge. This high level on internal node 3 is used to force the node Q low via 
transistors M N ~  and M N ~ .  After the transparency window has elapsed, the level 
of the node 3 is maintained by the back-to-back inverters, Znv3 and Znv4. 

The SDFF employs a NAND gate in the positive feedback of the first stage 
(conditional shutoff mechanism). As soon as the first stage of the flip-flop starts 
evaluating and node ‘s discharging, the output of the NAND gate is held at the 
high level, regardless of the state of its other input. This keeps the transparency 
window open even if the delayed clock Clk, switches to the high level. Conse- 
quently, the first stage of the flip-flop is able to evaluate for later low-to-high 
data arrival as opposed to the case when an inverter replaces the NAND gate. 
Therefore, the conditional shutoff mechanism improves low-to-high setup time. 
In the case where low-to-high data arrival is the only one expected to happen 
(e.g., dynamic logic drives the flip-flop), this mechanism can greatly improve 
performance. For static signaling, where both input transitions can occur during 
the evaluation, high-to-low setup time may become critical and the benefit from 
this positive feedback may not be seen. 

The absence of the evaluation of node 3 causes node Q to reset, which is much 
faster than the time-critical low-to-high input transition. However, due to nonzero 
evaluation time through the first stage, a static-one hazard exists that manifests 
as a short glitch at node Q after the leading edge of the clock when both the 
preceding and following states of the flip-flop are high. The glitch increases the 
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flip-flop’s power consumption, reduces the noise immunity, and may corrupt the 
evaluation of the consecutive logic. This glitch, which is also seen in some other 
flip-flop designs (Partovi et al. 1996), is a disadvantage of the SDFF, and its 
propagation must be inhibited by transistor sizing. 

Stripping the first stage from the standard static CMOS implementation and 
making it like dynamic logic styles, as done with the SDFF, effectively speeds 
up the response and allows for a simpler second-stage realization. This solution 
also eliminates the need for the transparency window in the second stage used 
in Partovi et al. (1996), and thus avoids disadvantageous asymmetry between the 
high-to-low and low-to-high setup times. However, both stages of the flip-flop 
can be in high impedance for up to half of the clock period. In order to improve 
the signal integrity, both nodes 3 and Q are made static by the back-to-back 
inverters (Invs -fnv4 and fnvs -fnv6). This provides noise immunity similar to 
that of the domino logic gate, but results in the contention at the two nodes of 
the flip-flop and somewhat increases both delay and power. 

Because of the remarkably small number of logic levels per pipeline stage 
(eight), an important property of the flip-flop family designed for UltraSPARC- 
111 is the ease of logic embedding. The logic can be embedded in the flip-flop 
in Fig. 9.13 by replacing the transistor gated by the input D with an n-MOS 
network performing an arbitrary noninverting logic function, similar to the way 
it is done in domino logic style (Fig. 9.14). The example in Fig. 9.14b shows 
the embedding of the two-input XOR logic function into the flip-flop, that is, the 
value of node Q is functionally the same as if the output of a stand-alone two- 
input XOR gate is fed to the flip-flop. This allows a portion of the clocking timing 
overhead to be masked by the useful work performed by the embedded logic. 

The dynamic versions of the basic flip-flop are shown in Fig. 9.15. The 
dynamic flip-flop is designed to drive the dynamic logic. It differs from a com- 
mon domino gate by the shutoff transistors ( M N ~  in Fig. 9.15a; M N ~  and M N ~  
in Fig. 9.15b) that allow evaluation only immediately after the leading edge of 
the clock. As with dynamic gates, its output precharges to the low level when 
the clock is low. Note that the shutoff of the differential dynamic flip-flop from 
Fig. 9.15b is delayed by the propagation delay inverters fnvl -Znv;! or fnvs -fnv4. 
This delayed shutoff decreases the flip-flop’s setup time and increases its hold 
time. In effect, the timing overhead of the flip-flop in the long path is reduced at 
the expense of the increased short-path hazard. 

The final version of the flip-flop used in UltraSPARC-Ill (Heald et al. 2000b) 
is shown in Fig. 9.16. Its principle of operation is very similar to that of the basic 
SDFF. It is modified, however, to use conditional keepers instead of back-to-back 
inverters in both stages. This modification is meant to reduce the impact of the 
energetic alpha particles from solder bumps, on the correct operation of the flip- 
flop. It is found that energetic alpha particles are capable of corrupting the levels 
of lightly loaded nodes that are not strongly driven at all times [less than 100 fC 
of the charge and less than 5 mA of the driving current (Heald et al. 2000b)l. The 
alternative solution to the soft-error problem is to increase the size of the back- 
to-back inverters in Fig. 9.13, which would seriously impair the performance or 
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Figure 9.14. (a) Logic embedding in a semidynamic flip-flop; (b) two-input XOR 
function. (Klass 1998), Copyright 0 1998 IEEE. 

even functionality of the flip-flop due to the contention. In order to achieve the 
required robustness to the soft errors not compromising the performance, the 
sensitive nodes of the flip-flop are kept (restored) only when they are not driven 
otherwise. The low level at node 3 is restored only when the input clock is at the 
high level. The high level at node 3 is restored only when the conditional shutoff 
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Figure 9.15. Dynamic versions of (a) semidynamic flip-flop: (a) single-ended; 
(b) differential. (Klass 1998), Copyright 0 1998 IEEE. 
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Figure 9.15. Dynamic versions of (a) semidynamic flip-flop: (a) single-ended; 
(b) differential. (Klass 1998), Copyright 0 1998 IEEE. 

transistor is off or the input D is low. The low level at node Q is restored only 
when node is at the high level. The high level at node Q is restored only when 
the clock is low. In this way, flip-flop implementation is moved from the domino- 
like to static CMOS-like. Note that the static implementation of the flip-flop, 
driven by the signal integrity requirement, is more like the systematically derived 
flip-flop from Fig. 2.16 than it is to the original SDFF. The highly desirable logic 
embedding property is somewhat degraded compared to the basic SDFF, since the 
dual network of the smaller p-MOS keeper transistors needs to be implemented 
in addition to the n-MOS logic network of Fig. 9.14. 

Clocking for the UltraSPARC-I11 microprocessor faced the complex com- 
bination of the design challenges due to the technology, large die size, and 
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Figure 9.16. UltraSPARC-I11 flip-flop. (Heald et al. 2000a), Copyright 0 2000 IEEE. 

performance requirement. The performance-driven, high-power clock distribu- 
tion system implements advanced methods in order to supply a high-quality clock 
to the large number of storage elements. The high-performance clocked storage 
elements are developed as an integrated part of the UltraSPARC-111 microproces- 
sor’s clocking subsystem. A small number of logic gates per pipeline stage and 
an increase in the clock uncertainty make the performance of the UltraSPARC- 
111 flip-flop a critical design criterion. The high speed and good logic-embedding 
property of this flip-flop allow the increase in the clock frequency and improve 
the testability of the design. However, the long hold time requires the use of 
advanced tools to identify and fix the fast-path violations. In addition, the large 
switching current that is caused by the high operating frequency and large num- 
ber of transistors on the chip, together with technology scaling, draw attention 
to the issue of noise robustness in clocking. 

The future of UltraSPARC architecture depends to a large extent on the scal- 
ability of its clocking subsystem. As the power consumption approaches the 
practical limits of heat removal and the number of transistors on the die increases, 
the clock has to adapt to the system of conditioned, globally asynchronous clock 
domains. The signal integrity issues, seen to be a problem in this UltraSPARC 
generation, can only become worse as the feature decreases, the transistor leakage 
grows, and the switching current increases. Thus, in order to continue perfor- 
mance scaling, the circuit design of future UltraSPARC microprocessors may 
need to be responsive to the power-saving and noise-robustness requirements, 
while retaining its high-speed operation. 

9.3. ALPHA CLOCKING: A HISTORICAL OVERVIEW 

In the past eight years, Digital has delivered four generations of high performance 
Alpha microprocessors, each by itself leading the state of the art of its time. 
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This has been achieved through process advancements, architectural innova- 
tions, and aggressive circuit-design techniques. This chapter gives an overview 
of the evolution of clocking techniques through the example of clock distribu- 
tion and latch-design methodology in four generations of Alpha microprocessors, 
21 064-21364. The material presented is largely based on an excellent overview 
of Alpha microprocessor design by Gronowski et al. (1998). 

Table 9.3 illustrates the key design parameters of the four Alpha microproces- 
sor generations. The 21064 was the first implementation of the Alpha architecture. 
Designed to operate at 200 MHz in a 0.75-pm n-well CMOS process, it allowed 
about 16 F03 gate delays per cycle, including latching, with a power dissipa- 
tion of 30 W from a 3.3-V supply (Dobberpuhl et al. 1992). The die contains 
1.68 million transistors, half of which represent noncache logic. The second gen- 
eration, 21 164, was designed to operate at 300 MHz in a 0.5-pm n-well CMOS 
process, with the number of F03 gate delays reduced from 16 to 14 to enable 
a cycle time reduction of 10% beyond process scaling (Bowhill et al. 1995). 
With 2.5 million noncache transistors out of a total of 9.3 million, this proces- 
sor dissipated 50 W from a 3.3 V supply. The 21264 was designed as the third 
generation in a 0.35-km n-well CMOS process with a target speed of 600 MHz 
and the number of F03  gate delays further reduced to 12, which provided an 
additional 10% clock-cycle reduction relative to the previous design (Gieseke 
et al. 1997). A nominal power supply of 2.2 V limits the power consumption to 
72 W. The total number of transistors is 15.2 million, with a noncache transistor 
count of more than double that of the 21 164. 

The latest generation of Alpha microprocessor, 21364, contains the 21264 in 
its core, surrounded by level-two cache, a router unit, and a Rambus memory 
controller (Jain et al. 2001). It was designed to operate at a clock frequency of 
1.2 GHz, in a 0.18-pm bulk CMOS process, dissipating 125 W from the 1.5-V 
supply. The total number of transistors is 152 million. 

9.3.1. Clocking 

The motto of the Alpha clocking system design can be stated as: “The primary 
objective of the clock system is to not limit the performance of the microprocessor” 

Table 9.3 Alpha Microprocessor Features 

2 I064 21 164 21264 21 364 

Number of # transistors [MI 1.68 9.3 15.2 152 
Die size [mm’] 16.8 x 13.9 18.1 x 16.5 16.7 x 18.8 21.1 x 18.8 
Process 0.75 k m  0.5 k m  0.35 p m  0.18 p m  
Supply [VI 3.3 3.3 2.2 1.5 
Power [W] 30 50 72 125 
Clk. frequency [MHz] 200 300 600 I200 
Gateskycle 16 14 12 12 
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(Gronowski et al. 1998). Indeed, the targeted operation frequencies required the 
generation and distribution of a very high-quality clock with very low skew, and the 
use of low-latency latches. Power supply noise, process variation, and interconnect 
delay introduce uncertainty in the timing of clock edges, reducing the maximum 
clock frequency. Moreover, slow clock edges cause uncertainty in latch timing and 
a possible hold time violation due to race-through. 

The 2 1064 microprocessor departed from the traditional four-phase clocking 
style used in VAX machines. The choice to use two-phase single wire level 
sensitive clocking eliminated the dead time between the phases, resulting in a 
saving in overall cycle time. The robustness of the four-phase clocking scheme 
to race-through was maintained by careful selection of latch structures. The clock 
distribution network, based on a metal 2-metal 3 grid, and driven from the center 
(Fig. 9.17a), averages out the delays over different locations on the die. The plot 
of the clock skew across the die is shown in Fig. 9.18, with the largest skew of 
240 ps, or equivalently, 0.8 F03 gate delays, in the corner of the grid. 

Figure 9.17. Alpha microprocessor final clock driver location: (a) 21064, (b) 21 164, 
(c) 21264. 
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Figure 9.18. 21064 clock skew. (Gronowski et al. 1998), Copyright 0 1998 IEEE. 
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Figure 9.19. 21164 clock skew. (Gronowski et al. 1998), Copyright 0 1998 IEEE. 

By splitting the final driver into two banks placed midway between the center 
of the die and the edges (Fig. 9.17b), clock skew was halved in the 21 164 micro- 
processor relative to the 21064, and uneven thermal distribution was avoided. A 
predriver is located in the middle of the die, distributing the clock to two driver 
banks. The plot of the clock skew across the die is shown in Fig. 9.19, with a 
top skew of 80 ps, that is, 0.4 F03  gate delays. The plot clearly indicates the 
position of the two drivers, with skew increasing horizontally toward the ends 
and the middle of the die. 

With the increase in microprocessor complexity, power consumption became 
one of the critical factors driving design decisions. Clock distribution was identi- 
fied as one of the main components of high power consumption. Grid-based clock 
distribution networks introduce extra capacitance, leading to suboptimal power 
conservation. Hence, the 21 264 clock distribution style departed from the global 
grid-based design, introducing a trade-off between the buffered-tree design, with 
its lower power but greater mismatch, and the grid-based design, with its higher 
power dissipation but lower mismatch. 

For the first time, a hierarchy of clocks has been introduced, as shown in 
Fig. 9.20, that enable clock conditioning to save power and local clock manip- 
ulation to increase performance in critical sections, for example, using “time 
borrowing.” 

The global clock network is distributed in window-like configuration 
(Fig. 9.17c), with four grids driven by clock drivers from all sides to minimize 
the skew. A combination of H and X trees is used for the predriver to distribute 
the clock to the main clock drivers across the die (Friedman 1995). The global 
clock skew is shown in Fig. 9.21, with a maximum skew of 72 ps, that is, 0.5 
F03  gate delays. The plot clearly outlines the four grids, with skew peaking in 
the middle of each grid. 

The fourth generation of Alpha microprocessor, 21 364, introduced new chal- 
lenges in the design of the clock distribution network. A plain extension of the 
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Figure 9.20. 21264 clock hierarchy. (Gronowski et al. 1998), Copyright 0 1998 IEEE. 

Figure 9.21. 21264 global clock skew. (Gronowski et al. 1998), Copyright 0 1998 IEEE. 

clock distribution technique from the core 21264 would not work over additional 
clock domains, such as the L2 cache clocks and the network-interface clock 
(NCLK), because of the enormous size of the die and projected power con- 
sumption of a single global reference clock. Four clock domains were created 
instead, as shown in Fig. 9.22, where GCLK is the global clock of the 21264 
core, and L2Lclk, L2Rclk, NCLK, are synchronized with the GCLK using three 
DLLs, which reside at the root of each additional corresponding clock domain 
(Xanthopoulos et al. 2001). 

The main role of a DLL is to “hide” the skew of the global clock grid from 
the center to the periphery from which the NCLK and other clocks would need to 
be distributed further. Using DLLs, the roots of the NCLK and other additional 
domains are referenced to the unskewed GCLK reference. In this way, all four 
domains are globally synchronized and the only skew that remains is the skew 
of each clock’s local distribution network. Thus, both the skew and jitter are 
reduced, although any jitter introduced by the reference clock is directly passed 
to the domain clock through the DLL. 
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Figure 9.22. 21364 major clock domains. (Xanthopoulos et al. 2001), Copyright 0 2001 
IEEE. 

Figure 9.23. 21364, NCLK clock skew, (Xanthopoulos et al. 2001), Copyright 0 2001 
IEEE. 

The design of the clock distribution network for NCLK domain was especially 
hard. due to the n-shape of the domain. Rectangular X trees are used to distribute 
the NCLK to the grid at the north of the core, and partial H trees are used along 
the sides. The plot of the NCLK skew performance only is shown in Fig. 9.23. 

9.3.2. Clocked Storage Elements 

Clock distribution and CSEs make up the backbone of every microprocessor 
system. They cannot be designed independently of one another, nor can they 
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disregard the architectural features of the system. The preceding section discussed 
the evolution, or sometimes, revolution, in the clock design of four generations 
of the Alpha microprocessor. No specifics were given about the CSE design 
methodology. However, it should be noted right away that these two features are 
very tightly coupled and were designed concurrently, reflecting a global clock 
and CSE design methodology. 

In each generation of Alpha microprocessor, new system requirements forced 
the changes in both clock distribution and latch circuit design and methodology. 
In addition to speed, other important goals have been minimal clock loading, low 
power dissipation, and small setup and hold times, that is, a narrow sampling 
window. In order to achieve improvement in speed beyond the process scaling, 
from generation to generation, one of the options, heavily used in Alpha design, 
has been to use a smaller number of gates in the pipeline. Starting with 16 
F03 gate delays per cycle in the 21064 (Table 9.2), and ending with 12 F03  
gate delays in the 21264 and 21364, the latch overhead became increasingly 
important. The need for short latency and setup time, as well as a free logic 
function with the inclusion of logic in the input or output stages of the CSE, 
became significant factors driving CSE design methodology. 

The 2 1064’s revolutionary two-phase, level-sensitive, single-wire clocking 
scheme, a break from the traditional four-phase scheme, required new design 
strategies (Dobberpuhl et al. 1992). These focused mainly on the more careful 
design of CSEs and was particularly careful to minimize the risk of race-through, 
which was not present in previous versions of Digital’s microprocessors. The 
TSPC level-sensitive latches designed by Yuan and Svensson (1989), were the 
first CSEs to use a two-phase, single-wire clock. A variation of these latches was 
used in the 21064 to prevent data race-through. The latches used the unbuffered 
global clock directly, largely enhancing race immunity. 

To understand the operation of the TSPC latches, refer to Fig. 9.24a. When 
Clk is high, P I ,  N3, and N1 function as an inverter, complementing the D to 
produce X .  Transistors P2, N4, and N2 function as a second inverter, inverting X 
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Figure 9.24. 21064 modified TSPC latches. 
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(Gronowski et al. 1998), Copyright 0 1998 
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to the output. The output of the second inverter is dynamic, and hence shielded 
by additional inverter stage, which increases immunity to coupling noise. When 
Clk goes low, two gated inverters are tristated to ground by N3 and N4 being 
turned off. Now, if D ,  X ,  and Q are initially high, low, and high, respectively, 
when Clk is low, the transition of D falling charges X to high, turning off P2 

and tristating Q from both power and ground. In the opposite situation, when 
D ,  X ,  and Q are initially low, high, and low, respectively, the transition of D 
rising tristates node X to high, leaving Q tristated to low. In summary, after Clk 
goes low, additional transitions on D leave nodes X tristated or driven high, and 
Q tristated to its initial value. This behavior is exactly that of the level-sensitive 
latch, which is transparent when Clk is high and opaque when Clk is low. The 
operation of the structure in Fig. 9.24b is dual to that in Fig. 9.24a. In the origi- 
nal structures, the only node exhibiting the unusual noise immunity risk is node 
X. This is because X can be tristated high, with Q tristated low when the latch 
is opaque (Fig. 9.24a), which translates into a dynamic node driving a dynamic 
gate that is very sensitive to leakage through P2 charging node Q and destroying 
the data. To increase the noise margin at node X, (a) weak feedback device, Ps ,  
was added to prevent X from being tristated high. The device should be sized 
to absorb any reasonable noise and keep P2 turned off. Transistor NS plays an 
analogous role in Fig. 9.24b. The latches shown are just examples of the variety 
of latches used in the 21064, with embedded logic as gated AND and NAND, 
OR, and NOR gates. The zero-delay goal between the latches (as in the shift 
registers), their variety, hence different latency, setup and hold times, and clock 
uncertainty increased the risk of race-through as a major functional concern. This 
was addressed by paying special attention to the clock distribution and extensive 
latch simulations. Clock skew is functionally harmless if data propagate in the 
opposite direction to the clock waveform. In this case, no hold time violation 
is possible, but setup time can be violated, since the skew is subtracted from 
effective cycle time. In the case where both the clock and the data propagate 
in the same direction, clock skew can potentially cause a hold time violation, 
and hence, race-through. Since data progate from the periphery to the center of 
the chip, the radial distribution of the clock from the center of the chip prevents 
the data from overtaking the clock. Latch simulations involved exploration of 
process corners and parameters that could potentially cause the mix of any of 
the two latches to fail functionally. With 1.0-ns (3.3FO3 delays) Clk rise and fall 
times, latches showed signs of failure (Dobberpuhl et al. 1992). 

Progressing to higher clock frequencies, the TSPC latch overhead became 
prohibitive for the 21 164 design, hence a family of dynamic, level-sensitive, 
pass-transistor latches was used to minimize the latency of the latch. Clocking 
style remained single-wire, two-phase, requiring the use of phase A and phase 
B latches (Bowhill et al. 1995). Figure 9.25 shows A-and B-type latches, while 
Fig. 9.26 shows the embedding of logic in the 21064 and 21164 latch families. 

Latch overhead reduction by using the embedded logic became very impor- 
tant, as the number of gate delays per cycle was reduced from the previous 
generation in order to increase the cycle time beyond the process scaling. Using 
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Figure 9.25. 21164: (a) phase-A latch, (b) phase-B latch. (Gronowski et al. 1998), Copy- 
right @ 1998 IEEE. 
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Figure 9.26. Embedding of logic into a latch: (a) 21064 TSPC latch, one level of logic, 
(b) 21 164 latch, two levels of logic. (Gronowski et al. 1998), Copyright 0 1998 IEEE. 

this approach, the latching overhead was reduced to only one pass-gate delay in 
critical paths with structures, as in Fig. 9.26b. It is very important to note, how- 
ever, that special care had to be taken to prevent the output node from coupling 
back onto the dynamic nodes ( X )  through the output transistors. The methodol- 
ogy required that inputs to the final logic gate come from the same latch type, 
phase A or phase B, in order to prevent the back-gate coupling effect. This effect 
occurs when the top transistor in a NAND gate n-stack is driven by a dynamic 
node, while the input to the bottom transistor of n-stack rises, pulling the inter- 
mediate node of the n-stack from V D ~  - V, to ground. In that event, the dynamic 
node driving the top of the stack is pulled down as well via capacitance, Cg,s. 
Coupling the output of the final gate to the dynamic nodes via Miller capacitance 
of the output transistors was reduced by the requirement that the latch nodes 
drive only the final two-input logic gate, using minimal routing. 

Local generation of the second phase of the clock introduced one gate delay 
between the source latch becoming transparent and the destination latch becoming 
opaque, thus enabling the race-through and making the zero-delay requirement 
between the latches impossible to achieve. The race-through was prevented by 
controlling the skew on the globally distributed clock, precise sizing of the local 
clock buffer inside the latch, and requiring a of minimum of one logic delay 
element between all latches. 
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Driven by opposing requirements to increase the clock frequency by more 
than the process scale factor and to reduce the clock power, the design of the 
clocking strategy for the 21264 presented new challenges and resulted in global 
changes in clock distribution and latch methodology. To save power, conditional 
clocks were used mandating the use of slow, static latches. Hence, a family of 
flip-flops was used, based on the dynamic flip-flop shown in Fig. 9.27 (Matsui 
et al. 1994). 

When employing a fast and sensitive regenerative sense-amplifier stage (Mad- 
den and Bowhill 1990) as a pulse generator, this structure has unnecessary 
overhead of two gate delays introduced by the cross-coupled NAND-based S- R 
latch at the output. In critical paths, the static S-R latch is replaced by the 
dynamic S-R latch structure (Gieseke et al. 1991). 

The use of flip-flops simplified the timing and race-through design issues 
that were magnified by the use of conditional clocks, but has also introduced 
new timing analysis requirements. The number of gates between latches used in 
earlier designs would not work in this methodology. For example, in Gronowski 
et al. (1998), two possible scenarios are depicted, as shown in Fig. 9.28, which 
illustrates the capability of buffering, on the left, and conditioning, on the right, 
of the main clock, subject to a certain set of constraints. Timing analysis first 
identifies the clock that is common to both the driving and receiving path, shown 
as D and R in Fig. 9.28. Critical path analysis verifies that the difference in 
delay between the drive path D and receive path R ,  including the skew and 
setup time, does not exceed the phase or cycle times of the common clock. The 
worst-case analysis takes into account effects that minimize R and maximize D.  
The races pose a dual problem where the effects that maximize R and minimize 
D are concerned. For case that path R ,  including the hold time and skew, is 
longer than D ,  a race-through occurs. A detailed analysis of the clocking style 
and verification methodology is given in Bailey and Benschneider (1998). 

Clk 

Figure 9.27. The 21264 flip-flop. (Gronowski et al. 1998), Copyright 0 1998 IEEE. 
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Figure 9.28. Critical-path and race analysis for clock buffering and conditioning. 
(Gronowski et al. 1998), Copyright 0 1998 IEEE. 

The fourth generation of Alpha processor did not change the flip-flop method- 
ology, but rather has dealt with the increased area and complexity through the 
use of the synchronized main clock domains. 

Throughout the past eight years and four generations, the Alpha microproces- 
sor continued to deliver the peak performance and leading the industry with new 
ideas in all aspects of microprocessor design. Of these, the clocking and latch 
design methodologies were addressed in this section. 

One of the interesting conclusions in Bailey and Benschneider (1998) is that 
in the design of high-performance processors, more and more attention has been 
paid to the accurate modeling of delay-path variations, clock skew, process, and 
so forth, in order to be able to predict, nonconservatively, but accurately the 
behavior of the system, and in that way reliably decrease the operating margin as 
much as possible. Beside the gains in performance obtained from process scaling, 
this type of increased level of detail in analysis continually enabled new material 
for trade-offs and encouraged the creativity of architects and circuit designers. 

It is hard to predict what type of clocking and CSE design will be used 
in future machines. The requirement for speed effectively mandates latchless 
pipelines with only a few gates per stage. On the other hand, the power-dissipation 
requirement mandates the use of conditional clocking, which requires reliable 
static latch operation. The increase in design size dictates clock hierarchy and 
globally synchronized separate clock domains. In future, even more attention 
will be paid to the separation of critical paths from the rest of the data path and 
control and possible application of different clocking methodologies to different 
sections based on the power-performance requirements. 

9.4. CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 

Traditionally all clocked storage elements in IBM processors were required to 
adhere to LSSD methodology (Williams and Eichelberger 1977). LSSD implicitly 
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prohibits the use of flip-flops. Therefore ail the clocked storage elements are 
level-sensitive latches. Level sensitivity in IBM terminology means that the only 
mechanism responsible for capturing data is the logic value of the clock signal 
(level), and not the rate of the clock signal transition. Flip-flop structure is sensi- 
tive to variations in the clock rise and fall times, which can present a reliability 
problem, as discussed in earlier chapters of this book. This fact was recognized 
at IBM very early, thus resulting in LSSD restrictions on the use of flip-flops. 
Thus the clocked storage element used in IBM is a “polarity-hold, level-sensitive 
latch.” A logic implementation of a hazard-free polarity-hold latch is shown in 
Fig. 9.29. 

In IBM terminology polarity hold means the ability to maintain the logic level 
(polarity) of a signal by the clocked storage element (latch, in this case). In the 
example shown in Fig. 9.29, the value of the data signal is reflected in its true 
form at the output. 

Before going further, it is important to provide a basic explanation of IBM 
LSSD methodology. 

9.4.1. Level-Sensitive Scan Design 

The issue of testability is closely related to the latch design and choice of a 
clocked storage element used in a system. Therefore, LSSD is a design method- 
ology. It was developed at the IBM Corporation and used systematically in all 
IBM designs (Eichelberger and Williams 1977; Williams and Eichelberger 1977). 
The origins of LSSD can be traced to the IBM System 360 models and the NEC 
2200 model 700, although LSSD was fully implemented for the first time on 
IBM System 38 (Stolte and Berglund 1979). The origins of scan-based design 
go even further back in time to the research conducted at Stanford University 
(Williams and Angel 1973). 

LSSD is one solution to the problem of test and test generation for digital 
systems. The basic idea of LSSD is to convert a sequential network into a combi- 
national network by logically cutting the feedback loops. This logical dissection is 
performed by converting all storage elements in the Huffman sequential-network 
model (Fig. 1.3.) into shift register latches and connecting them into one or more 
shift registers, as shown in Fig. 9.30. At this point it is possible to place the 
logic network into any desired state by shifting-in the proper values into the 

+ Clock 
Data ETe 

Out 

l o  

Figure 9.29. Hazard-free level-sensitive polarity-hold latch. (Eichelberger 1983) 
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Inputs ( X )  outputs ( Y )  
Combinational A I ~ - . -  

\ 1 Y = Y(X, S,) 

Present stat2 
sn 

Next State Sn+, 
Scan-Out 

Figure 9.30. General LSSD configuration. 

Shift-Register Latches (SRL). It is also possible to scan out any response. Thus, 
for testing purposes, the network looks like a combinational network, which 
greatly facilitates test generation. 

There are two aspects of LSSD methodology that impact timing and clock. 
The first attribute is the requirement that the system is level sensitive, and the 
second one is the requirement for a scan design. 

Level sensitivity is defined in the requirements for the latch design. The latches 
used are assumed to be reacting to logic voltage levels and not to be affected 
by the clock transition time. This is consistent with the definition of a latch 
in this book, as opposed to a flip-flop. Further, clocks are recommended to be 
nonoverlapping during system operation and are never overlapping during testing. 
Hence the network is immune to fast paths. 

The requirement for scan design is implicit in the requirement that the latches 
used consist of SRLs, which are interconnected with one or more shift-register 
chains. Thus, the key capability of scan design is the capability of complete 
control and to observe all latches used in the system. 

These two features are essential in making a sequential network appear like a 
combinational network. LSSD makes it possible to scan-in, as well as scan-out, 
values into and from all the latches in the system. 

The advantages of LSSD are summarized as follows: 

1. System performance is independent of the time-dependent characteristics 
of the signals, such as rise and fall time. 

2. As far as test generation is concerned, all the logic networks are treated 
as combinational, thus greatly simplifying testing and the test genera- 
tion process. 
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3 .  The ability to scan simplifies the debugging of designs. 

4. The ability to scan simplifies the machine bring-up and diagnostic process. 

5.  Design verification is simplified. 

6. In the case where complete systems are designed using LSSD, the same 
manufacturing tests can be applied to the diagnosis of faults on the cus- 
tomer's site. 

There are two basic ways to design logic in LSSD. One is by using a single 
latch, the other is by using the double-latch design (as described in this chapter). 
Double-latch design is also known as M-S or latch-trigger design. IBM LSSD 
SRL is shown in Fig. 9.31. 

A Shift-Register Latch is defined as a combination of two latches: a data 
input latch L I  and a second latch L2, which is used in normal, or shift register, 
operation. Latch L I  can be fed by one or more system clocks, data inputs, set 
inputs, reset inputs, scan data inputs and shift-A clock inputs. Latch L2 only can 
be fed by latch L I  and shift-B clock inputs. System data outputs can be taken 
from latch L I ,  from latch L2, or from both L1 and Lz .  At least one output from 
LZ must be used to provide a shift-register data path. 

In double-latch design, shown in Fig. 9.32, outputs are taken from the L2 
latches. Since the L1 and L2 latches must have separate clocks, this design is 
inherently level sensitive. During the normal operation the L1 -L2 (M-S) latch 
is clocked with the -C and +B clocks. Clock -C is responsible for latching 
data input into the master latch L1. In the scan mode L I  -L2 latches are clocked 
by +A and fB clocks, and the master latch is latching data from the Scanln 
input. All the latches are interconnected into a long chain forming a shift register. 
The content of this register is scanned out into the tester, and alternatively a new 
test vector is scanned in. 

Double-latch design requires no more than two system clocks, C1 and C2, and 
two shift clocks, A and B .  The C2 clock for the L2 latch behaves like a shift 
B clock during testing and a system clock CZ during normal operation. It is not 
necessary to use two separate clocks, C2 and R ,  since the function can be shared 
during the normal operation and testing. 

L ,  L a t c h  

- L2 

+L2 

I '  

+B Clk 4 
Figure 9.31. LSSD shift register latch. 
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or scan in 

Figure 9.32. LSSD double-latch design. 

LSSD is a concept that can be applied to a complete system design from the 
module or a card to a chip. 

9.4.2. Examples of Clocked Storage Elements 

ISM Sl390 G4 Parallel Server Processor There are two types of latches 
used in the IBM Y390 G4 processor (Sigal et al. 1997): a single L2 latch and 
a L I - L ~  pair. There are no midcycle latches (split latches) used, in spite of L2 
being a single latch. For each type of latch, there is a corresponding clock block 
whose purpose is to generate local clocks for the latches. The first combination 
of the latch and the local clock generator is shown in Fig. 9.33. A short local 
clock pulse CLKL is generated from the global clock CLKG following the trailing 
edge of the global clock. To create CLKL, the principle of reconvergent fan-out 
with nonequal parities of inversion (five in this case) is used on the CKLG. 
This generates a short negative pulse of approximately six inverter delays, which 
is used as a local clock. The local clock, CLKL, is clocking a domino style 
multiplexer. 

During the normal operation, the local clock is enabled and it is used to 
clock the first stage (master latch), consisting of a domino-style multiplexer. 
Various inputs could be latched into the master latch, depending on the state 
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SELECT-A -5 
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I * I  

TEST-DISABL E * 

Figure 9.33. LSSD SRL with multiplexer used in the IBM S/390 G4 processor. (Sigal 
et al. 1997), reproduced by permission. 
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Figure 9.33. LSSD SRL with multiplexer used in the IBM S/390 G4 processor. (Sigal 
et al. 1997), reproduced by permission. 

Ir. 

of the processor’s control signals. The second stage latch is a slave latch, thus 
the M-S pair consists of an input domino multiplexer and an Lz latch. For this 
operation to go undisturbed, both the A-CLK and B-CLK signals are held at 
logic-0 level. In the test mode, the system latches are connected into a scan 
chain. The TESTDISABLE signal is held at the logic-0 level, thus enabling the 
value from the SCANJN input. Scaning the test vectors in and out of the system 
is accomplished by asserting the A-CLK and B-CLK signals. In addition, CLKL 
transfers the value from the L I  scan latch into the domino master latch. Both 
dynamic and static implementation of the input multiplexer are attainable. A 
static multiplexer version of the multiplexer, SRL, used in the IBM 9390 G4 is 
shown in Fig. 9.34. 
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The second clocked storage element is used in non-timing-critical data-flow 
macros and in control macros where all latches are single-input and the speed 
advantage of an L2-only latch is reduced. The local clock block generates Cl/C2 
clocks. The clock overlap between C1 and C2 is kept close to 0. However, it 
is possible to create a positive overlap between the C1 and CZ clocks in order 
to increase system performance by reducing the latch propagation delay. This 
requires padding the fast signals, as discussed in the previous chapters. The 
second clocked storage element is shown in Fig. 9.35. It consists of a relatively 
simple M-S LlIL2 latch combination and a local clock generator responsible 
for generating C1 and C2, which are two-phase nonoverlapping clocks. 

In order to have better control of clocks in the W390 G4 processor, sev- 
eral clock-generating elements were used. Their purpose is to provide different 
phasing of the Cl/C2 clocks. The clock generator shown in Fig. 9.36. is used 
to provide separation (nonoverlap) between the C1 and C2 clocks in order to 

CLKG 

c1 

c2 

A C / K .  . 

7-nJ-u-''---'- ,* 
SCAN-IN 

IN 
7-A-n-r 

B-CLK L 

c2 CLKG - 
C2- ENA BL E - 
C1-DISABLE- c1 ! 

Figure 9.35. A clocked storage element is used in the non-timing-critical timing macros 
of the IBM 9390 G4 processor. (Sigal et al. 1997), reproduced by permission. 

C 1- DlSA BL E c1 

Figure 9.36. The clock-generation element used to detect problems created with fast 
paths: IBM S/390 G4 processor. (Sigal et al. 1997), reproduced by permission. 
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detect problems created with fast paths. Alternatively, it is possible to delay the 
C1 falling edge from its nominal value to examine how much margin exists for 
fast paths. Another circuit delays both the CI  and C2 clocks from their nominal 
values, thus allowing for cycle stealing (time borrowing) from the previous cycle. 

IBM PowerPC The IBM experimental processor, which was the first one to 
reach the 1-GHz mark (Silberman et al. 1998), uses multiplexed input latches in 
order to merge the important logic operation with the storage function (Fig. 9.37b). 
The latches provide data-input ports, hold-input, and a scan-input port for full scan 
testing. The inputs take single-rail static or a dynamic signal and generate dual-rail 
pulsed outputs for driving dynamic logic. The L I  latch is a differential structure 
driving the L2 latch, which is also used for scan output. The scan-select input has 
priority over other mux-select inputs, as shown in the Fig. 9.37a. 

ISM PowerPC 603 The IBM PowerPC 603'", which was designed under 
a cooperation agreement between IBM, Motorola, and Apple Computer, uses 
another standard IBM approach to clocking and design methodology under com- 
pliance with LSSD. It represents a classic M-S (L l -Lz)  structure clocked by 
two separate clocks, C1 and C2, and the ACLK clock, which is used during 
the scan mode. A schematic diagram of PowerPC 603 M-S latch (Gerosa et al. 

SG SCAN-GATE 

SEL-EXT, L SEL, 
NCLK - CLK 

(4 

Figure 9.37. The experimental IBM PowerPC processor. (Silberman et al. 1998), repro- 
duced by permission. 
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Figure 9.38. The PowerPC 603 MSL. (Gerosa et al. 1994), Copyright 0 1994 IEEE. 

ACLK 
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C1-FREEZE 
C1-TEST 

GCLK 
SCAN-C1 ACLK 

WAITCLK- 
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c2 

CZ- TESTA 
CZ-FREEZE 

Figure 9.39. The PowerPC 603 local clock regenerator. (Gerosa et al. 1994), Copy- 
right @ 1994 IEEE. 

1994) is shown in Fig. 9.38. The characteristics of this clocked storage element 
have been examined in earlier chapters. 

A more interesting aspect is a local clock regenerator, which is used to gen- 
erate the local C1 and C2 clocks from a global clock signal clock, shown in 
Fig. 9.39. This clock regenerator provides electrically correct local clock signals, 
as well as test clocks and processor power management control features. The 
outputs of the local clock regenerator are master and slave latch clock signals, 
C1 and C2, respectively, and the scan port clock ACLK. The input to the local 
clock regenerator is global clock signal, GCLK, which is the main clock signal 
distributed across the PowerPC 603 chip. Shutting off the local clocks is possi- 
ble using the OVERRIDE signal. This is used for static power management in 
order to reduce power. Test control is accomplished by injecting the CI -TEST, 
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Cz-TEST, and SCANXI signals. For local power management, local clock sig- 
nals can be frozen by using C1 _FREEZE and C2 _FREEZE controls. WAITCLK 
input has the function of providing additional separation between the C1 and C2 
clock signals, in the event of unanticipated race conditions. 

IBM Power4 Microprocessor The 1BM P0wer4~~ provides processing power 
for the IBM eServer p690, which is an IBM high-end 64-bit POWER'" archi- 
tecture. The server can be configured as an 8-to-32-way server system. The 
microprocessor is implemented using 174-million transistors, and it runs at a 
frequency higher than 1.3 GHz. The processor, shown in Fig. 9.40, contains two 
microprocessor cores, high-speed busses, and an on-chip memory subsystem. 
It is fabricated in state-of-the-art IBM 0.18 I-I. CMOS silicon-on-insulator (SOI) 
technology, with seven levels of copper wiring. The IBM Power4 processor uses 
novel clocking and latches, which were necessary in order to achieve such a 
high-frequency of operation (Warnock et al. 2002). 

A high-quality global clock signal distributed to every latch and clocked circuit 
was essential. The global clock distribution is especially challenging for a large 
and complex chip because of the longer wires and the gain needed to drive the 
large distributed clock load. 

Latch Design In keeping with IBM tradition, the majority of the clocked storage 
elements used are traditional MSLs. The scan input was brought into the keeper 

Figure 9.40. IBM Power4'" 64-bit processor used in IBM eServer p690. The microproces- 
sor consists of 174 million transistors and runs at 1.3 GHz, contains two microprocessor 
cores. and an on-chip memory subsystem. It is fabricated in state-of-the-art IBM 0.18 ~1 
CMOS SO1 technology with seven levels of copper wiring (Warnock et al. 2002), repro- 
duced by permission. 
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latch, thus minimizing its impact on latch delay. The MSLs were designed to be 
able to tolerate a certain amount of clock uncertainty. In order to minimize the 
pipeline overhead imposed by the latch, designers were allowed to customize the 
logic gate, which drives the master latch, as shown in Fig. 9.41. All the latches 
were sized in order to separately control and optimize the latch power, setup 
time, and clock-to-data-out delay. 

The two local clock phases (CI and c2), as well as the scan clock, were derived 
locally from one tap of the global clock, in the way shown in Fig. 9.42. 

Each local clock signal generator and buffer is controlled by two control 
inputs for test and debug capability: “c1 -Stop” and “Scanclk-Stop”. For protection 
against race conditions, two other control signals: “Local-u” and “Global-u” were 
provided. The “Local-u” signal is used to delay the rising edge of the clock, and 
is controlled by the designer. The “Global-u” signals were used to selectively 
delay the rising edge of the clock for debugging purposes, and are controlled by 
scan latches. The CI  and scan clock buffers had separate stop controls, allowing 
arbitrary sequencing of the scan and CI  (system) clocks, while the c2 clock was 
free-running, with the stop signal tied to ground. 

In order to reduce the overall overhead of the CSE and absorb the clock 
skew and process parameters variability in the across-chip line-width variation, 
“split-latch” design, shown in Fig. 9.43, was allowed. This design style already 
has been discussed in Section 4.2, and an example was provided in Section 4.3 
(Fig. 4.2 and Fig. 4.5). This design style allows the logic signals on critical paths 
to propagate through alternating cycle-boundary (master, or cl) and mid-cycle 
(slave, or c2) latches without incurring a setup time penalty. On average, a half- 
cycle of logic is allowed between the cl and c2 latches or between the c2 and 
c1 latches. Less logic between any two latches means that time is given up to 
the logic following the receiving latch, and more logic means that time is taken 
from the following logic (Warnock et al. 2002). 

However, the area overhead for LSSD compatibility becomes significant in this 
case, since an additional c2 latch must be provided (aside from the separate c2 

scan-cl k 
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Logic Data-in 

C1 c2 

p 
_out 

Figure 9.41. Standard transmission-gate MSL with LSSD capability. (Warnock et al. 
2002), reproduced by permission. 
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scan-cl k 

Scan-in +-, 
scanLC1 k 

Inputs from other 
latches of logic gates 

Figure 9.43. Scannable split latch with LSSD capability used in the IBM Power4'". 
Designers were allowed to tune transmission gate size and specify input and output gates 
(Warnock et al. 2002), reproduced by permission. 

added to the downstream logic) for scan functionality. Even in this situation, the 
extra area was a relatively small addition to the overall total, and the flexibility of 
this scheme would often allow area savings in other parts of the design (Anderson 
et al. 2001). 

Aside from the benefits offered by split-latch design, the IBM Power4 team 
found some drawbacks in this design as well, such as the increased difficulty of 
timing paths through logic containing these latches. The timing tool had to be 
able to deal with multicycle paths through transparent latches, including loops and 
other difficult topological situations, and then had to present the timing data in 
an intelligible way. In addition, there were issues with testing at speed, including 
the fact that it became difficult to assess how many back-to-back cycles would 
be needed to capture all of the critical timing paths through the machine. Also, 
timing failures could become much more difficult to debug. 

A number of special latch cells with an integrated logic were built into the 
design library. These cells allowed the logic to be merged with the latch cell, 
and avoided exposing the latch transmission-gate input to potentially noisy wires. 
These cells are shown in Fig. 9.44. 

Split-latch designs were available with an integrated front-and-back logic gate, 
as shown in Fig. 9.45. 

These solutions allowed the designer to have almost the same resources as 
the custom designer in order to minimize the latch overhead and provide for a 
clock-skew-tolerant operation. 

In summary, IBM microprocessors use a conservative design with a strong 
emphasis on testability and reliability, which has been IBM's trademark over the 
years. All the latches used in IBM products are required to be LSSD compatible, 
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Figure 9.44. Library MSL with integrated front-end logic gate choices. (Wamock et al. 
2002), reproduced by permission. 
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Figure 9.45. Split-latch designs with integrated front- and back-end logic-gate choices. 
(Wdrnock et al. 2002), reproduced by permission. 
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thus to incorporate scan. The diagnostic and machine bring-up phases are given 
equal importance at IBM, as shown by various clock-edge and clock-overlap 
control signals that were extensively used. However, in spite of the emphasis 
on testability, reliability, and availability, IBM designs are capable of achieving 
remarkable speed, thus placing IBM microprocessors in the performance lead. 
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Alpha, see Microprocessor 
Alpha particles, 204 
Asynchronous systems, 4 

C2MOS 
latch-mux, see Dual-edge-triggered storage 

M-S latch, see Latch 
element 

CCFF, see Flip-flop 
Circuit sizing, 106 
CISC, see Complex instruction set computers 
Clock 

buffers, 11, 108, 209, 211 
conditioning, 2 16 
core clock, 194, 196 
cycle, 2 
distribution, 8, 19, 119, 187, 198, 209-212 

H-tree, 24, 193, 210 
X-tree, 24, 2 10 

domains, 198, 210, 217 
drivers, see Clock buffers 
duty cycle, see Timing parameters 
edge degradation, 36 
energy, 180 
external, 11, 13 
frequency, 2 
gating, 112, 122, 167-177 

global, 112 
local, 113 

generation, 8, 9, 197 

global clock, 193, 210, 221 
grid, 24, 194, 196, 201, 209-212 
hierarchy, 21 1 
internal, 10, 12 
jitter, see Timing parameters 
load, 10 
low-swing clock, 108, 177, 179 
multiple phase, 8 
network, see clock distribution 
nonoverlapping clocks, 223 
on-board, 10 
on-chip, 10 
optimal width, 69, 77 
overlap, 223 
phase error, 12, 197 
pulsed clock, 199, 221 
off-chip reference, 9, 11 
on-chip reference, 179, 196 
RC matched tree, 24 
regenerator, 225 
scan port clock, 225 
single-phase, 8 
skew, see Timing parameters 
slope, 61 
tree, see Clock distribution 
tuning, 18 
two-phase, 8, 70, 72 
uncertainties, see Timing parameters 
width, see Timing parameters 
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Clocking (Continued) 
edge-sensitive, 36, 64, 91 
level sensitive, 91, 98, 213 
low-swing, 108 
single-phase, 64 
soft edge-sensitive, 102 
two-phase, 70, 213 

Clock-on-demand, see Latch 
Combinational logic, 3 
Complex instruction set computers, 5 
Conditional capture flip-flop, see Flip-flop 

Critical path, see Setup time violation 
Critical race, see Hold time violation 
CSE characterization, 139 
Cycle stealing, see Time borrowing 
Cycle time, 10 

Data arrival analysis 

CRAY-1, 66 

early, 65, 68, 78, 89. 93, 101 
late, 63, 66, 76, 88, 93, 98 

Data look-ahead, see Latch 
Data-to-output delay, see Delay 
De Morgan, 25 
Deep-submicron, 56 
Delay, 46 

clock-to-output, 46, 85 
data-to-output, 49, 176, 179 
minimum delay restriction, 54 
insertion, 72, 95 

Delay-locked loop, 12-15, 199 
Design for testability, 70, 204 
Deskewing, 203-205, 179-197, 199, 214 

adaptive filtering, 179 
clock spines, 192 
delay line, 192 
delay shift register, 192 
phase detection, 192, 198 

DET-FF, see Dual-edge-triggered storage 

DET-LM, see Dual-edge-triggered storage 

DET-PL, see Dual-edge-triggered storage 

DETSE, see Dual-edge triggered storage 

DET-SPGFF, see Dual-edge-triggered storage 

DFT, see Design for testability 
Digital system, 1 ,  8 
Digital system using 

element 

element 

element 

element 

element 

dual-edge triggered storage element, 75 
flip-flop, 63 
M-S latch, 70 
single-latch, 66 

D-Latch, 26 
DLL, see Delay-locked loop 
D - Q delay, see Data-to-output delay 
DTLA-L, see Latch 
Dual-edge-triggered storage element, 74, 1 13, 

179 

symmetric pulse generator, 119, 183 

C’MOS, 181, 186 

flip-flop, 1 18, 183 

latch-mux, 116, 179, 180, 186 

pulsed latch, 117, 182, 186 
Duty cycle, see Timing parameters 
Dynamic hazards, 59 
Dynamic logic, 216 

Earl’s Latch, 28 
Edge sensitive, 34 
EDP, see Energy-delay product 
Effective capacitance, 106 
Energy, 55, 176 

breakdown, 57 
clock energy, 165 
clocking, 58 
consumption, 55 
data and clock input, 58 
energy per transition, 166 
internal clock energy, 167 
internal non-clocked nodes, 58 
leakage, 56 
output load, 58 
short-circuit, 55 
switching, 55 

Energy-delay product, 176, 185 
Energy-per-transition, 58 

Fanout, 62 
Fast path, see Hold time violation 
Fermi potential, 57 
Finite-state machine (FSM), 3 
Flip-flop, 34, 35, 159, 166, 176 

capturing latch, 35 
comparison, 164 
conditional capture flip-flop, 114, 174 
hybrid latch flip-flop, 41, 134-136, 159 
J-K flip-flop, 115 
logic equations, 39 
logic representation, 43 
modified sense amplifier flip-flop, 136- 138, 

pulse generator, 35, 162 
reduced clock-swing, 110 
semi-dynamic flip-flop, 123, 160, 189, 202, 

163 

206 
conditional shut-off, 203 
dynamic, 204, 206 
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hold time, 202, 204 
logic embedding, 204, 205 
setup time, 203, 204 
static-one hazard, 203 

SR latch, 216 
sense amplifier flip-flop, 41, 161, 216 

SN7474, 37 
S-R latch, 162 
transparency window, 41 
triggering, 37 

Frequency multiplication, I0 

Glitch, 43 
sensitivity, 122 

Hold time, see Timing parameters 
Hold time violation, 48, 63, 65, 76, 89 
H-tree, 120, see Clock distribution 
Hybrid latch flip-flop, see Flip-flop 

Input transition, 59 
Insertion delay, 10 
Internal race immunity, 165, 176 

Kamaugh map, 39 
Keeper, 134 

Latch 32, 180 
C’MOS, 158 
clock-on-demand, 172 
data look-ahead, 169, 173 
data-transition look-ahead, 113 
hold time, 214 
logic embedding, 215, 229 
master latch, 156, 221 
M-S latch, 29, 70, 155-157, 166, 176, 184, 

190, 220, 227 
C2MOS, 158 
comparison, 158, 164 
with input isolation, 157 
n-only clocked, 11 1, 177 

noise robustness, 167, 179, 214, 229 
noise sources, 157 
pulsed latch, 169, 172, 176, 182, 221 
setup time, 214 
slave latch, 157, 221 
split-latch, 190, 227, 229 
TSPC latch, 29, 31, 213 
TSPC M-S latch, 29, 31, 202 
with clock gating, 168, 172, 176 

LC oscillator, 14 
Level-sensitive, 29 
Level-sensitive scan design, 29, 111, 217- 219, 

222, 229 

diagnostics, 220 
double latch design, 220 
level sensitivity, 219 
scan, 219 
shift-register latch, 220 
test mode, 222 
testing, 220 

clock, 108 
data, 108 

domino, 29, 128 
NORA, 29 
static CMOS, 128 

Logic islands, 18 
Logical effort, 125-127, 131, 133 

Load 

Logic 

branching effort, 127 
of a domino inverter, 128 
effort delay, 126, 130, 133 
electrical effort, 126, 135 
fanout, 127, 133, 136 
multistage logic networks, 126 
optimal effort per stage, 133 
optimal number of stages, 133 
parasitic delay, 126 
pass-transistor, 127 
path effort, 127 
pull-down, 128 

stage effort, 126, 133, 135 
of a static NAND gate, 128 
transmission-gate, 130 

Loop requirement, 96 
Low-swing clock, see Clock 
LSSD, see Level-sensitive scan design 

PUII-UP, 128 

Machine cycle, 5 
Master-slave latch, see latch 
Micro-instruction, 5 
Microprocessor 

Alpha, 25, 189, 208, 213 
Pentium, 189, 191, 193, 196 
Power4, 190, 226, 229 
PowerPC, 190, 224 
S1360 91, 28 
S/390 G4, 190, 221, 223 
UltraSPARC, 189, 200, 202, 206 

M-S latch, see Latch 
M-SAFF, see Flip-flop 
MSL, see Latch 
Multiplexer, 180 

Nodes 
clocked, 58, 107 
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dynamic, 58, 107 
nonclocked, 59, 106 
precharge/evaluate, 58, 106 

Noise sources, 14 
Nonoverlapping clocks, 7 1 

ODCS, see On-die clock stretcwshrink 
Of currents, 56 
On-die clock stretcwshrink, 200 
Opportunistic skew scheduling, see Time 

Optimal setup time, 87 
Optimal skew scheduling, see Time 

Oscillator, 
crystal, 9, 18 
LC, 14 
ring, 13 

borrowing, static 

borrowing, static 

Padding, see Delay insertion 
Pass-gate, see Transmission-gate 
Pentium, see Microprocessor 
Perl, 138 
Phase difference, 1 1  
Phase-locked loop, 11-15, 193, 196, 201 
Pipeline, 64, 67, 72, 79, 96, 100 
Pipclined design, 4 
PL, see Latch 
PLL, see Phase-locked loop 
Power4, see Microprocessor 
PowerPC, see Microprocessor 
Precharge/discharge, 107 
Pulse generator, 35, 43, 113, 171, 184 
Pulsed latch, see Latch 

Race, see Hold time violation 
Race immunity, 106 
Race margin, see Internal race immunity 
Race-through, see Hold time violation 
RCSFF, see Flip-flop 
Reconvergent fan-outs, 4 I 
Reduced instruction set computer, 6 
Reduced swing clock, see Low-swing clock 
Resonant circuit, 9 
Ring oscillator, 13 
RISC, see Reduced instruction set computer 

S/390 G4, see Microprocessor 
Sampling window, 51 
Scan test, 218 
SDFF, see Flip-flop 
Semi-dynamic flip-flop, see Flip-flop 

Sense-amplifier, 161 
Sense-amplifier flip-flop, see Flip-flop 
Setup time, see Timing parameters 
Setup time violation, 48, 63, 66, 76, 93 
Short path, see Hold time violation 
Signal race, see Hold time violation 
Simulation 

setup, 130 
automated, 138 

Skewed gate, 128, 135 
Slack passing, see Time borrowing 
Slow paths, see Setup time violation 
SN7474, see Flip-flop 
Soft clock edge, 49, 85, 189, 202 
Soft error hazard, 204 
Split-latch, 66 
S-R latch, 28 
Static inverter, 127 

F 0 4  delay, 138 
F 0 4  inverter, 130, 135 

Subthreshold region, 56 
Supply voltage scaling, 106 
Symmetric pulse generator flip-flop, see 

Synchronous system, 3, 21 
Dual-edge-triggered storage element 

Test access port. 197 

TG, see Transmission-gate 
Time borrowing, 53, 97, 210, 224 

scan, 9 

dynamic, 91, 92 
static, 92, 95 

Timing analysis 
with clock uncertainty absorption, 88 
with dynamic time borrowing, 96 
single-phase with dual-edge triggered CSE, 

single-phase with flip-flop, 63 
single-phase with single latch, 66 
two-phases with M-S latch, 70 
with static time borrowing, 95 
with time borrowing and clock uncertainty, 

75 

98 
Timing parameters 

clock duty cycle, 16, 80 
clock frequency, 16 
clock jitter, 16, 83 

cycle-to-cycle, 17 
long-term, 17 

clock period, 16 
clock skew, 16, 25, 83, 191, 195, 210-212 

global, 17 
local, 17 

clock uncertainty, 83 
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clock uncertainty absorption, 84, 87, 103 
clock width, 16, 51, 69 
clock-to-output delay, see Delay 
data-to-output delay, see Delay 
hold time, 50, 63, 75, 89, 101, 165, 176 
internal race immunity, 53 
setup time, 48, 165, 176 

Transistor sizing, 125, 130, 134, 136 
Transition probability, 17 1 
Transmission-gate, 155, 180, 182 
Transparency window, 88, 103, 117, 183, 202 
Trigger, see Triggering signal 
Triggering signal, 34 

leading-edge, 35 
trailing-edge, 35 

UltraSPARC, see Microprocessor 

VCDL, see Voltage controlled delay-line 
VCO, see Voltage controlled oscillator 
Voltage controlled 

delay-line, 1 1 - I3 
oscillator, 1 1 - 13 

X-tree, see Clock distribution 
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