

Digital System
Clocking

DIGITAL SYSTEM
CLOCKING
High-Performance and
Low-Power Aspects

VOJIN G. OKLOBDZJJA

VLADlMlR M. STOJANOVIC

DEJAN M. MARKOVIC

NIKOLA M. NEDOVIC

IEEE
The Institute of Electrical and Electronics Engineers, Inc., New York

@ E i L E N c E
A JOHN WlLEY & SONS PUBLICATION

Copyright 0 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201) 748-601 1, fax (201) 748-6008, e-mail:
permreq@wiley.com.

Limit of LiabilityDisclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U S . at 317-572-3993 or
fax 3 17-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 0-47 1 -27447-X

Printed in the United States of America

I 0 9 8 7 6 5 4 3 2

To Our Parents

CONTENTS

Preface

Chapter 1 Introduction

1.1 Clocking in Synchronous Systems
1.2 System Clock Design

1.2.1 Global System Clock Generation
1.2.2 On-Chip Clock Generation
1.2.3
1.2.4 Design Considerations

1.3 Timing Parameters

1.3.1 Clock Skew
1.3.2 Clock Jitter

1.4 Clock Signal Distribution
1.4.1 Historical Overview
1.4.2

Noise Sources and Loop Bandwidth

Clock Distribution in Modern Microprocessors

Chapter 2 Theory of Clocked Storage Elements

2.1 Latch-Based Clocked Storage Elements
2.1.1 True-Single-Phase-Clock Latch
2.1.2 Pulse Register Single Latch

2.2.1 Time Window-Based Flip-Flops
2.2 Flip-Flop

xiii

1

2
8
9

11
14
15
16
16
17
18

18
19

27

27
29
32
34
41

vii

Viii CONTENTS

Chapter 3 Timing and Energy Parameters

3.1 Timing Parameters
3.1.1 Clock-to-Output Delay, t c ~
3.1.2 Setup Time, U
3.1.3 Hold Time, H
3.1.4
3.1.5
3.1.6 Minimum Data Pulse Width

3.2.1 Components of Energy Consumption
3.2.2 Energy Breakdown
3.2.3 Energy per Transition
3.2.4 Glitching Energy
Interface with Clock Network and Combinational
Logic
3.3.1 Interface with Clock Network
3.3.2 Interface with Combinational Logic

Late Data Arrival and Time Borrowing
Early Data Arrival and Internal Race Immunity

3.2 Energy Parameters

3.3

47

47
47
48
50
52
53
54
55
55
57
60
60

Chapter 4 Pipelining and Timing Analysis

4.1 Analysis of a System that Uses a Flip-Flop
4.1.1 Late Data Arrival Analysis
4.1.2 Early Data Arrival Analysis
Analysis of a System that Uses a Single Latch
4.2.1 Late Data Arrival Analysis
4.2.2 Early Signal Arrival Analysis
Analysis of a System with a Two-Phase Clock
and Two Latches in an M-S Arrangement
Analysis of a System with a Single-Phase Clock
and Dual-Edge-Triggered Storage Elements
4.4.1 Late Data Arrival
4.4.2 Early Data Arrival

4.2

4.3

4.4

Chapter 5 High-Performance System Issues

5.1 Absorbing Clock Uncertainties

Clock Edge

Absorption

5.1.1 Clock-Uncertainty Absorption Using Soft

5.1.2 Timing Analysis with Clock-Uncertainty

5.1.3 Clock-Uncertainty Absorbing Considerations

61
61
62

63

63
63
65
66
66
68

70

75
76
78

a3

83

85

88
90

CONTENTS ix

5.2 Time Borrowing
5.2.1 Dynamic Time Borrowing
5.2.2 Static Time Borrowing
Time Borrowing and Clock Uncertainty
5.3.1 Level-Sensitive Clocking
5.3.2 Soft-Edge-Sensitive Clocking

5.3

Chapter 6 Low-Energy System Issues

6.1 Low-Swing Circuit Techniques
6.1.1 Conventional CSEs with Reduced-Swing Clock

Drivers
6.1.2 CSE Redesign
6.1.3 N-Only CSEs with Low-Supply-Operated Clock

Drivers
6.2 Clock Gating

6.2.1 Global Clock Gating
6.2.2 Local Clock Gating

6.3.1 Latch-Mux Design
6.3.2 Pulsed-Latch Design

6.3.4 Clock Distribution

6.3 Dual-Edge Triggering

6.3.3 Flip-Flop

6.4 Glitch Robust Design

Chapter 7 Simulation Techniques

The Method of Logical Effort
7.1.1 Multistage Logic Networks
7.1.2 Logical Effort of Logic Gates Commonly Found in

CSEs

7.1

7.2 Environment Setup
7.2.1 HLFF Sizing Example
7.2.2 M-SAW Sizing Example
7.2.3 Energy Measurements
7.2.4 Automating the Simulations

7.3 Appendix
7.3.1 The CSE Characterization Script
7.3.2

7.3.3

Simulation Bench for F04 Inverter Delay Extraction
(simInv.hsp)
CSE Simulation Bench in SPICE (sim.hsp)

91
92
96
97
98

102

105

108

109
110

111
112
112
113
115
116
117
118
119
122

1 25

125
126

127
130
134
136
137
138
139
139

146
148

X CONTENTS

7.3.4 Example HLFF Deck (hllfl6.hsp)
7.3.5 Example M-SAFF Deck (saff16.h~~)

Chapter 8 State-of-the-Art Clocked Storage Elements in
CMOS Technology

8.1 Master-Slave Latch Examples
8.1.1 Derivation of Master-Slave Latch
8. I .2
8.1.3 Comparison

8.2 Flip-Flop Examples
8.2.1 Hybrid-Latch Flip-Flop
8.2.2 Semidynamic Flip-Flop
8.2.3 Sense- Amplifier-B ased Flip-Flop
8.2.4 Modified Sense-Amplifier-Based Flip-Flop
8.2.5 Comparison
Clocked Storage Elements with Local Clock Gating
8.3.1
8.3.2 Data-Transition Look-Ahead Latch
8.3.3 Clock-on-Demand Pulsed Latch
8.3.4 Conditional Capture Flip-Flop
8.3.5 Comparison

8.4.1 CSE Examples
8.4.2 Comparison

8.5.1 DET Latch-Mux
8.5.2 DET C2MOS Latch-Mux
8.5.3 DET Pulsed-Latch
8.5.4 DET Symmetric Pulse Generator Flip-Flop
8.5.5 Comparison

8.6 Summary

C2MOS Master-Slave Latch

8.3
Master-Slave Latch with Local Clock Gating

8.4 Low-Swing Clock Storage Elements

8.5 Dual-Edgc-Triggered Clocked Storage Elements

Chapter 9 Microprocessor Examples

9.1 Clocking for Intel Microprocessors
9.1. I IA-32 Pentium Pro
9.1.2 First IA-64 Microprocessor
9.1.3 Pentium 4

9.2 Sun Microsystems Ultrasparc-I11 Clocking
9.2.1 Clocking
9.2.2 Storage Elements

151
153

155

155
155
158
158
159
159
160
161
163
164
167
168
169
172
174
176
177
177
178
180
180
181
182
183
184
187

1 89

190
191
193
196
200
20 1
202

CONTENTS Xi

9.3 Alpha Clocking: A Historical Overview
9.3.1 Clocking
9.3.2 Clocked Storage Elements
Clocked Storage Elements in IBM Processors
9.4.1 Level-Sensitive Scan Design
9.4.2

9.4

Examples of Clocked Storage Elements

References

207
208
212
217
21 8
22 1

Index 241

PREFACE

Is it possible to write an entire book on the subject of clocked storage elements:
latches and flip-flops? We certainly did not think so and we are sure many
people today share this view. Indeed, this work started as a simple consulting
project for Hitachi America Laboratories in the late 1990s that was not intended
to last longer than six months. The objective was to examine several proposed
and existing clocked storage elements and decide which one should be used
in the new generation of microprocessors Hitachi had on the drawing board
at that time. We finished this work, comparing several existing structures and
recommending some improved solutions. However, the answers we provided
raised many more questions and left us wondering. Now we feel that there are
even more unanswered questions. Thus, we decided to collect our experience
into a book and make it available to design engineers, practitioners, academics,
managers, and anyone else interested in this aspect of high-performance and
low-power digital system design.

Clocking is an important aspect and a centerpiece of digital system design.
Not only does it have the highest positive impact on performance and power,
but also the highest negative impact on the reliability of an improperly designed
system. This is becoming more important, as the clock frequency keeps increasing
dramatically as it has been in the last decade. The higher the frequency, the more
important are the clock system and clock storage elements, because their effects
do not scale proportionally with other features that are benefiting from the rapid
technological advances of the past fifty years. In this book we treat synchronous
systems, which we assume will continue to progress in this direction. In reality,
we do not know how long this progress will continue. Other ways of timing
digital systems are possible, but they have not demonstrated sufficient progress
to become a mainstream solution. We do not pretend to know what the timing of

xiii

XiV PREFACE

digital systems will be in the future, but we hope to provide sufficient analysis
and possibly set the stage for the new approaches that will evolve.

This book is divided into nine chapters. In Chapter 1 we provide an overview
of clocking and how the clocked storage elements fit into the whole picture.
The presentation tends to be historic, as we wish to put the development of
clocking and clocked storage elements into needed perspective. Some basic def-
initions are provided and we tie the clock storage elements into the entire digital
system, most particularly into clock generation, distribution testability, and con-
trol. Chapter 2 describes clocked storage elements and provides definitions and
a clear classification of basic clocked storage elements used in digital systems
today. It shows the systematic derivation of flip-flops and sets the stage for the
discussion of advanced structures and their performance and energy aspects. The
Chapter 3 introduces the timing and energy parameters of the clocked storage
elements. Since the speed required for the operation can always be traded for
less energy (and vice versa), it is important to tie the two together and place
the analysis of performance and power in perspective. Also defined in this chap-
ter is when the data should arrive so that the system operates reliably, as well
as the various parameters which affect the power consumption of the system,
such as switching activity, voltage scaling, and design style. Chapter 4 provides
a rigorous quantitative analysis of clocking. The choice of the clocked storage
elements requires a particular analysis of its effects, and the chapter provides
various performance and design trade-offs. The quantitative analysis and deriva-
tion of the timing parameters for optimal system performance are also presented,
starting with the simple flip-flop-based systems and ending with the complex
dual clock-edge clocked systems. This chapter should provide the reader with
the mathematical tools for determining the optimal system parameters for the
design. In order to make these points clear, the chapter ends with examples of
two advanced clocking techniques: one for high-performance, and other oriented
toward the low-power system. Chapter 5 is dedicated to the issues encountered in
designing high-performance systems. Due to the increased effect of clock uncer-
tainties, dealing with the clock skew and jitter and the ability to absorb those
unavoidable effects is one of the most important issues in high-performance sys-
tem design. Since the time boundaries between the stages are more difficult to
control precisely, the data from one pipeline stage may take some amount of time
from the following one. This subject, also known as time borrowing is analyzed,
and its relation to clock uncertainty absorption is shown. Chapter 6 is dedicated
to low-power system design. It treats the energy issues, in particular, energy
reduction. Various ways of achieving low energy per operation, such as supply
voltage scaling, reduced signal swing clocking, clock gating, and capturing the
data on each transition of the clock signal - dual-edge triggering -are described
in this chapter. Clocked storage elements designed with features that minimize
energy consumption, such as conditional clocking and conditional precharging,
are described and analyzed. Chapter 7 describes simulation techniques and opti-
mization methods used to properly size the transistors. It discusses the use of the

PREFACE XV

logical effort technique, and it shows how it is applied to the problem of opti-
mizing clocked storage elements. Most importantly, in this chapter we describe
the evaluation setup that should be used in providing a fair comparison between
different clocked storage elements and all the miscellaneous issues that affect this
comparison. We provide a script used to simulate clocked storage elements in the
Appendix to Chapter 7. This script should serve as a starting point for an engineer
who is embarking on this elaborate and tedious undertaking, and we hope it will
be useful. In Chapter 8 we compare the various clocked storage elements that
are commonly known or used in systems with outstanding features, such as high
performance or low power. This chapter should provide the reader with a feel for
the current state of the art in clocked storage elements and present the designer
with possible choices for his or her designs. Finally Chapter 9 describes clocking
techniques and clocked storage elements used in representative and well-known
microprocessors. It also illuminates various techniques used by microprocessor
designers, as well as various design styles and approaches used by different com-
panies that may not be widely known. This chapter summarizes all the knowledge
presented in this book and shows the reader how this knowledge is applied by
various practitioners in this highly competitive field.

We hope this book will help in achieving even higher microprocessor per-
formance than that available today and set the stage for a number of successful
future designs.

VOJIN G. OKLOBDZIJA
VLADIMIR M. STOJANOVIC

DEJAN M. MARKOVIC
NIKOLA M. NEDOVIC

Berkeley, California
October 2002

Digital System
Clocking

CHAPTER I

INTRODUCTION

Clocking is one of the single most important decisions facing the designer of
a digital system. Unfortunately much too often it has been taken lightly at the
beginning of a design and that viewpoint has proven to be very costly in the
long run (Wagner 1988). Thus, it is not pretentious to dedicate an entire book
to this subject. However, this book is limited to the even narrower issue of
clocked storage elements (CSE), widely known as flip-flops and latches. The
issues dealing with clock generation, frequency stability and control, and clock
distribution are too numerous to be discussed in depth in this book and so they
are covered only briefly. The interested reader is referred to the other books
dealing with those issues, such as the one by Friedman (1995).

The importance of clocking has become even more emphasized, as the clock
speed is rising rapidly, doubling every three years, as seen in Fig. 1.1. However,
the clock uncertainties have not been scaling proportionally with the frequency
increase, and an increasingly large portion of the clock cycle has been spent on
the clocking overhead. The ability to absorb clock skew or to make the clocked
storage element faster is reflected directly in the enhanced performance, since the
performance is directly proportional to the clock frequency of a given system.
Such performance improvements are very difficult to obtain using traditional tech-
niques on the architecture or microarchitecture levels. The difficulties are caused
by the overhead imposed by the CSE delay, and the clock uncertainties. Thus,
setting the clock to the right frequency, and utilizing every available picosecond
of the critical path, is increasingly important. It is our opinion that traditional
clocking techniques will reach their limit when the clock frequency reaches the
5 to 10 GHz range. Thus, new ideas and new ways of designing digital systems
are needed. We do not pretend to know what the future trend in clocking should

1

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

2 INTRODUCTION

3000

2500 -
6

Y
p 2000-
0

3
5

a,

t" 1500-

::
i5
2 1000-

z

Y

-
-
6

500 -

0

-I___ _--- ___l_l I~ -
Pentiurn 4

Pentiurn 4

Athlon1900 Athlon210')

Athlon 8 ltanlurn
IBM-G4

PowerPC. *PM

Athion Itanurn
Alpha 21264 'PIII Xeon

8 Alpha 21 164
Exponential

Alpha 21 164 IBM s1390
Alpha 21064 *Ultra wart 11

CraY-X-MP IBM 3090
Cray-1 s ~CDC-CYbeJ M1pS-X -<

1975 1980 1985 1990 1995 2000 2005

be, but we feel that some of the ideas discussed in this book can provide a good
path to follow.

Computers built in the past were large and filled several electronic cabinets
in large air-conditioned rooms that occupied entire A oors. They were built from
discrete components or used a few large-scale integration (LSI) chips in the
later models. Those systems were clocked at frequencies of about one or a few
tens of megahertz, as shown in Table 1.1. The first electronic computer, ENIAC
(Electronic Numerical Integrator and Calculator), for example, operated at the
maximal clock frequency of 18 kHz. Given the low scale of integration, it was
possible to "tune" the clock. This was achieved by either adjusting the length
of the wires that distributed the clock signals, or by tuning the various delay
elements on the cabinets or the circuit boards, so that the clock signal arrived at
every circuit board at approximately the same time. With the advent of very large-
scale integration (VLSI) technology, and increased integration levels, the ability
to tune the clock has been greatly diminished. The clock signals are generated
and distributed internally within the VLSI chip. Therefore, much of the burden
of absorbing clock signal variations at various points on the VLSI chip has fallen
on the clocked storage element.

1 .l. CLOCKING IN SYNCHRONOUS SYSTEMS

The notion of clock and clocking is essential for the concept of synchronous
design of digital systems. The synchronous system assumes the presence of the

CLOCKING IN SYNCHRONOUS SYSTEMS 3

Table 1.1 Clock Frequency of Selected Historic Computers and Supercomputers

Nominal Nominal
Clock Clock

Date Period Frequency
System Introduced Technology Class (ns) (M W

Cray-X-MP 1982 MSI ECL Vector processor 9.5
Cray- 1S,- 1 M 1980 MSI ECL Vector processor 12.5

CDC Cyber 1985 ECL Mainframe 16.0

IBM 3090 1986 ECL Mainframe 18.5
Amdahl 58 1982 LSI ECL Mainframe 23.0
IBM 308X 1981 LSI TTL Mainframe 24.5, 26.0
Univac 1100/90 1984 LSI ECL Mainframe 30.0

MIPS-X 1987 VLSI CMOS Microprocessor 50.0
HP-900 1982 VLSI CMOS Micromainframe 55.6
Motorola 68020 1985 VLSI CMOS Microprocessor 60.0
Bellmac-32A 1982 VLSI CMOS Microprocessor 125.0

Source: Wagner 1988.

180/990

outputs (Y) +
Y= Y(X, S,)

105.3
80.0

62.5

54.1
43.5

40.8,38.5
33.3

20.0
18.0
16.7
8.0

Figure 1.2. The concept of finite-state machine.

storage elements and combinational logic, which together make up a finite-state
machine (FSM). The changes in the FSM are in general the result of two events:
clock and input signal changes, as illustrated in Fig. 1.2.

The next state, &+I , is a function of the present state, S,, and the logic value
of the input signals: S,+l = & + I (& , X,) . The remaining question is: When in
time will FSM change to the next state, &+I . This change is determined by the

4 INTRODUCTION

type of clocked storage elements used and the clock signal. The function of the
clock signal is to provide a reference point in time when the FSM changes from
the present, S,,, to the next state,

In Fig. 1.3, we have implicitly assumed that the moment when the state
changes from S,, to S,,+l is determined by the change in the clock signal from
logic “0” to logic “1.” In fact, this change is determined by the type of clocked
storage element and its functionality. We will be discussing this point in detail
later in this book. For the purposes of this discussion, we observe that without
the clock signal, the change from S,, to Sn+l could not be precisely determined.
There are digital systems where this change is not caused by the presence, or
more precisely, by a change in the clock signal, but by a change of the data signal,
for example. Such systems are known as asynchronous systems, because they do
not require the presence of the clock signal in order to effect an orderly transition
from S,, to S,,+l. A great deal of research in defining a workable asynchronous
system has been done in the last several decades. Recently a microprocessor
was designed to operate in an asynchronous manner, and it has been claimed
that some small advantages in power consumption were obtained (Woods et al.
1997). In spite of that, the practicality and advantage of the asynchronous design
has yet to be proven (Furber et al. 2001). In this book, we limit our discussion
to synchronous systems.

If we extend the FSM state diagram in time, we obtain an illustration of the
pipeline design (Fig. 1.3). In many cases, when dealing with the synchronous
design, the delay throughout the logic block is excessive and the signal change
cannot propagate to the inputs of the clocked storage elements in time to effect
the change to the next state. In that case, the machine has not met the “critical-
path requirement.” Such an FSM will fail in its functionality, because the changes

This process is illustrated in Fig. 1.3.

@ Time

Figure 1.3. State changes in the finite-state machine.

CLOCKING IN SYNCHRONOUS SYSTEMS 5

initiated by the input signals will have no effect. This is because the time allowed
to change to the next state, & + I , is too short and the input signal change does not
have sufficient time to propagate. In technical jargon this is known as critical-path
violation. Critical path is defined as the chain of gates in the longest (slowest)
path through the logic, which causes a signal to take a certain length of time
to propagate from the input to the output. Often times, an additional state (or
states) is inserted to assure that every transition proceeds in an orderly and timely
fashion. This is known as pipelining. A diagram of a pipelined system is shown
in Fig. 1.4.

Several clock cycles may be needed in order for the signal to propagate through
various stages of a computer system. In general, execution of an instruction may
require several machine cycles, where machine cycle is defined as the time inter-
val necessary for one atomic operation to execute an instruction. One machine
cycle normally takes several clock cycles. The machine cycle is often designated
by a waveform defining its own cycle. This is especially true if microcode is used
to control the machine. In the past, microcoding was a popular concept and it was
used extensively in Complex Instruction Set Computers (CISC). In those cases,
a process of executing an instruction required several machine cycles. During
each machine cycle one microinstruction was executed. It normally took several
microinstructions to execute an instruction. Each machine cycle required one or
several register transfers or passes through several pipeline stages. That in turn
required one or more clock cycles, or multiple phases of the clock. Thus, the
clocking was quite complex and encompassed several levels of hierarchy. This

Figure 1.4. Diagram of a pipelined system.

6 INTRODUCTION

Machine cycle.

-

Figure 1.5. Machine execution phases with respect to the clock cycles.

is illustrated in Fig. 1.5, where three distinct machine cycles, Instruction Fetch,
Dependency Resolution, and Instruction Issue, are shown. Dependency resolu-
tion can be quite a complex operation, requiring several register transfers, which
means several clock cycles are necessary to complete this operation (as shown in
Fig. 1.5). The machine would normally scan the cache block for several instruc-
tions and try to resolve any data dependencies. At the end of this cycle, operands
will be fetched and placed in the corresponding registers (reservation stations) of
the execution units.

In microcoded machines a large disparity existed between the speed of the
clock and the speed of logic. It could take several clock cycles or even several
tens or hundreds of clock cycles to execute one instruction. A more complex
instruction required many more clock cycles. There could be tens of logic levels
in the critical path, and 40 to 50 were not uncommon. Thus, the time associated
with the clock and clocking was not as critical as it is today.

As the level of integration increased, combined with the increased speed of
today’s machines, the number of logic levels in the critical path started to diminish
rapidly. Today’s high-speed processors are either implementing Reduced Instruc-
tion Set Computer (RISC) architecture, or are running CISC code. However, to

CLOCKING IN SYNCHRONOUS SYSTEMS 7

be able to efficiently implement superscalar execution cores, even CISC com-
puters are translating their instructions into simple RISC-type operations called
ROPs (RISC operations). Their microarchitecture can execute one or several
ROPs in place of one CISC instruction. Therefore, the concept of microcod-
ing has disappeared, as did the concept of machine cycle when implementing
a particular machine architecture. The instructions (or ROPs) are executed in
one cycle, which is usually driven by a single-phase clock. In other words, one
instruction (or one ROP) is executed in every clock cycle. The levels of hierarchy
that existed between the clock cycle and instruction execution no longer exist.
In addition, the number and depth of pipeline stages keeps increasing in order
to accommodate the trend toward increasing speed. As a result, the number of
logic stages between the two CSEs keeps decreasing. Today 10 levels of logic
in the critical path are more common. This number is still decreasing, as illus-
trated in Fig. 1.6. Any overhead associated with the clock system and clocking
mechanism directly and adversely affects machine performance and is therefore
critically important.

With this introduction we should be able to understand the function of the
clock signal before we proceed with other definitions. The function of the clock
signal is comparable to the function of the metronome in music. Similarly, in the
digital system the clock designates the exact moment when the state is changing,
as well as when the next state is to be captured. Also, all of the logic operations
have to finish before the tick of the clock, because their final values are being
captured by that clock event. Therefore, the clock provides the time reference
point, which determines the flow of the data in the digital system.

Figure 1.6. Increase in the clock frequency and decrease in the number of logic levels
in the pipeline. (Borkar 1999), Copyright 0 1999 IEEE.

8 INTRODUCTION

1.2. SYSTEM CLOCK DESIGN

The clock system is usually divided into two distinct categories: clock genera-
tion and clock distribution. However, this classification should be extended by
adding CSEs as an additional category, because the nature of the clocked storage
elements is intimately connected to the clock system generation and distribution,
and it is the nature of clocked storage elements that dictates the requirements
imposed on the clock system. This relationship is best illustrated by the choice
of clocking scheme, as shown in Fig. 1.7. The clock system can consist of a
single-phase, a two-phase, or a multiple-phase clock. Transfer of data between
CSEs in the system is usually accomplished by using an active phase of the
clock. Thus, the clock phase controls the transfer of the information among the
CSEs in the system. To prevent data from moving further then desired (achieving
nontrunsparency), the clock phases are separated in time. This is referred to as
nonoverlupped clock phases. In high-performance systems various phases of the
clock can be overlapped in order to increase total system performance.

In the older systems it was more common to use multiple-phase clocks
(Siewiorek et al. 1982). Transparent latches or flip-flops triggered by short pulses
were used as storage elements. As the frequency of the operation kept increasing,

(c)

Figure 1.7. System clocking schemes: (a) single-phase clock; (b) two-phase clock;
(c) multiple-phase clock.

SYSTEM CLOCK DESIGN 9

it became exceedingly difficult to control various phases of the clock and their
relationship to each other.

The two-phase clock is a robust scheme and is compatible with the design
for testability, a desired feature of a complex computer system. Such a scheme,
which incorporates a test mode, has been used in generations of IBM mainframe
computers as a part of level-sensitive scan design (LSSD) methodology (LSSD
1985). The two nonoverlapping phases of the clock assure a robust clocking
system that can tolerate manufacturing and process-parameter changes.

Given the continuing search for more speed and increased level of integra-
tion, even the two phases of the clock became difficult to control on the VLSI
chip. This led to the widespread adoption of the single-phase clock in use today.
Although two-phase clocking is still used, it is a single-phase clock that is dis-
tributed throughout the system, allowing the two necessary phases to be generated
locally. This technique achieves two goals: (1) necessary amplification of the
clock signals and ability to drive a large row of storage elements (register, for
example), and (2) generation of two clock phases and compatibility with scan
methodology. A scheme used for local two-phase clock generation from a single-
phase clock distributed on the chip is shown in Fig. 1.8. Such a scheme is also
capable of supporting the test and debug mode. The two phases of the clock,
C1 and CZ, are generated from the global clock CLKG. Specialized circuitry
was added to allow for edge shifting at the cycle boundary (Sigal et al. 1997).
Enabling and disabling of the clock phases is used to switch from normal oper-
ation to the scan mode that is used for testing.

1.2.1. Global System Clock Generation

Clock generation begins on a system board, where the global system clock
reference is generated from a “crystal” oscillator. This is a circuit that uses

F

0 2 a

I3

O1

0
C1 \ c
c2 -n-n-n-

B C L K

CLKG
C2-ENABLE

C1-DISABLE

I

Figure 1.8. Local generation of two-phase clocks as used in IBM Y390 G4. (Sigal et al.
1997), reproduced by permission.

10 INTRODUCTION

Temperature

a piezoelectric quartz crystal or some other ceramic material as a mechanical
representation of an electrical inductance-capacitance-resistance (LRC) series
resonant circuit. Piezoelectric effect in a material occurs with the exchange of
energy between the mechanical forces and applied electric field. In quartz crystal,
the physical dimensions of the lattice can very precisely determine the oscilla-
tion frequency. One excellent property of such resonators is their extremely high
Q-factor, typically 1000-10,000. By attaching a nonlinear element (such as an
NFET) to the resonator, the series resistance of the resonator is canceled by the
negative resistance of the nonlinear element and “lossless” oscillations are main-
tained. Due to the high-quality Q-factor, the variation of the resonant frequency
of the oscillator is only a few parts per million (ppm). Two realizations of the
clock oscillator are shown in Fig. 1.9a and 1.9b.

System clock is set to directly correspond to the speed of data busses on the
system board, that is, from 66 MHz, 100 MHz, 133 MHz, 266 MHz, and higher,
in PC boards, to a few hundred MHz in specialized systems. However, the on-
chip clocks operate at frequencies that are in the GHz range. Even if the on-board
clock signal of the same frequency as the on-chip clock could be generated, it
would be very hard to bring it on-chip because of large parasitic capacitances
and inductances in the package and bond-wireshalls that connect to the die. For
these reasons, the low-frequency system clock is first brought on-chip and then
frequency multiplication is performed to achieve the desired on-chip clock rate.

The time difference between the external clock and the internal clock, called
insertion delay (shown in Fig. l . l O) , increases relative to the clock period with
the increase in the clock frequency. Input data are synchronized with the external
clock, but can be stored directly in the storage elements clocked by the inter-
nal clock. Any insertion delay between the external and internal clocks directly

Control
voltage

I vDD
--r-

i . out
-0

(a) (b)

Figure 1.9. (a) Crystal oscillator. (b) Temperature-compensated crystal oscillator.

SYSTEM CLOCK DESIGN 11

Ext.

J J

Figure 1.10. On-chip clock insertion delay.

impacts the cycle time of the processor. The insertion delay is caused by the on-
chip clock-driver delay, with the inverter chain representing the equivalent of the
clock-driver tree, and clocked storage elements representing the total clock load.
Several nF of the clock load are routinely encountered in modem microprocessor
designs (Young et al. 1992). The clock-driver tree requires five or more fan-out
of 4 (F04) delays, which easily accounts for over 50% of the processor cycle
time. Moreover, due to process and environmental variations, the delay of the
clock driver may vary, causing an unknown phase relationship of the external
and internal clocks.

The problem of external and internal clock alignment can be solved by using
the phase-locked loop (PLL). The main task of the PLL is to align the external
reference clock with the on-chip internal clock at the end of the clock driver,
thus effectively removing the driver delay.

1.2.2. On-Chip Clock Generation

There are two main types of PLLs. In the first type, the PLL has its own
voltage-controlled oscillator (VCO) that generates the internal clock, which is
then aligned to the external reference clock by the virtue of negative feedback,
as shown in Fig. 1.11. The phase difference between the external reference clock
and the internal distributed clock is detected with the phase detector (PD), and
low-pass filtered (LP), to create the control voltage for the VCO, steering the
oscillation frequency in order to align the external and internal clocks, ideally
achieving a zero phase difference. At this point, a so-called phase lock is achieved
(Gardner 1979). This type of PLL was introduced first, and so historically it kept
the name PLL. One example of the PLL operation is shown in Fig. 1.1 1, where
the output of the phase detector is the XOR of the external clock reference and
the internal clock, producing pulses, p , that are then low-pass filtered to pro-
duce the slowly changing control voltage, cv, which changes the frequency of
the VCO, and hence the internal clock. At first, the external and internal clocks
have a phase difference of 135", but after the phase difference is detected and
the frequency of the internal clock changes, the phase difference is decreased
to 45".

The other type of PLL is delay-line based or delay-locked loop (DLL). As
shown in Fig. 1.12, the VCO in the PLL is replaced by the voltage-controlled
delay line (VCDL), which delays the external clock, feeding the clock driver,

12 INTRODUCTION

Ext. clk i
7

Clock driver

, . , ,
, I . , . I

PD 7 -? VCO +* , , ... +
. ,
I , I ,

LP
. , I ,

/J=a=F 1 n P ...
135" Out of phase 45" Out of phase

1 T Cload

Figure 1.11. Phase-locked loop block diagram and operation.

Ext.1 clk

-

.. ..,

Clock driver PD "\
LP

until the internal clock becomes aligned with the external clock, at which point
the control voltage of the VCDL become steady and the loop stays in lock. An
example similar to that in Fig. 1.11 is given in Fig. 1.12. The main difference
between the examples is that, unlike in Fig. 1.1 1, the internal clock in Fig. 1.12
does not change frequency over time, but is delayed in order to achieve phase

+... +'-l
j I C/oad

, ,
I .
I . , , , .
I . , ,

-

:L

VCDL +* ... -Dh
I , , . I , I , +... + I ..

. . , ,
I .
I ,
I . , .
I .
I , , , . I

I I &ad

.. ! :
/ n t c / k : ... 1 1 1 c/oad

SYSTEM CLOCK DESIGN 13

--I Ext, clk
- +A

alignment. The key point to understand is that alignment is possible in both
PLL and DLL, because both the external and internal clocks are periodic, which
delays them by an integer number of cycles with respect to each other, resulting
in cancellation of the phase difference. Otherwise, it would not be physically
possible to eliminate this delay. It is only possible to add more delay until the
total delay becomes an integer number of clock cycles.

In addition to clock alignment, PLLs can perform frequency multiplication.
Figure 1.13 shows a general block diagram where the VCO operates at fvco =
f e x t x B x C I A , and the frequency of the internal clock is fint = f vco /B. Typi-
cally, the value of B is two, to guarantee a 50% duty cycle of the internal clock,
and the value of A is one. The value of C is set to the ratio between the desired
internal-clock frequency and the external (system) -clock frequency (Young et al.
1992), which is always conveniently set to be an integer value, preferably base
two. There are, however, cases where multiple values of A , B , and C are used
in the power-up sequence to avoid excessive supply noise on large chips, like
Alpha 21264 (von Kaenel et al. 1998).

From the standpoint of noise performance, the VCO (VCDL) is the most crit-
ical part of the PLL (DLL). It is therefore illustrative to compare most common
design styles and discuss the possible trade-offs. VCO is built either as a ring
oscillator topology, Fig. 1.14, or an inductance-capacitance (LC) tank oscil-
lator, Fig. 1.15. Ring-oscillator-based VCOs are relatively easy to implement,
and require much less area than LC tank oscillators. By regulating the supply,

PL L
I

Clock
driver 7 is -- PO - 7 - vco -

LP 1 Cload
~-

-

Figure 1.13. PLL frequency multiplication.

Figure 1.14. Ring-oscillator-based VCO, with CMOS inverters as delay elements.

14 INTRODUCTION

T T

I I I

*
Figure 1.15. LC tank-based VCO, equivalent ac circuit model and current waveform.

inverter delay is controlled, and so is the oscillation frequency. The minimum
number of stages needed to sustain oscillations is three, since it provides suf-
ficient delay, while typical numbers range from three to seven or more stages,
(Hajimiri 1998).

With the increase in clock frequency and the use of on-chip spiral induc-
tors, both feasible with today's technology, LC tank-based VCOs are becoming
increasingly popular due to superior phase-noise performance. However, LC tank
oscillators do not always perform better than ring oscillators. This largely depends
on the dominant source of noise and the number of stages in the output buffer and
ring oscillator (Hajimiri 1998). A typical LC tank VCO is shown in Fig. 1.15,
with an equivalent small-signal model and frequency characteristic as a function
of applied cv.

A VCDL can be built from the same delay elements as the ring-oscillator
VCO. The delay elements most often used are differential pairs, which provide
good power-supply rejection, and the recently popular inverters with a power-
supply regulator that performs power-supply filtering and effectively shields the
inverters from any power-supply noise (von Kaenel et al. 1998; Sidiropoulos
et al. 2000). For details on other PLL and DLL building blocks, see, among
others, Gardner (1979), Kim et al. (1994), and Razavi (1996). The following
section briefly describes some of the most important noise sources and trade-
offs involved in PLL and DLL design, and gives a comparative analysis of PLL
versus DLL performance.

1.2.3. Noise Sources and Loop Bandwidth

For the purposes of high-level analysis, we divide the noise sources into three
main categories: (1) noise of the reference clock, (2) noise induced in the VCO
(or VCDL), and (3) noise induced on the clock during distribution from the
PLL (DLL) to the CSE, here defined as clock driver noise. Since these noise

SYSTEM CLOCK DESIGN 15

sources are introduced into the loop at different locations, the transfer functions
to the output are different for each of them. For example, input reference noise
is low-pass filtered at the output of the PLL, with the filter bandwidth set by the
bandwidth of the PLL. On the other hand, input reference noise passes directly
through the VCDL to the output of the DLL, without any filtering. Noise induced
in the VCO is fed back to the VCO input (in ring-oscillator implementation) and
"accumulated" over time (Kim et al. 1994). Any noise induced in the VCO or
VCDL is tracked and rejected by the loop, up to the loop bandwidth. Therefore,
the transfer function of noise from the VCO (VCDL) to the output is high-pass,
contrary to the one from the input reference to the output, which is low-pass.
This immediately points to the possible trade-off between the amount of input
reference noise and VCO noise at the output of the PLL. Indeed, the optimal
bandwidth at which these two noise sources are balanced exists and minimum
total noise is achieved (Lim et al. 2000; Mansuri and Yang 2002). In summary,
DLLs perform better in cases where the reference clock is not the main source
of clock uncertainty and most major noise comes from the noise induced in the
VCDL line. PLLs are, however, better in cases where the input reference noise
is dominant, and typically worse in cases where the major noise is induced in
the VCO, due to the noise accumulation effect, given that compared VCOs and
VCDLs are implemented using the same type of delay element.

The preceding analysis is somewhat blurred in modern systems, due to the
noise induced in the clock driver. While VCOs and VCDLs are typically imple-
mented using three to seven delay stages, because of the increasing amount of
clock load, clock driver depth has increased from generation to generation, and
is now over five stages in modern processors. Given that sensitivity of the delay
elements in VCO or VCDL is typically an order of magnitude better than that of
inverter, which has a 1 % delay variation for a 1 % power supply variation, it can
be easily seen that the overall noise of the distributed on-chip clock is usually
dominated by the noise induced in the clock driver tree.

1.2.4. Design Considerations

Regarding the design of the PLLs and DLLs, PLLs are typically harder to design,
due to stability issues (PLL is a second-order system due to the integrating func-
tion of the VCO), but offer more flexibility than DLLs, that is, wider locking
range and, frequency multiplication. DLLs are simpler to design, given that they
are first-order systems (unconditionally stable), but offer limited lock range. How-
ever, it is true that more complicated DLLs that offer similar flexibility to PLLs
are also very complex systems (Sidiropoulos and Horowitz 1997).

PLLs are mostly used in modern processors to multiply the frequency of the
external system clock and reject any existing high-frequency reference clock
noise. DLLs have recently found application as deskewing elements in high-
performance processors, synchronizing different clock domains on a die to the
global clock reference from the PLL (Rusu and Tam 2000; Xanthopoulos et al.
2001). It should be noted, however, that these approaches only deal with the DC

16 INTRODUCTION

portion of the noise on the clock (skew), while AC portion of the noise (jitter) is
not eliminated. The jitter induced in the clock driver by power supply variations
still presents the dominant source of noise in the on-chip clock distribution and
needs to be budgeted for in any clocking methodology.

1.3. TIMING PARAMETERS

It is appropriate at this point to consider the clock distribution system and define
the clock parameters that will be used throughout this text. For the purposes of
definition we should start with the Fig. 1.16, which shows the timing parameters
for a single-phase clock.

The clock signal is characterized by its period, T , which is inversely pro-
portional to the clockfrequency, f . The time during which the clock is active
(assuming logic 1 value) is defined as clock width, W . The ratio of WIT is
defined as clock duty cycle (w). Usually, the clock signal has a symmetric shape,
which implies a 50% duty cycle. This is also the best we can expect, especially
when distributing a high-frequency clock. Another important point is the abil-
ity to precisely control the duty cycle. This point is of special importance when
each phase of the clock is used for logic evaluation, or when we trigger the clock
storage elements on each edge of the clock (as we will see later in the book).
Some recently reported work demonstrates the ability to control the duty cycle
to within f0.5% (Bailey and Benschneider 1998).

There are two other important timing parameters that we need to define: clock
skew and clock jitter.

1.3.1. Clock Skew

Clock skew is defined as a spatial variation of the clock signal as distributed
through the system. The clock skew is measured from some reference point in the
system: the clock entry point to the board or VLSI chip, or the central point from
where the clock distribution starts. Because of the various delay characteristics
of the clock paths to the various points in the system, as well as different loading

W - W & - T c T
; w = - -Duty cycle

Figure 1.16. Clock parameters: period, width, rise, and fall times.

TIMING PARAMETERS 17

of the clock signal at different points, the clock signal arrives at different points
at different times. This clock skew is defined as the difference between the
reference point and the particular destination CSE. Further, we can distinguish
global clock skew and local clock skew. We define global clock skew as the
maximal difference between two clock signals reaching any of the two storage
elements on the chip, or in the system, that exchange data under the control of the
same clock. Our definition of the clock skew describes global clock skew. Clock
skew occurring between two adjacent CSEs represents local clock skew. If the
two adjacent clock storage elements are connected with no logic in-between, the
problem of data race-through can occur. Characterizing a maximum local clock
skew is therefore important. These clock skew definitions are equally important
in high-performance system design.

1.3.2. Clock Jitter

Clock jitter is defined as temporal variation of the clock signal with regard
to the reference transition (reference edge) of the clock signal, as illustrated in
Fig. 1.17. Clock jitter represents edge-to-edge variation of the clock signal in
time. As such, clock jitter can also be classified as long-term jitter and cycle-
to-cycle (or edge-to-edge) jitter. Edge-to-edge clock jitter is the clock signal

Figure 1.17. Clock parameters: period, width, clock skew, and clock jitter.

18 INTRODUCTION

variation between two consecutive clock edges. In the course of high-speed logic
design, we are more concerned about cycle-to-cycle clock jitter, because it is this
phenomena that affects the time available to the logic. Long-term jitter represents
clock-edge variation over a large number of clock cycles (long-term). While
short-term jitter is dependent on the type and quality of the clock generator, long-
term jitter is a result of the accumulated effects. Long-term jitter usually affects
communication and synchronization between various blocks within a system that
are same distance apart and need to operate in synchrony.

1.4. CLOCK SIGNAL DISTRIBUTION

1.4.1. Historical Overview

Usually a clock signal was generated using a quartz-crystal-controlled oscilla-
tor that provides an accurate and stable frequency. Given the size limitation of
the quartz crystal, the frequency of such a generated clock signal cannot be
very high, and frequencies in excess of 30-50 MHz are rarely generated using
a quartz crystal. The clock signal is then conditioned and amplified to reach
desirable driving strength before it is applied to the outside pins of a VLSI chip,
from which it drives an internal PLL or DLL. Before reaching the boundaries
of the VLSI chip, adjustments to its shape and form are possible. In contrast, in
older computer systems, which consisted of several electronic cabinets distributed
over the computer floor, and which contained a number of printed circuit boards,
adjustments to the clock signal were made at each level. Thus, the clock signals
were distributed over longer distances and over several levels, including the cab-
inet, printed circuit boards, and internal modules. Those separate entities entered
by the clock signal were referred to as “logic islands,” a term introduced by
Amdahl (Flynn and Amdahl 1965; Kogge 1981). The concept of logic islands is
illustrated in Fig. 1.18.

Figure 1.19 shows that further tuning and delay adjustment of the clock signal
is possible at the point where the clock enters the board or cabinet (called an
island). Those elements are usually called tuning points. The positioning of tuning
points in the system is illustrated in Fig. 1.19. Various clock shaping, forming,
and tunable delay elements are employed, and some of them are illustrated in
Fig. 1.20. These elements make it possible to control the timing of the leading
as well as the trailing edge of the clock signal, and to produce an early as well
as late clock signal with reference to the nominal clock.

By adjusting the clock delay and subsequently shaping the edges of the clock
signal, it is possible to create early, nominal, and late clocks, as shown in
Fig. 1 .21~. Those clocks then can be routed to various points on the board.
Older systems had much greater control of the clock signal than what is possible
today, because once the clock reaches the boundary of the LSI chip, tuning and
shaping the clock is not possible. This is because it is much more difficult to tune
on the chip due to the lack of external control and greater parameter variations

CLOCK SIGNAL DISTRIBUTION 19

f
Shape and buffer

Subisland A Subisland B Subisland C

Island 1 0
r Divide, shape, Island 4

Crvstal
osdllator

Figure 1.18. The concept of logic islands. (Wagner 1988), Copyright 0 1988, IEEE.

on the chip. It is also difficult to build tuning elements such as inductors on the
chip and to make adjustments from outside.

With the advent of integration, the systems have shrunk dramatically in size.
Today, it is quite common for a processor to have several levels of cache memory
contained entirely on a VLSI chip. The chip’s capacity for hundreds of millions
of transistors makes it possible to integrate not only one processor but also a
multiprocessor system onto a single chip. The inability to introduce tuning ele-
ments on the chip further aggravates the problem of distributing the clock signals
precisely in time, since it is not possible to make further manual adjustment to
the clock signal once it has crossed the boundaries of the VLSI chip. Therefore,
careful planning and design of the on-chip clock distribution network is one of
the most critical tasks in high-performance processor design.

1.4.2. Clock Distribution in Modern Microprocessors

Typically, the clock signal has to be distributed to several hundreds of thousands
of the clocked storage elements (flip-flops and latches) on a complex processor

20 INTRODUCTION

Tuning delay -

System oscillator I I

Tune-point level 1

Clock divider/buffer - observation point 0 ::
Delay element 0

(i Delay in clock-waveform manioulation -f
cable delay to on-board kput Y x -

I I I Tune-point level 2 I I I

Clock-control chip
clock gating + clock-chopping delay r - 5

Clock-distribution chip * *, Tuning delay-

I I Tune-point level 3 I I '
I I

Clock-distribution chip
Clock-powering delay

On-chip delay

I ' I
Bistable-element
clock-input delay

Figure 1.19. Clock tuning points. (Wagner 1988), Copyright 0 1988 IEEE.

CLOCK SIGNAL DISTRIBUTION 21

~

Chop (Element A)

Element A
Clock in

Clock out
+--I/--+

Delay = d Delay = di

D+d, 1

Element B
Clock in

Clock out

Element C
Clock in 4 ~ 1 Clock out

Clock in Element D

Clock out

(a)

Positive pulse

Input clock

Shrink (Element C) W - D

Chop (Element D) j - W + D -
(b)

Figure 1.20. Various clock shaping elements and obtained clock signals. (Wagner 1988),
Copyright 0 1988 IEEE.

chip. Therefore, the clock signal has the largest fan-out of any node in the design,
which requires several levels of amplification (buffering). One consequence of
imposing such a load on the clock signal is that the clock system by itself can
use up to 40-50% of the power of the entire VLSI chip (Gronowsky et al.
1998). However, power is not the only problem associated with the distribution
of the clock signals. Since we are dealing with synchronous systems, we must
assure that every clocked storage element receives the clock signal at precisely

22 INTRODUCTION

Tune point rr ~ Board 1
clock in Tunable Clock-

chopper tree
clock - powering

Gate CPU
Gate CPU section 1

System clock
(square wave)

Crystal
oscillator section 2

-- Early
i clocks

To boards 7-9
Gate remote section

(a)

J

I Tune point ~

Clock-

tree
- powering Clock

chopper

Tune Point __
Clock-

powering
Clock

tree chopper -

Board 1
clock in

-_ Normal
j clocks

Late
\ clocks

Logic chip 1
Clock-distribution
chip

powering

RAM chip 1

Figure 1.21. (a) Clock distribution network within a system, (b) on the board, and
(c) tuning of the clock. (Wagner 1988), Copyright 0 1988 IEEE.

the same moment. The clock signal traverses different paths on the VLSI chip,
while tracing its path from its origin, the entry point to the VLSI chip, to different
clocked storage elements receiving it. Those paths can differ in several attributes,
such as the length of the path (wire), the physical properties of the material along
different paths, the differences in clock buffers on the chip as a consequence of

CLOCK SIGNAL DISTRIBUTION 23

the process variations. The negative effect of these variations on the synchronous
design is that different points on the chip will receive the clock signal at different
moments, which results in a further increase in both local and global clock
uncertainties.

There are several methods for the on-chip clock signal distribution that attempt
to minimize the clock skew and to contain the power dissipated by the clock
system. The clock can be distributed in several ways, two of which are worth con-
sidering here: (1) resistance-capacitance (RC) matched tree shown in Fig. 1.22a,
and (2) the grid shown in Fig. 1.22b.

An RC matched tree is a method of assuring (to the best of our abilities) that
all the paths in the clock distribution tree have the same delay, which includes
the same RC of the wire, as well as the same number of equal-size buffers on the
clock signal path to the storage element. There are several different topologies
used to implement an RC matched tree. The common objective is to do the
best possible in balancing various clock signal paths across the various points
on the VLSI chip. An example of four different topologies, as taken from Bailey
(Chandrakasan et al. 2001), is shown in Fig. 1.23.

If we had superior computer-aided design (CAD) tools, a perfect and uniform
process, and the ability to route wires and balance loads with a high degree of
flexibility, a matched RC delay clock distribution (Fig. 1.23) would be prefer-
able to grid (b) as shown in Fig. 1.22b and Fig. 1.24. However, none of that
is true. Therefore the grid is used when clock distribution on the chip has to
be very precisely controlled, which results in higher clock power, as is the case
in high-performance systems. This is not difficult to understand given that in
a grid arrangement a high-capacitance plate is driven by buffers connected at
various points.

Figure 1.22. Clock distribution methods: (a) an RC matched tree, and (b) a grid. (Bailey
and Benschneider 1998), Copyright 0 1998 IEEE.

24 INTRODUCTION

Figure 1.23. RC delay matched clock distribution topologies: (a) a binary tree (b); an H
tree; (c) an X tree; (d) an arbitrary matched RC matched tree. (From Bailey in Chan-
drakasan et al. 2001), Copyright 0 2001 IEEE.

Figure 1.24. Clock distribution grid used in a DEC Alpha 600-MHz processor. (Bailey
and Benschneider 1998), Copyright 0 1998 IEEE.

CLOCK SIGNAL DISTRIBUTION 25

One such example is the DEC Alpha processor, which was the fastest processor
for several generations of microprocessors starting with the first 200-MHz design
introduced in 1992 and ending with the 600-MHz design in 1998 (Dobberpuhl
et al. 1992; Benschneider et al. 1995; Gieske et al. 1997). A picture of the clock
distribution grid is shown in Fig. 1.24.

With an increased number of transistors, local variations in device geometry
and supply voltage become a more important component of the clock uncertainty,
which cannot be compensated for by layout (Schutz and Wallace 1998). A more
sophisticated clock distribution than simple RC -matched or grid-based schemes
is therefore necessary. One such example will be described in Chapter 9 of this
book. The active schemes with adaptive digital deskewing typically reduce clock
skew of the simple passive clock networks by an order of magnitude, allow-
ing for more tightly controlled clock period and higher clock rates. The digital
deskewing circuit for clock distribution evens out the static components of skew
(load, interconnect, and device mismatches). Additionally, it compensates for the
dynamic variations in temperature and voltage gradients during all phases of
active microprocessor operation.

CHAPTER 2

THEORY OF CLOCKED STORAGE
ELEMENTS

The function of a clocked storage element is to capture the information at a
particular moment in time and preserve it for as long as it is needed by the
digital system. Having said this, it is not possible to define a storage element
without defining its relationship to a clocking mechanism in a digital system,
which is used to determine discrete time events. This definition is general and
should include various ways of implementing a digital system. More particularly,
the element that determines time in a synchronous system is the clock.

2.1. LATCH-BASED CLOCKED STORAGE ELEMENTS

The simplest storage element consists of an inverter followed by another inverter,
which provides positive feedback, as shown in Fig. 2.la. The information bit at
the input is thus locked due to the positive feedback loop, and it can be only
changed “by force” (i.e., by forcing the output of the feedback inverter to take
another logic value). This configuration is used very frequently, and is also known
as the keeper, a circuit that keeps (preserves) the information on a particular node.

If we were to avoid the power dissipation associated with overpowering (forc-
ing) the keeper to change its value, we must introduce nodes that will help us in
changing the logic value stored in the feedback loop. For that purpose we are free
to use logic NAND or NOR gates, as shown in Fig. 2.1. Of particular interest is
a simple modification of the diagram that emphasizes the sum-of-products (SOP)
nature of this logic topology. We start with a simple cross-coupled inverter pair,
which is unrolled to better illustrate the existing positive feedback (Fig. 2. la).
In the second step we replace the inverters with NAND gates, which enables us
to control the variable inside the loop and to selectively set it to 1 or 0 using

27

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

28 THEORY OF CLOCKED STORAGE ELEMENTS

Sum-Of-Products

(4 (b) (4

Figure 2.1. Latch structure: (a) keeper; (b) S - R latch; (c) SOP latch.

the input that controls the S and R gates in this case (as shown in Fig. 2.1b).
Finally we apply De Morgan rules, which allows us to transform this structure
into AND-OR topology. It is well known in digital design that this topology
represents SOP, which is a general expression for any Boolean function. The
existence of this topology leads to the Earl’s Latch (Earl 1965).

It is easy to derive a Boolean equation to represent the behavior of the pre-
sented S - R latch. The next output, en+,, is a function of the Q n , S, and R
signals. Later in this book we will use those simple dependencies in order to
design improved clocked storage elements. The S - R latch can change the out-
put, Q , at any time. In order to make the latch compatible with the synchronous
design, we will restrict the time when Q can be affected by introducing the clock
signal that gates the S and R inputs. If the data input, D, is connected to S and
the property of the S-R latch, which makes S and R mutually exclusive, is
applied, the resulting D-latch is shown in Fig. 2.2a. The related timing diagram
of a D-latch is shown in Fig. 2.2b. The latch is transparent during the period of
time the clock is active, i.e., assuming logic 1 value.

A latch can be built in a SOP topology (Fig. 2 .1~) . This tells us that it is pos-
sible to incorporate logic into the latch, given that the SOP is one of the basic
realizations of the logic function. This leads to the construction of Earl’s Latch,
which was introduced during the course of the development of a well-known IBM
S360/91 machine (Earl 1965; Flynn 1966; Amdahll964; Anderson et al. 1967). The
basic Earl’s Latch configuration is shown in Fig. 2.3a, (Earl 1965), while a latch
implementing the Carry function is shown in Fig. 2.3b (Halin and Flynn 1972).

Figure 2.2. (a) Clocked D-latch; (b) timing diagram of clocked D-latch.

LATCH-BASED CLOCKED STORAGE ELEMENTS 29

-5Y- Clk

-
Clk - Y

(a.) (b.)

Figure 2.3. (a) Basic Earl’s Latch; (b) implementing the Carry function.

In order to avoid the transparency feature introduced by the latch, an arrange-
ment is made in which two latches are clocked back-to-back with two nonover-
lapping phases of the clock. In such an arrangement the first latch serves as a
Master by receiving the values from the data input, D, and passing them to the
Slave latch, which simply follows the Master. This is known as a Master-Slave
latch (MSL) (or LI-Lz latch, in IBM), as shown in Fig. 2.4. This is not a flip-
flop, as we will explain later in this book. A very common VLSI implementation
of MSL is the Transmission-Gate MSL, used in PowerPC (Gerosa et al. 1994),
as shown in Fig. 2.4d.

In a M-S arrangement, the slave latch can have two or more masters acting
as an internal multiplexer with storage capabilities. The first master is used for
capturing data input, while the second master has other uses and can be clocked
with a separate clock. One arrangement that utilizes two masters is the well-
known IBM level-sensitive scan design (LSSD 1985) shown in Fig. 2.5.

In systems designed with LSSD compliance (Fig. 2.5), the system is clocked
with clocks C and B during the normal operation and the storage elements act as
standard MSLs. However, all storage elements in the system are interconnected
by the alternate master in a long shift register. The input and the output of this
shift register are routed to the external pins. In the test mode, the system is clocked
with the A and B clocks, which act as a long shift register so that the state of
the machine can be scanned out of the system andor a new state scanned in.
This greatly enhances the controllability and obsewability of the internal nodes
of the system. LSSD is a mandated standard practice of all IBM designs, and it
has become known in the industry as boundary scan (IEEE Standard 1149).

2.1 .l . True-Single-Phase-Clock Latch

The true-single-phase-clock (TSPC) latch (Fig. 2.6), developed by Yuan and
Svensson (1989), is a fast and simple structure that uses a single-phase clock.
This latch was constructed by merging CMOS Domino and CMOS NORA

30 THEORY OF CLOCKED STORAGE ELEMENTS

I , i , . fransparent
, .
I , . . 4 L

NO D-Q
transparency

+, p inverter delay D
I .
I . , I

1 5 L , . + j

I .

i , . itransparent
: :
, . , . I .

- G +

NO D-Q
transparency

QI
(c)

Vdd Wd

Q
Clk
-r--

- -
Clk

(d)

Figure 2.4. Master-slave latch with (a) nonoverlapping clocks; (b) single external clock;
(c) timing diagram; (d) as used in PowerPC 603 (Gerosa, JSSC 12/94), Copyright 0 1994
IEEE.

logic (Goncalves and De Man 1983). During the active clock (Clk = l), CMOS
Domino evaluates the input in a monotonic fashion (only a transition from logic 0
to 1 is possible) while NORA logic precharges. Alternatively, during the inactive
clock (Clk = 0), Domino is being precharged (and so is nontransparent) while
NORA is evaluating its input. The combination of NORA and Domino logic
stages results in a nontransparent MSL that only requires a single clock. Hence
the name given to it was true-single-phase-clock M-S latch. The clock system
based on the TSPC M-S latch is described in Afghahi and Svensson (1990).

LATCH-BASED CLOCKED STORAGE ELEMENTS 31

D i

c ;

I ;

A [

System data

System clock

i +L1
L1

; -L1 L1," =
Scan data

Shift A clock

B i- Shift B clock

i +L2

L2

3 i -L2

Figure 2.5. IBM LSSD compatible storage element.

Figure 2.6. True-single-phase-clock (TSPC) M-S latch introduced by Yuan and Svensson
(1989), Copyright 0 1989 IEEE.

Operation of the TSPC M-S latch is illustrated in Fig. 2.7. When Clk = 0,
the first inversion stage, L I , is transparent and the second half, L2, of the TSPC
is precharged. Thus, at the end of the half-cycle, during which CZk = 0, the input
D is present at the input of the Domino block as its complement, B. When the
clock switches to logic 1 (CEk = l), Domino logic evaluates and the output, a,
either stays at logic 0 or makes the transition from 0 to 1, depending on the
sampled input value, B. This transition cannot be reversed until the next clock
cycle. In effect the first inverter connected to the input acts as a master latch,
while the second (Domino) stage acts as a slave latch. The transfer from the
master latch to the slave latch occurs as the clock changes its value from logic
0 to logic 1. Thus, the TSPC MSL behaves as a leading-edge triggered flip-flop.
It is also frequently called a flip-flop, though by the nature of TSPC operation,
this classification is incorrect.

Due to its simplicity and speed, the TSPC MSL was a very popular way of
implementing a clocked storage element. However, the TSPC MSL was sensitive
to glitches created by the clock edges. One of these glitches occurs on the output
with a logic value of 1, while the input is receiving D = 0.

32 THEORY OF CLOCKED STORAGE ELEMENTS

-L,- j t- L,

Clk= 7; X

\ cqL“ ~ - - - 1
\

Transfer of data
between L, and L,

Figure 2.7. TSPC M-S latch operation.

2.1.2. Pulse Register Single Latch

Because of the high cost of the M-S latch design and the potential signal-
race hazards introduced by the single-latch design, an idea for a single-latch
design clocked by locally generated short pulses evolved. The idea is to make
the clock pulse very short, and thus reduce the time window during which the
latch is transparent. However, there is a possibility that a “short path” may be
captured during the same clock. Given that the clock pulse is short, the chance
of this hazard happening is reduced, and it is also possible to pad the logic (add
inverters) in those paths so that they would not be a problem. Such a short clock
pulse cannot be distributed globally because the clock distribution network would
absorb it. There is an additional danger, because due to the process variations,
the duration of that clock pulse will vary locally on the chip, as well as from
chip to chip. In order to mitigate these problems, the pulse clock is generated
locally, and it usually drives a register consisting of several such single latches
that are physically located very close to each other. This method would lose
its advantages of simplicity and low power if every single latch would require
separate clock generator, as seen in Fig. 2.8a and 2.8b (Kozu et al. 1996).

The clock produced by the local clock generator must be wide enough to
enable the latch to capture its data. At the same time, it must be sufficiently
short to minimize the possibility of critical race. Those conflicting requirements
make the use of this single-latch design hazardous by reducing the robustness and
reliability of the design. Nevertheless, this design has been used because of the
critical need to reduce the high costs imposed by the clocked storage elements.

LATCH-BASED CLOCKED STORAGE ELEMENTS 33

V v
(4

Figure 2.8. Pulse latch: (a) local clock generator; (b) single latch (Kozu et al. 1996);
(c) clock signals, Copyright 0 1996 IEEE.

Figure 2.9. Pulse latch: Intel’s explicit pulsed latch. (Tschanz et al. 2001), Copyright 0
2001 IEEE.

Intel’s version of the pulsed latch is shown in Fig. 2.9. One benefit of this
design is low power consumption due to the common clock signal generator and
a simple structure of the latch. In order to obtain the desired short clock pulse,
the pulse generator used in Intel’s pulsed latch uses the principle of reconvergent
fan-out with nonequal parity of inversion.

34 THEORY OF CLOCKED STORAGE ELEMENTS

2.2. FLIP-FLOP

The main feature of the flip-flop is that the process of capturing data is related
to the transition of the clock (from 0 to 1 or from 1 to 0), thus the flip-flop is not
transparent. Therefore flip-flop-based systems are easier to model, and the timing
tools find flip-flop-based systems simpler and less problematic to analyze. The
precise point in time when data are captured is determined by the clock event
designated as either the leading or trailing edge of the clock. In other words, the
transition of the clock from logic 0 to logic 1 causes data to be captured (it is
the 1-to-0 transition in the trailing edge-triggered the flip-flop). In general, the
flip-flop is not transparent, since it is assumed that the clock transition is almost
instantaneous. As we will see later, even the flip-flop can have a very small
period of transparency associated with the narrow time window during which the
clock changes, as will be discussed later. In general, we treat the flip-flop as a
nontransparent clocked storage element. Given that the triggering mechanism of
a flip-flop is the transition of the clock signal, there are several ways of deriving
the flip-flop structure. To better understand its functionality, it helps to look at an
early version of a flip-flop, shown in Fig. 2.10, that was used in early computers
and digital systems (see Siewiorek et al. 1982). The pulse, which causes the
change, is derived from the triggering signal (also referred to as trigger) by
using a simple differentiator consisting of a capacitor C and resistor R . One
can also understand a glitch introduced by the flip-flop. If the triggering signal
transition is slow, a pulse derived in this way may not be capable of triggering
the flip-flop. On the other hand, even a small glitch on the trigger line can cause
a false triggering.

To further our understanding of the flip-flop, it is helpful to start making the
distinction between the flip-flop and the latch-based CSE.

The flip-flop and the latch operate on different principles. While the latch is
“level-sensitive” meaning it is reacting on the level (logical value) of the clock
signal, the flip-flop is “edge sensitive,” meaning that the mechanism of capturing

Q

Trigger

-r--l

VDD VDD
T T

- +1 ov
(4 (b)

Figure 2.10. (a) Early version of a flip-flop; (b) PDP-8 direct set-reset sequential ele-
ment.

FLIP-FLOP 35

Figure 2.11. (a) General flip-flop structure; (b) general M-S latch structure.

the data value on its input is related to the changes in the clock signal. Level
sensitivity implies that the latch captures the data during the entire period of time
when the clock is active (logic l), which means the latch is transparent. The two
are designed from a different set of requirements, and so consist of inherently
different circuit topologies.

The general structure of the flip-flop is shown in Fig. 2.11a. The differ-
ence between a flip-flop structure and the M-S latch, shown in Fig. 2.11b, is
as follows:

A flip-flop consists of two stages: a pulse generator (PG) and a pulse capturing
latch (CL). The PG generates a negative pulse on either the lines, which
are normally held at logic 1. The resulting pulse is a function of data and clock
signals, and should be of sufficient duration to be captured in the pulse CL. The
duration of the pulse produced by the PG stage can be as long as half the clock
period, or it can be as short as one inverter delay.

On the other hand, the MSL consists of two identical clocked latches and its
nontransparency is achieved by phasing clocks C , and C2, which are clocking
the master latch, L I , and the slave latch, L2.

In spite of the different topologies for the flip-flop and MSL, it may seem that
because their outward appearance is the same, there is no difference between the
two. In addition, the reader may believe that the distinction between the flip-flop
and MSL is artificial and only of academic interest. Figure 2.12a shows the black-
box view of the flip-flop and MSL. It appears that the MSL behaves identically
to the trailing-edge-triggered flip-flop, so there is no apparent difference between
the two. However, if the rise (or fall) time of the triggering edge of the clock
increases, there will be a time at which the flip-flop will fail. This is illustrated
in Fig. 2.12b, where the leading-edge-triggered flip-flop and MSL are compared.
The MSL will continue to operate correctly, because the capturing mechanism

or

36 THEORY OF CLOCKED STORAGE ELEMENTS

7TQFF Clock

Data [

QL I I

failed !
QF

(b)

Figure 2.12. (a) Black-box view of the flip-flop and M-S latch; (b) experiment causing
the flip-flop to fail while the M-S latch is still operational.

of both Master and Slave latches is related to the clock level, not to the rate of
change. However, there are several reasons why the flip-flop may fail:

1. Degradation of the rate at which the clock signal changes (clock edge
degradation) can diminish the level and duration of the internally produced
pulse that sets the CL.

FLIP-FLOP 37

2. The difference in threshold levels of the gates used (due to the process vari-
ation) can cause the timing difference to behave differently than expected,
resulting in no pulse being produced.

3 . Any spurious glitch on the clock signal can cause false triggering of the
flip-flop.

The experiment shown in Fig. 2.12 demonstrates the difference between the
flip-flop and the MSL. This sensitivity of the flip-flop to the rate of the triggering
edge makes the flip-flop potentially hazardous and a reliability problem in the
systems where we cannot guarantee that the clock signal will suffer no degrada-
tions. This is particularly important where clock-edge degradation and noise on
the clock signal lines are concerned.

Purely digital implementation of a flip-flop is far more intricate. For that
analysis, the reader is referred to the commonly used SN7474 D-type flip-flop
introduced by Texas Instruments and shown in Fig. 2.13 (Texas Instruments
1984). The analysis of the SN7474 flip-flop is particularly interesting because
even a brief analysis reveals that the operation of this particular flip-flop is based
on the races in time inside the first stage of this flip-flop.

The PG stage of the SN7474 is shown in Fig. 2.14, which may be helpful
in the analysis of its operations and its failure modes. In order to behave as
a flip-flop (to be sensitive to the change in the raising edge of the clock), an
intricate race is introduced in the PG block that prevents any change on the 3
and lines after the clock has moved from logic 0 to logic 1 (Oklobdzija 1999).
Figure 2.14a is used to aid in the analysis of the PG block of the SN7474. Delay
mismatch that can occur due to the process variations may result in this flip-flop
malfunctioning, as shown in Fig. 2.14b. In the particular example shown, a race
occurred between the 3 and signals, which should be both stable at 1 after 3

Clk

Figure 2.13. Texas Instruments SN7474 flip-flop,

38 THEORY OF CLOCKED STORAGE ELEMENTS

N2 I" 1 s"

has made a brief transition to 0 following the capture of D = 1 on the raising
edge of the clock. Signal should have stayed at 1 the whole time. In this
particular case, the large difference in delay (due to the process variations) from
one gate to another was the cause of this race.

signals with respect to the Data (D) and Clock
(Clk) signals can be expressed as

The relationship of 3 and

_ -
S,, = ClkR(D + S) and R, = ClkS(D + R) (2. I)

- ~- P
S

These expressions were derived strictly from the logic topology of the SN7474
flip-flop, shown in Fig. 2.13. The expressions for the next value of the set signal,
S, (as well as reset signal, R,), provide a quick and simple insight into the
functioning of the PG block of this flip-flop. Simply stated in words, the equation
for S, tells us: The next state of this flip-flop will be set to 1 only at the time the
clock becomes 1 (rising edge of the clock), the data at the input are 1, and the
flip-flop is in the steady state (both S and R are 0). The moment the flip-flop is
set (S = 1, R = 0), no further change in data input can affect the flip-flop state,
data input will be "locked" to S, = 1 by (D + S) = 1, regardless of D, and reset
R, would be disabled (by S = 1). This assures the edge sensitivity, that is after
the transition of the clock and setting the S, or R, signal to the desired state, the
flip-flop is locked. No changes can occur until the clock transition to 0 (making
both S = R = 0), thus enabling the flip-flop to receive new data.

- 81
R I

FLIP-FLOP 39

Flip-Flop Derivation Given the set of specifications that describe the flip-
flop property given earlier, we can undertake the process of deriving the logic
equations for the flip-flop. We know that the flip-flop consists of (1) a PG and
(2) a pulse CL (Fig. 2.11a). The CL is a simple cross-coupled NAND (or NOR),
set-reset (S-R) latch. We will see later how this CL can be designed in a very
efficient way (Oklobdzija and Stojanovic 2001). The PG stage is specified by its
expected behavior. The value of the PG outputs, S and R , after the clock makes
its transition from 0 to 1 (triggering edge) is a function of the Clock, Data and
the previous values of S and R . A description of S,, is given in the previous
section. For clarity, we will repeat it specifically for the required next value of
the S,, signal: The next state of the flip-flop should be set to 1 only at the time the
clock becomes 1 (triggering edge of the clock), the data at the input are 1, and
the flip-flop is in the steady state (both S and R are 0). The moment the flip-flop
is set (S = 1, R = 0) no further change in data input can affect the flip-flop state.
Therefore, S, should become 1 when the clock becomes 1 and data is 1. When
this event occurs, S,, stays at 1 and it cannot revert back to 0, even if the data
signal changes back to 0.

It is quite simple to show these functional specifications on a Karnaugh map,
as shown in Fig. 2.15. Now we can derive logic equations from the functional
specifications given in the Karnaugh map; these equations are equivalent to the
ones shown in Eq. (2.1).

If we use the equations obtained this way to construct a PG of the flip-flop, it
will result in the circuit topology shown in Fig. 2 .16~. Combining the PG stage
obtained with the improved second-stage CL invented by Stojanovic (Oklobdzija
and Stojanovic 2001) results in a superior flip-flop that was later implemented
and further enhanced by Nikolic et al. (1999). This flip-flop is in the leading
group of high-performance flip-flops in terms of speed and energy delay product.

Figure 2.15. Karnaugh map showing derivation of the pulse-generating stage of a flip-flop
(only the Sn signal is shown).

40 THEORY OF CLOCKED STORAGE ELEMENTS

Clk

I I
Q

(c)

Figure 2.16. (a) Pulse generator stage of the sense-amplifier flip-flop. (Madden and
Bowhill, (1990); (b) Improvement for floating nodes. (Dobberpuhl 1997; Montanaro
et al. 1997) (c) Pulse generator stage improvement by proper design. (Nikolic and
Oklobdzija 1999). Copyright 0 1990, 1997 IEEE.

It is interesting to note that engineers had to make several attempts before they
found the right circuit topology for this flip-flop. The flip-flop used in the third
generation of Digital Equipment Corporations 600-MHz Alpha (Gronowski et al.
1998) processor is a version of the flip-flop introduced by Madden and Bowhill,

FLIP-FLOP 41

which was based on the static memory cell design (Madden and Bowhill 1990).
This particular flip-flop is known as a sense-amplifier flip-flop (SAFF) (Matsui
et al. 1994). The development of the PG block of this flip-flop is illustrated
in Fig. 2.16a-2.16~.

The behavior of the SN7474 flip-flop is identical to that of Alpha’s SAFF.
When setting the flip-flop, both of them hold the s (or x) line at logic 0 for the
duration of the clock active (logic 1) and reset them to logic 1 once the clock
returns to 0 (inactive state).

One of the objectives of this book is to clarify the confusion that exists in
understanding and properly classifying various types of clocked storage elements.
In the next section we will show another way (used in practice) to create a flip-
flop. In the SN7474, disabling the D input is done after the short delay necessary
to set S (or R) to the next value, thus achieving the edge property. This short
delay is essential and cannot be avoided. It is reflected in the parameters of the
setup and hold times of the flip-flop, which will be discussed later in the book.

2.2.1. Time Window-Based Flip-Flops

Derivation Digital circuits are based on discrete events. Not only are the logic
signals a set of discrete voltage levels, but the time is also based on either the
clock (leading or trailing edge) or some other finite delay based on the signal
propagation through one or more of the logic elements. Determining when to
shut the flip-flop off is also based on a discrete time event with reference to
the clock, or one or more inverter or gate delay units following the transition
of the clock. This method is illustrated in Fig. 2.17, where one buffer delay
serves as a time reference for shutting the flip-flop off. Thus, the clock edge is
created to last during a time interval (window) from Clk to Clkl, during which
the flip-flop may be transparent. When D = 1 and Clk = 1, Sn+l changes to 0
and immediately back to 1 as soon as Clkl = 1. At this point any change in
D has no effect on because any further input transition is blocked. This
describes the following flip-flop property: S,+l = Clk + Clkl D + ClkIS , which
means that Sn+l = 0 only for the short period of time until Clkl = 1; afterwards
the state is maintained by the term C l k l s , while data can have no effect because
Clk D = 0. Thus, nontransparency is assured after the clock edge.

The usual technique for generating the time reference is to create a short pulse
using the property of reconvergent fan-outs with nonequal parities of inversion.
This arrangement, which uses the clock signal and three inverters with both paths
reconverging as inputs of a NAND gate, is shown in Fig. 2.9. The trailing edge
of this pulse is used as a time reference for shutting off the flip-flop. Depending
on the particular implementation, a short transparency window can be introduced.
This transparency window has been a source of confusion in classifying these
flip-flops. One example is a flip-flop introduced under the name “Hybrid-Latch
Flip-Flop” (HLFF). The existence of a short transparency window caused its
inventor to treat it as a latch, but since its behavior was not that of a latch, it
was given its dual name (Partovi et al. 1996). The HLFF is shown in Fig. 2.18.

~ - - _

42 THEORY OF CLOCKED STORAGE ELEMENTS

Figure 2.17. Method of creating the time reference points for opening and shutting the
flip-flop.

.....,

Signal at
node x Second stage

latch
Pulse .-I_I-T

generator D= 1

Figure 2.18. Hybrid-Latch Flip-Flop (HLFF) introduced by Partovi et al. (1996). Copy-
right 0 1996 IEEE.

FLIP-FLOP 43

D = 0

Figure 2.19. Logic representation of Partovi’s flip-flop (HLFF).

Detailed analysis shows that the number of transistors has been reduced from
the original specifications, which resulted in imperfections in the behavior of
this flip-flop. A logic representation of this flip-flop shows two NAND gates
connected in series (Fig. 2.19). The first NAND gate creates the pulse if D = 1.
Here, the data signal serves as a pulse enabler or pulse inhibitor, depending on
the value of D.

The problem with this structure is that its second stage is incomplete, which
serves as a clockless CL. In order to avoid an excessive number of p-MOS
transistors and obtain latch functionality, the second NAND gate is not fully
implemented and its output node floats when the output node X (from the first
NAND) is at logic 1 after the pulse has ended. In essence, this node (X) rep-
resents the s signal from the pulse generator. The absence of the signal,
due to the single-ended implementation of this flip-flop, hinders the ability to
completely realize the flip-flop function. This is not a case of complete SAW
implementation (Nikolic and Oklobdzija 1999). The floating output node of the
HLFF is susceptible to glitches and even the slightest mismatch of clock signals
between the first and second stages. When data input D = 1, the leading edge of
the clock sets X = 0 (precharged node), but only after some propagation delay
caused by the time it takes to make X = 0 (set operation). All three inputs of
the second NAND gate will be at 1 for a short time after the leading edge of
the clock. This will cause a glitch in the output, a problem that is inherent in the
HLFF structure.

Figure 2.20 shows a systematic approach to deriving a single-ended flip-flop.
The flip-flop shown in Fig. 2.20 has three time reference points: (1) leading edge
of the Clk signal; (2) trailing edge of the Clk signal after passing through three

44 THEORY OF CLOCKED STORAGE ELEMENTS

First Stage

Clk Second Stage

(b)

Figure 2.20. Systematically derived single-ended flip-flop: (Nedovic and Oklobdzija
2000a) (a) circuit diagram: (b) logic representation. Copyright 0 2000 IEEE.

inverters, Invl-3; (3) leading edge of the Clk signal after passing through two
inverters, Znvl-2. The clock signal Clk is designated Clkl after two inversions,
and CZk I after three inversions. The logic representation of this flip-flop is shown
in Fig. 2.20b.

The model for this leading edge triggered flip-flop uses three time reference
points. Equations (2.2)-(2.4) describe the behavior of this flip-flop.

Pull-down path is the implementation of

FLIP-FLOP 45

The pull-up path is implemented using:

-
S = (Clk + Clki)(Clkl + S) (2.3)

This enhances performance a little (by reducing the capacitance on node 3)
without significant degradation in reliability. The second stage (capturing latch)
is implemented as:

Q = S(CIk1 +e> (2.4)

Clock signal Clkl delays capture of the value on until node 3 stabilizes.
This eliminates the hazard encountered in the HLFF (Partovi et al. 1996) and
SDFF flip-flops (Klass et al. 1998). In addition, a systematically derived flip-flop
(Nedovic and Oklobdzija 2000a) exhibits better speed when compared to the
HLFF and SDFF.

CHAPTER 3

TIMING AND ENERGY PARAMETERS

This chapter deals with the timing and energy parameters of CSEs. We dis-
cuss the various definitions of timing parameters and provide insight into energy
consumption in clocked storage elements.

3.1. TIMING PARAMETERS

Latches and flip-flops have different timing characteristics in general. However,
it is possible to establish some common parameters for both. These parameters
are based on timing relations between data and clock inputs that ensure correct
circuit operation. We define basic timing parameters using a flip-flop and extend
the analysis to a latch.

3.1 .I. Clock-to-Output Delay, fCQ

The clock-to-output delay is the delay measured from the clock triggering edge
to the output. It is a function of the arrival of data and clock signals, the slope
of these signals, the supply voltage, temperature, process parameters, and the
output load.

Basic timing diagrams of flip-flops are illustrated in Fig. 3.1. The flip-flop
samples data, D , at the clock triggering edge (leading edge in this example)
and generates the appropriate output after the propagation delay, tCQ,LH if output
undergoes a 0- 1 transition or tCQ,HL if output undergoes a 1-0 transition. The
transitions occur between two consecutive clock edges, provided there is no
violation of timing constraints between the data and clock inputs. Fundamental
timing constraints between data and clock inputs are quantified with setup time,

47

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

48 TIMING AND ENERGY PARAMETERS

\ r
1 (

D

1
, I , , I .
I I ,

I , ,

elk ~

0 d h :-:& :-
~ C Q L H ~ C Q , H L U H t < U Setup time violation

Figure 3.1. Basic timing diagrams in flip-flops.

Data-Clk [ps]

Figure 3.2. Setup and hold time behavior as a function of clock-to-output delay.

U , and hold time, H . Data have to be stable at least setup time before and hold
time after the active clock edge, as illustrated in Fig. 3.1.

Having defined basic timing relationships related to the setup and hold times,
question about the failure mechanism of the clocked storage element remains. If
we establish an experiment in which we set the data arrival closer to the clock,
we see that at first the Clk-Q delay of the storage element will start to increase
before the capturing mechanism fails. Something similar happens at the other
end when the next data arrival gradually approaches the current clock edge. This
is not an abrupt process, as the definition of the setup and hold times implies.
This behavior is shown in Fig. 3.2. Obviously we do not want to allow the data
to come too close to the failing region for fear that we may have an unreliable
design. However, keeping the data too far from the failing region takes away
precious cycle time, which impacts the performance negatively. This creates a
need for more precise definitions of the setup and hold times.

3.1.2. Setup Time, U

Although there are various definitions of the setup time, they all relate to the
same fundamental mechanism-degradation of Clk-Q delay due to a change in the

TIMING PARAMETERS 49

relative arrival time of data and clock signals, described in the previous section.
The value of the setup time depends on the distribution of the internal clock
signal inside a CSE, and can be both positive and negative. MSL typically have
a positive setup time, while pulsed latches and flip-flops usually have a negative
setup time, often accompanied by the soft-edge property (Partovi et al. 1996).

To fully understand the impact of the setup time on the overall system cycle
time, one needs to consider the setup time in conjunction with the Clk-Q delay.
The sum of the two is the only true measure of the CSE delay relative to the
overall cycle time. Therefore, the setup time that is based on minimum an achiev-
able data-to-output delay is the optimum setup time from the perspective of the
impact of the CSE delay on cycle time (Stojanovic and Oklobdzija 1999). This
is illustrated in Fig. 3.3, which shows that when D arrives later relative to Clk,
D-Q delay initially decreases because D still arrived more than one setup time
before Clk, which is still early enough so that no significant increase in Clk-Q
delay can be observed. When D is further delayed, then at one point the increase
in Clk-Q grows larger than the absolute decrease in the D-Clk delay, so the
overall D - Q delay starts increasing, until the capturing mechanism fails. There-
fore, minimum D - Q delay exists. Data arrival resulting in the minimum D - Q
delay would therefore be the optimal setup time, corresponding to a 45" slope
on the Clk-Q characteristics (Fig. 3.3). Optimally tuning the data arrival close to
this point is a hard task in general, because the arrival times of D and Clk are
not easy to control due to variations in logic delay and clock skew. However, if
the CSEs are spatially close, which is the case in critical paths, these variations
would be reduced, and the designer would be able to fine-tune the logic and CSE
delays to achieve almost optimal clock frequency. This approach is applicable
to custom, high-performance designs, where achieving peak performance is the
ultimate goal.

Another method for quantifying the setup time is based solely on the Clk-
Q delay. It is defined as the D-Clk delay that corresponds to some specified
increase in the Clk-Q delay, relative to the nominal Clk-Q delay. The nominal
Clk-Q delay is defined as the Clk-Q delay when D arrives early before the Clk

c
7
P
3
c

0
0 c

Faih
I n Reg

Constant Clk-Q Variable Clk-Q
Region I Region

Ire
ion

Clk-Q I
m c
p"

Data
D D Q ~ Uopt

arrives early- - Data arrives late
Data to Clock Delay

Figure 3.3. Setup time behavior as a function of data-to-output delay.

50 TIMING AND ENERGY PARAMETERS

I

0.2 1 U I
_I

01 I I I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

D-Clk [nom Clk-Q]

Figure 3.4. D - Q and Clk-Q delay as a function of D-Clk offset.

so that there is no degradation in the Clk-Q delay. This method for obtaining
U is illustrated in Fig. 3.4, where a 5% increase in the Clk-Q delay is used
(Markovic et al. 2001). The setup time obtained using this approach does not
necessarily coincide with the min D-Q setup time, which makes it suitable for
designs where performance is not the primary concern. This is typically the case
in standard cell-based synthesized systems.

Neither of these definitions is preferred over the other. Our goal was to present
both approaches and hint at their applicability. Either of the two definitions
presented here can be used, depending on the application, available design tools,
and preference of the designer. Additionally, the designer should always keep
the worst-case reliability conditions in mind and back off in time in order to
tolerate process-voltage-temperature variations, and be sure that the CSE will
operate correctly, because the failure region does not occur until after the setup
time point.

3.1.3. Hold Time, H

While the setup time can be obtained either by using D-Q or the Clk-Q delay,
there is no such ambiguity in the definition of the hold time. This is simply
because the D-Q delay does not capture the region of the hold time viola-
tion, as shown in Fig. 3.4. Instead, the hold time is obtained from the Clk-Q

TIMING PARAMETERS 51

versus D-Clk characteristics. It is typically determined to be the D-CZk offset
corresponding to some specified increment in Clk-Q delay from its nominal
value. As an illustration, Fig. 3.4 defines hold time as a 5% increase in the
CZk-Q delay. In addition, Fig. 3.4 also defines optimal hold time, Hopt, as the
Clk- Q delay increment corresponding to the optimal setup time, U,,, .

The hold time is equally important in both high-performance and low-energy
designs. It relates to early data arrival, where timing violations due to critical
races can occur. This directly translates into the clock-skew budget.

The sum of the setup time and hold time defines a minimal data width, the
time during which data must remain stable. Setup and hold times are different in
flip-flops and latches.

Setup and Hold Times in Flip-Flops For purposes, of illustration, setup
time, U , hold time, H , sampling window, and clock width, w, for a flip-flop are
shown in Fig. 3.5. Setup and hold times are therefore related to the triggering
edge of the clock, in this case, the leading edge.

Setup and Hold Times in Latches The situation with the latch is different,
as illustrated in Fig. 3.6. The setup time for the latch starts from the trailing edge
of the clock signal, because closing the latch is an action that would capture the
last data present in the latch. In addition, there are two delay times defined tcQ
(as in the flip-flop) and ~ D Q because of the two possible scenarios: (1) data being
present and waiting for the clock to open the latch, and (2) data arriving while
the latch is open.

It would be appropriate to observe that the failure mode of the flip-flop does
not necessarily follow the failure mode of the latch as a result of the violations of
the setup or hold times. Depending on the flip-flop implementation, violation of
the setup or hold times can lead to oscillations in the pulse generator stage of the
flip-flop, as discussed in Chapter 2. As a result, once the oscillation occurs the

Sampling
window

C

Figure 3.5. Setup time, hold time, sampling window, and clock width in a flip-flop.

52 TIMING AND ENERGY PARAMETERS

Clk
~

Dl

Q1

"5" Clk

4 b

W

tco

-JTyeTJy/ Logic

Clk

J -
tLOg,C -

b

tskew
tC/k-Q

Figure 3.7. Illustration of a data path. (Markovic et al. 2001), Copyright 0 2001 IEEE.

output value, Q , cannot be predicted. These oscillations in the flip-flop usually
occur abruptly. as opposed to the more gradual delay increase encountered with
the latch. Therefore one needs to be more careful with the flip-flop than with the
latch-based design.

Having defined setup and hold times, the next step is to illustrate their signif-
icance in a true data-path design, as shown in Fig. 3.7. In order to accomplish
this, we introduce the concept of early and late data arrival.

3.1.4. Late Data Arrival and Time Borrowing

From the graph in Fig. 3.3 we see that in spite of Clk-Q delay increasing, we are
still gaining in terms of D-Q delay, because the time taken from the cycle is
reduced. In other words, the increase in the storage element delay is still smaller

TIMING PARAMETERS 53

-

D Q D Q -

- - -
Q Q

Figure 3.8. Time Borrowing in a pipelined design.

than the amount of time for which data is delayed, thus allowing more time in
the cycle for the useful logic operation. Thus, we are encountering some new
phenomena: time borrowing, cycle stealing, and slack passing. We will use the
term time borrowing later in the text. In order to understand the full effects
of delayed data arrival, we have to consider a pipelined design where the data
captured in the first clock cycle is used as input data in the next clock cycle, as
shown in Fig. 3.8.

As can be seen in Fig. 3.8, the data-to-output time window, d2, moves around
the time axes. The parameter d2 is defined by the latest data arrival and by valid
CSE output. As the data arrive closer to the clock, the size of the d2 shrinks (up
to the optimal point). The data in the next cycle will then arrive later compared
to the case where the data in the previous cycle were ready well ahead of the
setup time. The amount of time for which the T C R ~ was augmented did not come
for free. It was simply taken away (stolen or borrowed) from the next cycle T c R ~ .
As a result of late data arrival in Cycle-1, there is less time available in Cycle-2.
Thus the boundary between the pipeline stages is somewhat flexible. This feature
not only helps accommodate a certain amount of imbalance between the critical
paths in the various pipeline stages, but it helps in absorbing the clock skew
and jitter. Thus, time borrowing is one of the most important characteristics of
high-speed digital systems.

3.1.5. Early Data Arrival and Internal Race Immunity

The maximum clock skew that a system can tolerate is determined by the clock
storage elements. To quantify this timing measurement, internal race immunity
R is introduced. If the Clk-Q delay of storage element A is shorter than the hold

54 TIMING AND ENERGY PARAMETERS

time of storage element B in Fig. 3.7, and there is no logic in-between, a race
condition can occur. In other words, there is a minimum delay restriction on the
Clk-Q delay given by Eq. (3.1). Internal race immunity, R, of a clocked storage
element is given by Eq. (3.2):

(3.1)

(3.2)

Internal race immunity, R , of a clocked storage element is the difference
between its Clk-Q delay and hold time, H . If it is greater than the maximal clock
skew, we do not have to worry about minimal delay restrictions. The internal race
immunity is a helpful measurement that aids in the analysis of timing failures
due to short paths (races). In addition, it relates to the maximum clock skew a
CSE can tolerate.

3.1.6. Minimum Data Pulse Width

The minimum width of the data pulse is the minimum time during which data
are required to be stable to ensure correct operation of a clocked storage element.
It defines the sampling window, and it is approximately equal to the sum of the
setup and hold times. The minimum data pulse width over a range of supply
voltages is illustrated in Fig. 3.9. The minimum pulse width widens with scaling
of the supply voltage, meaning that an extra margin has to be included to achieve

2.0

1.5
B
7 1.0
v)
I

0.5

2.5

Figure 3.9. Impact of supply voltage on the minimum data pulse width.

ENERGY PARAMETERS 55

sufficient robustness in the design. In addition, the relative arrival of D and
CZk shifts with scaling the supply voltage. This is a direct consequence of the
delay scaling.

3.2. ENERGY PARAMETERS

The battery life in portable devices is proportional to their energy consumption. In
high-performance designs, energy consumption has a large impact on the design
and may limit performance. It is therefore imperative to design the digital circuits,
used in consumer products, that consume the minimum amount of energy for a
given task. In order to accomplish this, designers need to understand energy
consumption in the various circuits used in the implementation. In analysis of
energy consumption in the clock subsystem, the designs should look specifically
at the energy consumed in the clocked storage elements.

3.2.1. Components of Energy Consumption

Total energy consumption in a CSE during one clock period is obtained using

where t is the time point chosen in a way that includes all relevant transitions:
arrival of new data, clock pulse, and output transition. This energy has four
components: switching, short circuit, leakage and static energy, which are briefly
explained in this section:

E = Eswitching + Eshortcircuit + Eleakage $. Estatic (3.4)

Switching Energy The switching component of energy is defined as:

N

Eswitching C~o-l(i) ' ci . vqwing(i) . ~ 0 0 (3.5)
i=l

where N is the number of nodes in a circuit; Ci is the capacitance of the node
i ; WO- 1 (i) is the probability that energy-consuming transition occurs at the node
i ; Vswing(i) is voltage swing of the node i ; and VDD is the supply voltage. The
switching component of energy is the main contributor to the overall energy
consumption when the switching activity is high. Since the switching component
contributes to the total energy the most, energy can be best reduced if each of
the terms in the product expression is minimized. This becomes a simple design
guideline for energy reduction in digital circuits where the switching component
is the dominant component.

Short-circuit Energy The short-circuit component of energy arises from the
short circuit (crowbar) current. The short-circuit current occurs when both pull-up

56 TIMING AND ENERGY PARAMETERS

Figure 3.10. Short-circuit current in an inverter during: (a) pull-up; (b) pull-down
operation.

and pull-down paths conduct current at the same time. To illustrate this, let’s
examine the simple case of a CMOS inverter, where due to the finite rise and
fall times of the input waveform when Vr, < V,, < VDD - I VQ 1, both the n-MOS
and p-MOS transistors are on, which causes short-circuit energy consumption.
During the pull-up operation, as shown in Fig. 3.10a, it is desirable that all pull-
up current of the p-MOS transistor be delivered to C L , in which case the current
of the n-MOS transistor is short-circuit current. Similarly, for the pull-down
operation, current of the p-MOS transistor represents the short-circuit current, as
shown in Fig. 3.10b.

The short-circuit energy component is typically less than 10% of the total
energy. However, it becomes much greater when the slope of the input signal is
large in comparison with the slope of the output signal. The input signal slope
defines the time interval during which both pull-up and pull-down devices are
simultaneously on. In a well-designed system, the input and output slopes are
balanced, with the output slope always being nearly as fast as the input slope,
thus minimizing short-circuit current.

Leakage Energy The leakage component of energy comes from two types
of leakage currents: (1) reverse-bias diode leakage at the transistor drains, and
(2) subthreshold leakage through the channel of a device that is off.

The diode leakage occurs when a transistor is off, and the drain-bulk or source-
bulk diode is reverse-biased so that it conducts current. The leakage current of
the reverse-biased diode is given by

(3.6)

where V is the diode voltage. When the diode is reverse-biased, its current is
approximately equal to the reverse saturation current. This component is typically
negligible compared to the subthreshold leakage component.

The subthreshold leakage component is due to carrier diffusion between the
source and drain when the channel-to-substrate surface potential @s is given
by @B < 4s < 24B, which corresponds to the moderate inversion region, (Wolf

ENERGY PARAMETERS 57

1995). The term 4~ represents the Fermi potential. The drain-to-source current
in the subthreshold region is exponentially proportional to the gate-to-source
overdrive, VGS - VTH, as given by Eq. (3.7):

For VDS >> V, = k T / q , the last term is approximately equal to 1, and IDS
is independent of VDS, which typically happens for VDS larger than 0.1 V
(Chandrakasan 1994). This current is becoming increasingly important with the
scaling of CMOS technology, because the subthreshold slope increases due to
the increase in gate-to-drain overlap capacitance (Wolf 1995).

Energy consumption due to leakage currents is increasing in importance with
the technology scaling. As an illustration, Fig. 3.11 shows projected off currents
in four consecutive deep-submicron technology generations (Chandrakasan et al.
2001).

Assuming a 50% increase in the total transistor width per technology genera-
tion, the total leakage current would increase by about 7.5 times, corresponding
to a 5 x increase in the total leakage power. Furthermore, for constant die size,
the active power remains constant, indicating that the leakage power will soon
become a significant portion of the total power consumption in modem micro-
processors.

Static Energy The component due to static currents appears in two cases:
(1) reduced voltage levels driving CMOS circuits, and (2) circuits with DC
current (e.g., pseudo-n-MOS circuits). Both of these cases rarely occur in
CSE circuits.

3.2.2. Energy Breakdown

Understanding the energy breakdown inside clocked storage elements is the key
to energy-efficient design. A system-level designer, for instance, may be par-
ticularly interested to know how much energy is consumed in the clocking of

10,000 I
I -0.10 rn/

1,000
h

3
2 100

% -
10

i

' 30 40 50 60 70 80 90 100 110

Temp (C)

Figure 3.11. Projected off currents. (Chandrakasan et al. 2001), Copyright 0 2001 IEEE.

58 TIMING AND ENERGY PARAMETERS

a storage element with the objective of minimizing the energy of the clocking
subsystem. Additionally, it is important to understand where the energy goes
inside the storage element to be able to minimize other components of its energy
consumption. This motivates the idea of finding the energy breakdown between
(1) internal clocked nodes in storage elements, (2) internal nonclocked nodes in
storage elements, (3) data and clock input load, and (4) output load.

Energy per transition measurement, which is introduced later in this section,
aids in the calculation of energy breakdown in CSEs. Briefly, energy breakdown
is the total energy consumed by a CSE during one of the four possible input
data transitions. Table 3.1 summarizes energy breakdown in CSEs based on the
energy-per-transition. The fields marked with both letters Y and N denote that the
specific component is optional depending on the circuit structure. For example,
energy ECxt, which is dissipated in charging the external load, is contained in
Eo- 1 in noninverting CSEs, and in El -0 in inverting CSEs.

lnternal Clocking Energy Clocking energy of a storage element is the energy
consumed in its internal, clocked nodes. The total energy consumed by a CSE
is consumed only in internal clock nodes when input data do not change. The
clocking energy is therefore simply evaluated as Eo-0 or El - I . In general, Eo-0
and E l are not equal, depending on the circuit structure. There are two cases to
consider: (1) storage elements without precharge nodes, and (2) storage elements
with precharge nodes.

Storage Elements without PreCharge Nodes Clocking energy in storage
elements that do not have precharge nodes is equal to the total energy consumed
by the CSE. This is valid only when input data undergo 0-0 or 1 - 1 transition.
Examples of this class of CSEs are the conventional MSL circuits (Suzuki et al.
1973; Gerosa et al. 1994). Provided that there are no precharge nodes, all energy
is consumed only in the internal clocked nodes. For this reason, the energy
consumed during 0-0 and 1 - 1 input transitions is the same:

Storage Elements with Precharge Nodes Storage elements with precharge
nodes spend extra energy for precharging these nodes. Energy consumed in the
internal clocked nodes is therefore not necessarily equal to the total CSE energy.

Table 3.1
age Elements

Energy Breakdown in Clocked Stor-

Eo-0 Eo- 1 El-o El-I

EC/k YIN Y Y Y/N
Elm YIN Y Y Y/N
E,,, N Y/N YIN N

ENERGY PARAMETERS 59

The HLFF and SDFF are good examples of this class of circuits (Partovi et al.
1996; Klass 1998). In both of these designs, Eo-0 and El-1 are different because
of the precharge energy required during 1-1 input transition. The precharge
node, however, remains precharged during the 0-0 input transition, in which
case all energy is consumed in the internal clocked nodes, Eq. (3.9). The differ-
ence between El-1 and Eo-0 is therefore equal to the energy consumed in the
precharge node, Eq. (3.10):

(3.9)

(3.10)

In some CSEs with precharge nodes, however, it is not possible to separate
the clocking energy from the precharge energy. This is the case, for example, in
SAFFs (Matsui et al. 1994). Because of its differential nature, both 0-0 and 1 - 1
input transitions require that the internal nodes be precharged, in which case Eo-0
and El-1 represent the total energy consumed in both the precharge operation
and in charging the internal clocked nodes.

Data and Clock lnput Energy Data input energy is simply the energy
required to charge the capacitance of the data input. As shown in Fig. 3.12,
this is the energy taken out of supply, V00-0, excluding the energy dissipated in
driving the parasitic capacitance of the shaded inverter. Similarly, the external
clock energy dissipated in driving the clock input of the CSE is the energy taken
out of supply VDo-nk.

Energy in Internal Nonclocked Nodes To calculate the energy consumed in
the CSE’s internal, nonclocked nodes, we need to identify the input data transition
that results in energy consumption in these nodes. In the case of a noninverting
CSE, this occurs during input transition 1-0. The total energy, E l - 0 , is then
dissipated in charging the internal clocked and nonclocked nodes. To capture the
average energy dissipated in the internal nodes, we need to consider the other
transition as well, and subtract the clocking energy and energy dissipated in
driving the load, C L , Eq. (3.11). The energy consumed in charging the internal

Figure 3.12. CSE test setup.

60 TIMING AND ENERGY PARAMETERS

precharged nodes can be either lumped into Eint or separately calculated as in

(3. I I)

Energy in Output Load Energy is delivered to the external output load when
output undergoes the 0-1 transition. This energy can be obtained as the energy
drawn from the separate supply voltage (not shown in Fig. 3.12) that powers the
output stage of the CSE.

3.2.3. Energy per Transition

A useful energy measurement for system designs is the energy per transition.
The energy per transition is the total energy consumed in a CSE during one
clock cycle for a specified input data transition (0-0, 0-1, 1-0, or 1-1) from
the energy transition diagram; Fig. 3.13. This measurement is extremely cru-
cial because it yields significant insight about circuit energy without the need
for complex and intricate mathematical formulas. We can obtain this informa-
tion empirically by running only one simulation to compute Eo-0, En- I , E I -0,
and El-1. Subsequently, these four values can be used to calculate the CSE
energy consumption for any given input data pattern, as in Eq. (3.12), where
p l - , represents the probability of the i - j input transition:

By inspecting the node activity in a CSE for different input data transitions,
the energy per transition can be utilized to obtain the energy breakdown between
clocked nodes, internal nodes, and the external output load. This is a good basis
for studying alternative circuit techniques that deal with internal clock gating. The
energy breakdown information also offers valuable information about the trade-
offs associated with reduced clocking energy and the energy penalty incurred by
the clock-gating logic, thus providing a better understanding of the optimization
goals for the overall design.

3.2.4. Glitching Energy

In this section we analyze the energy consumed by dynamic hazards that
are generated by the unintended transitions propagating from the fan-in gates,

Po-1Eo-I

P o - o E , , ~ Pl-lEl-I

Pl-OEI-0

Figure 3.13. Energy transition diagram.

INTERFACE WITH CLOCK NETWORK AND COMBINATIONAL LOGIC 61

\ j \ I ,
. I
. I . .
I , I ,

. , . I . .
I ,
I ,
. I . * . . I .

I .
, I
I ,
. I , , I ,

. I . . * .
I .
I ,
I ,
. I . .
, , . . t

D i

init. int.
nodes
(D = o)

- -
@ @ init. int.

nodes
(D= neg. glitch neg. glitch

0 0
pos. glitch pos. glitch
(C k = 0) (Ck= 1) (C k = 0) (C k = 1)

Figure 3.14. Types of glitches in CSEs.

often called propagating glitches (Hashimoto et al. 1998). Glitches produced by
nonglitch transitions at the inputs, called generated glitches, are not covered in
our discussion.

There are four types of glitches in CSEs, all of which can be represented
as shown in Fig. 3.14. Average CSE glitching energy is determined by the
glitching probability and the energy that the CSE consumes during glitching
as in Eq. (3.13).

4

Eavg-glitch = pi ' E , (3.13)
i = l

In our analysis, we used simplified transition diagrams for regular and glitching
transitions. More formal methods for calculating energy consumption due to
regular transitions and glitches using state-transition diagrams can be found in
(Zyuban and Kogge 1999).

3.3. INTERFACE WITH CLOCK NETWORK AND COMBINATIONAL
LOGIC

The clocked storage element measurements described thus far considered the
entire CSE, implicitly assuming that the data and clock inputs were supplied by
drivers with sufficient drive strength. The input clock and data capacitances are
important interface parameters for the clock network and logic design. The clock
network designer and logic designer need to be aware of these capacitances in
order to design circuits that drive storage elements.

3.3.1. Interface with Clock Network

The timing specifications of the clock distribution network that affect the clocked
storage element parameters are clock skew and clock slope. The important energy
parameter is the total load of the clock distribution network, which is defined by
the input capacitance of the clock node and the number of storage elements on
a chip.

An increase in clock slope results in degradation of the storage element per-
formance, so the clock network designer has to know what slopes the storage

62 TIMING AND ENERGY PARAMETERS

elements can tolerate. This is especially important if flip-flops are used. The
clock slope also affects the clock distribution network's energy consumption. If
larger clock drivers with smaller fan-out are used, the clock edges are sharper
and the storage element performance better, at the expense of an increase in
energy consumption by the clock network. Optimal trade-off is achieved when
the least amount of energy is consumed in delivering the desired storage element
performance.

As discussed earlier in this chapter, the clocking energy in a clocked storage
element is the amount of clocking energy expended in clocking the internal nodes
of the CSE. To evaluate the total clocking energy per clock cycle in the entire
clock subsystem, one needs to add the energy consumed in the clock distribution
network. The energy consumed in the clock distribution network depends on the
total switched capacitance, which is determined by the total number of clocked
storage elements on a chip and the input capacitance of their clock inputs, the
total wiring capacitance, and the total switched capacitance of clock drivers, as
given by Eq. (3.14):

The first term in Eq. (3.14) is constant for a given selection of storage ele-
ments. The last two terms depend on the buffer insertion/placement strategy, and
should be minimized. The shorter the total wire length, the smaller the wiring
capacitance, Cwire. If the wire lengths from clock drivers to clock sinks are not
equal, there will be a clock skew. The absolute value of insertion delay from
the root of the clock tree to the clock sinks is not so important, but it is very
important that these delays are balanced within the clock-skew specification. This
imposes a limit on how much extra wiring cost one has to incur in order to keep
the clock skew within a given margin. In addition, there is an energy-performance
trade-off between wide wires driving heavy nets and narrow wires with buffer
repeaters. Therefore, the lower limit on clock distribution energy consumption
per clock cycle is imposed by Cdistrib-net and by the targeted clock slope at the
inputs of the storage elements.

3.3.2. Interface with Combinational Logic

As in driving the clock input of a storage element, one needs the parameters
relevant for driving the storage element data input. The skew between the data
inputs is not relevant as long as the data input signals arrive within setuphold
time specification. The parameters relevant to the combinational logic designer
are therefore the CSE input data slope and input data capacitance. The data slope
affects the performance and energy consumption of both the driving logic and
the storage elements. Clock and data slopes are generally not equal.

CHAPTER 4

PIPELINING AND TIMING ANALYSIS

4.1. ANALYSIS OF A SYSTEM THAT USES A FLIP-FLOP

In order to properly analyze the timing parameters associated with the clocked
storage elements, we need to analyze the timing situation in a pipelined system.
We should start first with the simplest case of a flip-flop and the single clock
used in the design. This situation is illustrated in Fig. 4.1. Much of the discussion
presented here was taken from the paper by Unger and Tan (1986), with some
minor changes in notation.

There are two events that we need to prevent:

1. The data arrive too late to be captured reliably in the next cycle. There are
two possible scenarios here: either the data arrived far too late and are
completely missed in the next cycle, or they are just sufficiently late to
be violating the setup time requirement of the storage element, thus not
assuring reliable capture.

2. The data arrive too early (during the same cycle), thus violating the hold
time requirement for the flip-flip.

4.1 .l. Late Data Arrival Analysis

We cannot assure that the data will be properly captured in either of the cases
discussed in the last section, and therefore we are not able to guarantee reliable
operation of the system. In order to perform a simple analysis of this system,
let us assume that the clock skew and jitter together can cause the maximum

63

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

64 PIPELINING AND TIMING ANALYSIS

Combinational

Figure 4.1. Timing in a digital system using a single clock and flip-flops.

deviation of the clock’s leading edge for TL amount of time from the nominal
time of arrival (and TT for the trailing edge). If we set the time reference to
t = 0 for the leading edge of the clock for the Cycle 1, than we have a following
relation for the latest data arrival:

In equations throughout this chapter, D~Q,,, represents the minimal clock-to-
Q (output) delay of the flip-flop and D L ~ represents minimal delay through
the logic (as opposed to the use of index M , where DCQM and DLM represent
maximum delays).

The latest possible arrival of the data in the next cycle, t D L N , occurs under the
following circumstances: (1) data were captured at the latest possible moment
due to the clock skew and jitter, which is TL; (2) the flip-flip that captured the
data was the slowest possible (keep in mind that flip-flop delays will vary due
to the process variations); (3) these data traveled through the longest path in the
logic, taking t L = tCR (critical path):

The clock’s leading edge in the next cycle arrived at the earliest possible moment,
P-TL. However, in order to capture the data reliably, the data should arrive at
least for the setup time, U , before the leading edge of the clock. This leads to
the following inequality:

P - TL - U 1 TL + DCQM + ~ C R (4.3)

A constraint for the clock period, P (speed of the clock), is derived from this
equality:

(4.4) p ? ~ T L f u 4- DCQM + t c R

ANALYSIS OF A SYSTEM THAT USES A FLIP-FLOP 65

tCR 5 P - ~ T L + u + DCQM (4.5)

This is one of the fundamental equations. Basically, it shows that the time
available for information processing is equal to the time remaining in the clock
period after the clock uncertainty is subtracted for both edges and the time data
spent traveling through the storage element.

4.1.2. Early Data Arrival Analysis

A common misconception is that the flip-flop provides edge-to-edge timing and
is thus easier to use, compared to the latch-based system, because it does not
need to be checked for fast paths in the logic (hold time violation). This is not
true, and the simple analysis that follows demonstrates that even with the flip-flop
design, the fast paths can represent a hazard and invalidate the system operation.

If the clock controlling the flip-flop releasing the data is skewed so that it arrives
early, and the clock controlling the flip-flop that receives these data arrives late,
a hazard situation exists. This same hazard situation is present if the data travel
through a fast path in the logic. A fast path is the path that contains very few to no
logic blocks. Referring to Fig. 4.1, this hazard, which is also referred to as critical
race (or race-through) can be described with the following set of equations:

Equation (4.6) represents the time of the early arriving signal, tDEArr, which
should not be earlier than the time described by Eq. (4.7), otherwise there will be
a hold-time violation of the data-receiving flip-flop. This condition is represented
by the inequality (4.8):

Equation (4.8) gives us a limit on the fast paths, that is, no signal in the logic
should be taking a time shorter than DLB, otherwise, there will be hold-time
violation in the circuit.

Furthermore, the clock has to be active for some minimum amount of time (in
order to assure reliable capture of data):

(4.10)

66 PIPELINING AND TIMING ANALYSIS

Equations (4.5), (4.9), and (4.10) provide timing requirements for the reliable
operation of a system using flip-flops.

4.2. ANALYSIS OF A SYSTEM THAT USES A SINGLE LATCH

A system using a single latch is more difficult to analyze than a flip-flop-based
system. This is because a single latch is transparent while the clock is active and
the possibility for a race-through exists. However, this analysis is still much sim-
pler than a general analysis of a system using two latches (MSL-based system),
shown in Unger and Tan (1986). The use of a single latch represents a hazard
due to the transparency of the latch, which introduces a possibility of races in the
system. Therefore, the conditions for the single-latch-based system must account
for critical race conditions. As the previous analysis shows, the presence of the
storage element delay decreases the useful time in the pipeline cycle. Therefore,
in spite of the hazards introduced by this design, the additional performance gain
may well be worth the risk. This will be discussed in the following chapters.

Some well-known systems, such as the CRAY-1 supercomputer, use a single
latch (Cray Research 1984). This decision was made for performance reasons. The
second-generation Digital Corporation Alpha WD2 I 164 processor uses single-
latch-based design as well (Benschneider et al. 1995). One difference between
Alpha and CRAY-1 is the way a single latch has been used in the pipeline.
Two ways of structuring the pipeline with the single latch are shown in Fig. 4.2.
Figure 4.2a shows a straightforward way of using a single latch. Here all the
latches in the system are transparent while the clock is active (logic 1) and all
the latches are opaque (nontransparent) when the clock is inactive (logic 0).

We will base the analysis of the single-latch-based design on the well-known
paper by Unger and Tan (1986). Case (I) is easier to analyze, while case
(2) becomes more complex. Case (2), also known as a split-latch design, will
be explained by the example at the end of this chapter.

4.2.1. Late Data Arrival Analysis

In the case of a latch, the input signal needs to arrive at least a setup time, U ,
before the trailing edge of the clock (the edge that closes the latch). However,
this edge could arrive earlier because of the clock skew. Therefore, the latest
arrival of data that assures reliable capture after period P has to be

(4.11)

Data captured at the end of the clock period could be the result of two events
(whichever is the later):

1. The data were ready, clock arrived at the latest possible moment, TL, and
the worst-case delay of the latch, namely, DCQM, was incurred.

ANALYSIS OF A SYSTEM THAT USES A SINGLE LATCH 67

Figure 4.2. Two ways of using a latch in a single-latch-based system: (a) Case 1 ,
(b) Case 2.

2. The clock was active and the data arrived at the last possible moment,
which is a setup time, U , and clock skew time, TT, before the trailing edge
of the clock.

In both cases (1) and (2) the path through the logic was the longest path DLM .
Thus in the worst scenario (either (case 1) or (case 2)) the data to be captured

in the next cycle have to arrive in time to be reliably captured in the next
cycle:

This gives us a limit for the clock speed in terms of the duration of the period, P :

68 PIPELINING AND TIMING ANALYSIS

This inequality breaks down into two inequalities, (4.14) and (4. IS):

I I

Equation (4.15) shows the minimal bound for Pm, which is the time it takes
to traverse the loop, which consists of the maximum delay of the data passing
through the latch and through the longest path in the logic. In other words:
“Starting” from the leading edge of a clock pulse, there must be time, under
worst case, before the trailing edge of the clock in the next cycle, for a signal
to pass through the latch and the logic block in time to meet the setup time
constraint” (Unger and Tan 1986).

The value of P = Pm determines the highest frequency of the clock under
which that particular system can operate reliably. However, this does not come
without a price. Given that the loop through the logic and the latch is open,
we have to be sure that any of the “fast paths” that may exist in the logic do
not arrive sooner than the next period of the clock. This leads to the following
analysis for fast paths.

4.2.2. Early Signal Arrival Analysis

The fastest signal traveling through the fastest path in the logic should arrive at
least a hold time after the latest possible arrival of the same clock:

There are two possible scenarios for the early arrival of the fast signal: (1) it
was latched early and it passed through a fast path in the logic, or (2) it arrived
early while the latch was transparent and passed through the fast latch and a fast
path in the logic. This is expressed in Eq. (4.17):

The earliest arrival of the clock tCEL happens when the leading edge of the clock
is skewed to arrive early at -TL. Thus, the condition for preventing race in the
system is expressed as:

The earliest possible arrival of the clock, plus clock-to-output delay of the latch,
has to occur earlier than the early arrival of the data (while the latch is transpar-
ent), plus data-to-output delay of the latch. Thus, Eq. (4.18) becomes:

ANALYSIS OF A SYSTEM THAT USES A SINGLE LATCH 69

D~rn > D L ~ B 2 W + TT + TL + H - DcQm

which gives us a lower bound on the permissible signal delay in the logic:

(4.20)

Thus the conditions for the reliable operation of a system using a single latch are
described by Eqs. (4.14), (4.1.9, and (4.20), which are repeated here for clarity:

Pm = P 2 DLM + DCQM + TL + TT + U - W (4.21)

P 2 DLM + DDQM

D L ~ > D L ~ B ? W + TT + TL + H - D C Q ~

(4.22)

(4.23)

One can see from Eq. (4.21) that an increase in the clock width, W , can be bene-
ficial for speed, but it increases the minimal bound for the fast paths, Eq. (4.23).
The maximum useful value for W is obtained when the period P is minimum,
Eq. (4.15). Substituting P from Eq. (4.22) into Eq. (4.21) yields the optimal
value of W:

Wop = TL + TT + u + DCQM - DDQM (4.24)

If we substitute the value of the optimal clock width, Wopr, into Eq. (4.21), then
we will obtain the values for the maximum speed Eq. (4.25), and the minimum
signal delay in the logic Eq. (4.26) that have to be maintained in order to satisfy
the conditions for optimal single-latch system clocking:

Equation (4.25) tells us that in a single-latch system, it is possible to make the
clock period, P , as small as the sum of the delays in the signal path: latch and
critical path delay in the logic block. This can be achieved by adjusting the clock
width, W, and assuring that all the fast paths in the logic are larger in their
duration than some minimal time, D ~ B . In practice, the optimal clock width,
Wop, is very small and can support the use of pulsed-latches.

It might be worthwhile thinking about the meaning of Eq. (4.25) and (4.26).
What Eq. (4.26) tells us is that under ideal conditions, if there are no clock skews
and no process variations, the fastest path through the logic has to be greater than
the sampling window of the latch (H + U) minus the time the signal spends
traveling through the latch. If the travel time through the latch, DDQM is equal
to the sampling window, than we do not have to worry about fast paths. This is
the case of the race immunity, R > 0. Of course, in practice, we do have to take
care of both fast and slow paths in the logic.

70 PIPELINING AND TIMING ANALYSIS

4.3. ANALYSIS OF A SYSTEM WITH A TWO-PHASE CLOCK
AND TWO LATCHES IN AN M-S ARRANGEMENT

A particular version of the use of two latches in the M-S configuration is the
most commonly used technique in digital system design. It is also a robust and
reliable technique compatible with the design for testability (DFT) methodol-
ogy. We will start by describing the most general arrangement, consisting of two
latches clocked by two separate and independent clocks 41 and 42, as shown in
Fig. 4.3.

Analysis of a system using a two-phase clock is much more complex compared
to the system using a single clock, because we are introducing skew on the second
clock. Therefore the set of parameters includes clock skew on both the leading
and trailing edges of the first clock 41, T,L and T l ~ , and on the second clock 42,
T ~ L and T ~ T . In addition, the overlap, V, between 41 and 42 is to be taken into
account as are the corresponding widths of the clock pulses, W1 and W2.

This analysis tends to be tedious and complex. It is therefore suggested that
the interested reader give the paper by Unger and Tan (1986) a detailed reading.
Without going into the details of that analysis, we present only a qualitative
analysis and final derivations.

Several conditions can be derived from the latest signal arrival analysis. First,
we need make sure there is an orderly transfer into latch L2 (slave) from latch

Combinational
logic

1
_I - - Period -
c w1 & - V - ClockOverlap

42

Figure 4.3. System using two-phase clock and two latches in M-S arrangement.

SYSTEM WITH A TWO-PHASE CLOCK AND TWO LATCHES IN AN M-S ARRANGEMENT 71

L1 (master), even if the signal arrives late (at the last possible moment) in the
latch L1 (master). This analysis yields the following two conditions:

These conditions assure the timely arrival of the signal in the latch L2, and thus
an orderly L1 -L2 transfer (from master to slave).

The analysis of the latest arrival of the signal into the latch L1 in the next
cycle (critical path analysis) yields Eq. (4.29), (4.30), and (4.31):

(4.29)

Equation (4.29) gives us the highest frequency at which the system can operate.
In other words, the minimum period of clock P has to be of sufficient duration
to allow the signal to traverse the loop consisting of latch L l , latch L2, and the
longest path in the logic, DLM:

w1 ? - p + DlCQM f D2DQM + u1 + DLM + TIL + TIT 1 (4.30)

The condition specified in Eq. (4.30) assures the timely arrival of the signal that
starts on the leading edge of 41, traverses the path through L2, which is the
longest path in the logic, and arrives to Ll before the trailing edge of 41, in time
to be captured.

If the signal, starting from the leading edge of 4 2 (prior to the end of q!q)
traversing L2 and the longest path in the logic, is to be captured in time in L I ,

then the condition Eq. (4.31) needs to be satisfied.

(4.31)

Equation (4.31) shows that the amount of overlap, V, between clocks 4, and
452 has some positive effect on speed. The overlap, V , allows the system to run
at greater speed. Conversely, if we increase V, we can tolerate a longer critical
path, D L M . Thus, the increase in V is beneficial to the system. However, the
increase in the clock overlap has its negative effects and its limitations. One of
the negative consequences is that overlapping clocks introduce the possibility of
race conditions, thus requiring a fast-path analysis. The analysis of fast paths (or
critical races) makes the timing analysis much more complex, and CAD tools
generally do not perform this analysis very well. For that reason one would sac-
rifice some performance for reliability and ease of design. In a robust design that
avoids fast paths, nonoverlapping clocks are used. Those nonoverlapping phases
of the clock are usually generated locally, to avoid the difficulty in distributing
two phases of the clock throughout the system. One commonly used clocking

72 PIPELINING AND TIMING ANALYSIS

-=
-

Combinational p7

CiRQ d
__ logic - -

methodology is to use MSLs (L I - L ~) with the locally generated 4 2 clock. Such
an arrangement, show in Fig. 4.4, assures reliability, since the $1 and 4 2 clocks
are not overlapped. Thus, for the vast majority of practical cases it eliminates the
need for critical race analysis. The apparent flip-flop-like behavior of this config-
uration has caused the term “flip-flop” to be widely used, although the structure
is actually an MSL (L I - L ~) .

High-performance systems are designed with the objective of maximizing
performance. Therefore, clocks 41 and 4 2 are commonly overlapped, thus leading
to the critical-race analysis (again, the reader is referred to the Unger and Tan
paper). The analysis suggests limiting the minimum signal delay in logic D L ~ B
in order to prevent the critical race:

Clk, ’

Equation (4.32) tells us that any amount of time we have added to the upper
bound of the critical path, giving us more time in the logic, will have to be
added to the minimal bound for the short paths, which increases the limit on
the short path. This may force us to add some padding to the short paths (insert
inverters in order to increase the delay) in order to meet the constraint (4.32).

It is interesting to know the maximal amount of overlap, V, that can be used.
This is obtained by solving the timing equations Eqs. (4.29) and (4.31) (Unger
and Tan 1986), leading to Eq. (4.33):

t , I Critical path
I 4 tz

In summary, when using a two-phase clock with MSLs (L I - L ~) , a conserva-
tive design would eliminate the need for analysis of the fast paths (critical race
condition). This design is arrived at by using nonoverlapping clocks 41 and 42.

SYSTEM WITH A TWO-PHASE CLOCK AND TWO LATCHES IN AN M-S ARRANGEMENT 73

However, this reliability is achieved at the expense of performance. When max-
imum performance is the objective, it is possible to adjust the clock overlap, V ,
by phasing clocks 41 and 4 2 so that the system runs at the maximum frequency.
Maximum clock frequency is reached when Pfin is equal to the sum of the delays
incurred when traversing the path consisting of the maximum logic delay and
delays in latches L1 and L2.

Example: Analysis of the First-Generation Alpha Processor (WD21064)
An appropriate example of the optimal clock parameters of a system using a
single latch is the first-generation Alpha processor, Fig. 4.5a and 4.5b.

A description of the system is presented in the paper by Dobberpuhl et al.
(1992). We will use notation adopted from Unger and Tan (1986) and assume
the following system parameters for the sake of an example:

Clock skew: T, = TT = 20 ps, for both edges of the clock.
Latch L1 parameters are clock-to-Q delay DCQM = 50 ps; DCQ, = 30 ps;

D-to-Q delay DDQM = 60 ps; setup time U = 20 ps; hold time H = 30 ps.

+-a++ logic Lg 1

Lw logic Lg2

Clock

Da*

DatG@ Clk

I w2 I wl I

(a)

Clock Daw
T 7

(b)

Figure 4.5. (a) Timing arrangement used in the first-generation Alpha processor.
(b) Latches used in the first-generation Alpha processor. (Dobberpuhl et at. 1992),
Copyright 0 1992 IEEE.

74 PIPELINING AND TIMING ANALYSIS

Latch L2 parameters are: DCQM = 60 ps; D C Q ~ = 40 ps; DDQM = 70 ps;
U = 30 PS; H = 40 PS.

The structures of the Ll and Lz latches used in the second generation of the
Alpha processor are shown in Fig. 4.5b.

The critical paths in logic Sections I and 2 are D L ~ M = 200 ps and D L ~ M =
170 ps.

For the given clock setup, V = 0 and, clearly, P = W1 + Wz.

With the nominal time, t = 0, set at the leading edge of the clock, we obtain
the latest allowed data arrival times into latches L1 and L2, respectively:

(4.34)

(4.35)

The latest arrival time of the data into latch L2 is limited by the time at which
latch L releases the data into the logic stage Logic I :

Combining Eq. (4.34), Eq. (4.35), and Eq. (4.36), we obtain

W1 - TT - UI + D I D Q M + D L I M i P - TL - U2

TL + D I C Q M + D L I M 5 P - TL - U2

(4.37a)

(4.37b)

Rearranging Eqs. (4.37a) and (4.37b), we obtain a set of bounds for W2 and P :

Because of the symmetry of the clocking scheme, moving the reference point
from the clock's leading edge to its trailing edge will give us the same equations
with indexes interchanged. To check this, start from the equation analogous to
Eq. (4.36):

Combining Eq. (4.34) and Eq. (4.39) and rearranging, we obtain a set of bounds
for W 1 and P :

SYSTEM WITH A SINGLE-PHASE CLOCK AND DUAL-EDGE-TRIGGERED STORAGE ELEMENTS 75

Combining Eq. (4.38a) and Eq. (4.40a) we obtain a third and often the most
critical bound for the clock period:

p = wi + w2 2 DIDQM + D L I M + &DQM + DLZM (4.41)

Substituting the values into Eqs. (4.38), (4.40), and (4.41), we obtain:

W2 2 270 PS

P 2 320 ps

W1 >_ 230 PS

P 2 270 ps

and the most critical bound for P ,

P = W1 + W2 2 500 PS

Thus the minimum clock period is P,i, = 500 ps, and the maximum frequency
at which this system can run is fmax = 2 GHz.

4.4. ANALYSIS OF A SYSTEM WITH A SINGLE-PHASE CLOCK
AND DUAL-EDGE-TRIGGERED STORAGE ELEMENTS

A dual-edge-triggered storage element (DETSE) is so named because it captures
its data at both clock edges. The timing parameters of this storage element are
defined for both clock edges, and have the same meaning as those for the single-
edge-triggered storage element.

Since DETSE is an edge-sensitive storage element, the analysis of dual-
edge triggered system with a single-phase clock is similar to that described in
Section 4.1. A diagram of a system using DETSE is shown in Fig. 4.6. The
single-phase clock is specified by its period, P ; duty cycle (clock pulse width rel-
ative to period), w; clock pulse width, W, which is equal to w* P ; and maximum
clock uncertainty for leading and trailing clock edges, TL and TT, respectively.
For each storage element, DCQM,L, D c Q ~ , L , U L , H L , DCQM,T, D c Q ~ , T , U T , and
H T , designate maximum and minimum clock-to-output delay, setup time, and
hold time, where indices L and T stand for leading and trailing edge of the clock,
respectively. Nonclocked logic blocks between storage elements have maximum
and minimum delays, DLM and DL,, respectively. Note that when CSE 1 releases
data at the leading edge of the clock, CSE2 captures it at the trailing edge, and
vice versa. Therefore there are two scenarios for each of the two clock edges
that have to be prevented.

1. Data reaches the destination storage element too late to be captured. This
scenario is prevented if the data are scheduled to arrive at the destina-
tion storage element at the latest at a setup time prior to the capturing
clock edge.

76 PIPELINING AND TIMING ANALYSIS

Critical path

Clk I I

w= w * f j f-w=(7-w)f j
a

4 b:

- - -.- h

f

Figure 4.6. Digital system using a single-phase clock and dual-edge triggered
storage elements.

2. Data reaches the destination storage element early enough to corrupt the
safe capture with the same edge that released the data. This scenario is
prevented by ensuring that data arrives to the destination storage element
a hold time after the clock edge.

The setup and hold time requirements for the two clock edges provide
four basic conditions that assure safe operation in dual-edge clocking
systems (Nedovic and Oklobdzija 2001). We will examine each of these
conditions closely.

4.4.1. Late Data Arrival

First, data from source CSE at the leading edge of the clock must arrive to
destination CSE early enough to be safely captured by the trailing edge of the
clock. This requirement must be met even with the worst storage element and
logic delay, and clock uncertainty. Safe capture of the data occurs only if the
data arrive at the input of the destination CSE at the latest setup time before the
trailing edge of the clock. From Fig. 4.6, we see that the arrival of the trailing
edge of the clock is delayed from the releasing clock edge for as long as the
clock is at its high level:

T L + DCQM,L + DLM + TT + UT 5 wp (4.42)

Similarly, if the data are released at the falling edge and captured at the rising
edge of the clock, a similar relation holds:

SYSTEM WITH A SINGLE-PHASE CLOCK AND DUAL-EDGE-TRIGGERED STORAGE ELEMENTS 77

~

P 2 Pm = max
TL + DCQM,L + DLM + UT + TT TT + DCQM,T + DLM + UL + TL

W 1 - w

Equations (4.42) and (4.43) determine the minimum clock period for the given
duty cycle:

It is not always possible to control clock duty cycle. Therefore an important
special case for all practical purposes is the symmetric clock (w = 0.5). Use of
the symmetric clock simplifies clock generation and reduces clock uncertainties.
In the case where w = 0.5, Eqs. (4.44) and (4.45) become:

In the general case, an optimum point can be found by using clock duty cycle
w, which minimizes P and satisfies both Eq. (4.42) and Eq. (4.43):

The corresponding minimum achievable clock period is:

Again, if the clock period, P , is specified and the goal is to find maximum logic
delay, Eqs. (4.48) and (4.49) become Eqs. (4.50) and (4.51):

DCQM,L - DCQM,T + UT - U L
P

W,pt = - 2

The corresponding maximum logic delay is:

(4.50)

78 PIPELINING AND TIMING ANALYSIS

This analysis shows that in the general case the clock needs to be asymmetric
(w f 0.5) for optimum operation. The measure of this asymmetry is the differ-
ence in the costs of DETSE in two half-periods of the clock, Eqs. (4.48) and
(4.50). Since the optimum duty cycle does not depend on the logic delay, it is
the same for all the paths in the system.

Equations (4.48) and (4.50) also indicate how to achieve optimum operation
with the arbitrary clock duty cycle. As mentioned earlier, we are mainly interested
in the symmetric clock (w = 0.5). From Eq. (4.48), the condition for wofll = 0.5
leads to:

DCQM.L + UT = DCQM,T + U L (4.52)

Thus, a requirement for a good design of DETSE with symmetric clock is to
closely comply with Eq. (4.52). In order to obtain most performance out of
DETSE, it is necessary to minimize both sides of Eq. (4.52), as both present the
timing overhead of the storage element.

4.4.2. Early Data Arrival

In addition to the preceding, it must be certain that the data arrive at the destina-
tion CSE late enough to prevent its hold-time violation. Correct operation must
be set even for the earliest allowed arrival of the releasing clock edge, which is
minimum clock-to-output and logic delay, and the latest arrival of the capturing
clock edge. Since releasing and capturing clock edges occur simultaneously, this
failure mechanism is the same as with the single-edge-triggered storage elements
described in Section 4.1. For the leading edge of the clock:

Similarly, for the following relation has to be satisfied for the trailing edge of
the clock:

(4.54) -TT + D C Q ~ , T + D L ~ 3 TT + HT

Equations (4.53) and (4.54) determine the minimum logic delay in the stage to
avoid a hold-time violation:

Thus, for a given clock period and duty cycle, Eqs. (4.45) and (4.55) provide a
set of requirements for reliable operation.

Example The following example illustrates the use of the dual-edge clocking
strategy in a pipelined system and shows how to maximize performance. For
the two-stage dual-edge-triggered system shown in Fig. 4.7, the timing param-
eters of the storage elements used are clock-to-output delay DCQM,L = 150 ps,

HL = 100 ps, HT = 40 ps. The clock uncertainty is T, = 20 ps for the leading
D ~ Q , ~ . L = 80 PS, DCQM.T = 200 PS, D c g n z , ~ = 150 PS, U L = 50 PS, UT = 0,

SYSTEM WITH A SINGLE-PHASE CLOCK AND DUAL-EDGE-TRIGGERED STORAGE ELEMENTS 79

Clk Stage 1 Clk
A

DL7

Q2-r' 1 *
D L l m -

DCQm J

Figure 4.7. Two-stage dual-edge-triggered system.

edge of the clock, and TT = 40 ps for trailing edge of the clock. The delays of
the critical paths in the two logic blocks are D L M ~ = 900 ps and D L M ~ = 950 ps,
respectively. The goal is to find the minimum logic delays and minimum clock
period that still allow safe operation, both for duty cycle w = 50% and for the
optimum duty cycle.

In order to meet the hold-time requirement for storage element CSE,,
Eq. (4.55) must be satisfied:

If the duty cycle is 50%, the minimum clock period that allows safe operation
must satisfy Eq. (4.46). For Stage 1 :

P 2 2(max(150 + 0,200 + 50) + 900 + 20 + 40)

= max(2220,2420) = 2420 ps (4.57)

80 PIPELINING AND TIMING ANALYSIS

For Stage 2:

P 2 2(max(150 + 0,200 + 50) + 950 + 20 + 40)

= max(2320,2520) = 2520 ps (4.58)

The minimum clock period is imposed by the setup-time requirement for the
leading edge of the clock at CSEl . With this clock period, the latest data arrival
with respect to the trailing edge of the clock is still 100 ps prior to setup time.
Thus, CSEl is not optimal to use with the symmetric clock, since a lag of 100 ps
exists that is used by neither the logic nor the storage element. One way to use
this lag and further reduce the clock period is to reduce the duration of the high
level of the clock and to keep the duration of the low level of the clock the same.
According to Eqs. (4.48) and (4.49), the optimum duty cycle and minimum clock
period achieved in this way are

150 + 0 + 950 + 20 + 40
U’O/?t = ~

150 + 200 + 50 + O + 2 . 9 5 0 + 2 . 2 0 + 2 . 4 0

1160

2420
= 47.9% -- - (4.59)

P,,, = 150 + 200 + 50 + 0 + 2 .950 + 2 ‘ 2 0 + 2 . 4 0 = 2420 PS (4.60)

Thus, tuning the duty cycle is a way of neutralizing the imbalance in the
storage element timing parameters for the leading and trailing edge of the clock.
Figure 4.8 shows the achievable clock periods versus duty cycle for the example
from Fig. 4.7. If the duty cycle and the clock period are in the allowed region,
the setup-time requirement for both clock edges is met. For the low duty cycle,
the clock period must be increased in order to meet the setup requirement for
the trailing edge of the clock. Similarly, if the duty cycle is higher than optimal,

U

1.7 i
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Clock Duty Cycle w

Figure 4.8. Allowed clock period as a function of the clock duty cycle in the
dual-edge-triggered system of Fig. 4.7.

SYSTEM WITH A SINGLE-PHASE CLOCK AND DUAL-EDGE-TRIGGERED STORAGE ELEMENTS 81

the clock period must be increased so that the setup requirement for the leading
edge of the clock is met.

Another, more practical way to increase the allowable time in the logic is to
keep the clock symmetric and redesign the storage elements so that Eq. (4.52) is
satisfied. This can be achieved by transistor resizing or changes in the topology
of the DETSE. In this example, if it is possible to reduce DCQM,T to 150 ps at
the expense of increasing DCQM,L to 200 ps, the optimum duty cycle would be:

= 0.5 (4.61)
200 + 0 + 950 + 20 + 40

200 + 150+ 50+0 + 2.950 + 2 . 2 0 + 2 . 4 0 Wopt =

The minimum achievable clock period is the same as that achieved by tuning of
the duty cycle:

200 + 0 + 950 + 20 + 40 150 + 50 + 950 + 20 + 40 = 2420 ps

(4.62)
Thus, both tuning the duty cycle and optimal design of the storage elements
allow the clock period to be minimized. In this example, the system can run at
the maximum frequency of f = 413 MHz.

(0.5 0.5 1 P > max

CHAPTER 5

HIGH-PERFORMANCE SYSTEM ISSUES

Clocking in high-performance digital systems is most seriously affected by dock
skew and clock jitter. In the past, clock skew was the dominant factor. Recently,
however, clock jitter has started gaining dominance over clock skew. Here we
will treat both of them as dock uncertainties. With the recent trend in frequency
scaling, the number of logic gates per stage decreases and the pipeline becomes
deeper, so that the portion of the clock cycle budgeted for clock uncertainty
increases. In addition, production and distribution of the high-frequency clock
to the increasing number of storage elements becomes progressively difficult
due to various issues, such as load mismatch, power supply and substrate noise,
and temperature variations. As a result, clock uncertainties occupy an increasing
portion of the cycle time. The ability to reduce the impact of these uncertainties
is one of the most important properties of the high-performance system.

The second important issue in high-performance digital systems is variation
of the signal delays and the ability to absorb the delay of a signal that stretches
beyond the time allotted to it by the pipeline stage. The ability of the pipeline to
be flexible, thus allowing the extra delay to be absorbed by subsequent pipeline
stages, without disrupting the correct operation is essential.

5.1. ABSORBING CLOCK UNCERTAINTIES

The clock uncertainties were of little consequence in the 1970s and 1980s, but
in modern designs they are a limitation to further performance scaling (Heald
et al. 2000a; Hofstee et al. 2000; Harris and Horowitz 1997). As an illustration,
the time budget allotted to clock uncertainties is typically on the order of one to

83

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

84 HIGH-PERFORMANCE SYSTEM ISSUES

two F04 inverter delays in modern microprocessors. This usually accounts for
more than 10% of the entire clock cycle.

It is common practice in the VLSI circuit design to consider the clock uncer-
tainties as an inevitable timing cost. In this approach, the only way to reduce
the impact of the clock uncertainties is to either reduce the clock speed or to
reduce the uncertainties themselves. There are several methods that can be used
to minimize the jitter or skew components of clock uncertainties. Typically, jitter
is minimized using better clock generators, or by reducing the noise in the power
supply of the clock buffers, while skew is reduced with careful clock distribu-
tion or active deskewing. Alternatively, the impact of clock skew is minimized
when all the critical paths are placed in the same clock domain. However, these
techniques become increasingly difficult because of poor scaling of the clock
uncertainty.

The useful time available for computation within each clock cycle is nominally
reduced by the CSE overhead. This overhead changes as a function of clock
uncertainty. The change is smaller than the clock uncertainty itself. This decrease
in uncertainty defines an important property named clock uncertainty absorption.

A recent flip-flop design, controlled by a narrow, locally generated clock pulse,
with negative setup time, exhibits some degree of clock uncertainty absorption
(Partovi et al. 1996). This is shown by the relationship between the clock Clk and
the output Q, in the presence of clock jitter, as illustrated in Fig. 5.1. The variation
in the arrival time of the clock is somewhat absorbed by the flip-flop, resulting
in a smaller variation in the time at which the output changes. This behavior can
be explained as follows. If the capturing pulse is sufficiently wide, the flip-flop is
briefly transparent to the data signal, resembling latch behavior, and its timing is

2.5

2

0.5

0

0 0.5 Time (ns) 1 1.5
2.5 I I

CB

."' . * .
A_. .

I
0 0.5 Time (ns) 1 1.5

Figure 5.1. Output of a flip-flop in the presence of clock jitter. (Partovi et al. 1996.),
Copyright 0 1996 IEEE.

ABSORBING CLOCK UNCERTAINTIES 85

less sensitive to the clock arrival. This short transparency period is also known
as the soft clock edge. With the increased importance of clock uncertainties, the
practical use of the clocked storage element in high-performance systems will
depend, to a large extent, on its ability to absorb them.

Typically, clock uncertainty absorption can be achieved with a level-sensitive
clocking strategy. By definition, an edge-sensitive clocking strategy is based on
CSEs triggered with a fixed ("hard") clock edge, and is not suitable for clock
uncertainty absorption. However, an edge-sensitive clocking strategy using flip-
flops with a soft clock-edge property allows a certain level of clock uncertainty
absorption. In the rest of this section we discuss the clock-uncertainty absorption
of the soft clock-edge flip-flops. The clock absorbing properties of level-sensitive
clocking using transparent latches is addressed in Section 5.3.

5.1 .l. Clock-Uncertainty Absorption Using Soft Clock Edge

The clock uncertainties are manifested as a variation in the arrival time of the
clock edge. Typically, clock uncertainties are illustrated by using a time window
that captures the occurrence of the clock edge. A clocked storage element absorbs
uncertainties when the time of the output transition is not significantly affected
by the variations in the arrival of the triggering edge of the clock.

To understand the effect of clock uncertainties, one should analyze the delay
characteristic of the clocked storage element defined in Chapter 3. This char-
acteristic represents data-to-output delay as a function of clock arrival time for
a fixed data arrival time, as shown in Fig. 5.2. By observing how the output
changes when the clock uncertainties are present, we are able to see how the
uncertainties affect the delay of the storage element.

Figure 5.2. Data-to-output characteristics in the presence of clock uncertainty.

86 HIGH-PERFORMANCE SYSTEM ISSUES

Figure 5.2 shows data-to-output delay versus clock arrival time when the data
arrival time is constant. When no clock uncertainties are present, the clock is
scheduled to arrive so that D - Q delay (toem) is smallest, in order to minimize
the cost introduced by the clocked storage element.

Any variation in the clock arrival time increases the D- Q delay. Given some
maximum allowed D- Q delay (DDQM) , we can use the delay characteristic of the
CSE to find the corresponding clock uncertainty window, as shown in Fig. 5.2.
The points at which DDQM intersects with the delay characteristic determine the
earliest and latest clock arrival times that are allowed. The ratio of the maximum
variation of D- Q delay (DDQM - Doem) and width of the allowed clock uncer-
tainty window tCu illustrates the clock absorption property of the CSE. Since
clock uncertainties are typically symmetric, we can also find the new optimum
clock arrival time as the mean of the earliest and latest allowed clock arrival
times. Using this methodology, the clock uncertainties are incorporated in the
delay of the CSE. The D - Q delay can be expressed as DDQ = D ~ ~ (t c u) , and
clock-to-output delay as DCQ = D c ~ (t c u) , where t ~ u is the clock uncertainty.

The key role of a CSE is to minimize the propagation of clock uncertainty
to the CSE output. This can be characterized by the marginal increase in the
D-Q delay with respect to the amount of clock uncertainty. For data arriv-
ing at the nominal time, we find the worst-case D - Q delay when the clock
is allowed to arrive anywhere in the uncertainty window. This is illustrated in
Fig. 5.3 where the worst-case delay is the maximum of the D - Q delays over
all clock arrivals. As in Fig. 5.2, the earliest and latest clock arrivals within the
clock uncertainty window cause the latest change in the output Q of the CSE, as
shown in Fig. 5.3. The maximum D - Q delay, DDQM, is defined at some optimal

D

Late D& D:

TNominai=O ~

Clk

Q

D D Q ~ ~ b:

DDQM i c:

Figure 5.3. Dependence of data-to-output delay on clock arrival.

ABSORBING CLOCK UNCERTAINTIES 87

data arrival with respect to the nominal clock. This optimal data arrival, or opti-
mal setup time, Uopt, is the data-to-nominal-clock delay that yields the smallest
worst-case D- Q delay over all clock arrivals in the uncertainty window, that is,
minimizes Eq. (5.1) (Saint-Laurent et al. 2002):

Consequently,

Note that the setup time and minimum D-Q delay, D D Q ~ , , as defined in Sec-
tion 3.1.2, are special cases of Eqs. (5.1) and (5.2) when tCU = 0. The increase
in D- Q delay due to the presence of the clock uncertainties is generally smaller
than the amount of the uncertainty itself (Figs. 5.2 and 5.3). We express clock-
uncertainty absorption, acu, of a storage element as the portion of the total clock
uncertainty not reflected at the output:

The relationship between DDQM and D D Q ~ , and thus a c u , is determined by
tCU and the D - Q characteristic, DDQ (DD-CLK). As shown in Fig. 5.4, both clock
uncertainty absorption and optimal setup time are largely dependent on the clock
uncertainty. For small values of the clock uncertainty, it is possible to set the data
arrival so that D-Q delay does not change significantly regardless of the clock
arrival. Equivalently, clock uncertainty absorption is high and optimal setup time
is small, as illustrated in Fig. 5.4a. As the clock uncertainty increases, the D-Q
delay increases slowly, as long as the clock arrives within the relatively flat region
around DDQ,, as shown in Fig. 5.2. As the clock arrives outside this region, DDQ

fcu =30ps
-Y,

fCU = 1 oops -
Clk Clk

r

D
f 3ps

D

Q Q

(a) fcu=30ps (acU=9O%) (b) fcU=lOOpS (acu=56%)

Figure 5.4. Total delay versus clock uncertainty.

88 HIGH-PERFORMANCE SYSTEM ISSUES

increases more rapidly. Eventually, the clock arrivals enter the region where the
delay characteristic has a slope of unity, that is, where the clock-to-output delay
is constant. In this region, any uncertainty of the clock arrival directly propagates
to the output Q . As a result, clock-uncertainty absorption, acu, decreases and
the optimal setup time increases, as shown in Fig. 5.4b. The clock-uncertainty
absorption is the most effective in the case where the clock arrivals can be
contained in the window where the D-Q characteristic is relatively flat.

5.1.2. Timing Analysis with Clock-Uncertainty Absorption

Late Data Arrival Clocked storage elements that have the clock-uncertainty
absorption property need to have a transparency window of a certain width. In
level sensitive systems, this window is slightly smaller than half the clock period,
while in edge-triggered systems with the soft-edge property, the transparency
window is much shorter. Timing analysis of any system with a transparency
window has to include data arrivals from multiple pipeline stages. Detailed timing
analysis of a level sensitive system will be given in Sections 5.2 and 5.3.

In order to illustrate the impact of the clock-uncertainty absorption to the cycle
time, we consider a simple case where equal clock uncertainty, tcu, applies to
identical flip-flops in all pipeline stages. Because the flip-flops have a soft-edge
property, the timing analysis can be performed in a similar way to the single
latch-based system in Chapter 4. Using the result of that analysis, Eq. (4.13, the
following holds:

(5.4) DDQM + DLM < P

The maximum D-Q delay, DDQM, is determined by Eq. (5.3) in terms of the
effect of the clock uncertainty, tcU. Expressing DDQM from Eq. (5.3) yields

where D p ~ (t c u) is D - Q delay when the clock uncertainty, tcu, exists, and
D D Q ~ ~ is the minimum D - Q delay when there is no clock uncertainty. Assuming
that the worst-case logic delay, D L M , is the same in every stage, combining
Eq. (5.4) and Eq. (5 . 3 , we obtain the requirement for the minimum clock period
in a system that uses flip-flops with soft clock edge:

By comparing Eq. (5.6) to the case without the uncertainties, it can be seen that
the only difference is in the factor (1 - a c u) t c ~ . Therefore, the total impact
of the clock uncertainty on the clock cycle time is (1 - acu)tcu. In order to
reduce the overall timing cost of the storage element, it is desirable to minimize
D u a (t ~ u) , that is, maximize acU, for a given clock uncertainty.

Early Data Arrival At this point it is worth mentioning that any problem
with a long path delay can be fixed by reducing the clock frequency. Unlike the

ABSORBING CLOCK UNCERTAINTIES 89

case of late data arrival, if the data arrives too early to be captured safely,
the clocked system fails to operate correctly at any frequency. This is why
assuring that the data arrives late enough to secure correct operation (meet-
ing the fast path requirement) is one of the most critical issues in the design of
any synchronous system. As expected, clock uncertainties make this task even
harder.

When the clock uncertainties are present, the clock may arrive early at the
source storage element of the pipeline stage and late at destination storage element
(Fig. 5.5). Consequently, the data released from the source stage can arrive at the
destination stage early enough to corrupt the previously captured data, creating
a hold-time violation. The net effect of clock uncertainty is that the minimum
delay of the fast paths in the logic has to be increased even further.

The impact of the clock uncertainty on early data arrival is illustrated on
the example of the pipeline stage shown in Fig. 5.5. Clocks Clks and Clkc are
generated from the common clock ClkA. The timing of the early-arriving data is
associated with the same clock edge at both the source and destination storage
element. Actual clock uncertainty that affects the path is the delay between the
early arrival of Clks and late arrival of Clkc. Consequently, any clock uncertainty
of ClkA affects both Clks and Clkc in the same way, and thus has no influence
on the fast path.

In order to avoid the hold-time violation, the sum of the minimum clock-to-
output delay of the source storage element and logic delay must be greater than
the hold time, under the most pessimistic assumption on clock uncertainty:

\

Figure 5.5. Critical race in the presence of clock uncertainty.

90 HIGH-PERFORMANCE SYSTEM ISSUES

where Deem and DL,,, are minimum clock-to-output delay and minimal logic
delay, respectively, H is the hold time of the destination storage element, and
~ C U is the clock uncertainty between the clocks at the source and destination
storage elements.

Components of the clock uncertainty that affect the fast paths are clock skew
and clock distribution jitter generated within the clock domain that contains both
of the path storage elements. We refer to this component of the clock uncertainty
as local clock skew and local clock distribution jitter. Assuming the clock at
both the source and destination storage elements are supplied by the same clock
generator, clock generator jitter does not affect fast paths. Therefore, placing
the source and destination storage elements on the path within the same clock
domain is beneficial both in terms of minimizing skew impact on the slow-path
requirement and skew and jitter impact on the fast-path requirement. In practice,
it is hard to characterize local clock distribution jitter for all fast paths, so total
jitter of the clock generator and clock distribution system, or clock distribution
jitter only, can be used instead.

5.1.3. Clock-Uncertainty Absorbing Considerations

In order to achieve high clock-uncertainty absorption, the D - Q delay character-
istic of the storage element should be as constant as possible Wut) in the clock
uncertainty window, as shown in Fig. 5.6. The nominal clock and data arrival
times are 0 ps and -30 ps, respectively. If the clock triggering edge arrives
-30 ps and 30 ps within the nominal clock arrival time, the output, Q , will not
be affected. The output, Q, will still be generated 238 ps after the nominal data
arrival (268 ps after nominal clock). In such a case, the output is not affected by
the clock uncertainties.

The question is: How does one design a storage element with a flat data-
to-output delay characteristic? This can be achieved by expansion of the time

340

320

8 300

280 2 260

6 240

220

A

200 1
I00 ' 80 I 60 I ;o I 2b I b ' -A0 [- l o ' -60

D- Clk delay [ps]

early nominal late
Clk Clk Clk

Figure 5.6. Idealized D - Q delay characteristic as a function of clock arrival.

TIME BORROWING 91

window during which the storage element is transparent (transparency window).
Widening the transparency window is equivalent to increasing the separation
between the two reference events in time: one that opens and other one that closes
the CSE. In effect, the storage element behaves like a transparent latch for a short
amount of time after the active clock edge. The wider the transparency window,
the wider the flat region of the D- Q characteristic, as described in Section 2.2.1.
Widening the transparency window can be done by intentionally creating a wider
capturing pulse of the flip-flops and pulsed latches, or overlapping the master and
slave clocks of the MSLs.

A consequence of increasing the transparency window is that the failure region
of the D-Q characteristic is moved away from the nominal clock edge. This
results in a decrease in setup time (larger negative values) and an increase in hold
time of the storage element. While decreasing the setup time has no significant
effect to the system timing as long as the D-Q delay is constant, a long hold
time makes the fast-path requirement harder to meet (Eq. (5.7)). Thus, the design
for clock-uncertainty absorption is often traded for a longer hold time. In many
cases, however, these two requirements are not contradictory, since a different
type of storage element is used in the fast and slow paths.

5.2. TIME BORROWING

In a pipeline with level-sensitive clocking, the data input to the latch nominally
arrives when the latch is transparent. A beneficial property of such a system
is that a stage can use more time than nominal to produce its outputs, as long
as this is compensated for by the subsequent (faster) stages. The technique of
exploiting this property is called time borrowing (cycle stealing, slack passing)
(Partovi et al. 1996; Harris and Horowitz 1997; Harris et al. 1996; Lin et al.
1992; Sakallah et al. 1992). A benefit of this technique is that the maximum
clock frequency is obtained as an average of all stage delays, rather than the
maximum delay of the largest stage delay, as with a pipeline with an edge-
sensitive clocking. This level-sensitive clocking property avoids the increase in
the cycle time caused by unbalanced logic delays between the pipeline stages. In
this book, the type of time borrowing where the time borrowed is determined by
the logic delays in the pipeline stage is called dynamic time borrowing.

The essential condition for logic in one pipeline stage to borrow time from
another pipeline stage is that there are no "hard" boundaries between stages,
that is, the storage elements are transparent at the time when data arrive. This
transparency occurs in two clocking styles, level-sensitive and soft-edge clocking.
Dynamic time borrowing is first discussed in Section 5.2.1 in the example of
level-sensitive system using transparent latches. Then, in Section 5.3, we address
the potential of using soft clock-edge flip-flops for dynamic time borrowing.

Another type of time borrowing is when the clock is intentionally delayed by
inserting delay between the clock inputs of the clocked storage elements. The
clock delays are scheduled so that the critical paths obtain more time to evaluate

92 HIGH-PERFORMANCE SYSTEM ISSUES

(the destination storage element captures data later), which takes time away from
the faster paths. This technique is called opportunistic skew scheduling, and it
is described in Section 5.2.2. Opportunistic skew scheduling statically assigns
the maximum evaluation time to a stage by allowing for fixed additional time
between the releasing and receiving clock. In this book we classify opportunistic
skew scheduling as static time borrowing.

5.2.1. Dynamic Time Borrowing

A pipeline using two-phase level-sensitive latches is shown in Fig. 5.7a. Stages
la and 2b are the logic blocks positioned between latches Ll-Ls. The latches
are clocked by nonoverlapping clock phases and @ 2 . Timing diagrams for
two stages of the pipeline are shown in Fig. 5.7b. Labels dl and d2 represent the
data flowing through the pipeline. Each logic stage alters the data according to
pipeline functionality, and the labels only intend to show the signal propagation,

L I + stage 1 a < P/2 -

Total borrowed
time at node f

Figure 5.7. Timing of two-phase level-sensitive pipeline with time borrowing.

TIME BORROWING 93

not the actual values. We assume that the latches are transparent on the “high”
level of the controlling clock phase.

The borrowed time of a stage is the time difference between the actual and
nominal stage delay. The total (or accumulated) borrowed time at any latch input
is the time difference between the actual and nominal arrival of the latch input.
We assume that the data nominally arrive at the input of a latch in the middle of
the transparency period of the latch.

In the case of ideal logic partitioning, the delay of each stage should be half
a clock cycle minus the delay of the latch. However, it is not always possible to
partition the logic perfectly. In this example, Stages l a and 2b have a delay that
is smaller than ideal, Stages l b and 2a have a delay that is larger than ideal, and
the input data to the pipeline arrive prior to the leading edge of the clock, @*.
Stage l a receives the data after the leading edge of the clock, @ I , and produces
an output before the leading edge of the clock, @ 2 . Consequently, signal c does
not change until the arrival of the leading edge of @ 2 . Since Stage l b introduces
a delay larger than half the clock period, signal d arrives during the transparency
period of L3, resulting in signal e (after propagating through L3). Even though
Stage Ib takes more time than nominally assigned, signal d still arrives prior
to its nominal arrival. Thus, Stage l b borrows time from Stage l a , but the total
borrowed time at signal d is negative. Stage 2a borrows time from both Stages
l b and 2b, so that signal f arrives after the middle of the transparency period
of Lq. The borrowed time is “returned’ the (total borrowed time is negative at
signal h) in Stage 2b and signal h arrives before its nominal arrival time. If the
delay of Stage 2a were larger than shown in Fig. 5.7, the setup time of latch L4

may have been violated and the pipeline would not operate correctly.
The preceding example illustrates several key issues of time borrowing:

0 The maximum throughput is not determined by the worst-case delay of the
slowest logic block (Stage l b and Stage 2a) , but rather by the average delay
of all of the pipeline stages.

0 Only the stages that receive or deliver data through a transparent latch
participate in time borrowing. The time between the arrival of signal b and
the moment latch L2 becomes transparent is not used from the perspective
of time borrowing (Fig. 5.7).

0 The borrowing cannot continue indefinitely; in any event, the data must
arrive early enough to be captured by the subsequent latch. At any latch
input in the pipeline, accumulated borrowed time must not exceed the value
at which the setup time of the latch is violated. Thus, for the nominal data
arrival in the middle of the transparency period, the maximum accumulated
borrowed time is half the transparency period reduced by the setup time of
the destination latch of the stage.

Timing Analysis with Time Borrowing

Late Data Arrival For any latch in the system that exploits time borrowing, the
data must arrive in time to be properly captured. The data arrival at the latch is

94 HIGH-PERFORMANCE SYSTEM ISSUES

a function of the delays of all previous pipeline stages. Timing of all the stages
that share a logic path with a pipeline stage must be calculated in advance in
order to obtain worst-case data arrivals for that stage. The cases where loops
exist may require complex iterative procedures, since no data arrivals are known
initially. All this makes slow-path analysis more complex than that of a pipeline
synchronized by flip-flops.

In order to see how time borrowing affects minimum clock cycle time, consider
a system of N pipeline stages, each divided by transparent latches into two logic
blocks, as shown in Fig. 5.7a. The latches are controlled by clock phases and
@2. All logic blocks are used in time borrowing, that is, worst-case data arrival
occurs only when the latch is transparent. Thus, the arrival time of the input at
the subsequent latch, t D , l + l is equal to the sum of the arrival times of the input
to the preceding latch, t D , , , the D - Q delay of the latch, D D Q . ~ , and the logic
delay, DLM., , of the current stage:

The arrival of input at the (2N + 1)-th latch (input at the (N + 1)-th stage) is

We assume that the after N stages, the pipeline produces data at the same
point in the clock-phase, @ I , transparency period at which the input data was
acquired in the first clock cycle. Therefore, t n , 2 ~ + 1 - tD.1 is equal to N clock
periods P :

tD.2N+I - t D , 1 = N P (5.10)

Combining Eq. (5.9) and Eq. (5.10), we obtain the requirement for the minimum
clock period under late data arrival:

(5.11)

Equation (5.11) shows that the minimum clock cycle time of the pipeline is not
determined by the delay of the slowest stage in the pipeline. It is rather the
average delay of the logic and latches through all stages. Thus, the speed-up can
be achieved by giving slow stages more time to evaluate at the expense of faster
stages. Note that Eq. (5.1 1) is valid only if the data arrive at the latch during the
time it is transparent. This important constraint has to be true for all latches on
the path, and is summarized in the following equation:

TIME BORROWING 95

where it is assumed that the first leading edge of @ I occurs at time zero, and
Ui and D c Q , ~ represent the setup time and clock-to-output delay of latch i ,
respectively.

€ar/y Data Arrival In a time-borrowing system, fast paths can cause the pipeline
to operate incorrectly. When the destination latch is still transparent during the
time the source latch becomes transparent, a short path in the logic can cause
the latching of the data from the same clock cycle. The clock uncertainties make
the system more vulnerable to hold time failures. In order to ensure the correct
operation of the pipeline, it should be provided that the minimum stage delay
exceeds some specified value.

In order to illustrate the effect of time borrowing on the fast paths, we refer
to Fig. 5.8, which is an excerpt of Fig. 5.7. Signal d changes while L3 is still
opaque. When @I rises, L3 becomes transparent and signal e changes after a
latch delay. The change in signal e propagates to signal f after the delay of
Stage 2a. In the case where the sum of the L3 delay and the delay of Stage 2a
are larger than the sum of the overlap of going high to @z going low and
the hold time of L4, the data will race through both L3 and L4 in one phase
of the clock, causing a functional failure. Thus, the time-borrowing technique
does not help alleviate fast-path hazards, so these hazards should be treated as
discussed in Chapter 4, that is, assuming no time is borrowed between the stages.
The only remedy to the fast-path problem is either to make @I and @2 strictly
nonoverlapping, or to pad every fast path in the pipeline with extra logic to
guarantee some minimum required logic delay.

Stage 2a 1 @ l 0 2

2

e

I H I
late arrival due to

I
earliestarrival, 7 j

no time borrowing, - time borrowing,
hold-time violation DCQ no hold time

violation

Figure 5.8. Fast-path hazard.

96 HIGH-PERFORMANCE SYSTEM ISSUES

Clk -

Figure 5.9. Forwarding path in a pipeline.

LOOP Requirement In time-borrowing systems, the timing of signals in the
loops (feedbacks), which are commonly employed in the pipelines, should be
treated separately from other paths. An example of such a loop is the forwarding
path that feeds the data from the output of the execution stage back to its input
in order to prevent the pipeline hazards (Fig. 5.9). If the overall propagation
delay through the loop consisting of N stages exceeds N P (where P is the clock
period), the arrival time may occur later with each cycle, finally resulting in a
setup time violation. More generally, any signal loop that borrows time from
itself will eventually cause a timing violation.

5.2.2. Static Time Borrowing

The static time-borrowing technique, often referred to as opportunistic skew
scheduling or optimal skew scheduling (Fishburn 1990; Friedman 1993, exploits
intentional delay insertion between clock inputs of different storage elements. In
this way, evaluation time per stage can be better distributed by giving additional
time to slow stages at the expense of the fast ones. This technique is applicable
to the systems in which there are stages that use less time for computation than
allocated by the clock cycle.

A typical opportunistic skew scheduling scheme is shown in Fig, 5.10. Each
clocked storage element, CSE, , in the system receives the reference clock, delayed
by time A , . The clocks are distributed in such a way that the storage elements
preceding the longest paths in combinational logic receive the early clock, and
the storage elements following the longest paths receive the delayed clock. For
example, Clk;? in Fig. 5.10 is delayed for A with respect to Clkl, so that slower
Stage 1 is allocated more time at the expense of faster Stage 2 . Consequently.
the system can be clocked at a higher rate than what would otherwise be dictated
by the delay of the slower Stage 1.

A benefit of static time borrowing is that it can operate with conventional
flip-flops. In addition, it places fewer constraints on the circuit design, allowing

TIME BORROWING AND CLOCK UNCERTAINTY 97

- D Q
CSE,

Slower
A .

D O D Q-

CSEP CSE3
Faster

L A A

Clk,

Stage 7 Stage 2
4 _I- *;

C/k3

Borrowed j
 time=^ \d

Clk,, C/k, , I

\ \
Clkz \ \

Q1

4

Figure 5.10. Opportunistic skew scheduling scheme.

longer critical paths where necessary. This very appealing concept of static time
borrowing has a few disadvantages. It increases the complexity of the clock
distribution system. In particular it is hard to control the inserted delays over
process, supply, and temperature variations. Also the analysis of clock skew
is complicated in this asymmetric clock distribution network. While all these
difficulties make this technique impractical on a large-scale level, it is nonetheless
very useful in localized critical paths where every improvement directly increases
the system clock rate.

In conclusion, it is important to notice the difference between dynamic and
static time borrowing. In dynamic time borrowing, the transparency of the stor-
age element itself is exploited and the time is borrowed based on the actual
differences in the stage delays. Consequently, the amount of borrowed time
depends on the delay of the logic blocks in the stages. Also, the clock can
be distributed uniformly.

5.3. TIME BORROWING AND CLOCK UNCERTAINTY

Both the clock-uncertainty-absorption and dynamic-time-borrowing techniques
use the storage-element property to reduce the effect of indeterminate data-to-clock

98 HIGH-PERFORMANCE SYSTEM ISSUES

delay to data-to-output delay. This single property can be interpreted in two
apparently different ways. While for clock-uncertainty absorption, indeterminate
data-to-clock delay is caused by the uncertainty of clock arrival, for time borrowing
it is caused by uncertain data arrival. In both cases, the transparency of the storage
elements is used to suppress the input uncertainty (either that of the clock or the
data). Thus, clock-uncertainty absorption and time borrowing are essentially equiv-
alent properties. If a clocking strategy allows dynamic time borrowing between the
stages, it will also be capable of absorbing the clock uncertainty, and vice versa.
In Section 5.3.1, we address this analogy by describing the uncertainty-absorbing
capability of a level-sensitive latch-based system, whose time-borrowing property
is discussed in Section 5.2. Subsequently, in Section 5.3.2 we show that the soft-
clock-edge property of the flip-flops, which is responsible for clock uncertainty
absorption (Section 5.1), can be used for time borrowing between the stages.

5.3.1. Level-Sensitive Clocking

In Section 5.2 we saw that time borrowing exploits the data arrivals in the latch
transparency period to allow more time for logic evaluation. Equivalently, if
the data arrive during the latch transparency period, the actual moment of clock
arrival does not affect the timing of the signals in the pipeline. This means that
the slow-path timing relation in the pipeline stage and minimum clock period are
immune to the clock uncertainties. If we are able to keep all data arrivals in the
middle of the transparency period of the capturing latch, all pipeline stages, and
therefore the system as a whole, would be immune to the clock uncertainty (up
to about half of the latch transparency period).

The essential condition for allowing the pipeline to absorb the clock uncer-
tainty is that the data arrive at the latch input while the latch is transparent. For
example, if the @ 2 clock controlling latch L4 in Fig. 5.7 arrives a little earlier or
later than shown in Fig. 5.7b, the rest of the timing diagrams will not change.
This is because the data arrive while latch L4 is transparent. However, this is not
true for latch L2, since it must wait for the clock in order to release data c to
the subsequent stage. Consequently, any fluctuation in the arrival of clock @ 2 is
passed onto signal c.

Timing Analysis

Late Data Arrival To determine the level of clock uncertainty tolerable to the
latch-based time-borrowing system, we refer to Fig. 5.1 1. The figure illustrates
the timing relationship between clock (@ I) and the data (D) input to the latch
that is part of the time-borrowing pipeline (Fig. 5.7). It is assumed that the latch
is transparent during the high level of the clock and that the nominal duration of
the high level of the clock is W . The latch input arrives later than the clock for
the amount of time t D . This is equivalent to time borrowing of tg = t D - W/2 at
signal D, assuming the nominal arrival of D is in the middle of the transparency
period of the latch. We use TL and TT to denote the maximum uncertainties of the

TIME BORROWING AND CLOCK UNCERTAINTY 99

t = 0 t = tA(D) t

Figure 5.11. Clock uncertainty immunity in the pipeline with level-sensitive clocking.

leading and trailing edges of the clock, respectively. The clock-to-output delay
and D - Q delay of the latch are DCQ and DDQ, respectively. Signal arrival with
respect to the nominal arrival of the clock is designated t A .

As long as the leading edge of the clock arrives early enough so that the latch
is still transparent at the time the data arrive, the latch output and the rest of the
signals in the pipeline do not change. The latest arrival of the leading edge of
the clock that does not affect the pipeline timing is determined by Eq. (5.13):

~ A (@ I) + DCQ > ~ A (D) + DDQ (5.13)

Since the leading edge of the clock nominally arrives at time t = 0, its latest
arrival time is TL. Consequently, the bound for the uncertainty of the clock's
leading edge is

TL 6 tg + DDQ - DCQ + W / 2 (5.14)

Any value of the late clock arrival time smaller than the bound in Eq. (5.14)
does not affect the timing of the output of the latch.

An increase in early arrival of the trailing edge of the clock does not have an
effect on the pipeline timing, as long as the data arrive at setup time, U , before
the trailing edge of the clock:

where DD-clk is the time between data arrival and the trailing edge of the clock.
From Fig. 5.1 1, this D D - c ~ ~ is equal to W / 2 - t g . Thus,

100 HIGH-PERFORMANCE SYSTEM ISSUES

As long as the clock uncertainty satisfies the inequalities Eqs. (5.14) and
(5.16), the maximum throughput is not affected, because Eq. (5.11) holds and
the time borrowing can be exploited. The effect of the clock uncertainty on time
borrowing can be observed by rewriting Eq. (5.16):

Equation (5.17) shows that the early arrival of the trailing edge of the clock
caused by the clock uncertainty reduces the maximum allowable amount of time
borrowing. Similarly, Eq. (5.14) shows that the late arrival of the leading edge
of the clock reduces the time that the stage can accumulate for later borrowing
(if the nominal data arrival time is less than W/2) . Thus, we are trading off time
borrowing for tolerance to the clock-edge uncertainty.

Ideally, time borrowing should be extended to all pipeline stages so that the
input to each latch arrives when the latch is transparent. However, this cannot be
accomplished for all stages. For example, the time when the latch in front of the
first stage of the pipeline receives its input is specified at the system level and it
cannot be chosen by the circuit designer. We can estimate the overall effect of the
clock uncertainties on the pipeline if we observe a multicycle critical path shown
in Fig. 5.12. The path starts from latch L1 and ends at latch L7. Latches L2 -Lh

receive their inputs around the middle of their transparency period. Therefore,
the setup time of latches L2-Lh is satisfied and the clock uncertainties of clock
phases @ I and @z have no effect on timing. Since latch L1 waits for @ I to release
the data, the clock uncertainty of @ I reflects on Ql and propagates through the
critical path to the end of Stage 3. The setup time margin of latch L7 is reduced

3 P + w- tC"

Figure 5.12. Impact of clock uncertainties on the critical path in the pipeline with time
borrowing.

TIME BORROWING AND CLOCK UNCERTAINTY 101

if the trailing edge, edge8, of clock @ I arrives early. In order to meet the setup
time requirement of latch L7, the following must hold:

~ C U + D C Q ~ + D(D1 -+ 0 7) + U < 3 P + W (5.18)

Equivalently,

In Eqs. (5.18) and (5.19), DCQI is the clock-to-output delay of L1 and D(Q1 +.
0 7) is the delay of the path from Ql to D7. The clock uncertainty, t c ~ , is the
uncertainty of the trailing edge of the clock at L7 with respect to the leading edge
of the clock at L1. Equation (5.19) shows that the impact of the clock uncertainty
on the minimum clock period is reduced by being divided among the number
of stages that the critical path goes through. The source latch and destination
latch of the critical path (latches L I and L7 in Fig. 5.12) are normally placed
in the same clock domain, thus reducing the clock skew between them. Note
that, since several clock edges occur during the evaluation of the critical path,
the clock jitter between edge1 and edge8 is larger than the cycle-to-cycle clock
jitter used in single-stage analysis. This observation is true for all systems that
absorb the clock uncertainties, since in all such systems the timing in a pipeline
stage depends on the data arrivals from previous clock cycles.

Early Data Arrival The direct effect of the clock uncertainties on the fast-path
requirement in the multiphase level-sensitive pipeline is that the overlap between
the phases increases. If, for example, in Fig. 5.12 the leading edge of clock phase
@ I arrives early, andor the trailing edge of clock phase @ 2 arrives late due to
the uncertainty, the overlap between the phases is the sum of the two clock
uncertainties. As this overlap increases, the fast path, discussed in Section 5.2,
can cause erroneous operation. The earliest arrival of the clock’s leading edge
and the latest arrival of the clock’s trailing edge that the system can tolerate are
set by the hold time requirement:

In Eqs. (5.20) and (5.21), TL,Q, and TT,@* designate the early arrival of leading
edge of clock @I and the late arrival of the trailing edge of clock @ 2 , respectively,
and V is the nominal overlap between @ 1 and @ 2 . Equation (5.21) provides a
conservative rule for making the fast paths robust to the clock uncertainties.

In summary, the influence of the clock uncertainties on the timing in a time-
borrowing system is in:

102 HIGH-PERFORMANCE SYSTEM ISSUES

0 Decreasing of the margins for time borrowing. Both the minimum allowed
path delay and the maximum allowed time borrowing are reduced by the
clock uncertainty.

0 The pipeline absorbs the uncertainties for the data that arrive during the
latch transparency period.

0 The effect of the uncertainties is reduced to an average uncertainty over all
stages in the path.

5.3.2. Soft-Edge-Sensitive Clocking

The clock uncertainty absorption, acu, defined in Section 5.1.1, shows how the
propagation delay of a flip-flop is changed if its clock timing is uncertain. Apply-
ing this clock uncertainty to a flip-flop is equivalent to keeping its clock arrival
fixed and allowing data arrival to change. Thus, more generally, the parameter
acu quantifies the degradation of the D-Q delay for uncertain data-to-clock
delay. As such, it can be used to describe the timing of the flip-flop if it is
used in time borrowing in exactly the same way it is used for clock-uncertainty

Stage 1 Stage 2

Figure 5.13. Time borrowing with uncertainty-absorbing clocked storage elements.

TIME BORROWING AND CLOCK UNCERTAINTY 103

absorption. In this perspective, high CYCU (soft clock edge) designates a storage
element whose output follows both the early and late input arrivals, allowing
slower stages to borrow time from the subsequent faster stages.

The time-borrowing capability and the clock-uncertainty absorption are not
mutually exclusive. In fact, they can be traded off for each other. Figure 5.13
illustrates a case where a wide transparency window, denoted as a flat D - Q
characteristic, is used to both absorb the clock uncertainties, tCu, and borrow
time, t g , from the surrounding stages. Combinational logic of Stage 1 takes more
time than nominally assigned, and it borrows a portion of the cycle time from
Stage 2. In general, the storage element may not be completely transparent (i.e.,
the D-Q characteristics are not completely flat). According to the definition of
clock-uncertainty absorption, the combination of clock uncertainty, t C U , and time
borrowing, t g , causes an increase in the D - Q delay of the flip-flop, A D D Q :

where IXCU is a function of t g + t C u . The delay increase, AD,,, is the same
either when the clock uncertainty is t g + tCU with no time borrowing, or when
the borrowed time between stages is t g + t,-u and there is no clock uncertainty.

It should be noted that the practical values of the total borrowed time are
similar to the width of the transparency window, and in any event are shorter
than the hold time. Better absorption and time-borrowing capability can be
obtained by widening the transparency window (see Section 5.1.3). However,
if the transparency window is widened, the hold time increases and the short-
path requirement becomes harder to meet. Therefore, use of a wide transparency
window is a trade-off between time borrowing and uncertainty absorption on
the one side and the hold time on the other side. In cases where sufficient min-
imum delay in the logic path can be assured, making this window wider can
be beneficial.

LOW-ENERGY SYSTEM ISSUES

A large portion of the energy consumption in modern microprocessor designs
is in the clock subsystem, including clock generation, distribution, and the final
clocked storage-element load. Due to increasing frequency, low skew require-
ments, and deep pipelining, this clocking energy has been increasing with each
processor generation, requiring a more energy-conscious design of the clock
subsystem. In this chapter we describe some widely used methods for energy
reduction that include supply-voltage scaling, minimizing switched capacitance,
minimizing switching activity, and the use of low-swing-circuit techniques. These
conventional principles are then applied to the design of alternate topologies of
clocked storage elements as well as a general clock distribution network.

A common design approach for minimizing energy consumption in VLSI sys-
tems is to concentrate on reducing the switching component of energy, given by

where N is the number of nodes in the system, Ci is the capacitance at node
i, a0-1 (i) is the probability that the energy-consuming transition occurs at node
i, Vswing is the voltage swing of node i, and Voo is the global supply voltage.
Based on this simple formula, the guidelines for reducing energy consumption
are simply to minimize each of the terms in the product expression. The most
efficient way to minimize energy, as should be obvious, is aggressive voltage
scaling, because the energy has, to the first order, a quadratic dependency on the
supply voltage.

105

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

106 LOW-ENERGY SYSTEM ISSUES

Supply-Voltage Scaling Energy consumption is a quadratic function of the
supply voltage, so operating at reduced supply voltages leads to significant sav-
ings in energy consumption. In digital systems that deal with supply voltage
scaling (Burd et al. 2000), it is desirable that this scaling be used to preserve
important timing relationships. In particular, it is important that delays of both
the clocked storage elements and combinational logic scale in the same way to
maintain the timing constraints imposed by the fast and slow paths without any
changes in the design. While further slowing down the slow paths only affects
the maximum clock rate, speeding up the fast paths in order to avoid critical
races is not acceptable. Figure 6.1 illustrates the delay and internal race immu-
nity of representative MSLs, flip-flops, and locally gated latches and flip-flops
(Markovic et al. 2001).

In general, flip-flops (HLFF, SDFF, M-SAFF) are desirable circuits for critical
paths at reduced supply voltage because the delay of these elements becomes
shorter at lower supplies, relative to the delay of a static CMOS F04 inverter,
as illustrated in Fig. 6.la. This is because of the favorable scaling of the stack
transistors in this particular technology, as illustrated in the example of the two-
input NAND gate. With scaling down the supply voltage, the equivalent threshold
voltage of the NAND gate decreases, due to the reduced impact of the body
effect. This outweighs the threshold increase due to DIBL effect at reduced
supply voltage, resulting in overall relative speed-up. However, this behavior is
dependent on the underlying technology, and should not be taken as a general
rule. Circuits with transistor stacks (HLFF, SDFF) showed behavior similar to
that of the NAND gate, while M-SAFF had the largest speed-up due to its cross-
coupled differential structure with positive feedback circuits. Unlike the delay,
the internal race immunity of these latch and flip-flop topologies does not change
with supply voltage relative to an F04 inverter (Fig. 6.lb), indicating that the
same fast-path constraints apply across a range of supply voltages. This is because
Clk-Q delay and hold-time scale in a fashion similar to that of a CMOS inverter,
due to the nature of the circuits that define Clk-Q delay and hold time.

Minimizing Effective Switched Capacitance In order to obtain maximum
energy savings, the goal is to minimize all the effective switched capacitance
internal to the clocked storage element, for a given external load capacitance.
The total effective capacitance at some node inside the circuit is a product of the
physical capacitance of that node and probability of the energy-consuming transi-
tion. Physical capacitance includes clocked transistor capacitance and capacitance
of nonclocked internal nodes. Reduction of the total physical clocked capacitance
is more important because it is switched every clock cycle, as opposed to the
capacitance of the nonclocked nodes, which is switched only when the output
changes. In dynamic circuits, however, only a portion of the nonclocked capaci-
tance - the total capacitance excluding the capacitance of the precharge/evaluate
nodes -is switched when the output changes.

Circuit Sizing One advanced issue in minimizing energy consumption in
clocked storage elements pertains to the circuit sizing that provides an optimal

LOW-ENERGY SYSTEM ISSUES 107

1.0' ; I I I

1.3 1.6 1.9 2.2 2.5
Vdd [V]

(4

, . - .+ . - . - . _ -< G-MSL

d

a:

" - ' s - . -
COD-PL

1 1.3 1.6 1.9 2.2 2.5
0.5

Vdd [V]

(b)

Figure 6.1. Impact of Vdd on (a) delay, and (b) internal race immunity (0.25 pm,
light load). (Markovic et al. 2001), Copyright 0 2001 IEEE.

energy-performance trade-off for a given output load capacitance. Ideally,
we would like to have the lowest possible energy and the highest level of
performance, but the two requirements conflict. Intuitively, clocked nodes should
be made minimum size in order to compensate for the increased switching
activity. The total circuit area ultimately depends on the size of the load that it

108 LOW-ENERGY SYSTEM ISSUES

needs to drive, implying that larger loads may need a design of larger proportions
to maintain acceptable driving strength. However, it is not desirable to size
transistors in such a way that they are overly robust. This means that a circuit
with transistors of fixed size cannot optimally drive various output loads, and that
the extra area spent in designing them to support the largest load capacitance is
really wasted, since the performance upgrade here serves only to alleviate an
issue that may manifest itself infrequently. It is more important from an energy
standpoint that circuits are sized to satisfy the constraints in the most common
cases, which often happens to be approximately a fourfold increase over standard
inverter load. Typically, one “standard load” corresponds to the input capacitance
of a “1 x” buffer from the standard cell library. In more advanced VLSI designs
today, the output loads are even lower 80% of the time.

Minimizing the physical capacitance by downsizing the transistors is often
limited by the requirements for circuit noise immunity. For this reason, for
example, standard cell libraries typically do not contain minimum-sized transis-
tors at the inputs of logic gates. It is important to optimize the size of a clocked
storage element for minimal energy that just meets the performance goal. There
is no type of storage element that is optimal for all paths. Performance critical
paths require fastest operation, which results in sizing for peak performance, and
thus large energy consumption. Storage elements in noncritical paths allow much
less aggressive sizing due to the available timing slack. Circuit-size optimization
thus depends on the topology of a clocked storage element and is discussed in
more detail in Chapter 7.

Circuit Topology Other efficient ways to minimize the overall energy are
lowering clock signal swing and reducing clock frequency. Selection of a cir-
cuit style that has inherently low switching activity in the internal nodes or a
small number of clocked nodes could also be a good way of reducing energy.
For example, in most cases, static circuits have smaller energy consumption than
dynamic circuits, because the dynamic circuits need prechargeldischarge opera-
tion of the dynamic nodes in each clock cycle. In addition, effective switching
activity can be reduced by clock gating or dual edge-triggering on every clock
transition that halves the frequency of the global clock.

6.1. LOW-SWING CIRCUIT TECHNIQUES

Clocked storage elements sometimes operate with different input- and output-
signal logic levels. For example, in static random-access memories (SRAM), a
low-swing wordline signal is amplified by sense amplifiers to produce a full
swing at the bus output. If the data and clock loads are similar, then it is much
more beneficial from the energy standpoint to have a low-swing clock. This
is because of the high proportion of the clock energy to data energy due to
the high switching activity of the clock. Another low-swing approach is there-
fore the reduced-swing clock operation, which targets savings in the clocking

LOW-SWING CIRCUIT TECHNIQUES 109

energy. The low-swing clock can be generated with the help of reduced-swing
clock drivers or by powering up the clock buffers with a separate supply voltage
(Kawaguchi and Sakurai 1998). The aim of the reduced-swing clocking technique
is to save energy in the clock network. The reduced-swing clock operation slows
the circuit down and consequently increases the cycle time. This technique is
therefore effective only in VLSI systems where an increase in the clock cycle
is allowed. Since supply voltage has a stronger effect on the delay than circuit
sizing, upsizing the circuit that operates with reduced-swing signals usually can-
not average out the performance loss experienced from the low-swing operation.
Therefore, there is always some delay penalty associated with reduced-swing
signals. Low-swing clocking can be implemented either with conventional CSEs
and specially designed clock drivers, or with specially designed CSEs that are
capable of receiving the reduced-swing clock.

6.1 .I. Conventional CSEs with Reduced-Swing Clock Drivers

When used with conventional CSEs, low-swing clocking requires a special design
for the clock drivers to support the reduced-swing clock operation. As an example,
consider the clock driver proposed by Kojima et al. (1995). It provides separate
clock signals for p-MOS and n-MOS transistors, as shown in Fig. 6.2. Capaci-
tances Cpl , Cp2 represent p-MOS loads on the driver, and C,1 and Cn2 represent
n-MOS loads on the driver. Capacitors C A and C B are externally connected or
fabricated on-chip, to optimally set voltage at node H-VDD to vDD/2:

V D D (Clk is high)
c p 2 f CA

c p 2 f CnI + CA f CB
V(H-VDD) =

When C p l , Cp2, C,I and Cn2 are made equal, then the node H-VDD is at V D D / ~
and the external capacitors CA and C B are not needed. Otherwise, CA and Cg
can be made large in a way that makes variations in C,1, C,2, C,,, and Cn2
insignificant and sets H-VDD close to V D D / ~ . Each of the clock buffers in Fig. 6.2
would provide a half-swing clock signal for p-MOS or n-MOS transistors. This

vOD

GND

voo
CA

H-VD, vthpl
cB vthn

GND

Clk *-c+
Figure 6.2. Clock driver for half-swing clocking. (Kojima et al. 1995), Copyright 0 1995
IEEE.

110 LOW-ENERGY SYSTEM ISSUES

way, both phases of the clock are provided and conventional topologies of clocked
storage elements can be used.

Eliminating any cost in the clock driver associated with charging C A , C B and
generating both phases of the clock, half-swing clocking ideally provides 75%
reduction in the clocking energy. In reality, additional resizing of n-MOS clocked
transistors is performed to balance C,1 -Cn2. As a result, smaller energy savings
are achievable. For example, the sixteen-stage shift register reported in Kojima
et al. (1995) saves 67% of the clocking energy, 8% less than the theoretical
result. This technique is limited only to those cases where a half-swing operation
is required. Alternate techniques dealing with redesign of the clocked storage
elements allow an arbitrary value of the reduced clock swing to be used and
more flexibility in optimizing the overall system energy.

6.1.2. CSE Redesign

Kawaguchi and Sakurai (1998) took a different approach to low-swing clock-
ing. They supplied a globally reduced-swing clock to all clocked transistors,
with extra body bias applied to all p-MOS clocked transistors. This is because
they do not fully turn off when the Clk is high. Their study was based on the
example of a sense-amplifier-based flip-flop (SAFF), modified for the reduced-
swing clock operation, as shown in Fig. 6.3. Operational behavior of the reduced
clock swing flip-flop (RCSFF) is very similar to the behavior of the SAFF. The
RCSFF example is particularly interesting because the new circuit did not require
any topological change, but rather the use of an extra bias voltage to bias wells
of the precharge p-MOS transistors as a way of suppressing their leakage current
when the clock is high.

Figure 6.3. Reduced clock-swing flip-flop. (Kawaguchi and Sakurai 1998), Copyright 0
1998 IEEE.

LOW-SWING CIRCUIT TECHNIQUES 11 1

The reduced-swing clock can be either globally distributed or it can be gen-
erated locally. Kawaguchi and Sakurai proposed several low-swing clock drivers
that reduce the output signal swing by stacking up n n-MOS transistors to gen-
erate an output swing of VDD - nV,h, as shown in Fig. 6.3. However, a more
effective method is to design a clock distribution network comprising standard
buffers and globally reduced clock supply voltage. This is because particular
schemes with stacked transistors result in increased pull-up resistance, and hence
require some area overhead to maintain sharp clock edges and provide energy
saving in the clock distribution network. Schemes (a) and (b) in Fig. 6.3 are less
energy efficient than scheme (c), because the energy is effectively pulled out of
V D ~ and not V D D - V ~ ~ , so the energy benefit is not quadratic, as with the scheme
in (c).

Compared to the conventional MSL in Kawaguchi and Sakurai (1998), RCSFF
provided 63% savings in the clocking energy for the same Clk-Q delay. We
must note here that comparison with the conventional M-S topology is not quite
appropriate because the M-S configuration is inherently slower than the SAFF.
A fairer comparison would be with a SAFF that issues full-swing clocks, but
whose Clk transistors are downsized such that the delay is equal to that of the
RCSFF. Here, the RCSFF just serves to illustrate one of the few reduced-swing
clock design options.

6.1.3. N-Only CSEs with Low-Supply-Operated Clock Drivers

The low-swing clock techniques discussed thus far are suboptimal. The tech-
nique presented in Section 6.1.1 that provides two different low-swing clocks
for conventional flip-flops (Kojima et al. 1995) inherently increases the phys-
ical capacitance of the clock network. An approach with a separate well bias
(Kawaguchi and Sakurai 1998) increases the layout complexity. A more effec-
tive technique is to use conventional clock drivers with a globally reduced supply
voltage and CSEs containing only n-MOS-clocked transistors that are capable of
receiving the low-swing clock. One such latch circuit is shown in Fig. 6.4.

This straightforward implementation is obtained by simply removing p-MOS
clocked transistors from the conventional MSL. A design for robustness and speed
involves adding extra n-MOS transistors N 1 -N4 to help the pull-up transition on
the latch state nodes SM and SS.

Do

Figure 6.4. N-Only clocked M-S latch.

11 2 LOW-ENERGY SYSTEM ISSUES

6.2. CLOCK GATING

Clock gating is an efficient way of reducing the overall energy consumption in
digital systems where energy in the clocking subsystem is a significant part of
the overall system energy, or when data input of the CSEs have little switching
activity. The mechanism behind clock gating is to allow clocking of a CSE only
if new arriving data are different from the current output of the CSE, which
effectively eliminates switching of the clocked transistors when output does not
transition. This way, unnecessary activity of the internal nodes is eliminated.

The clock gating can be global when the gating logic is shared between several
CSEs, or locul when the gating logic is embedded in each CSE. In both cases, the
design of the clock-gating control logic needs to be carried out carefully so that
the savings in the clocking energy are greater than the overhead incurred by the
clock-gating logic, for the given input data statistics. Generally, extra caution has
to be taken in the design of systems with gated clocks, because timing analysis
becomes more complicated when the clock is gated (Baeg and Rogers 1999).

6.2.1. Global Clock Gating

Sometimes designers need to control which data are loaded into registers. To
achieve this, an extra signal is needed to control the loading of new data into the
registers. This kind of functionality can be essentially performed in two different
ways: by employing a free-running clock and multiplexing (gating) the data,
or by gating the clock signal. The standard way of recirculating data is shown
in Fig. 6.5a. The circuit has a free-running clock and a "wrap-up" multiplexer
that selects either the value stored at output Q or new input In. The selection
is regulated by control signal Load, which represents the gating condition. The
clock signal, Clk, triggers the register REG in each clock cycle. This is the more
common approach, used in the LSSD methodology, and it prohibits insertion on
the clock.

The principle of clock gating is illustrated in Fig. 6.5b. The circuit sends
clock signal Clk to the register only when signal EN is active high. In this
circuit, signal EN must not transition when signal Clk is high in order to assure
capturing the input In at the edge of the clock signal Cfk rather than at the edge

In

Load (a) Clk m __ REG EN
Clk

Figure 6.5. (a) Nongated clock circuit, (b) gated clock circuit. (Kitahara et al. 1998),
Copyright 0 1998 IEEE.

CLOCK GATING 113

of the enable signal E N . In addition, there is always some extra insertion delay by
the clock-gating logic. For these reasons, timing analysis in designs that employ
global clock gating is more complicated than the timing analysis of conventional
designs. This is a more energy-efficient method than the LSSD.

6.2.2. Local Clock Gating

Unlike globally gated designs, locally gated designs can be simply analyzed just
like the conventional designs in which the clock-gating logic is lumped into a
CSE. The main feature of this circuit family is a mechanism for predictive turn-off
of the internal clock when the input and output data are equal. The local clock-
gating technique can be applied to any CSE topology. The local clock gating in
most cases incurs an extra delay penalty that effectively limits its applicability
only to those CSEs that are outside performance-critical paths, such as in data-
transition look-ahead latch (DTLA-L). However, there are cases when the control
logic is outside the critical path of the CSE, in which case there is almost no
penalty in the CSE delay. One example of such a design is the conditional capture
flip-flop.

Example: Data-Transition Look-Ahead Latch The DTLA-L proposed by
Nogawa and Ohtomo (1998) is shown in Fig. 6.6. In the original paper, this
circuit is called “flip-flop.” The circuit is derived from a conventional-based
MSL. It consists of the MSL, pulse generator, data-transition look-ahead, and
clock control logic that enable the clock pulse to propagate inside the latch.
The circuits in the figure that are enclosed with dashed lines show the overhead
associated with the internal clock gating. The functionality of each of these blocks
is detailed below.

The DTLA logic compares the new input, D , with the existing output, Q.
It essentially performs an XNOR function on D and Q. When D = Q, the

D

Clk

Q

, Clock Control

Figure 6.6. Data-transition look-ahead latch. (Nogawa and Ohtomo 1998), Copyright 0
1998 IEEE.

114 LOW-ENERGY SYSTEM ISSUES

DTLA circuit produces a logic 1 at its output, P I , thus disabling generation of
the internal clock {CP, -1. When D # Q , PI evaluates low and the clock-
control (CC) circuit enables generation of (C P , -), that is, the global clock,
CPI, is allowed to propagate inside the latch.

The pulse-generator (PG) circuit generates a pulse, CPZ, at every rising edge
of the external clock, Clk. The CPZ signal then triggers the latch if D # Q. The
pulse generator is essential for the operation of this circuit. If there were no pulse
generator, this latch could be triggered by data instead of the clock. For instance,
if D # Q and the CPI high arrives, then clock pulse, CP, is generated and Q
changes. However, if D changes again while the clock is still high in such a way
as to become different from Q , this also would generate pulsed pulse CP, and
the latch would actually be triggered by the data. This is prevented if the Clk
width is approximately equal to the CP pulse width, because then the master
would be opaque while Clk is high. The pulse generator in this circuit is shared
by a register of latches in order to reduce energy overhead with pulse generation.
The downside of this approach is the distortion of the pulse that may occur in
the clock distribution to multiple latches.

Example: Conditional Capture Flip-Flop As an example of CSE with inter-
nal clock gating, we consider the conditional capture flip-flop (CCFF) proposed
by Kong et al. (2000). The CCFF is shown in Fig. 6.7. It is a positive edge-
triggered differential-input differential-output flip-flop. The CCFF is similar to
the modified SAFF (M-SAFF) proposed by Oklobdzija and Stojanovic (2001).
However, there is no more push-pull positive feedback, since the two coupled

T T

Figure 6.7. Conditional capture flip-flop. (Kong et al. 2000), Copyright 0 2000 IEEE.

DUAL-EDGE TRIGGERING 115

inverters in the M-SAFF preamplifier stage are replaced by keepers. The main
difference is in the input stage where NOR gates are used to generate signals
N and w. These two signals regulate generation of the set and reset signals for
the second-stage latch. The output stage is very similar to the output stage of
the M-SAFF. The only difference is that the keepers are implemented as pass
transistors instead of the full-CMOS implementation in M-SAW.

This flip-flop operates as follows. When Clk is low, the flip-flop is in the
precharge phase, 9 and are precharged high, and the S- R latch is disabled.
At the rising edge of Clk, the behavior of the CCFF depends on the incoming
data value - if new data are different from the previously recorded output data,
one of the outputs of the NOR gates is high, enabling pull-down of s or F. The
transparency period of the differential pair is equal to the sum of two inverter
delays and delay of the NOR gate. This is because N and both go low when
Clkl is high. During this short transparency period, new data are latched by the
S-R latch at the output.

It is interesting to observe that, in general, the conditional capture flip-flops
have the logic function of the J - K flip-flop. The CCFF is actually a J - K flip-
flop internally, where outputs Q and a condition the flip-flop inputs. Inputs J
and K are defined as

-
S’ = D . Clk . Q + Clkl = D . Q . (Clk . C l k l) = J . (Clk . Clkl)

R’ = Z;j. Clk . Q + Clkl = D . Q . (Clk . C l k l) = K . (Clk . Clki)

(6.3)

(6.4)
-

where the term Clk ‘ Clkl defines the window of time during which inputs J
and K are captured. The switching activity of the internal nodes is reduced by
conditioning the inputs.

6.3. DUAL-EDGE TRIGGERING

A dual-edge-triggered clocked storage element is a storage element that captures
the value of the input at both clock edges. The reason for using the DETSE
is to save energy in clock generation and distribution by halving the clock fre-
quency while achieving the same throughput. Considering the increasing trends in
clock frequency and clock-related energy consumption, the choice of the DETSE
appears a viable method for energy reduction in the clocking subsystem.

One important consideration in the design of DETSEs is that these devices
are more sensitive to the timing of the clock signal than are the single-edge-
triggered clocked storage elements (SETSEs). In particular, the uncertainty of
the duty cycle and the uncertainty of both clock edges become the most impor-
tant design parameters. Additionally, the fact that the DETSE is more complex
than the SETSE may result in longer delays and higher energy than in the cor-
responding SETSE.

The DETSE can be built using several techniques. Depending on the technique,
we classify DETSEs as a latch-mux (LM), a pulsed-latch (PL), or a flip-flop (FF).

11 6 LOW-ENERGY SYSTEM ISSUES

These classes of DETSE exhibit distinctive behavior. As discussed in Chapter 4,
DETSEs have the same basic timing parameters as single-edge-triggered designs
(setup time, hold time, clock-to-output delay), but applied to both clock edges.
Generally, the basic timing parameters are not the same for the opposite edges,
since they may be the result of different capturing mechanisms andor different
input-to-output critical paths. In the following sections, we describe in more detail
the principles on which each of the techniques for building a DETSE is based. In
the end, in an example of a clocking subsystem, we discuss the potential energy
savings using DETSE.

6.3.1. Latch-Mux Design

The latch-mux structure is shown in Fig. 6.8. It consists of two latches con-
nected in parallel that are transparent on opposite levels of the clock, and a
muhiplexer (mux) that selects the output of the nontransparent latch at all times.
This structure is equivalent to a typical MSL design, but has two master latches
working in parallel, and a mux functioning as a slave latch. Any MSL is therefore
transferable to the corresponding latch-mux topology.

Example: Dual-Edge-Triggered Latch-Mux The dual-edge-triggered latch-
mux (DET-LM) proposed by Llopis and Sachdev (1996) is shown in Fig. 6.9 as
an example of the latch-mux design. It is the dual-edge counterpart of the widely
used single-edge MSL proposed by Gerosa et al. (1994). The basic building
blocks (latches and a multiplexer) can easily be identified on the schematic.
The latches are implemented with transmission gates and clocked feedback. The
multiplexer is also implemented with transmission gates. This latch-mux has two
equally critical paths, somewhat shorter than the critical path of the MSL (the
delay of a multiplexer versus the delay of a latch in the second stage).

D j D Q

Clk

Figure 6.8. Dual-edge-triggered latch-mux design.

DUAL-EDGE TRIGGERING 117

D

Pulse
G e n _ n - ~

Q

- Clk Clk
Clk

Clk clk
Figure 6.9. Dual-edge-triggered latch-mux circuit. (Llopis and Sachdev 1996), Copy-
right 0 1996 IEEE.

D Q - Q

-
O - - 0

- c

Clk --cc

Figure 6.10. Dual-edge-triggered pulsed-latch design.

Pulse
Gen -

C

6.3.2. Pulsed-Latch Design

A conceptual diagram of a PL design is given in Fig. 6.10. It consists of a pulse
generator that produces a short pulse on every edge of the clock (both leading
and trailing) and a D-latch that is transparent for the duration of the pulse and
opaque otherwise. Practical designs usually employ two pulse generators, one
for each clock edge, and combine them in front of the output latch, as shown
in Fig. 6.10.

Example: Dual-Edge-Triggered Pulsed Latch As an illustration of a PL
design, consider dual-edge-triggered pulsed-latch (DET-PL) of Fig. 6.1 1 . It con-
sists of a set of input pass-gates that define the transparency window, buffer
inverters, and keepers in the feedback path that keep the value stored in the
PL when the latch is opaque. The transparency window is defined by the clock
delay line of the four inverters. There are two timing windows when the latch
is transparent-one determined ___ by the overlap of the clock (Clk) and the clock
delayed by the three inverters (Clk l) , with another one determine by the first and
fourth delay of the clock (signals Clk and Clkz). This design is derived from

118 LOW-ENERGY SYSTEM ISSUES

D-

- - -D

Clk --cC

Clk Clk,
- -

-
D S

n -

1-

- C R Q - Q

- CL -
S 0--8

C R

Clk Clk, Clk,
T

DO-

, gb# -. , Clk,

Q

Figure 6.11. Pulsed-latch: (a) single-edge-triggered; (b) dual-edge-triggered

the corresponding single-edge design by simply adding a transmission-gate that
enables latch triggering at the trailing clock edge. Extra transmission gates in the
feedback path control the keepers.

This structure does not strictly follow pulse generation and latching. The pulse
generator is implicit (local to the latch), and the generated pulse is used to trigger
the transmission-gate-based latch. However, the functionality of a PL still exists
in terms of' the pulse generation synchronously, with the clock and latching in
the second stage.

6.3.3. Flip-Flop

A conceptual diagram of a DET flip-flop design is given in Fig. 6.12. It consists
of two pulse-generating latches and a capturing latch (CL). The top latch creates
a pulse at the leading edge of the clock, and the bottom latch creates pulse at the
trailing edge of the clock Clk. The pulses are conditioned on data D. The CL is
a nonclocked latch that captures pulses generated by the pulse-generating latches
and stores the result at outputs Q , a.

DUAL-EDGE TRIGGERING 119

Clk

D

Clk,

Clk

-

CL

;il Q

D

Clkz

mk

C-k2

Figure 6.13. DET symmetric pulse-generator flip-flop.

Example: DET Symmetric Pulse-Generator Flip-Flop The DET symmet-
ric pulse-generator flip-flop (SPGFF) proposed in Nedovic et al. (2002) is shown
in Fig. 6.13 as an example of DET flip-flop design. The circuit has a narrow,
transparent data window and clockless output multiplexing scheme. The first
stage is symmetric, consisting of two pulse-generating (PG) latches. This stage
creates the data-conditioned clock pulse on each edge of the clock. The clock
pulse is created at node SX on the leading and node S y on the trailing edge of
the clock. The second stage is a two-input NAND gate. It effectively serves as
a multiplexer and a latch, implicitly relying on the fact that nodes SX and Sr
alternate between being precharged high while the clock is low and high, respec-
tively. This type of output multiplexing is very convenient because it does not
require clock control. The clock energy is mainly dissipated by pulse generation
in the first stage.

6.3.4. Clock Distribution

Both the clock distribution and CSEs have to be considered when the overall
energy benefit of dual-edge-based versus single-edge-based clocking is eval-
uated. The best way to illustrate this is to study power savings in the clock
distribution network of a single- versus dual-edge-triggered system. Generally,
the dual-edge-triggered design is always a better choice than the single-edge-
triggered design if its input CSE clock load is less than roughly twice that of the
latter design. In addition, in systems with a significant potential wire load saving
from the dual-edge-triggered scheme are even larger. This is illustrated in the
following example.

The example is adapted from Nedovic et al. (2002). The crucial parameter for
comparison is the total switching load, due to the storage elements, clock buffers,
and wires, for the single- and dual-edge-triggered system. In this example, we
find this load by estimating the load of an H-tree clock distribution network with
L levels, in a microprocessor die of size (s x s) with M storage elements, as

120 LOW-ENERGY SYSTEM ISSUES

e= Storage Element
s12L-I

elements

Figure 6.14. H-tree clock distribution network.

shown in Fig. 6.14. Each level-L driver supplies the clock to an area of . ~ / 4 ~ - '
(local domain) containing M/4L-' storage elements. In the local domain, the
clock is distributed as shown in the shaded region of Fig. 6.14, where cw and
CC/k-CSE are the wire capacitance per unit length and clock capacitance of a
storage element, respectively. We neglect the wire resistance, so that the width,
and thus capacitance, of the wires do not depend on the storage-element clock
load. Under these assumptions, it can be shown that the total load in the H-tree,
including the clock load of the storage elements, is

The first item on the right-hand side of this equation is CH-CSE, the portion of
the H-tree capacitance that depends on the clock load of a storage element. It
can be approximated to 4 . M c C / k - C L y E / 3 if 4L >> 1. The second item in the
same expression is C H - W ~ ~ ~ , the total wire capacitance. This part of the clock
distribution load is dependent only on the geometry of the H-tree, not the CSE
clock load. If M >> 4L >> 1, then C H - W , ~ ~ SY 4cw . s . M / (3 . 2L-1) , and the total
capacitance of the H-tree becomes

To estimate the power savings of dual-edge clocking, we assume that the
number of the clock buffer levels in the H-tree is the same in dual-edge and single-
edge systems. In the real design, the optimal number of levels depends on the CSE
clock load, and it can be different in the two cases. However, in practical cases,
the wire load dominates the CSE clock load. As a result, the optimal number of
buffers is mostly affected by the wire load, rather than by the CSE clock load.
Thus, the assumption of an invariant number of clock buffer levels provides a

DUAL-EDGE TRIGGERING 121

r plo 0.2

0.0

good approximation while simplifying the analysis. In addition, comparison with
the same number of buffers provides approximately the same insertion delay and
clock uncertainty of the clock distribution network. We define the coefficient, a,
as the ratio of the clock distribution switching power consumption of the dual-
and single-edge-triggered systems, assuming that dual-edge-triggered systems run
at half the clock frequency of single-edge-triggered systems:

CC/KSE,DET/CC/~-CSE,SET
I t 1 -0-2 +-3]

--

where Cwire-~ = CW . ~ / 2 ~ + ' is the average capacitance of the wire needed
to route the clock signal from the level L buffer to a storage element, and
indices DET and SET correspond to dual-edge- and single-edge-triggered clock-
ing, respectively.

In a typical design in today's technologies, C H - W ~ ~ ~ (W) is usually much larger
than CH-CSE (CCI~-CSE) , in which case the power savings are nearly 50% greater.
For example, in a five-level H-tree on a 12 x 12-mm die fabricated in 0.1l-km
CMOS technology, the clock distribution power saving obtained by replacing
a single- by a dual-edge-triggered storage element is around 40%. The plot
illustrating relative power savings in the clock subsystem of the dual- versus
single-edge-triggered CSE with respect to the ratio of the CSE clock capacitance
to wire capacitance is shown in Fig. 6.15. The clocking power includes clock
distribution, wire load, and CSEs. The savings are shown for different ratios of
the clock capacitance in DET-CSE and SET-CSE.

The curves indicate that the dual-edge-triggered design is always a better
choice if it maintains a clock load capacitance less than roughly twice that of the
single-edge-triggered design. It should be noted that in most high-performance
designs, wire load is even more pronounced than in the H-tree, design, for
example, in a clock grid, so there is a larger potential saving from the dual-
edge-triggered scheme.

1.2 I I

h

t; 1.0
",

n x 0.6

n 0.4

-y 0.8
0

+
W
v

4 Single edge better

Figure 6.15. Clocking power in single- and dual-edge-triggered systems.

122 LOW-ENERGY SYSTEM ISSUES

6.4. GLITCH ROBUST DESIGN

An interesting observation is that the best CSEs in terms of energy efficiency and
large internal race margins are also the most susceptible to propagating glitches.
For example, for very low input data-transition probabilities (typically less than
0.1) and relatively high glitching probabilities (greater than 0. l), the energy
glitching component in the clock-gated transmission-gate MSL can become equal
or even greater than the switching component. In the different CSE topologies
that cover a wide range of energy consumption, rankings in energy consumption
due to glitches are exactly the opposite from the rankings in spurious-free energy
consumption. Specifically, conventional MSLs exhibit lower switching energy
consumption than do pulse-triggered designs. However, pulse-triggered designs
are less prone to glitches, which ultimately affect the robustness of the design.
It is therefore important to consider the possible degradation in signal integrity
because of glitches.

CSE glitch sensitivity depends on its structure. In general, the flip-flops (SDFF,
HLFF, M-SAFF) exhibit greater glitch immunity than do M-S latches (MSL,
C2MOS) (see Fig. 6.16). This is because internal nodes in the flip-flops are cou-
pled with D input only during the narrow period when a flip-flop samples input
data, whereas in MSLs, the master latch, when transparent, is sensitive to glitches
during the whole transparency window. Circuits with internal clock gating are
susceptible to glitches the most, because the glitches affect both their internal
nodes and the nodes inside the clock-gating logic.

As an illustration of glitching energy consumption, Fig. 6.16 contains a
comparison of the average glitching energy in various CSE topologies. In this

4.0

3.5 , ,

glitching activity, p
Figure 6.16. Comparison of average glitching energy in CSEs. (Markovic et al. 2001),
Copyright 0 2001 IEEE.

GLITCH ROBUST DESIGN 123

40

09

Figure 6.17. Glitching energy as a percentage of switching energy in representative CSEs
showing the greatest glitch sensitivity of the gated designs.

example, it is assumed that each of the four glitches discussed in Chapter 3 occurs
with equal probability: 81 = 82 = 83 = 8 4 = 8/4. Flip-flop circuits (SDFF,
HLFF, M-SAFF) consume the smallest input glitch energy because of their
narrow sampling time. M-S latches (MSL, C2MOS) are more susceptible to
glitches, particularly during the half-period when the master stage is transparent.
The highest glitch energy consumption of the gated designs (COD-PL, G-MSL)
is due to the fact that the clock-gating logic continuously compares D and Q
and propagated glitches regardless of the clock level.

Figure 6.17 shows glitching energy in a representative flip-flop, MSL, and
clock-gated latch, relative to their switching energy. The figure indicates that the
glitch energy is the smallest portion of the useful (glitch-free) energy in flip-flops
(SDFF example), has more impact on M-S latches (MSL example), and is the
most significant in designs with internal clock gating (G-MSL example).

CHAPTER 7

SIMULATION TECHNIQUES

Results and conclusions about the performance of different CSEs depend
significantly on the simulation setup and evaluation environment. CSE is just
one of the elements in the pipeline, and has to be sized in such a way that the
optimum performance for a given output load is achieved. The CSE output loads
vary a lot across the processor core, depending on the level of parallelism in each
unit and also on whether the CSE is on the critical path or not.

In modern data paths CSEs experience a heavy load due to the parallel execution
units and increase in interconnect capacitance. It is the performance of these CSEs
on the critical path that has the highest impact on the choice of processor cycle time.
Hence, in high-speed designs, the design and evaluation of CSEs is focused on the
elements on the critical path and often implicitly assumes such conditions during
performance comparisons. On the other hand, there are a lot of CSEs that are placed
on noncritical paths with relatively light loads. While these CSEs do not directly
impact the performance of the processor, careful design of these elements can
significantly reduce energy consumption and alleviate clock distribution problems.

The purpose of this chapter is to recommend simulation techniques that design-
ers can use to evaluate the performance of CSEs, depending on the desired
application. Most importantly, we try to build an understanding of the issues
involved in creating a simulation environment for the CSE, such that the reader
can use the information to tailor his or her own setups to the specific application.
There is no universal setup that is good for every CSE application.

7.1. THE METHOD OF LOGICAL EFFORT

The method of logical effort is an easy and intuitive approach to the gate-
sizing problem (Sutherland and Sproull 1991). This method is especially useful

125

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

126 SIMULATION TECHNIQUES

in getting the initial design point right and helps to build intuition about the
performance of different circuit topologies. In this section we introduce the
methodology of logical-effort and describe how it can be applied to CSE siz-
ing optimization. The logical effort methodology and reasoning are used heavily
throughout this chapter, so we start with an explanation of the basic princi-
ples that will help us define the proper simulation setup and CSE performance
evaluation later.

The logical-effort approach is based on an equivalent RC circuit model. The
RC delay model describes delays caused by the capacitive load that the logic
gate drives and by the topology of the logic gate. Inverters, as simplest logic
gates, drive the loads most efficiently. More complex logic gates often require
more transistors, some of which are connected in series, making them poorer
drivers as compared to inverters. For example, a NAND gate introduces more
delay than an inverter with similar transistor sizes, while driving the same load.
The method of logical effort quantifies these effects in order to simplify delay
analysis for individual logic gates and complex multistage logic networks.

The delay of a logic gate has two components: (1) a fixed component called
the parasitic delay, p , and (2) a component that is proportional to the gate’s
output load called the effort delay or stage effort, f . The total delay defined in
Eq. (7.1) and measured in units of technology-dependent time constant, is the
sum of the effort delay and parasitic delay:

The effort delay is a product of logical and electrical efforts, Eq. 7.2, which
depend on the load and on the properties of the logic gate driving the load:

The logical effort, g, describes the effect of the logic gate’s topology on its
ability to produce output current. It is independent of the size of the transistors
in the circuit. The electrical effort, h , characterizes the load and describes how
the size of the transistors in a gate affects its driving capability:

where Cour is the total output load capacitance, and Ci, is the input gate capaci-
tance, implicitly representing the size of the gate.

7.1 .I. Multistage Logic Networks

In multistage logic networks, the method of logical effort computes the optimal
number of stages and the minimum overall delay by balancing the delay among
the stages. The notions of logical and electrical effort can be generalized from
individual gates to multistage paths.

THE METHOD OF LOGICAL EFFORT 127

The logical effort, G, along a path is the product of the logical efforts of all
the logic gates along the path. The electrical effort, H , of a multistage logic
network is the ratio of the load capacitance at the last stage in the path to the
input capacitance of the first logic gate in the path. A new kind of effort, named
branching effort, is introduced to account for fan-out within a logic network. The
branching effort, b, at the output of a logic gate is defined as

(7.4)

where Con-path is the load capacitance along the analyzed path and Coff-parh is the
capacitance of connections that lead off that path. If the path does not branch,
the branching effort is equal to one. The branching effort, B , along the entire
path is the product of the branching efforts of all the gates along the path.

As with the stage effort of individual logic gates, the path efSort, F , is defined
in the multistage logic networks as the product of the logical, electrical, and
branching efforts:

F = G . B . H (7.5)

Minimum delay along an N-stage logic network is achieved when each of the
stages in the path bears the same stage effort. The minimum delay is achieved
with the stage effort:

f = g . . h . - F 1 ” , I I - V i = l , ..., N (7.6)

where subscript i denotes the ith stage on the path. The minimum path delay
is then

(7.7) D = N ‘ F‘IN i- P

where P accounts for the total parasitic delay along the path. If N = 1, this
equation reduces to Eq. (7.1).

All stages have the same effort delay, from Eq. (7.6), so once the effort delay
is determined, the transistors in each logic stage are sized accordingly. Starting
at the end of the path and working backwards, the input capacitance, Cin(i), of
each logic gate is determined from the capacitance transformation:

(7.8)

and appropriately distributed among the transistors in the gate connected to
the input.

7.1.2. Logical Effort of Logic Gates Commonly Found in CSEs

By definition, a static inverter has the logical effort of one. The logical effort
of other gates depends on their current-driving ability, with respect to that of an

128 SIMULATION TECHNIQUES

inverter, for the same input capacitance. Correspondingly, logical effort can be
stated as the ratio of the gate to inverter input capacitance when both the gate
and the inverter are sized so that they have the same drive current. A two-input
static NAND gate with the same drive characteristics as the inverter in Fig. 7.la
is shown in Fig. 7.lb. Since the two pull-down transistors are in series, each
must have twice the conductance of the inverter pull-down transistor. The input
capacitance of such a static gate is 413 times bigger than that of the inverter
with the same current-driving capability. This ratio exactly represents the logical
effort of the static NAND gate with respect to the static inverter, which serves
as a reference. Similarly, the pull-up transistors of a two-input static NOR gate
must have twice the conductance of an inverter pull-up transistor, as shown in
Fig. 7 . 1 ~ . Hence the input capacitance of the static NOR gate is 5/3 times larger
than that of the reference inverter for the same current drive. By analyzing the
static-gate topologies, one concludes that any type of static logic gate will have
a greater logical effort than the reference inverter. This, however, is not true
for other circuit styles when compared to static CMOS. For example, a domino-
style inverter has 2/3 times the capacitance of the static inverter for the same
current drive (Fig. 7.ld). The logical effort of the domino-style inverter is 2/3
when compared to a static inverter. In the example derivations in Fig. 7.1, logical
effort was calculated based on RC pull-down delays relative to that of a static
inverter. In general, each input of the gate has a pull-down and pull-up logical
effort, and the two are equal only if the pull-down and pull-up paths are balanced,
that is, have the same current drive. Gates with unequal pull-down and pull-up
logical efforts are often used to improve the performance in circuits where the
logical function of the gate allows this technique to be used, that is, where one
logic value is needed sooner than the other one. These gates are called “skewed’
gates. An example of a skewed gate is the output inverter of a domino gate where
the precharged input falling to the output of the rising inverter is the time-critical
transition, requiring a good pull-up inverter drive. The pull-down inverter path
is not so important, so the size of the n-MOS transistor can be decreased, which
leads to a smaller total input capacitance with a constant p-MOS transistor current
drive. In this way, the logical effort of the pull-up path decreased at the expense
of the logical effort of the pull-down path.

Besides regular gates, some other structures, such as transmission gates or
pass-transistor logic, are frequently encountered in CSE topologies. These types
of logic are much harder to analyze in the context of logical effort, since their
delay depends on the structure driving such a gate. The logical-effort method-
ology assumes that a gate is isolated from the preceding gate by its input
capacitance. One easy way to include the pass gate into the logical-effort frame-
work is to treat the pass gate and its driving gate as one complex circuit. In
this context, the pass gate increases the logical effort of the resulting complex
gate with respect to the driving gate alone. This occurs because of the additional
series resistance of the pass gate added to the signal path. In CSE circuits it is
often the case that the clock and its complement control the pass-gate transistors,
as in Fig. 7.2. The resulting complex gate has two inputs, the data, A, and the

L

I
T

I
Cn

II

c.
s

0'
4

129

130 SIMULATION TECHNIQUES

RCA,gatel RcA,gate2 - 3
gA,gateZ = RC - -

A,inv A,mv *
FICA inv gA,inv= A = 1
RcA,inv gA,gatel = RC =

(a) (b) (c)

Figure 7.2. Logical effort of gate driving a transmission gate: (a) reference inverter,
(b) slow-data input, (c) fast-data input sizing.

clock, Clk and Clk. Depending on the transistor sizing, each input can have a
different logical effort. For example, in Fig. 7.2b, transistors are sized in such
a way that half the resistance on the current path is due to inverter transistors
and half is due to the pass-gate transistors. In this arrangement input A has a
logical effort of 2, while the logical effort of CZk input is 2/3, when compared
to the comparable inverter in Fig. 7.2a. It is possible to speed up the data input
by increasing the size of the pass-gate transistors, as shown in Fig. 7.2c, where
logical effort is 3/2 for data input and 4/3 for Clk input. The increase in the
size of the pass-gate transistors results in a delay decrease on the data path, but
quickly reaches the point of diminishing returns. In addition to that, the parasitic
capacitance at the output node increases, making this technique effective only
in the cases when the load is much bigger than the parasitic capacitance of the
transmission gate. Despite the limitations just described, this trade-off technique
is heavily used in CSEs that are placed in critical paths. There, the extra clock
power is often traded for a decrease in the CSE delay.

Although the logical effort is a useful tool, some modifications are needed in
order to use it efficiently in the design of real submicron circuits. To simplify
matters, the preceding analysis was based on a long-channel MOSFET model,
suitable for back-of-the-envelope calculations. In reality, the logical effort of
stacked devices is lower because of the short-channel (velocity saturation) effect,
and is usually extracted from simulations. The RC delay model also fails to
capture the effects of variable signal slopes on delay. However, the signal slopes
tend to be equal in well-designed circuits with equal-effort delay.

7.2. ENVIRONMENT SETUP

Setting up the simulation environment is the key task of every performance compar-
ison. The simulation setup has to be organized so that it provides the conditions for
a fair comparison of different structures, yet addresses their intended application.

ENVIRONMENT SETUP 131

Several recent studies used somewhat different simulation setups, addressing
different aspects of the CSE applications. We will describe some of the important
concepts that these studies have addressed and present a global simulation setup
framework that can be fine-tuned further for the particular application intended.
The environment setup for comparing the CSEs in Stojanovic and Oklobdz-
ija (1999) used a single-size load, chosen in a way that resembles the typical
situation in a moderately to heavily loaded critical path in a processor with lots
of parallelism. All the CSEs were sized so as to achieve optimum data-to-output
delay for the given output load while driven from the fixed-size inverters. In
most practical situations, the CSEs are designed in a discrete set of sizes, each
optimized for a particular load. Hence, it is very useful to examine the perfor-
mance of the CSE for a range of loads around the load for which the CSE was
optimized. This technique is illustrated in Nikolic and Oklobdzija (1999), where
different CSEs are initially sized to drive a fixed load, and the load is then var-
ied. In this setup, the delay of a CSE will exhibit linear dependence on the load,
with the slope of the delay curve illustrating the logical effort of the driving
stage of the CSE, and the zero-load crossing illustrating the parasitic delay of
the driving stage together with the delay of the inner stages of the CSE. As we
will see in the remainder of this section, this is not the optimal behavior of the
CSE delay curve, but is the best that can be achieved when there are only a few
CSE sizes available in the library. In the case where the CSE can be reoptimized
for each particular load, further speedup can be achieved, since the effort can
be shared between stages rather than relying solely on the output stage. This
approach was illustrated by Heo and Asanovic (2001). However, contrary to the
conclusions in that paper, in the case where the general performance of a CSE
needs to be assessed, the proper approach is to optimize the CSE for the most
important application that determines the performance of the whole system, not
the most frequent application. In high-speed systems, the most important are the
elements on the critical path, which is typically moderately to heavily loaded due
to branching to parallel execution units and wire capacitance. The small number
of critical paths in a processor does not decrease their importance, since it is
their delay that determines the clock rate of the whole system. The performance
of a large number of lightly loaded CSEs that are placed off the critical path is
of concern only if it can be traded for energy savings.

The simulation approach should attempt to approximate the actual data-path
environment. The number of logic stages in a CSE and their complexity are
very dependent on a particular circuit implementation, which leads to differences
in logical effort, parasitic delay, and energy consumption. Every CSE structure
needs to be optimized to drive the load with the best possible effort delay.

A general simulation setup is illustrated in Fig. 7.3. The size of the data input
is fixed for all CSEs in order to exclude the impact of pipeline logic on the
CSE comparison. The data signal has a signal slope identical to that of an F04
inverter, which is the case in a well-designed pipeline. This setting is typical in
designs where delay and energy requirements are balanced. On the other hand, in
the high-speed design methodology of Intel, Sun Microsystems, and the former

132 SIMULATION TECHNIQUES

CSE
....

Buffer f Load
: (# stages 2 0) Gout (# stages 2 2)

F04 slope

Figure 7.3. General simulation setup.

Digital Corporation, F03 inverter metric is more common than F04 because of
a more aggressive design style.

The size of the clocked transistors is set to the size needed in order not
to compromise the speed of the whole structure. As discussed in the previous
section, a direct trade-off exists between the CSE delay and clock energy (size of
clocked transistors), as some of the clocked transistors are always on the critical
path of the CSE. An increase in the sizes of the clocked transistors on a critical
path results in diminishing returns, since data input is fixed. Depending on the
CSE topology, some structures can trade delay for clocked transistor size more
efficiently than others, so we allow this to happen up to a certain point. Our goal
here is to examine CSEs that are used on a critical path, hence the assumption
that the designer might be willing to spend a bit more clock power to achieve
better performance. Differences in clock loads (C ~ l k) among devices illustrate
potential drawbacks in terms of clock power requirements, and serve as one of
the performance metrics. Clock inputs have a signal slope that is identical to
that of an F04 inverter. This can be changed depending on the clock distribution
design methodology.

The question of how to compare differential and single-ended structures has
always been one of the key issues among the people characterizing and designing
CSEs. The immediate answer, the most fair, and at the same time the easiest
one, is that differential and single-ended structures should not be compared with
each other, due to the cost that single-ended structures incur in generating the
complementary output. We have decided to follow the other approach, and not
require that single-ended structures generate both true and complementary values
at the output.

The worst-case analysis requires that the CSE generate the output that has
worst data-to-output delay. However, it is also beneficial to measure both the
D - Q and D - e delay. Any imbalance between the two can lead to big delay
savings in cases where proper logic polarity manipulation in the stages preceding
or following the CSE can change the polarity requirement of the CSE, and hence

ENVIRONMENT SETUP 133

......

its data-to-output delay. The load model always consists of several inverters in
a chain to avoid the error in delay caused by Miller capacitance effects from the
fast switching load back to the driver.

The logical-effort framework offers analogy between the CSE and a simple
logic gate. At light load, the logic gate is dominated by its parasitic delay, that
is, self-loading. At high load, the effort delay becomes the dominant factor.
Similarly, at light load, delay of a CSE with large number of stages is entirely
dominated by parasitic delay. However, at high load, more stages are beneficial in
reducing the effort delay, which then dominates over parasitic delay. Therefore,
the performance of the CSE is best assessed if it is evaluated in a range of output
loads of interest for the particular application.

CSE evaluation can either be performed using some representative critical-path
load or a set of loads can be used, in which case the CSE has to be reoptimized
for each load setting. Depending on the choice of the output load size, some
CSE structures with an inherently small number of stages and high logical effort
may require additional buffering in order to achieve the best-effort delay. This
is shown in Fig. 7.4, where for some fixed Gin, the output load C,,, is optimally
driven by the CSE with logical effort G C ~ E and K stages, and additional N-K
levels of inverters.

Now, for each CSE we need to find the optimal effort per stage and number
of stages to drive the required load, as shown in Eqs. (7.7)-(7.9)

CSE
0 p...D. -1

Clk clk f

Starting from total electrical fan-out, H , the optimal number of stages, N,
is obtained by rounding the logarithm of the total path effort (assuming gl,,
is unity). The logarithm is of base 4, since a stage effort of 4 is a target for
optimal speed. Once the integer number of stages is obtained, an updated value

134 SIMULATION TECHNIQUES

of the stage effort is found from Eq. (7.9). After the stage effort is obtained,
CSE internal stages have to be resized for the new stage effort as well as for the
external inverters, if there are any.

This sizing approach is optimal even in the case where no additional inverters
are required, since it will serve to distribute the effort between the internal stages
of the CSE. We now illustrate the CSE sizing in examples of two widely used
flip-flops.

7.2.1. HLFF Sizing Example

In this example we observe the change in minimum data-to-output (D - Q or
D - e) delay as the output load of the CSE increases. Before we start investigating
the effect of different loads on the sizing of the HLFF, let us show how the logical
effort can be calculated for the given sizing, as shown in Fig. 7.5. It is relatively
easy to see that the HLFF is made up of a three-input static NAND gate as the
first stage and a domino-like three-input NAND gate in the second stage. Minor
variations from standard static NAND sizing for equal logical effort on all inputs
are needed to speed up the data input and enable the first stage to evaluate before
the transparent window closes. There is a similar situation in the second stage.
This HLFF sizing example also illustrates the application of logical effort to
skewed gates (gates in which one output transition is faster than the other) and
gates with keepers.

The critical path of the HLFF is exercised with a 0-to-1 transition at data
input. The first stage of the HLFF is a skewed NAND gate. This is because one

Load

--..
*'

(3 . X) . (1 + 3) _ - -; gz,i+o= [+p4+l0) 1 .(1+2) _ - 7 6
1 ' (1+2)

4 4+10 -4.7

gi,o,i =

7 8 -(2+4) + (1 +2)
= 4.25

4+10 f Z , l + O = - ' 6 f i .O-11 = 3'-

Figure 7.5. HLFF sizing example.

ENVIRONMENT SETUP 135

of the inputs to the NAND gate is the clock, which precharges the output of the
first stage before data can go through the first stage. Thus, the role of the data-
controlled p-MOS transistors is that of a keeper in case the data start changing
from 1-to-0 within the transparency window, that is, after the rising edge of the
clock. The logical effort and stage effort of the first stage are calculated as shown
in Fig. 7.5, for a 0-to-1 transition at data input. The logical-effort calculation of
the second stage is slightly more complicated because of the keeper-inverter pair.
A keeper sinks a portion of the current that is sourced by the p-MOS transistor
to node Q. Therefore, it can be considered as negative conductance. In Fig. 7.5,
this negative conductance is found by subtracting the conductance of the n-MOS
transistor (1) of the shaded keeper inverter from the conductance of the driving
p-MOS transistor (10/2). For the particular load given in Fig. 7.4, efforts per
stage were calculated to be 4.7 and 4.25, which is near the optimum value of
4, indicating that this example sizing is nearly optimal. The reader is cautioned,
however, that the sizing in this example is somewhat simplified, because the
short channel stack effect has not been taken into account and the logical-effort
values for the n-MOS transistor stack are somewhat pessimistic. Once the logical
effort of each stage is known, it can be used to adjust the sizing of each stage
as the load is increased or decreased. The alternative method is to use one of
the automated circuit optimizers; however, we do not recommend it as the initial
method, simply because it is essential that the designer gets to know the circuit
through manual sizing and logical-effort estimation. This builds intuition about
the circuit and the ability to verify optimizer results.

The performance of three different sizing solutions versus the electrical effort
(fanout) is given in Table 7.1, where the data-to-output delays are normalized to
the F04 inverter delay. While there is only one optimal solution for each load
size, in this example we examine only three cell sizes in order to illustrate the
principle in a simple manner.

When the load is relatively small, just adjusting the size of the internal stages
and balancing the stage effort can achieve speedup, as with cell sizes A and B.
For large loads, an additional inverter stage is needed to bring the stage effort
close to four. The optimal delays are set in bold in Table 7.1 to illustrate the
change in the optimal sizing selection with the increase in electrical effort. An
interpolated version of these data is shown in Fig. 7.6, where all three sizing
cases are illustrated along with the best sizing versus fanout curve. According

Table 7.1
for Different HLFF Cell Sizes

HLFF Delay (normalized to F04 inverter delay) vs. Fanout

Fan-out 4 16 42 64 128

Load size (# stages)
Small-A (2) 1.60 2.06 3.11 4.19 7.80
Medium-B (2) 1.80 2.06 2.59 3.05 4.62
Large-C (2 + 1) 2.27 2.44 2.14 2.96 3.56

136 SIMULATION TECHNIQUES

ta f Best sizing vs. load

fanout
1
0 20 40 60 80 100 120 140

(a)

Delay [FO4]

A
\

4, Best sizing vs. load

log4(fanout)

1.5 2 2.5 3 3.5
(b)

Figure 7.6. Sizing versus load, HLFF example: (a) linear, (b) log4 scale.

to the logical-effort theory, the optimal delay versus fanout curve should have
logarithmic shape, which indeed holds for the “best sizing vs. load curve” in
Fig. 7.6a. Similarly, the optimal delay is a linear function of the logarithm of the
electrical effort (fanout), as shown in Fig. 7.6b. The logarithmic fan-out scale
makes it really easy to see if the stage effort is properly determined. Recall that
from Eq~(7 .6) and (7.9) delay is a linear function of the stage effort and the
number of stages. The logarithm of the electrical effort approximately illustrates
the required number of stages, and if the delay checks out to be a multiple of
the number of stages and F04 delay, then the optimal effort per stage is chosen.
This is the case in Fig. 7.6b with all the curves that are best in a certain range
of loads.

Although it is interesting to evaluate the behavior of a CSE for a wider range
of loads, most often it is required that the CSE operates well in a much narrower
range. Typically, high-performance CSEs are placed in critical paths with a rela-
tively high average load. Thus, in that case, a one-point performance comparison
can be made for some preselected value that describes the average load of the
CSE on a critical path. In this book, all the comparisons have been made using
the moderately high electrical effort of 42 (third column in Table 7.1)

While the application of logical-effort analysis is applied to HLFF in a straight-
forward fashion due to the easily recognizable circuit topology, it can also be
applied to more exotic circuits, such as M-SAFF, that contain sense amplifiers
and other structures not covered in the introductory section on logical effort. It
is important to note that logical effort can be calculated or simulated for any
circuit topology.

7.2.2. M-SAFF Sizing Example

In this problem we also observe the minimum D - Q delay as the output load
of the CSE increases. The performance of three different sizing solutions is

ENVIRONMENT SETUP 137

Table 7.2

Fanout 4 16 42 64 128

M-SAW Delay vs. Fanout for Different M-SAFF Cell Sizes

Load size (# stages)
Small-A (2) 2.33 2.60 3.11 3.53 4.70
Medium-B (2) 2.35 2.59 3.01 3.34 4.24
Large-C (2 + 1) 3.06 3.15 3.31 3.44 3.83

illustrated versus the electrical effort, normalized to the delay of the F04 inverter,
in Table 7.2.

The sizing is done in a way similar to that described in the HLFF example. The
only caveat with the M-SAFF structure is to recognize that the logical effort of
the input stage is very small, better than that of an inverter, because of the small
input capacitance. This implies that the sizing changes will mostly be located
in the output stage since the input stage can accommodate larger load variations
without needing to be resized. While it was relatively easy to find different sizes
that perform better at certain loads in the case of HLFF, this is not so in the case
of M-SAFF. The small logical effort of the whole structure enables it to cover
a huge range of loads, with a single size achieving relatively good performance.
This is the case with the structure of size B in Table 7.2. In Fig. 7.7 size A is only
slightly better than size B, and only for a very light load of F04; subsequently
the size B device takes the lead all the way up to the F064, after which an
additional inverter is needed to prevent excessive delay.

7.2.3. Energy Measurements

While so far we have been mostly concerned about the performance aspects of
the simulation setup, it is very important to prepare the simulation environment
correctly, so that the energy parameters of the CSE are measured accurately.

5 - , 5

4.5 - 4.5

4

3.5

3

2.5

2 - ' 2

Delay [FO4]

fanout

0 20 40 60 80 100 120 140 1 1.5 2 2.5 3 3.5

(a) (b)

Figure 7.7. Sizing versus load, M-SAFF example: (a) linear, (b) log4 scale.

138 SIMULATION TECHNIQUES

We only need to set the measurements to capture the energy for each of four
possible binary transitions. Accurate average energy estimates can be made with
these values, based on the statistics of the incoming data. Using state-transition
diagrams (Zyban and Kogge 1999), more formal methods can be used to exactly
evaluate the effect of regular transitions and glitches in the total switching energy
of the CSE. In line with energy breakdown in Chapter 3, in order to measure
different energies, it is essential to provide separate supply voltages for different
stages of the CSE.

7.2.4. Automating the Simulations

The delay versus load CSE evaluation described in the preceding examples can
be implemented automatically. Here we outline the procedure for creating such
an automated simulation environment. The authors suggest Perl as one of the
most convenient scripting languages today.

For each CSE, we need to determine the logical effort of every stage based
on its topology (e.g., two NAND-like stages, one inverter stage, would be 4/3,
4/3, l), or better yet, exact logical-effort values obtained from the simulation. A
very good starting point can be the Perl script that characterizes logical effort,
F04 delay, and much other data for a given technology process, freely available
from Sutherland et al. (1999). The product of the logical efforts of all the stages
should equal the total logical effort of the CSE. After the total logical effort is
found, the optimal number of stages and updated stage effort can be calculated
from Eqs. (7.7)-(7.9). Now, with stage effort and logical efforts having been
obtained from the topology of the CSE, taking the data input of a fixed size, and
assuming that the clock is on (i.e., treating the structure as a cascade of logic
gates), transistor sizes for every stage can be calculated, progressing from the
data input to the final load in the simulation setup.

When a library of CSEs is created, a presimulation should be run for each
environment parameter setup. This run should include various process corners
and supply voltages, in order to determine the F04 inverter slope and set that
value as the rise/fall time of signals that drive the data and clock into the CSE.
A simulation of the flow is given in Fig. 7.8.

For each device in the library, D - Q (G) delay and Clk-Q(G) delay are stored
in each run, decreasing the delay between the edge of the input data and clock
edge (setup time). The script should check for the setup/hold time failure (i.e.,
when the CSE fails to pass the input value to the output). This is typically
detected by the long Clk-Q delay (i.e., the measurement target occurred in the
next cycle) or failure to measure the delay if only one cycle is simulated. The
script automatically finds the minimum delay point at all the specified outputs.
The whole procedure is repeated for a range of loads and the best sizing curve
is found, as shown in Figs. 7.6 and 7.7. The following appendix of this book
contains an example script written in Perl that can serve as the basis of a more
sophisticated tool for CSE characterization. In addition to the script, we also
provide example spice decks for HLFF and M-SAFF used in this example. These
files are a good start for a designer who wants to evaluate various CSE topologies.

APPENDIX 139

of CSEs for a
few fixed loads

Select the device
from the library
and sweep the

l,I, Sweep D - Clk

or D - Q) vs.
load for each
device in the

Figure 7.8. CSE flow simulation.

7.3. APPENDIX

This appendix contains a few useful scripts for characterization of the CSEs. A
list of the files is given below:

1. Per1 script for CSE characterization;
2. Parameterized spice deck for F04 inverter delay extraction (called by the

3 . Parameterized spice deck for CSE characterization;
4. Example spice circuit decks for HLFF and M-SAFF.

CSE characterization script);

7.3.1. The CSE Characterization Script

! / u s r / l o c a l / b i n / p e r l

.

charCSE.pl

.

The s c r i p t expects you t o pass the nominal o p e r a t i n g

vo l tage, va lue f o r lambda,

140 SIMULATION TECHNIQUES

and p a t h t o t h e hsp ice models l i b r a r y .

Usage:

.

.

charCSE.pl VDD lambda p r o c e s s f i l e

Load L i b r a r i e s

.

r e q u i r e " c t i m e . p1" ;

.

S t a r t S c r i p t

.

Check f o r p roper number o f arguments and e x t r a c t a rgs
i f ($#ARGV !=2) {#$#ARGV i s number o f command l i n e

arguments minus 1
p r i n t STDERR "Usage: $0 VDD LAMBDA m o d e l s f i l e \ n " ;
#$0 i s s c r i p t
p r i n t STDERR "ex : \n $0 2.5 0.151.1 opCondi t ions
. l i b \ n " ;
e x i t ;

1

$VDD = $ARGV[O];
$LAMBDA = $ARGV[l];
$ p r o c e s s f i l e = $ARGV[2];
$ d i f f w i d t h =5; # lambda w i d t h o f d i f f u s i o n f rom g a t e

s e t t h e min-max temperature and v o l t a g e parameters

$THIGH = 100;
$TNOM = 75;
$TLOW = 0;
$VHIGH = I . l *$VDD;
$VLOW = 0.9*$VDD;

here o r i n t h e l i b r a r y c a l l

S t a r t t i m e r
$ t ime = t ime ;
$a = 0;
$b = 0;

APPENDIX 141

.

Run S i m u l a t i o n s

.

S e l e c t t h e a p p l i c a b l e s im o r r u n them a l l
(l = y e s , O=no) .

$ r u n a l l = 0;
$ run1 = 0; # I n v e r t e r : De lay v s . FANOUT
$ run2 = 1; #FF d e l a y v s . FANOUT, FF r e s i z e d f o r each

FANOUT

.

P a r t (1) : I n v e r t e r d e l a y v s . f a n o u t (r e f e r e n c e)

.

BcasesINV = (’ R i s e ’ , ’ F a l l ’ , ’ A v g ’) ;
@fanoutsINV=(2,4,6,8) ;
i f ($ r u n a l l 1 1 $ r u n l) {

f o r e a c h $ f a n o u t (@fanou ts INV) {
f o r e a c h $case (BcasesINV) {

$resultINV[$fanout]{$case} = &runsim
(“ s i m I n v ” , “d$case” , “ !TEMP! ” ,$THIGH,

$VLOW, ” !FANOUT! ‘I, $ f a n o u t) ;
“!CORNER!”, “ T T ” , “ !VOLT!“ ,

1
1

1
.

P a r t (2) : FF sims vs . f a n o u t

.

s p e c i f y d e s i r e d measurement parameters
#BcasesDUT = (’cqRise’,’cqFall’,’cqbRise’,’cqbFall’,

#BcasesDUT = (’dqr’,’dqbf’,’dqf’,’dqbr’);
BcasesDUT = (’dqr’,’dqf’);#(’dqbf’,’dqbr’);

’ setupQRQbF’ , ’setupQFQbR’) ;

s p e c i f y CSE name f r o m t h e l i b r a r y o f s i z e s and CSE

$nameDUT=’hl f f4 ’ ;
BfanoutsDUT = (4,16,42,64,128); #va lues o f t h e f a n o u t

$dclk-p=50e-12; $dclk-n=Oe-12; #dc l k -s tep=5e- l2 ;

t y p e s

sweep

142 SIMULATION TECHNIQUES

s t a r t , end and s t e p o f D -C lk sweep
$dqmax=le-9; # d - q d e l a y f a i l - c h e c k v a l u e
i n i t i a l i z e de lays
fo reach $ fanou t (@fanoutsDUT) {

f o r e a c h $case (@casesDUT) {
$ d e l a y [$ f a n o u t] {$case}=$dqmax;

1
}

$j=O;
if ($ r u n a l l 1 1 $ run3) {

foreach $fanout (PfanoutsDUT) {
f o r ($dc lk=$dclk-p; $dclk>=$dclk-n; $dc l k=$dc lk

-$dc l k -s tep) {
foreach $case (PcasesDUT) {

$tmpDUT[$case] = &runsim(" s i m " , "$case" , "
!TEMP! " , $THIGH,

" !CORNER! ' I , "TT" ,
" ! VOLT ! " , $VDD ,

" ! DUT ! " , $nameDUT, " ! FANOUT ! " ,
$fanout , " !SETUP! " , $ d c l k) ;

p r i n t "$tmpDUT[$case] ' I ;
if ($ d e l a y [$ f a n o u t] {$case} > $tmpDUT

[$case1) {
i f ($tmpDUT[$case] z 0) {

$ d e l a y [$ f a n o u t] {$case} = $tmpDUT
[$case] ;

1
1
p r i n t f (STDOUT "%2.Of \n" , l e l 2 * $ d e l a y

[$ f a n o u t] { $ c a s e }) ;
1

$ j = $ j + l ;
1

}
1

.

F i n i s h t i m e r

$date = &ctime(time);chop($date); # g e t c u r r e n t d a t e

$ t ime = t i m e - $ t i m e ;

.

P r i n t R e s u l t s

.

and s t r i p new l ine

APPENDIX 143

T h i s s e c t i o n p r i n t s o u t a l l t h e r e s u l t s .
open (PRINTOUT, " > c o n d . o u t ") ;
p r i n t PRINTOUT " \n * * * Process C h a r a c t e r i z a t i o n R e s u l t s

p r i n t PRINTOUT "Process F i l e : $p rocess f i l e \ n " ;
p r i n t PRINTOUT "VDD: $VDD LAMBDA: $LAMBDA \ n " ;
p r i n t PRINTOUT " O p e r a t i n g C o n d i t i o n s : $ o p c o n d i t i o n s \ n " ;
p r i n t PRINTOUT "Dev ice l e n g t h s minimum s i z e . \ n " ;
p r i n t PRINTOUT "Run completed $da te i n $ t i m e seconds

c l o s e (PRINTOUT);

.

if ($ r u n a l l 1 1 $ r u n l) {
open (PRINTOUT, " > i n v . o u t ") ;
f o r e a c h $ f a n o u t (@fanou ts INV) {

p r i n t f (PRINTOUT "%2. O f " , $ f a n o u t) ;
f o r e a c h $case (OcasesINV) {

{ $ c a s e } * l e l 2) ;

* * * \n \n " ;

\n\n I' ;

p r in t f (PRINT0UT " %3 .2 f ' I , $ r e s u l t I N V [$ f a n o u t]

1
p r i n t f (PRINTOUT " \ n ") ;

1
c l o s e (PRINTOUT);
1

.

i f ($ r u n a l l I I $ r u n 2) {
open (PRINTOUT, ">dut$nameDUT . o u t ") ;

fo reach $fanout (@fanoutsDUT) {

f o r e a c h $case (@casesDUT) {

{$case} * 1 e l 2) ;

p r i n t f (PRINTOUT " % 2 . O f " , $ f a n o u t) ;

p r i n t f (PRINT0UT " %3 .2 f ' I , $ d e l a y [$ f a n o u t]

1
p r i n t f (PRINTOUT " \ n ") ;

1

c l o s e (PRINTOUT);
1

.

S u b r o u t i n e s

.

144 SIMULATION TECHNIQUES

The s u b r o u t i n e s p r o v i d e a q u i c k way t o s t a r t

sub runs im

T h i s s u b r o u t i n e t a k e s t h e name o f t h e HSPICE deck

parameter v a l u e t o e x t r a c t as i n p u t s .
I t s u b s t i t u t e s t h e va lues o f VDD and p r o c e s s f i l e you

f o r t h e v a r i a b l e s !VDD! and ! L I B ! i n t h e HSPICE

a l s o handles any o t h e r s u b s t i t u t i o n s you passed.

runs HSPICE and e x t r a c t s t h e va lue o f t h e parameter

by a .measure s tatement i n t h e deck.

s i m u l a t i o n s and e x t r a c t t h e r e s u l t s f rom SPICE.

and a measured

p r o v i d e

deck and

I t t h e n

you s p e c i f i e d found

sub runs im {
$olddeckname = $deckname;
$oldmear = $measure;
@old = @subs; # save o l d arguments
@subs = @-; # Grab l i s t o f arguments t o s u b s t i t u t e

$deckname = s h i f t (@ s u b s) ; # Grab deckname passed

$measure = s h i f t (@ s u b s) ; # Grab parameter t o measure
t o runs im

p r i n t " E x t r a c t i n g $measure f rom $deckname w i t h : \ n " ;
f o r ($i=O; $i<=$#subs; $ i+=2) {

3
p r i n t " \ n " ;

If old arguments a re t h e same as new ones,

$ r e c y c l e = 1;
f o r ($ i=O; $i<=$#subs; $ i + +) {

p r i n t " $ s u b s [$ i] = $ s u b s [$ i + l] " ;

r e c y c l e o l d r e s u l t s

if (($ o l d [$ i] ne $ s u b s [$ i]) I I ($olddeckname ne
$deckname)) {

($oldmear ne $measure)) {
$ r e c y c l e = 0;

1
3
i f ($ r e c y c l e != 1) {

Open t h e s p i c e deck and a temporary o u t p u t f i l e
open(DECK, $deckname. " . h s p ")

1 I d i e (" C a n ' t open $deckname.hsp: $! \ n ") ;
open(OUT, " > tmp-deck.hsp") I I d i e (" C a n ' t open

tmp-deck.hsp: $! \ n ") ;

APPENDIX 145

Read each l i n e o f t h e deck, s u b s t i t u t e VDD 8,

w h i l e (<DECK>) {
s/!SUP!/$VDD/g;
s/!LAMBDA!/$LAUBDA/g;
s / ! L I B ! / $ p r o c e s s f i l e / g ;
f o r ($i=O; $i<=$#subs; $ i+=2) {

p r o c f i l e , w r i t e o u t

s/$subs[$i]/$subs[$i+l]/g; # r e p l a c e a l l
occurrences

1
p r i n t OUT $-;

1
p r i n t "Not r e c y c l i n g \ n " ;
Close f i l e s
c lose (0UT) ;
close(DECK);

Run HSPICE s i m u l a t i o n
Close STDERR w h i l e r u n n i n g t o a v o i d messages p r i n t e d

open (SAVEERR, ">&STDERR") ;
close(STDERR);
sys tem("hsp ice tmp-deck.hsp > tmp-deck.out") ;
open(STDERR, ">&SAVEERR") ;
close(SAVEERR);

by SPICE

1
E x t r a c t r e s u l t f rom o u t p u t f i l e
open(RESULT, " tmp-deck.out") I I d i e (" C a n ' t open

$ r e s u l t = " " ;
w h i l e (<RESULT>) {

tmp-deck.out: $! \ n ") ;

i f (A * e r r o r /) { # HSPICE produced an e r r o r
p r i n t STDERR "$-" ;
$next = <RESULT>;
d i e (" $ n e x t ") ;

1
i f (r\s*$measure\s*=\s*(\S+) / i) { # Search f o r

$measure = xxx
$ r e s u l t = $1; l a s t ; # and r e c o r d xxx

1
1
i f ($ r e s u l t eq " ") {

1
r e t u r n $ r e s u l t ;

d i e (" C o u l d n ' t f i n d $measure\n") ;

11

146 SIMULATION TECHNIQUES

7.3.2. Simulation Bench for F04 Inverter Delay Extraction (simlnv.hsp)

.

*Set supply and l i b r a r y

.

*The s c r i p t r e p l a c e s !L IB ! w i t h t h e u s e r - s p e c i f i e d

*It a l s o s e t s t h e o p e r a t i n g c o n d i t i o n s and process
l i b r a r y .

c o r n e r .

. p r o t e c t *Don ' t p r i n t t h e c o n t e n t s o f

. l i b ' o p C o n d i t i o n s . l i b ' TT *Load t h e l i b r a r y f o r

. u n p r o t e c t "Resume p r i n t i n g SPICE deck

l i b r a r y

process c o r n e r

.temp !TEMP!

.param Supply=!VOLT! *Set c h a r a c t e r i z a t i o n v o l t a g e

.op t scale=!LAMBDA! *Set lambda

.param c t = 10n * c y c l e t i m e f o r t h e c l o c k p u l s e source

.param r t = 0.111 * r i s e t i m e f o r t h e p u l s e source

*Save r e s u l t s o f s i m u l a t i o n f o r v i e w i n g
. o p t i o n s p o s t

.

*De f ine power supp ly

.

. g l o b a l Vdd Gnd
Vd d Vdd Gnd ' Supply ' *Supply i s s e t by

. l i b c a l l

.

*De f ine S u b c i r c u i t s

.

APPENDIX 147

.SUBCKT inv in out WP=16 LP=2 WN=8 LN=2
M-0 out in Gnd Gnd NMOS W=WN L=LN GEO=l
+ AS=’(WN)*6.1’ AD=’(WN)*3.85’
+ PS=’3.00*(WN)+2*6.1’ PD=’2.00*(WN)+2*3.85’
+ NRD=’3.85/(WN)’ NRS=’3.85/(WN)’
M-1 out in Vdd Vdd PMOS W=WP L=LP GEO=1
+ AS=’(WP)*6.1’ AD=’(WP)*3.85’
+ PS=’3.00*(WP)+2*6.1’ PD=’2.00*(WP)+2*3.85’
+ NRD=’3.85/(WP)’ NRS=’3.85/(WP)’
.ENDS $ inv

.

* Top level simulation netlist

.

xl In Inb inv *set appropriate slope
x2 Inb Inv inv M=’!FANOUT!’ *drive real load
xll Inv Dml inv M=’!FANOUT!*!FANOUT!’ *real load
xdl Dml DD1 inv M=’!FANOUT!*!FANOUT!*!FANOUT!’

*load on load-important
.

* Stimulus
.

*Format of pulse input:
*pulse v-initial v-final t-delay t-rise t-fall

t-pulsewidth t-period

Vin In Gnd pulse 0 ’Supply’ Ins ’rt’ ’rt’ ’ct/2-rt’
’ct ’

*Set Initial Conditions to insure no false transitions

*initialization
during

.IC V(Inb)=’Supply’ V(Inv)=O V(Dml)=’Supply’ V(DDl)=O
.

*Measurements
.

.measure dRise
+ TRIG v(1nb) VAL=’Supply/2’ FALL=I
+ TARG v(1nv) VAL=’Supply/2’ RISE=l
.measure dFall

148 SIMULATION TECHNIQUES

t TRIG v (1nb) VAL=’Supply/2’ RISE=1
+ TARG v (1 n v) VAL=’Supply/2’ FALL=l

.measure dAvg p a r a m = ’ (d R i s e + d F a l l) / 2 ’

. t r a n .001ns 12ns

.

*End o f Deck

.

.end

7.3.3. CSE Simulation Bench in SPICE (sim.hsp)

.

*Set supp ly and l i b r a r y

.

*The s c r i p t r e p l a c e s ! L I B ! w i t h t h e u s e r - s p e c i f i e d

*It a l s o s e t s t h e o p e r a t i n g c o n d i t i o n s and process
l i b r a r y .

c o r n e r .

.param Sup=!SUP!

. p r o t e c t *Don ’ t p r i n t t h e c o n t e n t s o f

. l i b ’ o p C o n d i t i o n s . l i b ’ !CORNER! *Load t h e l i b r a r y

.unp ro tec t “Resume p r i n t i n g SPICE deck

.temp !TEMP!

.param Supply=!VOLT! *Set c h a r a c t e r i z a t i o n v o l t a g e

. o p t scale=!LAMBDA! *Set lambda

l i b r a r y

f o r process co rne r

.param cc = 2n * c y c l e t i m e f o r t h e c l o c k p u l s e source

.param cd = ’ 4 * c c ’ * c y c l e t i m e f o r t h e d a t a p u l s e source

.param rt = O . ln * r i s e t i m e f o r t h e p u l s e source

*Save r e s u l t s o f s i m u l a t i o n f o r v i e w i n g

APPENDIX 149

. o p t i o n s p o s t

.

*De f ine power supp ly

.

. g l o b a l Vdd Gnd
Vdd Vdd Gnd ’ S u p p l y ’ *Supply i s s e t by . l i b c a l l

.

“De f ine S u b c i r c u i t s

.
.SUBCKT i n v i n o u t WP=16 LP=2 WN=8 LN=2
M-0 o u t i n Gnd Gnd NMOS W=WN L=LN GEO=1
+ AS=’(WN)*6.1’ AD=’(WN)*3.85’
+ PS=’3.00R(WN)+2*6.1’ PD=’2.00*(WN)+2*3.85’
+ NRD=’3.85/(WN)’ NRS=’3.85/(WN)’
M-1 o u t i n Vdd Vdd PMOS W=WP L=LP GEO=1
+ AS=’(WP)*6.1’ AD=’(WP)*3.85’
+ PS=’3.OO*(WP)+2*6.1’ PD=’2.00*(WP)+2*3.85’
+ NRD=’3.85/(WP)’ NRS=’3.85/(WP)’
.ENDS $ i n v

. i n c l u d e ’ !DUT!.hsp’

.

*Top l e v e l s i m u l a t i o n n e t l i s t

.

.param nstages=2
*xD D D 1 i n v wp=4 wn=4 m=’FO-1’
xDdum D 1 Dldum i n v wp=4 wn=4 m=’FO(FO-1)’
xDb Db D b l i n v wp=4 wn=4 m=’FO(FO-1)’
xDbdum D b l Dbldum i n v wp=4 wn=4 m=’FO(FO-1)’

xDUT C l k D Db Q Qb !DUT!
xQ Q Q1 i n v wp=16 wn=8 m=’!FANOUT!’
xQdum Q1 Qldum i n v wp=16 wn=8 m=’4*!FANOUT!’
*xQb Qb Q b l i n v wp=16 wn=8 m=’!FANOUT!’
xQbdum Q b l Qbldum i n v wp=16 wn=8 m=’4!FANOUT!’

150 SIMULATION TECHNIQUES

.

*St imulus

.

*Format o f p u l s e i n p u t :
“pu lse v - i n i t i a l v - f i n a l t -de lay t - r i s e t - f a l l

t -pu lsewid th t - p e r i o d

Vd D Gnd p u l s e 0 ’Supply ’ ’cc-!SETUP!’ ’ r t ’ ’ r t ’

Vdb Db Gnd p u l s e ’Supp ly ’ 0 ’cc-!SETUP!’ ’ r t ’ ’ r t ’

Vc lk C l k Gnd p u l s e 0 ’Supp ly ’ 0 ’ r t ’ ’ r t ’ ’ c c / 2 - r t ’ ’ c c ’

’ c d / 2 - r t ’ ’ c d ’

’ c d / 2 - r t ’ ’ c d ’

*Set I n i t i a l C o n d i t i o n s t o i n s u r e no f a l s e t r a n s i t i o n s

* i n i t i a l i z a t i o n
. I C V(xDUT.Q)=O V(xDUT.Qb)=’Supply’

d u r i n g

.

*Measurements

.

.measure cqRise
+ T R I G v(C1k) VAL=’Supply/2’ RISE=2
+ TARG v (Q) VAL=’Supply/2’ RISE=I
.measure c q F a l l
+ T R I G v(C1k) VAL=’Supply/2’ RISE=4
+ TARG v (Q) VAL=’Supply/2’ FALL=I

.measure cqbRise
+ T R I G v(C1k) VAL=’Supply/2’ RISE=4
+ TARG v(Qb) VAL=’Supply/2’ RISE=1
.measure c q b F a l l
+ T R I G v(C1k) VAL=’Supply/2’ RISE=2
+ TARG v (Qb) VAL=’Supply/2’ FALL=I

.measure setupQRQbF
+ T R I G v(D) VAL=’Supply/2’ RISE=I
+ TARG v(C1k) VAL=’Supply/2’ RISE=2

.measure setupQFQbR
+ T R I G v(D) VAL=’Supply/2’ FALL=I

APPENDIX 151

+ TARG v(C1k) VAL=’Supply/2’ RISE=4
.measure dqr PARAM=’cqRise+setupQRQbF’
.measure dqbf PARAM=’cqbFall+setupQRQbF’
.measure dqf PARAM=’cqFall+setupQFQbR’
.measure dqbr PARAM=’cqbRise+setupQFQbR’

.tran .001ns ’ 5 * c c ’

.

*End of Deck

.

.end

7.3.4. Example HLFF Deck (hllfl6.hsp)

*FILE: hlffl6.hsp
*SPICE netlist for “hlff”
*start main CELL hlff

.SUBCKT hlffl6 Clk D Db Q Qb
Xinv145 Q Qb inv WP=8 LP=2 WN=4 LN=2
Xinv152 Qb Q inv WP=8 LP=2 WN=4 LN=2
Xinv159 Clk net-1 inv WP=8 LP=2 WN=4 LN=2
Xinv264 net-2 Clkbbb inv M=4 WP=8 LP=2 WN=4 LN=2
MnD net-3 D net-4 Gnd NMOS W=8 L=2 GEO=l M=2
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
Xinv399 net-1 net-2 inv M=4 WP=8 LP=2 WN=4 LN=2
MpClk X Clk Vdd Vdd PMOS W=4 L=2 GEO=1
+ AS=’(4)*6.1’ AD=’(4)*3.85’
+ PS=’3.00*(4)+2*6.1’ PD=’2.00*(4)+2*3.85’
+ NRD=’3.85/(4)’ NRS=’3.85/(4)’
MpClkbbb X Clkbbb Vdd Vdd PMOS W=4 L=2 GEO=l
+ AS=’(4)*6.1’ AD=’(4)*3.85’
+ PS=’3.00*(4)+2*6.1’ PD=’2.00*(4)+2*3.85’
+ NRD=’3.85/(4)’ NRS=’3.85/(4)’
MnClk X Clk net-3 Gnd NMOS W=8 L=2 GEO=I M=4
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
MnClkbbb net-4 Clkbbb Gnd Gnd NMOS W=8 L=2 GEO=1 M=4
+ AS=’(8)*6.1’ AD=’(8)*3.85’

152 SIMULATION TECHNIQUES

+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/ (8) ’
MpD X D Vdd Vdd PMOS W=8 L=2 GEO=l
+ AS=’ (8) *6 .1 ’ AD=’(8)*3.85 ’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/ (8) ’
MpoutQ Q X Vdd Vdd PMOS W=8 L=2 GEO=1 M=20
+ AS=’ (8) *6 .1 ’ AD=’(8)*3.85 ’
+ PS=’3.00*(8)+2*6.1 ’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/ (8) ’ NRS=’3.85/ (8) ’
MnoutQclk Q Clk net-5 Gnd NMOS W=8 L=2 GEO=1 M=4
+ AS=’ (8) *6 .1 ’ AD=’ (8) *3 .85 ’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/ (8) ’
MnoutQx net-5 X net-6 Gnd NMOS W=8 L=2 GEO=l M=4
+ AS=’ (8) *6 .1 ’ AD=’(8)*3.85 ’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/ (8) ’ NRS=’3.85/(8)’
MnoutQclkbbb net-6 Clkbbb Gnd Gnd NMOS W=8 L=2 GEO=1

+ AS=’ (8) *6 .1 ’ AD=’(8)*3.85 ’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/ (8) ’
.ENDS $ h l f f

M=4

.GLOBAL gnd vdd

*assumed parameters
*hdi f=3.85 hd i f2=6.1 c jga te=2.0 resSD=l

7.3.5. Example M-SAFF Deck (saffl6.hsp)

*FILE: s a f f l 6 . h s p

*SPICE n e t l i s t f o r “ s a f f ”
* s t a r t main CELL s a f f l 6
.SUBCKT s a f f l 6 C lk D Db Q Qb
Mrst preQ Clk preQb Vdd PMOS W=16 L=2 GEO=3
+ AS=’(16)*3.85’ AD=’(16)*3.85’
+ PS=’2.00*(16)+2*3.85’ PD=’2.00*(16)+2*3.85’
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’
MinM nP Db t a i l Gnd NMOS W=8 L=2 GEO=1
+ AS=’ (8) *6 .1 ’ AD=’(8)*3.85 ’
+ PS=’3.00*(8)+2*6.1 ’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/ (8) ’
Mlmn preQ preQb nP Gnd NMOS W=8 L=2 GEO=1
+ AS=’ (8) *6 .1 ’ AD=’(8)*3.85 ’

APPENDIX 153

+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
Mtail tail C l k Gnd Gnd NMOS W=16 L=2 GEO=1
+ AS=’(16)*6.1’ AD=’(16)*3.85’
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’
MinP nM D tail Gnd NMOS W=8 L=2 GEO=1
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
Mlpn preQb preQ nM Gnd NMOS W=8 L=2 GEO=1
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
Mlpp preQb preQ Vdd Vdd PMOS W=8 L=2 GEO=I
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
MrstM preQb C l k Vdd Vdd PMOS W=16 L=2 GEO=1
+ AS= ’ (16) *6.1’ AD= ’ (1 6) *3.85 ’
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’
MrstP preQ C l k Vdd Vdd PMOS W=16 L=2 GEO=1
+ AS=’ (16) *6.1’ AD=’ (16) *3.85’
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’
Mlmp preQ preQb Vdd Vdd PMOS W=8 L=2 GEO=l
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
MnoutQ Q nQ Gnd Gnd NMOS W=8 L=2 GEO=l M=2
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
MpoutQ Q preQb Vdd Vdd PMOS W=16 L=2 GEO=I M=2
+ AS=’(16)*6.1’ AD=’(16)*3.85’
+ PS=’3.00*(16)+2*6.1’ PD=’2.00*(16)+2*3.85’
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’
MpoutQb Qb preQ Vdd Vdd PMOS W=16 L=2 GEO=I M=2
+ AS=’(16)*6.1’ AD=’(16)*3.85’
+ PS=’3.00*(16)+2*6.1’ P0=’2.00*(16)+2*3.85’
+ NRD=’3.85/(16)’ NRS=’3.85/(16)’
MnoutQb Qb nab Gnd Gnd NMOS W=8 L=2 GEO=l M=2
+ AS=’(8)*6.1’ AD=’(8)*3.85’
+ PS=’3.00*(8)+2*6.1’ PD=’2.00*(8)+2*3.85’
+ NRD=’3.85/(8)’ NRS=’3.85/(8)’
Xinv235 preQ nQ inv WP=12 LP=2 WN=4 LN=2
Xinv242 preQb nab inv WP=12 LP=2 WN=4 LN=2
Xinv249 Q Qb inv WP=16 LP=2 WN=8 LN=2

154 SIMULATION TECHNIQUES

Xinv256 Qb Q i n v WP=16 LP=2 WN=8 LN=2
.ENDS $ s a f f l 6
.GLOBAL gnd vdd
*assumed parameters
*hd i f=3 .85 hd i f2=6.1 c jga te=2.0 resSD=l

CHAPTER 8

STATE-OF-THE-ART CLOCKED
STORAGE ELEMENTS IN CMOS
TECHNOLOGY

This chapter presents clocked storage elements used in state-of-the-art micropro-
cessors. MSLs, pulsed latches, and flip-flops represent the fundamental structures
that are used as a baseline for derivation of circuits with extra features, such as
internal clock gating, low-swing clock, or double-edge triggering. The design
style and operation of each circuit implementation is discussed in detail. The
chapter ends with a comparison, and general design and application recommen-
dations of each circuit topology.

8.1. MASTER-SLAVE LATCH EXAMPLES

8.1 .l. Derivation of Master-Slave Latch

Most commonly the MSL is built from two transmission-gate (TG) latches. There
are several latch circuits that can be used in the implementation. The simplest
one is the latch shown in Fig. 8. la. The problem with this latch is that its storage
node, S, appears dynamic because there is no pull-down transistor, which makes
the latch susceptible to noise. A basic static version of this latch is shown in
Fig. 8.lb, where a pull-down n-MOS device is added to the latch of Fig. 8.la.
The TG n-MOS transistor is a weak pull-up device, since a logic 1 has reduced
swing, VDD - V ~ H . Also, there is a conflict between the TG n-MOS transistor
and the feedback transistors during both pull-up and pull-down on the node S.
These problems are remedied in the circuit shown in Fig. 8 . 1 ~ . An extra TG in
the feedback avoids the simultaneous pull-up/down problem, while an additional
p-MOS transistor of the input TG enables good, full-swing, pull-up on node S.
The latch’s robustness to noise in Fig. 8.lc is therefore traded off for an increase
in clocking energy.

155

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

156 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

*
(b)

Figure 8.1. Transmission gate latches.

- Q

Figure 8.2. MSL with unprotected input. (Gerosa et al. 1994), Copyright 0 1994 IEEE.

T

Clk P

f' Removed

Figure 8.3. MSI, with input gate isolation. (Markovic et al. 2001), Copyright 0 2001
IEEE.

Usually, the conventional MSL shown in Fig. 8.2 is obtained from the latch
shown in Fig. 8 . 1 ~ . The energy consumption of this MSL can be reduced if the
wire connecting the drains of the top p-MOS and bottom n-MOS transistors is
removed, as shown in Fig. 8.3.

Circuit Operation When the clock (Clk) is low, the TG of the master latch
is transparent and input data D are stored on the master's latch storage node,
SM. The output eM of the master latch follows S M and stores its inverse. The
feedback of the master latch is turned off, while the feedback of the slave latch

MASTER-SLAVE LATCH EXAMPLES 157

is turned on, holding the previously stored value at the slave’s storage node, S s .
When Clk goes from low to high, the TG of the master latch becomes opaque,
the master latch’s feedback closes up, keeping the stored value of &. The slave
latch is transparent, and the output of the master latch, eM, is passed to the
slave latch and stored on its storage node, Ss. This newly stored value of SS is
inverted and passed to the output Q of the latch.

Noise Robustness The master latch of the circuit in Fig. 8.2 is susceptible
to the input charge injection. Noise sources that affect the latch state node are
illustrated in Fig. 8.4.

The latch in Fig. 8.2 is dominantly sensitive to the first noise source. If the wire
driving the line is long, the neighboring line can capacitively couple to the latch
input wire and introduce a negative spike (below ground) that will turn on the
master TG that is nominally off, and the value stored in the master latch will be
lost. This can be overcome by the input gate isolation as shown in Fig. 8.3. In the
figure it is shown as an inverter, although it can be any logic gate that is close to
the latch input. The noise sources arising from unrelated signal coupling (cross
talk) and power-supply noise are attenuated by the latch feedback that makes
S M pseudostatic. There is an additional inverter at the output of the circuit in
Fig. 8.3 for noninverting operation (shaded inverter). The complementary output
can be easily generated by the addition of one extra inverter, as shown in Fig. 8.3
(dashed inverter).

Starting from the MSL in Fig. 8.2, a number of improvements can be made,
resulting in the structure shown in Fig. 8.3. Removal of the wire allows for a
more efficient layout due to the reduction of contact holes when the TGs are
replaced with series-connected switches (Suzuki et al. 1973). The slave latch
has the same structure as the master latch with the addition of an extra inverter
that drives the output and prevents loading of the feedback loop by the output
capacitance. A similar circuit was proposed by Gerosa et al. (1994).

Distant
driver

D - 6
@ noise on input

@ leakage

@ a-particle and cosmic rays

@ unrelated signal coupling

@ power supply ripple

Figure 8.4. Sources of noise affecting the latch state node. (Partovi in Chandrakasan
et al. 2001), Copyright 0 2001 IEEE.

158 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

8.1.2. C2MOS Master-Slave Latch

The C’MOS MSL, (Suzuki et al. 1973) is based on the C’MOS latch shown in
Fig. 8.5b. The C’MOS latch is obtained from the TG latch in Fig. 8.5a when the
wire that connects the drains of the top p-MOS and bottom n-MOS transistors is
removed from the TG latch. The addition of a weak gated feedback enables the
pseudostatic operation of the C2MOS MSL, as shown in Fig. 8.6.

The critical D - Q path of the C’MOS MSL is shortened by placing the feed-
back loop outside the path from D to Q. This makes this latch faster than a
conventional MSL with input gate isolation.

8.1.3. Comparison

Figure 8.7 shows the comparison of the timing and energy parameters in the
MSL and C2MOS latches. In this particular example, the C’MOS latch had
larger clocked transistors, resulting in energy that is twice as large, as illustrated

T

Removed

(b)

Figure 8.5. Dynamic latches with gate isolation: (a) transmission gate, (b) C’MOS.

T 7-

Figure 8.6. C’MOS latch (C2MOS). (Suzuki et al. 1973), Copyright 0 1973 IEEE.

FLIP-FLOP EXAMPLES 159

O.'

0.6

0.3

.- c

[r

1.8 1-

I
'

.

D (MSL) I D (C'MOS)

.

1 .o

0.8

5 0.6

0.4

0.2

0

W .
I

W

1'-0 \
0-1

..

0-0 1-1

I
~ "

0.7 1 1.3 1.6 1.9 2.2 2.5 0.7 1 1.3 1.6 1.9 2.2 2.5

Vdd [V] Vdd [V]

(4 (b)

Figure 8.7. Comparison of MSLs: (a) timing, (b) energy.

in Fig. 8.7b (transitions 0-0 and 1 - 1). The larger clocked transistors resulted in
reduced Clk-Q delay, which led to both shorter delay and shorter internal race
immunity of the C2MOS latch. Figure 8.7a shows that the MSL has about 40%
better internal race immunity and about 20% worse delay for this particular sizing.
Both of these circuits have moderate delay, which is a general property of MSLs,
so they are suitable for noncritical paths. In this particular study, MSL would be
favorable due to larger internal race immunity and smaller energy consumption.
Both latches were loaded with a small load, corresponding to approximately eight
minimum-sized inverters. The comparison results can change if the size of the
clocked transistors is fixed or the latches optimized for a different output load.

8.2. FLIP-FLOP EXAMPLES

8.2.1. Hybrid-Latch Flip-Flop

The HLFF by Partovi et al. (1996) is shown in Fig. 8.8. It is a single-input single-
output, positive edge-triggered flip-flop. Its derivation is explained in depth in
Chapter 2. This design initiated a whole series of similar devices, representing
the limited comeback of flip-flop-based clocking, because the CSEs required
very low overhead and because of the increasing importance of clock uncer-
tainty absorption.

Circuit Operation Prior to the rising edge of Clk, the circuit is in the precharge
- _ - . _ .

phase, node S is precharged to high, and the output inverters hold the previously
stored logical value on D, which is decoupled from 3 because the second stage
is off.

At the rising edge of Clk, the pull-down side of both the first and the second
stage is enabled for a period of time defined by the three-inverter delay chain.
During this period the flip-flop is transparent and D can be sampled into the

160 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

a c'kEEk D

Figure 8.8. Hybrid-latch flip-flop. (Partovi et al. 1996), Copyright 0 1996 IEEE.

flip-flop. If D is high in this period, node 3 goes low, forcing a low. If D is
low, 3 goes high and goes to high. Once Clkl goes low, node 3 is decoupled
from D and is held at high or the P-MOS device that is driven by Clkl begins
to precharge it to high. The falling edge of Clkl is the latching edge for the
pull-down path of the second stage, while 3 rising is the latching edge for the
pull-up path of the second stage. At the falling edge of Clk, node 3 is precharged
to high by the p-MOS transistor that is driven by Clk, and remains high as
long as the Clk stays low.

8.2.2. Semidynamic Flip-Flop

The semidynamic flip-flop (SDFF) by Klass (1998), is shown in Fig. 8.9. It is
a single-input single-output, positive edge-triggered flip-flop. The domino-style
front end allows for efficient embedded combinational logic and reduces the load
on the data network.

Circuit Operation The SDFF is composed of a dynamic front end and a
static back end. When Clk is low, the circuit is in the precharge phase. Node
S is precharged high and node Q is decoupled from the first stage. The output
inverters hold the previous values of Q and a. The evaluation phase begins at
the rising edge of Clk. If D is low, 3 remains high, driving Q low and high.

-

+
Figure 8.9. Semidynamic flip-flop. (Klass 1998), Copyright 0 1998 IEEE.

FLIP-FLOP EXAMPLES 161

With D high, will discharge, driving Q high and a low. Three gate delays
after the rising edge of Clk, the output, I , of the NAND gate goes low, preventing
discharge of node 3 by subsequent late 0- 1 transitions on D. The narrow capture
pulse makes this circuit appear edge-triggered. It is worth noting that a glitch
occurs at Q when D = Q = high, as shown in Fig. 8.10. This problem also
occurs in the HLFF design. If proper caution is not exercised during transistor
sizing, this glitch can cause the output latch to change the state. The glitch also
increases power consumption.

A more systematic approach in derivation of the structure through Karnough’s
maps eliminates this problem, as shown by the full realization of SDFF in
Chapter 2.

8.2.3. Sense-Amplifier-Based Flip-Flop

The SAFF (Matsui et al. 1994; Montanaro et al. 1996) is shown in Fig. 8.11.
It is a differential-input differential-output, positive edge-triggered flip-flop. It
consists of a pulse-generating stage implemented as a precharged sense-amplifier
and S- R latch implemented with two cross-coupled NAND gates. Although the
pulse-generating stage was discussed in detail in Chapter 2, we will address some
of the issues of this particular implementation in this section. Then we will focus
on this flip-flop’s speed bottleneck, and show the series of proposed methods to
improve the speed of this device.

Circuit Operation This flip-flop operates in the precharge/evaluate mode.
When Clk is low, the flip-flop is in the precharge phase, the input differential-
pair is off, and the cross-coupled NAND gates (S - R latch) in the output stage
hold the previously stored logic value at Q and a.

Time

Figure 8.10. Illustration of SDFF output glitch.

162 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

Figure 8.11. Sense-amplifier-based flip-flop. (Montanaro et al. 1996), Copyright 0 1996
IEEE.

At the rising edge of Clk, the differential pair senses complementary inputs, D
and 0, and generates a low pulse on either 3 or x. The S - R latch captures the
logic values of the differential inputs and holds them until the next rising edge
of the Clk. During the evaluation phase, either the 3 or i? is low, discharged
by the pull-down path conditioned by the Clk and D or 0. If the data value
changes after the pulse was generated, the pull-down path can be turned off,
leaving the discharged node (or x) floating. In order to prevent the floating
node from being charged by the leakage or coupling noise, the alternate pull-
down path is provided with the addition of the weak n-MOS pass gate, shown in
dotted lines in Fig. 8.11. The primary role of this pass-gate is to staticize nodes
S or x when there is a glitch on the data inputs that follows the rising edge
of the clock (Montanaro et al. 1996). It also helps equalize the voltage values
of the two differential branches during precharge and minimizes the effect of
the previously evaluated data values on the following evaluation. The alternate
methods of providing static operation and enhancements to the pulse-generator
stage, including its formal derivation, are covered in detail in Chapter 2.

-

Evolution of the S-R Latch in the Second Stage The pulse-generating
stage exhibits a very small delay and setup time, due to its sense-amplifier imple-
mentation, which incorporates positive feedback. Two cross-coupled NAND gates
in the S-R latch present the speed bottleneck of this flip-flop. In the worst case,
the signal has to propagate through both NAND gates until it reaches the output
of the flip-flop. More precisely, the falling transition on any of the outputs is
slower than the rising transition by one NAND gate delay. As the overhead of
the CSE became more and more important in the devices used on critical paths,
the SAFF was seen as a structure with great potential for low overhead, due to
the fast input-sensing stage. The NAND-based S - R latch was identified as the
main bottleneck and became the focus of the efforts to improve the speed of this

FLIP-FLOP EXAMPLES 163

flip-flop. In Fig. 8.12 we have summarized the S- R latch modifications proposed
over the years.

The first modification to the classic cross-coupled NAND stage, shown in
Fig. 8.12a, was accomplished using symmetric push-pull logic (Gieseke et al.
1991), to implement a symmetric S - R latch stage. A flip-flop with this output
stage was used in the critical paths of an Alpha 21264 processor (Partovi in Chan-
drakasan et al. 2001). One of the major drawbacks of this all-n-MOS push-pull
scheme are the n-MOS source-followers that have a weak pull-up capability, rely-
ing on the keeper (cross-coupled inverters at the output) to finish charging the
output node once the state is changed. The second modification, using a comple-
mentary push-pull scheme (Oklobdzija and Stojanovic 2001), achieves significant
speed improvement over the first one by decoupling the role of the push-pull driver
from that of the keeper. In the circuit in Fig. 8.12b, the 3 and R signals directly
drive the p-MOS drivers, while S and R are generated from skewed inverters (S
and R rising much faster than falling). Transistors should be sized such that the
delay of the p-MOS driver is equal to that of the skewed inverter plus the n-MOS
driver. In this arrangement drivers are capable of fully switching the output signal
from rail to rail, without needing help from the keeper. The third modification
(Nikolic et al. 1999), shown in Fig. 8.12c, introduced the gated keepers in order
to prevent the conflict between the driver and the keeper during the switching of
the output. This can potentially speed up the S- R latch, but slows down the first
stage because of the additional control ports on the keeper that load the first stage
directly. Depending on the size of the keeper device, the S- R latch versions with
and without the gated keeper result in better performance.

8.2.4. Modified Sense-Amplifier-Based Flip-Flop

The mismatch between rising and falling Clk-Q delays of the SAFF is solved
using a symmetric S- R latch, as discussed in the previous section. The M-SAFF,

164 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

Q -

Figure 8.13. Modified sense-amplifier-based flip-flop. (Nikolic et al. 1999), Copyright 0
1999 IEEE.

shown in Fig. 8.13, is composed of the sense-amplifier pulse-generating stage and
the symmetric S-R latch with a gated keeper.

Circuit Operation The overall circuit operation is identical to the operation of
the SAFF. Inputs and are the set and reset inputs of the S- R latch, respec-
tively. The low level at both of these inputs is not allowed, which is ensured
by the sense amplifier. In this implementation of the S - R latch circuit, both Q
and a change simultaneously, unlike in the cross-coupled NAND version. The
inverter-like drivers directly drive the output load, while the output keeper invert-
ers are gated. This arrangement prevents transient energy dissipation between the
driver and the keeper inverters. During the precharge phase, the driver is dis-
abled by the sense-amplifier signals and and the keeper retains the state at
the output of the flip-flop. There exists a the trade-off in keeper sizing, between
the delay of the flip-flop affected by the parasitic load of the keeper and the
length of the wire that the structure can drive due to the requirement to absorb
coupling noise without a change in state.

8.2.5. Comparison

Now that the principles of operation have been explained, the representative
structures can be compared in terms of delay and energy. The minimum D-Q
performance is illustrated in Fig. 8.14 for some average CSE load, as explained in

FLIP-FLOP EXAMPLES 165

Figure 8.14. CSE delay comparison (0.18 km, high load).

Chapter 7. Delay is expressed in terms of the F04 inverter delay, which is shown
to be relatively independent of technology scaling. The typical clock-cycle over-
head due to CSE is 2-4 F04s. The performance advantage of flip-flops (HLFF,
SDFF, SAFF, M-SAW) over MSLs (MSL, C2MOS) is due to the negative setup
time of the structures with a transparency window when compared to the pos-
itive setup time of M-S elements. Due to internal pulse generation, flip-flops
can have a narrower capturing pulse than externally Pulsed Latches (PLs). These
latches cannot have an arbitrarily wide clock pulse (hence large negative setup
time), due to the hold-time restrictions, so in delay performance they are close
to well-designed flip-flops. It is worth noting that these are just some of the
state-of-the-art designs that are chosen to illustrate some of the key points in
high-performance CSE design, and not necessarily to represent the fastest/lowest
energy structures available.

In modern processor design, the energy of the CSEs is a very important
parameter. Following the energy breakdown definitions in Chapter 3.2, Fig. 8.15
illustrates different components of energy dissipation, which illustrate advan-
tages/weaknesses in the design of the representative CSEs. There are several
very important conclusions that we can draw from the illustrated energy com-
ponents. For one, the MSLs are inherently two-phase elements, and the energy
needed to generate the second clock phase is either attributed to the external
clock energy (the energy parameter illustrating the load on the clock distribution
network) or to the circuitry inside the CSE (internal clock energy). In the case of
SDFF and HLFF, energy is dissipated in every clock cycle in the pulse generator
circuitry. Differential structures using precharge dissipate the energy charged in
the majority of nodes in every clock cycle, such as SAFF or M-SAFF.

In low-power designs, the performance of a CSE is properly assessed only
if the structure is evaluated versus supply-voltage scaling, since that is one of
the most significant ways to save energy. It is important that CSE performs well
and has robust behavior for a range of supply voltages. Figure 8.16 presents a
comparison of minimum D-Q delay and internal race immunity, R , of flip-flops.
It is interesting that the relative flip-flop circuit delay analyzed in this example

166 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

Figure 8.15. CSE energy breakdown (0.1 8 wm, high load).

1 1.3 1.6 1.9 2.2 2.5

Vdd [V]

(4

E
$ -0.3

-0.4
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Vdd [V]

(b)

Figure 8.16. Flip-flop Comparisons: (a) delay, (b) internal race immunity (0.25 Lm,
light load).

reduces the supply voltage with scaling. This is because of the favorable scal-
ing of stack transistors with reduced body effect at lower supplies, as in HLFF
and SDFF, or because of the positive-feedback cross-coupled differential circuits
in M-SAFF. All of these circuits show a very small race margin, but this is
usually not a concern, since the fast flip-flop circuits are placed on the criti-
cal paths. Aggressive clock-skew specification requires careful clock distribution
and deskewing circuits leading to the increased energy consumed in the clock
distribution network.

In low-energy systems, energy is the primary concern. Figure 8.17 shows a
comparison of energy-per-transition in representative MSLs and flip-flops opti-
mized for a light output load. All the results are under scaled supply voltage,

CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING 167

Figure 8.17. CSE energy-per-transition (0.25 pm, light load). (Markovic et al. 2001),
Copyright 0 2001 IEEE.

VDD = 1V in 0.25 k m technology. The results are different from the case when
the same set of circuits is optimized for high output load and at a nominal supply
voltage provided by technology. Most notably, SAFF and M-SAFF optimized
for light load exhibit higher energy consumption than any of the MSLs, con-
trary to the high-load case shown in Fig. 8.15. MSLs exhibit the lowest energy
consumption among the circuits analyzed in this particular example. The MSLs
are therefore the preferable CSEs in low-energy applications. If the performance
is not the most important goal, MSLs can be used on the critical paths as, for
example, in the PowerPC 603 (Gerosa et al. 1994).

High-performance applications need greater speed and are forced to accept the
fast CSE structures with high-energy requirements. In low-energy applications
or in noncritical paths, MSLs are preferred over flip-flops, because the MSLs
have better internal race immunity and require lower energy consumption, at the
expense of a small increase in delay. In the following sections, techniques are
presented that further reduce the energy dissipated in CSEs.

8.3. CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING

This technique attempts to minimize the amount of internal clock energy dis-
sipated in the CSE, which was shown in Fig. 8.15 to be one of the larger
components in energy breakdown. The gating mechanism turns the internal clock
off when input and output data are equal. Since there is a cost associated with
local clock gating, the use of these CSEs is justified for low switching activities
of the input data. The internal clock-gating technique can be applied to all circuits
introduced thus far.

168 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

8.3.1. Master-Slave Latch with Local Clock Gating

The internal clock gating is applied to MSL, with the idea of further reducing its
energy consumption and maintaining its good internal race immunity. The gated
MSL (G-MSL) with internal clock gating is shown in Fig. 8.18 (Markovic et al.
2001). This latch is derived from MSL. The circuitry for internal clock gating,
which is similar to the clock gating circuitry presented by Strollo et al. (2000),
is surrounded by dashed lines in Fig. 8.18.

Circuit Operation Comparator (comp) performs an XNOR operation on D
and Q. The comparator is implemented in the complementary pass-transistor logic
(CPL) technique by Yano et al. (1990), taking advantage of the freely available
true and complementary signals. This reduces the transistor count of the clock
gating circuitry. When D # Q , output of the comp is low and enables external
Clk to propagate through the internal clock generation circuits that generate
internal clocks Clk and Clk 1.

The pull-up side of the input clock inverter is chosen to be gated because
the CPL realization of an XNOR has better pull-down, allowing for faster gen-
eration of the internal clocks than if the pull-down side of the input inverter
was gated. Weak feedback is added around the inverter that outputs Clkl for the
pseudostatic operation.

Compared to the conventional MSL (CMSL), the circuit of Fig. 8.18 achieves
lower energy consumption when the switching activity of the data input is less
than 0.3, as shown in Fig. 8.19b. The logic for internal clock gating incurs delay
cost, which is reflected in the increased setup time of the gated latch, as shown
in Fig. 8.19a. Internal race immunity in general is not affected by the gating
operation because of similar variations in the Clk-Q delay and hold time.

Figure

Clk-

8.18.

.... & ",,

..T.."
Q

rj,

SS

Gated MSL. (Markovic et al. 2001), Copyright 0 2001 IEEE.

CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING 169

I
d

7 g 1.0

3
d

0.5 -

*--.-.----+
H (G-MSL) - H (MSL)

____.--- @.--.-o.-.- - - - _ - - - - - - _ _ _ @ - -

0 '

-3- U (G-MSL) - U (MSL)

I
d

7 g 1.0

3
d

0.5

~

-

*--.-.----+
H (G-MSL) - H (MSL)

____.--- @.--.-o.-.- - - - _ - - - - - - _ _ _ @ - -

0 ,

3

transition probability, a

(b)

Figure 8.19. Gated vs. conventional TG MSL: (a) timing, (b) energy.

8.3.2. Data-Transition Look-Ahead Latch

The DTLA-L by Nogawa and Ohtomo (1998) is shown in Fig. 8.20. It is a
noninverting PL.

Circuit Operation The data-transition look-ahead (DTLA) circuit performs an
XNOR function on D and Q. When D = Q , the DL circuit produces a logic 0

170 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

D

Clk

Figure 8.20. Data-transition look-ahead latch. (Nogawa and Ohtomo 1998), Copyright 0
1998 IEEE.

at PI and generation of the internal clock (C P , e} is disabled. When D # Q,
Pj is low and the CC circuit enables generation of { CP , -1.

The PG circuit generates a short pulse, CPZ, at every rising edge of the external
clock, Clk. Internal clock pulse CP then triggers the latch if D # Q. The PG
is essential for the operation of the latch. If there were no pulse generator, this
latch could be triggered by data instead of the clock. For example, if D # Q
and the rising edge of CPZ arrives, then the clock pulse CP is generated and Q
changes. However, if D changes again while the clock is still high and becomes
different from Q , then another internal clock, pulse CP, would be generated and
the CSE would be actually triggered by the data.

Analysis of DTLA-L In order to evaluate the benefit of clock gating, it is
essential to find the energy cost associated with the internal clock gating circuitry.
For that purpose, a portion of the DTLA-L circuit shown in Fig. 8.21 is analyzed.

When the energy-per-transition of the circuit in Fig. 8.20 is subtracted from
the energy-per-transition of the circuit in Fig. 8.21, the energy cost in data look-
ahead, clock control, and pulse generator is obtained. This only applies to 0-1
and 1-0 input transitions, because only then are all subcircuits in Fig. 8.20 and
Fig. 8.21 active. For 0-0 and 1-1 input transitions, the internal clock (shaded
inverters) is activated in the circuit of Fig. 8.21 and deactivated in the circuit
in Fig. 8.20.

C@ CP

D Q

Figure 8.21. DTLA-L without gating.

CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING 171

Clk 0

,
I
I
I

I
I
I
I

Figure 8.22. Pulse generator.

The PG is commonly shared among several latches, so further energy break-
down is needed to understand exactly where the energy goes. The energy con-
sumed by the PG is estimated by simulation of a stand-alone PG loaded with
capacitance Ci,,(CC) that CPZ sees when looking into the CC circuit, as shown in
Fig. 8.22. The PG consumes energy regardless of what input transition occurs. A
portion of the PG’s energy dissipation is attributed to each CSE through external
clock energy parameter.

Energy Efficiency of DTLA-L The energy saving capabilities of DTLA-L
depend on two parameters: (1) number of latches, N , driven by a single PG,
and (2) input data-transition probability. The energy consumed per latch during
one clock cycle, when D = Q , is given by:

The energy consumption when D undergoes a 0- 1 or 1-0 transition is given by
Eqs. (8.2)-(8.3):

Comparison with M-S Latch Assuming there is no glitching at input D , the
probability of 0-1 and 1-0 transitions is equal: a,0-1 = a,1-0 = a/2, where a, is
data-transition probability. Under this postulation, the average energy consump-
tion of the DTLA-L and the conventional MSL CMSL are:

In Eq. (8.5), Ec, is the energy consumed in switching the C i n (C / k) of the MSL.
This term represents the energy consumed by the simple clock buffer that drives

172 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

1

0.8

. 5 0.6
0)

+ 2 0.4
n

0.2
W

0
1

(b)

Figure 8.23. Energy comparison of DTLA-L and CMSL.

Cin(~lk) and is included for a fair comparison with the DTLA-L where E p c (N) / N
represents the energy consumption in PG per latch.

Figure 8.23 shows comparison of energy consumption in DTLA-L and MSL
as a function of N and a. The figure shows that DTLA-L has better energy
efficiency than the MSL for N > 2 and a < 0.25.

8.3.3. Clock-on-Demand Pulsed Latch

The clock-on-demand PL (COD-PL) by Hamada et al. (1999) is shown in
Fig. 8.24. It is a positive edge-triggered, noninverting PL. The circuits enclosed

CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING 173

CP
I rD-Q

Clk -

I I _ _ _ _ _ _ _ _ _ _ _

Data-Transition 1
Look-Ahead ----A

\
I
I
I

I I

- _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ - - - _ _ _ _ _ _ _ _ _

:& I 'I I
-

.CP

CP

Figure 8.24. Clock-on-demand PL. (Hamada et al. 1999), Copyright 0 1999 TEEE.

with dashed lines show the cost associated with pulse generation and data-
transition look-ahead.

Circuit Operation As in the DTLA-L, the data-transition look-ahead circuit
also performs an XNOR function on D and Q. When D = Q , XNOR = 0 and
CP is disabled. When D + Q, the PG circuit generates a short pulse, CP, at
every rising edge of the external clock, Clk. The pulse ends only when XNOR
changes to high, which means that its duration is proportional to the delay of the
transmission gate, inverter, XNOR, and the PG logic.

Unlike the DTLA-L, the COD-PL has its local pulse generation. As pointed out
by Hamada et al. (1999), this helps avoid problems with distortion of the pulse
in the clock distribution and the power penalty of the pulse clock generator. The
clock control function is integrated in the internal pulse generator of the COD-
PL, as opposed to the DTLA-L. This reduces the area cost of the COD-PL and
promises better energy efficiency than in the DTLA-L.

Energy-Efficient Pulse-Generator Careful optimization of PG is the key to
the minimization of the energy overhead associated with internal clock gating.
If the PG circuit were implemented in complementary CMOS, there would be
energy consumption in the PG even when D is idle, as illustrated in Fig. 8.25.
In order to avoid this unnecessary energy consumption, AND and NOR circuits
are implemented as a single compound gate, as shown in Fig. 8.26.

Comparison with MSL The framework used in the analysis of the energy effi-
ciency presented in the DTLA-L example is also applied to COD-PL. Extending
our analysis here a step further and exploring the impact of circuit sizing on

174 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

Figure 8.25. Straightforward implementation with CMOS gates (energy inefficient).

Clk

Figure 8.26. Energy-efficient implementation with compound AND-NOR gate.

the energy efficiency, we conclude that the internal clock gating technique is
rarely effective in low-energy designs. This is illustrated in the example of the
COD-PL where the transistor sizes are optimized for two cases: high-speed and
low-energy. The sizes of the MSL are optimized accordingly as well. Figure 8.27
shows energy consumption in COD-PL relative to the energy consumed by
the MSL versus transition probability a , where ao-1 = a1-0 = a / 2 . Since in
high-performance circuits clock transistors are large (4 x sizing), this technique
promises to save energy. as shown in Fig. 8.27. This is because the clock gating
logic represents a small portion of the overall circuit area. However, in low-
energy CSEs (1 x sizing) with small clock transistors this technique is not as
effective as depicted in Fig. 8.27.

8.3.4. Conditional Capture Flip-Flop

The CCFF by Kong et al. (2000) is shown in Fig. 8.28. It is a positive edge-
triggered differential-input differential-output flip-flop. As discussed in Chapter 6,
this circuit is in essence a J - K flip-flop.

Circuit Operation The CCFF uses the capturing latch of the M-SAFF (Oklob-
dzija and Stojanovic 2001), in addition to the internal clock gating in the PG stage.

CLOCKED STORAGE ELEMENTS WITH LOCAL CLOCK GATING 175

h

-1
v)

E
w

-1

.
h

a
n

2
0

W

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

transition probability, a

Figure 8.27. Impact of circuit sizing on the energy efficiency of COD-PL. (Markovic
et al. 2001), Copyright 0 2001 IEEE.

6
T T

Figure 8.28. Conditional capture flip-flop. (Kong et al. 2000), Copyright 0 2000 IEEE.

When Clk is low, the flip-flop is in the precharge phase, s and are precharged
high, and the S - R latch is disabled. At the rising edge of Clk, the behavior of
the CCFF depends on the incoming data value - if the new data are not equal to
the previously recorded output data, one of the outputs of the NOR gates is high,
enabling pull-down of or x. The transparency period of the differential pair is
the sum of two inverter delays and one NOR gate delay long because N and

176 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

both go low when Clk, is high. During this short transparency period, new data
are latched by the S - R latch at the output.

8.3.5. Comparison

The delay o f the gated MSL G-MSL is increased relative to the conventional
latch, as discussed before, due to an increase in setup time. As in the G-MSL,
in the DTLA-L and COD-PL, setup and hold times are affected by the delay of
internal gating logic and also by the width of the internal clock pulse, resulting in
the delay increase in these CSEs. For example, G-MSL has about a 2F04 larger
delay than standard MSL, as shown in Fig. 8.29a. It should be noted, though, that
internal clock gating does not always result in delay degradation. This is in cases
where the internal clock-gating logic is outside the Clk-Q path, as in CCFF. The
simulation results for this circuit were not available to us at the time of writing.
Figure 8.29b contains a comparison of the internal race immunity of the gated
and the conventional MSL. The G-MSL has an even better internal race margin
than the conventional MSL because of its increased Clk-Q delay. Figure 8.29b
also confirms the general trend: flip-flops and PLs have the smallest internal race
immunity, R , MSLs have large R, and MSLs with internal clock gating have the
largest R.

The average energy consumption of the CSEs with internal clock gating as
a function of input data activity is shown in Fig. 8.30a. Since it is not fair to
compare flip-flops and MSLs in terms of energy efficiency because the flip-flops
have a higher performance, a comparison of the energy-delay product is given
in Fig. 8.30b. From Fig. 8.30b it appears that the DTLA-L is the best latch for
a E [0.03,0.23]. The MSL offers better energy-delay trade-off than G-MSL for
a > 0.12.

5.0 7'- G-MSL , 7 ' . - . - ,

4.5 - . - - . _ , _ . _ . _ . _ . -

4.0 CODPL

;::I I , I I I , I ,I
0
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Vdd [V]

(a)

8 1.0

0.5
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Vdd [V]

(b)

Figure 8.29. Timing parameters in latches and flip-flops with local clock gating.
(Markovic et al. 2001), Copyright 0 2001 TEEE.

LOW-SWING CLOCK STORAGE ELEMENTS 177

-

40 -

cn

transition probability, a transition probability, a

(a) (b)

Figure 8.30. Energy and EDP in latches and flip-flops with local clock gating. (Markovic
et al. 2001), Copyright 0 2001 IEEE.

The alternative approach to internal clock gating is to minimize the external
clock energy component. A low-swing clock is distributed to specially designed
CSEs. This is the topic of the next section.

8.4. LOW-SWING CLOCK STORAGE ELEMENTS

A reduced-swing clock CSE technique targets the energy savings in the clocking
of a CSE. The most effective way to employ reduced-swing clocks is to use
CSEs that can operate with reduced-swing clock input and that do not require any
redesign of the clock driver. This class of CSEs has n-only clocked transistors,
with the clock network simply operating under the reduced supply voltage.

Standard clocked storage elements cannot be used with a low-swing clock,
since any clocked p-MOS transistor will not fully turn off, causing static cur-
rent and reduced robustness. It is therefore imperative to design storage elements
amenable to low-swing clocking, in order to identify the topology that enables
maximum energy reduction while incurring minimum delay penalty and degrada-
tion of robustness to clock noise. Reduced-swing clocking allows energy reduc-
tion at the expense of some cycle-time increase. As the clock voltage is reduced,
the consumption of energy also becomes smaller, but with diminishing returns
as the clocking power becomes much less than the data switching power.

8.4.1. CSE Examples

The operation of these latches is much like the conventional topologies they are
derived from by eliminating p-clocked transistors (e.g., the latch in Fig. 8.31a)
or adding additional transistors to improve pull-up of the state node (e.g., latch
in Fig. 8.31d).

For noncritical paths, the N-only static MSL (N-MSL, Fig. 8.31a) is obtained
from the standard MSL (Tschanz et al. 2001) by removing the clocked p-MOS
transistors and allowing gating of only the pull-down keepers.

I78 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

D-

-
Clk Clk

N-MSL N-FF

.......................................

N-PPL D
L 2

Pulse Generator (b)-(d) N-PL

(4 (d)

Figure 8.31. N-only clocked latches: (a) conventional TG MSL, (b) pulsed-latch,
(c) conventional PL, (d) push-pull PL.

For the performance-critical paths, explicitly pulsed latches are used that allow
sharing of the pulse generator. N-FF (Fig. 8.31b) is a simple flip-flop (Tschanz
et al. 2001). N-PL (Fig. 8 .31~) is derived from the transmission gate-based PL
presented in Tschanz et al. (2001). An n-only push-pull clocked cycle latch (N-
PPL, Fig. 8.31d) is constructed from N-PL by adding N1 and N2 for faster
pull-up operation.

8.4.2. Comparison

The framework presented by Tschanz et al. (2001) is used for latch and flip-flop
optimization in a 130-nm technology, with a 50-fF load at the output for all
low-swing clock CSEs. A global optimizer is used to determine the sizes of all
transistors that minimize the energy consumption of the CSE (for data activity
of 0.1) for different delay targets. CSE delay is the sum of the worst-case Clk-Q
delay and worst-case setup time, considering both logic polarities in the critical
paths. The maximum input capacitance of the clock and data drivers is limited
to 12.5 fF. It is assumed that the input driver is located adjacent to each CSE for
robust operation.

Energy-delay comparisons of CSE designs at single high-VDD and with low-
swing clock (Fig. 8.32) show that while PL offers the best performance at high-
VDD (Tschanz et al. 2001), PFF is the preferred design for low-swing clocking.
Assuming that the target delay for performance-critical CSEs is equal to 1.5 x
F03 (1.2 F04) inverter delays, the low-swing N-PL can achieve 1.8 x F03 (1.4
F04) inverter delays-20% CSE delay degradation. For noncritical CSEs, MSL
is the most robust and energy-efficient at high-VDo (Tschanz et al. 2001), while
N-PPL is best for low-swing clocking.

LOW-SWING CLOCK STORAGE ELEMENTS 179

- 1.2 E

Q 0.8

E 1.0
Y

-
$ 0.6

5. 0.4
m z 0.2

w o

/

C

0.8

5 0.6

5 0.4

b
Q
0
-
/

5 0.2
0 c
w o

0 1 2 3 4 5 6

Data-to4 delay (F03 inverter delay)

Figure 8.32. CSE energy and delay: (a) high-vdd and (b) low-swing Clk.

Another important consideration in a design with a low-swing clock is the
impact of clock noise on CSE delay (Fig. 8.33). We quantify it by measuring the
increase in Clk-Q delay when the clock swing is reduced by the amount of noise.
Among the high-performance CSEs considered here, N-FF provides the highest
robustness against clock noise. All latches fail as clock noise approaches 12% of
the clock voltage. Nevertheless, N-FF offers the best clock noise rejection.

N-FF’ and N-PPL circuits are the most energy-efficient choices for
performance-critical and noncritical parts of a microprocessor with a low-swing
clock. They also offer better robustness against clock noise than N-CL. Full-chip
energy savings of low-swing clocking are greater than those from simple Voo

20%

5 16%

2

C
0

U

.-

F 12%
U
h

Q
-0

? 4%
Y- o

_m 8%

0 Yo
0% 3 yo 6% 9% 12%

Noise on low-swing clock

Figure 8.33. Effect of clock noise on low-swing clock latch delay.

180 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

lowering only when the power of the clocking subsystem is more than 30% of
the total power.

8.5. DUAL-EDGE-TRIGGERED CLOCKED STORAGE ELEMENTS

Dual-edge-triggered (DET) CSEs sample their inputs and update their outputs on
both the rising and falling edges of the clock. With this approach, the maximum
toggle frequency of the clock is identical to the maximum toggle frequency of
the data. In contrast, conventional single-edge-triggered clocked storage elements
require twice as high clock frequency for the same data throughput. Thus, a migra-
tion from single- to dual-edge triggered clocking strategy to a first approximation
halves the clock energy.

8.5.1. DET Latch-mux

DET Latch-mux (LM) by Llopis and Sachdev (1996), shown in Fig. 8.34, is
the dual-edge counterpart of single-edge MSL by Gerosa et al. (1994). The
basic building blocks, latches and the multiplexer, can be easily identified on
the schematic. The latches are implemented using pass gates and are staticized
by clocked feedback. The multiplexer realization is pass gate as well. Two-phase
clocking is used in order to compare the DET-LM to the single-edge MSL and
to draw some conclusions on the usefulness of the latch-mux arrangement as an
alternative to the single-edge designs.

Circuit Operation During the Clk high phase, the upper master latch is trans-
parent and data are stored at the input of the second pass-gate stage. When Clk
goes low, the stored upper master data updates the node Q. At that time the input
pass gate of the upper master latch is turned off, disabling any further updates to
the Q via the upper master path. Similarly, the lower master stage is transparent

Q

clk clk Clk

Clk +-EK
Figure 8.34. DET Latch-mux circuit. (Llopis and Sachdev (1996), Copyright 0 1996
IEEE.

DUAL-EDGE-TRIGGERED CLOCKED STORAGE ELEMENTS 181

during Clk low. The upper and lower paths work in push-pull fashion, alternating
the data flow from the upper to the lower path in each clock phase. It is worth
noting that this particular implementation of the slave-mux carries a certain risk
with it. Suppose that the capacitance at node Q is much bigger than that at the
input to the slave-mux pass gate. In that case, when the pass gate is turned on by
the Clk high for the upper path, charge sharing from Q back through the pass
gate can flip the feedback in the master latch before the master’s information
is passed forward through the pass gate. This is of special concern in this type
of design where the capacitance of Q is easily much bigger than at the output
of the master, due to the parasitic capacitance of the mux pass gates and the
output inverter.

8.5.2. DET C2MOS Latch-mux

DET-C2MOS-LM by Gag0 et al. (1993), Fig. 8.35, is a dual-edge version of the
C’MOS MSL, Fig. 8.4. The latch design is conventional clocked CMOS, with
some clock transistors shared by different stages. The multiplexer consists of two

N4 “k ’ T N 2 ,

I
N3

Figure 8.35. C2MOS Latch-mux. (Gago et al. 1993), Copyright 0 1993 IEEE.

182 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

clocked CMOS inverters and the output buffer inverter. The second clock phase
is generated locally.

Circuit Operation During the Clk high phase, data are passed through the
upper C2MOS master gate with nodes N 4 , N5. At the same time, the latch in
the lower path keeps the previous state and actively drives node Q. When Clk
goes low, the upper latch becomes transparent and passes the data from the upper
C’MOS to Q. The upper and lower latches become opaque, while lower gate
becomes transparent, enabling the data to be updated in the next clock phase.

The charge-sharing problem, present in DET-LM, is also present in this design.
Consider the situation where initially Clk is high, Q is low, and the output of the
upper latch is low. When Clk goes low, and Clk goes high, it is possible for Q to
flip the input to the latch and not get updated, thereby loosing the information at
the input of the latch. The feedback speed has to be carefully adjusted, optimizing
the setup time of the latch and the overall CSE overhead. Another parasitic effect
deserves to be mentioned. It is possible for data to feed through to the state
node, Q , from the latch through the Miller capacitance of the tristated latch. For
example, if the lower latch is transparent and the upper latch is opaque, the data
can feed through the opaque latch via the Miller capacitance to induce noise on
the Q state, which has to be absorbed by the lower transparent latch.

8.5.3. DET Pulsed-Latch

The PL has a very simple structure, consisting of the set of pass gates that define
the transparency window, buffer inverters, and weak feedback path to keep the
value stored in the PL output at the end of the transparency window. The clock
delay line of four inverters defines the transparency window. There are two timing
windows when the latch is transparent. The first is determined by the overlap
of the clock, Clk, and the clock delayed by the three inverters, C l k l , and the
second, is determined by the first and fourth delay of the clock, Clk and Clk2
(Fig. 8.36b).

The original design by Stroll0 et al. (1999) is semistatic, that is, the feedback
keeper was implemented for only the high level of the output, Q , and the pass-
gate forward path was implemented using n-MOS transistors only. The design is
modified by the addition of the complementary feedback and full transmission
gate (Fig. 8.36). Without the modifications, the original structure exhibited a
large delay for low-to-high transition, which caused the delay to be twice as long
compared to any other design.

Circuit Operation Let us first discuss the operation of the single-edge-
triggered PL, Fig. 8.36a. At the rising edge of the Clk, both pass gates are turned
__ on in the duration of three inverter delays-from Clk going low-to-high to
Clk I going high-to-low. At the same time, the feedback is disengaged, allowing
for rapid propagation of the input signal to the output. After this transparency
window of three inverter delays, Clkl, goes low and the first pass gate is turned

DUAL-EDGE-TRIGGERED CLOCKED STORAGE ELEMENTS 183

D

T

Figure 8.36. Pulsed-latch: (a) single-edge, (b) dual-edge triggered.

off, making the latch opaque, while the feedback is engaged to preserve the state
of the latch.

The exact operation is a bit more complicated because the input data low has
a transparency window of three inverter delays from Clk to Clkl, since the signal
passes through n-MOS pass gates, while the input data high has a transparency
window of three inverters from Clk to Clkz, which is shifted in time by one
inverter delay. This causes the setup and hold times to be different for the data
high or low. The setup time is shorter and the hold time is longer for the input
high case, since the pass gate turns off one inverter delay later for the input high.

The dual-edge counterpart is shown Fig. 8.36b, with the upper pass-gate pair
transparent for three inverter delays after the rising edge of the Clk and the lower
pass-gate pair transparent for three inverter delays after the falling edge of the
Clk. As in the single-edge-triggered case, the position of the transparency window
is data dependent, and the transparency window for the upper pass-gate pair is
one inverter delay later for the D high than that for the D low. The situation is
reversed for the lower pass-gate pair, where the transparency window occurs one
inverter delay later for the D high than that for the D low.

8.5.4. DET Symmetric Pulse Generator Flip-Flop

The DET symmetric pulse generator flip-flop (DET-SPGFF) by Nedovic et al.
(2002) is a novel flip-flop design, featuring a narrow data transparency window
and clockless output multiplexing scheme. The circuit schematic is shown in
Fig. 8.37. The first stage is symmetric and creates the data-conditioned clock
pulse on each edge of the clock (at node Sx on the rising and S y on the falling
edge of the clock). The second stage is a two-input NAND gate that effectively
serves as a multiplexer, implicitly relying on the fact that nodes Sx and SY
alternate in being precharged high, while the clock is low and high, respectively.

184 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

Clk

D

Clki
-

Clk

__
Clk

D

Clk,

-
Clk

Clk Clk Clk, Clk, Clk,

Figure 8.37. DET symmetric pulse generator flip-flop.

This type of output multiplexing is very convenient, because it does not require
clock control. The clock energy is mainly dissipated for pulse generation in the
first stage.

Circuit Operation Let us examine the operation of the DET-SPGFF in more
detail, considering the stage topology described in the previous section. Assume
that the Clk is initially, low and D , a, S X , and S y are high. When the Clk
goes high, Clkl is still high for the length of three inverter delays, enabling the
discharge of node SX since input D is high. As SX goes low, it pulls a low,
since the second stage is a NAND gate with inputs S X and S y . The event of SX
going low disables the pull-up path for S X via the feedback inverter in the first
stage, so Sx remains static low, even if D changes or the main signal path is
disabled by Clkl going low three inverter delays after the Clk went high. Node
Sx is pulled down by the path enabled with the Clk and the feedback inverter.
When the Clk goes low, node SX is precharged, enabling the node S y to pass its
value to the output a in a similar fashion as the node S X in the previous phase
of the clock.

8.5.5. Comparison

The comparison of the DET-LM and corresponding MSL schematics reveals
the behavior and performance relationship between MSLs and latch-muxes, in
general. It is seen that the latch-mux has two equally critical paths that are
somewhat shorter than that of the MSL (the delay of a multiplexer versus the

DUAL-EDGE-TRIGGERED CLOCKED STORAGE ELEMENTS 185

delay of a latch in the second stage). As with the MSL, the activities of the
internal nodes in the latch-mux are found to be directly proportional to the activity
of the input. This indicates good power-consumption scaling with the activity,
and preservation of the beneficial power-consumption features of the MSL. The
advantage of the DET-C2MOS-LM design at the circuit level compared to both
DET-LM and single-edge C2MOS is in the efficient multiplexer realization and
sharing the clock transistors, which reduces overall clock load and clock power
consumption. In contrast to latch-mux implementations, DET-PL requires that
a large number of transistors be added and/or that the cell size be increased
in order to obtain dual-edge functionality. This easily offsets the clock energy
savings from halved clock frequency. The DET-SPGFF makes very fast operation
possible with good power savings, yielding an overall best energy-delay product.

The delay comparison of single- and dual-edge-triggered devices is illustrated
in Fig. 8.38. The advantage of latch-mux topologies is in the smart imple-
mentation of the latch-mux arrangements, DET-LM and DET-C2MOS-LM. The
PL structures are more complex, and their straightforward implementations are
shown to increase both the delay and power. The DET-SPGFF benefits from both
design approaches and results in the best delay.

Power consumption is compared in Fig. 8.39, at an average data activity of
50%, with single- and dual-edge clocks at 500 MHz and 250 MHz, respectively.
The main conclusion is that although a potential for clock power savings exists
due to the halved clock frequency, usually the latch capacitance switched by the
clock is doubled to facilitate the multiplexing operation. This leaves the total
CSE clock power roughly unchanged. With a smart design, it is possible to save
some amount of the clock power dissipated inside the latch.

The energy-delay product, as an adequate measure of overall performance, is
illustrated in Fig. 8.40. These data confirm that some savings are possible with a
smart and efficient design of the latch-mux implementations, while pulsed latches

Figure 8.38. Delay comparison, SET vs. DET.

186 STATE-OF-THE-ART CLOCKED STORAGE ELEMENTS IN CMOS TECHNOLOGY

Figure 8.39. Power consumption comparison, SET vs. DET (0.18 bm, high load).

Figure 8.40. EDP comparison, single vs. dual-edge triggered clocks (0.18 km, high load).

suffer from increased complexity and it is much harder for a designer to depart
from their straightforward implementation.

Although the comparative analysis of energy dissipation in single-edge-
triggered CSEs versus their dual-edge-triggered counterparts is interesting, it does
not completely illustrate the benefit of using the dual-edge-triggered CSEs. It is

SUMMARY 187

indeed hard to design dual-edge-triggered structures that would consume less
power (especially the clock power) than their single-edge-triggered counterparts.
The true savings, however, are in the power consumed by the clock distribution
network. The clock distribution example in Section 6.3 best illustrates the
advantages of the halved clock frequency, despite the potential increase in total
clock load, when dual-edge-triggered CSEs are used. The main conclusion is that
the dual-edge-triggered design is always a better choice as long as it maintains
the clock load capacitance at less than roughly twice that of the single-edge-
triggered design.

8.6. SUMMARY

The choice of the CSE topology depends on the target application. CSE delay
overhead is still the most dominant parameter in high-speed systems, although
the energy consumption, especially the clocking component, is of increasing
concern. Pulsed-latches and flip-flops offer the smallest data-to-output delays, due
to negative setup time or the fast direct-path property, respectively. In addition to
the small delay, these structures offer some degree of clock and data uncertainty
absorption, which is of increasing importance in modern high-speed systems.
This property, however, does not come for free and is traded for increased risk
of hold time failure.

In low-energy applications, CSEs based on MSL pairs in general have several
advantages over those based on PLs. MSLs tend to have better race immunity at
the expense of increased delay. PLs and flip-flops generally dissipate more energy,
and therefore practical applications where low energy is of primary concern would
involve M-S topologies. MSLs are likewise preferred over PLs and flip-flops
when performance is not the main design goal. It is important to note that not all
of the parts of the processor are on the critical path, and low-energy, conservative
MSLs can be used in these blocks to reduce the overall energy dissipation and
alleviate global clock load requirements.

From the examples presented, we can summarize some of the main methods
used in the design process to achieve low-energy consumption in clocked stor-
age elements. The preceding examples have indicated that low-energy design can
be accomplished to a certain degree in a systematic fashion, implying that the
designer still has various degrees of freedom. Low-energy designs can be effec-
tively concocted with methods that employ clock gating, reduced swing clocking,
or dual-edge triggering. While the principles of operation of CSEs are different,
the guidelines used to optimize them are essentially the same, differing only in
the physical realization and in the resulting trade-offs made with regard to circuit
delay and internal race immunity.

CHAPTER 9

MICROPROCESSOR EXAMPLES

The purpose of this chapter is to recapitulate the material presented in this book
through various examples. It also presents the state of the art in microprocessor
design from the standpoint of clocking and clocked storage elements. In this
chapter we analyze the clocking techniques and clocked storage elements used in
four leading microprocessor design houses: the Intel Corporation, Sun Microsys-
tems Inc., the Digital Equipment Corporation (unfortunately, this latter company
is not in existence any longer as of the writing of this book) and the IBM Cor-
poration. We have chosen to emphasize different aspects each time we describe
the techniques and designs used, and to go into depth on different solutions for
clocking of high-performance and low-power systems.

In the section describing clocking techniques used in Intel@ microprocessors
we describe an active clock deskewing technique that was used in Pentiurn@
processors. This discussion supplements the subject of clock distribution that
was only briefly touched on in Chapter 1. We do not place much emphasis on
the clocked storage elements used in Intel microprocessors in this section for two
reasons: first, Intel never explicitly published the CSE topologies used in their
microprocessors, and second, we have presented those CSE topologies known to
us in the previous chapters.

The section describing techniques used by Sun Microsystems Inc. presents
an overview of the development of the semidynamic flip-flop from its inception
(described in patents filed by Sun Microsystems) to the final circuit used in their
latest RISC processor, Ultra-Sparc-III@. This type of flip-flop represents one of
the fastest single-ended flip-flops today and presents an interesting discussion
on flip-flops with a “soft-edge’’ property that are capable of time borrowing and
absorption of the clock uncertainties.

189

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

190 MICROPROCESSOR EXAMPLES

The section on Alpha@ processors, developed by the Digital Equipment Cor-
poration, describes various methods of microprocessor clocking. The Alpha pro-
cessor is particularly interesting because it was a performance leader through
the last decade of the last century. It is interesting not only from the point of
view of the CSEs used, but in showing how this decision affected the clock-
ing strategy used. The first generation of Alpha (WD21064) used single-clock
latches, which are very similar to TSPC latches (Yuan and Svensson 1989). In the
second-generation Alpha (WD21164), a pass-gate latch design was chosen. These
latches also demonstrated the importance of incorporating logic into the CSE in
order to accommodate the demand of shorter pipeline stages. The third generation
Alpha (WD2 1264) used a sense-amplifier flip-flop (SAFF) (Madden and Bowhill
1990). Development of this flip-flop and its evolution into its final form (Oklob-
dzija and Stojanovic 2001; Nikolic and Oklobdzija 1999) were described in the
previous chapters. This particular flip-flop is still among the fastest and most
energy-efficient CSEs today. In order not to limit the performance of the proces-
sor, a hierarchical clock grid was introduced in the third and fourth generations
of this processor.

Finally, in the section dedicated to the IBM Corporation, we describe design
for testability techniques, specifically IBM LSSD, and IBM’s particular prac-
tice of using latches and not flip-flops. We describe four recent microprocessors
designed by IBM: the IBM 9390 G4; the experimental IBM PowerPC (the first
one to break the 1-GHz barrier); a low-power champion PowerPC 603; and the
IBM Power4. The interesting aspect of IBM designs is the ability to tune the
edges of the clock, thus operating the processor in two modes: high-speed, and
test and debug. The emphasis on diagnostic and machine bring-up is particu-
larly important in a robust and high production-quality design. Various ways of
incorporating logic and the scan function into the latch are of a particular interest.

This chapter brings together all the techniques described in this book and
shows their relevance by describing the ways those techniques were incorporated
into the most advanced microprocessors as of this writing.

9.1. CLOCKING FOR INTEL MICROPROCESSORS

Table 9.1 lists the key design parameters of the three generations of Intel micro-
processors for desktop PCs (source: Microprocessor Report Journal, online:
http://www.mdronline.com/mpr/). Consumer PCs based on the Pentium I1 pro-
cessor featured new technologies such as DVD players and AGP graphics. The
Pentium 4 was the first microprocessor to break the 2-GHz mark in clock speed.
It features an increased number of pipeline stages, relative to its predecessors.
Fabricated in 0.18 km 6-metal-layer technology, it had almost double the number
of transistors compared to Pentium 111, and dissipated up to 67 W of power.

This section describes clock generation and distribution for some of the recent
generations of Intel microprocessors. The emphasis of this section is on clock
distribution and active deskewing circuits that have tight control of the clock

CLOCKING FOR INTEL MICROPROCESSORS 191

'able 9.1 Intel Microprocessor Features

Pentium I1 Pentiurn 111 Pentium 4

/IPR issue
:lock speed
'ipeline stages
kansistors
:ache (IDL2)
lie size
C process
vlax power

June 1997
266 MHz

12/14
7.5 M

203 mm2
0.28 pm, 4 M

27 W

16 W16 W-

April 2000
1 GHz
12/14
24 M

16 W16 W256 K
106 mm2

0.18 km, 6 M
23 W

Dec 2001
2 GHz
22/24
42 M

12 W8 W256 K
217 mm2

0.18 wm, 6 M
67 W

ikew. An adaptive digital deskewing technique applied to the IA-32 Pentium Pro
'amily is described first, followed by the clock generation and distribution in the
irst IA-64 microprocessor. The section concludes with the clocking scheme used
n the Pentium 4 microprocessor. The examples and circuit diagrams presented
n this section are adapted from the Intel papers presented at the International
Solid-state Circuits Conference (ISSCC) over the last five years. The examples
;how detailed implementation of the clocking circuits reported in these papers.

9.1 .l. IA-32 Pentium Pro

4n adaptive digital deskewing technique is employed in the 450-MHz IA-32
Pentium Pro (P6 family) microprocessor (Schutz and Wallace 1998). The global
skew for the clock distribution network in this 7.5 M transistor 0.25-pm tech-
nology microprocessor design is only 15 ps, down from more than 60 ps with
the deskewing circuit inactive. The clock deskewing scheme used in the Pentium
Pro is described in detail below, as presented by Geannopoulos and Dai (1998).

Clock skew is managed by the adaptive digital deskewing circuit. The deskew-
ing circuit equalizes two clock distribution spines by compensating for delay
mismatch in the Ieft and right spines of the microprocessor clock network. The
circuit is composed of delay lines in both spines, a phase detection circuit, and
a controller, as illustrated in Fig. 9.1. The phase-detection circuit determines the
phase relationship between the two spines and generates an output based on
this phase relationship. The controller takes the phase-detection information and
makes a discrete adjustment to one of the delay lines, minimizing the clock skew
between the two spines. The main building blocks of the deskewing circuit are
described next.

Figure 9.2. is a block diagram of the delay line and the delay shift register.
The tunable digital delay line is implemented with two inverters in series, each
loaded with a bank of eight capacitive loads. The content of the delay shift register
determines the capacitive loads for the two inverter outputs. Both n-MOS and
p-MOS transistors are used to make each of the capacitive loads, in order to
reduce the signal slope and balance the rising and falling edge of the inverters.

192 MICROPROCESSOR EXAMPLES

Figure 9.1. Clock distribution network with deskewing circuit. (Geannopoulos and
Dai 1998), Copyright 0 1998 IEEE.

In I
I Delay Line D.

Load <1:15,2> -oad c0:14,2>

P
Out -

Delay Shift Register

Figure 9.2. Delay shift register. (Geannopoulos and Dai 1998), Copyright 0 1998 IEEE.

Capacitive loads are designed to allow 17 monotonic discrete steps of delay, with
the average delay per step of 12 ps. The capacitive loads are added alternately
to the two inverter outputs. The use of two inverters allows the load to be split
between two drivers and also provides noninverting delay.

The phase-detection circuit is shown in Fig. 9.3. It consists of two symmetrical
PDs and an adaptive noise-band filter. Each PD is designed with four S- R latches
in a pipelined configuration to reduce the probability of metastability propagating
into the control logic as shown by Geannopoulos and Dai (1998).

Each PD has one of the sampled clock signals delayed by a controlled amount,
An, of discrete time units. In PD1, the clock signal from the left spine is delayed

CLOCKING FOR INTEL MICROPROCESSORS 193

Bandwidth Delay = An Detector 1
Control

Detector 2
Left Clk

Delay = An
I I I I

Figure 9.3. Phase detector. (Geannopoulos and Dai 1998), Copyright 0 1998 IEEE.

jy An, and then compared to the nondelayed clock signal from the right spine.
ikewise, in PD2, the clock signal from the right spine is delayed by An and
:ompared to the nondelayed clock signal from the left spine. Outputs of PDs
ndicate which of the clock signals arrives earlier. The possible combinations
Ke: left is leading right, right is leading left, and both left and right are within
he noise-band delay, &An, where the discrete time step was nominally 12 ps.
4daptive filtering reduces latency and allows the system to correct for AC power-
,upply-related components of skew variation.

The clock distribution network in a 7.5 M, 0.25-km technology IA-32 P6
Bmily microprocessor design (Schutz and Wallace 1998) has >60 ps of skew
?om left to right with the deskewing circuit inactive. With the deskewing circuit
ictive, the skew was reduced to 15 ps. The digital deskewing circuit for clock
listribution cancels out the skew (load, interconnect, and device mismatches). It
ilso compensates for the dynamic variations of temperature and voltage gradients
Tetween the two spines during all phases of active microprocessor operation.

3.1 -2. First IA-64 Microprocessor

The clock generation and distribution in the first IA-64 microprocessor is very
much like that in the IA-32 Pentium Pro described in previous section. The IA-
54 achieves a low skew through distributed programmable deskew units (Rusu
and Tam 2000). The microprocessor is supplied by an external differential clock
running at the system bus frequency. A PLL takes this clock and generates
the high-frequency internal clock running twice as fast. The clock distribution
architecture for IA-64 has three main components: (1) a balanced global clock
tree, (2) multiple deskew buffers with balanced tree structures that drive the
regional clock grids, and (3) multiple local clock buffers tapping these regional
grids. In addition to the global clock, a separate reference clock is distributed
along with the global clock to complete the deskew architecture. A block diagram
of a clock distribution topology is shown in Fig. 9.4.

The global clock (the core clock and the reference clock) is distributed as
a balanced H-tree. The core clock and the reference clock from the PLL are
distributed to eight deskew clusters, each holding up to four deskew buffers that
drive regional clock grids. Due to a high-frequency operation, the interconnect

194 MICROPROCESSOR EXAMPLES

Phase
Detector

. .

' Deskew '

Digital Filter
Control FSM

Deskew Settings
-

Core Clock

Reference Clock

Cluster

Figure 9.4. Clock distribution topology. (Rusu and Tam 2000), Copyright 0 2000 IEEE.

Regional
Clock
Grid

L&--RT+

Regional Feedback Clock

Figure 9.5. Deskew buffer architecture. (Rusu and Tam 2000), Copyright 0 2000 IEEE.

model includes inductive effects. The placement of the intermediate buffers and
the H-tree structure in order to provide minimal overall delay of the global clock
is optimized according to a detailed RLC interconnect model. In addition, all
the clock routing is fully shielded for the best noise immunity and good ground
return paths. This special shielding and routing of the reference clock made
it a better clock than the other clock signals, and it was therefore used as a
reference.

The block diagram of a deskew buffer is shown in Fig. 9.5. It consists of a PD,
a state machine, and a digitally controlled analog delay line. The PD compares
the timing of the reference clock and a sampled feedback clock from the regional
clock grid. A digital low-pass filter is used to eliminate variations from the phase
comparison. The low-pass filter tracks the result of the last four PD comparisons
and makes an adjustment if all of the last four measurements are identical. The
delay of the digitally controlled analog delay line is adjusted in accordance with
the phase-comparison results. A state machine controls deskew. The digitally

CLOCKING FOR INTEL MICROPROCESSORS 195

Input

Tip
T

I I

Delay Control Register

Figure 9.6. Digitally controlled delay line. (Rusu and Tam 2000), Copyright 0 2000
IEEE.

controlled analog delay line shown in Fig. 9.6 supports 20 linear settings that
cover a deskew range of 170 ps with an average step size of 8.5 ps.

Deskew is based upon a single reference clock that has the same delay relative
to all the regional feedback clocks. This is achieved by inserting an average
regional clock delay at the central reference clock generator. In the clocking
topology the skew caused by distribution mismatches from the global clock to
the regional clock, and the load mismatches at the regional clocks are replaced
by the skew of the reference clock and the uncertainty of the PD. The skew
of the reference network can be controlled due to its reduced span (about half
the span of the normal clock), balanced topology, and fixed predictable loading
(Rusu and Tam 2000).

The output of each deskew buffer is routed through a balanced tree to the
distributed regional clock drivers, which drive a uniform clock grid that is used
to achieve easy access from the underlying blocks. For power reduction, the
clock grid is distributed only over active circuit areas. Each regional clock grid
is independent. Independent regional clock grids make it possible for skew due to
loading differences between the regions to be explicitly accounted for, because
a single reference clock is used. If the design were implemented with only a
single or a couple of grids, it would result in excessive skew (Geannopoulos and
Dai 1998). Figure 9.7 plots the simulated clock skew for the worst-case region
using extracted layout parasitics. The skew within a regional clock grid is less
than 25 ps.

In this design, several types and sizes of local clock buffers are available
as standard cells, including support for the delayed clocks used by the time-
borrowing domino and clock gating for power reduction. The timing analysis
tools model the delay of the local clock buffers, so designers can add skew to the
local clocks as long as they meet the cycle-time and hold-time constraints (Rusu
and Tam 2000). Figure 9.8 shows the experimental clock-skew measurement
results. The worst skew of all regional feedback clocks between all deskew

196 MICROPROCESSOR EXAMPLES

120
11 0 _
100 -
go - - 80-

L 60-
7 0 -

d 50-
u, 40-

Y

Figure 9.7. Simulated regional clock-grid skew. (Rusu and Tam 2000), Copyright 0
2000 IEEE.

..

Projected max skew w/o deskew
mechanism = 1 1 Ops

f

Max skew with deskew mechanism = 28ps

\

@' $9 $' pQ +j% 4' 49 +b' +b9 4' $9 @9 4'
Regional Clock

Figure 9.8. Measured regional clock skew. (Rusu and Tam 2000), Copyright 0 2000
IEEE.

buffers is 28 ps. The equivalent skew without this deskew mechanism would
have been more than 110 ps.

9.1.3. Pentium 4

The clock network for the Pentium 4 microprocessor is an example of a multi-
GHz clock network. The clock network topology has three separate core and three
input/output (UO) bus frequencies, for a total of six clock frequencies running
concurrently.

A PLL synthesizes the core and I/O clocks from a differential off-chip refer-
ence clock that is used to achieve maximum common-mode noise rejection. A

CLOCKING FOR INTEL MICROPROCESSORS 197

inbound strobe glitch
clocksgen - protection and C

state machine detection

two-stage double-differential clock receiver converts the low-swing differential
clocks to a single-ended reference clock. The receiver is optimized to reduce
input reference jitter due to signal, power supply, and temperature variations
(Kurd et al. 2001).

In this multi-GHz design, the common, address, and data I/O busses operate at
three different frequencies. The common clock bus operates at the same frequency
as the system bus frequency; the address bus operates twice as fast; and the
data bus operates at four times the system bus frequency. Figure 9.9 contains a
block diagram of the core and I/O clock generation. The common and address
clocks, and the feedback to the core PLL are generated using a programmable
divider. The clock-enable divider generates enable signals to select the desired
edges of the core clock. This allows logical verification of all clocks, avoids
multiple global clock trees, and simplifies the interface with the core (Kurd
et al. 2001).

In order to generate a centered strobe for all bus-to-core frequency ratios with-
out compromising the outbound data timing margin, the data strobes that operate
at four times the system bus frequency are generated by a separate PLL. The
deskew synchronization state machine ensures sufficient setup/hold to account
for any phase error and jitter. This comes at the expense of one cycle of latency
for all the signals crossing the core-UO clocking domains. The inbound data are
latched using clocks derived from the received strobes. For proper data integrity,

biCi:$
strobes

lx-clk
enable

c ~ ~ ~ i ~ ~ ~ ~ ~
& sync

clock generator enable - distribution

t +
1 I

I

core core clock . distribution
data bus

PLL

core clock

deskew state

data clock MSL

input
buffer

inbound latchina

Figure 9.9. Core and I/O clock generation. (Kurd et al. 2001), Copyright 0 2001 IEEE.

198 MICROPROCESSOR EXAMPLES

differential strobes with a glitch-protectioddetection circuit are used. The filtered
strobes clock the inbound clock-generator counter to generate clocks to latch
the data in the eight deep inbound buffers. The data are then read out from
these buffers using another counter that is clocked with the core clock (Kurd
et al. 2001).

The global core clock distribution consists of a modified binary tree spanning
multiple clock spines along the width of the die. The global distribution tree
terminates in 47 domain buffers, producing 47 independent clock domains. Each
domain buffer consists of a programmable delay stage controlled by a 5-b domain
deskew register that determines the edge timing for the domain clock. The default
value for the domain deskew register is loaded from a programmable fuse array at
power-up, but can also be overridden though the test access port (TAP) for debug.
This gives a convenient way to debug interdomain speed paths. A four-stage
hierarchical network of phase detectors provides the means for comparing the
rising edge clock timings of all domain clocks. Domain buffers can be disabled
to power-down large functional units to save power (Kurd et al. 2001).

The clock repeaters in the global distribution network use an RC-filtered
power supply to suppress clock jitter due to supply switching noise. The RC
filtering provides 12-dB noise attenuation from the core power supply, reducing
the cycle jitter by a factor of 4. Figure 9.10 is a logical diagram of the clock
distribution network.

Systematic sources of skew (design convergence tolerances, layout mismat-
ches, etc.) and random skew sources (within-die variation) are compensated by
a static clock-deskewing scheme that employs the delay adjustment feature of

To Test
Access Port

I

I
3

3-stage binary
tree of

clock repeaters

Domain Buffer T
Phase

Detector

Phase
Detector

Domain Buffer

I

4 Local Clock t
Macro

L

Sequential 1 Elements

Macro

I

Sequential
Elements

Local Clock Sequential
Macro Elements

Domain Buffer Local Clock Sequential
Macro Elements

Figure 9.10. Logical diagram of core clock distribution. (Kurd et al. 2001), Copyright 0
2001 IEEE.

CLOCKING FOR INTEL MICROPROCESSORS 199

the domain clock. An interdomain clock skew of t 2 0 ps is achieved, and silicon
data have shown up to 10% frequency improvement due to skew compensation.
There is an additional flexibility to intentionally skew the domain clocks to
maximize operating frequency. According to Kurd et al. (2001), up to one speed
bin improvement was achieved in early silicon samples of the Pentium 4.

High microarchitectural performance is achieved by operating critical seg-
ments (e g , ALU) of the Pentium 4 at double the core clock frequency. On
the other hand, to conserve power, area and design effort, noncritical segments
of the die operate at half the core frequency. The multiple clock frequencies
are generated at the local clock macro level, without any additional clock skew
penalty in the frequency-domain interface signals. The double-frequency clock is
a pulsed clock created on both the rising and falling edges of the domain clock.
The pulsed clock allows simple latches to be used as MSLs, reducing power and
layout area, so the pulsed clock usage is extended to all frequency domains. To
compensate for the extra inversion needed to provide high-going pulses from the
falling edges of the clock compared to the rising edge of the clock, the duty cycle
of the clock coming out of the PLL is designed so that the rising edge is one
inversion delayed from the 50% duty cycle point. A special divide-by-two circuit
produces the non-50% duty cycles of the clock from the VCO output of the PLL.
The pulse widths of the pulsed clocks can be modified through control register
setting. Figure 9.11 shows the logical implementation of the different types of
local clock macros.

In addition to the ability to use the clock compensation to support timing
debug, on-die clock stretchkhrink (ODCS), duty cycle adjust, and bypass modes
are supported. In ODCS, the clocWduty cycle injected into the network is manip-
ulated deterministically to uncover speed path problems (Rusu and Tam 2000).
The data-clock duty cycle is adjusted in a similar way at the I/O PLL to stress
out the timing between sending and sampling data at the receiving agent. The
bypass mode provides the ability to inject arbitrary clock waveform directly to
the core, bypassing the PLL. The skew-measure circuit measures the phase differ-
ence between the feedback clocks to ensure that the skew and jitter between the
two clocking domains are within the tolerance designed in the outbound deskew.

With ever increasing clock speeds and microprocessor die size, balancing the
clock skew in large designs using simple RC trees is becoming less effective. The
increased die size often times results in the insertion delay of the clock network
of about 7-8 F04 inverters, comparable to the clock period. In addition, due to
process, voltage, and temperature (PVT) variations across large dies, clock skew
is becoming a larger portion of the useful clock period. Another important issue
associated with the gigahertz frequencies is the inductive effects, where a simple
RC model is not valid anymore and should be replaced with a more accurate RLC
model, due to the increased importance of parasitic inductance at high frequen-
cies. Controlling the clock skew using simple RC -based methods is therefore not
effective anymore. The active deskewing circuits used in the clock distribution
in Intel microprocessors are a good solution to the increasing skew problem,

200 MICROPROCESSOR EXAMPLES

Stretch 1

Stretch 0

Enable 1

Enable 2

+Gclk Gclk

.

~ I I

Stretch 1
D

Stretch 0 medium
freq. pulse Enable 1

clk phase 2
Enable 2 ClkBuf

freq. pulse
clk phase 1

Stretch 1

I I

1 ClkBuf Type 1

I ClkBuf
Type 1

-
slow freq.
pulse clk
phase 1

I I I I

freq. normal
clk Dhase 1

L
3
Stretch 0 fast freq.

pulse clk

Enable 2

Delay Buffer

--c

C

ClkBuf Type 2

Figure 9.11. Example of local clock buffers generating various frequency, phase,
types of clocks. (Kurd et al. 2001), Copyright 0 2001 IEEE.

and

because the deskewing circuits reduce the effects of PVT variations and parasitic
inductance by actively tracking the temporal variations of these parameters.

9.2. SUN MICROSYSTEMS ULTRASPARC-Ill CLOCKING

Sun Microsystems has delivered three generations of high-performance Ultra-
SPARC microprocessors over several years (Charnas et al. 1995; Lev et al. 1995;
Greenhill et al. 1997; Lauterbach et al. 2000; Heald et al. 2000b, c). UltraSPARC
microprocessors are based on 64-b SPARC V9 architecture extension of 32-b

SUN MICROSYSTEMS ULTRASPARC-Ill CLOCKING 201

Table 9.2 UltraSPARC Family Characteristics

UltraSPARC-I UltraSPARC-I1 UltraSPARC-I11

Year
Architecture
Die size
Number of transistors
Clock frequency
Supply voltage
Process
Metal layers
Power consumption

1995
SPARC V9, 4-issue
17.7 x 17.8 mm2
5.2 M
167 MHz
3.3 v
0.5-km CMOS
4 (All
t30 W

1997
SPARC V9, 4-issue
12.5 x 12.5 mm2
5.4 M
330 MHz
2.5 V
0.35-km CMOS
5 (‘41)
t30 W

2000
SPARC V9, 4-issue
15 x 15.5 mm2
23 M
1 GHz
1.6 V
0.15-pm CMOS

t80 W
7 (AU

RISC instruction set. They are designed for process scalability while maintaining
the main architectural features and backward compatibility. An overview of the
characteristics for UltraSPARC family is given in Table 9.2.

Due to the reduction in the number of logic levels in the pipeline stage,
tripled clock frequency with respect to its predecessor, and the increased impact
of the clock uncertainties, clocking has become a major issue in the design
of the UltraSPARC-111. This section reviews the system-level and circuit-level
challenges and solutions applied in this processor.

9.2.1. Clocking

The targeted high clock frequency of the UltraSPARC-111 (600 MHz originally,
1 GHz reported in Heald et al. (2000b)) requires high-quality, low-uncertainty
clock generation and distribution. A dual-loop PLL (Bhagwan and Rogers 1997)
is used to generate a high-frequency on-chip global clock from an external ref-
erence. The PLL is capable of switching from 1/32 to 1 of its VCO frequency,
allowing for low-power and full functionality in the standby operation. Measured
PLL jitter was 62 ps peak-to-peak.

In order to minimize clock skew, the global clock is distributed using a bal-
anced clock network (tree), and then terminated by a global metal grid that serves
as an equalizer for the arrival times of the clock signals that drive each major
block (domain) on the chip. The global grid is locally buffered in order to achieve
the uniform grid loading. The local buffers are also used for purposes of testa-
bility. The second level of the clock distribution is the local grid within each of
the blocks, which is terminated by the clock buffers.

The large number of clock terminals (nearly 80,000 storage elements) imposes
a large nonuniform load on the clock distribution network. In addition, the aggres-
sive dimension scaling (the wires are taller than they are wide) gives rise to the
crosstalk-injected noise. This is why the clock tree and the clock grid metal lines
are shielded and their dimensions kept as uniform as possible.

202 MICROPROCESSOR EXAMPLES

Clock Grid Delay (ps)

‘2.0

Figure 9.12. Clock distribution delay in UltraSPARC-111. (Heald et al. 2000a), Copy-
right 0 2000 IEEE.

Simulated clock grid delay, or the portion of the total skew caused by
imbalanced loads and path lengths, is shown in Fig. 9.12 as a function of the
location on the chip. The total clock skew, which also stenis from the supply
voltage, temperature, and the process variations, was 80 ps (Heald et al. 2000b).

9.2.2. Storage Elements

With the aggressive circuit design applied in UltraSPARC-III in order to meet
the targeted clock frequency, the number of logic levels per pipeline stage was
reduced to eight. This increases the relative clocking overhead to the clock cycle,
and the storage-element design becomes critical. UltraSPARC-I11 design uses
the fast edge-triggered flip-flop family (Klass et al. 1999), with either static or
dynamic consecutive logic driven by both static and monotonic dynamic output.

The basic flip-flop, SDFF (Klass 1998; Mass et al. 1999), is shown in Fig. 9.13.
It consists of two functional stages: the first stage is a dynamic evaluation stage,
and the second stage is a dynamic-to-static latch, found in the TSPC MSL (Yuan
and Svensson 1989). The operation of SDFF is based on the local generation of
an implicit clock pulse, first introduced in Partovi et al. (1996). There is a short
period of time (transparency window) following the leading edge of the clock,
during which a change in the state of the flip-flop is allowed. This approach allows
fast switching of the flip-flop, since the critical path is short compared to MSLs,
which makes it more suitable for high-speed applications. However, the hold time,
determined by the moment the transparency window closes, is long. In addition,
due to the high switching activity of the internal signals, the power consumption
is large.

is precharged high (transistor
M p l is on). The output level is maintained by the back-to-back inverters Znvs and
1 m 6 . The flip-flop is transparent during the short time window after the leading

When the clock is at the low level, the node

SUN MICROSYSTEMS ULTRASPARC-Ill CLOCKING 203

Clk

D

0-

‘ - I

Vdd

-&

Figure 9.13. Semidynamic flip-flop. (Klass 1998), Copyright 0 1998 IEEE.

edge of the clock, which is determined by the delay through inverters Znvl and
- Znvz and the NAND gate. If input D is high during that period, internal signal
S evaluates to low (transistors M N ~ , M N ~ , and MN3 in Fig. 9.13 are on), which
turns transistor Mp2 on and pulls the node Q to the high level. If the flip-flop
input D is low during this transparency window, the node 3 remains at the high
level, and there will be no other opportunity for 3 to fall until the next clock
edge. This high level on internal node 3 is used to force the node Q low via
transistors M N ~ and M N ~ . After the transparency window has elapsed, the level
of the node 3 is maintained by the back-to-back inverters, Znv3 and Znv4.

The SDFF employs a NAND gate in the positive feedback of the first stage
(conditional shutoff mechanism). As soon as the first stage of the flip-flop starts
evaluating and node ‘s discharging, the output of the NAND gate is held at the
high level, regardless of the state of its other input. This keeps the transparency
window open even if the delayed clock Clk, switches to the high level. Conse-
quently, the first stage of the flip-flop is able to evaluate for later low-to-high
data arrival as opposed to the case when an inverter replaces the NAND gate.
Therefore, the conditional shutoff mechanism improves low-to-high setup time.
In the case where low-to-high data arrival is the only one expected to happen
(e.g., dynamic logic drives the flip-flop), this mechanism can greatly improve
performance. For static signaling, where both input transitions can occur during
the evaluation, high-to-low setup time may become critical and the benefit from
this positive feedback may not be seen.

The absence of the evaluation of node 3 causes node Q to reset, which is much
faster than the time-critical low-to-high input transition. However, due to nonzero
evaluation time through the first stage, a static-one hazard exists that manifests
as a short glitch at node Q after the leading edge of the clock when both the
preceding and following states of the flip-flop are high. The glitch increases the

204 MICROPROCESSOR EXAMPLES

flip-flop’s power consumption, reduces the noise immunity, and may corrupt the
evaluation of the consecutive logic. This glitch, which is also seen in some other
flip-flop designs (Partovi et al. 1996), is a disadvantage of the SDFF, and its
propagation must be inhibited by transistor sizing.

Stripping the first stage from the standard static CMOS implementation and
making it like dynamic logic styles, as done with the SDFF, effectively speeds
up the response and allows for a simpler second-stage realization. This solution
also eliminates the need for the transparency window in the second stage used
in Partovi et al. (1996), and thus avoids disadvantageous asymmetry between the
high-to-low and low-to-high setup times. However, both stages of the flip-flop
can be in high impedance for up to half of the clock period. In order to improve
the signal integrity, both nodes 3 and Q are made static by the back-to-back
inverters (Invs -fnv4 and fnvs -fnv6). This provides noise immunity similar to
that of the domino logic gate, but results in the contention at the two nodes of
the flip-flop and somewhat increases both delay and power.

Because of the remarkably small number of logic levels per pipeline stage
(eight), an important property of the flip-flop family designed for UltraSPARC-
111 is the ease of logic embedding. The logic can be embedded in the flip-flop
in Fig. 9.13 by replacing the transistor gated by the input D with an n-MOS
network performing an arbitrary noninverting logic function, similar to the way
it is done in domino logic style (Fig. 9.14). The example in Fig. 9.14b shows
the embedding of the two-input XOR logic function into the flip-flop, that is, the
value of node Q is functionally the same as if the output of a stand-alone two-
input XOR gate is fed to the flip-flop. This allows a portion of the clocking timing
overhead to be masked by the useful work performed by the embedded logic.

The dynamic versions of the basic flip-flop are shown in Fig. 9.15. The
dynamic flip-flop is designed to drive the dynamic logic. It differs from a com-
mon domino gate by the shutoff transistors (M N ~ in Fig. 9.15a; M N ~ and M N ~
in Fig. 9.15b) that allow evaluation only immediately after the leading edge of
the clock. As with dynamic gates, its output precharges to the low level when
the clock is low. Note that the shutoff of the differential dynamic flip-flop from
Fig. 9.15b is delayed by the propagation delay inverters fnvl -Znv;! or fnvs -fnv4.
This delayed shutoff decreases the flip-flop’s setup time and increases its hold
time. In effect, the timing overhead of the flip-flop in the long path is reduced at
the expense of the increased short-path hazard.

The final version of the flip-flop used in UltraSPARC-Ill (Heald et al. 2000b)
is shown in Fig. 9.16. Its principle of operation is very similar to that of the basic
SDFF. It is modified, however, to use conditional keepers instead of back-to-back
inverters in both stages. This modification is meant to reduce the impact of the
energetic alpha particles from solder bumps, on the correct operation of the flip-
flop. It is found that energetic alpha particles are capable of corrupting the levels
of lightly loaded nodes that are not strongly driven at all times [less than 100 fC
of the charge and less than 5 mA of the driving current (Heald et al. 2000b)l. The
alternative solution to the soft-error problem is to increase the size of the back-
to-back inverters in Fig. 9.13, which would seriously impair the performance or

SUN MICROSYSTEMS ULTRASPARC-Ill CLOCKING 205

(4

vdd

-
Q

(b)

Figure 9.14. (a) Logic embedding in a semidynamic flip-flop; (b) two-input XOR
function. (Klass 1998), Copyright 0 1998 IEEE.

even functionality of the flip-flop due to the contention. In order to achieve the
required robustness to the soft errors not compromising the performance, the
sensitive nodes of the flip-flop are kept (restored) only when they are not driven
otherwise. The low level at node 3 is restored only when the input clock is at the
high level. The high level at node 3 is restored only when the conditional shutoff

206 MICROPROCESSOR EXAMPLES

d Inv,

vdd

Inv,
s p0-4

Inv,

NAND

D Inv,

-

Clk

Inv,

DO-

vdd vdd

Q 0

C I k L + ' IMN1

-

(b)

Figure 9.15. Dynamic versions of (a) semidynamic flip-flop: (a) single-ended;
(b) differential. (Klass 1998), Copyright 0 1998 IEEE.

-

(b)

Figure 9.15. Dynamic versions of (a) semidynamic flip-flop: (a) single-ended;
(b) differential. (Klass 1998), Copyright 0 1998 IEEE.

transistor is off or the input D is low. The low level at node Q is restored only
when node is at the high level. The high level at node Q is restored only when
the clock is low. In this way, flip-flop implementation is moved from the domino-
like to static CMOS-like. Note that the static implementation of the flip-flop,
driven by the signal integrity requirement, is more like the systematically derived
flip-flop from Fig. 2.16 than it is to the original SDFF. The highly desirable logic
embedding property is somewhat degraded compared to the basic SDFF, since the
dual network of the smaller p-MOS keeper transistors needs to be implemented
in addition to the n-MOS logic network of Fig. 9.14.

Clocking for the UltraSPARC-I11 microprocessor faced the complex com-
bination of the design challenges due to the technology, large die size, and

ALPHA CLOCKING: A HISTORICAL OVERVIEW 207

Vdd

1-

Figure 9.16. UltraSPARC-I11 flip-flop. (Heald et al. 2000a), Copyright 0 2000 IEEE.

performance requirement. The performance-driven, high-power clock distribu-
tion system implements advanced methods in order to supply a high-quality clock
to the large number of storage elements. The high-performance clocked storage
elements are developed as an integrated part of the UltraSPARC-111 microproces-
sor’s clocking subsystem. A small number of logic gates per pipeline stage and
an increase in the clock uncertainty make the performance of the UltraSPARC-
111 flip-flop a critical design criterion. The high speed and good logic-embedding
property of this flip-flop allow the increase in the clock frequency and improve
the testability of the design. However, the long hold time requires the use of
advanced tools to identify and fix the fast-path violations. In addition, the large
switching current that is caused by the high operating frequency and large num-
ber of transistors on the chip, together with technology scaling, draw attention
to the issue of noise robustness in clocking.

The future of UltraSPARC architecture depends to a large extent on the scal-
ability of its clocking subsystem. As the power consumption approaches the
practical limits of heat removal and the number of transistors on the die increases,
the clock has to adapt to the system of conditioned, globally asynchronous clock
domains. The signal integrity issues, seen to be a problem in this UltraSPARC
generation, can only become worse as the feature decreases, the transistor leakage
grows, and the switching current increases. Thus, in order to continue perfor-
mance scaling, the circuit design of future UltraSPARC microprocessors may
need to be responsive to the power-saving and noise-robustness requirements,
while retaining its high-speed operation.

9.3. ALPHA CLOCKING: A HISTORICAL OVERVIEW

In the past eight years, Digital has delivered four generations of high performance
Alpha microprocessors, each by itself leading the state of the art of its time.

208 MICROPROCESSOR EXAMPLES

This has been achieved through process advancements, architectural innova-
tions, and aggressive circuit-design techniques. This chapter gives an overview
of the evolution of clocking techniques through the example of clock distribu-
tion and latch-design methodology in four generations of Alpha microprocessors,
21 064-21364. The material presented is largely based on an excellent overview
of Alpha microprocessor design by Gronowski et al. (1998).

Table 9.3 illustrates the key design parameters of the four Alpha microproces-
sor generations. The 21064 was the first implementation of the Alpha architecture.
Designed to operate at 200 MHz in a 0.75-pm n-well CMOS process, it allowed
about 16 F03 gate delays per cycle, including latching, with a power dissipa-
tion of 30 W from a 3.3-V supply (Dobberpuhl et al. 1992). The die contains
1.68 million transistors, half of which represent noncache logic. The second gen-
eration, 21 164, was designed to operate at 300 MHz in a 0.5-pm n-well CMOS
process, with the number of F03 gate delays reduced from 16 to 14 to enable
a cycle time reduction of 10% beyond process scaling (Bowhill et al. 1995).
With 2.5 million noncache transistors out of a total of 9.3 million, this proces-
sor dissipated 50 W from a 3.3 V supply. The 21264 was designed as the third
generation in a 0.35-km n-well CMOS process with a target speed of 600 MHz
and the number of F03 gate delays further reduced to 12, which provided an
additional 10% clock-cycle reduction relative to the previous design (Gieseke
et al. 1997). A nominal power supply of 2.2 V limits the power consumption to
72 W. The total number of transistors is 15.2 million, with a noncache transistor
count of more than double that of the 21 164.

The latest generation of Alpha microprocessor, 21364, contains the 21264 in
its core, surrounded by level-two cache, a router unit, and a Rambus memory
controller (Jain et al. 2001). It was designed to operate at a clock frequency of
1.2 GHz, in a 0.18-pm bulk CMOS process, dissipating 125 W from the 1.5-V
supply. The total number of transistors is 152 million.

9.3.1. Clocking

The motto of the Alpha clocking system design can be stated as: “The primary
objective of the clock system is to not limit the performance of the microprocessor”

Table 9.3 Alpha Microprocessor Features

2 I064 21 164 21264 21 364

Number of # transistors [MI 1.68 9.3 15.2 152
Die size [mm’] 16.8 x 13.9 18.1 x 16.5 16.7 x 18.8 21.1 x 18.8
Process 0.75 k m 0.5 k m 0.35 p m 0.18 p m
Supply [VI 3.3 3.3 2.2 1.5
Power [W] 30 50 72 125
Clk. frequency [MHz] 200 300 600 I200
Gateskycle 16 14 12 12

ALPHA CLOCKING: A HISTORICAL OVERVIEW 209

(Gronowski et al. 1998). Indeed, the targeted operation frequencies required the
generation and distribution of a very high-quality clock with very low skew, and the
use of low-latency latches. Power supply noise, process variation, and interconnect
delay introduce uncertainty in the timing of clock edges, reducing the maximum
clock frequency. Moreover, slow clock edges cause uncertainty in latch timing and
a possible hold time violation due to race-through.

The 2 1064 microprocessor departed from the traditional four-phase clocking
style used in VAX machines. The choice to use two-phase single wire level
sensitive clocking eliminated the dead time between the phases, resulting in a
saving in overall cycle time. The robustness of the four-phase clocking scheme
to race-through was maintained by careful selection of latch structures. The clock
distribution network, based on a metal 2-metal 3 grid, and driven from the center
(Fig. 9.17a), averages out the delays over different locations on the die. The plot
of the clock skew across the die is shown in Fig. 9.18, with the largest skew of
240 ps, or equivalently, 0.8 F03 gate delays, in the corner of the grid.

Figure 9.17. Alpha microprocessor final clock driver location: (a) 21064, (b) 21 164,
(c) 21264.

240
200
160

3 80
40
0

v

g 120

Figure 9.18. 21064 clock skew. (Gronowski et al. 1998), Copyright 0 1998 IEEE.

210 MICROPROCESSOR EXAMPLES

Figure 9.19. 21164 clock skew. (Gronowski et al. 1998), Copyright 0 1998 IEEE.

By splitting the final driver into two banks placed midway between the center
of the die and the edges (Fig. 9.17b), clock skew was halved in the 21 164 micro-
processor relative to the 21064, and uneven thermal distribution was avoided. A
predriver is located in the middle of the die, distributing the clock to two driver
banks. The plot of the clock skew across the die is shown in Fig. 9.19, with a
top skew of 80 ps, that is, 0.4 F03 gate delays. The plot clearly indicates the
position of the two drivers, with skew increasing horizontally toward the ends
and the middle of the die.

With the increase in microprocessor complexity, power consumption became
one of the critical factors driving design decisions. Clock distribution was identi-
fied as one of the main components of high power consumption. Grid-based clock
distribution networks introduce extra capacitance, leading to suboptimal power
conservation. Hence, the 21 264 clock distribution style departed from the global
grid-based design, introducing a trade-off between the buffered-tree design, with
its lower power but greater mismatch, and the grid-based design, with its higher
power dissipation but lower mismatch.

For the first time, a hierarchy of clocks has been introduced, as shown in
Fig. 9.20, that enable clock conditioning to save power and local clock manip-
ulation to increase performance in critical sections, for example, using “time
borrowing.”

The global clock network is distributed in window-like configuration
(Fig. 9.17c), with four grids driven by clock drivers from all sides to minimize
the skew. A combination of H and X trees is used for the predriver to distribute
the clock to the main clock drivers across the die (Friedman 1995). The global
clock skew is shown in Fig. 9.21, with a maximum skew of 72 ps, that is, 0.5
F03 gate delays. The plot clearly outlines the four grids, with skew peaking in
the middle of each grid.

The fourth generation of Alpha microprocessor, 21 364, introduced new chal-
lenges in the design of the clock distribution network. A plain extension of the

ALPHA CLOCKING: A HISTORICAL OVERVIEW 21 1

Figure 9.20. 21264 clock hierarchy. (Gronowski et al. 1998), Copyright 0 1998 IEEE.

Figure 9.21. 21264 global clock skew. (Gronowski et al. 1998), Copyright 0 1998 IEEE.

clock distribution technique from the core 21264 would not work over additional
clock domains, such as the L2 cache clocks and the network-interface clock
(NCLK), because of the enormous size of the die and projected power con-
sumption of a single global reference clock. Four clock domains were created
instead, as shown in Fig. 9.22, where GCLK is the global clock of the 21264
core, and L2Lclk, L2Rclk, NCLK, are synchronized with the GCLK using three
DLLs, which reside at the root of each additional corresponding clock domain
(Xanthopoulos et al. 2001).

The main role of a DLL is to “hide” the skew of the global clock grid from
the center to the periphery from which the NCLK and other clocks would need to
be distributed further. Using DLLs, the roots of the NCLK and other additional
domains are referenced to the unskewed GCLK reference. In this way, all four
domains are globally synchronized and the only skew that remains is the skew
of each clock’s local distribution network. Thus, both the skew and jitter are
reduced, although any jitter introduced by the reference clock is directly passed
to the domain clock through the DLL.

21 2 MICROPROCESSOR EXAMPLES

Figure 9.22. 21364 major clock domains. (Xanthopoulos et al. 2001), Copyright 0 2001
IEEE.

Figure 9.23. 21364, NCLK clock skew, (Xanthopoulos et al. 2001), Copyright 0 2001
IEEE.

The design of the clock distribution network for NCLK domain was especially
hard. due to the n-shape of the domain. Rectangular X trees are used to distribute
the NCLK to the grid at the north of the core, and partial H trees are used along
the sides. The plot of the NCLK skew performance only is shown in Fig. 9.23.

9.3.2. Clocked Storage Elements

Clock distribution and CSEs make up the backbone of every microprocessor
system. They cannot be designed independently of one another, nor can they

ALPHA CLOCKING: A HISTORICAL OVERVIEW 213

disregard the architectural features of the system. The preceding section discussed
the evolution, or sometimes, revolution, in the clock design of four generations
of the Alpha microprocessor. No specifics were given about the CSE design
methodology. However, it should be noted right away that these two features are
very tightly coupled and were designed concurrently, reflecting a global clock
and CSE design methodology.

In each generation of Alpha microprocessor, new system requirements forced
the changes in both clock distribution and latch circuit design and methodology.
In addition to speed, other important goals have been minimal clock loading, low
power dissipation, and small setup and hold times, that is, a narrow sampling
window. In order to achieve improvement in speed beyond the process scaling,
from generation to generation, one of the options, heavily used in Alpha design,
has been to use a smaller number of gates in the pipeline. Starting with 16
F03 gate delays per cycle in the 21064 (Table 9.2), and ending with 12 F03
gate delays in the 21264 and 21364, the latch overhead became increasingly
important. The need for short latency and setup time, as well as a free logic
function with the inclusion of logic in the input or output stages of the CSE,
became significant factors driving CSE design methodology.

The 2 1064’s revolutionary two-phase, level-sensitive, single-wire clocking
scheme, a break from the traditional four-phase scheme, required new design
strategies (Dobberpuhl et al. 1992). These focused mainly on the more careful
design of CSEs and was particularly careful to minimize the risk of race-through,
which was not present in previous versions of Digital’s microprocessors. The
TSPC level-sensitive latches designed by Yuan and Svensson (1989), were the
first CSEs to use a two-phase, single-wire clock. A variation of these latches was
used in the 21064 to prevent data race-through. The latches used the unbuffered
global clock directly, largely enhancing race immunity.

To understand the operation of the TSPC latches, refer to Fig. 9.24a. When
Clk is high, P I , N3, and N1 function as an inverter, complementing the D to
produce X . Transistors P2, N4, and N2 function as a second inverter, inverting X

D

Clk

Figure
IEEE.

Clk D $p N 4

N2

- -

(4
Figure 9.24. 21064 modified TSPC latches.
IEEE.

I

(4
9.24. 21064 modified TSPC latches.

(b)

(Gronowski et al. 1998), Copyright 0 1998

214 MICROPROCESSOR EXAMPLES

to the output. The output of the second inverter is dynamic, and hence shielded
by additional inverter stage, which increases immunity to coupling noise. When
Clk goes low, two gated inverters are tristated to ground by N3 and N4 being
turned off. Now, if D , X , and Q are initially high, low, and high, respectively,
when Clk is low, the transition of D falling charges X to high, turning off P2

and tristating Q from both power and ground. In the opposite situation, when
D , X , and Q are initially low, high, and low, respectively, the transition of D
rising tristates node X to high, leaving Q tristated to low. In summary, after Clk
goes low, additional transitions on D leave nodes X tristated or driven high, and
Q tristated to its initial value. This behavior is exactly that of the level-sensitive
latch, which is transparent when Clk is high and opaque when Clk is low. The
operation of the structure in Fig. 9.24b is dual to that in Fig. 9.24a. In the origi-
nal structures, the only node exhibiting the unusual noise immunity risk is node
X. This is because X can be tristated high, with Q tristated low when the latch
is opaque (Fig. 9.24a), which translates into a dynamic node driving a dynamic
gate that is very sensitive to leakage through P2 charging node Q and destroying
the data. To increase the noise margin at node X, (a) weak feedback device, Ps ,
was added to prevent X from being tristated high. The device should be sized
to absorb any reasonable noise and keep P2 turned off. Transistor NS plays an
analogous role in Fig. 9.24b. The latches shown are just examples of the variety
of latches used in the 21064, with embedded logic as gated AND and NAND,
OR, and NOR gates. The zero-delay goal between the latches (as in the shift
registers), their variety, hence different latency, setup and hold times, and clock
uncertainty increased the risk of race-through as a major functional concern. This
was addressed by paying special attention to the clock distribution and extensive
latch simulations. Clock skew is functionally harmless if data propagate in the
opposite direction to the clock waveform. In this case, no hold time violation
is possible, but setup time can be violated, since the skew is subtracted from
effective cycle time. In the case where both the clock and the data propagate
in the same direction, clock skew can potentially cause a hold time violation,
and hence, race-through. Since data progate from the periphery to the center of
the chip, the radial distribution of the clock from the center of the chip prevents
the data from overtaking the clock. Latch simulations involved exploration of
process corners and parameters that could potentially cause the mix of any of
the two latches to fail functionally. With 1.0-ns (3.3FO3 delays) Clk rise and fall
times, latches showed signs of failure (Dobberpuhl et al. 1992).

Progressing to higher clock frequencies, the TSPC latch overhead became
prohibitive for the 21 164 design, hence a family of dynamic, level-sensitive,
pass-transistor latches was used to minimize the latency of the latch. Clocking
style remained single-wire, two-phase, requiring the use of phase A and phase
B latches (Bowhill et al. 1995). Figure 9.25 shows A-and B-type latches, while
Fig. 9.26 shows the embedding of logic in the 21064 and 21164 latch families.

Latch overhead reduction by using the embedded logic became very impor-
tant, as the number of gate delays per cycle was reduced from the previous
generation in order to increase the cycle time beyond the process scaling. Using

ALPHA CLOCKING: A HISTORICAL OVERVIEW 215

D -

A Clk Clk

(4 (b)

Figure 9.25. 21164: (a) phase-A latch, (b) phase-B latch. (Gronowski et al. 1998), Copy-
right @ 1998 IEEE.

Dl -
Clk ii z!i?-LDQ

Figure 9.26. Embedding of logic into a latch: (a) 21064 TSPC latch, one level of logic,
(b) 21 164 latch, two levels of logic. (Gronowski et al. 1998), Copyright 0 1998 IEEE.

this approach, the latching overhead was reduced to only one pass-gate delay in
critical paths with structures, as in Fig. 9.26b. It is very important to note, how-
ever, that special care had to be taken to prevent the output node from coupling
back onto the dynamic nodes (X) through the output transistors. The methodol-
ogy required that inputs to the final logic gate come from the same latch type,
phase A or phase B, in order to prevent the back-gate coupling effect. This effect
occurs when the top transistor in a NAND gate n-stack is driven by a dynamic
node, while the input to the bottom transistor of n-stack rises, pulling the inter-
mediate node of the n-stack from V D ~ - V, to ground. In that event, the dynamic
node driving the top of the stack is pulled down as well via capacitance, Cg,s.
Coupling the output of the final gate to the dynamic nodes via Miller capacitance
of the output transistors was reduced by the requirement that the latch nodes
drive only the final two-input logic gate, using minimal routing.

Local generation of the second phase of the clock introduced one gate delay
between the source latch becoming transparent and the destination latch becoming
opaque, thus enabling the race-through and making the zero-delay requirement
between the latches impossible to achieve. The race-through was prevented by
controlling the skew on the globally distributed clock, precise sizing of the local
clock buffer inside the latch, and requiring a of minimum of one logic delay
element between all latches.

216 MICROPROCESSOR EXAMPLES

Driven by opposing requirements to increase the clock frequency by more
than the process scale factor and to reduce the clock power, the design of the
clocking strategy for the 21264 presented new challenges and resulted in global
changes in clock distribution and latch methodology. To save power, conditional
clocks were used mandating the use of slow, static latches. Hence, a family of
flip-flops was used, based on the dynamic flip-flop shown in Fig. 9.27 (Matsui
et al. 1994).

When employing a fast and sensitive regenerative sense-amplifier stage (Mad-
den and Bowhill 1990) as a pulse generator, this structure has unnecessary
overhead of two gate delays introduced by the cross-coupled NAND-based S- R
latch at the output. In critical paths, the static S-R latch is replaced by the
dynamic S-R latch structure (Gieseke et al. 1991).

The use of flip-flops simplified the timing and race-through design issues
that were magnified by the use of conditional clocks, but has also introduced
new timing analysis requirements. The number of gates between latches used in
earlier designs would not work in this methodology. For example, in Gronowski
et al. (1998), two possible scenarios are depicted, as shown in Fig. 9.28, which
illustrates the capability of buffering, on the left, and conditioning, on the right,
of the main clock, subject to a certain set of constraints. Timing analysis first
identifies the clock that is common to both the driving and receiving path, shown
as D and R in Fig. 9.28. Critical path analysis verifies that the difference in
delay between the drive path D and receive path R , including the skew and
setup time, does not exceed the phase or cycle times of the common clock. The
worst-case analysis takes into account effects that minimize R and maximize D.
The races pose a dual problem where the effects that maximize R and minimize
D are concerned. For case that path R , including the hold time and skew, is
longer than D , a race-through occurs. A detailed analysis of the clocking style
and verification methodology is given in Bailey and Benschneider (1998).

Clk

Figure 9.27. The 21264 flip-flop. (Gronowski et al. 1998), Copyright 0 1998 IEEE.

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 217

Logic
/-----+

8 i D I cond I , GCLK , , ,
Critical Path Definition and Criteria
- ldentify common clock, D and R
- Maximize D
- Minimize R

Race Definition and Criteria
- ldentify common clock, D and R
- Minimize D
- Maximize R

D+ U- R S TcYcje

Figure 9.28. Critical-path and race analysis for clock buffering and conditioning.
(Gronowski et al. 1998), Copyright 0 1998 IEEE.

The fourth generation of Alpha processor did not change the flip-flop method-
ology, but rather has dealt with the increased area and complexity through the
use of the synchronized main clock domains.

Throughout the past eight years and four generations, the Alpha microproces-
sor continued to deliver the peak performance and leading the industry with new
ideas in all aspects of microprocessor design. Of these, the clocking and latch
design methodologies were addressed in this section.

One of the interesting conclusions in Bailey and Benschneider (1998) is that
in the design of high-performance processors, more and more attention has been
paid to the accurate modeling of delay-path variations, clock skew, process, and
so forth, in order to be able to predict, nonconservatively, but accurately the
behavior of the system, and in that way reliably decrease the operating margin as
much as possible. Beside the gains in performance obtained from process scaling,
this type of increased level of detail in analysis continually enabled new material
for trade-offs and encouraged the creativity of architects and circuit designers.

It is hard to predict what type of clocking and CSE design will be used
in future machines. The requirement for speed effectively mandates latchless
pipelines with only a few gates per stage. On the other hand, the power-dissipation
requirement mandates the use of conditional clocking, which requires reliable
static latch operation. The increase in design size dictates clock hierarchy and
globally synchronized separate clock domains. In future, even more attention
will be paid to the separation of critical paths from the rest of the data path and
control and possible application of different clocking methodologies to different
sections based on the power-performance requirements.

9.4. CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS

Traditionally all clocked storage elements in IBM processors were required to
adhere to LSSD methodology (Williams and Eichelberger 1977). LSSD implicitly

218 MICROPROCESSOR EXAMPLES

prohibits the use of flip-flops. Therefore ail the clocked storage elements are
level-sensitive latches. Level sensitivity in IBM terminology means that the only
mechanism responsible for capturing data is the logic value of the clock signal
(level), and not the rate of the clock signal transition. Flip-flop structure is sensi-
tive to variations in the clock rise and fall times, which can present a reliability
problem, as discussed in earlier chapters of this book. This fact was recognized
at IBM very early, thus resulting in LSSD restrictions on the use of flip-flops.
Thus the clocked storage element used in IBM is a “polarity-hold, level-sensitive
latch.” A logic implementation of a hazard-free polarity-hold latch is shown in
Fig. 9.29.

In IBM terminology polarity hold means the ability to maintain the logic level
(polarity) of a signal by the clocked storage element (latch, in this case). In the
example shown in Fig. 9.29, the value of the data signal is reflected in its true
form at the output.

Before going further, it is important to provide a basic explanation of IBM
LSSD methodology.

9.4.1. Level-Sensitive Scan Design

The issue of testability is closely related to the latch design and choice of a
clocked storage element used in a system. Therefore, LSSD is a design method-
ology. It was developed at the IBM Corporation and used systematically in all
IBM designs (Eichelberger and Williams 1977; Williams and Eichelberger 1977).
The origins of LSSD can be traced to the IBM System 360 models and the NEC
2200 model 700, although LSSD was fully implemented for the first time on
IBM System 38 (Stolte and Berglund 1979). The origins of scan-based design
go even further back in time to the research conducted at Stanford University
(Williams and Angel 1973).

LSSD is one solution to the problem of test and test generation for digital
systems. The basic idea of LSSD is to convert a sequential network into a combi-
national network by logically cutting the feedback loops. This logical dissection is
performed by converting all storage elements in the Huffman sequential-network
model (Fig. 1.3.) into shift register latches and connecting them into one or more
shift registers, as shown in Fig. 9.30. At this point it is possible to place the
logic network into any desired state by shifting-in the proper values into the

+ Clock
Data ETe

Out

l o

Figure 9.29. Hazard-free level-sensitive polarity-hold latch. (Eichelberger 1983)

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 219

Inputs (X) outputs (Y)
Combinational A I ~ - . -

\ 1 Y = Y(X, S,)

Present stat2
sn

Next State Sn+,
Scan-Out

Figure 9.30. General LSSD configuration.

Shift-Register Latches (SRL). It is also possible to scan out any response. Thus,
for testing purposes, the network looks like a combinational network, which
greatly facilitates test generation.

There are two aspects of LSSD methodology that impact timing and clock.
The first attribute is the requirement that the system is level sensitive, and the
second one is the requirement for a scan design.

Level sensitivity is defined in the requirements for the latch design. The latches
used are assumed to be reacting to logic voltage levels and not to be affected
by the clock transition time. This is consistent with the definition of a latch
in this book, as opposed to a flip-flop. Further, clocks are recommended to be
nonoverlapping during system operation and are never overlapping during testing.
Hence the network is immune to fast paths.

The requirement for scan design is implicit in the requirement that the latches
used consist of SRLs, which are interconnected with one or more shift-register
chains. Thus, the key capability of scan design is the capability of complete
control and to observe all latches used in the system.

These two features are essential in making a sequential network appear like a
combinational network. LSSD makes it possible to scan-in, as well as scan-out,
values into and from all the latches in the system.

The advantages of LSSD are summarized as follows:

1. System performance is independent of the time-dependent characteristics
of the signals, such as rise and fall time.

2. As far as test generation is concerned, all the logic networks are treated
as combinational, thus greatly simplifying testing and the test genera-
tion process.

220 MICROPROCESSOR EXAMPLES

3 . The ability to scan simplifies the debugging of designs.

4. The ability to scan simplifies the machine bring-up and diagnostic process.

5. Design verification is simplified.

6. In the case where complete systems are designed using LSSD, the same
manufacturing tests can be applied to the diagnosis of faults on the cus-
tomer's site.

There are two basic ways to design logic in LSSD. One is by using a single
latch, the other is by using the double-latch design (as described in this chapter).
Double-latch design is also known as M-S or latch-trigger design. IBM LSSD
SRL is shown in Fig. 9.31.

A Shift-Register Latch is defined as a combination of two latches: a data
input latch L I and a second latch L2, which is used in normal, or shift register,
operation. Latch L I can be fed by one or more system clocks, data inputs, set
inputs, reset inputs, scan data inputs and shift-A clock inputs. Latch L2 only can
be fed by latch L I and shift-B clock inputs. System data outputs can be taken
from latch L I , from latch L2, or from both L1 and Lz . At least one output from
LZ must be used to provide a shift-register data path.

In double-latch design, shown in Fig. 9.32, outputs are taken from the L2
latches. Since the L1 and L2 latches must have separate clocks, this design is
inherently level sensitive. During the normal operation the L1 -L2 (M-S) latch
is clocked with the -C and +B clocks. Clock -C is responsible for latching
data input into the master latch L1. In the scan mode L I -L2 latches are clocked
by +A and fB clocks, and the master latch is latching data from the Scanln
input. All the latches are interconnected into a long chain forming a shift register.
The content of this register is scanned out into the tester, and alternatively a new
test vector is scanned in.

Double-latch design requires no more than two system clocks, C1 and C2, and
two shift clocks, A and B . The C2 clock for the L2 latch behaves like a shift
B clock during testing and a system clock CZ during normal operation. It is not
necessary to use two separate clocks, C2 and R , since the function can be shared
during the normal operation and testing.

L , L a t c h

- L2

+L2

I '

+B Clk 4
Figure 9.31. LSSD shift register latch.

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 221

State S,
I

I

B shift o I
or scan in

Figure 9.32. LSSD double-latch design.

LSSD is a concept that can be applied to a complete system design from the
module or a card to a chip.

9.4.2. Examples of Clocked Storage Elements

ISM Sl390 G4 Parallel Server Processor There are two types of latches
used in the IBM Y390 G4 processor (Sigal et al. 1997): a single L2 latch and
a L I - L ~ pair. There are no midcycle latches (split latches) used, in spite of L2
being a single latch. For each type of latch, there is a corresponding clock block
whose purpose is to generate local clocks for the latches. The first combination
of the latch and the local clock generator is shown in Fig. 9.33. A short local
clock pulse CLKL is generated from the global clock CLKG following the trailing
edge of the global clock. To create CLKL, the principle of reconvergent fan-out
with nonequal parities of inversion (five in this case) is used on the CKLG.
This generates a short negative pulse of approximately six inverter delays, which
is used as a local clock. The local clock, CLKL, is clocking a domino style
multiplexer.

During the normal operation, the local clock is enabled and it is used to
clock the first stage (master latch), consisting of a domino-style multiplexer.
Various inputs could be latched into the master latch, depending on the state

222 MICROPROCESSOR EXAMPLES

SELECT-A -5

7-n-n-r CLKG

N-OUT)

I * I

TEST-DISABL E *

Figure 9.33. LSSD SRL with multiplexer used in the IBM S/390 G4 processor. (Sigal
et al. 1997), reproduced by permission.

Ir.

7-n-n-r CLKG

N-OUT)

I * I

TEST-DISABL E *

Figure 9.33. LSSD SRL with multiplexer used in the IBM S/390 G4 processor. (Sigal
et al. 1997), reproduced by permission.

Ir.

of the processor’s control signals. The second stage latch is a slave latch, thus
the M-S pair consists of an input domino multiplexer and an Lz latch. For this
operation to go undisturbed, both the A-CLK and B-CLK signals are held at
logic-0 level. In the test mode, the system latches are connected into a scan
chain. The TESTDISABLE signal is held at the logic-0 level, thus enabling the
value from the SCANJN input. Scaning the test vectors in and out of the system
is accomplished by asserting the A-CLK and B-CLK signals. In addition, CLKL
transfers the value from the L I scan latch into the domino master latch. Both
dynamic and static implementation of the input multiplexer are attainable. A
static multiplexer version of the multiplexer, SRL, used in the IBM 9390 G4 is
shown in Fig. 9.34.

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 223

The second clocked storage element is used in non-timing-critical data-flow
macros and in control macros where all latches are single-input and the speed
advantage of an L2-only latch is reduced. The local clock block generates Cl/C2
clocks. The clock overlap between C1 and C2 is kept close to 0. However, it
is possible to create a positive overlap between the C1 and CZ clocks in order
to increase system performance by reducing the latch propagation delay. This
requires padding the fast signals, as discussed in the previous chapters. The
second clocked storage element is shown in Fig. 9.35. It consists of a relatively
simple M-S LlIL2 latch combination and a local clock generator responsible
for generating C1 and C2, which are two-phase nonoverlapping clocks.

In order to have better control of clocks in the W390 G4 processor, sev-
eral clock-generating elements were used. Their purpose is to provide different
phasing of the Cl/C2 clocks. The clock generator shown in Fig. 9.36. is used
to provide separation (nonoverlap) between the C1 and C2 clocks in order to

CLKG

c1

c2

A C / K . .

7-nJ-u-''---'- ,*
SCAN-IN

IN
7-A-n-r

B-CLK L

c2 CLKG -
C2- ENA BL E -
C1-DISABLE- c1 !

Figure 9.35. A clocked storage element is used in the non-timing-critical timing macros
of the IBM 9390 G4 processor. (Sigal et al. 1997), reproduced by permission.

C 1- DlSA BL E c1

Figure 9.36. The clock-generation element used to detect problems created with fast
paths: IBM S/390 G4 processor. (Sigal et al. 1997), reproduced by permission.

224 MICROPROCESSOR EXAMPLES

detect problems created with fast paths. Alternatively, it is possible to delay the
C1 falling edge from its nominal value to examine how much margin exists for
fast paths. Another circuit delays both the CI and C2 clocks from their nominal
values, thus allowing for cycle stealing (time borrowing) from the previous cycle.

IBM PowerPC The IBM experimental processor, which was the first one to
reach the 1-GHz mark (Silberman et al. 1998), uses multiplexed input latches in
order to merge the important logic operation with the storage function (Fig. 9.37b).
The latches provide data-input ports, hold-input, and a scan-input port for full scan
testing. The inputs take single-rail static or a dynamic signal and generate dual-rail
pulsed outputs for driving dynamic logic. The L I latch is a differential structure
driving the L2 latch, which is also used for scan output. The scan-select input has
priority over other mux-select inputs, as shown in the Fig. 9.37a.

ISM PowerPC 603 The IBM PowerPC 603'", which was designed under
a cooperation agreement between IBM, Motorola, and Apple Computer, uses
another standard IBM approach to clocking and design methodology under com-
pliance with LSSD. It represents a classic M-S (L l -Lz) structure clocked by
two separate clocks, C1 and C2, and the ACLK clock, which is used during
the scan mode. A schematic diagram of PowerPC 603 M-S latch (Gerosa et al.

SG SCAN-GATE

SEL-EXT, L SEL,
NCLK - CLK

(4

Figure 9.37. The experimental IBM PowerPC processor. (Silberman et al. 1998), repro-
duced by permission.

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 225

Figure 9.38. The PowerPC 603 MSL. (Gerosa et al. 1994), Copyright 0 1994 IEEE.

ACLK

c1

C1-FREEZE
C1-TEST

GCLK
SCAN-C1 ACLK

WAITCLK-
OVERRIDE -

c2

CZ- TESTA
CZ-FREEZE

Figure 9.39. The PowerPC 603 local clock regenerator. (Gerosa et al. 1994), Copy-
right @ 1994 IEEE.

1994) is shown in Fig. 9.38. The characteristics of this clocked storage element
have been examined in earlier chapters.

A more interesting aspect is a local clock regenerator, which is used to gen-
erate the local C1 and C2 clocks from a global clock signal clock, shown in
Fig. 9.39. This clock regenerator provides electrically correct local clock signals,
as well as test clocks and processor power management control features. The
outputs of the local clock regenerator are master and slave latch clock signals,
C1 and C2, respectively, and the scan port clock ACLK. The input to the local
clock regenerator is global clock signal, GCLK, which is the main clock signal
distributed across the PowerPC 603 chip. Shutting off the local clocks is possi-
ble using the OVERRIDE signal. This is used for static power management in
order to reduce power. Test control is accomplished by injecting the CI -TEST,

226 MICROPROCESSOR EXAMPLES

Cz-TEST, and SCANXI signals. For local power management, local clock sig-
nals can be frozen by using C1 _FREEZE and C2 _FREEZE controls. WAITCLK
input has the function of providing additional separation between the C1 and C2
clock signals, in the event of unanticipated race conditions.

IBM Power4 Microprocessor The 1BM P0wer4~~ provides processing power
for the IBM eServer p690, which is an IBM high-end 64-bit POWER'" archi-
tecture. The server can be configured as an 8-to-32-way server system. The
microprocessor is implemented using 174-million transistors, and it runs at a
frequency higher than 1.3 GHz. The processor, shown in Fig. 9.40, contains two
microprocessor cores, high-speed busses, and an on-chip memory subsystem.
It is fabricated in state-of-the-art IBM 0.18 I-I. CMOS silicon-on-insulator (SOI)
technology, with seven levels of copper wiring. The IBM Power4 processor uses
novel clocking and latches, which were necessary in order to achieve such a
high-frequency of operation (Warnock et al. 2002).

A high-quality global clock signal distributed to every latch and clocked circuit
was essential. The global clock distribution is especially challenging for a large
and complex chip because of the longer wires and the gain needed to drive the
large distributed clock load.

Latch Design In keeping with IBM tradition, the majority of the clocked storage
elements used are traditional MSLs. The scan input was brought into the keeper

Figure 9.40. IBM Power4'" 64-bit processor used in IBM eServer p690. The microproces-
sor consists of 174 million transistors and runs at 1.3 GHz, contains two microprocessor
cores. and an on-chip memory subsystem. It is fabricated in state-of-the-art IBM 0.18 ~1
CMOS SO1 technology with seven levels of copper wiring (Warnock et al. 2002), repro-
duced by permission.

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 227

latch, thus minimizing its impact on latch delay. The MSLs were designed to be
able to tolerate a certain amount of clock uncertainty. In order to minimize the
pipeline overhead imposed by the latch, designers were allowed to customize the
logic gate, which drives the master latch, as shown in Fig. 9.41. All the latches
were sized in order to separately control and optimize the latch power, setup
time, and clock-to-data-out delay.

The two local clock phases (CI and c2), as well as the scan clock, were derived
locally from one tap of the global clock, in the way shown in Fig. 9.42.

Each local clock signal generator and buffer is controlled by two control
inputs for test and debug capability: “c1 -Stop” and “Scanclk-Stop”. For protection
against race conditions, two other control signals: “Local-u” and “Global-u” were
provided. The “Local-u” signal is used to delay the rising edge of the clock, and
is controlled by the designer. The “Global-u” signals were used to selectively
delay the rising edge of the clock for debugging purposes, and are controlled by
scan latches. The CI and scan clock buffers had separate stop controls, allowing
arbitrary sequencing of the scan and CI (system) clocks, while the c2 clock was
free-running, with the stop signal tied to ground.

In order to reduce the overall overhead of the CSE and absorb the clock
skew and process parameters variability in the across-chip line-width variation,
“split-latch” design, shown in Fig. 9.43, was allowed. This design style already
has been discussed in Section 4.2, and an example was provided in Section 4.3
(Fig. 4.2 and Fig. 4.5). This design style allows the logic signals on critical paths
to propagate through alternating cycle-boundary (master, or cl) and mid-cycle
(slave, or c2) latches without incurring a setup time penalty. On average, a half-
cycle of logic is allowed between the cl and c2 latches or between the c2 and
c1 latches. Less logic between any two latches means that time is given up to
the logic following the receiving latch, and more logic means that time is taken
from the following logic (Warnock et al. 2002).

However, the area overhead for LSSD compatibility becomes significant in this
case, since an additional c2 latch must be provided (aside from the separate c2

scan-cl k

Attached
Logic Data-in

C1 c2

p
_out

Figure 9.41. Standard transmission-gate MSL with LSSD capability. (Warnock et al.
2002), reproduced by permission.

1

0

R
I 3
I

m
R
0
cn

I
r 0
t
m
0 u3

-

-

0
I

Y
0
k
0 v)

228

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 229

scan-cl k

Scan-in +-,
scanLC1 k

Inputs from other
latches of logic gates

Figure 9.43. Scannable split latch with LSSD capability used in the IBM Power4'".
Designers were allowed to tune transmission gate size and specify input and output gates
(Warnock et al. 2002), reproduced by permission.

added to the downstream logic) for scan functionality. Even in this situation, the
extra area was a relatively small addition to the overall total, and the flexibility of
this scheme would often allow area savings in other parts of the design (Anderson
et al. 2001).

Aside from the benefits offered by split-latch design, the IBM Power4 team
found some drawbacks in this design as well, such as the increased difficulty of
timing paths through logic containing these latches. The timing tool had to be
able to deal with multicycle paths through transparent latches, including loops and
other difficult topological situations, and then had to present the timing data in
an intelligible way. In addition, there were issues with testing at speed, including
the fact that it became difficult to assess how many back-to-back cycles would
be needed to capture all of the critical timing paths through the machine. Also,
timing failures could become much more difficult to debug.

A number of special latch cells with an integrated logic were built into the
design library. These cells allowed the logic to be merged with the latch cell,
and avoided exposing the latch transmission-gate input to potentially noisy wires.
These cells are shown in Fig. 9.44.

Split-latch designs were available with an integrated front-and-back logic gate,
as shown in Fig. 9.45.

These solutions allowed the designer to have almost the same resources as
the custom designer in order to minimize the latch overhead and provide for a
clock-skew-tolerant operation.

In summary, IBM microprocessors use a conservative design with a strong
emphasis on testability and reliability, which has been IBM's trademark over the
years. All the latches used in IBM products are required to be LSSD compatible,

230 MICROPROCESSOR EXAMPLES

iput gate choices

+--
l3-
33-
=5>-

Scan-out

Output Buffer:
two choices
- light load

- heavy load

scan-cl k

scan-i

Figure 9.44. Library MSL with integrated front-end logic gate choices. (Wamock et al.
2002), reproduced by permission.

Input gate choices

-D--
33-
23-
=D-

Latch body

Output gates:
-six choices
- two load
choices

scan-cl k
I I

data-in data-out
u -
T
C1

Figure 9.45. Split-latch designs with integrated front- and back-end logic-gate choices.
(Wdrnock et al. 2002), reproduced by permission.

CLOCKED STORAGE ELEMENTS IN IBM PROCESSORS 231

thus to incorporate scan. The diagnostic and machine bring-up phases are given
equal importance at IBM, as shown by various clock-edge and clock-overlap
control signals that were extensively used. However, in spite of the emphasis
on testability, reliability, and availability, IBM designs are capable of achieving
remarkable speed, thus placing IBM microprocessors in the performance lead.

REFERENCES

Afghahi, M., and Svensson, C. (1990). “A Unified Single-Phase Clocking Scheme
for VLSI Systems.” IEEE Journal of Solid-State Circuits, vol. SC-25 (no. l),
February, p. 225-33.

Amdahl, G. M. (1964). “The Structure of System 1360 Part 111: Processing Unit
Design Considerations.” IBM Systems Journal, vol. 3 (no. 2), p. 144-64.

Anderson, C. J., Petrovick, J., Keaty, J. M., Warnock, J., Nusbaum, G., Tendler,
J. M., Carter, C., Chu, S., Clabes, J., DiLullo, J., Dudley, P., Harvey, P.,
Krauter, B., LeBlanc, J., Lu, P.-F., McCredie, B., Plum, G., Restle, P., Runyon,
S., Scheuermann, M., Schmidt, S., Wagoner, J., Weiss, R., Weitzel, S . , and
Zoric, B. (2001). “Physical Design of a Fourth-Generation POWER GHz
Microprocessor,” IEEE International Solid-state Circuits Conference, Digest
of Technical Papers, p. 232-3.

Anderson, D. W., Sparacio, F. J., and Tomasulo, R. M. (1967). “The IBM Sys-
tend360 Model 91: Machine Philosophy and Instruction Handling,” IBM Jour-
nal of Research and Development, vol. 11 (no. l), p. 8-24.

Baeg, S., and Rogers, W. A. (1999). “A Cost-Effective Design for Testability:
Clock Line Control and Test Generation Using Selective Clocking,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systenzs,
vol. 18 (no. 6), June, p. 850-61.

Bailey, D. W., and Benschneider, B. J. (1998). “Clocking Design and Analysis
for a 600-MHz Alpha Microprocessor,” IEEE Journal of Solid-state Circuits,
vol. SC-33 (no. ll), November.

233

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

234 REFERENCES

Benschneider, B. J. et al. (1995). “A 300-MHz 64-b Quad-Issue CMOS RISC
Microprocessor,” IEEE Journal of Solid-State Circuits, vol. SC-30 (no. 1 1),
November.

Bhagwan, R., and Rogers, A. (1997). “A 1-GHz Dual-Loop Microprocessor
PLL with Instant Frequency Shifting.” ISSCC Digest of Technical Papers,

Bowhill, W. J. et al. (1995). “A 300 MHz 64b Quad-Issue CMOS RISC Micro-
processor,” IEEE International Solid-state Circuits Conference, vol. XXXVIII,
February, p. 182-3.

Burd, T., Pering, T., and Brodersen, R. W. (2000). “A Dynamic Voltage Scaled
Microprocessor System.” Proceedings of ISSCC 2000, p. 294-5.

Chandrakasan, A. (1994). Low-Power Digital CMOS Design, Ph.D. Thesis, Uni-
versity of California, Berkeley.

Chandrakasan, A., Bowhill, B. J., and Fox, F. (2001). Design of High-
Pe$ormance Microprocessor Circuits. Piscataway, NJ: IEEE Press.

Charnas, A. et al. (1995). A 64b Microprocessor with Multimedia Support, ISSCC
Digest of Technical Papers, p. 178-9.

Cray Research. (1984). S Series Mainframe Reference Manual HR 0029. Min-
neapolis, MN: Cray Research.

Dobberpuhl, D. W. (1997). “Circuits and Technology for Digital’s StrongARM
and ALPHA Microprocessors.” Proceedings of the Seventeenth Conference
on Advanced Research in VLSI (Ann Arbor, Michigan, September 15-16),

Dobberpuhl, D. W. et al. (1992). “A 200-MHz 64-b Dual-Issue CMOS Micro-
processor,” IEEE Journal of Solid-state Circuits, vol. SC-27, November,
p. 1555-67.

Earl, J. (1 965). “Latched Cary-Save Adder,” IBM Technical Disclosure Bulletin,
vol. 7 (no. lo), March, p. 909-10.

Eichelberger, E. B. (1983). Latch Design Using Level Sensitive Scan Design,
Proceedings of COMPCON, San Francisco.

Eichelberger, E. B., and Williams, T. W. (1977). “A Logic Design Structure for
LSI Testing,” Proceedings of the 14r‘* Design Automation Conference.

Fishburn, J . P. (1990). “Clock Skew Optimization,” IEEE Transactions on Com-
puters, vol. 39, p. 945-51.

Flynn, M. J. (1966). “Very High-speed Computing System,” Proceedings of the
IEEE, vol. 54 (no. 12), December, p. 1901-09.

Flynn, M. J., and Amdahl, G. M. (1965). “Engineering Aspects of Large High
Speed Computer Design,” Proceedings of the Symposium on Microelectonics
and Large Systems, Washington, DC: Spartan Press.

Friedman, E. (1995). Clock Distribution Networks in VLSI Circuits and Systems.
New York: IEEE Press.

p. 336-7.

p. 2-11.

REFERENCES 235

Furber, S. B., Efthymiou, A., Garside, J. D., Lloyd, D. W., Lewis, M. J. G.,
and Temple, S. (2001). “Power Management in the Amulet Microprocessors,”
IEEE Design & Test of Computers, vol. 18 (no. 2), MarchIApril.

Gago, A., Escano, R., and Hidalgo, J. A. (1993). “Reduced implementation of
D-type DET Flip-Flops,’’ IEEE Journal of Solid-State Circuits, vol. SC-28
(no. 3), March p. 400-2.

Gardner, F. (1979). Phase Lock Techniques. New York: Wiley.
Geannopoulos, G., and Dai, X. (1998) “An Adaptive Digital Deskewing Circuit for

Clock Distribution Networks,” ISSCC Digest of Techn. Papers, pp. 400- 1.
Gerosa, G., Gary, S., Dietz, C., Dac, P., Hoover, K., Alvarez, J., et al. (1994). “A

2.2 W, 80 MHz Superscalar RISC Microprocessor,” IEEE Journal of Solid-
State Circuits, vol. SC-29, (no. 12), December.

Gieseke, B. A. et al. (1991) “Push-Pull Cascode Logic,” U.S. Patent No. 5,023,480
(June).

Gieseke, B. A. et al. (1997). “A 600MHz Superscalar RISC Microprocessor with
Out-of-Order Execution,” Proceedings of the IEEE International Solid-State
Circuits Conference, vol. XL, February, p. 176-7.

Goncalves, N. F., and DeMan, H. J. (1983). “NORA: A Racefree Dynamic CMOS
Technique for Pipelined Logic Structures, IEEE Journal of Solid-state Circuits,
vol. SC-18 (no. 3), June.

Gowan, M. K., Biro, L. L., and Jackson, D. B. (1998). “Power Considerations
in the Design of the Alpha 21264 Microprocessor,’’ in Proc. DAC 1998,
p. 726-31.

Greenhill, D. et al. (1997). “A 330MHz 4-Way Superscalar Microprocessor.”
ISSCC Digest of Technical Papers, p. 166-7.

Gronowski, P. E., Bowhill, W. J., Preston, R. P., Gowan, M. K., and Allmon,
R. L. (1 998). “High-performance Microprocessor Design,” ZEEE Journal of
Solid-state Circuits, vol. 33, May, p. 676-86.

Hajimiri, A. (1998). Jitter and Phase Noise in Electrical Oscillators, Ph.D. Thesis,
Stanford University, Stanford, CA.

Halin, T. G., and Flynn, M. J. (1972). “Pipelining of Arithmetic Functions,” ZEEE
Transactions on Computers, vol. C-21 (no. 8), August, p. 880-6.

Hamada, M., Terazawa, T., Higashi, T., Kitabayashi, S., Mita, S., Watanabe, Y.,
Ashino, M., Hara, H., and Kuroda, T. (1999). “Flip-Flop Selection Technique
for Power-Delay Trade-off,” Proceedings of the IEEE International Solid-state
Circuits Conference, vol. XLII, February, p. 270- 1.

Harris, D., and Horowitz, M. (1997). “Skew-Tolerant Domino Circuits,” ZEEE
Journal of Solid-State Circuits, vol. SC-32, p. 1702- 11.

Harris, D., Huang, S. C., Nadir, J., Chu, C.-H., Stinson, J. C., and Ilkbahar,
A. (1996). “Opportunistic Time-Borrowing Domino Logic,” U.S. Patent No.
5 3 17,136.

236 REFERENCES

Hashimoto, M., Onodera, H., and Tamaru, K. (1998) “A Power Optimization
Method Considering Glitch Reduction by Gate Sizing,” in ISPLED Digest of
Technical Papers (August), p. 221 -6.

Heald, R. et al. (2000a). “A Third Generation SPARC V9 Microprocessor,” IEEE
Journal of Solid-state Circuits, vol. 35, p. 1526-38.

Heald, R. et al. (2000b). “Implementation of a 3rd Generation SPARC V9 64b
Microprocessor,” ISSCC Digest of Technical Papers, p. 4 12-3.

Heo, S., and Asanovic, K. “Load-Sensitive Flip-Flop Characterization,” Proc.
IEEE Workshop on VLSI, (Orlando, F1, April), p. 87-92.

Hofstee, P. et al. (2000). “A 1-GHz Single-Issue 64b PowerPC Processor,” in
ISSCC Digest of Technical Papers, p. 92-3.

Jain, A. et al. (2001). “A 1.2 GHz Alpha Microprocessor with 44.8 GB/s Chip
Pin Bandwidth,” Proceedings of the IEEE International Solid-state Circuits
Conference, February, p. 240- 1.

Kawaguchi, H., and Sakurai, T. (1998). “A Reduced Clock-Swing Flip-Flop
(RCSFF) for 63% Power Reduction,” IEEE J Journal of Solid-State Circuits,
vol. SC-33, (no. 5), May, p. 807-11.

Kim, B., Weigandt, T., and Gray, P. (1994). “PLLDLL System Noise Analysis
for Low Jitter Clock Synthesizer Design,” Proceedings of the 1994 Interna-
tional Symposium on Circuits and Systems, vol. 4, p. 3 1-8.

Kitahara, T. et al., (1998). “A Clock-Gating Method for Low-Power LSI Design,”
Proceedings of the ASC-DAC’98, Conference, p. 307- 12.

Klass, F. (1 998). “Semi-Dynamic and Dynamic Flip-Flops with Embedded
Logic,” Symposium on VLSI Circuits, Digest of Technical Papers (June),

Klass, F. et al. (1999). “A New Family of Semidynamic and Dynamic Flip-Flops
with Embedded Logic for High-Performance Processors,” IEEE Journal of
Solid-state Circuits, vol. SC-34, (no. 5), May, p. 712-16.

Kogge, P. (1981). The Architecture ofpipelined Computers. New York: McGraw-
Hill.

Kojima, H., Tanaka, S., and Sasaki, K. (1995). “Half-Swing Clocking Scheme
for 75% Power Savings in Clocking Circuitry,” IEEE Journal of Solid-State
Circuits, vol. SC-30, (no. 4), April, p. 432-5.

Kong, B.-S., Kim, S.-S., and Jun, Y.-H. (2000). “Conditional Capture Flip-
Flop for Statistical Power Reduction,” in ISSCC Digest of Technical Papers,

Kozu, S. et al. (1996). “A 100 MHz, 0.4 W RISC Processor with 200 MHz
Multiply Adder, Using Pulse-Register Technique,” Digest of Technical Papers,
1996 IEEE International Solid-State Circuits Conference (San Francisco,
February 8-10), p. 40-1.

Kurd, N. A. et al. (2001). “Multi-GHz Clocking Scheme for Inel@Pentium’ 4
Microprocessor,” ISSCC Digest of Technical Papers, p. 404-5.

p. 108-9.

p. 290-1.

REFERENCES 237

Lauterbach, G. et al. (2000). “UltraSPARC-111: A 3rd Generation 64b SPARC
Microprocessor,” ISSCC Digest of Technical Papers, p. 410- 11.

Lev, L. A. et al. (1995). “A 64Mb Microprocessor with Multimedia Support,”
IEEE Journal of Solid-State Circuits, vol. SC-30, p. 1727-38.

Lim, K., Park, C., Kim, D., and Kim, B. (2000). “A Low-Noise Phase-Locked
Loop Design by Loop Bandwidth Optimization,” IEEE Journal of Solid-State
Circuits, vol. SC-35, June, p. 807-15.

Lin, I., Ludwig, I. A., and Eng, K. (1992). “Analyzing and Cycle Stealing
on Synchronous Circuits with Level-Sensitive Latches” Proceedings of the
ACWIEEE Design Automation Conference, p. 393 -8.

Llopis, R. P., and Sachdev, M. (1996). “Low Power, Testable Dual Edge Trig-
gered Flip-Flops,’’ Proceedings of the International Symposium on Low Power
Electronics and Design, p. 341-5.

LSSD Rules and Applications. (1985). Manual 3531, Release 59.0, IBM Corpo-
ration, March 29.

Madden, W. C., and Bowhill, W. J. (1990). “High Input Impedance, Strobed
Sense-Amplifier,” U.S. Patent No. 110. 4,910,713, (March).

Mansuri, M., Yang, C.-K. K. (2002). “Jitter Optimization Based on Phase-Locked
Loop Design Parameters,” IEEE International Solid-state Circuits Conference,
vol. 1, February, p. 138-9.

Markovic, D., Nikolic, B., and Brodersen, R. W. (2001). “Analysis and Design of
Low-Energy Flip-Flops,’’ in ISPLED Digest of Technical Papers, August,

Matsui, M., Hara, H., Uetani, Y., Kim, L., Nagamatsu, T., Watanabe, Y., Chiba,
A., Matsuda, K., and Sakurai, T. (1994). “A 200 MHz 13 mm22-D DCT
Macrocell Using Sense-Amplifying Pipeline Flip-Flop Scheme,” ZEEE Journal
of Solid-State Circuits, vol. SC-29, December p. 1482-90.

Montanaro, J., Witek, R. T., Anne, K., Black, A. J., Cooper, E. M., Dobber-
puhl, D., Donahue, P. M., Eno, J., Farell, A., Hoeppner, G., Kruckemyer,
D., Lee, T. H., Lin, P., Madden, L., Murray, D., Pearce, M., Santhanam, S.,
Snyder, K. J., Stephany, R., and Thierauf, S. C., (1996). “A 160MHz 32b
0.5W CMOS RISC Microprocessor,” Proceedings of the IEEE International
Solid-State Circuits Conference, vol. XXXIX, February, p. 214- 15.

Montanaro, J., Witek, R. T., Anne, K., Black, A. J., Cooper, E. M., Dobber-
puhl, D. W., Donahue, P. M., Eno, J., Hoeppner, G. W., Kruckemyer, D., Lee,
T. H., Lin, P. C. M., Madden, L., Murray, D., Pearce, M. H., Santhanam, S.,
Snyder, K. J., Stephany, R., and Thierauf, S. C. (1997). “A 160-MHz, 32-
b, 0.5-W CMOS RISC Microprocessor,” Digital Technical Journal, vol. 9,
(no. l), Digital Equipment Corp. p. 49-62.

Nikolic, B., and Oklobdzija, V. G. (1999). “Design and Optimization of Sense
Amplifier-Based Flip-Flops,” Proceedings of the 25‘h European Solid-State Cir-
cuits Conference, ESSCIRC’99, (Duisburg, Germany, September 21 -23),

p. 52-5.

p. 410-13.

238 REFERENCES

Nedovic, N., and Oklobdzija, V. G. (2000a). “Dynamic Flip-Flop with Improved
Power,” Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors (Austin, TX, September 17-20),
p. 323-6.

Nedovic, N., and Oklobdzija, V. G. (2000b). “Hybrid Latch Flip-Flop with
Improved Power Efficiency,” Proceedings of the 13th Symposium on Integrated
Circuits and Systems Design, (Manaus, Brazil, September 18-24), p. 21 1- 15.

Nedovic, N., Aleksic, M., and Oklobdzija, V. G. (2001). “Timing Characteri-
zation of Dual-Edge Triggered Flip-Flops,’’ Proceedings of the International
Conference on Computer Design, ICCD 2001, Austin, TX, (September

Nedovic, N., Oklobdzija, V. G., Walker, W. W., and Aleksic, M. (2002). “A Low
Power Symmetrically Pulsed Dual Edge-Triggered Flip-Flop,’’ IEEE European
Solid-State Circuits Conference, September.

Nikolic, B., Stojanovic, V., Oklobdzija, V. G., Jia, W., and Leung, M. (1999).
“Sense Amplifier-Based Flip-Flop,’’ in ISSCC Digest of Technical Papers,

Nogawa, M., and Ohtomo, Y. “A Data-Transition Look-Ahead DFF Circuit for
Statistical Reduction in Power Consumption,” IEEE Journal of Solid-State
Circuits, vol. SC-33, (May), p. 702-6.

Nogawa, M., and Ohtomo, Y. (1998). “A Data-Transition Look-Ahead DFF
Circuit for Statistical Reduction in Power Consumption,” IEEE Journal of
Solid-state Circuits, vol. SC-33, (no. 5) , May, p. 702-6.

Oklobdzija, V. G. (1999). High-Pei$ormance System Design: Circuits and Logic,
New York: IEEE Press.

Oklobdzija, V. G., Stojanovic, V. (2001). “FLIP-FLOP,”U.S. Patent No. 6,232,810
(May 15).

Partovi, H. et al. (1 996). “Flow-Through Latch and Edge-Triggered Flip-Flop
Hybrid Elements,” 1996 IEEE International Solid-state Circuits Conference.
Digest of Technical Papers, (San Francisco, February 8- 10).

Razavi, B., Ed. (1996). Monolithic Phase-Locked Loops and Clock Recovery Cir-
cuits - Theory and Design. New York: IEEE Press.

Rusu, S., and Tam, S. (2000). “Clock Generation and Distribution for the First IA-
64 Microprocessor,” Proceedings of the IEEE International Solid-State Circuits
Conference, vol. XLIII, February, p. 176-7.

Saint-Laurent, M. et al. (2002). “Optimal Sequencing Energy Allocation for
CMOS Integrated Systems,” Proceedings of the International Symposium on
Quality Electronic Design, p. 94-9.

Sakallah, K. A., Mudge, T. N., and Olukotun, 0. A. (1 992). “Analysis and Design
of Latch-Controlled Synchronous Digital Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 1 1,

23 -26).

p. 282-3.

p. 322-33.

REFERENCES 239

Schutz, J., and Wallace, R. (1998). “A 450MHz IA32 P6 Family Microprocessor,”
ISSCC Dig. Tech. Papers, p. 236-7.

Sidiropoulos, S., and Horowitz, M. A. (1997). “A Semidigital Dual Delay-
Locked Loop,” IEEE Journal of Solid-state Circuits, vol. SC-32, November,

Sidiropoulos, S., Liu, D., Kim, J., Wei, G., and Horowitz, M. (2000). “Adap-
tive Bandwidth DLLs and PLLs Using Regulated Supply CMOS Buffers,”
Proceedings of the IEEE Symposium on VLSI Circuits, June, p. 124-7.

Siewiorek, D. P., Bell, G. C., and Newell, A. (1982). Computer Structures: Prin-
ciples and Examples. McGraw-Hill, New York 1982.

Sigal, L., Warnock, J. D., Curran, B. W., Chan, Y. H., Camporese, P. J., Mayo,
M. D., Huott, W. V., Knebel, D. R., Chuang, C. T., Eckhard, J. P., Wu, P. T.
(1997). “Circuits Design Techniques for the High Performance CMOS IBM
S/390 Parallel Enterprise Server G4 Microprocessor,” IBM Journal of Research
and Development, vol. 41 (no. 4-54 July-September.

Silberman, J., Aoki, N., Boerstler, D., Burns, J. L., Sang, D., Essbaum, A.,
Ghoshal, U., Heidel, D., Hofstee, P., Kyung, T. L., Meltzer, D., Hung, N.,
Nowka, K., Posluszny, S., Takahashi, O., Vo, I., Zoric, B. (1998). “A 1.0-GHz
Single-Issue 64-bit PowerPC Integer Processor,” IEEE Journal of Solid-State
Circuits, vol. SC-33 (no. 11).

Stojanovic, V., Oklobdzija, V. G. (1 999). “Comparative Analysis of Master-Slave
Latches and Flip-Flops for High-Performance and Low-Power Systems,” IEEE
Journal of Solid-state Circuits, vol. 34 (no.4), April, p. 536-48.

Stolte, L. A., and Berglund, N. C. (1979). “Design for Testability for the IBM
System/38,” Digest of Papers 1979 IEEE Test Conference, Cherry Hill. NJ.

Strollo, A. G. M., Napoli, E., De Caro, D. (2000). “New Clock-Gating Tech-
niques for Low-Power Flip-Flops,” in ISLPED Digest of Technical Papers,

Sutherland, I. E., and Sproull, R. F. (1991). “Logical Effort: Designing for Speed
on the Back of an Envelope,” Advanced Research in VLSI, ARVLSI’91, Santa
Cruz, CA.

Sutherland, I., Sproull, B., and Harris, D. 1999. Logical Effort: Designing Fust
CMOS Circuits, Morgan Kaufmann, (Web enhancements from www.mkp.com

p. 1683-92.

August, p. 114-9.

or ftp://ftp.mkp.com/Logical Effort/CAT Tool).
Suzuki, Y., Odagawa, K., and Abe, T. (1973). “Clocked CMOS Calculator Cir-

cuitry,” IEEESolid-State Circuits, vol. SC-8, December, p. 462-9.
Svensson, C., and Yuan, J. (1998). “Latches and Flip-Flops for Low Power Sys-

tems,” in Low Power CMOS Design, A. Chandrakasan and R. Brodersen, Eds.
Piscataway, NJ: IEEE Press, p. 233-8.

Texas Instruments. (1984). The 7TL Data Book for Design Engineers, Dallas:
Texas Instruments.

Tschanz, J., Siva, N., Zhanping, C., Shekhar, B., Manoj, S., Vivek, D.
(200 1). “Comparative Delay and Energy of Single Edge-Triggered & Dual

240 REFERENCES

Edge-Triggered Pulsed Flip-Flops for High-Performance Microprocessors,”
Proceedings of the 2001 International Symposium on Low Power Electronics
and Design (Huntington Beach, CA, August 6-7).

Unger, S. H., and Tan, C. (1986). “Clocking Schemes for High-speed Digital
Systems,” IEEE Transactions on Computers, vol. C-35 (no. lo), October.

Von Kaenel, V., Aebischer, D., Van Dongen, R., and Piguet, C. (1998).
“A 600 MHz CMOS PLL Microprocessor Clock Generator with a 1.2GHz
VCO,” Proceedings of the IEEE International Solid-state Circuits Conference,
vol. XLI, February, p. 396-7.

Wagner, K. (1 988). “Clock System Design,” IEEE Design & Test of Computers,
October.

Warnock, J. D. et al. (2007). “The Circuit and Physical Dedign of the POWER4
Microprocessor,” IBM Journal of Research and Development, vol. 46, (no. I) ,
January.

Williams, M. J. Y., Angel, J. B. (1973). “Enhancing Testability of Large Scale
Integrated Circuits via Test Points and Additional Logic,” IEEE Transactions
on Computers, vol. C-22.

Williams, T. W., Eichelberger, E. B. (1977). “Random Patterns Within a Struc-
tured Sequential Logic Design,” 1977 and Semiconductor Test Symposium,
(Cherry Hill, NY, October 25-27).

Wolf, S. (1995). Silicon Processing for the VLSI Era, vol. 3, The Submicron
MOSFET, Sunset Beach, CA: Lattice Press.

Woods, J. V., Day, P., Furber, S. B., Garside, J. D., Paver, N. C., and Tem-
ple, S. (1997). “AMULET1: An Asynchronous ARM Microprocessor,” IEEE
Transactions on Computers, vol. C-46 (no. 4), April, p. 385-98.

Xanthopoulos, T., Bailey, D. W., Gangwar, A. K., Gowan, M. K., Jain, A. K.,
and Prewitt, B. K. (2001). “The Design and Analysis of the Clock Distribution
Network for a 1.2 GHz Alpha Microprocessor,” Proceedings of the IEEE
Internationul Solid-State Circuits Conference, February, p. 402-3.

Yano, K. et al. (1990) “A 3.8 ns CMOS 16 x 16-b Multiplier Using Complemen-
taiy Pass-Transistor Logic,” IEEE Journal of Solid-state Circuits, vol. SC-25,
April, p. 388-385.

Young, I. A., Greason, J. K., and Wong, K.L. (1992). “A PLL Clock Generator
with 5 to 10 MHz of Lock Range for Microprocessors,” IEEE Journal of
Solid-state Circuits, vol. SC-27, November, p. 1599- 1607.

Young, I. A. et al. (1997). “A 0.35p.m CMOS 3-88OMHz PLL N/2 Clock Multi-
plier and Distribution Network with Low Jitter for Microprocessors,” ISSCC
Digest of Technical Papers, p. 330- 1.

Yuan, J., and Svensson, C. (1989). “High-speed CMOS Circuit Technique,” Jour-
nal of Solid-state Circuits, vol. SC-24 (no. I) February.

Zyuban, V., and Kogge, P. (1999). “Application of STD to Latch-Power Esti-
mation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 7 (no. I), March, p. 1 1 1-5.

INDEX

Active deskewing, 84. See also Deskewing
Alpha, see Microprocessor
Alpha particles, 204
Asynchronous systems, 4

C2MOS
latch-mux, see Dual-edge-triggered storage

M-S latch, see Latch
element

CCFF, see Flip-flop
Circuit sizing, 106
CISC, see Complex instruction set computers
Clock

buffers, 11, 108, 209, 211
conditioning, 2 16
core clock, 194, 196
cycle, 2
distribution, 8, 19, 119, 187, 198, 209-212

H-tree, 24, 193, 210
X-tree, 24, 2 10

domains, 198, 210, 217
drivers, see Clock buffers
duty cycle, see Timing parameters
edge degradation, 36
energy, 180
external, 11, 13
frequency, 2
gating, 112, 122, 167-177

global, 112
local, 113

generation, 8, 9, 197

global clock, 193, 210, 221
grid, 24, 194, 196, 201, 209-212
hierarchy, 21 1
internal, 10, 12
jitter, see Timing parameters
load, 10
low-swing clock, 108, 177, 179
multiple phase, 8
network, see clock distribution
nonoverlapping clocks, 223
on-board, 10
on-chip, 10
optimal width, 69, 77
overlap, 223
phase error, 12, 197
pulsed clock, 199, 221
off-chip reference, 9, 11
on-chip reference, 179, 196
RC matched tree, 24
regenerator, 225
scan port clock, 225
single-phase, 8
skew, see Timing parameters
slope, 61
tree, see Clock distribution
tuning, 18
two-phase, 8, 70, 72
uncertainties, see Timing parameters
width, see Timing parameters

dual-edge, 75
Clocking, 2

241

Digital System Clocking: High-Performance and Low-Power Aspects
Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic

Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-27447-X

242 INDEX

Clocking (Continued)
edge-sensitive, 36, 64, 91
level sensitive, 91, 98, 213
low-swing, 108
single-phase, 64
soft edge-sensitive, 102
two-phase, 70, 213

Clock-on-demand, see Latch
Combinational logic, 3
Complex instruction set computers, 5
Conditional capture flip-flop, see Flip-flop

Critical path, see Setup time violation
Critical race, see Hold time violation
CSE characterization, 139
Cycle stealing, see Time borrowing
Cycle time, 10

Data arrival analysis

CRAY-1, 66

early, 65, 68, 78, 89. 93, 101
late, 63, 66, 76, 88, 93, 98

Data look-ahead, see Latch
Data-to-output delay, see Delay
De Morgan, 25
Deep-submicron, 56
Delay, 46

clock-to-output, 46, 85
data-to-output, 49, 176, 179
minimum delay restriction, 54
insertion, 72, 95

Delay-locked loop, 12-15, 199
Design for testability, 70, 204
Deskewing, 203-205, 179-197, 199, 214

adaptive filtering, 179
clock spines, 192
delay line, 192
delay shift register, 192
phase detection, 192, 198

DET-FF, see Dual-edge-triggered storage

DET-LM, see Dual-edge-triggered storage

DET-PL, see Dual-edge-triggered storage

DETSE, see Dual-edge triggered storage

DET-SPGFF, see Dual-edge-triggered storage

DFT, see Design for testability
Digital system, 1 , 8
Digital system using

element

element

element

element

element

dual-edge triggered storage element, 75
flip-flop, 63
M-S latch, 70
single-latch, 66

D-Latch, 26
DLL, see Delay-locked loop
D - Q delay, see Data-to-output delay
DTLA-L, see Latch
Dual-edge-triggered storage element, 74, 1 13,

179

symmetric pulse generator, 119, 183

C’MOS, 181, 186

flip-flop, 1 18, 183

latch-mux, 116, 179, 180, 186

pulsed latch, 117, 182, 186
Duty cycle, see Timing parameters
Dynamic hazards, 59
Dynamic logic, 216

Earl’s Latch, 28
Edge sensitive, 34
EDP, see Energy-delay product
Effective capacitance, 106
Energy, 55, 176

breakdown, 57
clock energy, 165
clocking, 58
consumption, 55
data and clock input, 58
energy per transition, 166
internal clock energy, 167
internal non-clocked nodes, 58
leakage, 56
output load, 58
short-circuit, 55
switching, 55

Energy-delay product, 176, 185
Energy-per-transition, 58

Fanout, 62
Fast path, see Hold time violation
Fermi potential, 57
Finite-state machine (FSM), 3
Flip-flop, 34, 35, 159, 166, 176

capturing latch, 35
comparison, 164
conditional capture flip-flop, 114, 174
hybrid latch flip-flop, 41, 134-136, 159
J-K flip-flop, 115
logic equations, 39
logic representation, 43
modified sense amplifier flip-flop, 136- 138,

pulse generator, 35, 162
reduced clock-swing, 110
semi-dynamic flip-flop, 123, 160, 189, 202,

163

206
conditional shut-off, 203
dynamic, 204, 206

INDEX 243

hold time, 202, 204
logic embedding, 204, 205
setup time, 203, 204
static-one hazard, 203

SR latch, 216
sense amplifier flip-flop, 41, 161, 216

SN7474, 37
S-R latch, 162
transparency window, 41
triggering, 37

Frequency multiplication, I0

Glitch, 43
sensitivity, 122

Hold time, see Timing parameters
Hold time violation, 48, 63, 65, 76, 89
H-tree, 120, see Clock distribution
Hybrid latch flip-flop, see Flip-flop

Input transition, 59
Insertion delay, 10
Internal race immunity, 165, 176

Kamaugh map, 39
Keeper, 134

Latch 32, 180
C’MOS, 158
clock-on-demand, 172
data look-ahead, 169, 173
data-transition look-ahead, 113
hold time, 214
logic embedding, 215, 229
master latch, 156, 221
M-S latch, 29, 70, 155-157, 166, 176, 184,

190, 220, 227
C2MOS, 158
comparison, 158, 164
with input isolation, 157
n-only clocked, 11 1, 177

noise robustness, 167, 179, 214, 229
noise sources, 157
pulsed latch, 169, 172, 176, 182, 221
setup time, 214
slave latch, 157, 221
split-latch, 190, 227, 229
TSPC latch, 29, 31, 213
TSPC M-S latch, 29, 31, 202
with clock gating, 168, 172, 176

LC oscillator, 14
Level-sensitive, 29
Level-sensitive scan design, 29, 111, 217- 219,

222, 229

diagnostics, 220
double latch design, 220
level sensitivity, 219
scan, 219
shift-register latch, 220
test mode, 222
testing, 220

clock, 108
data, 108

domino, 29, 128
NORA, 29
static CMOS, 128

Logic islands, 18
Logical effort, 125-127, 131, 133

Load

Logic

branching effort, 127
of a domino inverter, 128
effort delay, 126, 130, 133
electrical effort, 126, 135
fanout, 127, 133, 136
multistage logic networks, 126
optimal effort per stage, 133
optimal number of stages, 133
parasitic delay, 126
pass-transistor, 127
path effort, 127
pull-down, 128

stage effort, 126, 133, 135
of a static NAND gate, 128
transmission-gate, 130

Loop requirement, 96
Low-swing clock, see Clock
LSSD, see Level-sensitive scan design

PUII-UP, 128

Machine cycle, 5
Master-slave latch, see latch
Micro-instruction, 5
Microprocessor

Alpha, 25, 189, 208, 213
Pentium, 189, 191, 193, 196
Power4, 190, 226, 229
PowerPC, 190, 224
S1360 91, 28
S/390 G4, 190, 221, 223
UltraSPARC, 189, 200, 202, 206

M-S latch, see Latch
M-SAFF, see Flip-flop
MSL, see Latch
Multiplexer, 180

Nodes
clocked, 58, 107

244 INDEX

Nodes (Continued)
dynamic, 58, 107
nonclocked, 59, 106
precharge/evaluate, 58, 106

Noise sources, 14
Nonoverlapping clocks, 7 1

ODCS, see On-die clock stretcwshrink
Of currents, 56
On-die clock stretcwshrink, 200
Opportunistic skew scheduling, see Time

Optimal setup time, 87
Optimal skew scheduling, see Time

Oscillator,
crystal, 9, 18
LC, 14
ring, 13

borrowing, static

borrowing, static

Padding, see Delay insertion
Pass-gate, see Transmission-gate
Pentium, see Microprocessor
Perl, 138
Phase difference, 1 1
Phase-locked loop, 11-15, 193, 196, 201
Pipeline, 64, 67, 72, 79, 96, 100
Pipclined design, 4
PL, see Latch
PLL, see Phase-locked loop
Power4, see Microprocessor
PowerPC, see Microprocessor
Precharge/discharge, 107
Pulse generator, 35, 43, 113, 171, 184
Pulsed latch, see Latch

Race, see Hold time violation
Race immunity, 106
Race margin, see Internal race immunity
Race-through, see Hold time violation
RCSFF, see Flip-flop
Reconvergent fan-outs, 4 I
Reduced instruction set computer, 6
Reduced swing clock, see Low-swing clock
Resonant circuit, 9
Ring oscillator, 13
RISC, see Reduced instruction set computer

S/390 G4, see Microprocessor
Sampling window, 51
Scan test, 218
SDFF, see Flip-flop
Semi-dynamic flip-flop, see Flip-flop

Sense-amplifier, 161
Sense-amplifier flip-flop, see Flip-flop
Setup time, see Timing parameters
Setup time violation, 48, 63, 66, 76, 93
Short path, see Hold time violation
Signal race, see Hold time violation
Simulation

setup, 130
automated, 138

Skewed gate, 128, 135
Slack passing, see Time borrowing
Slow paths, see Setup time violation
SN7474, see Flip-flop
Soft clock edge, 49, 85, 189, 202
Soft error hazard, 204
Split-latch, 66
S-R latch, 28
Static inverter, 127

F 0 4 delay, 138
F 0 4 inverter, 130, 135

Subthreshold region, 56
Supply voltage scaling, 106
Symmetric pulse generator flip-flop, see

Synchronous system, 3, 21
Dual-edge-triggered storage element

Test access port. 197

TG, see Transmission-gate
Time borrowing, 53, 97, 210, 224

scan, 9

dynamic, 91, 92
static, 92, 95

Timing analysis
with clock uncertainty absorption, 88
with dynamic time borrowing, 96
single-phase with dual-edge triggered CSE,

single-phase with flip-flop, 63
single-phase with single latch, 66
two-phases with M-S latch, 70
with static time borrowing, 95
with time borrowing and clock uncertainty,

75

98
Timing parameters

clock duty cycle, 16, 80
clock frequency, 16
clock jitter, 16, 83

cycle-to-cycle, 17
long-term, 17

clock period, 16
clock skew, 16, 25, 83, 191, 195, 210-212

global, 17
local, 17

clock uncertainty, 83

INDEX 245

clock uncertainty absorption, 84, 87, 103
clock width, 16, 51, 69
clock-to-output delay, see Delay
data-to-output delay, see Delay
hold time, 50, 63, 75, 89, 101, 165, 176
internal race immunity, 53
setup time, 48, 165, 176

Transistor sizing, 125, 130, 134, 136
Transition probability, 17 1
Transmission-gate, 155, 180, 182
Transparency window, 88, 103, 117, 183, 202
Trigger, see Triggering signal
Triggering signal, 34

leading-edge, 35
trailing-edge, 35

UltraSPARC, see Microprocessor

VCDL, see Voltage controlled delay-line
VCO, see Voltage controlled oscillator
Voltage controlled

delay-line, 1 1 - I3
oscillator, 1 1 - 13

X-tree, see Clock distribution

	frontmatter.pdf
	ch1.pdf
	ch2.pdf
	ch3.pdf
	ch4.pdf
	ch5.pdf
	ch6.pdf
	ch7.pdf
	ch8.pdf
	ch9.pdf
	References.pdf
	Index.pdf

