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Preface
This supplement is divided into two parts. Part I provides a section-by-section, chapter-by-chapter summary of the
key concepts, principles and equations from R. C. Hibbeler’s text, Engineering Mechanics: Statics, Thirteenth Edition.
Part II is a workbook which explains how to draw and use free-body diagrams when solving problems in Statics.

Part I: Chapter-by-Chapter Summaries

This part of the supplement provides a section-by-section, chapter-by-chapter summary of the key concepts, principles
and equations from R. C. Hibbeler’s text, Engineering Mechanics: Statics, Thirteenth Edition. We follow the same section
and chapter order as that used in the text and summarize important concepts from each section in easy-to-understand
language. We end each chapter summary with a simple set of review questions designed to see if the student has
understood the key concepts and chapter objectives.

This section of the supplement will be useful both as a quick reference guide for important concepts and equations
when solving problems in, for example, homework assignments or laboratories and also as a handy review when
preparing for any quiz, test, or examination.

Part II: Free-Body Diagram Workbook

A thorough understanding of how to draw and use a free-body diagram is absolutely essential when solving
problems in mechanics.

This workbook consists mainly of a collection of problems intended to give the student practice in drawing and using
free-body diagrams when solving problems in Statics.

All the problems are presented as tutorial problems with the solution only partially complete. The student is
then expected to complete the solution by “filling in the blanks” in the spaces provided. This gives the student the
opportunity to build free-body diagrams in stages and extract the relevant information from them when formulating
equilibrium equations. Earlier problems provide students with partially drawn free-body diagrams and lots of hints
to complete the solution. Later problems are more advanced and are designed to challenge the student more. The
complete solution to each problem can be found on the back of the page. The problems are chosen from two-
dimensional theories of particle and rigid body mechanics. Once the ideas and concepts developed in these problems
have been understood and practiced, the student will find that they can be extended in a relatively straightforward
manner to accommodate the corresponding three-dimensional theories.

The workbook begins with a brief primer on free-body diagrams: where they fit into the general procedure of
solving problems in mechanics and why they are so important. Next follows a few examples to illustrate ideas and
then the workbook problems.

For best results, the student should read the primer and then, beginning with the simpler problems, try to
complete and understand the solution to each of the subsequent problems. The student should avoid the temptation
to immediately look at the completed solution on the back of the page. This solution should be accessed only as a
last resort (after the student has struggled to the point of giving up), or to check the student’s own solution after the

xi



xii Preface

fact. The idea behind this is very simple: we learn most when we do the thing we are trying to learn—reading through
someone else’s solution is not the same as actually working through the problem. In the former, the student gains
information, in the latter the student gains knowledge. For example, how many people learn to swim or drive a car by
reading an instruction manual?

Consequently, since the workbook is based on doing, the student who persistently solves the problems in the
workbook will ultimately gain a thorough, usable knowledge of how to draw and use free-body diagrams.

PETER SCHIAVONE



S T A T I C S S T U D Y P A C K
CHAPTER REVIEWS, FREE-BODY DIAGRAM WORKBOOK, COMPANION WEBSITE

ENGINEERING MECHANICS

STATICS
T TH EDITIONHIRTEEN





PART I

Section-By-Section, Chapter-By-Chapter

Summaries with Review Questions and

Answers





1

General Principles

MAIN GOALS OF THIS CHAPTER:

• To introduce the basic ideas of Mechanics.

• To give a concise statement of Newton’s laws of motion and gravitation.

• To review the principles for applying the SI system of units.

• To examine standard procedures for performing numerical calculations.

• To outline a general guide for solving problems.

1.1 MECHANICS

Mechanics is that branch of the physical sciences concerned with the behavior of bodies subjected to the action of
forces. The subject of mechanics is divided into two parts:

• statics—the study of objects in equilibrium (objects either at rest or moving with a constant velocity).

• dynamics—the study of objects with accelerated motion.

Although statics can be considered as a special case of dynamics (in which the acceleration is zero), it deserves special
treatment since many objects are designed with the intention that they remain in equilibrium.

1.2 FUNDAMENTAL CONCEPTS

BASIC QUANTITIES

• Length, time, mass, force

3



4 Chap. 1 General Principles

IDEALIZATIONS

Mathematical models or idealizations are used in mechanics to simplify the theory. The more common ones, in order
of sophistication, are:

• Particle—a particle has a mass but a size that can be neglected i.e., the geometry of the body is ignored. A particle
is often represented by a point in space.
• Rigid Body—a rigid body has a mass and a size (shape) but it is assumed that any changes in shape can be

neglected i.e., the geometry of the body is taken into account but any deformations (changes in shape) are
ignored. Consequently, the material properties of the body can be ignored. A rigid body is often represented
as a collection of particles in which all the particles remain at a fixed distance from each other before and after
applying a load.
• Deformable or Elastic Body—a deformable body has a mass, a size (shape) and the deformations (changes in

shape) of the body are taken into account. Hence the material properties of the body must be considered in
describing the behavior of the body.
• Concentrated Force—A concentrated force represents the effect of a loading which is assumed to act at a point

on a body. This idealization requires that the area over which the load is applied is very small compared to the
overall size of the body e.g., contact force between wheel and ground.

NEWTON’S THREE LAWS OF MOTION

Newton’s laws apply to the motion of a particle as measured from a nonaccelerating (inertial) reference frame.

• First Law—a particle originally at rest or moving in a straight line with constant velocity, will remain in this state
provided the particle is not subjected to an unbalanced force.
• Second Law—a particle acted upon by an unbalanced force F experiences an acceleration a that has the same

direction as the force and a magnitude directly proportional to the force i.e.

F = ma
• Third Law—The mutual forces of action and reaction between two particles are equal, opposite and collinear.

NEWTON’S LAW OF GRAVITATIONAL ATTRACTION

F = G
m1m2

r2

F = force of gravitation between two particles
G = universal constants of gravitation

m1, m2 = mass of each of the two particles
r = distance between the two particles

MASS AND WEIGHT

• Mass is a (scalar) property of matter that does not change from one location to another. In other words, mass is
an absolute quantity
• Weight is a force (and hence has a magnitude and direction) which refers to the gravitational attraction of the

earth on a quantity of mass m. Weight is not an absolute quantity. Its magnitude depends on the elevation at
which the mass is located. We write the magnitude of weight as W = mg where g is termed the acceleration due
to gravity.

1.3 UNITS OF MEASUREMENT
The four basic quantities force, mass, length and time are related by Newton’s 2nd law. Hence, the units used to define
these quantities are not independent i.e., three of the four units are called base units (arbitrarily defined) and the fourth
unit a derived unit (derived from Newton’s 2nd law).
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SI UNITS (INTERNATIONAL SYSTEM OF UNITS)

• In the SI system, the unit of force, the newton, is a derived unit. The meter, second and kilogram are base units.

• One newton is equal to a force required to give one kilogram of mass an acceleration of 1 m/s2.

• In newtons, the weight of a body has magnitude

W = mg where g = 9.81 m/s2 .

US CUSTOMARY

• In the US Customary system, the unit of mass, the slug, is a derived unit. The foot, second and pound are base
units.

• One slug is equal to the amount of matter accelerated at 1 ft/s2 when acted upon by a force of 1 lb.

• In slugs, the mass of a body is given by

m = W

g
where g = 32.2 ft/s2 .

The following table summarizes the two systems of units.

Name Length Time Mass Force

International System (SI) meter (m) second (s) kilogram (kg) newton*
(
N = kg·m

s2

)
U.S. Customary (FPS) foot (ft) second (s) slug* =

(
lb·s2

ft

)
pound (lb)

*Derived Unit

CONVERSION OF UNITS

The following table provides a set of direct conversion factors between FPS and SI units for the basic quantities. Note
also that in the FPS system

• 1 ft = 12 in. (inches).

• 5280 ft = 1 mi. (mile).

• 1000 lb = 1 kip (1 kilo-pound).

• 2000 lb = 1 ton.

Quantity Unit (FPS) Equals Unit (SI)
Force lb 4.4482 N
Mass slug 14.5938 kg
Length ft 0.3048 m
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1.4 THE INTERNATIONAL SYSTEM OF UNITS

PREFIXES

When a numerical quantity is either very large or very small, the units used to define its size may be modified by using
a prefix. For example:

Exponential Form Prefix SI Symbol
1 000 000 000 109 giga G
1 000 000 106 mega M
1 000 103 kilo k
0.001 10−3 milli m
0.000 001 10−6 micro μ

0.000 000 001 10−9 nano n

RULES FOR USE

You should know the rules for the proper use of the various SI symbols. These are used extensively in engineering
practice throughout the world.

1.5 NUMERICAL CALCULATIONS
It is important that the numerical answers to any problem encountered in engineering practice be reported with both
justifiable accuracy and appropriate significant figures.

DIMENSIONAL HOMOGENEITY

Each term in any equation used to describe a physical process must be expressed in the same units i.e., the terms must
be dimensionally homogeneous. Algebraic manipulations of an equation can be checked, in part, by verifying that the
equation remains dimensionally homogeneous.

SIGNIFICANT FIGURES

The accuracy of a number is specified by the number of significant figures it contains. A significant figure is any digit,
including a zero, provided it is not used to specify the location of the decimal point for the number. For example, 0.00546
and 2500 expressed to three significant figures would be 5.46 × (10−3

)
and 2.50 × (103

)
, respectively (engineering

notation).

ROUNDING OFF NUMBERS

For numerical calculations, the accuracy of the solution of a problem (generally) can never be better than the accuracy
of the problem data. Consequently, a calculated result should always be rounded off to an appropriate number of
significant figures. To convey appropriate accuracy, there are rules for rounding off numbers. You should know these.

CALCULATIONS

Perform numerical calculations to several significant figures and then report the final answer to three significant figures.

1.6 GENERAL PROCEDURE FOR ANALYSIS

• The most effective way to learn engineering mechanics is to solve problems.
• You must present your work in a logical and orderly manner as follows:
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– Read the problem carefully and try to establish a link between the actual physical situation and the appro-
priate part of the theory studies.

– Draw any necessary diagrams and tabulate the problem data.
– Apply the relevant principles.
– Solve the necessary equations algebraically, as far as practical, then, making sure they are dimensionally

homogeneous, use a consistent set of units and complete the solution numerically. Report the answer with
no more significant figures than the accuracy of the given data.

– Study the answer and see if it makes sense physically—in the context of the physical problem.

HELPFUL TIPS AND SUGGESTIONS
• The language of engineering mechanics is mathematics. Consequently, make sure you review/re-read the neces-

sary mathematical notation/concepts as they arise in your mechanics course (trying to review all of the necessary
mathematics at once is not recommended—there’s just too much to digest at one time). You should aim to
achieve fluency in basic mathematical techniques/notation so that your learning of mechanics is not distracted by
trying to remember things which your instructor assumes you know e.g., how to solve linear systems of algebraic
equations, how to perform basic vector algebra, differentiation and integration etc.
• Remember that in solving problems from engineering mechanics you are solving real practical problems and

producing real data with physical significance. Thus, you are responsible for making sure your results are correct,
consistent and well-presented. Get into the habit of doing this now so that it will become second nature by the
time you graduate. In the world of professional engineering you have a responsibility to your profession and to
the many people that will use the product you will help to design, manufacture or implement.

REVIEW QUESTIONS: TRUE OR FALSE1?

1. The subject called Statics studies only bodies which are at rest.
2. A particle has a mass but negligible shape/size.
3. A rigid body has a mass but negligible shape/size.
4. Newton’s three laws of motion can be proved mathematically.
5. Weight is a property of matter that does not change from one location to another.
6. In the SI system of units, the newton is a derived unit.
7. When performing numerical calculations, the final answer should be reported to three significant figures.
8. In an equation it’s permitted to have different terms expressed in different units. This is referred to as

dimensionally inhomogeneous.

1 1.F 2.T 3. F 4. F 5. F 6. T 7. T 8. F
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Force Vectors

MAIN GOALS OF THIS CHAPTER

In this chapter we define scalars, vectors and vector operations and use them to analyze forces acting on objects.
Specifically:

• To show how to add forces and resolve them into components.

• To express force and position in Cartesian vector form.

• To explain how to determine a vector’s magnitude and direction.

• To introduce the dot product and use it to find the angle between two vectors or the projection of one vector
onto another.

2.1 SCALARS AND VECTORS

Most of the physical quantities in mechanics can be represented by either scalars or vectors:

• A scalar is a real number e.g., mass, time, volume and length are represented by scalars.

• A vector has both magnitude and direction e.g., force, velocity and acceleration are vectors.

2.2 VECTOR OPERATIONS

MULTIPLICATION OR DIVISION OF A VECTOR BY A
SCALAR

• The product of a vector A and a scalar a is a vector aA with magnitude |aA| = |a| |A|. The direction is the same
as that of A if a is positive and opposite to that of A if a is negative.

8



2.2 Vector Operations 9

A

A

A

A

2

1.5

0.5

Scalar Multiplication and Division

VECTOR ADDITION

• Two vectors A and B can be added to form a resultant vector R = A+ B by using the parallelogram law. If the
two vectors are collinear (both vectors have the same line of action), the resultant is formed by an algebraic or
scalar addition.

A

B

A

B

R = A + B
A

B

B

A

Parallelogram Law
(b)

Triangle construction
(c)

Triangle construction
(d)(a)

Vector Addition

R = A + B

R = B + A

A B

R

Addition of collinear vectors

R = A+B

RESOLUTION OF A VECTOR

• A vector may be resolved into components having known lines of action by using the parallelogram law.
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Resolution of a vector

a

b

A

B

R

a

b

R

(a) (b)

ComponentsExtend parallel lines from the head of R
to form components

Resultant

2.3 VECTOR ADDITION OF FORCES

• A force is a vector quantity since it has a specified magnitude and direction. Consequently, forces are added
together or resolved into components using the rules of vector algebra.

• Two common problems in statics involve either finding the resultant force given its components or resolving a
known force into components.

• Often the magnitude of a resultant force can be determined from the law of cosines, while its direction is
determined from the law of sines:

A

C

B

b

c

a

Sine law:

sin a sin b sin c
A     = B     = C     

Cosine law:

C=   A2 + B2 – 2 A B cos c

2.4 ADDITION OF A SYSTEM OF COPLANAR FORCES

In the plane, a force can be resolved into two rectangular components. There are two separate notations for doing
this:

• Scalar Notation—we write the force F as
(
Fx, Fy

)
where Fx and Fy are the scalar components of the force F in

the directions of the positive x - and y -axes, respectively. If Fx and Fy are negative, it means that |Fx | and
∣∣Fy

∣∣
are directed along the negative x - and y -axes, respectively.

• Cartesian Vector Notation—we write the force F as

F =Fx i + Fyj,

where i and j represent the positive directions of the x - and y -axes, respectively.
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COPLANAR FORCE RESULTANTS

• The resultant of several coplanar forces can easily be determined if an x, y -coordinate system is established and
the forces are resolved along the axes. For example,

F1 = F1x i + F1yj,
F2 = F2x i + F2yj,
F3 = F3x i + F3yj,

then the resultant is given by

FR = F1 + F2 + F3

= (
F1x + F2x+F3x)i + (F1y + F2y+F3y

)
j

= (FRx) i + (FRy

)
j.

• In the general case, the x and y components of the resultant of any number of coplanar forces can be represented
symbolically by the algebraic sum of the x and y components of all the forces i.e.

FRx =
∑

Fx,

FRy =
∑

Fy.

• The magnitude and direction of the resultant force are given by:

|FR| = FR =
√

F 2
Rx + F 2

Ry, (2.0)

θ = tan−1

∣∣∣∣FRy

FRx

∣∣∣∣ ,
respectively.

2.5 CARTESIAN VECTORS

• A Cartesian coordinate system is often used to solve problems in three dimensions. The coordinate system is
right-handed which means that the thumb of the right hand points in the direction of the positive z-axis when
the right hand fingers are curled about this axis and directed from the positive x toward the positive y -axis.

Right-handed coordinate system.

z

y

x
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• The unit vector from a vector A is given by A
A

where A �= 0 is the magnitude of vector A. The unit vector is
dimensionless and defines the direction of vector A.

• The positive directions of the x, y, z axes are defined by the Cartesian unit vectors i, j, k, respectively. Conse-
quently, any vector A with scalar components Ax, Ay and Az can be written in the Cartesian vector form

A =Ax i + Ayj + Azk. (2.1)

• The magnitude of vector A is given by

|A| = A =
√

A2
x + A2

y + A2
z. (2.2)

• The direction of vector A is defined by the angles α, β and γ measured between the tail of A and the positive
x, y, z axes located at the tail of A.

A

Ax i

z

y

x

Ay j

Az 
k

α 
β 

γ 

• The angles α, β and γ are found from their direction cosines

cos α = Ax

A
, cos β = Ay

A
, cos γ = Az

A
, cos2 α + cos2 β + cos2 γ = 1. (2.3)

This means that only two of the angles α, β and γ have to be specified—the third can be found from
cos2 α + cos2 β + cos2 γ = 1.

2.6 ADDITION AND SUBTRACTION OF CARTESIAN VECTORS
• To find the resultant of a concurrent force system, express each force as a Cartesian vector and add the i, j, k

components of all the forces in the system.

2.7 POSITION VECTORS
• The position vector r is defined as a fixed vector which locates a point in space relative to another point. For

example, from the origin of coordinates O, the point in space P (x, y, z) has position vector r =xi+yj+zk.

• More generally, the position vector may be directed from point A to point B in space. In this case, the position
vector is again denoted by r (or sometimes rAB ) and is given by

rAB = rB − rA (2.4)

where rB and rA are the position vectors of A and B from the origin of coordinates O. For example, if
A (xA, yA, zA) and B (xB, yB, zB) then

rA=xAi+yAj+zAk, rB=xB i+yB j+zBk, rAB = (xB − xA)i + (yB − yA)j + (zB − zA)k.
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2.8 FORCE VECTOR DIRECTED ALONG A LINE

• A force F (with magnitude F ) acting in the direction of a line represented by a position vector r can be written
in the form

F =F
(r

r

)
= Fu

where u =r
r is a unit vector representing the direction of the line.

2.9 DOT PRODUCT

• The dot product is used to determine

– The angle between two vectors.

– The projection of a vector in a specified direction.

• The dot product of two vectors A and B is defined as

A · B = AxBx + AyBy + AzBz = AB cos θ, (2.5)

where A and B are the magnitudes of A and B, respectively, and θ is the angle between the tails of A and B.

Consequently,

θ = cos−1
(

A · B

AB

)
.

• The dot product is commutative (A · B = B · A), and distributive A·(B+ D) = A · B+ A · D. Also, if a ∈ � :

a(A · B) = (aA) ·B = A · (aB) = (A · B)a. (2.6)

• In some engineering applications, you must resolve a vector into components which are parallel and perpendicular
(normal) to a given line (direction). The component of vector A in the direction specified by the unit vector u is
given by

A‖ = A · u =A cos θ. (2.7)

This component is also referred to as the scalar projection of A onto the line with direction u or the component
of vector A parallel to a line with direction u. Clearly, the vector A‖ is defined by A‖ =

(
A‖
)

u.

• Once the parallel component has been determined, we can determine the component of A perpendicular (or
normal) to a line with direction u by

A⊥ =
√

A2 − A2
‖. (2.8)

• Clearly, in terms of vectors,
A = A‖ + A⊥.

HELPFUL TIPS AND SUGGESTIONS

• Be aware of the differences between vectors and scalars. For example, force, velocity and acceleration are vectors
while speed, time and distance are scalars. If you are asked to find a vector (e.g., a force) you must report both
magnitude and direction.

• Vector operations are essential in describing the basic principles of mechanics. Make sure you take the time to
review basic vector algebra. It doesn’t take long but the payoff (in terms of your effectiveness in mechanics) is
significant.
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REVIEW QUESTIONS

1. How are the scalar components of a vector defined in terms of a Cartesian coordinate system?
2. If you know the scalar components of a vector, how can you determine its magnitude and direction?
3. Suppose you know the coordinates of two points A and B . How do you determine the scalar components of the

position vector of point B relative to point A?
4. How do you identify a right-handed coordinate system?
5. What are the direction cosines of a vector? If you know them, how do you determine the components of the

vector?
6. What is the definition of the dot product? Is the dot product a vector or a scalar?
7. If the dot product of two vectors is zero, what does that mean?
8. If you know the components of two vectors A and B, how can you determine their dot product?
9. Simplify

i. A · (B+ D)

ii. (aA) · B where a is a scalar.
10. How can you use the dot product to determine the components of a vector parallel and perpendicular to a line?
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Equilibrium of a Particle

MAIN GOALS OF THIS CHAPTER
In this chapter we:

• Introduce the concept of the free-body diagram for an object modelled as a particle (an object with mass but
negligible shape/size—henceforth referred to simply as a particle).
• Show how to solve particle equilibrium problems using the equations of equilibrium.

3.1 CONDITION FOR THE EQUILIBRIUM OF A PARTICLE

A particle is in equilibrium provided it is at rest if originally at rest (static equilibrium) or has a constant velocity if
originally in motion.

• To maintain equilibrium it is necessary and sufficient that the resultant force acting on a particle be equal to zero.
In terms of Newton’s laws of motion, this is expressed mathematically as:∑

F = 0 (3.0)

where
∑

F is the vector sum of all forces acting on the particle.

3.2 THE FREE-BODY DIAGRAM
To apply the equation of equilibrium (3.0), we must account for all the known and unknown forces (

∑
F) which act

on the particle. The easiest way to do this is to draw a free-body diagram.

• A free-body diagram is simply a sketch which shows the particle ‘free’ from its surroundings with all the forces
that act on it. There are three main steps:

� Draw Outlined Shape. Imagine the particle to be isolated or cut ‘free’ from its surroundings by drawing its
outlined shape.

� Show all Forces. Indicate on this sketch all the forces that act on the particle—it may help to carefully trace
around the particle’s boundary, noting each force acting.

� Identify Each Force. The forces which are known should be labeled with their proper magnitudes and
directions. Letters are used to represent the magnitudes and directions of forces that are unknown.

15
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∗ Connections—there are two types of connections often encountered in particle equilibrium problems:

(a) Springs—The magnitude of force exerted on a linear elastic spring with stiffness k , deformed a
distance s measured from its unloaded position is

F = ks. (3.1)

Here s is determined from the difference in the spring’s deformed length and its undeformed
length.

(b) Cables and Pulleys—Assume cables (or cords) have negligible weight and cannot stretch. Also,
a cable can support only tension which always acts in the direction of the cable.

There are several examples and practice problems, as well as much more on drawing free-body diagrams in Part II of
this study pack.

3.3 COPLANAR FORCE SYSTEMS

Coplanar force equilibrium problems for a particle can be solved using the following procedure.

1. Free-Body Diagram

• Establish the x, y axes in any suitable orientation.

• Label all the known and unknown force magnitudes and directions on the diagram.

• The sense of a force having an unknown magnitude can be assumed.

2. Equations of Equilibrium

• Resolve each force into its i (x) and j (y) components and apply the scalar equations of equilibrium∑
Fx = 0,

∑
Fy = 0. (3.2)

(the algebraic sum of the x and y components of all the forces acting on the particle equal to zero).

• Components are positive if they are directed along a positive axis and negative if they are directed along a
negative axis.

• If more than two unknowns exist and the problem involves a spring, apply F = ks to relate the spring force
to the deformation s of the spring.

• If the solution yields a negative result, this indicates the sense of the force is the reverse of that shown on
the free-body diagram.

3.4 THREE-DIMENSIONAL FORCE SYSTEMS

Three-dimensional force equilibrium problems for a particle can be solved using the following procedure.

1. Free-Body Diagram

• Establish the x, y, z axes in any suitable orientation.

• Label all the known and unknown force magnitudes and directions on the diagram.

• The sense of a force having an unknown magnitude can be assumed.
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2. Equations of Equilibrium

• When it’s easy to do so, resolve each force into its i(x), j(y), and k(z) components and apply the scalar
equations of equilibrium ∑

Fx = 0,
∑

Fy = 0,
∑

Fz = 0. (3.3)

(the algebraic sum of the x , y and z components of all the forces acting on the particle equal to zero).
• If the three-dimensional geometry appears difficult, then first express each force as a Cartesian vector and

substitute these vectors into the vector equation of equilibrium (3.0)∑
F = 0

and then set the i , j and k components equal to zero.
• If the solution yields a negative result, this indicates the sense of the force is the reverse of that shown on

the free-body diagram.

HELPFUL TIPS AND SUGGESTIONS
• Since we must account for all the forces acting on the (object modelled as a) particle when applying the equations

of equilibrium, the importance of first drawing a free-body diagram cannot be over-emphasized.
• One of the most common mistakes made in writing equilibrium conditions is forgetting to include all of the forces

acting. When drawn carefully, a free-body diagram will make it easier for you to identify all the forces acting.
• Use Part II of this supplement to get lots of practice in drawing free-body diagrams and applying the equations

of equilibrium for a particle.

REVIEW QUESTIONS

1. What is meant by ‘equilibrium of a particle’?
2. What do you know about the sum of the external forces acting on an object modelled as a particle in equilibrium?
3. What are the steps in drawing a free-body diagram?
4. What is a coplanar force system?
5. What is a three-dimensional system of forces?
6. What is the difference between equilibrium of coplanar and three-dimensional force systems?
7. What is the relation between the magnitude of the force exerted on a linear spring and the change in its length?
8. The following is the correct free-body diagram for the ring at E. True or False?

4
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Force System Resultants

MAIN GOALS OF THIS CHAPTER:

• To discuss the concept of the moment of a force and show how to calculate it in two and three dimensions.

• To provide a method for finding the moment of a force about a specified axis.

• To define the moment of a couple.

• To present methods for determining the resultants of nonconcurrent force systems.

• To indicate how to reduce a simple distributed loading to a resultant force having a specified location.

4.1 MOMENT OF A FORCE—SCALAR FORMULATION

• The moment MO of a force F about an axis passing through a specific point O provides a measure of the tendency
of the force to cause the body to rotate about the axis (sometimes referred to as a torque). Clearly the moment
is a vector and so has both magnitude and direction.

• The magnitude of the moment is determined from M0 = Fd, where d is the perpendicular or shortest distance
from point O to the line of action of the force F.

• Using the right-hand rule, the direction (sense) of rotation is indicated by the fingers with the thumb directed
along the moment axis or line of action of the moment.

18
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Sense of rotation

O

Moment axis

d
F

MO

MO

F

d

O

(a)

(b)

• If a system of forces lies in the x–y plane, then the moment produced by each force about point O will be directed
along the z-axis. The resultant moment MRO

of the system can be determined by simply adding the moments of
all the forces algebraically since all the moment vectors are collinear i.e.

� +MRO
=
∑

Fd.

Here the counterclockwise curl written alongside the equation indicates that the moment of any force will be
positive if it is directed along the z-axis, whereas a negative moment is directed along the z-axis.

4.2 CROSS PRODUCT

• The cross product of two vectors A and B yields a vector C written C = A× B.

� The magnitude of vector C is given by AB sin θ where θ is the angle between the tails of A and B.

� Vector C has a direction which is perpendicular to the plane containing A and B such that C is specified by
the right-hand rule i.e., curling the fingers of the right hand from vector A (cross) to vector B, the thumb
then points in the direction of C.
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C = A × B

A

B

θ 

LAWS OF OPERATION

• A ×B �= B× A, rather A ×B = −B× A.

• a(A ×B) = (aA) ×B = A× (aB) = (A× B)a.

• A ×(B+ D) = (A× B)+ (A× D).

CARTESIAN VECTOR FORMULATION

• To find the cross product of any two Cartesian vectors A and B we use the determinant

A × B =
∣∣∣∣∣∣

i j k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (4.0)

• The following useful results can be obtained by applying the right-hand rule and don’t need to be memorized.

i× j = k, i× k = −j, i× i = 0,

j× k = i, j× i = −k, j× j = 0,

k × i = j, k × j = −i, k × k = 0.

4.3 MOMENT OF A FORCE—VECTOR FORMULATION

In three-dimensions it is preferable to use the vector cross product to determine the moment:

• The moment MO of a force F about the moment axis passing through point O and perpendicular to the plane
containing O and F can be represented by

MO = r × F =
∣∣∣∣∣∣

i j k

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣ , (4.1)

where r represents a position vector drawn from O to any point lying on the line of action of F.
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O

Moment axis
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rA

F

(a)

O

Moment axis

d

MO

rAr

F

(b)

θ 

θ 

PRINCIPLE OF TRANSMISSIBILITY

• Since in (4.1), r can extend from O to any point on the line of action of F, F is a sliding vector and can act at any
point along its line of action and create the same moment about point O.

RESULTANT MOMENT OF A SYSTEM OF FORCES

• If a body is acted upon by a system of n forces, the resultant moment about O is just the vector sum of the
individual moments:

MRO
=

n∑
i=1

(ri × Fi ).

z

x

y
O

r2

r1
r3

F3 F1

F2

MRO

4.4 PRINCIPLE OF MOMENTS
• The principle of moments (Varignon’s theorem) states that the moment of a force about a point is equal to the

sum of the moments of the force’s components about the point. This is particularly convenient since it is often
easier to determine the moments of a force’s components rather than the moment of the force itself (e.g., in two
dimensions).

4.5 MOMENT OF A FORCE ABOUT A SPECIFIED AXIS
Recall that when the moment of a force is computed about a point, the moment and its axis are always perpendicular
to the plane containing the force and the moment arm. In some problems it is important to find the component of this
moment about a specified axis that passes through the point.
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• In terms of a scalar analysis, the moment of a force F about a specified axis can be determined provided the
perpendicular distance da from both the force line of action and the axis can be determined. Then Ma = Fda.

• In terms of vector analysis, the component Ma = ua · (r × F), where ua defines the direction of the axis and r
is directed from any point on the axis to any point on the line of action of the force. The quantity ua · (r × F) is
called a triple scalar product and can be computed using the determinant

ua · (r × F) =
∣∣∣∣∣∣
uax

uay
uaz

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣
Once Ma is determined, we can express Ma as a Cartesian vector, namely Ma = Maua.

• If Ma is calculated as a negative scalar then the sense of direction of Ma is opposite to ua.

4.6 MOMENT OF A COUPLE

• A couple is defined as two parallel forces that have the same magnitude, opposite directions, and are separated
by a perpendicular distance d. Since the resultant force is zero, the only effect of a couple is to produce a rotation
in a specified direction.

F

–F

d

• The moment produced by a couple is called a couple moment which is a free vector and, as a result, it causes the
same effect of rotation on a body regardless of where the couple moment is applied to the body. Consequently,
the couple moment can be computed about any point. For convenience, this point is often chosen on the line of
action of one of the forces in the couple.

• The couple moment is easily determined from the vector formulation M = r × F where r is directed from any
point on the line of action of one of the forces to any point on the line of action of the other force F.

• A resultant couple moment is simply the vector sum of all the couple moments of the system.

4.7 SIMPLIFICATION OF A FORCE AND COUPLE SYSTEM

A force has the effect of both translating and rotating a body and the amount by which it does so depends on where
and how the force is applied. It is possible, however, to replace a system of forces and couple moments acting on
a body with an equivalent single resultant force and couple moment acting at a specified point O . Here equivalent
means that the system and the resultant each produce the same external effects of translation and rotation. There are
two cases to consider:

• Point O is on the Line of Action of the Force—simply slide the force along its line of action to the point O .
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• Point O is not on the Line of Action of the Force—move the force to the point O and add a couple moment
anywhere to the body.
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= =

Next, we show how to determine the equivalent resultants mentioned above.

• To simplify any force and couple moment system to a resultant force acting at point O and a resultant couple
moment we use the following equations

FR =
∑

F, (4.2)

(MR)O =
∑

MC +
∑

MO

The first equation states that the resultant force of the system is equivalent to the sum of all the forces. The
second equation states that the resultant couple moment of the system is equivalent to the sum of all the couple
moments

∑
MC plus the moments

∑
MO about point O of all the forces.

• The following tips may prove useful when applying equations (4.2):

� Establish the coordinate axes with the origin located at point O and the axes having a selected orientation.

� If the force system lies in the x–y plane, and any couple moments are perpendicular to this plane i.e. along
the z-axis, the equations (4.2) reduce to the scalar equations:

(FR)x =
∑

Fx,

(FR)y =
∑

Fy

(MR)O =
∑

MC +
∑

MO.
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4.8 FURTHER SIMPLIFICATION OF A FORCE AND COUPLE SYSTEM
• In certain special circumstances (when the system of forces is either concurrent, coplanar or parallel), the system

of forces and couple moments acting on a rigid body reduces at point O to a resultant force FR and a resultant
couple moment (MR)O which are perpendicular to one another. When this occurs, it is possible to further simplify
the force and couple moment system by moving FR to another point P (on or off the body) so that no resultant
couple moment has to be applied to the body. That is, only the force resultant will have to be applied to the body
(at P). The location of point P measured from point O can always be determined provided FR and (MR)O are
known.
• Reduction to a Wrench—A general force and couple moment system acting on a body will reduce to a single

resultant force FR and a resultant couple moment (MR)O at O which are not perpendicular to one another.
In this case the force and couple moment system acting on a body can be reduced to a wrench or screw: a
combination of a collinear force and couple moment

4.9 REDUCTION OF A SIMPLE DISTRIBUTED LOADING
In many situations a very large surface area of a body may be subjected to distributed loadings such as those caused
by wind, fluids or simply the weight of material supported over the body’s surface.

• Distributed loadings are defined by using a loading function w = w (x) that indicates the intensity of the loading
along the length of the member. This intensity is measured in N/m or lb/ft.
• The external effects caused by a coplanar distributed load acting on a body can be represented by a single resultant

force.
• The magnitude of the resultant force is equal to the total area under the distributed loading diagram w = w (x) .

• The location of the resultant force is given by the fact that it’s line of action passes through the centroid or
geometric center of this area.

HELPFUL TIPS AND SUGGESTIONS
• Be aware of the difference between the cross product and the dot product of two vectors. The former is a vector

while the latter is a scalar. Also

A · B = B · A BUT A × B �= B × A (= −(A × B))

• The right-hand rule is essential in the calculation of moments. You should be able to apply this rule quickly and
accurately.

REVIEW QUESTIONS

1. What is meant by a moment? Is it a vector or a scalar?
2. What’s the magnitude of the moment of a force about a point?
3. How do you calculate the sense (direction) of a moment?
4. If the line of action of a force passes through a point P , what do you know about the moment of the force about

P ?
5. If you know the components of two vectors A and B, how do you determine their cross product? Is the cross-

product a vector or a scalar?
6. If A× B = 0, what does this mean?
7. When you use the equation MO = r × F to determine the moment of a force F about O, how do you choose r?
8. If you know the components of the vector MO = r × F, how can you determine the product of the magnitude

of F and the perpendicular distance d from O to the line of action of F ?
9. How do you figure out the sense of the moment of F about O using the formula MO = r × F ?
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10. How would you calculate the moment exerted about a point O by a couple consisting of forces F and −F ?
11. True or false? The moment of a couple about O is different than the moment of the same couple about P �= O?
12. What is meant by an equivalent system?
13. How do we replace a system of forces and couple moments acting on a body with an equivalent single resultant

force and couple moment acting at a specified point O? What are the relevant equations?
14. Define what is meant by a wrench. When does a force and couple moment system acting on a body reduce to a

wrench?
15. How is the resultant force exerted by a coplanar distributed load acting on a body determined from the function

w (x)?



5

Equilibrium of a Rigid Body

MAIN GOALS OF THIS CHAPTER:

• To develop the equations of equilibrium for a rigid body.
• To introduce the concept of the free-body diagram for a rigid body.
• To show how to solve rigid body equilibrium problems using the equations of equilibrium.

5.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

A rigid body is the next level of sophistication (after the particle) in the modelling of an object. Basically we ‘add’
size/shape to the existing model of a particle. Consequently, the main difference between a particle and a rigid body
is that a rigid body can support moments. To obtain equations for the equilibrium of a rigid body, therefore, we need
to supplement the equations of particle equilibrium with an expression of moment balance.

• The two equations of equilibrium for a rigid body are∑
F = 0,∑

MO = 0,

where O is an arbitrary point.

EQUILIBRIUM IN TWO DIMENSIONS

5.2 FREE-BODY DIAGRAMS

• No equilibrium problem should be solved without first drawing the free-body diagram, so as to account for all
the forces and couple moments that act on the body.
• Part II of this study pack is devoted to the drawing of free-body diagrams including, specifically, free-body

diagrams for rigid body equilibrium in two dimensions. Study Part II of this study pack making special note of
the following important points:

26



5.3 Equations of Equilibrium 27

– If a support prevents translation of a body in a particular direction, then the support exerts a force on the
body in that direction.

– If rotation is prevented, then the support exerts a couple moment on the body.

– Study Table 2.1 in Part II of this supplement (or Table 5-1 of the text).

– Internal forces are never shown on the free-body diagram since they occur in equal but opposite collinear
pairs and therefore cancel out.

– The weight of a body is an external force and its effect is shown as a single resultant force acting through
the body’s center of gravity G.

– Couple moments can be placed anywhere on the free-body diagram since they are free vectors. Forces can
act at any point along their lines of action since they are sliding vectors.

5.3 EQUATIONS OF EQUILIBRIUM

• When the body is subjected to a system of forces which all lie in the x–y plane, the forces can be resolved into
their x and y components. Consequently, the conditions for equilibrium in two dimensions can be written in
scalar form as: ∑

Fx = 0, (5.0)∑
Fy = 0,∑

MO = 0,

where
∑

MO represents the algebraic sum of the couple moments and moments of all the force components
about an axis perpendicular to the xy -plane and passing through an arbitrary point O (on or off the body).

TWO ALTERNATIVE SETS OF EQUILIBRIUM
EQUATIONS

• ∑
Fa = 0,∑

MA = 0,∑
MB = 0.

Here, the only requirement is that a line passing through points A and B is not perpendicular to the a-axis.

• ∑
MA = 0,∑
MB = 0,∑
MC = 0.

Here, the only requirement is that points A, B and C do not lie on the same line.
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PROCEDURE FOR SOLVING COPLANAR FORCE
EQUILIBRIUM PROBLEMS

• Free-Body Diagram

– Establish the x, y coordinate axes in any suitable orientation.
– Draw an outlined shape of the body.
– Show all the forces and couple moments acting on the body.
– Label all the loadings and specify their directions relative to the xy -axes.
– Indicate the dimensions of the body necessary for computing the moments of forces.

• Equations of Equilibrium

– Apply the moment equation of equilibrium (
∑

MO = 0) about a point O that lies at the intersection of
the lines of action of two unknown forces. In this way, the moments of these unknowns are zero about O,

and a direct solution for the third unknown can be determined.
– When applying the force equilibrium equations (

∑
Fx = 0 and

∑
Fy = 0), orient the x and y axes along

lines that will provide the simplest resolution of the forces into their x and y components.
– If the solution of the equilibrium equations yields a negative scalar for a force or couple moment magnitude,

it means that the sense is opposite to that which was assumed on the free-body diagram.

5.4 TWO- AND THREE- FORCE MEMBERS
The solution to some equilibrium problems can be simplified if one is able to recognize members that are subjected to
only two or three forces.

• Two-Force Members—When a member is subjected to no couple moments and forces applied at only two points
A and B on a member, the member is called a two-force member. In this case, for the member to be in equilibrium,
it is necessary that the resultant forces at A and B must be equal, opposite and collinear. The line of action of both
(resultant) forces is known since it always passes through A and B . Hence only the force magnitude (remember
both resultants are equal in magnitude!) needs to be determined or stated.
• Three-Force Members—When a member is subjected to only three forces, it is necessary that the forces be either

concurrent or parallel for the member to be in equilibrium. Once the point of concurrency O (where the lines
of action of the forces intersect) is identified, then necessarily

∑
MO = 0. If two of the three forces are parallel,

the point of concurrency O , is said to be at “infinity” and the third force must be parallel to the other two forces
to intersect at this “point.”

EQUILIBRIUM IN THREE DIMENSIONS

5.5 FREE-BODY DIAGRAMS
The first step in solving three-dimensional equilibrium problems, as in the case of two dimensions, is to draw a free-body
diagram. The general procedure for doing this is the same as that outlined for the two-dimensional case in Section 5.2
of the text. However, there are a few subtle differences of which you should be aware:

• It is necessary to be familiar with the different types of reactive forces and couple moments acting at various types
of supports and connections when members are viewed in three dimensions. It is important to recognize the
symbols used to represent each of these supports and to understand clearly how the forces and couple moments
are developed by each support. These are summarized in Table 5-2 of the text. Remember:

– As in the two-dimensional case, a force is developed by a support that restricts the translation of the attached
member, whereas a couple moment is developed when rotation of the attached member is prevented.
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5.6 EQUATIONS OF EQUILIBRIUM

When the body is subjected to a three-dimensional force system, equilibrium requires that the resultant force and
resultant couple moment acting on the body be equal to zero.

• In vector form the two equilibrium equations are∑
F = 0,∑

MO = 0,

where
∑

F is the vector sum of all the external forces acting on the body and
∑

MO is the sum of the couple
moments and the moments of all the forces about any point O (on or off the body).
• Writing ∑

F =
∑

Fx i +
∑

Fyj +
∑

Fzk,∑
MO =

∑
Mx i +

∑
Myj +

∑
Mzk,

The six scalar equilibrium equations are∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0, (5.1)∑

Mx = 0,
∑

My = 0,
∑

Mz = 0.

5.7 CONSTRAINTS AND STATISTICAL DETERMINANCY
To ensure equilibrium of a rigid body, it is not only necessary to satisfy the equations of equilibrium, but the body must
also be properly held or constrained by its supports.

• Redundant Constraints. When a body has redundant supports, that is, more supports than are necessary to hold
it in equilibrium, it becomes statically indeterminate. This means that there will be more unknown loadings
on the body than equations of equilibrium available for their solution. The additional equations needed to
solve indeterminate problems are generally obtained from the deformation conditions at the points of support.
These equations involve modelling the body not as a rigid body but as a deformable body (the next level of
sophistication). This is done in courses dealing with “mechanics of materials.”
• Improper Constraints. In some cases, there may be as many unknown forces on the body as there are equations

of equilibrium; however, instability of the body may develop because of improper constraining by the supports.
When this happens, either the number of available equilibrium equations is reduced by one (making the system
indeterminate) or we will not be able to satisfy all the equilibrium equations. Proper constraining (avoiding
instability of a body) requires

1. The lines of action of the reactive forces do not intersect a common axis and
2. The reactive forces must not all be parallel to one another.

When the minimum number of reactive forces is needed to properly constrain the body in question, the problem will
be statically determinate and therefore the equations of equilibrium can be used to determine all the reactive forces.

HELPFUL TIPS AND SUGGESTIONS

• The first step in solving equilibrium problems is to draw a free-body diagram. Don’t try to skip this stage no
matter how trivial you think it is!
• Make the free-body diagram as clear and concise as possible. It will aid your understanding of the problem and

it will help you construct the equilibrium equations.



30 Chap. 5 Equilibrium of a Rigid Body

REVIEW QUESTIONS

1. Why is there no moment equilibrium equation for a body modelled as a particle?
2. Write down the six independent scalar equilibrium equations for a rigid body in three dimensions. Adapt these

equations to the two-dimensional case explaining why there are now only three independent equations.
3. What does it mean when an object is said to have redundant supports.
4. How do you know if an object is statically indeterminate as a result of redundant supports?
5. How do you avoid instability of a body due to improper constraining?
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Structural Analysis

MAIN GOALS OF THIS CHAPTER:
• To show how to determine the forces in the members of a truss using the method of joints and the method of

sections.
• To analyze the forces acting on the members of frames and machines composed of pin-connected members.

6.1 SIMPLE TRUSSES
A truss is a structure composed of slender members joined together at their end points. The members are usually
wooden struts or metal bars. The joint connections are usually formed by bolting or welding the ends of the members
to a common plate called a gusset plate, or by simply passing a large bolt or pin through each of the members.

(b)(a)

• Planar Trusses lie in a single plane and are often used to support roofs and bridges.
• Assumptions for Design. To design both the members and the connections of a truss, it is first necessary to

determine the force developed in each member when the truss is subjected to a given loading. The following
assumptions allow us to consider each truss member as a two-force member so that the forces at the ends of the
member must be directed along the axis of the member.

– All loadings are applied at the joints.
– The members are joined together by smooth pins.

31
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• Simple Trusses. To prevent collapse, the form of a truss must be rigid. The simplest form which is rigid or stable
is a triangle. Consequently, a simple truss is constructed by starting with a basic triangular element. Additional
elements consisting of two members and a joint are added to the triangular element to form a simple truss.

6.2 THE METHOD OF JOINTS

In order to analyze or design a truss, we must obtain the force in each of its members. To do this, we consider the
equilibrium of a joint of the truss. This is the basis for the method of joints.

• Since the truss members are all straight two-force members lying in the same plane, the force system acting at
each joint is coplanar and concurrent. Consequently, moment equilibrium is automatically satisfied at the joint
and it is only necessary to satisfy two independent scalar force equilibrium equations.

PROCEDURE FOR ANALYZING A (PLANAR) TRUSS
USING THE METHOD OF JOINTS

• Draw the free-body diagram of a joint having at least one known force and at most two unknown forces. (If this
joint is at one of the supports, it generally will be necessary to know the external reactions at the truss support).

• Establish the sense of an unknown force by either:

– Assuming that the unknown force is in tension and interpreting negative scalar results as members in
compression. OR

– By inspection.

• Orient the x and y axes such that the forces on the free-body diagram can be easily resolved into their x and
y components and then apply the two force equilibrium equations

∑
Fx = 0 and

∑
Fy = 0. Solve for the two

unknown member forces and verify their correct sense.

• Continue to analyze each of the other joints as above.

• Once the force in a member is found from the analysis of a joint at one of its ends, the result can be used to
analyze the forces acting on the joint at its other end. Remember that a member in compression pushes on the
joint and a member in tension pulls on the joint.

6.3 ZERO FORCE MEMBERS

Truss analysis using the method of joints is greatly simplified if one is first able to determine those members which
support no loading. These zero-force members are used to increase stability of the truss during construction and to
provide support if the applied loading is changed.

• Zero-force members of a truss are generally determined by inspection of each of its joints. As a general rule:
If only two members form a truss joint and no external load or support reaction is applied to the joint, the

members must be zero force members.
If three members form a truss joint for which two of the members are collinear, the third member is a zero

force member provided no external force or support reaction is applied to the joint.

6.4 THE METHOD OF SECTIONS

The method of sections is used to determine the loadings acting within a body. It is based on the principle that if a
body is in equilibrium then any part (section) of the body is also in equilibrium.



6.5 Space Trusses 33

PROCEDURE FOR ANALYZING THE FORCES IN
THE MEMBERS OF A TRUSS USING THE METHOD
OF SECTIONS

• Free-Body Diagram

– Make a decision as to how to “cut” or section the truss through the members where forces are to be
determined.

– Before isolating the appropriate section, it may first be necessary to determine the truss’ external reactions.
Then three equilibrium equations are available to solve for member forces at the cut section

– Draw the free-body diagram of that part of the sectioned truss which has the least number of forces acting
on it.

– Establish the sense of an unknown member force by either:

∗ Assuming that the unknown member force is in tension and interpreting negative scalar results as
members in compression. OR
∗ By inspection.

• Equations of Equilibrium

– Moments should be summed about a point that lies at the intersection of the lines of action of two unknown
forces, so that the third unknown force is determined directly from the moment equation.

– If two of the unknown forces are parallel, forces may be summed perpendicular to the direction of these
unknowns to determine directly the third unknown force.

6.5 SPACE TRUSSES
A space truss consists of members joined together at their ends to form a stable three-dimensional structure. The
simplest element of a space truss is a tetrahedron, formed by connecting six members together.

P

Either the method of joints or the method of sections can be used to determine the forces developed in the
members of a simple space truss:

• Method of Joints. If the forces in all the members of the truss must be determined, the method of joints is most
suitable for the analysis. Solve the three scalar equilibrium equations

∑
Fx = 0,

∑
Fy = 0 and

∑
Fz = 0

at each joint. The solution of many simultaneous equations can be avoided if the force analysis begins at a
joint having at least one known force and at most three unknown forces. Use a Cartesian vector analysis if the
three-dimensional geometry of the force-system at the joint is hard to visualize.
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• Method of Sections. If only a few member forces are to be determined, the method of sections is most suitable.
When an imaginary section is passed through a truss and the truss is separated into two parts, the force system
acting on one of the parts must satisfy the six scalar equilibrium equations

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0,∑

Mx = 0 and
∑

My = 0 and
∑

Mz = 0. By proper choice of the section and axes for summing forces
and moments, many of the unknown member forces in a space truss can be computed directly using a single
equilibrium equation.

6.6 FRAMES AND MACHINES

Frames and machines are two common types of structures which are often composed of pin-connected multiforce
members. Frames are generally stationary and are used to support loads while machines contain moving parts and
are designed to transmit and alter the effect of forces. Once the forces at the joints are obtained (see below) it is
then possible to design the size of the members, connections and supports using the theory of mechanics of materials
(deformable bodies) and an appropriate engineering design code.

PROCEDURE FOR DETERMINING THE JOINT
REACTIONS ON FRAMES OR MACHINES
COMPOSED OF MULTIFORCE MEMBERS

• Free-Body Diagram

– Draw the free-body diagram of the entire structure, a portion of the structure, or each of its members. The
choice should be made so that it leads to the most direct solution of the problem.

– When the free-body diagram of a group of members of a structure is drawn, the forces at the connected
parts of this group are internal forces and are not shown on the free-body diagram of the group.

– Forces common to two members which are in contact act with equal magnitude but opposite sense on the
respective free-body diagrams of the members.

– Two-force members, regardless of their shape, have equal but opposite collinear forces acting at the ends
of the member.

– In many cases it is possible to tell by inspection the proper sense of the unknown forces acting on a member;
however, if this seems difficult, the sense can be assumed.

– A couple moment is a free vector and can act at any point on the free-body diagram. Also, a force vector
is a sliding vector and can act at any point along its line of action.

• Equations of Equilibrium

– Count the number of unknowns and compare it to the total number of equilibrium equations that are
available, In two dimensions, there are three equilibrium equations that can be written for each member.

– Sum moments about a point that lies at the intersection of the lines of action of as many unknown forces
as possible

– If the solution of a force or couple moment magnitude is negative, it means that the sense is the reverse of
that shown on the free-body diagrams.

HELPFUL TIPS AND SUGGESTIONS

• The importance of drawing and using a clear and concise free-body diagram cannot be overstated.

• As in most mechanics problems, practice is the key. Make sure you read Examples 6-9 through 6-13 in the text
and attempt to draw the requested free-body diagrams yourself. When doing so, make sure the work is neat and
that all the forces and couple moments are properly labelled.
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REVIEW QUESTIONS

1. What is a truss?
2. What assumptions allow us to consider a truss member as a two-force member?
3. What is the method of joints?
4. How many independent scalar equilibrium equations are available from the free-body diagram of a joint?
5. What is the method of sections?
6. What methods are available to determine the forces developed in the members of a simple space truss?
7. What’s the difference between a frame and a machine?
8. When the free-body diagram of a group of members of a structure is drawn, the forces at the connected parts of

this group are not shown on the free-body diagram of the group. Why?
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Internal Forces

MAIN GOALS OF THIS CHAPTER:

• To show how to use the method of sections for determining the internal loadings in a member.

• To generalize this procedure by formulating equations that can be plotted so that they describe the internal shear
and moment throughout a member.

• To analyze the forces and study the geometry of cables supporting a load.

7.1 INTERNAL FORCES DEVELOPED IN STRUCTURAL MEMBERS

The design of any structural or mechanical member requires an investigation of both the external loads and reactions
acting on the member and the loading acting within the member—in order to be sure the material can resist this loading.
These internal loadings can be determined using the method of sections.

The idea is to cut an ‘imaginary section’ through the member so that the internal loadings
(of interest) at the section become external on the free-body diagram of the section.

PROCEDURE FOR FINDING THE INTERNAL
LOADINGS AT A SPECIFIC LOCATION IN A
MEMBER USING THE METHOD OF SECTIONS

• Support Reactions.

� Before the member is “cut” or “sectioned,” it may first be necessary to determine the member’s support
reactions, so that the equilibrium equations are used only to solve for the internal loadings when the member
is sectioned.

� If the member is part of a frame or machine, the reactions at its connections are determined using the
methods outlined in Section 6.6.

36
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• Free-Body Diagram.

� Keep all distributed loadings, couple moments and forces acting on the member in their exact locations,
then pass an imaginary section through the member, perpendicular to its axis at the point where the internal
loading is to be determined.

� After the section is made, draw a free-body diagram of the segment that has the least number of loads on
it, and indicate the x, y, z components of the force and couple moment resultants at the section.

� If the member is subjected to a coplanar system of forces, only N (normal force), V (shear force), and M
(bending moment) act at the section.

V

N

M

Shear force

Normal force

Bending moment

C

� In three dimensions, a general internal force and couple moment resultant will act at the section.

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

� In many cases it may be possible to tell by inspection the proper sense of the unknown loadings; however,
if this seems difficult, the sense can be assumed.

• Equations of Equilibrium.

� Moments should be summed at the section about axes passing through the centroid or geometric center of
the member’s cross-sectional area in order to eliminate the unknown normal and shear forces and thereby
obtain direct solutions for the moment components.

� If the solutions of the equilibrium equations yields a negative scalar, the assumed sense of the quantity is
opposite to that shown on the free-body diagram.

7.2 SHEAR AND MOMENT EQUATIONS AND DIAGRAMS
Beams are designed to support loads perpendicular to their axes. The actual design of a beam requires a detailed
knowledge of the variation of the internal shear force V and bending moment M acting at each point along the axis
of the beam. After this, the theory of mechanics of materials is used with an appropriate engineering design code to
determine the beam’s required cross-sectional area.
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The variations of V and M as functions of the position x along the beam’s axis can be obtained using the method
of sections (Section 7.1). However, it is necessary to section the beam at an arbitrary distance x from one end rather
than at a specified point. If the results are plotted, the graphical variations of V and M as functions of x are termed
the shear diagram and bending moment diagram, respectively.

These diagrams can be constructed as follows:

• Support Reactions.

� Determine all the reactive forces and couple moments acting on the beam and resolve all the forces into
components acting perpendicular and parallel to the beam’s axis.

• Shear and Moment Functions.

� Specify separate coordinates x having an origin at the beam’s left end and extending to regions of the beam
between concentrated forces and/or couple moments, or where there is no discontinuity of distributed
loading.

� Section the beam perpendicular to its axis at each distance x and draw the free-body diagram of one of the
segments. Be sure V and M are shown acting in their positive sense in accordance with the following sign
convention:

Positive shear

Positive moment

Beam sign convention

M M

V

V

V

V

M M

� The shear V is obtained by summing forces perpendicular to the beam’s axis.

� The moment M is obtained by summing moments about the sectioned end of the segment.

• Shear and Moment Diagrams.

� Plot the shear diagram (V versus x) and the moment diagram (M versus x). If the computed values of
the functions describing V and M are positive, the values are plotted above the x -axis, whereas negative
values are plotted below the x -axis.

� Generally, it is convenient to plot the shear and bending-moment diagrams directly below the free-body
diagram of the beam. See Examples 7-7 and 7-8 in the text.
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7.3 RELATIONS BETWEEN DISTRIBUTED LOAD, SHEAR AND
MOMENT

In cases where a beam is subjected to several concentrated forces, couple moments, and distributed loads, the method
of constructing the shear and bending moment diagrams may become quite tedious. In this section a simpler method
for constructing these diagrams is presented—based on differential relations that exist between the load, shear, and
bending moment. The following are the main points:

• The slope of the shear diagram is equal to the negative of the intensity of the distributed loading, where positive
distributed loading is downward i.e.

dV

dx
= −w (x) . (7.0)

• If a concentrated force acts downward on the beam, the shear will jump downward by the amount of the force.

• The change in the shear �V between two points is equal to the negative of the area under the distributed-loading
curve between the points.

• The slope of the moment diagram is equal to the shear i.e.

dM

dx
= V. (7.1)

• The change in the moment �M between two points is equal to the area under the shear diagram between the
two points.

• If a clockwise couple moment acts on the beam, the shear will not be affected, however, the moment diagram
will jump upward by the amount of the moment.

• Points of zero shear represent points of maximum or minimum moment since

dM

dx
= 0. (7.2)

7.4 CABLES

Flexible cables and chains are used in engineering structures for support and to transmit loads from one member to
another. In the force analysis of such systems, the weight of the cable itself may be neglected (cable is referred to as
‘weightless’) because it is often small compared to the load it carries. In modelling the cable, it is assumed that:

1. The cable is perfectly flexible (cable offers no resistance to bending so the tensile force acting in the cable is
always tangent to the cable at points along its length).

2. The cable is inextensible (cable has a constant length before and after load is applied—cable can be treated as a
rigid body).

CABLE SUBJECTED TO CONCENTRATED LOADS

• When a cable of negligible weight supports several concentrated loads, the cable takes the form of several straight-
line segments, each of which is subjected to a constant tensile force. The equilibrium analysis is performed by
writing down a sufficient number of equilibrium equations (based on the entire cable or any part thereof) and
equations describing the geometry of the cable to solve for all the unknowns leading to a description of the
tension in (each segment of) the cable. See Example 7-13 in text.
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CABLE SUBJECTED TO A DISTRIBUTED LOAD

A

B

w = w(x)

Δxx

y

x

• The equation

y = 1
FH

∫ (∫
w (x) dx

)
dx, (7.3)

determines the curve for the cable y = f (x) . Here, FH measures the horizontal component of tensile force at
any point along the cable and w (x) is the loading function measured in the x -direction. In practice, FH and the
two constants of integration are determined from the boundary conditions for the cable—see Example 7-14 in
text.

CABLE SUBJECTED TO ITS OWN WEIGHT

• When the weight of the cable becomes important in the force analysis (e.g., cables used as transmission lines),
the loading function along the cable becomes a function of the arc length s rather than the projected length x.

The equation of the deflection curve is given by y = f (x) where

dy

dx
= 1

FH

∫
w (s) ds, (7.4)

x =
∫

ds{
1 + 1

F 2
H

(∫
w (s) ds

)2
} 1

2

. (7.5)

The two constants of integration from (7.5) are found using the boundary conditions for the cable. First solve
(7.5) for w (s) then use (7.4) to get the shape y = f (x) for the cable. See Example 7-15 in text.

HELPFUL TIPS AND SUGGESTIONS
• Use clear and concise free-body diagrams.
• As in most mechanics problems, practice is the key. Make sure you read Examples 7-1 through 7-15 in the text

before you attempt any corresponding problems. These examples will serve as templates with which to solve
problems. Draw the requested free-body diagrams yourself. When doing so, make sure the work is neat and that
all the forces and couple moments are properly labelled.
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REVIEW QUESTIONS

1. What are the normal (or axial) force, shear force and bending moment?
2. How are the positive directions (sense) of the shear force V and bending moment M defined?
3. For a portion of a beam which is subjected only to a distributed load w, how are the shear force and bending

moment distributions determined from equations (7.0) and (7.1) ?
4. What does it mean when a cable is assumed to be ‘weightless,’ ‘inextensible’ or ‘perfectly flexible’?
5. If a cable is subjected to a load that is uniformly distributed along a straight line and its weight is negligible, what

mathematical curve describes its shape?
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Friction

MAIN GOALS OF THIS CHAPTER:

• To introduce the concept of dry friction and show how to analyze the equilibrium of rigid bodies subjected to
this force.

• To present specific applications of frictional force analysis on wedges, screws, belts and bearings.

• To investigate the concept of rolling resistance.

8.1 CHARACTERISTICS OF DRY FRICTION

As a result of experiments that pertain to the foregoing discussion, the following rules which apply to bodies subjected
to dry friction may be stated:

• The frictional force acts tangent to the contacting surfaces in a direction opposed to the relative motion or tendency
for motion of one surface against another.

• The maximum static frictional force Fs that can be developed is independent of the area of contact, provided
the normal pressure is not very low nor great enough to severely deform or crush the contacting surfaces of the
bodies.

• The maximum static frictional force is generally greater than the kinetic frictional force Fk for any two surfaces
of contact. However, if one of the bodies is moving with a very low velocity over the surface of another, Fk

becomes approximately equal to Fs i.e. μs ≈ μk.

• When slipping at the surface of contact is impending (about to occur), the maximum static frictional force is
proportional to the normal force N, such that Fs = μsN.

• When slipping at the surface of contact is occurring, the kinetic frictional force is proportional to the normal
force N, such that Fk = μkN.
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8.2 PROBLEMS INVOLVING DRY FRICTION
If a rigid body is in equilibrium when it is subjected to a system of forces which includes the effect of friction, the force
system must satisfy not only the equations of equilibrium but also the laws that govern the frictional forces.

In general, there are three types of mechanics problems involving dry friction. They are classified once the
free-body diagrams are drawn and the total number of unknowns are identified and compared with the total number
of available equilibrium equations:

• Equilibrium—The total number of unknowns is equal to the total number of available equilibrium equations. In
this case, once the frictional forces are determined, check that F ≤ μsN otherwise slipping will occur and the
body will not remain in equilibrium.
• Impending Motion at all Points—The total number of unknowns will equal the total number of available equilib-

rium equations plus the total number of available frictional equations or conditional equations for tipping. As a
result, several possibilities for motion or impending motion will exist and the problem will involve a determination
of the kind of motion which actually occurs.
• Impending Motion at Some Points—The total number of unknowns will be less than the total number of available

equilibrium equations plus the total number of available frictional equations, F = μN. If motion is impending
at the points of contact, then Fs = μsN whereas if the body is slipping, then Fk = μkN.

EQUILIBRIUM VERSUS FRICTIONAL EQUATIONS

When the frictional force F is an equilibrium force i.e., F < μN, we can always assume the sense of the frictional
force F (since the frictional force always acts so as to oppose the relative motion or impede the motion of a body over
the contacting surface). The correct sense is determined after solving the equilibrium equations for F. However, in
cases where F = μN is used, we can no longer assume the sense of F since the equation F = μN relates only the
magnitudes of two perpendicular vectors. Consequently, in this case, F must always be shown acting with its correct
sense on the free-body diagram.

PROCEDURE FOR ANALYSIS

• Free-Body Diagrams

� Draw the necessary free-body diagrams and, unless it is stated in the problem that impending motion or
slipping occurs, always show the frictional forces as unknowns i.e., do not assume F = μN .

� Determine the number of unknowns and compare this with the number of available equilibrium equations.
� If there are more unknowns than equilibrium equations, it is necessary to apply the frictional equations at

some, if not all, points of contact to obtain the extra equations needed for complete solution.
� If the equation F = μN is to be used, it will be necessary to show F acting in the proper direction on a

free-body diagram.

• Equations of Equilibrium and Friction.

� Apply the equations of equilibrium and the necessary frictional equations (or conditional equations if
tipping is possible) and solve for the unknowns.

� If the problem involves a three-dimensional force system such that it becomes difficult to obtain the force
components or the necessary moment arms, apply the vector equations of equilibrium.

8.3 WEDGES
A wedge is a simple machine which is often used to transform an applied force into much larger forces, directed at
approximately right angles to the applied force. Also wedges can be used to give small displacements or adjustments
to heavy loads. The analysis of problems involving wedges proceeds as above i.e., we draw free-body diagrams of
the wedge and any other contacting bodies and formulate the appropriate equilibrium and frictional equations. See
Example 8-7 in text.
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8.4 FRICTIONAL FORCES ON SCREWS

A screw may be thought of simply as an inclined plane or wedge wrapped around a cylinder. In most cases screws are
used as fasteners; however, in many applications, they are incorporated to transmit power or motion from one part of
the machine to another.

Before proceeding to solve problems involving frictional forces on screws, each of the following cases should be
thoroughly understood:

• Frictional Analysis with Upward Screw Motion. The moment necessary to cause upward impending motion of
the screw is

M = Wr tan(θ + φ), φ = φs = tan−1 μs. (8.0)

If φ is replaced by φk = tan−1 μk , we obtain a smaller value of M necessary to maintain uniform upward motion
of the screw.

W

Upward screw motion

N

F

R

n

S

θ 

θ φ 

• Frictional Analysis with Downward Screw Motion (when the surface of the screw is very slippery: θ > φ). The
moment necessary to cause downward impending motion of the screw is

M
′ = Wr tan(θ − φ), φ = φs. (8.1)

If φ is replaced by φk = tan−1 μk , we obtain a (smaller) value of M necessary to maintain uniform downward
motion of the screw.

W

Downward screw motion (θ > φ)

S'

n

R
θ 

θ 
φ 
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• Frictional Analysis with Downward Screw Motion (when the surface of the screw is very rough: θ < φ). The
moment necessary to cause downward impending motion of the screw is

M ′ = Wr tan(φ − θ), φ = φs. (8.2)

If φ is replaced by φk = tan−1 μk , we obtain a (smaller) value of M necessary to maintain uniform downward
motion of the screw.

W

Downward screw motion (θ < φ)

S''

R

n

θ 
φ 

θ 

• Frictional Analysis with a Self-Locking Screw. If the moment M (or its effect S) is removed, the screw will
remain self-locking i.e. it will support the load W by friction forces alone (provided φ ≥ θ).

W

Self-locking screw (θ = φ)
(on the verge of rotating downward)

R

θ = φ 
n

θ 

8.5 FRICTIONAL FORCES ON FLAT BELTS

Whenever belt drives are designed, it is necessary to dtermine the frictional forces developed between the belt and its
contacting surface.

• The tension T2 in the belt required to pull the belt counterclockwise over the surface and thereby overcome both
the frictional forces at the surface of contact and the known tension T1 (motion or impending motion of belt
relative to surface) is:

T2 = T1e
μβ

where μ is the coefficient of static or kinetic friction between the belt and the surface of contact, and β is in
radians.
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Motion or impending
motion of belt relative 
to surface

r

T2

T1

β 

θ 

8.6 FRICTIONAL FORCES ON COLLAR BEARINGS, PIVOT
BEARINGS, AND DISKS

Pivot and collar bearings are commonly used in machines to support an axial load on a rotating shaft.

R

Pivot bearing

(a)

M

P

Collar bearing

(b)

R1

R2

M

P

• The magnitude of the moment required for impending rotation of the shaft is given by

M = 2
3
μsP

(
R3

2 − R3
1

R2
2 − R2

1

)
.
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• The frictional moment developed at the end of the shaft, when it is rotating at constant speed can be found by
substituting μk for μs in the expression for M.

8.7 FRICTIONAL FORCES ON JOURNAL BEARINGS
When a shaft or axle is subjected to lateral loads, a journal bearing is commonly used for support.

• The moment needed to maintain constant rotation of the shaft is given by

M = Rr sin φk, (8.3)

where φk is the angle of kinetic friction defined by tan φk = μk and R is the magnitude of the bearing reactive
force acting at A.
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8.8 ROLLING RESISTANCE
• The force P necessary to initiate and maintain rolling (of a cylinder with weight W and radius r ) at constant

velocity has magnitude

P ≈ Wa

r
.

Here, the distance a is referred to as the coefficient of rolling resistance.
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HELPFUL TIPS AND SUGGESTIONS
• Use clear and concise free-body diagrams.
• As in most mechanics problems, practice is the key. Make sure you read Examples 7-1 through 7-15 in the text

before you attempt any corresponding problems. These examples will serve as templates with which to solve
problems. Draw the requested free-body diagrams yourself. When doing so, make sure the work is neat and that
all the forces and couple moments are properly labelled.

REVIEW QUESTIONS

1. If relative slipping of two dry surfaces in contact is impending what can you say about the frictional forces they
exert on each other?

2. If two dry surfaces in contact are sliding relative to each other, what can you say about the frictional forces they
exert on each other?

3. What are the characteristics of an equilibrium problem involving dry friction?
4. What are the characteristics of a problem involving dry friction when motion is impending at all points of contact?
5. What’s the first step in solving a mechanics problem involving dry friction?
6. If a screw is subjected to a large axial load, what is the equation which will give the moment necessary to rotate

the screw and cause it to move in a direction opposite to the axial load?
7. If a screw is subjected to a large axial load, what is the equation which will give the moment necessary to rotate

the screw at a constant rate and cause it to move in the direction of the axial load?
8. If the shaft of a journal bearing is subjected to a lateral load with magnitude P, how do you find the moment

necessary to maintain constant rotation of the shaft?
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Center of Gravity and Centroid

MAIN GOALS OF THIS CHAPTER:

• To discuss the concept of the center of gravity, center of mass, and the centroid.

• To show how to determine the location of the center of gravity and centroid for a system of discrete particles
and a body of arbitrary shape.

• To use the theorems of Pappus and Guldinus for finding the area and volume for a surface of revolution.

• To present a method for finding the resultant of a general distributed loading and show how it applies to finding
the resultant of a fluid.

9.1 CENTER OF GRAVITY, CENTER OF MASS AND THE CENTROID
OF A BODY

• The center of gravity G is a point which locates the resultant weight of a system of particles. This coordinates of
the center of gravity G of a system of particles is given by

x̄ =
∑

x̃W∑
W

, ȳ =
∑

ỹW∑
W

, z̄ =
∑

z̃W∑
W

, (9.0)

where x̃, ỹ, z̃ represent the coordinates of each particle of the system and
∑

W is the resultant sum of the weights
of all the particles in the system.

• The center of mass of a system of particles is obtained by substituting W = mg (assuming g for every particle is
constant) into (9.0). Consequently, the center of mass has coordinates

x̄ =
∑

x̃m∑
m

, ȳ =
∑

ỹm∑
m

, z̄ =
∑

z̃m∑
m

,

where
∑

W is the resultant sum of the masses of all the particles in the system. Note that the location of the
center of gravity coincides with that of the center of mass. However, the center of mass is independent of gravity
and so can be used in situations when particles are not under the influence of a gravitational attraction.

49
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• The coordinates of the center of gravity G of a body are given by

x̄ =
∫

x̃ dW∫
dW

, ȳ =
∫

ỹ dW∫
dW

, z̄ =
∫

z̃ dW∫
dW

, (9.1)

where x̃, ỹ, z̃ represent the coordinates of an arbitrary point in the body.

• The center of mass of a rigid body is obtained by substituting dW = g into (9.1) and cancelling g from both the
numerators and denominators. This yields (9.1) with W replaced by m.

CENTROID

• The centroid C (x̄, ȳ, z̄) is a point which defines the geometric center of a body . This point coincides with the
center of mass or the center of gravity only if the material composing the body is uniform or homogeneous (in
which case both γ and ρ are constant throughout the body).

• Formulas used to locate the center of gravity or the centroid simply represent a balance between the sum of
moments of all the parts of the system and the moment of the “resultant” for the system. There are three cases
to consider:

– Volume. C (x̄, ȳ, z̄) is given by

x̄ =
∫
V

x̃ dV∫
V

dV
, ȳ =

∫
V

ỹ dV∫
V

dV
, z̄ =

∫
V

z̃ dV∫
V

dV
. (9.2)

– Area. C (x̄, ȳ, z̄) is given by

x̄ =
∫
A

x̃dA∫
A

dA
, ȳ =

∫
A

ỹ dA∫
A

dA
, z̄ =

∫
A

z̃ dA∫
A

dA
. (9.3)

– Line. C (x̄, ȳ, z̄) is given by

x̄ =
∫
L

x̃ dL∫
L

dL
, ȳ =

∫
L

ỹ dL∫
L

dL
, z̄ =

∫
L

z̃ dL∫
L

dL
. (9.4)

• The centroid will lie on any axis of symmetry of the body. Also, the centroid may be located off the body e.g., in
the case of a ring where the centroid is at the center.

9.2 COMPOSITE BODIES

A composite body consists of a series of connected “simpler” shaped bodies.

PROCEDURE FOR ANALYSIS

The location of the center of gravity of a composite body can be determined using the following procedure:

• Composite Parts

� Using a sketch, divide the body or object into a finite number of composite parts that have simpler shapes.

� If a composite part has a hole, then consider the composite part without the hole and consider the hole as
an additional composite part having negative weight or size.

• Moment Arms.

� Establish the coordinate axes on the sketch and determine the coordinates (x̃, ỹ, z̃) of the center of gravity
of each composite part.
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• Summations

• Determine x̄, ȳ, z̄ by applying the center of gravity equations:

x̄ =
∑

x̃W∑
W

, ȳ =
∑

ỹW∑
W

, z̄ =
∑

z̃W∑
W

, (9.5)

where
∑

W is the sum of the weights of all the composite parts of the body (total weight of the body).

• If an object is symmetrical about an axis, the centroid of the object lies on this axis.

• CENTROID FOR A COMPOSITE—When the (composite) body has constant density or specific weight, the
center of gravity coincides with the centroid of the body which, for lines, areas and volumes, can be found using
relations analogous to (9.5) with the W ’s replaced by L’s, A’s and V ’s, respectively [as in (9.2) - (9.4)]. Centroids
for common shapes of lines, areas, shells and volumes that often make up a composite body are given in the table
on the inside back cover of the text.

9.3 THEOREMS OF PAPUS AND GULDINUS

The following two theorems (of Papus and Guldinus) are used to find the surface area and volume of any object of
revolution:

• Surface Area. The area A of a surface of revolution equals the product of the length of the generating curve and
the distance travelled by the centroid of the curve in generating the surface area. That is:

A = θ r̄L,

where θ is the angle of revolution (radians), r̄ is the perpendicular distance from the axis of revolution to the
centroid of the generating curve and L is the total length of the generating curve.

• Volume. The volume V of a body of revolution equals the product of the generating area and the distance
traveled by the centroid of the area in generating the volume. That is:

V = θ r̄A,

where θ is the angle of revolution (radians), r̄ is the perpendicular distance from the axis of revolution to the
centroid of the generating area and A is the generating area.

• Composite Shapes. These two theorems may also be applied to lines or areas that may be composed of a series
of composite parts. In this case, the total surface area or volume generated is the sum of the surface areas of
volumes generated by each of the composite parts:

A = θ
∑

r̃L, V = θ
∑

r̃A,

where r̃ is the distance from the axis of revolution to the centroid of each composite part (remember that each
part undergoes the same angle of revolution θ).

9.4 RESULTANT OF A GENERAL DISTRIBUTED LOADING

In Section 4.9 we discussed the method used to simplify a distributed loading which is uniform along an axis of a
rectangular surface. Here, we generalize this method to include surfaces which have an arbitrary shape and are
subjected to a variable load distribution.

– Pressure Distribution over a Surface. Consider a flat plate subjected to the loading function p (x, y) Pa (Pa =
1N/m2). The entire loading on the plate can be simplified to a single resultant force FR
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• Magnitude of Resultant Force.

FR =
∫

V dV

i.e., total volume under the distributed loading diagram.
• Location of Resultant Force. The location (x̄, ȳ) of FR is given by

x̄ =
∫
V

x dV∫
V

dV
, ȳ =

∫
V

y dV∫
V

dV
. (9.6)

In other words,

Line of Action of FR passes through the geometric center or
centroid of the volume under the distributed loading diagram i.e.

x y

y
x

(a)

dF

p

dVdA

p = p(x, y)

x y

yx

(b)

FR

9.5 FLUID PRESSURE
According to Pascal’s law a fluid at rest creates a pressure p at a point that is the same in all directions. The magnitude
of p (force per unit area) is given by

p = γ z = ρgz, (9.7)

where γ is specific weight, ρ is mass density and z is the depth of the point from the fluid surface. Equation (9.7)
is valid only for incompressible fluids (in which pressure and temperature variations do not produce any significant
density variations).

Using Equation (9.7) and the results of Section 9.4, it is possible to determine the resultant force caused by a
liquid pressure distribution and specify its location on the surface of a submerged plate. Three cases are considered:

• Flat Plate of Constant Width. The easiest of the three cases. Consider a flat rectangular plate of constant
width submerged in a liquid with specific weight γ. The magnitude of the resultant force FR resulting from
the distribution of pressure over the plate’s surface is equal to the trapezoidal volume having an intensity of
p1 = γ z1 at depth z1 and p2 = γ z2 at depth z2. The line of action of FR passes through the volume’s centroid C

[see Equation (9.6)]—this is not the centroid of the plate but rather the center of pressure P of the plate.
• Curved Plate of Constant Width. The calculation of the magnitude of FR and its location P is more complicated

for a (general) curved plate than a flat plate. There is a simplification, however, when the plate has constant
width. This method requires separate calculations for the horizontal and vertical components of FR.

• Flat Plate of Variable Width. The loading caused by the pressure distribution acting on the surface of a submerged
plate having a variable width has resultant FR with magnitude given by the volume described by the plate area
as its base and linearly varying pressure distribution as its height. From Equation (9.6), the centroid of V again
defines the point through which FR acts i.e., the center of pressure P, which lies on the surface of the plate just
below C, has coordinates P

(
x̄, ȳ ′

)
defined by the equations

x̄ =
∫

V x̃ dV∫
V dV

, ȳ ′ =
∫

V ỹ ′ dV∫
V dV

.
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Note that this point is not the centroid of the plate’s area.

y
x

y'

z

Liquid surface

γ 
FR dF

C x

P(x, y')

p = z

dy'

z

HELPFUL TIPS AND SUGGESTIONS
• Finding the location of the center of mass or centroid involves multiple integration (e.g., over volumes or sur-

faces). These integrations can often be reduced to single integrations using the procedure outlined at the end of
Section 9.1. Study this procedure then read and perform Examples 9-1 through 9-8 of the text.

REVIEW QUESTIONS

1. True or False?
(a) The location of the center of mass coincides with that of the center of gravity.
(b) The centroid of a body always coincides with the body’s center of mass.
(c) The centroid of a body is always located on the body in question.
(d) The formula for the centroid for the surface area of a plate involves integrals over the same surface area.

2. If the total weight of an object is to be represented by a single equivalent force, where must this force act?
3. What’s the difference between the center of gravity and the center of mass?
4. How is the specific weight of a body defined?
5. What’s the relationship between the mass density ρ and the specific weight γ of a body?
6. What does it mean when we say a body is homogeneous?
7. If an object is homogeneous, what do you know about the position of its center of mass?
8. In the analysis of the location of the center of gravity of a composite body, how do you deal with a hole in the

body?
9. What are the theorems of Papus and Guldinus used for?

10. Show that the centroid for the volume of a body coincides with the center of mass only if the material composing
the body is uniform or homogeneous.
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Moments of Inertia

MAIN GOALS OF THIS CHAPTER:
• To develop a method for determining the moment of inertia for an area.
• To introduce the product of inertia and show how to determine the maximum and minimum moments of inertia

of an area.
• To discuss the mass moment of inertia.

10.1 DEFINITION OF MOMENTS OF INERTIA FOR AREAS
• The moments of inertia (second moments) of the area A about the x and y axes are given, respectively, by

Ix =
∫

A

y2 dA, (10.0)

Iy =
∫

A

x2 dA. (10.1)

• The moment of inertia of the area A about the pole O or the z-axis (also known as the polar moment of inertia)
is

JO =
∫

A

r2 dA = Ix + Iy (10.2)

where r2 = x2 + y2 is the perpendicular distance from the pole (z-axis) to the element dA.

O
x

y

y

x

r

dA

A
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• Clearly Ix, Iy and JO are always positive and have units of length raised to the fourth power.

• The terminology “moment of inertia” is actually a misnomer in this context—it has been adopted because of the
similarity with integrals of the same form related to mass.

10.2 PARALLEL AXIS THEOREM FOR AN AREA

• Suppose the centroid of an area is located at C
(
x ′, y ′, z′

)
. The moment of inertia of an area A about an axis

is equal to the moment of inertia of the area about a parallel axis passing through the area’s centroid plus the
product of the area and the square of the perpendicular distance between the axes. e.g.

Ix = Īx′ + Ad2
y , Iy = Īy′ + Ad2

x , JO = J̄C + Ad2 (10.3)

where Īx′, Īy′ and J̄C represent moments of inertia of the area about a corresponding parallel axis passing through
the area’s centroid.

O
x

y

d

dx

dy

x'

y'

x'

y'
dA

C

10.3 RADIUS OF GYRATION OF AN AREA

• Provided the areas and moments of inertia are known, the radii of gyration of a planar area are determined from
the formulas

kx =
√

Ix

A
, ky =

√
Iy

A
, kO =

√
JO

A
(units of length). (10.4)

• It is clear from equations (10.0)–(10.1) that finding moments of inertia requires the evaluation of area integrals.
If one chooses to describe the area element dA with differential size in two directions (e.g., dA = dx dy) then a
double integration must be performed. Most often, however, it is easier to perform only a single integration by
specifying the differential element dA having a differential size or thickness in only one direction. The procedure
is as follows:
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PROCEDURE FOR ANALYSIS

• Most often the element dA can be rectangular with a finite length and differential width.
• The element should be located so that it intersects the boundary of the area at the arbitrary point (x, y) . There

are two ways to orient the element dA with respect to the axis about which the moment of inertia is to be
determined:

� Case 1: The length of the element can be oriented parallel to the axis. In this case, Equations (10.0)–(10.1)
can be used directly since all parts of the element lie at the same moment-arm distance from the axis.

� Case 2: The length of the element can be oriented perpendicular to the axis. Here neither of Equations
(10.0) - (10.1) can be used directly since all parts of the element will not lie at the same moment-arm distance
from the axis. Instead, it is necessary to first calculate the moment of inertia of the element (separately)
and then integrate this result over the area A to obtain the appropriate area moment of inertia.

• See Examples 10-1 to 10-4 in text.

10.4 MOMENTS OF INERTIA FOR COMPOSITE AREAS
Provided the moment of inertia of each of the simpler areas (making up the composite area) is known, or can be
determined about a common axis, then the moment of inertia of the composite area equals the algebraic sum of the
moments of inertia of all its parts.

PROCEDURE FOR ANALYSIS

The moment of inertia of a composite area about a reference axis can be determined using the following procedure:

• Composite Parts—Using a sketch, divide the area into its composite parts and indicate the perpendicular distance
from the centroid of each part to the reference axis.
• Parallel-Axis Theorem.

– The moment of inertia of each part should be determined about its centroidal axis, which is parallel to the
reference axis—use the table given on the inside back cover of the text.

– If the centroidal axis does not coincide with the reference axis, use the parallel axis theorem to determine
the moment of inertia of the part about the reference axis.

• Summation.

– The moment of inertia of the entire area about the reference axis is found by summing the results of the
composite parts.

– If a composite part has a “hole,” its moment of inertia is found by “subtracting” the moment of inertia for
the hole from the moment of inertia of the entire part including the hole.

10.5 PRODUCT OF INERTIA FOR AN AREA
In general, the moment of inertia for an area is different for every axis about which it is computed. In some applications,
it is necessary to know the orientation of those axes which give, respectively, the maximum and minimum moments of
inertia for the area (see Section 10.6). Essential to this is the idea of a product of inertia for an area.

• The product of inertia for the area A is

Ixy =
∫

A

xy dA

• The product of inertia may be negative, positive or zero (unlike moment of inertia). For example Ixy will
be zero if x or y is an axis of symmetry for the area A.

• The sign of Ixy depends on the quadrant where the area A is located. In fact, if the area is rotated from
one quadrant to another, the sign of Ixy will change.
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• Parallel Axis Theorem for Product of Inertia of an Area A

Ixy = Īx′y′ + Adxdy

It is important that the algebraic signs for dx and dy be maintained when applying this result.

x

y

x'

y'

dx

dy

C

dA y'

x'

10.6 MOMENTS OF INERTIA FOR AN AREA ABOUT INCLINED
AXES
• The moments and products of inertia for an area with respect to a set of inclined (at an angle θ) u and v axes

are given by (assuming θ, Ix, Iy and Ixy are known):

Iu = Ix + Iy

2
+ Ix − Iy

2
cos 2θ − Ixy sin 2θ,

Iv = Ix + Iy

2
− Ix − Iy

2
cos 2θ + Ixy sin 2θ, (10.5)

Iuv = Ix − Iy

2
sin 2θ + Ixy cos 2θ

• The polar moment of inertia about the z-axis passing through the point O is independent of the orientation of
the u and v axes i.e.

JO = Iu + Iv = Ix + Iy

PRINCIPAL MOMENTS OF INERTIA

• When the angle θ in (10.5) takes the value θ = θp defined by

tan 2θp = −Ixy(
Ix − Iy

)
/2

, (10.6)

the axes u and v are called the principal axes of the area since they identify the orientation of the axes u and v

about which the moments of inertia Iu and Iv are maximum or minimum. In this case, they are called principal
moments of inertia and are given by

Imax
min
= Ix + Iy

2
±
√(

Ix − Iy

2

)2

+ I 2
xy. (10.7)

Depending on the sign chosen, this result gives the maximum or minimum moment of inertia for the area.
• The product of inertia with respect to the principal axes is zero. Hence any symmetrical axis represents a principal

axis of inertia for the area.
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10.7 MOHR’S CIRCLE FOR MOMENTS OF INERTIA
Equations 10.5 to 10.7 have a graphical solution which is convenient to use and easy to remember—this solution is
called a Mohr’s circle.

PROCEDURE FOR ANALYSIS

Mohr’s circle provides a convenient means for transforming Ix, Iy and Ixy into the principal moments of inertia using
the following procedure:

• Determine Ix, Iy, Ixy. Establish the x, y axes for the area, with the origin located at the point P of interest and
determine Ix, Iy and Ixy.

x

y

θ

u

υ

p1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

P

• Construct the Circle

– Construct a rectangular coordinate system such that the abscissa represents the moment of inertia I and
the ordinate represents the product of inertia Ixy

– Determine the center of the circle O , which is located at a distance
Ix + Iy

2 from the origin and plot the

reference point A having coordinates
(
Ix, Ixy

)
. By definition, Ix is always positive, whereas Ixy will be

either positive or negative.
– Connect the reference point A with the center of the circle and determine the distance OA by trigonometry.

This distance represents the radius of the circle. Finally draw the circle.

I

θ 

Ixy

O

Imax

Imin

Ix

p1 Ixy

A

Ix – Iy

2

2

Ix + Iy

2

Ix – Iy

2( )2

+ I2
xyR =
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• Principal Moments of Inertia. The points where the circle intersects the abscissa give the values of the principal
moments of inertia Imin and Imax. Notice that the product of inertia will be zero at these points.

• Principal Axes. To find the direction of the major principal axis, determine, by trigonometry, the angle 2θp1,measured
from the radius OA to the positive I -axis. This angle represents twice the angle from the x axis of the area in
question to the axis of maximum moment of inertia Imax . Both the angle on the circle, 2θp1 and the angle to
the axis on the area, θp1, must be measured in the same sense. The axis for minimum moment of inertia Imin is
perpendicular to the axis for Imax.

10.8 MASS MOMENT OF INERTIA

• The mass moment of inertia about the z-axis is given by

I =
∫

m

r2 dm (10.8)

where r is the perpendicular distance from the axis to the arbitrary element dm.

r

dm

z

• When the axis passes through the body’s mass center G, the moment of inertia is denoted by IG. The mass
moment of inertia is always positive and has units kg.m2 or slug.f t2.

• If the body consists of a material having a variable density ρ (x, y, z) , the body’s moment of inertia is computed
using volume integration as

I =
∫

V

r2ρ dV.

This integral is generally computed as a triple integral. The integration process can, however, be simplified to a
single integration provided the chosen elemental volume has a differential size or thickness in only one direction.
Shell or disk elements are often used for this purpose.

PARALLEL AXIS THEOREM

• If the moment of inertia of the body about an axis passing through the body’s mass center is known, then the
moment of inertia about any other parallel axis can be computed from

I = IG + md2 (10.9)

where m is the mass of the body and d is the perpendicular distance between the axes.
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RADIUS OF GYRATION

• The radius of gyration k has units of length and is related to the mass m and moment of inertia I of the body by

I = mk2 or k =
√

I

m

COMPOSITE BODIES

• If a body is constructed from a number of simple shapes such as disks, spheres and rods, the moment of inertia of
the body about any axis z can be determined by adding algebraically the moments of inertia of all the composite
shapes computed about the z-axis. A composite part must be considered as a negative quantity if it has already
been included within another part e.g., a “hole” subtracted from a solid plate.

HELPFUL TIPS AND SUGGESTIONS
• Be careful when using the Parallel Axis Theorem (10.9). It is applicable only to the situation when the moment

of inertia of the body about an axis passing through the body’s mass center is known. It cannot be applied in the
form I = IB +md2 where B is an arbitrary point.

REVIEW QUESTIONS

1. True or False? The area moments of inertia (10.0)–(10.2) can be negative.
2. It is often the case that the moment of inertia for an area is known about an axis passing through its centroid.

What can then be said about the moment of inertia of the same area about a corresponding parallel axis?
3. How are the radii of gyration for a planar area determined?
4. If a composite body has a “hole,” how would you find moment of inertia of the body ?
5. Find the moment of inertia of the following composite area about the x -axis.

x

100 mm

75 mm

75 mm

25 mm

(a)

x

100 mm

75 mm

75 mm

25 mm

–

(b)

6. What are the principal axes of an area and the principal moments of inertia?
7. What are Mohr’s circles used for?
8. Define the mass moment of inertia and describe how it can be found.
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Virtual Work

MAIN GOALS OF THIS CHAPTER:

• To introduce the principle of virtual work and show how it applies to determining the equilibrium configuration
of a series of pin-connected members.
• To establish the potential energy function and use the potential-energy method to investigate the type of equi-

librium or stability of a rigid body or configuration.

11.1 DEFINITION OF WORK AND VIRTUAL WORK

WORK OF A FORCE

• A force F does work only when it undergoes a displacement in the direction of the force.
• Work is a scalar quantity defined by the dot product

dU = F · dr (11.0)

= F cos θ ds,

where dU is the increment of work done when the force F is displaced dr, θ is the angle between the tails of dr
and F, and ds is the magnitude of dr.

• Positive work is done when the force and its displacement have the same sense. Otherwise negative work is done.
• In the SI system, the basic unit of work is a Joule (J) (1 J = 1 N ·m). In the FPS system work is defined in terms

of ft.lb.

WORK OF A COUPLE

• The two forces of a couple do work when the couple rotates about an axis perpendicular to the plane of the
couple.
• Work done by a couple M is a scalar quantity defined by the dot product

dU = M · dθ (11.1)

61
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where dU is the increment of work done when the couple M is ‘displaced’ dθ (a differential rotation of the body
about an axis perpendicular to the plane of the couple).

• The resultant work is positive when the sense of M is the same as that of dθ and negative when they have an
opposite sense. The direction and sense of dθ are again defined by the right-hand rule. Hence, if movement
of the body occurs in the same plane, the line of action of dθ will be parallel to the line of action of M and
Equation (11.1) becomes

dU = Mdθ (11.2)

VIRTUAL WORK

• A virtual movement (displacement or rotation) is an imaginary movement which is assumed and does not actually
exist. A virtual displacement is a differential that is given in the positive direction of the position coordinate and
is denoted by the symbol δs . Similarly, a virtual rotation is denoted by δθ .

• The virtual work done by a force undergoing a virtual displacement δs is

δU = F cos θδs. (11.3)

• The virtual work done by a couple undergoing a virtual rotation δθ in the plane of the couple forces is

δU = Mδθ. (11.4)

11.2 PRINCIPLE OF VIRTUAL WORK FOR A PARTICLE AND A
RIGID BODY

• Particle. If a particle undergoes an imaginary or virtual displacement δr, then the virtual work (δU) done by the
force system must be zero for equilibrium i.e.

δU = 0. (11.5)

In other words we can write three independent virtual work equations corresponding to the three equations of
equilibrium: ∑

Fxδx = 0,
∑

Fyδy = 0,
∑

Fzδz = 0.

• Rigid Body. As in the case of a particle we can also write a set of three virtual work equations (11.5) for a
rigid body subjected to a coplanar force system (two involving virtual translations in the x and y directions and
another a virtual rotation about an axis perpendicular to the x–y plane and passing through an arbitrary point
O).

• NOTE. As in the case of a particle, no added advantage is gained by solving rigid body equilibrium problems
using the principle of virtual work since for each application of the virtual work equation, the virtual displacement
or rotation, common to every term, factors out, leaving an equation that could have been obtained in a more
direct manner by simply applying the equations of equilibrium.

11.3 PRINCIPLE OF VIRTUAL WORK FOR A SYSTEM OF
CONNECTED RIGID BODIES

The method of virtual work is most suitable for solving equilibrium problems that involve a system of several connected
rigid bodies.

• Degrees of Freedom. An n−degree-of-freedom system requires n independent coordinates qn to specify the
location of all its members.
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• Principle of Virtual Work. The principle of virtual work for a system of rigid bodies whose connections are
frictionless may be stated as follows:

A system of connected rigid bodies is in equilibrium provided the virtual work
done by all the external forces and couples acting on the system is zero for each
independent virtual displacement of the system

Mathematically, we write
δU = 0 (11.6)

where δU represents the virtual work of all the external forces and couples acting on the system during any
independent virtual displacement.

• This means that for an n− degree-of-freedom system it is possible to write n independent virtual work equations,
one for every virtual displacement taken along each of the independent coordinate axes, while the remaining
n− 1 remaining independent coordinates are held fixed.

The following procedure shows how to use the equation of virtual work to solve problems involving a system of
frictionless connected rigid bodies having a single degree of freedom.

• Free-Body Diagram

– Draw the free-body diagram of the entire system of connected bodies and define the independent coordinate
q.

– Sketch the “deflected position” of the system on the free-body diagram when the system undergoes a
positive virtual displacement δq.

• Virtual Displacements

– Indicate position coordinates si, measured from a fixed point on the free-body diagram to each of the i

number of “active” forces and couples i.e., those that do work.

– Each coordinate axis should be parallel to the line of action of the “active’ force to which it is directed, so
that the virtual work along the coordinate axis can be calculated.

– Relate each of the position coordinates si to the independent coordinate q; then differentiate these ex-
pressions to express the virtual displacements δsi in terms of δq.

• Virtual Work Equation

– Write the virtual work equation (11.6) for the system assuming that, whether possible or not, all the position
coordinates si undergo positive virtual displacements δsi .

– Using the relations for δsi , express the work of each“active” force and couple in the equation in terms of
the single independent virtual displacement δq.

– Factor out the common displacement from all the terms and solve for the unknown force, couple or equi-
librium position, q.

– If the system contains n degrees of freedom, n independent coordinates qn must be specified. Follow the
above procedure and let only one of the independent coordinates undergo a virtual displacement while the
remaining n − 1 coordinates are held fixed. In this way, n virtual-work equations can be written, one for
each independent coordinate.

• EXAMPLES. The above procedure is illustrated in Examples 11-1 through 11-4 in the text. Note that had these
examples been solved using the equations of equilibrium, it would have been necessary to dismember the links
and apply three scalar equations to each link. The principle of virtual work, by means of calculus, has eliminated
this task so that the answer is obtained directly.
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11.4 CONSERVATIVE FORCES

• If a force F is displaced over a path with finite length S the work done by the force is given by the integral

U =
∫

S

dU =
∫

S

F cos θds.

If this integral is independent of its path (depends only on the initial and final locations of its path), the force is
called a conservative force.

• EXAMPLES OF CONSERVATIVE FORCES: Weight, Elastic Springs.

• EXAMPLES OF NONCONSERVATIVE FORCES: Friction: the work done by the frictional force depends
on the path: the longer the path, the greater the work. The work done is dissipated from the body in the form of
heat.

11.5 POTENTIAL ENERGY

When a conservative force acts on a body, it gives the body the capacity to do work. This capacity is known as the
body’s potential energy and depends on the location of the body.

• Gravitational Potential Energy. Measuring y positive upward, the gravitational potential energy of a body’s
weight W is

Vg = Wy. (11.7)

• Elastic Potential Energy. The elastic potential energy Ve that a spring produces on an attached body, when the
spring is elongated or compressed from an undeformed position (s = 0) to a final position s is

Ve = 1
2
ks2. (11.8)

• Potential Function. In the general case, if a body is subjected to both gravitational and elastic forces, the potential
energy (function) V of the body can be expressed as the algebraic sum

V = Vg + Ve

where measurement of V depends on the location of the body with respect to a selected datum in accordance
with Equations (11.7) and (11.8).

11.6 POTENTIAL ENERGY CRITERION FOR EQUILIBRIUM

• System Having One Degree of Freedom (q). When a frictionless connected system of rigid bodies is in equilib-
rium, we require that the potential energy (function) V of the body satisfies

dV

dq
= 0. (11.9)

• System Having n Degrees of Freedom (q 1, . . . ,qn). When a frictionless connected system of rigid bodies is in
equilibrium, we require that the potential energy (function) V of the body satisfies

∂V

∂q1
= 0,

∂V

∂q2
= 0, . . . ,

∂V

∂qn

= 0.

In other words, it is possible to write n independent equations for a system having n degrees of freedom.
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11.7 STABILITY OF EQUILIBRIUM

Once the equilibrium configuration for a body or a system of connected bodies is defined, it is important to investigate
the “type” of equilibrium or the stability of the configuration.

• Types of Equilibrium.

1. Stable Equilibrium. A small displacement of the system causes the system to return to its original position.
Potential energy of the system is at a minimum in this case.

2. Neutral Equilibrium. A small displacement of the system causes the system to remain in its displaced state.
Potential energy of the system remains constant in this case.

3. Unstable Equilibrium. A small displacement of the system causes the system to move farther away from
its original position. Original potential energy of the system is a maximum in this case.

• System Having One Degree of Freedom (q). We require that the potential energy (function) V of the body
satisfies the following conditions in each case:

1. Stable Equilibrium.

dV

dq
= 0,

d2V

dq2
> 0. (11.10)

2. Neutral Equilibrium.

dV

dq
= d2V

dq2
= d3V

dq3
= · · · = 0. (11.11)

3. Unstable Equilibrium.

dV

dq
= 0,

d2V

dq2
< 0. (11.12)

• System Having Two Degrees of Freedom (q1, q2). Things become much more complicated as the number of
degrees of freedom of the system increases. However, for a system for two degrees of freedom, we can say:

1. Equilibrium and Stability occur at a point
(
q1eq, q2eq

)
when

∂V

∂q1
= ∂V

∂q2
= 0,

[
(

∂2V

∂q1∂q2

)2

−
(

∂2V

∂q2
1

)(
∂2V

∂q2
2

)
] < 0,

(
∂2V

∂q2
1

+ ∂2V

∂q2
2

) > 0.

2. Equilibrium and Instability occur when

∂V

∂q1
= ∂V

∂q2
= 0,

[
(

∂2V

∂q1∂q2

)2

−
(

∂2V

∂q2
1

)(
∂2V

∂q2
2

)
] < 0,(

∂2V

∂q2
1

+ ∂2V

∂q2
2

)
< 0.
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PROCEDURE FOR SOLVING PROBLEMS
Using potential-energy methods, the equilibrium positions and the stability of a body or a system of connected bodies
having a single degree of freedom q can be obtained using the following procedure.

• Potential Function.

– Sketch the system so that it is located at some arbitrary position specified by the independent coordinate
q.

– Establish a horizontal datum through a fixed point and express the gravitational potential energy Vg in terms
of the weight W of each member and its vertical distance y from the datum, Vg = Wy.

– Express the elastic potential energy Ve of the system in terms of the stretch or compression, s , of any
connecting spring and the spring stiffness k , Ve = 1

2ks2.

– Formulate the potential function V = Vg +Ve and express the position coordinates y and s in terms of the
independent coordinate q.

• Equilibrium Position.

– The equilibrium position is determined from Equation (11.9) i.e. dV
dq
= 0.

• Stability. Stability at the equilibrium position is determined from Equations (11.10)–(11.12).

REVIEW QUESTIONS

1. What is the work done by a force F when its point of application is displaced dr?
2. What is the work done by a couple M when the object on which it acts rotates through an angle dθ?
3. What does the principle of virtual work say when an object in equilibrium is subjected to a virtual translation or

rotation?
4. What is meant by a “conservative force”?
5. What is the potential energy of a body and how is it related to the concept of “conservative force”?
6. What is the potential energy criterion for equilibrium for a frictionless connected system of rigid bodies with one

degree of freedom?
7. What does it mean when an equilibrium position of a body is stable or unstable?
8. How do you know when an equilibrium position of a system having one degree of freedom is stable or unstable?



ANSWERS TO REVIEW QUESTIONS

Chapter 1:

1. F 2. T 3. F 4. F 5. F 6. T 7. T 8. F

Chapter 2:

1. See (2.1) 2. See (2.0) (in the plane) or (2.2) and (2.3) 3. See (2.4)

4. See Section 2.5 5. See (2.3) 6. See (2.5)

7. Vectors are perpendicular.

8. See (2.5) 9. See (2.6) 10. See (2.7) and (2.8)

Chapter 3:

1. See Section 3.1 2. See (3.0) 3. See Section 3.2

4. Lines of action of the forces lie in a plane

5. Lines of action of the forces lie in three-dimensional space

6. One more equation—see (3.2) and (3.3)

7. See (3.1) 8. True.

Chapter 4:

1. See Section 4.1. 2. See Section 4.1. 3. Right-hand rule.

4. No moment. 5. See (4.0). 6. Vectors are parallel.

7. r represents a position vector drawn from O to any point lying on the line of action of F.

8. |MO | = |F| |r| sin θ = Fr sin θ = Fd .

9. Right-hand rule i.e. curling the fingers of the right hand from vector r (cross) to vector F, the thumb then points
in the direction of MO .

10. See Section 4.6. 11. False. 12. See Section 4.7. 13. See Section 4.7 and (4.2).

14. See Section 4.8. 15. See Section 4.9.

Chapter 5:

1. A particle has no size/shape and so cannot support rotation, only translation.

2. See (5.1) and (5.0).

3. See Section 5.7: the object has more supports than are necessary to hold it in equilibrium

4. See Section 5.7: when there are more unknown loadings on the body than equations of equilibrium available for
their solution.

5. Review Section 5.7.
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Chapter 6:
1. See Section 6.1: A truss is a structure composed of slender members joined together at their end points.
2. See Section 6.1.
3. See Section 6.2: In order to analyze or design a truss, we must obtain the force in each of its members. To do

this, we consider the equilibrium of a joint of the truss. This is the basis of the method of joints.
4. Two
5. See Section 6.4.
6. See Section 6.5—either the method of joints or method of sections.
7. See Section 6.6.
8. The forces at the connected parts of the group are internal forces and are not shown on the free-body diagram

of the group.

Chapter 7:
1. See Section 7.1: Normal force N acts parallel to the beam’s axis. Shear force V acts normal to the beam’s axis.

Bending moment M is a couple moment which causes the beam to bend..
2. See Section 7.2. Follow the sign convention shown in the figure.
3. By integration to obtain V and M as functions of x.

4. See Section 7.4. Note that no cable is truly ‘weightless,’ ‘inextensible’ or ‘perfectly flexible.’ These terms are
simplifications to aid the modeling.

5. We use equation (7.3) and integrate (noting that w is constant). We obtain

y (x) = 1
FH

(
wx2

2
+ c1x + c2

)

This is a parabola. If the origin of the x–y coordinate system is chosen so that y = 0,
dy
dx
= 0 at x = 0, we

obtain

y(x) = wx2

2FH

Chapter 8:
1. See Section 8.1: Fs = μsN.

2. See Section 8.1: Fk = μkN.

3. See Section 8.2: The total number of unknowns is equal to the total number of available equilibrium equations.
In this case, once the frictional forces are determined, check that F ≤ μsN otherwise slipping will occur and the
body will not remain in equilibrium.

4. See Section 8.2: The total number of unknowns will equal the total number of available equilibrium equations
plus the total number of available frictional equations or conditional equations for tipping.

5. Draw a free-body diagram!
6. Equation (8.0).
7. Equation (8.1) or (8.2) with φ = φk.

8. Equation (8.3) with R replaced by P (since the reactive force R is equal in magnitude to the load P).

Chapter 9:
1. (i) T (ii) F (material comprising the body must be homogeneous). (iii) F (iv) T—see (9.3).
2. See Section 9.1—at the center of gravity (or center of mass).
3. The location of the center of gravity coincides with that of the center of mass. However, the center of mass is

independent of gravity and so can be used in situations when particles are not under the influence of a gravitational
attraction—see Section 9.1.
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4. Specific weight is γ or weight per unit volume.
5. γ = ρg—see Section 9.1.
6. A body whose mass density is constant throughout its volume is said to be homogeneous—see Section 9.1.
7. Center of mass coincides with centroid and center of gravity—see Section 9.1.
8. See Section 9.2. If a composite part has a hole, then consider the composite part without the hole and consider

the hole as an additional composite part having negative weight or size.
9. To find the surface area and volume of any object of revolution—see Section 9.3.

10. From (9.1) with dW = ρg dV , the formula for the center of mass of a body is given by

x̄ =
∫
V

x̃ρgdV∫
V

ρgdV
, ȳ =

∫
V

ỹρgdV∫
V

ρgdV
, z̄ =

∫
V

z̃ρgdV∫
V

ρgdV
.

If the body is homogeneous ρ is constant. Thus we obtain:

x̄ =
∫
V

x̃dV∫
V

dV
, ȳ =

∫
V

ỹdV∫
V

dV
, z̄ =

∫
V

z̃dV∫
V

dV

which is exactly (9.2).

Chapter 10:
1. See Section 10.1: False.

2. See Section 10.2: It’s equal to the moment of inertia about the axis passing through the area’s centroid plus the
product of the area and the square of the perpendicular distance between the axes..

3. See Section 10.3, Equation (10.4).
4. See Section 10.4: If a composite part has a “hole,” its moment of inertia is found by “subtracting” the moment

of inertia for the hole from the moment of inertia of the entire part including the hole.
5. The composite area is determined by subtracting the circle from the rectangle. The centroid of each area is

located in the figure.

• Moment of inertia for Circle: Using Equation (10.3)

Ix = Ix′ + Ad2
y

= 1
4
π (25)4 + π (25)2 (75)2 = 11.4

(
106)mm4

• Moment of inertia for Rectangle: Using Equation (10.3)

Ix = Ix′ + Ad2
y

= 1
12

100 (150)3 + 100 (150)2 (75)2 = 112.5
(
106)mm4

• Summation. The moment of inertia for the composite area is thus

Ix = −11.4
(
106) + 112.5

(
106)

= 101
(
106)mm4

6. See Section 10.6: The principal axes of the area identify the orientation of the axes u and v about which the
moments of inertia Iu and Iv are maximum or minimum. (the principal moments of inertia).

7. See Section 10.7: Mohr’s circle provides a convenient (graphical) means for transforming Ix, Iy and Ixy into the
principal moments of inertia.

8. See Equation (10.8). This integral is generally computed as a volume and hence triple integral (using the relation
dm = ρdV ). The integration process can, however, be simplified to a single integration provided the chosen
elemental volume has a differential size or thickness in only one direction. Shell or disk elements are often used
for this purpose. The detailed procedure is given in Section 10.8 of the text.
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Chapter 11:
1. See (11.0). 2. See (11.1).
4. That the virtual work (δU) done by the force system must be zero—see (11.5).
5. See Section 11.4—that the work done by the force over a finite path is independent of the path itself.
6. See Section 11.5. When a conservative force acts on a body, it gives the body the capacity to do work. This

capacity is known as the body’s potential energy and depends on the location of the body.
7. Equation (11.9).
8. See Section 11.7: Stable Equilibrium: a small displacement of the system causes the system to return to its

original position. Potential energy of the system is at a minimum in this case; Unstable Equilibrium. A small
displacement of the system causes the system to move farther away from its original position. Original potential
energy of the system is a maximum in this case.

9. Test using Equation (11.10) for stability and Equation (11.12) for instability.



PART II

Free-Body Diagram Workbook
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Basic Concepts in Statics

Statics is a branch of mechanics that deals with the study of bodies that are at rest (if originally at rest) or move with
constant velocity (if originally in motion) that is, bodies which are in (static) equilibrium.

In mechanics, real bodies (e.g. planets, cars, planes, tables, crates, etc) are represented or modeled using certain
idealizations which simplify application of the relevant theory. In this book we refer to only two such models:

• Particle. A particle has a mass but a size/shape that can be neglected. For example, the size of an aircraft is
insignificant when compared to the size of the earth and therefore the aircraft can be modeled as a particle when
studying its three-dimensional motion in space.

• Rigid Body. A rigid body represents the next level of sophistication after the particle. That is, a rigid body is
a collection of particles which has a size/shape but this size/shape cannot change. In other words, when a body
is modeled as a rigid body, we assume that any deformations (changes in shape) are relatively small and can be
neglected. For example, the actual deformations occurring in most structures and machines are relatively small
so that the rigid body assumption is suitable in these cases.

1.1 Equilibrium

Equilibrium of a Particle
A particle is in equilibrium provided it is at rest if originally at rest or has a constant velocity if originally in motion. To
maintain equilibrium, it is necessary and sufficient to satisfy Newton’s first law of motion which requires the resultant
force acting on the particle or rigid body to be zero. In other words∑

F = 0 (1.1)

where
∑

F is the vector sum of all the external forces acting on the particle.
Successful application of the equations of equilibrium (1.1) requires a complete specification of all the known

and unknown external forces (
∑

F) that act on the object. The best way to account for these is to draw the object’s
free-body diagram.

73



74 Chap. 1 Basic Concepts in Statics

Equilibrium of a Rigid Body
A rigid body will be in equilibrium provided the sum of all the external forces acting on the body is equal to zero and
the sum of the external moments taken about a point is equal to zero. In other words∑

F = 0 (1.2)∑
MO = 0 (1.3)

where
∑

F is the vector sum of all the external forces acting on the rigid body and
∑

MO is the sum of the external
moments about an arbitrary point O .

Successful application of the equations of equilibrium (1.2) and (1.3) requires a complete specification of all the
known and unknown external forces (

∑
F) and moments (

∑
MO) that act on the object. The best way to account for

these is again to draw the object’s free-body diagram.



2

Free-Body Diagrams: the Basics

2.1 Free-Body Diagram: Particle

The equilibrium equation (1.1) is used to determine unknown forces acting on an object (modeled as a particle) in
equilibrium. The first step in doing this is to draw the free-body diagram of the object to identify the external forces
acting on it. The object’s free-body diagram is simply a sketch of the object freed from its surroundings showing all
the (external) forces that act on it. The diagram focuses your attention on the object of interest and helps you identify
all the external forces acting. For example:

TAB (Force of cable acting on crate)

W (Weight or gravity acting on crate)

B

A

Isolate the crate and part of the cable AB

Free-Body diagram of Crate

Figure 1

Note that once the crate is separated or freed from the system, forces which were previously internal to the system
become external to the crate. For example, in Figure 1, such a force is the force of the cable AB acting on the crate.

Next, we present a formal procedure for drawing free-body diagrams for a particle.
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2.1.1 Procedure for Drawing a Free-Body Diagram: Particle

1. Identify the object you wish to isolate. This choice is often dictated by the particular forces you wish to determine.
2. Draw the outlined shape of the isolated object. Imagine the object to be isolated or cut free from the system of

which it is a part.
3. Show all external forces acting on the isolated object. Indicate on this sketch all the external forces that act on

the object. These forces can be active forces, which tend to set the object in motion, or they can be reactive
forces which are the result of the constraints or supports that prevent motion. This stage is crucial: it may help
to trace around the object’s boundary, carefully noting each external force acting on it. Don’t forget to include
the weight of the object (unless it is being intentionally neglected).

4. Identify and label each external force acting on the (isolated) object. The forces that are known should be labeled
with their known magnitudes and directions. Use letters to represent the magnitudes and arrows to represent
the directions of forces that are unknown.

5. The direction of a force having an unknown magnitude can be assumed.

EXAMPLE 2.1
The crate in Figure 2 has a weight of 20lb. Draw free-body diagrams of the crate, the cord BD and the ring at B .
Assume that the cords and the ring at B have negligible mass.

45°
B

C

A

D

Figure 2

Solution

Free-Body Diagram for the Crate Imagine the crate to be isolated from its surroundings, then, by inspection, there
are only two external forces acting on the crate, namely, the weight of 20lb and the force of the cord BD .

FD (Force of cord acting on crate)

20 lb (Weight or gravity acting on crate)

Figure 3
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Free-Body Diagram for the Cord BD Imagine the cord to be isolated from its surroundings, then, by inspection,
there are only two external forces acting on the cord, namely, the force of the crate FD and the force FB caused by the
ring. These forces both tend to pull on the cord so that the cord is in tension. Notice that FD shown in this free-body
diagram (Figure 4) is equal and opposite to that shown in Figure 3 (a consequence of Newton’s third law).

FD (Force of ring acting on cord)

FD (Force of crate acting on cord)

B

D

Figure 4

Free-Body Diagram for the ring at B Imagine the ring to be isolated from its surroundings, then, by inspection,
there are actually three external forces acting on the ring, all caused by the attached cords. Notice that FB shown in
this free-body diagram (Figure 5) is equal and opposite to that shown in Figure 4 (a consequence of Newton’s third
law).

B

45°

FA (Force of cord BA acting on ring)

FC (Force of cord BC acting 
       on  ring)

FD (Force of cord BD acting on ring)

Figure 5

�

2.1.2 Using the Free-Body Diagram: Equilibrium
The free-body diagram is used to identify the unknown forces acting on the particle when applying the equilibrium
equation (1.1) to the particle. The procedure for solving equilibrium problems for a particle once the free-body diagram
for the particle is established, is therefore as follows:

1. Establish the x , y -axes in any suitable orientation.
2. Apply the equilibrium equation (1.1) in component form in each direction:∑

Fx = 0 and
∑

Fy = 0 (2.1)

3. Components are positive if they are directed along a positive axis and negative if they are directed along a
negative axis.

4. If more than two unknowns exist and the problem involves a spring, apply F = ks to relate the magnitude of
the spring force F to the deformation of the spring s (here, k is the spring constant).

5. If the solution yields a negative result, this indicates the sense of the force is the reverse of that shown/assumed
on the free-body diagram.
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EXAMPLE 2.2

In Example 2.1, the free-body diagrams established in Figures 3 - 5 give us a ‘pictorial representation’ of all the
information we need to apply the equilibrium equations (2.1) to find the various unknown forces. In fact, taking
the positive x -direction to be horizontal (→ +) and the positive y -direction to be vertical (↑ +), the equilibrium
equations (2.1) when applied to each of the objects (regarded as particles) are:

For the Crate: ↑ +∑Fy = 0: FD − 20 = 0 (See Figure 3)

FD = 20 lb (2.2)

For the Cord BD: ↑ +∑Fy = 0: FB − FD = 0 (See Figure 4)

FB = FD (2.3)

For the Ring: ↑ +∑Fy = 0: FA sin 45− FB = 0 (See Figure 5) (2.4)

−→ +∑Fx = 0: FC − FA cos 45 = 0 (See Figure 5) (2.5)

Equations (2.2)–(2.5) are now 4 equations which can be solved for the 4 unknowns FA, FB, FC and FD. That is:
FB = 20 lb; FD = 20 lb, FA = 28.28, FC = 20. The directions of each of these forces is shown in the free-body
diagrams above (Figures 3–5). �

2.2 Free-Body Diagram: Rigid Body

The equilibrium equations (1.2) and (1.3) are used to determine unknown forces and moments acting on an object
(modeled as a rigid body) in equilibrium. The first step in doing this is again to draw the free-body diagram of the
object to identify all of the external forces and moments acting on it. The procedure for drawing a free-body diagram
in this case is much the same as that for a particle with the main exception that now, because the object has ‘size/shape,’
it can support also external couple moments and moments of external forces.

2.2.1 Procedure for Drawing a Free-Body Diagram: Rigid Body

1. Imagine the body to be isolated or ‘cut free’ from its constraints and connections and sketch its outlined shape.
2. Identify all the external forces and couple moments that act on the body. Those generally encountered are:

(a) Applied loadings
(b) Reactions occurring at the supports or at points of contact with other bodies (See Table 2.1)
(c) The weight of the body (applied at the body’s center of gravity G)

3. The forces and couple moments that are known should be labeled with their proper magnitudes and directions.
Letters are used to represent the magnitudes and direction angles of forces and couple moments that are
unknown. Establish an x , y -coordinate system so that these unknowns e.g. Ax , By etc. can be identified.
Indicate the dimensions of the body necessary for computing the moments of external forces. In particular, if a
force or couple moment has a known line of action but unknown magnitude, the arrowhead which defines the
sense of the vector can be assumed. The correctness of the assumed sense will become apparent after solving the
equilibrium equations for the unknown magnitude. By definition, the magnitude of a vector is always positive,
so that if the solution yields a negative scalar, the minus sign indicates that the vector’s sense is opposite to that
which was originally assumed.
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Table 2.1. Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems

(1)

cable

Types of Connection Reaction Number of Unknowns

One unknown.  The reaction is a tension force which acts 
away from the member in the direction of the cable.

One unknown.  The reaction is a force which acts along 
the axis of the link.

One unknown.  The reaction is a force which acts 
perpendicular to the surface at the point of contact.

One unknown.  The reaction is a force which acts 
perpendicular to the surface at the point of contact.

One unknown.  The reaction is a force which acts 
perpendicular to the surface at the point of contact.

One unknown.  The reaction is a force which acts 
perpendicular to the slot.

One unknown.  The reaction is a force which acts 
perpendicular to the rod.

Two unknowns.  The reactions are the couple moment and 
the force which acts perpendicular to the rod.

Three unknowns.  The reactions are the couple moment 
and the two force components, or the couple moment and 
the magnitude and direction φ of the resultant force.

Two unknowns.  The reactions are two components of 
force, or the magnitude and direction φ of the resultant 
force.  Note that φ and θ are not necessarily equal 
[usually not, unless the rod shown is a link as in (2)].

F

(2)

weightless link F

(3)

roller F

θ

θ
θ or

θ

(4)

roller or pin in 
confined smooth slot

(5)

rocker

(6)

smooth contacting
 surface

F

F

θ

F

F

(8)

smooth pin or hinge

(9)

member fixed connected
 to collar on smooth rod

Fy

M

orθ φ
Fx

F

(10)

fixed support

Fy

Fx

F

or

M M

(7)

member pin connected 
to collar on smooth rod

or

θ

or

θ

θ

θ

θ
F

θθ

θ
F

θ

θ

θ θ

F

φ
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2.2.2 Important Points

• No equilibrium problem should be solved without first drawing the free-body diagram, so as to account for all
the external forces and moments that act on the body.
• If a support prevents translation of a body in a particular direction, then the support exerts a force on the body

in that direction
• If rotation is prevented then the support exerts a couple moment on the body
• Internal forces are never shown on the free-body diagram since they occur in equal but opposite collinear pairs

and therefore cancel each other out.
• The weight of a body is an external force and its effect is shown as a single resultant force acting through the

body’s center of gravity G.
• Couple moments can be placed anywhere on the free-body diagram since they are free vectors. Forces can act

at any point along their lines of action since they are sliding vectors.

EXAMPLE 2.3
Draw the free-body diagram of the beam, which is pin-connected at A and rocker-supported at B . Neglect the weight
of the beam.

5 mB

A

8 m 4 m

500 N
800 N · m

Figure 6

Solution
The free-body diagram of the beam is shown in Figure 7. From Table 2.1, since the support at A is a pin-

connection, there are two reactions acting on the beam at A denoted by Ax and Ay . In addition, there is one reaction
acting on the beam at the rocker support at B. We denote this reaction by the force F which acts perpendicular to the
surface at B, the point of contact (see Table 2.1). The magnitudes of these vectors are unknown and their sense has
been assumed (the correctness of the assumed sense will become apparent after solving the equilibrium equations for
the unknown magnitude i.e. if application of the equilibrium equations to the beam yields a negative result for F, this
indicates the sense of the force is the reverse of that shown/assumed on the free-body diagram). The weight of the
beam has been neglected. �

2.2.3 Using the Free-Body Diagram: Equilibrium

The equilibrium equations (1.2) and (1.3) can be written in component form as:∑
Fx = 0, (2.6)∑
Fy = 0, (2.7)∑

MO = 0. (2.8)
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5 m

A

Ay

Ax

B

8 m 4 m

500 N
800 N · m

F

y

x
22.62˚

22.62˚

Effect of Applied Force

Acting on Beam

Effect of Rocker Support
Acting on Beam

Effect of Applied Couple
Moment Acting on Beam

Effect of Pin Support
Acting on Beam

Figure 7

Here,
∑

Fx and
∑

Fy represent, respectively, the algebraic sums of the x and y components of all the external forces
acting on the body and

∑
MO represents the algebraic sum of the couple moments and the moments of all the external

force components about an axis perpendicular to the x -y plane and passing through the arbitrary point O , which may
lie either on or off the body. The procedure for solving equilibrium problems for a rigid body once the free-body
diagram for the body is established, is as follows:

• Apply the moment equation of equilibrium (2.8), about a point (O) that lies at the intersection of the lines
of action of two unknown forces. In this way, the moments of these unknowns are zero about O and a direct
solution for the third unknown can be determined.
• When applying the force equilibrium equations (2.6) and (2.7), orient the x and y -axes along lines that will

provide the simplest resolution of the forces into their x and y components.
• If the solution of the equilibrium equations yields a negative scalar for a force or couple moment magnitude,

this indicates that the sense is opposite to that which was assumed on the free-body diagram.

EXAMPLE 2.4

A force of magnitude 150 lb acts on the end of the beam as shown. Find the magnitude and direction of the reaction
at pin A and the tension in the cable.

3 ft

8 ft

C

3
4

5

A

1.5 ft

2 ft

150 lb

B

Figure 8
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Solution

Free-Body Diagram The first thing to do is to draw the free-body diagram of the beam in order to identify all the
external forces and moments acting on the beam.

3 ft

8 ft

C

3
4
5

A

1.5 ft

2 ft

150 lb

B

Ax

Ay

T

Tx

y

Figure 9

Equations of Equilibrium The free-body diagram of the beam suggests we can sum moments about the point A to
eliminate the moment contribution of the reaction forces Ax and Ay acting on the beam. This will allow us to obtain
a direct solution for the third unknown i.e. the cable tension T . Taking counterclockwise as positive when computing
moments, we have:

+ �
∑

MA = 0: − (3/5)T (2 ft) − (4/5)T (3 ft) + 150 lb(10 ft) = 0

− 3.6T + 150 lb(10 ft) = 0
T = 416.7 lb Ans.

Summing forces to obtain Ax and Ay , using the result for T , we have

−→ +
∑

Fx = 0: − Ax + (4/5)(416.7 lb) = 0

Ax = 333.3 lb ←−
↑ +

∑
Fy = 0: (3/5)(416.7 lb) − 150 lb − Ay = 0

Ay = 100 lb ↓
Thus, the reaction force FA at pin A has magnitude FA given by:

FA =
√

[(333.3 lb)2 + (100 lb)2] = 348.0 lb

and direction given by
θ = tan−1 [(−100 lb)/(−333.3 lb)] = 196.7◦

counterclockwise from the positive x -axis or 16.7o �
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3.1 Free-Body Diagrams in Particle Equilibrium

Problem 3.1

The sling is used to support a drum having a weight of 900 lb. Draw a free-body diagram for the knot at A. Take θ = 20◦ .

B
A

D

C

θ
θ

Solution

1. The knot at A has negligible size so that it can be modelled as a particle.

2. Imagine the knot at A to be separated or detached from the system.

3. The (detached) knot at A is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) knot showing all these forces labeled with their magnitudes and directions.

85
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Problem 3.1

The sling is used to support a drum having a weight of 900 lb. Draw a free-body diagram for the knot at A. Take θ = 20◦ .

B
A

D

C

θ
θ

Solution

1. The knot at A has negligible size so that it can be modelled as a particle.

2. Imagine the knot at A to be separated or detached from the system.

3. The (detached) knot at A is subjected to three external forces. They are caused by:

i. CORD AB ii. CORD AC

iii. CORD AD (weight of drum)

4. Draw the free-body diagram of the (detached) knot showing all these forces labeled with their magnitudes and directions.
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Problem 3.2

The spring ABC has a stiffness of 500 N/m and an unstretched length of 6 m. A horizontal force F is applied to the cord which is
attached to the small pulley B so that the displacement of the pulley from the wall is d = 1.5 m. Draw a free-body diagram for the
small pulley B .

F

B

C

d

A

k = 500 N/m

k = 500 N/m

6 m

Solution

1. The pulley B has negligible size so that it can be modelled as a particle.

2. Imagine the pulley B to be separated or detached from the system.

3. The (detached) pulley B is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) pulley showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the pulley.
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Problem 3.2

The spring ABC has a stiffness of 500 N/m and an unstretched length of 6 m. A horizontal force F is applied to the cord which is
attached to the small pulley B so that the displacement of the pulley from the wall is d = 1.5 m. Draw a free-body diagram for the
small pulley B .

F

B

C

d

A

k = 500 N/m

k = 500 N/m

6 m

Solution

1. The pulley B has negligible size so that it can be modelled as a particle.

2. Imagine the pulley B to be separated or detached from the system.

3. The (detached) pulley B is subjected to three external forces. They are caused by:

i. Force F ii. Spring AB

iii. Spring BC

4. Draw the free-body diagram of the (detached) pulley showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the pulley.
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Problem 3.3

The 2-kg block is held in equilibrium by the system of springs. Draw a free-body diagram for the ring at A.

3 m

3 m 4 m

kAD = 40 N/m

kAB = 30 N/m

kAC = 20 N/m

C B

A

D

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.
2. Imagine the ring at A to be separated or detached from the system.
3. The (detached) ring at A is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the ring.



90 Chap. 3 Problems

Problem 3.3

The 2-kg block is held in equilibrium by the system of springs. Draw a free-body diagram for the ring at A.

3 m

3 m 4 m

kAD = 40 N/m

kAB = 30 N/m

kAC = 20 N/m

C B

A

D

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.
2. Imagine the ring at A to be separated or detached from the system.
3. The (detached) ring at A is subjected to three external forces. They are caused by:

i. Spring AD (weight of block) ii. Spring AC

iii. Spring AB

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the ring.
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Problem 3.4
The motor at B winds up the cord attached to the 65-lb crate with a constant speed. The force in cord CD supports the pulley C

and the angle θ represents the equilibrium state. Draw the free-body diagram of the pulley C . Neglect the size of the pulley.

12
5

13

B

A

C

D

θ

Solution

1. The pulley C has negligible size so that it can be modelled as a particle.
2. Imagine the pulley C to be separated or detached from the system.
3. The (detached) pulley C is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) pulley showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the pulley.
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Problem 3.4
The motor at B winds up the cord attached to the 65-lb crate with a constant speed. The force in cord CD supports the pulley C

and the angle θ represents the equilibrium state. Draw the free-body diagram of the pulley C . Neglect the size of the pulley.

12
5

13

B

A

C

D

θ

Solution

1. The pulley C has negligible size so that it can be modelled as a particle.
2. Imagine the pulley C to be separated or detached from the system.
3. The (detached) pulley C is subjected to three external forces. They are caused by:

i. CORD CD ii. CORD CB

iii. CORD CA (weight of crate)

4. Draw the free-body diagram of the (detached) pulley showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the pulley.
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Problem 3.5

The following system is held in equilibrium by the mass supported at A and the angle θ of the connecting cord. Draw the free-body
diagram for the connecting knot D .

C

E F

A

B

D

30 kg

60° θ

40 kg

Solution

1. The knot D has negligible size so that it can be modelled as a particle.

2. Imagine the knot D to be separated or detached from the system.

3. The (detached) knot D is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) knot showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the knot.
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Problem 3.5

The following system is held in equilibrium by the mass supported at A and the angle θ of the connecting cord. Draw the free-body
diagram for the connecting knot D .

C

E F

A

B

D

30 kg

60° θ

40 kg

Solution

1. The knot D has negligible size so that it can be modelled as a particle.

2. Imagine the knot D to be separated or detached from the system.

3. The (detached) knot D is subjected to three external forces. They are caused by:

i. CORD DE (weight of C) ii. CORD DF (weight of A)

iii. CORD DB (weight of B)

4. Draw the free-body diagram of the (detached) knot showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the knot.



3.1 Free-Body Diagrams in Particle Equilibrium 95

Problem 3.6

The 500 lb crate is hoisted using the ropes AB and AC . Each rope can withstand a maximum tension of 2500 lb before it breaks.
Rope AB always remains horizontal. Draw the free-body diagram for the ring at A and determine the smallest angle θ to which
the crate can be hoisted.

F
BA

C θ

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring at A to be separated or detached from the system.

3. The (detached) ring A is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+ ↑
∑

Fy = 0:

+
→

∑
Fx = 0:

6. Solve for the angle θ :



96 Chap. 3 Problems

Problem 3.6

The 500 lb crate is hoisted using the ropes AB and AC . Each rope can withstand a maximum tension of 2500 lb before it breaks.
Rope AB always remains horizontal. Draw the free-body diagram for the ring at A and determine the smallest angle θ to which
the crate can be hoisted.

F
BA

C θ

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring at A to be separated or detached from the system.

3. The (detached) ring A is subjected to three external forces. They are caused by:

i. CORD AC ii. CORD AB

iii. CORD AD (weight of crate)

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+ ↑
∑

Fy = 0: TAC sin θ − 500 = 0

+
→

∑
Fx = 0: TAB − TAC cos θ = 0

6. Solve for the angle θ :

Assume TAC = 2500 lb⇒ θ = 11.54◦ and TAB = 2449.49 lb < 2500 lb (O.K!) Ans.
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Problem 3.7

The block has a weight of 20 lb and is being hoisted at uniform velocity. The system is held in equilibrium at angle θ by the
appropriate force in each cord. Draw the free-body diagram for the small pulley.

T

θ

30°

B

A

Solution

1. The pulley has negligible size so that it can be modelled as a particle.

2. Imagine the pulley to be separated or detached from the system.

3. The (detached) pulley is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) pulley showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the knot.
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Problem 3.7

The block has a weight of 20 lb and is being hoisted at uniform velocity. The system is held in equilibrium at angle θ by the
appropriate force in each cord. Draw the free-body diagram for the small pulley.

T

θ

30°

B

A

Solution

1. The pulley has negligible size so that it can be modelled as a particle.

2. Imagine the pulley to be separated or detached from the system.

3. The (detached) pulley is subjected to three external forces. They are caused by:

i. Cord AB ii. Force T

iii. Weight of block

4. Draw the free-body diagram of the (detached) pulley showing all these forces labeled with their magnitudes and directions.
You should also include any other available information e.g. lengths, angles etc. — which will help when formulating the
equilibrium equations for the knot.
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Problem 3.8

Blocks D and F weigh 5 lb each and block E weighs 8 lb. The system is in equilibrium at a given sag s . Draw the free-body diagram
for the connecting ring at A and find s . Neglect the size of the pulleys.

FD E

A

CB

4 ft 4 ft

s

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring to be separated or detached from the system.

3. The (detached) ring is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include also any other information which may help when formulating the equilibrium equations for the ring.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in the y -direction only (this
is all that is required to solve this problem):

+ ↑
∑

Fy = 0:

6. Solve for the sag s :
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Problem 3.8

Blocks D and F weigh 5 lb each and block E weighs 8 lb. The system is in equilibrium at a given sag s . Draw the free-body diagram
for the connecting ring at A and find s . Neglect the size of the pulleys.

FD E

A

CB

4 ft 4 ft

s

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring to be separated or detached from the system.

3. The (detached) ring is subjected to three external forces. They are caused by:

i. CORD AB (weight of D) ii. CORD AC (weight of F )

iii. CORD AE (weight of E)

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include also any other information which may help when formulating the equilibrium equations for the ring.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in the y -direction only (this
is all that is required to solve this problem):

+ ↑
∑

Fy = 0: 2(5) sin θ − 8 = 0 ⇒ θ = 53.13◦

6. Solve for the sag s :

tan θ = s

4
⇒ s = 4 tan 53.13◦ = 5.33 ft Ans.
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Problem 3.9

A vertical force P is applied to the ends of the cord AB and spring AC . The spring has an unstretched length of 2-ft and the system
is in equilibrium at angle θ . Draw the free-body diagram of the connecting knot at A and write down the equilibrium equations
for the knot at A.

2 ft

k

2 ft

θ

A

B C

P

Solution

1. The knot at A has negligible size so that it can be modelled as a particle.

2. Imagine the knot at A to be separated or detached from the system.

3. The (detached) knot at A is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) knot showing all these forces labeled with their magnitudes and directions.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+ ↑
∑

Fy = 0:

+
→

∑
Fx = 0:
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Problem 3.9

A vertical force P is applied to the ends of the cord AB and spring AC . The spring has an unstretched length of 2-ft and the system
is in equilibrium at angle θ . Draw the free-body diagram of the connecting knot at A and write down the equilibrium equations
for the knot at A.

2 ft

k

2 ft

θ

A

B C

P

Solution

1. The knot at A has negligible size so that it can be modelled as a particle.

2. Imagine the knot at A to be separated or detached from the system.

3. The (detached) knot at A is subjected to three external forces. They are caused by:

i. CORD AB ii. SPRING AC

iii. Force P

4. Draw the free-body diagram of the (detached) knot showing all these forces labeled with their magnitudes and directions.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0: Fs cos φ − T cos θ = 0

+ ↑
∑

Fy = 0: T sin θ + Fs sin φ − P = 0 Ans.
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Problem 3.10

The sling BAC is used to lift the 100-lb load with constant velocity. By drawing the free-body diagram for the ring at A, determine
the magnitude of the force in the sling as a function of the angle θ .

B

A

θ

100 lb

C
θ

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring at A to be separated or detached from the system.

3. The (detached) ring at A is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include also any other information which may help when formulating the equilibrium equations for the ring.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in the y -direction only (this
is all that is required to solve this problem):

+ ↑
∑

Fy = 0:

6. Solve for the magnitude of the force in the sling:
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Problem 3.10

The sling BAC is used to lift the 100-lb load with constant velocity. By drawing the free-body diagram for the ring at A, determine
the magnitude of the force in the sling as a function of the angle θ .

B

A

θ

100 lb

C
θ

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring at A to be separated or detached from the system.

3. The (detached) ring at A is subjected to three external forces. They are caused by:

i. CORD AB ii. CORD AC

iii. CORD AD (weight of load)

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include also any other information which may help when formulating the equilibrium equations for the ring.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in the y -direction only (this
is all that is required to solve this problem):

+ ↑
∑

Fy = 0: 100 − 2T cos θ = 0

6. Solve for the magnitude of the force in the sling:

T = 50

cos θ
Ans.
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Problem 3.11

When y is zero, the springs sustain a force of 60 lb. The applied vertical forces F and −F pull the point A away from B a distance
of y = 2 ft. The cords CAD and CBD are attached to the rings at C and D . Draw the free-body diagrams for point A and ring C .

F

k = 40 lb/ft k = 40 lb/ft

2 ft

2 ft

2 ft

2 ft

–F

y

A

B

DC

Solution

1. Imagine A and C to be separated or detached from the system.

2. Each of A and C is subjected to three external forces. For A, they are caused by:

i. ii.

iii.

For C , they are caused by:

i. ii.

iii.

3. Draw the free-body diagrams of A and C showing all these forces labeled with their magnitudes and directions. You should
also include any other available information e.g. lengths, angles etc. — which will help when formulating the equilibrium
equations.
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Problem 3.11

When y is zero, the springs sustain a force of 60 lb. The applied vertical forces F and −F pull the point A away from B a distance
of y = 2 ft. The cords CAD and CBD are attached to the rings at C and D . Draw the free-body diagrams for point A and ring C .

F

k = 40 lb/ft k = 40 lb/ft

2 ft

2 ft

2 ft

2 ft

–F

y

A

B

DC

Solution

1. Imagine A and C to be separated or detached from the system.

2. Each of A and C is subjected to three external forces. For A, they are caused by:

i. CORD AC ii. CORD AD

iii. Force F

For C , they are caused by:

i. CORD AC ii. CORD CB

iii. Spring attached at C

3. Draw the free-body diagrams of A and C showing all these forces labeled with their magnitudes and directions. You should
also include any other available information e.g. lengths, angles etc. — which will help when formulating the equilibrium
equations.



3.1 Free-Body Diagrams in Particle Equilibrium 107

Problem 3.12

By drawing a free-body diagram for the ring at A, determine the maximum weight W that can be supported in the position shown
if each cable AC and AB can support a maximum tension of 600 lb before it fails.

A

C30°

B

5
12

13

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.

2. Imagine the ring at A to be separated or detached from the system.

3. The (detached) ring at A is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include any other relevant information e.g. lengths, angles etc.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+ ↑
∑

Fy = 0:

+
→

∑
Fx = 0:

6. Set the tension in AB to the maximum of 600 lb and solve for the maximum weight W:



108 Chap. 3 Problems

Problem 3.12
By drawing a free-body diagram for the ring at A, determine the maximum weight W that can be supported in the position shown
if each cable AC and AB can support a maximum tension of 600 lb before it fails.

A

C30°

B

5
12

13

Solution

1. The ring at A has negligible size so that it can be modelled as a particle.
2. Imagine the ring at A to be separated or detached from the system.
3. The (detached) ring at A is subjected to three external forces. They are caused by:

i. CABLE AB ii. CABLE AB

iii. Weight of ball

4. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include any other relevant information e.g. lengths, angles etc.

5. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0: − FAB

(
5

13

)
+ FAC sin 30◦ = 0

+ ↑
∑

Fy = 0: FAB

(
12

13

)
+ FAC cos 30◦ − W = 0

6. Set FAB , the tension in AB , to the maximum of 600 lb and solve for the maximum weight W:
FAC = 461.54 lb(< 600 lb!!), W = 953.55 lb ↓ Ans.
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Problem 3.13
The cords suspend the two small buckets in the equilibrium position shown. Draw the free-body diagrams for each of the points
F and C .

40°

65°C

A

F

E

B

D

20°

20°

Solution

1. Imagine the points F and C to be separated or detached from the system.
2. Each of F and C is subjected to three external forces. For F , they are caused by:

i. ii.

iii.

For C , they are caused by:

i. ii.

iii.

3. Draw the free-body diagrams of F and C showing all these forces labeled with their magnitudes and directions. You should
also include any other available information e.g. lengths, angles etc. — which will help when formulating the equilibrium
equations at these points.
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Problem 3.13
The cords suspend the two small buckets in the equilibrium position shown. Draw the free-body diagrams for each of the points
F and C .

40°

65°C

A

F

E

B

D

20°

20°

Solution

1. Imagine the points F and C to be separated or detached from the system.
2. Each of F and C is subjected to three external forces. For F , they are caused by:

i. CABLE FE ii. CABLE FC

iii. Weight of A

For C , they are caused by:

i. CABLE CF ii. CABLE CD

iii. Weight of B

3. Draw the free-body diagrams of F and C showing all these forces labeled with their magnitudes and directions. You should
also include any other available information e.g. lengths, angles etc. — which will help when formulating the equilibrium
equations at these points.
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Problem 3.14

The 30-kg pipe is supported at A by a system of five cords. Draw the free-body diagrams for the rings at A and B when the system
is in equilibrium.

3
4

60° A

B

D

C

E

5

Solution

1. Imagine A and B to be separated or detached from the system.
2. Each of A and B is subjected to three external forces. For A, they are caused by:

i. ii.

iii.

For B , they are caused by:

i. ii.

iii.

3. Draw the free-body diagrams of A and B showing all these forces labeled with their magnitudes and directions. You should
also include any other available information e.g. lengths, angles etc. — which will help when formulating the equilibrium
equations.
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Problem 3.14

The 30-kg pipe is supported at A by a system of five cords. Draw the free-body diagrams for the rings at A and B when the system
is in equilibrium.

3
4

60° A

B

D

C

E

5

Solution

1. Imagine A and B to be separated or detached from the system.
2. Each of A and B is subjected to three external forces. For A, they are caused by:

i. CABLE AB ii. CABLE AE

iii. Weight of Pipe

For B , they are caused by:

i. CABLE BC ii. CABLE BD

iii. CABLE BA

3. Draw the free-body diagrams of A and B showing all these forces labeled with their magnitudes and directions. You should
also include any other available information e.g. lengths, angles etc. — which will help when formulating the equilibrium
equations.
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Problem 3.15

The cord AB has a length of 5 ft and is attached to the end B of the spring having a stiffness k = 10 lb/ft. The other end of the
spring is attached to a roller C so that the spring remains horizontal as it stretches. If a 10-lb weight is suspended from B , use the
free-body diagram for the ring at B to determine the necessary unstretched length of the spring, so that θ = 40◦ for equilibrium.

B
k = 10 lb/ft

C

A θ

5 ft

5 ft

5 ft

Solution

1. Imagine the ring at B to be separated or detached from the system.

2. The (detached) ring at B is subjected to three external forces caused by:

i. ii.

iii.

3. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include any other relevant information e.g. lengths, angles etc.

4. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+ ↑
∑

Fy = 0:

+
→

∑
Fx = 0:

5. Determine the stretch in the spring BC and solve for the necessary unstretched length:
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Problem 3.15

The cord AB has a length of 5 ft and is attached to the end B of the spring having a stiffness k = 10 lb/ft. The other end of the
spring is attached to a roller C so that the spring remains horizontal as it stretches. If a 10-lb weight is suspended from B , use the
free-body diagram for the ring at B to determine the necessary unstretched length of the spring, so that θ = 40◦ for equilibrium.

B
k = 10 lb/ft

C

A θ

5 ft

5 ft

5 ft

Solution

1. Imagine the ring at B to be separated or detached from the system.

2. The (detached) ring at B is subjected to three external forces caused by:

i. CABLE AB ii. SPRING BC

iii. 10 lb Weight

3. Draw the free-body diagram of the (detached) ring showing all these forces labeled with their magnitudes and directions.
Include any other relevant information e.g. lengths, angles etc.

4. Establish an xy -axes system on the free-body diagram and write down the equilibrium equations in each of the x and
y -directions

+ ↑
∑

Fy = 0: FAB sin 40◦ − 10 = 0 ⇒ FAB = 15.557 lb

+
→

∑
Fx = 0: FBC − FAB cos 40◦ = 0 ⇒ FBC = 11.918 lb

5. Determine the stretch in the spring BC and solve for the necessary unstretched length l :

FBC = kx ⇒ x = 11.918

10
= 1.1918 ft (stretch in BC)

BC = 5 + (5 − 5 cos 40◦) = 6.17 ft
l = 6.17 − 1.1918 = 4.98 ft Ans.
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3.2 Free-Body Diagrams in the Equilibrium of a Rigid Body

Problem 3.16

Draw the free-body diagram of the 50-kg uniform pipe, which is supported by the smooth contacts at A and B .

30°

40°

10°

A B

Solution

1. Imagine the pipe to be separated or detached from the system.

2. The supports at A and B are smooth contacts. Use Table 2.1 (6) to determine the number and types of reactions acting on
the pipe at A and B .

3. The pipe is subjected to three external forces (don’t forget the weight!). They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) pipe showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the pipe (the correct sense will always emerge from the
equilibrium equations for the pipe). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the pipe.
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Problem 3.16

Draw the free-body diagram of the 50-kg uniform pipe, which is supported by the smooth contacts at A and B .

30°

40°

10°

A B

Solution

1. Imagine the pipe to be separated or detached from the system.

2. The supports at A and B are smooth contacts. Use Table 2.1 (6) to determine the number and types of reactions acting on
the pipe at A and B .

3. The pipe is subjected to three external forces (don’t forget the weight!). They are caused by:

i. The reaction at A ii. The reaction at B

iii. The weight of the pipe

4. Draw the free-body diagram of the (detached) pipe showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the pipe (the correct sense will always emerge from the
equilibrium equations for the pipe). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the pipe.
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Problem 3.17

Draw the free-body diagram of the hand punch, which is pinned at A and bears down on the smooth surface at B . Neglect the
weight of the punch.

F = 8 lb

A
B

1.5 ft

2 ft0.2 ft

Solution

1. Imagine the hand punch to be separated or detached from the system.

2. The support at B is a smooth contact. The punch is (smoothly) pin-connected at A. Use Table 2.1 (6) and (8) to determine
the number and types of reactions acting on the pipe at A and B .

3. The punch is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) punch showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the punch (the correct sense will always emerge from
the equilibrium equations for the punch). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the punch.
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Problem 3.17

Draw the free-body diagram of the hand punch, which is pinned at A and bears down on the smooth surface at B . Neglect the
weight of the punch.

F = 8 lb

A
B

1.5 ft

2 ft0.2 ft

Solution

1. Imagine the hand punch to be separated or detached from the system.

2. The support at B is a smooth contact. The punch is (smoothly) pin-connected at A. Use Table 2.1 (6) and (8) to determine
the number and types of reactions acting on the pipe at A and B .

3. The punch is subjected to four external forces. They are caused by:

i. The force F ii. The reaction at B

iii. & iv. The two reactions at A

4. Draw the free-body diagram of the (detached) punch showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the punch (the correct sense will always emerge from
the equilibrium equations for the punch). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the punch.
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Problem 3.18

Draw the free-body diagram of the jib crane AB , which is pin-connected at A and supported by member (link) BC . Neglect the
weight of the crane.

8 kN

3 m

0.4 m

A

C

B

3

4

5

4 m

Solution

1. Imagine the jib crane AB to be separated or detached from the system.

2. There is a link support at B and the jib crane is (smoothly) pinned at A. Use Table 2.1 (2) and (8) to determine the number
and types of reactions acting on the jib crane at A and B .

3. The jib crane is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) crane showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the crane (the correct sense will always emerge from the
equilibrium equations for the crane). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the jib crane.
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Problem 3.18

Draw the free-body diagram of the jib crane AB , which is pin-connected at A and supported by member (link) BC . Neglect the
weight of the crane.

8 kN

3 m

0.4 m

A

C

B

3

4

5

4 m

Solution

1. Imagine the jib crane AB to be separated or detached from the system.

2. There is a link support at B and the jib crane is (smoothly) pinned at A. Use Table 2.1 (2) and (8) to determine the number
and types of reactions acting on the jib crane at A and B .

3. The jib crane is subjected to four external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

iv. The 8 kN load

4. Draw the free-body diagram of the (detached) crane showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the crane (the correct sense will always emerge from the
equilibrium equations for the crane). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the jib crane.
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Problem 3.19

Draw the free-body diagram of the dumpster D of the truck, which has a weight of 5000 lb and a center of gravity at G. It is
supported by a pin at A and a pin-connected hydraulic cylinder BC (short link).

1.5 m

3 m
1 m

20°30°
B

A

D
G

C

Solution

1. Imagine the dumpster D to be separated or detached from the truck.

2. There is a pin support at A and the dumpster is supported by a short link support at B . Use Table 2.1 (2) and (8) to determine
the number and types of reactions acting on the dumpster at A and B .

3. The dumpster is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) dumpster showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the dumpster (the correct sense will always emerge from
the equilibrium equations for the dumpster). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the dumpster.
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Problem 3.19

Draw the free-body diagram of the dumpster D of the truck, which has a weight of 5000 lb and a center of gravity at G. It is
supported by a pin at A and a pin-connected hydraulic cylinder BC (short link).

1.5 m

3 m
1 m

20°30°
B

A

D
G

C

Solution

1. Imagine the dumpster D to be separated or detached from the truck.

2. There is a pin support at A and the dumpster is supported by a short link support at B . Use Table 2.1 (2) and (8) to determine
the number and types of reactions acting on the dumpster at A and B .

3. The dumpster is subjected to four external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

iv. The weight of the dumpster

4. Draw the free-body diagram of the (detached) dumpster showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the dumpster (the correct sense will always emerge from
the equilibrium equations for the dumpster). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the dumpster.
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Problem 3.20

Draw the free-body diagram of the link CAB , which is pin-connected at A and rests on the smooth cam at B . Neglect the weight
of the link.

425 N

50 mm

80 mm

30°C

A
B

Solution

1. Imagine the link CAB to be separated or detached from the mechanism.

2. There is a pin connection at A and the link rests on the smooth surface at B . Use Table 2.1 (6) and (8) to determine the
number and types of reactions acting on the link at A and B .

3. The link is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) link showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the link (the correct sense will always emerge from the
equilibrium equations for the link). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the link.
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Problem 3.20

Draw the free-body diagram of the link CAB , which is pin-connected at A and rests on the smooth cam at B . Neglect the weight
of the link.

425 N

50 mm

80 mm

30°C

A
B

Solution

1. Imagine the link CAB to be separated or detached from the mechanism.

2. There is a pin connection at A and the link rests on the smooth surface at B . Use Table 2.1 (6) and (8) to determine the
number and types of reactions acting on the link at A and B .

3. The link is subjected to four external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

iv. The 425 N load at C

4. Draw the free-body diagram of the (detached) link showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the link (the correct sense will always emerge from the
equilibrium equations for the link). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the link.
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Problem 3.21

Draw the free-body diagram of the uniform pipe which has a mass of 100 kg and a center of mass at G. The supports A, B and C

are smooth.

C

1.75 m 0.1 m

1.25 m

0.5 m 0.2 m

30°
A

G

B

Solution

1. Imagine the pipe to be separated or detached from the system.

2. The pipe rests on smooth surfaces at A, B and C . Use Table 2.1 (6) to determine the number and types of reactions acting
on the pipe at A, B and C .

3. The pipe is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) pipe showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the pipe (the correct sense will always emerge from the
equilibrium equations for the pipe). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations for the pipe.
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Problem 3.21.

Draw the free-body diagram of the uniform pipe which has a mass of 100 kg and a center of mass at G. The supports A, B and C

are smooth.

C

1.75 m 0.1 m

1.25 m

0.5 m 0.2 m

30°
A

G

B

Solution

1. Imagine the pipe to be separated or detached from the system.

2. The pipe rests on smooth surfaces at A, B and C . Use Table 2.1 (6) to determine the number and types of reactions acting
on the pipe at A, B and C .

3. The pipe is subjected to four external forces. They are caused by:

i. The reaction at A ii. The reaction at B

iii. The reaction at C iv. Pipe’s weight

4. Draw the free-body diagram of the (detached) pipe showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the pipe (the correct sense will always emerge from the
equilibrium equations for the pipe). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations for the pipe.
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Problem 3.22

Draw the free-body diagram of the beam, which is pin-supported at A and rests on the smooth incline at B . Neglect the weight of
the beam.

A

4

3 ft 3 ft 3 ft 3 ft

800 lb800 lb
600 lb 600 lb

400 lb

1.2 ft

35

B

0.6 ft

0.6 ft

Solution

1. Imagine the beam to be separated or detached from the system.

2. There is a pin connection at A and the beam rests on the smooth (inclined) surface at B . Use Table 2.1 (6) and (8) to
determine the number and types of reactions acting on the beam at A and B .

3. In addition to the forces shown in the figure, the beam is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) beam showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the beam (the correct sense will always emerge from the
equilibrium equations for the beam). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the beam.
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Problem 3.22

Draw the free-body diagram of the beam, which is pin-supported at A and rests on the smooth incline at B . Neglect the weight of
the beam.

A

4

3 ft 3 ft 3 ft 3 ft

800 lb800 lb
600 lb 600 lb

400 lb

1.2 ft

35

B

0.6 ft

0.6 ft

Solution

1. Imagine the beam to be separated or detached from the system.

2. There is a pin connection at A and the beam rests on the smooth (inclined) surface at B . Use Table 2.1 (6) and (8) to
determine the number and types of reactions acting on the beam at A and B .

3. In addition to the forces shown in the figure, the beam is subjected to three external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

4. Draw the free-body diagram of the (detached) beam showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the beam (the correct sense will always emerge from the
equilibrium equations for the beam). Include any other relevant information e.g. lengths, angles etc. which may help when
formulating the equilibrium equations (including the moment equation) for the beam.
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Problem 3.23
Draw the free-body diagram of the member ABC , which is supported by a pin at A and a horizontal short link BD . Neglect the

weight of ABC .

1 m

A
DB

C

0.5 m

30°

50 kg

Solution

1. Imagine the member ABC to be separated or detached from the system.
2. There is a pin support at A and the member is supported by a horizontal short link at B . Use Table 2.1 (2) and (8) to determine

the number and types of reactions acting on the member at A and B .
3. The member is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) member showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the member (the correct sense will always emerge from
the equilibrium equations for the member). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the member.
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Problem 3.23
Draw the free-body diagram of the member ABC , which is supported by a pin at A and a horizontal short link BD . Neglect the

weight of ABC .

1 m

A
DB

C

0.5 m

30°

50 kg

Solution

1. Imagine the member ABC to be separated or detached from the system.
2. There is a pin support at A and the member is supported by a horizontal short link at B . Use Table 2.1 (2) and (8) to determine

the number and types of reactions acting on the member at A and B .
3. The member is subjected to four external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

iv. The weight at C

4. Draw the free-body diagram of the (detached) member showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the member (the correct sense will always emerge from
the equilibrium equations for the member). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the member.
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Problem 3.24

Draw the free-body diagram of the beam. The support at B is smooth. Neglect the weight of the beam.

8 m 4 m

A

B

800 N  m·

5 m

500 N

Solution

1. Imagine the beam to be separated or detached from the system.
2. There is a pin support at A and a smooth contact support at B . Use Table 2.1 (6) and (8) to determine the number and types

of reactions acting on the member at A and B .
3. In addition to those shown in the figure, the member is subjected to three external forces. They are caused by:

i. ii.

iii.

4. Draw the free-body diagram of the (detached) member showing all these forces and any external applied couple moments
labeled with their magnitudes and directions. Assume the sense of the vectors representing the reactions acting on the
member (the correct sense will always emerge from the equilibrium equations for the member). Include any other relevant
information e.g. lengths, angles etc. which may help when formulating the equilibrium equations (including the moment
equation) for the member.
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Problem 3.24

Draw the free-body diagram of the beam. The support at B is smooth. Neglect the weight of the beam.

8 m 4 m

A

B

800 N  m·

5 m

500 N

Solution

1. Imagine the beam to be separated or detached from the system.

2. There is a pin support at A and a smooth contact support at B . Use Table 2.1 (6) and (8) to determine the number and types
of reactions acting on the member at A and B .

3. In addition to those shown in the figure, the member is subjected to three external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

4. Draw the free-body diagram of the (detached) member showing all these forces and any external applied couple moments
labeled with their magnitudes and directions. Assume the sense of the vectors representing the reactions acting on the
member (the correct sense will always emerge from the equilibrium equations for the member). Include any other relevant
information e.g. lengths, angles etc. which may help when formulating the equilibrium equations (including the moment
equation) for the member.
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Problem 3.25

Draw the free-body diagram of the vehicle, which has a mass of 5 Mg and center of mass at G. The tires are free to roll, so rolling
resistance can be neglected.

4

35

1.75 m

C
B

G

T

1 m 0.5 m

0.3 m

A

20˚

0.6 m

Solution

1. Imagine the vehicle to be separated or detached from the system.

2. There are smooth contacts at A and B . Use Table 2.1 (6) to determine the number and types of reactions acting on the vehicle
at A and B .

3. The vehicle is subjected to four external forces. They are caused by:

i. ii.

iii. iv.

4. Draw the free-body diagram of the (detached) vehicle showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the vehicle (the correct sense will always emerge from
the equilibrium equations for the vehicle). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the vehicle.
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Problem 3.25

Draw the free-body diagram of the vehicle, which has a mass of 5 Mg and center of mass at G. The tires are free to roll, so rolling
resistance can be neglected.

4

35

1.75 m

C
B

G

T

1 m 0.5 m

0.3 m

A

20˚

0.6 m

Solution

1. Imagine the vehicle to be separated or detached from the system.

2. There are smooth contacts at A and B . Use Table 2.1 (6) to determine the number and types of reactions acting on the vehicle
at A and B .

3. The vehicle is subjected to four external forces. They are caused by:

i. The reaction at A ii. The reaction at B

iii. Car’s weight iv. Force T

4. Draw the free-body diagram of the (detached) vehicle showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the vehicle (the correct sense will always emerge from
the equilibrium equations for the vehicle). Include any other relevant information e.g. lengths, angles etc. which may help
when formulating the equilibrium equations (including the moment equation) for the vehicle.
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Problem 3.26

Draw a free-body diagram of the crane boom ABC , which has a mass of 45 kg, center of gravity at G, and supports a load of 30
Kg. The boom is pin-connected to the frame at B and connected to a vertical chain CD . The chain supporting the load is attached
to the boom at A.

A
G B

C

D

0.4 m

0.6 m
0.8 m1.25 m

Solution

1. Imagine the boom to be separated or detached from the system.
2. There is a pin connection at B and a vertical chain (cable) support at C . Use Table 2.1 (1) and (8) to determine the number

and types of reactions acting on the boom at B and C .
3. The boom is subjected to five external forces. They are caused by:

i. ii.

iii. iv.

v.

4. Draw the free-body diagram of the (detached) boom showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the boom. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the
boom.
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Problem 3.26

Draw a free-body diagram of the crane boom ABC , which has a mass of 45 kg, center of gravity at G, and supports a load of 30
Kg. The boom is pin-connected to the frame at B and connected to a vertical chain CD . The chain supporting the load is attached
to the boom at A.

A
G B

C

D

0.4 m

0.6 m
0.8 m1.25 m

Solution

1. Imagine the boom to be separated or detached from the system.

2. There is a pin connection at B and a vertical chain (cable) support at C . Use Table 2.1 (1) and (8) to determine the number
and types of reactions acting on the boom at B and C .

3. The boom is subjected to five external forces. They are caused by:

i. & ii. The reactions at B iii. The reaction at C

iv. Weight of boom v. Load at A

4. Draw the free-body diagram of the (detached) boom showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the boom. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the
boom.
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Problem 3.27

Draw a free-body diagram of the beam. Neglect the thickness and weight of the beam.

400 N

15°600 N

8 m

3

4

5

4 m

A
B

Solution

1. Imagine the beam to be separated or detached from the system.

2. There is a pin connection at A and a rocker support at B . Use Table 2.1 to determine the number and types of reactions
acting on the beam at A and B .

3. The beam is subjected to five external forces. They are caused by:

i. ii.

iii. iv.

v.

4. Draw the free-body diagram of the (detached) beam showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the beam. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the
beam.
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Problem 3.27

Draw a free-body diagram of the beam. Neglect the thickness and weight of the beam.

400 N

15°600 N

8 m

3

4

5

4 m

A
B

Solution

1. Imagine the beam to be separated or detached from the system.

2. There is a pin connection at A and a rocker support at B . Use Table 2.1 to determine the number and types of reactions
acting on the beam at A and B .

3. In addition to those shown in the figure, the beam is subjected to three external forces. They are caused by:

i. & ii. The reactions at A iii. The reaction at B

4. Draw the free-body diagram of the (detached) beam showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the beam. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the
beam.
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Problem 3.28

The link shown in the figure is pin-connected at A and rests against a smooth support at B . Draw the free-body diagram for link
ABC and use it to compute the horizontal and vertical components of reaction at pin A. Neglect the weight of the link.

0.75 m

30°

1 m
0.5 m

60 N

90 N · m

A

B

Solution

1. Imagine the link ABC to be separated or detached from the system.

2. There is a pin connection at A and a smooth support at B . Use Table 2.1 to identify the reactions acting on the link at A and
B .

3. The link is subjected to four external forces and one external applied couple moment.

4. Draw the free-body diagram of the (detached) link showing all these forces and couple moments labeled with their magnitudes
and directions. Assume the sense of the vectors representing the reactions acting on the link. Include any other relevant
information e.g. lengths, angles etc. which may help when formulating the equilibrium equations (including the moment
equation) for the link.

5. Sum moments about A and write down the moment equilibrium equation.

� +
∑

MA = 0:

6. Establish an xy -axes system on the free-body diagram and write down the force equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0:

+ ↑
∑

Fy = 0:

7. Solve the three equations for the required reaction components at pin A:
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Problem 3.28
The link shown in the figure is pin-connected at A and rests against a smooth support at B . Draw the free-body diagram for link
ABC and use it to compute the horizontal and vertical components of reaction at pin A. Neglect the weight of the link.

0.75 m

30°

1 m
0.5 m

60 N

90 N · m

A

B

Solution

1. Imagine the link ABC to be separated or detached from the system.
2. There is a pin connection at A and a smooth support at B . Use Table 2.1 to identify the reactions acting on the link at A and

B .
3. The link is subjected to four external forces and one external applied couple moment.
4. Draw the free-body diagram of the (detached) link showing all these forces and couple moments labeled with their magnitudes

and directions. Assume the sense of the vectors representing the reactions acting on the link. Include any other relevant
information e.g. lengths, angles etc. which may help when formulating the equilibrium equations (including the moment
equation) for the link.

5. Sum moments about A and write down the moment equilibrium equation.

� +
∑

MA = 0: − 90N.m − 60N(1m) + NB(0.75m) = 0

6. Establish an xy -axes system on the free-body diagram and write down the force equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0: Ax − NB sin 30◦N = 0

+ ↑
∑

Fy = 0: Ay − NB cos 30◦N − 60N = 0

7. Solve the three equations for the required reaction components at pin A:

NB = 200N, Ax = 100N, Ay = 233N Ans.
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Problem 3.29

A force of 150 lb acts on the end of the beam. Using the free-body diagram for the beam, find the magnitude and direction of the
reaction at pin A and the tension in the cable. Neglect the weight of the beam.

3 ft

8 ft

C

3
4

5

A

1.5 ft

2 ft

150 lb

B

Solution

1. Imagine the beam to be separated or detached from the system.

2. There is a pin connection at A and a cable support at B . Use Table 2.1 to identify the reactions acting on the beam at A and
B .

3. The beam is subjected to four external forces.

4. Draw the free-body diagram of the (detached) beam showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the beam. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the
beam.

5. Sum moments about A and write down the moment equilibrium equation.

� +
∑

MA = 0:

You should obtain the cable tension directly from this equation.

6. Establish an xy -axes system on the free-body diagram and write down the force equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0:

+ ↑
∑

Fy = 0:

7. Solve the two equations for the magnitude and direction of the (resultant) force at pin A:
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Problem 3.29
A force of 150 lb acts on the end of the beam. Using the free-body diagram for the beam, find the magnitude and direction of the
reaction at pin A and the tension in the cable. Neglect the weight of the beam.

3 ft

8 ft

C

3
4

5

A

1.5 ft

2 ft

150 lb

B

Solution
1. Imagine the beam to be separated or detached from the system.
2. There is a pin connection at A and a cable support at B . Use Table 2.1 to identify the reactions acting on the beam at A and

B .
3. The beam is subjected to four external forces.
4. Draw the free-body diagram of the (detached) beam showing all these forces labeled with their magnitudes and directions.

Assume the sense of the vectors representing the reactions acting on the beam. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the
beam.

5. Sum moments about A and write down the moment equilibrium equation.

� +
∑

MA = 0: −
(

3

5
T

)
(2 ft) −

(
4

5
T

)
(3 ft) + 150lb(10f t) = 0

You should obtain the cable tension directly from this equation:
T = 416.7 lb. Ans.

6. Establish an xy -axes system on the free-body diagram and write down the force equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0: − Ax +

(
4

5

)
(416.7 lb) = 0

+ ↑
∑

Fy = 0:
(

3

5

)
416.7 lb − 150 lb − Ay = 0

7. Solve the two equations for the magnitude and direction of the (resultant) force at pin A:

Ax = 333.3 lb ←−, Ay = 100 lb ↓
Thus, magnitude of force at A is

√
(333.3)2 + (100)2 = 348.0 lb

Direction is θ = tan−1 −100

−333.3
= 196.7◦ 16.7o Ans.
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Problem 3.30

The oil-drilling rig shown has a mass of 24 Mg and mass center at G. If the rig is pin-connected at its base, use a free-body diagram
of the rig to determine the tension in the hoisting cable and the magnitude of the hoisting force at A when the rig is in the position
shown.

1.25 m
5 m 3 m 10 m

A
3

4

5

60°

B

G

Solution

1. Imagine the rig to be separated or detached from the system.

2. There is a pin connection at A and a cable support at B . Use Table 2.1 to identify the reactions acting on the rig at A and
B . Note that since the hoisting cable is continuous and passes over the pulley, the cable is subjected to the same tension T

throughout its length.

3. The rig is subjected to five external forces.

4. Draw the free-body diagram of the (detached) rig showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the rig. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the rig.

5. Sum moments about A and write down the moment equilibrium equation.

� +
∑

MA = 0:

You should obtain the cable tension T directly from this equation:

6. Establish an xy -axes system on the free-body diagram and write down the force equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0:

+ ↑
∑

Fy = 0:

7. Solve the two equations for the magnitude of the (resultant) force at pin A:
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Problem 3.30

The oil-drilling rig shown has a mass of 24 Mg and mass center at G. If the rig is pin-connected at its base, use a free-body diagram
of the rig to determine the tension in the hoisting cable and the magnitude of the hoisting force at A when the rig is in the position
shown.

1.25 m
5 m 3 m 10 m

A
3

4

5

60°

B

G

Solution

1. Imagine the rig to be separated or detached from the system.

2. There is a pin connection at A and a cable support at B . Use Table 2.1 to identify the reactions acting on the rig at A and
B . Note that since the hoisting cable is continuous and passes over the pulley, the cable is subjected to the same tension T

throughout its length.

3. The rig is subjected to five external forces.

4. Draw the free-body diagram of the (detached) rig showing all these forces labeled with their magnitudes and directions.
Assume the sense of the vectors representing the reactions acting on the rig. Include any other relevant information e.g.
lengths, angles etc. which may help when formulating the equilibrium equations (including the moment equation) for the rig.

5. Sum moments about A and write down the moment equilibrium equation.

� +
∑

MA = 0: (235.4kN)(10m) −
(

3

5

)
T (13m) +

(
4

5
T

)
(1.25m) − T sin 60◦(18m) + (T cos 60◦)(1.25m) = 0

You should obtain the cable tension T directly from this equation: T = 108.2 kN

6. Establish an xy -axes system on the free-body diagram and write down the force equilibrium equations in each of the x and
y -directions

+
→

∑
Fx = 0: Ax − 108.2

(
4

5

)
kN − 108.2 cos 60◦ kN = 0

+ ↑
∑

Fy = 0: Ay − 235.4 kN + 108.2
(

3

5

)
kN + 108.2 sin 60◦ kN = 0

7. Solve the two equations for the magnitude of the (resultant) force at pin A:

Ax = 140.6 kN, Ay = 76.8 kN

Thus, magnitude of force at A is
√

(140.6)2 + (76.8)2 = 160 kN Ans.
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